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ABSTRACT 

 

CONTROLLING TYPE I ERROR RATE IN EVALUATING DIFFERENTIAL ITEM    

   FUNCTIONING FOR FOUR DIF METHODS: USE OF THREE PROCEDURES 

FOR ADJUSTMENT OF MULTIPLE ITEM TESTING 

by 

Jihye Kim 

In DIF studies, a Type I error refers to the mistake of identifying non-DIF items 

as DIF items, and a Type I error rate refers to the proportion of Type I errors in a 

simulation study. The possibility of making a Type I error in DIF studies is always 

present and high possibility of making such an error can weaken the validity of the 

assessment. Therefore, the quality of a test assessment is related to a Type I error rate and 

to how to control such a rate. Current DIF studies regarding a Type I error rate have 

found that the latter rate can be affected by several factors, such as test length, sample 

size, test group size, group mean difference, group standard deviation difference, and an 

underlying model. This study focused on another undiscovered factor that may affect a 

Type I error rate; the effect of multiple testing. 

DIF analysis conducts multiple significance testing of items in a test, and such 

multiple testing may increase the possibility of making a Type I error at least once. The 

main goal of this dissertation was to investigate how to control a Type I error rate using 

adjustment procedures for multiple testing which have been widely used in applied 

statistics but rarely used in DIF studies.  



 

 

 

In the simulation study, four DIF methods were performed under a total of 36 

testing conditions; the methods were the Mantel-Haenszel method, the logistic regression 

procedure, the Differential Functioning Item and Test framework, and the Lord’s chi-

square test. Then the Bonferroni correction, the Holm’s procedure, and the BH method 

were applied as an adjustment of multiple significance testing. The results of this study 

showed the effectiveness of three adjustment procedures in controlling a Type I error rate. 
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CHAPTER 1 

INTRODUCTION 

Background and Research Questions 

Differential Item Functioning (DIF) identifies items that show different outcomes 

in different groups (e.g., reference and focal group). In other words, DIF exists in a test 

when examinees of equal ability in different groups, in terms of education, ethnicity, and 

race, have different probabilities of correctly answering items in a test (Holland 

&Wainer, 1993).  

The ultimate goal of a DIF study is to provide a fair opportunity for every 

examinee to perform successfully. A number of tests are provided for evaluating 

examinees’ knowledge in various groups. If a test favors one group of examinees over 

another, the test is considered to be biased. When a test is unbiased, the score can be 

strong evidence of what a tester wants to assess.  

In particular, a DIF study often investigates DIF items focusing on the minority 

groups, called the focal groups, such as a group of female or various racial/ethnic group.. 

It is based on the assumption that test takers who have similar knowledge (based on total 

test scores) should perform in similar ways on individual test questions regardless of their 

group membership.  

Various statistical methods to detect DIF items have been developed in the testing 

fields of school achievement and credential examinations (Swaminathan & Rogers, 
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1990). Each field has different statistical criteria for detecting and evaluating DIF items 

(Shepard, Camilli, & Averill, 1981): for instance, an effect size measure, a standard error 

of the estimate, and significance testing (Mapuranga, Dorans, & Middleton, 2008). This 

dissertation focused on the significance testing approach, which has been an attractive 

research methodology for a long time, because it is easy to implement (Schmidt, 1996). 

In fact, most psychological and experimental papers have presented a critical value and a 

test statistic, which are associated with a significance test (Nickerson, 2000). In any 

significance testing, an error, such as a Type I error, is of interest.  

A Type I error refers to the mistake of rejecting a correct null hypothesis, and the 

probability of committing such an error is often denoted by alpha (α). To control a Type I 

error, the nominal level of α is generally chosen to be small--by convention, .05. A Type 

I error in DIF studies refers to the mistake of wrongly identifying non-DIF items as DIF 

items, and a Type I error rate in DIF studies refers to the proportion of Type I errors in a 

simulation study. For example, if the number of Type I errors occurring in 1000 

simulated items is 48 for a certain method, the Type I error rate of that method is .048.  

The possibility of incorrectly detecting the presence of DIF is always present. Falsely 

identifying DIF items can weaken the validity of the assessment. Hence, the quality of a 

test assessment is related to a Type I error rate and to how to control it. Additionally, an 

appropriate criterion of Type I error affects the quality of a test assessment.  

Some research uses a criterion of a Type I error, which is based on the exact 

binomial distribution assuming the procedures adhere well to the nominal level of α 

(Nandakumar & Roussos, 2001). For example, the actual probability of a Type I error is 

expected to fall between .03 and .07 at the nominal level of α of .05. Some research uses 
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Bradley’s liberal criterion (1978). “If a probability of Type I error falls within the 

criterion of .025 � Probability of Type I error � .075 at nominal α level of . 05 and .0055 

� Type I error � .015 at nominal α level of .01”. According to Bradley (1978), the test is 

referred to as robust if a Type I error rate is approximately equal to the nominal α level.  

Current DIF studies regarding Type I error rate have found that the latter rate can 

be affected by several factors, such as test length, sample size, test group size, group 

mean difference, standard deviation difference, distribution of difference, and an 

underlying IRT model that reflects person’s ability/trait. Even a certain type of statistical 

method can affect Type I error rate. For example, the Mantel-Haenszel (Holland & 

Thayer, 1988) statistic follows the
2χ distribution, which is affected by sample size.  

A Type I error rate might be affected by another possible factor. DIF analysis 

conducts multiple significance testing of items in a test, and such multiple testing may 

increase the possibility of committing a Type I error at least once (Shaffer, 1995). 

Therefore, DIF analysis based on significance testing of every item in a test may be 

affected by some undiscovered factors, which could potentially spiral a type I error rate. 

The main goal of this dissertation was to learn more about how to control a Type I 

error rate in DIF studies that are based on significance testing. Particularly, four DIF 

methods were considered in this dissertation: the Mantel- Haenszel (MH) method, the 

logistic regression procedure, the Differential Functioning Item and Test framework 

(DFIT), and the Lord’s chi-square test. The former two methods are based on parametric 

IRT based methods, and the latter two methods are based on non-parametric and non IRT 

based methods. 
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For the goal of this dissertation, I investigated two distinct approaches. The first 

approach was to study the effects of various environmental factors: an unequal group 

sample size, a group mean difference, and a group standard deviation difference. The 

effects of these factors on the error rate have been studied inadequately in the past 

literature. The second approach was to study the effect of the three adjustment procedures 

on the error rate, which are the Bonferroni correction, the Holm’s procedure, and the BH 

method. The second approach focused on “fishing expeditions” (Stevens, 1999). I 

presented below two sets of research questions:  

1a. Do testing conditions affect a Type I error rate of the two methods, which are based 

on parametric IRT based procedures? And if so, which method performs better? 

1b. Do testing conditions affect a Type I error rate of the two methods, which are based 

on non-parametric, non IRT based procedures? And if so, which of either method 

performs better? 

2a. Do adjustment procedures reduce a Type I error rate of parametric IRT based 

methods?  

2b. Do adjustment procedures reduce a Type I error rate of non-parametric, non IRT 

based methods? 

2c. Of the Bonferroni correction, the Holm’s procedure, and the BH method, which 

adjustment procedure work better for methods of parametric IRT based and non-

parametric non IRT based both?
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CHAPTER 2 

LITERATURE REVIEW 

Introduction to DIF methods based on statistical criteria 

If an item in a test is considered biased, it violates the fundamental principle that 

the test should be fair to examinees. A biased item, which shows DIF, threatens the 

validity of test scores. There are two different types of DIF: uniform DIF and nonuniform 

DIF. Uniform DIF is that one group has a consistently better chance of correctly 

answering an item. Non-uniform DIF is that one group does not have a consistently better 

chance of correctly answering an item and presents differently at same ability.  

For over 25 years, many statistical methods for detecting measurement bias in 

psychological and educational testing fields have been developed (Millsap & Everson, 

1993; Swaminathan & Rogers, 1990). According to a literature review of DIF 

(Mapuranga et al., 2008), there are many different ways of investigating DIF by using 

statistical criteria. Such criteria include “the existence of an interpretable measure of the 

amount of DIF, the existence of a standard error estimate, and the existence of a test of 

significance” (p. 10). Methods of detecting DIF items based on each criterion have been 

being developed since the 1980s.  

The first criterion, the effect size measure, is to analyze DIF items by interpreting 

the measure of the amount of DIF. Many non-parametric odds ratio methods are often 

used to measure the effect size of DIF. For example, the MH delta (Holland & Thayer, 

1988), Liu-Agresti common odds ratio (Penfield & Algina, 2003), ��-like indices 
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(Jodoin&Gierl, 2001; Zumbo, 1999), standardized proportion difference correct indices 

(Monahan, McHorney, Stump, & Perkins, 2007), are used to measure DIF magnitude.  

The second criterion, the standard error of estimate, analyzes DIF items by 

assessing the amount of random variability associated with DIF estimates. It is a measure 

of the accuracy of prediction made with a regression line. Most methods of the 

generalized linear model, such as logistic regression, use standard error of estimates.  

The third criterion, significance testing, is to make statistical inference by testing 

hypotheses. It is one of the most popular statistical analyses and has been used in many 

areas, such as psychology, social science, economics, business, and clinical studies 

(Minium, Clarke, & Coladarci, 1998; Royall, 1986). Many methods like the MH method, 

Cochran Mantel Haenszel (CMH) (Meyer, Huynh, & Seaman, 2004; Parshall & Miller, 

1995), Likelihood Ratio (Thissen et al., 1988, 1993), mixture models, and the DFIT 

method ( Raju, van der Linden, & Fleer, 1995; Oshima, Raju & Flowers, 1997; Flowers, 

Oshima, & Raju, 1999) use the criterion of significance testing. A classification of 

statistical methods based on statistical criteria was presented in Appendices A to B. 

 

Significance testing to evaluate DIF items 

Despite the recent criticisms of significance testing (Hunter, 1997; Morrison & 

Henkel, 2006; Rozeboom, 1960), conducting a DIF study based on significance testing is 

still valuable because it is simple and practical (Shepard et al., 1981).The procedure of 

significance testing is as follows. Sample data are collected through an observational 

study or an experiment, and statistical inference is done to assess claims about the 

population from which the sample is collected. An appropriate statistical significance test 
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is carried out for the given test settings: a null hypothesis, a theoretical distribution (of 

population and estimators), a sample size, and an a priori chosen level of α. Popular 

methods based on significance testing of DIF include the MH method, Cochran Mantel 

Haenszel methods, Lord’s chi-square (Lord, 1977; McLaughlin & Drasgow, 1987), the  

Likelihood Ratio test, the Logistic Regression procedure (Swaminathan & Rogers, 1990; 

French & Miller, 1996; Rogers & Swaminathan, 1993), and Differential Functioning Item 

and Test (DFIT) framework.  

Descriptions of four DIF methods based on significance testing 

Mantel-Haenszel (MH) Method (P. W. Holland & Thayer, 1988) 

The MH method is an approach of DIF detection for both dichotomous and 

polytomous items, by assessing the degree of association between two categorical 

variables (Fidalgo & Madeira, 2008).  It is an extension of the traditional two way chi-

square test of independence (between two variables) to the situation in which three 

variables are completely crossed, namely, group membership (e. g., men or women; black 

or white, etc), performance on the item (e. g., correct or incorrect) and any number of 

levels of the attribute the test is designed to measure (2 
 2 
 �) contingency table, when 

total test score is used as the matching variable. It was introduced by Mantel and 

Haenszel (1959) and adapted to DIF study by Holland and Thayer (1988). This method 

was used at the ETS as the primary DIF detection method. 

In the null DIF hypothesis, MH assumes that the odds of getting the item correct 

at a given level of the matching variable is the same in both the focal group and the 

reference group, across all score levels of the matching variable.                             
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                           �
  : ��� ���⁄
��� ���⁄  � �� � 1 ,       � � 1, � , �                                    (1) 

where ��� is the number of people in the focal group at score level s who answered the 

item correctly.  ��� is the number of people in the focal group at score level s who 

answered the item incorrectly.  ��� is the number of people in the reference group at 

score level s who answered the item correctly.  ��� is the number of people in the 

reference group at score level s who answered the item incorrectly. ��� is the total 

number of  ��� and  ���. ��� is the total number of  ��� and  ���. ��� is the total number 

of  ���,  ���, ���, and ���. 

If ��  1, the reference group has an advantage on the item; if �� ! 1, the 

advantage lies with the focal group. There is a chi-square test associated with the MH 

method, namely a test of the null hypothesis, �
  : �� � 1, 

                                          MH"#� � $|∑ ���'∑ ()���*�� |'.+,-

∑ ./�)���*�
 ,                                            (2) 

where 0)���* � 0)��� | � � 1* � 1���2�
12�

, and 

345)���* � 345)��� | � � 1* � 6������������7/6���
�)��� " 1*7, 

where the 5.−  in the equation for MH"#�  serves as a continuity correction to improve 

the accuracy of the chi-square statistic. MH"#�  is distributed approximately as a chi-

square with one degree of freedom. 

As a modification of the Mantel-Haenszel test, there is the Cochran Mantel-

Haenszel Test. While the Mantel-Haenszel test measures the strength of association by 

estimating the common odds ratio, the Cochran Mantel-Haenszel statistic assumes a 
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common odds ratio and tests the null hypothesis that two variables are conditionally 

independent in each stratum, assuming that there is no three-way interaction (Agresti, 

1996). 

Logistic Regression Procedure 

Logistic Regression is the procedure that is used widely in statistical literature 

(Hariharan Swaminathan & Rogers, 1990). The method uses a model that links a 

categorical outcome (e.g., dichotomous) with one or more predictor variables, which can 

be either continuous or categorical.  

                                                    9 � :;

)<=:;*                                                                       (3) 

                                 > � ?@ A9B )1 " 9B*C D � E
 F E<G F E�H F EI)GH* ,                         (4) 

where 

G � ability level (total score; the observed trait level of an examinee)  

H � grouping valuable (for instance, dummy coded as 1=reference, 2=focal)  

GH � the product of the two independent variables 

E� � corresponds to the group difference in performance on the item 

EI � corresponds to the interaction between group and trait level  

An item shows uniform DIF if E� J  0 and EI �  0. An item shows non-uniform 

DIF if EI J  0  (whether or not E� �  0). The hypothesis of interest is  E� � EI � 0. 

Swaminathan and Rogers (1990) shows a natural hierarchy of entering variables into the 

logistic model (Zumbo, 1999). There are three steps for entering variables, listed below 

(1999, p. 26). 
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1. One first enters the conditioning variable (the total score) 

2. The group variable is entered 

3. The interaction term is entered into the equation. 

Through these three steps, Swaminathan and Rogers (1990) computed the #�
 

statistic with 2 degrees of freedom. When the value of the statistic exceeds the critical 

value of  χL,� 
� , the hypothesis that no DIF exists is rejected. In the logistic regression 

equation, DIF is measured by the simultaneous test of uniform and non-uniform DIF.  

Non-compensatory DIF (NCDIF) Index in DFIT 

The DFIT method (Raju, Linden, & Fleer, 1995) has three indices, which are non-

compensatory DIF (NCDIF), compensatory DIF (CDIF), and a differential test function 

(DTF) index. The NCDIF index begins with the assumption that all other items have no 

DIF. The concept of CDIF is related to DTF. The sum of CDIF values are the value of DTF 

that enables a researcher to examine the net effect of deleting items from the test (Oshima, 

Raju, & Nanda, 2006; Raju et al., 1995).   

DFIT has several benefits that enable it to assess differential item functioning not 

only at the item level but also at the test level. It can be used for both dichotomous and 

polytomous scoring schemes and handles both uni-dimensional and multidimensional 

models. Among three indices of the DFIT method, this dissertation focused on the NCDIF 

index, which is based on the chi-square significance testing. NCDIF is defined as 

                                             �MNOPB � QRS
� F TRS

�,                                                        (5) 
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which assumes that if all items in the test other than item i are completely unbiased, then it 

must be true that UV � 0 at all W J X. UB is defined as the difference in item probabilities for 

item i. If the item parameters for item i are equal for both the focal and reference groups, 

then it assumes that there is no DIF(NCDIF = 0). The chi-square test for NCDIF is  

                                                           #1Y
� � 1Y)1Z[\]*

^_S
-  ,                                                     (6) 

With �] degrees of freedom, which is the sample size of focal group, given UB is normally 

distributed with a finite variance. This chi-square significance testing for NCDIF had been 

used until the Item Parameter Replication (IPR) method (Oshima et al., 2006) was 

proposed. 

 As a new version of the DFIT method, Oshima et al.(2006) proposed new cutoff 

values for each item by )1 " �* percentile rank score from a frequency distribution of 

NCDIF values under the no DIF conditions in the DFIT framework (APPENDIX C). The 

fixed cutoff value of NCDIF index for an item, i, (Raju, van der Linden, & Fleer, 1995) 

was defined as .006 in the old version of DFIT for dichotomous item analysis (Fleer, 1993). 

In order to improve this procedure for assessing the statistical significance of the NCDIF 

index, the new version of the DFIT method (IPR method) developed cutoff values ranged 

from .003 to .15, which conditions are “with a higher cutoff value for a smaller sample size 

and a higher value for an IRT model with more parameters” (p. 2). As a result, it provides 

fitted cutoff scores to a particular data set and reduces time consuming repeated 

calibrations of item parameters. This new procedure was shown as an effective way to 

detect DIF items. 
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Lord’s chi-square Test 

Lord’s chi-square is based on an examination of the differences in the variance-

covariance matrix of the difficulty and discrimination parameters. It calculates the 

differences in the areas between the curves for two groups (Hambleton, H Swaminathan, 

& Rogers, 1991). The curve means a graphical expression which represents the 

performance of an item in a test. It is described by the person ability parameter (θ) and 

the item parameters (a, b, and c parameter) as shown below. 

Figure 1 

The item characteristic curve for a dichotomous item 

 

Lord’s chi-square statistic is given by  

                           #B� � `4RB��aRB��bRB��cd∑'<`4RB��aRB��bRB��c,                                    (7) 

where 

∑'<
 is the inverse variance-covariance matrix for the differences in item parameter 

estimates 

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

p(θ)



 

13 

 

 

4RB�� � 4�:�:�:ef: g�hij " 4�hf/k g�hij (4 is the discrimination parameter) 

aRB�� � a�:�:�:ef: g�hij " a�hf/k g�hij (a is the difficulty parameter) 

bRB�� � b�:�:�:ef: g�hij " b�hf/k g�hij (b is the pseudo guessing parameter) 

The distribution of Lord’s chi-square should be close to the chi-square 

distribution with two degrees of freedom at 2PL model and that with three degrees of 

freedom at 3PL model (Lord, 1980). Lord’s chi-square test is more useful with 2PL and 

3PL models than with the 1PL model, since examining the difference between groups by 

using only a one parameter model may provide inaccurate or insufficient results of DIF.  

Type I error rate on DIF 

In significance testing on DIF, the effective control of the Type I error rate has 

been of interest. Many research findings have addressed the fact that the Type I error rate 

is influenced by various conditions, and researchers have tried to control the Type I error 

rate by setting factors differently. For instance, Uttaro and Millsap (1994) showed that 

the MH method exhibited different Type I error rates for different test lengths: The result 

for the 20 items test showed more inflation of Type I error rates than one for the 40 items. 

Finch (2005) showed that the performance of the Simultaneous item bias test (SIBTEST) 

is better in the two-parameter model than three -parameter model. Finch and French 

(2007) showed that the performance of the Likelihood Ratio (IRTLR) test was low if the 

sample size is small. The MH method performed poorly in the non- uniform DIF 

condition (Hambleton & Rogers, 1989). 
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The adjustment procedure in multiple significance testing can be an effective way 

to control a Type I error rate. Although the probability of making a Type I error for each 

significance test is set at some nominal α level, the overall α (the family-wise Type I 

error rate, �]�) across the entire set of significance tests can be considerably higher. The 

family-wise Type I error rate is the probability of making at least one Type I error across 

multiple significance tests. It is calculated as �]� � 1 " )1 " �*f, where b is the number 

of tests. 

As said earlier, one issue in multiple significance testing is a higher chance of 

committing a Type I error of identifying non-DIF items as DIF items. Common 

approaches to control such an issue include the Bonferroni correction (Bonferroni, 1936), 

the Holm’s procedure, and the Benjamini and Hochberg False Discovery Rate method 

(Benjamini & Hochberg, 1995). 

While the Bonferroni correction and the Holm’s procedure seek to control family-

wise Type I error rate, Benjamini and Hochberg (1995) controls expected false positive 

discovery rates (FDR) by defining a sequential p-value procedure. The Benjamini and 

Hochberg (BH) method for p-values 9< , �, 9l follows as: 

1. Rank order p-value of each item form the largest to the smallest 

2. Remain the largest p-value 

3. Multiply the second largest p-value by the total number of items in test and 

then divide by its rank (corrected p-value = p-value*(n/(n-1)), where n is the 

total number of items). If the corrected p-value < .05, it is significant.  
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4. Multiply the third largest p-value and divide by its rank as in Step 3 (corrected 

p-value = p-value*(n/(n-2)). If the corrected p-value < .05, it is significant. 

continues until the smallest p-value is corrected. 

The BH method has been adopted in the study of DIF (Steinberg, 2001; Thissen, 

Steinberg, & Kuang, 2002; Williams, Jones, & Tukey, 1999). Williams, Jones, and Tukey 

(1999) compared the BH method with the Bonferroni correction and showed the BH 

method performed better. Steinberg (2001) also used the BH method with the likelihood 

ratio procedure for the evaluation of DIF. 

The Bonferroni correction is an adjustment to control family-wise Type I error 

rate in multiple comparison procedures. If there are k hypotheses to be tested, each test 

should be conducted at significance level of  � nC  , where k is the number of hypotheses 

(Holland & Cohenhaver, 1988). 

The Bonferroni correction is a rough approximation, so it is conservative. 

Perneger (1998) pointed out the problem of the Bonferroni adjustment. The main 

weakness is that the Type I errors cannot be reduced without inflating Type II errors, 

which is the probability of accepting the false negative, which is the mistake of failing to 

reject a null hypothesis. 

Holm (1979) presented an improved procedure that is more powerful than the 

Bonferroni method (B. S. Holland & Copenhaver, 1987). The Holm’s procedure is very 

similar to the Bonferroni, but it is known to be less conservative because the Holm’s 

procedure is less corrective as the p-value increases, and is based on the ordered p-values 



 

16 

 

 

of the individual tests. The ordered p-value methods are strong for controlling a Type I 

error rate, when the test statistics are independent (Shaffer, 1995). 

The Holm’s procedure has two steps (Shaffer, 1995). The first step of the 

procedure is to order the k numbers of  9 values from the smallest to the largest and 

denote the ordered o9Bp by 9)<* � � � 9)q*. Let �)<*, � , �)q* be the corresponding 

hypotheses. Suppose *i is the smallest integer from 1 to k such that 

                                                9)Br*  �/)n " Wr F 1*                                                       (8) 

 Then the Holm’s procedure rejects  �)<*, � , �)Br'<* and retains �)Br*, � ,

�)q*. If 9)Br* is greater than �/)n " Wr F 1* for no integer Wr, then all k hypotheses are 

rejected. Holm (1979) proves that this procedure guarantees that there is at most α chance 

of rejecting at least one of the true hypotheses. 

There are literature reviews on applying the Holm’s procedure in the areas of 

clinical trials and biology. For example, Soulakova (2009) used the Holm’s procedure to 

find a problem of identifying all effective and superior drug combinations. There is also 

research on applying  the Holm’s procedure to psychometrics for evaluating appropriate 

curriculum based measurement of reading outcomes (Betts, Pickart & Heistad, 2009), but 

none is found for the study of DIF so far.  

Regarding the purpose of the dissertation, a literature review had been an account 

of what has been studied on topics that were related with DIF studies. Relative articles 

had been reviewed focusing on what methods were effective in a particular testing 

condition, how DIF methods control Type I error rate, what had been, what adjustment 
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procedures had been used to control the multiple significant testing issues in DIF studies, 

and how DIF methods detect DIF items in terms of different criteria (until 2008). The list 

of DIF methods by different criteria of evaluating DIF items is provided in Appendix A. 
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CHAPTER 3 

METHOD 

Study Design 

The research design consisted of two phases. The first phase conducted 

significance testing of the four DIF methods; the performance of each DIF method was 

then compared across all conditions. In order to answer the research questions, 

significance testing of each DIF method was performed with a total of 16 conditions: 4 

conditions of sample sizes × 2 conditions of test lengths × 2 conditions of group 

difference (group mean difference (impact) and group standard deviation (SD) 

difference). The second phase applied the Bonferroni correction, the Holm’s procedure, 

and the BH method to the significance testing of each DIF method. A SAS program was 

used to conduct the simulation studies and DIF analysis. 

Conditions of Study 

Data Generation 

Using SAS program, the dichotomous scored data were generated for the 

reference and the focal groups with a three-parameter IRT model. The ability of test 

examinee was assumed to follow the standard normal distribution. First, the probability 

of a correct response to an item was calculated based on pre-specified item parameters 

from Oshima et al. (2006); the basis probability was generated at random from the 

uniform distribution. Next, the calculated probability and a basis probability were 
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compared. If the basis probability was less than the calculated probability, the simulated 

item response was scored as correct (1); otherwise, it was scored as incorrect (0). 

Sample Size and Sample Size Ratio 

Sample size is a core factor for detecting DIF items accurately. Although a small 

sample size could cause a poor estimation, resulting in true DIF items not being detected 

well, a large sample size could result in precise detection of true DIF items, although the 

possibility exists that items with no or a very little DIF will be detected as if they are true 

DIF items.  

In most DIF research, the range of sample sizes is between 500 and 5,000 for both 

equal and unequal sample sizes. This research chose total sample sizes of 1,000 and 

2,000, etc. The ratio of the sample sizes between the focal group and the reference group 

was also considered for non-parametric methods as existing research on DIF with 

unequal sample sizes showed a greater tendency to detect flagged DIF items than one 

with equal sample sizes (Kristjansson, Aylesworth, McDowell, & Zumbo, 2005). 

However, the parametric method had one condition of the sample size (2,000) and an 

equal ratio of sample sizes.  

For the non-parametric method (Table 1), when the sample size was 1,000 and the 

group sizes were the same, the size of each group was 500; when the group sizes were 

different, the size of the reference group was 700 and that of the focal group was 300. 

When the sample size was 2,000 and the group sizes were the same, the size of each 

group was 1,000; when the group sizes were different, the size of the reference group was 

1,500 and that of the focal group was 500. 
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Table 1 

Sample size and sample size ratio of non- parametric methods 

Group 
Sample size  

Focal Reference 

Equal sample sizes of two groups 
500 500 

1000 1000 

Unequal sample sizes of two groups 
300 700 

500 1500 

 

Test Length 

This study chose test lengths of 20 items and 40 items. To date, much of the DIF 

research has been conducted using a test length of between 20 and 40 items because 

common assessments are constructed with fewer than 40 items. Raju et al. (1995) 

selected 40 items in their simulation study. Roussos and Stout (1996) conducted their 

simulation study with 25 items. In particular, 40 items has been chosen in many studies 

(Jodoin & Gierl, 2001; Narayanan & H Swaminathan, 1994; Rogers & H Swaminathan, 

1993). 

Percent of DIF Level  

The setting of item parameters for data generation was identical to those in a 

study by Raju et al. (1995) and Oshima et al. (2006). The condition of 10% DIF level was 

investigated: All a, b and c item parameters were set to be the same for both reference 

and focal groups, except that two items (Item 3 and 8) in a 20 items test and four items 

(Item 5, 10, 15, and 20) in a 40 items test had different a and b item parameters in the 

focal group as shown at Table 2.  
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Table 2 

Item parameters for the 40 items test and the 20 items test 

Item Reference Focal (10%) 

40 20 a b a B 

1 1 .55 0     

2 .55 0 

3 2 .73 -1.04 

4 .73 -1.04 

5 3 .73 0 .73 1 

6 .73 0 

7 4 .73 0 

8 .73 0 

9 5 .73 1.04 

10 .73 1.04 .73 1.54 

11 6 1 -1.96 

12 1 -1.96 

13 7 1 -1.04 

14 1 -1.04 

15 8 1 -1.04 1 -.04 

16 1 -1.04 

17 9 1 0 

18 1 0 

19 10 1 0 

20 1 0 1 .5 

21 11 1 0 

22 1 0 

23 12 1 0 

24 1 0 

25 13 1 1.04 

26 1 1.04 

27 14 1 1.04 

28 1 1.04 

29 15 1 1.96 

30 1 1.96 

31 16 1.36 -1.04 

32 1.36 -1.04 

33 17 1.36 0 

34 1.36 0 

35 18 1.36 0 

36 1.36 0 

37 19 1.36 1.04 

38 1.36 1.04 

39 20 1.8 0 

40   1.8 0     

*C parameter is fixed with .20 for both reference and focal groups.  
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Group Difference 

Two different conditions were set up. The first condition focused on the mean 

difference between groups: the same mean between focal and reference groups versus 

different means between the groups. The first component of the group means difference 

was implemented by assuming that both reference and focal groups follow standard 

normal distribution. The second component was implemented by assigning a lower mean 

(by .2) to the focal group than to the reference group.  

The second condition focused on the standard deviation (SD) difference between 

the groups: no difference of SD between focal and reference groups versus different SD 

between the groups. The first component of the group SD difference was implemented by 

assuming that both reference and focal groups follow the standard normal distribution. 

The second component was implemented by assigning a lower SD (by .2) to the focal 

group than to the reference group (Penny & Johnson, 1999). 

Replications 

In order to ensure stable results, an appropriate number of replications were 

needed. This study included 100 replications, because 100 times was the common 

replication according to the publications of the National Council on Measurement in 

Education (NCME) in 2009. 
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Statistical DIF Methods for Simulation Studies 

Four DIF methods were selected for this study: the MH method, the logistic 

regression procedure, the DFIT method, and the Lord’s chi-square test. As an adjustment 

of multiple significance testing, the Bonferroni correction, the Holm’s procedure, and the 

BH method were applied. 

DIF detection procedure for non-parametric methods 

For each generated data set,  the MH method and the logistic regression procedure 

were used for DIF detection. Prior to DIF detection, ability matching for reference and 

focal groups was performed by calculating the total scores (Zwick, J. R. Donoghue, & 

Grima, 1993). Based on the total calculated score, matching ability was performed. This 

study chose a form of thin matching used by Donoghue and Allen (1993). Thin matching 

is based on using the total scores as the matching variable.  The matching variable created 

eight intervals. The total scores were then categorized into corresponding intervals in 

order to match groups into equal intervals. After matching was completed, the statistics 

of both the MH method and the logistic regression procedure were calculated for each of 

replicated datasets.   

DIF detection procedure for parametric methods 

Several steps were needed in parametric DIF analyses. This study conducted two 

stage-linking procedures. First, the generated data sets were calibrated using BILOG-

MG3 to obtain item parameter estimates. Second, item parameter estimates for reference 

and focal groups were put on the common scale by determining linking coefficients 

through the mean and sigma method. Third, for the DFIT method, the DIFCUT program 
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was used to determine cutoff scores and NCDIF values. The statistics of Lord’s chi-

square was also calculated using the Lord’s chi-square test. Once DIF items were 

detected, the second linking procedure was done by calculating linking coefficients again 

with only non-DIF items. Using the new linking coefficients, refined statistics from the 

DFIT method and Lord’s chi-square test were obtained.
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CHAPTER 4 

RESULTS 

This study had two purposes. The first was an endeavor to investigate the degree 

of the type I error rate with various factors. The second was to apply adjustment 

approaches--specifically the Bonferroni correction, the Holm's procedure, and the BH 

method--to a case of multiple significance tests on a DIF study. A total of 36 conditions 

were simulated. In each condition, 100 replications were performed for each of the four 

DIF methods, producing a total of 14,400 simulated data sets.  

Although individual tests of each item were conducted at a Type I error rate of .05, 

the overall Type I error rate and degree of power were questioned when multiple items 

were tested concurrently (Hoffman & Recknor & Lee, 2008). The importance of 

understanding the severity of an inflated Type I error rate has been discussed in other 

studies (Lin &Rahman, 1998). In order to investigate the inflation of a Type I error rate, 

Bradley’s (1978) liberal robustness criterion range of .025 to .075 was used. If a Type I 

error rate for each DIF method was within this range, the Type I error rate was 

considered well-controlled.    

The test-wide Type I error rate for this study was calculated as follows.  First, for 

each replication, the occurrences of false positives out of all non-DIF items were counted. 

Then, the proportion of these counts was calculated per replication, focusing on the 

practical point of view how many items were falsely identified as DIF items in each test 

set. A Type I error rate is the average of these proportions. For example, Table 3 presents 
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the false positives of the Lord’s chi-square test in a 40 items test; there are 4 DIF items 

(Item 5, 10, 15, and 20) and 36 non-DIF items. The number of false positives is shown at 

the bottom on the table: six in the 1st replication, four in the 2nd, and so on. The 

proportion of false positives per replication was calculated out of 36 non-DIF items. That 

is, the proportions of false positives were 6/36 in the 1st replication, 4/36 in the second, 

and so on. The average of these proportions was .13; that is, the average of the test-wise 

Type I error rate was .13. Therefore, on average, 13% of non-DIF items were falsely 

identified as DIF items. 

Type I error rate =  
<

<

 )6 36⁄ F 4 36⁄ F � F 3 36⁄ * �.13  
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Table 3 

False positives and true positives for each item of Lord’s chi-square test in a 40 items test  

* FP: False Positives, TP: True Positives * Highlighted rows indicated the DIF Items 

 

  

1
st

2nd 3rd 4
th

5th …… 98
th

99th 100th

1 0 0 0 0 0 …… 0 0 0

2 0 0 0 0 0 …… 0 0 0

3 0 0 0 0 0 …… 0 0 0

4 0 0 0 0 0 …… 0 0 0

5 1 1 1 1 1 …… 1 1 1

6 0 1 0 0 0 …… 0 0 0

7 0 0 0 1 0 …… 0 0 0

8 0 0 0 0 0 …… 0 0 0

9 0 0 0 0 0 …… 0 0 1

10 0 0 0 1 1 …… 0 1 0

11 0 0 0 0 0 …… 0 0 0

12 0 0 0 0 0 …… 0 0 0

13 0 0 0 0 0 …… 0 0 0

14 0 0 0 0 0 …… 0 0 0

15 1 1 1 1 1 …… 1 1 1

16 0 0 0 1 0 …… 0 0 0

17 0 0 0 0 0 …… 0 0 0

18 0 0 0 0 0 …… 0 0 0

19 0 0 0 0 0 …… 0 0 0

20 1 1 1 1 1 …… 1 1 1 

21 0 0 0 0 0 …… 0 0 0

22 0 0 0 0 0 …… 0 0 0

23 0 0 1 0 0 …… 0 0 0

24 1 0 0 0 0 …… 0 0 0

25 1 1 1 1 1 …… 1 1 1

26 0 0 0 0 0 …… 0 0 0

27 0 0 0 0 0 …… 0 0 0

28 0 0 0 0 0 …… 0 0 0

29 0 0 0 0 0 …… 0 0 0

30 0 0 0 1 0 …… 0 0 0

31 0 0 0 0 0 …… 0 0 0

32 0 0 0 0 0 …… 0 0 0

33 0 0 1 0 0 …… 0 0 0

34 1 0 0 0 0 …… 0 1 0

35 1 1 1 1 1 …… 1 1 1

36 0 0 0 0 0 …… 0 1 0

37 1 1 1 0 0 …… 0 0 0

38 0 0 0 0 0 …… 0 0 0

39 1 0 0 0 0 …… 0 0 0

40 0 0 0 1 0 …… 1 0 0

 # of FP 6 4 5 6 2 …… 3 4 3

# of TP  (Large DIF magnitude) 2 2 2 2 2 …… 2 2 2

# of TP  (Medium DIF magnitude) 1 1 1 2 2 …… 1 2 1

Item

Replication for Lord’s chi-square test 
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The power rate in this study was also of interest. The investigation examined the 

trend of power rate with two types of DIF magnitude that reflects the difference on item 

parameters, since a power rate is affected by factors, such as the difference between two 

groups, sample size, etc. In this study, the difficulty (b) parameter value of each DIF item 

varied for the reference and focal groups, and I focused on the two magnitudes (large and 

medium) of difference between the two groups. In the simulation, two items (Items 3 and 

8) in the 20 items test and four items (Item 5, 10, 15, and 20) in the 40 items test were set 

up as DIF items. The item difficulty (b) parameter values of these DIF items are shown in 

Table 4. For example, difficulty (b) parameters of Item 3 in a 20 items test are 0 and 1 for 

the reference and focal groups, respectively; their difference is 1. In the 40 items test, 

differences of b parameters for Items 5 and 15 were all one, which was denoted as the 

large DIF magnitude; differences of b parameters for Items 10 and 20 were 0.5, which 

was denoted as the medium DIF magnitude. Therefore, the investigation of separated 

power rates by different DIF amount was needed in the 40 items test.  

Table 4 

Difference of b parameter for a 20 items test and a 40 items test 

Test Length DIF items Reference Focal 
Difference of b 

Parameters 

DIF 

Magnitude 

    

20 
3 0.00 1.00 1 Large     

8 -1.04 -0.04 1 Large     

40 

5 0.00 1.00 1 Large     

10 1.04 1.54 0.5 Medium     

15 -1.04 -0.04 1 Large     

20 0.00 0.50 0.5 Medium     
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The power rate was calculated in the similar way as the Type I error rate was 

calculated. First, the proportion of true positives out of all DIF items with a specific DIF 

magnitude was calculated for each replication. The power rate with a specific DIF 

magnitude is the average of these proportions.  

The highlighted rows in the Table 3 indicate DIF items. To calculate the power 

rate with the large DIF magnitude, true positives out of two items (Items 5 and 15) in 

each replication were counted first: two in the 1st replication, two in the 2nd, and so on. 

Then, the proportion of true positives was calculated for each replication. The power rate 

was the average of these proportions as shown below:  

Power rate (large DIF magnitude) = 
<

<

 )2 2⁄ F 2 2⁄ F � F 2 2⁄ * �.99 

Similarly, for the power rates with the medium DIF magnitude, true positives out of two 

items (Items 10 and 20) were counted first: 1 in the 1st replication, 1 in the 2nd, and so 

on. Then, the power rate was calculated as shown below: 

Power rate (medium DIF magnitude) =  <
<

 )1 2⁄ F 1 2⁄ F � F 1 2⁄ * �.55 

All simulated false positives and true positives are presented in a tabular format in 

Appendices D-G. 
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Phase I 

Research questions 1a and 1b listed previously addressed the effectiveness of 

control for the Type I error rate for the four DIF methods under several testing conditions. 

This study was also interested in comparing the Type I error rates of two non-parametric 

methods (the MH method and the logistic regression procedure) with those of two 

parametric methods (the DFIT method and the Lord’s chi-square test), to see which DIF 

method performed better under specific conditions.  

Comparing the Performance of Four DIF methods 

The results showed that the two non-parametric methods performed similarly 

under all testing conditions considered in this study. For example, Figure 2 illustrates the 

similarity between the MH method and the logistic regression procedure when Type I 

error rates in the 20 items test were examined for different sample sizes. When the 

sample sizes for reference and focal groups were both 500 (i.e., 500/500), the Type I 

error rates for the MH method and logistic regression were both .13. For the sample size 

of 1000/1000, the Type I error rates were .19 and .20 for the MH method and the logistic 

regression, respectively. Similar interpretations apply to the sample sizes of 700/300 and 

1500/500. 
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Figure 2 

Type I error rate for non-parametric methods based on  sample size with 20 items test 

 

The two parametric methods, according to the results, also performed similarly 

under all testing conditions considered in this paper except for the condition of different 

test length. As shown in Figure 3, for the 20 items test, the Type I error rate of the DFIT 

method was somewhat higher than that of the Lord’s chi-square test (.06 vs. .03). The 

graphical comparison across the four DIF methods when the sample size is 1000/1000 is 

presented in Figure 4.  
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Figure 3 

Type I error rate for parametric methods based on  sample size 1000/1000 

 

Figure 4 

Type I error rates among four DIF methods with 1000/1000 sample size. 
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In sum, the four DIF methods--whether the method was non-parametric or 

parametric--performed similarly for the 40 items test. However, with the 20 items test, 

the Type I error rates of the non-parametric methods were higher than those of the 

parametric methods (Figure 4). With further investigation, the effects of testing 

conditions on Type I error rates of the four DIF methods were explained separately for 

each testing condition.  

The Effect of sample size conditions, sample size ratio, and test length 

As previous research suggests (Bolt, 2000; Finch, 2005; Gotzmann & Boughton, 

2004), both sample size and sample size ratio affected the Type I error rates for the DIF 

methods. The MH method and the logistic regression procedure showed higher Type I 

error rates for an equal ratio of sample sizes (500/500, 1000/1000) than for those of 

unequal sample size ratios (700/300, 1500/500).  

Table 5 shows Type I error rates and power rates of the MH method and the 

logistic regression for the 20 items and 40 items tests with various sample sizes. For 

example, for the 20 items test, the Type I error rate of the MH method was .13 when a 

sample size was 500/500 for reference and focal groups. This rate was higher than the 

Type I error rate of the same method for a sample size of 700/300 (.09). Additionally, the 

Type I error rate of the MH method for the 20 items test in Table 5 was .19 for a sample 

size of 1000/1000, which was higher than that the rate of the same method for a sample 

size of 1500/500 (.11). For the logistic regression procedure for the 20 items test, the 

Type I error rate for a sample size of 500/500 was .13, which was higher than that (.10) 
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for a sample size of 700/300. The Type I error rate with a sample size of 1000/1000 

was .20, which was also higher than that (.12) for a sample size of 1500/500. 

Table 5 also presents the power rate of both the MH method and logistic 

regression procedure.  In the 20 items test, the power rates were high for both non-

parametric methods since the DIF magnitudes of two both DIF items were large. In the 

40 items test, the power rates with the large DIF magnitude were high across all 

conditions, but the power rates with medium DIF magnitude were very low.  

Table 5 

Type I error rate and power rate of non-parametric methods by test length and sample 

size 

Test 

Length 

Sample 

size 

Type I error Rate Power Rate (with DIF magnitude) 

MH 

method 

Logistic 

Regression 
MH method 

Logistic 

Regression 

20 

500/500 .13 .13 1.00 (1) 1.00 (1) 

1000/1000 .19 .20 1.00 (1) 1.00 (1) 

700/300 .09 .10 .98 (1) 1.00 (1) 

1500/500 .11 .12 1.00 (1) 1.00 (1) 

40 

500/500 .12 .13 
1.00 (1) 1.00 (1) 

.28 (.5) .30 (.5) 

1000/1000 .17 .18 
1.00 (1) 1.00 (1) 

.48 (.5) .49 (.5) 

700/300 .12 .13 
1.00 (1) .97 (1) 

.24 (.5) .21 (.5) 

1500/500 .09 .11 
.95 (1) 1.00 (1) 

.23 (.5) .28 (.5) 

* (1: large) and (.5: medium) indicate DIF magnitude (the b item difficulty parameter 

difference between reference and focal group)  
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The parametric methods--the DFIT method and the Lord’s chi-square test were 

examined under only one sample size condition (1000/1000) since the DFIT method was 

recommended for conditions of equal ratio and a sample size greater than 1000 similar to 

SIBTEST (Gierl et al., 2004). The results are shown in Table 6. For the sample size of 

1000/1000, the Type I error rates of the DFIT method and the Lord's chi-square test for 

the 40 items test were .13 and .13, respectively; the Type I error rates for a 20 items test 

for the two methods were .06 and .03.  

The power rates of the parametric methods also showed similar pattern as the 

non-parametric methods. The power rates were consistently high with the 20 items test. 

The power rates with the 40 items test varied for different DIF magnitudes. When the 

DIF magnitude was large, the power rates were high (above .99 across all conditions). 

The power rates was low (.49 for DFIT method and .55 for the Lord’s chi-square test) 

with medium DIF magnitude.  

Table 6 

Type I error rate and power for parametric methods by test length and sample size 

Test Length Sample Size 
Type I error Rate Power Rate (with DIF magnitude) 

DFIT Lord's chi-square DFIT Lord's chi-square 

20 1000/1000 .06 .03 1.00 (1) 1.00 (1) 

40 1000/1000 .13 .13 

.99 (1) .99 (1) 

.49 (.5) .55 (.5) 

* (1: large) and (.5: medium) indicate DIF magnitude (the b item difficulty parameter 

difference between reference and focal group)  
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In summary, Figure 5 shows the overall patterns of the power rate for four DIF 

methods for different DIF magnitude-large or medium. It shows a very strong and 

consistent pattern. DIF items were detected with (almost) perfect accuracy with the large 

DIF magnitude. 

Figure 5 

The power rate of four DIF methods with 1000/1000 by different DIF magnitude  

 

 

The Effect of Three Conditions for Group Difference 

The performances of the four methods were first examined assuming the same 

abilities between reference and focal groups—no group difference. The next analysis 

addressed the effect of the assumption that the abilities of two groups had different 

mean/standard deviation on the Type I error rates and power rates of the four methods. 

As mentioned previously, two possible group difference conditions—group mean 

difference and group SD difference—were set up. The analysis compared the 

1.00 1.00 0.99 0.99

0.48 0.49 0.49
0.55

MH Logistic Regression DFIT Lord's chi-square

Large  DIF magnitude (Item 5, 15) Medium DIF magnitude(Item 10, 20)
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performances of the methods under each group difference condition with the 

performances under no group difference condition. The results indicated that group SD 

difference, but not group mean difference, highly affected the Type I error rates of three 

methods: the MH method, the logistic regression procedure, and the Lord’s chi-square 

test. The DIFT method was not affected much by either group difference conditions.  

The results showed that the Type I error rates of the MH method under the group 

mean difference condition were nearly the same as the rates under the no group 

difference condition (Table 7). Similarly the power rates under the two conditions were 

also very similar (Table 8). These results coincided with previous research: the trivial 

effect of group mean difference (Sheppard, Han, Colarelli, Dai, & King, 2006). 

The Type I error rates of the MH method under the group SD difference condition, 

however, were different from the rates under the no group difference condition (Table 7); 

the former rates were much higher than the latter rates. On the contrary, the power rates 

under the group SD difference were lower than those under the no group difference 

condition.  

A similar pattern was found for the logistic regression procedure. The Type I rates 

between the group mean difference condition and the no group difference condition were 

similar. The power rates between the two conditions were also similar. However, the 

Type I error rates were higher under the group SD difference condition than under the no 

group difference condition; the power rates were lower under the former condition (Table 

7 and Table 8). 

The Type of I error rates of the Lord’s chi-square test between the group mean 

difference condition and the no group difference condition were roughly the same. 
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However, the rate under the group SD difference condition for the 40 items test was 

higher than its counterpart under the no group difference condition (Table 7). The power 

rates of the Lord's chi-square test were similar for the two conditions:  group mean 

difference and no group difference conditions. On the other hand, the power rates under 

the group SD difference condition were lower than those under the no group difference 

condition (Table 8). 

While the MH method, the logistic regression procedure, and the Lord’s chi-

square test were all affected by the group SD difference conditions discussed above, the 

DFIT method was not affected much by any group difference conditions. In particular, in 

the 20 items test, the Type I error rates were the same for all three conditions (.06) (Table 

7). In the 40 items test, the Type I error rate under the group SD difference condition 

were slightly higher than the rate under the no group difference condition. The power 

rates under the group SD difference condition dropped slightly compared to those under 

the no group difference condition. Therefore, the DFIT method showed the most stable 

performance across the various group difference conditions.  

In summary, the DFIT method seemed to be the most effective method for 

controlling the Type I error rate, especially when the group SD difference existed because 

it did not inflate the Type I error rate as much as the other methods. Across all conditions 

of sample size, sample size ratio, test length, and group difference, the DFIT method 

generally performed better than the other three methods
1
.  Especially the DFIT method 

performed very well under the condition of group SD difference compared to the other 

                                                           

1
For the 20-item test, the Lord's chi-square test exhibited the lowest the Type I error rates. 
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methods. The finding presented here suggests that the group SD difference condition 

inflates of the Type I error rate. Figure 6 and Figure 7 show the inflated Type I error rates, 

under the group SD difference condition, of the four DIF methods in the 20 items test and 

for the 40 items test, respectively.  

The study results also suggest that high power rates were achieved with large DIF 

magnitude items in general (Table 8). The power rates were lower when groups' SDs 

were different than when there was no group difference or than when group means were 

different. 
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Table 7 

Type I error rate for four DIF methods by group difference 

Test 

Length 

Sample 

size 

Group 

Diff. 

Type I error rate 

MH method Logistic Regression DFIT Lord's chi-square 

20 items 

test 

500/500 

No 

.13 .13 
  

1000/1000 .19 .20 .06 .03 

700/300 .09 .10 
  

1500/500 .11 .12     

500/500 

Mean 

.11 .12 
  

1000/1000 .16 .18 .06 .03 

700/300 .10 .11 
  

1500/500 .09 .10     

500/500 

SD 

.23 .71 
  

1000/1000 .36 .84 .06 .33 

700/300 .20 .67 
  

1500/500 .22 .63     

40 items 

Test 

500/500 

No 

.12 .13 
  

1000/1000 .17 .18 .13 .13 

700/300 .12 .13 
  

1500/500 .09 .11     

500/500 

Mean 

.11 .13 
  

1000/1000 .16 .17 .13 .14 

700/300 .11 .12 
  

1500/500 .10 .11     

500/500 

SD 

.16 .64 
  

1000/1000 .25 .78 
.15 .20 

700/300 .16 .64 

1500/500 .13 .51     
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Table 8 

The power rate for four DIF methods by group difference  

Test Length Sample size Group Diff. 
Power Rate (With DIF magnitude) 

MH method Logistic Regression DFIT Lord's chi-square 

20 items test 

500/500 

No 

1.00 (1) 1.00 (1)     

1000/1000 1.00 (1) 1.00 (1) .95 (1) 1.00 (1) 

700/300 .98 (1) 1.00 (1) 
  

1500/500 1.00 (1) 1.00 (1)     

500/500 

Mean 

1.00 (1) 1.00 (1)     

1000/1000 1.00 (1) 1.00 (1) .96 (1) .99 (1) 

700/300 1.00 (1) 1.00 (1) 
  

1500/500 1.00 (1) 1.00 (1)     

500/500 

SD 

.87 (1) .62 (1) 
  

1000/1000 .97 (1) .66 (1) .84 (1) .48 (1) 

700/300      .89 (1) .60 (1) 
  

1500/500 .78 (1) .56 (1)     

40 items Test 

500/500 

No 

1.00 (1) 1.00 (1)     

.28 (.5) .30 (.5) 
  

1000/1000 
1.00 (1) 1.00 (1) .99 (1) .99 (1) 

.48 (.5) .49 (.5) .49 (.5) .55 (.5) 

700/300 
1.00 (1) 1.00 (1) 

  
24 (.5) .28 (.5) 

  

1500/500 
     .95 (1) .97 (1) 

  
.23 (.5) .21 (.5)     

500/500 

Mean 

1.00 (1) 1.00 (1)     

.33 (.5) .33 (.5) 
  

1000/1000 
1.00 (1) 1.00 (1) .97 (1) .99 (1) 

.49 (.5) .48 (.5) .35 (.5) .50 (.5) 

700/300 
1.00 (1) 1.00 (1) 

  
.29 (.5) .31 (.5) 

  

1500/500 
.97 (1) .98 (1) 

  
.23 (.5) .21 (.5)     

500/500 

SD 

.89 (1) .60 (1)     

.09 (.5) .66 (.5) 
  

1000/1000 
.98 (1) .62 (1) .81 (1) .58 (1) 

.16 (.5) .89 (.5) .53 (.5) .52 (.5) 

700/300 
.79 (1) .51 (1) 

  
.08 (.5) .74 (.5) 

  

1500/500 
.67 (1) .46 (1) 

  
.11 (.5) .59 (.5)     

*(1: large) and (.5: medium) indicate DIF magnitude (the b item difficulty parameter 

difference between reference and focal group) 
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Figure 6 

Inflated Type I error rate with group SD difference for four DIF methods in a 20 items 

test 

 

 

Figure 7 

Inflated Type I error rate with a group SD difference for four DIF methods in a 40 items 

test 
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Phase II 

 

The second set of research questions—2a, 2b, and 2c—asks about the 

effectiveness of the three adjustment procedures in controlling the Type I error rate of the 

four DIF methods. This section answers these research questions.  

The findings in this section indicate that all three adjustment procedures reduced 

the Type I error rates effectively. One negative effect of using such procedures, however, 

was the decreased power rates. Of the three adjustment procedures, The BH method 

seemed to be the most balanced method—reducing Type I error rates while not losing the 

power as much as the other methods did.  

Effect of the three adjustment procedures on the MH method 

Table 9 shows Type I error rates and power rates of the MH method in the 20 

items test, both unadjusted and adjusted (i.e., the Bonferroni correction, the Holm's 

procedure, and BH method), broken down by the group difference conditions (i.e., no 

group difference, group mean difference, and group SD difference). Most unadjusted 

Type I error rates were above .10 (or 10%) with the maximum rate excess of .30. All 

three adjustment procedures lowered the Type I error rates effectively—below .10, and in 

most case below .05. Such effectiveness was somewhat withered under the group SD 

difference condition, however. Even though all three procedures reduced the power rates, 

the BH method seemed to lose power the least. Note that both unadjusted and adjusted 

power rates were high due to the large DIF magnitude used in the 20 items test.  
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Table 9 

Type I error rate/ power for the MH method with group difference (20 items test) 

MH Method 

Condition Type I Error Rate Power Rate (With DIF magnitude) 

Group 

Diff. 

Sample 

Size 
Unadj. Bonf. Holm’s BH Unadj. Bonf. Holm’s BH 

No 

500/500 .13 .01 .01 .04 1.00 (1) .99 (1) .99 (1) 1.00 (1) 

1000/1000 .19 .02 .02 .08 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

700/300 .09 .01 .01 .02 .98 (1) .91 (1) .92 (1) .94 (1) 

1500/500 .11 .01 .01 .03 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

Mean 

500/500 .11 .01 .01 .03 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

1000/1000 .16 .02 .02 .06 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

700/300 .10 .01 .01 .02 1.00 (1) .96 (1) .96 (1) .97 (1) 

1500/500 .09 .01 .01 .02 1.00 (1) .95 (1) .95 (1) .96 (1) 

SD 

500/500 .23 .07 .07 .11 .87 (1) .68 (1)   .69 (1) .76 (1) 

1000/1000 .36 .13 .13 .25 .97 (1) .86 (1) .88 (1) .96 (1) 

700/300 .20 .05 .05 .09 .89 (1) .66 (1) .66 (1) .72 (1) 

1500/500 .22 .06 .06 .11 .78 (1) .54 (1) .54 (1) .62 (1) 

*(1) indicates large DIF magnitude (the difference of b item difficulty parameter between 

the reference and focal group) 

 

Table 10 shows the Type I error rates and power rates of the MH method in the 40 

items test, both unadjusted and adjusted, broken down by the group difference conditions. 

The patterns found were similar to those found in the 20 items test: all three procedures 

reduced the Type I error rate and the power rates. All three procedures suffered the loss 

of the power, and such a loss was more severe when the DIF magnitude was medium (i.e., 

0.5).  

  



 

45 

 

 

Table 10 

Type I error rates / power rates for the MH method with group difference (40 items test) 

Condition 
MH Method 

Type I Error Rate Power Rate(With DIF magnitude) 

Group 

Diff. 

Sample 

Size 
Unadj. Bonf. Holm’s BH Unadj. Bonf. Holm’s BH 

No 

500/500 .12 .02 .02 .04 
1.00 (1) .96 (1) .96 (1) .98 (1) 

.28 (.5) .05 (.5) .05 (.5) .10 (.5) 

1000/1000 .17 .04 .04 .08 
1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

.48 (.5) .12 (.5) .12 (.5) .23 (.5) 

700/300 .12 .02 .02 .04 
1.00 (1) .94 (1) .94 (1) .95 (1) 

.24 (.5) .03 (.5) .03 (.5) .06 (.5) 

1500/500 .09 .01 .01 .02 
.95 (1) .65 (1) .66 (1) .74 (1) 

.23 (.5) .02 (.5) .02 (.5) .04 (.5) 

Mean 

500/500 .11 .01 .01 .30 
1.00 (1) .94 (1) .94 (1) .98 (1) 

.33 (.5) .04 (.5) .04 (.5) .10 (.5) 

1000/1000 .16 .04 .04 .07 
1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

.49 (.5) .13 (.5) .15 (.5) .24 (.5) 

700/300 .11 .02 .02 .04 
1.00 (1) .91 (1) .91 (1) .96 (1) 

.29 (.5) .03 (.5) .03 (.5) .09 (.5) 

1500/500 .10 .01 .01 .02 
.97 (1) .61 (1) .61 (1) .69 (1) 

.23 (.5) .02 (.5) .02 (.5) .03 (.5) 

SD 

500/500 .16 .03 .03 .05 
.89 (1) .43 (1) .45 (1) .63 (1) 

.09 (.5) .00 (.5) .00 (.5) .00 (.5) 

1000/1000 .25 .07 .07 .12 
.98 (1) .78 (1) .79 (1) .92 (1) 

.16 (.5) .01 (.5) .01 (.5) .03 (.5) 

700/300 .16 .04 .04 .06 
.79 (1) .43 (1) .44 (1) .58 (1) 

.08 (.5) .05 (.5) .05 (.5) .15 (.5) 

1500/500 .13 .02 .02 .03 
.67 (1) .21 (1) .22 (1) .26 (1) 

.11 (.5) .00 (.5) .00 (.5) .01 (.5) 

*(1: large) and (.5: medium) indicate DIF magnitude (the b item difficulty parameter 

difference between reference and focal group) 
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Effect of the three adjustment procedures on the logistic regression 

Table 11and Table 12 display the Type I error rates and power rates before and 

after the adjustments for the logistic regression procedure in the 20 items and 40 items 

tests, respectively. The general patterns found from these tables were similar to those 

found in the prior section: all three procedures reduced both the Type I error rates and the 

power rates. The main difference between the MH method and the logistic regression was 

in the group SD difference condition. The logistic regression produced even higher 

inflated Type I error rates and more deflated power rates under the group SD difference 

condition. All three procedures reduced the Type I error rates under the group SD 

difference condition, but adjusted Type I error rates were still too high. 

Another interesting pattern was found in the power rates under the group SD 

difference condition. For unadjusted rates, the power rates for the medium DIF 

magnitude items were generally greater than their counterpart for the large DIF 

magnitude items (Table 12). For example, the unadjusted power rate for the medium DIF 

magnitude items with 1000/1000 sample size was .89, and its counterpart in the large DIF 

magnitude items was .62.  However, such a pattern was often reversed when the 

Bonferroni correction or the Holm's procedure was applied. The BH method preserved 

the original pattern.  
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Table 11 

Type I error rate/ power rate for logistic regression procedure with group difference (20 

items test) 

Logistic Regression 

Condition Type I Error Rate Power Rate (With DIF magnitude) 

Group 

Diff. 

Sample 

Size 
Unadj. Bonf. Holm’s BH Unadj. Bonf. Holm’s BH 

No 

500/500 .13 .01 .02 .04 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

1000/1000 .20 .03 .03 .08 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

700/300 .10 .01 .01 .02 1.00 (1) .95 (1) .95 (1) .95 (1) 

1500/500 .12 .01 .01 .03 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

Mean 

500/500 .12 .01 .01 .03 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

1000/1000 .18 .03 .03 .06 1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

700/300 .11 .01 .01 .02 1.00 (1) .97 (1) .97 (1) .99 (1) 

1500/500 .10 .01 .01 .03 1.00 (1) .98 (1) .98 (1) .99 (1) 

SD 

500/500 .71 .50 .54 .68 .62 (1) .50 (1) .52 (1) .59 (1) 

1000/1000 .84 .70 .75 .84 .66 (1) .54 (1) .59 (1) .65 (1) 

700/300 .67 .42 .46 .63 .60 (1) .48 (1) .51 (1) .58 (1) 

1500/500 .63 .40 .43 .59 .56 (1) .47 (1) .49 (1) .55 (1) 

*(1: large) and (.5: Medium) indicate DIF magnitude (the b item difficulty parameter 

difference between reference and focal group) 
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Table 12 

Type I error rate / power for logistic regression procedure with group difference (40 

items test) 

    Logistic Regression Procedure 

Condition Type I Error Rate Power Rate (With DIF magnitude) 

Group 

Diff. 

Sample 

Size 
Unadj. Bonf. Holm’s BH Unadj. Bonf. Holm’s BH 

No 

500/500 
.13 .04 .04 .05 

1.00 (1) .98 (1) .98 (1) .99 (1) 

.30 (.5) .06 (.5) .07 (.5) .11(.5) 

1000/1000 
.18 .06 .06 .09 

1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

.49 (.5) .19 (.5) .19 (.5) .31 (.5) 

700/300 
.13 .03 .04 .06 

1.00 (1) .96 (1) .96 (1) .99 (1) 

.28 (.5) .04 (.5) .04 (.5) .08 (.5) 

1500/500 
.11 .02 .02 .03 

.97 (1) .75 (1) .75 (1) .83 (1) 

.21 (.5) .01 (.5) .01 (.5) .04 (.5) 

Mean 

500/500 
.13 .03 .03 .05 

1.00 (1) .98 (1) .98 (1) 1.00 (1) 

.33 (.5) .04 (.5) .04 (.5) .12 (.5) 

1000/1000 
.17 .05 .05 .08 

1.00 (1) 1.00 (1) 1.00 (1) 1.00 (1) 

.48 (.5) .17 (.5) .18 (.5) .28 (.5) 

700/300 
.12 .03 .03 .05 

1.00 (1) .97 (1) .97 (1) .99 (1) 

.31 (.5) .03 (.5) .03 (.5) .08 (.5) 

1500/500 
.11 .01 .01 .02 

.98 (1) .71 (1) .71 (1) .76 (1) 

.21 (.5) .02 (.5) .02 (.5) .05 (.5) 

SD 

500/500 
.64 .37 .40 .60 

.60 (1) .36 (1) .37 (1) .56 (1) 

.66 (.5) .27 (.5) .31 (.5) .60 (.5) 

1000/1000 
.78 .58 .63 .76 

.62 (1) .48 (1) .52 (1) .61 (1) 

.89 (.5) .62 (.5) .72 (.5) .87 (.5) 

700/300 
.64 .36 .39 .59 

.54 (1) .36 (1) .37 (1) .52 (1) 

.74 (.5) .25 (.5) .29 (.5) .67 (.5) 

1500/500 
.51 .25 .26 .43 

.46 (1) .17 (1) .20 (1) .41 (1) 

.59 (.5) .15 (.5) .19 (.5) .45 (.5) 

*(1: large) and (.5: Medium) indicate DIF magnitude (the b item difficulty parameter 

difference between reference and focal group) 
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The Effect of the three adjustment procedures on the DFIT method 

Table 13 displays the Type I error rates and power rates before and after the 

adjustments for the DFIT method in the 20 items and 40 items tests. According to the 

table, all three adjustment procedures worked well with the DFIT method; that is, they 

reduced the Type I error rates. One important thing to note is that the DFIT method had 

controlled the Type I error rate very well even before the adjustment procedure was 

applied in the 20 items test. It means that the DFIT method did not need the adjustment 

when the test length was short (e.g., 20 items test). Not having to adjust is beneficial 

because adjustment will lower the power rates. However, in the 40 items test, the 

unadjusted Type I error rates were high and the adjustment procedures lowered the rate 

substantially. As with the adjustment procedures discussed earlier, the adjusted power 

rates were lower than unadjusted counterparts. The unadjusted power rates under the 

group SD difference condition were generally lower—but not by much—than those 

under the other group difference conditions. The reduction in the power rate after 

adjustment was the biggest under the group SD difference condition.  
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Table 13 

The effect of three adjustment procedures for the DFIT method with group difference 

    DFIT 

Condition Type I Error Rate Power Rate (With DIF magnitude) 

Group 

Diff. 

Test 

length 
Unadj. Bonf. Holm’s BH Unadj. Bonf. Holm’s BH 

No 
 

.06 .01 .00 .01 .95 .65 .48 .69 

Mean 20 .06 .01 .00 .02 .96 .69 .47 .71 

SD 
 

.06 .01 .01 .02 .84 .42 .41 .47 

No 
 

.13 .04 .04 .06 
.99 (1) .73 (1) .73 (1) .79 (1) 

.49 (.5) .18 (.5) .18 (.5) .34 (.5) 

Mean 40 .13 .02 .00 .04 
.97 (1) .66 (1) .49 (1) .72 (1) 

.35 (.5) .12 (.5) .05 (.5) .21 (.5) 

SD 
 

.15 .04 .02 .06 
.81 (1) .28 (1) .17 (1) .44 (1) 

.53 (.5) .11 (.5) .05 (.5) .19 (.5) 

*(1: large) and (.5: medium) indicate DIF magnitude (the b item difficulty parameter 

difference between reference and focal group) 

 

 

Effect of the three adjustment procedures on the Lord’s chi-square test 

The Lord’s chi-square test showed results containing features of both non-

parametric and parametric methods. As with the DFIT method, the unadjusted Type I 

error rates of the Lord’s chi-square test in a short length test (e.g., 20 items test) were 

well-controlled for either no group difference or group mean difference condition. 

However, the Lord’s chi-square test turned out to be influenced by the group SD 

difference condition like the non-parametric methods (the MH method and the logistic 

regression procedure), and all three adjusted Type I error rates still showed slight 

inflation (Table 14). 
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Table 14 

Effect of three adjustment procedures for Lord’s chi-square test with group difference 

    Lord's Chi-square Test 

Condition Type I Error Rate Power Rate (With DIF magnitude) 

Group 

Diff. 

Test 

length 
Unadj. Bonf. Holm’s BH Unadj. Bonf. Holm’s BH 

No 
 .03 .00 .00 .01 1.00 .98 .98 .99 

Mean 20 .03 .00 .00 .01 .99 .94 .94 .97 

SD   .33 .18 .19 .26 .48 .29 .30 .39 

No 
 

.13 .05 .05 .07 
  .99 (1) .93 (1) .93 (1) .97 (1) 

  .55 (.5) .17 (.5) .18 (.5) .32 (.5) 

Mean 40 .14 .05 .05 .08 
  .99 (1) .88 (1) .89 (1) .96 (1) 

.50 (.5) .11 (.5) .11 (.5) .25 (.5) 

SD 
 

.20 .10 .10 .13 
  .58 (1) .51 (1) .51 (1) .54 (1) 

  .52 (.5) .47 (.5) .47 (.5) .50 (.5) 

*(1: large) and (.5: medium) indicate DIF magnitude (the b item difficulty parameter 

difference between reference and focal group) 
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CHAPTER 5 

DISCUSSION 

Conclusion and Significance  

The simulation in this study had two phases, each of which answered the research 

questions constructed in Chapter 1. The first was to investigate the influence of various 

factors—sample size, test length, and group difference—on the Type I error rates of the 

four DIF methods, and the second was to apply adjustment procedures to lower the Type 

I error rates to the case of multiple significance tests. 

The findings of the first phase revealed that all testing conditions considered in 

this study influenced the Type I error rates of both non-parametric methods and 

parametric methods. In terms of test length, both non-parametric and parametric methods 

performed similarly in the 40 items test. In the 20 items test, however, the Type I error 

rates of the non-parametric methods were higher than those of the parametric methods. 

Also, the effect of the test length on the Type I error rates of the parametric methods were 

significant: a longer test (e.g., 40 items test) inflated the Type I error rate more than a 

shorter test (e.g., 20 items test). The effect of the test length was not significant for the 

non-parametric methods.  

The results also showed that large sample size and equal ratio of sample size 

tended to inflate the Type I error rates of all four DIF methods. When the condition of the 

group difference was concerned, the presence of the group mean difference did not 
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influence the Type I error rates much. However, the presence of the group SD difference 

significantly inflated the Type I error rates of all but the DFIT method. This is one of 

valuable findings of this study.  

In sum, the results of the first phase simulation suggested that the DFIT method 

was the most effective method to control the Type I error rates under the testing 

conditions considered in this study. 

 The results also showed the trend of the power rate. As explained, in the 

simulation study, the two different levels of DIF magnitude were set up. With the large 

DIF magnitude, the power rates were consistently high—close to 1. However, the power 

rates were comparably low with medium the DIF magnitude.  

The findings of the second phase simulation answered the research questions 

asking about the effectiveness of adjustments in controlling the Type I error rate. All 

three procedures—the Bonferroni correction, the Holm’s procedure and the BH 

method—were effective in controlling the Type I error rates of all four DIF methods. For 

the non-parametric methods, the adjustment procedures reduced the Type I error rates, 

except for the condition of the group SD difference, even though the power rates were 

also reduced.  Of three adjustment procedures, the BH method seemed to be the most 

balanced method in lowering the Type I error rate and at the same time not losing too 

much power, compared to the Bonferroni correction and the Holms procedure. 

One interesting finding was that when the test length was short (e.g., 20 items test) 

the Type I error rate of the DFIT method and of the Lord’s chi-square test were well-

controlled even before adjustment. Therefore, for the parametric tests investigated here, 

adjustment may not be necessary for a shorter test, but the benefit of adjustment may 
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increase as the test length becomes longer. On the other hand, for the non-parametric tests 

investigated here, adjustment may be beneficial at any test with any test length. In sum, 

adjustment procedures were effective in controlling the Type I error rate in DIF analysis. 

This finding is invaluable in DIF studies because the issues of multiple significance 

testing, which have been studied quite often in applied statistics, have been rarely studied 

in DIF research. This study serves as one of the front runners in and at the same time as a 

fodder for future research in adjustment of multiple significance tests in DIF studies. 

Limitations and Future Research 

The study found a relationship between the inflation of the Type I error rate and 

several testing conditions. In particular, two major findings deserve further investigation. 

First, the effect of group SD difference on the inflation of the Type I error rate was 

distinct. This dissertation found this phenomenon through the simulation study. The next 

step would be to verify and determine why and how much the group SD difference 

causes serious inflation of the Type I error rate.  

Second, the findings showed that the Type I error rate of the DFIT method was 

not affected by the group SD difference condition. Therefore, further research should be 

conducted to explore the factors that enable the DFIT method to control the Type I error 

rate consistently in any particular condition, such that the DFIT method is based on an 

empirical distribution. 

Even though the group SD difference always exists in the practical testing fields, 

research on the former difference has been neglected so far compared to the group mean 
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difference. Therefore, further research on the influence of the group SD difference on the 

Type I error rate is warranted.  

This dissertation examined the effectiveness of Type I error rates and the 

adjustment procedure for multiple testing for only dichotomous items. Further research 

should assess the effectiveness of Type I error rates and adjustment procedure for 

multiple testing for polytomous items as well.
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APPENDIXES 

APPENDIX A 

Classification of statistical methods based on Interpretable measure of amount of DIF 

(Mapuranga, Dorans, & Middleton, 2008) 

 Statistical Methods Measures of amount of DIF 

Logistic Regression P-DIF, 
2R -like indices and log odds ratios 

Hierarchical logistic 

regression 
Effect size estimate based on log odds ratio or 

2R -like index based on change 

in variance components 

Logistic mixed model Log odds ratio estimate conditional on latent ability 

Mixture model Likelihood ratio 

HGLM Log odds ratio 

DFIT Compensatory (CDIF) & non compensatory (NCDIF) DIF statistics 

TestGraf Root mean square average difference 

Scrams McLeod MH statistic 

Mantel Haenszel MH log odds ratio estimate 

Cochran Mantel Haenszel A set of odds ratios 

Liu-Agresti estimator Liu-Agresti cumulative common odds ratio 

Cox’s β Log odds ratios 
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APPENDIX B 

Classification of statistical methods based on index or test of significance (Mapuranga et 

al., 2008) 

 Statistical Methods Index or test of significance based 

DFIT Chi square & t tests of significance 

MIMIC model Significance test of model coefficients 

Lagrangian multiplier tests Lagrangian multiplier test of significance 

RCML Hotelling’s T 

Logistic Regression Chi square test of significance 

Hierarchical logistic regression Significance test of model coefficients 

Logistic mixed model Wald test of significance 

Mixture model Chi square test of significance 

HGLM Chi-square significance test of model coefficients 

Mantel Haenszel MH chi square test of significance 

Cochran Mantel Haenszel Chi-square significance test  

Liu-Agresti estimator Liu-Agresti cumulative common odds ratio 

Cox’s β Cox’s β test statistic 

SIBTEST SIB test statistic 



 

63 

 

 

APPENDIX C 

IPR Procedure (Oshima et al., 2006) 

The IPR procedure proposed new cutoff values for each item by ( )1 α− percentile 

rank score from a frequency distribution of NCDIF values under the no DIF conditions in 

the DFIT framework. The fixed cutoff value of NCDIF index for an item, i, (Raju, van 

der Linden, & Fleer, 1995) is defined as .006 in the DFIT framework for dichotomous 

item analysis (Fleer, 1993). In order to improve the procedure for assessing the statistical 

significance of NCDIF index, the IPR method developed cutoff values ranging from .003 

to .15 with different conditions of sample size and IRT model, which conditions are “with 

a higher cutoff value for a smaller sample size and a higher value for an IRT model with 

more parameters” (p. 2). The advantage of the IPR procedure is to “omit the whole 

process of the steps from item parameter calibration, linking, to analysis” (2006, p. 7). 

And, the IPR procedure can generate a cutoff value for each item, unlike DFIT that 

produces one cutoff value for all items. The IPR procedure has a computer program 

developed, which is called “DIFCUT” (Nanda, Oshima, & Gagne, 2006), so that 

practitioners can do DIF analysis easily. The algorithm of the IPR procedure is below (p. 

4). 

1. Let the item parameter estimates from the focal group be denoted by a column 

vector, Mi, for item i. In the case of the 3PL model, Mi  will consist of 3 elements 

(bi, ai, and ci item parameters) as shown below: 
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. 

In the case of the 1PL or the Rasch model, Mi  will be a scalar with an estimate of 

the b parameter. Associated with each item is a matrix, Vi, consisting of the 

sampling variances and covariances of the item parameter estimates: 




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
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The information in Vi is also typically provided by the commercially available 

IRT calibration programs. Let Ri represent the correlation matrix for the item 

parameters of item i. These item parameter inter-correlations can be derived from 

Vi: 














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=
1

1

1

iiii
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ρρ
ρρ
ρρ

. 

Assuming that Ri is positive definite, it can be expressed as the product of a 

triangular matrix (Ti) and its transpose (Ti') (Graybill, 1969); that is: 

iii TTR '=
. 

In the present context, Ti can be expressed as: 
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For the 2PL model, the above matrix reduces to: 



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For the Rasch model, Ti becomes a scalar with a unit as its value. 

2. Let k represent the IRT model under consideration. For the Rasch model, k = 1, 

for 2PL, k = 2, and for 3PL, k = 3. Now, let X1i represent a column vector of k 

elements, with each element drawn at random from one of k independent, 

standardized (mean of 0 and standard deviation of 1), and normally distributed 

populations. Let X2i represent a second vector of k elements similarly drawn. 

3. Using the Ti matrix in Equation 9, transform the two X vectors into two Z 

(column) vectors as follows: 

 

 

1 1'i i iZ T X=
, 

2 2'i i iZ T X=
. 
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Each Z vector now represents a random element from a k-dimensional 

standardized multivariate normal distribution with a correlation structure for the k 

dimensions conforming to the correlation structure in the Ri matrix.  

4. By definition, each element in the Z vectors is standardized in that its expectation 

and variance are 0 and 1, respectively. Each Z vector is now transformed to a Y 

vector so that the elements in the new vector will have the appropriate mean and 

variance as shown in the Mi and Vi matrices above. To achieve this 

transformation, let Di represent a diagonal matrix consisting of the diagonal 

elements (variances) in Vi. Now, let  

iiii MZDY += 11
2

1

, 

iiii MZDY += 22
2

1

. 

5. Vectors Y1i and Y2i represent two estimates of item parameters from two 

populations with identical item parameters; these vectors may be thought as 

representing item parameter estimates for the focal and reference groups when the 

true DIF is zero. That is, any difference in these two sets of estimates is simply 

due to sampling error. Therefore, an NCDIF index for item i can be obtained with 

the help of the two Y vectors and the estimates of thetas for the focal group, using 

the computations spelled out in Raju et al. (1995).     

6. Steps 1-5 can be replicated as many times as one wishes (for example, 100, 1000, 

…, or 10,000 times).  
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7. NCDIF values from all replications obtained in Step 6 will be rank ordered and 

the 90th, 95th, 99th, and 99.9th percentile rank scores are recorded to establish the 

cutoff values for alpha levels at .10, .05, .01, and .001, respectively. 

8. Once the alpha level is chosen, the cutoff associated with it will be used as the 

cutoff for assessing statistical significance of the initial NCDIF value obtained for 

item i. 

9. Steps 1-8 are repeated for all items in the test, thus potentially resulting in 

different cutoffs for different items. 

A SAS-IML program “DIFCUT” is used to process the algorithm above. This IPR 

procedure can be used in all 1PL, 2PL, and 3PL IRT model with dichotomous 

items basis.
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APPENDIX D 

DETECTION OF FALSE POSITIVES IN MANTEL HAENSZEL METHOD BEFORE 

AND AFTER THREE ADJUSTMENTS 

Condition 1 (20 items test length, 500/500, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 11 0 0 1 

100 2 15 3 4 6 

100 3 100 98 98 99 

100 4 15 1 1 6 

100 5 5 0 0 1 

100 6 5 0 0 2 

100 7 22 2 2 5 

100 8 100 100 100 100 

100 9 17 5 5 6 

100 10 13 1 1 4 

100 11 16 0 0 6 

100 12 12 1 3 7 

100 13 8 1 1 1 

100 14 10 0 0 3 

100 15 7 0 1 1 

100 16 16 3 3 4 

100 17 21 1 1 10 

100 18 18 4 4 6 

100 19 13 0 0 3 

100 20 14 2 2 3 
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Condition 2 (20 items test length, 1000/1000, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 17 2 2 6 

100 2 12 2 2 5 

100 3 100 100 100 100 

100 4 15 2 3 4 

100 5 11 2 2 5 

100 6 13 1 2 8 

100 7 18 4 4 9 

100 8 100 100 100 100 

100 9 22 2 3 7 

100 10 16 1 1 5 

100 11 28 3 3 13 

100 12 24 4 4 12 

100 13 15 2 2 6 

100 14 11 2 2 3 

100 15 10 0 0 3 

100 16 29 2 2 13 

100 17 34 6 6 14 

100 18 28 4 4 14 

100 19 12 2 2 7 

100 20 21 3 3 11 
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Condition 3 (20 items test length, 700/300, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 17 0 0 0 

100 2 10 1 2 4 

100 3 100 99 99 100 

100 4 9 0 0 1 

100 5 9 0 0 1 

100 6 7 1 1 2 

100 7 9 1 1 3 

100 8 100 100 100 100 

100 9 11 3 3 6 

100 10 17 2 2 2 

100 11 10 1 1 4 

100 12 9 0 1 2 

100 13 10 1 1 3 

100 14 7 0 0 2 

100 15 4 0 0 0 

100 16 12 2 2 3 

100 17 12 1 1 4 

100 18 18 4 5 9 

100 19 10 0 0 1 

100 20 21 0 0 5 
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Condition 4 (20 items test length, 1500/500, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 6 1 1 3 

100 2 9 0 0 1 

100 3 96 83 84 89 

100 4 8 0 0 0 

100 5 11 0 0 1 

100 6 6 1 1 1 

100 7 6 1 1 1 

100 8 100 99 99 99 

100 9 13 0 0 1 

100 10 9 0 0 0 

100 11 15 2 2 5 

100 12 10 0 0 1 

100 13 6 0 0 0 

100 14 9 3 3 3 

100 15 8 0 0 1 

100 16 9 1 1 2 

100 17 10 0 0 1 

100 18 5 1 1 2 

100 19 10 1 1 2 

100 20 14 0 0 3 
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Condition 5 (20 items test length, 500/500, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 6 1 1 1 

100 2 9 1 1 4 

100 3 100 99 99 100 

100 4 12 0 0 2 

100 5 7 1 1 1 

100 6 8 1 1 1 

100 7 12 2 0.02 3 

100 8 100 100 100 100 

100 9 14 2 2 4 

100 10 13 0 0 1 

100 11 17 2 3 8 

100 12 14 2 2 3 

100 13 12 0 0 1 

100 14 8 0 0 1 

100 15 7 0 0 0 

100 16 12 1 1 4 

100 17 8 1 1 3 

100 18 16 1 1 6 

100 19 12 0 0 3 

100 20 13 2 2 5 
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Condition 6 (20 items test length, 1000/1000, and group  mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 15 2 2 5 

100 2 13 5 5 8 

100 3 100 100 100 100 

100 4 16 3 3 5 

100 5 15 1 1 5 

100 6 13 1 1 3 

100 7 14 3 3 9 

100 8 100 100 100 100 

100 9 20 4 4 7 

100 10 16 1 1 3 

100 11 18 2 2 7 

100 12 23 3 3 6 

100 13 24 2 2 10 

100 14 8 1 1 2 

100 15 7 1 1 3 

100 16 18 1 1 4 

100 17 19 4 4 10 

100 18 22 3 4 9 

100 19 14 1 1 2 

100 20 21 1 2 6 
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Condition 7 (20 items test length, 700/300, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 7 1 1 1 

100 2 9 1 1 2 

100 3 99 90 90 91 

100 4 14 1 1 1 

100 5 8 1 1 2 

100 6 5 0 0 0 

100 7 12 1 1 4 

100 8 100 100 100 100 

100 9 11 0 0 2 

100 10 14 0 0 3 

100 11 4 0 0 1 

100 12 5 0 0 1 

100 13 4 0 0 0 

100 14 10 2 2 5 

100 15 5 1 1 2 

100 16 9 0 0 1 

100 17 6 1 1 1 

100 18 13 2 2 5 

100 19 11 0 0 4 

100 20 13 0 0 5 
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Condition 8 (20 items test length, 1500/500, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 7 0 0 2 

100 2 5 0 0 0 

100 3 100 92 92 94 

100 4 7 1 1 2 

100 5 8 2 2 3 

100 6 10 0 0 2 

100 7 9 0 0 3 

100 8 100 100 100 100 

100 9 9 0 0 2 

100 10 10 2 2 2 

100 11 17 4 4 6 

100 12 13 0 0 3 

100 13 7 1 1 1 

100 14 7 0 0 0 

100 15 9 1 1 1 

100 16 9 1 1 1 

100 17 8 1 1 1 

100 18 9 0 0 1 

100 19 13 2 2 6 

100 20 18 0 0 1 
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Condition 9(20 items test length, 500/500, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 9 0 0 1 

100 2 17 2 2 6 

100 3 73 36 38 52 

100 4 10 0 0 1 

100 5 12 2 2 5 

100 6 98 82 82 87 

100 7 23 7 8 14 

100 8 100 99 99 100 

100 9 12 0 0 2 

100 10 12 0 0 1 

100 11 9 1 1 6 

100 12 13 2 2 4 

100 13 28 3 3 4 

100 14 14 6 8 9 

100 15 26 2 2 8 

100 16 33 6 7 16 

100 17 21 3 6 8 

100 18 20 2 2 4 

100 19 38 6 7 15 

100 20 17 2 2 5 
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Condition 10 (20 items test length, 1000/1000, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 6 0 0 3 

100 2 39 10 13 28 

100 3 93 71 75 91 

100 4 12 2 2 6 

100 5 34 4 5 14 

100 6 100 100 100 100 

100 7 49 11 14 32 

100 8 100 100 100 100 

100 9 24 4 5 11 

100 10 19 1 1 6 

100 11 14 6 6 9 

100 12 23 3 4 16 

100 13 45 10 12 30 

100 14 44 7 10 27 

100 15 36 10 12 25 

100 16 61 15 18 42 

100 17 24 7 7 14 

100 18 29 8 8 18 

100 19 55 19 19 36 

100 20 42 11 13 24 
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Condition 11 (20 items test length, 700/300, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 7 0 0 1 

100 2 15 3 3 8 

100 3 56 15 15 25 

100 4 6 0 0 1 

100 5 21 1 1 8 

100 6 95 76 76 82 

100 7 29 7 7 12 

100 8 100 93 93 98 

100 9 12 0 0 3 

100 10 10 2 2 5 

100 11 8 1 1 2 

100 12 10 3 3 4 

100 13 20 3 3 10 

100 14 19 2 2 7 

100 15 31 3 3 7 

100 16 33 3 4 14 

100 17 18 1 2 2 

100 18 16 4 5 10 

100 19 21 4 4 8 

100 20 24 3 3 8 
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Condition 12 (20 items test length, 1500/500, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 10 0 0 3 

100 2 16 5 5 10 

100 3 78 34 35 45 

100 4 7 0 0 1 

100 5 16 2 2 6 

100 6 92 62 62 74 

100 7 21 1 3 5 

100 8 99 97 97 98 

100 9 11 1 1 3 

100 10 4 1 1 3 

100 11 13 0 0 1 

100 12 9 1 1 1 

100 13 17 3 3 5 

100 14 18 3 3 7 

100 15 14 1 1 3 

100 16 27 7 8 11 

100 17 12 1 2 4 

100 18 12 0 0 2 

100 19 30 6 6 10 

100 20 25 3 3 5 
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Condition 13 (40 items test length, 500/500, and no group difference ) 

Replication item Before Bonferroni Holms BH 

100 1 12 0 0 2 

100 2 8 0 0 0 

100 3 5 0 0 1 

100 4 9 0 0 3 

100 5 100 98 98 99 

100 6 3 0 0 1 

100 7 8 0 0 0 

100 8 4 0 0 2 

100 9 12 0 0 1 

100 10 40 10 10 17 

100 11 11 0 0 1 

100 12 3 0 0 0 

100 13 8 0 0 1 

100 14 3 0 0 0 

100 15 99 93 93 97 

100 16 5 0 0 0 

100 17 1 2 2 2 

100 18 16 0 0 2 

100 19 11 0 0 0 

100 20 16 0 0 3 

100 21 11 0 0 1 

100 22 9 0 0 0 

100 23 10 4 4 5 

100 24 8 0 0 1 

100 25 78 24 26 44 

100 26 6 0 0 0 

100 27 7 0 1 2 

100 28 7 1 1 2 

100 29 5 0 0 0 

100 30 6 0 0 0 

100 31 7 1 1 2 

100 32 6 0 0 1 

100 33 8 1 1 1 

100 34 12 1 1 2 

100 35 74 30 31 46 

100 36 8 0 0 1 

100 37 6 0 0 0 

100 38 10 0 0 1 

100 39 16 0 0 3 

100 40 12 0 0 1 
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Condition 14 (40 items test length, 1000/1000, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 9 0 0 3 

100 2 11 0 0 3 

100 3 5 0 0 0 

100 4 10 0 0 2 

100 5 100 100 100 100 

100 6 11 0 1 1 

100 7 11 0 0 4 

100 8 12 0 0 2 

100 9 11 2 2 2 

100 10 70 21 22 38 

100 11 7 0 0 2 

100 12 7 1 1 2 

100 13 7 0 0 1 

100 14 5 0 0 1 

100 15 100 100 100 100 

100 16 8 0 0 1 

100 17 12 1 1 2 

100 18 16 1 1 4 

100 19 10 0 0 2 

100 20 26 2 2 7 

100 21 11 0 0 5 

100 22 13 1 1 2 

100 23 9 1 1 3 

100 24 13 0 0 4 

100 25 99 73 73 86 

100 26 16 0 0 3 

100 27 13 0 1 1 

100 28 11 2 2 4 

100 29 12 0 0 4 

100 30 11 1 1 4 

100 31 7 0 0 0 

100 32 6 0 0 1 

100 33 17 0 1 6 

100 34 19 1 1 4 

100 35 95 60 61 82 

100 36 14 1 1 3 

100 37 16 2 2 8 

100 38 18 2 2 7 

100 39 28 2 2 10 

100 40 18 3 3 6 

 

  



 

82 

 

 

Condition 15 (40 items test length, 700/300, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 5 0 0 1 

100 2 7 0 0 0 

100 3 4 0 0 0 

100 4 10 1 1 1 

100 5 96 72 72 80 

100 6 3 0 0 0 

100 7 6 1 1 1 

100 8 2 0 0 0 

100 9 6 0 0 0 

100 10 22 4 4 5 

100 11 6 0 0 0 

100 12 4 0 0 0 

100 13 8 1 1 1 

100 14 7 0 0 0 

100 15 94 58 59 67 

100 16 3 0 0 0 

100 17 8 0 0 0 

100 18 7 1 1 1 

100 19 8 0 0 0 

100 20 24 0 0 3 

100 21 13 0 0 0 

100 22 9 0 0 1 

100 23 10 0 0 0 

100 24 6 0 0 0 

100 25 56 16 17 25 

100 26 5 0 0 1 

100 27 6 1 1 1 

100 28 4 1 1 1 

100 29 7 1 1 1 

100 30 7 0 0 0 

100 31 3 0 0 0 

100 32 7 0 0 1 

100 33 5 1 1 1 

100 34 13 1 1 4 

100 35 48 10 10 16 

100 36 12 0 0 1 

100 37 3 0 0 0 

100 38 8 1 1 2 

100 39 9 1 1 2 

100 40 12 0 0 1 
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Condition 16 (40 items test length, 1500/500, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 5 0 0 0 

100 2 2 0 0 0 

100 3 9 1 1 2 

100 4 6 0 0 1 

100 5 100 96 96 97 

100 6 3 0 0 0 

100 7 9 0 0 1 

100 8 7 0 0 0 

100 9 11 0 0 1 

100 10 33 4 4 10 

100 11 3 0 0 0 

100 12 3 0 0 0 

100 13 6 0 0 0 

100 14 8 0 0 1 

100 15 99 91 91 92 

100 16 10 0 0 1 

100 17 7 1 1 2 

100 18 14 1 1 4 

100 19 10 1 1 4 

100 20 14 1 1 2 

100 21 9 0 0 0 

100 22 11 1 1 2 

100 23 8 0 0 0 

100 24 11 0 0 4 

100 25 80 35 36 52 

100 26 11 0 0 1 

100 27 6 0 0 1 

100 28 13 0 0 3 

100 29 6 0 0 0 

100 30 5 0 0 1 

100 31 5 0 0 1 

100 32 7 0 0 2 

100 33 17 0 0 3 

100 34 3 0 0 0 

100 35 74 23 24 37 

100 36 11 0 0 2 

100 37 9 0 0 1 

100 38 16 0 0 6 

100 39 8 0 0 2 

100 40 10 2 2 4 
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Condition 17 (40 items test length, 500/500, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 7 0 0 1 

100 2 9 1 1 2 

100 3 6 1 1 1 

100 4 9 0 0 3 

100 5 100 99 99 99 

100 6 3 0 0 0 

100 7 6 1 1 1 

100 8 9 0 0 2 

100 9 13 0 0 3 

100 10 40 4 4 11 

100 11 2 0 0 0 

100 12 5 0 0 0 

100 13 10 1 1 1 

100 14 8 0 1 2 

100 15 100 89 89 96 

100 16 6 0 0 0 

100 17 8 1 1 2 

100 18 14 0 0 0 

100 19 7 0 0 1 

100 20 26 3 4 8 

100 21 8 0 0 0 

100 22 5 0 0 0 

100 23 10 0 0 0 

100 24 8 1 1 1 

100 25 70 15 15 28 

100 26 10 0 0 1 

100 27 13 0 0 2 

100 28 7 0 0 0 

100 29 4 0 0 0 

100 30 4 0 0 0 

100 31 6 1 1 1 

100 32 3 0 0 1 

100 33 11 0 0 4 

100 34 5 0 0 0 

100 35 68 22 22 33 

100 36 7 1 1 2 

100 37 10 1 1 2 

100 38 11 0 0 2 

100 39 7 0 0 3 

100 40 15 0 0 2 
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Condition 18 (40 items test length, 1000/1000, and group mean difference) 
 

Replication item Before Bonferroni Holms BH 

100 1 10 0 0 1 

100 2 13 0 0 0 

100 3 3 0 0 0 

100 4 8 0 0 0 

100 5 100 100 100 100 

100 6 7 0 0 1 

100 7 13 0 0 4 

100 8 21 1 1 2 

100 9 6 0 0 2 

100 10 61 20 21 32 

100 11 9 1 1 2 

100 12 3 0 0 2 

100 13 4 0 0 1 

100 14 15 0 0 2 

100 15 100 100 100 100 

100 16 6 0 0 2 

100 17 15 1 1 3 

100 18 13 1 1 3 

100 19 11 0 0 2 

100 20 36 6 8 15 

100 21 8 0 0 1 

100 22 15 0 0 3 

100 23 10 0 0 2 

100 24 8 0 0 2 

100 25 95 66 66 81 

100 26 16 3 3 5 

100 27 12 0 0 2 

100 28 10 0 0 3 

100 29 11 2 2 4 

100 30 10 0 0 2 

100 31 2 1 1 1 

100 32 5 0 0 1 

100 33 11 0 0 4 

100 34 14 1 1 3 

100 35 94 61 62 77 

100 36 11 1 1 3 

100 37 19 2 2 6 

100 38 11 1 1 3 

100 39 22 0 1 6 

100 40 18 0 1 6 
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Condition 19 (40 items test length, 700/300, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 4 0 0 0 

100 2 8 0 0 0 

100 3 7 0 0 0 

100 4 3 0 0 0 

100 5 99 75 75 77 

100 6 4 0 0 0 

100 7 8 0 0 1 

100 8 5 0 0 0 

100 9 8 1 1 1 

100 10 22 1 1 2 

100 11 11 1 1 2 

100 12 4 0 0 0 

100 13 6 1 1 2 

100 14 4 1 1 1 

100 15 94 46 47 60 

100 16 7 1 1 1 

100 17 10 0 0 1 

100 18 7 0 0 0 

100 19 9 0 0 0 

100 20 24 3 3 4 

100 21 11 1 1 2 

100 22 6 0 0 0 

100 23 6 0 0 1 

100 24 6 0 0 0 

100 25 54 11 12 19 

100 26 7 0 0 1 

100 27 10 0 0 0 

100 28 7 0 0 0 

100 29 4 0 0 0 

100 30 6 0 0 1 

100 31 4 0 0 1 

100 32 6 1 1 3 

100 33 13 0 0 1 

100 34 12 1 1 1 

100 35 44 8 8 11 

100 36 8 0 0 2 

100 37 4 0 0 1 

100 38 6 0 0 0 

100 39 13 0 0 0 

100 40 13 1 1 1 
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Condition 20 (40 items test length, 1500/500, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 6 0 0 3 

100 2 6 0 0 2 

100 3 8 0 0 0 

100 4 7 0 0 1 

100 5 100 91 92 98 

100 6 5 0 0 1 

100 7 4 0 0 0 

100 8 8 0 0 2 

100 9 9 0 0 1 

100 10 36 4 4 13 

100 11 5 0 0 2 

100 12 3 1 1 1 

100 13 7 0 0 1 

100 14 10 1 1 1 

100 15 99 90 90 94 

100 16 6 0 0 1 

100 17 8 1 1 1 

100 18 10 2 2 2 

100 19 8 0 0 2 

100 20 21 1 1 5 

100 21 10 1 1 1 

100 22 5 0 0 0 

100 23 4 1 1 2 

100 24 9 0 0 1 

100 25 76 25 25 40 

100 26 7 1 1 2 

100 27 5 0 0 1 

100 28 9 1 1 2 

100 29 5 0 0 0 

100 30 3 0 0 0 

100 31 5 0 0 1 

100 32 7 0 0 0 

100 33 10 0 0 4 

100 34 3 1 1 1 

100 35 66 28 28 39 

100 36 13 1 1 4 

100 37 6 0 0 2 

100 38 9 1 2 3 

100 39 10 0 0 5 

100 40 17 1 1 2 
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Condition 21 (40 items test length, 500/500, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 6 0 0 0 

100 2 1 0 0 1 

100 3 13 1 1 3 

100 4 22 3 3 5 

100 5 86 38 40 58 

100 6 5 0 0 0 

100 7 3 0 0 0 

100 8 2 0 0 1 

100 9 12 0 0 0 

100 10 10 0 0 0 

100 11 89 51 51 64 

100 12 96 52 53 68 

100 13 8 0 0 0 

100 14 16 2 2 4 

100 15 91 48 49 68 

100 16 24 0 0 7 

100 17 11 0 0 0 

100 18 10 1 1 4 

100 19 6 0 0 0 

100 20 8 0 0 0 

100 21 5 0 0 0 

100 22 6 0 0 1 

100 23 9 0 0 1 

100 24 5 0 0 0 

100 25 14 0 0 0 

100 26 12 0 0 2 

100 27 12 0 0 2 

100 28 11 0 0 2 

100 29 11 0 0 1 

100 30 5 1 1 1 

100 31 16 2 2 5 

100 32 28 2 2 3 

100 33 5 0 0 0 

100 34 5 0 0 0 

100 35 15 0 0 2 

100 36 9 0 0 1 

100 37 23 0 0 4 

100 38 28 2 2 4 

100 39 12 0 0 0 

100 40 16 2 2 4 
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Condition 22 (40 items test length, 1000/1000, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 4 1 1 1 

100 2 4 1 1 1 

100 3 25 5 5 13 

100 4 26 3 3 9 

100 5 96 68 69 88 

100 6 7 0 0 0 

100 7 4 0 0 0 

100 8 8 0 0 3 

100 9 10 0 0 3 

100 10 8 0 0 1 

100 11 99 85 86 95 

100 12 100 92 92 96 

100 13 36 7 7 18 

100 14 40 7 7 17 

100 15 100 88 88 96 

100 16 37 3 4 15 

100 17 6 0 0 1 

100 18 12 0 0 5 

100 19 14 0 0 4 

100 20 24 2 2 5 

100 21 10 2 2 4 

100 22 13 0 0 1 

100 23 6 0 0 3 

100 24 8 2 2 2 

100 25 30 1 1 7 

100 26 26 1 1 7 

100 27 19 2 2 4 

100 28 21 3 4 6 

100 29 23 2 2 7 

100 30 9 0 0 1 

100 31 36 10 10 17 

100 32 46 9 10 21 

100 33 25 0 0 8 

100 34 18 2 2 5 

100 35 29 3 3 11 

100 36 22 1 1 7 

100 37 32 8 8 15 

100 38 40 7 7 15 

100 39 34 3 3 8 

100 40 24 2 2 10 
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Condition 23 (40 items test length, 700/300, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 6 0 0 0 

100 2 5 0 0 1 

100 3 8 1 1 1 

100 4 13 1 1 1 

100 5 62 15 15 21 

100 6 6 0 0 0 

100 7 6 0 0 0 

100 8 3 0 0 0 

100 9 5 1 1 3 

100 10 8 0 0 0 

100 11 75 30 30 36 

100 12 70 28 28 34 

100 13 14 1 1 1 

100 14 11 1 1 1 

100 15 71 27 28 31 

100 16 18 2 2 2 

100 17 11 0 0 1 

100 18 5 0 0 0 

100 19 10 2 2 3 

100 20 13 0 0 2 

100 21 5 0 0 0 

100 22 5 0 0 0 

100 23 5 0 0 0 

100 24 6 0 0 0 

100 25 13 0 0 0 

100 26 7 0 0 2 

100 27 12 1 1 1 

100 28 7 1 1 1 

100 29 13 1 1 1 

100 30 9 1 1 1 

100 31 15 0 0 0 

100 32 13 1 1 3 

100 33 11 0 0 1 

100 34 7 2 2 4 

100 35 10 0 0 1 

100 36 7 0 0 0 

100 37 12 0 0 1 

100 38 10 1 1 1 

100 39 13 0 0 0 

100 40 10 1 1 1 
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Condition 24(40 items test length, 1500/500, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 7 0 0 0 

100 2 5 0 0 0 

100 3 15 1 1 2 

100 4 13 2 2 4 

100 5 70 31 33 47 

100 6 2 0 0 0 

100 7 1 0 0 0 

100 8 4 0 0 1 

100 9 15 0 0 3 

100 10 2 0 0 1 

100 11 89 55 55 68 

100 12 92 50 51 62 

100 13 19 1 1 3 

100 14 17 1 1 4 

100 15 88 55 55 68 

100 16 18 3 3 5 

100 17 8 1 1 2 

100 18 10 0 0 0 

100 19 9 0 0 0 

100 20 14 1 1 2 

100 21 11 0 0 2 

100 22 3 1 1 1 

100 23 7 0 0 1 

100 24 12 1 1 3 

100 25 13 1 1 4 

100 26 17 2 2 5 

100 27 16 3 3 4 

100 28 13 2 2 3 

100 29 7 1 1 1 

100 30 6 0 0 1 

100 31 28 3 3 7 

100 32 21 3 3 4 

100 33 12 2 2 4 

100 34 4 0 0 2 

100 35 15 1 1 5 

100 36 9 0 0 1 

100 37 18 2 2 3 

100 38 24 2 2 10 

100 39 16 2 2 4 

100 40 15 2 2 3 
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APPENDIX E 

DETECTION OF FALSE POSITIVES IN LOGISTIC REGRESSION PROCEDURE 

BEFORE AND AFTER THREE ADJUSTMENTS 

Condition 25(20 items test length, 500/500, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 9 0 0 1 

100 2 14 1 2 6 

100 3 100 100 100 100 

100 4 13 2 2 5 

100 5 4 0 1 1 

100 6 5 0 0 1 

100 7 21 2 2 5 

100 8 100 100 100 100 

100 9 18 4 4 7 

100 10 12 1 1 6 

100 11 15 0 0 4 

100 12 13 3 3 8 

100 13 6 1 1 1 

100 14 12 0 0 2 

100 15 9 0 0 1 

100 16 16 3 3 5 

100 17 20 1 2 8 

100 18 19 4 4 8 

100 19 14 2 2 3 

100 20 14 2 2 2 
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Condition 26(20 items test length, 1000/1000, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 19 2 2 7 

100 2 14 1 2 5 

100 3 100 100 100 100 

100 4 15 2 2 5 

100 5 11 0 1 5 

100 6 13 3 4 8 

100 7 18 4 4 10 

100 8 100 100 100 100 

100 9 22 3 3 8 

100 10 19 1 1 6 

100 11 27 4 4 14 

100 12 28 5 5 14 

100 13 20 1 1 5 

100 14 10 1 1 5 

100 15 10 0 0 1 

100 16 25 2 3 12 

100 17 36 6 6 14 

100 18 27 6 6 14 

100 19 19 2 3 5 

100 20 24 3 4 10 
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Condition 27(20 items test length, 700/300, and no group difference) 

 

 

  

Replication item Before Bonferroni Holms BH 

100 1 18 0 1 3 

100 2 10 1 1 3 

100 3 100 99 99 100 

100 4 8 1 1 1 

100 5 8 0 0 0 

100 6 7 1 1 1 

100 7 10 1 1 3 

100 8 100 100 100 100 

100 9 13 3 4 5 

100 10 15 2 2 3 

100 11 12 2 2 4 

100 12 7 1 2 2 

100 13 8 0 0 4 

100 14 8 0 0 2 

100 15 7 0 0 0 

100 16 14 2 2 3 

100 17 12 1 1 4 

100 18 20 3 4 9 

100 19 9 0 0 2 

100 20 24 0 0 5 
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Condition 28(20 items test length, 1500/500, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 7 2 2 3 

100 2 8 0 0 2 

100 3 99 90 90 91 

100 4 14 0 0 0 

100 5 11 0 0 3 

100 6 5 1 1 1 

100 7 6 1 1 1 

100 8 100 99 99 99 

100 9 10 1 1 4 

100 10 10 0 0 1 

100 11 17 3 3 5 

100 12 10 0 0 1 

100 13 10 0 0 2 

100 14 9 0 0 4 

100 15 7 0 0 0 

100 16 8 1 1 3 

100 17 10 0 0 2 

100 18 8 1 1 1 

100 19 8 1 1 1 

100 20 14 1 1 3 
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Condition 29(20 items test length, 500/500, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 8 1 1 2 

100 2 11 0 0 2 

100 3 100 100 100 100 

100 4 11 0 0 1 

100 5 5 0 0 0 

100 6 8 1 1 1 

100 7 15 2 2 4 

100 8 100 100 100 100 

100 9 12 3 3 4 

100 10 12 0 0 2 

100 11 18 4 4 8 

100 12 14 1 1 5 

100 13 13 0 0 1 

100 14 12 1 1 3 

100 15 7 0 0 0 

100 16 12 0 0 5 

100 17 9 1 1 2 

100 18 19 3 3 7 

100 19 11 0 0 3 

100 20 17 5 5 6 
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Condition 30(20 items test length, 1000/1000, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 17 2 2 4 

100 2 17 3 3 6 

100 3 100 100 100 100 

100 4 18 2 3 5 

100 5 19 1 1 1 

100 6 14 1 2 4 

100 7 16 4 4 10 

100 8 100 100 100 100 

100 9 22 4 4 7 

100 10 16 1 1 5 

100 11 18 3 4 6 

100 12 24 3 3 11 

100 13 30 6 6 11 

100 14 9 2 2 2 

100 15 7 0 0 1 

100 16 19 1 1 4 

100 17 24 6 7 11 

100 18 24 5 5 9 

100 19 13 1 1 5 

100 20 25 4 4 11 
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Condition 31(20 items test length, 700/300, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 6 1 1 1 

100 2 13 1 1 2 

100 3 99 95 95 97 

100 4 11 0 0 3 

100 5 10 2 2 3 

100 6 4 0 0 0 

100 7 11 2 3 5 

100 8 100 100 100 100 

100 9 15 0 1 4 

100 10 16 1 1 3 

100 11 6 0 0 1 

100 12 5 0 1 1 

100 13 6 0 0 0 

100 14 12 2 2 3 

100 15 5 0 0 1 

100 16 9 0 0 1 

100 17 7 1 1 1 

100 18 14 1 1 7 

100 19 11 3 3 5 

100 20 14 0 0 6 
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Condition 32(20 items test length, 1500/500, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 10 1 1 1 

100 2 7 0 0 0 

100 3 100 94 94 97 

100 4 7 1 1 2 

100 5 10 0 0 2 

100 6 9 0 0 2 

100 7 9 0 0 2 

100 8 100 100 100 100 

100 9 8 0 0 3 

100 10 9 2 2 4 

100 11 18 4 4 5 

100 12 14 0 0 5 

100 13 10 1 1 2 

100 14 6 0 0 0 

100 15 13 0 0 2 

100 16 10 1 1 2 

100 17 10 0 1 1 

100 18 11 1 1 2 

100 19 14 1 1 3 

100 20 19 0 0 2 
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Condition 33(20 items test length, 500/500, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 34 6 9 27 

100 2 8 1 1 4 

100 3 24 2 5 18 

100 4 58 21 30 52 

100 5 100 98 99 100 

100 6 96 79 83 93 

100 7 21 4 4 15 

100 8 100 98 99 100 

100 9 67 33 39 65 

100 10 74 29 40 69 

100 11 76 30 39 71 

100 12 69 31 36 64 

100 13 100 100 100 100 

100 14 100 100 100 100 

100 15 100 100 100 100 

100 16 20 2 4 13 

100 17 84 52 58 79 

100 18 88 53 61 85 

100 19 100 100 100 100 

100 20 88 61 63 85 
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Condition 34(20 items test length, 1000/1000, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 68 31 45 64 

100 2 24 2 7 22 

100 3 32 8 17 30 

100 4 81 46 62 79 

100 5 100 100 100 100 

100 6 100 100 100 100 

100 7 31 6 10 29 

100 8 100 100 100 100 

100 9 93 69 79 93 

100 10 95 72 83 95 

100 11 97 70 86 97 

100 12 96 75 87 95 

100 13 100 100 100 100 

100 14 100 100 100 100 

100 15 100 100 100 100 

100 16 34 9 15 33 

100 17 99 88 93 98 

100 18 100 90 94 100 

100 19 100 100 100 100 

100 20 99 95 97 99 
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Condition 35(20 items test length, 700/300, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 22 7 8 20 

100 2 9 2 3 7 

100 3 13 3 3 11 

100 4 29 5 10 23 

100 5 94 78 80 93 

100 6 96 72 77 93 

100 7 16 4 6 13 

100 8 99 91 94 99 

100 9 58 16 19 45 

100 10 55 17 22 50 

100 11 64 17 26 59 

100 12 56 13 20 48 

100 13 100 96 97 100 

100 14 100 96 98 100 

100 15 100 100 100 100 

100 16 25 0 1 16 

100 17 60 30 32 54 

100 18 71 27 31 67 

100 19 100 99 99 100 

100 20 81 43 50 75 
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Condition 36(20 items test length, 1500/500, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 40 6 9 36 

100 2 13 3 4 10 

100 3 20 8 9 16 

100 4 48 10 19 38 

100 5 98 81 84 97 

100 6 89 57 64 88 

100 7 11 0 0 9 

100 8 99 88 93 99 

100 9 63 26 32 58 

100 10 57 18 24 48 

100 11 74 32 40 69 

100 12 64 22 31 58 

100 13 99 98 98 99 

100 14 100 98 99 100 

100 15 100 100 100 100 

100 16 21 4 4 17 

100 17 73 27 31 67 

100 18 74 27 34 67 

100 19 100 99 99 100 

100 20 87 45 51 81 
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Condition 37(40 items test length, 500/500, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 13 0 0 2 

100 2 11 0 0 0 

100 3 6 0 0 0 

100 4 8 0 0 2 

100 5 100 99 99 100 

100 6 4 0 0 1 

100 7 8 0 0 0 

100 8 5 0 0 2 

100 9 13 1 1 4 

100 10 52 12 14 22 

100 11 9 0 0 0 

100 12 4 0 0 0 

100 13 9 0 0 1 

100 14 4 0 0 0 

100 15 100 96 97 98 

100 16 3 0 0 0 

100 17 8 1 1 5 

100 18 12 0 0 3 

100 19 12 0 0 0 

100 20 7 0 0 0 

100 21 12 1 1 1 

100 22 9 0 0 1 

100 23 12 5 5 6 

100 24 7 0 0 0 

100 25 95 73 74 84 

100 26 4 0 0 0 

100 27 8 0 0 1 

100 28 7 2 2 2 

100 29 8 0 0 1 

100 30 15 0 0 3 

100 31 5 0 0 2 

100 32 6 0 0 1 

100 33 10 1 1 1 

100 34 9 0 0 2 

100 35 86 49 49 60 

100 36 5 0 0 1 

100 37 5 0 0 2 

100 38 14 0 0 2 

100 39 13 0 0 2 

100 40 7 0 0 1 
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Condition 38(40 items test length, 1000/1000, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 11 0 0 6 

100 2 12 0 0 2 

100 3 6 0 0 0 

100 4 10 0 0 3 

100 5 100 100 100 100 

100 6 12 1 1 4 

100 7 14 1 1 5 

100 8 12 1 1 4 

100 9 12 2 2 3 

100 10 88 36 36 59 

100 11 7 1 1 2 

100 12 7 1 1 2 

100 13 7 0 0 1 

100 14 4 0 0 1 

100 15 100 100 100 100 

100 16 6 0 0 1 

100 17 11 1 1 3 

100 18 17 1 1 6 

100 19 14 1 1 2 

100 20 9 1 1 2 

100 21 17 1 1 6 

100 22 13 1 2 3 

100 23 11 1 1 4 

100 24 15 0 0 6 

100 25 100 100 100 100 

100 26 18 0 0 7 

100 27 11 0 0 3 

100 28 14 2 2 3 

100 29 12 0 1 4 

100 30 33 6 6 9 

100 31 7 0 0 0 

100 32 7 0 0 1 

100 33 17 0 0 8 

100 34 18 1 1 4 

100 35 98 87 87 95 

100 36 12 0 0 3 

100 37 16 4 4 8 

100 38 17 2 2 8 

100 39 27 3 3 7 

100 40 15 3 3 7 
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Condition 39(40 items test length, 700/300, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 3 0 0 1 

100 2 7 1 1 1 

100 3 3 0 0 0 

100 4 8 1 1 1 

100 5 98 82 82 88 

100 6 4 0 0 0 

100 7 3 1 1 1 

100 8 3 0 0 0 

100 9 11 0 0 0 

100 10 27 2 2 7 

100 11 4 0 0 0 

100 12 4 0 0 0 

100 13 7 1 1 1 

100 14 7 0 0 0 

100 15 95 68 68 78 

100 16 6 0 0 0 

100 17 5 0 0 0 

100 18 4 1 1 1 

100 19 10 0 0 1 

100 20 14 0 0 1 

100 21 13 0 0 3 

100 22 9 0 0 0 

100 23 6 0 0 0 

100 24 6 0 0 0 

100 25 84 40 40 53 

100 26 5 0 0 0 

100 27 10 0 0 0 

100 28 3 0 0 1 

100 29 9 0 0 1 

100 30 11 0 0 1 

100 31 5 0 0 0 

100 32 7 0 0 1 

100 33 4 1 1 1 

100 34 17 1 1 3 

100 35 67 19 19 26 

100 36 11 0 0 2 

100 37 7 0 0 0 

100 38 10 0 0 3 

100 39 12 1 1 3 

100 40 13 0 0 1 
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Condition 40(40 items test length, 1500/500, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 8 0 0 0 

100 2 4 0 0 0 

100 3 9 0 0 2 

100 4 6 0 0 1 

100 5 100 98 99 100 

100 6 5 0 0 0 

100 7 9 0 0 1 

100 8 6 0 0 1 

100 9 12 0 0 2 

100 10 48 8 8 15 

100 11 3 0 0 0 

100 12 3 0 0 0 

100 13 6 0 0 1 

100 14 9 0 0 1 

100 15 100 93 93 98 

100 16 9 0 0 1 

100 17 9 0 0 1 

100 18 11 0 0 4 

100 19 13 2 2 3 

100 20 8 0 0 1 

100 21 9 0 0 0 

100 22 12 1 1 1 

100 23 7 0 0 0 

100 24 9 0 0 1 

100 25 96 73 73 83 

100 26 11 0 0 1 

100 27 6 0 0 1 

100 28 10 2 3 3 

100 29 7 0 0 2 

100 30 12 2 2 3 

100 31 4 0 0 1 

100 32 7 0 0 2 

100 33 16 0 0 3 

100 34 4 0 0 0 

100 35 83 41 44 63 

100 36 10 0 0 1 

100 37 8 0 0 2 

100 38 14 1 1 9 

100 39 7 0 1 3 

100 40 10 1 1 4 
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Condition 41(40 items test length, 500/500, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 9 0 0 3 

100 2 11 0 1 3 

100 3 8 1 1 1 

100 4 9 0 0 3 

100 5 100 99 99 100 

100 6 4 0 0 0 

100 7 9 1 1 2 

100 8 14 0 0 2 

100 9 14 1 1 4 

100 10 51 6 6 20 

100 11 2 0 0 0 

100 12 5 0 0 1 

100 13 11 0 0 1 

100 14 8 0 0 1 

100 15 100 96 96 99 

100 16 4 0 0 0 

100 17 9 1 1 2 

100 18 13 0 0 1 

100 19 10 0 0 1 

100 20 14 1 1 3 

100 21 10 0 0 0 

100 22 5 0 0 1 

100 23 9 0 0 3 

100 24 10 1 1 1 

100 25 93 54 54 73 

100 26 8 1 1 2 

100 27 17 0 0 2 

100 28 9 0 0 0 

100 29 5 0 0 1 

100 30 13 0 0 0 

100 31 6 1 1 1 

100 32 4 0 0 0 

100 33 11 0 0 2 

100 34 6 0 0 0 

100 35 85 32 33 56 

100 36 7 1 1 1 

100 37 10 0 0 3 

100 38 9 1 1 2 

100 39 8 1 1 3 

100 40 13 0 0 2 
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Condition 42(40 items test length, 1000/1000, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 11 0 0 1 

100 2 13 0 0 1 

100 3 2 0 0 0 

100 4 12 0 0 2 

100 5 100 100 100 100 

100 6 9 0 0 4 

100 7 17 1 1 5 

100 8 18 1 1 4 

100 9 9 1 1 1 

100 10 76 32 33 47 

100 11 8 0 0 4 

100 12 3 0 0 1 

100 13 6 1 1 1 

100 14 12 0 0 2 

100 15 100 100 100 100 

100 16 6 0 0 1 

100 17 14 1 1 6 

100 18 19 0 0 6 

100 19 12 0 0 2 

100 20 19 1 2 8 

100 21 10 1 1 2 

100 22 15 0 0 3 

100 23 13 0 0 1 

100 24 11 1 2 2 

100 25 99 96 96 98 

100 26 15 1 1 4 

100 27 12 2 2 4 

100 28 12 0 0 2 

100 29 10 1 1 3 

100 30 23 1 1 7 

100 31 2 1 1 1 

100 32 6 0 0 1 

100 33 13 0 0 4 

100 34 15 0 1 2 

100 35 99 78 78 92 

100 36 14 1 1 2 

100 37 20 1 1 5 

100 38 12 1 1 4 

100 39 19 1 1 5 

100 40 16 0 0 6 
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Condition 43(40 items test length, 700/300, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 3 0 0 0 

100 2 11 0 0 1 

100 3 6 0 0 0 

100 4 8 0 0 0 

100 5 100 84 84 86 

100 6 5 0 0 0 

100 7 9 0 0 2 

100 8 8 0 0 0 

100 9 10 1 1 1 

100 10 26 2 2 5 

100 11 10 1 1 2 

100 12 6 0 0 0 

100 13 5 1 1 1 

100 14 3 1 1 1 

100 15 95 57 58 66 

100 16 4 1 1 1 

100 17 7 0 0 0 

100 18 5 1 1 1 

100 19 6 0 0 1 

100 20 16 1 1 4 

100 21 12 2 2 2 

100 22 4 0 0 0 

100 23 6 0 0 0 

100 24 8 0 0 0 

100 25 83 27 27 41 

100 26 8 0 0 1 

100 27 7 0 0 0 

100 28 6 0 0 0 

100 29 5 0 0 0 

100 30 10 0 0 1 

100 31 3 0 0 0 

100 32 7 1 1 3 

100 33 8 0 0 1 

100 34 12 1 1 1 

100 35 60 13 13 20 

100 36 10 0 0 2 

100 37 5 0 0 1 

100 38 5 0 0 0 

100 39 12 0 0 1 

100 40 12 1 1 3 
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Condition 44(40 items test length, 1500/500, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 9 0 0 2 

100 2 6 0 0 1 

100 3 7 0 0 0 

100 4 6 0 0 0 

100 5 100 100 100 100 

100 6 6 0 0 0 

100 7 6 0 0 0 

100 8 9 0 0 1 

100 9 9 0 0 2 

100 10 47 6 6 14 

100 11 4 0 0 2 

100 12 4 0 0 1 

100 13 9 0 0 1 

100 14 11 1 1 1 

100 15 100 93 93 97 

100 16 7 0 0 1 

100 17 10 1 1 3 

100 18 10 0 0 2 

100 19 5 0 0 3 

100 20 15 0 0 2 

100 21 8 1 1 2 

100 22 7 0 0 1 

100 23 5 0 0 2 

100 24 11 0 0 1 

100 25 94 69 69 81 

100 26 10 0 0 3 

100 27 6 0 0 2 

100 28 14 1 1 3 

100 29 4 0 0 1 

100 30 11 0 0 1 

100 31 5 0 0 2 

100 32 8 0 0 0 

100 33 11 0 0 5 

100 34 3 1 1 1 

100 35 81 43 43 55 

100 36 13 3 3 4 

100 37 9 0 0 1 

100 38 9 0 0 3 

100 39 9 1 1 3 

100 40 13 1 1 2 
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Condition 45(40 items test length, 500/500, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 39 5 8 32 

100 2 36 4 5 28 

100 3 13 1 1 10 

100 4 13 1 3 9 

100 5 24 1 2 17 

100 6 50 8 9 44 

100 7 61 8 12 51 

100 8 53 6 8 41 

100 9 99 91 93 99 

100 10 86 48 54 80 

100 11 93 42 48 88 

100 12 94 50 56 91 

100 13 1 0 0 1 

100 14 10 1 1 8 

100 15 96 70 71 95 

100 16 14 0 0 10 

100 17 75 27 30 60 

100 18 73 27 34 68 

100 19 77 27 31 69 

100 20 45 5 7 39 

100 21 74 21 27 67 

100 22 73 19 22 62 

100 23 66 23 30 57 

100 24 72 25 29 69 

100 25 77 35 39 71 

100 26 100 99 99 100 

100 27 100 99 99 100 

100 28 100 99 100 100 

100 29 100 100 100 100 

100 30 100 100 100 100 

100 31 7 0 0 5 

100 32 8 0 1 5 

100 33 83 30 35 75 

100 34 87 42 53 81 

100 35 10 0 0 6 

100 36 84 33 38 77 

100 37 100 100 100 100 

100 38 100 100 100 100 

100 39 88 54 57 85 

100 40 91 56 60 85 
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Condition 46(40 items test length, 1000/1000, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 68 15 25 63 

100 2 61 19 27 59 

100 3 14 0 1 11 

100 4 13 0 0 11 

100 5 24 1 5 21 

100 6 75 32 43 73 

100 7 83 32 39 77 

100 8 82 41 50 81 

100 9 100 100 100 100 

100 10 98 90 94 98 

100 11 99 90 93 99 

100 12 100 91 92 100 

100 13 20 1 5 19 

100 14 22 1 5 20 

100 15 100 94 98 100 

100 16 22 1 2 19 

100 17 91 58 69 90 

100 18 96 58 75 95 

100 19 98 61 72 98 

100 20 80 34 49 76 

100 21 95 68 78 93 

100 22 100 59 73 97 

100 23 95 56 72 92 

100 24 97 68 76 95 

100 25 98 75 90 98 

100 26 100 100 100 100 

100 27 100 100 100 100 

100 28 100 100 100 100 

100 29 100 100 100 100 

100 30 100 100 100 100 

100 31 17 1 4 14 

100 32 20 1 3 17 

100 33 99 89 93 99 

100 34 99 87 94 99 

100 35 30 5 7 26 

100 36 98 86 92 97 

100 37 100 100 100 100 

100 38 100 100 100 100 

100 39 100 96 97 100 

100 40 99 94 97 99 
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Condition 47(40 items test length, 700/300, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 21 0 1 13 

100 2 20 0 0 7 

100 3 4 0 0 3 

100 4 7 1 1 2 

100 5 17 1 2 12 

100 6 35 6 7 25 

100 7 27 6 8 17 

100 8 33 4 4 23 

100 9 93 59 61 90 

100 10 68 24 30 57 

100 11 69 20 24 55 

100 12 68 23 25 53 

100 13 11 1 1 7 

100 14 4 0 0 1 

100 15 74 32 38 70 

100 16 11 0 0 4 

100 17 55 5 9 38 

100 18 50 8 8 38 

100 19 56 12 13 38 

100 20 49 6 7 32 

100 21 51 13 13 33 

100 22 44 7 8 30 

100 23 43 5 5 26 

100 24 47 6 8 34 

100 25 57 13 14 47 

100 26 100 81 84 98 

100 27 98 83 87 97 

100 28 97 85 87 94 

100 29 100 97 97 100 

100 30 99 88 88 96 

100 31 8 0 0 2 

100 32 9 0 0 3 

100 33 62 14 17 49 

100 34 68 12 17 60 

100 35 9 0 0 7 

100 36 59 13 13 44 

100 37 100 92 95 100 

100 38 100 96 97 100 

100 39 75 21 26 65 

100 40 63 18 24 57 
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Condition 48(40 items test length, 1500/500, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 35 5 6 28 

100 2 37 7 7 27 

100 3 10 0 0 8 

100 4 9 1 1 6 

100 5 13 0 0 10 

100 6 50 2 4 40 

100 7 46 6 7 37 

100 8 51 11 14 44 

100 9 98 91 92 98 

100 10 92 45 50 90 

100 11 89 55 59 89 

100 12 89 50 56 79 

100 13 8 0 1 8 

100 14 7 1 1 4 

100 15 95 71 74 93 

100 16 11 0 2 8 

100 17 71 24 30 63 

100 18 77 24 30 64 

100 19 69 22 25 62 

100 20 56 4 8 44 

100 21 71 16 21 60 

100 22 72 18 20 61 

100 23 69 16 22 59 

100 24 74 25 30 66 

100 25 77 32 37 69 

100 26 100 100 100 100 

100 27 100 100 100 100 

100 28 100 100 100 100 

100 29 100 100 100 100 

100 30 100 98 98 100 

100 31 12 0 2 8 

100 32 10 0 0 9 

100 33 89 39 45 84 

100 34 84 31 37 76 

100 35 11 0 1 6 

100 36 90 41 45 85 

100 37 100 100 100 100 

100 38 100 100 100 100 

100 39 88 53 60 86 

100 40 90 43 47 85 
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APPENDIX F 

DETECTION OF FALSE POSITIVES IN THE DFIT METHOD BEFORE AND 

AFTER THREE ADJUSTMENTS 

Condition 49(20 items test length, 1000/1000, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 10 0 0 2 

100 2 2 1 1 1 

100 3 90 29 20 38 

100 4 5 0 0 0 

100 5 1 0 0 0 

100 6 7 2 2 2 

100 7 7 2 2 3 

100 8 100 100 75 100 

100 9 6 1 0 2 

100 10 7 0 0 0 

100 11 7 0 0 0 

100 12 6 0 0 0 

100 13 0 0 0 0 

100 14 2 0 0 0 

100 15 0 0 0 0 

100 16 9 5 0 7 

100 17 8 0 0 0 

100 18 10 0 0 3 

100 19 4 1 0 1 

100 20 10 1 0 3 
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Condition 50(20 items test length, 1000/1000, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 8 1 0 1 

100 2 7 1 0 1 

100 3 91 37 21 41 

100 4 4 1 1 2 

100 5 1 0 0 0 

100 6 10 2 2 3 

100 7 15 3 3 6 

100 8 100 100 73 100 

100 9 10 0 0 0 

100 10 6 0 0 0 

100 11 6 1 0 1 

100 12 9 1 0 2 

100 13 3 0 0 2 

100 14 2 1 0 1 

100 15 0 0 0 0 

100 16 5 4 0 4 

100 17 6 0 0 0 

100 18 11 2 0 4 

100 19 2 0 0 0 

100 20 5 1 0 1 
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Condition 51(20 items test length, 1000/1000, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 27 13 14 14 

100 2 0 0 0 0 

100 3 96 60 64 65 

100 4 12 1 1 3 

100 5 13 0 0 1 

100 6 6 3 1 4 

100 7 1 0 0 0 

100 8 72 23 17 29 

100 9 1 0 0 0 

100 10 6 2 1 2 

100 11 2 0 0 0 

100 12 3 1 1 1 

100 13 14 0 0 0 

100 14 7 1 0 2 

100 15 3 2 1 2 

100 16 3 0 0 0 

100 17 0 0 0 0 

100 18 2 0 0 0 

100 19 8 0 0 1 

100 20 0 0 0 0 
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Condition 52(40 items test length, 1000/1000, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 10 0 0 2 

100 2 7 0 0 1 

100 3 1 0 0 0 

100 4 4 0 0 0 

100 5 97 46 46 58 

100 6 9 1 1 1 

100 7 8 0 0 1 

100 8 11 0 0 2 

100 9 7 2 2 3 

100 10 26 2 2 13 

100 11 3 1 1 2 

100 12 5 0 0 1 

100 13 3 1 1 1 

100 14 10 1 1 3 

100 15 100 100 100 100 

100 16 2 0 0 0 

100 17 8 1 1 2 

100 18 12 2 2 6 

100 19 7 1 1 2 

100 20 71 33 33 54 

100 21 9 0 0 4 

100 22 6 0 0 1 

100 23 12 0 0 7 

100 24 16 1 1 4 

100 25 86 18 18 34 

100 26 12 2 2 5 

100 27 12 0 0 3 

100 28 11 1 1 3 

100 29 3 0 0 1 

100 30 0 0 0 0 

100 31 3 0 0 1 

100 32 2 0 0 0 

100 33 13 0 0 0 

100 34 12 1 1 3 

100 35 99 86 86 90 

100 36 14 1 1 2 

100 37 13 0 0 2 

100 38 7 0 0 1 

100 39 12 2 2 3 

100 40 34 4 4 12 
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Condition 53(40 items test length, 1000/1000, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 12 0 0 0 

100 2 8 0 0 0 

100 3 2 0 0 0 

100 4 3 0 0 0 

100 5 95 32 30 45 

100 6 11 0 0 2 

100 7 16 0 0 1 

100 8 12 1 0 1 

100 9 5 0 0 1 

100 10 25 1 0 10 

100 11 5 0 0 0 

100 12 10 1 0 1 

100 13 8 0 0 0 

100 14 7 1 1 3 

100 15 99 99 67 99 

100 16 10 0 0 2 

100 17 15 1 0 4 

100 18 11 1 0 2 

100 19 10 0 0 1 

100 20 44 23 1 31 

100 21 7 0 0 2 

100 22 14 2 0 4 

100 23 11 0 0 3 

100 24 11 0 0 1 

100 25 79 0 0 5 

100 26 9 0 0 2 

100 27 11 0 0 2 

100 28 11 1 0 3 

100 29 1 0 0 0 

100 30 0 0 0 0 

100 31 1 1 0 1 

100 32 5 1 0 2 

100 33 10 2 0 3 

100 34 10 0 0 3 

100 35 83 55 1 68 

100 36 13 0 0 1 

100 37 9 0 0 0 

100 38 7 0 0 1 

100 39 12 1 0 4 

100 40 28 1 0 8 
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Condition 54(40 items test length, 1000/1000, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 17 8 6 9 

100 2 33 12 7 16 

100 3 4 1 0 1 

100 4 7 0 0 1 

100 5 95 46 32 64 

100 6 19 4 2 6 

100 7 17 5 1 7 

100 8 20 2 2 4 

100 9 16 1 0 5 

100 10 25 2 0 5 

100 11 19 0 0 5 

100 12 14 3 1 7 

100 13 7 0 0 1 

100 14 5 0 0 0 

100 15 66 10 1 23 

100 16 5 0 0 0 

100 17 8 0 0 2 

100 18 14 4 0 5 

100 19 8 2 1 3 

100 20 80 19 9 33 

100 21 10 1 1 3 

100 22 11 3 2 4 

100 23 11 2 0 2 

100 24 10 2 1 2 

100 25 96 76 30 82 

100 26 8 2 0 3 

100 27 7 0 0 1 

100 28 5 0 0 1 

100 29 6 1 1 1 

100 30 38 10 1 16 

100 31 6 0 0 1 

100 32 9 4 0 4 

100 33 8 0 0 0 

100 34 11 1 1 1 

100 35 63 6 1 13 

100 36 7 0 0 0 

100 37 3 0 0 0 

100 38 3 0 0 0 

100 39 4 0 0 0 

100 40 8 1 0 1 
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APPENDIX G 

DETECTION OF FALSE POSITIVES IN THE LORD’S CHI-SQUARE TEST 

BEFORE AND AFTER THREE ADJUSTMENTS 

Condition 55(20 items test length, 1000/1000, and no group difference) 

Replication item Before Bonferroni Holms BH 

100 1 10 0 0 2 

100 2 2 1 1 1 

100 3 90 29 20 38 

100 4 5 0 0 0 

100 5 1 0 0 0 

100 6 7 2 2 2 

100 7 7 2 2 3 

100 8 100 100 75 100 

100 9 6 1 0 2 

100 10 7 0 0 0 

100 11 7 0 0 0 

100 12 6 0 0 0 

100 13 0 0 0 0 

100 14 2 0 0 0 

100 15 0 0 0 0 

100 16 9 5 0 7 

100 17 8 0 0 0 

100 18 10 0 0 3 

100 19 4 1 0 1 

100 20 10 1 0 3 
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Condition 56(20 items test length, 1000/1000, and group mean difference) 

Replication item Before Bonferroni Holms BH 

100 1 6 0 0 1 

100 2 3 0 1 2 

100 3 57 54 54 55 

100 4 7 0 0 2 

100 5 3 0 1 1 

100 6 11 1 1 4 

100 7 12 2 2 4 

100 8 57 57 57 57 

100 9 6 0 0 1 

100 10 10 1 1 3 

100 11 5 0 0 2 

100 12 11 1 1 3 

100 13 6 0 0 2 

100 14 6 0 0 2 

100 15 2 0 0 0 

100 16 13 3 3 6 

100 17 9 4 4 5 

100 18 13 3 3 8 

100 19 3 0 0 1 

100 20 16 4 6 7 
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Condition 57(20 items test length, 1000/1000, and group SD difference)  

Replication item Before Bonferroni Holms BH 

100 1 27 17 17 20 

100 2 15 7 7 11 

100 3 43 29 30 36 

100 4 32 24 24 26 

100 5 30 12 14 22 

100 6 9 2 2 4 

100 7 33 13 13 22 

100 8 53 28 30 41 

100 9 36 15 17 30 

100 10 38 23 23 33 

100 11 29 16 16 23 

100 12 36 19 21 26 

100 13 28 13 13 21 

100 14 24 10 11 20 

100 15 18 9 9 15 

100 16 53 31 34 44 

100 17 46 28 29 38 

100 18 47 29 29 37 

100 19 39 22 22 32 

100 20 58 39 41 47 
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Condition 58(40 items test length, 1000/1000, and no group difference)   

Replication item Before Bonferroni Holms BH 

100 1 5 0 0 1 

100 2 4 0 0 0 

100 3 1 0 0 0 

100 4 4 0 0 0 

100 5 98 86 86 93 

100 6 3 0 0 0 

100 7 6 0 0 2 

100 8 6 0 0 2 

100 9 11 1 1 3 

100 10 24 3 3 10 

100 11 0 0 0 0 

100 12 4 0 0 0 

100 13 3 0 0 0 

100 14 4 0 0 0 

100 15 99 99 99 99 

100 16 2 0 0 0 

100 17 3 0 0 1 

100 18 7 1 1 1 

100 19 7 0 0 2 

100 20 85 30 33 54 

100 21 6 0 0 1 

100 22 7 1 1 2 

100 23 10 3 3 4 

100 24 14 1 1 5 

100 25 98 84 84 93 

100 26 8 1 1 3 

100 27 9 1 1 3 

100 28 13 2 2 6 

100 29 5 1 1 4 

100 30 9 0 0 1 

100 31 7 0 0 0 

100 32 3 0 0 0 

100 33 9 2 2 3 

100 34 12 1 1 1 

100 35 99 89 90 95 

100 36 9 0 0 4 

100 37 17 1 2 8 

100 38 12 1 2 5 

100 39 14 1 1 6 

100 40 16 2 2 6 
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Condition 59(40 items test length, 1000/1000, and group mean difference)   

Replication item Before Bonferroni Holms BH 

100 1 3 0 0 2 

100 2 1 0 0 0 

100 3 6 0 0 1 

100 4 2 0 0 0 

100 5 97 76 77 92 

100 6 7 0 0 3 

100 7 9 1 1 5 

100 8 4 0 0 1 

100 9 11 2 3 6 

100 10 20 2 2 7 

100 11 2 0 0 0 

100 12 4 0 0 1 

100 13 6 0 0 1 

100 14 4 0 0 0 

100 15 99 99 99 99 

100 16 4 1 1 1 

100 17 10 0 0 3 

100 18 5 0 0 0 

100 19 9 0 1 2 

100 20 81 19 20 43 

100 21 8 2 2 4 

100 22 15 1 1 6 

100 23 10 0 0 6 

100 24 12 1 1 5 

100 25 99 64 64 86 

100 26 12 2 2 4 

100 27 13 3 3 7 

100 28 19 5 5 10 

100 29 3 2 2 2 

100 30 6 1 1 2 

100 31 7 0 0 1 

100 32 4 0 0 2 

100 33 18 2 3 7 

100 34 11 0 0 4 

100 35 97 89 90 94 

100 36 15 1 1 6 

100 37 17 2 2 7 

100 38 18 3 3 8 

100 39 19 1 1 8 

100 40 14 3 3 5 

 

  



 

127 

 

 

 

Condition 60(40 items test length, 1000/1000, and group SD difference) 

Replication item Before Bonferroni Holms BH 

100 1 7 0 0 1 

100 2 11 1 1 4 

100 3 6 2 2 2 

100 4 6 1 1 2 

100 5 17 4 4 10 

100 6 9 4 5 6 

100 7 6 0 0 1 

100 8 10 5 6 8 

100 9 8 1 1 3 

100 10 6 1 1 3 

100 11 0 0 0 0 

100 12 1 0 0 1 

100 13 11 3 3 6 

100 14 6 4 4 4 

100 15 98 98 98 98 

100 16 9 4 4 4 

100 17 13 4 4 6 

100 18 16 4 6 9 

100 19 13 7 8 9 

100 20 97 92 93 96 

100 21 11 3 3 7 

100 22 11 5 5 6 

100 23 10 1 1 5 

100 24 9 4 4 6 

100 25 60 10 10 24 

100 26 13 5 5 9 

100 27 12 2 2 4 

100 28 12 5 5 8 

100 29 7 0 0 0 

100 30 8 1 1 2 

100 31 15 4 4 9 

100 32 17 4 4 12 

100 33 21 9 9 12 

100 34 19 2 4 6 

100 35 96 84 85 90 

100 36 31 12 12 19 

100 37 9 3 3 6 

100 38 21 2 2 6 

100 39 25 11 12 17 

100 40 76 46 47 59 
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APPENDIX H 

SAS CODE OF DATA GENERATION 

options linesize=72; 
proc datasets lib=work kill nolist memtype=data; 
quit; 
DM 'CLEAR OUTPUT'; 
 
 
%macro gen(sz1=, sz2=, length=, foc=, ref=, conditi on=); 
 
 libname gen40me "D:\Simulation\gen 40 items no dif f\"; 
 
 %do i=1 %to 100; *number of replications; 
 
/* Focal Data Generation*/ 
 data focc; 
  array item item1-item&length; 
  array a a1-a&length;  /*tlength= test length*/ 
  array b b1-b&length; 
  array p p1-p&length; 
  array x x1-x&length; 
  array y y1-y&length; 
  infile 'D:\My Dropbox\sas\Focal40.dat'; /*paramet er a and b 
reference*/ 
    * infile 'D:\My Dropbox\sas\Focal20.dat';  /*pa rameter a and b 
Focal (DIF Magnitude=10%)*/ 
 
   do over a; 
        input item a b; 
   end; 
 
   do k=1 to &sz1;   /* set sample size*/ 
       c=.20; 
       t1=rannor(0);  /*No group mean difference & No 
group SD difference*/ 
     
               foc=1; 
 
            do over p; 
      x=ranuni(0); 
         p=c+((1-c)/(1+exp(-1.7*a*(t&condition-b))) ); 
         if x le p then y = 1; else y=0; 
      end; output;   
   end; 
  run; 
  
 data gen40me.foc&foc&i; set focc; run; 
 data ref; 
  array item item1-item&length; 
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  array a a1-a&length;  /*tlength= test length*/ 
  array b b1-b&length; 
  array p p1-p&length; 
  array x x1-x&length; 
  array y y1-y&length; 
  infile 'D:\My Dropbox\sas\Reference40.dat'; /*par ameter a and b 
reference*/ 
 * infile  'D:\My Dropbox\sas\Reference20.dat'; /*p arameter a 
and b reference*/ 
 
   do over a; 
       input item a b; 
   end; 
 
   do k=1 to &sz1;   /* set sample size*/ 
        c=.20; 
       foc=0; 
       t=rannor(0); 
 
    do over p; 
      x=ranuni(0); 
         p=c+((1-c)/(1+exp(-1.7*a*(t-b)))); 
         if x le p then y = 1; else y=0; 
     end; output;   
   end; 
  run; 
 
  data gen40me.ref&ref&i; set ref; run; 
 
 
proc printto; run; 
%end; 
%mend gen; 
%gen (sz1=500, sz2=500, length=40,foc=1, ref=1, conditi on=1 ); 
%gen (sz1=1000, sz2=1000, length=40,foc=2, ref=2, condi tion=1 ); 
%gen (sz1=300, sz2=700, length=40,foc=3, ref=3, conditi on=1 ); 
%gen (sz1=500, sz2=1500, length=40,foc=4, ref=4, condit ion=1 ); 
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SAS CODE OF NON-PARAMETRIC METHODS 

options linesize=72; 
libname MH "D:\Simulation\Mantel Haenszel\MH40\no\" ; 
libname logist "D:\simulation\logistic Regression\" ; 
libname gen40 "D:\Simulation\generation\items 40\ge n 40 \"; 
libname gen20 "D:\simulation\gen20\"; 
 
proc datasets lib=work kill nolist memtype=data; 
quit; 
DM 'CLEAR OUTPUT'; 
 
%macro dissertation(sz1=, sz2=, length=, foc=, ref= , case=); 
%do i=1 %to 5;  
 data theta&i; set gen40.foc&foc&i gen40.ref&ref&i;  
 
data intervals&i; set theta&i; 
 
 /*Monte Carlo generation of data*/ 

 totscore=sum(of y1-y&length); 
if totscore >=((20*&length)/100)-1 AND totscore =<( (20*&length)/100) 
THEN equint = 1; 
else if totscore >=((20*&length)/100)+1 AND totscor e 
=<((30*&length)/100) THEN equint = 2; 
else if totscore >=((30*&length)/100)+1 AND totscor e 
=<((40*&length)/100) THEN equint = 3; 
else if totscore >=((40*&length)/100)+1 AND totscor e 
=<((50*&length)/100) THEN equint = 4; 
else if totscore >=((50*&length)/100)+1 AND totscor e 
=<((60*&length)/100) THEN equint = 5; 
else if totscore >=((60*&length)/100)+1 AND totscor e 
=<((70*&length)/100) THEN equint = 6; 
else if totscore >=((70*&length)/100)+1 AND totscor e 
=<((80*&length)/100) THEN equint = 7; 
run; 
  
proc sort data=intervals&i;  
by equint; run; 
 
filename junk dummy; 
proc printto  log=junk; run; 
/****************************/ 
/****Mantel Haenszel Method****/ 
/****************************/ 
 
%do j=1 %to &length; /* number of items proc freque ncy*/ 

*ods trace on/ label listing;  
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ods trace off; 
ods exclude CommonRelRisks; 
ods exclude CrossTabFreqs; 
ods exclude BreslowDayTest; 
ods exclude Freq.Table1.CMH; 
ods output Freq.Table1.CMH=CMH&j; 
*ods listing; *shows output in output window; 
Proc Freq data=intervals&i; 

         tables equint*foc*y&j/CMH; *******GMH***** *******;  
run; 
 

data Mantel&j; set CMH&j; 
     if statistic=2 then output; 
 run; 
proc append base=MHantel&i data=Mantel&j;  run; 
proc sort data=MHantel&i; by prob; run; 

%end; 
/*********************************/ 
/****Logistic Regression Procedure****/ 
/*********************************/ 
ods exclude ResponseProfile; 
ods exclude ConvergenceStatus; 
ods exclude FitStatistics; 
ods exclude GlobalTests; 
ods exclude OddsRatios; 
ods exclude Association; 
ods exclude ParameterEstimates; 
ods output logist.ParameterEstimates=reg; 
 
proc logist data=intervals&i; 
     model y&j=totscore foc; 
run; 
ods listing; 
 
 
data logist&j; set reg; 
     rep=&i; 
  item=&j; 
  if Variable='foc' then output; 
run; 
 
proc append base=LR&i data=logist&j;* (where=(rep=& i)); 
   
proc sort data=LR&i; by decending Probchisq ; run; 
%end; 
/************************************************** ********************
******/ 
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data arrange&i; set MHantel&i;   /* set LR&I for lo gistic regression 
procedure*/ 

rep=&i; 
  question=_n_; 
             if Prob <=.05 then unadjusted=1; else unadjusted=0;  

 if Prob <=(.05/&length) then Bonferroni=1; else Bo nferroni=0; 
  if Prob <=(.05/(&length-question+1)) then Holm=1;  else Holm=0;  
  if Prob <=((.05*question)/&length) then BH=1; els e BH=0; 
 
data summary&case; set arrange&case(keep=rep questi on unadjusted 
Bonferroni Holm BH);  
proc sort data= summary&case; by question rep; run;  
 
data sum&case; set summary&case; 
 by question rep; 
 if first.question then unadj=0; 
 unadj+unadjusted; 

 if first.question then Bonf=0; 
 Bonf+Bonferroni; 
  if first.question then Holms=0; 
 Holms+Holm; 
 if first.question then B_H=0; 
 B_H+BH; 
 if last.question then output; 
run; 
 
data sum&case; set sum&case (drop=unadj Bonf Holms B_H); run;  
proc transpose data=sum&case out=difsetting&case; r un; 
 
data difree&case; set difsetting&case (drop=col5 co l10 col15 
col20 );run; 
proc transpose data=difree&case out=nondif&case; ru n; 
data diff&case; set difsetting&case (keep=col5 col1 0 col15 col20 );run; 
proc transpose data=diff&case out=dif&case; run; 
 
proc printto; run; 
%end; 
%mend dissertation; 
 
/************************************************** ******************/ 
%dissertation (sz1=500, sz2=500, length=40,foc=1, r ef=1, case=1); 
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SAS CODE OF PARAMETRIC METHOD 
 
ibname Lord20 "D:\Simulation\Lords\Lord40\no\First stage\"; 
libname Second "D:\Simulation\Lords\Lord40\no\Secon d stage\"; 
*DM 'Clear log' ; 
DM 'Clear Out' ; 
%macro gen(dir=, filename=, length=); 
 
%do j=1 %to 100; 
data cov&j; 
    infile "&dir.foc&filename&j..cov" firstobs=3 mi ssover; 
 input id 1-5 
   item $ 6-13 
   test $ 14-20 
   group 21 
   a 
   b 
   c 
   avar 
   abcov 
   / 
   bvar 
   accov 
   bccov 
   cvar; 
 
   asd=sqrt(avar); 
   bsd=sqrt(bvar); 
   csd=sqrt(cvar); 
            c=.20; 
 
data linking&j; set Lord20.Lordschi&j; 
 
data linking&j; set linking&j(keep=id sig); 
 
data foccov&j; set cov&j; set linking&j; 
by id; 
 
 
data foccov&j; set foccov&j; 
if sig='1' then delete; 
 
data focco&j; set foccov&j(keep=id item test group a b c avar abcov 
bvar accov bccov cvar asd bsd csd); 
 
 
data covt&j; set cov&j (rename=(avar=avarf bvar=bva rf abcov=covabf)); 
data covt&j; set covt&j(keep=avarf bvarf covabf); 
stunbr=0000; 
 
 
data sco&j; 
/*In parentheses below, user must enter the name of  their focal group 
file with the .sco extension*/ 
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 infile "&dir.foc&filename&j..sco" missover firstob s=3;  /*select 
sample*/ 
 input group 
   id 
   / 
   resp 1-6 
   calib 7-7 
   subtest $ 8-15 
   attempt 16-20 
   correct 21-25 
   percent 26-35 
   theta 36-47 
   stderr 48-59 
   stdunest 60-60 
   grpprob 61-70 
   margprob 71-80; 
 
 
data covref&j; 
/*In parentheses below, user must enter the name of  their reference 
group file with the .cov extension*/ 
 infile "&dir.ref&filename&j..cov" missover firstob s=3; 
 input id 1-5 
   item $ 6-13 
   test $ 14-20 
   group 21 
   a 
   b 
   c 
   avar 
   abcov 
   / 
   bvar 
   accov 
   bccov 
   cvar; 
 
   asd=sqrt(avar); 
   bsd=sqrt(bvar); 
   csd=sqrt(cvar); 
   c=.20; 
 
data linking&j; set Lord20.Lordschi&j; 
 
data linking&j; set linking&j(keep=id sig); 
 
data refcov&j; set covref&j; set linking&j; 
by id; 
 
data refcov&j; set refcov&j; 
if sig='1' then delete; 
 
data refcovv&j; set refcov&j(keep=id item test grou p a b c avar abcov 
bvar accov bccov cvar asd bsd csd); 
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data covreft&j; set covref&j (rename=(avar=avarr bv ar=bvarr 
abcov=covabr)); 
data covreft&j; set covreft&j (keep=avarr bvarr cov abr); 
stunbr=0000; 
 
 
/* Built in mean and sigma linking.  For this resea rch, Item 1 not 
included in linking */ 
data lbase&j; 
set  focco&j (firstobs=1); 
proc means noprint mean std;  
var b;  
output out=outbase&j mean=mbase&j std=sbase&j; 
 
 
data lg&j; 
set refcovv&j (firstobs=2); 
proc means noprint mean std; 
var b;  
output out=outg&j mean=mg&j std=sg&j; 
 
 
data meansig&j; 
merge outbase&j outg&j; by _type_; 
alpha&j=sbase&j/sg&j;  
beta&j=mbase&j-alpha&j*mg&j; 
keep alpha&j beta&j; 
 
proc printto; run; 
 
/*Creating data sets to call into IML*/ 
 
data foc&j (keep = a b c avar abcov bvar accov bcco v cvar); set cov&j; 
data theta&j (keep = theta); set sco&j; 
data ref&j (keep =  a b c avar abcov bvar accov bcc ov cvar); set 
covref&j; 
data link&j (keep = alpha&j beta&j) ; set meansig&j ; 
 
/*********************************************/ 
/*********************************************/ 
/*****************Lord’s Chi-Square Test******/ 
/* proc iml; 
**Creates a matrix with original focus group item p arameter 
information**; 
use foc&j; 
read all into matfoc&j; 
*print matfoc&j; 
**Creates a matrix with original focus group theta values and standard 
error**; 
use theta&j; 
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read all into mattheta&j; 
**Creates a matrix with original reference group it em parameter 
information**; 
use ref&j; 
read all into matref&j; 
**Creates a matrix with alpha linking coefficients* *; 
use link&j; 
read all into matlink&j; 
**Creates a matrix with beta linking coefficients** ; 
*/ 
**Values/Matrices to be used later**; 
a_focc&j=repeat(0,nrow(matfoc&j),1); 
b_foc&j=repeat(0,nrow(matfoc&j),2); 
a_ref&j=repeat(matref&j,1,1); 
b_ref&j=repeat(matref&j,1,2); 
a_diff&j=repeat(0,&length,1); 
b_diff&j=repeat(0,&length,1); 
c_diff&j=repeat(0,&length,1); 
origfoc&j=repeat(matfoc&j,1,1); 
origref&j=repeat(matref&j,1,1); 
diff&j=repeat(0,&length,3); 
link&j=repeat(matlink&j,&length,1); 
 
 a_focc&j=(1/link&j[1,1])*origref&j[,1]; 
  b_foc&j=link&j[1,1]*origref&j[,2]+link&j[1,2]; 
    a_diff&j=a_focc&j[,1]-origfoc&j[,1]; 
    b_diff&j=b_foc&j[,1]-origfoc&j[,2]; 
    c_diff&j=origfoc&j[,3]-origref&j[,3]; 
 
    diff&j=a_diff&j||b_diff&j||c_diff&j; 
    dif&j=a_diff&j||b_diff&j; 
 
 
 
create dif&j from dif&j; 
append from dif&j; 
 
quit; 
 
data dif&j; set dif&j(rename=(col1=acom col2=bcom)) ; 
stunbr=0000; 
 
data DIFFVECTOR&j; set covreft&j; set covt&j; 
by stunbr; 
 
data DIFFVECTOR&j; set DIFFVECTOR&j; set dif&j; 
 by stunbr; 
 varcom=avarr+avarf; 
 covabcom=covabr+covabf; 
 cvabcom2=(covabcom*covabcom); 
 vrbcom=bvarr+bvarf; 
 
Data Second.lordschi&j; 
  set DIFFVECTOR&j; 
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        rep=&j; 
  rank=_n_; 
  DET=(varcom*vrbcom) - cvabcom2; 
    LChi2=((acom*((acom*vrbcom)-(bcom*covabcom))) +  
(bcom*((bcom*varcom)-(acom*covabcom))))/DET; 
  prob=1-probchi(LChi2,2); 
  if prob<0.05 then sig=1; else sig=0; 
    *Keep rep rank prob sig; 
 
proc sort data=Second.lordschi&j out=Second.arrange &j; 
by prob; 
 
data Second.arrange&j; set Second.arrange&j(keep=re p rank prob sig); 
 id=_n_; 
    if prob <= 0.05 then unadjusted=1; else unadjus ted=0;  
    if prob <= 0.05/40 then Bonferroni=1; else Bonf erroni=0;  
 if prob <= (0.05/(40-id+1)) then Holm=1; else Holm =0;  
 if (prob*(40/id)) <= 0.05 then BH=1; else BH=0; 
 
data Second.arrange&j; set Second.arrange&j(keep=id  rep rank prob 
unadjusted Bonferroni Holm BH); 
 
 
proc datasets lib=work nolist; 
delete all&j; 
 
%END; 
proc printto; run; 
%mend gen; 
/**************************************/ 
%gen (dir=D:\Simulation\Bilog40\no\, filename=2, length =40); 
/**************************************/ 
/**************************************/ 
/****************DFIT******************/ 
/**************************************/ 
proc iml; 
**Creates a matrix with original focus group item p arameter 
information**; 
use orig; 
read all into matorig; 
**Creates a matrix with original focus group theta values and standard 
error**; 
use theta; 
read all into mattheta; 
**Creates a matrix with original reference group it em parameter 
information**; 
use ref; 
read all into matref; 
**Creates a matrix with alpha and beta linking coef ficients**; 
use link; 
read all into matlink; 
 
**Values/Matrices to be used later**; 
seeds={123456 234567 345678 456789 567890 678901}; 



 

138 

 

 

items=nrow(matorig); 
n=nrow(mattheta); 
reps=1000; 
ncdifmat=repeat(0,reps,items); 
dtfmat=repeat(0,reps,1); 
fnor=repeat(0,3,items); 
rnor=repeat(0,3,items); 
fnort=repeat(0,3,items); 
rnort=repeat(0,3,items); 
foc=repeat(0,3,items); 
ref=repeat(0,3,items); 
pfoc=repeat(0,n,items); 
pref=repeat(0,n,items); 
T=repeat(0,3,3); 
r=repeat(1,3,3); 
 
 
** 1 Parameter 
Model********************************************** *******************; 
if (matorig[:,9]=0 & matorig[:,7]=0) then do; 
 do rep=1 to reps; 
  do i=1 to items; 
   do param=1 to 3; 
    **Creates random normally distributed item 
parameters for focal and reference groups**; 
    fnor[param,i]=normal(seeds[1,param]*i+rep);  
    rnor[param,i]=normal(seeds[1,3+param]*i+rep); 
   end; 
  end; 
 
  do i=1 to items; 
   do param=1 to 3; 
    **Changes normal matrices to have same means 
and standard deviations as originals**; 
    **These will be the final simulated item 
parameters used to calculate p**; 
      
 foc[param,i]=matorig[i,param]+(matorig[i,6+param]* fnor[param,i]);  
       
ref[param,i]=matorig[i,param]+(matorig[i,6+param]*r nor[param,i]); 
      end; 
   end; 
   
  do theta=1 to n; 
   do i=1 to items; 
    **Calculates p for each set of item parameters 
using thetas from BILOG**; 
       pfoc[theta,i]=foc[3,i]+(1-foc[3,i])* 
     ((EXP(1.7*foc[1,i]*(mattheta[theta,1]-
foc[2,i])))/ 
     (1+EXP(1.7*foc[1,i]*(mattheta[theta,1]-
foc[2,i])))); 
        pref[theta,i]=ref[3,i]+(1-ref[3,i])* 
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     ((EXP(1.7*ref[1,i]*(mattheta[theta,1]-
ref[2,i])))/ 
     (1+EXP(1.7*ref[1,i]*(mattheta[theta,1]-
ref[2,i])))); 
     end;  
  end; 
 
  **Calculates d used in NCDIF equation**; 
  d=pfoc-pref; 
    
  **Calculates sum of d (capital d) used in DTF equ ation**;  
  sumd=d[,+]; 
 
  **Calculates NCDIF**; 
  do i = 1 to items; 
   ncdifmat[rep,i]=((sum(d[##,i])-
(((d[+,i])**2)/(n)))/(n))+((d[:,i])**2); 
  end; 
 
  **Calculates DTF**; 
  dtfmat[rep,1]=((sum(sumd[##,1])-
(((sumd[+,1])**2)/(n)))/(n))+((sumd[:,1])**2); 
 end; 
end; 
 
 
*************************************************** ********************
***************** 
**Two Parameter Model and Three Parameter Model wit h a Fixed c**; 
else if (matorig[:,9]=0 & matorig[:,7]<>0) then do;  
 do rep=1 to reps; 
  do i=1 to items; 
   **Fills r then makes T if the r matrix is positi ve 
definite**; 
   r[1,2]=matorig[i,4]/(matorig[i,7]*matorig[i,8]);  
   r[2,1]=matorig[i,4]/(matorig[i,7]*matorig[i,8]);  
   r[1,3]=0; 
   r[3,1]=0; 
   r[2,3]=0; 
   r[3,2]=0; 
   T=half(r); 
      
   do param=1 to 3; 
    **Creates random normally distributed item 
parameters for focal and reference groups**; 
    fnor[param,i]=normal(seeds[1,param]*i+rep);  
    rnor[param,i]=normal(seeds[1,3+param]*i+rep); 
   end; 
 
   **Transforms simulated item parameters to have s ame 
covariances as originals**; 
   fnort[,i]=T`*fnor[,i]; 
   rnort[,i]=T`*rnor[,i]; 
  end; 
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  do i= 1 to items; 
   do param= 1 to 3; 
    **Changes normal matrices to have same means 
and standard deviations as originals**; 
    **These will be the final simulated item 
parameters used to calculate p**; 
       
foc[param,i]=matorig[i,param]+(matorig[i, 6+param]*fnort[param,i]);  
       
ref[param,i]=matorig[i,param]+(matorig[i, 6+param]*rnort[param,i]); 
       end; 
     end; 
   
  do theta= 1 to n; 
   do i= 1 to items; 
    **Calculates p for each set of item parameters 
using thetas from BILOG**; 
       pfoc[theta,i]=foc[ 3,i]+( 1-foc[ 3,i])* 
     ((EXP( 1.7*foc[ 1,i]*(mattheta[theta, 1]-
foc[ 2,i])))/ 
     ( 1+EXP(1.7*foc[ 1,i]*(mattheta[theta, 1]-
foc[ 2,i])))); 
        pref[theta,i]=ref[ 3,i]+( 1-ref[ 3,i])* 
     ((EXP( 1.7*ref[ 1,i]*(mattheta[theta, 1]-
ref[ 2,i])))/ 
     ( 1+EXP(1.7*ref[ 1,i]*(mattheta[theta, 1]-
ref[ 2,i])))); 
     end;  
  end; 
 
  **Calculates d used in NCDIF equation**; 
  d=pfoc-pref; 
    
  **Calculates sum of d (capital d) used in DTF equ ation**;  
  sumd=d[,+]; 
 
  **Calculates NCDIF**; 
  do i = 1 to items; 
    ncdifmat[rep,i]=((sum(d[##,i])-
(((d[+,i])** 2)/(n)))/(n))+((d[:,i])** 2); 
  end; 
 
  **Calculates DTF**; 
  dtfmat[rep, 1]=((sum(sumd[##, 1])-
(((sumd[+, 1])** 2)/(n)))/(n))+((sumd[:, 1])** 2); 
 end; 
end; 
 
 
*************************************************** ********************
************; 
*************************************************** ********************
************; 
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**Three Parameter Model without Fixed c**; 
else if (matorig[:, 9]<> 0 & matorig[:, 7]<> 0) then do; 
 problem_c=repeat('         ', 1,items); 
  
 do rep= 1 to reps; 
  do i= 1 to items; 
   **Fills r then makes T if the r matrix is positi ve 
definite**; 
   r[ 1, 2]=matorig[i, 4]/(matorig[i, 7]*matorig[i, 8]); 
   r[ 2, 1]=matorig[i, 4]/(matorig[i, 7]*matorig[i, 8]); 
   r[ 1, 3]=matorig[i, 5]/(matorig[i, 7]*matorig[i, 9]); 
   r[ 3, 1]=matorig[i, 5]/(matorig[i, 7]*matorig[i, 9]); 
   r[ 2, 3]=matorig[i, 6]/(matorig[i, 8]*matorig[i, 9]); 
   r[ 3, 2]=matorig[i, 6]/(matorig[i, 8]*matorig[i, 9]); 
 
   if det(r)> 0 then do; 
    T=half(r); 
   end; 
 
   if det(r)<= 0 then do; 
    problem_c[ 1,i]='x        '; 
    r[ 1, 2]=matorig[i, 4]/(matorig[i, 7]*matorig[i, 8]); 
    r[ 2, 1]=matorig[i, 4]/(matorig[i, 7]*matorig[i, 8]); 
    r[ 1, 3]= 0; 
    r[ 3, 1]= 0; 
    r[ 2, 3]= 0; 
    r[ 3, 2]= 0; 
    T=half(r); 
   end; 
 
   do param= 1 to 3; 
    **Creates random normally distributed item 
parameters for focal and reference groups**; 
    fnor[param,i]=normal(seeds[ 1,param]*i+rep);  
    rnor[param,i]=normal(seeds[ 1, 3+param]*i+rep); 
   end; 
  
   **Transforms simulated item parameters to have s ame 
covariances as originals**; 
   fnort[,i]=T`*fnor[,i]; 
   rnort[,i]=T`*rnor[,i]; 
  end; 
 
  do i= 1 to items; 
   do param= 1 to 3; 
    **Changes normal matrices to have same means 
and standard deviations as originals**; 
    **These will be the final simulated item 
parameters used to calculate p**; 
       
foc[param,i]=matorig[i,param]+(matorig[i, 6+param]*fnort[param,i]);  
       
ref[param,i]=matorig[i,param]+(matorig[i, 6+param]*rnort[param,i]); 
       end; 
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     end; 
   
  do theta= 1 to n; 
   do i= 1 to items; 
    **Calculates p for each set of item parameters 
using thetas from BILOG**; 
       pfoc[theta,i]=foc[ 3,i]+( 1-foc[ 3,i])* 
     ((EXP( 1.7*foc[ 1,i]*(mattheta[theta, 1]-
foc[ 2,i])))/ 
     ( 1+EXP(1.7*foc[ 1,i]*(mattheta[theta, 1]-
foc[ 2,i])))); 
        pref[theta,i]=ref[ 3,i]+( 1-ref[ 3,i])* 
     ((EXP( 1.7*ref[ 1,i]*(mattheta[theta, 1]-
ref[ 2,i])))/ 
     ( 1+EXP(1.7*ref[ 1,i]*(mattheta[theta, 1]-
ref[ 2,i])))); 
     end;  
  end; 
 
  **Calculates d used in NCDIF equation**; 
  d=pfoc-pref; 
    
  **Calculates sum of d (capital d) used in DTF equ ation**;  
  sumd=d[,+]; 
 
  **Calculates NCDIF**; 
  do i = 1 to items; 
         ncdifmat[rep,i]=((sum(d[##,i])-
(((d[+,i])** 2)/(n)))/(n))+((d[:,i])** 2); 
  end; 
 
  **Calculates DTF**; 
  dtfmat[rep, 1]=((sum(sumd[##, 1])-
(((sumd[+, 1])** 2)/(n)))/(n))+((sumd[:, 1])** 2); 
 end;   
 
 title3 ' '; 
 print 'Columns marked with x are items with simula ted c-
parameters not related to a and b' problem_c;  
 
end; 
 
*************************************************** ********************
************; 
*************************************************** ********************
************; 
 
**Creates an itemrank matrix with ncdif values for each item in 
ascending order**; 
itemrank=repeat( 0,reps,items); 
do i= 1 to items; 
 k=repeat( 0,reps, 1);  
 k=ncdifmat[,i];  
 f=k; 
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 k[rank(k),]=f;  
 itemrank[,i]=k;  
end; 
create difcut40.foc214 from ncdifmat; 
append from ncdifmat; 
 
**Creates a testrank matrix with dtf values in asce nding order**; 
testrank=dtfmat; 
ff=dtfmat; 
dtfmat[rank(dtfmat),]=ff; 
testrank[, 1]=dtfmat; 
 
title3 ' '; 
cutoffnames={'Cutoff .10', 'Cutoff .05', 'Cutoff .0 1', 'Cutoff .001'}; 
NCDIF_ITEM_CUTOFFS=repeat( 0, 4,items); 
NCDIF_ITEM_CUTOFFS[1,]=itemrank[ceil( .90*reps),]; 
NCDIF_ITEM_CUTOFFS[2,]=itemrank[ceil( .95*reps),]; 
NCDIF_ITEM_CUTOFFS[3,]=itemrank[ceil( .99*reps),]; 
NCDIF_ITEM_CUTOFFS[4,]=itemrank[ceil( .999*reps),]; 
*print NCDIF_ITEM_CUTOFFS [r=cutoffnames]; 
 
**Creates an empty column matrix that will be fille d with NCDIF 
values**; 
ncdifcol=repeat( 0,reps*items, 1); 
 
**Reads NCDIF values 1 column**; 
do i= 1 to items; 
 do r= 1 to reps; 
     ncdifcol[r+(i- 1)*reps, 1]=ncdifmat[r,i]; 
 end; 
end; 
 
**Puts the NCDIF values in rank order**; 
b=ncdifcol; 
ncdifcol[rank(ncdifcol),]=b; 
 
 
**Computes cutoff scores at the .001, .01, .05, and  .10 levels**; 
x=nrow(ncdifcol); 
NCDIF_TOTAL_CUTOFFS=repeat( 0, 4, 1); 
NCDIF_TOTAL_CUTOFFS[1, 1]=ncdifcol[ceil( .90*x), 1]; 
NCDIF_TOTAL_CUTOFFS[2, 1]=ncdifcol[ceil( .95*x), 1]; 
NCDIF_TOTAL_CUTOFFS[3, 1]=ncdifcol[ceil( .99*x), 1]; 
NCDIF_TOTAL_CUTOFFS[4, 1]=ncdifcol[ceil( .999*x), 1]; 
*print NCDIF_TOTAL_CUTOFFS [r=cutoffnames]; 
 
**Prints cutoff scores for DTF; 
DTF_CUTOFFS=repeat( 0, 4, 1); 
DTF_CUTOFFS[1,]=testrank[ceil( .90*reps),]; 
DTF_CUTOFFS[2,]=testrank[ceil( .95*reps),]; 
DTF_CUTOFFS[3,]=testrank[ceil( .99*reps),]; 
DTF_CUTOFFS[4,]=testrank[ceil( .999*reps),]; 
*print DTF_CUTOFFS [r=cutoffnames]; 
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*************************************************** ********************
************* 
**Puts the reference group on the same scale as the  focal group**; 
newref=repeat( 0,items, 3); 
do i= 1 to items; 
 newref[i, 1]=( 1/matlink[ 1, 1])*matref[i, 1]; 
 newref[i, 2]=matlink[ 1, 1]*matref[i, 2]+matlink[ 1, 2]; 
 newref[i, 3]=matref[i, 3]; 
end; 
 
**Calculates p for the focal group and linked refer ence group**; 
pf=repeat( 0,n,items);  
pr=repeat( 0,n,items); 
NCDIF=repeat( 0, 1,items); 
 do theta= 1 to n; 
  do i= 1 to items; 
   **Calculates p for each set of item parameters u sing 
thetas from BILOG**; 
      pf[theta,i]=matorig[i, 3]+( 1-matorig[i, 3])* 
    ((EXP( 1.7*matorig[i, 1]*(mattheta[theta, 1]-
matorig[i, 2])))/ 
    ( 1+EXP(1.7*matorig[i, 1]*(mattheta[theta, 1]-
matorig[i, 2]))));  
       pr[theta,i]=newref[i, 3]+( 1-newref[i, 3])* 
    ((EXP( 1.7*newref[i, 1]*(mattheta[theta, 1]-
newref[i, 2])))/ 
    ( 1+EXP(1.7*newref[i, 1]*(mattheta[theta, 1]-
newref[i, 2])))); 
    end;  
 end; 
 
**Calculates d used in NCDIF equation**; 
d=pf-pr; 
 
**Calculates sum of d (capital d) used in DTF equat ion**;  
sumd=d[,+]; 
 
**Calculates NCDIF**; 
do i = 1 to items; 
    NCDIF[ 1,i]=((sum(d[##,i])-(((d[+,i])** 2)/(n)))/(n))+((d[:,i])** 2);  
end; 
create difcut40.NCDIF214 from NCDIF; 
append from NCDIF; 
 
**Calculates DTF**; 
DTF=repeat( 0, 1, 1); 
DTF[ 1, 1]=((sum(sumd[##, 1])-
(((sumd[+, 1])** 2)/(n)))/(n))+((sumd[:, 1])** 2); 
print NCDIF; 
 
**Flags significant NCDIF**; 
sig_NCDIF=repeat('         ', 1,items); 
do i= 1 to items; 
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 if NCDIF[ 1,i]>=NCDIF_ITEM_CUTOFFS[ 1,i] then sig_NCDIF[ 1,i]='*        
'; 
 if NCDIF[ 1,i]>=NCDIF_ITEM_CUTOFFS[ 2,i] then sig_NCDIF[ 1,i]='**       
'; 
 if NCDIF[ 1,i]>=NCDIF_ITEM_CUTOFFS[ 3,i] then sig_NCDIF[ 1,i]='***      
'; 
 if NCDIF[ 1,i]>=NCDIF_ITEM_CUTOFFS[ 4,i] then sig_NCDIF[ 1,i]='****     
'; 
 if NCDIF[ 1,i]<NCDIF_ITEM_CUTOFFS[ 1,i] then sig_NCDIF[ 1,i]='ns       
'; 
end; 
 
print sig_NCDIF; 
 
*print DTF; 
 
**Flags significant DTF**; 
sig_DTF=repeat('         ', 1, 1); 
 if DTF[ 1, 1]>=DTF_CUTOFFS[1, 1] then sig_DTF[ 1, 1]='*        '; 
 if DTF[ 1, 1]>=DTF_CUTOFFS[2, 1] then sig_DTF[ 1, 1]='**       '; 
 if DTF[ 1, 1]>=DTF_CUTOFFS[3, 1] then sig_DTF[ 1, 1]='***      '; 
 if DTF[ 1, 1]>=DTF_CUTOFFS[4, 1] then sig_DTF[ 1, 1]='****     '; 
 if DTF[ 1, 1]<DTF_CUTOFFS[1, 1] then sig_DTF[ 1, 1]='ns       '; 
 
*print sig_DTF; 
 
quit; 
 
run; 
 
/************************************************** *******************/ 
/************************************************** *******************/ 
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