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ABSTRACT 

POWER AND BIAS IN HIERARCHICAL LINEAR GROWTH MODELS: 
MORE MEASUREMENTS OF FEWER PEOPLE 

by 
Regine Haardoerfer 

 

 

Hierarchical Linear Modeling (HLM) sample size recommendations are mostly made 

with traditional group-design research in mind, as HLM as been used almost exclusively 

in group-design studies. Single-case research can benefit from utilizing hierarchical linear 

growth modeling, but sample size recommendations for growth modeling with HLM are 

scarce and generally do not consider the sample size combinations typical in single-case 

research. The purpose of this Monte Carlo simulation study was to expand sample size 

research in hierarchical linear growth modeling to suit single-case designs by testing 

larger level-1 sample sizes (N1), ranging from 10 to 80, and smaller level-2 sample sizes 

(N2), from 5 to 35, under the presence of autocorrelation to investigate bias and power. 

Estimates for the fixed effects were good for all tested sample-size combinations, 

irrespective of the strengths of the predictor-outcome correlations or the level of 

autocorrelation. Such low sample sizes, however, especially in the presence of 

autocorrelation, produced neither good estimates of the variances nor adequate power 

rates. Power rates were at least adequate for conditions in which N2 = 20 and N1 = 80 or 

N2 = 25 and N1 = 50 when the squared autocorrelation was .25.Conditions with lower 

autocorrelation provided adequate or high power for conditions with N2 = 15 and N1 = 



50. In addition, conditions with high autocorrelation produced less than perfect power 

rates to detect the level-1 variance. 
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Chapter 1 

Introduction 

Single-case research aims to assess the changes in the behavior of participants. 

This is accomplished by investigating functional relations between the treatments 

(independent variable) and the behaviors (dependent variable). A functional relation is “a 

quasi-causative relation between the dependent and independent variables [that] exist[s] 

if the dependent variable systematically changes in the desired direction as a result of the 

introduction and manipulation of the independent variable” (Alberto & Troutman, 2009, 

p. 425). Repeated measures are used to investigate the impact of an intervention or 

treatment; that is, study participants are measured frequently on an outcome variable 

(behavior) under different conditions.  

Single-case research can be categorized as time-series research, which is defined 

as  

a periodic measurement process on some group or individual and the introduction 

of an experimental change into this time series of measurement, the results of 

which are indicated by a discontinuity in the measurements recorded in the time 

series. (Campbell, Stanley, & Gage, 1966, p. 37) 

Primarily, the research participant is compared to her- or himself; comparisons across 

individuals are important but generally secondary.  

Single-case data sets have specific characteristics. The number of participants is 

low; often only a few individuals can be recruited for a study.  Furthermore, the number 

of measurements per participant is higher than in traditional repeated measures designs, 
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where two or three waves are most common, but lower than in classical time-series 

research, which often produces more than 100 data points. 

The traditional approach to analyzing single-case data is visual analysis. The data 

are graphed with time on the horizontal axis and the dependent variable on the vertical 

axis. Visual analysis investigates the presence and shape of a functional relation between 

the treatment and the outcome measure. The focus of the analysis is on the three main 

characteristics of single-case data: central location, trend, and variability (Franklin, 

Gorman, Beasley, & Allison, 1997). Central location can take on different definitions 

such as mean, mode, or median. Trend indicates a systematic, but not necessarily 

monotonic, increase or decrease of the outcome over time. Variability assesses the 

residuals after central location and trend have been taken into account. 

While visual analysis is an established part of single-case data analysis, its critics 

debate several issues. Researchers indicate that interrater reliability might be a problem 

(Jones, Weinrott, & Vaught, 1978; Matyas & Greenwood, 1990). Furthermore, visual 

analysis is successful at keeping Type I errors low, as visual analysts are conservative in 

their assessment of a functional relation (Kazdin, 1982). That, however, leads to low 

power, especially for small and medium effect sizes. 

One proposed approach to remedying these issues is the use of statistical analyses 

in addition to visual analysis. Several suggestions have been made over the last few 

decades, but more recently, efforts have increased due to changes in federal funding 

requirements. Since 2001, the No Child Left Behind (NCLB) Act ("No Child Left Behind 

(NCLB) Act of 2001, Pub. L. No. 107-110, § 115, Stat. 1425," 2002) requires studies to 

be “scientifically based research,” which according to Article 37, is defined as “research 
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that involves … objective procedures to obtain reliable and valid knowledge.” ("No Child 

Left Behind (NCLB) Act of 2001, Pub. L. No. 107-110, § 115, Stat. 1425," 2002). This 

definition excludes studies from receiving federal funding if they rely solely on visual 

analysis. 

Two schools of thought prevail on the use of statistical analyses for single-case 

data. Some researchers advocate non-parametric tests tailored to single-case data. Others 

suggest the use of well established group analyses. 

Randomization tests are the most popular non-parametric tests that have been 

proposed and used in single-case research (Todman & Dugard, 2001). On the surface, 

they offer simple methods to determine statistical significance. They are, however, 

incompatible with single-case research philosophy and controversial due to 

unsubstantiated claims regarding their validity. Their low statistical power only 

exacerbates these problems (Haardörfer & Gagné, in press). 

Most traditional statistical analyses such as t-tests and ANOVA focus on group 

comparisons and condense data into phase averages. The reduction of data into phase 

averages results in loss of information regarding individual responses. They are therefore 

incongruent with single-case researchers’ interests (Barlow & Hersen, 1984). 

Furthermore, such analyses also are based on assumptions that are incongruent with 

certain characteristics of single-case data, such as the presence of autocorrelation (also 

called serial-dependency), which is a common occurrence when taking many 

measurements of the same people in a relatively short amount of time.  

Although autocorrelation is an established part of time-series research (Yaffee & 

McGee, 2000), the literature on autocorrelation in single-case research is rich in 



4 

 

discussions about the presence and impact of autocorrelation. A lengthy discussion 

originated in the mid-1980s surrounding the question of whether autocorrelation even 

exists in single-case data (Busk & Marascuilo, 1988; Huitema, 1985, 1988; Sharpley & 

Alavosius, 1988; Sideridis & Greenwood, 1997; Suen, 1987; Suen & Ary, 1987). This 

exchange was started by Huitema’s (1985) claim that autocorrelation is merely a myth. 

Several studies investigating the presence of autocorrelation in single-case data ensued, 

yielding diverse results. Sideridis and Greenwood (1997) suggest that autocorrelation is 

present in only 12% of the baselines of an extensive pool of single-case behavioral 

experiments. Bengali and Ottenbacher (1998) encountered autocorrelation more often in 

treatment than in baseline phases and with higher values. As time-series methodologists 

have pointed out for a long time, in research involving treatment that aims to change 

behavior, “serial dependency will coexist” (Sideridis & Greenwood, 1997, p. 290).  Thus, 

regarding autocorrelation Sideridis and Greenwood appropriately urge researchers that 

“whenever statistical analyses are contemplated, its presence should always be 

examined” (p. 273). 

Some researchers have suggested the use of regression analysis as a way to 

analyze single-case data (Allison & Gorman, 1993; Center, Skiba, & Casey, 1985). 

Regression analysis does not require as many data points as time-series analysis. One 

problem, however, is that regression is inappropriate for nested data. Single-case data are 

nested as soon as data are collected from more than one participant; measurements are 

nested within people. 

Expanding on the idea of regression analysis, methodologists have investigated 

the possibility of using multilevel models to gain information across individuals without 
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losing the focus on the individual. Several researchers have suggested that hierarchical 

linear modeling (HLM) offers a viable option to single-case researchers (Jenson, Clark, 

Kircher, & Kristjansson, 2007; Lumpkin, Silverman, Weems, Markham, & Kurtines, 

2002; Shadish & Rindskopf, 2007; Van den Noortgate & Onghena, 2003a, 2003b; 

Zucker, Schmid, McIntosh, Agostino, Selker, & Lau, 1997). Originally dealing with 

cross-sectional nested data (e.g., students in schools), HLM has been expanded to analyze 

repeated measures where measurements are nested in individuals. The first level models 

the growth of an individual, just as a single-case researcher displays a graph for each 

study participant. The second level of the model includes person-level predictors. A third 

level can be introduced, if individuals are nested in groups such as classrooms or therapy 

groups. 

While single-case data fulfill the key requirements to use HLM analyses, the often 

small level-2 sample sizes present a challenge. The HLM literature does not offer 

recommendations addressing sample sizes in the range of those used by single-case 

researchers. While it is widely acknowledged that larger sample sizes on either level yield 

better estimates and higher power (Raudenbush & Bryk, 2002; Snijders & Bosker, 1999), 

applied researchers have to consider financial and methodological constraints. Thus, 

detailed knowledge regarding sufficient sample sizes would be invaluable. The present 

study addressed this issue by investigating sample size combinations that are realistic for 

single-case research designs featuring many measurements for relatively fewer people 

than typically recommended for group designs.



6 
 

Chapter 2 

Literature Review 

The majority of HLM power recommendations address cross-sectional studies of 

different degrees of model complexity. Recommendations based on analytical approaches 

exist for two-level models without level-2 predictors. Raudenbush (1997) provides 

formulae to estimate the optimal level-1 (N1) and level-2 (N2) sample size for such 

models, including cost factors connected to increasing sample size on either level. A 

simulation study by Mok (1995) attempts to address the same questions. Her design 

includes a symmetrical use of sample sizes on both levels ranging from 5 to 150, 

resulting in total sample sizes ranging from 25 to 22500. Mok’s results indicate that 

increasing N2 has a greater positive impact on bias and power than increasing N1. Her 

suggestions call for a total sample size of 3500 for an intra-class correlation below .15 to 

ensure sufficiently low bias in the estimates. Browne and Draper (2000), however, report 

that estimates were close to being unbiased for a total sample size of 216. They 

acknowledge that power was not acceptable in this case, but was adequate for a total 

sample size of 864. The different results might be attributed to the researchers’ choices in 

values for the fixed and random effects.

Beyond the models without level-2 predictors, several authors offer analytical 

considerations or formulae for models that include dichotomous predictors at level 2 

(O'Connell & McCoach, 2008; Raudenbush, 1997). O’Connell and McCoach  offer 

recommendations for two- and three-level random-intercept random-slope models. 

For these models, the authors provide formulae to estimate sample sizes. They find 

that increasing the number of clusters increases the power to detect the fixed and 
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random effects, as does including a cluster-level predictor. For more specific 

recommendations, they refer to available power analysis software programs that 

require researchers to provide estimates of effect sizes, intra-class correlation, and 

proportion of variance explained by the level-2 predictor. Expanding on 

Raudenbush’s (1997) earlier work, Raudenbush and Liu (2000) conclude that Mok’s 

findings that the number of sites has greater effect than the number of participants per 

site also holds true for models with dichotomous predictors at level 2.  

Regarding models with one or more non-dichotomous predictors at the second 

level, advice on minimum sample sizes is less plentiful. Even established textbook 

authors offer little in the way of concrete recommendations. Raudenbush and Bryk 

(2002) address the issue of sample size toward the end of the book and only in very 

general terms. Kreft and De Leeuw (1998) consider group sizes of 10 to be small and 

100 to be large. In addition, they cite three unpublished dissertations that provide 

research regarding sample size recommendations. The authors conclude that the total 

number of observations is key for level-1 parameter estimates, while the number of 

groups has a clear impact on the power of level-2 estimates. They suggest that both 

sample sizes should be larger than 30 to detect a cross-level interaction. In addition, 

they state that having a larger level-2 sample size has a greater impact on power than 

a larger level-1 sample size, holding the total number of measurements constant. In 

addition, they contend that a level-2 sample size of 150 leads to a high power (0.90) 

for a low level-1 sample size of 5. The authors also mention, however, that a 

downward bias in variance estimates is present in level-2 samples of less than 300 for 

all tested level-1 sample sizes. The authors conclude that effect size as well as intra-
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class correlation play a role in all of these recommendations but do not make mention 

of how these factors could or should be taken into account. Snijders and Bosker 

(1993) approach the topic analytically and provide the reader with approximation 

formulae to estimate optimal sample sizes. Specifically, Snijders and Bosker 

recommend N1 to be larger than 10. The researcher, however, needs to provide a lot 

of information regarding the data: variance components, means, and covariance 

matrices need to be known or estimated to be able to calculate more specific 

minimum sample sizes.  

Using simulation methods, Maas and Hox (2005) tested scenarios with N2 

being 30, 50, or 100, while N1 was 5, 30, or 50. They crossed these possibilities with 

three values for intra-class correlations. Their results supported their hypothesis that 

any of the given sample size combinations lead to sufficient power. Two more 

general Monte Carlo studies regarding cross-sectional HLM have been conducted 

recently by Gagné and Estes (2009a, 2009b). In their comprehensive studies, they 

tested models with either one predictor at each level or two in one level and one at the 

other level. Furthermore, they included a range of predictor-criterion values as well as 

presence or absence of cross-level interaction as parameters, thus producing a 

controlled correlational structure. Their studies further support the finding that an 

increase of sample size at either level increases power but an increase in level-2 

sample size has greater impact. Gagné and Estes (2009a) conclude that level-2 sample 

sizes smaller than 35 can yield acceptable power with at least 10 measurements per 

group. 



9 

 

The literature regarding minimum sample size recommendation for 

hierarchical linear growth models is not plentiful either. The textbook on applied 

longitudinal data analysis by Singer and Willet (2003) mentions sample sizes only in 

regard to the minimum number of measurements per participant. Two groups of 

researchers (Raudenbush & Liu, 2001; Zhang & Wang, 2009) offer advice regarding 

sample size recommendations for data with independent error structures. Zhang and 

Wang (2009) offer SAS macros to calculate the power given N1, N2, effect size, and 

number of participants for linear and quadratic growth models. While the macros can 

account for systematic attrition of study participants, they do not include level-2 

predictors or non-independent error covariance structures. Sample conditions indicate 

that an effect size of 0.2 for the slope might require more than 300 participants when 

measured three times and still more than 200 when six measurements are taken per 

person. The authors also show power curves dependent on slope effect size which 

illustrate that power increases quickly with an increase in effect size. 

Raudenbush and Liu (2001) focused on models with a dichotomous level-2 

predictor with independent error variance-covariance structures. Like O’Connell and 

McCoach (2008), their theoretical work leads them to the general conclusion that an 

increase in N1 or N2 increases power. Their recommendations are two-fold: 

increasing N1 is best when the degree of the polynomial is high and there is 

considerable within-person variance; increasing N2 is best when between-person 

heterogeneity is large. Similar to Zhang and Wang (2009), Raudenbush and Liu’s 

level-2 sample size recommendations are quite large, ranging from 238 to 800 for an 

effect size of 0.40 depending on frequency of observation. 



10 

 

Hedeker, Gibbons, and Waternaux (1999) also offer analytical solutions for 

minimum sample sizes. They focus on non-independent error variance-covariance 

structures including compound symmetry, random effect, and autocorrelation. Their 

formulae allow the researcher to estimate a minimum level-2 sample size to reach 

power of .80 if she knows the level-2 sample size, the effect size, all predictor-

outcome correlations, and the within- and between-group variances. The authors 

furthermore offer a table with some pre-calculated minimum sample sizes for level-2 

for 4, 6, and 8 measurements, each instance pertaining to a power of .80. The authors 

estimate that for 4 waves of data with an autocorrelation of .3, adequate power to 

detect a small linear effect necessitates 758 participants. The level-2 sample size 

recommendation decreases to 48 with large effect sizes and decreases even further for 

larger autocorrelations. Interestingly, in the presence of high autocorrelation, an 

increase in level-1 sample size calls for an increase in level-2 sample size to achieve 

adequate power. 

While the aforementioned researchers focused exclusively on power, 

estimation bias is of concern as well. As HLM uses maximum likelihood estimations, 

any model misspecification can cause bias in the estimation of fixed and random 

effects (White, 1982). Ferron, Daily, and Yi (2002) found that assuming 

independence of errors instead of allowing for a nonzero autocorrelation introduces 

only a small bias in the estimates of the fixed effects but inflated the error variances 

much more. The biases diminish slightly, however, with an increase in level-2 sample 

size. The authors caution that the biases might be much larger in more complex 
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models than theirs. Kwok, West, and Green (2007) support these findings and add 

that the inflation of estimates of the error variances impacts power negatively. 

Two recent studies include autocorrelation in their investigation of bias and 

power in using HLM for single-case designs (Ferron, Bell, Hess, Rendina-Gobioff, & 

Hibbard, 2009; Jenson et al., 2007). Both focus on the most basic building block of 

single subject design (Alberto & Troutman, 2009), the AB design. The model 

includes one level-1 predictor, a dummy variable, to indicate the beginning of the 

treatment phase. No level-2 predictors were considered. Ferron et al. (2009) indicate 

that power was high for very small sample sizes of 4 measurements and 10 

participants, though lower in the presence of autocorrelation. Jenson, Clark, Kircher, 

and Kristjansson (2007), however, report that power was not sufficient for 15 

participants, with 5 baseline and 10 treatment measurements, with or without 

autocorrelation. Their simulations suggest that even having 10 baseline and 20 

treatment measures for 15 people does not yield adequate power for autocorrelations 

of .40 and .80. The discrepancies are likely due to the researchers’ different choices 

for the value of the fixed and random effects. 

In conclusion, sample size recommendations are fairly common for cross-

sectional HLM, scarce for growth modeling including complex models, and emerging 

for single-case models. The purpose of the present study was to expand sample size 

recommendations in hierarchical growth modeling to larger numbers of 

measurements and smaller numbers of participants. It focused on a two-level model 

with one continuous level-1 predictor and one continuous level-2 predictor. The 

impact of autocorrelation was investigated as well. 



12 
 

Chapter 3 

Method 

This is a Monte Carlo simulation with five independent variables: the level-1 

sample size (i.e., number of measurements per participant), the level-2 sample size (i.e., 

the number of participants), the magnitude of the autocorrelation factor of the level-1 

error with lag 1, the magnitude of the interpredictor correlation, and the magnitude of the 

correlation between Time and the outcome variable Y.  Data were simulated for a 

hierarchical model reflecting linear growth with one level-2 predictor for the intercept 

and the same level-2 predictor for the level-1 slope, as illustrated in the following 

equations for the level-1, level-2, and combined models 

ti 0i 1ij ti tiY =π +π (TIME )+e  

0i 00 01 i 0i

1i 10 11 i 1i

π β +β X +r
π β +β X +r

=
=

 

or 

ti 00 01 i 10 ti 11 i ti 0i 1i ti tiY =β +β (X )+β (TIME )+β (X )(TIME )+r +r (TIME )+e . 

Single-case data do not meet the assumption that eti is normally distributed with a 

mean of 0 and a variance of σe
2. Instead, single-case researchers have to assume that the 

level-1 errors are autocorrelated. Most common is a lag of one, meaning that any 

consecutive error is autocorrelated with the error of the previous measurement, 

t1)i(tti νeρe += − . 

In this formula, ρ represents the constant autocorrelation factor with an absolute value 

less than1 and νt is normally distributed with mean 0 and variance σe
2. Thus,  
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2

2
ν2

e ρ1
σ

σ
−

= , 

where σe
2 denotes the apparent, and inflated, error variance as it would be detected if 

the analysis were not to look for the possibility of autocorrelation of the level-1 

errors; σν2 is the actual level-1 error variance in the data. 

SAS 9.1 (SAS Institute, 2004) was used to generate the data and to conduct all 

calculations and analyses. For each combination of parameters, 1,000 replications 

were conducted, with the data being simulated in IML and then analyzed using the 

following PROC MIXED routine (Littell, Milliken, Stroup, Wolfinger, & 

Schabenberger, 2006; Singer, 1998): 

PROC MIXED DATA=CompleteDataSet COVTEST NOCLPRINT 
NOITPRINT NOINFO IC; 

CLASS ID Wave; 

MODEL Y = Time X TimeX /DDFM=BW CL NOTEST; 

RANDOM Intercept Time /SUB=ID TYPE=UN;  

REPEATED Wave /SUB=ID TYPE=AR(1); 

RUN; 

To simplify the situation, time points were spaced equally. Thus, the level-1 

sample size was directly proportional to the duration of the “study.” For ease of 

interpretation, the spacing was 1. In addition, the level-2 predictor was grand-mean 

centered, and Time was simulated such that Time = 0 at the midpoint of the 

measurement occasions. 

A broad range of sample sizes pertinent to single-case research was 

investigated. The level-1 sample size took on seven different values: 10, 15, 20, 30, 

40, 50 and 80. The level-2 sample sizes, reflecting the number of participants, were 5, 

10, 15, 20, 25, 30, and 35. This lead to 36 combinations of sample sizes. The 
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autocorrelation factors were chosen so that their squares were .05, .10, .15, .20, and 

.25. Time and the outcome variable were correlated at .2, .3, .4, and .6. The 

correlation between the level-2 predictor and the outcome variable was set to .2 and 

.3. The correlation between the cross-level interaction and the outcome variable was 

fixed at .3, and the correlation between Time and the level-2 predictor was fixed at 0. 

These parameters lead to 36 x 6 x 4 x 2 conditions and thus to 1728 cells. 

Power for each set of parameters was calculated as the percentage of betas 

that are identified as statistically significant. Power results ranging from 0.80 to 0.90 

were considered acceptable, while power greater than 0.90 was considered high. 

Relative bias in parameter estimates was considered low if it is below 5%, and 

relative bias less than 10% in the standard errors was considered low (Hoogland & 

Boomsma, 1998), and it was calculated as  

.100*
parameter

parameter - estimateparameter bias =   
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Chapter 4 

Results 

The results regarding the biases of the estimates are presented in color-coded 

tables. The color green is used for magnitudes below 5%. Yellow illustrates biases with 

magnitudes between 5% and 10%. Orange signifies conditions in which the magnitudes 

of the biases exceeded 10%. 

For all power tables, the cells shaded in green indicate high power that is power of 

at least .90 but less than 1. Perfect power, a power of 1, is marked dark green. Yellow 

signifies conditions in which power was adequate, defined as at least .80 and below .90. 

Any cells marked indicate inadequate power, or values below .80. 

Conditions With Zero Autocorrelation 

Biases. In general, the estimates of the fixed and random values were neither 

dependent upon the strength of the correlation between Time and the outcome variable 

nor between X and Y for any of the conditions tested. The variations in biases of the 

estimates when autocorrelation had been set to 0 only varied due to differences in sample 

size combinations. As expected, an increase in  either level-1 or level-2 sample size 

improved the accuracy of the estimates of the fixed and the random effects. 

For the conditions tested with autocorrelation of errors set at 0, the fixed effects 

(β00, β01, β10, and β11) were all estimated with the absolute values of the biases below 5% 

when N2 was at least 10, independent of the strength of the correlation between the 

predictors. The magnitudes of 9 of the 192 biases were slightly above 5% when N2 = 5 

with none exceeding 6.63%. No clear pattern, however, was discernable. 
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For the conditions examined, the biases for the level-2 error variances (τ00 and τ11) 

were below 5% for sample size combinations with a total sample size GrandN (N1xN2) 

larger than 150. The biases were especially large for conditions with a level-2 sample size 

of 5 (Tables 1 and 2). As level-1 sample sizes increased, however, the biases decreased 

quickly for both level-2 variances. With N2 = 5 and N1 = 50, biases were below or 

around 5%. At a level-1 sample size of 80, the magnitudes of the bias were all below 5%. 

Table 1 

Biases of Estimating τ00 When N2 = 5 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 25.8439 15.3692 9.3136 8.6327 5.1587 3.6403 

.3 28.6305 16.4368 13.3016 6.3959 4.9817 2.1879 

.4 26.9261 15.7487 13.7419 7.7229 3.1964 1.4446 
.2 

.6 32.3837 12.9452 12.303 9.3636 2.7376 -0.7201 

.2 30.5126 17.8394 14.4369 5.6151 1.312 4.0045 

.3 28.0941 12.9102 10.9528 6.0016 7.732 2.777 

.4 26.9775 18.3079 7.1991 4.482 1.3091 0.1018 
.3 

.6 29.0606 16.4689 7.8662 7.5697 0.6275 2.1589 
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Table 2 

Biases of Estimating τ11 When N2 = 5 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 32.8617 18.8305 12.5967 7.6518 4.8994 2.919 

.3 29.86 14.6556 13.929 9.8568 4.0105 0.3235 

.4 30.0971 13.758 13.0104 4.916 0.7321 2.9474 
.2 

.6 37.9955 17.9014 13.193 3.2803 3.5469 0.9802 

.2 36.0297 18.146 10.1988 5.9091 3.0259 1.8507 

.3 34.8824 13.5734 10.1184 6.7328 5.0199 3.2689 

.4 33.8035 18.8711 11.3961 5.3816 -0.3078 3.98 
.3 

.6 29.8537 21.3782 15.0326 10.9989 2.0832 2.9362 

With N1 = 10 and N2 = 10, about half of the bias values were above 5%. In 

addition, many biases for (10, 15)1 or (15, 10) as a sample size combination were 

between 5% and 10%. Furthermore, neither an increase in the correlation between Time 

and the outcome variable nor an increase in the correlation between X and the outcome 

variable seemed to impact the variance estimation of the level-2 variances. 

The level-1 error variances were all estimated with biases below 5% for all 

conditions tested for which the autocorrelation was 0. The strength of the predictor-

outcome variables had no influence on the estimates. The sample sizes tested were all 

sufficiently large to produce good estimates of the level-1 variance.  

                                                 
1 The values in parentheses indicate the values for the level-1 sample size and level-2 sample size according 
to their positions, (N1, N2). 
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Power. In all but two of the tested conditions with zero autocorrelation, the power 

to detect β00 was perfect, that is 100%. When N2 was 5 and N1 was 30, power decreased 

to 99.9% under the lowest correlation condition. The same result applied to the 

conditions in which both predictor-outcome correlations were set at .3 and the sample 

size combination was (5, 30). Power of the other fixed effects varied depending on the 

sample size combinations as well as the predictor-outcome correlations. Thus, they will 

be discussed separately in more detail.  

Power to detect β10. In general, power to detect β10 was similar for the two tested 

correlations between X and Y, with power values being slightly larger for the larger X-Y 

correlation. As expected, the value of the correlation between Time and Y had greater 

influence on the power to detect β10. For the lowest level-2 sample size of 5, power was 

only adequate for the highest correlation between Time and the outcome variable (Table 

3). When ρTimeY was set to .6, however, sample sizes of 15 and above yielded power 

greater than .8. Notably, when N2 was only 5 and the highest correlation combination 

was used, taking 80 measurements yielded power above .9.  
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Table 3 

Power to Detect β10 When N2 = 5  

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 15.70 19.40 21.90 25.50 25.60 29.90 

.3 27.80 32.90 33.80 39.30 41.20 46.30 

.4 44.00 45.50 49.10 53.30 59.20 65.70 
.2 

.6 72.60 78.30 80.70 82.90 86.60 88.90 

.2 16.70 19.00 22.00 23.10 29.10 32.80 

.3 29.70 34.20 36.90 40.60 43.50 48.90 

.4 42.40 48.80 53.90 56.80 61.80 69.00 
.3 

.6 77.20 81.40 83.40 84.20 87.60 92.10 

 

Level-2 sample sizes of 10 and 15 produced high power rates when the 

correlation between Time and the outcome variable was large. Specifically, with N2 = 10 

and ρTimeY = .6, power was above 90% for all tested level-1 sample sizes and X-Y 

correlations (Table 4). Independent of ρXY, when ρTimeY was .4, most conditions showed 

adequate or high power; when ρTimeY was .2 or .3, no conditions produced adequate power 

to detect β10. Power rates increased when N2 was 15. Almost all conditions with ρTimeY of 

at least .4 produced high power (Table 5). 
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Table 4 

Power to Detect β10 When N2 = 10  

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 28.30 32.40 33.20 34.30 39.90 46.20 

.3 50.20 55.90 57.00 64.40 66.40 73.50 

.4 72.90 76.00 79.40 83.40 85.50 89.40 
.2 

.6 97.30 97.80 98.30 98.30 98.60 99.70 

.2 31.40 31.00 33.20 36.70 38.20 46.90 

.3 53.10 57.60 59.70 62.70 66.50 76.90 

.4 74.90 81.10 82.50 84.80 86.70 92.00 
.3 

.6 97.60 98.50 98.50 99.50 99.40 99.60 

 

Table 5 

Power to Detect β10 when N2 = 15 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 37.90 42.60 44.80 45.80 53.10 61.40 

.3 67.80 72.30 75.40 77.70 82.10 87.10 

.4 89.00 91.10 92.30 94.90 94.70 98.30 
.2 

.6 99.50 99.80 99.80 100.00 100.00 100.00 

.2 39.80 43.30 44.20 47.80 54.10 62.40 

.3 70.50 75.10 77.40 80.50 83.70 89.00 

.4 90.80 92.20 93.60 96.10 96.10 98.10 
.3 

.6 100.00 100.00 100.00 100.00 99.90 100.00 



21 

 

 With N2 = 20 and ρTimeY = .6, almost all tested level-1 sample sizes yielded 

perfect power. Furthermore, when ρTimeY was .4, power was always above 90%. Even for 

ρTimeY = .3, all but the condition with the lowest values for N1 and ρXY had adequate or 

high power. None of the conditions with ρTimeY = .2 had adequate power with 20 

participants. 

 Within a set of predictor-outcome correlations, power increased slowly with an 

increase in N2 (Table 6). This was especially pronounced for ρTimeY = .2. For conditions 

in which N2 ≥ 25, N1 ≥ 15, and ρTimeY ≥ .3 power was high. When only 10 measurements 

were taken per person, power was still adequate.  
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Table 6 

Power to Detect β10 When N2 = 25 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 55.10 60.30 64.60 65.90 71.80 80.30 

.3 86.90 90.90 90.90 94.50 95.80 97.90 

.4 98.80 98.80 99.30 99.50 99.60 99.90 
.2 

.6 100.00 100.00 100.00 100.00 100.00 100.00 

.2 60.00 62.30 66.10 69.30 74.50 82.10 

.3 88.40 92.90 92.60 95.50 97.70 98.60 

.4 98.30 98.80 99.70 99.40 100.00 100.00 
.3 

.6 100.00 100.00 100.00 100.00 100.00 100.00 

Even for the highest tested level-2 sample size of 35 (Table 7), power was not 

adequate for conditions where ρTimeY was .2 and N1 was less than 30. It was, however 

high for all other conditions. Most conditions with ρTimeY being .4 or .6 had perfect power. 
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Table 7 

Power to Detect β10 When N2 = 35 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 69.60 74.40 78.10 81.60 84.40 92.30 

.3 95.70 97.40 97.30 98.70 99.10 99.70 

.4 99.90 99.80 100.00 99.80 100.00 100.00 
.2 

.6 100.00 100.00 100.00 100.00 100.00 100.00 

.2 72.40 74.40 79.30 83.10 86.00 92.60 

.3 96.30 97.90 97.40 99.00 99.60 99.70 

.4 100.00 100.00 100.00 100.00 100.00 100.00 
.3 

.6 100.00 100.00 100.00 100.00 100.00 100.00 

Overall, the correlation between Time and the outcome variable had great 

influence on power to detect β10. This was expected as β10 is the fixed effect that models 

the level-1 predictor’s direct influence on the outcome variable. The magnitude of ρXY 

still had some impact on the power to detect β10. 



24 

 

Power to detect β01. Within any correlation combination, the power to detect β01 

increased with an increase in either level-1 or level-2 sample size. It also increased with 

an increase in the correlation between the level-2 predictor X and the outcome variable 

Y, that is, the correlation associated with β01. Furthermore, an increase in the correlation 

between the Time and the outcome variable increased the power of β01 as well. This 

increase, however, was not as strong as the one related to the increase in ρXY. 

Power to detect β01 under conditions in which N2 = 5 was extremely low, ranging 

from 17.7% for the lowest level-1 sample size and lowest correlation combination to a 

still low 65.1% for the highest level-1 sample size and highest correlation combination. 

Additionally, when the correlation between the level-2 predictor and the outcome 

variable was set to .2, power was inadequate for all conditions with a level-2 sample size 

of either 10 or 15. For a correlation between X and Y of .3, power was at least adequate 

for more than half of the tested conditions, with values increasing with an increase in 

level-1 sample size or an increase in the correlation between Time and the outcome 

variable. In conditions when 80 measurements were simulated for 15 participants, power 

was high at all values tested of the correlation between Time and Y. Also, when the 

Time-Y correlation was set to .6, taking at least 15 measurements produced high power. 

The specific power results for N1 of 10 and 15 are presented in Table 8 and Table 9, 

respectively. 
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Table 8 

Power to Detect β01 When N2 = 10 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 30.1 32.5 34.7 36.3 38.2 45.5 

.3 29.2 36.3 35.7 38.5 41.7 47.9 

.4 30.4 34.5 36.0 37.4 44.5 49.2 
.2 

.6 39.1 44.6 45.8 49.3 56.8 62.8 

.2 51.3 55.9 63.3 63.8 68.8 77.2 

.3 54.2 59.4 62.6 66.3 70.4 79.1 

.4 58.8 64.6 66.0 70.0 77.5 83.7 
.3 

.6 73.1 78.8 81.8 82.1 88.2 92.2 
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Table 9 

Power to Detect β01 When N2 = 15 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 38.8 40.7 44.2 48.2 52.4 59.6 

.3 40.4 45.0 47.1 50.5 57.1 65.0 

.4 42.6 47.0 49.4 54.6 57.5 68.1 
.2 

.6 54.2 58.3 63.7 66.4 70.0 78.9 

.2 70.5 75.3 76.4 81.0 85.9 92.5 

.3 71.6 78.3 81.8 84.8 88.3 92.8 

.4 76.8 81.3 83.7 88.4 91.1 95.8 
.3 

.6 89.4 91.7 93.0 95.6 96.3 98.7 

For a level-2 sample size of 20 (Table 10), power was never high when ρXY was 

.2 and ρTimeY was .6. It reached adequate values for level-1 sample sizes of 50 and 80. 

Power increased substantially when ρXY was increased to .3. All conditions in which ρXY 

= .3 with level-2 sample sizes of at least 20 had adequate or high power. 
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Table 10 

Power to Detect β01 When N2 = 20 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 47.5 52.6 55.5 59.4 64.5 73.7 

.3 50.9 54.1 57.3 60.8 66.5 75.6 

.4 52.6 58.5 62.4 65.5 70.5 79.8 
.2 

.6 64.5 72.6 73.4 78.2 84.4 88.6 

.2 83.7 86.3 89.0 91.2 94.7 97.1 

.3 83.8 88.4 89.8 92.4 95.3 98.6 

.4 88.2 91.0 91.2 94.8 96.8 99.1 
.3 

.6 94.9 97.1 98.4 98.9 99.7 99.9 

When N2 was 25, power increased such that it was at least adequate for N1 = 80 

and ρXY = .2 for all tested Time-outcome correlations. In the case of a high correlation of 

.6 between Time and Y and the low correlation of .2 between X and Y, power was 

adequate starting at a level-1 sample size of 15 and high when N1 was at least 50. When 

ρXY was increased to .3, all but the lowest sample size combination had high power. For 

N1 of either 50 or 80 and the correlation between Time and Y being at least .4, power 

was perfect (Table 11). 
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Table 11 

Power to Detect β01 When N2 = 25  

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 53.7 61.8 61.8 69.8 71.8 82.1 

.3 60.7 64.9 68 73.3 76.7 84.0 

.4 63.0 67.7 70.8 74.0 80.1 87.0 
.2 

.6 76.7 80.9 83.2 87.6 91.7 95.1 

.2 89.0 92.1 94.9 96.6 98.2 99.0 

.3 90.9 94.4 95.1 97.7 97.2 99.8 

.4 94.3 95.9 96.4 98.5 99.4 99.6 
.3 

.6 99.2 99.4 99.5 99.8 100 100 

 

Table 12 

Power to Detect β01 When N2 = 30 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 65.5 69.4 73.5 75.8 82.2 87.5 

.3 64.1 71.0 76.4 80.0 86.5 89.9 

.4 71.5 76.3 78.5 82.4 87.5 93.2 
.2 

.6 83.7 88.4 90.7 93.1 95.5 98.4 

.2 95.1 95.5 97.1 97.2 99.1 99.9 

.3 95.8 97.4 98.7 98.2 99.7 99.9 

.4 97.9 98.9 98.8 99.6 99.6 100 
.3 

.6 99.6 99.7 100 100 100 100 
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For a level-2 sample size of 30 or 35, all Time-Y correlations produced high or 

perfect power when ρXY = .3. For the conditions when ρXY was .2, power increased 

further with increasing level-1 sample size and ρTimeY. When N2 was 35, all conditions 

with N1 being at least 20 produced adequate or high power. For a Time-outcome 

correlation of .6, all tested values of N1 produced adequate or high power (Table 13). 

Table 13 

Power to Detect β01 When N2 = 35 

  Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 71.5 77.1 80.3 82.0 88.5 92.9 

.3 75.6 78.0 81.2 84.0 89.6 94.2 

.4 78.1 81.0 85.6 86.8 91.9 95.8 
.2 

.6 87.5 94.2 94.2 96.1 97.1 99.5 

.2 97.9 98.2 98.7 99.6 99.8 100 

.3 97.8 99.0 98.9 99.5 100 100 

.4 98.5 99.1 99.5 99.7 99.9 100 
.3 

.6 99.9 100 100 100 100 100 

Overall, the correlation between X and the outcome variable had great influence 

on power to detect β01. This was expected as β01 is the fixed effect that models the level-2 

predictor’s direct influence on the outcome variable. When ρXY was .3, all conditions with 

a level-2 sample size of 20 or higher produced adequate or high power. In conditions with 

the lower correlation between the level-2 predictor and Y, only larger values of N1 and 

N2 produced high power. 
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Power to detect β11. In general, the correlation between Time and the outcome 

variable (ρTimeY) had more impact on the power to detect β11 than the correlation between 

X and Y. Specifically, power was inadequate for all conditions tested where N2 was 5. 

Even for the highest correlation combination (ρTimeY = .6 and ρXY = .3), power to detect 

β11 was only 62%. When N2 was doubled to 10 (Table 14), only two conditions produced 

adequate power (ρTimeY = .6 and N1 > 50). When the level-2 sample size was increased to 

15, power increased appreciably (Table 15). All conditions with a Time-Y correlation of 

at least .6 or at least 50 measurement occasions produced power rates above 80%. 

This trend of increasing power continued with the increase of the level-2 sample 

size. For those conditions where N2 was 20, all but two conditions produced at least 

adequate power; for half of them, power was high. Furthermore, 42 conditions with N2 = 

25 produced high power; the other 6 conditions produced adequate power (Table 16). 

When N2 ≥ 30 power rates to detect the interaction effect were all high; more 

specifically, all power rates were above 94.9 %. Seven of the conditions with the highest 

number of measurements per person and higher predictor-outcome correlations reached 

perfect power (Table 17). 
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Table 14 

Power to Detect β11 When N2 = 10  

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 47.70 54.40 56.30 56.90 63.10 71.10 

.3 50.80 56.70 57.10 61.00 64.30 73.20 

.4 52.80 58.70 60.10 67.60 70.00 75.10 
.2 

.6 64.60 70.40 72.60 75.20 80.00 84.90 

.2 52.40 55.30 58.20 61.60 66.30 72.30 

.3 50.90 59.20 60.40 64.40 65.00 76.00 

.4 58.00 62.10 62.20 67.10 71.40 77.30 
.3 

.6 66.80 72.80 75.80 77.30 82.10 88.00 

 

Table 15 

Power to Detect β11 When N2 = 15 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 66.30 68.90 71.40 74.70 80.20 85.80 

.3 66.90 72.70 74.10 78.50 82.30 87.80 

.4 70.00 72.90 77.10 82.00 85.40 90.10 
.2 

.6 82.80 86.40 87.20 87.90 92.90 96.30 

.2 67.70 71.20 76.10 76.00 82.60 86.40 

.3 68.90 75.10 75.80 80.90 85.10 88.40 

.4 75.10 79.10 80.30 85.60 87.10 90.70 
.3 

.6 85.40 87.80 89.10 90.60 94.30 96.10 
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Table 16 

Power to Detect β11 When N2 = 25 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 86.30 87.90 91.30 92.80 95.40 97.70 

.3 87.90 89.50 92.00 92.60 95.80 97.90 

.4 90.00 93.30 93.40 95.10 97.00 99.10 
.2 

.6 95.10 97.30 97.80 98.70 98.80 99.60 

.2 85.40 91.00 91.90 94.40 96.60 97.90 

.3 88.90 92.30 93.20 94.60 96.50 98.20 

.4 90.50 91.70 95.50 96.70 98.10 98.70 
.3 

.6 97.10 98.90 98.70 99.30 98.70 99.70 

 

Table 17 

Power to Detect β11 When N2 = 35 

Level-1 Sample Size 

ρXY ρTimeY 10 15 20 30 50 80 

.2 94.90 96.30 97.20 97.90 98.70 100.00 

.3 95.80 97.00 98.50 99.00 99.20 99.80 

.4 97.10 97.00 98.10 99.20 99.50 99.90 
.2 

.6 98.60 99.30 99.80 99.80 100.00 100.00 

.2 95.00 98.50 97.70 98.00 99.30 99.80 

.3 95.80 98.30 99.20 99.50 99.40 99.90 

.4 96.50 98.70 99.00 99.70 99.50 100.00 
.3 

.6 99.40 99.60 99.60 100.00 100.00 100.00 
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Overall, both predictor-outcome correlations had great impact on the power to 

detect β11. This was expected as β11 is the fixed effect that models the influence of the 

cross-level interaction on the outcome variable. All conditions with N2 ≥ 25 produced at 

least adequate power to detect β11. 

Power to detect the level-2 variances. Changing the correlations between the 

outcome variable and either predictor had no discernable effect on the power of detecting 

τ00 or τ11. To illustrate this, the results for the combination of the lowest and highest 

correlations are presented. Tables 18 and 19 show the pattern of the power to detect τ00 

for the lowest and highest predictor-outcome correlation combinations tested. Tables 20 

and 21 illustrate the pattern for τ11. 

For the conditions tested, the power to detect τ00 depended upon the level-1 and 

level-2 sample size. Power was 0 for all conditions where N2 was 5. Doubling N2 to 10 

did not improve the situation; power was still less than 1% even for large level-1 sample 

sizes. Increasing N2 beyond 10 produced rapid increases in power, with the majority of 

conditions reaching adequate, high, or perfect power. Increasing the level-1 sample size 

to at least 30 did allow for adequate or high power for N2 = 15. When N2 = 25, 15 

measurements were sufficient for high power. For the lowest level-1 sample size of 10, 

adequate power was reached for the two highest level-2 sample sizes tested. In addition, 

no conditions tested in which N1 = 10 reached power rates above 90%. Overall, high 

power was achieved in more than 25% of the conditions; perfect power was reached for 

about a quarter of the tested conditions. In general, power increased faster with an 

increase in level-2 sample size than with an increase in level-1 sample size (Table 18). 
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Table 18 

Power to Detect τ00 When ρTimeY = 0.2 and ρXY = 0.2 

 N1 

N2 10 15 20 30 50 80 

5 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.10 0.50 

15 18.90 40.50 61.40 85.40 96.90 99.70 

20 48.00 79.10 92.80 99.00 99.90 100.00 

25 70.70 91.40 98.10 99.80 100.00 100.00 

30 82.90 97.20 99.50 100.00 100.00 100.00 

35 88.40 99.60 100.00 100.00 100.00 100.00 

 

Table 19 

Power to Detect τ00 When ρTimeY = 0.6 and ρXY = 0.3 

   N1    

N2 10 15 20 30 50 80 

5 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.10 0.40 

15 19.90 41.40 61.80 86.00 97.00 99.80 

20 49.90 79.10 91.20 99.20 100.00 100.00

25 69.20 93.20 98.00 100.00 100.00 100.00

30 80.20 96.40 99.50 100.00 100.00 100.00

35 89.10 98.90 100.00 100.00 100.00 100.00
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 Power to detect τ11 was very similar to detecting power for τ00. The only condition 

which produced adequate power for τ11 but not τ00 was the sample size combination of 

(15, 20). Also, perfect power for τ11 was reached for fewer conditions with a level-1 

sample size of 30. 

Table 20 

Power to Detect τ11 When ρTimeY = 0.2 and  ρXY = 0.2 

   N1    

N2 10 15 20 30 50 80 

5 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.00 0.30 

15 19.40 42.10 60.90 86.90 97.70 99.50

20 49.60 80.40 91.80 99.10 100.00 100.00

25 71.90 93.90 98.10 99.80 100.00 100.00

30 82.80 97.80 99.30 99.90 100.00 100.00

35 91.10 99.10 100.00 100.00 100.00 100.00
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Table 21 

Power to Detect τ11 When ρTimeY = 0.6 and  ρXY = 0.3 

   N1    

N2 10 15 20 30 50 80 

5 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.00 0.00 0.00 0.00 0.00 0.60 

15 18.90 43.00 64.80 85.50 97.80 99.00 

20 50.40 81.00 91.20 98.20 100.00 100.00

25 70.00 93.20 98.20 99.80 100.00 100.00

30 83.40 97.90 99.70 100.00 100.00 100.00

35 89.90 99.40 99.70 100.00 100.00 100.00
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Power to detect the level-1 variance. Under all conditions tested with N2 ≥ 10, 

power to detect the level-1 variance was perfect, independent of the predictor-outcome 

correlations and sample sizes. When the level-2 sample size was set to 5, some of the 

conditions produced power slightly less than perfect. This occurred when the level-1 

sample size was either 10 or 15. Under these conditions, power rates were above 99%.  

Type I Error Rates. For τ01, all Type I error rates were below 5%, irrespective of 

correlations and sample sizes. Increasing the level-1 sample size had no discernable 

effect on the Type I error rates for τ01. For all conditions with N2 being 10, the Type I 

error rate was 0.10% or 0%. The error rates increased steadily with the increase of N2 for 

all tested conditions. The pattern does not indicate whether increasing N2 beyond the 

chosen maximum could produce undesirably high Type I error rates for τ01. 

The Type I error rate of the autocorrelation factor was around the expected 5% (M 

= 5.08, SD = 0.706), but slightly inflated. It was not influenced by any of the variables 

that were varied in this study. This means that neither the sample size combination nor 

the strengths of the predictor-outcome correlations had any impact on the Type I error 

rate of the autocorrelation factor. 
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Conditions With Nonzero Autocorrelation 

Biases. For the conditions tested where N2 was greater than 5, the biases of the 

fixed effects were all below 5% regardless of the magnitude of the autocorrelation factor. 

For those conditions where N2 was 5, most biases were below 5%. Some values 

exceeded 5% but all were below 10%. No discernable pattern that could explain the 

marginally inflated biases was present. 

Conditions tested with nonzero autocorrelation showed inflated estimates for the 

level-2 error variances τ00 and τ11 when the total sample size was small (Table 15). The 

inflation of the biases increased further for conditions with non-zero autocorrelation. 

Furthermore, the higher the autocorrelation, the higher was the inflation of the estimates 

of the level-2 variances. Therefore, more conditions produced biases of τ00 and τ11 beyond 

5% and 10%. Under the highest tested autocorrelation, all biases of τ00 were greater than 

10% for a level-1 sample size of 10. The average inflation of the intercept variance τ00 for 

the lowest sample size combination and the highest autocorrelation factor tested was 

above 75%. 

For all conditions tested in which N2 = 5, the biases were inflated. Only large 

level-1 sample sizes produced biases in the estimates of τ00 that were around or below 

5%. Biases were below 5% in less than 7% of the conditions. This was not achieved for 

the conditions with 2
autoρ  ≥ .20 (Table 22).  
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Table 22 

Biases for τ00 When ρTimeY = .2 and ρXY = .2 and N2 = 5 

 N1 

2
autoρ  

10 15 20 30 50 80 

0 25.844 15.370 9.314 8.633 5.159 3.640

.05 47.755 32.310 21.220 13.293 6.617 5.247

.10 66.169 43.448 30.904 11.870 7.859 5.336

.15 76.404 50.191 35.433 27.589 12.462 4.036

.20 99.842 60.467 54.616 30.933 19.731 8.956

.25 114.653 80.138 57.789 39.523 17.803 12.000

 Increasing the level-2 sample size to 10 produced more than 63% of the tested 

conditions with desirable levels of biases. The conditions with the highest 2
autoρ  needed 50 

or 80 measurements per person to decrease the biases below 5%. No conditions with (10, 

10) produced high estimates of the intercept variance (Table 23).  
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Table 23 

Biases for τ00 When ρTimeY = .2 and ρXY = .2 and N2 = 10 

 N1 

2
autoρ  

10 15 20 30 50 80 

0 8.4221 1.651 1.097 1.167 0.959 -0.808

.05 20.441 4.384 0.835 1.153 0.440 1.053

.10 24.220 13.115 2.336 1.900 -0.161 7.197

.15 38.101 13.791 8.534 6.077 1.184 -2.390

.20 52.315 22.454 12.528 2.828 4.783 -0.970

.25 75.270 29.266 17.738 10.608 0.431 2.968

For even higher level-2 sample sizes, the impact of the autocorrelation factor on 

the intercept variance estimates lessened (Table 24). The effect decreased further for N2 

= 25 to the point where only conditions with high levels of autocorrelation and a level-1 

sample size of 10 produced undesirably high biases (Table 25). 
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Table 24 

Biases for τ00 When ρTimeY = .2 and ρXY = .2 and N2 = 15 

 N1 

2
autoρ  

10 15 20 30 50 80 

0 0.405 -0.713 -2.884 -0.164 -0.954 0.134

.05 7.913 1.777 1.388 0.731 -0.005 -0.502

.10 13.699 4.604 2.604 2.210 -1.070 -0.158

.15 17.727 9.525 -0.113 0.996 0.336 -0.318

.20 28.868 12.998 3.179 1.157 -0.359 0.198

.25 42.742 15.116 6.565 4.346 1.477 -1.020

 

Table 25 

Biases for τ00 When ρTimeY = .2 and ρXY = .2 and N2 = 25 

 N1 

2
autoρ  

10 15 20 30 50 80 

0 0.820 0.001 -0.975 -0.362 -1.534 -0.281

.05 4.930 -0.570 -1.382 1.285 0.663 0.081

.10 4.188 0.597 -2.657 -0.354 0.017 0.365

.15 7.937 -0.462 -2.346 -0.789 -0.870 -1.618

.20 13.691 2.467 -2.126 -0.299 -0.865 -0.377

.25 21.828 1.495 -0.594 -0.299 -0.878 1.3044

For larger level-2 sample sizes, the pattern continued. When N2 = 30, two values 

exceeded 5%. For N2 = 35, only the largest tested autocorrelation in combination with 
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the lowest level-1 sample size produced an undesirably large bias in the intercept 

variance. 

The biases for the slope variance τ11 behaved similarly to those of the intercept 

variance. The higher the autocorrelation was, the greater was the inflation of the 

estimates. Increasing the level-2 sample size produced more conditions with desirable 

biases below 5%. For identical conditions the biases for τ11 were lower than those for τ00 

(Tables 26 – 28). For all conditions in which the level-2 sample size was 25 or larger, all 

biases for the intercept variance were below 5%. 

Table 26 

Biases for τ11 When ρTimeY = .2 and ρXY = .2 and N2 = 5 

 N1 

2
autoρ  

10 15 20 30 50 80 

0 32.8617 18.8305 12.5967 7.6518 4.8994 2.919 

.05 47.852 25.442 16.899 11.440 9.4120 2.841 

.10 51.0686 35.2764 21.6302 10.1906 10.052 5.7171 

.15 65.3546 40.416 33.9444 24.789 12.4155 6.4905 

.20 58.2468 47.2195 38.1037 25.3437 19.6062 9.0961 

.25 75.0353 59.6763 46.7008 29.5759 18.5009 8.1358 
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Table 27 

Biases for τ11 When ρTimeY = .2 and ρXY = .2 and N2 = 10 

 N1 

2
autoρ  

10 15 20 30 50 80 

0 4.042 -1.385 -2.783 0.623 -0.086 2.106 

.05 11.506 3.655 4.175 1.499 1.417 -0.372 

.10 13.529 7.981 5.002 -0.636 0.063 1.173 

.15 18.554 10.299 6.566 -0.551 -1.193 -1.187 

.20 29.229 9.989 6.711 5.186 -0.380 -0.890 

.25 31.278 14.395 7.346 5.224 0.715 0.567 

 

Table 28 

Biases for τ11 When ρTimeY = .2 and ρXY = .2 and N2 = 15 

 N1 

2
autoρ  

10 15 20 30 50 80 

0 0.237 1.434 -0.599 1.990 -0.029 -2.019 

.05 5.9213 1.039 0.767 1.007 -1.412 -0.699 

.10 6.772 2.119 2.411 -3.284 0.217 -0.850 

.15 8.405 1.149 0.809 1.509 -1.401 -0.193 

.20 10.22 1.561 -0.858 -1.142 0.023 -0.064 

.25 11.673 7.268 0.9041 -1.468 -2.310 -0.702 

 

While the biases for the level-1 error variance were all below 5% when the 

autocorrelation factor was set to 0, some conditions with non-zero autocorrelation 
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produced large negative biases. The estimates were severely deflated for some conditions 

with low sample size combinations and high autocorrelation. 

For a level-2 sample size of 5, about half of the estimates were deflated by more 

than 5%. The majority of the biases above 5% were higher than 10%, with the highest 

exceeding 30%. As Table 29 illustrates, even the biases below 5% showed a pattern of 

becoming more negative with increasing autocorrelation. 

Table 29 

Biases of 2
eσ When ρTimeY = .2 and ρXY = .2 and N2 = 5 

 N1 

2
autoρ  10 15 20 30 50 80 

.05 -8.719 -2.998 -1.684 -0.809 -0.453 0.004 

.10 -14.489 -6.400 -2.690 -1.371 -0.898 0.047 

.15 -19.207 -8.219 -5.398 -2.784 -1.033 -0.033 

.20 -25.34 -12.764 -7.951 -3.636 -2.243 -0.805 

.25 -31.086 -17.546 -10.819 -5.426 -1.676 -1.193 

 Similar to the biases of the level-2 variances, increasing the level-2 sample size 

improved the estimates of the level-1 variance. At N2 = 10, fewer conditions produced 

undesirable biases, with only two conditions having biases in excess of 10% (Table 30) 

with one being larger than 20%. This trend of improved biases continued for N2 being 

15. Only the condition with the highest autocorrelation and the lowest level-1 sample size 

had a negative bias of 2
eσ  larger than 10% (Table 31). 
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Table 30 

Biases of 2
eσ When ρTimeY = .2 and ρXY = .2 and N2 = 10 

 N1 

2
autoρ  10 15 20 30 50 80 

.05 -3.482 -1.425 -0.567 -0.061 -0.075 0.035 

.10 -5.792 -1.954 -1.316 -0.196 -0.109 0.190 

.15 -8.712 -3.800 -1.802 -1.062 -0.746 -0.278 

.20 -15.191 -5.699 -3.809 -0.944 -0.806 -0.188 

.25 -20.077 -9.114 -5.845 -1.897 -1.101 -1.216 

 
Table 31 

Biases of 2
eσ When ρTimeY = .2 and ρXY = .2 and N2 = 15 

 N1 

2
autoρ  

10 15 20 30 50 80 

.05 -1.788 0.022 -0.221 -0.422 -0.379 0.270

.10 -3.888 -1.055 -0.509 -0.570 -0.301 -0.188

.15 -6.080 -2.851 -1.294 -0.886 -0.311 0.127

.20 -9.766 -4.085 -2.018 -0.515 -0.810 -0.102

.25 -14.064 -6.908 -3.475 -1.839 -0.542 -0.486

For level-2 sample sizes of 15, the biases were further reduced. All of the 

conditions tested in which N2 ≥10 had biases below 5% when N1 ≥ 20. For the largest 

level-2 sample size of 35, the largest autocorrelation factor tested still produced a bias of 

2
eσ  larger than 10% for a level-1 sample size of 10. 
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The biases for the autocorrelation factor were mostly below 5%. Similar to the 

other variances, however, conditions with low sample size combinations and high 

autocorrelation factors showed undesirably large negative biases in the autocorrelation 

factor estimates.  

 For a level-2 sample size of 5, all conditions with level-2 sample sizes of 20 or 

less produced biases above or around 10%. The estimates for (10, 5) and 2
autoρ = .25 were 

deflated on average by more than 35%. Conditions tested with 2
autoρ = .25 produced a bias 

larger than 5% for N1 = 30 (Table 32). The impact of the magnitude of autocorrelation 

factor on the estimate of itself was reduced when the level-2 sample size was increased. 

With the conditions in which N2 = 10, all conditions with a level-1 sample size of at least 

20 produced biases below or around 5%. Those conditions in which (10, 10) produced 

estimates of 2
autoρ deflated between 15% and 21%. (Table 33).  

Table 32 

Biases of 2
autoρ  When ρTimeY = .2 and ρXY = .2 and N2 = 5 

 N1 

2
autoρ  

10 15 20 30 50 80 

.05 -41.483 -17.317 -9.238 -3.734 -1.564 -0.537

.10 -36.988 -17.456 -9.527 -5.195 -1.952 -0.192

.15 -38.812 -17.058 -9.505 -4.620 -2.488 -0.959

.20 -36.604 -19.613 -11.011 -4.943 -3.484 -1.183

.25 -37.629 -19.440 -11.862 -6.060 -2.212 -1.502
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Table 33 

Biases of 2
autoρ  When ρTimeY = .2 and ρXY = .2 and N2 = 10 

 N1 

2
autoρ  

10 15 20 30 50 80 

.05 -18.120 -6.781 -2.690 -1.242 -0.381 -1.378

.10 -16.240 -5.715 -2.422 -0.863 -0.524 0.139

.15 -17.100 -7.690 -3.480 -2.372 -1.206 -0.358

.20 -20.560 -7.765 -4.671 -1.753 -1.072 -0.014

.25 -20.620 -9.554 -5.975 -2.368 -1.162 -0.974

   

Table 34 

Biases of 2
autoρ  When ρTimeY = .2 and ρXY = .2 and N2 = 15 

 N1 

2
autoρ  10 15 20 30 50 80 

.05 -8.647 -3.985 -1.930 -0.489 0.144 0.295 

.10 -11.160 -4.441 -1.262 -0.762 -1.112 -0.653 

.15 -11.560 -4.608 -2.079 -1.368 -0.391 -0.573 

.20 -13.310 -5.305 -2.873 -1.087 -0.947 -0.410 

.25 -14.050 -6.361 -3.526 -1.966 -0.368 -0.639 

At a N2 = 15, most conditions where N1 ≥ 15 were deflated by less than 5%. 

Some were deflated slightly more than 5% but less than 7% (Table 34). For larger level-2 

sample sizes, only conditions with N1 of 10 produced undesirably high biases in the 
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autocorrelation factor estimate. For the largest autocorrelation factor tested, this was still 

the case for N2 = 35.  

Power. Within any correlation combination (ρTimeY, ρXY) the level of 

autocorrelation had no impact on the power of any of the fixed effects. This means that 

the power to detect β00 was perfect for all conditions, independent of sample size, the 

level of autocorrelation, and the values of the predictor-outcome correlations. The power 

rates to detect the other fixed effects (β10, β01, and β11) were similar in magnitude and 

pattern to those presented in the section on the conditions with zero autocorrelation.  

The level of autocorrelation had great impact on the power to detect the level-2 

variances τ00 and τ11. In general, an increase in 2
autoρ  resulted in a lower power of both 

level-2 variances, holding all other variables constant. This resulted in many more 

conditions where power for τ00 and τ11 did not reach acceptable values. Conditions in 

which 1.ρ2
auto ≥  produced unacceptable power values for a level-2 sample size of 15 

(Table 35), when the level-1 sample size was below 80. Specifically, less than 20% of the 

conditions in which N2 = 15 produced adequate or good power. 
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Table 35 

Power to Detect τ00 When ρTimeY = .2 and ρXY = .2 and N2 = 15 

 N1 

2
autoρ  10 15 20 30 50 80 

0 18.90 40.50 61.40 85.40 96.90 99.70 

.05 10.20 18.50 32.00 57.10 85.00 97.40 

.1 7.40 10.80 19.30 41.00 74.40 94.40 

.15 6.80 8.60 10.40 27.30 60.40 86.20 

.2 5.70 6.10 7.60 17.30 46.50 77.70 

.25 5.60 5.00 5.50 11.70 34.10 65.50 

 
 Increasing the level-2 sample size produced fewer undesirable power rates. The 

level-1 sample sizes, however, also had to be increased to compensate for an increase in 

the autocorrelation factor (Table 36). This trend continued for the conditions with the 

highest level-2 sample size tested. When N2 = 35, squared autocorrelation factors of .15 

required a level-1 sample size of more than 20 to reach adequate or high power. Almost 

50% of conditions tested produced inadequate power rates when N2 was 35 (Table 37). 
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Table 36 

Power to Detect τ00 When ρTimeY = .2 and ρXY = .2 and N2 = 25 

 N1 

2
autoρ  10 15 20 30 50 80 

0 70.70 91.40 98.10 99.80 100 100 

.05 43.70 68.30 86.30 97.80 99.90 100 

.1 31.30 51.10 71.70 93.50 99.70 99.90 

.15 23.40 37.30 55.70 84.00 98.80 100 

.2 18.60 30.60 43.10 73.10 95.80 99.80 

.25 17.60 20.90 33.40 59.40 89.50 99.40 

 

Table 37 

Power to Detect τ00 When ρTimeY = .2 and ρXY = .2 and N2 = 35 

 N1 

2
autoρ  10 15 20 30 50 80 

0 88.40 99.60 100 100 100 100 

.05 62.00 87.90 97.00 99.80 100 100 

.1 49.30 76.10 91.20 99.20 100 100 

.15 34.30 61.70 78.60 95.30 100 100 

.2 28.00 48.50 67.20 92.00 99.40 100 

.25 25.90 36.20 53.20 84.10 98.30 99.90 

The effect of the magnitude of the autocorrelation factor on the power to detect 

the level-2 variances was similar in pattern for all the predictor-outcome correlations 
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tested. There was some variance, but no pattern was detectable. Also, the decrease in 

power is similar for τ00 and τ11. 

In the presence of autocorrelation, the power to detect the level-1 variance was 

reduced in the smaller sample size combinations mostly for N1 = 10 but a few with N1 = 

15. Power was not influenced by the predictor-outcome correlations. It was, however, 

dependent upon the magnitude of the autocorrelation factor as well as the sample sizes. 

Power decreased with the increase of the autocorrelation factor and the decrease of either 

level’s sample size. The effect produced some power values below 90% (minimum 

83.70% for (10, 5), ρTimeY = .3, and ρXY = .2,) for the lowest sample size combination and 

the highest autocorrelation factor (Table 38). 

Table 38 

Power to Detect 2
eσ  When ρTimeY = .2 and ρXY = .2 and N1 = 10 

 N2 

2
autoρ  5 10 15 20 25 30 35 

0 100 100 100 100 100 100 100 

.05 97.50 100 100 100 100 100 100 

.1 96.70 99.70 100 100 100 100 100 

.15 91.10 99.50 99.90 100 100 100 100 

.2 89.40 98.70 99.40 100 100 100 100 

.25 85.00 96.80 98.90 99.70 100 100 100 

 
In the conditions tested, the strengths of the predictor-outcome correlations did 

not impact the power to detect the autocorrelation. The variables that changed the power 

to detect the autocorrelation factor were the magnitude of the autocorrelation factor itself 
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and the sample sizes. The power to detect the autocorrelation factor increased with the 

increase in the autocorrelation factor. Similarly, larger sample sizes on either level 

increased the power to detect ρauto. The following discussion uses the lowest predictor-

outcome correlation combination, that is ρTimeY = .2 and ρXY = .2, as a representative 

example. The tables for the other predictor-outcome correlation combinations contain 

similar values with some nonsystematic fluctuation. 

 Power to detect the autocorrelation factor was high for about half of the 

conditions in which N2 = 5. Increasing the number of measurements to 50 guaranteed 

high power to detect the autocorrelation factor. Even for N2 = 5, several conditions 

produced perfect power (Table 39). 

Table 39 

Power to Detect 2
autoρ  When ρTimeY = .2 and ρXY = .2 and N2 = 5 

 N1 

2
autoρ  10 15 20 40 50 80 

.05 4.60 20.50 40.50 68.00 90.90 99.30 

.1 9.30 41.40 68.10 91.80 99.60 100 

.15 12.40 58.00 84.20 98.50 100 100 

.2 19.90 70.40 92.00 99.50 100 100 

.25 22.20 78.60 95.90 100 100 100 

Increasing the level-2 sample size to 10 produced adequate or high power results 

for those conditions where N1 was 15 or greater and the square of the autocorrelation 

factor was .10 or higher. A further increase in level-2 sample size produced more 

conditions with high or perfect power. When N2 was set to 20, all but the lowest 
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combination of N1 and 2
autoρ  produced at least adequate power (Table 42). Further 

increases in level-2 sample size improved the power rates to the point that only the lowest 

combination of N1 and 2
autoρ had inadequate power, and more than two-thirds of the 

conditions had perfect power. For conditions where N2 was 35, even the lowest N1 and 

2
autoρ  produced adequate power of 81.90%.  

Table 40 

Power to Detect 2
autoρ  When ρTimeY = .2 and ρXY = .2 and N2 = 10 

 N1 

2
autoρ  10 15 20 40 50 80 

.05 19.60 51.30 74.70 93.40 99.70 100 

.1 39.20 83.70 95.40 99.80 100 100 

.15 55.10 94.00 99.40 100 100 100 

.2 63.10 98.00 100 100 100 100 

.25 74.40 99.60 100 100 100 100 
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Table 41 

Power to Detect 2
autoρ  When ρTimeY = .2 and ρXY = .2 and N2 = 20 

 N1 

2
autoρ  10 15 20 40 50 80 

.05 53.80 85.90 96.30 99.80 100 100 

.1 81.00 99.10 100 100 100 100 

.15 91.70 99.90 100 100 100 100 

.2 97.70 100 100 100 100 100 

.25 99.00 100 100 100 100 100 

 

Table 42 

Power to Detect ρauto When ρTimeY = .2 and ρXY = .2 and N2 = 30 

 N1 

2
autoρ  10 15 20 40 50 80 

.05 74.10 96.60 99.70 100 100 100 

.1 94.60 99.80 100 100 100 100 

.15 98.90 100 100 100 100 100 

.2 99.80 100 100 100 100 100 

.25 100 100 100 100 100 100 

 

Type I errors. The only variable tested for Type I error under non-zero 

autocorrelations was τ01. The power values were similar to those found under zero 

autocorrelation conditions. None exceeded 5%. In general, the power rates were lower for 

lower level-2 sample sizes. 
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Chapter 5 

Discussion 

The primary focus for this study was on the effects of level-1 and level-2 sample 

sizes on both the accuracy of parameter estimates and the statistical power in hierarchical 

linear growth modeling when more measurements are taken from fewer people. Overall, 

the results of this study do not confirm those of other studies that suggest that level-2 

sample sizes of 100 or more are necessary to achieve adequate or high power (Hedeker, 

et al., 1999; Raudenbush & Liu, 2001; Zhang & Wang, 2009). The findings of this study 

were more in line with Gagné and Estes (2009a, 2009b), who investigated similar 

conditions in two-level cross-sectional hierarchical linear models, and Ferron et al. 

(2009), who focused on a very simple AB model. The results overlap somewhat with 

Jenson, Clark, Kircher, and Kristjansson (2007) who found that high levels of 

autocorrelation have a major impact on power. 

Zero Autocorrelation  

Conditions with zero autocorrelation allow for good estimates of the fixed effects 

and the level-1 variance for sample sizes as low as (10, 5). For small sample size 

combinations, however, researchers should expect the level-2 variances to be inflated by 

30% or more. In general, the biases are independent of the strengths of the predictor-

outcome correlations. 

Power to detect the fixed effects depends on the strengths of the predictor-

outcome correlations as well as the sample sizes for all conditions tested. The stronger 

the correlations and the larger the sample sizes are, the higher the power to detect the 

effect. The correlation associated with a fixed effect has a larger impact than those that 
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are not directly associated with them. The strength of the other predictor outcome 

correlation, for example ρTimeY in the case of β01, influences the power to predict the fixed 

effect somewhat.  

In studies where the correlations between Time and Y or X and Y are expected to 

be small, sample sizes need to be relatively large to achieve adequate power. Specifically, 

when ρTimeY and ρXY are both low, high power can be achieved with 80 measurements 

from 35 participants. Furthermore, data from 80 measurements from 25 people or at least 

30 measurements from 35 participants can have adequate power. 

The necessary sample sizes decreases with an increase in predictor-outcome 

correlations. When both correlations are medium in strength (i.e., .3), the necessary 

sample sizes to achieve adequate or high power decrease. Adequate power can be reached 

by taking 30 measurements of 15 people. When 25 people are included in a study, as few 

as 10 measurements is sufficient to achieve adequate power. 

Under conditions in which the correlation between Time and Y is assumed to be 

high (i.e., around.6) and the correlation between a person-level variable and Y are 

medium in strength, sample size recommendations are even more lenient. Having 5 

participants, adequate or even high power to detect β10 can be achieved with 15 or more 

measurements per person. A study with only 10 participants can produce adequate power 

to detect all fixed effects when at least 50 measurements are taken from each individual. 

Involving 15 participants produces adequate power for even 10 measurements per person.  

The power to detect the level-2 variances is independent of the predictor-outcome 

correlations. It depends strongly, however, on the sample sizes. Studies that involve 10 

participants or less have no or very little power to detect τ00 or τ11. For studies with more 
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than 10 but less than 30 participants, increasing the number of measurements allows for 

adequate power to detect the level-2 variances. When at least 30 participants are 

involved, 10 measurements per person suffice to yield adequate power.  

Nonzero Autocorrelation  

As autocorrelation is an established complication in studies where many 

measurements of the same people are collected over relatively short periods of time 

(Yaffee & McGee, 2000), it needs to be considered when making decisions about sample 

sizes for single-case designs. This study shows that the magnitude of the autocorrelation 

factor does not affect the biases of the fixed effects. Increasing the autocorrelation does, 

however, inflate the level-2 variances. In addition, larger autocorrelation results in the 

level-1 variances being negatively biased, as well as downwardly biased estimates of the 

autocorrelation factor itself. In general larger sample sizes produce better estimates of the 

variances and of the autocorrelation. Increasing the level-2 sample size has a greater 

impact on the accuracy of the estimates than using larger level-1 samples. Specifically, 

the inflation of any of the variances was counteracted entirely with level-2 sample sizes 

of 20 or greater for even the highest magnitude tested. 

Similarly to the bias in the estimates of the fixed effects, the autocorrelation factor 

did not influence the power to detect the fixed effects. Thus, to the extent that statistical 

power will motivate a researcher’s decision, the same sample size recommendations that 

apply to situations where there is no autocorrelation hold for conditions with non-zero 

autocorrelation.  

The power to detect the level-2 variances, however, is influenced greatly by the 

degree of autocorrelation. For a level-2 sample size of 35, moderate to high 
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autocorrelation values are associated with inadequate power values for 20 measurements 

or less per person. For a level-2 sample size of 15 or less, 50 or more measurements are 

necessary to achieve adequate or high power. 

The influence of the number of measurements on the power to detect the 

autocorrelation factor was high as well. Higher values of autocorrelation needed at least 

20 measurements per person to be detected with at least adequate power when N2 was 

only 5. Power is adequate or high for conditions with low levels of autocorrelation if the 

number of measurements is at least 20 for small level-2 sample sizes. 

Recommendations for Single-Case Researchers 

Overall, under conditions in which the predictor-outcome correlations are 

moderate or high, the single-case researcher should recruit at least 15 participants and 

take 80 or measurements from each. If 20 participants can be included in a study, the 

number of measurements can be decreased to 50. Under these conditions, the researcher 

can expect unbiased estimates of all parameters and adequate or high power to detect all 

fixed and random effects in the presence of low to moderate autocorrelation factors 

( 2
autoρ ≤ .20). If very high levels of autocorrelation ( 2

autoρ = .25) are expected, at least 80 

measurements of 20 participants or 50 measurements of 25 participants should be 

collected. 

Furthermore, the results provide a clear recommendation against the use of only 5 

participants with only 10 measures per person when using HLM to estimate effects. The 

magnitudes of the biases in the variances were too large and the statistical power was too 

low to allow such an analysis to produce meaningful results. 
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The biases of the fixed effects are reasonably low for studies including 5 

participants or more. HLM can thus be a useful tool in establishing the values of the fixed 

effects for as few as 5 participants. The single-case researcher is encouraged to take as 

many measurements per person as possible in order to increase power. The estimates of 

the variances need to be considered with caution when the sample sizes are low. Still, 

using HLM on a small sample of participants can indicate whether a larger scale study is 

warranted. Using larger numbers of participants and/or numbers of measurements can 

yield meaningful results, depending on the combination of outcome-predictor correlations 

and autocorrelation. Fifteen participants can be a reasonable level-2 sample size when the 

predictor-outcome correlations are high.  

Future research 

The present study used values for the level-1 sample size that are common in 

single-case research. Future methodological research should investigate minimum sample 

size combinations that are more typical in group research, that is, N1 ≤ 10 and N2 > 35. 

Using only small or medium correlations between Time and Y would also be a useful 

way to obtain results more relevant to group-design research. 

The parameters for this study should also be expanded to more conditions that are 

applicable in single-case research. As discussed previously, power rates for the fixed 

effects as well as for the random effects increased substantially with the jump from N2 = 

10 to N2 = 15. Thus, future studies should increase the level-2 sample size in this range 

in small increments of 2 or even 1 to investigate the patterns more precisely. In addition, 

the results of this study indicate that small sample size combinations yield adequate or 

high power rates if the correlations between the predictor and the outcome variable are 
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sufficiently large. Increasing the correlation between the level-2 predictor and Y beyond 

the scope of this study may yield valuable insights into power.  

A limitation of this study was that the correlation between Time and X and the 

correlation between the cross-level interaction and Y were both fixed, the former at 0, the 

latter at .3. Future research should include several values of the correlation between the 

cross-level interaction and Y to test the impact of multicollinearity on the biases and 

power of the parameters. It should also consider a variety of magnitudes of the 

correlation between Time and X to gain insight into explaining and predicting between 

person variance in growth.  

To get the most out of the application of HLM, larger sample sizes are preferred. 

In many situations, however, sample sizes of 15 or more are unrealistic for single-case 

researchers. This does not exclude the use of HLM. Several similar studies can be 

combined through HLM meta-analyses (Morgan & Sideridis, 2006; Raudenbush & Bryk, 

2002; Van den Noortgate & Onghena, 2003b). Future studies should look at three-level 

models that suit single-case meta-analyses and investigate minimum sample size 

combinations. 

The results of this study also pose some questions for methodological researchers. 

The Type I error rate of τ01 increased systematically without reaching 5% when N2 was 

increased. Investigations into the behavior of τ01 for level-2 sample sizes larger than 35 

would be of interest to determine whether the error rates become undesirably large. 

Furthermore, the non-perfect power for the level-1 error variance is a curious result. 

While no condition with zero autocorrelation produced power rates of 2
eσ  below 99%, in 

this study it was found that low sample sizes can produce situations where the level-1 
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error variance might be reported to be not statistically significantly different than 0. The 

large impact on the power of 2
eσ in the presence of autocorrelation, producing some 

power rates below 90%, complicates these findings and warrants future investigation as 

well.  
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