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ABSTRACT 

A COGNITIVE MODEL OF ALGEBRA ACHIEVEMENT AMONG 
UNDERGRADUATE COLLEGE STUDENTS 

by 
Tammy D. Tolar 

 
Algebra has been called a gatekeeper because proficiency in algebra allows access 

to educational and economic opportunities. Many students struggle with algebra because 

it is cognitively demanding. There is little empirical evidence concerning which cognitive 

factors influence algebra achievement. The purpose of this study was to test a cognitive 

model of algebra achievement among undergraduate college students. Algebra 

achievement was defined as the ability to manipulate algebraic expressions which is a 

substantial part of many algebra curriculums. The model included cognitive factors that 

past research has shown relate to overall math achievement. Other goals were to compare 

a cognitive model of algebra achievement with a model of SAT-M performance and to 

test for gender differences in the model of algebra achievement. 

Structural equation modeling was used to test the direct and indirect effects of 

algebra experience, working memory, 3D spatial abilities, and computational fluency on 

algebra achievement. Algebra experience had the strongest direct effect on algebra 

achievement. Combined direct and indirect effects of computational fluency were as 

strong as the direct effect of algebra experience. While 3D spatial abilities had a direct 

effect on algebra achievement, working memory did not. Working memory did have a 



  

direct effect on computational fluency and 3D spatial abilities. The total effects of 3D 

spatial abilities and working memory on algebra achievement were moderate. 

There were differences in the cognitive models of algebra achievement and SAT-

M. SAT-M scores were highly related to 3D spatial abilities, but moderately related to 

algebra experience. There were also gender differences in the cognitive model of algebra 

achievement. Working memory was highly related to computational fluency for males, 

but was not related to computational fluency for females.  

 This study adds to the large body of evidence that working memory plays a role in 

computational abilities throughout development. The evidence that working memory 

affects higher level math achievement indirectly through computational fluency and 3D 

spatial abilities provides clarity to conflicting results in the few studies that have 

examined the role of working memory in higher level math achievement. 
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Chapter 1 

COGNITIVE COMPONENTS OF MATH ACHIEVEMENT 

Introduction 

Math achievement has been the subject of an array of research studies in recent 

years partly because of increased recognition that it plays an important role in good 

educational and financial outcomes for individuals in our society (U.S. Department of 

Education, 1997). There is an educational and economic divide favoring the math haves 

(i.e., those who graduate high school with four years of experience in higher level math, 

including two years of algebra and often a year of calculus) over the math have-nots (i.e., 

those who either fail the first year of algebra and never go on, or those who never attempt 

math beyond pre-algebra). Concerns about student math performance in the U.S. relative 

to other countries have been covered extensively by the media, and the means for 

addressing this gap have been the subject of much political debate (Schoenfeld, 2004).  

As a consequence of research efforts, there is a substantial amount of evidence 

suggesting that a variety of factors play a role in math achievement, including 

socioeconomic status, teacher beliefs and abilities, parental involvement, early 

acceleration, curriculum, and motivation (Ma, 2005a, 2005b; Ma & Kishor, 1997; 

Mabbott & Bisanz, 2003; Pajares, 1996; Pajares & Graham, 1999; Pajares & Kranzler, 

1995; Sjostrom, 2000). Ultimately, to improve student achievement, these social and 

motivational processes need to be understood and addressed by schools and society, but 

these factors are also mediated by and interact with the cognitive capacities and abilities

1 
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with which students are equipped. Estimates of math disability rates are similar to those 

of reading disabilities, which has led to a body of research on cognitive factors that 

influence math achievement (Geary, 1993, 2003; Geary & Hoard, 2001; Jordan, Hanich, 

& Kaplan, 2003a, 2003b; Jordan, Levine, & Huttenlocher, 1995; Jordan & Montani, 

1997; Rourke, 1993; Rourke & Conway, 1997; Swanson & Jerman, 2006). To be most 

effective, educational programs need to address these cognitive factors.  

Currently there is no comprehensive cognitive model or theory of math 

achievement. This is partly due to the relatively low number of studies that have 

examined cognitive processes related to mathematical abilities (as compared to studies on 

reading achievement, for example). The focus of most of these studies has been on testing 

the relationship between a few cognitive factors and math achievement (e.g., Bull & 

Johnston, 1997), or on experimental testing of the involvement of cognitive processes in 

specific math tasks (e.g., Campbell, 1990). This research has provided a foundation for 

the development of testable models of math achievement, models which include not only 

direct effects of cognitive factors but also indirect and interactive effects. Because math 

achievement is a complex construct, similar to reading achievement, it must be examined 

in a systematic way to be fully understood. The purpose of this review is to identify 

cognitive factors that are likely key components of any model of math achievement, 

describe the evidence implicating them as elements in such a model, and discuss future 

directions for research necessary to the development of cognitive models of math 

achievement.   

 The cognitive abilities with the strongest and most robust correlations to math 

achievement are general intelligence and fluid reasoning (Bull, Johnston, & Roy, 1999; 
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Floyd, Evans, & McGrew, 2003), verbal abilities (Cirino, Morris, & Morris, 2002), 

reading comprehension (Bull & Johnston, 1997; Friedman, 1995), and general knowledge 

(Batchelor, Gray, & Dean, 1990; Cirino et al., 2002; Floyd et al., 2003). Measures of 

these abilities serve as useful predictors of math achievement, but these higher level 

abilities are the result of the coordination of lower level domain specific skills and 

domain general abilities and resources. It is these processes that have been the focus of 

much of the research on the cognitive factors involved in math achievement. Therefore, 

the focus of this review will be on lower level processes and skills that are likely critical 

to math achievement. 

 There are four cognitive processes that appear to have special relevance to math 

achievement: working memory, processing speed, visual spatial abilities, and 

computational fluency. In evaluating the relationship between each of these processes and 

math achievement, there are several complexities, both within the constructs and in the 

contexts in which they operate, that must be considered. Two of these complexities are 

the way in which math achievement is defined and the age of the individuals being 

assessed. Another is the degree to which each of these constructs represents domain 

general and domain specific processes. 

 The outcome variables in cognitive studies of math achievement range from 

single digit math fact retrieval to arithmetical computations and reasoning to math 

problem solving that often incorporates algebraic and geometric reasoning (e.g., Bull & 

Johnston, 1997; Gathercole, Pickering, Knight, & Stegmann, 2004; Reuhkala, 2001; 

Rohde & Thompson, 2007). There are qualitative differences between some of these 

math domains as well as differences in the degree to which some domains of math 
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incorporate others. This is likely to influence the strength of the relationship between 

various cognitive factors and math achievement. Any assessment of the literature must 

account for this possibility.  

 Most of the cognitive studies of math achievement have focused on elementary-

age children, although there are a growing number of studies of math achievement among 

adolescents and adults. The way in which processes interact to influence math 

achievement among children is likely to be different than the way in which they interact 

to influence math achievement among adolescents and adults. One reason for this is that 

there are qualitative differences in the way in which young children, adolescents, and 

adults process the same information (e.g., very young children are less likely than older 

children and adults to verbally encode visual information, see Logie, 1995). There are 

also developmental differences in cognitive capacities which may influence the degree of 

the relationship between a cognitive factor and math achievement. Finally, the definition 

of math achievement is different for children, adolescents and adults. Lower level math 

skills that are outcomes for children become mediating factors for adolescents and adults. 

Not only must math domain and developmental differences be considered in evaluating 

the research on math achievement, but possible interactions between these two factors 

must also be considered.       

 Finally, all the cognitive constructs that are the focus of this review include 

domain general and domain specific processes. The line between what constitutes domain 

general and domain specific is not well-defined and the research evidence does not 

provide clear support as to the degree to which these constructs represent domain general 

and domain specific abilities. There are also likely developmental differences in the 
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degree to which cognitive factors tax domain general and domain specific processes. A 

goal of this review is to account for some of the ways in which these processes may 

interact within and across cognitive constructs in influencing math achievement.  

Working Memory and Math Achievement 

 Working memory capacity is consistently and robustly correlated with math 

achievement. Correlations between working memory capacity and math achievement 

have been found in a variety of studies that cover most developmental stages including 

preschool and elementary age children, adolescents, and younger and older adults (Bull & 

Johnston, 1997; Bull et al., 1999; Bull & Scerif, 2001; Demetriou, Christou, Spanoudis, 

& Platsidou, 2002; DeStefano & LeFevre, 2004; Duverne, Lemaire, & Michel, 2003; 

Espy et al., 2004; Gathercole et al., 2004; Jarvis & Gathercole, 2003; Lehto, 1995; 

Reuhkala, 2001). Working memory capacity is also correlated with performance across 

math skills and domains including arithmetic calculations, math reasoning, algebra word 

problems, and broad assessments of math ability, which include algebraic and geometric 

reasoning (Dark & Benbow, 1990, 1991; DeStefano & LeFevre, 2004; Engle, Tuholski, 

Laughlin, & Conway, 1999b; Gathercole et al., 2004; Lee, Ng, Ng, & Lim, 2004). In 

addition, working memory capacity is related to math performance across populations 

including students with math disabilities, students with average abilities, and those gifted 

in math (Bull & Johnston, 1997; Bull et al., 1999; Bull & Scerif, 2001; Dark & Benbow, 

1990, 1991; Gathercole et al., 2004; Jarvis & Gathercole, 2003; Swanson & Jerman, 

2006; Swanson & Sachse-Lee, 2001). Correlations between working memory capacity 

and math achievement are robust because working memory capacity accounts for unique 

variance in math ability, even when controlling for higher level cognitive abilities such as 
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general intelligence and reading achievement (Bull & Johnston, 1997; Bull et al., 1999; 

Floyd et al., 2003). The hypothesis that working memory is a key component of math 

performance is supported by a convergence of evidence from experimental, correlational, 

neurocognitive, and neuropsychological studies (Burbaud et al., 1995; DeStefano & 

LeFevre, 2004; Gathercole et al., 2004; Kaufmann, 2002; Kaufmann, Lochy, Drexler, & 

Semenza, 2004). Based on all this empirical support, it would seem that the connection 

between working memory and math achievement is a fait accompli; however, working 

memory is a complex construct which encompasses both domain specific and domain 

general processes (Baddeley & Logie, 1999; Conway et al., 2005; Oberauer, Heinz-

Martin, Wilhelm, & Werner, 2003). It is in examining these complexities that the 

relationship between working memory and math ability becomes less straightforward.  

A Model of Working Memory 

 Working memory is a cognitive process in which information is maintained in an 

active state, while that information or other information is being processed. Baddeley’s 

model of working memory has been the implicit if not explicit theoretical framework for 

most studies of the relationship between working memory and math achievement (e.g., 

see DeStefano & LeFevre, 2004). According to Baddeley and colleagues (Baddeley, 

1996, 2000, 2002; Baddeley & Hitch, 1974; Baddeley & Logie, 1999), working memory 

is a multi-component structure consisting of two domain specific stores, the phonological 

loop and the visual-spatial sketchpad, and a domain general control mechanism, the 

central executive.  

The phonological loop is responsible for temporary storage of verbal information, 

the maintenance of which is aided by a rehearsal mechanism (Baddeley & Logie, 1999). 
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Capacity for short-term maintenance of verbal information is influenced by the speed 

with which verbal material can be articulated and strategies for “chunking” information 

(e.g., “abc” treated as one piece of verbal information instead of three separate letters). 

These in turn are influenced by development of domain general processes such as 

processing speed and by domain specific experiences and abilities.  

The visual-spatial sketchpad is associated with temporary storage of visual 

patterns and spatial locations (Baddeley & Logie, 1999; Logie, 1995). There is less 

empirical evidence concerning the functioning of the visual-spatial sketchpad, and as a 

consequence, a rehearsal mechanism has not been identified if one exists. The possible 

lack of a rehearsal mechanism may result in a stronger relationship between the visual-

spatial sketchpad and the central executive than between the phonological loop and the 

central executive, although this is conjecture based on limited evidence (Miyake, 

Friedman, Rettinger, Shah, & Hegarty, 2001). 

The central executive is theoretically responsible for a variety of processes 

including the coordination of information in the domain specific stores and long-term 

memory (Baddeley, 1996). It is also associated with executive functions such as selective 

or controlled attention and inhibition. The central executive may also control another 

component, the episodic buffer, which has recently been added to Baddeley’s model and 

may have some relevance to future research on math achievement because of its 

purported role in integrating information from the domain specific stores and long-term 

memory (Baddeley, 2000). However, there is very little theoretical detail or empirical 

evidence related to this aspect of Baddeley’s model. There is enough empirical evidence 
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concerning the other components, though, to form conclusions and develop hypotheses 

about the ways in which working memory influence math achievement.  

Components of Working Memory and Math Achievement 

Whereas working memory capacity is consistently and robustly correlated with 

math achievement, short-term memory capacities appear to be related to math abilities in 

only some contexts and often do not account for unique variance in math achievement 

when controlling for other factors such as reading comprehension and fluid intelligence 

(Bull & Johnston, 1997; Floyd et al., 2003; Swanson & Jerman, 2006). In fact, some 

researchers have concluded that it is the central executive or central executive processes 

that drive the robust relationship between working memory and math achievement (Dark 

& Benbow, 1990, 1991; Jarvis & Gathercole, 2003; Swanson & Jerman, 2006). For 

example, a meta-analysis of cognitive predictors of math disabilities revealed that only 

verbal working memory capacity was a significant predictor of effect sizes (i.e., group 

differences in math performance between children diagnosed with math disabilities and 

those identified as average math achievers) when controlling for other factors. These 

results were based on a regression model that included, among other cognitive variables, 

verbal short-term memory (STM) span (i.e., phonological loop capacity) and visual-

spatial working memory capacity (Swanson & Jerman, 2006). The authors concluded that 

deficits in “controlled attention to verbal information (i.e., with the influence of other 

variables such as STM partialed out) was a defining feature of MD children when 

compared with average achievers” (p. 269).  

 Based on the reasoning of Swanson and Jerman (2006), central executive 

processes (e.g., controlled attention) are likely a “defining feature” of math achievement 
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among average achievers as well. Floyd et al. (2003) conducted a study of math 

calculation and math reasoning achievement among a large sample of children and 

adolescents who ranged in age from 6 to 19 years. They tested regression models for each 

age group using Cattell-Horn-Carroll cognitive ability clusters as predictors. Across age 

groups, general comprehension and knowledge and fluid reasoning had the highest 

regression coefficients, followed by working memory. However, short-term verbal 

memory had relatively low coefficients. Similar results which favor central executive 

processes over domain specific storage as critical to math performance are found among 

gifted adolescents (Dark & Benbow, 1990, 1991) and adults (DeStefano & LeFevre, 

2004). 

This does not mean that domain specific storage capacities do not influence math 

achievement. Clearly they do (i.e., short-term storage is a fundamental component of 

working memory so it must necessarily play a role in math achievement), but the degree 

to which either verbal or visual-spatial short-term memory contributes to math 

performance seems to be very much dependent on individual experiences and strategies 

which may allow for more efficient chunking of information in specific domains (Dark & 

Benbow, 1990, 1991; DeStefano & LeFevre, 2004). For example, whether or not the 

phonological loop is implicated in low level skills like single-digit calculations among 

educated adults depends on the relative distribution of counting versus direct retrieval 

strategies used within the sample being tested (DeStefano & LeFevre, 2004). Counting 

strategies appear to tax the phonological loop as well as the central executive whereas 

direct retrieval strategies are more likely to involve the central executive than the 

phonological loop. In addition, involvement of particular domain specific storage 
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components also depends on presentation format of the material and the math skills or 

domain being tested. However, when controlling for these type of factors, it appears the 

central executive aspects of working memory may be the key predictor of math 

achievement. 

A Controlled Attention Theory of Working Memory Capacity 

 One way of interpreting results which suggest that domain general central 

executive processes play a more prominent role than domain specific stores in predicting 

math achievement is from a theoretical perspective which identifies controlled attention 

as the chief constraint of working memory capacity (Cowan, 2000, 2001; Engle, 2002). 

Engle and colleagues (Conway et al., 2005; Engle, 2002; Engle, Kane, & Tuholski, 

1999a; Kane, Bleckley, Conway, & Engle, 2001) have argued that one of the key 

predictors of higher level thinking, in fact, one of the key predictors of performance in 

many aspects of life, is the capacity for active maintenance of information in the context 

of potential interference from either external or internal sources of distraction. Although 

domain specific aspects of working memory (e.g., verbal or visual-spatial short-term 

storage) influence performance, it is the ability to control attention and inhibit irrelevant 

stimuli that consistently distinguishes high performers from low ones across cognitive 

domains. In terms of Baddeley’s model, Engle and colleagues identify their definition of 

working memory capacity with central executive processes, or more specifically, 

attentional and inhibitory processes associated with the central executive. Empirical 

evidence to support this theory comes primarily from studies in which working memory 

capacity is operationally defined in terms of tasks (e.g., operation span, reading span, 

counting span) which include an information processing component (e.g., making 
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decisions about the accuracy of single digit calculations or the comprehensibility of 

sentences) and a memory component (e.g., retention and recall of a series of letters or 

words). The processing task is designed to prevent individuals from using strategies such 

as rehearsal and chunking and force them to rely on controlled attention and inhibition to 

keep the letters or words active and to prevent other stimuli from interfering with the 

maintenance of that information. Engle and colleagues have found that high performers 

on these types of tasks are better than low performers at tasks that require them to control 

attention and inhibit prepotent responses (e.g., antisaccade task, Stroop task). In addition, 

using structural equation modeling (SEM), they have found that working memory 

capacity predicts higher level cognitive abilities such as math and verbal achievement and 

general intelligence even when controlling for short-term memory and processing speed 

(Conway, Cowen, Bunting, Therriault, & Minkoff, 2002; Engle et al., 1999b; Kane et al., 

2004). Furthermore, short-term memory does not correlate with general intelligence when 

controlling for working memory capacity. Engle and colleagues contend that the common 

variance across working memory measures which is captured through latent variable 

analyses represents domain general executive attention, and it is this aspect of working 

memory that is a key predictor of higher level cognitive abilities.  

Working Memory Capacity as Controlled Attention and Math Achievement 

There is some evidence that working memory capacity as defined within this 

framework (WMC) is an important predictor of math achievement. The few studies that 

have used WMC measures similar to those supported by Engle and colleagues have 

found that working memory capacity predicts math achievement even when controlling 

for other factors such as short-term memory and general intelligence (Bull et al., 1999; 
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Bull & Scerif, 2001; Engle et al., 1999b; Lee et al., 2004). Furthermore, consistent with 

the hypothesis that controlled attention is a key predictor of higher level thinking, 

executive attention measures (e.g., Wisconsin Card Sorting Task, Stroop) predict math 

achievement among school age children as well as college students referred for learning 

difficulties (Batchelor et al., 1990; Cirino et al., 2002). Impairments in inhibitory 

processes related to working memory have also been identified as contributing to 

developmental dyscalculia (Kaufmann, 2002; Kaufmann et al., 2004). However, it is 

unlikely that attentional and inhibitory processes in isolation (i.e., without a STM 

component) effectively capture the strong relationship between WMC and math 

achievement. Instead, these processes in conjunction with active maintenance of 

information (whatever the domain or domains from which that information comes) may 

be why WMC is such a robust predictor of math achievement. This appears to be true at 

least among elementary school students.  

In a study of math achievement among 7 and 8 year-olds, Bull and Scerif (2001) 

found that when controlling for perseveration (i.e., a tendency to remain fixed on a 

strategy even when it is no longer effective) and inhibition, WMC accounted for unique 

variance in math achievement, but when controlling for WMC neither perseveration nor 

inhibition were significant contributors to math performance. Finally, based on their 

studies of math and/or verbally gifted adolescents, Dark and Benbow (1990, 1991) 

argued that that aspects of working memory involved with the manipulation of 

information is especially predictive of math ability (i.e., over verbal ability). This 

suggests that using measures which incorporate temporary storage and manipulation of 
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information while controlling for domain specific influences may best capture the strong 

relationship between working memory and math achievement.  

Exceptions to the Rule 

The evidence just described suggests that working memory is a critical and 

perhaps the most influential cognitive component in any model of math achievement, 

however, the majority of research relating working memory to math achievement is based 

on elementary-aged children and defines math achievement as performance on 

arithmetical tasks. There are relatively few studies which examine the relationship 

between working memory and math achievement among adolescents and adults. In most 

of these studies, working memory is related to math achievement (Demetriou et al., 2002; 

DeStefano & LeFevre, 2004; Engle et al., 1999b; Floyd et al., 2003; Gathercole et al., 

2004; Lehto, 1995; Reuhkala, 2001; Rohde & Thompson, 2007). Two studies are notable 

exceptions.  

In one study of 15- and 16 year-olds, although visual-spatial working memory 

correlated with math achievement, verbal short-term memory and verbal working 

memory did not (Reuhkala, 2001). In addition, 3D mental rotation accounted for more 

variance in math achievement than working memory. This counterintuitive result (at 

least, based on the bulk of the research) may have been due to the way in which the tasks 

were administered. The working memory tasks were administered to groups of students 

instead of individually, which increases the likelihood of domain specific rehearsal and 

chunking strategies for some participants (Conway et al., 2005). This method of testing 

working memory is inconsistent with the individually based method used in virtually all 

other studies.  
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In a study of college students, when measures of performance IQ, vocabulary, 

verbal working memory, processing speed, and spatial ability were included in a 

regression model of SAT-M performance, working memory was the only predictor that 

was not significantly related to math achievement (Rohde & Thompson, 2007). 

Processing speed and spatial ability were based on composite scores from multiple 

measures, but working memory was based on only one task. Composite or factor scores 

from multiple measures of working memory are more likely to represent domain general 

executive attention than are individual measures (Conway et al., 2005). In addition, 

bivariate correlations were not reported, so whether or not working memory correlated 

with SAT-M performance without controlling for the other factors could not be 

determined.  

There are several possible reasons for these results, related to differences in the 

ways the constructs were measured. Another explanation that could account for these 

results involves an interaction between developmental differences in working memory 

and math domain differences. It could be that verbal working memory tasks are more 

likely to tax domain general processes among children than among adolescents and 

adults. Working memory is not fully developed among children and preadolescents, and 

there is evidence that suggests that development of working memory involves a complex 

interaction between changes in articulation rate, speed of retrieval of information from 

long-term memory, and attentional capacity (Cowan, Saults, & Elliot, 1999, 2002; Cowan 

et al., 2003). Furthermore, children have less well developed strategies for chunking 

verbal information than do adults. In addition, among children, arithmetical skills are less 

automated and likely more taxing on domain general processes, which perhaps causes the 
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robust link between working memory and math achievement. Among older adolescents 

and adults, well developed, domain specific abilities and strategies may constrain verbal 

working memory performance as much as domain general abilities, particularly in 

individual working memory tasks in which there are less likely to be controls for domain 

specific processes. Similarly, numerical computational abilities may also be constrained 

as much by domain specific abilities, many of them likely verbal (e.g., see Dehaene & 

Cohen, 1997) as by domain general abilities, which would result in a strong relationship 

between verbal working memory and computational abilities among adults. However, the 

more abstract algebraic and geometric reasoning required in math assessments such as the 

SAT-M may be especially demanding of domain general resources, and perhaps other 

cognitive factors besides working memory are more likely to represent domain general 

resources among adults. The studies of math achievement among older adolescents and 

adults described earlier suggest that two of these cognitive factors may be processing 

speed and visual-spatial abilities.  

Processing Speed and Math Achievement 

 Similar to working memory, processing speed is correlated with math 

achievement in studies that span developmental stages and math domains (Bull & 

Johnston, 1997; Demetriou et al., 2002; Floyd et al., 2003; Fuchs et al., 2006; Rohde & 

Thompson, 2007; Swanson & Jerman, 2006; Swanson & Kim, 2007). Also similar to 

working memory, processing speed often correlates with math achievement, when 

controlling for other factors. However, in comparison to working memory, there are 

fewer studies of math achievement that include processing speed as an independent 

variable and, although working memory is almost invariably included as an independent 
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variable in studies of processing speed and math achievement, the relatively small 

number of studies makes it difficult to form definitive conclusions. These studies are 

almost equally split into those in which processing speed is a stronger predictor of math 

achievement than working memory (Floyd et al., 2003; Fuchs et al., 2006; Rohde & 

Thompson, 2007), those in which the reverse is true (Floyd et al., 2003; Swanson & 

Jerman, 2006), and those in which both explain similar amounts of variance (Demetriou 

et al., 2002; Floyd et al., 2003; Swanson & Kim, 2007). There are multiple reasons that 

could account for this pattern of results. 

 One factor that may be influencing these results is the way in which the constructs 

are measured. When multiple measures are used to represent both working memory and 

processing speed and the measures cross domains (e.g., include processing of verbal, 

numerical, and visual-spatial information) they account for similar amounts of variance in 

math achievement, when controlling for the common variance between them and when 

controlling for short-term memory (Demetriou et al., 2002). In the only study in which 

one measure was used for working memory and multiple measures were used for 

processing speed, processing speed was related to math achievement, but working 

memory was not (Rohde & Thompson, 2007). Perhaps in this case, processing speed was 

more reliably represented than working memory. 

 Another factor that could partially account for the conflicting results across 

studies is the age of the participants and the way in which math achievement is defined. 

Floyd et al. (2003) examined regression models of math computation and math reasoning 

for each year of development from 6 to 19 years. These models included fluid and 

crystallized intelligence, processing speed, short-term and working memory, long-term 
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memory retrieval, auditory processing, and visual-spatial abilities. Among 5- to 14-year-

olds, processing speed was highly related to math calculation. Among 15- to 20-year-

olds, processing speed was only moderately related to math calculation. Processing speed 

was moderately related to math reasoning among 5-14 year-olds, but it was not related to 

math reasoning among 15-20 year-olds. Across all ages and in both domains of math, 

working memory was moderately related to math achievement. For younger children and 

lower level math skills, it appears that processing speed is more important than working 

memory. For older adolescents and adults and higher levels of math, working memory is 

more important than processing speed. The results across studies are generally consistent 

with this hypothesis. A notable contradiction to this is the finding that among college 

students, processing speed is more predictive of SAT-M performance than working 

memory (Rohde & Thompson, 2007). Spatial abilities were also more predictive than 

working memory. As already mentioned, this result may be due to the way in which 

working memory was measured, but it is also possible that processing speed and spatial 

abilities are, in fact, more robust predictors of higher level math achievement. 

Visual-Spatial Abilities and Math Achievement 

In general, correlations between visual-spatial abilities (including both 

manipulation and short-term storage) and math achievement are low to moderate (for 

review see, Friedman, 1995) and, according to at least one study of elementary children 

without diagnosed learning disabilities, visual-spatial short-term storage abilities are not 

related to math achievement (Bull et al., 1999). Besides being relatively low, correlations 

between visual-spatial abilities and math achievement are not robust. Almost invariably 

when other cognitive factors including both higher level cognitive abilities (e.g., general 
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knowledge, reading comprehension) and more domain general abilities (e.g., working 

memory, processing speed) are partialed out, visual-spatial abilities do not relate to math 

achievement (Batchelor et al., 1990; Cirino et al., 2002; Floyd et al., 2003; Swanson & 

Jerman, 2006). The exceptions to this pattern are found in studies of older adolescents 

and adults with math outcomes that involve higher level math abilities (Reuhkala, 2001; 

Rohde & Thompson, 2007).  

This evidence does not provide much support for the argument that visual-spatial 

abilities should be included in a cognitive model of math achievement, particularly 

among children. Studies of children with learning disabilities, though, suggest that visual-

spatial abilities plays a subtle, but profound role in math achievement, and that the 

importance of visual-spatial abilities to math achievement becomes most apparent when 

there are deficits in these abilities early in development.   

Neuropsychological and Neurocognitive Evidence Relating Visual-Spatial Abilities to 

Math Achievement 

Rourke and colleagues (Harnadek & Rourke, 1994; Rourke, 1993; Rourke & 

Conway, 1997) have profiled two types of developmental disabilities in arithmetic and 

math reasoning. Children who are identified as having the less severe type of math 

disability have deficits in auditory and verbal attention and processing. These individuals 

respond to non-verbal feedback and experience with mathematical tasks. The type of 

math disability with the more profound consequences is associated with deficits in visual-

spatial processing. Children with nonverbal learning disabilities (NLD) have difficulty 

with visual-spatial organizational, psychomotor, and tactile-perceptual tasks, but have 

good rote verbal-memory skills. These children have difficulty with novel and complex 
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tasks and do not do well with nonverbal problem solving or concept formation. Both 

types of children perform below normal on tests of arithmetic, but NLD children are 

more impaired than those with verbal deficits. Girls with Turner Syndrome also have 

developmental visual-spatial deficits in conjunction with math deficits and intact verbal 

abilities (Collaer, Geffner, Kaufman, Buckingham, & Hines, 2002; Cornoldi, Marconi, & 

Vecchi, 2001; Mazzocco, 2001; Temple & Carney, 1995). 

Rourke and Conway (1997) associated NLD with distributed cerebral 

impairments in the right hemisphere. Evidence from neurocognitive research is consistent 

with the view than an association between visual-spatial and numerical processing is at 

least partly due to processes associated with the right hemisphere. Parts of the posterior 

superior parietal area, particularly in the right hemisphere, are active during tasks that 

require quantity manipulations such as number comparison and approximation. Because 

this area is also associated with visual-spatial tasks, orienting, and mental rotation, 

Dehaene and colleagues (Dehaene, 2003; Dehaene & Cohen, 1995; Dehaene, Piazza, 

Pinel, & Cohen, 2003; Dehaene, Piazza, Pinel, & Cohen, 2005) have argued that the 

contribution of this area to number processing may be due to “number line” like 

representations, which would involve orienting and visual-spatial processing.     

Reconciling  the Evidence 

 The complex and in some ways discordant pattern of results across research 

paradigms and populations may be due to a variety of factors that interact to influence the 

strength of the relationship between visual-spatial skills and math achievement. One 

factor that appears to influence the nature of this relationship is the math abilities being 

assessed. In general, the higher level the math, the stronger the relationship between 
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visual-spatial abilities and math achievement (Friedman, 1995; Geary, Hamson, & Hoard, 

2000a; Geary, Saults, Liu, & Hoard, 2000b).  

For example, Reuhkala (2001) conducted two studies relating visual-spatial 

abilities to math achievement among high school students (ages 15 to 16 years). In the 

first study, she compared performance on a national math exam to measures of visual 

pattern short-term memory (i.e., matrix span), spatial short-term memory (i.e., Corsi 

block), and three dimensional (3D) rotation. The math exam included algebraic and 

geometric reasoning tasks as well as mental arithmetic problems. Correlations between 

the visual-spatial measures and math achievement ranged from .44 to .57. These 

correlations are higher than what is typically found across studies of math achievement 

and visual-spatial abilities (e.g., 0.30 to.45, see Friedman, 1995). The second study, 

which was based on a different sample of students who took the national math test in a 

different year, resulted in similar correlations between visual-spatial abilities and math 

achievement. 

In addition, in path models from two different studies of math achievement 

among college students, the direct effect of 3D mental rotation ability on math 

achievement was higher when the SAT-M was the criterion variable than when arithmetic 

reasoning was the measure of math achievement (Casey, Nuttall, Pezaris, & Benbow, 

1995; Geary et al., 2000b). The path models in these studies were based on different 

samples and different control variables (i.e., SAT-V, math self-confidence, and geometry 

grades versus arithmetical computation and IQ). Finally, as described earlier, in the 

Rohde and Thompson (2007) study of SAT-M performance among college students, the 

standardized regression coefficient for spatial ability was similar to that for vocabulary 
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and higher than the coefficients for nonverbal IQ, processing speed, and working 

memory. There is no study, though, which definitively tests the relationship between 

visual-spatial skills and math achievement across math domains.  

Another factor that influences the strength of the relationship between visual-

spatial abilities and math achievement is the type of visual-spatial ability assessed. Three 

dimensional (3D) spatial visualization and orientation abilities are more highly related to 

math achievement than two dimensional (2D) spatial or visual discrimination abilities 

(for review, see Friedman, 1995). For example, in a study of high school students, 

Reuhkala (2001) tested verbal short-term memory, verbal working memory, visual-

spatial short-term memory, and 3D mental rotation in a regression model predicting math 

achievement. Only 3D mental rotation was a significant predictor of math achievement, 

and it accounted for 34% of the variance in math achievement. However, in a second 

study, Reuhkala (2001) found that static visual-spatial short-term memory (i.e., matrix 

xpan) correlated more highly with math achievement than either dynamic visual-spatial-

short term memory (i.e., Corsi block) or 3D mental rotation. Although when all three 

factors were included in a single regression model, none of the regression coefficients 

were significant. 

The relationship between visual-spatial abilities and math achievement may also 

be influenced by the degree to which the math domain being assessed relies on visual-

spatial processes per se in comparison to the degree to which both the math domain and 

the visual-spatial skills being assessed rely on domain general executive processes. One 

possible explanation for the difference in results across the two Reuhkala (2001) studies 

may be that the different assessments of math achievement used in the studies 
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emphasized different math domains (e.g., geometric over algebraic reasoning), and 

different math domains may place different demands on visual abilities. In addition, 

relationships between different math domains and visual-spatial abilities may be affected 

by the degree to which they rely on domain general processes.  

Evidence already presented suggests that executive processes, particularly 

controlled attention and inhibition, may be a key predictor of math in general, but 

especially higher level math. There is also evidence that suggests that visual-spatial 

processing may be particularly demanding of executive functions, with 3D spatial 

visualization tasks being more demanding of executive functions than other visual-spatial 

tasks (Kane et al., 2004; Miyake et al., 2001). This may in some way explain why NLD 

children experience more profound consequences to cognitive functioning than do 

children with primarily verbal deficits. The purported distributed right hemisphere 

dysfunction associated with NLD may affect controlled attention functions that have been 

attributed to the right hemisphere (Hedden & Gabrieli, 2006) resulting in the deficits in 

executive functioning and higher order reasoning more likely to be found in children and 

adolescents with NLD than those with verbal learning disabilities (Fisher, DeLuca, & 

Rourke, 1997). Furthermore, there is evidence that the right hemisphere is more 

functionally integrated and global in its processing than the left hemisphere (Rourke & 

Conway, 1997). This may result in stronger relationships between functions associated 

with the right hemisphere (e.g., visual-spatial processing, controlled attention, 

quantitative reasoning) than those associated with the left hemisphere (e.g., verbal 

processing, attention to verbal material, numerical procedures and semantic information). 

It may also be why developmental impairments in the right hemisphere have more 
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profound impacts on later math achievement then developmental impairments in the left 

hemisphere. The weight of this evidence suggests that the relationship between math 

achievement and visual-spatial abilities may be at least partly due to the relationships 

between both these abilities and executive functioning or more specifically to executive 

attention. However, this hypothesis is highly speculative and based on limited and 

disparate pieces of evidence. Most studies that have examined both the effects of working 

memory or executive attention and visual-spatial abilities on math achievement 

operationalize visual-spatial processing in terms of 2D abilities and/or operationalize 

math achievement as arithmetical calculation or reasoning abilities, which for the reasons 

outlined earlier do not maximize the potential for finding strong interrelationships 

between these three constructs, particularly among average achievers. More studies of 

higher-level math achievement among adolescents and adults that test structural models 

which include multiple measures of working memory, processing speed, and 3D spatial 

abilities are needed in order to disentangle some of these complexities.  

In discussing the relationship between working memory, processing speed, visual-

spatial abilities and math achievement, the emphasis has been on the hypothesized critical 

role of domain general processes, at least partly because research evidence suggests that 

this aspect of these constructs play a pivotal role in math achievement. However, no 

model of math achievement would be complete without addressing domain specific 

abilities. Arguably the most important domain specific ability is computational fluency.  

Computational Fluency and Math Achievement 

Speed and accuracy in single and multi-digit calculations is related to math 

achievement among preadolescent children, adolescents, and adults (Geary, Liu, Chen, 
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Saults, & Hoard, 1999; Geary et al., 2000b; Geary & Widaman, 1992; Royer, Tronsky, & 

Chan, 1999). Early elementary-aged children with low performance on assessments of 

math achievement are less likely than high performers to retrieve single-digit math facts 

from long-term memory and more likely to rely on counting strategies to perform these 

calculations (Bull & Johnston, 1997). When children with low math abilities retrieve 

math facts directly from memory, they are more likely to make errors than children with 

high abilities. Deficits in the ability to retrieve math facts from memory is one of the 

most consistent findings in studies comparing children with math disabilities to children 

with normal abilities (Barrouillet, Fayol, & Lathuliere, 1997; Geary, 1993; Geary et al., 

2000a; Geary & Hoard, 2005; Geary, Hoard, & Hamson, 1999; Jordan et al., 2003a, 

2003b; Jordan et al., 1995; Jordan & Montani, 1997). The inability to produce correct 

solutions to single-digit problems is associated with long term deficits in mathematics 

(Geary, 1993; Geary & Hoard, 2001). This evidence provides support for the suggestion 

that “fast math-fact retrieval at an early age provides the foundation for the later 

development of a broad array of math competencies” (Royer et al., 1999, p. 196). It is not 

clear from this evidence, though, why rapid retrieval of math facts among children and 

efficient single and multi-digit computations among adolescents and adults is related to 

math achievement. It is also not clear if computational fluency is critical to the type of 

abstract mathematical reasoning that is a substantial part of math achievement among 

older adolescents and adults, especially when controlling for domain general processes. 

Computational fluency is a manifest requirement in many assessments of math 

achievement, particularly for younger children and pre-adolescents. The suggestion that 

children who can quickly and accurately perform computations also do well on math 
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achievement tests in which fast and accurate computations are required is a somewhat 

circular argument. There are only two studies relating computational fluency to math 

achievement among adults, but these studies suggest that computational fluency may be 

less related to math assessments that include more abstract and symbolic mathematical 

reasoning than assessments that are more directly reliant on arithmetical calculations and 

reasoning.    

In one study, computational fluency was related to arithmetical reasoning among 

college students in a structural equation model of math achievement which also included 

spatial cognition and IQ as predictors (Geary et al., 2000b). The two arithmetical 

reasoning tests consisted of arithmetic word problems. One test required arithmetical 

calculations, but the other required only indications of the orders of operations needed for 

solutions to word problems. Computational fluency was based on two measures, complex 

addition (e.g., 19 + 8 + 27) and complex subtraction (e.g., 78 – 9). Computational fluency 

had stronger effects (β = .61) on arithmetical reasoning than 3D spatial abilities (β = .13) 

or IQ (β = .22). In the second study of adults, computational fluency was compared to 

performance on the SAT-M among college students (Royer et al., 1999). Computational 

fluency was based on aggregates of response time and accuracy scores across measures 

of triple addition (e.g., 4 + 8 + 3 = ?), triple multiplication (e.g., 5 x 2 x 6 = ?), subtraction 

(including double-digit minus double-digit), and division (including double and triple-

digit dividends). Speed of computations accounted for 21% of the variance in SAT-M 

scores and accuracy accounted for 8% of the variance. Across these two studies, the 

effect of computational fluency on SAT-M performance was low compared to its effect 
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on arithmetic reasoning. This difference may have been greater if IQ and 3D spatial 

abilities had been included as control variables in the study of SAT-M performance.    

Computational fluency plays an important role in math achievement among 

children, adolescents, and adults when math achievement includes arithmetical reasoning 

problems. It plays some role in higher level math achievement among adults, but the 

strength of that relationship does not appear to be as strong as it is for lower level math 

achievement, although this conjecture is based on a small amount of evidence. These 

hypotheses, though, do not explain why computational fluency is important to math 

achievement. It is essential to understand the reasons for the relationship between 

computational fluency and math achievement because there is evidence that suggests that 

the relationship between these two constructs may have as much to do with domain 

general processes as to specific numerical abilities. 

Explaining the Relationship Between Computational Fluency and Math Achievement 

There are several reasons why computational fluency might be important to math 

achievement. The most obvious reason is that computations are a component of many 

math tasks and fast, error-free computations naturally contribute to fast, error-free 

problem solving. Another possible reason is that efficient arithmetic computational 

abilities may free up working memory resources so the focus of attention can be on 

higher level math concepts. Hypothetically, though, the inability to quickly retrieve the 

solution to 7 x 8 should not prevent a student from grasping the concept that 7 x 8 is 7 

added 8 times, nor should it prevent a learner from understanding higher level math 

concepts. In fact, high performing students can focus on and learn more advanced math 
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topics even when the efficient production of math facts has not completely developed 

(Newman, Griffin, & Cole, 1989).  

Another reason that computational fluency may be related to math achievement is 

that high performance on computational fluency tasks may be indicative of a well-

developed network of numerical relations stored in long term memory. Although there 

are a variety of strategies that can be used and are used by both children and adults to 

perform arithmetic computations, the most efficient methods rely on direct retrieval from 

long-term memory. A strong semantic base of numerical relations is an important part of 

the more abstract reasoning about numerical relations that is required in higher level 

mathematics (English & Halford, 1995). Although experience certainly plays an 

important role in developing this semantic base, there is evidence that working memory 

resources contribute not only to the development of that network, but also to the retrieval 

of numerical information from long-term memory. The potential relationship between 

computational fluency and working memory is a fourth reason for the relationship 

between computational fluency and math achievement.  

Domain General Processes and Computational Fluency 

Geary (1993) suggested that developmental deficits in computational fluency may 

be related to delays or deficits in working memory, especially those aspects of working 

memory involving allocation of attentional resources. The inability to inhibit irrelevant 

associations for entering working memory is associated with deficits in math fact 

retrieval among children (Barrouillet et al., 1997), and as described earlier, deficits in 

verbal working memory are characteristic of children with math disabilities (Swanson & 

Jerman, 2006).  
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Controlled attention is also related to computational fluency among adults. In a 

review of experimental studies testing the involvement of working memory in mental 

arithmetic among adults, DeStefano and LeFevre (2004) found that compared to domain 

specific storage components, the central executive was most consistently implicated in 

both the retrieval of single-digit math facts and in multi-digit computations. Furthermore, 

controlled attention, particularly inhibitory processes, have been associated with rapid 

retrieval of math facts among adults (Arbuthnott & Campbell, 2000; Campbell, 1990; 

Campbell & Arbuthnott, 1996). 

Campbell (1994, 1995) developed a theory of math fact retrieval that is based on 

the associative nature of semantic information in memory. According to the Network-

Interference Model, single-digit math facts are represented as nodes in an integrated 

network of related problems. A stimulus such as 4 + 3 = ? activates multiple nodes, and 

the degree of activation for a given node depends on the similarity of the stimulus to the 

node. Similarity is based on the features of the problems such as the operands and 

operations as well as the magnitude of the problems. For example, the stimulus 4 + 3 = ? 

may activate representations for 4 x 3 = 12, 4 + 8 = 12, and 4 + 6 = 10 among others. 

Whether or not the correct representation is selected depends on the relative activation of 

the correct node to the incorrect nodes. The role of the ability to inhibit interfering 

activations is implicit in the model and in the nature of the potentially interfering effects 

produced by the vast number of associations between an extremely limited pool of items 

(i.e., ten digits and four operations). In conjunction with supporting the Network-

Interference Model, researchers have produced empirical evidence for the role of 

inhibitory processes in math fact retrieval (Arbuthnott & Campbell, 2000; Campbell, 
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1990; Campbell & Arbuthnott, 1996). However, in these studies, inferences about the 

role of inhibitory processes in math fact retrieval are based on error analysis, not on a 

direct comparison between measures of executive attention or inhibition and 

computational fluency. 

Another domain general process associated with computational fluency is 

processing speed. As described earlier, processing speed is highly related to calculation 

abilities among children and moderately related to calculation abilities among adolescents 

and adults (Floyd et al., 2003). However, the relationship between speed of processing 

and computational fluency has received little research attention even though the 

involvement of working memory in computational fluency as well as the emphasis on 

speed in computational fluency tasks strongly implicates a role for processing speed. 

Altogether, the evidence suggests that computational fluency results from a 

complex interaction of facility with quantitative relationships, semantic knowledge of 

numerical relations, and more domain general processes. Theoretically, if domain general 

processes such as controlled attention and processing speed are key contributors to 

computational fluency, then the relationship between computational fluency and math 

achievement may have as much to do with domain general processes as with specific 

numerical abilities.  

Conclusions and Future Directions 

Working memory, processing speed, visual-spatial abilities, and computational 

fluency play key roles in math achievement. The relative importance of each of these 

constructs to math achievement varies in relation to age and math domain.  
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For young children, working memory and processing speed appear to be the most 

important factors in math achievement. The impact of these processes on math 

achievement among children is twofold. Both of these processes influence computational 

fluency, and for children, computational fluency is a math achievement outcome as well 

as a factor in achievement in other domains of math. In addition, working memory and 

processing speed likely influence math achievement independent of their roles in 

computational fluency.  

The evidence suggests that, among children, visual-spatial abilities play less of a 

role in math achievement than working memory, processing speed, or computational 

fluency. However, this may be due to what is emphasized on assessments of math 

achievement among children. Normal visual-spatial processing in children is indicative of 

normal right hemisphere functioning which has implications for concept formation and 

quantity estimation abilities. An emphasis on numerical skills rather than conceptual 

knowledge and quantitative abilities in assessments of math achievement among children 

may result in an underestimation of the relationship between visual-spatial abilities and 

math achievement. Future studies of math achievement among children that include 

assessments that more clearly separate mathematical conceptual knowledge and 

quantitative abilities from numerical skills may reveal a stronger role for visual spatial 

abilities than has been found in past studies.  

 Working memory and processing speed are also important factors in math 

achievement among adolescents and adults when math achievement is based on 

arithmetical calculation and reasoning abilities. When math achievement is based on 

algebraic and geometric reasoning, visual-spatial abilities play a stronger role than either 
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working memory or processing speed. This suggests that for adolescents and adults, 

working memory and processing speed may play more indirect roles in math achievement 

when lower level arithmetical skills (e.g., computational fluency) are treated as factors in 

math achievement rather than as outcomes. There is much less research, though, on the 

cognitive factors involved in math achievement among adolescents and adults than 

among children. Clearly more studies of cognitive factors in math achievement among 

adolescents and adults are needed to better understand the relationship between math 

achievement and the cognitive factors described in this review. 

Working memory, processing speed, visual-spatial processing, and computational 

fluency rely to some extent on domain general processes such as controlled attention and 

inhibition. In order to determine to what degree each of these processes uniquely 

contribute to math achievement, it is necessary to test cognitive models that include all of 

these factors as predictors of math achievement. In addition, the pattern of relationships 

between these factors and math achievement appear to differ depending on whether the 

definition of math achievement is based on acquired skill, fluid problem solving abilities, 

or abstract, symbolic mathematical abilities. Systematic comparisons of cognitive models 

of math achievement across domains of math are needed to determine if these 

hypothesized differences are real.       

 A systematic approach to research on the cognitive factors of math achievement is 

key to the development of cognitive models of math achievement. Cognitive models of 

math achievement across developmental levels and math domains are essential for 

educational programs to have the most impact on the many unresolved issues related to 

math education.     



References 

Arbuthnott, K., & Campbell, J. I. D. (2000). Cognitive inhibition in selection and 

sequential retrieval. Memory & Cognition, 28, 331-340. 

Baddeley, A. (1996). Exploring the central executive. The Quarterly Journal of 

Experimental Psychology, 49A(1), 5-28. 

Baddeley, A. (2000). The episodic buffer: A new component of working memory? 

Trends in Cognitive Sciences, 4, 417-423. 

Baddeley, A. (2002). Is working memory still working? European Psychologist, 7, 85-97. 

Baddeley, A., & Hitch, G. J. (1974). Working memory. In G. A. Bower (Ed.), Recent 

advances in learning and motivation. New York: Academic Press. 

Baddeley, A., & Logie, R. H. (1999). Working memory: The multi-component model. In 

A. Miyake & P. Shah (Eds.), Models of working memory:  Mechanisms of active 

maintenance and executive control (pp. 28-61). New York: Cambridge University 

Press. 

Barrouillet, P., Fayol, M., & Lathuliere, E. (1997). Selecting between competitors in 

multiplication tasks: An explanation of the errors produced by adolescents with 

learning disabilities. International Journal of Behavioral Development, 21, 253-

275. 

Batchelor, E. S., Gray, J. W., & Dean, R. S. (1990). Empirical testing of a cognitive 

model to account for neuropsychological functioning underlying arithmetic 

problem solving. Journal of Learning Disabilities, 23(1), 38-42. 

32 



 33

Bull, R., & Johnston, R. S. (1997). Children's arithmetical difficulties: Contributions 

from processing speed, item identification, and short-term memory. Journal of 

Experimental Child Psychology, 65, 1-24. 

Bull, R., Johnston, R. S., & Roy, J. A. (1999). Exploring the roles of the visual-spatial 

sketch pad and central executive in children's arithmetical skills: Views from 

cognition and developmental neuropsychology. Developmental Neuropsychology, 

15(3), 421-442. 

Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children's 

mathematics ability: Inhibition, switching, and working memory. Developmental 

Neuropsychology, 19(3), 273-293. 

Burbaud, P., Degreze, P., Lafon, P., Franconi, J.-M., Bouligand, B., Bioulac, B., et al. 

(1995). Lateralization of prefrontal activation during internal mental calculation: 

A functional magnetic resonance imaging study. Journal of Neurophysiology, 

74(5), 2194-2200. 

Campbell, J. I. D. (1990). Retrieval inhibition and interference in cognitive arithmetic. 

Canadian Journal of Psychology, 44, 445-464. 

Campbell, J. I. D. (1994). Architectures for numerical cognition. Cognition, 53, 1-44. 

Campbell, J. I. D. (1995). Mechanisms of simple addition and multiplication: A modified 

network-interference theory and simulation. Mathematical Cognition, 1, 121-164. 

Campbell, J. I. D., & Arbuthnott, K. (1996). Inhibitory processes in sequential retrieval: 

Evidence from variable-lag repetition priming. Brain and Cognition, 30, 59-80. 



 34

Casey, M. B., Nuttall, R. L., Pezaris, E., & Benbow, C. P. (1995). The influence of 

spatial ability on gender differences in mathematics college entrance test scores 

across diverse samples. Developmental Psychology, 31, 697-705. 

Cirino, P. T., Morris, M. K., & Morris, R. D. (2002). Neuropsychological concomitants 

of calculation skills in college students referred for learning difficulties. 

Developmental Neuropsychology, 21(2), 201-218. 

Collaer, M. L., Geffner, M. E., Kaufman, F. R., Buckingham, B., & Hines, M. (2002). 

Cognitive and behavioral characteristics of turner syndrome: Exploring a role for 

ovarian hormones in female sexual differentiation. Hormones and Behavior, 41, 

139-155. 

Conway, A. R. A., Cowen, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. 

(2002). A latent variable analysis of working memory capacity, short-term 

memory capacity, processing speed, and general fluid intelligence. Intelligence, 

30, 163-183. 

Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, 

R. W. (2005). Working memory span tasks: A methodological review and user's 

guide. Psychonomic Bulletin & Review, 12, 769-786. 

Cornoldi, C., Marconi, F., & Vecchi, T. (2001). Visuospatial working memory in turner's 

system. Brain and Cognition, 46(Tennet XI: Theoretical and Experimental 

Neuropsychology), 90-94. 

Cowan, N. (2000). Processing limits of selective attention and working memory: 

Potential implications for interpreting. Interpreting, 5, 117-146. 



 35

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of 

mental storage capacity. Behavioral and Brain Sciences, 24, 87-185. 

Cowan, N., Saults, S. J., & Elliot, E. M. (1999). The microanalysis of memory span and 

its development in childhood. International Journal of Psychology, 34, 353-358. 

Cowan, N., Saults, S. J., & Elliot, E. M. (2002). The search for what is fundamental in the 

development of working memory. In R. V. Kail & H. W. Reese (Eds.), Advances 

in child development and behavior (Vol. 29). New York: Academic Press. 

Cowan, N., Towse, J. N., Hamilton, Z., Saults, S. J., Elliot, E. M., Lacey, J. F., et al. 

(2003). Children's working memory processes: A response-time analysis. Journal 

of Experimental Psychology: General, 132, 113-132. 

Dark, V. J., & Benbow, C. P. (1990). Enhanced problem translation and short-term 

memory: Components of mathematical talent. Journal of Educational Psychology, 

82, 420-429. 

Dark, V. J., & Benbow, C. P. (1991). Differential enhancement of working memory with 

mathematical versus verbal precocity. Journal of Educational Psychology, 83(1), 

48 - 60. 

Dehaene, S. (2003). The neural basis of the weber-fechner law: A logarithmic mental 

number line. Trends in Cognitive Sciences, 7, 145-147. 

Dehaene, S., & Cohen, L. (1995). Towards an anatomical and functional model of 

number processing. Mathematical Cognition, 1(1), 83-120. 

Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation 

between rote verbal and quantitative knowledge of arithmetic. Cortex, 33, 219-

250. 



 36

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number 

processing. Cognitive Neuropsychology, 20, 487-506. 

Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2005). Three parietal circuits for number 

processing. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 

433-453). New York: Psychology Press. 

Demetriou, A., Christou, C., Spanoudis, G., & Platsidou, M. (2002). The development of 

mental processing:  Efficiency, working memory, and thinking. Monographs of 

the Society for Research in Child Development, 67, 1-169. 

DeStefano, D., & LeFevre, J.-A. (2004). The role of working memory in mental 

arithmetic. European Journal of Cognitive Psychology, 16, 353-386. 

Duverne, S., Lemaire, P., & Michel, B. F. (2003). Alzheimer's disease disrupts arithmetic 

fact retrieval processes but not arithmetic strategy selection. Brain and Cognition, 

52, 302-318. 

Engle, R. W. (2002). Working memory capacity as executive attention. Current 

Directions in Psychological Science, 11(1), 19-23. 

Engle, R. W., Kane, M. J., & Tuholski, S. W. (1999a). Individual differences in working 

memory capacity and what they tell us about controlled attention, general fluid 

intelligence, and functions of the prefrontal cortex. In A. Miyake & P. Shah 

(Eds.), Models of working memory:  Mechanisms of active maintenance and 

executive control (pp. 102-134). New York: Cambridge University Press. 

Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. (1999b). Working memory, 

short-term memory, and general fluid intelligence: A latent-variable approach. 

Journal of Experimental Psychology: General, 128, 309-331. 



 37

English, L. D., & Halford, G. S. (1995). Mathematical education: Models and processes. 

Mahwah, NJ: Lawrence Erlbaum Associates. 

Espy, K. A., McDiarmid, M. M., Cwik, M. F., Stalets, M. M., Hamby, A., & Senn, T. E. 

(2004). The contribution of executive functions to emergent mathematical skills 

in preschool children. Developmental Neuropsychology, 26, 465-486. 

Fisher, N. J., DeLuca, J. W., & Rourke, B. P. (1997). Wisconsin card sorting test and 

halstead category test performance of children and adolescents who exhibit the 

syndrome of nonverbal learning disabilities. Child Neuropsychology, 3, 61-70. 

Floyd, R. G., Evans, J. J., & McGrew, K. S. (2003). Relations between measures of 

cattell-horn-carroll cognitive abilities and mathematics achievement across the 

school-age years. Psychology in the Schools, 40, 155-171. 

Friedman, L. (1995). The space factor in mathematics: Gender differences. Review of 

Educational Research, 65, 22-50. 

Fuchs, L. S., Fuchs, D., Compton, D. L., Powell, S. R., Seethaler, P. M., Capizzi, A. M., 

et al. (2006). The cognitive correlates of third-grade skill in arithmetic, 

algorithmic computation, and arithmetic word problems. Journal of Educational 

Psychology, 29-43. 

Gathercole, S. E., Pickering, S. J., Knight, C., & Stegmann, Z. (2004). Working memory 

skills and educational attainment: Evidence from national curriculum assessments 

at 7 and 14 years of age. Applied Cognitive Psychology, 18, 1-16. 

Geary, D. C. (1993). Mathematical disabilities: Cognitive, neuropsychological, and 

genetic components. Psychological Bulletin, 114, 345-362. 



 38

Geary, D. C. (2003). Learning disabilities in arithmetic: Problem-solving differences and 

cognitive deficits. In H. L. Swanson, K. R. Harris & S. Graham (Eds.), Handbook 

of learning disabilities (pp. 199-212). New York, NY: The Guilford Press. 

Geary, D. C., Hamson, C. O., & Hoard, M. K. (2000a). Numerical and arithmetical 

cognition: A longitudinal study of process and concept deficits in children with 

learning disability. Journal of Experimental Child Psychology, 77, 236-263. 

Geary, D. C., & Hoard, M. K. (2001). Numerical and arithmetical deficits in learning-

disabled children: Relation to dyscalculia and dyslexia. Aphasiology, 15(7), 635-

647. 

Geary, D. C., & Hoard, M. K. (2005). Learning disabilities in arithmetic and 

mathematics. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 

253-267). New York: Psychology Press. 

Geary, D. C., Hoard, M. K., & Hamson, C. O. (1999). Numerical and arithmetical 

cognition: Patterns of functions and deficits in children at risk for mathematical 

disability. Journal of Experimental Child Psychology, 74, 213-239. 

Geary, D. C., Liu, F., Chen, G.-P., Saults, S. J., & Hoard, M. K. (1999). Contributions of 

computional fluency to cross-national differences in arithmetical reasoning 

abilities. Journal of Educational Psychology, 716-719. 

Geary, D. C., Saults, S. J., Liu, F., & Hoard, M. K. (2000b). Sex differences in spatial 

cognition, computational fluency, and arithmetical reasoning. Journal of 

Experimental Child Psychology, 77, 337-353. 

Geary, D. C., & Widaman, K. (1992). Numerical cognition: On the convergence of 

componential and psychometric models. Intelligence, 16, 47-80. 



 39

Harnadek, M. C. S., & Rourke, B. P. (1994). Principal identifying features of the 

syndrome of nonverbal learning disabilities in children. Journal of Learning 

Disabilities, 27, 144-154. 

Hedden, T., & Gabrieli, J. D. E. (2006). The ebb and flow of attention in the human 

brain. Nature Neuroscience, 9, 863-865. 

Jarvis, H. L., & Gathercole, S. E. (2003). Verbal and non-verbal working memory and 

achievement on national curriculum tests at 11 and 14 years of age. Educational 

and Child Psychology, 20, 123-140. 

Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003a). Arithemtic fact mastery in young 

children: A longitudinal investigation. Journal of Experimental Child Psychology, 

85, 103-119. 

Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003b). A longitudinal study of mathematical 

competencies in children with specific mathematics difficulties versus children 

with comorbid mathematics and reading difficulties. Child Development, 74, 834-

850. 

Jordan, N. C., Levine, S. C., & Huttenlocher, J. (1995). Calculation abilities in young 

children with different patterns of cognitive functioning. Journal of Learning 

Disabilities, 28, 53-64. 

Jordan, N. C., & Montani, T. O. (1997). Cognitive arithmetic and problem solving: A 

comparison of children with specific and general mathematics difficulties. 

Journal of Learning Disabilities, 30, 624-634. 



 40

Kane, M. J., Bleckley, M. K., Conway, A. R. A., & Engle, R. W. (2001). A controlled-

attention view of working-memory capacity. Journal of Experimental 

Psychology: General, 130, 169-183. 

Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. 

W. (2004). The generality of working memory capacity: A latent-variable 

approach to verbal and visuospatial memory span and reasoning. Journal of 

Experimental Psychology: General, 133, 189-217. 

Kaufmann, L. (2002). More evidence for the role of the central executive in retrieving 

arithmetic facts - a case study of severe developmental dyscalculia. Journal of 

Clinical and Experimental Neuropsychology, 24(3), 302-310. 

Kaufmann, L., Lochy, A., Drexler, A., & Semenza, C. (2004). Deficient arithmetic fact 

retrieval -- storage or access problem? Neuropsychologia, 42, 482-496. 

Lee, K., Ng, S.-F., Ng, E.-L., & Lim, Z.-Y. (2004). Working memory and literacy as 

predictors of performance on algebraic word problems. Journal of Experimental 

Child Psychology, 89, 140-158. 

Lehto, J. (1995). Working memory and school achievement in the ninth form. 

Educational Psychology, 15(3), 271-283. 

Logie, R. H. (1995). Visuo-spatial working memory. Hillsdale: Lawrence Erlbaum 

Associates. 

Ma, X. (2005a). Early acceleration of students in mathematics: Does it promote growth 

and stability of growth in achievement across mathematical areas? Contemporary 

Educational Psychology, 30, 439-460. 



 41

Ma, X. (2005b). A longitudinal assessment of early acceleration of students in 

mathematics on growth in mathematics achievement. Developmental Review, 25, 

104-132. 

Ma, X., & Kishor, N. (1997). Attitude toward self, social factors, and achievement in 

mathematics: A meta-analytic review. Educational Psychology Review, 9(2), 89-

120. 

Mabbott, D. J., & Bisanz, J. (2003). Developmental change and individual differences in 

children's multiplication. Child Development, 74, 1091-1107. 

Mazzocco, M. M. M. (2001). Math learning disability and math ld subtypes: Evidence 

from studies of turner syndrome, fragile x syndrome, and neurofibromatosis type 

1. Journal of Learning Disabilities, 34, 520-533. 

Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are 

visuospatial working memory, executive functioning, and spatial abilities related? 

A latent-variable analysis. Journal of Experimental Psychology: General, 130, 

621-640. 

Newman, D., Griffin, P., & Cole, M. (1989). The construction zone: Working for 

cognitive change in school. Cambridge: Cambridge University Press. 

Oberauer, K., Heinz-Martin, S., Wilhelm, O., & Werner, W. W. (2003). The multiple 

faces of working memory: Storage, processing, supervision, and coordination. 

Intelligence, 31, 167-193. 

Pajares, F. (1996). Self-efficacy beliefs and mathematical problem-solving of gifted 

students. Contemporary Educational Psychology, 21, 325-344. 



 42

Pajares, F., & Graham, L. (1999). Self-efficacy, motivation constructs, and mathematics 

performance of entering middle school students. Contemporary Educational 

Psychology, 24, 124-139. 

Pajares, F., & Kranzler, J. (1995). Role of self-efficacy and general mental ability in 

mathematical problem-solving: A path analysis. Paper presented at the Annual 

Meeting of the American Educational Research Association, San Francisco, CA. 

Reuhkala, M. (2001). Mathematical skills in ninth-graders: Relationships with visuo-

spatial abilities and working memory. Educational Psychology, 21(4), 387-399. 

Rohde, T. E., & Thompson, L. A. (2007). Predicting academinc achievement with 

cognitive ability. Intelligence, 35, 83-92. 

Rourke, B. P. (1993). Arithmetic disabilities, specific and otherwise: A 

neuropsychological perspective. Journal of Learning Disabilities, 26, 214-226. 

Rourke, B. P., & Conway, J. A. (1997). Disabilities of arithmetic and mathematical 

reasoning: Perspectives from neurology and neuropsychology. Journal of 

Learning Disabilities, 30(1), 34-46. 

Royer, J. M., Tronsky, L. N., & Chan, Y. (1999). Math-fact retrieval as the cognitive 

mechanism underlying gender differences in math test performance. 

Contemporary Educational Psychology, 24, 181-266. 

Schoenfeld, A. H. (2004). Math wars. In B. C. Johnson & W. L. Boyd (Eds.), Politics of 

education yearbook. 

Sjostrom, M. P. (2000). Beliefs and practices of teachers regarding the high failure rate 

in algebra i. Unpublished Dissertation, Georgia State University, Atlanta. 



 43

Swanson, H. L., & Jerman, O. (2006). Math disabilities: A selective meta-analysis of the 

literature. Review of Educational Research, 76, 249-274. 

Swanson, H. L., & Kim, K. (2007). Working memory, short-term memory, and naming 

speed as predictors of children's mathematical performance. Intelligence, 35, 151-

168. 

Swanson, H. L., & Sachse-Lee, C. (2001). Mathematical problem solving and working 

memory in children with learning disabilities: Both executive and phonological 

processes are important. Journal of Experimental Child Psychology, 79, 294-321. 

Temple, C. M., & Carney, R. A. (1995). Patterns of spatial functioning in turner's 

syndrome. Cortex, 31, 109-118. 

U.S. Department of Education. (1997). Mathematics equals opportunity: White paper 

prepared for u.S. Secretary of education richard w. Riley (No. ERIC Document 

Reproduction Service No. ED415119). Washingtion, D.C.: Department of 

Education. 

 

 

 



Chapter 2 

A COGNITIVE MODEL OF ALGEBRA ACHIEVEMENT AMONG 

UNDERGRADUATE COLLEGE STUDENTS 

Introduction 

Algebra is a gatekeeper. This sentiment has been expressed in one form or another 

by a variety of sources (Kaput, 1999; Paul, 2005; Schoenfeld, 2004; Steen, 1999; U.S. 

Department of Education, 1997). Many students lack proficiency in algebra and this 

limits their access to educational and economic opportunities. Algebra is the “language” 

of higher level math and science, and as such, it is a prerequisite for courses such as 

calculus, chemistry, and physics. These courses are the foundation of programs of study 

that lead to lucrative job opportunities in engineering and science. For these reasons, it is 

not surprising that algebra is often perceived as an obstacle to many advantages in our 

society. What is it about algebra that has made it such an obstacle for so many? 

Intuitively, the answer to this question is that algebra is hard, and certainly, this is a 

complaint of many students.  

The foundation of algebra is abstract, structural representation of numerical 

relations and mathematical problems. It is this aspect of algebra that makes it a 

qualitatively different form of mathematical thinking compared to what most students 

have encountered in their prior math experiences, and this has implications for the 

cognitive demands that students may experience. This may also be one reason why 
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algebra is the point at which many students stop in their mathematical development (Ma, 

2005a, 2005b; U.S. Department of Education, 1997).  

There is a large body of research concerning the type of errors students make in 

solving algebra problems, the ways in which students conceptualize algebra, and 

interventions to improve achievement in algebra (Blanton & Kaput, 2002; Carry, Lewis, 

& Bernard, 1980; Heid, 1996a, 1996b, 2002; Kaput, 1995a, 1995b, 1999; Kieran, 1990, 

1992; Kieran, Boileau, & Garancon, 1996; Sfard, 1995; Sfard & Linchevski, 1994; 

Sleeman, 1984, 1986). There is little research, though, which identifies the underlying 

cognitive processes that may be related to algebra achievement. Although there is a 

growing body of literature concerning cognitive processes involved in other domains of 

mathematics (Geary, 1993; Swanson & Jerman, 2006), most of this research concerns 

arithmetical computation and problem solving among children. These studies may 

provide clues as to the cognitive factors likely involved in algebra achievement, but they 

do not provide definitive evidence of what those factors are or the ways in which they 

interact to support algebra achievement. 

In addition to the qualitative differences between algebra and the mathematics on 

which most studies are based, there are also developmental differences between the 

populations in these studies and the adolescents and young adults most impacted by the 

demands of algebra. The few cognitive studies relevant to higher level math ability 

among adolescents and adults have used broad math achievement measures as outcomes 

(e.g., SAT-M, Rohde & Thompson, 2007). The cognitive processes that are related to the 

types of mathematical problem solving found on achievement tests such as the SAT may 

differ from processes related to symbolic representation and manipulation which is a 
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substantial part of many algebra curriculums. Therefore, the goal of this study was to 

examine a cognitive model of algebra achievement among undergraduate college students 

to determine if the cognitive processes that have been identified as particularly important 

in other domains of math achievement are also related to algebra achievement. 

Working memory, visual-spatial processing, and computational fluency are three 

cognitive factors that are important to overall math achievement among adolescents and 

young adults (Cirino, Morris, & Morris, 2002; Engle, Tuholski, Laughlin, & Conway, 

1999; Floyd, Evans, & McGrew, 2003; Gathercole, Pickering, Knight, & Stegmann, 

2004; Geary, Saults, Liu, & Hoard, 2000; Reuhkala, 2001; Rohde & Thompson, 2007; 

Royer, Tronsky, & Chan, 1999). Evidence suggests that these factors may also be 

important to algebra achievement. 

Algebra Achievement and Working Memory 

Working memory is a cognitive process in which information is maintained in an 

active state while that information or other information is being processed (Baddeley & 

Logie, 1999; Conway et al., 2005; Oberauer, Heinz-Martin, Wilhelm, & Werner, 2003). 

Short-term memory or the temporary storage of domain specific information (e.g., verbal, 

visual-spatial) is a part of working memory, but it is the theoretically domain general 

attentional resources required for the concurrent manipulation of information that appear 

to cause working memory to be a more robust predictor than short-term memory of 

performance on complex cognitive tasks such as abstract reasoning and math 

achievement tests (Engle, 2002; Engle et al., 1999; Floyd et al., 2003; Swanson & 

Jerman, 2006).  
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Across studies of children, verbal working memory consistently correlates with 

performance on arithmetical computation and problem solving tasks (Bull & Johnston, 

1997; Bull, Johnston, & Roy, 1999; Bull & Scerif, 2001; Demetriou, Christou, 

Spanoudis, & Platsidou, 2002; Espy et al., 2004; Gathercole et al., 2004; Jarvis & 

Gathercole, 2003; Lee, Ng, Ng, & Lim, 2004; Lehto, 1995; Reuhkala, 2001). When 

controlling for a variety of cognitive abilities including processing speed, short-term 

memory, and visual-spatial working memory, deficits in verbal working memory appear 

to be the sole distinguishing characteristic when comparing children with math 

disabilities to those with average math abilities (Swanson & Jerman, 2006).  

Among adolescents and adults, evidence concerning the relationship between 

verbal working memory and math achievement is inconsistent. When controlling for 

other factors such as fluid intelligence, long term memory, and visual-spatial abilities, 

verbal working memory is a predictor of math achievement when the achievement 

measures are standardized assessments of calculation abilities (e.g., Woodcock Johnson 

calculations) or arithmetical reasoning abilities (Cirino et al., 2002; Demetriou et al., 

2002; Floyd et al., 2003). Differences in verbal working memory capacity are also found 

among low, medium, and high math ability adolescents based on performance on national 

math achievement exams (Gathercole et al., 2004). Verbal working memory is a 

significant predictor of SAT-M performance among college students. However, when 

controlling for fluid intelligence, vocabulary level, processing speed, and spatial ability, 

verbal working memory is not related to SAT-M performance (Rohde & Thompson, 

2007). Finally, Reuhkala (2001) conducted two studies to compare visual-spatial working 

memory and other visual-spatial abilities to math achievement among high school 
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students (ages 15 to 16 years). Math achievement was based on performance on national 

math exams which included algebraic and geometric reasoning tasks as well as mental 

arithmetic problems. In both studies, visual-spatial working memory correlated with math 

achievement. However, the second study also included verbal working memory and 

short-term memory tasks, neither of which correlated with math achievement.  

One explanation for the different outcomes in the studies of adolescents and 

adults is that working memory may be more of a factor in some math skills than others. 

In these studies, math achievement was based on assessments that incorporated a variety 

of math skills including arithmetical, algebraic, and geometric calculation and reasoning 

abilities. It is impossible to determine which, if any, of these skills may have affected the 

various outcomes of these studies.  

 Evidence based on qualitative studies suggests that algebra achievement may be 

highly related to working memory (Kieran, 1990; Sfard & Linchevski, 1994). Algebraic 

problem solving requires the ability to transition between arithmetical and algebraic 

methods and to flexibly switch between operational and structural views of mathematics. 

Both of these processes may be especially demanding of working memory resources. 

Students have a tendency to rely on intuitive, arithmetical methods for problem 

solving (e.g., guess and check) even when they are taught more effective and efficient 

algebraic methods (Kieran, 1990, 1992; Nathan & Koedinger, 2000). One possible reason 

for this is that there are discontinuities between arithmetic and algebra that require 

students to change preexisting knowledge structures (Kieran, 1990). For example, to 

many students, the equal sign is a signal to perform an operation or to find the answer. 

One symptom of this view is the tendency of students to write statements such as 6 + 3 = 
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9 - 5 = 4. They do not appreciate the representation of equivalence the equal sign 

engenders. The concept of equivalence is essential to forming a structural view of an 

equation. Without it students have difficulty accepting expressions such as 3 + 5 = 2 + 6 

or solving problems such as 3 + 5 = 2 + ___.   

Other discontinuities between arithmetic and algebra include the meaning of 

letters, intuitive versus formal approaches to problem solving, procedural versus 

structural orientation, and solving word problems versus representing them (English & 

Sharry, 1996; Herscovics & Linchevski, 1994; Johanning, 2004; Kieran, 1990; Swafford 

& Langrall, 2000). There is evidence that the influence of these discontinuities continue 

into adulthood. For example, undergraduate college students do not perform as well 

solving equations when prior arithmetic knowledge (e.g., equal sign means ‘total’) is 

activated (McNeil & Alibali, 2005).  

In addition to the effects of discontinuities between arithmetic and algebra, 

thinking algebraically may be demanding of working memory because the process of 

abstracting mathematical structures and operating on them demands the ability to actively 

maintain multiple conceptions of mathematical objects, to flexibly shift attention between 

an operational and a structural perspective, and to inhibit a tendency to be influenced by 

irrelevant surface features of problems (Mason, 1989). 

 Students who have an operational conception of algebra view algebraic 

expressions and equations as a series of operations to be performed, and do not recognize 

structural aspects of the problem that would simplify the solution process (Sfard, 1995, 

2000; Sfard & Linchevski, 1994). For example, in solving the equation 2x + 1 = 5, these 

students would see the solution process as a series of steps (e.g., first subtract 1 from both 
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sides, then divide by 2). Although two equations might be structurally similar (e.g., 2x + 

1 = 6 and 2(x + 1) = 6), they would be treated as unique problems. Instead of appreciating 

that x in the first equation and x+1 in the second equation could be treated similarly in 

solving these equations, the procedural student would distribute the 2 in the second 

equation instead of using the simpler approach inherent in the structure of the problem 

(i.e., divide both sides by 2). As students develop a structural conception of algebra, they 

begin to appreciate that 2x and 2(x+1) and 2(x2+x+1) all represent the product of two 

numbers. 

Students with a fully developed structural conception of algebra can view a series 

of operations as a mathematical object. The expression 3x+5 does not represent a set of 

operations to be performed, but is an object itself with a structure and features and one 

that can be operated on. These students can not only appreciate that problems can be 

separated into classes based on their structural similarities, but can distinguish between 

relevant and non relevant features that separate those classes (English & Sharry, 1996). 

The algebraic thinker must be able to switch between operational and structural views 

and to apply each view appropriately (Sfard & Linchevski, 1994). Mason (1989) 

describes this type of mathematical abstraction as a “delicate shift of attention” from 

seeing an expression as a series of operations to seeing it as an object or property. 

Working memory may be the mechanism that is most influential in the delicate shift of 

attention that is crucial to algebraic thinking. One of the goals of this study was to 

determine if working memory has a direct effect on algebra achievement when 

controlling for other cognitive factors. 
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Differences in the measures of math achievement may be one of the causes of 

conflicting results in studies of the relationship between working memory and math 

achievement among adolescents and adults, but this was not the only difference across 

these studies. There were also differences in the ways in which working memory was 

measured. In the studies in which verbal working memory related to math achievement, 

multiple measures were used to represent working memory, either mean scores or factor 

scores or latent variables in structural models (Engle et al., 1999; Floyd et al., 2003; 

Gathercole et al., 2004). In the two studies in which verbal working memory did not 

relate to math achievement, single measures were used to represent working memory 

(Reuhkala, 2001; Rohde & Thompson, 2007). Evidence suggests that the common 

variance across multiple measures of working memory is more representative of domain 

general attentional processes than domain specific processes (Conway et al., 2005; Kane 

et al., 2004).  

In one of the studies in which verbal working memory was not related to math 

achievement (Reuhkala, 2001), the tasks were administered in group settings whereas in 

most other studies of working memory, working memory tasks are administered on an 

individual basis. Administering working memory tasks in a group setting may allow more 

opportunity for domain specific processes (e.g., chunking of verbal material based on 

associations in long-term memory) to be a factor because individuals who process 

information more quickly have more time to use these strategies than individuals who 

process information more slowly (Conway et al., 2005). One goal of this study was to 

control for the domain specific aspects of working memory capacity by using multiple 



 52

measures of working memory and by administering the working memory tasks 

individually.    

Algebra Achievement and 3D Spatial Abilities 

Correlations between visual-spatial abilities and math achievement are generally 

low to moderate (for review, see Friedman, 1995). Among older adolescents and adults, 

when the visual-spatial tasks include mental manipulation of three dimensional (3D) 

objects and when the math achievement assessments include higher level math skills than 

arithmetical computation abilities, the correlations are higher than is typical across 

studies of math achievement (Casey, Nuttall, & Pezaris, 1997; Friedman, 1995; 

Reuhkala, 2001; Rohde & Thompson, 2007). 

There are two possible reasons for the stronger relationships between visual-

spatial abilities and math achievement when the math domain includes higher level math 

skills than arithmetical computational and reasoning abilities. One reason is that visual-

spatial processing is more of a requirement in some domains of higher level math (e.g., 

geometry) than in arithmetical computation and reasoning. Another reason is that visual-

spatial processing, particularly 3D spatial visualization, is highly related to executive 

functions such as controlled attention (Miyake, Friedman, Rettinger, Shah, & Hegarty, 

2001). These domain general processes may be a critical factor in the relatively strong 

effects of 3D spatial processing on higher level math achievement. 

Some aspects of algebra require visual-spatial processing. Algebra achievement 

includes the ability to graphically represent functional relations. These representations are 

typically two dimensional, though, and do not require the ability to transform or 

manipulate 3D representations. Graphical representations are also a relatively small part 
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of algebra achievement. This suggests that algebraic reasoning may be only moderately 

related to visual-spatial abilities. However, if domain general processes such as 

controlled attention are the most important factor in the relationship between 3D spatial 

abilities and higher level math achievement, then perhaps algebra achievement and 3D 

spatial abilities are strongly related. A goal of this study was to determine if 3D spatial 

abilities are related to algebra achievement.  

According to Kane et al. (2004), “although spatial storage-rehearsal processes do 

appear to be more domain general in their predictive power than are corresponding verbal 

processes, they are not as general or as consistently powerful as the executive-attention 

processes that are captured by working memory span tasks” (p. 208). Engle and 

colleagues (Conway et al., 2005; Engle, 2002; Engle et al., 1999) contend that working 

memory tasks, regardless of the content of those tasks, are highly predictive of higher 

cognitive processes across domains. There is also evidence that among adults, working 

memory tasks represent domain specific abilities (e.g., verbal, numeric, visual-spatial) as 

much as they represent domain general abilities (Perlow, Moore, Kyle, & Killen, 1999; 

Shah & Miyake, 1996). In order to more fully test the claim that the executive-attention 

processes captured by working memory tasks, regardless of task content, are more 

powerful predictors of high level cognitive abilities than the domain general processes 

associated with visual-spatial abilities, the working memory measures used in this study 

were based only on verbal content. Any shared variance between working memory tasks 

with only verbal content and measures of 3D spatial abilities would more likely be due to 

domain general processes whereas unique variance would more likely be due to domain 
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specific verbal or visual-spatial abilities. This allowed for more definitive testing of the 

relationships between these constructs and algebra achievement. 

Algebra Achievement and Computational fluency 

Computational fluency is defined as fast and accurate arithmetical computations. 

Speed and accuracy in single and multi-digit calculations are related to math achievement 

among preadolescent children, adolescents, and adults (Geary, Liu, Chen, Saults, & 

Hoard, 1999; Geary et al., 2000; Geary & Widaman, 1992; Royer et al., 1999). Evidence 

suggests that computational fluency may be more related to lower level arithmetical 

problem solving skills than it is to higher level math achievement, although there are only 

two studies that have examined the relationship between computational fluency and math 

achievement among adults. In one study, speed of arithmetic computations accounted for 

21% of the variance in SAT-M scores whereas accuracy accounted for only 8% of the 

variance (Royer et al., 1999). This appears to be a weak relationship compared to the 

strong effect (β = .61) computational fluency had on arithmetical reasoning when 

controlling for 3D spatial abilities and IQ in a study among college students (Geary et al., 

2000).  

The SAT-M includes arithmetical, geometric, and algebraic reasoning problems. 

In addition, some problems require procedural-based approaches and others require novel 

approaches (Gallagher, 1992; Gallagher et al., 2000). It may be that some higher level 

math skills are more related to computational fluency than others. One of the goals of this 

study was to determine if algebra achievement is related to computational fluency. 

The role of math fluency in algebra achievement is somewhat difficult to predict 

because of the distinction between fluency with numerical operations and conceptual 
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understanding of numerical relations. The latter is theoretically critical to algebraic 

thinking (English & Halford, 1995). The former may not be critical to conceptual 

understanding of algebra, although, it may be important to fluency in algebraic 

procedural performance. Another reason that computational fluency may be related to 

algebra achievement is because similar to algebra achievement; computational fluency 

appears to be influenced by domain general resources such as controlled attention.   

In experimental studies, domain general processes in working memory have been 

found to be a key component in computational abilities among adults (DeStefano & 

LeFevre, 2004). More indirect evidence based on error analysis suggests that inhibitory 

processes play a role in retrieval of single-digit math facts from long-term memory 

(Campbell, 1990; Campbell & Arbuthnott, 1996). Therefore, another goal of this study 

was to determine if computational fluency is related to working memory and if 

computational fluency is related to algebra achievement when controlling for working 

memory.  

Educational Experience and Algebra Achievement 

 Algebraic conceptual knowledge and skill in algebraic procedures are the 

products of years of formal education. Evidence suggests that even students in calculus 

classes do not always exhibit the abstract, structural understanding of numerical relations 

that is an inherent component of true algebraic thinking (English & Sharry, 1996). 

However, it is likely that calculus students are more fluent in algebraic manipulations 

than students who have only had a year or two of algebra. Evidence also suggests that 

gifted pre-algebra students can exhibit more structural awareness than college students 

(Dark & Benbow, 1990). Although the effects of cognitive resources and abilities on 
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algebra achievement are almost certainly mediated by algebra experience, it is possible 

the combined effects of these cognitive factors may be greater than the effect of 

experience. Therefore, a goal of this study was to determine if algebra experience 

mediates the relationship between other cognitive factors and algebra achievement, and if 

other cognitive factors are related to algebra achievement when controlling for 

experience.  

Study Goals and Hypotheses 

The overall purpose of this study was to use structural equation modeling to 

examine the effects of verbal working memory, 3D spatial visualization, and 

computational fluency on algebra achievement (see Figure 1). Structural equation 

modeling is an effective technique for examining cognitive models based on individual 

differences in performance because both direct and indirect effects of cognitive factors on 

achievement can be examined. In addition, it allows for the use of multiple measures to 

represent latent constructs. This is particularly important when trying to capture the 

domain general processes in working memory. Structural equation modeling is especially 

useful for testing specific hypotheses about the structural relations between cognitive 

factors.  
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Figure 1.  Hypothesized initial model algebra achievement. 

 

For this study, SEM was used to test several hypotheses concerning structural 

relations in a cognitive model of algebra achievement: 

Hypothesis 1. Working memory has a direct effect on algebra achievement when 

controlling for 3D spatial visualization abilities, computational fluency, and algebra 

experience. 

Hypothesis 2. Working memory has a direct effect on computational fluency, 3D 

spatial visualization, and algebra experience.  

Hypothesis 3. Computational fluency is related to algebra achievement when 

controlling for the effects of working memory. 

 Hypothesis 4. 3D Spatial Visualization is not related to either computational 

fluency or algebra achievement when controlling for working memory. 
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 Based on these hypotheses, Figure 2 shows the final predicted cognitive model of 

algebra achievement.  

 

 

 

 

 

 

 

 

 

Computational 
Fluency

3D Spatial 
Visualization

Working 
Memory 

Algebra 
Achievement

Algebra 
Experience

Computational 
Fluency

3D Spatial 
Visualization

Working 
Memory 

Algebra 
Achievement

Algebra 
Experience

 

Figure 2.  Hypothesized final model of algebra achievement. 

 

Secondary Goals:  

Exploratory Models of Math Achievement across Math Domains and Gender 

 The main purpose of this study was to examine a cognitive model of algebra 

achievement. Another goal was to determine if the model for algebra achievement held 

for overall math achievement among adults. There are at least two possible reasons why a 

cognitive model of algebra achievement might differ from a model for overall math 

achievement. One is that some domains of math are qualitatively different than others 

(e.g., geometry is based on spatial relations; algebra is based on numerical relations). A 

cognitive model for one domain of math might exclude factors relevant to another 
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domain of math, but a cognitive model of overall math achievement would necessarily 

have to include factors relevant to all domains of math. Another reason that the cognitive 

models might be different for algebra achievement and overall achievement is that on 

tests of overall math achievement (e.g., SAT-M) there is as much emphasis placed on 

fluid problem solving abilities as there is on textbook procedural knowledge (Gallagher, 

1992; Gallagher et al., 2000). Typically, algebra curriculums and assessments of algebra 

achievement emphasize procedural knowledge. The strengths of the relations between 

domain specific and domain general abilities and math achievement may differ 

depending on the degree to which the measure of math achievement emphasizes acquired 

knowledge versus fluid problem solving abilities.  

Working memory, 3D spatial abilities, and computational fluency have each been 

related to SAT-M performance (Engle et al., 1999; Rohde & Thompson, 2007; Royer et 

al., 1999). Based on the strength of effects across these studies, 3D spatial relations 

appears to be more related to SAT-M performance than either working memory or 

computational fluency. This suggests a different cognitive model than the hypothesized 

model for algebra achievement. A goal of this study was to determine if the models are 

different for algebra achievement and SAT-M performance. 

Based on studies of math and/or verbally gifted adolescents, Dark and Benbow 

(1990, 1991) argued that domain general aspects of working memory are especially 

predictive of math ability over verbal ability. However, there has not been a systematic 

comparison of cognitive models for math and verbal achievement to determine if there 

are differences in the strengths of the relations between domain general processes and 

different domains of achievement. Working memory is related to SAT-V performance 
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(Engle et al., 1999). There is also evidence that suggests that visual-spatial abilities are 

more related to performance on the SAT-M than the SAT-V (Rohde & Thompson, 2007). 

Although it is unlikely that computational fluency is related to SAT-V performance, it is 

possible, given that working memory has been related to both types of achievement, that 

computational fluency would have some effect on SAT-V. A goal of this study was to 

determine if there are differences in the strengths of effects in cognitive models of SAT-

V and SAT-M. Similar effects between any of the cognitive factors and both domains of 

achievement would have implications for the degree to which those constructs represent 

domain general resources. 

A final question addressed by this study was whether or not there are gender 

differences in the cognitive model of algebra achievement. Although the data is mixed, 

gender gaps are consistently found in some areas of mathematics and among some 

populations (Hyde, Fennema, & Lamon, 1990). In comparisons between males and 

females on measures of complex problem solving, significant differences favoring males 

emerge in high school and become particularly pronounced among college students and 

gifted individuals. Males have also outperformed females by an average of 38 points on 

the mathematics section of the SAT and 70 points on the quantitative section of the GRE 

(Coley, 2001). 

 In order to better understand the nature of gender differences in math 

performance, both computational fluency and visual spatial abilities have been targeted as 

potential factors that may mediate these differences because gender differences favoring 

males have also been found in these skills (Casey, 1996; Casey et al., 1997; Casey, 

Nuttall, Pezaris, & Benbow, 1995; Geary et al., 2000; Royer et al., 1999). In particular, 
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males consistently outperform females on tasks requiring two and three-dimensional 

rotations, and these differences tend to be greater among higher ability individuals such 

as college students (Casey, 1996; Colom, Contreras, Arend, Leal, & Santacreu, 2004; 

Kerkman, Wise, & Harwood, 2000; Scali, Brownlow, & Hicks, 2000; Voyer, 1996). 

There is evidence that both computational fluency and 3D spatial visualization mediate 

gender difference in math performance (Casey et al., 1997; Casey et al., 1995; Geary et 

al., 2000; Royer et al., 1999). However, examining mean differences in one set of skills 

to determine if they relate to mean differences in another may explain only part of the 

gender differences in mathematics performance.  

Another way to address this issue is by examining models of math achievement 

across gender to determine if the pattern of relationships between various cognitive 

abilities and math achievement differ. This method is relatively unexplored, although, in 

one study, this method was used to examine gender differences in the relationships 

between quantitative, verbal, and visual-spatial factors among preschool children and 

kindergarteners (Robinson, Abbott, & Berninger, 1996). Only the correlation between 

verbal and spatial factors differed across gender with the correlation being moderate for 

boys and essentially zero for girls. In an unpublished study (Tolar, 2005), gender 

differences were found in the relationship between working memory and math 

achievement. This study was based on 269 college students who had been referred for 

evaluation because of learning difficulties. A structural model was tested in which 

working memory and visual spatial abilities were predictors of math achievement. 

Although there were no gender differences in the significant path coefficient between 

visual-spatial ability and math achievement, the path coefficient between working 
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memory and math achievement was significant for the males (.52), but not significant for 

the females (.21). In addition, the model accounted for 57% of the variance in math 

achievement for males, but only 43% of the variance for females. This evidence suggests 

that examining models of math achievement across gender may be a fruitful avenue of 

research in order to better understand gender differences in math performance. So a final 

goal of this study was to examine a multi-group structural model of algebra achievement 

in order to compare females to males in terms of the pattern of relationships between 

working memory, computational fluency, 3D spatial visualization, and algebra 

achievement.      

 In summary, the purpose of the study was to examine a cognitive model of 

algebra achievement. It was hypothesized that when controlling for algebra experience, 

working memory would have direct effects on algebra achievement, computational 

fluency, and 3D spatial abilities. It was also hypothesized that computational fluency, but 

not 3D spatial abilities would have a direct effect on algebra achievement. It was 

expected that the total effect of working memory on algebra achievement would be 

greater than the effect of any of the other cognitive factors. This pattern of results was 

expected to be unique to algebra achievement in comparison to models of SAT-M and 

SAT-V performance. Finally, it was predicted that there would be gender differences in 

the patterns of effects in the cognitive model of algebra achievement. 
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Methods 

Participants 

 Data was collected from 233 undergraduate college students (112 females and 

121 males) recruited from a psychology research participation pool at a large, ethnically 

diverse, urban university. Students received credit in introductory psychology courses for 

participation. Thirty-five of the students (15 females and 20 males) did not attend the 

second of the two testing sessions. The data from three males were excluded, two because 

they did not meet the age requirements of the study and the third because of errors in data 

collection. As a result, the participants in this study consisted of 195 students (97 females 

and 98 males) between the ages of 18 and 25 years (mean = 19.5 , SD = 1.5). All of the 

students had taken at least one of the following high school or college courses within 5.5 

years of study participation: algebra, advanced algebra/trigonometry, pre-calculus, or 

calculus. None of the students had been diagnosed with a learning disability (based on 

self-report), although one male reported he had ADHD. See Table 1 for more 

demographic information.  

 

 

 

 

 

 

 

 



 64

Table 1 

Participant Demographics 

Demographic Females     
(N = 97) 

Males       
(N = 98) 

Total        
(N = 195) 

Mean age (SD)a 19.2 (1.5) 19.9 (1.5) 19.5 (1.5) 
Age range 18 - 25 18 - 24 18 – 25 
    
College major  Percent 

Physical sciences/mathematics 15 13 14 
Social sciences (e.g., psychology) 15 9 12 
Applied sciences (e.g., nursing) 10 5 8 
Business 14 24 19 
Liberal arts 35 34 34 
Undecided/no info 9 14 11 
    

Mean number of years since last algebra 
based class  (SD) 1.3 (1.2) 1.5 (1.2) 1.4 (1.2) 
    
Algebra-based course levela Percent 

One algebra course 0 1 1 
Two algebra courses 2 2 2 
Three or more algebra courses 18 5 11 
One or more pre-calculus or advanced  
  algebra/trigonometry course 55 48 51 
Calculus I 25 34 29 
Calculus II or higher 1 10 6 

a Females differed from males (p < .05). 
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Apparatus, Materials, and Procedures 

 The students participated in two 1.5 hour sessions. They were tested in groups of 

1 to 12 during the first session and individually during the second session. The time 

between the two sessions ranged from 1 to 27 days (median = 6 days) with the exception 

of one student who completed the second session 50 days after the first session. 

 Two spatial visualization tasks and three algebra achievement tests were given 

during the first session. All tasks administered during this session were paper-and-pencil 

with task order counterbalanced across two protocols. Tasks were given in the following 

order for the first protocol: 3D Mental Rotation Test (MRT) Part 1, AAIMs Algebra 

Content Test, 3D MRT Part 2, DTMS Elementary Algebra Test, DAT Spatial Relations 

Test, and Algebra Equations Test. Task order was reversed for the second protocol with 

the exception of the MRT tests for which Part 1 was given before Part 2 in both 

protocols. Students were randomly assigned to session protocols. All group sessions were 

held in classrooms or conference rooms with students seated at desks or around 

conference tables.  

 Four working memory tasks, three computational fluency tests, and one algebra 

achievement test were given during the second session. Students also completed a math 

background sheet at the end of this session. Two of the working memory tasks were 

computer-based and the other two were given orally. The math and algebra tasks were 

pencil-and-paper tests. Similar to the first session, tasks in this session were 

counterbalanced across two protocols. Tasks were given in the following order for the 

first protocol: Counting Span, Division Test, Letter-Number Sequence, DTMS 

Intermediate Algebra Test, Addition/Subtraction Test, Reading Span, 
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Subtraction/Multiplication Test, and Backwards Digit Span. Task order was reversed for 

the second protocol. Students were randomly assigned to session protocols with no 

connection between protocol assignments across the two testing sessions. All individual 

sessions were held in small rooms or offices with students seated at a large desk or small 

table. Computers with color monitors were used for the computer-based working memory 

tasks. Students sat directly facing the computer screens.   

Tasks 

 The measures used in this study were chosen to optimize the likelihood of 

producing an acceptable SEM measurement model which is a function of the number and 

quality of the observed measures as well as the sample size. Although three or more 

measures are recommended to avoid nonconvergence or improper solutions, two 

measures may be acceptable if they both are likely to load highly on the latent variable 

(e.g., standardized loadings > .60) and if the sample size is relatively large (e.g., 100 - 

150 participants, Kline, 2005). Given these constraints, three measures were chosen to 

represent computational fluency. Four measures were initially chosen to represent algebra 

achievement because there is no widely accepted standardized measure of algebra 

achievement and no established pattern of correlations between measures. However, for 

theoretical reasons and based on performance by the participants in this study on the 

algebra measures, subscales from two of the measures were combined as described later, 

resulting in three observed variables representing the algebra achievement latent variable. 

Four measures were chosen to represent working memory because there is no universal 

agreement on the best measures for working memory capacity, particularly when trying 

to capture the domain general, central executive aspects of working memory. In addition, 
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correlations among working memory measures tend to be moderate (Conway, Cowen, 

Bunting, Therriault, & Minkoff, 2002; Engle et al., 1999; Kane et al., 2004). Two 

measures were chosen to represent 3D spatial visualization because research suggests that 

3D spatial visualization measures tend to correlate highly with each other and load highly 

onto a distinct latent construct (Kane et al., 2004; Miyake et al., 2001).  

Algebraic Achievement  

 DTMS Algebra Skills Tests. Participants took two Descriptive Tests of 

Mathematics Skills (DTMS, Forms M-K-3LDT), one in Elementary Algebra Skills (The 

College Board, 1995a) and the second in Intermediate Algebra Skills (The College 

Board, 1995b).  

 The Elementary Algebra Skills test consisted of 35 multiple-choice problems that 

were grouped into one of four clusters: operations on real numbers (e.g., -3 – 2 =), 

operations with algebraic expressions (e.g., 3(m+4) =), solutions to equations and 

inequalities (e.g., If t – 2 = 6, then t + 2 =), and applications (e.g., If the sum of 4 numbers 

is 70, what is the average (arithmetic mean) of the numbers). Reliabilities for this test 

were relatively high (alternate-forms estimate = .85) based on a diverse sample of two-

year (N = 150) and four-year (N = 374) college students.  

 The Intermediate Algebra Skills test consisted of 30 multiple-choice problems 

that were also grouped into one of four clusters: algebraic operations (e.g., 36x2 – 1 = ), 

solutions of equations and inequalities (e.g., 2x – 7 = 8, 5x + y = 6, in the solution of the 

system of equations, what is the value of x?), geometry (e.g., given a picture of a triangle 

with two of the angle measures given and the third represented by x, what is the value of 

x?), and applications (e.g., probability, interpreting graphs). Reliabilities for this test were 



 68

also relatively high (alternate-forms = .73) based on 155 two-year and 251 four-year 

college students.  

 Students were allowed up to 30 minutes to complete each test; however, most 

students stopped working before the end of the time allowed, with many completing the 

tests in 15 to 20 minutes. When all students in a testing session stopped working, the test 

was ended. This did not appear to affect performance, because participants in this study 

performed well above the college students who participated in the test 

development/reliability studies, mean = 27.1, SD = 5.3 compared to mean = 21.8, SD = 

6.5 for the Elementary Algebra Skills Test and mean = 16.9, SD = 5.9 compared to 13.7, 

SD = 5.3 for the Intermediate Algebra Skills Test (The College Board, 1989). In addition 

there was a substantial negative skew in performance on the Elementary Algebra Skills 

Test among the participants in this study. 

 For this study, the operations with algebraic expressions (9 items) and solution of 

equations and inequalities (8 items) clusters from the Elementary Algebra Skills test were 

combined with the algebraic operations (7 items) and solution of equations and 

inequalities (8 items) clusters from the Intermediate Algebra Skills test to form one 

measure (32 items). These clusters best represented the algebraic skills that are the focus 

of this study, that is, symbolic representation and manipulation. The other clusters 

included many problems that could be solved arithmetically, and in the case of the 

geometry cluster, specifically represent mathematical skills that are not the focus of this 

study. Scores on this measure were based on the number of correct items and could range 

from 0 to 32. 
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AAIMS Algebra Content Test. This multiple-choice assessment of algebraic skills 

and abilities was developed in conjunction with Project AAIMS: Algebra Assessment 

and Instruction - Meeting Standards which is funded by the U.S. Department of 

Education for the purposes of evaluating “alignment between algebra curriculum, 

instruction, and assessment for students with and without disabilities” (p. 3, Foegen, 

Olson, & Perkmen, 2005). Appendix A contains all problems from the AAIMS Algebra 

Content Test. Reliability and validity results for this measure were based on a sample of 

62 high school students (38 grade 9, 20 grade 10, 3 grade 11). Alternate form reliability 

for this test was .74, and test-retest reliability was .80. This test was composed of 

problems that represent most of the concepts covered in a typical first-year high school 

algebra course (Foegen et al., 2005). Participants were given 15 minutes to complete this 

test. Scores were based on the number of correct items and could range from 0 to 16. 

Algebra Equations Test. This free response test was a modified version of an 

assessment of algebra equation solving skills used in a study of university psychology 

and engineering students (Carry et al., 1980). Appendix B lists all of the problems from 

the Algebra Equations test. Eight of the problems come from the Carry, et al. (1980) 

study. The other four problems are linear equations similar to those found in most 

standard first year algebra textbooks (e.g., Foster, Winters, Gell, Rath, & Gordon, 1995). 

Students were allowed 12 minutes for this test. Scores were based on the number of 

correct items and could range from 0 to 12. 

Working Memory Capacity (WMC) 

Reading Span (RSPAN, Conway et al., 2005; Unsworth, Heitz, Schrock, & Engle, 

2005). This computer-based task was composed of 12 trials with each trial consisting of 
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two to five letters to be recalled. During a trial, a sentence followed by a question mark 

and a capital letter appeared in the middle of the computer screen (e.g., The tugboat had 

never been so in love. ? H). As soon as the sentence appeared on screen, the participant 

read it out loud, evaluated the meaning for as long as necessary, said “Yes” or “No” 

depending on whether or not the sentence made sense, then immediately read the letter 

out loud, and kept the letter in memory. The experimenter advanced the screen to the next 

item as soon as the participant read the letter out loud. After two to five sentences, three 

question marks appeared in the middle of the screen which prompted the participant to 

write down the letters, in order, on a pre-printed form. Instructions for the task were 

shown on screen and read aloud by the task administrator. Three practice trials (two 

letters in each trial) were given as part of the instructions. The experimenter recorded the 

participants’ “YES” or “NO” responses to ensure that they were not sacrificing accuracy 

on the processing task in order to improve performance on the memory task. Scores for 

RSPAN were the total number of letters recalled in the correct positions and could range 

from 0 to 42. 

Counting Span (CSPAN, Conway et al., 2005). This task was also computer-based 

and was composed of 15 trials with each trial consisting of two to six single-digit 

numbers (3 through 9) to be recalled. A trial began with several randomly placed dark 

blue circles, dark blue squares, and light green circles appearing on screen. As soon as the 

objects appeared on screen, the participant counted the dark blue circles out loud (taking 

as much times as necessary for accuracy), immediately repeated the final total out loud, 

and memorized the number (see Figure 3 for example).  
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Figure 3. Example item from counting span task.  

The experimenter advanced the screen to the next item as soon as the participant 

repeated the final number out loud. When three question marks appeared in the middle of 

the screen the participant wrote down the digits, in the order they were originally 

presented, on a pre-printed form. Instructions for the task were shown on screen and read 

aloud by the task administrator. Three practice trials (two items in each trial) were given 

as part of the instructions. Scores for this task were the total number of digits recalled in 

the correct positions and could range from 0 to 60. 

 Digit Span - Backwards (DSPANB). The Weschler Adult Intelligence Scale – 

Third Edition (WAIS-III, Wechsler, 1997) Digits Backward subtest was administered 

according to the test manual. For each trial, the experimenter read a series of digits (1 

through 9) at a rate of about one per second, then the participant repeated the digits out 

loud in reverse order. A trial consisted of two to eight digits. Two trials for each digit 
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length were administered until the participant failed to recall the digits in the correct 

order for both trials of a given length. Scores were based on the number of trials in which 

the participant correctly recalled the digits and could range from 0 to 14.  

 Letter-Number Sequence (LNSEQ). The WAIS-III (Wechsler, 1997) Letter-

Number Sequencing subtest was administered according to the test manual. For each 

trial, the experimenter read a series of digits and letters at a rate of about one per second. 

The participant repeated the items, digits first from lowest to highest, then letters in 

alphabetical order. A trial consisted of two to eight digits and letters with three trials of 

each length. The task ended when the participant failed to recall the items in the correct 

order for all three trials of a given length. Scores were based on the number of trials in 

which the participant correctly recalled the items and could range from 0 to 21. 

3D Spatial Visualization 

 3D Mental Rotation Test (MRT). The Revised Vandenberg & Kuse Mental 

Rotations Test  (Peters, 1995) is a redrawn version of the Vandenberg and Kuse (1978) 

MRT and Shepard and Metzler (1978) figures. There were two parts to this test with each 

part consisting of twelve items. Each item (see Figure 4) consisted of a stimulus figure 

and four target figures, two of which were rotated versions of the stimulus figure. To 

correctly complete an item, participants had to identify both of the rotated versions of the 

stimulus figure. Participants were given three minutes to complete each part of the test. 

Scores were based on the number of correct items and could range from 0 to 24 points. 
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Figure 4. Example item from 3D mental rotations task. 

3D Spatial Relations. The DAT Spatial Relations Test (Bennet, Seashore, & 

Wesman, 1989) consisted of 35 items similar to the one shown in Figure 5. To correctly 

complete an item, participants had to identify the figure that represented the stimulus 

figure after it has been folded into its 3D construction. The test directions allowed for 15 

minutes to complete as many items as possible, but because of time constraints, 

participants in this study were given a 10 minute time limit. Scores were based on the 

number of correct items and could range from 0 to 35. 

 

      

 

 

Figure5. Example item from 3D spatial relations task. 

Computational fluency    

 The three tests of computational fluency were part of the Number Facility factor 

in the ETS Kit of Factor-Referenced Cognitive Tests (Ekstrom, French, Harman, & 

Derman, 1976). Each test had two parts with two minute time limits for each part. Each 

part contained 60 items. Only part one of each test was administered in this study. Scores 

for each of these tests were based on the number of correct items and could range from 0 

to 60. 
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Division Test. All dividends in this test were two or three digits and all divisors 

were single digits (e.g.,  64 ÷ 4, 150 ÷ 6).  

Subtraction and Multiplication Test. This tests consisted of alternating rows of 

subtraction and multiplication problems. Both the minuends and subtrahends of all 

subtraction problems were two digits (e.g., 98 - 75). The multiplication problems were 

composed of two digit multiplicands and single digit multipliers (e.g., 86 x 6).  

Addition and Subtraction Correction Test. This test consisted of addition and 

subtraction problems with suggested answers (e.g., 11 + 23 = 34, 35 - 10 = 20). The 

participants were required to circle the C (correct) or I (incorrect) next to each problem 

they attempted.  

Algebra Experience 

 Students completed a math background form (see Appendix C) which provided 

information about the math courses they took in high school and college and the semester 

and year during which they took each course. Time since last algebra-based course was 

calculated for each student. Each student was also given an experience score according to 

the highest level of algebra-based math taken: 

 1 = one algebra course 

 2 = two algebra courses 

 3 = three or more algebra courses 

 4 = an advanced algebra/trigonometry or pre-calculus course 

 5 = a calculus I course 

 6 = a calculus II course  
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This variable represented a direct measure of math experience at the time algebra 

achievement was measured, whereas in analyses of SAT performance, this variable was 

an estimate of the relative math experience of participants at the time they completed the 

SAT. The highest level of math experience for most of the participants occurred in high 

school during their senior years which was likely during or just after they had taken the 

SAT exams. Few students took a higher level of math during college with the exception 

of all of the students who had taken calculus II or higher and some of the students who 

had taken calculus.   

SAT Math and Verbal Scores 

 SAT scores were gathered from university records for students who granted 

permission to access these records (N = 135, 65 female, 70 male). Exploratory analysis 

was conducted using this smaller sample to compare SEM models for algebra 

achievement to those for overall math achievement.  

Results 

Data Screening 

 A critical assumption of structural equation modeling is multivariate normality; 

therefore, the data was carefully screened for univariate and multivariate outliers as well 

as violations of univariate and multivariate normality. For all measures except algebra 

experience, values that were more than 3 standard deviations from the mean were 

replaced with values 3 standard deviations from the mean. This affected 5 out of 2340 

values. Univariate skew and kurtosis for all variables were at acceptable levels (see Table 

2 for descriptive statistics). Examination of leverage, studentized t, and Cook’s D values 

indicated there were no observations unduly influencing multivariate correlations. 



 76

Finally, for the 12 continuous variables, Mardia’s (1970, 1983) relative multivariate 

kurtosis value (.99, p > .10) and multivariate skew and kurtosis statistic (χ2 = 2.86, p = 

.239) indicated that it was reasonable to assume multivariate normality.  

Table 2 

Descriptive Data and Reliability Estimates (Cronbach’s alpha) of Observed Variables 

Task M SD Range Skew Kurtosis α 
Algebra Experience 4.2 0.8 1 – 6 -0.31 1.07 - 
AAIMS Algebra Test 10.0 3.2 3 – 16 -0.19 -0.66 0.76 
Algebra Equations Test 6.4 2.4 0 – 12 0.21 -0.17 0.71 
DTMS Algebra Subtests 19.4 6.2 6 – 32 -0.02 -0.96 0.86 
DAT Spatial Relations 18.5 6.2 5 – 34 0.20 -0.51  
3D Mental Rotation 9.1 4.7 0 – 23 0.45 -0.28  
Subtraction/Multiplication Calculations 19.2 6.5 7 - 38.8* 0.39 -0.22  
Division Calculations 11.7 5.4 2 - 28.4* 0.77 0.43  
Addition/Subtraction Correction 31.0 8.7 15 - 57.4* 1.11 1.07  
Digit Span - Backwards 7.7 2.2 3 – 14 0.39 -0.33  
Letter-Number Sequence 12.1 2.6 7 – 20 0.61 0.23  
Counting Span 34.4 10.0 13 - 59 0.15 -0.53  
Reading Span 24.5 6.5 8 – 41 0.06 -0.48  

* Corrected outlier values 

 

Structural Model Analyses 

 In the following discussion, measures, observed variables, and indicators are 

used interchangeably and refer to the tests given to the participants (e.g. AAIMs Algebra 

Test, Reading Span). Factors, latent variables, and constructs are used interchangeably 

and refer to the abilities hypothetically measured by the tests (e.g., algebra achievement, 

working memory capacity). Measurement model refers to an SEM model in which the 

observed variables are restricted to load only onto the latent variables they theoretically 

represent. The latent variables are allowed to correlate freely with each other. If this 

relatively unrestricted model (i.e., no restrictions imposed on the relationships between 
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constructs) has a good fit, then a structural model with theoretically determined 

relationships between constructs can be tested.   

Three sets of models were analyzed in order to answer three broad questions 

related to algebra achievement. The first set of models addressed the main hypotheses of 

this study concerning the effects of working memory, 3D spatial visualization, and 

computational fluency on algebra achievement. The second set of analyses were 

conducted to examine potential differences in these effects on SAT-M and SAT-V 

performance, and the third set of analyses were conducted to examine potential gender 

differences in the pattern of these effects on algebra achievement. The last two sets of 

analyses were exploratory because the samples sizes were relatively small and the study 

design did not support definitive testing of hypotheses related to these questions.  

 All structural models were analyzed in LISREL (Joreskog & Sorbom, 2006), and 

model fits were evaluated with indices recommended by Kline (2005). These indices 

include the model chi-square, the standardized root mean-square residual (SRMR), the 

Steiger-Lind root mean square error of approximation (RMSEA, Steiger, 1990) with its 

90% confidence interval, and the Bentler comparative fit index (CFI, Bentler, 1990). In 

addition, the chi-square difference statistic was used to evaluate the effects of model 

trimming. 

 For model chi-square, a significant result (p < .05) indicates a poor model fit. 

However, this statistic is sensitive to sample size with larger samples increasing the 

likelihood of a significant result (Kline, 2005). Although problematic, it is traditionally 

reported in SEM analyses, and it is particularly useful for the purposes of this study in 

calculating chi-square differences when evaluating the effects of model trimming. During 
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model trimming, when two models did not differ in goodness of fit (i.e., chi-square 

difference was not significant, p > .05), the more parsimonious model (i.e., fewer paths) 

was chosen. 

 RMSEA values closer to 0 indicate better fit (Kline, 2005). For this study, models 

with RMSEA ≤ .05 were considered good fits, ≤ .08 reasonable fits, and ≥ .10 poor fits. 

This statistic was evaluated in conjunction with its 90% confidence interval (CI). A CI 

with a lower bound greater than .05 was considered a poor fit, and although a CI with a 

lower bound less than .05 was not rejected, if the upper bound was greater than or equal 

to .10, the possibility of a poor fit was also not rejected. 

 CFI’s ≥ .90 are acceptable (Kline, 2005), although CFI’s ≥ .95 are more desirable. 

For this study, the more stringent criterion of .95 was used to assess model fit. 

 SRMR values closer to 0 indicate better fitting models. For this study, a model 

with a SRMR ≤ .05 was considered an excellent fit, although one with a SRMR ≤ .10 was 

accepted if the other fit indices indicated an acceptable model fit. 

Structural Analyses I: Cognitive Predictors of Algebra Achievement 

 The pattern of correlations between the 12 observed variables (see Table 3) 

suggests that these measures were good representations of the four factors of interest. The 

correlations between indicators within a construct tended to be higher than between 

indicators across constructs.  
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Table 3 

Correlations between Observed Variables  

  Variable 1 2 3 4 5 6 7 8 9 10 11 12 
1. AAIMS -            
2. AlgebraEq 0.64 -           
3. DTMS 0.75 0.73 -          
4. DAT 0.33 0.18 0.26 -         
5. MRT 0.28 0.24 0.30 0.60 -        
6. Sub/Mult 0.33 0.33 0.35 0.05 0.02 -       
7. Division 0.40 0.40 0.42 0.12 0.21 0.67 -      
8. Add/Sub 0.28 0.31 0.32 0.15 0.33 0.65 0.63 -     
9. DSpanB 0.14 0.12 0.18 0.10 0.14 0.17 0.29 0.18 -    
10. LNSeq 0.08 0.14 0.16 0.15 0.26 0.13 0.30 0.31 0.51 -   
11. CSpan 0.09 0.06 0.09 0.04 0.16 0.23 0.31 0.28 0.40 0.42 -  
12. RSpan 0.08 0.12 0.07 0.05 0.06 0.19 0.24 0.15 0.29 0.35 0.53 - 
Note. AAIMS = AAIMs algebra test; AlgebraEq = Algebra equations test; DTMS = DTMS 

elementary and intermediate algebra subtests; DAT = spatial relations test; MRT = 3D mental 

rotation test; Sub/Mult = subtraction/multiplication computational fluency test; Division = 

division computational fluency test; Add/Sub = addition/subtraction correction test; DSpanB = 

Digit span backwards; LNSeq = Letter-number sequence; CSpan = counting span; RSpan = 

reading span. Shaded areas include correlations between observed variables within a construct. 

Bolded correlations are significant (p < .05). 

 

 Measurement models. Figure 6 shows the measurement model that was analyzed 

in order to more definitively determine if the measures loaded onto the appropriate latent 

variables. Because algebra experience was represented by a single ordinal variable, the 

path between the observed and latent variable was set to 1 and the measurement error set 

to 0. All measures were set to load only onto the latent variables they were selected to 

represent, all covariances between measurement error terms were set to 0, and all latent 
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variables were allowed to covary freely with each other (see Table 4 for correlations 

between factors).  

Algebra 
Achievement

AAIMSDTMS Equations

.34.16.37

.81.91
.80

3D Spatial 
Visualization

3D Mental 
Rotation

DAT Spat 
Relations

.49

.31

.72

.83

Algebra 
Experience

Algebra 
Experience

.001.00

Computational 
Fluency

Add/SubSub/MultDivision

.28 .36 .41

.77.80.85

Working 
Memory 
Capacity

DSpan
Backwards

L-N
Sequence

Counting 
Span

Reading 
Span

.74

.59

.55

.65

.64

.51

.67

.59

.20

.11

Algebra 
Achievement

AAIMSAAIMSDTMS DTMS EquationsEquations

.34.16.37

.81.91
.80

3D Spatial 
Visualization

3D Mental 
Rotation

DAT Spat 
Relations

.49

.31

.72

.83

Algebra 
Experience

Algebra 
Experience

Algebra 
Experience

.001.00

Computational 
Fluency

Add/SubSub/MultDivision Add/SubSub/MultDivision

.28 .36 .41

.77.80.85

Working 
Memory 
Capacity

DSpan
Backwards

DSpan
Backwards

L-N
Sequence

L-N
Sequence

Counting 
Span

Counting 
Span

Reading 
Span

Reading 
Span

.74

.59

.55

.65

.64

.51

.67

.59

.20

.11

 

Figure 6. Final measurement model. Although the paths are not shown to simplify the 

figure, all latent variables were allowed to correlate freely with each other. All loadings 

and error terms were significant (p < .05). 

Table 4 

Correlations between Latent Variables 

   Factor 1 2 3 4 5 
1. Algebra Achievement -     
2. Algebra Experience .60 -    
3. Computational Fluency .51 .30 -   
4. 3D Spatial Visualization .40 .28 .24 -  
5. Working Memory .22 .24 .48 .30 - 

Note. All correlations were significant (p < .05). 
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 The initial model fit the data reasonably well, χ2(56) =117.72, p= .000, RMSEA 

(90% CI)=.07 (.05, .09), CFI = .96, SRMR=.05; however, modification indices indicated 

that model fit could be improved through the addition of several new paths. Two of the 

recommended changes, allowing the error terms for digit span – backwards and letter-

number sequence and for reading and counting span to covary, were implemented. This 

resulted in a significantly improved model fit, Δχ2 = 17.63, df = 2, p = .000. The fit of the 

final measurement model was good, χ2 (54) = 100.09, p = .000, RMSEA (90% CI) =.06 

(.04, .08), CFI = .97, SRMR = .05. Because this model was sufficient for the purposes of 

testing structural relationships between the latent variables and for theoretical reasons, the 

other recommended changes were not included in the final model (e.g., adding a path 

between the indicator subtraction/multiplication and the latent variable 3D spatial 

visualization, as recommended, would make interpretation of relationships between this 

construct and the others problematic). 

 The factor loadings in the final measurement model (see Figure 6) were consistent 

with those found in previous research studies (Conway et al., 2002; Engle et al., 1999; 

Kane et al., 2004). The factor loadings for working memory were moderate; whereas, 

those for 3D spatial visualization were relatively high. The correlations between factors 

(see Table 4) were intriguing because although the correlation between working memory 

and computational fluency was moderate, correlations between working memory and the 

other factors were low with the correlation between working memory and algebra 

achievement being lower than the rest. Furthermore, the correlations between algebra 

achievement and the other three predictors were moderate, suggesting that any 

relationship between working memory and algebra achievement is likely mediated by 
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some combination of algebra experience, 3D spatial visualization, and computational 

fluency. To determine, if in fact this was the case, and to test the study hypotheses, 

several structural models were analyzed. 

 Structural Models. The initial structural model (see Figure 7) included direct 

causal paths between all the cognitive predictors and algebra achievement and between 

algebra experience and achievement. In addition, working memory was set as a causal 

variable for all other predictors of algebra achievement; 3D spatial visualization was set 

as a causal variable for computational fluency and algebra experience; and computational 

fluency was set as a causal variable for algebra experience.  
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Figure 7. Initial structural model with standardized path coefficients. Starred coefficients 

were significant (p < .05). 
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 The fit statistics for the initial structural model were the same as that of the final 

measurement model because all the paths between factors were the same even if the 

implied causal relationships were different. This, of course, meant the model fit was 

good; however, of more interest was the path coefficients and what they indicated about 

the relationships between constructs (see Figure 7).  

 According to the first hypothesis, working memory should have a direct effect on 

algebra achievement even when controlling for other factors. However, the coefficient for 

the direct path between working memory and algebra achievement was not significant 

suggesting that removing this path would not affect model fit, and in fact, when this path 

was removed, there was no significant change in model fit (see Table 5).  

Table 5 

Chi-square Differences between Structural Models  

Structural Model χ2 (df) Δχ2 (df) p 
Initial 100.09 (54)   
H1: Remove Working Memory --> Algebra Achievement 102.78 (55) 2.69 (1) 0.101 
H2: Remove Working Memory --> Algebra Experience 100.62 (55) 0.53 (1) 0.467 

Remove Working Memory --> Computational fluency 119.90 (55) 19.81 (1) 0.000 
Remove Working Memory --> 3D Spatial Visualization 107.22 (55) 7.13 (1) 0.008 

H3: Remove Computational fluency --> Algebra Achievement 124.28 (55) 24.19 (1) 0.000 
H4: Remove 3D Spatial Visualization --> Computational 
fluency 101.38 (55) 1.29 (1) 0.256 

Remove 3D Spatial Visualization --> Algebra Achievement 109.28 (55) 9.19 (1) 0.002 
Remove 3D Spatial Visualization --> Algebra Experience 104.16 (55) 4.07 (1) 0.044 

Final 104.84 (57) 4.75 (3) 0.191 
Note. H = hypothesis. Bolded items indicate paths that could be removed without 

significantly reducing model fit. 

 

Based on this result, the first hypothesis was not supported. Table 5 shows the effects on 

model fit when testing the remaining hypotheses through removing specific paths. The 



 84

second hypothesis, that working memory directly affects computational fluency, 3D 

spatial visualization, and algebra experience was only partially supported. Although the 

paths between working memory and computational fluency and between working 

memory and 3D spatial visualization were significant and removing them reduced model 

fit, the path between working memory and algebra experience was not significant and 

removing it did not significantly affect model fit. According to the third hypothesis, 

algebra achievement is directly affected by computational fluency and 3D spatial 

visualization. Consistent with this hypothesis, the direct paths between these constructs 

were significant and removing them decreased model fit. Finally, the fourth hypothesis 

that 3D spatial visualization does not directly affect either computational fluency or 

algebra achievement was only partially supported. The path between 3D spatial 

visualization and computational fluency was not significant and removing it did not affect 

model fit; however, the path between 3D spatial visualization and algebra achievement 

was significant and removing it decreased model fit. The fit of the final model (see Figure 

8) with all nonsignificant paths removed was excellent, χ2(57) =104.84, p= .000, RMSEA 

(90% CI)=.06 (.04, .08), CFI = .97, SRMR=.05 and not significantly worse than the fit of 

the initial model. This model accounted for half of the variance in algebra achievement. 

The combined direct and indirect effects of working memory, 3D spatial visualization, 

and computational fluency on algebra achievement were .31, .31, and .45, respectively. 
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Figure 8. Final structural model. All paths were significant (p < .05). 

 

 Because algebra experience had a relatively strong relationship with achievement, 

the effect of experience on achievement was examined in more detail. An ANOVA was 

run on factors scores for algebra achievement with algebra experience as the group 

variable. Algebra experience was collapsed from six to three groups: participants who 

had only taken algebra courses (N = 27), those who had taken advanced 

algebra/trigonometry or precalculus courses (N = 100), and those who had taken calculus 

courses (N = 68). There was a significant effect of experience, F(2, 192) = 46.80, p = 

.000. Tukey post hoc analysis indicated that students who had taken calculus performed 

significantly better than those who had not taken calculus with no difference in 

performances between students who had only had algebra courses and those who had 

taken trigonometry or precalculus courses. Participants who had taken calculus correctly 

solved an average of 44 out of 60 problems, whereas participants who had taken only 



 86

algebra courses correctly solved an average of 29 problems, and those who had taken 

trigonometry or precalculus courses correctly solved an average of 32 problems. 

Structural Analyses II: Comparison of Algebra Achievement to SAT-Math 

 To examine whether or not the final cognitive model from the previous analyses 

is unique to algebra achievement as compared to more general outcomes, models with 

SAT-M as the outcome were tested. Models with SAT-V as the outcome were also tested 

to determine if the factors predicting the math constructs were unique to math or more 

indicative of domain general abilities. These analyses were based on a subsample (N = 

135) of the larger group of participants, those who granted permission to access SAT 

scores. For this group of students, mean SAT-M was 539 (SD = 79, Range: 390 to 800) 

and mean SAT-V was 530 (SD = 64, Range: 400 to 770). These scores were comparable 

to the 2005 scores for all college-bound seniors (N = 1,475,623; SAT-V Mean 508, SD 

113; SAT-M Mean 520, SD 115; The College Board, 2005), although the variance 

appeared to be lower among the study participants than the population in general. As 

Table 6 indicates, students who provided SAT scores did not appear to differ 

substantially from those who did not provide SAT scores on demographics or on the 

measures used in this study. The pattern of correlations between measures within factors 

for the reduced sample (see shaded areas of Table 7) also appeared to be similar to that of 

the larger group. 
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Table 6 

Comparisons between SAT and non SAT Groups  

Demographic/Measure SAT (N = 135)   No SAT (N = 60) 

    
 Percent 
Females 48  53 
Males 52  47 
Algebra-based course level    

One algebra course 0  2 
Two algebra courses 2  2 
Three or more algebra courses 10  14 

One or more pre-calculus or  
advanced algebra/trigonometry course 55  43 
Calculus I 30  28 
Calculus II or higher 4  10 
    
 Mean (SD) 

Age 19.4  (1.4)  19.8  (1.7) 
AAMES Algebra Test 9.9  (3.2)  10.2  (3.2) 
Algebra Equations Test 6.3  (2.3)  6.7  (2.6) 
DTMS Algebra Subtests 19.2  (6.1)  19.8  (6.5) 
DAT Spatial Relations 18.5  (6.2)  18.5  (6.1) 
3D Mental Rotation 8.7  (4.5)  9.8  (5.2) 
Subtraction/Multiplication Calculations 19.1  (6.4)  19.6  (6.9) 
Division Calculations 11.7  (5.3)  11.8  (5.7) 
Addition/Subtraction Correction 31.0  (8.7)  31.2  (8.9) 
Digit Span- Backwards 7.5  (2.2)  8.0  (2.1) 
Letter-Number Sequence 12.1  (2.7)  12.0  (2.4) 
Counting Span 34.3  (9.9)  34.7  (10.2) 
Reading Span 24.2  (6.5)   24.9  (6.7) 

Note. There were no significant differences between groups across measures (p > .05). 

  

 

 

 

 

 



 88

 

Table 7 

Correlations between Observed Variables among SAT Participants 

  Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 
1. SAT-M -             
2. SAT-V .53 -            
3. AAIMS .56 .17 -           
4. AlgebraEq .54 .07 .63 -          
5. DTMS .59 .15 .73 .71 -         
6. DAT .45 .39 .27 .12 .22 -        
7. MRT .48 .38 .25 .19 .25 .65 -       
8. Sub/Mult .33 .06 .33 .28 .27 .04 -.08 -      
9. Division .39 .13 .34 .33 .33 .06 .15 .65 -     

10. Add/Sub .45 .21 .24 .24 .22 .11 .24 .60 .64 -    
11. DSpanB .33 .15 .16 .12 .18 .11 .07 .17 .27 .18 -   
12. LNSeq .25 .27 .04 .09 .12 .15 .21 .12 .25 .32 .46 -   
13. CSpan .20 .09 .08 .03 .09 .06 .14 .30 .33 .31 .31 .39 - 
14. RSpan .26 .16 .05 .12 .04 .08 .08 .20 .24 .20 .23 .34 .53 

Note. AAIMS = AAIMs algebra test; AlgebraEq = Algebra equations test; DTMS = DTMS 

elementary and intermediate algebra subtests; DAT = spatial relations test; MRT = 3D mental 

rotation test; Sub/Mult = subtraction/multiplication computational fluency test; Division = 

division computational fluency test; Add/Sub = addition/subtraction correction test; DSpanB = 

Digit span backwards; LNSeq = Letter-number sequence; CSpan = counting span; RSpan = 

reading span. 

 

The first two columns of Table 7 show the correlations between SAT-M, SAT-V 

and the other measures. The SAT-M, unlike the algebra measures, correlated with all 

other observed variables including all of the working memory measures. The SAT-V did 

not correlate with most of the math or working memory measures, although it did 

correlate with the spatial visualization measures. Three sets of models were examined, 
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one each for algebra achievement, SAT-M, SAT-V, to determine if the pattern of 

relationships between the cognitive factors and these achievement outcomes are likely to 

differ.  

 Measurement models. The same measurement model that was used for the larger 

sample, including correlated error terms for backwards digit span and letter-number 

sequence and for reading and counting span, was analyzed for algebra achievement with 

the smaller sample as well as for SAT-M and SAT-V. As Table 8 shows, the fit for the 

algebra achievement model was excellent. The fits for the SAT models were reasonably 

good, although based on the RMSEA index, the possibility of poor fits could not be 

rejected. The fit for the SAT-M model could have been improved substantially (Δχ2 (2) = 

25.93) by allowing the subtraction/multiplication and addition/subtraction correction 

errors to correlate with the 3D mental rotation error, but as already mentioned, 

interpretation of the final model would have been problematic. For the purposes of the 

exploratory nature of these analyses, the measurement model fits were considered good 

enough to continue with examination of structural models. 

Table 8 

Fit Indices for Cognitive Models of Achievement 

Model df χ2 p RMSEA (90% CI) CFI SRMR 

Algebra Measurement 54 69.95 .07 .04 (.00, .07) .98 .04 
SAT-M Measurement 34 61.44 .00 .07 (.04, .10) .96 .05 
SAT-V Measurement 34 49.98 .04 .06 (.00, .09) .97 .05 
Algebra Structural 57 72.65 .08 .04 (.00, .07) .98 .05 
SAT-M Structural 37 62.17 .01 .06 (.03, .10) .96 .05 
SAT-V Structural 37 52.42 .05 .05 (.00, .09) .97 .05 
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 Structural models. Full structural models (see Figure 7 for example) including 

direct causal paths from working memory to the achievement variables were tested, and 

in all cases, working memory was not a significant predictor of achievement when 

controlling for other factors. Paths connecting working memory to achievement, working 

memory to algebra experience, and 3D spatial visualization to computational fluency 

were removed to replicate the model trimming procedures implemented in the first set of 

analyses. For all three achievement models, model fits were not significantly different 

without these paths (Algebra  Δχ2 (3) = 2.70, p = 0.440; SAT-M  Δχ2 (3) = 0.73, p = 

0.866; SAT-V,  Δχ2 (3) = 2.44, p = 0.486). These steps resulted in the models shown in 

Figures 9 (a), 9 (b), and 9 (c). Based on the fit indices shown in Table 8, these models fit 

the data reasonably well. 
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Figure 9. Final models for algebra achievement (a), SAT-M (b), and SAT-V (c). Starred 

path coefficients were significant (p < .05). 
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In the model for algebra achievement shown in Figure 9 (a), the paths connecting 

working memory to 3D spatial visualization and 3D spatial visualization to algebra 

achievement were not significant. This result is different than what was found in the 

larger sample and could be a function of sample size. The relative strength of the direct 

effects, however, was the same for both models. In addition, the pattern of total effects 

were similar to those found in the larger sample. The total effects of working memory, 

3D spatial visualization, and computational fluency on algebra achievement in the 

smaller sample were .27, .26, and .39, respectively. This contrasts markedly, though, with 

the relative strengths of effects on SAT-M. Based on the magnitude of the standardized 

path coefficients, algebra experience had the largest direct effect on algebra achievement 

followed by computational fluency, then 3D spatial visualization. The pattern of direct 

effects was completely reversed for SAT-M with 3D spatial visualization having the 

strongest effect, followed by computational fluency then algebra experience. The pattern 

of total effects was also different. The total effects for working memory, 3D spatial 

visualization, and computational fluency were .37, .53, and .42, respectively. The effect 

of 3D spatial visualization on SAT-V was similar in both relative and absolute strength to 

its effect on SAT-M. However, computational fluency and algebra experience had no 

effect on SAT-V supporting the hypothesis that the effects they have on math 

achievement are domain specific.   
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Structural Analyses III: Examination of the influence of cognitive factors on algebra 

achievement by gender. 

 The goal of this next set of analyses was to examine cognitive models of algebra 

achievement for potential gender differences in the pattern of relationships. All analyses 

were conducted on the entire sample (N = 195). Tables 1 and 9 show that the males had 

higher levels of math experience than the females and outperformed the females on most 

of the measures except for 3 of the 4 working memory tasks, one of the algebra tests, and 

one of the computational fluency tasks.  

Table 9 

Mean (SD) Performance by Gender 

Measure Females (N = 97) Males (N = 98) t p 
AAMES Algebra Test 9.8  (3.1) 10.2  (3.3) 0.94 0.348 
Algebra Equations Test 6.0  (2.2) 6.9  (2.4) 2.77 0.006 
DTMS Algebra Subtests 18.0  (5.9) 20.8  (6.2) 3.22 0.001 
DAT Spatial Relations 17.0  (5.6) 19.7  (6.5) 2.77 0.006 
3D Mental Rotation 7.2  (3.7) 11.0  (4.9) 6.11 0.000 
Subtraction/Multiplication 18.8  (5.8) 20.0  (7.2) 0.87 0.383 
Division 10.6  (4.6) 13.0  (5.9) 2.84 0.005 
Addition/Subtraction 28.1  (5.8) 33.9  (10.1) 4.90 0.000 
Digit Span- Backwards 7.6  (2.1) 7.8  (2.2) 0.77 0.441 
Letter-Number Sequence 11.5  (2.5) 12.7  (2.7) 3.19 0.002 
Counting Span 33.6  (9.3) 35.2  (10.6) 1.10 0.272 
Reading Span 24.3  (6.4) 24.6  (6.7) 0.28 0.780 

 

The most marked difference in performance between males and females was on the 3D 

Mental rotation task with well over a half of a standard deviation between average 

performances of males and females. More germane to the goal of these analyses, though, 

is the comparison of the patterns of correlations between measures shown in Table 10. 
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 Correlations between measures within the 3D spatial visualization and 

computational fluency factors appeared to be higher for males than females whereas 

correlations between the measures within the algebra and working memory constructs 

were similar across gender. In addition, all correlations between the 3D spatial 

visualization measures and the algebra measures were significant for the males whereas 

all but one of these correlations was not significant for the females. There was a similar 

pattern in the correlations between the computational fluency and algebra measure; 

however, about half of these correlations were significant for the females. One 

counterintuitive result for the females was a significant negative correlation between 

subtraction/multiplication and 3D mental rotation. The one similarity between males and 

females was in the pattern of correlations between algebra and working memory 

measures.  

A series of SEM models were tested to determine what these patterns meant in 

terms of structural relationships between factors across gender. To determine if there are 

gender differences, models in which parameter are constrained to be equal across gender 

must be compared to models in which the parameters are allowed to differ across gender. 

Significant differences in model fit provide support for gender differences in the path 

coefficients being tested. 
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Table 10 

Correlations between Observed Variables by Gender 

  
Measure 1 2 3 4 5 6 7 8 9 10 11 

             
1. AAMES 

Algebra 
           

2. Algebra 
Equations  

.60/    
.67 

          

3. DTMS 
Algebra 

.72/    
.79 

.68/    
.74 

         

4. DAT Spatial 
Relations 

.18/  
.45 

.01/  
.25 

.08/  
.35 

        

5. 3D Mental 
Rotation 

.20/  
.33 

.09/  
.23 

.14/  
.31 

.42/  
.68 

       

6. Subtraction/   
Multiplication 

.19/  
.43 

.21/  
.41 

.20/  
.45 

-.13/  
.15 

-.25/  
.13 

      

7. Division .36/  
.42 

.29/  
.43 

.31/  
.46 

-.07/  
.18 

-.01/  
.23 

.56/  
.75 

     

8. Addition/ 
Subtraction 

.11/  
.38 

.17/  
.32 

.14/  
.34 

-.19/  
.23 

.03/  
.31 

.60/  
.71 

.51/  
.67 

    

9. Digit Span- 
Backwards 

.09/  
.19 

.00/  
.22 

.08/  
.26 

.09/  
.09 

.08/  
.17 

.08/  
.24 

.13/  
.40 

.05/  
.25 

   

10. Letter-
Number 
Sequence 

.02/  
.11 

.09/  
.11 

.09/  
.14 

.06/  
.15 

.15/  
.22 

.03/  
.18 

.12/  
.37 

.13/  
.33 

.61/  
.42 

  

11. Counting 
Span 

.13/  
.05 

.03/  
.05 

.12/  
.03 

.11/    
-.04 

.17/  
.12 

.15/  
.28 

.21/  
.37 

.10/  
.35 

.41/  
.39 

.43/  
.39 

 

12. Reading 
Span 

.01/  
.13 

.13/  
.11 

.04/  
.09 

.16/  
-.05 

.09/  
.04 

.11/  
.24 

.16/  
.31 

.06/  
.21 

.33/  
.26 

.42/  
.30 

.48/  
.57 

Note. Females/Males. 

 

Measurement models. Separate measurement models were examined for males 

and females to determine if the 12 measures loaded onto the four factors for both males 

and females. The model fits were good for each group (females: χ2(54) =60.66, p= .25, 

RMSEA (90% CI)=.03 (.00, .08), CFI = .98, SRMR=.06; males: χ2(54) = 57.03, p= .36, 

RMSEA (90% CI)=.02 (.00, .07), CFI = 1.00, SRMR=.05). Then a combined 



 96

measurement model in which all parameters were allowed to vary across gender was 

examined. This fit of this model was also good (χ2(108) = 117.7, p= .25, RMSEA (90% 

CI)=.03 (.00, .06), CFI = .99, SRMR=.05). However, there were noticeable differences in 

some of the parameters across gender. For males, the factor loadings for 3D spatial 

visualization were both high (DAT spatial relations = .87, 3D MRT = .78) whereas for 

females, while 3D MRT loaded highly (.95), DAT loaded only moderately (.44) onto 3D 

spatial visualization. In addition, the difference between genders in the pattern of 

correlations between factors was striking (see Table 11).  

Table 11 

Correlations between Latent Variables by Gender 

  
Factor 1 2 3 4 5 

       
1. Algebra Achievement -     

2. Algebra Experience .41/ 
.70 

-    

3. Computational Fluency .34/ 
.56 

.13/ 
.33 

-   

4. 3D Spatial Visualization .19/ 
.45 

-.04/ 
.29 

-.17/ 
.27 

-  

5. Working Memory .13/ 
.22 

.30/ 
.13 

.23/ 
.60 

.20/ 
.16 

- 

Note. Females/Males 

 

 Algebra achievement did not correlate with working memory and did correlate 

with algebra experience and computational fluency for both groups. All other correlations 

appeared to differ by gender. Algebra experience correlated with working memory, but 
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not with computational fluency or 3D spatial visualization for the females, but the pattern 

of correlations was opposite for the males. Also, computational fluency correlated with 

3D spatial visualization and working memory for the males, but did not correlate for the 

females. The results of this measurement model, however, do not provide definitive 

evidence of gender differences either in relations between measures and constructs or in 

relations between constructs. 

 A second measurement model was tested in which all factor loadings and error 

terms were constrained to be equal across gender. Variances and covariances between the 

latent variables were allowed to differ across gender in order to determine the best fitting 

measurement model across the two groups before testing a structural model. There was 

no difference in fit between this model and the model in which all parameters were 

allowed to differ across gender, Δχ2 (22) = 32.72, p = .07 (overall model fit: χ2(130) = 

150.42, p= .11, RMSEA (90% CI)=.03 (.00, .06), CFI = .98, SRMR=.07). It should be 

noted that the difference in chi-square was close to being significant and perhaps with 

larger samples of males and females, the results would be different given the difference 

in loadings for spatial visualization when the groups were tested independently. 

However, because in this case the difference was not significant and for the sake of 

parsimony, a measurement model in which all factor loadings and error terms were 

constrained to be equal across gender was used for subsequent structural analyses. 

 Structural Models. The full structural model in which all causal paths between the 

cognitive factors and algebra achievement were included was tested first (see Figure 10). 
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Figure 10. Initial structural model of algebra achievement by gender. 

 

 The fit of a model in which all path coefficients were constrained to be equal across 

gender was significantly worse than one in which all coefficients were allowed to vary 

across gender, Δχ2 (15) = 44.19, p = .000 (fully-constrained model fit: χ2(145) = 194.61, 

p= .00, RMSEA (90% CI)=.05 (.03, .08), CFI = .96, SRMR=.15). Based on modification 

indices, structural paths and factor variances were freed to vary across gender, one 

parameter at a time. The results of these changes are shown in Table 12 and Figure 10. 

The fit of the resulting model was quite good, χ2(141) = 163.87, p= .09, RMSEA (90% 

CI)=.04 (.00, .07), CFI = .98, SRMR=.07) 
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Table 12 

Chi-square Differences between Gender Structural Models 

Structural Model df χ2 df Δχ2 p 
All paths constrained to be equal across gender 145 194.61    
Free path from working memory to computational fluency 144 181.78 1 12.83 0.000 
Free variance in 3D spatial visualization 143 172.70 1 9.08 0.003 
Free path from 3D spatial visualization to computational fluency 142 167.76 1 4.94 0.026 
Free variance in computational fluency 141 163.87 1 3.89 0.049 

 

Finally, removing the non-significant paths between working memory and algebra 

achievement, working memory and algebra experience, and 3D spatial visualization and 

computational fluency to reflect the final model from the first set of structural analyses 

did not affect the model fit, Δχ2 (4) = 9.22, p = .056 (final model fit: χ2(145) = 173.09, p= 

.045, RMSEA (90% CI)=.04 (.03, .07), CFI = .98, SRMR=.08). Figure 11 shows the 

results of these changes. 
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Figure 11. Final model of algebra achievement by gender. 
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 This model appears to account for more variance in algebra achievement among 

males than among females. The coefficients for the direct effects of algebra experience, 

computational fluency, and 3D spatial visualization on algebra achievement did not differ 

by gender. However, the strength of the effect of working memory on computational 

fluency did differ by gender. In fact, this path coefficient was high for males and 

nonsignificant for females.  

The unexplained variance in computational fluency and 3D spatial visualization is 

greater for males than females; however, it should be noted that the unexplained variance 

in 3D spatial visualization for males is greater than one. This is an impossible result 

because these values are standardized and a disturbance value greater than one would 

mean that more than 100% of the variance is unexplained. In addition to this result being 

impossible, the pattern of disturbance differences in the multi-group model is not 

consistent with the pattern of disturbances across the separate structural models that were 

analyzed for males and females. In these separate models, the unexplained variance in 3D 

spatial visualization was similar for males and females (.97 vs. .90). The unexplained 

variance for computational fluency was highly dissimilar across gender (.61 for males vs. 

.90 for females) in the separate models, but in the opposite direction than was the case in 

the multi-group model. The pattern in the separate models is more consistent with the 

finding that working memory explains more variance in computational fluency for males 

than for females. 

These contradictory results between the separate models for each gender and the 

single multi-group model as well as the impossible result in the multi-group model are 
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likely a function of several factors. There were large differences in the variances on the 

spatial visualization and computational fluency measures across gender. The variance in 

performance was much higher among males than females (from 32% more variance in 

the DAT Spatial Relations task to 300% more variance in the addition/subtraction 

correction task). In addition, the pattern of correlations between factors was quite 

different for males and females. The relatively small sample sizes within groups are 

likely inadequate for analyzing these extreme group differences within the imposed 

measurement and structural constraints in the multi-group model.  

Discussion 

 Algebra achievement appears to be largely a function of domain specific factors. 

Although domain general abilities are also important, their impacts on algebra 

achievement seem to be primarily mediated through more domain specific factors. The 

results of this study suggest that algebra experience and computational fluency are each 

highly related to algebra achievement, more so than either 3D spatial visualization or 

working memory. In addition, the more dominant role of algebra experience and 

computational fluency as compared to more domain general abilities seems to be unique 

to algebra achievement when compared to broader measures of math achievement such as 

the SAT-M.  

 The main hypothesis of this study was that working memory would have a direct 

effect on algebra achievement when controlling for other factors. The absence of a direct 

effect of working memory on algebra achievement clearly means this hypothesis was not 

supported. The original hypothesis was partially based on the overwhelming evidence 

that working memory is related to math achievement among children (e.g., Floyd et al., 
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2003; e.g., Swanson & Jerman, 2006) and with only two exceptions (Reuhkala, 2001; 

Rohde & Thompson, 2007), working memory is related to math achievement among 

adolescents and adults (e.g., Engle et al., 1999; e.g., Floyd et al., 2003). One of the 

suggested reasons for the inconsistencies among studies of adolescents and adults was 

that differences in the measures of working memory across studies were causing 

differences in the strength of the effects. The evidence from this study does not support 

this hypothesis.  

In this study, working memory was based on multiple measures, each 

administered individually. This method of representing working memory as well as the 

moderate correlations between the working memory measures are consistent with studies 

in which working memory is assumed to be constrained by domain general executive 

attention and has been found to be a robust predictor of abstract reasoning among adults 

(Conway et al., 2002; Engle et al., 1999; Kane et al., 2004). Furthermore, the strength of 

the relation between working memory and SAT-M scores in this study is almost identical 

to the one found between working memory and SAT-M scores in a study which was 

based on similar methodologies for measuring working memory (Engle et al., 1999). The 

low correlation between algebra achievement and working memory is also consistent 

with evidence that working memory is not related to higher level math achievement 

among adolescents (Reuhkala, 2001). In the Reuhkala (2001) study, although the 

correlation between verbal working memory and math achievement was not significant 

(and based on a much smaller sample size than the one used in this study), the size of the 

correlation coefficient was similar to the size of the correlation found between working 

memory and algebra achievement. Although in this study and the Reuhkala study, the 



 103

methodologies for measuring working memory were different, the assessment of higher 

level math achievement among adolescents and algebra achievement among adults were 

similar in that they emphasized acquired procedural knowledge over more fluid 

mathematical problem solving abilities. The results from this study in conjunction with 

the pattern of results from other studies suggest that it is not differences in measures of 

working memory that are causing the different outcomes, but differences in how math 

achievement is defined. Finally, the results from this study provide a more nuanced 

explanation for the effect of working memory on higher level math achievement than was 

suggested by evidence that working memory is not related to higher level math 

achievement when controlling for other factors such as processing speed and spatial 

abilities (Rohde & Thompson, 2007). Among adolescents and adults, it appears that 

working memory does influence higher level math achievement, but the influence is 

mediated by other cognitive factors. The evidence form this study combined with the 

evidence from the Rohde and Thompson (2007) study suggest that three of these factors 

are computational fluency, spatial processing abilities, and processing speed.  

 Another hypothesis of this study was that 3D spatial visualization would not have 

a direct effect on algebra achievement. This hypothesis was not supported by the 

evidence. Surprisingly, the strength of the correlation between 3D spatial visualization 

and algebra achievement is similar to the correlations between 3D mental rotation and 

higher level math achievement among adolescents found in two other studies (Reuhkala, 

2001). Although the math achievement measures were similar across studies in that they 

emphasized procedural knowledge, they differed in a critical way in terms of the 

expected influences of visual-spatial abilities. The math assessments in the Reuhkala 
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(2001) studies included geometry problems which is one possible reason why visual-

spatial working memory, but not verbal working memory was related to math 

achievement. None of the problems in the algebra achievement tests specifically required 

processing of 3D spatial information. Only 10% of the problems required processing of 

2D graphs or number lines.  

 One possible explanation for the unexpected effect of 3D spatial visualization on 

algebra achievement is that the direct effect of 3D spatial visualization on algebra 

achievement is primarily due to domain general processes. This hypothesis is consistent 

with evidence of the strong relationship that 3D spatial visualization has with domain 

general executive processes such as controlled attention (Miyake et al., 2001). The 

evidence from this study that verbal working memory has a direct effect on 3D spatial 

visualization and that 3D spatial visualization has a direct effect on verbal achievement 

also implicates domain general processes. It is not clear, though, what domain general 

processes are most influencing these effects. It is possible that 3D spatial visualization 

involves some domain general processes associated with working memory, processes 

which have similar effects on lower level math skills such as computational fluency. This 

conjecture is consistent with the result that 3D spatial visualization is not related to 

computational fluency when controlling for working memory. It is also possible that 3D 

spatial visualization involves some domain general process that are not involved in 

working memory and that these processes have a stronger direct effect on higher level 

math achievement than those associated with working memory, although the total effects 

of 3D spatial visualization and working memory on higher level math achievement are 

similar. The evidence from this study is consistent with, but does not provide definitive 
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support for these hypotheses. The evidence from this study does suggest that explicating 

the processes involved in 3D spatial visualization and the way in which each of these 

processes influence higher level math achievement is an area of research that needs more 

attention.  

It was expected that domain general processes would play a stronger role in 

algebra achievement than domain specific processes. However, the direct effect of 

algebra experience and the total effects of computational fluency were much higher than 

the total effects of working memory and 3D spatial visualization. Part of the explanation 

for the dominant role of algebra experience and computational fluency is likely due to the 

way in which algebra achievement is defined. In this study, algebra achievement was 

defined as symbol manipulation. This is a narrow definition of algebra achievement 

because it does not include representing and solving word problems, pattern recognition, 

modeling, and other abilities that have been suggested as key factors in algebraic thinking 

(Bell, 1996; Janvier, 1996; Mason, 1996; Rojano, 1996). However, the problems used in 

this study are typical of the type of problems found in many high school and college 

algebra curriculums and involved solving algebraic equations, simplifying algebraic 

expressions, and translating between symbolic and graphical representations of functional 

relations. Solving these types of problems involves retrieving textbook procedures and 

algorithms from long term memory and implementing them. If a procedure is not readily 

available in memory, a low or average performer may stop without trying to use 

mathematical reasoning or arithmetical means to solve the problem (Goodson-Espy, 

1998). The behavior of the participants in this study is consistent with that approach 

because the vast majority of participants stopped working on the algebra tests before they 
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were required to stop. On the algebra equations open response test, problems were often 

left blank without any apparent attempt to solve them in spite of the fact that some of 

them could have been solved by trial and error with single digit numbers (e.g., x = x2). 

For simpler problems (e.g., 2x + 3 = 5), though, the low or average performer may try 

guess-and-check (i.e., substitute 1 for x and see if this produces a correct solution, if not, 

try 2, etc.) or undoing (i.e., undo the addition of 3 by subtracting it from 5, etc.; Kieran, 

1990, 1992).  

High level performers are also likely to retrieve procedures and algorithms from 

long term memory, although they are likely to have a wider variety of algorithms 

available to them and be more fluent in implementing them. High performers are also 

likely to try other arithmetical means for solving the problems if a procedure is not 

readily available (Goodson-Espy, 1998). They may also use estimation and calculation to 

monitor progress and to determine if the final answer is correct, or on multiple choice 

problems, to test the options to determine which option is correct. Finally, high 

performers may also be flexible enough in their procedural knowledge to appreciate 

inverse relationships and use this knowledge to determine the answer when choices are 

available to them. For example, given a factoring problem such as 36x2 – 1 = , a high 

performer may factor the problem as intended, or if the algorithm for factoring is not 

easily retrieved from memory, may recognize that factoring is the inverse of 

multiplication and determine that answer using a multiplication algorithm on the 

suggested answers (e.g., (6x-1)(6x+1)), then choosing the one that matches the initial 

problem. Regardless of the level of performer, the emphasis is on procedural knowledge 

that is not intuitive and often implemented without appreciation for the concepts that 
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underlie them or the structure of the problem. The ‘delicate shift of attention’ as 

suggested by Mason (1989) is not necessarily part of the process in solving these 

problems. That is not to say that they could not be, but on this type of assessment, 

students are likely to perform almost exclusively at the procedural level, at least partly 

because that is the way they are taught and because they are reinforced for doing so 

(Sjostrom, 2000). This emphasis on procedure, both at the algebraic and numerical levels, 

may be why algebra experience and computational fluency are more influential on 

algebra achievement than is working memory and 3D spatial visualization. 

 Algebra experience has the strongest direct effect on algebra achievement. 

Fluency in algebra procedural knowledge appears to take years to develop and the key to 

true fluency may be experience at the calculus level of mathematics. In this study, 

participants who had taken calculus correctly solved almost 50% more problems on 

average than those who had not taken calculus. This type of performance is consistent 

with evidence that suggests that the typical student is unlikely to develop structural 

awareness of algebraic representations until they have experienced calculus, although 

even at this level, many students do not have a structural understanding of algebra 

(English & Sharry, 1996). However, at the calculus level, students appear to at least be 

relatively fluent in procedural knowledge. Perhaps this is due to the way in which algebra 

is treated in calculus as opposed to lower level math courses. At the calculus level, 

algebra is a tool and no longer the focus of study. Practice in algebraic manipulations in a 

calculus class is an organic part of a more complex problem solving process whereas 

practice in lower level algebra courses is often rote, repetitive, and divorced from any 

meaningful mathematical context. Perhaps this different way of experiencing algebra is 
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critical to both the development of fluency in symbolic manipulations and structural 

awareness of what those symbols represent.  

The role of algebra experience in predicting algebra achievement is not solely a 

function of actual experience in the classroom. The evidence from this study suggests that 

students who take higher level math also have more skill in computational fluency as well 

as better 3D spatial processing abilities and more working memory capacity. High school 

mathematics is considered by many to be a sieve which sifts out students without the 

resources necessary to climb the educational ladder. The percentages of students in 

college preparatory mathematics courses decline dramatically from the first year algebra 

class to precalculus (U.S. Department of Education, 1997). As a result, a minority of 

students experience calculus level mathematics. The resources that determine which 

students are a part of this select group is a subject of much debate and include social and 

political factors as well as cognitive abilities. Although some of those cognitive factors 

have been identified in this study, they account for a relatively small amount of the 

variance in algebra experience. In addition, it cannot be concluded from this study that 

the relationship between these cognitive abilities and experience level is solely or even 

primarily a causal one. Although fluency in numerical calculations may increase the 

likelihood of a student taking higher level math, it is also likely that experience in higher 

level math improves computational fluency.  

 The combined direct and indirect effects of computational fluency were as strong 

as the direct effect of algebra experience on algebra achievement. There are several 

possible reasons for this which includes both prima facie similarities between the 

computational fluency tasks and the algebra achievement assessments as well as 
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underlying causes that are less obvious. Similar to algebra achievement, computational 

fluency was defined somewhat narrowly for this study. The emphasis in the 

computational fluency tasks was on rapid multi-digit calculations which include retrieval 

of single-digit math facts from long term memory as well as retrieval and implementation 

of computational algorithms. At least part of the relationship between computational 

fluency and algebra achievement may be due to the ability to store, retrieve, and 

implement mathematical procedures independent of conceptual understanding. However, 

although speed was essential in the computational fluency tasks, it was not a manifest 

requirement in the algebra tasks. So, mathematical procedural efficiency is unlikely the 

only explanation for the relationship between computational fluency and algebra 

achievement.  

 Both low and high performers were likely to have relied primarily on procedural 

knowledge on the computational fluency tasks; however, high performers were probably 

more likely to retrieve single-digit and some multi-digit math facts directly from 

memory. In addition, high performers were probably more likely to use alternative 

methods to solve the problems such as estimation and algorithms not traditionally taught 

in the classroom. For example, in the addition/subtraction correction problems, 

computing the solution to a double digit problem then comparing it to the suggested 

answer would not necessarily be the most efficient method. A high performer is likely to 

quickly recognize that problems such as 21 – 10 = 21 or 10 + 27 = 27, are impossible 

relations whereas a low performer may automatically do the computation without 

examining the problem as a whole. Flexible and conceptually based numerical fluency 
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would increase the likelihood of high performers using estimation and other methods 

suggested earlier on the algebra achievement tests.  

The behavior of the participants in this study was consistent with the suggestion 

that low performers do the problems step-by-step whereas high performers examine them 

in a more holistic way. For example, low performers were more likely than high 

performers to show obvious signs of using standard procedures (e.g., rewrite 316 ÷ 4 in 

the more traditional long division format and solve the problem using that algorithm). 

However, it is difficult to determine from this anecdotal evidence if participants who did 

not write out the procedural steps in this way were using estimation or non traditional 

ways of determining the solutions or if they were simply performing traditional 

procedures mentally.  

 Whatever methods the participants were using to solve the computational fluency 

problems, the tendency of the high performers to not rely on paper-and-pencil notations 

suggests that they had more working memory capacity with which to maintain procedural 

steps in short term memory or to solve the problems by the flexible use of alternative 

methods. Evidence from this study is consistent with this hypothesis. Working memory 

was directly related to computational fluency and this relationship was relatively strong. 

This result is also consistent with both correlational and experimental research in which 

working memory has been found to play a direct role in computational abilities among 

adolescents and adults (DeStefano & LeFevre, 2004; Floyd et al., 2003). Because 

computational fluency mediated the relationship between working memory and algebra 

achievement, the role that working memory capacity plays in both computational fluency 

and algebra achievement is another possible reason for the strong relationship between 
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computational fluency and algebra achievement. To what extent working memory 

influences this relationship in comparison to quantitative abilities such as estimation and 

to procedural abilities cannot be determined from these results, although the absence of a 

direct effect and the moderate total effect of working memory on algebra achievement 

suggests that number sense and mathematical procedural abilities are likely the most 

critical factors in the relationship between computational fluency and algebra 

achievement.  

 Although domain general processes do play a role in algebra achievement, they 

appear to play less of a role in algebra achievement than in other domains of 

mathematics. The total effects of 3D spatial visualization and working memory on 

algebra achievement were much less than the total effect of computational fluency and 

the direct effect of algebra experience. The pattern of effects was completely different for 

SAT-M.  The total effect of 3D spatial visualization on SAT-M was twice the effect of 

3D spatial visualization on algebra achievement. Although the total effect of 

computational fluency on math achievement was similar in the two models, the effect of 

working memory was higher whereas the effect of algebra experience was substantially 

lower on SAT-M than on algebra achievement. Part of the explanation for the difference 

in these cognitive models is that the SAT-M includes geometric reasoning problems 

whereas algebra achievement does not. This probably has some influence on the 

difference in the effects of 3D spatial visualization, but given the evidence that 3D spatial 

visualization is greatly influenced by domain general processes, it seems unlikely that the 

inclusion of geometry problems entirely accounts for differences in the effects of 3D 

spatial visualization. Geometry problems would also not account for the difference in 
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total effects of working memory across the cognitive models.  The marked difference in 

the pattern of effects in the two models may be partly due to the emphasis on textbook 

procedural knowledge in algebra achievement and the lesser role this type of knowledge 

has on the SAT-M. Aside from the inclusion of geometric reasoning, SAT-M also 

requires more novel problem solving abilities. According to one analysis, 58% of the 

problems on the SAT-M require textbook style algorithms and 40% may be solved more 

quickly using estimation or insight, require insightful use of textbook algorithms, or 

require unique algorithms developed for the specific problem (Gallagher, 1992). The 

“ability to shift from algorithmic to intuitive strategies may be a critical component of 

SAT-M test performance but is less likely to be an advantage for students on classroom 

tests . . . In a classroom context, specific solution strategies are expected to be applied to 

specific types of problems.” p. 182 (Gallagher et al., 2000). The algebra assessments used 

in this study are typical of those used in a classroom context.  

The evidence from this study suggests that the type of achievement tests which 

have profound influence on a student’s options after high school differ substantially from 

the types of assessments used in the classroom not only in terms of problem types, but 

also in terms of the demands they place on different cognitive resources. In addition, 

classroom math experience appears to be less of a factor on SAT-M performance than 

domain general resources. Although this study provides some support for the hypothesis 

that classroom experience does not promote the kind of problem solving abilities that are 

a substantial part of the SAT-M, this evidence needs to be treated with extreme caution. 

In the algebra achievement model, algebra experience was reflective of actual experience 

prior to the assessment of achievement, however, it is likely that many of the participants 



 113

who had taken calculus took the SAT-M before they had completed calculus. As already 

mentioned, calculus experience seems to have a profound effect on algebra achievement. 

The type of mathematical thinking required in calculus courses may also be more 

consistent with the type of problems that require a more fluid understanding of 

mathematics found on the SAT-M. If this is the case, the relationship between SAT-M 

performance and algebra experience may be stronger if the SAT-M is taken after calculus 

and this stronger relationship may be similar to the one found between algebra experience 

and algebra achievement. A more definitive way to test this conjecture would be to 

measure both types of math achievement at the same time, and include actual math 

experience as a control variable. 

 In addition to implications as to the role of different cognitive processes in 

algebra achievement and how the pattern of relationships between these processes may be 

unique to algebra achievement, evidence from this study also has implications concerning 

gender differences in math achievement. Some researchers have suggested that the 

differences in the types of problem solving abilities promoted in the classroom from the 

types of problem solving abilities required for the SAT-M is one reason for the relatively 

large gender difference favoring males in SAT-M performance in spite of a slight female 

advantage in math grades at the high school and college levels (e.g., for review, see 

Royer et al., 1999). There is also evidence that 3D spatial abilities mediate gender 

differences in SAT-M performance (Casey et al., 1997). In this study, 3D spatial 

visualization was more highly related to SAT-M performance than it was to algebra 

achievement. In addition, there was no gender difference in the effects of 3D spatial 

visualization on algebra achievement. This suggests that 3D spatial visualization plays a 
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similar role in math achievement for males and females and because 3D spatial 

visualization is a more important factor in performance on the SAT-M than it is in 

algebra achievement, gender differences in 3D spatial abilities may have more of an 

influence on SAT-M performance that it does in algebra achievement.  

Computational fluency has received less attention than 3D spatial visualization in 

gender research related to math achievement. However, the results of this study suggest 

that it should receive more research attention, particularly the relationship between 

working memory, computational fluency, and higher level math achievement. Although 

computational fluency has a strong effect on algebra achievement for both males and 

females, and working memory is highly related to computational fluency among males, it 

is not related to computational fluency among females. This result seems counterintuitive 

and it would be a valid argument that this result is spurious given the issues with sample 

size and the disturbance values. In fact, any hypotheses or conclusions related to analyses 

of gender differences in this study must be treated tentatively. However, the gender 

difference in the relationship between working memory and computational fluency is 

similar to the gender difference found between these abilities in another, unpublished 

study (Tolar, 2005). Although no definitive conclusions can be made based on these 

results, they do provide justification for a new avenue of research. 

 One cognitive factor that was not included in the models of math achievement in 

this study was processing speed. Processing speed was not included because evidence 

suggests that it plays less of a role in math achievement than working memory among 

adolescents and adults (Floyd et al., 2003). However, a recently published study suggests 

that processing speed may have more of an effect on higher level math achievement (i.e., 
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the SAT-M) than does working memory (Rohde & Thompson, 2007). Although the 

cognitive models in this study explained half of the variance in algebra achievement and 

more than half of the variance in SAT-M performance, there was still a substantial 

amount of unexplained variance. Processing speed may be one factor that adds more 

explanatory power to the cognitive models of math achievement examined in this study. 

Conclusion 

 Math achievement is a complex construct that includes acquired knowledge and 

skills from different domains of math as well as fluid problem solving abilities. Math 

achievement is influenced by the coordination of domain specific and domain general 

cognitive resources. The ways in which these processes interact to influence achievement 

differ across definitions of math achievement, including definitions based on math 

domain (e.g., arithmetic vs. algebra) and definitions based on problem type (e.g., 

procedural vs. novel). Systematic comparisons of cognitive models of math achievement 

are an important step to developing educational programs that will improve student 

outcomes and to aligning educational programs with assessments of math achievement 

that have profound influences on educational and economic opportunities. 
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APPENDIXES 

APPENDIX A: AAIMS Algebra Content Test 

Evaluate  a2 – b ÷ 2 when a = 4 
and b = 6 
 

a)   1   
b)   5 
c) 10 
d) 13 

 

Simplify: 
3(m + 2) + 2(m – 1) 
 

a) 5m + 4 
b) 5m + 1 
c) 6m + 8 
d) 6m – 8 

Simplify:  
 6(2b – 3) – 3(2 – b) 
 

a) 15b – 24 
b) 9b – 9 
c) 9b + 12 
d) 15b + 12 

Solve: 
6c + 4 = –3c – 14 

a) −10
3

 

b) –2 
c)  2 
d)   6 

Which line on the graph is 
y + 2x = 4 ? 
 
 
 
 
 
 
 
 

a) Line A 
b) Line B 
c) Line C 
d) Line D 

Find the slope of a line through  
(1, –1) (5, 2) 
 
 
 
 

a) 1
5

 b) 3
4

 

 

c) -6 d) −4
3

 

Write the equation in slope- 
1intercept form if m = 
2

 and  

b = 3 
 
 

a) y = 2x + 3 b) y = 3x + 1
2

 

 

c) x = 1
2

y – 3 d) y = 1
2

x + 3 

Write the equation of a line 
through (5, 3) (4, 9).  Use 
point-slope form. 
 
 

a) y + 1 = 2(x – 4) 
b) y + 4 = –6(x – 1) 
c) y – 3 = –6(x – 5) 
d) y = –6x + 30 

 

 

A 

D 

C 

B 
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This graph shows the solution 
for which equation? 
 
 
 
 
 

a) x > –3 
b) 2x ≤ –6 
c) –3x > 9 
d) 3x ≥ 9 

Which of the following is a 
logical first step to solve this 
linear system using 
substitution? 
 3x + 2y = 4 
 4x + y = 7 
 
 

a) x = –2y + 4 
b) y = – 4x + 7 
c) 4 = 3x + 2y 
d) 4x = –y + 7

Solve the linear system: 
 x – y = 4 
 x + 2y = 19 
 
 
 
 

a) (–1, –5) 
b) (5, 8) 
c) (–2, 19) 
d) (9, 5) 

Simplify, with no negative 
exponents: 

6x 2y−1

2xy

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

 

 
a) 9x2 b) 3x2y3

 

c) 3x

y2
 d) 9x2

y4  

Simplify:  
 
 32  
 
 
 
 
 

a) 4 2  
b) 8 4  
c) 16 • 2  
d) 8 2  

Which function matches this 
graph? 
 
 
 
 
 
 
 
 

a) y = 1
3

x2 – 7x – 2  

b) y = x2 + 2x + 3 
1c) y = –
3

x2 + 2x – 3   

d) y = –x2 – 3  
 

Factor this trinomial: 
2x2 + 5x – 3 
 

 -8  -6  -4   -2   0   2   4   6   8 

Simplify: 
12

2x + 4
+

3x
x + 2

 
 
 
 
 
 

a) (x – 2) (x – 1) 
b) (2x – 1) (x + 3) 
c) (2x + 1) (x – 3) 
d) (x – 1) (x + 3) 

 

 
 
 
 

 a) 3x +12
3x + 6

 b) 
x +4
x +2

 

 
 c) 3 d) 9x 

 

 

 



APPENDIX B: Algebra Equations Test 

Solve the following equations. If you make an error, DO NOT ERASE. Draw one 
line through your error and continue. 
 

532 =+x  6)1(2 =+x  

4)1(2 =++ xx  xx 81557 −=+  
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73)5(27 +=+− xx  )40(5)40(9 +=+ xx  

5
10

10
5

+
−

=
x
x  

7
11

3
1

+=
x
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yyzxy 2=+         Solve for x 13
2 =
++

x
xx  

 
 

22 xx =  prtpA +=       Solve for p 

 

 



 

APPENDIX C: Math Background Sheet 

Age: ______________                              
 
College Major:  _________________________________ 
 
Gender (please circle):     Female       Male  
 
What math courses (or equivalent) did you take during high school? Please  put 
year taken next to the course. 
 
________ Algebra I    ________ Advanced Algebra/Trigonometry 
 
________ Algebra II    ________ Pre-calculus 
 
________ Algebra III    ________ Calculus 
 
Other ____________________________________ 
 
Please list the college math courses you have taken: 
 

College Math Course Semester/Year 
Taken 

   

   

   

   

   

   

   

   
 
When did you take your most recent math class (semester/year)? __________________ 
 
What was your most recent math class? _______________________________ 
 
Do you have any diagnosed learning disabilities? ______ If yes, please describe: 
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