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 ANALYSIS OF STREAM RUNOFF TRENDS IN THE BLUE RIDGE AND  
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Under the Direction of Seth Rose 

ABSTRACT 

 

The purpose of the study was to examine the temporal trends of three monthly variables: 

stream runoff, rainfall and air temperature and to find out if any correlation exists 

between rainfall and stream runoff in the Blue Ridge and Piedmont provinces of the 

southeast United States. Trend significance was determined using the non-parametric 

Mann-Kendall test on a monthly and annual basis. GIS analysis was used to find and 

integrate the urban and non-urban stream gauging, rainfall and temperature stations in the 

study area. The Mann-Kendall test showed a statistically insignificant temporal trend for 

all three variables. The correlation of 0.4 was observed for runoff and rainfall, which 

showed that these two parameters are moderately correlated. 

INDEX WORDS:  Mann-Kendall test, Correlation , Spatial distribution, Linear trends, 
Stream runoff, South-eastern United States, Climate and land cover 
change, Hydrology 
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1. INTRODUCTION 

1.1 Purpose of the Study 

In recent years, climatic observations have shown that global mean temperature has 

increased approximately by 0.4 to 0.8oC over the last century (IPCC, 2001). The greenhouse gas 

effect is expected to cause temperature increase globally. This process could lead to climatic 

abnormalities that will cause alteration in precipitation amount and storm patterns (Yue et al., 

2002). Vinnikov et al. (1990), Gan (1991), Groisman and Easterling (1994), and Karl and Knight 

(1998), Zhang et al. (2000) have found increases in the precipitation amount and intensity across 

US and Canada in recent years. The understanding of stream runoff to changes in precipitation 

and other climate parameters is well known, and it is thus important that researchers continue to 

look for evidence of trend in stream runoff that could be caused by climatic change (Yue et al., 

2002). 

Detail trend analyses of stream runoff conducted in the United States (e.g., Lettenamier et 

al., 1994) and Canada (Burn and Hag Elnur, 2002) have shown complex behavior of 

precipitation and stream runoff in which the significance of the trend depends on flow magnitude 

and season. Changes in climate and landcover variation cause most of the observed variability in 

stream runoff (Hu et al., 2005). Anthropogenic changes resulted from urbanization such as 

clearing the forest in a watershed, alter the surface hydrology, and stream runoff. The change in 

climate such as change in temperature and precipitation will alter evaporation and transpiration 

of hydrologic cycle and ultimately change the stream runoff. The popular nonparametric Mann-

Kendall test (Mann, 1945; Kendall, 1975, Hirsch et al., 1982) has been used to identify if trends 

exist in stream runoff data. Similarly, Geographic Information Systems (GIS) have been 
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identified as a useful tool for analyzing and modeling spatiotemporal trends in hydrology 

(Johnson, 1990).  

The purpose of this thesis is to analyze the historical trend of stream runoff in different 

watersheds, including both urban and non-urban, located in the Blue Ridge and Piedmont in 

North Carolina and Georgia since the runoff changes in highly urbanized basins are more 

vulnerable to changes in climate. This study also describes the historical trend of rainfall and 

temperature of the study area. The study also examines the relationship between runoff and 

rainfall in the Blue Ridge and Piedmont provinces of the study area. It has been hypothesized 

that there is a negative temporal trend in the historical dataset of runoff, rainfall, and temperature 

of the study area. In order to test this hypothesis, stream runoff, rainfall and temperature data 

were collected and analyzed for trend. The nonparametric Mann-Kendall test was applied to 

determine if there is a significant trend in the three-hydroclimatological parameters of the study 

area. Spatial autocorrelation technique, Moran’s I, was used to identify the spatial dependency in 

temperature, rainfall, and runoff data among the total stations in the study area. Finally, inverse 

distance weighting (IDW) method was used to display the spatial distribution of the rainfall and 

temperature data of the study area. The correlation test was also used to test the relationship 

between rainfall and runoff in the study area. 

1.2 Research Questions 

 Globally, many researchers have found significant increase or, decrease in trends of 

stream runoff in relation to temperature and rainfall; however, it is difficult to predict with 

certainty. Only a few studies have been done which examine the trends and relationship of 

stream runoff, rainfall and air temperature in the Blue Ridge and the Piedmont provinces of the 

Southeast United States.  
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The southeastern United States is clearly affected by rapid population growth as well as 

alteration of land uses (U.S. Census Bureau, 2000). Georgia is one of the fastest growing states 

in the United States in terms of both population and economy and its water demand has been 

increasing with increasing population. The rapidly growing Piedmont province of Georgia and 

Blue Ridge province of Georgia and North Carolina offered an excellent opportunity to explore 

hydrology and the effects of land use and climate change on hydrology. Land use and /or land 

cover plays a vital role in driving hydrolological processes within the watersheds (Schoonover et. 

Al, 2006). The study area covers both urban and non-urban area since urban areas are more 

likely affected by changes in temperature, rainfall, and stream runoff.  

In addition, most of the large rivers that flow in Georgia originate in the Blue Ridge 

Mountains of North Carolina and north Georgia. Moreover, surface water is the primary source 

of water in the northern half of Georgia including big cities like metropolitan Atlanta and Athens 

where limited groundwater resources are difficult to obtain (USGS, 2007). Surface water 

provides 78% of the total fresh water supply in Georgia (Fanning, 2003) and 82% of the public 

supply in North Carolina (Wrri, 2006). The study of stream runoff in both urban and non-urban 

area is expected to be helpful in the future water resource management for the growing 

population within the study area.  

The other factor that influenced the choice of study area was that, there are limited 

numbers of studies that are specifically concentrated on the southeastern United States which 

examine the temporal trend of stream runoff. The rapidly growing metropolitan Atlanta, Georgia 

offered an excellent opportunity to explore the effects of land development on hydrology. The 

urban (such as Peachtree Creek basin) and non-urban river basins located in the study area makes 

it an ideal study area for assessing the effect of climate and land cover changes on runoff. 
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1.3 Aims and Objectives  

The main aim of the study is to provide another practical example of the application of 

statistical analysis technique Mann-Kendall test and IDW method to access the historical trend 

and spatial distribution of runoff, rainfall, and temperature in the Blue Ridge and Piedmont 

provinces of North Carolina and Georgia.   

The other purpose of this research was to identify and document the effects of 

urbanization and land-use changes on stream runoff in the study area. The focus is to analyze 

urban and non-urban stream runoff data, considering climate, and topography. Based on 

information in the literature, it was hypothesized that the stream runoff in urban area would 

exhibit an increasing trend (seasonal trend, high peak flow) with urban development and would 

decrease with non-urban area. 

The main objectives of this study are to: 

• Analyze the temporal trend and spatial distribution of stream runoff, rainfall, 

temperature, rainfall-runoff ratio using Mann-Kendall test and Inverse Distance 

Weighting method using GIS in order to observe whether there is evidence of long-term 

temporal trends of climate (temperature), rainfall and stream runoff in different land-

cover scenarios (urban vs. non urban) of the Blue Ridge and Piedmont Province 

watersheds of Georgia and North Carolina (Figure 2-1); and, 

• Test the correlation between runoff and rainfall and analyze if there is any significance 

exists in their positive relationship since rainfall influences runoff.  

1.4 Structure 

Chapter 2 describes the geography and geology of the study area. This chapter provides 

information on the streams that have shaped the Blue Ridge and Piedmont and provides the 
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information on the stream runoff. Chapter 3 reviews the literature related to trend and spatial 

distribution of stream runoff, precipitation using different statistical and GIS analysis. This 

chapter also discusses the current research related to stream runoff, precipitation and temperature 

and their relationship in southeastern United States as well as in different parts of the world.  

Chapter 4 describes the methodology employed to access the temporal trend, spatial 

distribution, and relationship of hydroclimatological parameters in the study area. Data 

collection, processing procedures, and methods of analysis are also discussed here. The analysis 

procedure begins with the collection of spatial and hydroclimatological data. Finally, the 

statistical and GIS techniques that are employed to assess the trend, spatial distribution, and 

correlation are discussed.  

Chapter 5 presents the results of the trend analysis of the stream runoff, precipitation, and 

temperature in the Blue Ridge and Piedmont provinces of North Carolina and Georgia. In the 

first section, temporal trend analyses, using the Mann-Kendall test are summarized. The second 

section expands the spatial analysis that explores the type and location of change that occur 

within the study area. A synopsis of the relation between stream runoff with precipitation and 

temperature concludes the chapter. Finally, Chapter 6 presents the discussions and conclusions of 

the study. This chapter also provides implications of the research. 

 

2. GEOGRAPHY AND GEOLOGY OF THE STUDY AREA 

2.1 Geography of Georgia and North Carolina 

Georgia is one of the southeastern states of the United States located at 30.356-34.985oN 

latitude and 80.840-85.605oW longitude (USGS, 2008). Georgia is divided into three 

physiographic regions: the Blue Ridge, Piedmont, and the Coastal Plain. The Blue Ridge 
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province is a hilly to mountainous area in the northern part of the state, which consist largely of 

the southern tip of Blue Ridge Mountain (Geography of Georgia, 2008). Elevations are highest in 

the Blue Ridge. Georgia’s highest point Brasstown Bald is 4,784 feet (1,458m) (USGS, 2008). 

The study area, the Piedmont, lies between the Blue Ridge to the north and the Coastal Plain to 

the south. It is upland with rolling terrain and deep, narrow-valleys cut by rivers and streams. 

The Piedmont ends at the fall line. The Coastal plain is the largest physiographic region of 

Georgia, which occupies about half of the state (Geography of Georgia, 2008).   

Georgia is drained by rivers flowing southward to either the Atlantic Ocean or to the Gulf 

of Mexico. The major lakes in Georgia are Hartwell Lake, Russell Lake, and J.Strom Thurmond 

Lake, on the Savannah River; Lakes Oconee and Sinclair, on the Oconee; Lake Sydney Lanier, 

west Point Lake, and Walter F. George Reservoir, on the Chattahoochee; and Lake Seminole, on 

the Chattahoochee and Flint rivers (Geography of Georgia, 2008). The climate of Georgia is 

characterized as humid and subtropical all over the year with hot summers in the south and warm 

and cool summers in the northern mountainous area. July temperatures average about 79oF in the 

Piedmont and about 81oF in the Coastal Plain. January temperatures average about 55oF in the 

south and decline northward, averaging about 45oF in the Piedmont and slightly lower in the 

north (NCDC, 2006).  

North Carolina is also one of the southern states of the United States located at 33.50-

36.35oN latitude and 75.28-84.19oW longitude (USGS, 2008). It borders South Carolina and 

Georgia to the south, Virginia to the north, and Tennessee to the west. The area is 53,821 square 

miles. The physiographic division of North Carolina contains Blue Ridge to the west, Piedmont 

in the middle, and the Atlantic Coastal Plain to the east. The Atlantic Coastal Plain, which 

occupies almost half of the state, is a low, sandy, and relatively flat land (USGS, 2008). The 
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Piedmont, which covers almost other rest of the state begins at fall line and extends westward to 

the Blue Ridge. There are numerous rapids waterfalls where rivers cross the fall line. Bulk of the 

population of North Carolina resides in the Piedmont. The Blue Ridge is a mountainous region 

with high peaks, deep valleys, and heavily forested slopes (Geography of North Carolina, 2008).  

The major rivers of North Carolina begin either in the Blue Ridge or in the Piedmont and 

flow southeasterly to the Atlantic Ocean. The major natural lakes of this state are Mattamuskeet, 

Phelps, and Waccamaw. North Carolina has a subtropical climate that is partly affected by cold, 

continental type found to the north and west. Average summer temperature varies from about 

80oF in the south coast to75oF in the Piedmont and 67oF at some mountains in the western area. 

Average January temperature varies from 50oF in the southeast to 35oF in some northwest 

mountains (NC Climate and Geography, 2008) 

2.2 Blue Ridge and Piedmont 

The Blue Ridge is a physiographic province of the larger Appalachian division. It is 

separated to the north by the Valley and Ridge province and to the south by the Piedmont 

province (Appalachian Highlands, 2008). The Blue Ridge contains the highest mountains in the 

eastern North America. Most of the rocks that form the Blue Ridge Mountains are ancient 

granitic charnockites, metamorphosed volcanic formations, and sedimentary limestones.  

The Georgia Piedmont lies between the Blue Ridge Mountains and the Upper Coastal 

Plain. It runs in a northeast-to-southwest direction, following the main axis of the mountains, 

faults, and coastline of the southeastern United States. The Piedmont comprises nearly one-third 

of the area of the state. The boundary of the Piedmont on the southeastern side is the fall line, 

which generally separates the crystalline rocks of the Piedmont from the sedimentary rocks of 

the Atlantic Coastal Plain (Appalachian Highlands, 2008). Elevations range from near 1,200 feet 
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in the north to 500 feet in the south (Georgia State Climate Office, 1998). Major streams located 

within this province include the Chattahoochee, Flint, Ocmulgee, Oconee, and Savannah Rivers 

(Georgia State Climate Office, 1998). The study area encompasses the north central part of 

Georgia, the Blue Ridge and Piedmont provinces and western part of North Carolina, the Blue 

Ridge province (Figure 2-1). The study area also covers the Atlanta metropolitan area, which is 

the ninth-largest metropolitan area in the United States, and the mountainous region of North 

Carolina. 

2.3 River Basins of the Blue Ridge and Piedmont  

A river basin is the land that water flows across or, under on its way to a river. The river 

basins in the study area are given in Table 2-1.  A river basin drains all the land around a major 

river. Basins can be divided into watersheds, or areas of land around a smaller river, stream, or 

lake (www.garivers.org).The drainage patterns in these areas are dendritic (USGS, 2007). The 

rivers and streams in the Blue Ridge Mountains of the study area are generally steep, fast 

flowing, cold and clear, whereas in the Piedmont, rivers have more gradual gradients and a high 

proportion of suspended sediment load because of the flatter, rolling topography (Brown and 

Jones, 1996).  

The study area (Figure 2-1) covers the following ten river basins; Chattahoochee, Flint, 

Coosa, and Savannah in Georgia and Kanawha, and Little Tennessee in North Carolina (Figure 

2-2). Among them, the Chattahoochee River is a major water resource in Georgia. The 

Chattahoochee River originates from the northern Georgia Mountains, and flows towards 

southwest Georgia until it joins the Flint River and flows into the Gulf of Mexico at 

Apalachicola Bay near Apalachicola Florida (USGS, 2007). The river basins are given below in 

the Table 2-1. 
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Table 2-1: Stream gauging stations grouped by river basins in the study area.  
Basins County Name of the River Lat. Lon. Area 
Altamaha Baldwin Oconee R.at Milledgeville 33.09 83.22 2950 

Clarke Middle Oconee River, Athens 33.95 83.42 398 
Jones Falling Creek near Juliette 33.10 83.72 72.2 

C
ha

tta
ho

oc
he

e 

white Chattahoochee R.at Helen 33.70 83.73 447 
Habersham Chattahoochee R.near Cornella 34.54 83.62 315 

Carroll 
Chattahoochee R.near 
Whitesburg 33.48 84.90 2430 

Lumpkin Chestatee R.near Dahlonega 34.53 83.94 153 
Gwinett-F Chattahoochee R.at Buford dam 34.16 84.08  
Gwinett Chattahoochee R.near Norcross 34.00 84.20 1170 
Fulton Chattahoochee R.at Atlanta 33.87 84.45 1450 
Douglas Sweetwater creek near Austell 33.77 84.62 246 
Carroll Snake creek near Whitesburg 33.53 84.93 35.5 
Troup Chattahoochee R. at Westpoint 32.89 85.18 3550 
Fulton Big Creek Alpharetta 34.05 84.27 72 
Fulton Chattahoochee R.near Fairburn 33.66 84.67 2060 
Fulton Peachtree Creek 33.81 84.40 86.6 

Coosa Cherokee Etowah R.at Canton 34.24 84.50 613 

Fl
in

t Upson Flint River near Culloden 32.72 84.23  
Spalding Flint River near Griffin 33.24 84.43 272 
Coweta Line creek near Senola 33.32 84.52 101 

Kanawha 
Ashe 

South fork new River near 
Jefferso 36.39 81.41 205 

Sa
va

nn
a Oconee Chattooga R. near Clayton 34.81 83.31 207 

Rabun Tallulah R.near Clayton 34.89 83.53 56.5 
Madison Broad river above Carlton 34.07 83.00 760 
Wikes Little R.near washington 33.61 82.74 292 

Te
nn

es
se

e 

Cherokee Valley River at Tomotla 35.14 83.98 104 

Macon 
Nantahala River near Rainbow 
Spr 35.13 83.62 51.9 

Swain 
Little Tennessee River at 
Needmor 35.34 83.53 436 

Macon Little Tennessee River near Pren 35.15 83.38 140 
Madison French Broad River at Marshall 35.79 82.66 1332 
Madison Ivy River near Marshall 35.77 82.62 158 
Buncombe French Broad River atAsheville 35.61 82.58 945.59
Buncombe Swannanoa River at Biltmore 35.57 82.55 130 
Buncombe Bee Tree Creek near Swannanoa 35.65 82.41 5.46 
Henderson Mills River near mills river 35.40 82.60 66.7 
Transylva French Broad River at Blantyre 35.30 82.62 296 
Transylva Davidson River near Brevard 35.27 82.71 40.4 
Transylva French Broad River at Rosman 35.14 82.83 67.9 
Watauga Watauga River near Sugargrove 36.24 81.82 92.1 
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The Flint River, which is about 350 miles long, drains an area of 8460 sq. miles (Brown, 

2001), and begins in the Piedmont province near Atlanta’s Hartsfield Jackson International 

Airport. The Savannah River, which is also one of the major rivers in the southeastern United 

States, runs along the border of South Carolina and Georgia, and drains an area of 5,821 sq. 

miles in eastern Georgia (USGS, 2005). It is also a major source of drinking water in eastern 

Georgia. The Oconee and Ocmulgee River Basins are located in the central part of the study area 

and drain an area of 2,929, and 6,180 sq. miles respectively. Most of the rivers in the Piedmont 

of the study area originate in the Blue Ridge mountain and the rivers drain either eastward to the 

Atlantic Ocean or, southward to the Gulf of Mexico. The characteristics of rivers basins are 

given in Table 2-2. 

 
Figure 2-1: Blue Ridge and Piedmont provinces of the study area. 
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The headwater of the Hiawassee River originates in North Carolina and northern Georgia 

and flows towards the Tennessee River and drains an area of 644 sq. miles The French Broad 

River drains an area of 2,830 sq. miles. Similarly, the Little Tennessee drains an area of 1,797 sq. 

miles, and the New drains an area of 753 sq. miles. The size of the Savannah basin is 10,577 

square miles; 5,821 in eastern Georgia, 4,581 in western South Carolina and 175 in southwestern 

North Carolina. The river supplies drinking water to Augusta, Savannah, Hilton Head, and 

Beaufort, SC, and many other smaller municipalities in the area (Georgia River Network, 2008). 

Similarly, the Watagua River drains an area of 205 sq. miles and the Savannah River, drains an 

area of 172 sq. miles in North Carolina. All of these river basins in North Carolina are a part of 

Mississippi river basin, which finally drains to the Gulf of Mexico. The length and drainage area 

of the river basins is given in Table 2-2. 

Table 2-2: The length and drainage area of the river basins. 
 

Source: USGS, 2007. 

River Basin Length 
(miles) 

Drainage Area  
(sq. miles) 

Chattahoochee 430 8700 

Flint  350 8460 

Savannah  350 5821 

Oconee 170 2929 

Ocmulgee  255 6180 

Hiawassee 23 644 

French Broad 210 2830 

Little Tennessee 135 1797 

New 50 753 

Watauga 60 205 
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Figure 2-2: River basins in the study area. 

2.4 Stream Runoff 

Stream runoff is a large percentage of surface runoff that reaches streams when surface 

storage is filled and precipitation continues to exceed infiltration and water begins to move 

downslope as overland flow or in defined channels (Ward and Trimble, 2004). The main 

influence on stream runoff is precipitation runoff in the watershed (USGS, 2008). The flow of a 

river is primarily a function of the rainfall upon its drainage area, and is therefore subject to 

fluctuations (Breed and Hosmer, 2007). 

 In urban streams, runoffs enter the river very quickly than in non-urban streams. Figure 

2-3 shows an influence of precipitation on stream runoff. The brown line in the figure shows that 

the base flow was about 50 ft3/s before the river started to rise, but after few hours, at 9:00 AM 
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Stream runoff was over 6, 000 ft3/s - that is about 150 times the amount of water flowing by as 

during base flow conditions (USGS, 2008). 

 

 

Figure 2-3: Precipitation influences on stream runoff. Source: USGS, 2008. 

There are many factors, both natural and human-induced, that cause changes in stream 

runoff. Natural causes are runoff from rainfall and snowmelt, groundwater discharge from 

aquifers etc, and examples of manmade causes are stream channelization and levee construction, 

land-use changes such as urbanization, which eventually change the rate of erosion, infiltration, 

overland flow, or evapotranspiration etc (USGS, 2008). 

2.5 Urban and Non-urban Stream Runoff  

 Urbanization is a pervasive and rapidly growing form of land use change (Paul and 

Meyer, 2001). According to the U.S. Census Bureau, urbanized areas are defined as places with 

at least 50,000 people and a suburban fringe with at least 600 people square mile. A dominant 

feature of urbanization is a decrease in the perviousness of the catchments to precipitation, 

leading to a decrease or and an increase in surface runoff (Dunne and Leopold, 1978). As the 

percent of catchments impervious surface cover increases, runoff increases (Figure 2-4) (Arnold 

and Gibbons, 1996). 
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 Increased surface runoff during heavy precipitation could reduce groundwater recharge 

and results in a reduction of base flow discharge in urban streams (Kelin 1979, Barringer et al, 

1994). Stream runoff are mainly determined by a watershed geology, climate and topography but 

may also be affected by many factors (Evett, 1994). Many researchers have found that 

urbanization decreases low flows, while some have reported that it increases low stream runoffs, 

and others have concluded that it has no or, little effect on stream runoff (Kelin 1979). The urban 

and non-urban of the study area is given below (Figure 2-5). 

2.6 Regional Climate 

The regional climate of the study area is characterized as humid and subtropical all over 

the year with hot summers in the south and the warm and cool summers in the northern 

mountainous area, since elevation strongly influences the climate of individual location. 

 

Figure 2-4: Changes in hydrologic flows with increasing impervious surface cover in urbanizing 
catchments (After Arnold and Gibbons, 1996).
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Figure 2-5: Urban and non-urban area within the study area. 

The study area has a humid subtropical climate (Koppen climate classification Cfa), 

except in the higher elevations of the mountains, which have a subtropical highland climate 

(Koppen climate classification Cfb). Summers are usually hot and humid in the study area 

generally experiences widespread precipitation. Winters are usually mild, with some snow in 

parts, particularly in the mountains.  

The Intergovernmental Panel on Climate Change (IPCC), 2007 report finds that the 

average temperature in Albany, Georgia has been decreased by 0.8o F. Similarly, the report 

suggests that precipitation has been increased by 10% in the different parts of the state over the 

last century. The average annual rainfall in Georgia ranges from 43 to 55 inches and annual 
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runoff ranges from 12 to 28 inches, which is much less than in the Blue Ridge Province, North 

Carolina (Karl et al 1996). Rainfall varies throughout the Piedmont province. Rainfall averages 

in excess of 40 inches and tends to be greatest in the north (Georgia State Climate Office, 1998). 

Dry years occur frequently affecting different locations at different times and extreme wet events 

are not uncommon, which can lead to flooding (Georgia State Climate Office, 1998). 

The annual average rainfall of North Carolina is 45 to 50 inches in a year. July storms 

account for much of this precipitation. There is some snowfall in the mountain in the fall and 

winter. Moist winds from the southwest drop an average of 80 inches (2,000mm) of precipitation 

on the western side of the mountains, while the northeast facing slopes average less than half that 

amount (North Carolina Climate, 2008). The French Broad River valley, surrounded by 

mountain ranges is the driest point in the North Carolina. Here the average annual precipitation is 

only 37 inches (North Carolina Climate, 2008).  

As much as 15% of the rainfall during the warm season in the state can be attributed to 

tropical cyclones (Knight and Davis, 2008). 75 tropical cyclones affected the state between 

1900-1949 (50-year period). Similarly, 79 tropical cyclones affected the state between 1950 to 

1979 (30-year period) and 107 tropical or subtropical cyclones that affected the state from 1980 

to 2006 (28 years period) (North Carolina, 2006). The change in temperature and precipitation 

could influence the stream runoff, soil moisture and groundwater storage in the whole system. 

The high temperature leads to an increase in evaporation of water from the streams and can 

reduce the discharge of the stream. Precipitation, on the other hand, is of course the primary 

factor accounting for higher flow. Unlike the other regions, studies show a slight downward 

trend of temperature in the southeastern part of the United States (Lettenmaier et al, 1994, Soule, 

2005, IPCC, 2007). 
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3. LITERATURE REVIEW 

3.1 Trend of Stream Runoff and Statistical Test  

Many studies show that the global temperature is increasing gradually (Shi et al., 2007; 

Kamga 2000; Huntington 2003). The impact of temperature change is likely to affect water 

demand, planning, precipitation and runoff patterns (Kenneth and Major, 1997). Many authors 

have studied the effect of temperature change on stream runoff using numerical, statistical, and 

GIS models (Novotny and Stefan 2007; Kamga 2000; Knight et al. 2000; Klaus et al. 1998). One 

of the major effects of rising temperature on stream runoff is a decreasing trend of stream runoff, 

due to potential increase in evapotranspiration (Christensen et al. 2004).  

Lettenmaier et al. (1994) examined trends of average temperature, precipitation, stream 

runoff from 1948-1988, and average daily temperature range for the continental United States 

using Seasonal Kendall test and found annual temperature increase mostly in the north and west 

and observed downtrends in the south and east. The observed that trends in stream runoff were 

not entirely consistent with the changes in the temperature and precipitation. Similarly, Lins and 

Slack (1999) examined the trends in stream runoff in the conterminous United States using the 

non-parametric Mann-Kendall test and found that stream runoff has increased in broad sections 

of the United States and decreased only in parts of the Pacific Northwest and in the southeast.  

Lins and Slack (2005) found similar result when they examined the stream runoff trend in 

all water resources in the conterminous United States between the period from 1940 to 1999 

using the same Mann-Kendall test, and observed that the increase was most pronounced in the 

central two-thirds of the nation and, to a lesser extent in the eastern coastal regions and in the 

Great Basin. They noticed a decrease in the annual minimum flows in Georgia and the Pacific 

Northwest. 
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Rose and Peters (2001) observed significant difference in stream runoff between urban 

and less developed watershed near Atlanta and other watersheds in the Blue Ridge and the 

Piedmont provinces. The most noticeable feature was the difference in peak flow. Peak flows 

were 30% to more than 100% greater in the urbanized Peachtree Creek than any other basins. 

The storm flow was also more frequent and higher in the urbanized Peachtree Creek.    

On the limited studies done in the stream runoff of southeastern region of the United 

States, an inverse trend of temperature with stream runoff was noticed (Lettenmaier et al., 1994, 

Lins and Slack, 1999). In contrast, Rose (2008) found that no consistent statistically significant 

temporal trends for rainfall and runoff in the southeast region of the United States. The study 

also found that the average runoff/rainfall ratio during the study period varied between 0.24 in 

the southernmost Coastal Plain to 0.64 in the Blue Ridge Province. 

3.2 Stream Runoff and Impact of Climate Change  

Earth surface has experienced a climate warming since late 19th century (IPCC, 2001). 

Many researchers have predicted more likelihood of temperature warming and its impact on 

water resources. Nohara et al. (2006) investigated the impact of climate change on the river 

discharge for 24 major rivers in the world. Their results suggested that by the end of the 21st 

century, the annual mean precipitation, evaporation, and runoff would increase in high latitudes 

of the Northern Hemisphere, Southern to Eastern Asia, and Central Africa. In contrast, they 

would decrease in the Mediterranean region, Southern Africa, Southern North America and 

Central America. 

Payne et al. (2004) simulated climate for next 105 years within the Columbia River basin 

by using parallel climate models (PCM). The PCM model for three periods (2010-2039, 2040-

2069, and 2070-2098) predicted temperature and precipitation would increase in the future. The 
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2007 report published by IPCC showed that the effects of climate change on rainfall and Stream 

runoff in this area is subjected to considerable uncertainty since, some of the models they used 

for the study showed little to no change in precipitation unlike the northeast and southwest 

United States (IPCC, 2007). 

Among the very few studies on the southeastern part of the United States, Soule (2005) 

studied 30-year climatic normal temperature from 1961-1990, and 1971-2000 for the 

southeastern United States and found that the thermal climate of this region is stable with some 

exceptions of slightly warming towards coastal areas. Soule (2005) observed some degree of 

spatial continuity in the warming patterns on all of the stations of coastal plain of Georgia and 

Florida, except on Miami Beach where, there was a cooling trend. However, the study showed 

no spatial continuity (either cooling or warming) throughout much of the Blue Ridge Mountains 

and Piedmont Provinces, where adjacent stations often show opposite trends. On the other study 

Diem (2006), found increased summer precipitation over the 50 years period (1953-2002) was 

significantly correlated with increased occurrences of midtropospheric troughs in the 

southeastern United States. 37 

These changes are predicted to lead to an increase in precipitation and atmospheric 

moisture (Novotny and Stefan, 2006). In fact, an increase in atmospheric moisture at a rate of 

about 5% per decade has been observed over the United States favoring stronger rainfall or, 

snowfall events (Trenberth, 1998). 
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4. RESEARCH METHODOLOGY 

4.1 Data Collection 

Stream runoff is the volume of water passing through a river channel during a certain 

period which can be expressed as Q = W*D*V, where Q is stream runoff, W is channel width, D 

is channel depth and V is velocity of flowing water (Ward and Trimble, 2004). Stream runoff is a 

flow of water in a river channel and is calculated by discharge per unit area as shown in equation 

(1) below;  

Runoff = Q/A, -------------- (1) 

Where, Q= discharge and,  

A= Area 

Stream runoff, rainfall, and temperature data were collected from the United States Geological 

Survey (USGS) and Southeast Regional Climate Center (SERCC) website from the year 1948 to 

2006 for the study area. The USGS Stream runoff data, measured in cubic feet per second (CFS), 

was converted into stream runoff (millimeter/year) for the study.  

Stream gauging stations, rainfall, and temperature monitoring stations were selected 

based on the length and continuity of their records from the United States Geological Survey 

(USGS) as shown in Figure 4-1, (http://waterdata.usgs.gov/ga/nwis/rt) and Southeast Regional 

Climate Center (SERCC) Figure 4-2) (http://www.sercc.com/). The monthly and annual stream 

runoff data and temperature records were collected during the period from 1948 to 2006 to make 

the data as current as possible, for more than 30 USGS stream gauging stations and SERCC 

rainfall and temperature monitoring stations. For the study, urban and non-urban stations were 

selected based on the population density and landuse/ landcover data using the GIS analysis such 

as extraction and overlay. 
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Figure 4-1: Runoff monitoring stations in the river basins of the study area. 

The spatial data of the seven river basins for the study area were collected and 

downloaded from the USGS. The metro Atlanta region has experienced explosive growth over 

50 years (USGS, 2008), and, along with it, large amounts of impervious surfaces have replaced 

the natural landscape. The landuse/land cover data and the physiographic data created by the 

USGS were obtained from the Georgia GIS clearing house (https://gis1.state.us) and the USGS 

Land Cover Institute (LCI) (http://landcover.usgs.gov) respectively. The census 2000 data, 

produced by the Environmental System Research Institute (ESRI) was downloaded from the 

Geospatial data bank from Georgia State University, Department of Geosciences and from the 

North Carolina GIS clearinghouse. The spatial data were tried to maintain as current as possible 

for the research. 
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Figure 4-2: Rainfall and temperature monitoring stations in the study area. 

4.2 GIS Analysis 

Extraction, overlay, and spatial analysis are the three main GIS functions that were used 

for the study. Extraction and overlay analysis were used to create subset maps of the study area 

from a large spatial database. Similarly, spatial analysis function, known as spatial interpolation 

was used to calculate the spatial distribution of hydrological parameters such as rainfall and 

temperature. The spatial interpolation technique uses points with known values to estimate the 

values at other unknown points by converting the discrete point data into a continuous surface. 

The main purpose of the GIS analysis was to find and integrate the urban and non-urban river 

basins in the Blue Ridge and the Piedmont provinces using landuse/landcover and population 

density data. The flow chart of GIS analysis is given in Figure 4-3. 
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Figure 4-3: Flow chart of GIS analysis. 

Extraction function was used to extract the boundary of the study area from the 

physiographic provinces of the Blue Ridge and Piedmont of North Carolina and Georgia. The 

boundary was then used to extract river basin, landuse/land cover and the census tract layers of 

the study area. Once the study area was selected, the urban and non-urban river basins in the 

study area were separated based on the landuse/land cover distribution map and the population 

density map using the overlay technique. According to population density and land 

use/landcover area, more than 80% of the study area came out to be non-urban area and less than 

20% came out to be urban area. Once the river basins were separated, statistical analyses such as 

Mann-Kendall test, correlation test, and Inverse Distance Weighting methods were performed to 

analyze the trend and correlation between the surface temperature, rainfall and the stream runoff 

of the study area. 
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Urban and non-urban area using population density 

According to the United States Census Bureau, an urban area is defined as blocks or 

block groups with at least 1,000 persons per square mile (386 per square kilometer) and 

surrounding blocks or block groups with 500 persons per square mile (US Census Bureau, 2000). 

In this study, census 2000 data was obtained from the online database of Environmental Systems 

Research Institute (ESRI). Extraction technique in GIS was used to obtain the data for North 

Carolina and Georgia. The urban area was determined by calculating the density populations 

map using 1,000 persons per square mile (Figure 4-4 and 4-5). Non-urban area covers the most 

part of the study area. The total urban area was calculated as 1626.38 sq. miles, which is 5.96 % 

of the total study area of 27,246 sq. miles. The urban area in the study area is given below in the 

Figure 4-4. 

 
Figure 4-4: Urban and non-urban area using population density in the Piedmont province. 
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Figure 4-5: Urban and non-urban area using population density in the Blue Ridge province. 

 
Urban and non-urban area using landuse/land cover 
 

The landuse/land cover data of 2000 was obtained from the USGS. The population data 

were normalized by study area using GIS in order to calculate the population density map of the 

study area. The population density map was then used to classify urban and non-urban areas. The 

determined urban and non-urban area for the Piedmont and Blue Ridge are shown in Figure 4-6 

and Figure 4.7 respectively. Based on the metadata that was documented with the landuse/ land 

cover data, four classes in urban areas were determined from the percent imperviousness 

mapping product as described below. The threshold values for the four landuse/land cover 

classes are listed in Table 4-1. The most of the urban part in the Piedmont province is located in 

the metropolitan Atlanta and the urban part in the Blue Ridge province is located in the Asheville 

area. 
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Figure 4-6: Urban and non-urban area in the Piedmont province using landuse/land cover 
product. 
 
Table 4-1: Classification of urban area according to percent imperviousness. 
Category Imperviousness (%) 

Developed open space <20 

Low intensity developed 20-49 

Medium intensity developed 50-79 

High intensity developed >79 

 
          Developed open space includes areas with a mixture of some constructed materials, but 

mostly vegetation in the form of lawn grasses. Impervious surfaces most commonly include 

large-lot single-family housing units, parks, golf courses, and vegetation planted in developed 

settings for recreation, erosion control, or aesthetic purposes. Similarly, developed low intensity 

includes areas with a mixture of constructed materials and vegetation. Developed medium 
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intensity includes areas with a mixture of constructed materials and vegetation. Developed high 

intensity includes highly developed areas where people reside or work in high numbers. 

Examples include apartment complexes, row houses, and commercial/industrial. Barren lands are 

the areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand 

dunes, strip mines and gravel pits. The urban and non urban area in the Blue Ridge province is 

given in the figure 4-7 below.  

 

 
Figure 4-7: Urban and non-urban area in the Blue Ridge province using landuse/land cover 
product. 
  

Deciduous, evergreen, and mixed forests are the areas that are dominated by trees 

generally greater than 5 meters tall (USGS, 2003). Both of the maps (Figures 4-4, 4-5, 4-6, and 

4-7) showed the same determination for urban and non-urban area. The urban stations are those 



 

28 
 

found within metropolitan areas with population more than 1000 per square mile and non-urban 

stations are those found in non-metropolitan areas with population less than 1000 per square mile 

(US Census Bureau, 2000). There are six watershed located in the urban area (Table 4-3) and 33 

in non-urban area (Table 4-2). Among six watersheds, five watersheds were from Piedmont and 

one from Blue Ridge province.  

4.3 Mann-Kendall Analysis 

In order to determine if stream runoff, rainfall, and air temperature characteristics are 

changing in urban and non-urban area of the Blue Ridge and Piedmont, long-term (56 years) 

stream runoff records were analyzed for more than 30 USGS stream gauging stations (Figure 4-

1) and SERCC rainfall and temperature monitoring stations (Figure 4-2 ). The time trends of 

stream runoff, rainfall, and air temperature at all stations were investigated by computing the 

statistical test called Mann-Kendall test. It is a nonparametric or, distribution free test for trends. 

This method has not any assumptions. It is appropriate since there is no assumption of a normal 

distribution in the data. Most of the stream runoff data are not distributed normally due to 

different reasons.  

A parametric test like linear regression is not considered appropriate since stream runoff 

characteristics generally are not normally distributed (Gebert and Krug, 1996). However, in this 

study linear regression is also used to see the disparity between the two analyses. Many authors 

have successfully used Mann-Kendall test to identify the trends in the stream runoff and rainfall 

data (Gebert and Krug, 1996, Yue and Wang, 2002, Kahya and Kalayci, 2004, Rose, 2008). The 

null hypothesis, Ho, is that there is no (X1……Xn) significant temporal trend in the data set. The 

Mann-Kendall analysis tests Ho against the alternative hypothesis H1, that the dataset show 

significant temporal trends. 
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Table 4-2: Non urban rivers of the study area.  
Stations Name of the River County Province  (Sq mile) 
2212600 Falling creek near Juliette Jones Piedmont 72.2 
2223000 Oconee River at Milledgeville Baldwin Piedmont 2950 
2330450 Chattahoochee River at Helen white Piedmont 447 
2331600 Chattahoochee River near Cornella Habersham Piedmont 315 
2338000 Chattahoochee R. near Whitesburg Carroll Piedmont 2430 
2333500 Chestatee River near Dahlonega Lumpkin Piedmont 153 
2337000 Sweetwater creek near Austell Douglas Piedmont 246 
2337500 Snake creek near Whitesburg Carroll Piedmont 35.5 
2339500 Chattahoochee River at Westpoint Troup Piedmont 3550 
2337170 Chattahoochee River near Fairburn Fulton Piedmont 2060 
2392000 Etowah River at Canton Cherokee Piedmont 613 
2347500 Flint River at US19, Carsonville Upson Piedmont 1850 
2344500 Flint River near Griffin Spalding Piedmont 272 
2192000 Broad River near Bell Elbert Piedmont 1430 
2344700 Line creek near Senola Coweta Piedmont 101 
3161000 South fork new River near Jefferson Ashe Piedmont 205 
2177000 Chattooga River near Clayton Oconee Piedmont 207 
2178400 Tallulah River near Clayton Rabun Piedmont 56.5 
2191300 Broad river above Carlton Madison Piedmont 760 
2193500 Little River near washington Wikes Piedmont 292 
3550000 Valley River at Tomotla Cherokee Blue Ridge 104 
3504000 Nantahala River near Rainbow Spr Macon Blue Ridge 51.9 
3503000 Little Tennessee River at Needmore Swain Blue Ridge 436 
3500000 Little Tennessee River near Pren Macon Blue Ridge 140 
3453500 French Broad River at Marshall Madison Blue Ridge 1332 
3453000 Ivy River near Marshall Madison Blue Ridge 158 
3451000 Swannanoa River at Biltmore Buncombe Blue Ridge 130 
3450000 Bee Tree Creek near Swannanoa Buncombe Blue Ridge 5.46 
3446000 Mills River near mills river Henderson Blue Ridge 66.7 
3443000 French Broad River at Blantyre Transylva Blue Ridge 296 
3441000 Davidson River near Brevard Transylva Blue Ridge 40.4 
3439000 French Broad River at Rosman Transylva Blue Ridge 67.9 
3479000 Watauga River near Sugargrove Watauga Blue Ridge 92.1 
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Table 4-3: Urban rivers of the study area. 
No Stations Name of the River County Province A.(Sq mile) 

1 2217500 Middle Oconee River near 
Athens 

Clarke Piedmont 398 

2 2335000 Chattahoochee River near 
Norcross 

Gwinnett Piedmont 1,170 

3 2336000 Chattahoochee River at 
Atlanta 

Fulton Piedmont 1450 

4 2335700 Big Creek Alpharetta Fulton Piedmont 72 
5 2336300 Peachtree Creek Fulton Piedmont 86.6 
6 3451500 French Broad River at 

Asheville 
Buncombe Blue Ridge 945.59 

 
In this study, 95% confidence level is used. The confidence level is a measure of 

confidence in rejecting the null hypothesis. The corresponding (Z-critical) standard deviate for 

95% confidence level is 1.96. The test statistics S is calculated by using the equations (2) and (3) 

below (Kahya and Kalayci, 2004); 

S = sgn (X j-X k) ………..(2) where n is the number of values in the data set    

 
sgn (X j-X k)  =   + 1        if  (X j-X k) >0 

0        if  (X j-X k) = 0    ………. (3) 
     -1        if  (X j-X k) <0 

 

A positive value of S indicates an upward trend and a negative value indicates a 

downward trend (Kahya and Kalayci, 2004). A Z-critical value is calculated from the S given in 

the equation (2) to evaluate the level of significance of the trend. If Z-critical value is greater 

than 1.96, then the data has significant positive trend and if it is less than -1.96, the data has 

significant negative trend. A Mann-Kendall analysis spreadsheet program in this study was 

designed and used with method reference from “Trend analysis of streamflow in Turkey” (Kahya 

and Kalayci, 2004).  



 

31 
 

4.4 Linear Trend and Slope Analysis 

Slope of the lines fit to the time series of climatic data provide a picture of changes that 

have occurred at any location over an extended period. Monthly mean (average of maximum and 

minimum) temperature records were summed up to provide seasonal and annual totals for each 

year. Seasonal averages were calculated for each monitoring station based on the following 

seasonal breakdown; winter as December, January, February (DJF), spring as March, April, May 

(MAM), summer as June, July, August (JJA) and fall as September, October, November (SON).  

Seasonal and annual averages were calculated for each station and a linear trend was 

fitted to each time series for all calculated average seasonal and annual data for temperature, and 

precipitation (see Appendix A, B, and C). With linear trends, the slopes were calculated at each 

station and were spatially analyzed for the regional changes in the Piedmont and Blue Ridge. 

Positive slopes stand for a linear increase in the variable over time, while negative slopes 

represent a linear decrease in the parameter over time. Linear slopes from all observed stations 

were analyzed for each season using inverse distance weighting (IDW) with the help of ArcGIS 

9.2 software. 

4.5 Spatial Autocorrelation 

 A spatial autocorrelation technique called Moran’s I was used to identify the spatial 

dependency among temperature, rainfall, and runoff trends at all 73 stations in the study area. 

Moran’s I is a measure of spatial autocorrelation which is produced by standardizing the spatial 

autocovariance by the variance of the data using a measure of the connectivity of the data (Cliff 

and Ord, 1973, Boots and Getis, 1988, Chang et al., 2008). Formula for the he Moran’s I test is 

given below: 
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        I =   

      

Where, n is the number of spatial units indexed by i and j, X is the variable of interest;  

is the mean of X; and W ij is a matrix of spatial weights (Chang et al., 2008). In this study, 0.05 

significance level was used. The corresponding (Z-critical) standard deviate for 0.05 significance 

is 1.645. The null hypothesis, Ho, states that there is no significant spatial autocorrelation in the 

data set and the alternative hypothesis H1, states that the dataset show significant spatial 

autocorrelation. The study showed that there is significant spatial autocorrelation for the rainfall 

and temperature data in the study area. 

4.6 Inverse Distance Weighting (IDW) Interpolation 
 

After the calculation of seasonal and annual averages and spatial autocorrelation test, 

spatial interpolation technique called, IDW was performed using GIS to observe the changes in 

hydrological and climatic patterns. IDW is one of the most commonly used techniques for 

interpolation of scatter points and it is good for those data which have no spatial dependency or 

has no spatial autorrelation. Inverse distance weighted methods are based on the assumption that 

the interpolating surface should be influenced most by the nearby points and less by the more 

distant points. 

IDW is a weighted average interpolator, which can be either exact or smoothing (Watson 

et al., 1985). With inverse distance, data are weighted during interpolation, so that the influence 

of one point, relative to another, declines with distance from the grid node. Weighting is assigned 

to data through the use of a weighting power, which controls how the weighting factors drop off 

as distance from the grid node increases (Bakkali and Amrani, 2008). As the power increases, the 
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grid node value approaches the value of the nearest point. For a smaller power, the weights are 

more evenly distributed among the neighboring data points (EL Abbas et al, 1990).  

For precipitation, and temperature analyses, an IDW was used since this technique 

provides better interpolation than other methods and has been successfully used by other authors 

(Boyles and Raman, 2003). Finally, a continuous surface of precipitation, and temperature were 

calculated for all the stations using the IDW interpolation technique. The simplest weighting 

function is inverse power: w (d) = 1/dp, with p>0 (Maguire et al. 2005). For the IDW analysis, 

inverse power of 2 and maximum neighbors of 15 and minimum neighbors to include 10 has 

been used for the study. The example of different inverse power is given in the Figure 4-8.  

 
Figure 4-8: Contour plots (with different inverse power) for alternative IDW methods (After de 
smith, Goodchild, and Longley, 2006-2008). 
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The neighborhood size determines how many points are included in the inverse distance 

weighting. The neighborhood size can be specified in terms of its radius (in km), the number of 

points, or a combination of the two (Watson and Philip, 1985). In many instances, the 

observation points are not uniformly spaced about the interpolation points, with several in a 

particular direction and fewer in others. This situation produces a spatial bias of the estimate, as 

the clustered points carry an artificially large weight. The anisotropy corrector permits the 

weighted average to down weight-clustered points that are providing redundant information. The 

user selects this option by setting the anisotropy factor to a positive value. A value of 1 produces 

its full effects, while a value of 0 produces no correction (Maguire et al. 2005). In this study, 

value of 0 is used, which produces no correction. 

4.7 Correlation Test 

 Correlation indicates the strength and direction of a linear relationship between two 

random variables (Rogerson, 2004). The correlation values of 0 and +1 stand for no correlation 

and perfect positive correlation respectively. Similarly, the value -1 stands for perfect negative 

correlation. A correlation between stream runoff and precipitation can be expected. To quantify 

the relationship, a correlation analysis was performed between the mean annual stream runoff 

rates at individual stream gauging stations and total annual precipitation using a spreadsheet 

correlation program. Apart from rainfall characteristics such as intensity, duration, and 

distribution, there are a numbers of other factors such as evapotranspiration, soil type, 

vegetation, slope etc, which affect the runoff. 
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5. RESULTS AND DISCUSSIONS 

5.1 Temperature in the Study Area 

The MK analysis for long-term annual and seasonal temperature over the Blue Ridge and 

Piedmont show no significant trend except a very few at Piedmont and Blue Ridge (Table 5-1). 

Table 5-1 shows the significant trend in bold texts. However, very few stations in the southern 

Piedmont and the northern Blue Ridge show significant positive trend in temperature during 

spring and summer months (Table 5-2). 

Table 5-1: Annual temperature trend over the Blue Ridge and the Piedmont in the study area. 
Station# Province Range of years  n(years) Zstatistic 
310506 Blue Ridge 1948-2006 59 1.341
310814 Blue Ridge 1948-2006 59 1.184
310901 Blue Ridge 1961-2006 42 0.639
311624 Blue Ridge 1948-2006 59 0.059
312200 Blue Ridge 1948-2006 59 1.641
313228 Blue Ridge 1950-2006 57 0.193
314055 Blue Ridge 1948-2006 59 0.334
314496 Blue Ridge 1967-2006 40 1.934
316001 Blue Ridge 1969-2006 37 1.779
312102 Blue Ridge 1949-2006 58 2.478
90435 Piedmont 1948-2006 59 0.163
90451 Piedmont 1944-2006 63 0.884
91982 Piedmont 1944-2006 63 0.332
92006 Piedmont 1944-2006 63 0.380
92318 Piedmont 1948-2006 59 0.987
93271 Piedmont 1944-2006 61 0.803
94133 Piedmont 1941-2006 66 1.799
98535 Piedmont 1944-2006 63 1.779
99157 Piedmont 1948-2006 59 0.857
99291 Piedmont 1944-2006 63 0.528
92485 Piedmont 1958-2006 49 3.551
95988 Piedmont 1948-2006 59 2.668

 Note: z-critical = 1.96. 
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Usually, summer months in the study area experience warmer temperatures than the mild 

winter months. Significant positive trends found in temperature at some of the stations (Table 5-

1 and 5-2) contradict the results of long-term trend analyses (50-100 yr trends) of temperature in 

the southeast where a clear cooling trend was observed (Karl et al, 1996, Saxena and Yu 1998). 

Nevertheless, the result from this study is somewhat similar to the recent analyses done by Soule 

(2005), which suggest either slight movement toward warming or, no change in temperature in 

the southeastern states.  

Table 5-2: Significant positive trends in seasonal temperature in the study area. 
Station Number Season Province zstatistic 

314496 spring Blue Ridge 3.639 

314496 summer BlueRidge 2.336 

310506 spring BlueRidge 2.992 

310506 summer Blue Ridge 2.079 

311624 spring BlueRidge 2.401 

310814 summer BlueRidge 2.257 

316001 winter Blue Ridge 1.986 

316001 spring BlueRidge 4.953 

90435 spring Piedmont 2.694 

90969 summer Piedmont 3.529 

91982 spring Piedmont 2.995 

92485 fall Piedmont 3.862 

92485 summer Piedmont 2.017 

93271 spring Piedmont 2.086 

93271 summer Piedmont 2.43 

98535 summer Piedmont 2.07 

99517 summer Piedmont 2.522 

Note: z- critical = 1.96. 
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5.2 Rainfall in the Study Area 

The results of MK analyses (using 95% confidence level) indicate significant increase in 

the long-term annual rainfall at some of the stations over the Blue Ridge province whereas; the 

analyses show no significant trend in annual rainfall data in the Piedmont province (Table 5-3).  

The annual precipitation trends is increased in the five stations located in the Blue Ridge 

province show the significant increase (using 95% confidence level) in the annual rainfall (Table 

5-3). Some of the stations show significant positive trend in seasonal rainfall in the Blue Ridge 

province (Table 5-4). Significant increases in summer and spring rainfall were observed at some 

of the stations in the Blue Ridge and the Piedmont provinces. This may be associated with the 

increase in temperature during the spring and summer seasons as suggested by the MK 

temperature analysis (Table 5-1 and Table 5-2). The other possible cause may be middle 

troposphere troughing as Diem (2006), found strong correlation of increased summer 

precipitation with increased occurrences of midtropospheric troughs in the southeastern United 

States.  

The increased in annual precipitation over the Blue Ridge may be also associated with 

combination of increase in tropical cyclones during the warm season (Knight and Davis, 2008) 

and orographic uplift. As much as 15% of the rainfall during the warm season in the North 

Carolina can be attributed to tropical cyclones .This result is consistent with the study done by 

Karl and Knight (1998), which suggests that precipitation amount is increasing across the United 

States and precipitation derived from heavy precipitation events is increasing (Karl and Knight, 

1998). In North Carolina, heavy precipitation events are generally associated with local 

thunderstorms during the spring and summer months (Boyles and Raman, 2003).he increase in 

frequency of tropical storms correlates strongly with the rise in North Atlantic sea surface 
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temperature (Andre et al, 2008). However, the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC-AR4) reported no clear global trend in the 

frequency of tropical cyclones. The summary result of seasonal (significant positive) and annual 

trend found in the study area using the MK analysis for rainfall data are given in Tables 5-3 

(significant trend in bold texts), and Table 5-4. 

Table 5-3: Annual rainfall trend found in the study area. 

 

Note: z- critical = 1.96. 

Station# Parameter Province Range of Years n (years) Zstatistic 
318694 Rainfall 

B
lu

e 
R

id
ge

 

1949-2006 58 2.737 

316001 Rainfall 1949-2006 58 4.454 

319147 Rainfall 1949-2006 58 2.713 

318744 Rainfall 1949-2006 58 3.756 

91982 Rainfall 1944-2006 63 2.367 

310184 Rainfall 1948-2006 59 1.838 
310506 Rainfall 1948-2006 59 0.072 
310901 Rainfall 1948-2006 59 1.785 
311624 Rainfall 1948-2006 59 0.046 
312200 Rainfall 1948-2006 59 0.608 
313976 Rainfall 1949-2006 58 1.436 
314055 Rainfall 1948-2006 59 1.916 
314496 Rainfall 1949-2006 58 0.443 
315356 Rainfall 1949-2006 58 1.006 
316805 Rainfall 1949-2006 58 1.818 
99157 Rainfall 

Pi
ed

m
on

t 
 

1948-2006 59 1.001 
95988 Rainfall 1948-2006 59 0.719 
92318 Rainfall 1948-2006 59 0.896 
92006 Rainfall 1948-2006 59 0.386 
96407 Rainfall 1948-2006 59 1.210 
90444 Rainfall 1956-2006 50 1.263 
90451 Rainfall 1944-2006 63 0.101 
99291 Rainfall 1944-2006 63 0.231 
93271 Rainfall 1944-2006 63 1.441 
98535 Rainfall 1944-2006 63 1.216 
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Table 5-4: Significant positive trend found in seasonal rainfall in the study area. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Stream Runoff in the Study Area 

The MK analyses (using 95% confidence level) show no significant trend for a long-term 

annual runoff at the river basins of the Blue Ridge and Piedmont provinces (Table 5-5) except at 

a very few stations located in the Chattahoochee and Ocmulgee River Basins of the Piedmont 

province (Table 5-5). Trends in seasonal patterns of runoff in the Blue Ridge and Piedmont 

30exhibited variations in the data. No significant trend was observed for most of the stations in 

the study area. A very few stations showing significant trend for seasonal (summer and fall) 

runoff are given in Table 5-6. The increase in runoff during summer and fall may be associated 

with increase in temperature and rainfall during that season. In winter months, there seem to be 

Station Number Season Province zstatistic 

319147 summer BlueRidge 2.965 

314055 winter BlueRidge 2.287 

312200 summer BlueRidge 2.047 

312102 winter BlueRidge 1.972 

310506 spring BlueRidge 2.455 

98535 spring Piedmont 2.478 

96407 spring Piedmont 2.027 

93271 winter Piedmont 2.091 

92485 fall Piedmont 2.962 

92485 spring Piedmont 3.034 

90435 summer Piedmont 3.211 

90435 summer Piedmont 3.211 
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 an increased runoff in the northern part of the Piedmont province; however, there was not much 

change in temperature and rainfall in that season.  

The Peachtree creek, one of the urban stations located in the Chattahoochee River Basin 

(Figure 5-1) showed significant positive trend in runoff data for all seasons except for the fall. 

The reason for significant positive trend in seasonal runoffs in the Peachtree Creek may be high 

urbanization; since it has been urbanized for a long time than the other urban basins such as Big 

Creek, Chattahoochee River near Norcross and Atlanta. These stations showed no significant 

trend on annual and seasonal runoff value. The other reason may be due to non-uniform land use 

change across the different urban watershed. Peter and Rose (2001) analyzed the runoff in 

urbanized and less urbanized basin and found that non-uniform change in population and 

associated land use results lead to the increase in annual runoff in more urbanized basin than in 

the less urbanized basin.  

Stream runoff are mainly determined by a watershed geology, climate and topography 

but may also be affected by many factors (Evett, 1994) and urbanization is one of them. The 

metro Atlanta region has experienced explosive growth over last 50 years (USGS, 2008). 

Urbanization is a pervasive and rapidly growing form of land use change (Paul and Meyer, 

2001). Urbanization leads to a net increase in total runoff from the land surface due to the areas 

with impermeable surfaces (e.g., concrete, asphalt etc).  

In addition, water might have moved away efficiently from the urban areas through 

storm-water drainages and sewers. A study done by Peter and Rose (2001) found that the higher 

population density increase in the Peachtree Creek watershed results in high annual runoff 

whereas less annual runoff was recorded in the less urbanized Big Creek and the Sweetwater 

Creek watersheds. 
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Figure 5-1: River basins and runoff monitoring stations in the study area.  

The summary results of annual runoff trend and seasonal runoff trend (significant 

positive) in the study area using Mann Kendal analysis are given in Table 5-5, and Table 5-6 

respectively. None of the stations in the Blue Ridge (urban and non-urban) shows a significant 

trend in annual runoff. However, most of the stations in the Blue Ridge show significant increase 

in runoff in the summer months. One of reasons may be due to increase in rainfall in the Blue 

Ridge during summer months. The other reason could be due to loss of small amount of water to 

evapotranspiration in low temperatures at relatively high elevations (Rose, 2008). Generally, the 

long-term trends for annual runoff indicate no consistent statistically significant trends from the 

year 1948 to 2006 in the study area, which also concurs the study of rainfall-runoff trends in the 

southeastern USA, done by Rose (2008). 
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Table 5-5: Annual runoff trend found in the study area. 
Watershed 

Station# Region Year  Range 
n 
(years) Zstatistic

Savannah 2193500 

Pi
ed

m
on

t 
 

1950-2006 57 1.115
Flint 2192000 1944-2006 63 0.172

Attamaha 2217500 1944-2006 63 0.658
Altamaha 2223000 1953-2006 54 0.343

Chattahoochee 2333500 1944-2006 63 0.130
Chattahoochee 2334430 1956-2006 51 0.902
Chattahoochee 2335000 1957-2006 50 0.427
Chattahoochee 2335700 1961-2006 42 0.124
Chattahoochee 2336000 1956-2006 51 0.560
Chattahoochee 2336300 1959-2006 48 1.431
Chattahoochee 2337000 1944-2006 63 0.255
Chattahoochee 2337500 1955-2006 52 1.065
Chattahoochee 2331600 1958-2006 49 1
Chattahoochee 2337170 1965-2006 42 2.991
Chattahoochee 2338000 1966-2006 41 3.055

Flint 2344700 1961-2006 42 0.282
Flint 2347500 1944-2006 67 0.157

Coosa 2392000 1944-2006 63 0.148
Flint 2344500 1944-2006 63 0.119

Ocmulgee 2212600 1965-2006 42 3.078
Kanawha 3161000 

B
lu

e 
R

id
ge

 
 

1944-2006 63 0.650
Tennessee 3439000 1944-2006 63 1.821
Tennessee 3441000 1947-2006 60 0.663
Tennessee 3443000 1944-2006 63 1.168
Tennessee 3446000 1944-2006 63 0.338
Tennessee 3450000 1944-2006 60 0.950
Tennessee 3451000 1944-2006 63 0.012
Tennessee 3451500 1944-2006 63 0.575
Tennessee 3453500 1944-2006 63 0.943
Tennessee 3479000 1944-2006 63 1.062
Tennessee 3500000 1945-2006 62 0.431
Tennessee 3503000 1941-2006 66 0.244
Tennessee 3504000 1944-2006 63 1.287
Tennessee 3550000 1944-2006 63 0.386

Note: z- critical = 1.96. 
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Table 5-6: Trends of seasonal runoff at different stations in the study area. 
Watershed Station # Season Parameter Province zstatistics 

Savannah 2193500 
summer Runoff Piedmont 2.308 

Chattahoochee 
2212600 winter Runoff Piedmont 2.187 

Chattahoochee 2212600 
summer Runoff Piedmont 4.071 

Chattahoochee 
2331600 summer Runoff Piedmont 2.491 

Chattahoochee 2333500 
summer Runoff Piedmont 2.414 

Chattahoochee 2333500 
fall Runoff Piedmont 2.568 

Chattahoochee 2334430 
fall Runoff Piedmont 2.391 

Chattahoochee 2336000 
winter Runoff Piedmont 2.391 

Chattahoochee 2336300 
winter Runoff Piedmont 3.084 

Chattahoochee 2336300 
spring Runoff Piedmont 2.302 

Chattahoochee 2336300 
summer Runoff Piedmont 2.373 

Chattahoochee 
2337500 winter Runoff Piedmont 2.117 

Chattahoochee 
2337500 fall Runoff Piedmont 2.209 

Tennessee 3439000 
summer Runoff Blue Ridge 2.583 

Tennessee 3441000 
summer Runoff Blue Ridge 2.208 

Tennessee 3443000 
summer Runoff Blue Ridge 2.125 

Tennessee 3451000 
summer Runoff Blue Ridge 2.094 

Tennessee 3451500 
summer Runoff Blue Ridge 2.975 

Tennessee 3453500 
summer Runoff Blue Ridge 2.622 

Tennessee 3550000 
summer Runoff Blue Ridge 2.688 

Note: z- critical = 1.96. 
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5.4 Runoff-rainfall Ratio 

The runoff-rainfall ratio is defined as the ratio of runoff to precipitation (Chang, 2007). It 

was assumed that annual runoff-rainfall ratio is closely associated with the percentage of 

impervious land cover and the ratio is lowest within the least urbanized watershed than it is in 

urbanized watershed (Chang, 2007). However, this seems to be just reversed in this study. 

Stream runoff data for 10 stream gauging stations from the USGS were calculated to obtain the 

runoff value (see equation 1) for the study area. The rainfall stations that fall within the 10 miles 

of the gauging stations were used to calculate the rainfall-runoff ratio. Since the rainfall and 

runoff stations were not in the same location, 10 mile buffer zone was created using GIS for the 

calculation (Figure 5-2) considering rainfall values vary from place to place and more than 10 

miles might not reflect the true result.  

The streams in the Blue Ridge province showed the higher ratio than the streams in the Piedmont 

province. The MK analyses show no significant annual trend for the Piedmont province. 

However, the analysis show significant trend  some stations located in the Blue Ridge province 

(Table 5-7) where an increasing trend in runoff-rainfall ratio were observed. This result is similar 

to the recent analysis done by Rose (2008), which suggests that the trend of rainfall-runoff ratio 

is high in the Blue Ridge than in Piedmont and Coastal Plain provinces, indicating that over 80% 

of the total rainfall was converted to runoff. The observed high runoff-rainfall ratios in the Blue 

Ridge province indicate that only a relatively small percentage of water is lost to 

evapotranspiration in the high-relief catchments due to low temperatures (Rose, 2008). The 

average annual temperature of the Blue Ridge is lower than the Piedmont province (Appendix-

A). The annual runoff-rainfall ratios show significant positive trends for the two stations in the 

Blue Ridge are given below in the Table 5-7. 
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Figure 5-2: Runoff-rainfall ratio at different stations in the study area. 

Table 5-7: Annual trend of runoff-rainfall ratio found in the study area. 
N
o Station Number 

R
un

of
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ra
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Range of years n(years) 
Province zstatistics 

1 3479000/310506 1949-2006 57 BlueRidge 2.039 
2 3550000/316001 1949-2006 57 BlueRidge 2.041 
3 3453500/315356 1949-2006 57 BlueRidge 0.939 
4 3443000/316805 1948-2006 58 BlueRidge 0.765 
5 3161000/314496 1949-2006 57 BlueRidge 0.711 
6 2336300/90444 1959-2006 47 Piedmont 0.391 
7 2344500/93271 1944-2006 62 Piedmont 0.320 
8 2193500/99157 1950-2005 55 Piedmont 1.140 
9 2217500-90435 1948-2006 58 Piedmont 0.137 
10 2177000/91982 1944-2006 62 Piedmont 0.340 

Note: z- critical = 1.96. 
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5.5 Linear Trend and Spatial Analysis  

The Moran’s I analysis for spatial autocorrelation for temperature and rainfall showed 

significant spatial autocorrelation in the data whereas the runoff data showed no significant 

spatial autocorrelation. Therefore, using linear trends, the slopes of temperature and rainfall were 

calculated (Appendix A-1, A-2 and B-1, Appendix B-2) at each station. The calculated slopes 

were spatially analyzed for the regional changes in the Piedmont and Blue Ridge provinces 

(Figure 5-3, 5-4, 5-6 and Figure 5-7). Positive and negative slope numbers signify a linear 

increase and linear decrease in the parameter over time respectively.  

5.5.1 Temperature 

Annual and seasonal mean averages of temperature trends were analyzed. Average 

annual temperature shows some spots of increasing temperature in the Blue Ridge and Piedmont 

as well (Figure 5-3). These slope values are not significant enough to make decisions whether the 

trend is increasing or decreasing in both the Blue Ridge and Piedmont regions. Average seasonal 

temperatures for the winter season are given in Figure 5-4.  

Small positive slope values are evident in the eastern Piedmont and some parts of the 

Blue Ridge in the study area. Similar to winter season, fall season shows a positive slope values 

throughout the study area (Appendix-D).Similarly, spring season shows a negative slope values 

throughout the study area (Figure 5.4, station number 91982 and 316001). Winter temperatures 

seem to be more positive in the Blue Ridge, which also concurs with the result obtained from the 

Mann-Kendall test (Table 5-3, station number 91982 and 316001). However, the slopes are not 

significantly greater than zero. The positive slopes throughout the study area during the fall 

season suggest that seasonal temperatures are slightly increasing (Figure 5-4, Appendix-D), 

which is somewhat similar to the recent analysis done by Soule, 2005. 
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Figure 5-3: Average annual temperature based on the period 1948-2006. 
 
 In this study, it is found that average seasonal temperature pattern for the summer months 

are similar to that for the fall season (Figure 5-4). During these seasons, more widespread 

positive slopes are observed in the most part of the southern Blue Ridge whereas, more negative 

slopes are observed towards southern part of the Piedmont in the study area. The less than zero 

of slope values of average annual temperature (Figure 5-3, Appendix-D) suggest that there is no 

significant change in annual temperature in the study area from the period between 1948 and 

2006. These very small values of positive and negative slopes for all the seasons are not 

statistically significant to conclude whether the temperature trend is increasing or decreasing in 

the study area. 
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Figure 5-4: Mean seasonal temperature based on the period 1948-2006.  

The 10-year average temperature from period of 1944 to 2004 for the study area also 

shows decrease in temperature throughout the study area except at some stations. The data shows 

that the temperature values in 2006 are not significantly different, (i.e., not warmer) than they are 

in 1950’s (Appendix G-1, G-2) at most of the stations of the study area and only the seasonal 

temperatures are fluctuating, (i.e., going towards slight warming).  

More positive slopes can be seen in the Blue Ridge province. However, the slopes are very close 

to zero. The reason could be associated with land use/land cover change that occurs during 

different seasons which changes how much solar radiation the land reflects and absorbs (IPCC, 

2007). Urbanization often contributes to changes in temperature. Again, these very small values 

of positive and negative slopes for all the seasons are not statistically significant to conclude 

whether the temperature trend is increasing or decreasing. 



 

49 
 

5.5.2 Rainfall 

 The annual rainfall trend in both Blue Ridge and Piedmont shows no linear increase or 

decrease of rainfall in the Blue Ridge and Piedmont of the study area (Figure 5-6). The positive 

and negative slopes are also given in Figure 5-5 and Appendix-B.  
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Figure 5-5: Linear slopes of positive and negative trend for annual rainfall in the Piedmont. 

The interpolated linear slopes for the winter season (Figure 5-7) shows positive slope for 

some parts of Blue Ridge (stations no 314055, 312102), which is similar to the result obtained 

from the Mann-Kendall test (Table 5-4). The annual slopes of Blue Ridge region are not 

significantly greater than zero. The winter slopes are negative toward Piedmont region. This 

relates to an decrease in winter precipitation over the 56-year period for the month of December, 

January, and February in the Piedmont. However, this result is not statistically significant to 

draw the conclusion that winter precipitation is decreasing in the Piedmont when tested with 

Mann-Kendall analysis. 



 

50 
 

 
Figure 5-6: Average annual rainfall based on the period 1948-2006. 
 

The interpolated surface slope for spring season shows negative values for the most of the 

Blue Ridge and Piedmont (Figure 5-7). However, comparatively prominent negative slopes can 

be seen for Piedmont province than for the Blue Ridge province (Figure 5-7). The summer slope 

for the study area shows widespread positive slopes covering most of the study area. 

 However, the overall magnitude of slope is not great since the slope values are nearly 

zero. Some of the positive slopes for the stations (e.g., station no; 90435, 312200 and 319147) 

are statistically significant and others are not according to the result from the Mann-Kendall test 

(Table 5-4). At the same time, negative slopes can be seen in parts of the southwestern Piedmont. 

The winter slopes widespread negative values for Piedmont than the Blue Ridge. However, the 

slopes values are nearly zero. The slopes for the fall season (Figure 5-7), also show widespread 

positive values. 
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Figure 5-7: Mean seasonal rainfall based on the period 1948-2006. 

 

Similar to temperature slope, rainfall has slightly increased in summer and fall seasons 

(Figure 5-5b, Appendix-E). These seasons show relatively increasing trends when compared to 

other seasons. The possible reason may be middle troposphere troughing, which is significantly 

correlated with summer precipitation in the southeastern United States (Diem, 2006). The other 

reasons could be due to increase in temperature and coastal storm activities, which are greatest 

during the summer and fall seasons from where the study area can get affected. There could be 

other physical mechanisms responsible for this slight increase in rainfall. 

 The 10-year average (1948-2006) of annual rainfall in both Piedmont and Blue Ridge 

show highest increased precipitation during 1980’s (Appendix H-1, H-2). The small increase in 

annual rainfall was observed in most of the stations in the Blue Ridge in 2006 compare to 1954, 
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which is not consistent with the temperature recorded in the same period, where very slight 

cooling was observed for most of the stations. 

5.5.3 Stream Runoff 

Figure 5-8 compares the temporal variation in runoff for the urban streams in the 

Piedmont province. Different runoff slopes for Piedmont province is given in Appendix C-1,C-2. 

High degree of synchronicity was observed for runoff with respect to time in the study area as 

noted earlier by Rose (2008). The annual runoff trends for the urban streams in the Piedmont are 

given Figure 5-8. 

 
Figure 5-8: Annual runoff trend for the urban streams in the Piedmont province. 

Similar to the Mann-Kendall analyses, the slope data for summer and fall seasons show 

widespread positive values for the northern Blue Ridge and southern Piedmont regions 

(Appendix-F). The reason may be associated with the slight increase in temperature, which could 

eventually lead to increase in evapotranspiration and precipitation during those seasons 

(Appendix-F). Widespread negative slopes are observed in the study area during winter and 

spring seasons, however the slope values are not statistically significant when tested with the 

Mann-Kendall test. This may be associated with slightly negative slopes in temperature and 

precipitation during those seasons (Appendix-D, Appendix-E). Reversed to rainfall data, the 10-

year runoff average in the study area show decrease in runoff in 2006 than in 1954 (Appendix I-

1, I-2).  
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5.6 Stream Runoff- rainfall Relationships   

The same stations and selection criterion for the runoff-rainfall ratio was used for the 

correlation test. The runoff-rainfall relationship developed with Spreadsheet Analyst indicates 

that stream runoff of the Blue Ridge and Piedmont moderately correlated to rainfall (Table 5-8). 

Correlation coefficients between annual precipitation and annual stream runoff ranged from 0.04 

to 0.55 (Table 5-8) with an average value of 0.4. Correlation of rainfall-runoff in the urban, non-

urban area shows the similar result of medium correlation. The correlation analysis for runoff 

and rainfall show an average correlation value of 0.4, which signifies that the rainfall and runoff 

in the study area are moderately correlated 

Table 5-8: Correlation value for annual runoff- rainfall in the study area. 
No Station Number R-value Name of the River 
1 2177000/91982 0.4697 Chattooga River near Clayton 
2 2193500/99157 0.3354 Little River near washington 
3 2217500/90435 0.5009 Middle Oconee River near Athens 
4 2336300/90444 0.4021 Chattahoochee River at Atlanta 
5 2344500/93271 0.2883 Flint River near Griffin 
6 316100/314496 0.4454 South fork new River near Jeffer 
7 3443000/316805 0.4738 Davidson River near Brevard 
8 3453500/315356 0.2970 French Broad River at Marshall 
9 3479000/310506 0.0454 Watauga River near Sugargrove 
10 03550000/316001 0.5534 Valley River at Tomotla 

   

 

6. SUMMARY AND CONCLUSIONS 

6.1 Summary and Conclusions 

Temperature, rainfall, and runoff trends were analyzed for a 58-year period between 1948 

and 2006 in the Piedmont and Blue Ridge Provinces of Georgia and North Carolina of 

southeastern United States. Average annual precipitation of some of the stations in the Blue 

Ridge show significant increase in rainfall over the study period. The data also show slight 
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increase in summer and winter rainfall over the study period. Increase in annual rainfall in the 

Blue Ridge and increase in summer and winter rainfall at some of the stations in the entire study 

area over the study period indicate that mountain basins are environmentally vulnerable in terms 

of climate change since watershed properties of such basins promote fast runoff and their 

vulnerability to temperature changes effects rainfall, snowfall and, snow and ice melt (Birsan et 

al, 2005).  

The observed trends in stream runoff are not entirely consistent with the changes in 

climate. Unlike the other areas noted by different authors (e.g. IPCC, 2007) which suggest 

upward trend in temperature for northern hemisphere, this results show that there are strong 

spatial variations in such trends, and there are more stations with positive annual trends than 

negative annual trends in the Blue Ridge of the study area. More than half of the stations in the 

Blue Ridge and Piedmont show negative trend of temperature during winter months (December, 

January, February), and positive trend for the fall season which are not statistically significant 

when tested using the MK analysis. 

All of the streams in the urban area exhibited no significant trend except the Peachtree 

Creek in Atlanta. The Peachtree Creek located in the highly urbanized area showed significant 

positive trend for winter, spring, and summer months except the annual runoff and no negative 

trend was observed at all for the Peachtree Creek. This could be the result of non-uniform land 

cover and population change in the urban basins. It was concluded from the study that there is 

some support for the hypothesis that urbanization causes an increase in stream runoff over time 

(Peachtree Creek station) and shows that land cover change might be more important than 

climate change in affecting the stream flow in the highly urbanized basin. It appears more likely 

that most streams in both urban and non-urban area are experiencing increasing trends over time 
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in summer and fall seasons could be the effect of rainfall since medium correlation of 0.4 was 

observed for runoff and rainfall in the study area. 

There is a strong spatial and seasonal structure in the trend analysis done by both the Mann-

Kendall test and linear trend method. Based on the Mann-Kendall analysis of Stream runoff, 

rainfall, and temperature over the 58-year period (1949-2006), a few general but important, 

conclusions can be made as listed below;  

1. The Mann-Kendall analyses shows that trends in air temperature point towards a slight 

increase in seasonal temperatures, summer, fall, and spring, for both Blue Ridge and 

Piedmont of the study area (Table 5-1, 5-2, Appendix-D). However, almost all of the stations 

in the study area show slight decrease in temperature during winter months (Figure 5-3, 5-4) 

(Appendix A-1, A-2). 

2. Annual precipitation trend were significant in the Blue Ridge region for some of the stations. 

However, seasonal precipitation in the same study periods came out not as significant as the 

annual precipitation in the Blue Ridge (Table 5-3, 5-6). Positive slopes are widespread 

throughout the summer and fall season, this could be the reason of slight increase in 

temperature during the same season, which are not significant when tested with Mann-

Kendall test, 

3. The Mann-Kendall analyses indicate no consistent significant temporal trend for the long-

term annual runoff in the study area (Table 5-5). Seasonal positive slopes were spread across 

the region for summer and fall season (Appendix C-1, C-2); however, the trends are not 

statistically significant. The most dominant changes have occurred in the summer season in 

the Blue Ridge region (Table 5-6). I am not able to explain stream runoff changes on the 

basis of changes in precipitation alone, 
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4. The average annual rainfall-runoff ratio trend in the Blue Ridge show higher ratio than it did 

in the Piedmont province (Table 5-7).  

5. The rainfall-runoff relationship of average annual stream runoff with average annual 

precipitation show that these two parameters are moderately correlated since medium 

correlation of average 0.4 has been observed (Table 5-8) for the Blue Ridge and Piedmont 

provinces. 

In general, the findings from this study, based on the Mann-Kendall analysis, suggest that 

there is no consistent statistically significant (using 95% confidence level) temporal trend in the 

runoff, rainfall, and temperature in the Blue Ridge and Piedmont provinces of the study area. In 

addition, the results from linear regression are also not different from Mann-Kendall analysis, 

which shows no consistent significant increase or decrease in rainfall and runoff with time series 

in the study area with some exceptions.   

6.2 Implications 

It is hoped that the trend analysis of hydrological parameters, rainfall, temperature, and 

runoff, and correlation analysis between such hydrological parameters in the Blue Ridge and 

Piedmont provinces will help improve our understanding of the hydrology of the southeastern 

United States.  

The temporal trend analysis of hydrological parameter in the study will help understand 

the effect of climate change on rainfall runoff of southeastern United States. The findings of 

trend analysis of rainfall-runoff will help to understand the rainfall-runoff in different 

physiographic regions. The MK test on runoff trend will help understand the effect of landcover 

change caused by urbanization on runoff, since urban runoff showed no significant trend except 

at the highly urbanized Peachtree Creek station. Future research in this area can also be 
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benefitted from the different GIS methods that were used in this research for spatial analysis of 

atmospheric data.  

In general, the findings of this study will have significant implication for the water 

resource management by implementing adaptive water resource guidelines to future changes 

resulting from climate and urbanization since surface water is the main source of water in the 

study area.  
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Appendix A-1: Average annual temperature trend in the Piedmont province (1948-2006). 
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Appendix A-2: Average annual temperature trend in the Blue Ridge province (1948-2006). 
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Appendix B-1: Average annual rainfall in the Piedmont province (1948-2006). 
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Appendix B-2: Average annual rainfall in the Blue Ridge province (1948-2006). 
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Appendix C-1: Average annual stream runoff in the Piedmont province (1948-2006). 
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Appendix C-2: Average annual stream runoff in the Blue Ridge province (1948-2006). 

 



 

87 
 

 

 



 

88 
 

 

 



 

89 
 

 

 

 

 

 

 

 



 

90 
 

Appendix D: Average annual and seasonal slope for temperature (1948-2006). 
 

Station_No County State DJF MAM JJA SON Annual 
91982 Clayton GA -0.03 0.36 0.40 0.45 0.30
98535 Talbotton GA -0.03 -0.02 -0.01 -0.02 -0.02
93271 Experiment GA -0.03 -0.02 -0.02 -0.02 -0.02

310184 Andrews NC 0.03 0.04 -0.22 -0.06 -0.05
93621 Gainesville GA -0.01 -0.01 0.01 0.01 0.00
90435 athens Airport GA 0.01 0.02 0.01 0.02 0.02
92318 Covington GA -0.06 -0.01 0.00 0.00 -0.02
99157 Washington2 ESE GA 0.02 0.00 0.00 0.03 0.01
95988 Monticello GA -0.02 -0.02 -0.01 0.00 -0.01
94133 Hartwell GA -0.03 -0.03 -0.02 -0.01 -0.02
92485 Dallas 7 NE GA 0.07 0.02 0.05 0.09 0.06
90969 Blairsville exp GA -0.04 -0.01 -0.03 0.03 -0.01

316001 Murphy 2 NE NC 0.05 0.05 0.58 0.55 0.31
312200 Cullowhee NC -0.02 0.01 0.01 0.02 0.00
314055 Highlands 2 S NC -0.09 -0.06 -0.03 0.32 0.03
311624 Celo 2 S NC 0.01 0.05 0.04 0.06 0.04

310901 
Blowing Rock 1 
NW NC 0.04 0.02 0.02 -0.01 0.02

314496 Jefferson 2 ESE NC 0.01 -0.07 0.02 0.02 -0.01
310506 Banner ELK NC -0.01 0.02 0.04 0.05 0.03
315356 MARSHALL NC -0.01 -0.01 -0.01 0.01 -0.01
313976 Hendersonville NC 0.01 0.03 0.04 0.06 0.03
319147 Waynesville NC -0.02 -0.01 0.02 0.02 0.00
316805 Pisgahforest 1 N NC -0.01 -0.01 0.00 0.01 0.00
318964 Transou NC -0.04 -0.02 0.01 0.00 -0.01
94648 Jasper 1 NNW GA -0.04 -0.02 -0.01 -0.01 -0.02

91640 Carrollton GA -0.03 0.00 0.01 0.00 0.00
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98661 Thomaston GA 0.00 0.01 0.01 0.01 0.01
96335 Newnan GA -0.04 -0.03 -0.02 -0.02 -0.03
98740 Toccoa GA -0.02 -0.02 0.01 0.01 0.00
99141 Warrenton GA -0.06 -0.04 -0.01 -0.02 -0.03
90444 Bolton GA 0.00 0.00 0.00 0.00 0.00

312102 Coweeta EXP STN NC 0.00 0.00 0.04 0.04 0.02
90451 atlanta Airport GA 0.01 0.02 0.02 0.03 0.02
99291 West point GA -0.04 -0.03 0.00 0.01 -0.02

        
DJF= December, January, 
February       
MAM= March, April, May       
JJA= June, July, August       
SON= September, October, November      
Annual= Average annual temperature 
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Appendix E: Average annual and seasonal slope for rainfall (1948-2006). 
 
Station_No County State DJF MAM JJA SON Annual 
91982 Clayton GA -1 -2 0 2 0 
98535 Talbotton GA -2 -2 -1 0 -1 
93271 Experimen GA -1 -1 -1 1 -1 
93621 Gainesville GA -1 -2 0 1 0 
90435 athens Airport GA -1 -1 0 1 0 
92318 Covington GA -1 -1 1 1 0 
99157 Washington2 ESE GA -1 -1 -1 1 -1 
95988 Monticello GA 0 -2 0 1 0 
94133 Hartwell GA 0 -1 1 1 0 
92485 Dallas 7 NE GA 1 0 1 1 1 
90969 Blairsville exp GA -1 -1 1 1 0 
94648 Jasper 1 NNW GA -1 -1 1 2 0 
91640 Carrollton GA -1 -1 0 1 0 
98661 Thomaston GA -2 -2 -1 1 -1 
96335 Newnan GA -1 -2 -1 1 -1 
98740 Toccoa GA -1 -2 0 1 -1 
99141 Warrenton GA -1 -2 2 0 0 
90444 Bolton GA -3 -2 1 0 -1 
90451 atlanta Airport GA -1 -2 1 1 0 
99291 West point GA -1 -2 0 0 -1 
316001 Murphy 2 NE NC 1 0 0 1 0 
312200 Cullowhee NC 1 0 0 1 1 
314055 Highlands 2 S NC 0 -1 -2 4 0 
311624 Celo 2 S NC 0 0 0 2 0 

310901 
Blowing Rock 1 
NW NC 2 1 -1 2 1 

314496 Jefferson 2 ESE NC 0 0 0 0 0 
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310506 Banner ELK NC -1 -1 -1 1 0 
315356 Marshall NC 0 0 1 0 0 
313976 Hendersonville NC 0 -1 0 1 0 
319147 Waynesville NC 0 0 1 1 1 
316805 Pisgahforest 1 N NC 0 -2 -1 0 -1 
318964 Transou NC 0 -1 0 2 0 
312102 Coweeta EXP STN NC 1 -2 -1 2 0 
310184 Andrews NC -1 0 0 1 0 
 
DJF= December, January, February       
MAM= March, April, May       
JJA= June, July, August       
SON= September, October, 
November       
Annual= Average annual rainfall 
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Appendix F: Average annual and seasonal slope for stream runoff (1948-2006). 
 

SON Station # 
Area (Sq. 
mile) County River Name  DJF 

 
MAM JJA SON Annual 

348.00 2330450 45 white Chattahoochee River at Helen -6 -5 4 7 0

608.00 2331600 315 Habersham 
Chattahoochee River near 
Cornella -3 -10 -3 0 -4

446.00 2338000 2430 Carroll 
Chattahoochee River near 
Whitesburg -2 -6 0 -1 -2

199.00 2347500 1850 Upson Flint River near Culloden -3 -4 0 0 -2
240.00 2344500 272 Spalding Flint River near Griffin -3 -4 0 1 -1
259.00 2192000 1430 Elbert Broad River near Bell -1 -2 0 0 -1
77.00 2217500 398 Clarke Middle Oconee River near Athens 0 0 0 0 0

110.00 2212600 72 Jones Falling creek near Juliette -4 -3 0 1 -2
801.00 2177000 270 Oconee Chattooga River near Clayton -1 -5 1 3 0
776.00 2178400 57 Rabun Tallulah River near Clayton -8 -12 -4 0 -6
134.00 2193500 292 Wikes Little River near washington 0 -4 1 1 -1
189.00 2223000 295 Baldwin Oconee River at milledgeville -2 -3 0 1 -1
511.00 2333500 153 Lumpkin Chestatee River near Dahlonega -2 -5 0 1 -2

611.00 2334430 1040 gwinett-F 
Chattahoochee River at Buford 
dam 1 -5 -1 -3 -2

600.00 2335000 1170 Gwinett 
Chattahoochee River near 
Norcross 1 -6 -2 -3 -2

518.00 2336000 1450 Fulton Chattahoochee River at Atlanta 1 -4 0 -1 -1
263.00 2337000 246 Douglas Sweetwater creek near Austell 1 0 2 3 1
290.00 2337500 36 Carroll Snake creek near Whitesburg -4 -6 -1 0 -3
398.00 2339500 3550 Troup Chattahoochee River at Westpoint -5 -7 2 -1 -2
404.00 2392000 613 Cherokee Etowah River at Canton -2 -4 -1 2 -1
337.00 2335700 72 Fulton Big Creek Alpharetta -3 -5 1 5 0

4821.00 2337170 206 Fulton 
Chattahoochee River near 
Fairburn -2 -5 -1 -2 -3
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272.00 2336300 86.6 Fulton Peachtree Creek 1 -3 3 2 1
192.00 2344700 101 Coweta Line creek near Senola -5 -3 3 1 -1
307.27 3550000 104 Cherokee Valley River at Tomotla -3 0 0 1 0

625.05 3504000 52 Macon 
Nantahala River near Rainbow 
Spr -3 -1 0 2 0

387.25 3503000 436 Swain Little Tennessee River at Needmo -2 -2 0 0 -1
462.03 3500000 140 Macon Little Tennessee River near Pren -2 -3 0 1 -1

3335.10 3453500 1332 Madison French Broad River at Marshall 4 -4 1 -1 0
411.43 3451500 945 Buncombe French Broad River atAsheville 1 -1 0 0 0
195.84 3451000 130 Buncombe Savannah River at Biltmore -1 -1 0 0 0
284.16 3450000 5 Buncombe Bee Tree Creek near Swannanoa 0 0 0 1 0
489.06 3446000 67 Henderson Mills River near mills river -1 -2 0 0 -1
659.32 3443000 296 Transylva French Broad River at Blantyre 0 -3 -1 0 -1
603.82 3441000 40 Transylva Davidson River near Brevard 1 -3 -1 0 -1
672.14 3439000 68 Transylva French Broad River at Rosman 0 -3 -1 0 -1
341.53 3479000 92 Watauga Watauga River near Sugargrove 0 0 0 1 1
425.91 3161000 205 Ashe South fork new River near Jeffer -1 -1 0 0 0
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Appendix G-1: 10-year temperature (o F) average in the Blue Ridge province, NC. 
 

Year 318694 316805 319147 313976 315356 318744 314496 310901 310506 311624 314055 312102
1954 51.65 56.15 55.06 55.87 55.03 61.94   50.20 51.60 54.16 55.30 
1964 50.67 54.36 53.72 54.84 54.14 60.24  48.99 49.34 50.62 53.11 54.25 
1974 50.63 53.69 53.48 54.80 55.27 59.56 52.08 48.60 49.17 50.93 53.02 54.15 
1984 49.79 53.69 53.36 56.21 55.15 59.53 51.23 49.42 49.06 50.92 52.11 53.86 
1994 50.98 54.27 54.88 56.64 54.40 60.65 51.75 49.67 50.87 52.22 50.45 55.03 
2004 49.99 54.66 53.96 56.39 54.36 60.38 50.89  49.15 53.46 50.89 55.97 
2005  54.83  56.54         
2006 50.20  53.96   60.51 51.44  47.07 53.64 51.39 56.46 

 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

310184 312200 313228 316001 
55.37 56.88 56.82  
54.69 55.92 55.65  
54.42 55.18 55.89 56.11 
54.66 55.20 55.78 55.30 
56.24 57.05 56.66 56.62 
53.39 56.24 55.22 56.56 

 56.03 55.63 56.99 
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Appendix G-2: 10-year temperature (o F) average in the Piedmont province, GA. 
 

 
 
 
 
 
 

 

 

Year 90969 91982 93621 92485 99157 93271 90451 99291 95988 90435  92318 98535 94133
1954 56.75 58.85 61.38  63.38 62.64 62.39 63.78 64.97 62.48 63.38 63.28 64.44 62.14 
1964 54.37 56.98 60.52 57.58 62.15 61.99 61.55 63.18 61.78 61.20 60.26 61.44 62.41 62.85 
1974 54.45 56.85 57.82 59.46 59.73 61.57 60.45 61.94 62.70 61.12 59.73 61.13 63.13 62.55 
1984 54.40 56.21 58.52 58.58 61.10 60.57 61.20 62.00 62.66 61.90 61.10 61.66 63.22 62.40 
1994 55.72 57.20 60.64 59.58 61.34 61.04 63.16 62.24 63.81 62.37 61.34 61.74 63.03 62.17 
2004 55.6 56.51 60.55 60.01 61.53 61.38 62.67 61.60 61.66 62.06  61.39 62.46 60.61 
2006  56.48 60.35  61.71   61.63 61.48 62.26 61.71 61.18  61.14 

Year 98661 96335 98740 99141 94648 91640 
1954  63.56 62.19 63.90 61.14 60.43 
1964 62.59 62.40 60.84 63.41 58.47 60.35 
1974 63.53 61.77 60.14 62.51 57.89 60.14 
1984 63.70 61.13 60.54 61.90 58.17 60.81 
1994 63.98 61.81 60.69 61.42 58.22 60.71 
2004 63.02 61.56 61.53 61.93 58.76 60.81 
2006  61.42 61.37 62.28 59.04 60.49 
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Appendix H-1: 10-year rainfall (millimeter) average in the Blue Ridge province, NC. 
 
Year 310184 312102 314055 312200 316236 311624 310506 310901 314496 
1953 1438.4 1718.1 1942.6 1114.1 1061.2 712.5 1217.4  1141.2 
1963 1548.0 1771.9 1971.1 1214.1 1239.6 1414.0 1253.1 1458.9 1150.7 
1973 1589.6 1863.9 2032.3 1293.5 1219.5 1486.4 1243.2 1628.9 1185.7 
1983 1646.8 1913.1 2129.4 1324.6 1298.3 1605.3 1358.2 1761.7 1385.7 
1993 1525.4 1753.5 2197.6 1262.3 1176.4 1422.1 1224.3 1673.2 1116.3 
2003 1623.7 1768.3 2088.2 1304.6 1224.9 1434.6 875.4 1409.6 1073.2 
2006  1726.3   1265.1 1459.4 774.4  1160.9 

 

 

 

 

 

Year 318744 315356 313976 319147 316805 318694 316001 
1953 1517.8 954.2 1116.7 1086.4 1307.6 1358.1 1521.9 
1963 1741.1 1049.3 1318.7 1132.1 1609.1 1327.2 1408.1 
1973 1754.9 974.6 1412.3 1183.6 1694.2 1323.7 1408.9 
1983 1770.3 1028.3 1478.5 1244.8 1718.0 1507.4 1403.6 
1993 1681.0 1030.0 1375.7 1201.6 1595.6 1423.2 1314.4 
2003 1517.6 1034.7 1426.5 1246.5 1583.6 1412.1 1484.8 
2006   1405.1 1231.9 1483.3 1392.4  
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Appendix H-2: 10-year rainfall (millimeter) average in the Piedmont province, GA. 

Year 90969 91982 92006 93621 91585 92485 96407 99157 93271 90451 99291 95988 90435 
1944              
1954 1411.1 1768.8 1514.4 1353.3 1349.4 939.4 1147.1 1006.1 1298.8 1236.5 1314.5 1035.3 1050.3
1964 1393.2 1740.1 1646.1 1363.8 1378.6 1207.4 1232.2 1219.0 1293.3 1206.5 1329.6 1139.6 1286.0
1974 1459.9 1853.6 1735.5 1510.9 1479.2 1398.1 1382.5 1334.1 1430.7 1273.1 1381.0 1160.1 1340.7
1984 1520.2 1961.9 1645.6 1403.4 1539.4 1428.3 1483.9 1172.8 1277.3 1279.4 1266.5 1093.1 1237.3
1994 1421.8 1724.5 1599.2 1332.4 1304.2 1299.7 1363.4 1152.7 1208.5 1345.5 1280.3 1203.9 1187.5
2004 1446.3 1869.6 1573.5 1429.1 1388.9 1389.3 1384.6 1109.9  1205.6 1184.7  1218.8
2006 1396.1 1733.7 1526.6 1362.4 1391.2 1345.1  1062.7  1187.4 1154.1  1170.9

 

 

 

  

 

 

 

 

Year 91640 98661 96335 98740 99141 90444 92318 98535 94133 94648 
1944       1460.0 1169.5    1241.3   
1954 983.4   968.0 1549.5 1131.0   999.1 1358.4 1182.6 1312.9 
1964 1341.4 1120.4 1277.3 1441.3 1265.8 1410.3 1198.7 1390.8 1180.0 1370.9 
1974 1409.4 1319.2 1358.7 1585.7 1241.3 1522.0 1331.6 1407.1 1378.8 1492.8 
1984 1379.0 1222.7 1272.6 1635.1 1348.7 1225.8 1257.0 1271.0 1173.0 1568.9 
1994 1207.9 1250.4 1342.1 1464.4 1176.9 1281.2 1192.6 1236.2 1249.2 1420.4 
2004 1369.6 1189.5 1214.9 1443.0 1136.6 1327.0 1228.5 1220.8 1270.0 1487.7 
2006 1327.3     1378.6 1092.8 1332.2 1224.6 1431.9 
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Appendix I-1: 10-year runoff (millimeter) average in the Blue Ridge province, NC. 
 

 

 
 
 
 
 
 

 

 

 

 
 
 
 
 

 
 
 
 

Year 3161000 3439000 3446000 3453000 3504000 3450000 3550000 3503000 3500000
1954 427.41 242.90 171.14 143.21 207.70 10.48 248.76 1058.21 398.19
1964 404.93 223.68 160.89 157.81 194.33 10.19 255.22 1026.14 368.52
1974 464.71 257.15 188.00 157.20 220.47 11.44 265.12 1147.41 420.59
1984 497.26 260.52 190.72   217.83 10.88 267.05 1212.54 419.96
1994 426.85 232.51 163.20   198.03 10.62 253.40 1011.58 357.03
2004 402.47 226.00 164.23 150.47 199.28 10.46 249.75 973.48 358.02
2005 481.90 296.90 216.80 180.10 286.40 16.30 280.00 1373.00 534.30
2006 368.30 156.70 126.20 129.50 152.60 8.85 156.70 679.20 276.90

 Year 3453500 3451500 3451000 3443000 3441000 3479000 
1954 2365.57 2025.14 162.14 1014.87 131.64 165.40 
1964 2317.90 1900.70 154.18 945.52 122.53 161.53 
1974 2704.10 2223.80 173.32 1113.42 138.61 186.20 
1984 2654.80 2274.10 178.80 1159.45 142.43 215.82 
1994 2359.80 1994.00 139.64 959.64 119.89 174.69 
2004 2389.40 2060.40 152.06 937.68 127.37 173.94 
2005 3288.00 2834.00 217.20 1234.00 169.60 202.50 
2006 2041.00 1702.00 127.60 700.70 96.60 147.30 
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Appendix I-2: 10-year runoff (millimeter) average in the Piedmont province, GA. 

 

 

 

 

 

 

 

Year 2333500 2334430 2335000 2336000 2337000 2337500 2339500 2392000 2337170 2344700 2336300
1954 815.69     450.88    665.42    
1964 826.30 594.10 623.38 544.95 444.58 504.27   658.20   476.93
1974 912.90 737.78 725.12 665.73 519.16 592.55 598.38 760.92 6321.88 464.00 566.96
1984 875.56 728.70 736.61 670.41 551.96 627.32 579.95 790.07 6437.51 472.94 571.29
1994 774.90 585.05 589.15 533.45 453.51 452.99 485.26 628.29 5376.53 425.05 544.67
2004 729.67 562.29 562.27 536.30 502.41 438.60 502.19 614.60 5361.47 427.54 529.50
2005 1069.75 826.83 811.58 822.50 701.07 508.93 744.26 416.28 8007.14 802.92 846.08
2006 560.45 541.39 520.43 505.06 419.63 275.83 415.88 396.82 4808.64 236.57 424.63

Year 2330450 2331600 2338000 2347500 2344500 2192000 2217500 2212600 2177000
1954       438.82 444.17 424.53 434.21   1045.75
1964   938.01   437.34 446.97 421.24 429.02   1014.03
1974   932.77 607.66 461.59 459.35 468.29 500.33 303.34 1225.82
1984 1191.46 954.33 630.99 443.36 486.88 479.34 502.63 335.10 1222.52
1994 991.17 799.21 523.00 368.59 448.81 382.07 401.66 263.32 1024.62
2004 947.59 773.59 526.44 357.35 410.67 388.20 426.74 258.02 1016.43
2005 1523.40 1129.60 810.18 660.69 684.13 522.25 553.83 368.67 729.39
2006 766.71 623.69 456.03 213.02 240.21 273.66 324.69 119.86 669.26
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Year 2178400 2192000 2193500 2217500 2223000
1954   424.53 231.03 434.21 267.53
1964   421.24 327.28 429.02 370.95
1974 1244.90 468.29   500.33 374.14
1984 1203.04 479.34   502.63 391.77
1994 1034.61 382.07 307.42 401.66 306.13
2004 1047.06 388.20 274.45 426.74 343.27
2005 837.87 522.25 228.72 553.83 425.79
2006 771.96 273.66 99.07 324.69 203.02
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