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ABSTRACT 

IMPROVEMENTS FOR DIFFERENTIAL FUNCTIONING OF ITEMS AND TESTS 
 (DFIT): INVESTIGATING THE ADDITION OF REPORTING AN  

EFFECT SIZE MEASURE AND POWER  
by 

Keith D. Wright 
 
 

Standardized testing has been part of the American educational system for decades. 

Controversy from the beginning has plagued standardized testing, is plaguing testing today, and 

will continue to be controversial. Given the current federal educational policies supporting 

increased standardized testing, psychometricians, educators and policy makers must seek ways to 

ensure that tests are not biased towards one group over another. 

In measurement theory, if a test item behaves differently for two different groups of 

examinees, this test item is considered a differential functioning test item (DIF). Differential item 

functioning, often conceptualized in the context of item response theory (IRT) is a term used to 

describe test items that may favor one group over another after matched on ability. It is important 

to determine whether an item is functioning significantly different for one group over another 

regardless as to why.  Hypothesis testing is used to determine statistical significant DIF items; an 

effect size measure quantifies a statistical significant difference. 

This study investigated the addition of reporting an effect size measure for differential 

item functioning of items and tests’ (DFIT) noncompensatory differential item functioning 

(NCDIF), and reporting empirically observed power.  The Mantel-Haenszel (MH) parameter 

served as the benchmark for developing NCDIF’s effect size measure, for reporting moderate and 

large differential item functioning in test items.  In addition, by modifying NCDIF’s unique 

method for determining statistical significance, NCDIF will be the first DIF statistic of test items 

where in addition to reporting an effect size measure, empirical power can also be reported.   

 



Furthermore, this study added substantially to the body of literature on effect size by also 

investigating the behavior of two other DIF measures, Simultaneous Item Bias Test (SIBTEST) 

and area measure.  Finally, this study makes a significant contribution to the body of literature by 

verifying in a large-scale simulation study, the accuracy of software developed by Roussos, 

Schnipke, and Pashley (1999) to calculate the true MH parameter.  The accuracy of this software 

had not been previously verified. 
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CHAPTER 1 

INTRODUCTION 

Standardized testing has been part of the American educational system for 

decades. Controversy from the beginning has plagued standardized testing, is plaguing 

testing today, and will plague testing in the future (Gallagher, 2003). In the words of 

Gallagher, educators today “face a dilemma” (p. 83).  The dilemma is associated with the 

current legislation surrounding increased testing. Given the current federal educational 

policies supporting increased standardized testing (Hursh, 2008; Millsap & Everson, 

1993), psychometricians, educators and policy makers must seek ways to ensure that tests 

are not biased towards one group over another. 

 

Measurement in Testing 

In the field of psychometrics, a test item which separates examinees based on the 

construct being measured is considered a highly discriminating test item.  A test item 

which discriminates based on the construct being measured and not on personal 

characteristics (e.g. ethnicity) is desirable. This is considered item impact which is one 

purpose of testing. The opposite of item impact is item bias, where performance 

differences are not due to the test item’s construct, but based on group differences (e.g. 

ethnicity). Many of the standardized tests today are purported to measure a specific 

ability (Lord, 1980; Kok, 1988; Shealy & Stout, 1993; Ackerman, 1989; Oshima, Raju, & 

Flowers, 1997; Angoff, 1993).  Theoretically as stated by Rudner, Getson, and Knight 

(1980), “…tests and test items are perfectly unidimensional, that is, an item measures 

only one ability and all items of a test measure the same ability” (p. 215).  
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The tenet of unidimensionality is theory-based because in practice, 

unidimensionality is difficult to attain (Rudner, Getson, & Knight, 1980). For a test 

measuring vocabulary using sentence completion test questions, this type of test item 

would require a strong vocabulary and also an understanding of complex sentence 

structures (Clauser & Mazor, 1998). If the test item purports to measure only vocabulary 

the primary ability being measured, and sentence structure comprehension is a secondary 

ability being measured, the test item may favor one group over another.  If one group 

overall has a higher level of sentence structure comprehension, the other group could be 

at a disadvantage.  In measurement theory, this item may be behaving differently for the 

two groups, hence, a differentially functioning test item (DIF).  

Differential item functioning, often conceptualized in the context of item response 

theory (IRT), is a term used to describe test items that may favor one group over another 

after matched on ability. A lack of unidimensionality is just one factor that may be 

causing a test item to exhibit DIF. It is important to determine whether an item is 

functioning significantly different for one group over another regardless as to why.  

Hypothesis testing is used to determine statistical significant DIF items (Monahan, 

McHorney, Stump, & Perkins, 2007). 

 

Statistical Significance versus Practical Significance 

When hypothesis testing is conducted and a test item is flagged as significant, this 

test item is functioning differently for examinees being measured.  Typically, when test 

items are categorized as DIF, test publishers may remove these test items from the test 

bank.   
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Constructing standardized tests is an arduous and costly process (Ramsey, 1993).  A cost 

as described by Zieky (1993) is the fact that “…the decisions associated with DIF are 

likely to be scrutinized in the adversarial arenas of legislation and litigation” (p. 337).  

Given the laborious nature of test construction and its cost, flagging a test item based 

only on hypothesis testing is not sufficient evidence to remove the test item. An effect 

size measure can be used in conjunction with a significant finding, to determine if DIF is 

large enough to warrant removal of the test item (Cohen, 1988; Kirk, 1996; Hidalgo & 

Lopez, 2004; Monahan, et al., 2007).   

Why use an effect size if an item exhibits statistically significant DIF?  DIF 

statistical techniques require large sample sizes. It is well known, the larger the sample 

size, the higher the probability of yielding a statistical significant finding.  Moreover, an 

insignificant finding with a small sample may have a meaningful effect size.  Statistical 

significance does not guarantee practical significance; therefore, an effect size helps to 

quantify an insignificant finding with small samples, and a statistical significant finding 

with large samples. 

 

The DFIT Framework 

Understanding the DIF statistics available and their differences is important for 

policymakers, practitioners, and researchers.  Standardized tests are used to make high-

stake decisions and the score an examinee receives can have life changing implications. 

Research related to DIF can be seen in the literature as early as 1910 (Camilli & Shepard, 

1994).  
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Since 1910 there have been numerous procedures related to the detection of differentially 

functioning test items (Clauser & Mazor, 1998; Camilli & Shepard, 1994; Shealy & 

Stout, 1993).  But as stated by Clauser and Mazor, “…a relatively small number of these 

methods have emerged as preferred” (p. 32). Is one DIF method better than another?  

This is a difficult question to answer given the evolution of the DIF methods.   

DIF methods in the beginning were designed to assess dichotomously scored test 

items.  These methods have evolved whereby dichotomous and polytomous test items can 

be investigated.  DIF methods today can also evaluate individual test items as well as the 

entire test. The methods today can investigate both uniform and non-uniform DIF.  

Finally, the violation of unidimensionality can be tested, that is testing for 

multidimensionality. The concept of unidimensionality is related to a test item measuring 

one ability; the concept of multidimensionality is related to a test item measuring more 

than one ability. A problem with the many DIF statistics is the specialty nature in which 

they were initially developed, that is one size does not fit all.  The DFIT framework is a 

new and promising DIF statistic (Raju, 1988; Oshima & Morris, 2008; Osterlind & 

Everson, 2009).   

The DFIT framework can be used for investigating, (a) dichotomous and 

polytomous test items; (b) individual test items along with the entire test; (c) uniform and 

non-uniform DIF; and (d) the presence of multidimensionality. Finally, most utilized DIF 

statistics report an effect size measure (Monahan et al, 2007).   The DFIT framework 

currently does not employ an effect size measure.  If DFIT is to continue to gain 

prominence among practitioners, an effect size measure is highly desirable. 
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Empirical Observed Power 

DFIT’s statistical significance test is a highly unique method.  The test is called 

the item parameter replication (IPR) method (Oshima, Raju, & Nanda, 2006).  The 

uniqueness of the IPR method is associated with as stated by Oshima and Morris (2008), 

“produces an empirical sampling distribution of NCDIF under the null hypothesis that 

focal and reference groups have identical parameters” (p. 47). If an empirical sampling 

distribution of NCDIF under the alternative hypothesis is determined, empirical power 

may be estimated. A DIF technique being able to report a statistical significance or lack 

of significance finding, with an effect size and power, is a matter of promoting excellent 

statistical practices (Kirk, 2001).  DFIT would be the only DIF technique with this 

capability. 
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CHAPTER 2 
 

REVIEW OF THE LITERATURE 
 

DIF methods can be classified into one of two categories, parametric and 

nonparametric DIF procedures.  The parametric category in the literature today is often 

referred to as item response theory.  IRT methods employ explicit measurement models 

(e.g. 1PL, 2PL, 3PL, etc).  Nonparametric procedures do not rely on specific 

measurement models for assessing DIF.  These procedures are referred to in the literature 

as contingency table approaches or general non-IRT approaches (Camilli & Shepard, 

1994).  The most utilized nonparametric procedures are (a) Mantel-Haenszel (MH); (b) 

Standardization; (c) Logistic Regression; and (c) SIBTEST.   

 

Mantel-Haenszel Procedure  

In studying the likelihood of getting a disease based on factors that are present or 

not, the study of matched groups utilizing contingency tables was introduced by Mantel 

and Haenszel (1959). MH as a practical technique to determine if a test item is 

functioning different for two groups of examinees was first proposed by Holland (1985).  

Holland and Thayer (1988) provided the landmark study which explains in great detail 

the use of MH as a DIF technique. 

MH is arguably the most widely used contingency table approach to studying DIF 

(Clauser & Mazor, 1998).  The first step in using the MH approach is to setup a 

contingency table for each ability group.  When analyzing a test item for DIF, it is 

important to group (i.e. match) examinees based on ability.  Typically, total test score is 

used as the matching criteria to group examinees.   
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As an example, consider a test item being studied for DIF, whereby 1000 examinees 

hypothetically answered a test item which was part of a 40 item test.  Furthermore, it has 

been determined to create four ability groups based on total test scores. The first group in 

this example could be those examinees who had a total test score between 0 – 10 correct, 

the second group had a total test score between 11 - 20 correct, the third group had a total 

test score between 21 – 30 correct, and the fourth group had a total test score between 31 

– 40 correct. In this example, you would not want to compare those in the first group with 

any of the other three groups because based on total test score, their ability differs.  The 

importance of matching examinees is a matter of comparing the comparables (Dorans & 

Holland, 1993).  It would not make practical sense to study DIF for examinees with 

different abilities because this would not be DIF, but impact.  As noted by Clauser and 

Mazor, “…examinees from different groups may in fact differ in ability, in which case 

differences in performance are to be expected” (p. 31).  

The null hypothesis for the MH statistic states that the odds for the focal group 

answering the test item correctly is the same as the odds for the reference group.  

Conversely, the alternative hypothesis states that the odds for the focal group answering 

the test item correctly are not the same as the odds for the reference group.  Equations 1 

and 2 respectively represent the null and alternative hypotheses for the MH statistic. 

fj

fj

rj

rj
0

Q
P    

Q
P:H α=  j = 1, 2, 3, …, k α  = 1   (1) 

fj

fj

rj

rj
1

Q
P    

Q
P:H α=  j = 1, 2, 3, …, k α ≠1   (2) 
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In Table 1, Aj represents the total number of reference group examinees in jth group who 

answered the test item correctly. Bj represents the total number of reference group 

examinees in jth group who answered the test item incorrectly.  Nrj represents the total 

number of reference group examinees for jth group, that is, Aj and Bj summed. Based on 

these values, Prj can be determined. Prj is the probability of answering the test item 

correctly, for a reference group examinee in the jth group.  Prj can be calculated by 

dividing Aj by Nrj. Qrj is the probability of answering the test item incorrectly.  Qrj can be 

calculated by dividing Bj by Nrj.  This is the same as 1 minus the probability of answering 

the test item correctly.  Cj, Dj, Pfj and Qfj represent focal group values, which are 

interpreted and calculated as described for the reference group.  

The odds for the reference group answering the test item correctly divided by the 

odds for the focal group answering the test item correctly will be the odds ratio.   

Alpha (α) in Equation 1 is the odds ratio for the MH statistic, which measures the size of 

the difference between the reference group odds and the focal group odds. The cross-

product of the odds ratio is given in Equation 3. Alpha (α) in Equation 1 and Equation 2 

is equal to this cross-product. 

Odd Ratio Cross Product = 
rjfj

fjrj

QP
QP   j = 1, 2, 3, …, k (3) 

Table 1 2x2 Contingency Table - Data for jth Ability Group 

 Test Item Score  1 0 Total 

Reference Group  Aj (Prj) Bj (Qrj) Nrj  

Focal Group  Cj (Pfj) Dj (Qfj) Nfj 

Total  M1j Moj Tj 
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When α is equal to 1, the odds for the focal group answering the test item correctly is the 

same as the odds for the reference group, hence, the null hypothesis.  If the odds for the 

reference and focal groups are not the same, α ≠ 1.  The value (i.e. effect size) of α 

indicates how much more likely (i.e. multiplicative) the odds for the reference group is 

for answering the test item correctly over the focal group. The equation in 4 estimates α, 

MH

Λ

α  = 
∑
∑

jjjj

jjjj

TCB
TDA

/
/

       (4) 

The effect size α, is a value with a range from 0 to ∞, where a value of 1 specifies 

the absence of DIF (Dorans & Holland, 1993). Holland and Thayer (1988) modified 

MH

Λ

α , Equation 5, to make it easier to interpret for those familiar with the Educational 

Testing Service’s (ETS) delta metric for item difficulty. In making an odds ratio (i.e. α) 

easier to interpret, the odds ratio is converted to log odds.  Log odds provide a metric 

with a range of negative infinity to positive infinity, which is symmetric around zero.  

Note, when α equals one, indicating the odds for reference and focal are the same, natural 

log of one is zero, resulting in the ∆MH being zero.  When ∆MH is zero, the odds ratio α is 

one, indicating that the reference and focal groups odds are the same for getting a test 

item correct.  A negative value for ∆MH would indicate a test item favoring the reference 

group, positive values favoring the focal group (Holland & Thayer, 1988). 

∆MH = -2.35ln ( MH

Λ

α )       (5) 

The ETS’s DIF classification rules based on effect size measured by ∆MH, is 

categorized as A, B or C.  
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“A” represents negligible DIF, “B” represents moderate DIF, and “C” represents large 

DIF (Zwick & Ercikan, 1989; Dorans & Holland, 1993; Hidalgo & Lopez, 2004).  

Equations 6, 7 and 8 define these classifications based on ∆MH. 

A (Negligible DIF)  = |∆MH| < 1    (6) 

B (Moderate DIF)  =  1 ≤ |∆MH| < 1.5    (7) 

C (Large DIF)  = |∆MH| ≥ 1.5    (8) 

In summary, (a) for Category A, MH Delta not significantly different from 0 (Alpha = 

.05) or absolute value of MH Delta < 1.0; (b) for Category B, MH Delta not significantly 

different from 0 and absolute value of MH Delta >= 1.0 or MH Delta significantly 

different from 0 and absolute value of MH Delta >= 1.0 but < 1.5; (c) for Category C, 

MH Delta significantly different from 1 and absolute value of MH Delta >= 1.5. 

The MH statistic tests the null hypothesis with a chi-square test. .  Equation 9 

illustrates the formula for testing the null hypothesis, specifically that α = 1.  All of the 

variables in Equation 9 are found in Table 1. As with the familiar Pearson’s chi-square 

statistic, the observed and expected cell frequencies are compared for discrepancies. 

Camilli and Shepard (1994) explain the most important aspect of the MH chi-square test 

by stating this related to Aj – E(Aj) in Equation 9, “This represents the discrepancy 

between the observed number of correct responses on the item by the Reference group 

and the expected number” (p. 120).  If the observed correct frequency count for the 

reference group (i.e. Aj) is higher than the expected count (i.e. E(Aj) ), the potential for 

DIF favoring the reference group exists.   
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Conversely, if the observed correct frequency count for the reference group (i.e. Aj) is 

less than the expected count (i.e. E(Aj) ), the potential for DIF favoring the focal group 

exists. 

( )∑
∑ −∑
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TT
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 Standardization Procedure  

Dorans and Kulick (1983, 1986) first applied the standardization procedure on the 

Scholastic Aptitude Test (SAT) to assess DIF on test items.   Although in the literature 

(Camilli & Shepard, 1994; Clauser & Mazor, 1998; Monahan, et al., 2007) the 

standardization method is described as a procedure used  to assess DIF, as stated by 

Dorans and Holland (1993), “…Mantel-Haenszel was selected as the method for DIF 

detection and standardization was selected as the method for DIF description” (p. 59). 

The specific reason for this classification of the two methods was not explicitily clear in 

Dorans and Holland, but may be attributed to the fact that the standardization procedure 

lacks a significance test. The standardization procedure as a method used to assess DIF 

can be found in numerous research studies (Clauser & Mazor, 1998). The popularity of 

this procedure is more than likely associated with its simplicity in calculating the 

standardization DIF measure.  The major drawback already stated is the lack of a test of 

significance (Clauser & Mazor, 1998).  

Equation 10 specifies the formula for calculating the standardized p-difference 

(STD P-DIF) DIF measure.  
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Pfj, Prj and j are defined as described in Table 1. Kj and Wj are the only new terms being 

introduced.  The standardization procedure is so named because of the variable Wj 

(Dorans & Holland, 1993). 
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∑
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DIF-P STD  , Wj = Kj/ΣKj   (10) 

In calculating the standardized p-difference, the proportion correct on an item for the 

focal group is subtracted from the proportion correct on the same item for the reference 

group, for each jth ability group.  The standardized p-difference (STD P-DIF) based on 

the formula in Equation 10 is a value with a range from -1 to +1. If a test item is behaving 

the same for the focal and reference ability groups, the STD P-DIF measure will be zero 

indicating no DIF.  If the item is favoring the reference group based on the proportions 

calculated, the difference between (Pfj - Prj) will be negative.  If a test item is favoring the 

focal group, the difference between (Pfj - Prj) will be positive.  This can be seen in Table 

2, column 6 for fourth ability groups. 
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Table 2 

Proportions Correct & Frequencies for Reference/Focal Ability Groups 

Ability 

Groups 

Prj  Nrj Pfj Nfj (Pfj – Prj) Wj = Kj/ΣKj  Wj(Pfj – Prj) 

0 - 10 .6667 3 .5000 4 -.1667 .0656 -.0109 

11 - 20 .3684 6 .3539 10 -.0145 .1639 -.0024 

21 - 30 .6667 25 .5000 27 -.1667 .4426 -.0738 

31 - 40 .5833 18 .7500 20 .1667 .3279 .0547 

      STD P-DIF = -.0324 

 

Standardization as a name describing the standardized p-difference procedure is 

based on the variable Wj. The standardized p-difference uses a standard weight as defined 

by Wj in Equation 10. Kj is typically equal to Nfj which is the number of examinees at jth 

ability group for the focal group. Wj is a weighting factor used to discriminate between 

the calculated differences at each ability group (i.e. (Pfj – Prj) ). In Table 2, column 6, the 

calculated difference between the first and third ability groups is the same, a negative 

.1667. A greater weight should be given to the difference observed for the third group 

given the total number of examinees (i.e. 52) in this ability group, as compared to the 

total number of examinees (i.e. 7) in the first ability group.  An average could be used 

and applied as the weight for each ability group, but this would give equal weight to each 

difference calculated.  Using a weighting factor, Wj at each ability group will result in the 

greatest weight to differences in Pfj and  Prj at those ability groups most frequently 

achieved by the focal group under study (Dorans & Holland, 1993).  
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This can be seen in Table 2 where the weighting factor for the first ability group is .0656 

and for the third ability group is .4426. The third ability group weighting factor is higher 

given the significant difference in the number of examinees at this ability group, that is, 

the -.1667 difference is more meaningful as related to this ability group.  

In assessing whether or not the difference that exists between Pfj and Prj warrant 

further investigation, an effect size for STD P-DIF is available (Dorans & Holland, 

1993).  In Table 2, STD P-DIF was calculated as a hypothetical example to demonstrate 

the simplicity and utility of the standardized p-difference procedure.  The calculated 

value in the example is a value of -.0324.  Does this test item based on this value warrant 

further investigation?  Based on Dorans and Kulick’s (1986) effect size recommendations 

the answer is no, differences in proportions between the focal and reference groups for 

the hypothetical example are negligible.  The effect size recommendation is, (a) 

negligible DIF based on the calculated standardized p-difference having a value between 

-.05 and +.05; (b) moderate DIF based on the calculated standardized p-difference having 

a range between -.10 and -.05; and (c) large DIF based on the calculated standardized p-

difference having a value beyond -.10 or +.10.   

 

Logistic Regression Procedure  

The logistic regression procedure is considered a general non-IRT method for 

assessing DIF (Camilli & Shepard, 1994). Logistic regression as a DIF detection 

procedure does not employ specific measurement models like true IRT methods.   
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Swaminathan and Rogers (1990) introduced logistic regression as a DIF detection 

procedure, which is arguably comparable if not better than MH in assessing differential 

item functioning (DIF).  A primary advantage of using the logistic regression method is 

its ability to detect non-uniform DIF (Monahan, et. al., 2007; Clauser & Mazor, 1998; 

Camilli & Shepard, 1994; Swaminathan & Rogers, 1990).  Uniform DIF exists when a 

test item favors one group over another over the entire ability continuum. Non-uniform 

DIF exists when a test item favors one group over another for just part of the ability 

continuum. The group disadvantaged for the first part becomes the group being favored 

over the second part of the ability continuum.  Neither MH nor the standardized method 

provides the ability to detect non-uniform DIF. 

There are two main equations associated with the logistic regression method. 

Equation 11 represents the first equation, and Equations 12, 13, and 14 represent the 

second main equation.  The differences between Equations 12, 13, and 14 will be 

discussed when logistic regression hypothesis testing is presented.  Pj represents the 

conditional probability for answering a test item correctly. When Pj differs between the 

reference group and focal group the test item is exhibiting DIF.  The logit(p)’ in 

Equations 12, 13, and 14 is called the logit function for logistic regression. A logit can be 

transformed into odds by the expression elogit(p)’, with odds the probability can be 

determined, see Equation 11. When logit(p)’ is greater for the reference group, the 

reference group will have a higher probability of answering a test item correctly, hence, a 

differential functioning test item. 
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Model 1: XGGXpit 3210)'(log ββββ +++=     (12) 

Model 2: GXpit 210)'(log βββ ++=      (13) 

Model 3: Xpit 10)'(log ββ +=       (14) 

The logit function in Equations 12, 13 and 14 is a function which specifies the 

linear combination of the predictor variables, in a logistic regression analysis of DIF. β0 is 

the intercept, β1 is the total test score coefficient, β2 is the group membership coefficient, 

β3 is the interaction coefficient (i.e. a test of non-uniform DIF), X is the observed total 

score for an examinee, and G represents group membership defined as either reference or 

focal group. β2 can also be viewed as the combined log odds ratio as defined by the MH 

procedure, see Equation 3.   If β2 differs significantly from zero, the odds of getting an 

item right are not the same for the reference and focal group. Given that X represents 

total test score for an examinee, it should be no surprise that β1 is always mostly 

statistically significant.  It should be expected that an examinee with a higher test score 

have higher odds of getting a test item correct (Camilli & Shepard, 1994).  If β3 is not 

significant, non-uniform DIF is not present. In summary, when β3 = 0, β2 ≠ 0, and β2 is 

significantly different than 0, uniform DIF exist. 

Hypothesis testing for logistic regression is conducted in several steps whereby 

model parsimony is the goal.  A model is parsimonious when the least number of 

coefficients are estimated.  Hypothesis testing begins by comparing Model 1 and Model 2 

as specified in Equations 12 and 13 respectively. If the term β3 in Model 1, a test of non-

uniform DIF is not significant, Model 2 against Model 3 is then tested.  
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If the term β2 in Model 2, a test of uniform DIF is not significant, Model 3 is the final 

model for specifying the logit (Camilli & Shepard, 1994). MH requires determining and 

grouping examinees based on ability which is a statistically arbitrary process.  Logistic 

regression does not require groupings by ability.  For instance, a test of β2 uniform DIF is 

a test of its strength in predicting logit(p)’ in and of itself factoring out ability β1 and non-

uniform DIF β2. Controlling or factoring (i.e. partial correlation) out other predictors is a 

tenet of regression analysis. 

In the literature related to logistic regression, many different metrics have been 

reported to assess effect size.  These methods do not utilize instinctive metrics that can be 

derived from logistic regression, more specifically the odds ratio (Monahan, et. al., 2007).  

The logistic regression odds ratio is defined by Equation 15.  It represents the reference to 

focal group odds of answering a test item correctly, conditioned on ability which is 

defined by total test score.  The expression ⎟
⎠
⎞

⎜
⎝
⎛ Λ

2exp β represents the multiplicative change 

in odds for a member of the reference group answering a test item correctly, on average, 

holding the other predictors in the logit function constant. 

⎟
⎠
⎞

⎜
⎝
⎛=

ΛΛ

2exp βα LR        (15) 

As stated earlier, the null definition of DIF for logistic regression exists when β2 = 0, 

therefore, LR

Λ

α = 1.  
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As with Mantel-Haenszel’s MH

Λ

α , when LR

Λ

α equals 1, the odds for the reference group 

answering the test item correctly is the same as the odds for the focal group.  As with 

MH

Λ

α , LR

Λ

α is not symmetric around 0.  Using Holland and Thayer’s (1988) conversion 

formula, LR
Λ

Δ  can be defined similar to MH
Λ

Δ , see Equation 16. 

LR
Λ

Δ  = -2.35ln ( LR

Λ

α )       (16) 

The ETS’s DIF classification rules based on effect size (Zwick & Ercikan, 1989; 

Hidalgo & Lopez, 2004) now measured by LR
Λ

Δ  can be summarized similarly to MH, (a) 

for Category A, LR
Λ

Δ is not significantly different from 0 or LR
Λ

Δ  absolute value is less 

than 1; (b) for Category B, LR
Λ

Δ  is significantly different from 0, LR
Λ

Δ  absolute value is at 

a minimum 1, and LR
Λ

Δ  absolute value is less than 1.5; (c) for Category C, LR
Λ

Δ  is 

significantly different from 0, LR
Λ

Δ  absolute value is at a minimum 1.5.  Note LR
Λ

Δ  

absolute value is at a minimum 1.5 when β2 = .4255, that is LR

Λ

α  = e.4255 = 1.53.  

 

SIBTEST Procedure 

The DIF statistics presented in this dissertation, MH, Standardization, and 

Logistic Regression, were each developed with the premise of determining and 

measuring DIF, but each fail to address the underlying causes of DIF.   
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Shealy and Stout (1993) introduced Simultaneous Item Bias Test (SIBTEST) as a 

procedure to measure DIF, but also as a method to determine a possible underlying cause 

of DIF, specifically multidimensionality.  Multidimensionality in the literature is 

identified as one factor contributing to test items functioning differently between groups 

(Oshima & Miller, 1992; Shealy & Stout, 1993; Roussos & Stout, 1996a).  SIBTEST 

closely resembles Dorans and Kulick’s (1983, 1986) standardization DIF procedure, but 

with many important improvements (Clauser & Mazor, 1998). SIBTEST provides a 

mechanism for not only detecting single item DIF, but multiple item DIF, known in the 

literature as differential test functioning (DTF).  Dorans and Kulick’s standardization DIF 

procedure lacks a test of significance which is another improvement provided with 

SIBTEST.  Finally, unlike MH and standardization where observed scores are used to 

match examinees, SIBTEST provides a regression correction procedure to mitigate the 

limitation of using observed scores which contain measurement error (Gierl, Gotzmann, 

& Boughton, 2004).  

SIBTEST null and alternative statistical hypotheses are represented in Equation 

17. The parameter βUNI specifies the presence or absence of DIF.  As can be seen in 

Equation 17, DIF is innocuous when βUNI  = 0.  

0:  vs.0: 10 ≠= UNIUNI HH ββ       (17) 

The specifics of βUNI are defined by Equation 18.   

∫= )()()( θθθβ dfFBUNI       (18) 

βUNI is defined by three parts, )(θB , )(θfF and )(θd .   
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As with the standardization procedure, DIF is measured by the difference in probability 

of answering a test item correctly between the reference and focal groups conditional on 

ability, that is, )(θB equals the difference between P )R,(θ - P )F,(θ . The variable 

)(θfF is a probability density function for the focal group’s thetaθ  and )(θd is the 

differential of theta (Gierl, Gotzmann, & Boughton, 2004). Theta is considered a 

continuous random variable which can assume an unbounded range of values.  Therefore, 

having defined a probability density function of theta along with the differential of theta, 

the difference in probability of a correct answer on a test item, between the reference and 

focal group can be calculated for any focal group examinee’s ability level between 

negative infinity and positive infinity. More eloquently stated by Gierl, Gotzmann, and  

Boughton, “ )(θB is integrated overθ to produce βUNI, a weighted expected mean 

difference in probability of a correct response on an item between reference and focal 

group examinees who have the same ability” (p. 244).  

An estimate of βUNI is provided by UNI
Λ

β  defined in Equation 19.  

∑
=

Λ

=
K

k
kkUNI dp

0
β        (19) 

Examinees are divided into subgroups conditional on ability.  The total number of 

subgroups is defined by K, and a specific ability subgroup is defined by k as illustrated in 

Equation 19.  As with the standardization procedure a weighting factor is specified by Pk 

which is the proportion of focal group members in subgroup k.  The variable dk equals 

KRP
*

 - KFP
*

, which specifies the difference in adjusted means on the test item under study 

for the reference group and focal groups based on each subgroup k (Gierl, Gotzmann, & 
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Boughton, 2004).  The means are adjusted using a regression correction procedure as 

outlined in Gierl, Gotzmann, and Boughton.  An overall statistical test for βUNI is defined 

by Equation 20.  The statistic SIB has a normal distribution where the mean is 0 and a 

standard deviation is 1 when the null hypothesis is true (Gierl, Gotzmann, & Boughton, 

2004). The standard error of βUNI is represented in Equation 20 by ⎟
⎠
⎞

⎜
⎝
⎛ Λ

Λ
UNIβσ .   

 

⎟
⎠
⎞

⎜
⎝
⎛

=
Λ

Λ

Λ

UNI

UNISIB

βσ

β
       (20) 

SIBTEST’s effect size guidelines were initially defined by Nandakumar (1993).  

These guidelines are not comparable to the ETS’s classification of negligible, moderate 

and large DIF. Given the extensive research, popularity, and familiarity of the ETS’s 

classifications of DIF, Roussos and Stout (1996b) devised a method by which values 

of
Λ

UNIβ could be interpreted using the ETS’s classifications.  
Λ

ΔMH and 
Λ

UNIβ are different 

metrics not on the same scale, therefore, as stated by Roussos and Stout (1996b), “no 

strict mathematical relationship exists between the two estimators that allows 
Λ

Δ  cutoff 

values to be converted to equivalent 
Λ

β  values” (p. 219). Research has shown that these 

two estimators are highly correlated (Dorans & Holland, 1993).  Given that the absence 

of DIF for both metrics, their values equaling zero, Roussos and Stout (1996b) defined an 

approximate linear relationship as 
Λ

UNIβ = K*
Λ

Δ .   
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The constant K is defined as a constant with an approximate value of -17 for 3PL data 

based on research by Roussos and Stout (1996b). K is defined as a constant with an 

approximate value of -15 for 1PL and 2PL data based on research by Shealy and Stout 

(1993).  

The ETS’s DIF classification rules based on effect size can now be measured by 

Λ

UNIβ , summarized similarly to MH for 1PL/2L models, (a) for Category A, 
Λ

UNIβ  is not 

significantly different from 0 (Alpha = .05) or absolute value of
Λ

UNIβ  <  .067; (b) for 

Category B, 
Λ

UNIβ  not significantly different from 0 and absolute value of
Λ

UNIβ  >= .067 

or
Λ

UNIβ  significantly different from 0 and absolute value of
Λ

UNIβ  >= .067 but < .10; (c) for 

Category C, 
Λ

UNIβ  significantly different from 0 and 
Λ

UNIβ  >= .10.   

The ETS’s DIF classification rules based on effect size can now be measured by 

Λ

UNIβ , summarized similarly to MH for the 3PL model, (a) for Category A, 
Λ

UNIβ  is not 

significantly different from 0 (Alpha = .05) or absolute value of
Λ

UNIβ  <  .059; (b) for 

Category B, 
Λ

UNIβ  not significantly different from 0 and absolute value of
Λ

UNIβ  >= .059 

or
Λ

UNIβ  significantly different from 0 and absolute value of
Λ

UNIβ  >= .059 but < .088; (c) 

for Category C, 
Λ

UNIβ  significantly different from 0 and 
Λ

UNIβ  >= .088. In concluding the 

discussion on SIBTEST, it is important to note that this statistic also lacks a non-uniform 

test of DIF.   



23 
 

 
 

Nonparametric procedures were explained in great detail as statistical methods for 

assessing whether a test item behaves differently for different groups of examinees.  

Table 3 provides a summary of the most utilized non-parametric DIF statistics today with 

its effect size. 

 

Parametric DIF Procedures 

Parametric procedures’ foundation is based on estimating ability and test item 

parameters for reference group and focal group examinees.  Depending on the model 

selected to fit the data, the number of parameters being estimated can vary.  In discussing 

different IRT models, Oshima and Morris (2008) state, “A variety of IRT models have 

been developed to address different types of item response formats” (p. 44). For instance, 

the 1PL model (Rasch, 1960) defines one parameter, the 2PL model (Choppin, 1983) 

defines two parameters, and the 3PL (Birnbaum, 1968) model defines three parameters.  

There are numerous IRT Models typically categorized as dichotomous or polytomous. 

Dichotomous IRT models handle test response data in the format of a correct response 

(i.e., 1) or an incorrect response (i.e., 0).  Polytomous IRT models can estimate 

probabilities beyond just either correct or incorrect answers.  Polytomous models can 

estimate probabilities based on an examinee choosing a specific answer.  In other words, 

what is the probability of an examinee selecting a specific answer out of five choices?  

IRT models the functional relationship between item responses from a test and an 

examinee’s position on the underlying latent ability purported to be measured by the test 

(Oshima & Morris, 2008). 
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The probability of an examinee in a specific ability group answering a question correctly 

is still calculated similarly to the contingency table procedures.  For each ability 

level measured defined by thetaθ , the proportion of examinees getting the answer correct 

is used to determine the initial probability for that ability level.  Although this method is 

similar to the contingency table procedures, important differences exist.  The true ability 

of an examinee from a conceptual perspective is measured on a continuous scale (see 

Figure 1), as opposed to a discrete scale.  The parametric item characteristic curve (ICC) 

in Figure 1 is interpreted as the probability correct for a randomly identified examinee in 

the population, not the probability correct based on proportions as defined with 

contingency table approaches. Once parameters are estimated using likelihood statistics, 

the probability determined is referred to as the likelihood of a randomly selected 

examinee in the population of abilityθ  (Camilli & Shepard, 1994). This interpretation is 

made possible because the proportions are used a priori.  

IRT methods define DIF as a significant difference between ICCs, see Figure 1.  

In the case of dichotomous models, there are two ICCs, one for the reference group and 

one for the focal group.  If DIF is not present the ICCs will overlap, therefore, the 

example in Figure 1 is a case where DIF exists.  Throughout the ability continuum, a 

member of the reference group in comparison to a member of the focal group at the same 

ability level, the reference group member has a higher probability of answering this test 

item correctly. 
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Figure 1. Illustration of a Test Item ICC for Reference and Focal Groups Displaying DIF. 

 

Before determining if DIF exists using the IRT approach, as noted by Oshima and 

Morris (2008), “One has to, of course, allow for sampling error.  However, the gap can be 

larger than what would be expected due to sampling” (p. 46). Several statistical 

techniques were developed to determine if the difference between the two ICCs is 

statistically significant.   
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Lord (1980) chi-square method compares the item parameters between the two groups, 

Raju (1988) area measure estimates the area between the two ICCs, Thissen, Steinberg, 

and Wainer (1988) likelihood ratio test compares the fit of the model with and without 

separate group parameter estimates, and differential functioning of items and tests (DFIT) 

framework methods (Flowers, Oshima, & Raju, 1999; Oshima, Raju, & Flowers, 1997; 

Raju, van der Linden & Fleer’s, 1995) uses a cutoff score for each test item to flag DIF.  

The cutoff score is determined by producing a 95 or 99 percentile rank score from a 

frequency distribution under the DIF = 0 (null hypothesis) condition. 

 

Parametric versus Nonparametric Procedures 

There have been many studies investigating the strengths and weaknesses 

between parametric versus nonparametric DIF procedures.  All DIF methods regardless 

of the classification yields aberrant results when assumptions associated with the DIF 

procedure are violated (Camilli & Shepard, 1994; Clauser & Mazor, 1998; Hambleton, 

Swaminathan, & Rogers, 1991; Millsap & Everson, 1993; Osterlind & Everson, 2009; 

Shepard, Camilli, & Averill, 1981; Teresi & Fleishman, 2007; Wiberg, 2007). In 

reviewing the literature related to the advantages associated with parametric procedures, 

the focus will be on those advantages deemed as most important related to the efficacy of 

reporting DIF or no DIF.  The property of invariance, matching variable, and the 

importance of item parameters will be discussed. 
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Property of Invariance 

The tenet of invariance is central to parametric procedures (Hambleton et al., 

1991). Simply stated, if item parameters and ability estimates are determined for a 

random sample of examinees in a population, these estimated item parameters and ability 

estimates will not change for a different random sample of examinees from a different 

population. In many of the nonparametric procedures discussed, this is not possible 

because the proportions used to determine whether differences in probabilities exist are 

related to the group of examinees.  When the groups of examinees change, the 

proportions change.  The property of invariance is one of the main distinctions between 

parametric and nonparametric DIF procedures.  Based on this review of literature, Lord 

and Novick (1968) were the first to highlight the property of invariance related to 

educational testing. In discussing Lord and Novick’s assertion related to the property of 

invariance, Bejar (1980) provides this description: 

A test is population invariant if the characteristic curve (i.e., the regression 
of probability of success on achievement) of every item in the test within 
one population is a linear transformation of the characteristic curve for 
that item in the other population. (p. 514) 

 

Lord (1980) argues that an ICC can also be considered a regression function, 

whereby the probability of success on a test item can be regressed on the latent construct 

being measured.  If this is the case, as noted by Lord, “…regression functions remain 

unchanged when the frequency distribution of the predictor variable is changed” (p. 34).  

The probability of an examinee answering a test item correctly based on the 2PL model is 

given by Equation 21. 
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The regression function where the probability of success on a test item can be regressed 

on the latent construct being measured, is equal to a(θ -b).  It is clear to see and should be 

expected that when ability defined by theta is equal to the item difficulty, an examinee 

has a .5 probability of chance in getting the test item correct.  If an examinee’s ability 

exceeds the item difficulty parameter b, the chance of getting the item correct increases. 

Conversely, if the item difficulty parameter b exceeds the examinee’s ability, the chance 

of getting the item correct decreases.  

 The chances described above for an examinee in one population should not differ 

for an examinee in another population based on a linear transformation (Bejar, 1980; 

Lord, 1980; Shepard et al., 1981).  As an example, consider the item parameters a and b 

to be defined for examinees in population 1: Item parameters a* and b* for examinees in 

population 2 based on a linear transformation, is defined by Equations 22 and 23 (Bejar, 

1980).  In these two equations, α is the slope of the linear conversion, and β is the 

intercept of the linear conversion. 

aa ⎟
⎠
⎞

⎜
⎝
⎛=
α
1*         (22) 

βα += bb*         (23) 

In discussing this linear relationship in great details, Lord (1980) uses the notion 

that the regression function where the probability of success on a test item can be 

regressed on the latent construct being measured, is equal to a(θ -b).   
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If this is the case, adding a constant to theta, and adding the same constant to the item 

difficulty parameter b, the regression function remains the same, hence, the probability of 

success is unchanged (Lord, 1980).  As stated by Lord related to this case, “This means 

that the choice of origin for the ability scale is purely arbitrary; we can choose any origin 

we please for measuring ability as long as we use the same origin for measuring item 

difficulty…” (p. 36). This is why examinees from two different populations where the 

ability distributions differ as related to the means and variances will still have the same 

probability of success on a test item at any given ability level.  This is not to say that the 

item parameter estimates from two different populations will be the same; they will be 

different, but as stated by Lord (1980), “The invariance of item parameters…clearly 

holds only as long as the origin and unit of the ability scale is fixed” (p. 36).  The 

invariance of these different parameters is made possible by their linear relationship. 

Several studies have been conducted related to the property of invariance.   

The property of invariance hypothesis is supported by several empirical studies 

(Rudner & Covey, 1978; Ironson & Subkoviak, 1979; Rudner, Getson, & Knight, 1980; 

Lord, 1980; Hambleton et al., 1991).  Rudner and Covey in evaluating different DIF 

procedures, demonstrated the property of invariance by considering two different 

populations; one population consisted of 2637 hearing impaired students and 1607 

normal students.  Ironson and Subkoviak in comparing several methods to assess item 

bias demonstrated the property of invariance by utilizing two different populations; one 

population consisted of 1691 12th grade black students and 1794 12th grade white 

students.  In conducting a Monte Carlo study comparing seven DIF techniques, Rudner et 

al. validated the property of invariance by using two different simulated populations.   
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The simulated populations’ ability distributions differed by one standard deviation.  As 

noted by Rudner et al., the one standard deviation was appropriate based on what is, 

“frequently encountered in actual data” (p. 5). Finally, in researching the property of 

invariance, Lord (1980) compared item parameter estimates from 2250 white students 

with item parameter estimates from 2250 black students for an 85 verbal item SAT test.   

 

Matching Variable 

In the literature related to matching variable, observed score versus latent variable 

has also been used to distinguish the differences between nonparametric and parametric 

DIF procedures (Potenza & Dorans, 1995). There has been extensive research related to 

the matching variable required for DIF analyses (Bolt, 2002; Clauser & Mazor, 1998; 

Donoghue, Holland, & Thayer, 1993; Potenza & Dorans, 1995; Mazor, Kanjee, & 

Clauser, 1995; Penfield & Lam, 2000; Penny & Johnson, 1999; Wiberg, 2007; Zwick, 

1990). The matching variable constitutes what is required to accurately identify the 

presence or absence of DIF.  It should be expected that if comparing groups with 

different abilities, a difference would exist in their performance on a test item.   

In the context of observed score, total test score is often used as the matching 

variable.  An examinee is grouped with other examinees based on the examinee’s ability.  

Ability in this context is determined based on performance on the test related to the items 

being studied for DIF.  Given this definition of matching variable, examinees with similar 

total test scores would be grouped together; hence, ability groups are determined based 

on total test score.  Determining an ability group based on total test score is as stated 

earlier a statistically arbitrary process.   
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Furthermore, it is not uncommon for the two groups being compared in a DIF analysis to 

have unequal mean and variances related to ability (Penny & Johnson, 1999).  Related to 

flagging DIF, if this is the case as stated by Penfield and Lam (2000), “…the Type I error 

rates increases, and this increase becomes more extreme as the discrimination of the item 

increases and as the reliability of matching variable decreases” (p. 10). There have been 

many recommendations proposed in the literature related to increasing the reliability of 

the matching variable when total test score is used.  Holland and Thayer (1988) 

recommended including the studied test item in the total test score regardless if it is 

identified as a DIF item. Mazor, Kanjee, and Clauser (1995) proposed using an external 

measure in conjunction with the internal measure (i.e. total test score) when assessing 

ability.  Clauser and Mazor (1998) discussed the idea associated with thick versus thin 

matching, essentially this is using wider score categories when determining ability. 

All of the recommended solutions potentially can increase the reliability of the 

matching variable when total test score is used. It is the opinion of many that parametric 

IRT DIF methods based on the latent measure of ability approach, provides a more 

statistically eloquent solution when the data fits the IRT model being used.  Potenza and 

Dorans (1995) in discussing the latent measure approach state, “A fundamental difference 

between the latent variable approaches and the observed score approaches is the use of 

estimates, derived from observed data, of the latent trait or true score instead of observed 

score as either an implicit or explicit matching variable” (p. 28).  Unlike the observed 

score approaches, the latent variable approaches utilize the joint estimation of item and 

ability parameters when ability and item parameters are unknown which is commonly the 

case, see Equation 24. 
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The ICC is a result of Equation 24, hence, the importance of the model chosen to fit the 

data. The notation L (i.e. likelihood) would be replaced with P for probability in Equation 

24, if the calculation was based on a randomly selected examinee responding to a set of 

test items. Equation 24 is known as the likelihood as oppose to the probability given that 

u1, u2, u3,…uN is the actual response pattern observed from an examinee (Hambleton et 

al., 1991). Hambleton et al. provide a detailed discussion related to ability and item 

parameter estimation using parametric statistics. 

 

Importance of Item Parameters 

Accurately modeling the test data prior to assessing whether or not DIF exists is 

of utmost importance in any DIF analysis.  If the data is not modeled accurately to reflect 

the responses to the test items, inaccurate conclusions may be purported.  Many 

simulation studies have been conducted with the purpose of determining the importance 

of all three test item parameters (Reckase, 1978; Penny & Johnson, 1999).  The three test 

item parameters often considered most important related to providing a sufficient 

modeling of the test response data are, (a) item difficulty parameter; (b) item 

discrimination parameter; and (c) pseudo-guessing parameter. For details related to these 

parameters, see Hambleton et al. (1991).  

Parametric DIF procedures basic foundation hinges on the use of measurement 

models which can incorporate all three test item parameters if necessary.   
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This is important because Reckase (1978) in a comparison of using a one-parameter 

model versus a three-parameter model, concluded that using more than one-parameter 

provided a better fit to the test data.  This conclusion was based on the comparison of 

sixteen different datasets, both real and simulated test data.  In all comparisons studied, 

the three-parameter model was superior to the one-parameter model in fitting the data.  In 

another study by Penny and Johnson (1999), it was determined that when between group 

differences exist in ability which is often the case with test data, not considering the 

discrimination and pseudo-guessing parameters could lead to an inflated Type I error rate 

when using the Mantel-Haenszel DIF statistic.  Having the ability to model the test 

response data by incorporating all three test item characteristic parameters if necessary, is 

important to ensure accurate identification of DIF items. 

 

The DFIT Framework 

The history of developments related to the DFIT framework is shown in Figure 2.  

DFIT as a statistical method primarily was developed to overcome limitations associated 

with Raju’s (1988) DIF area measure technique.   

 

Figure 2. Historical Overview of the DFIT Framework (Oshima & Morris, 2008). 
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The DFIT framework as of today consists of a comprehensive set of methods for 

assessing differential item functioning.  Dichotomous and polytomous test items can be 

investigated.  Unidimensional and multidimensional models can be the bases for 

investigating differential item functioning.  Individual test items as well as the entire test 

can be analyzed for differential item/test functioning. Uniform and non-uniform DIF can 

be detected equally effectively. Additional capabilities are also possible as stated by 

Oshima and Morris, “…it has been extended to a variety of applications such as 

differential bundle functioning (DBF) and conditional DIF” (p. 44).  Table 4 provides a 

summary of the most utilized DIF procedures based on six different capabilities. Of the 

most utilized DIF statistics listed, DFIT is the only parametric technique capable of 

handling multidimensional models.  As argued already, there are many advantages to 

utilizing DIF methods based on parametric principles. Furthermore, related to the 

capabilities listed in Table 4, DFIT only lacks an effect size measure. 

Table 4 
Summary of most utilized DIF procedures based on six different capabilities.  1. 
(P)arametric or (N)on-parametric IRT. 2. (L)atent or (O)bserved matching variable. 3. 
(D)ichotomous or (P)olytomous test items. 4. (S)ignificant test, (E)ffect size measure. 5. 
(U)niform, (N)onuniform DIF. 6. (Uni)dimensional models, (Mu)ltidimensional models. 
Method (1) P/N (2) L/O (3) D/P (4) S/E (5) U/N (6) Uni/Mu 

Lord’s Chi-Square P L D S U/N Uni 

Mantel-Haenszel N O D/P S/E U Uni 

Area Measure P L D S U/N Uni 

Logistic Regression - O D/P S/E U/N Uni/Mu 

SIBTEST N L D/P S/E U/N Uni/Mu 

DFIT P L D/P S U/N Uni/Mu 

Note: Logistic Regression is considered a general non-IRT method. 
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It was stated earlier, IRT methods define DIF as a significant difference between 

ICCs.  In its simplest form, DIF can be regarded as differences observed between the 

item parameters between the two groups of interest.  A no DIF condition (null 

hypothesis) would result in Equation 25 for a 3PL model (Hambleton et al., 1991). 

;;;0 : frfrfr ccaabbH ===   r = ref. group, f = foc. group  (25) 

A direct comparison of item parameters is intuitive, but the simplistic nature of this 

method is not without limitations (Lord, 1980; Rudner et al., 1980; Linn, Levine, 

Hastings, & Wardrop, 1981).  Linn, Levine, Hastings, and Wardrop demonstrated a false 

negative DIF analysis within the ability range of (-3, 3), when true item parameters 

differences existed. The area measure of determining DIF goes a step beyond the direct 

comparison of item parameters (Rudner et al., 1980; Raju, 1988).  The area measure 

involves calculating the exact area between two ICCs. Raju developed precise formulas 

for calculating the area between two item characteristic curves, taking into account the 

entire ability continuum.  Raju’s (1988) area measure works well for the 1PL, 2PL and 

3PL model when the c-parameter is equal.  If the c-parameter is not equal, there are also 

limitations with Raju’s area measure method, hence, one of Raju’s motivations to 

develop the DFIT framework. 

 

Dichotomous DFIT 

Dichotomous DFIT was the first significant development within the DFIT 

framework (Raju et al., 1995). The development consisted of noncompensatory DIF 

(NCDIF), compensatory DIF (CDIF) and differential test functioning (DTF).   
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Oshima and Morris (2008) provide this specific definition of NCDIF in stating, “…is 

defined as the average squared distance between the ICFs for the focal and reference 

groups” (p. 46). NCDIF measures the difference in probability of selecting a correct 

response to a test item, between examinees from two different groups of interest (e.g. 

members from different ethnicity groups).  In other words, is there a difference in 

probability for members of different groups endorsing a test item, while having the same 

latent ability?  The difference in probability is taken over the entire latent ability 

continuum, denoted by FE in Equation 27. NCDIF functions similarly to other item-level 

DIF statistics, in that all items are assumed to be DIF free with the exception of the item 

being investigated.  In calculating NCDIF, squaring the difference between the item 

characteristic functions allows for both uniform and nonuniform DIF to be detected, see 

Equations 26 and 27. 

)()()( siRsiFsi PPd θθθ −=        (26) 

])([ 2
siFi dENCDIF θ=        (27) 

The DFIT framework offers the advantage for researchers and practitioners not 

only the ability to assess item-level DIF, but DIF can also be investigated at the test-level.  

CDIF and DTF are the two DFIT statistics developed for this purpose. CDIF is an 

important new novel development in DIF research.  Osterlind and Everson (2009) discuss 

this importance in stating: 

The idea of compensatory DIF, as represented by the CDIF index, has the 
advantage of allowing researchers to study the overall effect of removing 
particular test items on the estimation of DTF, the differential functioning of the 
test as a whole.  Thus, within this framework, test developers and psychometric 
specialists may be able to develop tests with the least amount of differential 
impact at the test score level. (p. 73) 
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Unlike item-level DIF where the difference is based on the item characteristic curves, 

test-level DIF is the difference between the two groups’ test characteristic curves (TCC).  

A test characteristic curve is computed by summing the item response functions for each 

group in the DIF analysis.  DTF and CDIF are related by Equations 28, 29 and 30. 

)()()( siRsiFsis PPd θθθ −=        (28) 
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Equations 26 and 28 are similarly defined as measuring the difference in probability of 

selecting a correct response to a test item, between examinees from two different groups 

of interest.  Equations 27 and 29 are similarly defined in that the difference in 

probabilities is taken over the entire latent ability continuum, but for each test item as 

related to DTF.  CDIF differs from NCDIF in that removing significant CDIF items 

results in direct changes in DTF. Oshima et al. (1997) explain CDIF in this way as related 

to Equation 30, “…is additive in the sense that differential functioning at the test level is 

simply the sum of compensatory differential functioning at the test level” (p. 255).  Once 

again, NCDIF differs from CDIF given the fact that with NCDIF all items are considered 

to be DIF free.  This is not the case with CDIF, items related to CDIF takes into 

consideration the correlation between DIF items (Raju et al., 1995; Oshima et al., 1997; 

Oshima & Morris, 2008).  This is represented in Equation 30, where item covariances are 

taken into account when calculating CDIF, hence, DTF. 
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Multidimensional DFIT 

The DFIT framework is based on parametric procedures, which utilizes IRT 

models to investigate the relationship between test item responses conditioned on the 

ability of an examinee.  Given this, extending dichotomous DIF to multidimensional DIF 

is a matter of employing a multidimensional model for the DIF analysis.  The 1PL, 2PL 

and 3PL models assume that the construct being measured is unidimensional, so only one 

latent trait is required.  There are situation in which a test item must measure more than 

one latent trait, an example would be mathematical word problems. There are many 

psychological and educational tests which measure by design more than one latent trait 

(Oshima et al., 1997; Snow & Oshima, 2009). Conducting the DIF analysis with 

unidimensional models when multidimensionality is intended, would potentially produce 

false positives for those multidimensional test items.  Reckase (1985) specified a 2PL 

multidimensional model (M2PL) to use when test items are known to be 

multidimensional.  DFIT has been shown to work reasonably well within the framework 

of the M2PL model (Oshima et al., 1997). 

 

DFIT-DBF 

Identifying DIF items is important to ensure tests are fair, but just as important is 

to understand why items are identified as DIF.  Explaining the sources of DIF will aid 

test developers in creating tests that are not bias (Douglas, Roussos, & Stout, 1996; 

Oshima, Raju, Flowers, & Slinde, 1998; Gierl, Bisanz, Bisanz, & Boughton, 2001). 

Differential bundle functioning (DBF) parallels the tenet of multidimensionality.  DIF is 

assumed to occur if a test item is multidimensional.   



40 
 

 
 

A multidimensional test item typically consists of a primary latent construct and a 

secondary latent construct.  If the secondary construct is intentional, it is considered 

auxiliary, conversely if the secondary construct is unintentional; it is a nuisance 

dimension reflecting item bias (Gierl, Bisanz, Bisanz, & Boughton, 2001).   

Item-level DIF analysis as stated a few times already, operates under the premise 

that all other test items are DIF free.  When item-level DIF analyses are conducted under 

this premise, small differences across many items may appear benign.  In fact, when 

these small differences are considered together in the case of CDIF, significant DTF may 

be observed, hence the monumental importance of these two DFIT measures.  CDIF 

measures the relationship between test items, on the other hand, DBF bundles items with 

the assumption that the items are related.  Based on this test bundle, groups can be 

compared related to their performance on the test bundles.  Evaluating test item bundles 

using DFIT is a natural extension; for the specific details see Oshima, Raju, Flowers, and 

Slinde (1998). 

 

Polytomous DFIT 

Educational reform efforts during the 1980s led to an increased focus on 

evaluating students using alternative assessment methods (e.g. portfolios, etc).  These 

alternative methods are not scored from a 1-0 binary perspective.  Osterlind and Everson 

(2009) provides a useful example for understanding the difference between binary versus 

polytomous items by stating, “…suppose an item is graded on a four-point continuum, 

leaving three score levels” (p. 66). In this example, DIF can be anywhere within the score 

levels.   
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With score levels, you would expect for groups with the same ability to have the same 

probability of choosing a specific answer, when this does not occur, understanding why is 

a matter of a DIF analysis.   

Extending DFIT to polytomously scored test items is also seamless. There are 

many polytomous models available for researchers. Some of the more common 

polytomous models are, (a) Samejima’s (1969) graded response model (GRM); (b) 

Bock’s (1972) nominal response model; (c) Andrich’s (1978) rating scale model; and (d) 

Muraki’s (1992) generalized partial credit model. Extending DFIT to investigate 

polytomously scored test items requires employing a polytomous IRT model for the DIF 

analysis. NCDIF within the DFIT framework was shown to work reasonably well within 

the framework of the graded response model (Flowers et al., 1999). 

 

Effect Size - DFIT 

DFIT as a DIF technique is a promising new statistic in the area of DIF analysis 

(Osterlind & Everson, 2009).  The statistic as discussed provides breadth and depth in 

many important areas lacking with other DIF statistics, see Table 4. DFIT provides a 

significance test of DIF, but lacks a very important measure, an effect size.  A 

significance test answers only one important research question. In discussing significance 

testing, Hays (1981) states, “virtually any study can be made to show statistically 

significant results if one uses enough subjects” (p. 293). There are two other important 

questions that must be answered beyond significance testing.  If the observance is real, 

than how large is it?  Next, is the size large enough to be useful (Kirk, 2001)?  
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DIF analyses require a large sample size, typically greater than 200. Given that the 

recommended sample size for many statistics utilizing the normal probability distribution 

is 30, a sample size of 200 is large.  Large sample sizes are known to cause Type I errors 

(i.e. false positives) when in fact a test item is unbiased (Cohen, 1990, 1994; Thompson, 

1999, 2002; Finch, Cumming, & Thomason, 2001).  

A large sample size is just one factor that may contribute to unreliable DIF 

findings. Other factors to consider are the types of ability distributions and the 

distribution of the population.  An assumption of the DIF methodology, hence the 

statistics measuring DIF, is that the ability distributions of the reference group and focal 

groups are the same. Three studies demonstrated that when incongruence exists between 

the reference and focal groups’ ability distributions, detecting DIF may not be reliable 

(Pommerich, Spray, & Parshall, 1994; Sweeney, 1996; Penny & Johnson, 1999).  

Another assumption held by many prominent researchers is the tenet of normality in the 

population.  In investigating the departure from normality, Micceri (1989) found that 

normal distributions were rare related to achievement and psychometric measures. Of the 

440 large-samples investigated, only 3.2% at a 99% confidence were normal. Based on 

these arguments presented, it is obvious why an effect size measure used in conjunction 

with a statistical significance test is a vital requirement. 

 

Additional Improvement – Power 

In reviewing the literature related to power being reported in DIF analyses, power 

is similarly defined as the statistically accepted statement of not committing a Type II 

error.   
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If a test item indeed exhibits DIF, and the DIF technique does not flag it as a DIF item, 

this is considered a false negative or statistically speaking, committing a Type II error.  

The studies reviewed during this literature review calculated power based on the 

proportion of correct rejections, when the null hypothesis of DIF is false (Ross, 2007; 

Awuor, 2008; Guler & Penfield, 2009).  In assessing power related to the SIBTEST DIF 

statistic, Awuor (2008) stated, “The average of the percent of the proportions of flagging 

of the DIF items were calculated to represent statistical power of the SIBTEST 

procedure…”(p. 41).   In comparing the efficacy between several DIF techniques, Guler 

and Penfield (2009) similarly defined power as, “…these rejection rates serve as an 

approximation of power…” (p. 324). DFIT’s uniqueness related to its statistical method 

(IPR), will allow power to be calculated beyond a simple statement related to 

proportions.  Empirically observed power may be determined.  Again, being able to 

report power with a significance test of DIF and an effect size is a powerful statement 

related to the reliability and validity of any DIF analysis. 
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CHAPTER 3 

METHOD 

A Monte Carlo simulation study served as the overall framework for determining 

an effect size measure for DFIT’s NCDIF, in simulating a 61-item test where item 

number 61 represented the DIF item.  The MH statistic and parameter served as the basis 

by which an effect size measure was developed for DFIT’s NCDIF. The MH DIF statistic 

is arguably the most widely used measure for DIF.  Furthermore, researchers and 

practitioners are very familiar with the MH DIF effect size guidelines for measuring the 

size of DIF. The Mantel-Haenszel statistic has been shown to be stable in measuring the 

size of DIF for certain conditions (Hidalgo & Lopez, 2004).  If the magnitude of DIF 

increases, one would expect for the effect size measure to also increase. 

Similar to Donoghue, Holland, and Thayer (1993), DIF was embedded in item 61 

by manipulating the b-parameter, and all other items were free of DIF.  This approach 

allowed DIF to be measured by the difference in b-parameters for the focal and reference 

groups (i.e., bf  –  br). The amount of DIF in item 61 (see Appendix A) the studied item, 

varied depending on the condition. The amount of DIF varied in increments of .025, .05, 

.10 or .20; see Appendix B. The a-parameter and c-parameters related to item 61 were the 

same for both the focal and reference groups. The a-parameter was modeled with 8 

different values, the b-parameter was modeled with 11 different values and the c-

parameter was either 0 for the 1PL/2PL models or .20 for the 3PL model; see Appendix 

B.  The choice of .20 for the pseudo-guessing parameter is associated with typical 

multiple choice exams having five choices.  
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This resulted in the 1PL model having 11 different difficulty levels being studied. Related 

to the 2PL and 3PL models, the b-parameters were fully crossed with the 8 different a-

parameters.  

The combination of parameters resulted in 11 conditions for the 1PL model, 88 

conditions for the 2PL model, and 88 conditions for the 3PL model.  The number of 

conditions investigated in this Monte Carlo simulation totaled 187; see Appendix B.  

Given that each condition was manipulated by embedding DIF in increments of .025, .05, 

.10, or .20 each condition could have 10, 20, 40 or 60 items being studied.  These 

increments hereafter will be referenced to as “within conditions.” This resulted in 5750 

DIF items being studied; see Appendix B.  Unequal and equal ability distributions were 

also investigated which resulted in an additional 5750 DIF items being estimated for MH 

and SIBTEST.  Additional calculations were not required for NCDIF and area measure.  

 

Study Design  

Effect Size – DFIT(NCDIF) 

Item Parameters. Ducan’s (2006) estimated item parameters from a 60-item 

American College Testing (ACT) administration were used for this study. The 1-0 item 

responses for the test are from a simple random sample of 40,000 examinees.  The 

examinees took an equivalent form of the ACT math subtest on the same national test 

date, presumably with the same testing conditions. Per Ducan (2006), the 1-0 data were 

imported into BILOG-MG 3 (Scientific Software International [SSI], 2003) software 

which produced the estimated item parameters.  



46 
 

 
 

Appendix A contains the estimated parameters of the 60 items used in this study.  Table 5 

provides the summary statistics for the item parameters. 

 

Table 5 
Means and standard deviations for item parameters used in the study 
a  aσ  b  bσ  c  cσ  N  

1.8 .54 .152 .91 .20  0 60 

 

 

Sample Size. Fixed sample size pairs of (1000, 1000) for the reference and focal 

groups are used.  In this study, the impact of sample size was not a factor being 

considered; therefore, the sample size was fixed throughout the study. The choice of 

using a sample size of 1000 is based on sample sizes in actual testing scenarios ranging 

from 250 to 3000 (Shealy & Stout, 1993).  

 

Monte Carlo Simulation Study (Estimating MH and SIBTEST). The 1-0 data were 

generated for the 60-item test based on a sample size of 1000.  An additional test item 

was used whereby DIF was embedded into the test item for the focal group utilizing the 

b-parameter.  The a-parameter for this test item took on eight different values to simulate 

a comprehensive range of discrimination levels.  The b-parameter for this test item took 

on eleven different values in simulating a comprehensive range of difficulty levels. 

Furthermore, each of the difficulty levels was varied for the focal group in increments of 

.025, .05, .10 or .20 in effect producing several studied test items.  
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The different a-parameters were crossed with the different b-parameters producing 5750 

studied test items, see Appendix B. For the 1PL case, this produced 350 different data 

points.  For the 2PL case this produced 2760 different data points.  For the 3PL case this 

produced 2640 data points. Total score categorized into a certain number of categories 

served as the matching criteria for calculating the MH statistic.    

True parameters were calculated for Raju’s (1988) area measure, and Raju, van 

der Linden and Fleer’s (1995) NCDIF and Holland and Thayer’s (1988) MH.  Statistics 

were also estimated for Holland and Thayer’s (1988) MH and Shealy and Stout’s (1993) 

SIBTEST.  An approximate linear relationship was determined by plotting the two 

parameters (i.e. NCDIF and MH) to determine the formula NCDIF = K*MH, where K 

was defined as a constant.  The correlation index for NCDIF and MH was also 

determined based on the conditions for this study. 

 

Calculating DIF based on Area Measure. Raju’s (1988) DIF measure based on 

the area formulas are used as an additional DIF measure in this study for comparison 

purposes. The item parameters in Appendix B, with the Equations 31 through Equation 

33 (Hambleton et al., 1991), were used to calculate the area between the two ICCs, where 

D = 1.7. 

3PL: ( )[ ] [ ] )(1ln/)(21 12
)/()(

2112
121221 bbeaDaaacArea aabbaDa −−+−−= −−  (31) 

2PL: [ ] [ ] )(1ln/)(2 12
)/()(

2112
121221 bbeaDaaaArea aabbaDa −−+−= −−   (32) 

1PL: )( 12 bbArea −=        (33) 

Swaminathan and Rogers (1990) and Hambleton, Swaminathan, and Rogers (1991) in 

studies assert moderate DIF (Category B) if the area measure is .6 or more.   
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Finally, the subscript one and two in the formulas represent the reference group’s and 

focal group’s a and b-parameters, respectively. 

 

Calculating DIF based on NCDIF. Raju et al. (1995) noncompensatory DIF 

(NCDIF) was calculated using Equations 26 and 27.  

 

Calculating the MH Parameter. Roussos, Schnipke, and Pashley (1999) 

developed a generalized formula which calculates the true MH parameter, see Equations 

34 and 35.  Equation 34 is a derivation of Equation 4 when many assumptions are 

considered.  The specific details can be found in Roussos, Schnipke, and Pashley. 

   (34) 

where 

       (35) 
 

Equations 3 and 35 are equivalent when the assumption is made that matching examinees 

on observed proportion-right score is equal to matching examinees on θ. Software was 

developed by Roussos, Schnipke, and Pashley incorporating this formula which this 

study utilized. In a review of literature, this software has not been validated in a large-

scale simulation study.  A purpose of estimating the MH parameter served to validate the 

accuracy of the software which purports to calculate the MH parameter. 
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Estimating SIBTEST and MH . Shealy and Stout’s (1993) SIBTEST was 

estimated with the simulation study in conjunction with a statistical software package.  

More specifically, DIFPACK© (Assessment Systems Corporation) software which 

implements the algorithm for calculating SIBTEST was integrated into the simulation 

study, see Appendix J.  The MH statistic was calculated by developing a SAS routine to 

calculate the chi-square statistic (see Appendix I). Again, Roussos and Stout (1996b) 

defined an approximate linear relationship for SIBTEST related to MH Delta based on an 

IRT 3PL model as
Λ

UNIβ = K*
Λ

Δ .  K for the 3PL model is defined as a constant with an 

approximate value of -17 based on research by Roussos and Stout (1996b). K is defined 

as a constant with an approximate value of -15 for 1PL and 2PL data based on research 

by Shealy and Stout (1993).  

In evaluating the effectiveness of SIBTEST, Shealy and Stout (1993) determined 

K in 
Λ

UNIβ = K*
Λ

Δbased on a priori measure of potential bias.  Based on the predetermined 

amount of bias, the parameter values for SIBTEST (see Equation 18) was calculated.  

Shealy and Stout defined unidirectional test bias as )()()( θθθ SFSR TTB −= , where 

)(θB represents the difference in the studied subtest response function between the 

reference and focal groups. MH parameter value was calculated based on Shealy and 

Stout’s assertion that MH Delta based on a predetermined amount of bias is, 

“proportional to the horizontal distance between )(θSRT and )(θSFT …” (p. 182).  Based 

on these priori calculations and research showing a high correlation between the two 

statistics, K was defined.   
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Shealy and Stout’s study showed a high correlation between the true parameters and the 

estimated SIBTEST and MH statistics. This study took a similar approach with the 

exception that SIBTEST was only estimated. 
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Study Specification and Factors. Table 6 lists the specifications and factors used 

in this study. 

Table 6 

Specifications and Factors of the Study 

A. Number of Replications for estimating MH and SIBTEST : 100      

B. Ability Distribution 

No Impact Case 

Mean value for ref. group and focal group theta respectively, μR = 0, μF = 0 

Standard deviation for ref. group and focal group theta respectively σR=σF= 1 

Impact Case 

Mean value for ref. group and focal group theta respectively, μR = 0, μF = -1. 

Standard deviation for ref. group and focal group theta respectively σR=σF= 1 

C. Generating Model: 1PL, 2PL, 3PL 

D. Discrimination Levels: .3, .5, .75, .95, 1.25, 1.50, 1.75, 2.0 

E. Difficulty Levels: -3, -2, -1.5, -1, -.5, 0, .5, 1, 1.5, 2, 3 

F. Number of Items 

60 NO DIF ITEMS, 1 DIF ITEM (See Appendix A and B) 

G. Item Score Type: Dichotomous 

H. Sample Size: 1000 

I. Magnitude of DIF 

Increments of .025, .05, .10 or .20 (See Appendix B) 
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Data generation. The IRTGEN software algorithm (Whittaker, Fitzpatrick, 

Williams, & Dodd, 2003) which incorporates Monte Carlo simulation techniques was 

used to generate the item responses. IRTGEN generates item responses and known trait 

scores for the 1PL, 2PL and 3PL models which were necessary for this study. 

 

Power - DFIT 

Utilizing the item parameter replication (IPR) method (Oshima et al., 2006) an 

empirical sampling distribution of NCDIF under the alternative hypothesis was 

determined.  The IPR algorithm already produces an empirical sampling distribution of 

NCDIF under the null hypothesis.  The area beyond the null critical value, under the 

alternative distribution may be viewed as empirical power.  The IPR method currently 

replicates item parameters for the focal group to build the null distribution for 

determining the .001, .01, .05 and .10 NCDIF critical values.  The IPR method was 

modified to replicate item parameters for both the focal and reference group to build the 

alternative distribution.   
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CHAPTER 4 

RESULTS 

There was a voluminous amount of data associated with this study; Appendix C 

summarizes the key data points related to this study.  In Appendix C several results are 

reported for each of the 187 conditions. Appendix C contains only the within condition 

which corresponded to moderate DIF (Category B) related to the specific condition.  

Table 7 illustrates an example.  Condition 1 is associated with the 1PL model where the 

b-parameter for the reference group is equal to -3 (see Appendix B).  Condition 1 

consisted of 40 within conditions by embedding DIF in increments of .10.  In Table 7, 

only 20 of the 40 within conditions are illustrated in an effort to conserve space.  See 

Table 7 where the within condition corresponds to moderate DIF (Category B) and 

condition 1 in Appendix C.   

The definition of moderate DIF as defined by the MH parameter is 1. Large DIF 

is defined as 1.5. The closest MH parameter value equal to 1 but not equal to or greater 

than 1.5 was used. All other conditions should be interpreted in a similar manner.  There 

were 46 conditions in which moderate DIF (Category B) could not be accurately 

estimated.  These conditions are easily identified in Appendix C where “Indeterminate” is 

labeled in the “Congruent” column.  In addition, associated with the 46 conditions, 22 of 

these were 3PL conditions and the MH parameter never reached moderate DIF (Category 

B).  
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Table 7 

How to Interpret Appendix C – Condition 1 

Reference b-parameter (-3) 

Focal  
b-param. AREA 

  
 
 
 
 

b-diff 
Estimated 

MH 
Estimated 
NO DIF 

Adjusted 
Estimated 

MH 

 
 
 
 

True 
MH 

 
 
 

MH 
(DIF) 

Category
-2.9 0.10  0.10 -0.949 -0.723 -0.226 -.399 A 
-2.8 0.20  0.20 -1.348 -0.624 -0.724 -.799 A 
-2.7 0.30  0.30 -1.676 -0.641 -1.035 -1.198  B 
-2.6 0.40  0.40 -2.084 -0.532 -1.552 -1.598 C 
-2.5 0.50  0.50 -2.445 -0.576 -1.869 -1.997 C 
-2.4 0.60  0.60 -2.763 -0.455 -2.308 -2.397 C 
-2.3 0.70  0.70 -3.121 -0.573 -2.548 -2.797 C 
-2.2 0.80  0.80 -3.511 -0.483 -3.028 -3.196 C 
-2.1 0.90  0.90 -3.888 -0.364 -3.524 -3.596 C 
-2.0 1.00  1.00 -4.222 -0.378 -3.844 -3.995 C 
-1.9 1.10  1.10 -4.603 -0.402 -4.201 -4.394 C 
-1.8 1.20  1.20 -4.960 -0.234 -4.726 -4.794 C 
-1.7 1.30  1.30 -5.379 -0.320 -5.059 -5.193 C 
-1.6 1.40  1.40 -5.727 -0.314 -5.413 -5.992 C 
-1.5 1.50  1.50 -6.104 -0.278 -5.826 -6.392 C 
-1.4 1.60  1.60 -6.525 -0.263 -6.262 -6.792 C 
-1.3 1.70  1.70 -6.884 -0.247 -6.637 -7.191 C 
-1.2 1.80  1.80 -7.327 -0.199 -7.128 -7.591 C 
-1.1 1.90  1.90 -7.705 -0.171 -7.534 -7.990 C 
-1.0 2.00  2.00 -8.063 -0.204 -7.859 -8.389 C 

    
Furthermore, the results in Appendix C correspond to the unequal ability distribution 

investigation. Corresponding to the identification of moderate DIF in Appendix C, the 

corresponding (a) area measure is calculated; (b) difference in difficulty level is reported 

(bf – br); (c) estimated MH statistic which is based on the average of 100 replicates; (d) 

estimated MH statistic for the “No DIF” condition, which is also based on the average of 

100 replicates; (e) adjusted estimated MH statistic which is the difference between the 

estimated MH statistic and “No DIF” condition; (f) true parameter for the within 

condition; and (g) congruency indicator.   
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For each of the 5750 DIF items, the true MH parameter was also determined. 

Congruency met is defined for this study as, when the adjusted estimated MH statistic 

agrees with the true parameter related to the size of DIF for a given condition (i.e. 

Negligible, Moderate or Large). As an example, the MH estimate for condition 1 is -

1.035 and the corresponding MH true parameter is -1.198.  Related to the size of DIF 

both the adjusted estimated statistic and true parameter are considered moderate DIF 

(Category B), see Appendix C. 

As did Allen and Donoghue (1996) in their study, the MH statistic estimate for 

this study was determined by also simulating for each within condition the “No DIF” 

scenario, hereafter referred to as the null condition. By subtracting the null condition 

from the MH estimate, an adjusted MH estimate is reported.  Roussos, Schnipke, and 

Pashley (1999) referred to this null condition as a rough estimate of the bias associated 

with estimating the true MH parameter Δ. 

 

Effect Size Recommendation for NCDIF 

The effect size recommendation is based on the fact that a clear relationship exists 

between the MH parameter and the NCDIF parameter. The Monte Carlo simulation study 

and MH parameter software produced 10, 20, 40, or 60 data points for the MH statistic 

and parameter for each of the 5750 DIF items. Equations 26 and 27 were used to 

calculate true NCDIF for these same items.  
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Scatterplots showed that the relationship between the two measures was 

curvilinear in nature, see Figure 3.  Only condition 4 is illustrated, but all of the 

conditions investigated revealed through scatter plots a curvilinear relationship between 

MH and NCDIF.   

 

 

Figure 3. Scatter Plot (NCDIF without transformation) – Condition 4 (See Appendix B) 
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Polynomial block regression analysis was applied to each condition. Related to condition 

4, the linear component accounted for 96% of the variance F(1, 58) = 1302; R2 = .96, p < 

.01. The quadratic component was entered in the second step; it accounted for an 

additional 3 percent of the variance, R2 change = .03, F(1, 57) = 1075, p < .01. The cubic 

component was entered in the third step which accounted for a very small percentage of 

the variance, but significant, F(1, 56) = 282, p < .01. Each of the three beta coefficients 

were significant, p < .01. The quadratic component was statistically significant for all of 

the conditions.  The cubic component was statistically significant for approximately 70% 

of the conditions, but in all cases explained a very small percentage of the variance 

between the two measures.   

The linear and quadratic components explained almost 100% of the variance 

between the two statistics revealed through the polynomial block regression analyses. It 

was then determined that a simpler approach could be used to correct the curvilinear 

relationship. NCDIF by definition is the average squared distance between the focal and 

reference group’s ICCs.  Applying a nonlinear transformation to NCDIF by taking the 

square root of each data point produced an acceptable linear relationship, see Figure 4.   
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Figure 4. Scatter Plot (NCDIF with transformation) – Condition 4 (See Appendix B) 

 

Each of the other conditions had similar results after applying the transformation.  

Correlation matrices are provided in Appendix D for several of the conditions.  The 

conditions are identified by the condition number. For each condition, the correlation 

between the MH parameter and NCDIF was .87 or higher, with the majority being .99 

after the transformation.   In general, the 3PL conditions had the lower correlation 

indexes.  In this study the a-parameter was held constant between the focal and reference 

groups, hence, essentially modeling a special case of the 1PL model.  Past research has 

showed the MH statistic to be reliable for 1PL and 2PL data.  

The recommended effect sizes for DFIT’s NCDIF are presented in Tables 8, 9, 

10, 11, 12 and 13.   The constants in Tables 12 and 13 indicate a one-size-fits-all 

approach is not advisable.  The effect size of NCDIF is influenced by the model, the 

discrimination parameter and the difficulty parameter.  
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Appendix E illustrates the relationship between the model, discrimination parameter and 

the difficulty parameter for the 187 conditions. Several relationships are apparent: (a) at 

difficulty level of b = 0, the NCDIF value at this point is either equal to or higher than at 

any other difficulty level for the 1PL and 2PL conditions.  Given that in this study the 

mean ability distributions were N(0, 1) and N(-1, 1), the majority of the examinees would 
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be in this region. Therefore, at the extreme ends of the difficulty levels, the NCDIF value 

will be lower; (b) related to the discrimination parameter, NCDIF value is highest at the 

lowest discrimination value, and decreasing as the discrimination parameter increases; 

and (c) related to model, the 2PL/3PL NCDIF values are equal or differ by no more than 

.001 until the difficulty level is approximately b=0.  At this point, as the difficulty level 

increases, the 3PL NCDIF values are significantly higher; a possible explanation is the 

psudeo-gusessing parameter.  

The noise associated with random guessing may be contributing to the difficulty 

in measuring DIF between the focal and reference groups (Donoghue, Holland, & 

Thayer, 1993; Lord, 1980).  Zwick, Thayer, and Wingersky (1994) provide this as a 

possible explanation, “the more difficult the item, the closer the probability of correct 

response is to guessing value, and the more difficult the groups are to differentiate” (p. 

135).  Roussos et al. (1999) debunk this hypothesis because the same phenomenon is not 

happening with easy 3PL items.  Roussos et al. study demonstrated that the very 

parameter being estimated is shrinking with increased difficulty, where sparseness of 

examinees is not an issue.  This study corroborates Roussos et al.’s findings. NCDIF is 

based on where MH is reporting moderate DIF (Category B), and MH may not be reliable 

for specific conditions. Figure 5 illustrates these observed relationships for one condition 

where a = .95.  The 2PL case is represented by the solid line; conversely the 3PL case is 

represented by the dash line. 
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Figure 5. 
Relationship between NCDIF (Moderate DIF) and Difficulty Level by Model  

 

In Equation 36, MH is equal to 1 for moderate DIF (Category B), MH is equal to 

1.5 for large DIF (Category C), and K is a constant, see Tables 12 and 13. 

NCDIF = (MH / K)2        (36) 

There were 29 conditions where the MH estimate corresponded to moderate DIF 

(Category B) size, where the corresponding NCDIF value was less than .001; see Tables 

8, 9, and also Appendix F for these conditions and more specific NCDIF values.  The null 

condition for NCDIF is 0, and the MH estimate is reporting for these cases moderate DIF.  

Recall, for the reference and focal groups the ability (θ) distributions for this study were 

randomly drawn as N(0, 1) and N(-1, 1) respectively. In applying Lord’s (1980) formula, 

a(θ –b) to each of these conditions, the corresponding z-scores will be on the extreme 

ends of the distributions.  The number of examinees in the extreme regions are limited, 

hence, the very small NCDIF values.   

a = .95
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The corresponding difference in difficulty level (bf – br) for the two groups for these 

conditions is between .16 and .30, which may be an indication of differential item 

functioning between the two groups. Given the lack of agreement between NCDIF and 

MH in interpreting the effect size for these conditions, the following guidelines are 

recommended for moderate DIF (Category B): (a) significance is reported for these 

conditions; and (b) empirically observed power is .80. 

 

Equal Ability Distributions. In concluding the effect size recommendation for 

NCDIF, it is important to note that as part of this study, equal ability distributions were 

also investigated.  In investigating equal ability distributions, the reference and focal 

groups’ ability (θ) distributions were randomly drawn as N(0, 1) and N(0, 1) respectively. 

The same Monte Carlo procedures were applied. Figure 6 illustrates that the results in 

Appendix C would be identical for the equal ability distribution case.  In plotting the 

relationship between the pairs of MH estimates 5040 for the equal ability conditions and 

5040 for the unequal conditions, the Pearson r coefficient indicates an almost perfect 

relationship.  This was further corroborated by the fact that for each of the 116 out of 187 

estimated, the MH estimate for the equal and unequal conditions converged at the same 

location for reporting moderate (Category B) and large (Category C) DIF.  Prior research 

(Spray & Miller, 1992; Donoghue, Holland, & Thayer, 1993; Demars, 2009) supports 

these findings. 
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Figure 6. 
Scatter Plot- MH Estimates Impact versus MH Estimates No Impact. 

 

SIBTEST 

An effect size recommendation is not being made based on the results of this 

study for SIBTEST.  The purpose of including SIBTEST in the investigation was for 

comparison purposes only and an evaluation of previously established guidelines based 

on the MH statistic. The effect sizes based on this study for SIBTEST are presented in 

Table 14 and Appendix G. Equal and unequal ability distributions were also investigated 

for SIBTEST. In Equation 37, MH is equal to 1 for moderate DIF (Category B), MH is 

equal to 1.5 for large DIF (Category C), and K is a constant, see Table 14. 

SIBTEST = (MH / K)       (37) 

n = 5040 

r = .99 
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A correlation matrix is provided in Appendix D relating the two statistics MH and 

SIBTEST. The correlation matrix is only for the impact conditions.  The correlations for 

the 116 conditions estimated range from a low of .81 to a high of 1.0. There were 92% of 
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the conditions which had a correlation index of .9 or higher. These results support a 

previous finding (Shealy & Stout, 1993). The conditions where the correlations were 

lower than .9 were 48, 54, 56, 60, 61, 62, 66, 67, and 68. For these conditions the scatter 

plots revealed a curvilinear relationship, typically in the middle of the data points or at 

the tail end of the data points, see Figure 7. This observation had not previously been 

noted based on a limited review of the literature. 

 

 

Figure 7. Scatter Plot - SIBTEST – Condition 82 (See Appendix B) 

 

 

Each of these conditions, hence, test items are considered hard or either highly 

discriminating. In a simulation study investigating Type I error performance associated 

with MH and SIBTEST, Roussos and Stout (1996b) reported inflated Type I error rates 

for MH.  In their study, Type I error was reported as .26 for condition 135; see Appendix 
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B.  In this study, Type I error was also calculated for each condition, and for condition 

135 which is identical to Roussos and Stout’s condition, the Type I error rate was .23. 

This is an important observation related to how MH estimates DIF items considered 

extremely easy, hard or highly discriminating, when the two groups being studied ability 

distributions are incongruent.   

Shealy and Stout (1993) used a constant of -15 for the 1PL/2PL models in relating 

an effect size for SIBTEST based on the MH parameter.  Roussos and Stout (1996b) used 

a constant of -17 for the 3PL model.  Based on this study a one-size-fit-all approach may 

not be advisable, see Table 14.  As stated when discussing an effect size recommendation 

for NCDIF, the size of DIF is influenced by the model, the discrimination parameter and 

the difficulty parameter. 

 

 
Area Measure 

Area measure also served for comparison and observational purposes. The results 

for the area measure calculations for the 116 estimated conditions are presented in Figure 

8, Figure 9, and Appendix C. These area measure calculations correspond to where the 

adjusted MH estimates corresponded to the moderate DIF location (Category B). The 

histograms in Figures 8 and 9 provide frequencies for the 2PL and 3PL conditions related 

to moderate DIF based on the MH estimate.  There were 8 1PL conditions, the area 

measures were approximately .30 for all 8 conditions, see Appendix C.  If using area 

measure to interpret the size of DIF, Swaminathan and Rogers (1990) used the guideline 

for medium DIF as .6.  Using this point of view, it was expected for the histograms to 

peak around .6. Given the conditions in this study, area measure related to MH’s 
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definition of moderate DIF does not peak at .6, but appears to be a function of the model, 

difficulty parameter and discrimination parameter (see also Appendix C column labeled 

“Area Measure”). 

 

Figure 8. 
Area Measure frequencies of 2PL Conditions. 

 

Figure 9. 
Area Measure frequencies of 3PL Conditions. 
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Empirical Observed Power  

The NCDIF statistical test is based on the item parameter replication algorithm 

(IPR). Essentially, using the focal group’s item parameters for a test item, 1000 pairs of 

these parameters are reproduced.  NCDIF for each of these pairs is calculated.  These 

replicated pairs represent the “No DIF” condition, and hence, any extreme differences 

observed would be considered beyond chance. The 1000 pairs form the null distribution, 

and cutoffs are determined at the 90%, 95%, 99% and 99.9% percentile rank scores.  The 

NCDIF values at any of these levels will be used to determine statistical significance at 

.10, .05, .01, and .001, respectively. For a detailed description of the IPR procedure, see 

Oshima, Raju, and Nanda (2006).  In modifying Oshima et al. (2006) item parameter 

replication algorithm (IPR), an empirical sampling distribution of NCDIF under the 

alternative hypothesis was determined.   

In determining the alternative distribution, the IPR algorithm was modified to 

reproduce 1000 pairs of the focal group and reference groups’ item parameters. These 

pairs of parameters represent the DIF case, and the NCDIF value determined using these 

pairs represent a distribution under the alternative hypothesis. The power of a statistical 

test in this study is defined by the probability of correctly rejecting a false null condition 

when NCDIF is not 0.  The probability of correctly rejecting a false null condition is 

determined by calculating the area to the right of the null distribution, related to the 

alternative distribution for the specified alpha level for the statistical test. Cohen (1988) 

provided power tables for other statistical test (e.g. Student’s t-Ratio).  Also, there are 

many applets available for calculating power.  The uniqueness of the IPR method made 

calculating empirical observed power simple.  
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The area to the right of the NCDIF alternative distribution was calculated by determining 

the number of NCDIF values under the alternative distribution which is greater than the 

NCDIF value (on the Null Distribution) at .05 divided by 1000, see Figure 10. For 

simulated example 2 (see Table 15), the NCDIF value under the null condition at α = .05 

was .001.  

 

Table 15 
Results – Empirical Observed Power (α = .05) 

 

Ref.  
b‐param. 

Foc. 
b‐param.  b‐diff. 

Est. 
NCDIF 

True 
NCDIF 

Null 
Distribution 
NCDIF Value  

α = .05  Power 
#1  ‐3  ‐2.7  .3  .0002  .0003  .00065  19% 
#2  ‐3  ‐2.4  .6  .003  .002  .001  90% 
#3  ‐3  ‐2.2  .8  .004  .003  .004  98% 
#4  0  .3  .3  .003  .003  .001  96% 
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Figure 10. 
Empirical Null and Alternative Distribution (Table 15- #2) 

In having the null distribution and the alternative distribution, empirical observed 

power was estimated for two of the 187 conditions.  Three of the within conditions for 

condition 1 and 1 of the within conditions for condition 6 are presented in Table 15.  
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Condition 1 was selected based on what has already been discussed related to easy test 

items.  Condition 6 was selected based on a difficulty level of 0 representing the ability 

level of the majority of the 1000 examinees. Recall, the NCDIF value for condition 1 was 

less than .001 where the b-difference between the focal group and reference group was 

.30; MH corresponds to a b-difference of .30 to be moderate DIF.  As an example of how 

empirical observed power was determined, for number 2 in Table 15, NCDIF value at α = 

.05 under the null distribution was .001. There were 895 NCDIF values equal to or 

greater than .001 under the alternative distribution (see Figure 10), therefore, power 

would equal 895/1000 or 90%.   As would be expected as the b-difference in difficulty 

level increases between the two groups, hence, essentially an effect size increase, power 

increase gradually. Examples 1, 2 and 3 illustrate the increase in power. As the effect size 

increases (i.e. b difference) the statistical test would have more power in accurately 

identifying a departure from the null hypothesis.  Finally, increasing the sample size 

would also increase power.  Related to example 1 and example 4, both are related to a b-

difference of .30, but starkly different power. Example 4 is related to condition 6 where 

the b-parameter equals 0.  Discussed earlier, given the mean ability distributions chosen 

for this study, there would be more examinees in this region, hence, power increases as 

the sample size increases.  

 

Summary 

The primary goal of this study was to determine an effect size for NCDIF, 

whereby the MH parameter served as the benchmark. The effect size for NCDIF is based 

on several factors investigated in this study (see Table 6).  
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The MH measure has sporadic behavior for easy and hard test items, also for low and 

highly discriminating test items.  This behavior should not be surprising that the MH 

measure does not work well as a function of discrimination, given that it was designed for 

1PL data.  This sporadic behavior was considered in recommending an effect size for 

NCDIF.  In the cases where the MH measure underestimated the size of DIF, the effect 

size for NCDIF is based on the preceding NCDIF effect size recommendation, where the 

area measure was calculated to be less than or equal to .80. Furthermore, in the cases 

where the MH measure never reached moderate DIF (Category B), the effect size 

guidelines are based on statistical signicance and empirically observed power. 
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CHAPTER 5 

DISCUSSION 

This study investigated the addition of reporting an effect size measure for DFIT’s 

NCDIF and reporting empirically observed power.  The MH parameter served as the 

benchmark for developing NCDIF’s effect size measure, for reporting moderate and large 

differential item functioning in test items.  In addition, by modifying NCDIF’s unique 

method for determining statistical significance, NCDIF will be the first DIF statistic of 

test items where in addition to reporting an effect size measure, empirical power can also 

be reported (see Appendix H).  This study added substantially to the body of literature on 

effect size by also investigating the behavior of two other DIF measures, SIBTEST and 

area measure.  Finally, this study makes a significant contribution to the body of literature 

by verifying in a large-scale simulation study the accuracy of software developed by 

Roussos, Schnipke, and Pashley (1999) to calculate the true MH parameter; see Equation 

34.  The accuracy of this software had not been previously verified in a large-scale 

simulation study. 

 

Behavior of MH Measure  

In determining a comparable effect size for DFIT’s NCDIF, the MH statistic 

which is widely used today served as the benchmark for this study.  It is important to 

understand the results already presented related to the behavior of the MH parameter.   
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There is a plethora of empirical research on the MH statistic in observing its behavior 

(Holland & Thayer, 1988; Donoghue, Holland & Thayer, 1993; Clauser, Mazor & 

Hambleton, 1994; Allen & Donoghue, 1996; Roussos & Stout, 1996b; Roussos, 

Schnipke, & Pashley, 1999). 

Donoghue, Holland and Thayer (1993) determined that the MH statistic 
Λ

Δwhich 

estimates the underlying parameter Δ can be explained by Equation 38 for 1PL and 2PL 

models.  Equation 38 does not hold true for 3PL data which has also been verified by 

Roussos, Schnipke, and Pashley (1999).  In Equation 38, “a” is common for all test items, 

and “b” is defined by bf  – br (i.e. the difference in difficulty) for the studied test item 

between the focal and reference group examinees.  In Equation 38, “b” is the difference 

in difficulty between the focal and reference groups’ b-parameter. 

Δ = -4ab             (38) 

As noted by Donoghue, Holland and Thayer, several conditions must be satisfied: (a) the 

a-parameter is common for both groups; (b) the studied item is included when matching 

the focal and reference group examinees on ability; and (c) none of the other test items 

used to match examinees are contaminated with DIF.  These three conditions were 

satisfied for this study.  The relationship expressed in (38) was observed for many of the 

1PL and 2PL conditions considering estimation error.  The exceptions were conditions 

16, 17, 18, 19, 27, 28, 29, 30, 89, 90.  These conditions are either low or highly 

discriminating test items. Furthermore, the b-parameter for conditions 16 - 19 and 27 - 30 

range from -.5 to 1. Conditions 89 and 90 have b-parameters of -3 and -2 respectively. In 

Allen and Donoghue (1996), it was purported that a b-parameter of 0, 1, or 2 corresponds 

respectively with a z-score of .875, 2.125 and 3.375.   
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Given these z-scores, the area to the right, hence, the number of examinees in this region, 

is limited.  Allen and Donoghue further assert that given difficult test items, “it is not 

surprising that MH has little power to detect DIF” (p. 248).  Although not stated by Allen 

and Donoghue, this should also apply to easy test items. The conditions noted as 

exceptions to Equation (38) which relates to the 1PL and 2PL models would all have z-

scores approximately at or above ±.875, hence a possible explanation to the 

underestimation of the true parameter.   

In concluding the discussion on the behavior of MH, the MH measure of DIF 

overestimates the amount of DIF for easy and hard test items related to the 1PL and 2PL 

models.  MH overestimates the amount of DIF for easy test items related to the 3PL 

model.  Once the b-parameter difficulty level increases for the 3PL model, MH 

underestimates the amount of DIF for hard test items. This behavior was identified in 

another study by Donoghue, Holland and Thayer (1993), in which the behavior is 

contributed to the fact of using a fixed c-parameter for the reference and focal groups.  

This study utilized a fixed c-parameter. 

 

Why Use MH for Determining NCDIF’s Effect Size 

 DIF studies are conducted by large-scale testing organizations such as ETS the 

makers of many high-stakes exams.  These exams are used for entry into institutions of 

higher education, K-12 statewide assessments, etc.  The MH statistic has been used for 

over a half century as a tool for assessing DIF.  Practitioners in K-12 education are very 

familiar with its use and interpretation of measuring the size DIF for test items.   
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SIBTEST and Logistic Regression are other statistical techniques for assessing DIF of 

test items, and have also based its results on the MH guidelines of, (a) negligible DIF 

(Category A); (b) moderate DIF (Category B); and (c) large DIF (Category C). DIF 

studies are critically important related to standardize testing. In an effort to ensure 

fairness related to standardize testing, more than one method should be employed.  If 

NCDIF is going to become a statistical tool of choice for measuring DIF, being able to 

interpret the size of DIF using already familiar guidelines is important. 

 

General Discussion on Effect Size 

Today, an effect size measure is of critical importance. In the 6th edition of the 

APA Publication Manual, reporting an effect size measure is recommended (APA, 2009). 

Differential item functioning of test item studies requires large sample sizes, hence, a 

potential propensity to report significance for practically insignificant results.  Most 

importantly, large-scale testing companies typically only discard test items which display 

moderate to large DIF.  An effect size measure in conjunction with a significant finding 

today is necessary, especially in DIF studies. 

This study revealed that many factors influence the size of DIF, and one size does 

not fit all.  Furthermore, the agreement of the size of DIF is complicated given that each 

of the measures investigated in this study measures DIF using a different scale as 

discussed in Chapter 2.  Based on the MH guidelines for judging moderate to large DIF, 

these same test items would be considered negligible DIF (Category A) when using area 

measure guidelines of .6 and .8 respectively.  Previous research provided guidelines for 

paralleling SIBTEST measure of DIF with MH.   
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This study revealed that those previously established guidelines may be too general. It 

was corroborated in this study where MH behavior becomes unstable for specific test 

items.  A goal of this study was also to parallel NCDIF measure of DIF with MH. 

 

Effect Size Recommendation 

The effect size recommendations for NCDIF are based on many factors 

considered in this investigation.  There were 11 different difficulty levels investigated, 8 

different discrimination levels, and 3 ICC models (1PL, 2PL and 3PL). The effect size 

recommendations will allow researchers and practitioners the ability to provide an 

integrity check if using MH and NCDIF to evaluate differential item functioning in test 

items.  Given the importance of balancing test fairness and the cost of constructing test 

items, it is highly recommended to use more than one measure to evaluate DIF.  This is 

being done today at ETS by using the STD-P difference in conjunction with MH 

(Sinharay & Dorans, 2010) given the unstable behavior of MH with certain types of test 

items. This study will now allow NCDIF to be used in conjunction with MH in evaluating 

DIF.  Finally, in addition to reporting statistical significance and the effect size of DIF, 

researchers and practitioners will now be able to judge how much power the statistical 

test had in assessing DIF. 

 

Limitations and Directions for Future Research 

In this study, unequal sample sizes between the focal and reference groups were 

not considered.  
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The discrimination parameter in this study was fixed for the focal and reference groups, 

hence, non-uniform DIF was not investigated.  The pseudo-guessing parameter was also 

fixed for the focal and reference groups.  DIF was embedded in only one test item, and all 

other test items were free of DIF which does not consider contamination of a test.  Prior 

to calculating NCDIF, both the focal and reference groups’ ability estimates must be put 

on the same scale.  The true NCDIF parameter was calculated in this study which does 

not factor in linking error when placing the ability estimates on the same scale.  Future 

studies can investigate the impact of these factors on the recommendations developed for 

this study. 

 

Conclusion (Yesterday, Today, and Tomorrow) 

In the 1970s the U.S. government saw standardized testing as a means to ensure 

its scientific competitiveness in the world during the accountability era (Pulliam & Van 

Patten, 1999).  The 1970s also saw increased attention to standardized testing by the state 

governments.  State governments were also funding public schools, therefore, similar to 

Title I from a federal perspective, states also were holding schools accountable for 

receiving state funds.  Colleges were still utilizing standardized scores for evaluating 

applicants, but reliance solely on them had not yet developed.  The 1980s ushered in two 

significant events impacting standardized testing.  The first was a report, A Nation at 

Risk, which criticized public schools in the United States for failing to adequately prepare 

the country’s future scientists and leaders (Pulliam & Van Patten, 1999).  
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Standardized tests were encouraged as a tool to measure educational progress.   

Then the 1980s witnessed the formation of the first organized movement lambasting 

standardized testing.  The mission of the Center for Fair and Open Testing has been and 

still is today to ensure tests are fair and valid (Curano, n.d.).  Today, the Center for Fair 

and Open Testing remains the leading organization for making the public aware of any 

misuses or abuses of using testing scores for high-stakes decisions (Chandler, 1999). For 

example, FairTest criticizes any college which relies solely on SAT scores for admission 

decisions. During the 1990s, nothing really significant happened either positive or 

negative to shift ETS’s momentum related to more and more testing.   

The 21st century witnessed the birth of one, if not the most significant law related 

to education in the United States.  The No Child Left Behind (NCLB) Act mandates that 

all schools show adequate yearly progress (AYP) toward a goal of 100 percent academic 

proficiency by 2014. All of this translates into more standardized testing.  Many who 

oppose more and more testing in education would call this era the “teaching to the test 

era.” Despite many objections and cautions related to the use of standardized testing 

throughout its history, beginning with those opposed to the eugenicists’ movement early 

in the 20th century, the use of standardized tests for college admissions increased.  ETS 

came to be the dominant force in the United States of America’s educational system.  

Standardized testing became controversial with the eugenicist movement, and 

standardized testing will continue to be controversial if more is not done to educate all 

students equally. 

The SAT is just one of the many standardized test given in the United States. Elite 

institutions of higher learning place a high emphasis on high SAT scores.   
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Students without cultural capital will be at a disadvantage as argued by Sacks (2007).  

What is cultural capital?  Cultural capital is any additional resource afforded to those with 

higher education and money. As discussed by Sacks (drawing on Bourdieu), cultural 

capital is subtle.  In discussing the subtle nature of cultural capital Sacks states, “Cultural 

capital is of no intrinsic value.  Its utility comes in using, manipulating, and investing it 

for socially valued and difficult-to-secure purposes and resources” (p. 15).   Affluent 

parents use their cultural capital to ensure that their children are well prepared to apply to 

the elite colleges such as UC Berkely, Stanford and Harvard. How is this cultural capital 

manifested into advantages for those with it? Taking advanced placement classes in high 

school and SAT test preparation are just two tools used by those with cultural capital to 

gain advantages.  Given the competitive nature of attracting the best and brightest high 

school seniors, high SAT scores are considered a “jewel crown.”  Elite colleges are in 

competition for the illustrious rankings as published by U.S. News (Sacks, 2007). The 

single most important factor in getting a high SAT score probably would be associated 

with learning about the SAT, and how to take the SAT.  Students, who come from 

families with cultural capital, in this case cultural capital as the specific knowledge about 

standardized tests, learn early on about the importance of getting a high SAT score.  

Furthermore, these culturally advantage students learn how to take the SAT (Sacks, 

2007).  

Today, standardized testing is a high-stakes measure with serious implications.   

The score a student receives determines which student advances to the next level in grade 

school; which student moves on to high school and which high school; and which student 

moves on to college and which college.  
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Students who come from a less advantaged economic background will lack the cultural 

capital defined by Sacks (2007). Many would argue that these students are already at a 

disadvantage related to taking standardize tests. A DIF analysis is just one tool that can 

be used to attempt to equal the playing field between economically advantaged and 

disadvantaged students. If fairness is one of the goals of standardized testing, then 

investigating and improving various statistical measures to assess DIF in test items 

should be highly encouraged. 

. 
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APPENDIXES 
 

APPENDIX A 

Item Parameters - Reference and Focal Groups 
 

Item  a  b  c  

1  0.94  -1.76  0.20  

2  1.99  -0.21  0.20  

3  1.24  -1.21  0.20  

4  1.47  -1.40  0.20  

5  2.22  -0.78  0.20  

6  1.21  -1.56  0.20  

7  1.14  -1.10  0.20  

8  1.51  -0.92  0.20  

9  1.56  -1.14  0.20  

10  2.28  -0.23  0.20  

11  2.16  -0.91  0.20  

12  1.60  -0.52  0.20  

13  1.89  0.26  0.20  

14  2.09  0.03  0.20  

15  2.26  0.04  0.20  

16  1.40  -0.25  0.20  

17  2.50  -0.21  0.20  

18  1.76  -0.26  0.20  

19  1.78  -0.54  0.20  

20  2.42  -0.15  0.20  

21  1.12  -1.08  0.20  
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22  0.60  0.84  0.20  

23  2.17  -0.44  0.20  

24  1.55  0.30  0.20  

25  1.32  -0.63  0.20  

26  2.32  0.31  0.20  

27  2.11  -0.18  0.20  

28  1.28  -0.02  0.20  

29  2.04  0.14  0.20  

30  2.92  0.08  0.20  

31  1.76  0.47  0.20  

32  1.86  0.30  0.20  

33  1.20  0.37  0.20  

34  1.76  -0.11  0.20  

35  2.09  0.34  0.20  

36  1.41  -0.04  0.20  

37  1.71  0.11  0.20  

38  1.50  0.70  0.20  

39  1.49  -0.18  0.20  

40  1.76  -1.01  0.20  

41  1.13  2.24  0.20  

42  2.59  0.30  0.20  

43  1.70  0.87  0.20  

44  2.67  0.26  0.20  

45  0.61  0.36  0.20  

46  1.29  0.07  0.20  
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47  2.03  0.88  0.20  

48  2.50  0.82  0.20  

49  2.02  0.80  0.20  

50  2.04  0.48  0.20  

51  1.91  1.57  0.20  

52  1.80  1.39  0.20  

53  2.03  1.03  0.20  

54  2.44  1.42  0.20  

55  1.16  1.58  0.20  

56  3.07  1.43  0.20  

57  1.80  1.33  0.20  

58  2.25  1.05  0.20  

59  2.71  1.53  0.20  

60  2.47  2.26  0.20  

61 Variable Variable 0 or .20
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APPENDIX B 

Conditions – Test Item 61 
 

Condition  a  b  c  Amount of 
DIF 

# of 
Increments 

Within 
Conditions 

1 N/A -3 N/A 0.1 40 

2 N/A -2 N/A 0.1 40 

3 N/A -1.5 N/A 0.05 60 

4 N/A -1 N/A 0.05 60 

5 N/A -0.5 N/A 0.05 40 

6 N/A 0 N/A 0.05 40 

7 N/A 0.5 N/A 0.05 20 

8 N/A 1 N/A 0.05 20 

9 N/A 1.5 N/A 0.025 10 

10 N/A 2 N/A 0.025 10 

11 N/A 3 N/A 0.025 10 

12 0.3 -3 N/A 0.1 40 

13 0.3 -2 N/A 0.1 40 

14 0.3 -1.5 N/A 0.05 60 

15 0.3 -1 N/A 0.05 60 

16 0.3 -0.5 N/A 0.05 40 

17 0.3 0 N/A 0.05 40 

18 0.3 0.5 N/A 0.05 20 

19 0.3 1 N/A 0.05 20 

20 0.3 1.5 N/A 0.1 10 

21 0.3 2 N/A 0.1 10 

22 0.3 3 N/A 0.1 10 

23 0.5 -3 N/A 0.1 40 

24 0.5 -2 N/A 0.1 40 

25 0.5 -1.5 N/A 0.05 60 

26 0.5 -1 N/A 0.05 60 

27 0.5 -0.5 N/A 0.05 40 

28 0.5 0 N/A 0.05 40 

29 0.5 0.5 N/A 0.05 20 

30 0.5 1 N/A 0.05 20 
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31 0.5 1.5 N/A 0.1 10 

32 0.5 2 N/A 0.1 10 

33 0.5 3 N/A 0.1 10 

34 0.75 -3 N/A 0.1 40 

35 0.75 -2 N/A 0.1 40 

36 0.75 -1.5 N/A 0.05 60 

37 0.75 -1 N/A 0.05 60 

38 0.75 -0.5 N/A 0.05 40 

39 0.75 0 N/A 0.05 40 

40 0.75 -0.5 N/A 0.05 20 

41 0.75 1 N/A 0.05 20 

42 0.75 1.5 N/A 0.1 10 

43 0.75 2 N/A 0.1 10 

44 0.75 3 N/A 0.1 10 

45 0.95 -3 N/A 0.1 40 

46 0.95 -2 N/A 0.1 40 

47 0.95 -1.5 N/A 0.05 60 

48 0.95 -1 N/A 0.05 60 

49 0.95 -0.5 N/A 0.05 40 

50 0.95 0 N/A 0.05 40 

51 0.95 -0.5 N/A 0.05 20 

52 0.95 1 N/A 0.05 20 

53 0.95 1.5 N/A 0.1 10 

54 0.95 2 N/A 0.1 10 

55 0.95 3 N/A 0.1 10 

56 1.25 -3 N/A 0.1 40 

57 1.25 -2 N/A 0.1 40 

58 1.25 -1.5 N/A 0.05 60 

59 1.25 -1 N/A 0.05 60 

60 1.25 -0.5 N/A 0.05 40 

61 1.25 0 N/A 0.05 40 

62 1.25 0.5 N/A 0.05 20 

63 1.25 1 N/A 0.05 20 

64 1.25 1.5 N/A 0.025 10 

65 1.25 2 N/A 0.025 10 

66 1.25 3 N/A 0.025 10 
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67 1.5 -3 N/A 0.1 40 

68 1.5 -2 N/A 0.1 40 

69 1.5 -1.5 N/A 0.05 60 

70 1.5 -1 N/A 0.05 60 

71 1.5 -0.5 N/A 0.05 40 

72 1.5 0 N/A 0.05 40 

73 1.5 0.5 N/A 0.05 20 

74 1.5 1 N/A 0.05 20 

75 1.5 1.5 N/A 0.025 10 

76 1.5 2 N/A 0.025 10 

77 1.5 3 N/A 0.025 10 

78 1.75 -3 N/A 0.1 40 

79 1.75 -2 N/A 0.1 40 

80 1.75 -1.5 N/A 0.05 60 

81 1.75 -1 N/A 0.05 60 

82 1.75 -0.5 N/A 0.05 40 

83 1.75 0 N/A 0.05 40 

84 1.75 0.5 N/A 0.025 10 

85 1.75 1 N/A 0.025 10 

86 1.75 1.5 N/A 0.025 10 

87 1.75 2 N/A 0.025 10 

88 1.75 3 N/A 0.025 10 

89 2 -3 N/A 0.1 40 

90 2 -2 N/A 0.1 40 

91 2 -1.5 N/A 0.05 60 

92 2 -1 N/A 0.05 60 

93 2 -0.5 N/A 0.05 40 

94 2 0 N/A 0.05 40 

95 2 0.5 N/A 0.025 10 

96 2 1 N/A 0.025 10 

97 2 1.5 N/A 0.025 10 

98 2 2 N/A 0.025 10 

99 2 3 N/A 0.025 10 

100 0.3 -3 0.2 0.1 40 

101 0.3 -2 0.2 0.1 40 

102 0.3 -1.5 0.2 0.05 60 
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103 0.3 -1 0.2 0.05 60 

104 0.3 -0.5 0.2 0.05 40 

105 0.3 0 0.2 0.05 40 

106 0.3 0.5 0.2 0.2 10 

107 0.3 1 0.2 0.2 10 

108 0.3 1.5 0.2 0.2 10 

109 0.3 2 0.2 0.2 10 

110 0.3 3 0.2 0.2 10 

111 0.5 -3 0.2 0.1 40 

112 0.5 -2 0.2 0.1 40 

113 0.5 -1.5 0.2 0.05 60 

114 0.5 -1 0.2 0.05 60 

115 0.5 -0.5 0.2 0.05 40 

116 0.5 0 0.2 0.05 40 

117 0.5 0.5 0.2 0.2 10 

118 0.5 1 0.2 0.2 10 

119 0.5 1.5 0.2 0.2 10 

120 0.5 2 0.2 0.2 10 

121 0.5 3 0.2 0.2 10 

122 0.75 -3 0.2 0.1 40 

123 0.75 -2 0.2 0.1 40 

124 0.75 -1.5 0.2 0.05 60 

125 0.75 -1 0.2 0.05 60 

126 0.75 -0.5 0.2 0.05 40 

127 0.75 0 0.2 0.05 40 

128 0.75 0.5 0.2 0.2 10 

129 0.75 1 0.2 0.2 10 

130 0.75 1.5 0.2 0.2 10 

131 0.75 2 0.2 0.2 10 

132 0.75 3 0.2 0.2 10 

133 0.95 -3 0.2 0.1 40 

134 0.95 -2 0.2 0.1 40 

135 0.95 -1.5 0.2 0.05 60 

136 0.95 -1 0.2 0.05 60 

137 0.95 -0.5 0.2 0.05 40 

138 0.95 0 0.2 0.05 40 



102 
 

 
 

139 0.95 0.5 0.2 0.2 10 

140 0.95 1 0.2 0.2 10 

141 0.95 1.5 0.2 0.2 10 

142 0.95 2 0.2 0.2 10 

143 0.95 3 0.2 0.2 10 

144 1.25 -3 0.2 0.1 40 

145 1.25 -2 0.2 0.1 40 

146 1.25 -1.5 0.2 0.05 60 

147 1.25 -1 0.2 0.05 60 

148 1.25 -0.5 0.2 0.05 40 

149 1.25 0 0.2 0.05 40 

150 1.25 0.5 0.2 0.2 10 

151 1.25 1 0.2 0.2 10 

152 1.25 1.5 0.2 0.2 10 

153 1.25 2 0.2 0.2 10 

154 1.25 3 0.2 0.2 10 

155 1.5 -3 0.2 0.1 40 

156 1.5 -2 0.2 0.1 40 

157 1.5 -1.5 0.2 0.05 60 

158 1.5 -1 0.2 0.05 60 

159 1.5 -0.5 0.2 0.05 40 

160 1.5 0 0.2 0.05 40 

161 1.5 0.5 0.2 0.2 10 

162 1.5 1 0.2 0.2 10 

163 1.5 1.5 0.2 0.2 10 

164 1.5 2 0.2 0.2 10 

165 1.5 3 0.2 0.2 10 

166 1.75 -3 0.2 0.1 40 

167 1.75 -2 0.2 0.1 40 

168 1.75 -1.5 0.2 0.05 60 

169 1.75 -1 0.2 0.05 60 

170 1.75 -0.5 0.2 0.05 40 

171 1.75 0 0.2 0.05 40 

172 1.75 0.5 0.2 0.2 10 

173 1.75 1 0.2 0.2 10 

174 1.75 1.5 0.2 0.2 10 
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175 1.75 2 0.2 0.2 10 

176 1.75 3 0.2 0.2 10 

177 2 -3 0.2 0.1 40 

178 2 -2 0.2 0.1 40 

179 2 -1.5 0.2 0.05 60 

180 2 -1 0.2 0.05 60 

181 2 -0.5 0.2 0.05 40 

182 2 0 0.2 0.05 40 

183 2 0.5 0.2 0.2 10 

184 2 1 0.2 0.2 10 

185 2 1.5 0.2 0.2 10 

186 2 2 0.2 0.2 10 

187 2 3 0.2 0.2 10 

             TOTAL        5750 
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APPENDIX C 

Comprehensive Results – Impact Case 
 
Notes:  

(1) Only 116 of the 187 conditions were also estimated for MH.  If N/A is in the 
“CONGRUENT” column, these conditions were not selected to be estimated.  
N/A does not indicate estimation issues with these conditions.  

(2) There were 46 of the 187 conditions that could not be accurately estimated for 
MH, these conditions are noted by the “Indeterminate” label in the 
“CONGRUENT” column. 

(3) There were 22 of the 46 conditions were the MH parameter for moderate DIF 
(Category B) could not be determined.  “Indeterminate” is indicated in the “MH” 
column. 

C
O

N
D

. AREA 

b-diff 

EST EST ADJ   

CONGRUENT MH NO DIF 
EST 
MH MH 

1 0.3 0.3 -1.676 -0.641 ‐1.035 -1.198 √ 

2 0.3 0.3 -1.505 -0.281 ‐1.224 -1.198 √ 

3 0.25 0.25 -1.171 -0.194 ‐0.977 -0.999 √ 

4 0.25 0.25 -1.172 -0.157 ‐1.015 -0.999 √ 

5 0.3 0.3 -1.346 -0.177 ‐1.169 -1.198 √ 

6 0.3 0.3 -1.41 -0.202 ‐1.208 -1.198 √ 

7 0.25 0.25 -1.245 -0.17 ‐1.075 -0.999 √ 

8 0.3 0.3 -1.519 -0.349 ‐1.17  -1.199 √ 

9 0.25  0.25  N/A N/A N/A  ‐0.999  N/A 

10 0.25  0.25  N/A N/A N/A  ‐0.999  N/A 

11 0.25  0.25  N/A N/A N/A  ‐0.999  Indeterminate

12 0.9 0.9 -1.097 0.032 ‐1.129 -1.073 √ 

13 0.8 0.8 -0.977 0.034 ‐1.011 -0.956 √ 

14 0.8 0.8 -0.93 0.068 ‐0.998 -0.958 √ 

15 0.85 0.85 -0.989 0.063 ‐1.052 -1.02 √ 

16 1.8 1.8 -1.036 0.01 ‐1.046 -2.164 x 

17 1.7 1.7 -1.024 0.004 ‐1.028 -2.046 x 

18 1.7 1.7 -0.978 0.013 ‐0.991 -2.048 x 

19 1.7 1.7 -1.048 0.038 ‐1.086 -2.049 x 

20 0.9  0.9  N/A N/A N/A  ‐1.079  N/A 

21 0.9  0.9  N/A N/A N/A  ‐1.079  N/A 
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22 0.9  0.9  N/A N/A N/A  ‐1.079  N/A 

23 0.5 0.5 -1.052 -0.081 ‐0.971 -0.992 √ 

24 0.5 0.5 -1.066 -0.004 ‐1.062 -0.996 √ 

25 0.5 0.5 -1.035 -0.012 ‐1.023 -0.997 √ 

26 0.5 0.5 -1.024 -0.025 ‐0.999 -0.999 √ 

27 1 1 -1.055 0.016 ‐1.071 -2.001 x 

28 1.1 1.1 -1.161 -0.069 ‐1.092 -2.203 x 

29 1.1 1.1 -1.157 -0.095 ‐1.062 -2.204 x 

30 1 1 -1.123 -0.082 ‐1.041 -2.006 x 

31 0.9  0.9  N/A N/A N/A  ‐1.079  N/A 

32 0.9  0.9  N/A N/A N/A  ‐1.079  N/A 

33 0.9  0.9  N/A N/A N/A  ‐1.079  N/A 

34 0.4 0.4 -1.43 -0.288 ‐1.142 -1.144 √ 

35 0.4 0.4 -1.342 -0.064 ‐1.278 -1.172 √ 

36 0.35 0.35 -1.1 -0.091 ‐1.009 -1.034 √ 

37 0.35 0.35 -1.087 -0.094 ‐0.993 -1.047 √ 

38 0.35 0.35 -1.16 -0.101 ‐1.059 -1.06 √ 

39 0.35 0.35 -1.191 -0.11 ‐1.081 -1.073 √ 

40 0.35 0.35 -1.194 -0.172 ‐1.022 -1.086 √ 

41 0.35 0.35 -1.272 -0.188 ‐1.084 -1.1 √ 

42 0.35  0.35  N/A N/A N/A  ‐1.049  N/A 

43 0.35  0.35  N/A N/A N/A  ‐1.049  N/A 

44 0.35  0.35  N/A N/A N/A  ‐1.049  Indeterminate

45 0.3 0.3 -1.566 0.538 ‐1.028 -1.027 √ 

46 0.3 0.3 -1.349 -0.277 ‐1.072 -1.114 √ 

47 0.3 0.3 -1.243 -0.163 ‐1.08  -1.126 √ 

48 0.3 0.3 -1.279 -0.142 ‐1.137 -1.137 √ 

49 0.3 0.3 -1.268 -0.132 ‐1.136 -1.148 √ 

50 0.3 0.3 -1.342 -0.114 ‐1.228 -1.159 √ 

51 0.3 0.3 -1.334 -0.301 ‐1.033 -1.17 √ 

52 0.3 0.3 -1.494 -0.403 ‐1.091 -1.181 √ 

53 0.3  0.3  N/A N/A N/A  ‐1.139  N/A 

54 0.3  0.3  N/A N/A N/A  ‐1.139  N/A 

55 0.3  0.3  N/A N/A N/A  ‐1.139  Indeterminate
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56 0.3 0.3 -2.344 -0.944 ‐1.4  -1.421 √ 

57 0.3 0.3 -1.777 -0.336 ‐1.441 -1.463 √ 

58 0.2 0.2 -1.263 -0.239 ‐1.024 -0.976 √ 

59 0.2 0.2 -1.16 -0.208 ‐0.952 -0.993 √ 

60 0.2 0.2 -1.196 -0.192 ‐1.004 -1.01 √ 

61 0.2 0.2 -1.178 -0.219 ‐0.959 -1.027 √ 

62 0.2 0.2 -1.368 -0.319 ‐1.049 -1.044 √ 

63 0.25 0.25 -1.754 -0.36 ‐1.394 -1.316 √ 

64 0.2  0.2  N/A N/A N/A  ‐0.999  N/A 

65 0.2  0.2  N/A N/A N/A  ‐0.999  Indeterminate

66 0.2  0.2  N/A N/A N/A  ‐0.999  Indeterminate

67 0.3 0.3 -2.756 -1.296 ‐1.46  -1.406 √ 

68 0.2 0.2 -1.708 -0.611 ‐1.097 -1.151 √ 

69 0.2 0.2 -1.373 -0.269 ‐1.104 -1.173 √ 

70 0.2 0.2 -1.366 -0.226 ‐1.14  -1.194 √ 

71 0.2 0.2 -1.343 -0.228 ‐1.115 -1.214 √ 

72 0.2 0.2 -1.427 -0.26 ‐1.167 -1.235 √ 

73 0.2 0.2 -1.637 -0.409 ‐1.228 -1.256 √ 

74 0.2 0.2 -1.531 -0.33 ‐1.201 -1.28 √ 

75 0.17  0.17  N/A N/A N/A  ‐1.049  N/A 

76 0.17  0.17  N/A N/A N/A  ‐1.049  Indeterminate

77 0.17  0.17  N/A N/A N/A  ‐1.049  Indeterminate

78 0.2 0.2 -2.736 -1.574 ‐1.162 -1.317 √ 

79 0.2 0.2 -1.893 -0.707 ‐1.186 -1.361 √ 

80 0.15 0.15 -1.399 -0.409 ‐0.99  -1.026 √ 

81 0.15 0.15 -1.278 -0.286 ‐0.992 -1.043 √ 

82 0.15 0.15 -1.212 -0.197 ‐1.015 -1.06 √ 

83 0.15 0.15 -1.692 -0.33 ‐1.362 -1.431 √ 

84 0.15  0.15  N/A N/A N/A  ‐1.049  N/A 

85 0.15  0.15  N/A N/A N/A  ‐1.049  N/A 

86 0.15  0.15  N/A N/A N/A  ‐1.049  Indeterminate

87 0.15  0.15  N/A N/A N/A  ‐1.049  Indeterminate 

88 0.15  0.15  N/A N/A N/A  ‐1.049  Indeterminate

89 0.2 0.2 -3.085 -2.025 ‐1.06  -1.49 x 
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90 0.2 0.2 -2.203 -0.864 ‐1.339 -1.549 x 

91 0.15 0.15 -1.57 -0.498 ‐1.072 -1.169 √ 

92 0.15 0.15 -1.43 -0.342 ‐1.088 -1.193 √ 

93 0.15 0.15 -1.397 -0.293 ‐1.104 -1.217 √ 

94 0.15 0.15 -1.525 -0.341 ‐1.184 -1.24 √ 

95 0.13  0.13  N/A N/A N/A  ‐0.999  N/A 

96 0.13  0.13  N/A N/A N/A  ‐0.999  N/A 

97 0.13  0.13  N/A N/A N/A  ‐0.999  Indeterminate

98 0.13  0.13  N/A N/A N/A  ‐0.999  Indeterminate 

99 0.13  0.13  N/A N/A N/A  ‐0.999  Indeterminate

100 0.72 0.9 -1.018 -0.015 ‐1.003 -0.988 √ 

101 0.8 1 -1.045 0.011 ‐1.056 -1.05 √ 

102 0.8 1 -1.016 0.015 ‐1.031 -1.019 √ 

103 0.84 1.05 -1.015 -0.015 ‐1  -1.029 √ 

104 1.68 2.1 -0.997 0.023 ‐1.02  -1.845 x 

105 1.92 2.4 -1.015 0.044 ‐1.059 -1.925 x 

106 1.12  1.4  N/A N/A N/A  ‐1.126  Indeterminate 

107 1.12  1.4  N/A N/A N/A  ‐1.036  Indeterminate

108 1.28  1.6  N/A N/A N/A  ‐1.052  Indeterminate

109 1.6  1.8  N/A N/A N/A  ‐1.03  Indeterminate 

110 *  *  N/A N/A N/A  Indeterminate  Indeterminate

111 0.48 0.6 -1.302 -0.238 ‐1.064 -1.128 √ 

112 0.48 0.6 -1.212 -0.118 ‐1.094 -1.074 √ 

113 0.52 0.65 -1.162 -0.103 ‐1.059 -1.116 √ 

114 0.48 0.6 -1.052 -0.077 ‐0.975 -0.981 √ 

115 1.12 1.4 -1.09 -0.033 ‐1.057 -1.972 x 

116 1.12 1.4 -0.962 0.004 ‐0.966 -1.762 x 

117 0.32  0.9  N/A N/A N/A  ‐1.063  N/A 

118 0.96  1.2  N/A N/A N/A  ‐1.141  Indeterminate

119 1.12  1.4  N/A N/A N/A  ‐1.034  Indeterminate

120 *  *  N/A N/A N/A  Indeterminate Indeterminate 

121 *  *  N/A N/A N/A  Indeterminate Indeterminate

122 0.32 0.4 -1.6 -0.523 ‐1.077 -1.095 √ 

123 0.32 0.4 -1.425 -0.294 ‐1.131 -1.06 √ 
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124 0.32 0.4 -1.241 -0.18 ‐1.061 -1.021 √ 

125 0.32 0.4 -1.115 -0.139 ‐0.976 -0.964 √ 

126 0.4 0.5 -1.183 -0.084 ‐1.099 -1.093 √ 

127 0.4 0.5 -0.998 -0.01 ‐0.988 -0.96 √ 

128 0.56  0.7  N/A N/A N/A  ‐1.043  N/A 

129 0.8  1  N/A N/A N/A  ‐1.038  Indeterminate

130 0.8  1  N/A N/A N/A  ‐1.038  Indeterminate

131 *  *  N/A N/A N/A  Indeterminate  Indeterminate 

132 *  *  N/A N/A N/A  Indeterminate  Indeterminate 

133 0.24 0.3 -1.926 -0.851 ‐1.075 -1.044 √ 

134 0.32 0.4 -1.672 -0.303 ‐1.369 -1.342 √ 

135 0.28 0.35 -1.407 -0.37 ‐1.037 -1.2 √ 

136 0.28 0.35 -1.291 -0.178 ‐1.113 -1.044 √ 

137 0.32 0.4 -1.21 -0.136 ‐1.074 -1.064 √ 

138 0.4 0.5 -1.154 -0.104 ‐1.05  -1.106 √ 

139 0.48  0.6  N/A N/A N/A  ‐0.995  N/A 

140 0.8  1  N/A N/A N/A  ‐0.996  Indeterminate

141 *  *  N/A N/A N/A  Indeterminate Indeterminate

142 *  *  N/A N/A N/A  Indeterminate Indeterminate 

143 *  *  N/A N/A N/A  Indeterminate Indeterminate 

144 0.24 0.3 -2.253 -0.855 ‐1.398 -1.352 √ 

145 0.24 0.3 -1.555 -0.503 ‐1.052 -1.292 √ 

146 0.24 0.3 -1.623 -0.246 ‐1.377 -1.226 √ 

147 0.24 0.3 -1.396 -0.284 ‐1.112 -1.129 √ 

148 0.28 0.35 -1.29 -0.124 ‐1.166 -1.148 √ 

149 0.32 0.4 -1.099 -0.06 ‐1.039 -1.057 √ 

150 0.48  0.6  N/A N/A N/A  ‐1.056  N/A 

151 1.12  1.2  N/A N/A N/A  ‐1.024  Indeterminate

152 *  *  N/A N/A N/A  Indeterminate Indeterminate

153 *  *  N/A N/A N/A  Indeterminate Indeterminate 

154 *  *  N/A N/A N/A  Indeterminate Indeterminate 

155 0.16 0.2 -2.536 -1.522 ‐1.014 -1.036 √ 

156 0.24 0.3 -2.167 -0.634 ‐1.533 -1.519 √ 

157 0.2 0.25 -1.461 -0.33 ‐1.131 -1.193 √ 
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158 0.2 0.25 -1.409 -0.363 ‐1.046 -1.09 √ 

159 0.24 0.3 -1.304 -0.127 ‐1.177 -1.123 √ 

160 0.28 0.35 -1.091 -0.071 ‐1.02  -1.027 √ 

161 0.48  0.6  N/A N/A N/A  ‐1.077  N/A 

162 1.6  2  N/A N/A N/A  ‐0.971  Indeterminate

163 *  *  N/A N/A N/A  Indeterminate Indeterminate

164 *  *  N/A N/A N/A  Indeterminate Indeterminate 

165 *  *  N/A N/A N/A  Indeterminate Indeterminate 

166 0.24 0.3 -3.722 -2.181 ‐1.541 -1.878 √ 

167 0.16 0.2 -2.161 -1.13 ‐1.031 -1.157 √ 

168 0.2 0.25 -1.932 -0.646 ‐1.286 -1.356 √ 

169 0.16 0.2 -1.36 -0.363 ‐0.997 -0.983 √ 

170 0.2 0.25 -1.198 -0.2 ‐0.998 -1.039 √ 

171 0.28 0.35 -1.165 -0.099 ‐1.066 -1.09 √ 

172 0.48  0.6  N/A N/A N/A  ‐1.086  N/A 

173 *  *  N/A N/A N/A  Indeterminate Indeterminate

174 *  *  N/A N/A N/A  Indeterminate Indeterminate

175 *  *  N/A N/A N/A  Indeterminate Indeterminate 

176 *  *  N/A N/A N/A  Indeterminate Indeterminate 

177 0.16 0.2 -3.66 -2.345 ‐1.315 -1.365 √ 

178 0.16 0.2 -2.396 -1.288 ‐1.108 -1.284 √ 

179 0.16 0.2 -1.838 -0.791 ‐1.047 -1.2 √ 

180 0.16 0.2 -1.465 -0.425 ‐1.04  -1.078 √ 

181 0.2 0.25 -1.314 -0.176 ‐1.138 -1.124 √ 

182 0.28 0.35 -1.196 -0.023 ‐1.173 -1.148 √ 

183 0.48  0.6  N/A N/A N/A  ‐1.088  N/A 

184 *  *  N/A N/A N/A  Indeterminate Indeterminate

185 *  *  N/A N/A N/A  Indeterminate Indeterminate

186 *  *  N/A N/A N/A  Indeterminate Indeterminate 

187 *  *  N/A N/A N/A  Indeterminate Indeterminate 
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APPENDIX D 

Correlation Matrix  – Impact Case (The number represents a specific condition).  For 
those conditions in which MH was not estimated, correlations are not provided. 

 1      2     3     4      

MH  1     1    1    1    
NCDIF  0.99  1     0.99 1    1 1    0.99  1    
SIBTEST  0.98  0.99  1 0.97 0.99 1 0.98 0.98 1 0.95  0.96  1

 5      6     7     8      

MH  1       1      1      1      

NCDIF  0.99  1     0.99 1    0.99 1    0.99  1    

SIBTEST  0.97  0.97  1 0.94 0.96 1 0.97 0.97 1 0.94  0.95  1

 12      13     14     15      

MH  1       1      1      1      

NCDIF  0.99  1     1 1    1 1    1  1    

SIBTEST  1  0.99  1 1 0.99 1 0.99 0.99 1 0.99  1  1
            

 16      17     18     19      

MH  1       1      1      1      

NCDIF  0.99  1     0.99 1    0.99 1    0.99  1    

SIBTEST  0.98  0.98  1 0.98 0.98 1 0.95 0.96 1 0.95  0.96  1

 23      24     25     26      

MH  1       1      1      1      

NCDIF  0.99  1     0.99 1    1 1    0.99  1    

SIBTEST  1  0.99  1 0.99 0.99 1 1 0.99 1 0.99  0.99  1

 27      28     29     30      

MH  1       1      1      1      

NCDIF  0.98  1     0.98 1    0.99 1    0.99  1    

SIBTEST  0.99  0.99  1 0.98 0.99 1 0.97 0.97 1 0.97  0.96  1
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 34      35     36     37      

MH  1       1      1      1      

NCDIF         0.99  1     0.99 1    0.99 1    0.99  1   

SIBTEST       0.99  0.99  1 0.99 0.98 1 0.99 0.98 1  0.97  0.98 1

 38      39     40     41      

MH  1       1      1      1      

NCDIF  0.99  1     0.99 1    0.99 1    0.99  1   

SIBTEST  0.98  0.99  1 0.97 0.98 1 0.97 0.97 1  0.97  0.97 1

 45      46     47     48      

MH               1       1      1      1      

NCDIF  0.98  1     0.99 1    0.99 1    0.99  1   

SIBTEST  0.98  0.99  1 0.98 0.97 1 0.98 0.98 1  0.95  0.96 1

 49      50     51     52      

MH  1       1      1      1      

NCDIF  0.99  1     0.99 1    0.99 1    0.99  1   

SIBTEST  0.97  0.98  1 0.94 0.97 1 0.98 0.97 1  0.92  0.94 1

 56      57     58     59      

MH  1       1      1      1      

NCDIF  0.97  1     0.99 1    0.99 1    0.99  1   

SIBTEST  0.97  0.99  1 0.96 0.96 1 0.97 0.96 1  0.92  0.94 1

 60      61     62     63      

MH  1       1      1      1      

NCDIF  0.99  1     0.99 1    0.99 1    0.99  1   

SIBTEST  0.94  0.95  1 0.91 0.95 1 0.94 0.95 1  0.89  0.92 1

 67      68     69     70      

MH  1       1      1      1      

NCDIF  0.97  1     0.99 1    0.99 1    0.99  1   

SIBTEST  0.97  0.98  1 0.95 0.95 1 0.96 0.95 1  0.9  0.92 1
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 71      72     73     74      

MH  1       1      1      1      

NCDIF  0.99  1     0.99 1    0.99 1    0.99  1   

SIBTEST  0.92  0.93  1 0.86 0.91 1 0.95 0.95 1  0.83  0.83 1
             
 78      79     80     81      

MH  1       1      1      1      

NCDIF  0.95  1     0.99 1    0.99 1    0.99  1   

SIBTEST  0.96  0.98  1 0.96 0.94 1 0.94 0.94 1  0.88  0.9 1

 82      83           

MH  1       1     

NCDIF  0.99  1     0.98 1   

SIBTEST  0.89  0.9  1 0.82 0.88 1

 89      90     91     92      

MH  1       1      1      1      

NCDIF  0.94  1     0.98 1    0.99 1    0.99  1   

SIBTEST  0.94  0.97  1 0.97 0.93 1 0.93 0.93 1  0.86  0.88 1

 93      94           

MH  1       1     

NCDIF  0.99  1     0.98 1   

SIBTEST  0.85  0.87  1 0.81 0.87 1
      

 100      101     102     103      

MH  1       1      1      1      

NCDIF  0.99  1     0.99 1    0.99 1    0.99  1   

SIBTEST  1  0.99  1 1 0.99 1 1 0.99 1  1  0.99 1

 104      105           

MH  1       1     

NCDIF  0.99  1     0.99 1   

SIBTEST  1  0.99  1 0.99 0.99 1
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 111      112     113     114      

MH  1       1      1      1      

NCDIF  0.98  1     0.99 1    0.99 1    0.99  1   

SIBTEST  1  0.99  1 1 0.99 1 1 0.99 1  1  0.99 1
             
 115      116           

MH  1       1     

NCDIF  0.99  1     0.99 1   

SIBTEST  1  0.99  1 1 0.99 1

 122      123     124     125      

MH  1       1      1      1      

NCDIF  0.96  1     0.98 1    0.99 1    0.99  1   

SIBTEST  0.99  0.98  1 1 0.97 1 1 0.98 1  1  0.98 1

 126      127           

MH  1       1     

NCDIF  0.99  1     0.99 1   

SIBTEST  1  0.98  1 0.99 0.98 1

 133      134     135     136      

MH  1       1      1      1      

NCDIF  0.94  1     0.96 1    0.98 1    0.98  1   

SIBTEST  0.99  0.97  1 1 0.96 1 1 0.96 1  0.99  0.96 1

 137      138           

MH  1       1     

NCDIF  0.99  1     0.99 1   

SIBTEST  0.99  0.97  1 0.99 0.97 1

 144      145     146     147      

MH  1       1      1      1      

NCDIF  0.91  1     0.93 1    0.96 1    0.97  1   

SIBTEST  0.93  0.99  1 0.99 0.96 1 1 0.94 1  0.99  0.93 1
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 148      149           

MH  1       1     

NCDIF  0.98  1     0.99 1   

SIBTEST  0.99  0.95  1 0.98 0.95 1

 155      156     157     158      

MH  1       1      1      1      

NCDIF  0.89  1     0.91 1    0.95 1    0.96  1   

SIBTEST  0.9  0.98  1 0.98 0.95 1 1 0.92 1  0.99  0.91 1

 159      160           

MH  1       1     

NCDIF  0.98  1     0.99 1   

SIBTEST  0.98  0.93  1 0.97 0.93 1

 166      167     168     169      

MH  1       1      1      1      

NCDIF  0.88  1     0.91 1    0.93 1    0.95  1   

SIBTEST  0.97  0.95  1 1 0.91 1 1 0.91 1  0.99  0.89 1

 170      171           

MH  1       1     

NCDIF  0.97  1     0.98 1   

SIBTEST  0.98  0.92  1 0.95 0.9 1

 177      178     179     180      

MH  1       1      1      1      

NCDIF  0.87  1     0.9 1    0.93 1    0.94  1   

SIBTEST  0.96  0.94  1 0.99 0.9 1 1 0.9 1  0.98  0.87 1

 181      182           

MH  1       1     

NCDIF  0.97  1     0.98 1   

SIBTEST  0.97  0.89  1 0.94 0.87 1
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APPENDIX E 

Graphical Relationship Relating– Model, Discrimination Parameter, Difficulty Level and 
Model Associated with NCDIF Moderate DIF (Category B) 
 
2PL Model – Solid Line, 3PL Model – Dash Line 
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APPENDIX F 

NCDIF Values –Seven Decimal Places 

MH parameter for these 29 conditions corresponded to moderate DIF (Category B), 
whereas the NCDIF parameter value for these conditions is very small, < .001.  

Condition a b c 

NCDIF 
MODERATE 

CATEGORY B 

NCDIF 
LARGE 

CATEGORY C 
1 N/A -3 N/A 0.0003753 0.0008445 
11 N/A 3 N/A 0.0002015 0.0004534 
44 0.75 3 N/A 0.0002423 0.0005452 
45 0.95 -3 N/A 0.0001157 0.0002604 
55 0.95 3 N/A 0.0000935 0.0002104 
56 1.25 -3 N/A 0.0000495 0.0001115 
65 1.25 2 N/A 0.0003307 0.0007441 
66 1.25 3 N/A 0.0000221 0.0000497 
67 1.5 -3 N/A 0.0000276 0.0000622 
76 1.5 2 N/A 0.0002183 0.0004912 
77 1.5 3 N/A 0.0000105 0.0000236 
78 1.75 -3 N/A 0.0000180 0.0000406 
79 1.75 -2 N/A 0.0002665 0.0005997 
86 1.75 1.5 N/A 0.0004790 0.0010778 
87 1.75 2 N/A 0.0001394 0.0003137 
88 1.75 3 N/A 0.0000052 0.0000117 
89 2 -3 N/A 0.0000035 0.0000080 
90 2 -2 N/A 0.0002349 0.0005287 
97 2 1.5 N/A 0.0003256 0.0007326 
98 2 2 N/A 0.0000934 0.0002102 
99 2 3 N/A 0.0000029 0.0000065 

122 0.75 -3 0.2 0.0002606 0.0005864 
133 0.95 -3 0.2 0.0000740 0.0001666 
144 1.25 -3 0.2 0.0000317 0.0000714 
155 1.5 -3 0.2 0.0000177 0.0000398 
166 1.75 -3 0.2 0.0000115 0.0000259 
167 1.75 -2 0.2 0.0001706 0.0003838 
177 2 -3 0.2 0.0000023 0.0000051 
178 2 -2 0.2 0.0001503 0.0003383 
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Appendix G 
NO IMPACT CONSTANTS 
 
Linear Constants Relating - SIBTEST = (MH / K) 

Model  1PL  2PL  2PL  2PL  2PL  2PL  2PL  2PL  2PL 

Discrimination     0.30  0.50  0.75  0.95  1.25  1.50  1.75  2.00 

Difficulty                            

‐3  19  11  13  16  19  24  27  30  31 

‐2  16  10  11  13  15  19  22  24  26 

‐1.5  14  10  12  12  14  15  18  20  23 

‐1  13  10  11  12  13  16  18  20  22 

‐0.5  13  10  11  11  13  15  16  18  20 

0  12  10  12  14  16  19  22  24  27 

0.5  12  10  12  15  16  21  23  N/A  N/A 

1  12  12  13  20  26  36  45  N/A  N/A 

Model  3PL  3PL  3PL  3PL  3PL  3PL  3PL  3PL 
Discrimination  0.30  0.50  0.75  0.95  1.25  1.50  1.75  2.00 
Difficulty                         

‐3  12  15  16  18  21  23  23  24 

‐2  10  11  12  13  13  11  15  15 

‐1.5  10  11  11  12  12  13  13  13 

‐1  10  10  11  11  11  11  11  11 

‐0.5  10  10  10  11  11  11  11  11 

0  10  10  11  11  12  12  12  12 
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APPENDIX H 

Example – DFIT8 Output without a DIF Category or Power 
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Example – DFIT Output with a DIF Category and Power 
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APPENDIX I 

Monte Carlo Simulation - SAS Programs  

/********************************************************************** 
 * Programmer: Keith D. Wright 
 * Date: 3/16/2011 
 * Georgia State University 
 * Dissertation: Improvements For Differential Functioning of Item  
 * & Tests (DFIT): Investigating The Addition of Reporting An Effect  
 * Size Measure and Power 
 * 
 * This is the main program which automates the Monte Carlo simulation  
 * study. 
 * This program was part of IRTGEN, Whittaker, Fitzpatrick, Williams,  
 * and Dodd (2003), with significant modifications for this study. 
 * 
 * The program reads in several reference group files containing item  
 * parameters for 61 test items.  For each file, IRTGEN is invoked with  
 * the file, where random response data (1s & Os) are created for 1000  
 * examinees. 
 * 
 * The program then reads in focal group files containing item  
 * parameters for the 61 test items.  For each file, IRTGEN is  
 * invoked with the file, where random response data (1s & Os) are    
 * created for 1000 examinees. 
 * 
 * IRTGEN is invoked again with the merge flag set to 1, which will  
 * cause IRTGEN to merge the response data file for the reference  
 * group examinees and focal group examinees into one file. This will   
 * result into numerous Mantel-Haenszel files being created for  
 * analysis purposes. 
 * 
/********************************************************************** 
%macro simtimes(simnum);  
/* Used to control the number of replications for the Monte Carlo 
study. */ 
%DO s=1 %to &simnum; 
options nonotes nosource nosource2 errors=0; 
 
%macro reffactors; 

FILENAME IO 'C:\Documents andSettings\SPR2011\Dissertation_Sftw'; 
%INCLUDE IO(IRTGEN); 
%do i=80 %to 110; 
%IF (&i=80)or(&i=82)or(&i=84)or(&i=86)or(&i=88)%THEN %DO; 

%do j=1 %to 40; 
%if &s=1 %then %do; 
DATA L1&i&j; 
INFILE IO(ref&i&j);             
INPUT A B C; 
%IRTGEN(DATA=L1&i&j, OUT=REFOUT&i&j, NI=61, NE=1000, GRP=0, 
MERGE=0, thetaflag1=&s, thetaflag2=1); 
%end; 
%else %if &s^=1 %then %do; 
%IRTGEN(DATA=L1&i&j, OUT=REFOUT&i&j, NI=61, NE=1000, GRP=0, 
MERGE=0, thetaflag1=&s, thetaflag2=1); 
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%end; 
%end; 

%END; 
%ELSE %IF (&i=81)or(&i=85)or(&i=89)or(&i=93)or(&i=97)or 
(&i=100)or(&i=103)or(&i=106)or(&i=109)%THEN %DO; 

%do j=1 %to 60; 
%if &s=1 %then %do; 
DATA L1&i&j; 
INFILE IO(ref&i&j);             
INPUT A B C; 
%IRTGEN(DATA=L1&i&j, OUT=REFOUT&i&j, NI=61, NE=1000, 
GRP=0, MERGE=0, thetaflag1=&s, thetaflag2=1); 
%end; 
%else %if &s^=1 %then %do; 
%IRTGEN(DATA=L1&i&j, OUT=REFOUT&i&j, NI=61, NE=1000, 
GRP=0, MERGE=0, thetaflag1=&s, thetaflag2=1); 
%end; 

%end; 
%END; 
%ELSE %IF (&i=83)or(&i=87)or(&i=91)or(&i=95)%THEN %DO; 

%do j=1 %to 20; 
%if &s=1 %then %do; 
DATA L1&i&j; 
INFILE IO(ref&i&j);             
INPUT A B C; 
%IRTGEN(DATA=L1&i&j, OUT=REFOUT&i&j, NI=61, NE=1000, 
GRP=0, MERGE=0, thetaflag1=&s, thetaflag2=1); 
%end; 
%else %if &s^=1 %then %do; 
%IRTGEN(DATA=L1&i&j, OUT=REFOUT&i&j, NI=61, NE=1000, 
GRP=0, MERGE=0, thetaflag1=&s, thetaflag2=1); 
%end; 

%end; 
%END; 

%end; 
  
%mend reffactors; /* Ending Macro reffactors */ 
%reffactors; /* Invoke the Macro reffactors */ 
   
 
/* Macro for creating the focal group random response data */ 
%macro focalfiles; 
FILENAME IO 'C:\Documents and Settings\SPR2011\Dissertation_Sftw'; 
%INCLUDE IO(IRTGEN); 
%do i=80 %to 110; 
%IF 
(&i=80)or(&i=82)or(&i=84)or(&i=86)or(&i=88)or(&i=90)or(&i=92)or(&i=94)o
r(&i=96)or(&i=98)or(&i=99)or(&i=101)or(&i=102)or(&i=104)or(&i=105)or(&i
=107)or(&i=108)or(&i=110)%THEN %DO; 

%do j=1 %to 40; 
%if &s=1 %then %do; 
DATA L2&i&j; 
INFILE IO(focal&i&j);             
INPUT A B C;  
%IRTGEN(DATA=L2&i&j, OUT=OUT&i&j, NI=61, NE=1000, GRP=1, MERGE=0, 
thetaflag1=&s, thetaflag2=1); 
%end; 
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%else %if &s^=1 %then %do; 
%IRTGEN(DATA=L2&i&j, OUT=OUT&i&j, NI=61, NE=1000, GRP=1, MERGE=0, 
thetaflag1=&s, thetaflag2=1); 
%end; 

%end; 
%END; 
%ELSE %IF 
(&i=81)or(&i=85)or(&i=89)or(&i=93)or(&i=97)or(&i=100)or(&i=103)or(&i=10
6)or(&i=109)%THEN %DO; 

%do j=1 %to 60; 
%if &s=1 %then %do; 
DATA L2&i&j; 
INFILE IO(focal&i&j);             
INPUT A B C;  
%IRTGEN(DATA=L2&i&j, OUT=OUT&i&j, NI=61, NE=1000, GRP=1, MERGE=0, 
thetaflag1=&s, thetaflag2=1); 
%end; 
%else %if &s^=1 %then %do; 
%IRTGEN(DATA=L2&i&j, OUT=OUT&i&j, NI=61, NE=1000, GRP=1, MERGE=0, 
thetaflag1=&s, thetaflag2=1); 
%end; 

%end; 
%END; 
%ELSE %IF (&i=83)or(&i=87)or(&i=91)or(&i=95)%THEN %DO; 

%do j=1 %to 20; 
%if &s=1 %then %do; 
DATA L2&i&j; 
INFILE IO(focal&i&j);             
INPUT A B C;  
%IRTGEN(DATA=L2&i&j, OUT=OUT&i&j, NI=61, NE=1000, GRP=1, MERGE=0, 
thetaflag1=&s, thetaflag2=1); 
%end; 
%else %if &s^=1 %then %do; 
%IRTGEN(DATA=L2&i&j, OUT=OUT&i&j, NI=61, NE=1000, GRP=1, MERGE=0, 
thetaflag1=&s, thetaflag2=1); 
%end; 

%end; 
%END; 
%end; 
/* This statement invokes IRTGEN so that the reference group */  
/* and focal group response data s merged together for the Mantel-
Haenszel*/ /* analysis */ 
%IRTGEN(DATA=L28040, OUT=OUT200, NI=61, NE=1000, GRP=1, MERGE=1, 
thetaflag1=&s, thetaflag2=1); 
 
 
%mend focalfiles; /* Ending Macro focalfiles */ 
%focalfiles; /* Invoke the Macro focalfiles */ 
 
 
/* The next section of code is for the Mantel-Haenszel analysis */ 
%macro mhdif(num); 
 
%do i=80 %to 110; 
%IF 
(&i=80)or(&i=82)or(&i=84)or(&i=86)or(&i=88)or(&i=90)or(&i=92)or(&i=94)o
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r(&i=96)or(&i=98)or(&i=99)or(&i=101)or(&i=102)or(&i=104)or(&i=105)or(&i
=107)or(&i=108)or(&i=110)%THEN %DO; 

%do j=1 %to 40; 
%do k=61 %to &num; 
DATA look4dif; 
infile "C:\Documents and Settings\mh&i&j..dat"; 
input group item1-item61; 
score = sum(of item1-item61); 
RUN; 

 
    

PROC RANK data=look4dif out=Ability_Groups groups=5; 
var score; 
ranks stratum; 
   
 
PROC FREQ Data=Ability_Groups noprint; 
Tables stratum*group*item&k/CMH norow nocol nopercent; 
 
%IF &k = 61 %THEN %DO; 
output out= out&i&j&k CMH; /*Creating the DIF tables */ 
%END; 
 
RUN; 
 
%IF (&k = 61) and (&s = 1 or &s = 25 or &s = 50 or &s = 100 or &s 
= 150 or &s = 200 or &s = 250 or &s = 400 or &s = 500) %THEN %DO; 
%put &i&j&k&s; /* Only used to track the place in the simulation 
study */ 
%END; 
%end; 
%end; 
%END; 
%ELSE %IF 
(&i=81)or(&i=85)or(&i=89)or(&i=93)or(&i=97)or(&i=100)or(&i=103)or
(&i=106)or(&i=109)%THEN %DO; 
%do j=1 %to 60; 
%do k=61 %to &num; 
DATA look4dif; 
infile "C:\Documents and Settings\mh&i&j..dat"; 
input group item1-item61; 
score = sum(of item1-item61); 
RUN; 
 
    
PROC RANK data=look4dif out=Ability_Groups groups=5; 
var score; 
ranks stratum; 
   
 
PROC FREQ Data=Ability_Groups noprint; 
Tables stratum*group*item&k/CMH norow nocol nopercent; 
 
%IF &k = 61 %THEN %DO; 
output out= out&i&j&k CMH; /*Creating the MH DIF tables */ 
%END; 
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RUN; 
 
%IF (&k = 61) and (&s = 1 or &s = 25 or &s = 50 or &s = 100 or &s 
= 150 or &s = 200 or &s = 250 or &s = 400 or &s = 500) %THEN %DO; 
%put &i&j&k&s; /* Only used to track the place in the simulation 
study */ 
%END; 
%end; 

%end; 
%END; 
%ELSE %IF (&i=83)or(&i=87)or(&i=91)or(&i=95)%THEN %DO; 

%do j=1 %to 20; 
%do k=61 %to &num; 
DATA look4dif; 
infile "C:\Documents and Settings\mh&i&j..dat"; 
input group item1-item61; 
score = sum(of item1-item61); 
RUN; 
 
    
PROC RANK data=look4dif out=Ability_Groups groups=5; 
var score; 
ranks stratum; 
   
 
PROC FREQ Data=Ability_Groups noprint; 
Tables stratum*group*item&k/CMH norow nocol nopercent; 
 
%IF &k = 61 %THEN %DO; 
output out= out&i&j&k CMH; /*Creating the DIF tables */ 
%END; 
 
RUN; 
 
%IF (&k = 61) and (&s = 1 or &s = 25 or &s = 50 or &s = 100 or &s 
= 150 or &s = 200 or &s = 250 or &s = 400 or &s = 500) %THEN %DO; 
%put &i&j&k&s; /* Only used to track the place in the simulation 
study */ 
%END; 
%end; 
%end; 
%END; 
%end; 

 
/* Formatting the DIF output for analysis purposes */ 
data all&s (RENAME=(_MHOR_=md P_CMHRMS=mh_pvalue));  
set  
%do i = 80 %to 110; 
%IF 
(&i=80)or(&i=82)or(&i=84)or(&i=86)or(&i=88)or(&i=90)or(&i=92)or(&i=94)o
r(&i=96)or(&i=98)or(&i=99)or(&i=101)or(&i=102)or(&i=104)or(&i=105)or(&i
=107)or(&i=108)or(&i=110)%THEN %DO; 
%do j = 1 %to 40; 
out&i&j&num 
%end; 
%END; 
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%ELSE %IF 
(&i=81)or(&i=85)or(&i=89)or(&i=93)or(&i=97)or(&i=100)or(&i=103)or(&i=10
6)or(&i=109)%THEN %DO; 
%do j = 1 %to 60; 
out&i&j&num 
%end; 
%END; 
%ELSE %IF (&i=83)or(&i=87)or(&i=91)or(&i=95)%THEN %DO; 
%do j = 1 %to 20; 
out&i&j&num 
%end; 
%END; 
%end; 
; 
run; 
 
 
/* Determine the size of DIF based on Mantel-Haenszel */ 
/* effect size guidelines */ 
DATA final&s; set all&s;  
const = -2.3529;  
mhd=const*(log(md));  
 
/* Used for Type I and Type II analysis */ 
if mh_pvalue > .05 then pvalue=0;else pvalue = 1; 
 
 
/* Specifying which variables to keep from the MH analysis */ 
keep md const mhd pvalue; 
RUN; /* End determining the size of DIF */ 
 
/* Capture the results */ 
%IF &s = 100 %THEN %DO; 
 DATA results;  
 merge  
 %do n = 1 %to 100; 
 final&n(rename = (mhd = run&n) drop=md const pvalue) 
 %end; 
 ; 
 RUN; 
 data _null_; set results; 
 file 'C:\Documents and Settings\output\resultsout100.txt'; 
 put run1-run100; 
 RUN; 
 
 /* First Set of Files */ 
 DATA resultsout1; set results;  
 file "C:\Documents and Settings\output\output\resultsout100.dat"; 
 put run1-run100;  
 RUN; 
 DATA resultsout1; 

INFILE "C:\Documents and 
Settings\output\output\resultsout100.dat"; 

  INPUT run1-run100; 
 RUN; 
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 PROC EXPORT DATA=resultsout1 
 OUTFILE="C:\Documents and  

Settings\output\output\resultsout100.xls"; 
 RUN; 
 
   
 DATA power;  
 merge  
 %do n = 1 %to 100; 
 final&n(rename = (pvalue = run&n) drop=md const mhd) 
 %end; 
 ; 
 RUN; 
 data _null_; set power; 
 file 'C:\Documents and Settings\output\output\powerout100.txt'; 
 put run1-run100; 
 RUN; 
 
 /* First Set of Files */ 
 DATA powerout1; set power;  
 file "C:\Documents and Settings\output\output\power100.dat"; 
 put run1-run100; 
 RUN; 
 DATA powerout1; 
   INFILE "C:\Documents and Settings\output\output\power100.dat"; 
  INPUT run1-run100; 
 RUN; 
 PROC EXPORT DATA=powerout1 
 OUTFILE="C:\Documents and Settings\output\output\power100.xls"; 
 RUN; 
%END; 
 
 
%mend; /* Ending Macro mhdif */ 
%mhdif(61); /* Invoke the Macro mhdif */ 
 
 
%END; /* Ending TOP do loop, where the number of replications is 
running */ 
%mend;/* Ending Macro simtimes */ 
 
/* Used to control the number of replications for the Monte Carlo 
study. */ 
%simtimes(100);  
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/********************************************************************** 
 * Programmer: Keith D. Wright 
 * Date: 3/16/2011 
 * Georgia State University 
 * 
 * The majority of this program was taken from IRTGEN and modified 
 * for the purposes of this dissertation 
 * (Whittaker, Fitzpatrick, Williams, & Dodd (2003). 
/********************************************************************** 
 
 
%LET DIST='NORMAL'; 
%LET SEED=34561; 
 
 
%MACRO IRTGEN(DATA=_LAST_, OUT=GEN, NI=, NE=, GRP=, MERGE=, 
thetaflag1=, thetaflag2=); 
 
    %MACRO L3GEN; 
       GROUP = 0;    
/* Used to control reference versus focal group files */ 
    %IF &GRP = 1 %THEN %do;   
/* Reference group ID will be 0 and focal group ID 1 */ 
     GROUP = 1;               
/* This ordering is necessary for accurate MH analysis */ 
    %end; 
 
    P=C+(1-C)*(1/(1+exp(-1.7*A*(THETA-B)))); 
 
/* The next four lines are key for an accurate MH analysis.  
/* MH analysis wants the correct response to be in the first  
/* column of PROC FREQ, therefore, a lower number will be assign,  
/* (i.e. 7) for a correct response. If the traditional coding of 0 for  
/* incorrect and 1 for correct is used, the MH analysis will be   
/* backwards generating DIF favoring focal versus reference. The number  
/* 9 is used to represent an incorrect response, typically 0 is used.  
 
    IF P GE RANUNI(-1) THEN R(J)=7;  

/* Results into a correct response if probability is */ 
/* greater */ 

    ELSE R(J)=9;                     
/* than a randomly generated probability else incorrect*/ 

 
    %MEND L3GEN; 
 
    %LET FLAG=0; 
    %LET MDL=L3GEN; 
    %IF %LENGTH(&NI)=0 OR &NI=0 %THEN %DO; 
    %PUT; 
    %PUT ***** ERROR ***** YOU MUST SPECIFY NUMBER OF ITEMS *****; 
    %PUT; 
    %LET FLAG=1; 
 %END; 
    %IF %LENGTH(&NE)=0 OR &NE=0 %THEN %DO; 
    %PUT; 
    %PUT ***** ERROR ***** YOU MUST SPECIFY NUMBER OF EXAMINEES 
*****; 
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    %PUT; 
    %LET FLAG=1; 
 %END; 
 
    %IF &FLAG=0 %THEN %DO; 
        DATA THETA; 
     KEEP THETA; 
     CALL STREAMINIT(&SEED+&thetaflag1); 
      DO I=1 TO &NE; 
         IF &GRP=1 THEN 
   THETA=RAND(&DIST);  
                 /*THETA=-1+1*RAND(&DIST);*/ /* Impact Case */ 
         ELSE THETA=RAND(&DIST); 
              OUTPUT; 
         END; 
        RUN;  
 
  DATA &OUT; 
           KEEP GROUP THETA R1-R&NI; 
           ARRAY R(*) R1-R&NI;  
           SET THETA;   
           DO J=1 TO &NI; 
            SET &DATA POINT=J; %&MDL; 
           END; 
        RUN; 
 
/* These next statements are for merging the response data of the */ 
/* reference and focal group */ 
    %IF &MERGE = 1 %THEN %DO; 
       %do i=80 %to 110; 
   %IF 
(&i=80)or(&i=82)or(&i=84)or(&i=86)or(&i=88)or(&i=90)or(&i=92)or(&i=94)o
r(&i=96)or(&i=98)or(&i=99)or(&i=101)or(&i=102)or(&i=104)or(&i=105)or(&i
=107)or(&i=108)or(&i=110)%THEN %DO; 
    %do j=1 %to 40; 
       DATA merge&i&j; set refout&i&j out&i&j; 
       RUN; 
   /* Output the merge files for the MH Analysis */ 
       DATA mh&i&j; SET merge&i&j; 
    file "C:\Documents and Settings\mh&i&j..dat"; 
    put GROUP R1-R61; 
          RUN; 
    %end; /* End 1 - 40 loop */ 
   %END; 
   %ELSE %IF 
(&i=81)or(&i=85)or(&i=89)or(&i=93)or(&i=97)or(&i=100)or(&i=103)or(&i=10
6)or(&i=109)%THEN %DO; 
    %do j=1 %to 60; 
       DATA merge&i&j; set refout&i&j out&i&j; 
       RUN; 
   /* Output the merge files for the MH Analysis */ 
       DATA mh&i&j; SET merge&i&j; 
    file "C:\Documents and Settings\mh&i&j..dat"; 
    put GROUP R1-R61; 
          RUN; 
    %end; /* End 1 - 60 loop */ 
   %END; 
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   %ELSE %IF (&i=83)or(&i=87)or(&i=91)or(&i=95)%THEN 
%DO; 
    %do j=1 %to 20; 
       DATA merge&i&j; set refout&i&j out&i&j; 
       RUN; 
   /* Output the merge files for the MH Analysis */ 
       DATA mh&i&j; SET merge&i&j; 
    file "C:\Documents and Settings\mh&i&j..dat"; 
    put GROUP R1-R61; 
          RUN; 
    %end; /* End 1 - 20 loop */ 
   %END; 
     
  %END; /* End 80 - 96 loop */ 
 
  /* Code necessary to get Thetas for NCDIF calculations */ 
   %IF (&thetaflag1 = 85) AND (&thetaflag2 = 1) %THEN 
%DO; 
    DATA getthetas;  
     merge  
     %do i=80 %to 80; 
      out&i (drop=GROUP R1-R61); 
     %end; 
    RUN; 
 
    PROC EXPORT DATA=getthetas 
    OUTFILE="C:\output\thetasout.xls"; 
    RUN; 
     
   %END; 
    
   %END; /* End MERGE */ 
 
    %END; /* End IF FLAG = 0 */ 
  
%MEND IRTGEN; 
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APPENDIX J 

Monte Carlo Simulation - SAS Program Integrating SIBTEST  

/********************************************************************** 
 * Programmer: Keith D. Wright 
 * Date: 3/16/2011 
 * Georgia State University 
 * 
 * Only a portion of the SIBTEST code is included.  This code was added 
 * specifically for the Monte Carlo study for SIBTEST’s estimation. 
 * This code demonstrates how to automate SIBTEST. 
/********************************************************************** 
%IF(&i=80)or(&i=82)or(&i=84)or(&i=86)or(&i=88) %THEN %DO; 
   %do j=1 %to 40; 
    proc iml;  
    FILENAME OUT 'C:\Program Files\sibtest\sib.in'; 
    FILE OUT; 
    PUT @1 '61'/ 
    @1 "C:\SIBTEST\refresp&i..dat"/ 
    @1 "C:\SIBTEST\focresp&i&j..dat"/ 
    @1 '1'/ 
    @1 '"C:\Documents and Settings\SIB.txt"'/ 
     @1 '20'/  
     @1 '1'/  
     @1 '0'/  
     @1 '1' // 
     @1 '1'/  
     @1 '61'/  
        @1 '''f'''/ 
        @1 '60'/ 
     @1 '1  2  3  4  5'/  
     @1 '6  7  8  9  10'/  
     @1 '11  12  13  14  15'/  
     @1 '16  17  18  19  20'/ 
     @1 '21  22  23  24  25'/  
     @1 '26  27  28  29  30'/  
     @1 '31  32  33  34  35'/  
    @1 '36  37  38  39  40'/  
     @1 '41  42  43  44  45'/  
     @1 '46  47  48  49  50'/  
    @1 '51  52  53  54  55'/  
     @1 '56  57  58  59  60'/  
     @1 '0.2';  
    CLOSEFILE OUT; 
    start system(command); 
     call push(" x '",command,"'; resume;"); 
     pause; 
     finish; 
     run system('c:\SIBTEST\auto_commands'); 
    quit; 
 
    data sib&i&j; 
    INFILE 'C:\Documents and  

Settings\Desktop\SIB.txt'; 
    *Move 81 lines to retrieve sibtest statistic; 
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    INPUT 
   ///////////////////////////////////////////////// 
    /////////////////////////////// 
    sibtest 31-36  pvalue 47-52; 
    if pvalue > .05 then pvalue=0;else pvalue = 1; 
    RUN; 
    %end; 
%END; 
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APPENDIX K 

DIFCUT – Added Effect Size, Power, P-VAL., and Modified Output (see Appendix H) 

/*******************************************************************/ 
 *  DIFCUT: A Program to determine NCDIF and DTF cutoff scores  
 *  
 *  Nanda, A. O., Oshima, T. C., & Gagné, P. (2006).       
 *     
 *  Modified 2/27/2011 – K. D. Wright  
 * (Added Effect Size, Power, P-VALUE, and Modified Output)  
 *    
 *  DIFCUT: A SAS/IML Program for Conducting Significance Tests for  
 *       Differential Functioning of Items and Tests (DFIT)  
 *          [Computer software].   
 *  Atlanta, GA: Georgia State University.    
 *            
 *  4 input files (focal.cov, focal.sco, reference.cov, link.lin)   
 *  Default number of replications = 1000       
/*********************************************************************/ 
 
options formdlim=' '; 
FILENAME IO 'C:\powerdissertation'; 
data cov; 
/*In parentheses below, user must enter the name of their focal group 
file with the .cov extension*/ 
 INFILE IO (focal.cov) missover firstobs=3; 
 input id 1-5 
   item $ 6-13 
   test $ 14-20 
   group 21 
   a 
   b 
   c 
   avar 
   abcov 
   / 
   bvar 
   accov 
   bccov 
   cvar; 
 
   asd=sqrt(avar); 
   bsd=sqrt(bvar); 
   csd=sqrt(cvar); 
 
data sco; 
/*In parentheses below, user must enter the name of their focal group 
file with the .sco extension*/ 
 INFILE IO (focal.sco) missover firstobs=3;   
 input group 
   id $ 
   / 
   resp 1-6 
   calib 7-7 
   subtest $ 8-15 
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   attempt 16-20 
   correct 21-25 
   percent 26-35 
   theta 36-47 
   stderr 48-59 
   stdunest 60-60 
   grpprob 61-70 
   margprob 71-80; 
 
data covref; 
/*In parentheses below, user must enter the name of their reference 
group file with the .cov extension*/ 
 INFILE IO (reference.cov) missover firstobs=3; 
 input id 1-5 
   item $ 6-13 
   test $ 14-20 
   group 21 
   a 
   b 
   c 
   avar 
   abcov 
   / 
   bvar 
   accov 
   bccov 
   cvar; 
 
   asd=sqrt(avar); 
   bsd=sqrt(bvar); 
   csd=sqrt(cvar); 
data iplink; 
 INFILE IO (dissertationpwr.lin) missover; 
 input / 
   variable 
   alpha 
   beta; 
 
proc print data=iplink noobs; 
 var alpha beta; 
title3 'Linking Coefficients from TCC Method'; 
 
 
 
 
/*Creating data sets to call into IML*/ 
data orig (keep = a b c abcov accov bccov asd bsd csd); set cov; 
data theta (keep = theta stderr); set sco; 
data ref (keep = a b c abcov accov bccov asd bsd csd); set covref; 
data link (keep = alpha beta); set iplink; 
 
proc iml; 
**Creates a matrix with original focus group item parameter 
information**; 
use orig; 
read all into matorig; 
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**Creates a matrix with original focus group theta values and standard 
error**; 
use theta; 
read all into mattheta; 
**Creates a matrix with original reference group item parameter 
information**; 
use ref; 
read all into matref; 
**Creates a matrix with alpha and beta linking coefficients**; 
use link; 
read all into matlink; 
 
**Values/Matrices to be used later**; 
seeds={123456 234567 345678 456789 567890 678901}; 
items=nrow(matorig); 
n=nrow(mattheta); 
reps=1000; 
ncdifmat=repeat(0,reps,items); 
dtfmat=repeat(0,reps,1); 
fnor=repeat(0,3,items); 
rnor=repeat(0,3,items); 
fnort=repeat(0,3,items); 
rnort=repeat(0,3,items); 
foc=repeat(0,3,items); 
ref=repeat(0,3,items); 
pfoc=repeat(0,n,items); 
pref=repeat(0,n,items); 
T=repeat(0,3,3); 
r=repeat(1,3,3); 
 
 
/***** POWER DECLARATIONS – K. D. Wright*****/ 
pwr_ncdifmat=repeat(0,reps,items); 
pwr_ref=repeat(0,3,items); 
pwr_pref=repeat(0,n,items); 
pwr_rnort=repeat(0,3,items); 
pwr_T=repeat(0,3,3); 
pwr_r=repeat(1,3,3);
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/****** EFFECT SIZES – K. D. Wright*********/ 
OnePLB=  {.000, .001, .001, .002, .003, .003, .002, .002, .001, .001, .000}; 
 
OnePLC=  {.001, .002, .002, .005, .007, .007, .005, .005, .002, .002, .001}; 
 
         /* -3, -2, -1.5  -1  -.5   0   .5    1    1.5   2   3.0 */ 
TwoPLB=  {.005 .006 .007 .009 .009 .009 .008 .007 .007 .006 .003, /*  .30 */ 
          .001 .003 .005 .007 .008 .008 .007 .006 .004 .003 .001, /*  .50 */ 
     .001 .002 .003 .005 .006 .007 .006 .004 .003 .001 .000, /*  .75 */ 
     .000 .001 .002 .004 .006 .006 .006 .003 .002 .001 .000, /*  .95 */ 
     .000 .001 .001 .002 .003 .003 .003 .003 .001 .000 .000, /* 1.25 */ 
     .000 .001 .001 .002 .003 .004 .003 .002 .001 .000 .000, /* 1.50 */ 
     .000 .000 .001 .001 .002 .004 .002 .001 .000 .000 .000, /* 1.75 */ 
     .000 .000 .001 .001 .002 .002 .002 .001 .000 .000 .000};/* 2.00 */ 
 
TwoPLC=  {.011 .014 .016 .020 .020 .020 .018 .016 .016 .014 .007, /*  .30 */ 
          .002 .007 .011 .016 .018 .018 .016 .014 .009 .007 .002, /*  .50 */ 
     .002 .005 .007 .011 .014 .016 .014 .009 .007 .002 .001, /*  .75 */ 
     .000 .002 .005 .009 .014 .014 .014 .007 .005 .002 .000, /*  .95 */ 
     .000 .002 .002 .005 .007 .007 .007 .007 .002 .001 .000, /* 1.25 */ 
     .000 .002 .002 .005 .007 .009 .007 .005 .002 .000 .000, /* 1.50 */ 
     .000 .001 .002 .002 .005 .009 .005 .002 .001 .000 .000, /* 1.75 */ 
     .000 .001 .002 .002 .005 .005 .005 .002 .001 .000 .000};/* 2.00 */ 
          
           /* -3, -2, -1.5  -1  -.5    0   .5   1    1.5    2  3.0  */ 
ThreePLB=  {.003 .007 .008 .009 .011 .010 .010 .010 .010 .010 .999, /*  .30 */ 
            .001 .003 .006 .006 .010 .010 .014 .014 .014 .999 .999, /*  .50 */ 
  .000 .001 .002 .004 .008 .009 .014 .014 .014 .999 .999, /*  .75 */ 
  .000 .001 .002 .003 .007 .011 .013 .013 .999 .999 .999, /*  .95 */ 
  .000 .001 .001 .003 .006 .009 .016 .016 .999 .999 .999, /* 1.25 */ 
  .000 .001 .001 .002 .005 .008 .017 .017 .999 .999 .999, /* 1.50 */ 
  .000 .000 .001 .001 .004 .009 .018 .999 .999 .999 .999, /* 1.75 */ 
  .000 .000 .001 .001 .004 .009 .019 .999 .999 .999 .999};/* 2.00 */ 
 
 
 
 
 
ThreePLC=  {.007 .016 .018 .020 .025 .023 .023 .023 .023 .023 .999, /*  .30 */ 
            .002 .007 .014 .014 .023 .023 .032 .032 .032 .999 .999, /*  .50 */ 
  .001 .002 .005 .009 .018 .020 .032 .032 .032 .999 .999, /*  .75 */ 
  .000 .002 .005 .007 .016 .025 .029 .029 .999 .999 .999, /*  .95 */ 
  .000 .002 .002 .007 .014 .020 .036 .036 .999 .999 .999, /* 1.25 */ 
  .000 .002 .002 .005 .011 .018 .038 .038 .999 .999 .999, /* 1.50 */ 
  .000 .000 .002 .002 .009 .020 .041 .999 .999 .999 .999, /* 1.75 */ 
  .000 .000 .002 .002 .009 .020 .043 .999 .999 .999 .999};/* 2.00 */    
 
  /* The below are the actual values simulated to produce the effect 
sizes */ 
  /* Cutoffs are programmed as associated with the BParam */ 
     /* -3,  -2,    -1.5   -1    -.5     0   .5    1    1.5   2  3.0 */ 
BParam=    {-2.5, -1.75, -1.25, -.75, -0.25, .25, .75, 1.25, 1.75, 2.5, 3}; 
 
 
  /* The below are the actual values simulated to produce the effect 
sizes */ 
  /* Cutoffs are programmed as associated with the BParam */ 
          /*.30, .50,  .75,  .95, 1.25, 1.50,  1.75, 2.00) */ 
AParam=    {.40, .625, .85, 1.10, 1.38, 1.625, 1.88, 2.00};
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** 1 Parameter Model**************************************************; 
if (matorig[:,9]=0 & matorig[:,7]=0) then do; 
 print '1-PARAMETER MODEL'; 
 do rep=1 to reps; 
  do i=1 to items; 
   do param=1 to 3; 
**Creates random normally distributed item parameters for focal and 
reference groups**; 
    fnor[param,i]=normal(seeds[1,param]*i+rep);  
    rnor[param,i]=normal(seeds[1,3+param]*i+rep); 
   end; 
  end; 
 
  do i=1 to items; 
   do param=1 to 3; 
**Changes normal matrices to have same means and standard deviations as 
originals**; 
**These will be the final simulated item parameters used to calculate 
p**; 
      
 foc[param,i]=matorig[i,param]+(matorig[i,6+param]*fnor[param,i]);  
       
ref[param,i]=matorig[i,param]+(matorig[i,6+param]*rnor[param,i]); 
    /* Keith's Dissertation */ 
   
 pwr_ref[param,i]=matref[i,param]+(matref[i,6+param]*rnor[param,i]
);  
      end; 
   end; 
   
  do theta=1 to n; 
   do i=1 to items; 
**Calculates p for each set of item parameters using thetas from 
BILOG**; 
       pfoc[theta,i]=foc[3,i]+(1-foc[3,i])* 
     ((EXP(1.7*foc[1,i]*(mattheta[theta,1]-
foc[2,i])))/ 
     (1+EXP(1.7*foc[1,i]*(mattheta[theta,1]-
foc[2,i])))); 
        pref[theta,i]=ref[3,i]+(1-ref[3,i])* 
     ((EXP(1.7*ref[1,i]*(mattheta[theta,1]-
ref[2,i])))/ 
     (1+EXP(1.7*ref[1,i]*(mattheta[theta,1]-
ref[2,i])))); 
    /* Keith's Dissertation */ 
    pwr_pref[theta,i]=pwr_ref[3,i]+(1-
pwr_ref[3,i])* 
    
 ((EXP(1.7*pwr_ref[1,i]*(mattheta[theta,1]-pwr_ref[2,i])))/ 
    
 (1+EXP(1.7*pwr_ref[1,i]*(mattheta[theta,1]-pwr_ref[2,i])))); 
     end;  
  end; 
 
  **Calculates d used in NCDIF equation**; 
  d=pfoc-pref; 
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  /* Keith's Dissertatin */ 
  pwr_d=pfoc-pwr_pref; 
 
  **Calculates NCDIF**; 
  do i = 1 to items; 
   ncdifmat[rep,i]=((sum(d[##,i])-
(((d[+,i])**2)/(n)))/(n))+((d[:,i])**2); 
   /* Keith's Dissertation */ 
   pwr_ncdifmat[rep,i]=((sum(pwr_d[##,i])-
(((pwr_d[+,i])**2)/(n)))/(n))+((pwr_d[:,i])**2); 
  end; 
 end; 
end; 
 
 
**Two Parameter Model and Three Parameter Model with a Fixed c**; 
else if (matorig[:,9]=0 & matorig[:,7]<>0) then do; 
/*else if (matorig[:,9]<>0 & matorig[:,7]<>0) then do;*/ 
 print '2 or 3-PARAMETER MODEL'; 
 do rep=1 to reps; 
  do i=1 to items; 
 **Fills r then makes T if the r matrix is positive definite**; 
   r[1,2]=matorig[i,4]/(matorig[i,7]*matorig[i,8]); 
   r[2,1]=matorig[i,4]/(matorig[i,7]*matorig[i,8]); 
   r[1,3]=0; 
   r[3,1]=0; 
   r[2,3]=0; 
   r[3,2]=0; 
   T=half(r); 
 
 
   /* Keith's Dissertation */ 
   pwr_r[1,2]=matref[i,4]/(matref[i,7]*matref[i,8]); 
   pwr_r[2,1]=matref[i,4]/(matref[i,7]*matref[i,8]); 
   pwr_r[1,3]=0; 
   pwr_r[3,1]=0; 
   pwr_r[2,3]=0; 
   pwr_r[3,2]=0; 
   pwr_T=half(pwr_r); 
      
   do param=1 to 3; 
**Creates random normally distributed item parameters for focal and 
reference groups**; 
    fnor[param,i]=normal(seeds[1,param]*i+rep);  
    rnor[param,i]=normal(seeds[1,3+param]*i+rep); 
   end; 
 
**Transforms simulated item parameters to have same covariances as 
originals**; 
   fnort[,i]=T`*fnor[,i]; 
   rnort[,i]=T`*rnor[,i]; 
   pwr_rnort[,i]=pwr_T`*rnor[,i]; 
  end; 
 
  do i=1 to items; 
   do param=1 to 3; 
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**Changes normal matrices to have same means and standard deviations as 
originals**; 
**These will be the final simulated item parameters used to calculate 
p**; 
       
foc[param,i]=matorig[i,param]+(matorig[i,6+param]*fnort[param,i]);  
       
ref[param,i]=matorig[i,param]+(matorig[i,6+param]*rnort[param,i]); 
 
    /* Keith's Dissertation */ 
   
 pwr_ref[param,i]=matref[i,param]+(matref[i,6+param]*pwr_rnort[par
am,i]); 
       end; 
     end; 
   
  do theta=1 to n; 
   do i=1 to items; 
**Calculates p for each set of item parameters using thetas from 
BILOG**; 
       pfoc[theta,i]=foc[3,i]+(1-foc[3,i])* 
     ((EXP(1.7*foc[1,i]*(mattheta[theta,1]-
foc[2,i])))/ 
     (1+EXP(1.7*foc[1,i]*(mattheta[theta,1]-
foc[2,i])))); 
        pref[theta,i]=ref[3,i]+(1-ref[3,i])* 
     ((EXP(1.7*ref[1,i]*(mattheta[theta,1]-
ref[2,i])))/ 
     (1+EXP(1.7*ref[1,i]*(mattheta[theta,1]-
ref[2,i])))); 
 
    /* Keith's Dissertation */ 
    pwr_pref[theta,i]=pwr_ref[3,i]+(1-
pwr_ref[3,i])* 
    
 ((EXP(1.7*pwr_ref[1,i]*(mattheta[theta,1]-pwr_ref[2,i])))/ 
    
 (1+EXP(1.7*pwr_ref[1,i]*(mattheta[theta,1]-pwr_ref[2,i])))); 
     end;  
  end; 
 
  **Calculates d used in NCDIF equation**; 
  d=pfoc-pref; 
 
  /* Keith's Dissertatin */ 
  pwr_d=pfoc-pwr_pref; 
    
 
  **Calculates NCDIF**; 
  do i = 1 to items; 
    ncdifmat[rep,i]=((sum(d[##,i])-
(((d[+,i])**2)/(n)))/(n))+((d[:,i])**2); 
 
   /* Keith's Dissertation */ 
   pwr_ncdifmat[rep,i]=((sum(pwr_d[##,i])-
(((pwr_d[+,i])**2)/(n)))/(n))+((pwr_d[:,i])**2); 
  end; 
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 end; 
end; 
 
 
**********************************************************************; 
**********************************************************************; 
**Three Parameter Model without Fixed c**; 
else if (matorig[:,9]<>0 & matorig[:,7]<>0) then do; 
/*else if (matorig[:,9]=0 & matorig[:,7]<>0) then do;*/ 
 problem_c=repeat('         ',1,items); 
 print '3-PARAMETER MODEL'; 
 do rep=1 to reps; 
  do i=1 to items; 
 **Fills r then makes T if the r matrix is positive definite**; 
   r[1,2]=matorig[i,4]/(matorig[i,7]*matorig[i,8]); 
   r[2,1]=matorig[i,4]/(matorig[i,7]*matorig[i,8]); 
   r[1,3]=matorig[i,5]/(matorig[i,7]*matorig[i,9]); 
   r[3,1]=matorig[i,5]/(matorig[i,7]*matorig[i,9]); 
   r[2,3]=matorig[i,6]/(matorig[i,8]*matorig[i,9]); 
   r[3,2]=matorig[i,6]/(matorig[i,8]*matorig[i,9]); 
 
   if det(r)>0 then do; 
    T=half(r); 
   end; 
 
   if det(r)<=0 then do; 
    problem_c[1,i]='x        '; 
   
 r[1,2]=matorig[i,4]/(matorig[i,7]*matorig[i,8]); 
   
 r[2,1]=matorig[i,4]/(matorig[i,7]*matorig[i,8]); 
    r[1,3]=0; 
    r[3,1]=0; 
    r[2,3]=0; 
    r[3,2]=0; 
    T=half(r); 
   end; 
 
   /* Keith's Dissertation */ 
   pwr_r[1,2]=matref[i,4]/(matref[i,7]*matref[i,8]); 
   pwr_r[2,1]=matref[i,4]/(matref[i,7]*matref[i,8]); 
   pwr_r[1,3]=matref[i,5]/(matref[i,7]*matref[i,9]); 
   pwr_r[3,1]=matref[i,5]/(matref[i,7]*matref[i,9]); 
   pwr_r[2,3]=matref[i,6]/(matref[i,8]*matref[i,9]); 
   pwr_r[3,2]=matref[i,6]/(matref[i,8]*matref[i,9]); 
   if det(pwr_r)>0 then do; 
    pwr_T=half(pwr_r); 
   end; 
   if det(pwr_r)<=0 then do; 
    problem_c[1,i]='x        '; 
   
 pwr_r[1,2]=matref[i,4]/(matref[i,7]*matref[i,8]); 
   
 pwr_r[2,1]=matref[i,4]/(matref[i,7]*matref[i,8]); 
    pwr_r[1,3]=0; 
    pwr_r[3,1]=0; 
    pwr_r[2,3]=0; 



145 

 

    pwr_r[3,2]=0; 
    pwr_T=half(pwr_r); 
   end; 
 
 
   do param=1 to 3; 
**Creates random normally distributed item parameters for focal and 
reference groups**; 
    fnor[param,i]=normal(seeds[1,param]*i+rep);  
    rnor[param,i]=normal(seeds[1,3+param]*i+rep); 
   end; 
  
**Transforms simulated item parameters to have same covariances as 
originals**; 
   fnort[,i]=T`*fnor[,i]; 
   rnort[,i]=T`*rnor[,i]; 
   pwr_rnort[,i]=pwr_T`*rnor[,i]; 
  end; 
 
 
  do i=1 to items; 
   do param=1 to 3; 
**Changes normal matrices to have same means and standard deviations as 
originals**; 
**These will be the final simulated item parameters used to calculate 
p**; 
       
foc[param,i]=matorig[i,param]+(matorig[i,6+param]*fnort[param,i]);  
       
ref[param,i]=matorig[i,param]+(matorig[i,6+param]*rnort[param,i]); 
    /* Keith's Dissertation */ 
   
 pwr_ref[param,i]=matref[i,param]+(matref[i,6+param]*pwr_rnort[par
am,i]); 
       end; 
     end; 
   
 
  do theta=1 to n; 
   do i=1 to items; 
**Calculates p for each set of item parameters using thetas from 
BILOG**; 
       pfoc[theta,i]=foc[3,i]+(1-foc[3,i])* 
     ((EXP(1.7*foc[1,i]*(mattheta[theta,1]-
foc[2,i])))/ 
     (1+EXP(1.7*foc[1,i]*(mattheta[theta,1]-
foc[2,i])))); 
        pref[theta,i]=ref[3,i]+(1-ref[3,i])* 
     ((EXP(1.7*ref[1,i]*(mattheta[theta,1]-
ref[2,i])))/ 
     (1+EXP(1.7*ref[1,i]*(mattheta[theta,1]-
ref[2,i])))); 
 
    /* Keith's Dissertation */ 
    pwr_pref[theta,i]=pwr_ref[3,i]+(1-
pwr_ref[3,i])* 
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 ((EXP(1.7*pwr_ref[1,i]*(mattheta[theta,1]-pwr_ref[2,i])))/ 
    
 (1+EXP(1.7*pwr_ref[1,i]*(mattheta[theta,1]-pwr_ref[2,i])))); 
     end;  
  end; 
 
  **Calculates d used in NCDIF equation**; 
  d=pfoc-pref; 
 
  /* Keith's Dissertatin */ 
  pwr_d=pfoc-pwr_pref; 
 
  **Calculates NCDIF**; 
  do i = 1 to items; 
         ncdifmat[rep,i]=((sum(d[##,i])-
(((d[+,i])**2)/(n)))/(n))+((d[:,i])**2); 
 
     /* Keith's Dissertation */ 
     pwr_ncdifmat[rep,i]=((sum(pwr_d[##,i])-
(((pwr_d[+,i])**2)/(n)))/(n))+((pwr_d[:,i])**2); 
  end; 
 end;   
 
 title3 ' '; 
 print 'Columns marked with x are items with simulated c-
parameters not related to a and b' problem_c;  
 
end; 
 
**********************************************************************; 
**********************************************************************; 
 
 
 
 
 
**Creates an itemrank matrix with ncdif values for each item in 
ascending order**; 
itemrank=repeat(0,reps,items); 
do i=1 to items; 
 k=repeat(0,reps,1);  
 k=ncdifmat[,i];  
 f=k; 
 k[rank(k),]=f; ; 
 itemrank[,i]=k;  
end; 
 
/* Keith's Dissertation */ 
pwr_itemrank=repeat(0,reps,items); 
do i=1 to items; 
 k=repeat(0,reps,1);  
 k=pwr_ncdifmat[,i];  
 f=k; 
 k[rank(k),]=f; ; 
 pwr_itemrank[,i]=k;  
end; 
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title3 ' '; 
cutoffnames={'Cutoff .10', 'Cutoff .05', 'Cutoff .01', 'Cutoff .001'}; 
NCDIF_ITEM_CUTOFFS=repeat(0,4,items); 
NCDIF_ITEM_CUTOFFS[1,]=itemrank[ceil(.90*reps),]; 
NCDIF_ITEM_CUTOFFS[2,]=itemrank[ceil(.95*reps),]; 
NCDIF_ITEM_CUTOFFS[3,]=itemrank[ceil(.99*reps),]; 
NCDIF_ITEM_CUTOFFS[4,]=itemrank[ceil(.999*reps),]; 
print NCDIF_ITEM_CUTOFFS [r=cutoffnames]; 
 
 
 
**Creates an empty column matrix that will be filled with NCDIF & POWER 
values**; 
ncdifcol=repeat(0,reps*items,1); 
pwr_ncdif=repeat(0,reps*items,1);  
EMPIRICAL_POWER=repeat(0,items,1); 
NCDIF95=repeat(0,items,1); 
PVALUE2=repeat(0,items,1); 
item_num=repeat(0,items,1); 
 
 
**Reads NCDIF values 1 column**; 
do i=1 to items; 
 do r=1 to reps; 
     ncdifcol[r+(i-1)*reps,1]=ncdifmat[r,i]; 
 end; 
 item_num[i,1]=i; 
end; 
 
 
/* Keith's Dissertation */ 
do i=1 to items; 
 power = 0; 
 do r=1 to reps; 
  pwr_ncdif[r+(i-1)*reps,1]=pwr_ncdifmat[r,i]; 
  if pwr_ncdifmat[r,i] >= NCDIF_ITEM_CUTOFFS[2,i] then 
power=power+1; 
 end; 
 EMPIRICAL_POWER[i,1]=(power/1000);  
 NCDIF95[i,1]=NCDIF_ITEM_CUTOFFS[2,i]; 
end; 
 
 
 
 
*********************************************************************** 
**Puts the reference group on the same scale as the focal group**; 
newref=repeat(0,items,3); 
do i=1 to items; 
 newref[i,1]=(1/matlink[1,1])*matref[i,1]; 
 newref[i,2]=matlink[1,1]*matref[i,2]+matlink[1,2]; 
 newref[i,3]=matref[i,3]; 
end; 
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**Calculates p for the focal group and linked reference group**; 
pf=repeat(0,n,items);  
pr=repeat(0,n,items); 
NCDIF=repeat(0,1,items); 
NCDIF2=repeat(0,items,1); 
 do theta=1 to n; 
  do i=1 to items; 
**Calculates p for each set of item parameters using thetas from 
BILOG**; 
      pf[theta,i]=matorig[i,3]+(1-matorig[i,3])* 
    ((EXP(1.7*matorig[i,1]*(mattheta[theta,1]-
matorig[i,2])))/ 
    (1+EXP(1.7*matorig[i,1]*(mattheta[theta,1]-
matorig[i,2]))));  
     
       pr[theta,i]=newref[i,3]+(1-newref[i,3])* 
    ((EXP(1.7*newref[i,1]*(mattheta[theta,1]-
newref[i,2])))/ 
    (1+EXP(1.7*newref[i,1]*(mattheta[theta,1]-
newref[i,2])))); 
    end;  
 end; 
 
**Calculates d used in NCDIF equation**; 
d=pf-pr; 
 
**Calculates NCDIF**; 
do i = 1 to items; 
    NCDIF[1,i]=((sum(d[##,i])-(((d[+,i])**2)/(n)))/(n))+((d[:,i])**2); 
 NCDIF2[i,1]=((sum(d[##,i])-
(((d[+,i])**2)/(n)))/(n))+((d[:,i])**2);   
end; 
 
 
 
**Flags significant NCDIF**; 
sig_NCDIF=repeat('         ',1,items); 
do i=1 to items; 
if NCDIF[1,i]>=NCDIF_ITEM_CUTOFFS[1,i] then sig_NCDIF[1,i]='*        '; 
if NCDIF[1,i]>=NCDIF_ITEM_CUTOFFS[2,i] then sig_NCDIF[1,i]='**       '; 
if NCDIF[1,i]>=NCDIF_ITEM_CUTOFFS[3,i] then sig_NCDIF[1,i]='***      '; 
if NCDIF[1,i]>=NCDIF_ITEM_CUTOFFS[4,i] then sig_NCDIF[1,i]='****     '; 
if NCDIF[1,i]<NCDIF_ITEM_CUTOFFS[1,i] then sig_NCDIF[1,i]='ns       '; 
end; 
 
 
/* ONLY FOR OUTPUT – Modified by K. D. Wright*/ 
sig_NCDIF2=repeat('   ',items,1); 
do i=1 to items; 
if NCDIF[1,i]>=NCDIF_ITEM_CUTOFFS[1,i] then sig_NCDIF2[i,1]='.10'; 
if NCDIF[1,i]>=NCDIF_ITEM_CUTOFFS[2,i] then sig_NCDIF2[i,1]='.05'; 
if NCDIF[1,i]>=NCDIF_ITEM_CUTOFFS[3,i] then sig_NCDIF2[i,1]='.01'; 
if NCDIF[1,i]>=NCDIF_ITEM_CUTOFFS[4,i] then sig_NCDIF2[i,1]='.001'; 
if NCDIF[1,i]<NCDIF_ITEM_CUTOFFS[1,i] then sig_NCDIF2[i,1]='ns'; 
end; 
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/* Keith's Dissertation P-VALUE CODE */ 
do i=1 to items; 
  pvalue=0; 
  do r=1 to reps; 
   if NCDIF[1,i]>=ncdifmat[r,i]then pvalue=pvalue+1; 
  end; 
  PVALUE2[i,1]=1-(pvalue/1000);  
end; 
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/************ FORMATTING OUTPUT – K. D. Wright *****************/ 
cov1=char(NCDIF2); 
cov2=char(PVALUE2); 
cov3=char(EMPIRICAL_POWER); 
 
out1=cov1; 
out2=out1||sig_NCDIF2; 
out3=out2||cov2; 
out4=out3||cov3; 
DIF_ANALYSIS=out4||ES; 
 
names={NCDIF, SIGLEVEL, PVALUE, POWER, EffectSize}; 
print DIF_ANALYSIS [rowname="" colname=names]; 
 
/**** MORE OUTPUT CODE ****/ 
create out5 FROM DIF_ANALYSIS [colname={NCDIF, SIGLEVEL, PVLAUE, POWER, 
EffectSize}]; 
append from DIF_ANALYSIS; 
 
 
quit; 
 
run; 
 
 
PROC EXPORT DATA=out5 
OUTFILE="C:\powerdissertation\output\out5.csv"; 
RUN; 
 
 
DATA newout; 
 FILENAME IO 'C:\powerdissertation\output'; 
 INFILE IO(out5.csv) dlm='2C0D'x dsd missover lrecl=10000 
firstobs=2;        
 INPUT NCDIF SIGLEVEL $ PVALUE EmpiricalPower EffectSize $;  
RUN; 
 
PROC PRINT data=newout; 
RUN; 
/************ END FORMATTING OUTPUT – K. D. Wright *****************/ 
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