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ABSTRACT 

 

 

SAMPLE SIZE IN ORDINAL LOGISTIC  

HIERARCHICAL LINEAR  

MODELING 

by 

Allison M. Timberlake 

 

Most quantitative research is conducted by randomly selecting members of a 

population on which to conduct a study. When statistics are run on a sample, and not the 

entire population of interest, they are subject to a certain amount of error. Many factors 

can impact the amount of error, or bias, in statistical estimates. One important factor is 

sample size; larger samples are more likely to minimize bias than smaller samples. 

Therefore, determining the necessary sample size to obtain accurate statistical estimates 

is a critical component of designing a quantitative study. 

Much research has been conducted on the impact of sample size on simple 

statistical techniques such as group mean comparisons and ordinary least squares 

regression. Less sample size research, however, has been conducted on complex 

techniques such as hierarchical linear modeling (HLM). HLM, also known as multilevel 

modeling, is used to explain and predict an outcome based on knowledge of other 

variables in nested populations. Ordinal logistic HLM (OLHLM) is used when the 

outcome variable has three or more ordered categories. While there is a growing body of 

research on sample size for two-level HLM utilizing a continuous outcome, there is no 

existing research exploring sample size for OLHLM. 

The purpose of this study was to determine the impact of sample size on statistical 

estimates for ordinal logistic hierarchical linear modeling. A Monte Carlo simulation 



 

 

 

 

study was used to investigate this research query. Four variables were manipulated: level-

one sample size, level-two sample size, sample outcome category allocation, and 

predictor-criterion correlation. Statistical estimates explored include bias in level-one and 

level-two parameters, power, and prediction accuracy.  

Results indicate that, in general, holding other conditions constant, bias decreases 

as level-one sample size increases. However, bias increases or remains unchanged as 

level-two sample size increases, holding other conditions constant. Power to detect the 

independent variable coefficients increased as both level-one and level-two sample size 

increased, holding other conditions constant. Overall, prediction accuracy is extremely 

poor. The overall prediction accuracy rate across conditions was 47.7%, with little 

variance across conditions. Furthermore, there is a strong tendency to over-predict the 

middle outcome category. 
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CHAPTER 1 

INTRODUCTION 

Little research has been conducted on the effect of sample size on parameter 

estimates in complex statistical techniques such as hierarchical linear modeling (HLM). 

HLM, also known as multilevel modeling, is used to explain and predict an outcome 

based on knowledge of other variables in nested populations (e.g., students nested in 

schools). Ordinal logistic HLM (OLHLM) is used when the outcome variable has three or 

more ordered categories (e.g., will not graduate high school, will graduate high school, 

will obtain a bachelor’s degree, or will obtain a graduate degree). While there is a 

growing body of research on sample size for two-level HLM utilizing a continuous 

outcome, there is no existing research exploring sample size for OLHLM. 

 The following literature review documents existing research on sample size in 

HLM for a continuous outcome variable and categorical regression models to identify 

implications for this study. Next, there is a description of ordinal logistic hierarchical 

linear modeling to understand the analysis and factors that will be important for this 

study. Finally, a discussion of applications of OLHLM is included to show the 

importance of the current research. 

The purpose of this study is to determine the impact of sample size on statistical 

estimates for ordinal logistic hierarchical linear modeling. A Monte Carlo simulation 

study is used to investigate this research query. Four variables will be manipulated: level-

one sample size, level-two sample size, sample outcome category allocation, and 

predictor-criterion correlation. Statistical estimates to be explored include bias in level-

one and level-two parameters, power, and prediction accuracy. 
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Increasingly, ordinal logistic HLM is being utilized in education research. 

Education data frequently are hierarchical (e.g., measurements nested in students, 

students nested in schools), indicating a need for HLM. Furthermore, many education 

outcomes are ordinal (e.g., level of education, parent satisfaction, course placement, letter 

grades). The common use of surveys also indicates a prevalence of ordinal outcomes as 

much survey data is ordinal (e.g., Likert scales). Given this, ordinal logistic HLM can be 

a useful technique in education research. This study is important for researchers planning 

to use this technique who need to determine the sample size they need to obtain accurate 

estimates for their research. 



 

 

3 

CHAPTER 2 

LITERATURE REVIEW 

Sample Size 

 Determining the necessary sample size for a quantitative study can be 

challenging. Researchers must often make several assumptions and consider multiple 

aspects of their study when determining sample size. First, researchers must be mindful 

of Type I and Type II error. Type I error is the probability of rejecting the null hypothesis 

when it is true. This error is formalized by selecting a significance level, α, in hypothesis 

testing, which is commonly set at .05 in social science research. Type II error, β, is the 

probability of not rejecting the null hypothesis when it is false. While a change in the 

probability of committing a Type I error will cause a change in the opposite direction in 

the probability of committing a Type II error, both are impacted by sample size. 

In addition to Type I and Type II error, researchers should consider both statistical 

and practical significance. Acknowledging that statistical significance is strongly 

influenced by sample size, Pedhazur (1997) suggests researchers first determine the effect 

size (practical significance), level of statistical significance (p(Type I error)), and power 

(1 – p(Type II error)) desired for meaningful results within the context of the study and 

then, using that information, determine the necessary sample size. Similarly, Kelley and 

Maxwell (2003) suggest that researchers should not only perform sample size planning to 

maximize the likelihood of significant results but should also attempt to obtain accurate 

estimates. 

All of these considerations are related to the reliability of results. In fact, sample 

size is directly related to the precision of population estimates. Improved precision 
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reduces the probability of error, making results more reliable. Cohen (1988, p. 7) notes 

that “not all statistical tests involve the explicit definition of a standard error of a sample 

value, but all do involve the more general conception of sample reliability. Moreover, and 

most important, whatever else sample reliability may be dependent upon, it always 

depends upon the size of the sample.” 

As demonstrated, even in basic hypothesis testing utilizing t-tests or one-way 

ANOVAs, there are multiple considerations when selecting sample size. These 

considerations include alpha, power, and effect size (Brewer & Sindelar, 1988). When 

moving to more complex analyses, such as multiple regression and hierarchical linear 

modeling (HLM), issues of sample size become more complicated. A brief discussion of 

sample size in multiple regression will be used to explore sample size in HLM. 

 Many researchers have estimated minimum sample sizes for multiple regression. 

Miller and Kunce (1973) state that a subject to predictor ratio of 10 to 1 is sufficient, 

while Pedhazur and Schmelkin (1991) argue that a subject to predictor ratio of 30 to 1 is 

necessary. Maxwell (2000), however, suggests that these guidelines underestimate 

adequate sample sizes. Instead, he derived several formulas that can be used to determine 

adequate sample size based on a number of estimated values. He also established a 

sample size table for use in the absence of theoretical expectations. Assuming power is 

equal to .80, he found a roughly linear relationship between sample size and the number 

of predictors included in the model. Specifically, he found that a minimum sample size of 

141 is required for models with two predictors, 218 is required for models with three 

predictors, 311 is required for models with four predictors, all the way to 1196 being 

required for models with 10 predictors. 
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 To complicate the issue further, the necessary minimum sample size will vary 

depending upon the purpose (explanation or prediction) of the analysis being utilized. 

According to Algina and Olejnik (2000, p. 119), “sample size tables and procedures used 

to determine sample size for hypothesis tests should not be used for estimation because 

providing evidence that a parameter is not equal to some specific value is a 

fundamentally different task than accurately estimating the parameter.” Maxwell (2000) 

states that sample size will need to be larger for prediction than for explanation. When 

using multiple regression for prediction purposes, Knofczynski and Mundfrom (2008, p. 

437) found that “as the squared multiple correlation coefficient decreases, the [necessary] 

sample size increases. The sample size increases slowly as the squared multiple 

correlation coefficient, ρ
2
, departs from one, and then increases more quickly as ρ

2
 

approaches zero.” They also found an almost linear relationship between the number of 

predictor variables and recommended sample size. 

 The existing literature on sample size determination in linear regression shows 

that there are multiple methods and theories. In almost all of the articles reviewed, 

however, the authors take into consideration the same key components, including the 

research question(s) being studied, the model being utilized, and the purpose of the 

analysis. Specifically, they consider alpha, power, and effect size. These considerations in 

linear regression also are critical in hierarchical linear modeling. 

 Issues of sample size become more complex as one moves from multiple 

regression to multilevel modeling. First, there is a sample size at each level included in 

the model. Second, there are more values being estimated. Existing research on sample 

size in HLM focuses on two-level designs utilizing a continuous outcome. 
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Mok (1995) argues that two-level designs are similar to two-stage cluster 

sampling as described by Kish (1965). Therefore, effective sample size,     , for two-

level models with fixed slopes is computed by 

                         , [1] 

where n is the total number of participants in the study, nclus is the number of level-one 

units per level-two unit, and  is the intra-class correlation (ICC). This calculation will 

not be adequate for a random-slopes model, however, because the ICC is a function of 

the independent variable (          
                       ).  

To address this limitation, Mok conducted a simulation study in which he found 

that if the total sample size was more than 800, all estimates of fixed intercept and slope 

components were within one standard error of the true value, regardless of the 

distribution of the sample size among level-one and level-two units. For designs with a 

total sample size of less than or equal to 800, there was less bias when the number of 

level-two units was greater than or equal to the number of level-one units. Estimates of 

level-two variance components were most accurate when sample size approached 2500, 

but gains in accuracy were small as sample size grew beyond 2500. Finally, estimates of 

level-one variance components were most accurate when sample size was greater than 

4000. Mok concluded that “one might offer as a rule of thumb, in the 2-level random 

slope balanced case with intra-class correlation of below, say, 0.15, at the x-intercept, that 

an actual sample size of 3500, and an effective sample size at the x-intercept of 400, to 

ensure reasonable efficiency and lack of bias” (p. 15). Overall sample sizes in excess of 

1000 students may not be possible or cost-efficient in most education research. Therefore, 
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a target sample size of 800 is suggested, with attention paid to maximizing the number of 

level-two units. 

Maas and Hox (2005) conducted a simulation study in which they varied three 

components to create 27 conditions: number of groups (30, 50, 100), group size (5, 30, 

50), and ICC (0.1, 0.2, 0.3). They found that the regression coefficients, standard errors 

of the regression coefficients, and variance components were estimated without bias in all 

simulated conditions; however, the standard errors of the level-two variance components 

were underestimated when group size was smaller than 100, although the authors claim 

the underestimate is acceptable in normal practice, though they do not substantiate this 

claim. They suggest that even smaller sample sizes are adequate, although a level-two 

sample size of at least 100 is optimal. 

These results build on their previous work in which they found that bias was 

largest when small sample sizes are combined with large ICC values (Maas & Hox, 2004, 

p. 135). They concluded that “with respect to the influence of the sample size in the case 

of normally distributed errors, there turns out only to be a problem with the standard 

errors of the second-level variances when the number of groups is substantially lower 

than 50 and when the group size is lower than 30.” They concluded by making this 

recommendation: ten groups are adequate when interested in fixed effects; however, 30 

groups are needed if interested in contextual effects, and 50 groups are needed for 

estimating standard errors. 

Similarly, Snijders and Bosker (1999) recommended coefficients be fixed if group 

size is less than 10; however, random coefficients can be used when group size is equal to 

or greater than 10. Raudenbush (2008, p. 208) notes that “holding constant the fit of the 
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model, the optimal sample size per cluster for estimating random coefficients and second-

level variance components will tend to be larger than when the aim is to estimate fixed 

regression coefficients.” 

These authors show that while there is not a consensus on the total sample size 

necessary for HLM studies, there is general agreement that increasing the sample size at 

level two is more important than increasing sample size at level one. There are, however, 

additional factors that must be considered in addition to parameter bias when determining 

sample size for an HLM study. Raudenbush and Liu (2000) note that: 

for estimating the main effect of treatment, maximizing J, the number of sites, has 

a greater impact on power than does maximizing n, the number of participants per 

site. Testing moderating effects of site characteristics has similar implications; J is 

more important than n in maximizing power for detecting these moderating 

effects. (p. 207)  

Hox (2002) agrees that level-two units are more important than level-one units for 

accuracy and high power. Additionally, the power of tests of higher-level effects and 

cross-level interactions depend more heavily on the number of level-two units. 

 In addition to power, effect size is a consideration in sample size selection. 

Roberts (2006) identifies several methods of determining effect size, including intra-class 

correlation, proportional reduction in variance, and explained variance as a reduction in 

mean square prediction error. Because these measures of model quality utilize variance, 

they also are influenced by sample size.  

As researchers have shown, there is not a commonly accepted standard for 

minimum sample size. Researchers have shown, however, that a total sample size of 
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approximately 800 units, with a level-two sample size of at least 50 to 100 groups, is 

desirable. Sample size issues for HLM become more challenging when more complex 

models, such as ordinal logistic hierarchical linear models, are utilized. Because there is 

no existing research on sample size in OLHLM, a discussion of sample size in binary and 

ordinal logistic regression will be used to shed light on its HLM counterpart. 

In Long’s (1997) book on categorical regression models, he advises against 

sample sizes smaller than 100 for binary outcomes but finds a sample size of more than 

500 adequate when adjusted based on the model and data. The author, however, also 

states that more observations are needed as the number of parameters in the model 

increases, if there is little variation in the dependent variable, or if significant 

multicollinearity is present. 

Taylor, West, and Aiken (2006) provide more concrete recommendations. They 

found that to achieve 0.8 power, a logistic model with two categories would need a 

sample size ranging from 317 to 608; a logistic model with three categories would need a 

sample size ranging from 249 to 461, depending on the shape of the distribution of the 

outcome variable, compared with a sample size of 200 for an ordinary least squares 

(OLS) model with a continuous outcome; and a logistic model with five categories would 

need a sample size ranging from 225 to 377, also depending on the shape of the 

distribution of the outcome variable. 

Therefore, binary and ordinal logistic regression require not only a larger sample 

size than OLS regression with a continuous variable, but the sample size also depends on 

the shape of the distribution. Additionally, required sample size decreases as the number 

of categories increases (i.e., as the ordinal outcome variable simulates a continuous 
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variable). Required sample size for ordinal logistic HLM will be more complex, as there 

is a sample size at each level. An additional concern is the number of observations per 

outcome category necessary to estimate the cumulative probability function adequately. 

 

Ordinal Logistic HLM 

 Hierarchical linear models typically utilize a continuous variable, such as 

achievement test scores, as the outcome variable. An assumption for HLM is that the 

outcome variable is normally distributed with a range of -∞ to +∞, with allowances for 

the observed range (Raudenbush & Bryk, 2002). Continuous variables satisfy this 

assumption because they have an infinite number of possible values within some range, 

vary from low to high, and are usually normally distributed (Leech et al., 2005). 

Researchers, however, may be interested in outcomes that are not continuous but that are 

dichotomous or ordinal in nature. For such outcomes, binary logistic and ordinal logistic 

HLM are necessary. In order to describe ordinal logistic HLM, a discussion of binary 

logistic HLM is useful. 

Dichotomous variables are binary, meaning they have two levels or categories. 

An example of a dichotomous outcome is high school graduation; a student either 

graduates from high school or does not graduate from high school. Dichotomous 

variables present a problem for HLM as they are not continuous or normally distributed. 

Furthermore, their values are not meaningful as numbers because the assigned numbers 

are arbitrary (e.g., 0 = did not graduate, 1 = graduated). Binary logistic HLM, an 

extension of binary logistic regression for nested data structures, can be used to predict 

such outcomes. 



 

 

11 

To address the limitations of binary data, a logit is utilized as the outcome 

variable. A logit is calculated using the formula 

                               
      

        
   [2] 

where        is the probability the outcome is the group assigned a code of 1. Using 

the graduation example,        would be the probability that a student graduates from 

high school. Logits, unlike binary variables, probabilities, and odds, are normally 

distributed and range from -∞ to +∞, thereby meeting the necessary assumption for use as 

an outcome variable in HLM. Therefore, for binary logistic HLM, logit(p) is the outcome 

variable, yielding a combined prediction equation, including one predictor (W1j) for both 

the intercept and slope, of 

           γ
  
 γ

  
    γ

  
     γ        . [3] 

The analysis produces a predicted logit, which can be converted into a predicted 

probability by reversing Equation 2. If the probability is greater than or equal to 0.5, then 

the outcome variable is predicted to equal one. If the probability is less than 0.5, then the 

outcome variable is predicted to be 0.  

Continuing the graduation example, assume one is trying to predict whether or not 

a student will graduate from high school using Equation 3, where the level-one predictor 

(   ) is a student’s score on an aptitude test, and the level-two predictor (   ) is the 

school’s average socioeconomic status (SES). Given this example,  γ   is the average 

odds that a student will graduate (Y=1) when all predictors equal 0;  γ   is the 

multiplicative change in odds that a student will graduate, on average, holding the other 

predictors constant, per unit increase in average school SES;  γ   is the multiplicative 

change in odds that a student will graduate, on average, holding the other predictors 
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constant, per unit increase on the aptitude test; and  γ   is the multiplicative change in the 

change in odds that a student will graduate, on average, per unit increase on the aptitude 

test, holding other predictors constant, of an increase in average school SES, holding 

other slope predictors constant. 

 Ordinal logistic HLM functions similarly to binary logistic HLM but utilizes an 

ordinal outcome instead of a binary outcome. An ordinal variable has four main 

properties: it has more than two levels, the levels are ordered, the distance between levels 

on the quantity being measured is unequal, and it is not normally distributed (Leech et al., 

2005). For example, an ordinal outcome is level of education (i.e., less than high school, 

high school diploma, undergraduate degree, and graduate degree). As with binary logistic 

HLM, ordinal logistic HLM utilizes a logit as the outcome variable. In binary logistic 

HLM, the outcome has two categories, so one logit function is sufficient. In ordinal 

logistic HLM, multiple logit functions are necessary, yielding a cumulative logit function. 

To understand ordinal logistic HLM, a discussion of ordinal logistic regression is useful. 

 In ordinal logistic regression, the cumulative logit function is represented as 

                           [4] 

where    is the threshold, or cutoff between any two ordered categories. This logit can 

be used to calculate the cumulative probability for any number of ordered categories 

using the equation 

   
 

               
    

 
 

        
  [5] 

For J ordered categories, J – 1 equations are needed. Therefore, the cumulative 

logit function would be created J – 1 times. For example, four ordered categories would 

require three equations to include the first threshold, a1, the second threshold, a2, and the 
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third threshold, a3. The first equation yields the probability that an observation is in 

Category 1. The second equation yields the probability that an observation is in Category 

1 or Category 2. The third equation yields the probability that an observation is in 

Category 1, Category 2, or Category 3. Since a fourth equation would yield the 

probability that an observation is in one of the four categories, it would equal 1 and is not 

necessary to calculate. The predicted category for an observation with known values for 

the predictor variables can be determined by calculating the cumulative probability from 

each equation, subtracting the appropriate values to obtain the probability of each 

category, and selecting the category with the highest value as the predicted category. 

 In ordinal logistic HLM, the level-one model will be the cumulative logit 

function, 

                         

   

   

 

 

   

 [6] 

where     is the difference between two thresholds and      is a dummy variable 

indicator for outcome category m (when m = 1,      = 0; when m = 2,      = 1). The 

level-two model is 

                    

  

   

 [7] 

To conceptualize the formal ordinal logistic HLM equations presented above, the 

following model represents the level-one and level-two equations for a model predicting 

a three-category outcome variable with one level-one predictor, X, and one level-two 

predictor, W. The level-one equation is 

                           [8] 
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and the level-two equations are 

                      [9] 

           , and [10] 

      . [11] 

The combined equation is 

                                                  [12] 

while the combined prediction equation is 

                                   . [13] 

Incorporating the thresholds directly into the level-one equation makes them 

potentially random coefficients because they would behave like an intercept. It also 

would imply that the latent variable underlying the response categories translates into 

those response categories differently across level-two units. This would make 

interpretation difficult and require at least two random effects per level-two unit, which 

can be highly correlated (Raudenbush & Bryk, 2002). An alternate approach is to 

incorporate the difference between thresholds,   , and add a common intercept,    . 

Therefore, when interpreting the combined model:     is the first threshold;    is the 

change in predicted cumulative logit per unit increase in the level-two predictor, holding 

all else constant;     is the change in predicted cumulative logit per unit increase in the 

level-one predictor, holding all else constant; and    is the difference between the first 

and second thresholds.  

Any change in predicted logit is conceptually meaningless. In binary logistic 

HLM, e can be raised to the slope coefficient of a given predictor to yield the 

multiplicative change in odds (Y=1) per unit increase in the predictor. This interpretation 
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is still appropriate for the first category in ordinal logistic HLM. This interpretation, 

however, is not appropriate for categories other than the first, due to the nature of the 

cumulative probability function (a change in the probability of being in one category will 

change the probability of being in other categories). The easiest way to conceptualize the 

impact of a coefficient on the cumulative probability function is graphically. Figure 1 

represents the change in probability that an observation is in a given category per unit 

increase in the level-two predictor, W. 
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The predicted probability of being in a given category changes as a function of the 

coefficient as well as the value of the predictor. For low values of the predictor, a unit 

increase does not change the predicted category. At certain thresholds, however, a unit 

increase will change the predicted category. For example, as W increases from -4 to -3, 

the predicted category changes from Category 3 to Category 2. 

An example is useful in illustrating these concepts. Assume one wants to predict 

the level of education a student will complete (1 = less than high school graduation, 2 = 

high school graduation, 3 = more than high school graduation) using one level-one 

predictor (     = student’s score on an aptitude test) and one level-two predictor (    = 

the school’s average SES). The combined prediction equation is   

                                   . [14] 
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For Category 1,      = 0, resulting in the equation  

                            . [15] 

For Category 2,      = 1, resulting in the equation  

                               , [16] 

where   is added to     to obtain the second threshold. For a given student, one would 

use Equation 15 to obtain the predicted logit and use Equation 2 to change that value into 

the probability a student will not graduate from high school (Category 1). Next, one 

would use Equation 16 to obtain the predicted logit and use Equation 2 to change that 

value into the probability a student will not graduate from high school (Category 1) or 

will graduate from high school (Category 2). The probability that a student will not 

graduate from high school (Category 1), will graduate from high school (Category 2), or 

will go beyond high school (Category 3) is 1. Subtracting the appropriate values will 

yield the unique probabilities for each category. The category with the greatest 

probability is the predicted outcome for that student. 

  Ordinal logistic HLM is useful anytime the outcome variable is ordinal and the 

data are nested. This technique is common in health-related research and is a growing 

presence in item response theory and education research. A discussion of such 

applications is necessary to demonstrate the importance of this study. 

 

Applications 

Most current applications of OLHLM are in the medical, biostatistical, 

epidemiological, and health fields; item response theory; and education. Outcome 

measures in medicine are often measured on an ordinal scale (Qu, 1995). Because such 
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data can be hierarchical in nature (e.g., time nested in patients, patients nested in doctors), 

ordinal logistic HLM is a useful analytical technique and can advance existing research in 

the field. For example, Lall, Campbell, Walters, and Morgan (2002) review ordinal 

regression models with health-related quality of life assessments as outcomes. They note 

that quality of life assessments, typically measured by questionnaires which result in 

ordinal measures, are increasingly being used in medical research. Additionally, Verzilli 

and Carpenter (2002) document the use of multilevel ordinal logistic models for 

longitudinal clinical trials. 

Ordinal logistic HLM is also used in epidemiological and health research. Garcia 

and Herrero (2006) explore the acceptability of domestic violence against women in the 

European Union. They estimate a three-level ordinal logistic HLM model, with people 

nested in cities nested in countries. The outcome variable is based on a single question in 

which respondents were asked to give their opinion of domestic violence against women 

(1 = unacceptable in all circumstances and always punishable, 2 = unacceptable in all 

circumstances and not always punishable, 3 = acceptable in certain circumstances, 4 = 

acceptable in all circumstances).  

Pinilla, Gonzalez, Barber, and Santana (2002) explore the effect of individual, 

family, social, and school factors on adolescent tobacco smoking patterns. They estimate 

a two-level ordinal logistic HLM model. The outcome variable is based on a single 

question in which respondents were asked to indicate their smoking habits (1 = no 

smoking, 2 = smoking less than once a week, 3 = smoking on weekends, 4 = smoking 

daily). 
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Ordinal logistic regression has been used for detecting differential item 

functioning (DIF) in polytomous items in Item Response Theory (IRT). DIF is present 

when people with the same ability from different groups have a different probability of 

answering an item correctly. Crane, Gibbons, Jolley, and van Belle (2006) propose an 

ordinal logistic regression model for identifying test items with DIF and found the 

approach to be a reasonable alternative for DIF detection. Kristjansson, Aylesworth, 

McDowell, and Zumbo (2005) explore an ordinal logistic regression approach to DIF 

detection in ordered response items. Both approaches could be extended to utilize ordinal 

logistic HLM by nesting items in examinees. 

Increasingly, ordinal logistic HLM is being utilized in education research. 

Education data frequently are hierarchical (e.g., measurements nested in students, 

students nested in schools), indicating a need for HLM. Furthermore, many education 

outcomes are ordinal (e.g., level of education, parent satisfaction, course placement, letter 

grades). The common use of surveys also indicates a prevalence of ordinal outcomes as 

much survey data is ordinal (e.g., Likert scales). Given this, ordinal logistic HLM can be 

a useful technique in education research. 

 For example, Fielding, Yang, and Goldstein (2003) estimate a multilevel ordinal 

model for grades (A = 1, B = 2, C = 3, D = 4, E = 5, F = 6) on examinations used in 

England and Wales for selection to higher education. Grilli and Rampichini (2002) use a 

three-level ordinal multilevel model (ratings nested in courses nested in schools) to 

estimate student course satisfaction ratings (1 = decidedly no, 2 = more no than yes, 3 = 

more yes than no, 4 = decidedly yes) at the University of Florence. 
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 Lleras (2008) uses data from the National Educational Longitudinal Study to 

explore the impact of individual and school characteristics on student course placement, 

student engagement, and academic achievement for students in the 8th and 10th grades in 

schools with high and low percentages of African-American students. While student 

engagement and academic achievement are continuous outcomes, math class for 8th-

grade students (algebra = 1, general mathematics = 2, or remedial mathematics = 3) and 

math course sequence for 10th-grade students (trigonometry, calculus, precalculus = 1; 

algebra II and geometry = 2; algebra II or geometry = 3; algebra I = 4; and less than 

algebra I =5) are ordinal outcomes. 

As with all statistical techniques, sample size is a concern for ordinal logistic 

HLM models. There is, however, currently no existing research on the topic. Therefore, 

the purpose of this study is to determine the impact of sample size on statistical estimates 

for ordinal logistic hierarchical linear modeling.
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CHAPTER 3 

METHOD 

A Monte Carlo simulation study was used to investigate this research query. Four 

variables were manipulated: level-one sample size, level-two sample size, sample 

outcome category allocation, and predictor-criterion (X-Y) correlation. Statistical 

estimates explored included bias in level-one parameters, bias in level-two parameters, 

power, and prediction accuracy. 

The investigator utilized one ordinal logistic hierarchical linear model with a 

three-category outcome variable. The decision to use one model was made due to the 

complexity of utilizing an ordinal outcome in HLM and the lack of existing literature on 

sample size in OLHLM. The decision to use an outcome variable with three categories is 

due to the complexity of the model and subsequent complexity in simulating ordinal data. 

The estimated model had one level-one predictor, X, and one level-two predictor, W. A 

cross-level interaction was not included. The level-one equation was 

                            [17] 

and the level-two equations were 

                      [18] 

           , and [19] 

      . [20] 

The combined equation was 

                                                  
[21] 

while the combined prediction equation was 



 

 

22 

                                   . [22] 

Existing research on sample size in HLM utilize a variety of sample size 

conditions. Mok (1995) used 11 level-one sample sizes (5, 10, 20, 30, 40, 50, 60, 70, 80, 

100, 150) and 11 level-two sample sizes (5, 10, 20, 30, 40, 50, 60, 70, 80, 100, 150) and 

recommended a level-one and level-two combination in which total sample size equaled 

or exceeded 800. Maas and Hox (2004) argued that a level-two sample size of at least 50 

is necessary. Maas and Hox (2005) used three level-one sample sizes (30, 50, 100) and 

three level-two sample sizes (5, 30, 50).  

Given this variability in conditions, lack of knowledge regarding sample size for 

OLHLM, and computational limitations, three level-one sample sizes were used in this 

study: 24, 48, and 60. Three level-two sample sizes were also used: 24, 48, and 60. This 

resulted in total sample sizes ranging from 576 to 3600. While the outcome category 

allocation for the population was fixed (equal observations for each category), three 

sample outcome category allocation conditions were used: equal observations for each 

category (1/3, 1/3, 1/3), observations clustered in the center category (1/4, 1/2, 1/4), and 

increasing observations per category (1/6, 1/3, 1/2). Finally, three X-Y correlations (.2, 

.3, .4) were utilized. This resulted in 81 conditions. 

Two constants were set for this study. While the following constants are of 

methodological interest and could have been varied, they are beyond the scope of the 

current study. First, the population had an outcome category allocation of equal 

observations (1/3, 1/3, 1/3) regardless of the sampling proportions used. Second, the 

correlation between the level-two predictor, W, and the outcome variable, Y, was .3.  
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The data were generated in SAS 9.2 using PROC IML (SAS Institute, 2008) and 

parameter estimation was conducted in HLM6 (Raudenbush et al., 2005). For each of the 

81 conditions, 1,000 replications were simulated. Bias was calculated for    ,    ,    , 

  ,    , and     using the equation  

                                         

                   
  [23] 

Power, defined as the proportion of replications in which the parameter estimate is 

significant, was calculated for    ,    ,    , and    . This study considered power values 

less than .8 inadequate and .8 to 1 excellent (Cohen, 1992). Prediction accuracy was 

defined as the proportion of observations for which the estimated model correctly 

predicts the outcome category.
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CHAPTER 4 

RESULTS 

Bias 

 In their simulation study exploring the effect of sample size on parameter 

estimates for standard HLM, Maas and Hox (2005) obtained an average bias smaller than 

0.05%, which they considered negligible. The largest bias they found for any condition 

was 0.3%. In a similar study, Estes (2008) found that even for small sample sizes, such as 

a level-one sample size of 5, bias was small, at 5% or less. Occasional estimates were 

above 5%, especially for τ, but they were rare. The levels of and change in bias obtained 

in this study were higher than those obtained in similar studies for HLM with a 

continuous outcome variable. Bias is rarely less than 2%, is commonly above 10%, and is 

as high as 39%. The change in bias across sample size conditions is typically 5% or less. 

When the sample outcome category allocation and the X-Y correlation are held 

constant, the difference in bias for     varies by 4.7% or less across sample size 

conditions (see Table 1). Sample size has a mixed impact on bias for    . Holding level-

two sample size and the X-Y correlation constant, bias generally decreases as level-one 

sample size increases when the sample outcome category allocation is equal. When the 

sample outcome category allocation is not equal, bias generally increases as level-one 

sample size increases, holding other conditions constant. 

When other conditions are held constant, there is not a predictable pattern for the 

effect of level-two sample size on bias for     (see Table 1). Of the 54 instances of 

change in level-two sample size, bias decreased in 30 instances while bias increased in 24 

instances. There is not a clear pattern for when bias increases and decreases. 
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The X-Y correlation has a mixed impact on bias for     (see Table 1). Holding 

sample size constant, when the sample outcome category allocation is equal, bias changes 

with no discernable pattern (though it increases more than it decreases) as the X-Y 

correlation increases. When the sample outcome category allocation is not equal, bias 

generally decreases as the X-Y correlation increases, holding sample size constant. 

Bias for     is heavily impacted by the sample outcome category allocation (see 

Table 1). Bias is relatively small for the equal allocation condition (5.7% or less) but 

larger for the clustered allocation condition (ranging from 23.9% to 30.1%) and the 

increasing allocation condition (ranging from 31% to 39%). Additionally, bias is negative 

for the equal allocation condition and positive for the clustered and increasing allocation 

conditions. 
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Table 1 

Bias for     

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 -0.043 -0.023 -0.032 

(1/3-1/3-1/3)  48 -0.041 -0.019 -0.019 

  60 -0.049 -0.024 -0.021 

 0.3 24 -0.052 -0.028 -0.020 

  48 -0.050 -0.031 -0.028 

  60 -0.052 -0.027 -0.024 

 0.4 24 -0.046 -0.021 -0.029 

  48 -0.049 -0.030 -0.027 

  60 -0.057 -0.032 -0.026 

Clustered 0.2 24 0.267 0.300 0.301 

(1/4-1/2-1/4)  48 0.261 0.295 0.300 

  60 0.263 0.298 0.300 

 0.3 24 0.247 0.261 0.292 

  48 0.247 0.283 0.282 

  60 0.245 0.279 0.288 

 0.4 24 0.247 0.282 0.269 

  48 0.239 0.268 0.283 

  60 0.242 0.275 0.278 

Increasing 0.2 24 0.363 0.383 0.390 

(1/6-1/3-1/2)  48 0.355 0.382 0.382 

  60 0.353 0.381 0.384 

 0.3 24 0.343 0.354 0.360 

  48 0.341 0.359 0.362 

  60 0.330 0.357 0.366 

 0.4 24 0.311 0.349 0.353 

  48 0.314 0.339 0.346 

  60 0.310 0.338 0.343 

 

The variance in bias due to sample size for     is larger than that for     (see 

Table 2). When the sample outcome category allocation and the X-Y correlation are held 

constant, the difference in bias varies by up to 10.1% across sample size conditions. 

Holding level-two sample size and other conditions constant, bias for     

generally decreases as level-one sample size increases (see Table 2). When other 

conditions are held constant, there is not a predictable pattern for the effect of level-two 

sample size on bias for    . Of the 54 instances of change in level-two sample size, bias 
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decreased in 15 instances, increased in 35 instances, and remained unchanged in four 

instances. There is not a clear pattern for when bias increases and decreases. 

The X-Y correlation has a mixed impact on bias for     (see Table 2). Holding 

sample size constant, when the sample outcome category allocation is equal, bias 

generally decreases as the X-Y correlation increases. When the sample outcome category 

allocation is not equal, bias changes with no discernable pattern (though it decreases 

more than it increases), holding sample size constant. 

Unlike with    , bias for     is not heavily impacted by the sample outcome 

category allocation (see Table 2). There is no clear pattern for bias when sample size and 

the X-Y correlation are held constant. Bias is negative for all conditions. 
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Table 2 

Bias for     

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 -0.121 -0.065 -0.053 

(1/3-1/3-1/3)  48 -0.112 -0.088 -0.070 

  60 -0.127 -0.086 -0.066 

 0.3 24 -0.099 -0.053 -0.055 

  48 -0.117 -0.070 -0.068 

  60 -0.115 -0.074 -0.060 

 0.4 24 -0.102 -0.067 -0.054 

  48 -0.104 -0.066 -0.063 

  60 -0.113 -0.069 -0.057 

Clustered 0.2 24 -0.110 -0.070 -0.085 

(1/4-1/2-1/4)  48 -0.131 -0.099 -0.090 

  60 -0.131 -0.106 -0.093 

 0.3 24 -0.149 -0.048 -0.055 

  48 -0.126 -0.103 -0.079 

  60 -0.144 -0.095 -0.089 

 0.4 24 -0.098 -0.083 -0.072 

  48 -0.131 -0.093 -0.068 

  60 -0.131 -0.093 -0.077 

Increasing 0.2 24 -0.129 -0.051 -0.067 

(1/6-1/3-1/2)  48 -0.129 -0.098 -0.070 

  60 -0.138 -0.097 -0.079 

 0.3 24 -0.100 -0.047 -0.072 

  48 -0.112 -0.086 -0.066 

  60 -0.138 -0.077 -0.080 

 0.4 24 -0.119 -0.063 -0.060 

  48 -0.124 -0.078 -0.073 

  60 -0.118 -0.081 -0.070 

 

 

Holding level-two sample size and other conditions constant, bias generally 

decreases for     as level-one sample size increases (see Table 3). When other conditions 

are held constant, there is not a predictable pattern for the effect of level-two sample size 

on bias for    . Similarly, there is not a predictable pattern for the effect of the X-Y 

correlation on bias for     when other conditions are held constant. Bias for     is not 

heavily impacted by the sample outcome category allocation. There is no clear pattern for 

bias when sample size and the X-Y correlation are held constant; however, bias tends to 
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be slightly smaller for the equal allocation condition. Additionally, bias is negative for 

almost all conditions. 
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Table 3 

Bias for     

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 -0.074 0.006 -0.035 

(1/3-1/3-1/3)  48 -0.069 -0.046 -0.038 

  60 -0.088 -0.047 -0.039 

 0.3 24 -0.072 -0.034 -0.031 

  48 -0.066 -0.050 -0.043 

  60 -0.093 -0.050 -0.039 

 0.4 24 -0.071 -0.013 -0.034 

  48 -0.069 -0.050 -0.039 

  60 -0.090 -0.050 -0.042 

Clustered 0.2 24 -0.123 -0.122 -0.065 

(1/4-1/2-1/4)  48 -0.111 -0.080 -0.069 

  60 -0.125 -0.083 -0.071 

 0.3 24 -0.112 -0.113 -0.061 

  48 -0.120 -0.078 -0.072 

  60 -0.120 -0.081 -0.067 

 0.4 24 -0.107 -0.093 -0.065 

  48 -0.129 -0.077 -0.066 

  60 -0.118 -0.076 -0.067 

Increasing 0.2 24 -0.089 -0.080 -0.052 

(1/6-1/3-1/2)  48 -0.141 -0.063 -0.053 

  60 -0.110 -0.074 -0.062 

 0.3 24 -0.097 -0.043 -0.050 

  48 -0.122 -0.065 -0.056 

  60 -0.105 -0.067 -0.053 

 0.4 24 -0.093 -0.035 -0.046 

  48 -0.109 -0.061 -0.055 

  60 -0.106 -0.064 -0.056 

 

The effect of sample size and other conditions on bias for    is similar to that for 

    (see Table 4). Sample size has a mixed impact on bias for   . Holding level-two 

sample size and the X-Y correlation constant, bias decreases as level-one sample size 

increases when the sample outcome category allocation is equal. When the sample 

outcome category allocation is not equal, bias increases as level-one sample size 

increases, holding other conditions constant. 
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When other conditions are held constant, there is not a predictable pattern for the 

effect of level-two sample size on bias for    (see Table 4). Of the 54 instances of change 

in level-two sample size, bias decreased in 23 instances, increased in 19 instances, and 

remained unchanged in 12 instances. There is not a clear pattern for when bias increases 

and decreases. 

The X-Y correlation has a mixed impact on bias for    (see Table 4). Holding 

sample size constant, when the sample outcome category allocation is equal, bias 

generally increases as the X-Y correlation increases. When the sample outcome category 

allocation is not equal, bias generally decreases as the X-Y correlation increases, holding 

sample size constant. 

Bias for    is impacted by the sample outcome category allocation (see Table 4). 

Bias is relatively small for the equal allocation condition (5.4% or less) and the 

increasing allocation condition (4.1% or less) but larger for the clustered allocation 

condition (ranging from 23.6% to 30.3%). Additionally, bias is negative for the equal 

allocation condition and generally positive for the clustered and increasing allocation 

conditions. 
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Table 4 

Bias for    

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 -0.046 -0.023 -0.022 

(1/3-1/3-1/3)  48 -0.045 -0.022 -0.018 

  60 -0.047 -0.022 -0.018 

 0.3 24 -0.048 -0.031 -0.027 

  48 -0.049 -0.031 -0.026 

  60 -0.051 -0.032 -0.025 

 0.4 24 -0.049 -0.030 -0.023 

  48 -0.051 -0.031 -0.026 

  60 -0.054 -0.030 -0.027 

Clustered 0.2 24 0.266 0.293 0.301 

(1/4-1/2-1/4)  48 0.263 0.294 0.300 

  60 0.263 0.297 0.303 

 0.3 24 0.249 0.279 0.288 

  48 0.249 0.282 0.287 

  60 0.248 0.278 0.285 

 0.4 24 0.244 0.276 0.279 

  48 0.236 0.273 0.281 

  60 0.240 0.273 0.281 

Increasing 0.2 24 0.013 0.036 0.038 

(1/6-1/3-1/2)  48 0.011 0.036 0.041 

  60 0.008 0.035 0.041 

 0.3 24 0.006 0.028 0.033 

  48 0.003 0.026 0.032 

  60 -0.001 0.027 0.034 

 0.4 24 0.001 0.026 0.034 

  48 -0.001 0.026 0.031 

  60 -0.002 0.026 0.030 

 

The difference in bias across conditions for     is considerable (see Table 5). 

When the sample outcome category allocation and the X-Y correlation are held constant, 

the difference in bias varies by between 10.6% and 12.6% across sample size conditions. 

In all instances, when level-two sample size and other conditions are held constant, bias 

decreases as level-one sample size increases. When level-one sample size and other 

conditions are held constant, bias tends to increase as level-two sample size increases.  
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Bias decreases as the X-Y correlation increases when sample size and the sample 

outcome category allocation are held constant (see Table 5). Bias for     is smaller for 

the equal sample outcome category allocation condition than for the clustered and 

increasing conditions. Additionally, bias is negative for all conditions. 
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Table 5 

Bias for     

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 -0.206 -0.138 -0.122 

(1/3-1/3-1/3)  48 -0.224 -0.152 -0.131 

  60 -0.228 -0.158 -0.136 

 0.3 24 -0.189 -0.132 -0.106 

  48 -0.209 -0.142 -0.129 

  60 -0.215 -0.152 -0.124 

 0.4 24 -0.166 -0.108 -0.087 

  48 -0.194 -0.127 -0.111 

  60 -0.202 -0.133 -0.118 

Clustered 0.2 24 -0.237 -0.179 -0.152 

(1/4-1/2-1/4)  48 -0.266 -0.190 -0.174 

  60 -0.264 -0.190 -0.169 

 0.3 24 -0.228 -0.162 -0.146 

  48 -0.250 -0.176 -0.164 

  60 -0.255 -0.183 -0.165 

 0.4 24 -0.221 -0.153 -0.132 

  48 -0.244 -0.166 -0.148 

  60 -0.245 -0.168 -0.155 

Increasing 0.2 24 -0.223 -0.162 -0.146 

(1/6-1/3-1/2)  48 -0.252 -0.178 -0.159 

  60 -0.261 -0.182 -0.164 

 0.3 24 -0.215 -0.154 -0.129 

  48 -0.242 -0.165 -0.148 

  60 -0.248 -0.167 -0.147 

 0.4 24 -0.200 -0.138 -0.109 

  48 -0.225 -0.152 -0.139 

  60 -0.235 -0.157 -0.140 

 

The difference in bias across conditions for     is considerable (see Table 6). 

When the sample outcome category allocation and the X-Y correlation are held constant, 

the difference in bias varies by between 11.5% and 14.0% across sample size conditions. 

In general, when level-two sample size and other conditions are held constant, bias 

decreases as level-one sample size increases. When level-one sample size and other 

conditions are held constant, bias tends to increase as level-two sample size increases.  
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There is no discernable pattern for the effect of the X-Y correlation on bias for     

when sample size and the sample outcome category allocation are held constant (see 

Table 6). Bias for     is smaller for the equal sample outcome category allocation 

condition than for the clustered and increasing conditions. Additionally, bias is negative 

for all conditions. 
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Table 6 

Bias for     

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 -0.142 -0.050 -0.074 

(1/3-1/3-1/3)  48 -0.179 -0.105 -0.092 

  60 -0.185 -0.097 -0.082 

 0.3 24 -0.141 -0.080 -0.047 

  48 -0.140 -0.099 -0.085 

  60 -0.174 -0.096 -0.071 

 0.4 24 -0.126 -0.061 -0.066 

  48 -0.168 -0.094 -0.091 

  60 -0.176 -0.089 -0.080 

Clustered 0.2 24 -0.191 -0.142 -0.111 

(1/4-1/2-1/4)  48 -0.231 -0.175 -0.144 

  60 -0.251 -0.164 -0.144 

 0.3 24 -0.205 -0.101 -0.123 

  48 -0.232 -0.154 -0.140 

  60 -0.241 -0.156 -0.143 

 0.4 24 -0.213 -0.114 -0.122 

  48 -0.248 -0.147 -0.139 

  60 -0.241 -0.152 -0.136 

Increasing 0.2 24 -0.159 -0.134 -0.084 

(1/6-1/3-1/2)  48 -0.195 -0.115 -0.096 

  60 -0.219 -0.141 -0.112 

 0.3 24 -0.177 -0.123 -0.089 

  48 -0.205 -0.110 -0.111 

  60 -0.213 -0.123 -0.101 

 0.4 24 -0.185 -0.108 -0.097 

  48 -0.217 -0.112 -0.105 

  60 -0.219 -0.130 -0.120 

 

Power 

 Power to detect     is affected by sample size, the X-Y correlation, and sample 

outcome category allocation (see Table 7). Holding other conditions constant, power 

generally increases as level-one sample size increases. Power, however, decreases as 

level-one sample size increases for the clustered allocation condition when the X-Y 

correlation is 0.2. Holding other conditions constant, power increases as level-two sample 

size increases in all instances. Power also increases in most instances when the X-Y 
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correlation increases, holding other conditions constant. There is no discernable effect of 

sample outcome category allocation on power. 

 For smaller sample sizes and lower X-Y correlation conditions, power is about 

40%. However, for larger sample sizes and higher X-Y correlation conditions, power is 

about 85%. 
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Table 7 

Power to Detect     

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 0.422 0.423 0.448 

(1/3-1/3-1/3)  48 0.697 0.698 0.716 

  60 0.802 0.808 0.815 

 0.3 24 0.441 0.451 0.442 

  48 0.723 0.757 0.738 

  60 0.813 0.831 0.834 

 0.4 24 0.446 0.464 0.474 

  48 0.758 0.770 0.776 

  60 0.848 0.846 0.867 

Clustered 0.2 24 0.440 0.434 0.431 

(1/4-1/2-1/4)  48 0.750 0.734 0.725 

  60 0.831 0.816 0.809 

 0.3 24 0.431 0.456 0.468 

  48 0.735 0.735 0.744 

  60 0.823 0.833 0.854 

 0.4 24 0.480 0.512 0.488 

  48 0.758 0.786 0.791 

  60 0.857 0.868 0.868 

Increasing 0.2 24 0.420 0.470 0.443 

(1/6-1/3-1/2)  48 0.708 0.728 0.724 

  60 0.809 0.811 0.828 

 0.3 24 0.435 0.454 0.436 

  48 0.751 0.749 0.746 

  60 0.822 0.838 0.832 

 0.4 24 0.452 0.476 0.462 

  48 0.764 0.774 0.785 

  60 0.862 0.867 0.850 

 

Power to detect     is high for all conditions (see Table 8). While power increases 

as sample size and the X-Y correlation increase, it quickly approaches 100%. In fact, 

power is 100% for 62% of the conditions and the lowest value for any condition is 

82.3%. 
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Table 8 

Power to Detect     

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 0.837 0.915 0.899 

(1/3-1/3-1/3)  48 0.993 0.999 0.997 

  60 0.999 0.999 1.000 

 0.3 24 0.994 0.998 0.999 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.4 24 1.000 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

Clustered 0.2 24 0.837 0.862 0.892 

(1/4-1/2-1/4)  48 0.993 0.997 0.998 

  60 0.998 0.999 1.000 

 0.3 24 0.996 0.996 0.999 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.4 24 1.000 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

Increasing 0.2 24 0.823 0.869 0.889 

(1/6-1/3-1/2)  48 0.981 0.996 0.996 

  60 1.000 0.998 1.000 

 0.3 24 0.996 1.000 0.996 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.4 24 1.000 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 

Power to detect     is 100% for all conditions (see Table 9).  
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Table 9 

Power to Detect     

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 1.000 1.000 1.000 

(1/3-1/3-1/3)  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.3 24 1.000 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.4 24 1.000 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

Clustered 0.2 24 1.000 1.000 1.000 

(1/4-1/2-1/4)  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.3 24 1.000 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.4 24 1.000 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

Increasing 0.2 24 1.000 1.000 1.000 

(1/6-1/3-1/2)  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.3 24 1.000 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.4 24 1.000 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 

Power to detect     is high for all conditions (see Table 10). While power 

increases as sample size and the X-Y correlation increase, it quickly approaches 100%. In 

fact, power is 100% for 84% of the conditions and the lowest value for any condition is 

97.9%. 
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Table 10 

Power to Detect     

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 0.996 1.000 1.000 

(1/3-1/3-1/3)  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.3 24 0.991 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.4 24 0.986 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

Clustered 0.2 24 0.993 0.999 1.000 

(1/4-1/2-1/4)  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.3 24 0.992 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.4 24 0.985 0.999 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

Increasing 0.2 24 0.992 0.999 1.000 

(1/6-1/3-1/2)  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.3 24 0.992 1.000 1.000 

  48 1.000 1.000 1.000 

  60 1.000 1.000 1.000 

 0.4 24 0.979 1.000 1.000 

  48 0.999 1.000 1.000 

  60 1.000 1.000 1.000 
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Prediction Accuracy 

 Prediction accuracy is quite low, ranging from 40.2% to 54% across conditions, 

with an overall prediction accuracy of 47.7% (see Table 11). In general, prediction 

accuracy increases or remains unchanged as level-one sample size increases, holding 

other conditions constant. Prediction accuracy tends to decrease as level-two sample size 

increases, holding other conditions constant. In all instances, prediction accuracy 

increases as the X-Y correlation increases, holding other conditions constant. Of the three 

sample outcome category allocation conditions, prediction accuracy is highest for the 

clustered condition. 
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Table 11 

Prediction Accuracy for All Outcome Categories 

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 0.412 0.414 0.413 

(1/3-1/3-1/3)  48 0.407 0.406 0.407 

  60 0.402 0.405 0.406 

 0.3 24 0.441 0.443 0.441 

  48 0.436 0.437 0.437 

  60 0.434 0.436 0.435 

 0.4 24 0.477 0.481 0.479 

  48 0.474 0.473 0.473 

  60 0.471 0.472 0.473 

Clustered 0.2 24 0.516 0.514 0.513 

(1/4-1/2-1/4)  48 0.512 0.511 0.511 

  60 0.511 0.511 0.511 

 0.3 24 0.523 0.522 0.524 

  48 0.521 0.520 0.521 

  60 0.520 0.520 0.520 

 0.4 24 0.539 0.540 0.538 

  48 0.535 0.535 0.535 

  60 0.536 0.535 0.535 

Increasing 0.2 24 0.442 0.447 0.446 

(1/6-1/3-1/2)  48 0.437 0.438 0.440 

  60 0.437 0.436 0.438 

 0.3 24 0.474 0.476 0.471 

  48 0.468 0.467 0.468 

  60 0.466 0.466 0.466 

 0.4 24 0.504 0.509 0.506 

  48 0.501 0.501 0.502 

  60 0.501 0.500 0.501 

 

Prediction accuracy is lowest for outcome category 1, ranging from 9% to 39.1% 

(see Table 12). In most cases, prediction accuracy increases as level-one sample size 

increases, holding other conditions constant. Prediction accuracy tends to decrease as 

level-two sample size increases, holding other conditions constant. In all instances, 

prediction accuracy increases as the X-Y correlation increases, holding other conditions 

constant. Of the three sample outcome category allocation conditions, prediction 

accuracy is highest for the equal condition. 
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Table 12 

Prediction Accuracy for Outcome Category 1 

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 0.230 0.236 0.235 

(1/3-1/3-1/3)  48 0.214 0.212 0.217 

  60 0.205 0.212 0.214 

 0.3 24 0.301 0.304 0.304 

  48 0.288 0.291 0.292 

  60 0.282 0.288 0.290 

 0.4 24 0.383 0.391 0.389 

  48 0.374 0.375 0.377 

  60 0.369 0.373 0.374 

Clustered 0.2 24 0.128 0.125 0.129 

(1/4-1/2-1/4)  48 0.109 0.109 0.111 

  60 0.100 0.104 0.106 

 0.3 24 0.176 0.183 0.189 

  48 0.163 0.167 0.174 

  60 0.158 0.168 0.171 

 0.4 24 0.260 0.266 0.269 

  48 0.240 0.253 0.255 

  60 0.244 0.251 0.256 

Increasing 0.2 24 0.109 0.126 0.119 

(1/6-1/3-1/2)  48 0.090 0.098 0.104 

  60 0.090 0.094 0.101 

 0.3 24 0.173 0.182 0.178 

  48 0.150 0.159 0.161 

  60 0.146 0.156 0.155 

 0.4 24 0.246 0.255 0.256 

  48 0.229 0.245 0.243 

  60 0.233 0.240 0.243 

 

Prediction accuracy is higher than average for outcome category 2, ranging from 

65.6% to 92% (see Table 13). In most cases, prediction accuracy decreases as level-one 

sample size increases, holding other conditions constant. Prediction accuracy tends to 

increase as level-two sample size increases, holding other conditions constant. In all 

instances, prediction accuracy decreases as the X-Y correlation increases, holding other 

conditions constant. Of the three sample outcome category allocation conditions, 

prediction accuracy is highest for the clustered condition. 
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Table 13 

Prediction Accuracy for Outcome Category 2 

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 0.776 0.769 0.767 

(1/3-1/3-1/3)  48 0.790 0.793 0.787 

  60 0.799 0.792 0.791 

 0.3 24 0.717 0.714 0.710 

  48 0.733 0.728 0.727 

  60 0.740 0.728 0.729 

 0.4 24 0.665 0.656 0.658 

  48 0.673 0.669 0.666 

  60 0.677 0.670 0.669 

Clustered 0.2 24 0.903 0.900 0.896 

(1/4-1/2-1/4)  48 0.916 0.912 0.911 

  60 0.920 0.919 0.916 

 0.3 24 0.869 0.863 0.856 

  48 0.877 0.873 0.868 

  60 0.882 0.873 0.870 

 0.4 24 0.817 0.812 0.808 

  48 0.828 0.819 0.814 

  60 0.827 0.819 0.815 

Increasing 0.2 24 0.767 0.754 0.762 

(1/6-1/3-1/2)  48 0.790 0.778 0.777 

  60 0.784 0.784 0.779 

 0.3 24 0.720 0.714 0.716 

  48 0.731 0.728 0.729 

  60 0.736 0.730 0.730 

 0.4 24 0.674 0.667 0.672 

  48 0.686 0.681 0.677 

  60 0.685 0.682 0.680 

 

Prediction accuracy is lower than average for outcome category 3, ranging from 

10.2% to 48.8% (see Table 14). In most cases, prediction accuracy increases as level-one 

sample size increases, holding other conditions constant. Prediction accuracy tends to 

decrease as level-two sample size increases, holding other conditions constant. In all 

instances, prediction accuracy increases as the X-Y correlation increases, holding other 

conditions constant. Of the three sample outcome category allocation conditions, 

prediction accuracy is highest for the increasing condition. 
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Table 14 

Prediction Accuracy for Outcome Category 3 

Allocation 
X-Y 

Correlation 
Level 2 

Level 1 

24 48 60 

Equal 0.2 24 0.231 0.237 0.236 

(1/3-1/3-1/3)  48 0.218 0.212 0.216 

  60 0.203 0.211 0.212 

 0.3 24 0.306 0.310 0.309 

  48 0.288 0.291 0.291 

  60 0.280 0.292 0.286 

 0.4 24 0.383 0.396 0.388 

  48 0.376 0.375 0.376 

  60 0.368 0.373 0.375 

Clustered 0.2 24 0.130 0.132 0.131 

(1/4-1/2-1/4)  48 0.108 0.110 0.111 

  60 0.103 0.102 0.104 

 0.3 24 0.178 0.179 0.195 

  48 0.165 0.169 0.174 

  60 0.159 0.166 0.170 

 0.4 24 0.261 0.269 0.266 

  48 0.242 0.249 0.256 

  60 0.244 0.248 0.255 

Increasing 0.2 24 0.336 0.349 0.343 

(1/6-1/3-1/2)  48 0.317 0.324 0.327 

  60 0.322 0.318 0.323 

 0.3 24 0.410 0.416 0.406 

  48 0.398 0.396 0.397 

  60 0.392 0.393 0.394 

 0.4 24 0.477 0.488 0.479 

  48 0.468 0.466 0.471 

  60 0.468 0.466 0.468 

 

 Across all conditions, category 1 has a prediction success rate of 22.8%, category 

2 has a prediction success rate of 78.7%, and category 3 has a prediction success rate of 

31.6% (see Table 15). When categories 1 and 3 are inaccurately predicted, the outcome is 

over-predicted to be in category 2. When the actual outcome category is 1, category 2 is 

predicted in 71.7% of cases. When the actual outcome category is 3, category 2 is 

predicted in 65.1% of cases.  
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Table 15 

Prediction Accuracy by Actual Outcome Category for All Conditions 

 
Predicted Category 

1 2 3 

Actual Category 

1 0.228 0.717 0.055 

2 0.085 0.787 0.128 

3 0.033 0.651 0.316 

 

 The outcome is over-predicted to be in category 2 regardless of the sample 

outcome category allocation (see Table 16). Predication accuracy for a given outcome 

category is highest for the allocation condition that maximizes the presence of that 

category. For example, predication accuracy for category 3 is highest for the increasing 

allocation condition where one-half of the sample is in category 3.  
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Table 16 

Prediction Accuracy by Actual Outcome Category for Sample Outcome Category 

Allocation Conditions 

Allocation 
Actual 

Category 

Predicted Category 

1 2 3 

Equal 

(1/3-1/3-1/3) 

1 0.295 0.648 0.057 

2 0.136 0.727 0.137 

3 0.057 0.647 0.295 

Clustered 

(1/4-1/2-1/4) 

1 0.179 0.797 0.024 

2 0.067 0.867 0.067 

3 0.024 0.797 0.179 

Increasing 

(1/6-1/3-1/2) 

1 0.168 0.733 0.098 

2 0.061 0.728 0.211 

3 0.022 0.580 0.398 

 

Supplemental Analysis of Real Data 

 Ordinal logistic HLM was conducted on a set of real data. The same model used 

for this study was used for the supplemental analysis: a two-level ordinal logistic 

hierarchical linear model with a three-category educational outcome variable. The model 

had one level-one predictor, X, and one level-two predictor, W. The combined prediction 

equation was 

                                   . [23] 

 The real data set included 44,706 level-one units spread across 837 level-two 

units, with a mean of 53 level-one units per level-two unit. The outcome category 

distribution for the real data set is 11.7% in category 1, 52.0% in category 2, and 36.3% 

in category 3. The results of the analysis are presented in Table 17. 
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Table 17 

Multilevel Results for Supplemental Analysis of Real Data 

 Coefficient SE t 

    0.250 0.380 0.664 

    0.002 0.001 1.245 

    -0.012** 0.0003 -35.027 

   2.84** 0.022 128.291 

 

 This OLHLM analysis of real data reveals an over-prediction of category 2 as the 

outcome category (see Table 18). Category 1 has a prediction success rate of 0.1%, 

category 2 has a prediction success rate of 92.4%, and category 3 has a prediction success 

rate of 16.4%. When categories 1 and 3 are inaccurately predicted, the outcome is over-

predicted to be in category 2. When the actual outcome category is 1, category 2 is 

predicted in 97.1% of cases. When the actual outcome category is 3, category 2 is 

predicted in 83.6% of cases. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

50 

Table 18 

Prediction Accuracy by Actual Outcome Category for Real Data 

 
Predicted Category 

1 2 3 

Actual Category 

1 0.001 0.971 0.029 

2 0.000 0.924 0.076 

3 0.00006 0.836 0.164 

 

The predicted outcome category distribution is 0.02% in category 1, 89.7% in 

category 2, and 10.2% in category 3 while the actual outcome category distribution is 

11.7% in category 1, 52.0% in category 2, and 36.3% in category 3.
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CHAPTER 5 

DISCUSSION 

 The obtained effect of sample size on bias for ordinal logistic HLM is inconsistent 

with what was expected. Bias for    , the first threshold, and   , the difference between 

the first and second thresholds, decreased as level-one sample size increased when the 

sample outcome category allocation was equal but increased as level-one sample size 

increased for the other allocations. This is most likely because the clustered and 

increasing allocation conditions represent samples that are misaligned with the 

population; therefore,     and   will be most affected since they influence the outcome 

category proportions. 

The effect of level-two sample size on bias for     and    did not have a clear 

pattern, with bias increasing in some instances and decreasing in others. The X-Y 

correlation, like level-one sample size, had a mixed effect on bias. It had an 

indistinguishable effect on bias for the equal sample outcome category allocation 

condition; however, for the other two allocation conditions, bias generally decreased as 

the X-Y correlation increased. It appears as though when the relationship between X and 

Y gets stronger, the parameter estimates are better able to overcome the bias introduced 

by the misaligned sampling allocations. Finally, bias is small for the equal allocation 

condition but larger for the other two conditions, which is due to the misaligned sampling 

conditions. 

Bias for    , the coefficient for the level-two independent variable, and    , the 

coefficient for the level-one independent variable, decreased as level-one sample size 

increased. There was not a solid pattern for the effect of level-two sample size on bias. 
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For the equal allocation condition, bias for     decreased as the X-Y correlation 

increased. There was no pattern on the effect of the X-Y correlation on bias for    . Bias 

in    , intercept variance, and in    , slope variance, was considerable. Bias decreased as 

level-one sample size increased but increased as level-two sample size increased. Power, 

however, was generally unaffected. 

In general, bias improved as level-one sample size increased but got worse as 

level-two sample size increased. The other conditions had little to no effect on bias. This 

may be due to the proportional odds assumption (McCullagh, 1980). Ordinal logistic 

regression and, by extension, ordinal logistic HLM, assume that the relationship between 

each pair of outcome categories is the same. In other words, OLHLM assumes that the 

coefficients describing the relationship between one set of categories (e.g., category 1 and 

category 2) are the same for all sets of categories. For the model used in this study, the 

assumption is that the relationship between categories 1 and 2 and categories 2 and 3 is 

the same and can be described by the same set of coefficients. This assumption may not 

be true; therefore, by adding groups, any violation of the proportional odds assumption 

becomes compounded such that the coefficients become more inaccurate.  

Another assumption of OLHLM is that the difference between the thresholds 

included in the model is non-varying. The first threshold is the average threshold across 

groups while the second threshold is a fixed difference from the first threshold. By using 

the average threshold across groups, a middling effect occurs, in which people are over-

predicted into category 2. It may be that the difference between the thresholds needs to 

vary to address this issue. Raudenbush and Bryk (2002) note that even though the 
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threshold difference is typically held constant, it could vary. The HLM6 software, 

however, does not allow the threshold difference to vary. 

One result of this study is clear. Accurate sampling is a necessity. Parameter 

estimates are heavily affected by misaligned sampling proportions. 

 Power to detect the independent variable coefficients increased as both level-one 

and level-two sample size increased. It was demonstrated that power is more a function 

of level-two sample size than level-one sample size, which is consistent with standard 

HLM with a continuous outcome variable (Hox, 2002). Across level-one sample size 

conditions, power to detect     increased by less than 0.1; however, power increased by 

approximately 0.2 for each increase in level-two sample size. To achieve adequate power 

for    , a level-two sample size of 60 is required. There is not a necessary minimum 

level-one sample size based on this study’s conditions as all level-one sample sizes were 

sufficient when level-two sample size was 60. Power to detect     was adequate for all 

sample size conditions. Power to detect     was 1 for all conditions and power to detect 

    was 1 for almost all conditions.  

 A level-one sample size of 24 and a level-two sample size of 60 yields a total 

sample size of 1440, which may be cost-prohibitive for many applied researchers. While 

additional research can be conducted to determine if power is still adequate with a 

smaller level-one sample size, total sample size still will be large due to the level-two 

sample size of 60. OLHLM needs a greater sample size than does HLM utilizing a 

continuous outcome. In addition to estimating all of the parameters, sample size also has 

to be sufficient for each outcome category in order to estimate the model accurately.  
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 The most surprising result of this study relates to prediction accuracy. Overall, 

prediction accuracy is extremely poor for OLHLM. The overall prediction accuracy rate 

across conditions was 47.7%, with little variance across conditions. Prediction accuracy 

for a given category is highest for the allocation condition that maximizes the presence of 

that category. For example, prediction accuracy for category 2 is highest for the clustered 

allocation condition, where one-half of the units are in category 2.  

Overall, prediction accuracy is very poor for category 1 and category 3 and 

moderately-high for category 2. In essence, OLHLM is over-predicting units into 

category 2. When the actual outcome category was 1, category 1 was predicted in 22.8% 

of cases while category 2 was predicted in 71.7% of cases. When the actual outcome 

category was 3, category 3 was predicted in 31.6% of cases while category 2 was 

predicted in 65.1% of cases. Category 2 was predicted correctly in 78.7% of cases. The 

supplemental analysis of real data was conducted to test this finding. In the supplemental 

analysis, category 1 was predicted correctly in 0.1% of cases, while 97.1% of cases were 

predicted to be in category 2. Category 3 was predicted correctly in 16.4% of cases, while 

83.6% of cases were predicted to be in category 2. Category 2 was predicted correctly in 

92.4% of cases. This analysis verified that there is a strong tendency for OLHLM to over-

predict people into category 2.  

There are two possible explanations for the over-prediction of category 2. First, 

category 2 is the center category; therefore, when category 1 and category 3 are predicted 

inaccurately, they will most likely be predicted to be in category 2. The second 

explanation relates to a faulty interpretation of OLHLM. When using OLHLM, 

prediction equations are used to calculate a unit’s logits, which are then transformed into 
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predicted probabilities. The unit is then placed into the category with the highest 

probability. The flaw in this approach is that it assumes every unit with that profile would 

be placed into that category. For example, if a unit’s highest predicted probability is .65 

for category 2, every unit with that profile will be placed in category 2 when, in reality, 

only 65% would fall into that category. This results in OLHLM estimating the outcome 

category proportions inaccurately. 

There are several limitations of the current study that should be addressed in 

future studies. First, sample size was restricted to three level-one and three level-two 

sizes. Additional sample sizes, particularly larger level-one and level-two sample sizes, 

should be included to determine if additional patterns in bias emerge. Second, this study 

utilized a simple model with one level-one and one level-two predictor, excluding a 

cross-level interaction. More complicated models should be included to determine the 

effect on bias and prediction accuracy. Third, this study utilized one three-category 

outcome variable. Four- and five-category outcome variables should be studied to 

determine if the same effects on bias, power, and prediction accuracy occur. Fourth, this 

study did not vary the correlation between Y, the independent variable, and W, the level-

two predictor. The impact of this correlation should be studied. Finally, this study utilized 

an equal population outcome category distribution (1/3-1/3-1/3). This study’s conditions 

should be repeated utilizing a different population outcome category distribution. 

 These limitations open up possibilities for future research. In addition, the 

proportional odds assumption as it relates to ordinal logistic HLM should be investigated, 

including how to test the assumption. Second, the implications of holding the threshold 

difference constant should be investigated. Finally, this study demonstrates the need for 
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research to be conducted on the efficacy of ordinal logistic HLM. As this study shows, 

prediction accuracy is quite poor under any of the included conditions. The supplemental 

analysis of real data demonstrates that this is a real concern for OLHLM. While the intent 

of this study was to provide sample size guidelines for practitioners utilizing OLHLM, 

the study ended up raising more questions about the validity of OLHLM and the 

conditions under which OLHLM is effective and indicating the need for additional 

research.
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