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ABSTRACT 
 

 
 

THE IMPACT OF MULTIDIMENSIONALITY ON THE DETECTION OF 
DIFFERENTIAL BUNDLE FUNCTIONING USING SIBTEST 

by 
Terris Raiford Ross 

 
 

In response to public concern over fairness in testing, conducting a differential 

item functioning (DIF) analysis is now standard practice for many large-scale testing 

programs (e.g., Scholastic Aptitude Test, intelligence tests, licensing exams).  As 

highlighted by the Standards for Educational and Psychological Testing manual, the legal 

and ethical need to avoid bias when measuring examinee abilities is essential to fair 

testing practices (AERA-APA-NCME, 1999).  Likewise, the development of statistical 

and substantive methods of investigating DIF is crucial to the goal of designing fair and 

valid educational and psychological tests. 

Douglas, Roussos and Stout (1996) introduced the concept of item bundle DIF 

and the implications of differential bundle functioning (DBF) for identifying the 

underlying causes of DIF.  Since then, several studies have demonstrated DIF/DBF 

analyses within the framework of “unintended” multidimensionality (Oshima & Miller, 

1992; Russell, 2005).  Russell (2005), in particular, examined the effect of secondary 

traits on DBF/DTF detection. Like Russell, this study created item bundles by including 

multidimensional items on a simulated test designed in theory to be unidimensional.  

Simulating reference group members to have a higher mean ability than the focal group 



on the nuisance secondary dimension, resulted in DIF for each of the multidimensional 

items, that when examined together produced differential bundle functioning.  

The purpose of this Monte Carlo simulation study was to assess the Type I error 

and power performance of SIBTEST (Simultaneous Item Bias Test; Shealy & Stout, 

1993a) for DBF analysis under various conditions with simulated data.  The variables of 

interest included sample size and ratios of reference to focal group sample sizes, 

correlation between primary and secondary dimensions, magnitude of DIF/DBF, and 

angular item direction.  Results showed SIBTEST to be quite powerful in detecting DBF 

and controlling Type I error for almost all of the simulated conditions.  Specifically, 

power rates were .80 or above for 84% of all conditions and the average Type I error rate 

was approximately .05. Furthermore, the combined effect of the studied variables on 

SIBTEST power and Type I error rates provided much needed information to guide 

further use of SIBTEST for identifying potential sources of differential item/bundle 

functioning.   
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CHAPTER 1 
 

INTRODUCTION 
 
 

With the increased use of standardized test scores for making selection and 

promotion decisions, the issue of fairness has remained a crucial consideration in the 

fields of educational and psychological testing.   Public scrutiny of test items and testing 

procedures that are potentially biased against various examinee subgroups (e.g., racial, 

ethnic, gender) has greatly influenced the development of standards of fairness in 

educational testing. However, deciding what is fair in testing is a complex process 

involving a variety of conditions that must be met to avoid biased items and tests.   

The 1999 Standards for Educational and Psychological Testing manual delineates 

four definitions of fairness that should guide the testing process. First, tests and test items 

should not yield scores that lead to different score interpretations for different subgroups 

of examinees. That is, tests should be free of systematic bias that favors one group over 

another or results in scores that are less valid for one or more identifiable subgroups.  In 

the past, focus has been placed on bias against minority subgroups defined by race, 

ethnicity, and gender.  Today investigations of item/test bias are conducted on the behalf 

of examinees that differ from the majority based on other important characteristics such 

as disability or native language.  For example, to avoid a certain form of language bias, a 

test designed to measure verbal analogical reasoning should use words in general use, not 

 1
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those associated with specific vocations, ethnic groups, disciplines, or geographic 

locations.   

The second definition of fairness provided in the Standards is that fair testing 

should involve equal treatment of examinees during the testing process. This includes 

activities that occur before, during and after the actual test administration.   For example, 

before the test all examinees should be given equal opportunity to become familiar with 

the test format, study materials, etc. Additionally, all examinees should be provided with 

appropriate testing conditions.  That is, for examinees to demonstrate their level of 

knowledge, skill, or ability, standard procedures should be used during the test to ensure 

fairness.  However, appropriate conditions also include necessary accommodations for 

test takers, such as students with disabilities or English language learners, who would be 

disadvantaged by certain standardized procedures.  Reasonable accommodations might 

include allowing for extended time or offering test forms written in multiple languages. 

Finally, fairness in the testing process also applies to how individual and group test 

results are reported after the test. For instance, when group achievement differences are 

reported efforts should be made to avoid misinterpretation of these results.  That is, 

factors influencing these differences, such as unequal educational opportunity, should be 

included so that decisions based on test scores can be made wisely.   

Third, it is assumed that if examinees are given a chance to demonstrate 

proficiency on the trait or construct being measured by the test, that the outcomes of 

testing will be equitable.  However, this does not imply that group-level differences in 

test scores are an indication of bias since it is possible to design valid tests on which 

group ability distributions differ.  Simply put, if testing is fair, then examinees of equal 
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ability (or level of the construct being measured by the test) should earn the same scores, 

regardless of group membership. 

Finally, the Standards define fairness as providing every examinee with an equal 

opportunity to learn the test content. This is a concern particularly for achievement tests 

which are usually designed to measure knowledge, skills, and abilities that are based on 

formal instruction.  If, for example, a state graduation test includes content that 

examinees from a particular school or school district have not had the opportunity to 

learn, then withholding a high school diploma based on those students’ test scores may 

not be considered fair.  On the other hand, credentialing exams such as high school 

graduation tests are meant to signify a specific level of proficiency.  Thus, difficulties 

arise with this definition of fairness and depending on how high the stakes are (e.g., tests 

used for making graduation or promotion decisions are considered “high stakes”) 

additional evidence of competence may need to be considered.   

As the breadth of these definitions illustrate, fairness is a complex construct that 

serves many purposes, the ultimate of which is the achievement of equal opportunity in 

our society.  Although inequalities at the individual and/or group level are inevitable, 

methods that minimize bias (e.g., standardized test administrations, sensitivity reviews, 

and statistical analysis of item characteristics) are available.  Fortunately for test users, 

the development of psychometric methods for identifying biased items/tests has 

contributed greatly to improved test design and equitable score reporting. This study will 

focus on some of the methods used in the investigation of item/test bias. 
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Differential Item Functioning 

The empirical evidence gathered in the investigation of bias is generally referred 

to as differential item functioning (DIF).  In response to public concern over the bias that 

exists in some measures of aptitude and/or cognitive ability (e.g., Scholastic Aptitude 

Tests, intelligence tests, exams for licensure and promotion) conducting DIF analyses is 

now standard practice for most large-scale testing companies.  As highlighted by the 

Standards, the legal and ethical need to avoid bias when measuring examinee ability is 

essential to fair testing practices (Standards, 1999).  Likewise, the development of 

statistical and substantive methods of investigating DIF is crucial to the goal of designing 

fair and valid educational and psychological tests. 

 Until recently most investigations of test fairness involved examination of 

statistically flagged DIF items in an effort to identify item characteristics that lead to 

differential item functioning for two subgroups matched on ability.  In the past, these 

groups have typically been represented by a majority group known as the reference group 

(e.g. whites, males) and a focal group comprised of minorities (e.g., blacks, females).  

After matching members of both groups on ability, items are submitted for DIF analysis.  

However the emphasis on statistical DIF analysis has not been successful in determining 

what causes items to exhibit DIF.  Researchers argue that analyzing individual items one 

at a time may not be the most effective way to investigate sources of DIF since most tests 

are designed to assess skills or abilities using small groups of items (Gierl, Bisanz, 

Bisanz, Boughton, & Khaliq, 2001).   Gierl et al. (2001) assert that “sources of DIF may 

be more apparent in patterns across multiple items rather than in performance 

characteristics associated with single items” (p. 27).   As a result, more studies are being 
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conducted to examine the influence of groups of DIF items whose characteristics (e.g., 

content area or skill category) may point to sources of differential functioning.  

Douglas, Roussos and Stout (1996) introduced the concept of item bundle DIF 

and the implications of differential bundle functioning (DBF) for identifying the 

underlying causes of DIF.  A bundle is any dimensionally homogenous set of items that is 

not necessarily adjacent or related to a common text or passage (Douglas, Roussos & 

Stout, 1996).  In DBF analyses, similar items are grouped together based on organizing 

principles (e.g., content, item type, etc.) believed to affect the performance of different 

groups of examinees.  The basis for DBF analysis is the assertion that tests consist 

primarily of small bundles of items designed to measure a certain trait, skill or ability. 

Also, research suggests that methods for statistically identifying bundles or groups of 

items are more powerful than those which analyze items one at a time (Nandakumar, 

1993).  Hence, DBF analysis is preferable to DIF analysis when bundling permits small 

differences in group performance on individual items to be amplified.  Furthermore, the 

DBF approach of examining potential sources of DIF by identifying suspect item bundles 

has great implications for improving test design and educational measurement.  

 

Purpose of Study 

 The purpose of this study was to gather evidence in support of differential bundle 

functioning analysis for identifying potential causes of DIF in educational achievement 

tests.  The phenomenon known as DIF amplification that may occur when item bundles, 

rather than individual items, are examined for bias against specific subgroups was 

investigated with the SIBTEST procedure.  To accomplish this, the current study assessed 
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the performance of SIBTEST for DBF analysis under various conditions with simulated 

data.  

 

Significance of Study 

 The importance of accurately identifying items with DIF cannot be overstated.  In 

an effort to develop valid educational and psychological tests, it is essential that selected 

DIF/DBF methods are chosen for their ability to control Type I error while still 

maintaining adequate power to detect potentially biased items.  In addition, more research 

is needed involving the substantive analysis of bias using differential bundle functioning 

analysis.  In summary, the goal of this study is to improve the practice of educational 

measurement by identifying the strengths and weaknesses of a commonly used method of 

DIF/DBF detection as well as assist test developers in discovering potential sources of 

differential item functioning.

 



 

CHAPTER 2 
 

REVIEW OF THE LITERATURE 
 
 

 The two primary frameworks for examining differential item functioning (DIF) 

are classical test theory (CTT) and item response theory (IRT).  While CTT has a longer 

history in test development, classical indices such as item difficulty and discrimination 

suffer from their dependence on particular test items and examinees.  That is, in classical 

test theory the proportion of examinees who answer an item correctly (item difficulty) 

depends on the particular group of test-takers.  If the same test were given to another 

group of examinees, these item statistics could be very different.  Another weakness of 

CTT is the requirement of parallel tests for the assessment of reliability.  Since parallel 

tests are nearly impossible to obtain in practice, estimates of reliability are often 

imprecise and inconsistent in the CTT framework. 

To overcome some of the shortcomings of classical test theory, item response 

theory models were developed and are currently being used by many large-scale testing 

agencies.  IRT models the relationship between examinee performance on an item and the 

latent trait (e.g., ability) being measured by the test.  Specifically, IRT postulates that 

examinee performance can be predicted or explained by a set of latent traits or abilities 

(θ) measured by the test.  The mathematical model of this relationship is called an Item 

Characteristic Curve (ICC) and describes a monotonically increasing function that 

7  
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specifies an increase in the probability of a correct response as the level of the latent trait 

increases.  

IRT Assumptions 

IRT models make two assumptions about tests and test items.  First, it is assumed 

that a test is unidimensional (i.e., only one trait is being measured by items on a test).  

Second, after controlling for ability, the responses of examinees to any pair of items are 

statistically independent.  That is, a response to one item should not be related to that of 

another item on the test.  For example, the information provided in the stem of one test 

item should not contain information necessary to correctly answer another item on the 

same test.  

IRT Models 

Many models can be developed within the IRT framework.  Each model accounts 

for item-level and examinee-level parameters.  Three common IRT models are the 1-, 2-, 

and 3-Parameter Logistic (PL) Models.  The 1-PL, commonly referred to as the Rasch 

Model assumes that the only item characteristic affecting examinee performance is item 

difficulty (b-parameter).   However, the 2-PL model also accounts for item discrimination 

(i.e., the a-parameter).  Finally, the 3-PL model includes item difficulty, discrimination 

and pseudo-guessing (i.e., the c-parameter).   

The most salient feature of IRT that distinguishes it from CTT is the property of 

invariance of item and ability parameters (Hambleton, Swaminathan & Rogers, 1991).  

Invariance means that item parameters (e.g., difficulty, discrimination and guessing) are 

not dependent on the ability distribution of any particular group of examinees and the 

examinee ability parameter (θ) is not dependent on a specific set of test items.  This also 

  



9 

implies that for a correctly specified IRT model, the ICC for two subpopulations of 

examinees will be the same regardless of the groups’ ability distributions (Hambleton, 

Swaminathan & Rogers, 1991). This property makes IRT an attractive framework for 

examining DIF since the occurrence of non-coinciding ICCs is an indicator of differential 

item functioning between two groups.   

In summary, IRT is useful in overcoming the weaknesses of classical test theory 

for the following reasons.  IRT is not item or sample-dependent.  That is, the assumption 

of local independence and the property of invariance allow item parameters to be 

estimated for any group of examinees and permits estimations of examinee ability that 

are not test-dependent.  Also, IRT provides a mathematical model for predicting item 

success, conditional on ability level.  Finally, test reliability in IRT is based only on the 

items chosen for a test rather than on a specific group of test takers and the availability of 

parallel forms such as are required for classical test theory.   

 

Shealy-Stout’s Multidimensional Model for DIF 

 The IRT framework is not only a useful tool for investigating differential item 

functioning; it has also led to theories about what may cause DIF to occur.  Over the last 

decade or so, researchers have argued that the leading cause of DIF is the inclusion of 

multidimensional test items.  That is, many tests thought to be unidimensional – an 

important assumption in IRT – are in fact measuring additional latent traits other than the 

primary trait of interest (e.g., Oshima & Miller, 1992; Shealy & Stout, 1993a; Roussos & 

Stout, 1996; Russell, 2005).  These secondary dimensions represent either intentionally 

or unintentionally measured traits.  According to Shealy and Stout’s (1993a) 
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Multidimensional Model for DIF (MMD), secondary dimensions require further 

examination.  If a secondary dimension is unintentionally assessed as part of the construct 

of interest (e.g., verbal ability necessary for an item designed to measure math ability) 

then it is termed nuisance, but if the test is designed to measure a primary trait (e.g., math 

ability) and a secondary trait (e.g., logical reasoning) then the secondary dimension may 

be considered auxiliary.  Under the MMD differential item functioning that results from 

auxiliary dimensions is benign (indicating impact), whereas nuisance traits produce 

adverse DIF (indication of bias).  It is important to note the difference between impact 

and bias. Impact is a reflection of true ability differences between groups on a relevant or 

intentional construct.  On the other hand, bias is a term reserved for items that measure an 

irrelevant secondary trait for which examinees from one group are systematically 

advantaged or disadvantaged.  Furthermore, it is important to distinguish between 

intentionally multidimensional tests and tests that unintentionally measure multiple 

dimensions since distributional differences on nuisance abilities are potential sources of 

DIF.  On the other hand, different ability distributions on an auxiliary trait (i.e., an 

intentionally measured secondary dimension) would not be considered as an indication of 

DIF between examinee subpopulations (Oshima et al., 1997).   

 

Violations of Unidimensionality Assumption 

 As stated earlier, Item Response Theory assumes that tests are unidimensional.  

However, many experts agree that most achievement and aptitude tests are actually 

multidimensional with perhaps a dominant primary dimension and several secondary 

dimensions (e.g., Lord, 1980; Kok, 1988; Shealy & Stout, 1993a; Camilli & Shepard, 
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1994; Ackerman, 1992; Oshima et al., 1997; Embretson & Reise, 2000).  Hence, the use 

of unidimensional IRT models with multidimensional test data violates the 

unidimensionality assumption and poses a potentially serious threat to item and examinee 

parameter estimation.   

Many studies (e.g., Reckase, 1979; Ansley & Forsyth, 1985; Reckase, Ackerman 

& Carlson, 1988; Kirisci, Hsu & Yu, 2001) have assessed the effects of this violation on 

measurement equivalence and the results have been used both to support the continued 

use of unidimensional IRT and to encourage development of Multidimensional IRT 

(MIRT) models as well.   For example, in an early study Reckase (1979) found that good 

θ estimates can be obtained for multidimensional data that have a dominant dimension 

accounting for as little as 10% of variance and several minor dimensions.  He noted 

however, that to obtain stable estimates, the dominant dimension should explain at least 

20% of variance in item responses.  In a study examining the effects of two-dimensional 

data on unidimensional parameter estimates, Ansley & Forsyth (1985) showed that as the 

correlation between two dimensions increased, the effects of violating the assumption of 

unidimensionality decreased using the modified three parameter logistic (3 PL) model 

with fixed c-parameter (i.e., c was fixed to 0.2).  Later, Reckase, Ackerman and Carlson 

(1988) used multidimensional IRT to show that a test with items that are designed to 

measure the same composite of abilities – rather than a single ability – is sufficient to 

satisfy the unidimensionality assumption.   

More recently, Kirisci, Hsu and Yu (2001) investigated (among other factors) the 

robustness of three item parameter estimation programs (BILOG, MULTILOG, and 

XCALIBRE) to unidimensionality assumption violations.  Results for BILOG supported 
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findings from previous studies (e.g., Doody, 1985; Drasgow & Parsons, 1983; Harrison, 

1986) that showed for correlated dimensions, the effect of multidimensionality on 

parameter estimates was small.  That is, of the three estimation programs, BILOG was 

most robust to multidimensionality.  Furthermore, Kirisci et al. (2001) presented several 

guidelines for practitioners wanting to use unidimensional IRT models to estimate 

multidimensional test parameters.  Specifically, Kirisci et al. make three suggestions.  

First, it is necessary to determine the multidimensional structure of the data since 

unidimensional IRT models may be permissible if there is only one dominant dimension 

with several minor dimensions.  However, as Reckase (1979) suggested, the dominant 

factor may need to account for at least 20% of variance in order to obtain stable item 

parameter estimates. Second, when there are several dimensions of approximately equal 

dominance, the magnitude of the correlations between dimensions should be assessed.  

Citing earlier studies (e.g., Ackerman, 1989; Drasgow &Parsons, 1983; Harrison, 1986), 

Kirisci and colleagues (2001) suggest proceeding with unidimensional IRT models if the 

multiple dimensions are highly correlated (r > .4) and those correlations are 

approximately equal across dimensional pairs.  Finally, in the event that dimensions are 

not highly correlated (r ≤ .4) and/or the correlations among them vary to a large degree, 

then multidimensional IRT should be applied.  

Although multidimensionality can seriously affect the performance of 

unidimensionally-based procedures such as BILOG and LOGIST, these studies provide 

evidence that correlated dimensions can mediate that influence, making such procedures 

adequate for item and ability estimation.  Additionally, results from those investigations 

have corroborated Stout’s theory and test of essential unidimensionality which challenges 
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the traditional unidimensionality assumption of IRT.  Stout (1990) argued that the 

presence of exactly one dominant dimension (i.e., essential unidimensionality or dE =1)) 

is a sufficient and more psychologically appropriate requirement, considering the nature 

of achievement testing.   Therefore, by validating that a test measures one primary 

dimension and one or more minor secondary dimensions, support is gathered for the use 

of standard IRT calibration programs such as BILOG or LOGIST.  However, if 

secondary dimensions influence item responses to a large degree, Stout’s test of essential 

unidimensionality should conclude that dE  > 1 and practitioners would be advised against 

the use of standard IRT data analysis programs (Nandakumar, 1991).  A simulation study 

by Nandakumar (1991) assessed the performance of Stout’s hypothesis test of essential 

dimensionality in terms of Type I error and verified its reliability and power to detect 

essential unidimensionality in test data where traditional dimensionality may exceed one 

(i.e. dE  > 1).  As a result, unidimensionally-based IRT procedures continue to be used in 

applications with real data that meet the newer standard of essential unidimensionality.  A 

discussion on traditional DIF analysis follows. 

 

Traditional DIF Analysis 

DIF occurs when focal and reference group members of equal ability on the latent 

trait have different probabilities of answering an item correctly. DIF procedures generally 

begin by identifying a reference group (usually comprised of examinees in the majority; 

e.g., males, whites, etc.) and focal group (typically a minority subgroup; e.g., Hispanics, 

females, etc.) of interest.  After test administration and scoring, members of the reference 

and focal groups are matched on some measure of ability related to the test (usually total 
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test score).  From there, statistical procedures are used to identify which items yield 

group differences [see Millsap and Everson (1993) for an extensive review of statistical 

methods used to detect DIF].   

 In the event an item is functioning differently for one of the groups, a decision 

must be made about whether to retain the item or delete it from the test.  If the item 

proves to be biased against a subgroup, its magnitude is strong enough to bias test results, 

and a rationale exists for why it may exhibit DIF, then the item should be deleted 

(Camilli & Shepard, 1994). However, without a substantive review of the item to 

understand the reason it resulted in DIF, test developers do not actually know if the 

source of DIF is due to a construct-relevant or irrelevant dimension being measured by 

the test.   Therefore, it is important to accurately interpret the nature of DIF so that 

differences between the groups’ cognitive skills or opportunities to learn can be 

appropriately addressed.   

 

Issues with Traditional DIF Analysis 

 Typically DIF analyses are conducted in two steps: statistical identification 

(including effect size measures of practical significance) of items that favor particular 

groups followed by a substantive review of potentially biased items to locate the sources 

of differential item functioning.  Although many advances have been made in the 

statistical analysis of DIF items, much remains to be learned about how to accurately 

pinpoint why DIF occurs.  During the substantive analysis of DIF, items are usually 

reviewed by subject-area experts (e.g., curriculum specialists or item writers) in an 

attempt to interpret the factors contributing to differential performance between specific 
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subgroups of examinees.  Even though this is an important step in the process of 

eliminating bias and ensuring test fairness, studies indicate that this method of 

substantive analysis has met with limited success (see Bond, 1993; Camilli & Shepard, 

1994; Engelhard, Hansche, & Rutledge, 1990; Gierl, Rogers & Klinger, 1999; O’Neill & 

McPeek, 1993; Standards for Educational and Psychological Testing, 1999; Sudweeks & 

Tolman, 1993). For example, Bond (1993) noted that “theories about why items behave 

differentially across groups can be described only as primitive” (p. 279). Roussos and 

Stout (1996a) also highlight the failure of substantive analyses of statistically identified 

DIF items to interpret the sources of DIF. Remarking on the task of predicting DIF items 

without empirical evidence, Engelhard, Hansche, and Rutledge (1990) state that, “the 

agreement between the judgmental and empirical indices of DIF are very low and usually 

not better than what would be expected by chance” (p. 358).   In many cases, the 

judgments made by item reviewers tend to either disagree with DIF statistics or with one 

another (Engelhard, Hansche, & Rutledge, 1990). These inconsistencies may be 

attributable to the many possible hypotheses about why an item displays DIF after it has 

been identified statistically.  As a result, definitive conclusions about the sources of DIF 

are rarely drawn.  Some researchers believe that this is an inherent problem with single-

item DIF analyses and argue that more can be learned from studying groups of items 

simultaneously rather than one at a time (Douglas, Roussos & Stout, 1996; Boughton, 

Gierl & Khaliq, 2000).  Although the current primary method of DIF analyses (statistical 

evaluation followed by substantive review of individual items) does not typically provide 

more conclusive answers regarding DIF sources, a related procedure known as 

differential bundle functioning (DBF) holds promise for addressing this problem. 
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Differential Bundle Functioning 

 Because substantive DIF analyses following the statistical identification of DIF 

items have yielded little information in understanding the sources of DIF, methods have 

been developed that use the results of substantive analyses (item review) to statistically 

investigate items believed to function differentially. Instead of seeking to interpret DIF 

statistics for substantive meaning, the process (and therefore logic) is reversed by first 

forming substantive hypotheses regarding potential DIF items and then testing those 

items statistically.  In particular, Douglas, Roussos and Stout (1996) introduced the 

concept of item bundle DIF and the implications of differential bundle functioning (DBF) 

for identifying the underlying causes of DIF.  A bundle is any dimensionally homogenous 

set of items that is not necessarily adjacent or related to a common text or passage 

(Douglas, Roussos & Stout, 1996).  In DBF analyses, similar items are grouped together 

based on organizing principles (e.g., content, item type, etc.) believed to affect the 

performance of different groups of examinees.  The basis for DBF analysis is the 

assertion that tests consist primarily of small bundles of items designed to measure a 

certain trait, skill or ability. Similarly, Gierl, Bisanz, Bisanz, Boughton, and Khaliq 

(2001) assert that “sources of DIF may be more apparent in patterns across multiple items 

rather than in performance characteristics associated with single items” (p. 27). Also, 

research has shown that methods for statistically identifying bundles or groups of items 

are more powerful than those which analyze items one at a time (Nandakumar, 1993).  

Hence, DBF analysis is preferable to DIF analysis when bundling permits small 

differences in group performance on individual items to be amplified.  Furthermore, the 
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DBF approach of examining potential sources of DIF by identifying suspect item bundles 

has great implications for improving test design and educational measurement.  The next 

section discusses different organizing principles used to investigate differential bundle 

functioning. 

 

Bundle Formation 

 Although any number of organizing principles can be used to identify items 

suspected of measuring multiple abilities, prior studies have used four methods in 

particular.  While different, each is focused on the identification of items that appear to 

measure a common secondary trait in addition to the target ability.  The methods can be 

classified as exploratory versus confirmatory depending on the manner in which they are 

employed and/or the rationale for using a specific bundling strategy. 

First, a test’s dimensionality structure can be assessed using test specifications 

that outline both the content area and cognitive skill categories that the test is designed to 

measure.  A list of test specifications serves as the blueprint to guide item writers when 

sampling items from the achievement domain.  These items are also designed to measure 

specific cognitive skills and processes.  Therefore, a detailed analysis of test 

specifications may highlight subsets of items that measure a number of different 

dimensions associated with certain content and skill areas (Gierl, et al., 2005).  

 For example, Oshima, Raju, Flowers and Slinde (1998) demonstrated DBF 

analysis using the cognitive dimensions measured by the reading comprehension portion 

of the Metropolitan Achievement Test as well as by bundling the items associated with 

reading passages.   Although cognitive classifications did not appear to elicit differential 
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functioning, Oshima et al. did find large DBF in favor of boys for a reading passage titled 

“The Roadrunner: A Strange Bird”.  They were able to interpret the potential cause of the 

differential functioning by reasoning that boys were possibly more familiar with the 

context of the passage which described characteristics of the Roadrunner such as his diet 

and speed.   

 Second, the dimensionality structure of a test can be uncovered through the use of 

subject area experts who use their experience to identify specific dimensions through a 

thorough analysis of test content.   A content analysis may be conducted during either an 

item review session with content specialists or a review of the literature for judgments 

regarding the content of well-known tests such as the SAT (e.g., O’Neill & McPeek, 

1993; Douglas et al., 1996; Gierl & Bolt, 2003).  For example, Douglas, Roussos and 

Stout (1996) used a panel of experts to select item bundles from a test deemed to be 

essentially unidimensional.  They argued that this method is especially appropriate in 

cases where a test is so dominated by a primary dimension that many statistical 

dimensionality assessment tools would be unable to detect minor secondary dimensions.  

On the other hand, O’Neill and McPeek (1993) demonstrated how previously flagged 

DIF items could be used in a post hoc analysis to investigate the interaction of item 

content and item type on a measure of reading ability.  That is, they used previously 

reported empirical evidence that sentence completion items associated with science 

content tended to produce DIF in favor of males to investigate DIF based on content area 

and item type. 

 Third, cognitive psychology can be used to identify dimensions on which certain 

groups are hypothesized to differ in ability.  Although examples in the literature are 
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scarce, research is underway that uses cognitive theory to predict group differences on 

specific item types.  For example, Gallagher et al. (2000) used high school and college 

students to investigate gender differences in advanced mathematical problem solving on 

SAT-M and GRE-Q, respectively, by dividing math problems into two main types 

(conventional and unconventional) based on the cognitive processes associated with 

answering the items correctly.    Using “think aloud” problem solving with a group of 

high ability high school students, Gallagher et al. (2000) found that males tended to be 

more flexible in their use of problem-solving strategies, while females tended to employ 

conventional problem-solving algorithms to solve advanced mathematical problems.  

In addition, Gallagher et al. (2000) developed a revised taxonomy for classifying 

mathematics problems by item context, verbal and spatial demands, content mastery, and 

strategy selection, based on the findings of Halpern (1992; 1997) that certain cognitive 

processes are associated with tasks that favor males versus those that favor females.  

Using this taxonomy, Gallagher et al. successfully predicted gender performance on the 

GRE-Q among college students with different majors (i.e., arts and humanities, social 

sciences, and technical sciences).  Although the investigation would be classified as an 

impact study rather than an examination of item bias, the results have important 

implications for improving test development, classroom instruction, and measurement 

specialists’ understanding of factors that influence differential group performance on 

standardized achievement tests.  Fortunately, plans are underway to use the cognitive 

categories in the Gallagher et al. taxonomy to statistically test for differential bundle 

functioning (Gierl et al., 2001; Boughton, Gierl & Khaliq, 2004).  The results of that 
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research are expected to inform and advance the current process of assessing test 

dimensionality using psychological analysis.   

 Finally, secondary dimensions can be identified using statistical dimensionality 

assessment tools.  Using a mixed exploratory and confirmatory approach, Douglas, 

Roussos, and Stout (1996) combined hierarchical agglomerative cluster analysis (HCA), 

a cluster analysis procedure, and DIMTEST, a nonparametric statistical dimensionality 

test based on Stout’s (1987) concept of essential unidimensionality, to identify suspect 

item bundles.  First, an exploratory dimensionality analysis was performed so that DIF 

hypotheses could be developed and then confirmed with a cross-validation sample.  

Results revealed a six-item bundle measuring a secondary dimension interpreted as 

“knowledge of some important documents in early American history” (Douglas et al., 

1996, p.477).  When tested for DIF, the bundle was found to favor females.   

A recent investigation by Gierl, Tan and Wang (2005) using empirical 

dimensionality assessment tools was conducted to identify content and cognitive 

dimensions on the SAT.  Although DBF analysis was not a focus of the study, the finding 

that distinct, yet correlated, dimensions exist on the math and critical reading subtests of 

the SAT could be used to investigate differential bundle functioning among specific 

subgroups of examinees.  That is, using the dimensions identified in the study, DIF 

hypotheses could be developed and tested using currently available DIF methods.  The 

authors are currently exploring this line of research in hopes that it will enhance the 

diagnostic value of the SAT for identifying examinees’ cognitive strengths and 

weaknesses. 
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In summary, differential bundle functioning can be examined by confirmatory 

methods such as using test specifications or content analyses or through the exploratory 

approach of allowing statistical procedures to identify the number of dimensions being 

measured by a test. It should be noted that all of the methods described above include 

assumptions and limitations that make them more or less desirable in certain contexts. 

For example, cognitive classifications listed in a table of test specifications are developed 

by item writers who try to anticipate steps in the cognitive process that examinees 

typically follow in arriving at correct answers.  However, item writers are often content 

experts, such as teachers and curriculum specialists, who are not usually trained to 

identify these mental processes.  Furthermore, cognitive skill categories are often based 

on the Taxonomy of Educational Objectives developed by Bloom, Englehart, Furst, Hill, 

and Krathwohl (1956) which has been shown to be inadequate for classifying or 

predicting students’ cognitive processes on tests of math achievement, for example 

(Gierl, 1997).  As a result, care must be taken in deciding whether to rely on a single 

organizing principle or whether the research goal is best met by using a combination of 

strategies.  

Regardless of the type of organizing principle used, creating bundles is only a first 

step in the two-stage Roussos-Stout DIF analysis paradigm (Roussos & Stout, 1996a).  

This stage can be described as a substantive analysis of the dimensional structure of a 

test.  It is substantive to the extent that the dimensions are actually interpretable.  The 

dimensions must then be identified as primary or secondary and then a decision must be 

made about whether secondary dimensions are measuring auxiliary or nuisance abilities.  

This leads to the formulation of hypotheses that will guide the DIF/DBF study.  The 
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second stage involves statistically testing the dimensionality-based DIF hypotheses for 

differential bundle functioning.   

 

SIBTEST 

 SIBTEST, short for “simultaneous item bias” test, was developed by Shealy and 

Stout (1993a, 1993b) as an outgrowth of their Multidimensional Model for DIF (MMD). 

SIBTEST is an item response theory (IRT)-based method that models the relationship 

between item performance and the latent trait(s) measured by a test.  Equipped to handle 

dichotomously- or polytomously-scored items, this method tests for significant DIF 

amplification that occurs when a group of DIF items act together to produce differential 

bundle functioning.   

Under the MMD, the latent (e.g., ability) space is considered a multidimensional 

continuum measuring primary (θ) and secondary (η) traits.  The SIBTEST method uses a 

paramter estimate ( UNIβ
)

) to indicate the magnitude of DIF in an item. For large samples, 

UNIβ
)

 has a normal distribution with mean 0 and standard deviation 1 under the null 

hypothesis of no DIF. The statistical hypothesis tested by SIBTEST is  

   0:  .  0: 1 ≠= UNIUNIo HvsH ββ .    (1) 

 
Here UNIβ  is defined as 
    
   ( ) ( )[ ] ( ) θθθθθβ dfFPRP FUNI ∫ −= ,, ,     (2) 

where ( RP , )θ  and ( FP , )θ  are the probabilities of correct response (conditional on θ) for 

examinees in the reference and focal groups, respectively. The expression ( )θFf is the 

density function for θ in the focal group.  UNIβ  is integrated over θ and yields a weighted 
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expected score difference between reference and focal group examinees of equal ability 

on a specific item or bundle.  A statistically significant positive value of βuni represents 

DIF against the focal group and a statistically significant negative value indicates DIF in 

favor of the focal group.  

 SIBTEST requires that test items be divided into a “studied” subtest (of items 

believed to exhibit DIF) and a matching (or “valid”) subtest (of items believed to be DIF-

free). That is, the studied subtest contains the items or bundle believed to measure the 

primary and secondary dimensions whereas the matching subtest contains the items 

believed to measure only the primary dimension.  Examinee performance on items is 

compared by placing reference and focal group members into subgroups at each score 

level on the matching subtest. 

 UNIβ  is unknown and therefore must be estimated from data.   An unbiased 

estimate ( UNIβ
)

) of UNIβ  is obtained using the weighted mean difference between the 

reference and focal groups on the studied item/bundle across the K matched ability 

subgroups, or 

    ( )∑
=

−=
K

k
FkRkkUNI YYp

0

**β
)

,    (3) 

where the proportion of focal group examinees in subgroup k is represented by and kp

FkRk YY ** −  is the difference in the adjusted means on the studied subtest item or bundle 

for examinees in the reference and focal groups, respectively, in each subgroup k.  Shealy 

and Stout (1993) added a regression correction to adjust the means on the studied subtest 

item or bundle to account for any differences in the ability distributions of the reference 

and focal groups.   
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 The following classification scheme was proposed by Roussos and Stout (1996b, 

p.220) for assistance in interpreting the practical significance of a statistically significant 

value of UNIβ
)

 on an single item: (a) Negligible or A-level DIF: Null hypothesis is 

rejected and the absolute value of UNIβ
)

< 0.059, (b) Moderate or B-level DIF: Null 

hypothesis is rejected and 088.0059.0 <≤ UNIβ
)

, and (c) Large or C-level DIF: Null 

hypothesis is rejected and 088.0≥UNIβ
)

.  Unfortunately, no comparable guidelines exist 

to interpret or classify values of UNIβ
)

 for item bundles. 

 

DIF/DBF Research 

 As previously mentioned, most of the research on test bias has focused on the 

detection of differential functioning at the item level (see Millsap & Everson, 1993; 

Clauser & Mazor, 1998 for an extensive review).  However, recent developments have 

extended DIF analyses to include investigations of differential bundle and test 

functioning (DBF/DTF).  The first study involving DBF was conducted by Douglas, 

Roussos and Stout (1996) who demonstrated two methods for selecting item bundles 

suspected of exhibiting gender DIF amplification.  Method 1 used a panel of judges to 

identify bundles of items that appeared to measure secondary abilities in addition to the 

target ability (i.e., logical reasoning) using data from a standardized administration of the 

logical reasoning subtest of the Law School Admission Test (LSAT).  Using this method, 

the panel was able to form eight suspect item bundles, thus eight DIF hypotheses, to 

submit for statistical analysis.  Method 2 was a mixed exploratory-confirmatory approach 

to identifying suspect bundles.  This portion of the study involved a statistical IRT 
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dimensionality analysis followed by the use of expert opinion (i.e., panel of judges) to 

develop DIF hypotheses based on the number and type of dimensions that were identified 

statistically.    

In both methods, SIBTEST was used to analyze the bundles for differential 

bundle/test functioning.  For the example used with Method 1, although only four of the 

eight DIF hypotheses were statistically significant, Douglas et al. found that for seven of 

the eight bundles, the direction of DIF hypothesized by the panel of judges agreed with 

statistical results obtained with SIBTEST.   Method 2 was illustrated using a 36-item 

National Assessment of Educational Progress (NAEP) history examination.  The 

statistical dimensionality analysis augmented by expert opinion yielded a statistically 

significant six-item bundle representing a secondary dimension that Douglas et al. (1996) 

refer to as “knowledge of some important documents in early American history” (p. 477).  

The authors note that three of the six items in this bundle found to favor females did not 

reach statistical significance at the .05 level when a standard one-at-a-time DIF analysis 

was conducted.  Their claim that test fairness should be investigated at the bundle level 

rather than at the item level is supported by this example of DIF amplification at the 

bundle level. Furthermore, that a secondary dimension could be identified as the source 

of DBF on the NAEP history exam illustrates the usefulness of these methods in 

identifying the causes of DIF/DBF in general.  

 In a later study, Oshima, Raju, Flowers and Slinde (1998) described how the 

framework of differential functioning of items and tests (DFIT) could be used to identify 

potential sources of DIF through the analysis of item bundles.  Using an empirical data 

set, Oshima et al. (1998) used gender and socioeconomic status (SES; low vs. high) to 
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detect DBF on a reading comprehension test.  Although no large bundle NCDIF values 

were obtained for passages in the SES analysis, the gender comparison did identify 

bundles that favored males over females due to item content.  This finding highlighted 

the potential of DBF analysis as a mechanism for identifying possible sources of 

differential functioning.   

Research has also demonstrated the use of DBF analysis for enhancing the 

interpretability of DIF results and how using different “organizing principles” for 

bundling items can improve the substantive review of flagged DIF items (see Gierl et al., 

2001; Gierl & Khaliq, 2001).  Other studies have compared the Type I error and power 

performance of procedures capable of detecting differential item, test, or bundle 

functioning (see Bolt, 2002; Russell, 2005).  For example, Bolt (2002) studied DIF by 

testing the robustness to model misfit of two parametric methods (DFIT and the 

Likelihood Ratio Test) and one non-parametric method (Poly-SIBTEST) capable of 

detecting DIF for polytomously scored items.  That is, by fitting one IRT model (Graded 

Response Model; Samejima, 1969) to data that were generated from two different IRT 

models – Muraki’s (1992) generalized partial credit model and Mellenbergh’s (1995) 

two-parameter sequential response model – Bolt defined DIF as model misfit and 

compared the power of each method to detect DIF at the item level.  Results showed that 

there are advantages to using parametric methods when the appropriate IRT model is 

known.  Additionally, while DFIT was more robust to model misfit (i.e., displayed lower 

Type I error rates) than the Likelihood Ratio test, DFIT also exhibited lower power in 

detecting DIF.  Other notable findings emphasized the benefits of using different methods 
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(parametric vs. nonparametric) depending on the manipulated conditions (e.g., sample 

size and mean ability differences between groups).   

 A recent study by Russell (2005) assessing the Type I error and power 

performance of DFIT and SIBTEST for dichotomously-scored items is an extension of 

the work completed by Bolt (2002) with polytomous DIF detection methods.  In his 

investigation, Russell subjected DFIT and SIBTEST to independent DTF and DBF 

analyses, respectively, using simulated and real data under a variety of conditions.  

Although intended to inform organizational research and practice, Russell’s (2005) 

selection of conditions (sample size, test length, mean ability differences) include those 

common to educational achievement testing as well.  

The Type I Error study conducted by Russell (2005) included 50 replications per 

condition and evaluated DTF and DBF detection at the .01 level of significance.  Across 

conditions, the number of DTF Type I errors ranged from 0 (in two different conditions) 

to 24 (i.e., roughly 50 % of all statistical decisions were wrong in this condition).  Given 

the 50 replications for each of 24 conditions and α = .01, the average DTF Type I error 

rate with DFIT was .227.  Using the same number of replications and level of 

significance, SIBTEST DBF Type I errors in a single condition ranged from 0 (in three 

different conditions) to 47 (i.e., almost all statistical decisions to reject the null hypothesis 

of no-DIF were erroneous in this condition).  Moreover, the Type I error rate for DBF 

analysis with SIBTEST was .261 across all conditions.   

Overall, DFIT and SIBTEST performed similarly across the various manipulated 

conditions.  However, results cannot be directly compared because DFIT and SIBTEST 

were subjected to different levels of analysis (i.e., DTF and DBF, respectively).  The 
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variables included in the Type I error study were dimensionality, test length, sample size, 

and target ability differences.  As far as the impact of studied variables on false DTF and 

DBF detection with DFIT and SIBTEST, respectively, Russell observed large errors for 

each manipulated condition.   

Dimensionality.  Russell hypothesized that DFIT and SIBTEST would perform 

best within their intended domains.  That is, the unidimensional IRT framework for DFIT 

would lead to fewer errors when analyzing unidimensional tests. On the other hand, 

SIBTEST was expected to perform better when analyzing multidimensional tests since it 

is based on Shealy-Stout’s Multidimensional Model for DIF (MMD; 1993a).  Although 

his hypotheses were confirmed, the Type I error rates for both methods were still much 

higher than the expected rate of .01.  For instance, when DFIT was used to analyze 

unidimensional tests, the average DTF Type I error rate across all conditions was .188.  

Meanwhile, the average DBF Type I error rate across all conditions when SIBTEST was 

used for multidimensional tests was .168. 

Test Length and Sample Size. Two test lengths (10 items versus 20 items) were 

simulated in the study.  Although no condition was associated with acceptable Type I 

error rates for either method, DFIT made fewer Type I errors (error rate = .163) when 

analyzing longer, unidimensional tests while SIBTEST did not perform as well (error rate 

= .433) in this context. The study also compared group sample sizes of 500 (each for the 

reference and focal groups) and 1000 (each for the reference and focal groups) to 

examine the effect on the error rates of DFIT and SIBTEST.  Both methods were 

hypothesized to exhibit fewer errors with smaller sample sizes (e.g., N = 500) than with 

larger sample sizes (N = 1000).  This expectation was met for DBF analyses with 
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SIBTEST but not for DTF analyses with DFIT.  In fact, substantial errors were reported 

for DFIT when used to analyze two-dimensional tests with small sample sizes (error rate 

= .370).  However, SIBTEST performed at its best within this context (error rate = .140) 

and at its worst with one-dimensional tests and large samples sizes (error rate = .413) 

Target Ability Differences.  Russell studied the influence of target ability 

differences, or impact, between the reference and focal groups. Impact was simulated in 

one-direction (against the focal group) at three levels: 0.0, 0.5, and 1.00 to represent no 

impact, moderate impact and large impact, respectively.  Russell’s expectation that errors 

would increase as differences in target ability increased, were supported for both 

methods. However, the observed Type I error rate for SIBTEST (when used with one-

dimensional tests) climbed as high as .715 when target ability differences, or impact, 

between the reference and focal group reached the highest levels in the study.  Russell 

concluded that when subgroups differ greatly on the target ability, SIBTEST is more 

likely to mistakenly identify the impact as DIF/DBF.   

The power study included 24 unique combinations of sample size (500 and 1000), 

test length (10 items vs. 20 items), target ability differences, or impact (0.0, 0.5, 1.00) and 

nuisance ability differences (DTF or DBF; 0.5 and 1.00).  Using the same α level of .01, 

the average DTF power rate across all conditions with DFIT was .421. Russell concluded 

that the levels of DTF simulated in the study were too small and would often not be 

detected by DFIT (when these levels exist in real datasets).  Furthermore, the number of 

times (out of 50) that DFIT accurately identified DTF in a single condition ranged from 

as low as 6 (i.e., for this condition test-level DIF was rarely detected) to 37. 
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On the other hand, SIBTEST demonstrated an overall power rate (across all 

conditions) of .725 with the number of true-positives in a single condition ranging from 

11 to 50 (observed for 5 different conditions).  Thus SIBTEST was found to be better at 

detecting differential bundle functioning than DFIT at identifying differential test 

functioning.  Results for the individual variables fared as poorly (for both methods) as 

was observed for the Type I Error study.  For example, low DTF and DBF power rates 

were associated with both test lengths although SIBTEST showed greater power to detect 

differential bundle functioning with longer tests.  In the case of sample size differences, 

Russell’s hypothesis that DFIT would perform best with large samples was rejected while 

SIBTEST demonstrated power near the acceptable level of .80.  For conditions involving 

target ability differences, both methods performed best when impact was minimal.  

Finally, nuisance or secondary ability differences – the variable used to simulate DBF 

and DTF in the Russell study – exhibited a large influence on power rates for both 

techniques.  According to Russell, DFIT did not reach acceptable power rates for large 

amounts of DIF but may potentially identify true-DTF at the target level (of .80) for tests 

with a greater percentage of items measuring the nuisance ability.  On the other hand, 

DBF power rates for SIBTEST reached as high as 100% for various conditions involving 

large nuisance ability differences. 

In summary, Russell’s study examined the effect of secondary traits on DIF 

detection.  That is, Russell (2005) used multidimensionality to produce differential 

item/bundle/test functioning in simulated item responses.  Overall, DFIT and SIBTEST 

demonstrated poor Type I error control in the presence of multidimensionality.  Also both 

methods performed best for large sample sizes (N=1000 vs. N=500), minimal target 
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ability differences, and shorter tests (10 items vs. 20 items), although SIBTEST adhered 

to the nominal alpha level better than DFIT for multidimensional tests and smaller 

sample size (N=500).  However, interpretation of Russell’s (2005) findings must be made 

with caution considering DFIT and SIBTEST were subjected to different levels of 

analysis. 

 Additionally, two power studies were conducted to assess DFIT and SIBTEST’s 

ability to detect simulated bias at the test and bundle level, respectively.  Results showed 

SIBTEST to be more powerful (average power of .725 across all conditions) at detecting 

DBF than DFIT (average power of .421 across all conditions) for assessing DTF.  As 

noted earlier, no direct comparisons could be made due to the disparate levels of analysis.  

Nonetheless, attempts were made to explain the stark differences in the two methods.  For 

example, the SIBTEST procedure is advantaged since only user-specified bundles of 

items are submitted for DBF analysis, whereas the DFIT procedure made use of all test 

items during the assessment of DTF.   

 

Conditions That Impact DIF Detection 

 A number of studies have examined the impact of various conditions on the 

performance of DIF detection techniques often used in educational achievement testing 

(e.g., Miller & Oshima, 1992;  Nandakumar, 1993; Raju, van der Linden & Fleer, 1995; 

Chamblee, 1998; Bolt, 2002; Russell, 2005).  Research in this area has guided 

measurement specialists in the selection of DIF methods that perform best under specific 

conditions.  Most of the articles reviewed for this study concentrated on the investigation 

or manipulation of conditions such as test length, sample size, item parameters, 
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proportion of test-wide DIF, group ability distributions, multidimensionality, type of IRT 

model, as well as the magnitude, direction and uniformity of DIF and the impact of these 

conditions on DIF detection.  Although the list is long, it is important to systematically 

study the effect of these conditions that commonly occur in many testing applications.  

 A review of Monte Carlo studies that manipulated different combinations of the 

previously mentioned conditions yielded consistent, as well as diverging conclusions, 

regarding the impact on prominent DIF detection methods.  For example, in manipulating 

sample size, proportion of test-wide DIF,  and direction and uniformity of DIF for four 

IRT-based DIF methods (i.e., Lord’s χ2, Exact Signed Area, Exact Unsigned Area, and 

DFIT) Raju, van der Linden and Fleer (1995) found fewer detection errors with larger 

sample sizes and smaller proportions of test-wide DIF (i.e., number of DIF items).  

However, results of the bidirectional DIF condition (i.e., DIF that favors reference groups 

for some items and focal group for others) and nonuniform DIF (i.e., unequal 

discrimination and equal or unequal difficulty parameters across groups) conflicted with 

those obtained from an earlier study by Cohen and Kim (1993).  In Raju et al. (1995), 

bidirectional and nonuniform DIF caused higher detection errors for the Exact Signed 

Area (ESA) method, whereas the Cohen and Kim study found no differences between the 

DIF methods.  Another study, comparing single versus two-stage procedures for 

estimating DIF found that the decision should be based on the magnitude and percentage 

of DIF items on the test (Miller & Oshima, 1992).  In that investigation, Miller and 

Oshima concluded that a single-stage procedure may be more useful for examining race, 

ethnic, or gender bias when there are few DIF items (e.g., 5% or 10%) and the 

magnitude, or strength, of DIF is weak. 
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Another variable previously shown to effect DIF detection is related to item 

discrimination and is known as angular item direction.  As shown by Reckase and 

McKinley (1991), the discrimination power of an item is related to a specific direction in 

the latent space.  For multidimensional items, this angular direction can be calculated 

with respect to the latent axes.  The value of α can vary from 0° to 90° based on the 

degree to which an item measures each trait.  For the case of two dimensions, if an item 

measures only the first ability, θ, then the item direction (α) is 0°.  If an item measures 

only the second ability, η, then the item direction (α) is 90°.  When α = 45° an item 

measures two abilities (θ and η) equally. Therefore, calculating an item’s angular 

direction (α) provides information about what items are really measuring.   

Reckase and McKinley (1991) introduced formulas for computing α that require 

knowledge of other parameters such as multidimensional discrimination (MDISC) and 

multidimensional item difficulty (MID).  To investigate the impact of simulated item 

directions on DBF detection with SIBTEST, these formulas are unnecessary.  Since the 

angle formed by the discrimination vector and the horizontal axis for the first dimension 

(θ) can be calculated with simple trigonometry of right triangles, a simplified version of 

the formulas provided by Reckase and McKinley (1991) for computing item direction 

follows the example below.   

Figure 1 shows the discrimination vector for an item in a two-dimensional space 

in which the horizontal axis represents measurement of the first dimension θ and the 

vertical axis represents measurement of the second dimension η.  This item has 

discrimination a1 = 1.40 and a2 = 0.40. Therefore, the angular direction (i.e., the angle the 
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discrimination vector forms with the θ axis) of this item (which discriminates more on θ 

than η) can be calculated using the following formula: 

   °=== −− 95.15
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1
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Figure 1.  Discrimination Vector for an Item in a Two-Dimensional Ability Space 

Since the item’s angular direction is less than 45°, the item measures the θ 

dimension to a greater degree than the η dimension.  Few studies have examined the 

impact of item direction on the detection of DIF and none have investigated its effect on 

DBF analysis.  One study by Oshima and Miller (1992) observed increases in power 

(with four item bias methods - signed area, unsigned area, signed sum of squares and 

unsigned sum of squares) when multidimensional items embedded with DIF measured 

the secondary dimension more than the first.  The results of that study highlighted the 

usefulness of item dimensionality assessment for enhancing DIF detection. 

The literature on differential item/bundle functioning also includes studies that 

specifically examine the performance of DBF methods (capable of detecting DIF 

amplification and cancellation) under conditions similar to those reviewed above.  One of 

the earliest such investigations was conducted by Nandakumar (1993) who used 
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SIBTEST to study simultaneous DIF amplification and cancellation.  By varying sample 

size, test length, percent of DIF items, and direction of DIF with simulated data, 

Nandakumar’s (1993) study helped to establish SIBTEST as an effective procedure for 

studying DIF at the item and test level.  In the study, SIBTEST was compared to the 

Mantel-Haenszel technique and found to perform similarly across conditions in the 

assessment of DIF at the item level.  At the test level, SIBTEST successfully estimated 

the cumulative effect of DIF.  That is, whether DIF was amplified to produce differential 

test functioning (DTF) or cancelled out due to bidirectional DIF in individual items, 

SIBTEST was capable of assessing both.   

 In her dissertation, Chamblee (1998) investigated conditions that impact Type I 

error rates of DFIT including test length, sample size, choice of IRT model (1-, 2-, or 3-

PL) and linking method for four different alpha levels.  These generated data were used 

to empirically determine critical values for the NCDIF and DTF indices associated with 

DFIT.  Chamblee concluded that Type I error rates decreased with increasing sample 

sizes and when number of estimated parameters (i.e. IRT model) decreased.  Also, 

shorter tests (20 items) were associated with larger critical values.  Few differences were 

observed between the two linking methods (Test Characteristic Curve and modified Test 

Characteristic Curve) used in the study.   

 Recent investigations have examined the impact of various conditions while 

comparing the performance of DIF/DBF detection methods.  As previously mentioned, 

Bolt (2002) compared parametric and nonparametric polytomous DIF methods under a 

number of simulated conditions.  In his study, DIF was generated using a traditional 

approach (i.e., specifying different reference and focal group parameters) and using a 

  



36 

somewhat novel technique.  The second approach operationalized DIF as model misfit by 

using data generated from Muraki’s (1992) generalized partial credit model and 

Mellenbergh’s (1995) two-parameter sequential response model to estimate item 

parameters for Samejima’s (1969) graded response model.  The conditions manipulated 

in the study included the model used to generate the data, sample size, and mean ability 

differences between the focal and reference groups.  Across conditions, DFIT exhibited 

greater power and was prone to more Type I error than poly-SIBTEST, particularly for 

the smaller sample size condition (N=300).   

Although Bolt’s (2002) study was one of the first to compare the DFIT and 

SIBTEST procedures across various conditions, his investigation was limited to an item-

level analysis.  As a result, in 2005 Russell examined Type I error and power 

performance of DFIT and SIBTEST at the test and bundle level, respectively.  As 

mentioned earlier, Russell’s selection of conditions (e.g., test length, sample size, mean 

ability differences) included those that are common to educational testing. 

Overall, Russell’s results both corroborated and conflicted with Bolt’s (2002) 

findings but it is important to note that the Russell (2005) study compared DFIT and 

SIBTEST across different levels of analysis without comparing the two techniques within 

a specific domain (e.g., comparing DFIT and SIBTEST performance for specific bundles 

of items).  Also, despite manipulating such a large number of variables (i.e. sample size, 

test length, mean ability differences, and presence/absence of a secondary trait), Russell 

(2005) did not explore more than two levels for most of the simulated conditions.   

Similar to Russell (2005) this study does not include results for differential bundle 

functioning analysis with the DFIT procedure.  Although the Russell (2005) study 
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examined differential test functioning with DFIT, results indicated low power and high 

Type I error rates leading to the conclusion (like many previous studies) that more 

reliable cutoff values are needed to accurately assess DIF/DTF with DFIT.  To address 

this long-standing issue, Oshima, Raju and Nanda (2006) introduced the Item Parameter 

Replication (IPR) method that determines cutoff values for DFIT based on particular 

datasets and individual items (see Appendix A for more detailed information on DFIT).  

Although the new DFIT procedure using the IPR method has been demonstrated within a 

simulation study (Oshima, Raju & Nanda, 2006) involving one replication, its capacity to 

examine differential item/bundle/test functioning with more than a few replications is 

severely limited by current computer processing time.  In fact, this study was originally 

designed to include an evaluation of DBF analysis with the SIBTEST and DFIT 

procedures.  However, in preparing data for analysis with DFIT, many complications 

arose.  Therefore it was determined that at the current time, while it is a potentially useful 

tool for applied researchers, DFIT presents too many limitations for use in a simulation 

study.  More information on DFIT is provided in Chapter 5 and Appendix A. 

As a result of the challenges posed by DFIT, this study examines only the 

SIBTEST procedure for DBF analysis.  The purpose of this study was to assess the 

performance of SIBTEST for DBF analysis under various conditions with simulated data.  

Therefore the simulation study examined how Type I error and power rates of SIBTEST 

are impacted by multiple levels of various manipulated conditions that applied 

researchers often encounter.  Additionally, suggestions are provided for increasing the 

potential of DFIT for use with simulation research.

  



 

CHAPTER 3 

METHODOLOGY 

 

 In this Monte Carlo simulation study differential bundle functioning was assessed 

using the SIBTEST procedure under various conditions that practitioners often encounter 

with real data.  The variables of interest in the study included sample size and sample size 

ratios, correlation between primary and secondary dimensions, magnitude of DIF/DBF, 

and angular item direction.  The impact of each of these variables and their combined 

effect on accurate and false identification of DBF was the primary focus of the 

investigation.  To evaluate the power and Type I error performance of SIBTEST the 

following study design was used. 

 

Study Design 

 The item parameters used to generate unidimensional data across all of the 

conditions were selected from Raju, van der Linden and Fleer’s (1995) study of 

differential item functioning.  These parameters were reported to have item 

characteristics typically found in real testing situations.  Parameters for the 

multidimensional bundle were held constant for all ten items (within each level of item 

direction) so that DIF/DBF would not be confounded with item difficulty and 

discrimination.  Appendix B (Tables 7 – 9) contains a complete list of unidimensional 

and multidimensional item parameter values.   

38 
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Sample Size and Sample Size Ratio.  Assessing the impact of sample size on DIF 

detection was one of the conditions investigated in this study.  Specifically, two levels of 

overall sample size (i.e., 2000 and 5000) as well as two different sample size ratios of 

reference to focal group members (i.e., 50/50 and 90/10) were used to compare the Type I 

error and power performance of SIBTEST.  Although sample size is one of the most 

commonly studied conditions simulated in DIF research, it is an important factor to 

include here as a control for absolute sample size when sample size ratios are also being 

manipulated.  As for the sample size ratio conditions, these proportions (i.e., 50/50 and 

90/10) were chosen to represent other characteristics of real test data not examined in 

previously mentioned research [e.g., Raju et al., 1995; Russell, 2005].   

Instances in which the ratio of reference to focal group members in the population 

might be expected to be approximately equal would include studies of gender DIF in 

which there are relatively equal numbers of boys and girls (who constitute the reference 

and focal groups, respectively). An example of the second instance (unequal proportions) 

might be when a large number of white students take an exam compared to a smaller 

number of black or Hispanic students.  In such cases, the examinee population (and hence 

representative sample) might reveal a sharp contrast of maybe 90% whites to 10% blacks, 

or 90/10 ratio.   

 Correlation between Dimensions.  Another condition of interest in this study is 

the impact of different correlations between primary and secondary dimensions, or 

abilities.  Since prior research (e.g., Kirisci, Hsu, & Yu, 2001) has suggested the use of 

unidimensional IRT methods when the correlation between dominant dimensions is 

moderate to large (e.g., r > .40), this study examined the effect of correlations between 
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dimensions on Type I error and power rates of SIBTEST. The higher the correlation is 

between dominant dimensions (e.g., r = 0.8) the more similar the dimensions are and may 

be considered as one primary dimension.  On the other hand, dimensions become more 

distinct as the correlation between them decreases (e.g., r = 0.3).  Therefore, three levels 

are proposed for this condition: r = 0.316, 0.632 and 0.837 (corresponding to r2 = 0.1, 

0.4, and 0.7, respectively).  Selecting this range of values was guided by a couple of 

considerations.  First, a zero correlation between dominant dimensions on say, an 

achievement test, is very unlikely.  Second, it is unusual to observe correlations higher 

than 0.8, although the dimensions on some tests of math ability (e.g., SAT-Math) have 

been shown to have higher correlations (i.e., .946 < r < 1.000). 

Magnitude of DIF/DBF.  This study also manipulated DIF magnitude which was 

expressed as differences in secondary ability (η) distributions for the focal and reference 

groups. Examining the influence of varying magnitudes of DIF in item bundles may help 

to determine the minimum amounts of multidimensionality required to detect differential 

bundle functioning with SIBTEST.  Therefore four levels of DIF magnitude (i.e., 

nuisance ability differences): dη = 0.25,   dη = 0.5, dη = 0.75, dη = 1.0 were included to 

reflect small to large amounts of DIF.   

Angular Item Direction.  Finally, angular item direction was manipulated to 

examine its effect on DBF detection with SIBTEST.  Recall the earlier example in which 

the item direction was 15.95° indicating that the item measured the primary dimension 

(θ) to a greater degree than the secondary dimension (η). What if this item was intended 

to measure only θ? What if subgroups of examinees differed in mean ability on the 

second dimension η? Would DIF result? What would happen if the angular direction 
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were greater for this item?  That is, what would be the effect of increasing the degree to 

which this item measured the nuisance secondary trait?  These are all questions that were 

explored in this study.  More specifically, the influence of item direction on DBF 

detection with SIBTEST was investigated for two levels of α: 26.1° (higher 

discrimination on the primary trait) and 58.5° (higher discrimination on the nuisance 

trait).  The item directions were simulated using discrimination parameters of a1 = 1.00 

and a2 = 0.49 for α = 26.1° and a1= 0.30 and a2 = 0.49 for α = 58.5°.   

 

Overview of Study Design 

 Power.  A power study was conducted to investigate the impact of several 

manipulated variables on the ability of SIBTEST to detect differential bundle functioning 

on a simulated 40-item test.  The variables studied include overall sample size, reference 

to focal group sample size ratios, DIF magnitude, correlations between primary and 

secondary abilities, and item directions.  The power study included 2 (overall sample 

sizes) x 2 (sample size ratios) x 4 (magnitudes of DIF) x 3 (correlations between primary 

and secondary traits) x 2 (item directions) = 96 fully crossed conditions (see Table 1). 

This analysis used 1000 replications of each condition. 

 Type I error.  A Type I error study was also conducted to examine false detection 

of differential bundle functioning with SIBTEST.  Conditions thought to impact Type I 

error rates were examined for the simulated 40 item test (see Table 1).  To study Type I 

error performance, the presence/absence of a secondary ability was partially crossed with 

sample size, ratio of reference to focal group sample size, correlation between primary 

(θ) and secondary (η) abilities and item direction.  Hence, the design of the Type I error 
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Table 1 

 
Study Conditions 
________________________________________________________________________ 
 
Sample Size 

1. 2000 
2. 5000 

 
 
Sample Size Ratio 

1. 50:50 
2. 90:10 

 
 
Correlation between Dimensions 

1. .316 
2. .632 
3. .837 

 
 
DIF/DBF Magnitude 

1. 0.25 
2. 0.50 
3. 0.75 
4. 1.00 

 
 
Angular Item Direction 

1. 26.1° 
2. 58.5° 

 
________________________________________________________________________ 
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study included 2 (overall sample sizes) x 2 (sample size ratios) x 2 (presence/absence of 

secondary trait) = 8 fully crossed conditions, and 2 (overall sample sizes) x 2 (sample size  

ratios) x 3 (correlation between primary and secondary traits) x 2 (item directions) minus 

the need to examine the baseline Type I error condition (i.e., absence of a secondary trait) 

again for the second item direction = 20 partially crossed conditions.  The “baseline” 

Type I error study was represented by conditions involving the 10 multidimensional 

items when there was no DIF (i.e., the distribution of ability on the nuisance secondary 

dimension was equal for the reference and focal groups).  Finally, the analysis was 

conducted using 1000 replications of each condition so that the effect of individual 

manipulated variables (e.g., sample size ratio) on Type I error rates could be examined. 

 

Data Generation 

 Unidimensional and multidimensional data for the Type I error and power studies 

were generated according to the conditions described above.   IRTGEN (Whitaker, 

Fitzpatrick, Williams, & Dodd, 2003), a SAS macro program, was used to simulate 

unidimensional items.  However, multidimensional items for the reference and focal 

group were simulated using the SAS/IML program GENMIRT (Kromrey, Parshall, 

Chason, & Yi, 1999).  For items measuring only the primary ability (θ), dichotomous 

data (i.e., item responses of 0 and 1 representing incorrect and correct answers, 

respectively) were generated using the three-parameter logistic model (3PL) as shown in 

Equation 5.   
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where P(ui=1 | θ) is the probability that an examinee correctly answers an item (and ui=0 

for an incorrect answer) and e represents the base of natural logarithms (e ≈ 2.718).  

However, a two-dimensional 3PL model (see Equation 6) was used to simulate items 

measuring the primary and secondary (i.e., nuisance) dimensions.   
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 For conditions involving no-DIF, reference and focal group ability on the primary 

(θ) and secondary (η) traits was generated according to a multivariate normal distribution 

with mean 0 and standard deviation of 1.  In the power study, DIF was added to each 

multidimensional item by increasing the mean ability of the reference group above that of 

the focal group by 0.25, 0.50, 0.75 and 1.00 standard deviations on the second dimension, 

η.  After generating item response data, SAS was used to call the DOS-based version of 

SIBTEST and to produce output files for the DBF analyses.  A copy of the program can 

be found in Appendix C. 

 

Analyses 

 This study involved simulating 25% of test items to contain DIF.  That is, 10 

items that measured primary and secondary abilities formed a “bundle” that was 

submitted to SIBTEST for differential bundle functioning analyses.  Conducting DBF 

analyses using SIBTEST is a one-step procedure that does not require parameter 

estimation or equating steps.  The SIBTEST program requests information from the user 

such as, the identification of items that will form the valid and studied subtests and 
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whether the test permits guessing and, if so, what the c-parameter value (for the 3PLM) 

is.  For the simulated 40-item test, the last 10 items formed the multidimensional bundle. 

Thus for the power and Type I error studies, the valid subtest consisted of the first 30 

items and the studied subtest consisted of the last 10 items.   

SIBTEST produces a parameter estimate, UNIβ
)

, to indicate the magnitude of DIF 

in an item or bundle.  A statistically significant positive value of UNIβ
)

 represents DIF 

against the focal group and a statistically significant negative value indicates DIF in favor 

of the focal group.  Power and Type I error rates were calculated for each condition by 

tallying the number of times (out of 1000 replications) that SIBTEST detected 

statistically significant DBF in the 10-item bundle.    
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CHAPTER 4 
 

RESULTS 
 
 

Tables 2 – 6 display the results for conditions in which differential item 

functioning was embedded in a group of ten multidimensional items on a 40-item test, 

producing differential bundle functioning (Power Study) and conditions for which no-

DIF was imbedded in these multidimensional items (Type I Error study). The results 

begin with a summary of the overall effect of each manipulated variable on Power and 

Type I Error.  Overall results are followed by detailed descriptions of study effects for 

simulations involving item direction α = 26.1° and item direction α = 58.5°, respectively.    

Power.  In this study, DBF was created in a ten-item bundle of 

multidimensional items by simulating the reference group examinees to have 

higher ability than the focal group on the secondary (nuisance) dimension across 

all DBF conditions.  Manipulated variables included total sample size and sample 

size ratio of reference to focal group, magnitude of DIF/DBF, correlation between 

the primary and secondary dimension, and item direction.  All conditions in the 

power study were replicated 1000 times with the SIBTEST procedure.   

Item Direction.  Two item directions were simulated for the study.  The 

first scenario (α = 26.1°) represented multidimensional items that discriminated 

more on the primary dimension compared with results that were obtained in the 

second scenario (α = 58.5°) where multidimensional items discriminated more on  



  

Table 2 

Power Rates for Item Direction α = 26.1°.  Percentage of Times (out of 1000 replications per condition) that SIBTEST 
Accurately Identified DBF. 
     Nuisance Ability Difference 
            
          dη =.25  dη =.50  dη =.75   dη =1.00 
Correlation 

between 
dimensions Ntot Nref Nfoc  DBF  DBF  DBF  DBF 

                    
r = 0.316 5000 4500 500  52.4  96.6  100.0  100.0 

  2500 2500  89.5  100.0  100.0  100.0 
            
 2000 1800 200  28.4  70.0  94.2  99.6 
  1000 1000  58.4  97.7  100.0  100.0 

            
r = 0.632 5000 4500 500  48.0  94.1  99.7  100.0 

  2500 2500  86.7  100.0  100.0  100.0 
            
 2000 1800 200  23.5  64.6  91.0  99.2 
  1000 1000  49.4  97.5  100.0  100.0 

            
r = 0.837 5000 4500 500  42.7  92.7  99.7  100.0 

  2500 2500  84.0  100.0  100.0  100.0 
            
 2000 1800 200  21.7  59.6  86.4  98.0 
  1000 1000  48.7  96.2  100.0  100.0 
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Table 3 

Power Rates for Item Direction α = 58.5° Percentage of Times (out of 1000 replications per condition) that SIBTEST 
Accurately Identified DBF. 
     Nuisance Ability Difference 
            
          dη =.25  dη =.50  dη =.75   dη =1.00 
Correlation 

between 
dimensions Ntot Nref Nfoc  DBF  DBF  DBF  DBF 

                    
r = 0.316 5000 4500 500  91.3  100.0  100.0  100.0 

  2500 2500  100.0  100.0  100.0  100.0 
            
 2000 1800 200  55.5  98.6  100.0  100.0 
  1000 1000  94.1  100.0  100.0  100.0 

            
r = 0.632 5000 4500 500  88.7  100.0  100.0  100.0 

  2500 2500  99.8  100.0  100.0  100.0 
            
 2000 1800 200  51.8  96.8  100.0  100.0 
  1000 1000  90.0  100.0  100.0  100.0 

            
r = 0.837 5000 4500 500  84.8  100.0  100.0  100.0 

  2500 2500  100.0  100.0  100.0  100.0 
            
 2000 1800 200  48.9  94.9  99.9  100.0 
  1000 1000  87.6  100.0  100.0  100.0 
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Table 4 

Baseline Type I Error Rates. Percentage of Times (out of 1000 replications per 
condition) that SIBTEST Falsely Identified DBF in the Unidimensional Item 
Bundle. 
 
 

Sample Size
Ntot Nref Nfoc DBF 
5000 4500 500 0.05 

 2500 2500 0.05 
    

2000 1800 200 0.06 
 1000 1000 0.06 
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Table 5 

Type I Error Rates for Item Direction α = 26.1°.  Percentage of Times (out of 
1000 replications per condition) that SIBTEST Falsely Identified DBF in the 
Multidimensional Item Bundle. 
 
 
 Total Sample Size

 Ntot=5000 Ntot=2000 
Correlation 

between 
dimensions Nref Nfoc DBF Nref Nfoc DBF 

0.316 4500 500 0.05 1800 200 0.04 
 2500 2500 0.06 1000 1000 0.04 
       

0.632 4500 500 0.04 1800 200 0.05 
 2500 2500 0.06 1000 1000 0.04 
       

0.837 4500 500 0.04 1800 200 0.06 
 2500 2500 0.04 1000 1000 0.05 

 

 

 

 



51  

Table 6 

Type I Error Rates for Item Direction α = 58.5°.  Percentage of Times (out of 
1000 replications per condition) that SIBTEST Falsely Identified DBF in the 
Multidimensional Item Bundle. 
 
 
 Total Sample Size

 Ntot=5000 Ntot=2000 
Correlation 

between 
dimensions Nref Nfoc DBF Nref Nfoc DBF 

0.316 4500 500 0.05 1800 200 0.06 
 2500 2500 0.06 1000 1000 0.05 
       

0.632 4500 500 0.05 1800 200 0.07 
 2500 2500 0.06 1000 1000 0.05 
       

0.837 4500 500 0.07 1800 200 0.05 
 2500 2500 0.06 1000 1000 0.06 
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the nuisance trait. For α = 26.1°, a1 = 1.00 and a2 = 0.49 whereas for α = 58.5°, a1 

= 0.30 and a2 = 0.49.   

SIBTEST power results are displayed for each item direction in Tables 2 

and 3.  Overall, item direction was very influential in DBF detection.  Comparing 

the values in the tables, it is evident that power to detect differential bundle 

functioning across all conditions with SIBTEST was much greater for the larger 

item direction (α = 58.5°).  For example, observed power rates for α = 26.1° 

ranged from 21.7% to 100% whereas rates for α = 58.5° ranged from 48.9% to 

100% across all conditions. Therefore, when multidimensional items measure the 

nuisance trait more than the primary trait and the average ability level of the focal 

group is lower than the reference group on that nuisance dimension, then 

DIF/DBF is more easily identified by SIBTEST.  

Sample size.  Sample size, defined as the sum of the number of examinees 

in the reference and focal group, heavily influenced the DBF detection power of 

SIBTEST.  Two overall sample sizes (N = 2000 and N = 5000) were simulated for 

this study.  As might be expected, higher power rates were associated with larger 

sample sizes (especially for α = 26.1°).  In particular, in conditions with N = 2000 

examinees, the average SIBTEST power rate failed to reach 80% for α = 26.1° 

(actual rate = 78.5%) whereas the average rate of DBF detection was over 90% for 

conditions where N = 5000 examinees (actual rate = 91.1%).  On the other hand, 

average power rates for α = 58.5° were 92.4% and 98.5% with N = 2000 and N = 

5000, respectively.   
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Sample size ratio.  The ratio of reference to focal group members was also 

investigated.  Two ratios (90:10 and 50:50) were examined for their impact on 

DBF detection rates.  Across all conditions, SIBTEST demonstrated greater 

detection power for equal reference and focal group sizes (i.e., 50:50) than for 

sharply unequal group sizes (i.e., 90:10).  Specifically, for α = 26.1°, 9 out of 12 

(75%) low power conditions (i.e., power rate less than 80%) involved the 90:10 

sample size ratio.  On the other hand, all three low power conditions observed for 

α = 58.5° involved 90:10 ratios with focal groups of only 200 examinees and 

small amounts of DBF (dη =.25).   

Magnitude of DIF/DBF.  Tables 2 and 3 display the four levels of 

DIF/DBF magnitude (.25, .50, .75 and 1.00) that were simulated and the resulting 

power rates. Not surprisingly, DIF bundles were correctly identified by SIBTEST 

more often for higher magnitudes of DIF/DBF.  That is, DIF amplification was 

observed with greater frequency for maximum differences between reference and 

focal group ability on the secondary dimension.  For example, the average power 

rates for DIF/DBF magnitude of .25 were 52.8% (for item direction α = 26.1°) and 

82.7% (for item direction α = 58.5°).  Whereas the average power rates for 

DIF/DBF magnitude of .50 were 89.1% (for item direction α = 26.1°) and 99.2% 

(for item direction α = 58.5°).  The average power rates for conditions involving 

DIF/DBF magnitude greater than .50 (i.e., .75 and 1.00) were 98.7% (for item 

direction α = 26.1°) and 100% (for item direction α = 58.5°). 

Correlation between primary and nuisance traits.  This study examined 

the effect of correlated dimensions on DBF detection at three levels: 0.316, 0.632, 
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and 0.837 (corresponding to r2 = 0.1, 0.4, and 0.7, respectively). Although 

detection power was lost as dimensions became more correlated, the average 

power rate when rθη = .837 was 83.1% (for item direction α = 26.1°) and 94.8% 

(for item direction α = 58.5°).  Therefore, the ability of SIBTEST to identify 

DIF/DBF caused by multidimensionality is considerably high even when the 

nuisance trait (η) is strongly correlated (e.g., r = 0.837) with the targeted primary 

ability dimension (θ). 

Type I Error.  As illustrated by Tables 4 - 6, SIBTEST adhered closely to 

the nominal alpha level of .05 when the test contained only unidimensional items 

and for non-DIF multidimensional items.  That is, the hypothesis of No-DBF was 

falsely rejected at the .05 level of significance roughly 5% of the time.  Across all 

study conditions, the average Type I error rate was 4.7% which is an acceptable 

amount that can be attributed to random sampling error.   

For the “baseline” Type I error study, error rates (as shown in Table 4) 

ranged from .05 to .06 across the four conditions.  In particular, the average error 

rates for N = 2000 and N = 5000 were .06 and .05, respectively.  Thus, Type I 

error rates showed a slight decrease as sample size increased.   

For the analysis of DBF with non-DIF multidimensional items, the error 

rates (as shown in Tables 5 and 6) ranged from .04 to .06 for α = 26.1° and from 

.05 to .07 for α = 58.5°.  Overall, Type I error was slightly higher for the larger 

item direction.  The same relationship was observed when investigating the 

influence of correlated dimensions and sample size on DBF detection with 

SIBTEST.  In fact, the average Type I error rate across all correlations and across 
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both sample sizes was .05 for α = 26.1° and .06 for α = 58.5°.  Finally, a notable 

finding was that the smallest error rate (.04) was observed for conditions 

involving either the highest total sample size (N = 5000) and strongest correlation 

(rθη = .837) or the smallest total sample size (N = 2000) and the weakest 

correlation (rθη = .316).  However, this relationship was only observed for the item 

direction conditions (α = 26.1°) in which all of the multidimensional items 

discriminated more on the target, or primary, dimension (θ) than the nuisance 

secondary dimension (η) 

The results presented so far represent a summary of influences exerted by 

the variables investigated in the study. However, the effect of each manipulated 

variable was, in most cases, mediated by the influence of other study variables.  

Hence, a description of the combined effects of all conditions on the power and 

Type I error performance of SIBTEST follows. 

For both item directions (α = 26.1° and α = 58.5°) the lowest power rates 

were associated with DIF/DBF magnitude (dη) of .25, r = .837, and 90:10 ratio of 

reference to focal group members.  This was especially true when the condition 

involved 1800 reference group members and 200 focal group members.  For α = 

26.1° and dη = .25 acceptable power (i.e., power ≥ .80) was observed only for 

large reference and focal group sizes (i.e., 50:50 ratio with nref = 2500 and nfoc = 

2500).   As medium amounts of DIF (i.e., dη = .50) are introduced acceptable 

power rates are reached for all sample sizes except 1800:200 ratio.   

On the other hand, for α = 58.5° acceptable power is observed across all 

conditions when DIF magnitude reaches at least .50.  For α = 26.1°, the 
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correlation between dimensions greatly affected DBF detection when ability 

differences on the nuisance trait were small to medium (i.e., .25 to .50).  As shown 

in Table 2, as the correlation between dimensions increased from .316 to .837, 

power to detect DBF decreased across all sample size ratios and for every level of 

DBF simulated.  For α = 58.5°, once the amount of DIF/DBF reached .50 this 

pattern was only observed for the 90:10 ratio with the small focal group size of 

200.   

Not surprisingly, the highest power rates were associated with the largest 

simulated level of DIF magnitude (dη = 1.00).  Higher amounts of DIF were 

required before acceptable power was reached for every combination of sample 

size, sample size ratio and correlation between the two dimensions.  For α = 26.1°, 

the required amount was dη = .75 whereas for α = 58.5° a mean difference as large 

as .50 in reference and focal group ability on the nuisance secondary dimension 

was sufficient for SIBTEST to detect DBF with at least 95% accuracy. 

 

 



  

CHAPTER 5 

DISCUSSION  

 

This study investigated factors that effect DBF detection with SIBTEST, a well-

known IRT-based method.  DIF/DBF was created in ten multidimensional items that 

formed a “bundle” on a simulated 40-item test designed to measure only one dimension.  

Power and Type I error performance was assessed by calculating DBF detection rates for 

the ten-item bundle of DIF items and the 30-item bundle of non-DIF items, respectively.  

The interaction of sample size, sample size ratio, DIF/DBF magnitude, correlation 

between dimensions, and angular item direction provided much needed information to 

guide further use of SIBTEST for identifying potential sources of differential item/bundle 

functioning.    

Power Performance for true-DIF/DBF conditions 

Sample size and sample size ratio. As with many DIF studies involving sample 

size (see Shealy & Stout, 1993b; Narayanan & Swaminathan, 1994; Roussos & Stout, 

1996b), results here indicated an increase in power to detect DIF/DBF as sample size 

increased (e.g., from increasing from 2000 to 5000 total examinees).  The effect of 

sample size was further examined by comparing detection rates for equal and unequal 

reference and focal groups.  When the number of reference group members was nine 

times that of the focal group (i.e., 1800:200 and 4500:500 ratios), SIBTEST exhibited 

less power than in the equal sample size conditions (i.e., 1000:1000 and 2500:2500).  

57 
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This relationship was magnified in the conditions involving only 200 focal group 

members (compared to 1800 in the reference group). In practice, ratios like these might 

be observed in gender DIF studies involving an equal number of male and female 

examinees (50:50) or when ethnic DIF is investigated for a group of White and Hispanic 

examinees (90:10).   

Magnitude of DIF/DBF.  The influence of various examinee characteristics were 

also investigated in this study.  In particular, the difference in mean reference and focal 

group ability on the “unintended” secondary dimension was manipulated at four levels or 

magnitudes of DIF/DBF.  For a standardized difference of .25, .50, .75, and 1.00 in mean 

ability between the groups, DIF detection was examined with SIBTEST and found to 

increase with increasing levels of DIF/DBF magnitude. The impact of DIF/DBF on DIF 

detection was not surprising as higher amounts of DIF should be detected with greater 

frequency than smaller amounts.  Still, the degree to which SIBTEST was able to identify 

DIF when only small to medium amounts were simulated was impressive.  The highest 

power rates were observed for DIF magnitudes of .50 or greater combined with high 

sample sizes and low correlation between the primary and secondary dimension. These 

results agree with those obtained in earlier studies on the effect of DIF magnitude on 

detection rates.  For example, Oshima and Miller (1992) observed high power to detect 

item bias in a simulation study involving an essentially unidimensional 40-item test that 

included varying numbers of multidimensional items for which there was a difference in 

mean ability for the reference and focal groups on the nuisance trait. Their results showed 

higher detection rates for four bias indexes (signed area, unsigned area, signed sum of 
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squares and unsigned sum of squares) when the reference group had a mean ability that 

was 0.5 higher than the focal group on the secondary dimension.    

Correlation between dimensions.  The inclusion of a secondary dimension (η) in 

this investigation was necessary for the creation of item bundles to be tested for 

differential bundle functioning.  Simulating item bundles is a relatively new concept and 

thus requires sufficient description.  In this study, DIF was produced in ten 

multidimensional items for which the reference and focal group differed in mean ability.  

This allowed the ten items to form a “bundle” that was subsequently submitted to 

SIBTEST for DBF analysis. Additionally, it was of interest to this study to examine the 

power of SIBTEST to detect DIF/DBF when the two dimensions exhibited small, 

medium and large degrees of correlation (i.e., 0.316, 0.632, and 0.837 respectively).  

Previous research by Lee (2004) investigated DIF detection with correlated 

dimensions of magnitude 0.4 and 0.6.  Although Lee (2004) hypothesized that lower 

power would be associated with a higher correlation, no difference in detection rates was 

observed as the correlation between dimensions increased to 0.6. While the current study 

did observe a negative relationship between correlation and power, the trend was slight 

given the impact of other study variables on power performance. That is, although power 

decreased slightly as the correlation increased, the effect was almost negligible as 

DIF/DBF magnitude and sample size increased.  For example, when the dimensions were 

correlated as high as 0.837, power rates between 96% and 100% were observed for all 

sample size conditions (except the 1800:200 ratio) involving DIF/DBF magnitude of at 

least .50 (regardless of angular item direction). 
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Item direction.  The final variable of interest in this study was the degree to which 

the multidimensional items containing DIF measured the primary and secondary 

dimensions.  Two item directions, 26.1° and 58.5°, were simulated to examine the effect 

of having higher discriminating power of items on the secondary dimension versus the 

primary dimension.  Since a test that unintentionally includes multidimensional items (for 

which subgroups of examinees differ in mean ability on the secondary trait) is certainly 

not designed to measure a secondary or nuisance trait, it is reasonable to not expect those 

items to be a better measure of the secondary dimension than the first.  However, in 

practice this may be more commonplace than previously thought.  Mathematical story or 

word problems are item types that typically exhibit this behavior. Take for instance, the 

following set of multiple choice items (Reckase, 1985, p. 411) designed to measure 

mathematical ability: 

       9.  ( ) ?6565 =+−++−  
 A. -22 
 B. -10 
 C. 2 
 D. 10 
 E. 12 

 
 
34.  Which line is parallel to y = 3x +1 and intersects y = 6x-1 on the y-axis? 

 

1
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1
3
1 D.

1
3
1 C.

12 B.
13 A.
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20. A serving of a certain cereal, with milk, provides 35% of the potassium required 

daily by the average adult.  If a serving of this cereal with milk contains 112 
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milligrams of potassium, how many milligrams of potassium does the average 
adult require each day? 

392  E.
320  D.
147  C.
39  B.

53  A.

 

 
While Item 9 seems to measure only math ability, Items 34 and 20 appear to be 

measuring both math and reading ability with item 20 requiring more reading 

comprehension skills than Item 34.  What if Item 20 has a higher discrimination value for 

the reading dimension than the math dimension?  That is, if this item differentiates 

between proficient and non-proficient readers to a greater degree than it separates 

students with high and low math ability, then any estimate of math ability using this item 

would be inaccurate using traditional IRT methods.  Thus, the inferences and conclusions 

reached about the mathematics abilities of examinees would not be valid.  Assuming this 

can and does happen in real testing situations, what is the impact of multidimensional 

item discrimination on DIF/DBF detection?   Using angular item directions of α = 26.1° 

and α = 58.5° (corresponding to discrimination pairs of a1 = 1.00, a2 = 0.49 and a1 = 0.30, 

a2 = 0.49, respectively) DBF detection rates were explored using SIBTEST.   

Similar to the findings of Oshima and Miller (1992), this study observed an 

increase in power to detect DIF/DBF when the items in the multidimensional bundle had 

higher discrimination parameters for the secondary trait than for the first.  Thus, as the 

items measured the nuisance dimension more than the primary dimension or target 

ability, reference and focal group differences in mean ability on the nuisance trait were 

more easily identified by SIBTEST.  Oshima and Miller (1992) investigated item 

directions and power to detect differential functioning in individual items.  However, 
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their conclusion that higher item directions (e.g., 45° and 60°) lead to better DIF 

detection than with lower angles (e.g., 15° and 30°) mirrors the findings in this study for 

differential functioning in an item bundle.  

 
  

Type I Error Performance 

 Type I error was assessed on two levels – when items only measured one 

dimension and when multidimensionality was present in an item bundle.  Therefore, a 

baseline was established from which SIBTEST’s ability to control false flagging of non-

DIF multidimensional items could be evaluated.  Thus, a unidimensional test of 40 items 

was simulated and the last ten items were submitted to SIBTEST as a bundle so that the 

“baseline” Type I error rate could be determined.  This was followed by an assessment of 

the SIBTEST Type I error rate when the ten-item bundle was composed of 

multidimensional items.  For both the baseline condition and the conditions involving 

multidimensional items, SIBTEST adhered closely to the nominal alpha level of .05. The 

fact that inflated Type I Error was not observed in this study is a testament to SIBTEST’s 

ability to separate multidimensionality from multidimensionality that leads to DIF/DBF.   

These findings confirm those from a previous DIF study by Oshima & Miller (1992) who 

reported small Type I error rates when mean ability on the secondary trait was equal for 

the reference and focal group.   

 

Summary of the Effects of Manipulated Variables on DBF Detection 

 This study examined the influence of several variables on DBF detection with 

SIBTEST.  Although each studied variable impacted power and Type I error, it was their 
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combined effect that provides the most information to guide test development and 

practitioners in the field.  Differences in mean ability on the secondary trait heavily 

impacted the rate of accurate DBF detection with noted increases in power observed for 

higher angular item directions.  As with most simulation studies that include sample size 

as a variable, the larger the overall sample size and the less unequal the ratio of reference 

to focal group members is, the greater the probability that true-DIF/DBF will be detected.  

Finally, the smaller the correlation is between the dimensions measured by a bundle of 

items on a test, the more power there will be to detect differential functioning in that 

bundle.  These results provide insight into the ideal conditions for detecting individual 

DIF as well as amplified DIF exhibited by a group, or bundle, of items. 

 

Comparison of the Present Findings to Russell (2005) 

 As previously described in Chapter 2, Russell’s (2005) Monte Carlo study 

examined the impact of several variables on the DTF and DBF detection rates of DFIT 

and SIBTEST, respectively.  The current study only reports results for SIBTEST but the 

process of simulating differential bundle functioning was the same and is thus 

comparable to Russell’s investigation.  Like Russell, this study created item bundles by 

including multidimensional items on a simulated test designed in theory to be 

unidimensional.  Simulating reference group members to have a higher mean ability than 

the focal group on the nuisance secondary dimension, resulted in DIF for each of the 

multidimensional items, that when examined together produced differential bundle 

functioning. The results of both studies give support to the claim that DIF is caused by 
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“unintentional” multidimensionality for which groups differ in ability on the dimension 

not intended to be measured.    

A comparison of the Russell (2005) study to the present findings highlights some 

similarities and differences.  First, although the factors impacting DBF detection with 

SIBTEST varied in the two studies, a few of the variables were the same.  For example, 

like the current study, Russell looked at the influence of dimensionality, sample size and 

nuisance ability differences (or magnitude of DIF) on DBF power and Type I error rates 

with SIBTEST.    

However, Russell’s findings for SIBTEST fell somewhat short of his 

expectations.  For instance, in the study of Type I error, Russell hypothesized that 

SIBTEST would not exceed the nominal α of .01 when used to analyze multidimensional 

item bundles for which there were no ability differences on the nuisance trait.  Also, the 

average “baseline” (i.e., when the test is comprised of only unidimensional items) DBF 

Type I error rate across all conditions was .353. These results would indicate that 

SIBTEST is incapable of avoiding false positives even when there is only one dimension 

being measured by a test.  However, upon closer inspection it is evident that these errors 

increased greatly as target ability differences increased from moderate to large.  In fact, in 

conditions with no primary ability differences, the average Type I error rate was .015 for 

conditions with the unidimensional bundle and .030 for conditions with the 

multidimensional bundle. On the other hand, the current study found that SIBTEST 

controlled Type I errors very well across all simulated conditions.  In fact, the average 

“baseline” Type I error rate was .055 and the average error rate with two dimensions was 

.048 (for α = 26.1°) and .058 (for α = 58.5°) – all close to the nominal alpha level of .05. 
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With regard to power performance, this study manipulated several of the variables 

investigated by Russell.  For example, both studies found SIBTEST to be more powerful 

in detecting DBF as sample size increased.  However, the magnitude of this finding 

varied across the two studies.   In Russell (2005) for instance, the average SIBTEST 

power rate for the largest sample size (Nref = 1000 and Nfoc = 1000) was .775 compared to 

a power rate of .675 for the smallest reference and focal group sizes (Nref = Nfoc = 500).  

On the other hand, the current study observed slightly higher power rates for the sample 

size conditions involving 1000 reference and 1000 focal group members.  That is, the 

average DBF power rates for this sample size level were .873 (for α = 26.1°) and .976 

(for α = 58.5°).  Furthermore, the SIBTEST power rate reported by Russell across all 

conditions was .725 compared with the average rate of .848 (for α = 26.1°) and .955 (for 

α = 58.5°) observed in the present study.  It seems that the presence of target ability 

differences also negatively influenced power results in Russell’s study.  In Russell (2005) 

SIBTEST demonstrated an overall empirical power of .725, with the proportion of true-

positives in a single condition ranging from .22 to 1.0. For conditions involving primary 

ability differences, SIBTEST performed best when impact was minimal. 

The Type I error and power rate differences observed between Russell (2005) and 

the current study may be explained by differences in study design.  First, Russell 

evaluated the Type I error and power performance of DFIT and SIBTEST at the alpha 

level of .01 which is more conservative than the level of significance (.05) used in this 

study.  Russell explains early in his study that α = .01 will be used as the criteria for 

rejecting the no-DIF hypothesis because it is the level recommended by Raju, van der 

Linden and Fleer (1995) when analyzing items with DFIT.  However, Raju, et al’s (1995) 
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rationale for using this significance level was based on a study by Fleer (1993) that 

found, after many replications with simulated data, that approximately 1% of non-DIF 

items were falsely flagged with DIF using a cutoff-value of .006 for the DFIT indices.  

Raju et al (1995) and others have since questioned the use of this somewhat arbitrary 

cutoff value and whether it or an empirically-determined cutoff value is ideal for 

DIF/DTF analyses.   

Second, the number of replications per condition varied between the two studies.  

That is, compared with the 1000 replications per condition in the current study, Russell 

examined DTF and DBF performance using only 50 replications for each simulated 

condition.  Although some research (e.g., Harwell, Stone, Hsu, & Kirisci, 1996) has 

supported the use of fewer replications with Monte Carlo studies, the probability of 

making Type I and Type II errors increases when minimal replications are used.  With 

this in mind, it may be more important to examine fewer variables if it will increase the 

number of replications that can be conducted. 

Although the amount of simulated DIF between the two studies (20% vs. 25%) is 

negligible, the difference in test length was not.  As previously mentioned, Russell (2005) 

examined DBF as a function of the number of test items and observed a positive 

relationship between the two – longer tests yielded smaller Type I error rates.  Perhaps 

there is an ideal combination of test length and percentage of DIF items that minimizes 

error and increases power.  The results of the current study would indicate that minimal 

(but meaningful) amounts of DIF (e.g., magnitudes of 0.5 or greater) can be detected with 

great accuracy by SIBTEST when a reasonable proportion of items exhibit DIF (20% – 
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25%) and the test length (e.g., 40 items) maximizes the information that can be gathered 

about examinee ability on the latent trait.   

One of the major differences in study design between this and Russell’s study was 

the presence or absence of target ability differences in the investigation of DBF power 

and Type I error performance with SIBTEST.  Russell observed inflated Type I errors 

and decreased power for conditions where reference and focal groups differed greatly on 

target, or primary, dimension.   However, for comparable conditions, results from this 

study were similar to those of Russell.  For instance, with no impact present, Type I error 

rates closely adhered to the nominal alpha level specified in each study. In Russell’s 

study, however, Type I error rates dramatically increased when ability differences 

between the reference and focal group existed on the primary dimension, with the largest 

rates occurring with the largest ability difference.  

With regard to power performance, since Russell (2005) used one set of 

discrimination parameters for his multidimensional items where the second dimension 

had a higher discrimination value than the first (a1 = 0.30; a2 = 1.00), it would be 

expected that his results would follow more closely with the power results in this study 

from conditions where a1 = 0.30. Indeed, both studies found that with DIF magnitude of 

.5 or greater, power was close to 100%. The only exception to this occurred in Russell’s 

study in conditions with large impact and 10 items. With moderate DIF, comparable 

sample sizes, and no impact, power was also similar for both studies, with rates also close 

to 100%. In both studies, SIBTEST was found to be more powerful in detecting DBF as 

sample size increased. While power was very high in most of this study’s conditions, 

Russell explored the impact of primary ability differences among his conditions and 
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found that with a large difference, power was greatly reduced, particularly with shorter 

tests. The findings from both studies support the strength of SIBTEST in identifying 

DBF, particularly when the second dimension has a higher discrimination than the first, 

but Russell’s study also shows a weakness of SIBTEST in detecting DBF when ability 

differences are present on the primary dimension. 

Limitations and Directions for Future Research 

The generalizability of these findings is limited by the specific simulated 

conditions chosen for the study.  The available choices for selecting generating item 

parameters, sample size and sample size ratios, trait distributions for the reference and 

focal groups, correlations between the primary and nuisance dimensions, item directions, 

and dimensionality structure were wide and varied and thus not fully captured by this 

study.  Here, unidimensional item parameters were based on realistic values used in 

previous research (Raju, van der Linden, Fleer, 1995), simulated DIF/DBF was 

unidirectional (i.e., favored the reference group) across all conditions, three levels of 

correlation were explored to represent weak, moderate and strong relationships between 

ability dimensions, item directions were limited to two levels – low angle and high angle, 

and items were simulated to measure only two dimensions.   

These limitations suggest directions for future research.  First, it would be 

interesting to observe the effects that other variables, such as percent of test items that 

form a DIF bundle, have on DIF detection.  Since previous studies suggest that DIF/DBF 

caused by multidimensionality is more likely to be detected if the test is essentially 

unidimensional (Oshima & Miller, 1992) assessing the performance of SIBTEST as the 

hypothesis of essential unidimensionality becomes less tenable could result in 
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information related to the minimal degree of unidimensional structure that is required to 

detect DIF/DBF with adequate power while controlling Type I error.   

Second, this study’s use of identical correlations between the first and second 

dimension for the reference and focal groups may not reflect real-test conditions.  

Perhaps the strength of correlation between multiple abilities (such as reading and math) 

is not the same for two subgroups of examinees (such as boys and girls).  For example, in 

the case of math word problems, it may be possible that for boys’ reading ability is more 

highly correlated with math ability than it is for girls.  Results from the current study 

illustrate the adverse effects that small sample sizes and large ratios of reference to focal 

group have on DIF detection.  Recall, that DIF detection was poorest across all 

magnitudes of DIF/DBF when the reference group (size of 1800) was nine times larger 

than the focal group (size of 200).  This could have a significant effect on the ability of 

DIF/DBF methods to accurately identify DIF items and bundles for subgroups of similar 

sizes with real test data.  However, to test this hypothesis and others, future research 

should consider simulating different correlations between the primary and secondary 

dimension for the reference and focal groups.   

A third direction for future research could be to include bundle DIF that favors the 

focal group in addition to that which advantages the reference group.  By balancing the 

direction of differential bundle functioning, DIF amplification and DIF cancellation can 

be explored.  It is conceivable that some items on a test would favor one subgroup (e.g., 

reading comprehension items in which the context is football might advantage male 

examinees) while other items favor another subgroup (e.g., those with context involving 

interpersonal relationships might advantage female examinees).  It was interesting to 
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examine the ability of SIBTEST to detect the accumulation of DIF resulting in significant 

DBF against a particular subgroup. However, assessing DIF cancellation (i.e., when 

DIF/DBF that favors the reference group for one set of items is cancelled by DIF/DBF in 

another set of items that favors the focal group) with SIBTEST would also be very 

informative.   

Another suggestion is to examine the interaction between item difficulty and item 

discrimination and its effect on DBF detection with SIBTEST.  Are easier items that 

measure the secondary trait more than the first, but which contain no bias, more likely to 

be identified as DIF items or bundles? Other questions regarding the ability of SIBTEST 

to control the inflation of Type I error while demonstrating sufficient power to detect 

true-DIF/DBF could be answered by varying item difficulty and discrimination 

parameters. 

Finally, another limitation of this study was the exclusion of other DBF methods.  

SIBTEST demonstrated excellent power and Type I error control when used to examine 

differential bundle functioning under the specific conditions simulated in this study. 

However, SIBTEST is not the only procedure capable of analyzing bundles of items for 

DIF amplification.  The other method designed to do this is known as DFIT (Differential 

Functioning of Items and Tests; Raju, van der Linden, and Fleer, 1992) and it uses a 

three-step procedure to test for differential item/bundle/test functioning (see Appendix A 

for more details on DFIT).  However, the separate phases of analysis with DFIT make it 

less attractive for use in a simulation study. Although Russell (2005) used DFIT to 

analyze differential test functioning with simulated items, the results were less than 

stellar. For example, in Russell’s study only 50 replications were conducted for each 
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condition (presumably because of the large amount of computing time required to 

analyze a single condition).  Russell also observed very low power rates (i.e., average of 

.425 across all conditions) and largely inflated Type I error rates (i.e., average of .227 

across all conditions) with DFIT.  When compared with SIBTEST, power was much 

lower and Type I error rates were higher with DFIT. These unfavorable findings for 

DFIT highlight some of the disadvantages to using this method. On the other hand, the 

version of DFIT available at the time of Russell’s study made use of an arbitrary cutoff 

value of .006 for the statistical significance test. A newer version now exists that 

establishes an empirical cutoff using the Item Parameter Replication (IPR) method.  The 

IPR method is discussed in more detail in Appendix A.   

The current study originally set out to examine DBF analysis with SIBTEST and 

DFIT.  Since these are the only two procedures capable of analyzing item bundles for 

DIF amplification, it was logical to try and examine them together.  However the overall 

goal of this study was to investigate conditions that impact DBF detection and further 

explore the potential of DBF analysis in identifying the source of differential item 

functioning.  Hence, once it was determined that the current version of DFIT is unable to 

realistically evaluate DBF in a simulation study with the minimal number of replications 

required to obtain stable results, it was eliminated from further analysis.  However, 

details on the efforts to include DFIT in the current study may provide useful information 

to guide future research.  Therefore, a discussion of the DFIT experience follows (a 

detailed description of the DFIT procedure and indices can be found in Appendix A).  

Note that the following is an attempt to describe the challenges that arose due to IRT 

calibration and item parameter linking as separate issues from those associated with DBF 
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analysis with the DFIT program.  However, since DFIT relies on IRT parameter 

estimates and linking coefficients from external programs, its performance will invariably 

be dependent on the quality of the item response data and the external programs (e.g., 

IRT calibration and linking programs) used to analyze those data. 

In the process of preparing the data for DFIT analysis many complications arose.  

First, the current procedure for analyzing items, bundles and tests with DFIT makes use 

of the Item Parameter Replication method (Oshima, Raju & Nanda, 2006) to produce 

cutoff values for DFIT based on particular datasets and individual items. While this is 

very helpful to practitioners in the field, it presents some challenges to simulation 

research with DFIT. For example, DFIT uses item and ability estimates from 

unidimensional IRT programs such as BILOG-MG3 (Zimowski, Muraki, Mislevy, & 

Bock, 2003) and PARSCALE (Muraki & Bock, 1997). When multidimensional items in 

the present study were submitted to BILOG-MG3 and PARSCALE, lack of convergence 

was a major problem.  On average, roughly four out of 10 replications failed to yield 

acceptable parameter estimates.  While the exact reason for lack of convergence is 

unknown, it is likely that the degree of multidimensionality present in the data was too 

high for the simulated test to be considered essentially unidimensional.  As a result, the 

two IRT programs (BILOG and PARSCALE) were unable to produce stable estimates of 

item parameters. Athough no test of essentially dimensionality was conducted, it is 

suggested that future studies investigate degree of dimensionality before attempting to 

estimate item parameters with unidimensional IRT calibration programs.   

The results of parameter estimation in this study contradict those obtained by 

Kirisci, Hsu and Yu (2001) in their investigation of the robustness of unidimensional IRT 
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calibration programs (specifically, BILOG, MULTILOG and XCALIBRE).  In their 

study, Kirisici, Hsu and Yu concluded that BILOG was robust to multidimensionality 

when root mean squared error (RMSE; see equation 10) of approximation was used to 

compare true parameter values to estimated values.   

n

XX
RMSE

n

j
iij

X

∑ −
=

2)ˆ(
         

(10) 

where 
 i and j, respectively, represent items and replications, 
 n is the total number of replications, and  

X̂  is the estimate of parameter X (a, b, or c). 
 

Using the results of previous research (see Ansley & Forsyth, 1985; De Ayala, 1994; 

Wang, 1986) that suggested unidimensional item and ability estimates approach the 

average of their multidimensional parameter values, Kirisci, Hsu and Yu used the average 

of the true parameter values for the three simulated latent traits as the value for X in 

equation 10.  The study conducted 10 replications and calculated the mean RMSE for a 

set of conditions involving a three-dimensional test structure and for a set of conditions 

representing a unidimensional test structure.  Therefore, the calibration programs were 

categorized as robust against the violation of unidimensionality if there was no 

statistically significant difference between the three-dimensional mean RMSE and the 

unidimensional mean RMSE. Kirisci, Hsu and Yu (2001) do not suggest that essential 

unidimensionality is a pre-requisite for using these IRT calibration programs.  Hence, this 

study did not make the assumption that essentially unidimensionality was a factor in the 

robust estimates obtained from using BILOG with multidimensional data.   
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In the current study preliminary results with BILOG were unstable, yielding (in a 

most random fashion) unidimensional estimates of discrimination that approached either 

the discrimination parameter value for one of the simulated dimensions or the average of 

the two discrimination parameters.  By the standards established for this study, these 

inconsistencies were unacceptable and it was decided that BILOG would not be a feasible 

option for item calibration.  Subsequently, PARSCALE was consulted but abandoned 

after similar behavior was observed.  The reason for these unfavorable results is unknown 

but one explanation may be that the amount of variance accounted for by the target 

dimension was neither fixed nor varied in the present study.  It was not examined at all.  

That is, Reckase’s (1979) suggestion that stable item parameter estimates using these 

programs are more likely to occur when the dominant dimension accounts for at least 

20% of variance in test scores, was not evaluated in this study.  The influence of target 

ability on test performance was not specifically investigated and therefore its contribution 

to the instability of BILOG and PARSCALE estimates of multidimensional 

discrimination parameters was not determined.    

Another difference between Kirisci, Hsu and Yu (2001) and this study is that the 

previous work suggested use of unidimensional IRT programs such as BILOG when 

there are several highly correlated (i.e., r  > .4) dimensions of approximately equal 

dominance and for which the correlations are approximately equal (in magnitude) across 

dimension pairs.  Their study generated data for a three-dimensional test, yielding three 

pairs of correlations (i.e., ).  However, the current study only examined two 

dimensions, yielding one pair of correlated dimensions (r

323121
 , , θθθθθθ rrr

θη).  Perhaps, this factor 

disqualified BILOG (and all unidimensional IRT programs) for use in parameter 
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estimation for this study.  Since the primary focus of this investigation was DBF 

detection rates – not parameter recovery – the decision to exclude the DFIT program 

(since its performance would certainly be influenced by the quality of parameter 

estimates from BILOG) was deemed appropriate. 

Leaving the issues with BILOG, the use of DFIT also requires that parameter 

estimates be submitted to an external program such as EQUATE (Baker, 1993) or 

IPLINK (Lee & Oshima, 1996) to calculate linking coefficients that will convert 

estimates to a common scale for the  reference and focal group since they are calibrated 

separately in BILOG-MG3.  There are complications involved with using either of these 

linking programs. For example, EQUATE outputs linking coefficients to the computer 

screen instead of to a file where the linking coefficients could be retrieved for later use by 

DFIT.  While this is not a concern for real test data that will be analyzed one time, it was 

certainly an obstacle for the current simulation study that attempted to analyze 104 

conditions with 1000 replications per condition.  The other linking program, IPLINK, 

suffered from the opposite limitation; although output is directed to a file, the program 

cannot be called from DOS.  

Finally, DFIT is limited by current computer processing time.  To run 1000 

replications of one condition would require approximately 250 hours of non-stop 

processing.  When multiplied by 104 conditions, the total time required is almost three 

years!  The reason is that DIF/DBF is analyzed within DIFCUT, a SAS program that 

creates a null distribution of 1000 item parameter pairs (for the reference group and focal 

group) using the estimates from BILOG-MG3.  From this empirical distribution of item 

parameters, cutoff values for DIF/DBF are computed at four levels of significance (.10, 
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.05, .01, and .001).  As a result, with DFIT it is not currently feasible to run even the 

minimal number of replications that are currently acceptable for Monte Carlo research.   

 Simply put, extensive research and software development may be required before 

DFIT using the new Item Parameter Replication method can realistically be used in 

simulation research.  Among the necessary changes are: the need for DOS-based linking 

programs that direct output to files instead of the computer screen, reduced processing 

time within the DIFCUT program, and better convergence during parameter estimation 

when using IRT calibration programs such as BILOG-MG3 with multidimensional data 

(although this may be mediated by simulating essentially unidimensional tests).  The 

current version of DFIT is written in SAS which appears to hinder processing time.  

There is a FORTRAN version of DFIT that is scheduled for release in Summer 2007.  

The expectation is that DFIT will run much faster and that may be an ideal time to 

examine DFIT for DBF analysis with essentially unidimensional data and for a minimal 

(but acceptable) number of replications.  

Implications and Conclusions 

One advantage of DBF analysis over traditional DIF analysis is the potential for 

DIF to be amplified and increase the probability of detection.  This study demonstrated 

the use of SIBTEST to detect DIF in multidimensional item bundles and the findings 

illustrate the usefulness of Shealy-Stout’s (1993a) Multidimensional Model for DIF 

(MMD).  The ability to identify “suspect” items or item bundles thought to measure a 

secondary trait in addition to the target ability can lead to substantive DIF/DBF 

hypotheses a priori and hence provide information on the potential cause of differential 

item, bundle, or test functioning.  As with all simulation studies, knowledge of the “truth” 
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provides an opportunity to examine the degree to which a statistical procedure such as 

SIBTEST is able to recover the “truth”. Similarly, the ability to identify which test items 

measure multiple dimensions increases not only the power to locate DIF/DBF but also 

increases the accuracy of DIF hypotheses used to explain the cause of DIF/DBF.   

Of course, the MMD assumes that a meaningful secondary dimension can be 

identified prior to statistical DIF/DBF analysis and that there exists subgroups of 

examinees that differ in ability on that dimension.  This study suggested several 

organizing principles that can be used to develop DIF/DBF hypotheses before statistically 

analyzing items or bundles for DIF/DBF.  Whether using test specifications or a 

statistical dimensionality tool such as DIMTEST, the assignment of items to bundles is 

basically an a priori assessment of dimensionality.   

The examples used in this study highlight an issue that is becoming more 

pervasive in testing and which complicates use of unidimensional IRT models to estimate 

examinee ability on the target dimension.  However, since it is still popular to use 

unidimensional models in the presence of multidimensional items, the importance of 

knowing which items are measuring more than one dimension cannot be overstated.  

Hopefully this study will help advance the use of DBF analysis to identify potentially 

biased items and develop fair tests for all examinees. 
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APPENDIXES 

APPENDIX A 

 
DFIT 

 
The first method capable of analyzing bundles of items was developed by Raju, van der 

Linden, and Fleer (1992; 1995) for detecting differential functioning of items and tests 

(DFIT).  The DFIT framework uses three indices to measure differential performance 

between subpopulations of interest: 1) NCDIF (noncompensatory differential item 

functioning); 2) CDIF (compensatory differential item functioning); and 3) DTF 

(differential test functioning).  As with other DIF indices, NCDIF assumes that all items 

except the studied item are DIF-free.  However, the CDIF index does not make this 

assumption. Rather, its values total the overall differential functioning of the test (DTF), 

allowing the DIF of individual items to either add up or cancel each other out.  This is 

generally referred to as DIF amplification and cancellation.  The compensating ability of 

the CDIF index aids in test design by estimating the net effect of removing items from a 

test (Raju, 1995; Chamblee, 1998; Oshima, 1998).  

 Differential Test Functioning. In Item Response Theory (IRT), an examinee’s 

expected proportion correct (EPC), or true score (Tj) on a unidimensional dichotomously 

scored test can be expressed as  

      ,             (1) ( )∑
=

=
n

i
jij PT

1
θ
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where Pi(θj) represents the probability of success for examinee j with trait level (e.g., 

ability) θ on item i.  Pi can be represented either by a one-, two-, or three parameter 

logistic model or the normal ogive model (Raju, 1995; Lord, 1980) with item parameters 

a (discrimination), b (difficulty), and c (pseudo-guessing).  In the DFIT framework, each 

focal group examinee has a true score (TjF) that is compared to the true score he or she 

would have if he/she were a member of the reference group (TjR).   If an examinee’s (TjF) 

and (TjR) scores are equal, then the examinee’s true score is independent of group 

membership.  That is, differential test functioning (DTF) is indicated by differences 

between (TjF) and (TjR).  As differences between (TjF) and (TjR) increase, so does the 

amount of DTF.  At the examinee level, DTF is defined as (TjF  - TjR)2. Hence, DTF 

across examinees, is defined as 

     ( )2jRjF TTDTF −= ε     (2) 
 
where the expectation ε  can be taken over the focal or reference group.   
     
 Bundle CDIF.  Raju’s DFIT framework also includes a compensatory DIF (CDIF) 

index, the values of which add up to the total DTF value for a test.  CDIF considers other 

items in the calculation of DIF, and its extension bundle CDIF, does the same with 

bundles of items.  The CDIF index (see Equation 3) allows test developers to remove 

items or item bundles that contribute significantly to differential test functioning. 

         (3) DTFCDIF
n

i
i =∑

=1

 Bundle NCDIF. Bundle NCDIF, an extension of NCDIF, examines whether two 

matched ability groups respond differently to a bundle of items.  DBF analysis within the 

DFIT framework involves calculating a DTF value for each bundle of items.  However, 
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in bundle NCDIF no other bundles are considered in calculating DTF for the bundle 

under study.  That is, NCDIF and bundle NCDIF assume that all but the studied 

item/bundle is DIF-free.  Additionally, ability parameter estimates are based on all items 

in a test or bundle and are only obtained once.  Hence the calculation of bundle NCDIF 

differs from bundle CDIF.  Since the DTF value depends on the number of items in a 

bundle, bundles containing different numbers of items should not be directly compared.  

Instead the average DTF for each bundle (a.k.a. Bundle NCDIF) obtained by dividing the 

total DTF by the number of items in the bundle can be used to compare the amount of 

DBF in multiple bundles.  A formulaic definition of NCDIF follows in Equation 4.  

    ,  (4) ii
ddiNCDIF 22 μσ +=

where  is the variance in item probabilities for item i and 2
idσ

idμ  is the mean difference 

in item probabilities for item i.   

Previously, an empirically-determined cutoff value (.006) was used with the DTF 

and NCDIF indices.  Raju, van der Linden, and Fleer (1995) raised questions regarding 

the adequacy of this value and suggested that future research focus on establishing 

precise critical values for different alpha levels.  In 2006, Oshima, Raju and Nanda 

introduced the Item Parameter Replication (IPR) method that determines cutoff values for 

DFIT based on particular datasets and individual items. The IPR algorithm is completed 

using the SAS (SAS Institute, 2002) program DIFCUT which uses a single file of item 

parameters to simulate many item parameter pairs resulting in the distribution of 

DIF/DTF indices under the condition of no DIF/DTF (Nanda, Oshima, & Gagne, 2006). 

Figure 2 illustrates the three-step procedure DFIT uses to test for differential 

item/test functioning.  First, item parameters (a, b, c) and person parameters (θ) are 
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estimated using BILOG-MG3 (Mislevy & Bock, 1990), followed by an assessment of 

model-data fit.  Second, reference and focal group parameters are placed on a common 

scale using the program IPLINK (Lee & Oshima, 1996).  This is required when 

parameters for each group are estimated separately.  The third and final step is calculation 

of DBF values for each item bundle.  DFIT includes NCDIF and DTF indices for 

differential item/test functioning, respectively.  Therefore, a single bundle (consisting of 

multidimensional items) is submitted to DFIT and the DTF index is used to quantify the 

amount of differential bundle functioning.   This step involves submitting three BILOG-

MG3 output files and the linking coefficient file from step two to calculate NCDIF and 

DTF cutoff scores for the multidimensional bundles.  The output is a list of NCDIF and 

DTF values and their significance levels.   
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Figure 2.  A Graphical Representation of the three-step DFIT procedure.  

 

 



 

APPENDIX B 
 

Table 7 
 
RefParam.txt. Item Parameters Used to Generate Unidimensional Item Response Data 
for the Reference Group and Focal Group (before DIF was embedded).   
 
 
 

 a         b  c 
0.55  0.00   0.2 
0.55  0.00   0.2 
0.73 -1.04  0.2 
0.73     -1.04  0.2 
0.73    0.00  0.2 
0.73  0.00  0.2 
0.73  0.00   0.2 
0.73   0.00  0.2 
0.73   1.04   0.2 
0.73   1.04   0.2 
1.00  -1.96  0.2 
1.00  -1.96  0.2 
1.00 -1.04  0.2 
1.00     -1.04  0.2 
1.00 -1.04  0.2 
1.00 -1.04  0.2 
1.00  0.00  0.2 

         1.00      0.00     0.2 
1.00   0.00  0.2 
1.00   0.00   0.2 
1.00   0.00  0.2 
1.00  0.00  0.2 
1.00  0.00  0.2 
1.00  0.00  0.2 
1.00  1.04  0.2 
1.00  1.04  0.2 
1.00  1.04  0.2 
1.00  1.04  0.2 

         1.00      1.96     0.2 
             1.00      1.96     0.2 
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Table 8 
 
GenMirt Param.txt. Item Parameters Used to Generate Multidimensional Item Response 
Data for the Reference Group and Focal Group (before DIF was embedded for α = 
26.1°).   
 
 

 
 

a1      a2       b     c 
1.00   0.49   0.0  0.2 
1.00   0.49   0.0  0.2 
1.00   0.49   0.0  0.2 
1.00   0.49   0.0  0.2 
1.00   0.49   0.0  0.2 
1.00   0.49   0.0  0.2 
1.00   0.49   0.0  0.2 
1.00   0.49   0.0  0.2 
1.00   0.49   0.0  0.2 
1.00   0.49   0.0  0.2 
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Table 9  
 
GenMirt_Param_2.txt.  Item Parameters Used to Generate Multidimensional Item 
Response Data for the Reference Group and Focal Group (before DIF was embedded for 
α = 58.5°. 
 
 
 

a1       a2       b     c 
0.30   0.49   0.0  0.2 
0.30   0.49   0.0  0.2 
0.30   0.49   0.0  0.2 
0.30   0.49   0.0  0.2 
0.30   0.49   0.0  0.2 
0.30   0.49   0.0  0.2 
0.30   0.49   0.0  0.2 
0.30   0.49   0.0  0.2 
0.30   0.49   0.0  0.2 
0.30   0.49   0.0  0.2

 



 

APPENDIX C 
 

SAS program 
 
 

Uni_Multi.sas 
 

Options ls= 182  ps=32767  pageno=1  formdlim='='; 
 
%MACRO TR; 
 
 
proc printto  LOG='c:\SIBdat\Logstuff.txt' NEW;  
 
 
proc printto print='C:\SIBdat\POWER\2500_3_25_Outputstuff.txt' NEW; 
 
 
%DO rep = 1 %TO 1000; 
 
 
*2500_3_25; 
 
%let r = 0.316;  
%let dn = 0.25; 
%let sampref = 2500; 
%let sampfoc = 2500; 
%let seedref = 62733; 
%let seedfoc = 58015; 
%let uni_i=30; 
%let multi_i=10; 
 
 
 
 
/* Generate uni_i unidimesional items for the reference group */ 
DATA D1; 
  INFILE 'C:\SIBTEST\Refparam.txt' MISSOVER; 
  INPUT A B C; 
run; 
%INCLUDE 'C:\SAS class\project\refTRGEN.SAS'; 

94 
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*%INCLUDE 'C:\dissertations\terris\refTRGEN.SAS'; 
%refTRGEN(DIST= 'NORMAL', MODEL=L3, DATA=D1, OUT=D3, NI=&uni_i, 
NE=&sampref); 
 
/* Generate uni_i unidimesional items for the focal group */ 
DATA E1; 
  INFILE 'C:\SIBTEST\Refparam.txt' MISSOVER; *use same parametes as 
REFERENCE group since this is theta dimension; 
  INPUT A B C; 
run; 
%INCLUDE 'C:\SAS class\project\focTRGEN.SAS'; 
*%INCLUDE 'C:\dissertations\terris\focTRGEN.SAS'; 
%focTRGEN(DIST= 'NORMAL', MODEL=L3, DATA=E1, OUT=E3, NI=&uni_i, 
/*NE=&sampfoc*/NE=&sampfoc); 
 
data params; 
  infile 'c:\SIBTEST\GenMIRT param.txt' lrecl=124 missover; 
  input itemnum a1 a2 b c; 
run; 
 
proc iml; 
items=&uni_i+&multi_i; 
 
use d3; read all into ref_uni; 
use e3; read all into foc_uni; 
megamtx=repeat(0,&sampref+&sampfoc,items); 
refmtx=repeat(0,&sampref,items); 
focmtx=repeat(0,&sampfoc,items); 
do i = 1 to &uni_i; * This makes the (sampref+sampfoc) x uni_i matrix of 
unidimensional item responses; 
  do n = 1 to &sampref; 
    megamtx[n,i]=ref_uni[n,1+i]; 
  end; 
  do n = 1 to &sampfoc; 
    megamtx[&sampref+n,i]=foc_uni[n,1+i]; 
  end; 
end; 
 
use params; 
  read all var {a1 a2} into popa; 
  read all var {b} into popb; 
  read all var {c} into popc;; 
nitms = nrow(popa); 
/**************************************************************** 
  Define the subroutine to analyze each examinee response vector. 
****************************************************************/ 
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start irtscore (nitems, simulees, idn2, rrv, popa, popb, popc, score); 
  factnorm=PROBNORM(popb+(popa*simulees)); 
  prob_i = (popc+((1-popc)#factnorm))`; 
/**************************************************************** 
  The following yields the score vector (1,0) 
****************************************************************/ 
  score = prob_i > rrv; 
finish; 
 
/**************************************************************** 
  This loop generates two theta values for each examinee  
  and a set of NITMS random numbers. 
****************************************************************/ 
 
do n = 1 to &sampref; 
  seed1 = &seedref + &rep*n; 
/**************************************************************** 
  Generation of theta (and eta) values from N(0,1) distribution 
****************************************************************/ 
  sim1 = rannor(seed1);  *my note: this generates a single value; 
  sim2 = (&r*sim1+sqrt(1-&r**2)*rannor(seed1*2))+&dn; 
   
  simulees = sim1//sim2; 
/**************************************************************** 
  Generation of uniform random numbers for each person  
  and each test item.  These are used to determine item  
  response correctness. 
****************************************************************/ 
  rrv = J(1,nitms,0); 
  do k = 1 to nitms; 
    rrv[1,k] = RANUNI(seed1+2*&rep); 
  end; 
/**************************************************************** 
  Call the scoring subroutine 
****************************************************************/ 
  run irtscore (nitms, simulees, idn2, rrv, popa, popb, popc, score); 
 
  do i = 1 to &multi_i; 
    megamtx[n,&uni_i+i]=score[1,i]; 
  end; 
end; *Ends sampref loop; 
do n = 1 to &sampfoc; 
  seed1 = &seedfoc + &rep*n; 
  sim1 = rannor(seed1); 
  sim2 = (&r*sim1+sqrt(1-&r**2)*rannor(seed1*2)); 
  simulees = sim1//sim2; 
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  rrv = J(1,nitms,0); 
  do k = 1 to nitms; 
    rrv[1,k] = RANUNI(seed1+2*&rep); 
  end; 
  run irtscore (nitms, simulees, idn2, rrv, popa, popb, popc, score); 
  do i = 1 to &multi_i; 
    megamtx[&sampref+n,&uni_i+i]=score[1,i]; 
  end; 
end; *Ends sampfoc loop; 
*print megamtx; 
do i = 1 to items; 
  do n = 1 to &sampref; 
    refmtx[n,i]=megamtx[n,i]; 
  end; 
end; 
do i = 1 to items; 
  do n = 1 to &sampfoc; 
    focmtx[n,i]=megamtx[&sampref+n,i]; 
  end; 
end; 
 
create ref from refmtx; 
append from refmtx; 
 
create foc from focmtx; 
append from focmtx; 
 
quit; 
 
data ref1; set ref; 
file 'c:\um_ref.txt'; 
put col1-col40; 
 
data foc1; set foc; 
file 'c:\um_foc.txt'; 
put col1-col40; 
 
proc iml; 
start system(command); 
  call push(" x '",command,"'; resume;"); 
  pause; 
  finish; 
run system('C:\sibtest\runsibt'); 
 
quit; 
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data sibtest; 
infile "c:\SIBdat\2500_3_25.out";   
input  
/////////////// 
/////////////// 
/////////////// 
/////////////// 
/////////////// 
/////////////// 
/////////////// 
/////////////// 
/////////////// 
///////////// 
 
@31 buni 6.3  @48 pvalue 5.3; 
 
proc append base=final data=sibtest; 
run; 
 
%END; 
%MEND TR; 
 
%TR;  
 
data tally; set final; 
file 'c:\SIBdat\2500_3_25_results.txt'; 
put @1 buni 6.3  @8 pvalue 5.3; 
if pvalue < .05 then tally =1; 
 else tally = 0; 
run; 
 title '2500_3_25'; 
proc freq; 
tables tally; run 

 


	Georgia State University
	ScholarWorks @ Georgia State University
	2-12-2008

	The Impact of Multidimensionality on the Detection of Differential Bundle Functioning Using SIBTEST.
	Terris Raiford-Ross
	Recommended Citation


	A Monte Carlo Comparison of DFIT & SIBTEST

