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Under the Direction of Sushil K Prasad 

 

ABSTRACT 

 

Nowadays, users of mobile devices are growing. The users expect that they could 

communicate constantly using their mobile devices while they are also constantly moving. 

Therefore, there is a need to provide disconnection tolerance of transactions in the mobile devices’ 

platforms and its synchronization management. System on Mobile Devices (SyD) is taken as one of 

the examples of mobile devices’ platforms. The thesis studies the existing SyD architecture, from 

its framework into its kernel, and introduces the proxy module enhancement in SyD to handle 

disconnection tolerance, including its synchronization. SyD kernel has been extended for the 

purpose of enabling proxy module. SyDSync has been constructed for synchronization with the 

proxy. The timeout has been studied for seamless proxy invocation. A Camera application that tries 

to catch a stolen vehicle has been simulated for the practical purpose of using the proxy module 

extension. 
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1. INTRODUCTION 

 

Nowadays, there are many interesting features being offered by mobile devices’ (cell 

phones, PDA, smart phones, etc) software vendors. The reason behind it is because there are 

increasing demands of the users on mobile devices. Microsoft, as an example, offers Microsoft 

Office for mobile on top of Windows Mobile OS 6 such as Word, Presentation, Outlook, etc to 

let its users to get their work done while they are travelling on the wireless network connection. 

On the other side, Yahoo offers Yahoo onePlace service, which is based on a familiar 

bookmarking process, to let its users to easily link into practically any pieces of contents (news 

feeds, websites, videos, etc) from anywhere while they are still maintaining Internet connection. 

Google, partnered with T-Mobile and HTC, lately introduces Google Android, which offers OS 

and middleware platform for mobile devices. 

Different than Android, System on Mobile Devices (SyD), developed by Distributed and 

Mobile Systems (DIMOS) research team, introduces its proxy module extension to provide 

disconnection tolerance of transactions not only for mobile devices, but also for any devices 

either on wired or wireless network connection. In other word, a proxy module has been 

constructed on SyD to let its users to seamlessly getting the requested of the services within the 

network connection. 

 

1.1 Purpose of the proxy 

The present of wireless network makes all mobile devices’ features become possible, 

which lets the mobility communication and continuous access to the services and resources to 

happen. The combination of wireless network and mobility will [1] “engender new applications 
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and services, such as collaborative software to support impromptu meetings, electronic bulletin 

boards whose contents adapt to the current viewers, lighting and heating that adjust to the needs 

of those present, and navigation software to guide users in unfamiliar places and on tours.” 

Since wireless communication normally interacts with the signals, there are some 

obstacles that are faced within the communications, such as lower bandwidths, higher error rates, 

frequent spurious disconnections, which in turn, is going to increase communication latency. 

Mobility that becomes the main purpose of people having mobile devices could also cause 

wireless connections to be lost or degraded. In some point, the network bandwidth could be 

overloaded since there are large numbers of users using the network. 

Therefore, mobile devices providing users’ services (normally mobile device server 

application) may become unavailable due to the following reasons: 

• First, involuntary failure of mobile devices. 

Ex.: Loss of battery power, mobile devices are overloaded by requested service computations. 

• Second, voluntary disconnection of the mobile devices by their users. 

Ex.: Users shutdown the system. 

• Third, it might be caused by the wireless link failure or overloaded. 

If the scenario above happens, there will be no responses on the users’ requested services. 

The proxy comes as one of the solutions to tolerate the failures on the users’ requests (fault-

tolerant). It means that the proxy works as a replication of the actual failure of a mobile device 

providing services. Proxy could also mean a “substitution”. Therefore, the proxy keeps of all the 

state transactions of the users’ requested services. When the mobile device is not in the failure 

mode, it, upon synchronization with its proxy, gathers and processes all of the users’ requests 

transactions. 



3 

 

1.2 Motivation 

There are many technologies that could be used to develop collaborative applications that 

are running on heterogeneous, possible mobile, devices such as JXTA, .Net, J2ME, etc, that 

could tolerate the failures. But, developing applications using those technologies requires too 

many details and also consumes too much time. Therefore, there is a need to provide a mobile 

platform or framework that is very systematic and streamlined for rapid development and 

deployment of collaborative applications. This is where System on Mobile Devices (SyD) comes 

as a solution (Chapter 3 describes about the existing SyD, including its framework and its 

kernel). 

Even though it allows less time to develop mobile applications using SyD, the current 

SyD architecture is unable to handle the failures, which result in the discontinuity of the services 

of the users’ requests. Therefore, as being mentioned above, a proxy comes as one of the 

solutions toward the failures. With the enhanced proxy on SyD, users’ requests could be handled 

properly even though the registered mobile device server providing services is in the failure 

mode. 

Camera application has been designed and constructed to introduce the practical use of 

proxy module for SyD platform. The camera application is used to look for a specified stolen 

vehicle. This is done by capturing a vehicle license plate numbers on every vehicle passing 

through the camera. The simulation model (described more on chapter 6) represents a camera as 

a mobile device (laptop) that runs SyD client and server. Since it runs SyD client and server, a 

camera could act both as a server and a client. The old, non portable desktop computer is used as 

a proxy of a camera. A proxy only runs SyD server. A proxy is intended to be a smart proxy, 
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which not only gives a receipt of every requested user’s transactions, but also saves the current 

user’s state invocation upon the failure of a camera. Another mobile device (laptop), running also 

SyD client and server, acts as a client. It is used by the user to request transaction remotely into 

the camera and a place for the camera to tell the client that a specified car has been found or not. 

A client, in the context of camera application, is the user of camera application. Otherwise, a 

client is the one who initiates the requests of services to the server. 

 

1.3 Thesis outline 

In the chapter 1, we give an introduction about the purpose of having the proxy module 

on the existing SyD platform to allow disconnection tolerance of transactions possible. In chapter 

2, we introduce the background of choosing proxy, “substitution”, as the best fit for SyD 

platform. Overview of the existing SyD platform is introduced in chapter 3. Chapter 4 is going to 

describe the extended version of SyD platform implementing the proxy module. The 

performance analysis of our SyD proxy module is introduced in Chapter 5. A case study 

presenting a developed camera application is presented in chapter 6. Chapter 7 summarizes the 

thesis and presents our direction for the future work. 
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2. BACKGROUND 

 

This chapter lays out the road map of our chosen design proxy module to work as a 

“substitution” of a mobile device (normally a mobile server application) for the System on 

Mobile Devices (SyD) platform. We have gathered all possible related works being done in the 

area by many researchers. Among our top three categories: intelligent mobile agent, checkpoint 

and message log, and replication technique, we come to the conclusion to design and to 

implement our SyD proxy module based on the replication technique. The camera application, 

described in chapter 6, is designed using a product of our proxy module extension on the existing 

SyD platform. 

There are many ways to handle the failures that happen on the transactions within the 

mobile device system. In this thesis, we have categorized into three ways to handle such failures: 

using intelligent mobile agent, using checkpointing and message logging, and using replication 

technique. The proxy module design for SyD is almost similar to the way of replication technique 

being used to handle mobile device’s failures. Our proxy design not only replicates a mobile 

device server’s functionalities, but also works “smarter.” It is a smart proxy in the way of storing 

the current user’s transactions when there is a failure in a mobile device server. Upon 

synchronization, the current state transactions, which were saved before, are processed. 

 

2.1 Intelligent mobile agent 

Intelligent mobile agent is introduced as a technique to tolerate the disconnection of 

transactions in the mobile environment. Chess et al [2] defined mobile agents as “programs, 

typically written in a script language, which may be dispatched from a client computer and 
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transported to a remote server computer for execution.” In their paper, Wong et al [3] also 

mention that the mobile agent concept grows on the influence of the previous technologies: 

process migration [4], remote evaluation [5], and mobile objects [6]. All are developed in order 

to improve the remote procedure calling (RPC) for the distributed programming. 

Process migration is introduced [3] by allowing an entire address space to be moved from 

one computer into another. The network bandwidth is overloaded when multiple RPC calls are 

needed to execute an application. Then, remote evaluation programming comes to allow [3] “one 

computer to send another computer a request in the form of a program (rather than an entire 

process address space).” After the remote computer executes the received program referenced in 

the request within its own local address space, it returns the results to the sending computer. 

Mobile objects (based on formal OOP techniques) come as the extension of the remote 

evaluation. Mobile objects encapsulate more program behaviors or states to be sent to do more 

computation remotely. Finally, mobile agents come up with the much improvement from the 

mobile objects. The emerald system [6] is said to be the first mobile object that leads to the 

development of mobile agent. 

Mobile agents indeed reduce the network bandwidth for applications processing large 

quantities of data. Not only that, compare to the client/server model, mobile agents extend the 

model by allowing the program module to be sent to do the computation into the server and come 

back to the sending client after finishing the computation as shown in Figure 1 [3] below. 

 
Figure 1. Client/Server model and agent model to do the computation [3]. 
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Mobile agents provide some autonomy which let them to dynamically decide when and 

where to travel to a particular destination to perform some computation. Mobile agents also 

provide a way for executable code, program state information, and other data to be transferred to 

whichever devices the agents need necessarily to carry out the actions specified in the 

applications. Mobile agents are also ready to adapt to the changes in both the program state and 

the network environment (such as network partitioning and disconnected devices) to modify their 

routing behavior. With these abilities of the mobile agents, it allows them to be used as the fault-

tolerant technique in the mobile environment to do transient transactions. Upon the failure, 

mobile agent that is sent by the mobile device can finish what needed to be done, then, return 

back with the result to the sending mobile device whenever it is recovered. 

Wong [3] also introduces the generic architecture of mobile agent based on Java. The 

architecture consists of six major components: an agent server, an agent manager, an inter-agent 

communications manager, a security manager, a reliability manager and application gateway, and 

a directory manager. Figure 2 [3] shows the complete architecture of Java based mobile agent. 

 
Figure 2. A generic Java based mobile agent [3]. 
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 The agent server has the purpose to create the agent. On the other side, the agent manager 

has the following purposes: 

• To send agent to the remote host. 

• To receive agents for execution on the local host. 

• To serialize the agent and its state before migrate it. 

• To pass the agent to the reliability manager. 

• To reconstruct the agent and the objects it references. 

The reliability manager is used to ensure that the agent, passed by the agent manager, is received 

by the agent manager on the remote device and to guarantee the persistence of the state 

information whenever the host fails. The security manger has the job to make sure that only the 

authorized agent could extract and do the computation within the mobile device. The inter-agent 

communication provides the layer for the agents to do communication throughout the network. 

Finally, the application gateway serves as security entrance through which the agent can interact 

with the host. 

 Gong-ping et al [7] introduce the mobile agent life cycle and its life states. They define an 

agent life cycle as “a series of stages through which an agent passes during its lifetime.” It is 

normally used to monitor and to control the transition of the state agent (Figure 3). 

 
Figure 3. The five states of mobile agent live cycle [7]. 

creating deleting 
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activate 
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resume 
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 Their mobile agents’ life cycle consists of five states as describing below: 

• The creating state. The state when the mobile agent begins its life cycle (not activated). 

• The running state. The agent is activated and is able to perform the actions to accomplish its 

goals. 

• The deleting state. The state when the agent is terminated. 

• The suspending state. The state when the agent is in the halt position and stay in the agent 

server. 

• The migrating state. The state when the agent is travelling between two server instances. 

Madiraju et al [8] introduces mobile agent technique used in the existing SyD 

architecture. They claim that mobile agent approach inherently has advantages when compared to 

the original SyD, which is implemented using Java RMI (Remote Method Invocation). The 

mobile agent once is transported to a destination host can perform the computation even in the 

case of the connection failure. The mobile agent returns the result of computation to the host, 

which initiates requests, whenever the connection is alive. The model of mobile computing used 

in the scenario is most likely based on client/server model. Mobile devices can work as clients or 

servers and form ad hoc mobile network. There might be base station (directory server) within 

the network system. Figure 4 shows their mobile agent architecture using µCode [9]. 

 
Figure 4. The internal architecture of SyD mobile agent [8]. 
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 On the process of execution, based on the SyD platform, the mobile device 1 first of all 

sends an agent to the directory service or base station to get the physical location information (in 

the form of IP address) of device n. Upon receiving the IP address of the mobile device n, the 

mobile device 1 dispatches mobile agent to mobile devices n to perform the computation. In the 

case, every mobile device has a listener to listen for incoming agents. Finishing performing the 

computation, mobile device n returns the result back through an agent to mobile device 1. In 

case, if the connection fails between mobile device 1 and n, mobile agent sent by mobile device 1 

is going to wait and perform its computation on mobile device n. It will return back with the 

result whenever the connection between mobile device 1 and mobile device n is established 

again. The technique provides fault-tolerance in a mobile environment. 

 

2.2 Checkpointing and message logging 

Checkpointing [10] is the process of saving the program state, normally into stable 

storage, so that it can be used for reconstruction later in time prior to failure. The primary 

purpose of the checkpointing is to provide the backbone for rollback recovery. The combination 

of checkpointing and rollback recovery allows fault tolerance on failures. 

On the other hand, message logging [11] is a technique, which requires that the state 

information of the mobile device needs to be recorded periodically and the received messages 

upon successful record transaction is logged. Strom and Yemini [21] explains PWD (piecewise 

deterministic) within the message logging. PWD ensures the recorded log information by 

requiring that all nondeterministic events that a mobile device executes could be identified and 

the information needed for recovery is logged into the event’s determinant. Message logging is 
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normally good to be used to interact with the outside world (consist of all input and output 

devices that cannot rollback). 

On the simple scenario, message logging normally consists of fixed numbers of mobile 

devices that only communicate by transferring messages. Figure 5 shows a simple message 

logging scenario. m1 and m2 in the Figure 5 describe state intervals, which initially from the 

nondeterministic events and stored in the deterministic events for the purpose of the consistency. 

Most of the time, state interval can be recovered if there is sufficient information to replay the 

execution up to that state interval prior future failures in the system. 

 
Figure 5. A simple message logging with three mobile devices. 

 
 

Whenever the failure of the mobile device appears, the mobile device is given the 

appropriate recorded local state (checkpoint) and the logged messages in the order they were 

originally received so that it can recover. The recovered mobile device needs to make sure that its 

state is consistent with others (no orphan, the surviving mobile devices whose states are 

consistent with the recovered state of a failed mobile device). [12 - 20] are examples of message 

logging protocols. 

What is called by no orphan sometimes produces problem called as rollback propagation. 

Rollback propagation might enforce the surviving mobile device to rollback to its previous state 

prior failure with the purpose to maintain consistency, which is normally up to the maximum 
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recoverable state [18], which is the most recent recoverable consistent system state (shown in 

Figure 6 below). 

 
Figure 6. The maximum recoverable state [18]. 

 

Based on Figure 6, suppose mobile device 2 and mobile device 3 fail before logging the 

message m5 and m6, the message m7 becomes orphan message since mobile device 3 cannot 

regenerate the existence of m6 and mobile device 2 cannot regenerate the existence of m7 

without the original m6. Because of the case, mobile device 1 becomes orphan device and is 

forced to roll back (rollback propagation). 

With the formation of state X, Y, and Z to be the most recent recoverable consistent state, 

consistent recovery could be achieved. Mobile device 1, 2, and 3 will be rolled back to the state 

A, B, and C respectively since those states are considered to be consistent up to the maximum 

recoverable state (X, Y, and Z). Upon rollback to the previous state (state B), mobile device 2 

needs to replay m1. The similar process is also done by mobile device 1 and 3 by replaying the 

m3 and m2 respectively. 

In the other scenario, rollback propagation might cause the function of the whole system 

in the network to roll back to the initial state (A’, B’, and C’ shown in Figure 6). The saved state 

information or the saved work might be gone. The situation is well known as the domino effect 
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[24], which normally appears as the result of the independent or uncoordinated checkpoint 

technique. 

Chandy and Lamport [23] introduce the coordinated checkpointing technique to hinder 

the domino effect problem. In the coordinated checkpointing, the mobile devices try to 

coordinate their state in order to save a system-wide consistent state, which could be used to 

bound the rollback propagation. A stable storage such as base station normally stores a system-

wide consistent state. 

A stable storage has to ensure that the recovery state information persists upon the 

tolerated failures and upon the recovery process. The stable storage such as volatile memory can 

be used if it is used to tolerate a single failure [25]. If the transient failure within a cell needed to 

be tolerated, stable storage such as a local disk could be used. But, if the purpose is used to 

tolerate non-transient failures, there are needs of stable storages such as local disks to be put 

outside the cell (into another cell) by using replication.  

Alvisi and Marzullo [22] bring in three strategies for the message logging: pessimistic, 

optimistic, and causal. Pessimistic approach tends to log the events periodically to the stable 

storage. Pessimistic approach helps much on the recovery process, but it hurts on the normal 

performance. Optimistic, on the other hand, reduces the failure-free performance, but hurts the 

recovery. And, the casual approach tends to strike the balances between pessimistic and 

optimistic approach. 

 

2.3 System replication 

The replication techniques have been developed since the past, especially in the 

traditional hardware implementation, which known as N concepts (N-versions). Replication, 
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within the mobile host, such as mobile device, is most likely done by replicating the existing 

mobile system (redundancy). This method [26] is done with the purpose of retrying the same 

operation in hope that the failure state could be resolved on the other chances of trying. The 

concept of redundancy is based on the ad hoc method of recovery block founded by Randell [27], 

which work mostly in transient faults. 

The system replication techniques applied to the software to do fault-tolerant could also 

be slightly applied as the fault-tolerant techniques on mobile devices. As we already discussed 

that the nature of the mobile devices are constantly moving, there are problems that could appear 

within the mobile devices communication, especially the involuntary failure of mobile devices 

and the wireless link disconnection problem. Not only the movement of mobile devices might 

cause the problems, but their designs, with the limitation of storages, and the purpose of saving 

the energy also cause the problems. 

Normally, there is one base station, stable storage stores mobile devices information, in 

each cell of the network. The connection between the mobile devices (MDs) and the base station 

(BS) within a cell are normally happen through wireless medium. Beacon protocol [28] is 

normally used as one of the protocols which a mobile device establishes its contact with the new 

base station following by informing the id from its previous base station. The following Figure 7 

below is the normal scheme of the mobile devices networks. 

 It is more likely that mobile devices are highly dependent on the base station. The 

scenario model makes the base station to be highly fault-tolerant or persistent. If not, the failure 

of the base station will make big troubles on the mobile devices. All the important state 

information stored within the base station is gone. Mobile devices are forced to wait or freeze 

until the base station is being recovered. 
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Figure 7. The mobile device network model. 

 

 On replicating the base station, Alagar et al [38] in their paper propose two schemes to 

tolerate the simultaneous failures of base station up to k numbers of base stations. They do it by 

replicating the information stored at the primary base station into several secondary base stations. 

If the base station fails, the mobile devices within its cell could switch into one of their secondary 

base stations to continue their computation. The switching might cause the movement of the 

mobile devices to the new cells, which carry their state information. 

 In their model, they assume that a logical communication channel exists between every 

pair of base stations, which is done only by message passing. Communication channels are FIFO 

with the finite amount of time to deliver messages. Fail-stop failure model [29] is used as the 

model for the base station with the purpose of hiding the visibility of the error by responding to 

the internal failure. Mechanism which the failure of a base station can be detected by its 

neighbors and the mobile devices in the cells is assumed to be there. 

 Mobile devices store their state information in their base station. All communication 

among the mobile devices happens through and with the control of the base stations. As in Figure 
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7 as an example, in order for the MD in BS I to communicate with MD in BS II, MD in BS I 

needs to send the package/message into BS I first. Receiving package from MD, BS I sends it to 

BS II. Finally, BS II sends it to the appropriate MD. Within a cell, BS also works as a medium to 

send the package among MDs themselves. This way, the BS holds all the state information of its 

MDs. Its failure causes the MDs to halt till it recover. 

 Alagar et al [38] overcome the problem by replicating the state information of mobile 

device into several secondary base stations. Each of base stations has its sets of selected 

secondary BSs. The secondary base stations must be at least k in order to tolerate k numbers of 

BS failures. 

They call their schemes as pessimistic and optimistic replication. In pessimistic 

replication method, the primary/original base station needs to ensure that all selected secondary 

base stations maintain the same state of the mobile device. The only delay that happens here is in 

delivering the messages/packages to base station or mobile devices. Once the primary base 

station fails, mobile device can switch to one of the secondary base stations (there is some delay 

happens in the process) and continues its computation without any delay. 

On the other hand, optimistic replication replicates the state information of the mobile 

device asynchronously. In the optimistic method, there is no delay on delivering the 

messages/packages to mobile devices or base stations since the state information is transferred 

into one of its secondary base stations whenever its primary base station fails. But, the technique 

makes recovery process costly whenever mobile device switches to one of the base stations upon 

failure of its primary base station. 

  Two strategies on selecting the secondary base stations are also being introduced. The 

first strategy considers a certain localities of the mobile device’s movements (mobility pattern of 
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a mobile device is known). The candidates for the secondary base stations are a fixed set within 

the locality. The state information of the mobile device within primary base station is maintained 

to its secondary base stations. The technique causes the mobile device’s movement easily and 

does not require additional handoff procedure. 

 On the second strategy, the selection of the secondary base stations is the neighbors of the 

primary base station. This technique is based on the assumption of the dynamic base stations. 

Therefore, the neighbor of base station might not be the same all the time. Movement of the 

mobile device from its primary base station’s cell into other cells might require the copy of the 

state information of the mobile device in the original base station and the costly handoff 

procedures. 

  Using the same model as Alagar, Rangarajan et al [30] also introduces some replication 

technique. The state information of the mobile devices, which is stored at the primary base 

station, is replicated into other base stations that their coverage overlaps the primary base 

station’s coverage. With the technique, if the primary base station fails, the mobile device could 

retrieve its state information from other base stations that overlaps its primary base station. If 

there are no other base stations that overlap its primary base station, then the mobile device might 

lose its information upon the failure of its primary base station. 

 Gifford [31], in his paper, introduces the replication technique known as weighted voting. 

The technique introduced is mainly on the algorithm for the maintenance of the replicated state 

information in mobile environment (or replicated files in the distributed system). Although his 

technique is more into the fault-tolerant of distributed computing system, it can be categorized as 

the replicating technique for mobile environment since the mobile system environment is more 
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likely similar to the distributed system environment. The rest of the replication techniques is 

more likely on the client-server approach on mobile environment. 

 The replicated information is stored in the stable system such as base station, which each 

copy of the replications is assigned some version numbers. Copies of the replications are shared 

into others group base stations within the network. Votes are assigned to the base stations carry 

the copies.  

A serial transaction is used when the mobile device tries to access its information in the 

base station. In the situation which the base station fails, the technique will create several 

requests of information to other closed base stations in parallel. Numbers of votes responded by 

the base stations are weighted in order to get the correct decision requests. 

Herlihy [32] explores an alternative approach to managing replication information by 

presenting two replication methods in which concurrency control and replica management are 

handled by a single integrated control. Remember that replication technique tends to copy the 

information and stores them at the multiple base stations to enhance the availability whenever 

one of the base stations fails. Concurrency and replica management become so much important 

in the case. 

If the mobile device, upon failure the mobile host, has method to retrieve its state 

information from many other base stations that store it, concurrency is needed so that it ensures 

the incorrect behavior cannot occur as the result of concurrent access by mobile device. On the 

other side, replica management is used to ensure that mobile device can gather its state 

information back from other sources of base stations whenever its base station fails. A single 

integrated technique introduced to manage the performance between concurrency and replica 
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management in order they can be traded off: constraint on concurrency may be relaxed by 

tightening constraints on availability, and vice versa. 

Upon the failure of the base station, mobile device retrieve its state information to others 

of its base stations using what is called as a schedule. A schedule maintains the concurrency of 

the transaction that could appear when the mobile device retrieving its information from many 

sources of base stations. Others [33 - 35] also use similar techniques of replication to maintain 

the availability of the state information of the mobile device. 

Satyanarayanan [36], based on the CODA file system, also introduces the replication 

technique that are optimistic than the one introduced by [31 - 35]. The optimistic approach is 

used to ensure the consistency of the replicated state information on many base stations (problem 

in pessimistic approach) and to restrict the placement of unacceptable limits of replication 

information. 

Disconnected operation and replication on base station are introduced with the purpose of 

handling transient transaction (fault - tolerant) within mobile devices system. Sometimes, a cache 

is also implemented into a mobile device with the purpose of reducing the dependency of a 

mobile device with its base station. In case of all base stations, hold the replicated state 

information, fail, a mobile device can still retain its state information through its cache storage to 

continue its computation. 

Hara’s [37] method of replication can also be applied to a mobile device by replicating 

the state information in the mobile device, including itself, within the same network. This is 

based on the assumption that if the base station fails, mobile devices in the cell can form ad hoc 

network and still maintaining the connection with other cells. 
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2.4 SyD proxy module using replication technique 

Looking at the techniques on handling the failures done by the researches above, we come 

to the conclusion to use the replication technique as the base on doing disconnection tolerance of 

transactions for System on Mobile Devices (SyD) platform. The one, which is going to be 

replicated, is not the base station, but a mobile device, which provides services (normally mobile 

device server). The replication itself is done by implementing the SyD proxy module in another 

mobile device. It means that a mobile device, which implements SyD proxy module, acts as a 

proxy. It replicates and also provides similar services applications with different functionalities. 

Therefore, we could say that proxy is a “substitution.” Figure 8 below displays the replication 

technique on SyD implementing SyD proxy. 

 
Figure 8. The replication technique on SyD. 

 
 

In case there is a failure on the mobile device providing services, the proxy, implementing 

the proxy module, comes as a solution to provide a “substitution.” The proxy recovers the failure 

by providing similar services with “smart” solution. The proxy informs the client, requesting 

services, that the requests have been received. Then, it stores the state transaction requests of the 

clients. Upon synchronization with the mobile device, proxy lets the mobile device to gather all 

stored state of transactions. Finally, mobile device transacts the state transaction requests. 

Directory 
Server 
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Functionality, design, and implementation of our proxy module extension on SyD could be seen 

on chapter 4. Performance analysis of our SyD proxy and an application running SyD proxy are 

introduced in chapter 5 and 6 respectively. Chapter 3 tells about the existing SyD platform. 
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3. OVERVIEW OF SYSTEM ON MOBILE DEVICES (SyD) 

 

SyD was developed by Yamacraw Embedded System research team with the goal of 

providing such kind of middleware platform for mobile devices that allows: uniform connected 

view of device, data and network; ease of development and deployment of distributed server 

applications hosted on mobile devices; high level development and deployment environment. 

Therefore, SyD claims to be [39] “a new platform technology that addresses the key problems of 

heterogeneity of device, data format and network, and mobility.” To achieve its goal, SyD 

models a mobile device running as an object (based on Object-Oriented approach). Each object 

of mobile devices could run as a client or as a server. Sometimes, it could run both as a server 

and a client within a mobile device object. 

 

3.1 SyD framework 

Each of the mobile devices runs SyD middleware platform is an object. As an object, the 

device is assumed to be independent of each other and does not share a global schema. Together, 

all object devices cooperate to perform interesting tasks. To achieve its tasks, SyD has the 

following framework, as described in the Figure 9 [39] below. 

At the lowest layer, SyD Deviceware consists of a listener module and an engine module. 

A listener module is normally used to register objects and to execute local methods in response to 

remote invocations. On the other hand, an engine module is used to invoke methods on remote 

objects. This layer also contains individual data stores, represented by device objects, and 

methods or operations for access and manipulation on the data. Simply, at this layer, a mobile 
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Figure 9. The System on Mobile Devices (SyD) framework [39]. 

 
 
device is an object that could act as a server, registers and provides services, as a client, invokes 

services on remote objects, or as both client and server. 

At the middle layer, there is SyD Groupware, which is a logically coherent collection of 

services, APIs, and objects to facilitate the execution of application programs. The layer consists 

of a directory service module, group transactions and global event support, with application-level 

Quality of Service (QoS). Simply, the middle layer is where SyD middleware platform is located. 

At the highest level, we could find SyD applications, which rely only on these groupware and 

deviceware SyD services, and are independent of device, data and network. An instantiation of 

server object, which contains an aggregation of the device object and SyD middleware object, is 

included in the layer. As the conclusion, each of mobile devices runs SyD applications is an 

object, which is following Object-Oriented approach.  
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Those three layers architectures of SyD enable applications to be developed without 

knowledge of device, database and network details. SyD groupware holds the most important 

roles in the framework since SyD middleware platform is located in this layer. It provides a 

directory service module to interact with the Directory Server, a storage storing information for 

all registered SyD object devices. Therefore, the layer is responsible to make the object device 

applications (anywhere) aware of the named objects and their methods or services, to execute 

these methods on behalf of applications, to allow the construction of SyD Application Objects 

(SyDAppOs) that are built on the device objects. It provides only a named device object for use 

by the SyDApps, applications written for the end users that operate on the SyDAppOs alone and 

are able to define their own services that utilize the SyDAppOs, without revealing the physical 

address, type or location of the information store.   

 

3.2 SyD kernel and its modules 

SyD uses simple yet powerful idea of kernel or core system to develop applications 

within mobile devices. SyD kernel captures the essential features of the overall SyD framework 

and several SyD based applications. Figure 10 [39] below describes the kernel application of the 

existing SyD middleware platform. 

 
Figure 10. The architecture of SyD kernel and its application [39]. 
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 SyDDirectory, SyDListener, SyDEngine, SyDBond, and SyDEventHandler are modules 

developed within the SyD kernel architecture. Those are the main core of the existing SyD 

platform. 

 

• SyDDirectory 

The module is located in the middle layer of SyD framework (SyD Groupware). It 

provides users’ objects publishing, management, and lookup services to SyD device objects. 

Basically, it contains all information of every registered object devices (normally server 

application objects), including their locations, their methods of services, and their important 

information. Figure 11 below is the state transition of existing SyDDirectory. 

 
Figure 11. The state transition of SyDDirectory. 

 
 

SyDDirectory module is quite important module and has to be started first of all so that 

all other SyD applications could do their jobs, such as providing services, requesting services, 

registering services, etc. As simple as we could say, it works as a mediator, opening the 

connection to Directory Server. After it is started, it waits for the objects’ requests. 
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• SyDListener 

It is normally located at the bottom layer of SyD framework. SyD object devices use it to 

publish their services (server applications) locally in the device and globally via Directory 

Service. SyDRegistrar module in SyDListener is used for that purpose. Figure 12 explains the 

state transition of the existing SyDRegistrar in SyDListener module. 

 
Figure 12. The state transition of SyDRegistrar. 

 
 

When the object device (normally server applications) registers its information, including 

its identities and services, it is going to find where it is located (normally IP address) first. Then, 

it collects all documents, in XML, containing the methods of services, address location, all ports 

either local RMI port or remote listener port, and etc. If the application object has not been 

registered yet, it then gets registered golabally in the Directory Server and locally in the device 

object. The object now waits for remote invocation. 

It also works as a “listener” to listen and to ivoke local registered services in the device 

upon requests. SyDListener module in SyDListener is used for the purpose. Simply to say, it 
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opens the port communication between the object server and the object client. It also allows for 

the object client and server to communicate each other remotely by exchanging documents, in 

XML. The object client uses SyDListenerDelegate module for this purpose. 

 

• SyDEngine 

It is located at the bottom layer of SyD framework. SyDEngine allows the client to 

dispatch, using SyDDispatcher module, services remotely and to aggregate the results. The 

module will make the invocation on the remote object transparently. Figure 13 pictures the state 

transition within the existing SyDEngine. 

 
Figure 13. The state transition of SyDEngine. 

 
 

In order for the user’s client to invoke services remotely, it needs to get the remote 

object’s url, which is listed as IP address. A remote object is usually the object server. The user’s 

client, then, bundles all of the needed information into a XML document. The information 

normally contains a method of a service and its parameters values. The client sends the XML 

message document to the remote object server. The object server un-bundles the message 

document and processes the client’s request. It, then, sends the result back to the user’s client in 

the form of XML message documents also. 
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• SyDBond 

It enables a SyD object device to link to other devices for automatic updates and to create 

and enforce interdependencies. 

 

• SyDEventHandler 

It handles local and global event registration, monitoring, and triggering. 
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4. PROXY MODULE EXTENSION FOR SYSTEM ON MOBILE DEVICES (SyD) 

 

Mobile device may become unavailable due to the following reasons. First, involuntary 

failure of mobile device, such as loss of battery power, mobile device becomes overloaded by 

requested service computations, etc. Second, voluntary disconnection of the mobile device by 

their users, such as users shutdown the system. Third reason might be caused by the wireless link 

failure or overloaded. 

Therefore, there is a need to build a platform that could handle those failures on mobile 

device system. The existing SyD platform, taken as one of the mobile device’s platforms and has 

been described in chapter 3 above, could not handle those failures. As a result, the existing SyD 

platform has been extended for the purpose of implementing disconnection tolerance of 

transactions in the mobile device system. The proxy comes as a solution and its module has been 

constructed in the existing SyD platform. 

The extension of SyD not only considers the disconnection tolerance of transactions, but 

it also allows the synchronization to happen between mobile devices (normally between the 

mobile object server and its proxy). The existing SyD framework is still used for this 

implementation, but the existing SyD kernel has been modified and extended. SyDDirectory, 

SyDListener, and SyDEngine are the main SyD kernel that has been extended. SyDSync has been 

added for the purpose of server-proxy synchronization. 

 

4.1 SyDProxy functionalities 

The main reasons to build the proxy module as the extension module in the existing SyD 

platform (SyDProxy) are as following: 
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• To handle failures within mobile device system by letting the disconnection tolerance of 

transactions to happen (the mobile object client’s request could be handled by the mobile 

object proxy temporarily upon the failure of the mobile object server). 

• Since disconnection tolerance of transaction needs to happen, there is also a need for 

allowing synchronization of the transaction to happen within mobile device system (upon the 

time for the mobile object server to be in active mode, it allows the object server to 

synchronize its state of data with its object proxy to process the mobile object client’s 

transaction request and to give a response). 

To let those functionalities happen, the SyDProxy module has been built to extend the 

main existing SyD kernel, such as SyDDirectory, SyDEngine, and SyDListener. The purpose is 

to allow disconnection tolerance of transaction to happen. In addition to that, SyDSync has been 

constructed for the purpose of synchronization. Figure 14 displays the SyDProxy module. 

 
Figure 14. SyDProxy module. 

 
 

In the design of proxy module for SyD, we consider the following failures conditions: 

• Voluntary disconnection. 

The status of an object, which provides services (an object server), is in off mode. It 

means that a mobile device (a server) has been shut down. The device at that time could not 

provide services. 
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• Involuntary disconnection. 

An object, which provides services (an object server), is in busy mode. That means an 

object does too many workloads for a request. So, it could not handle the other received requests. 

Or, an object could not listen to a client’s request eventhough the Internet network is still 

connected. This might happen because of an object server’s listener is in off mode. 

• Wired or wireless link is overloaded. 

An object server’s listener is getting too busy handling too many clients’ requests. 

Thefore, it becomes overloaded. 

The new design of SyD, implementing proxy module, now could handle those failures 

(allowing disconnection tolerance of transactions and synchronization). Figure 15 displays the 

simple scenario. Condition 1 allows normal invocation of a client to a server. If listener of a 

server is in off or busy mode, client’s invocation is handled by a proxy (condition 2). The similar 

situation also appears when the server itself is in off or busy mode. Synchronization appears 

between the server and its proxy. 

 
Figure 15. The simple scenario where the proxy comes as a solution to handle failures. 

 
 
4.2 SyDProxy design architecture and its description 

With the proxy module that has been enabled for SyD, SyDDirectory could provide users’ 

objects publishing, management, and lookup services not only to SyD device objects but also 
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their proxies now. SyDListener, using SyDRegistrar module, also allows the registration process 

of SyD device objects with their proxies. SyDEngine lets seamlessly remote transactions to occur 

either to the SyD device objects or to their proxies. Finally, SyDSync allows the synchronization 

of the data between the objects and their proxies to happen. Figure 16 below explains the higher 

level view of SyDProxy module extension (disconnection tolerance and synchronization) on top 

of existing SyD platform. The details of the use of the proxy module extensions for SyD, 

including the SyDSync module, are explained below. 

 

 

 

 
Figure 16. The higher level view of SyD Proxy architecture. 

 

Disconnection tolerance of transaction in the SyD platform extension 
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 Looking into Figure 16 above, all SyD objects, includes SyD object proxy, SyD object 

server, not Client, before it can be located and can provide methods of services, need to be 

registered first. Registration is done using SyDRegistrar module in SyDListener, which is going 

to be registered globally in the Directory Server and is going to be registered locally into the RMI 

registry of the object afterward. After registration, every registered SyD object is ready to provide 

services and is considered as a SyD object server. In the case, SyD object server and SyD object 

proxy are normally servers. They also need to listen to every single request of services from 

clients. 

 For that reason, SyDListener is provided for each of the SyD object servers. Practically, 

SyDListener keeps the assigned port and uses it exclusively only to listen and to execute local 

method of a service based on a remote request. The request is normally in the XML documents. 

SyDListener gets the request, extracts and executes it locally, and sends a response on behalf of 

the SyD object server. Since SyD objects are independent of each others, each of the SyD object 

servers is required to have one SyDListener to listen and to execute. 

 The one, which requests SyD server’s services, is normally SyD object client (Clients). 

To request a service, a client needs to use SyDEngine. In the process of invoking a request to a 

SyD object server, a request is bundled into SyD documents, using SyD standard XML, which is 

similar to SOAP message, within SyDEngine. SyDEngine uses SyDListenerDelegate to send the 

request of document afterward. The communication between the object client and the object 

server using SyDListenerDelegate and SyDListener is done through TCP/IP. 

There is a time, a “timeout”, to allow a client to wait for a response from a server after 

invocation. The reason behind implementing a “timeout” here is for not letting a client to wait a 
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response from a server too long. A server might be overloaded with works or might be off. If a 

client does not get a response at the end period of a “timeout” time, SyDEngine, used by a client, 

seamlessly invokes a request to a proxy. 

The proxy works smartly in the essence of keeping of all requests, which could not be 

processed by a server at the time of client’s requests of invocation. The proxy also acts similarly 

as a server by sending a response to a client that a request of a service is accepted. In this case, 

client does not know if a server is in a failure mode since a proxy also sends a similar receipt of 

an acceptance of a request. At this case, a client only thinks that its request is accepted and is 

going to be processed. A client then waits for a response. 

All requests kept by a proxy could be processed later by a server if a server knows that 

there are requests of services for it. To let a server knows if there are requests for it, 

synchronization, using downlink module, between a server and a proxy is needed here. Upon the 

synchronization (SyDSync) process, a server gets all stored requests from a proxy. A server 

extracts requests and processes each of the stored requests. The chapter below will explain the 

details of the process of synchronization. Figure 17 below shows the overall SyDProxy 

architecture, which is approached from lower level design. 

 
Disconnection tolerance of transactions upon client’s requests 
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Figure 17. The lower level design of SyDProxy architecture and its application modules. 

 
 
SyDDirectory 

As it has been mentioned, SyDDirectory is used to provide users’ objects publishing, 

management, and lookup services to SyD device objects and their proxies. Its module provides 

interaction with all information of every registered object devices, including their locations and 

their methods of services. It is an interface to connect into Directory Server (could also be called 

as a base station). Directory Server’s function is used as storage of all device objects’ 

information. Figure 18 shows the storage (database) schema of Directory Server. 

 
Figure 18. The storage (database) schema of Directory Server. 

Synchronization between the SyD server and its proxy 
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There are 6 objects in the Directory Server schema as shown in Figure 18: SYD_USER, 

SYD_APPO, SYD_PROXY, SYD_METHOD, APPO_METHOD_MAPPING, and 

USER_APPO_MAPPING. 

 

• SYD_USER 

It is an object, which contains all information of the registered users’ applications, 

normally server applications. It stores server application name and password for identification 

purpose. Where the application is published (userurl) and its published time (publishtime) are 

also recorded in the object. Application location is normally shown as IP address. At the end, it 

also contains the condition of the application (livebit – on/off), the local RMI device port, which 

contains registered methods of services (serverport), and the object listener port for remote 

invocation (listenerport). 

 

• SYD_APPO 

It contains the identity of the registered application, such as application name. 

 

• SYD_METHOD 

It lists all registered methods of services, such as method names, parameters of the 

methods, and the return types of the methods. 

 

• APPO_METHOD_MAPPING 

It holds the relationship of the applications with their registered methods of services. 
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• USER_APPO_MAPPING  

It maps the registered users with their registered applications. 

 

• SYD_PROXY  

It contains the relationship of the registered users with its published proxies and its 

published applications. 

 

The way SyDDirectory works is still similar to the existing one, but with the extension of 

allowing proxy publication or registration to happen. Figure 19 is the state transition that happens 

in Directory Service of SyDDirectory. 

 
Figure 19. The new state transition of the SyDDirectory. 

 
 
 Directory Server in SyDDirectory needs to be started first in order that object server 

applications could register and setup their methods of services or object client applications could 

fetch information or requests. Since the extension of SyD has proxy module enabled, proxy needs 

to be published or registered first in the Directory Server. 
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Once it is registered, a proxy object ID is listed(remember that SyD makes a device as an 

object and provides only a named device object). Object application, normally object server 

application, which will be registered after the proxy, needs to provide proxy object ID for the 

registration process. That way, object application will have its object proxy. At the current 

development, one registered object application, which is an object server application, only has 

one object proxy. It is likely to say that one server has one proxy. 

 

SyDListener 

Located in the bottom layer of SyD framework, it has three main modules (described in 

chapter 3): SyDRegistrar, SyDListener itself, and SyDListenerDelegate. SyDRegistrar is used by 

SyD object devices to publish their services (server applications) locally in the device and 

globally via Directory Server. Figure 20 describes the state transition of proxy and server object 

registration in the extended SyDRegistrar. 

 
Figure 20. The state transition of proxy and object registration in SyDRegistrar extension. 
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As you can see the difference of SyDRegistrar from the previous one, every user’s object 

application, either already registered or not registered, is going to turn its status livebit ON. This 

is a signal that the application is up and running. 

SyDListener is a “listener,” which is used to listen users or other applications objects’ 

methods invocations. Since it is the only way to do the communication between the remote 

objects, it opens the communication port for the registered server applications. The object 

client’s requests of services are received by the object server through the open communication 

port. Once the requests are received, it locally accesses and executes the active services from the 

object’s local registry. 

On the other hand, SyDListenerDelegate allows the SyD object device (object client) to 

communicate with other devices (normally server applications and proxy application) remotely to 

exchange the data. A “timeout” has been implemented in the SyDListenerDelegate with the 

purpose of controlling client’s request of service to get seamlessly process either to the server or 

to its proxy. SyDListenerDelegate and SyDListener is a pair of TCP/IP socket communication 

within SyD. The only difference is that SyDListenerDelegate is in the client applications side and 

SyDListener is in the server applications. 

 

SyDEngine 

It is located at the bottom layer of SyD framework. It allows users to dispatch 

(SyDDispatcher) services remotely and to aggregate the results. SyDEngine allows transparent 

services invocation. Figure 21 below shows the state transition process of the extended 

SyDEngine using SyDDispatcher module to allow seamlessly remote method invocation. 
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Figure 21. The SyDEngine extension for seamlessly remote method invocation. 

 
 

The extension of SyDEngine is different than the previous one, shown in the chapter 3. 

The extension of SyDEngine holds the important roles of controlling the flow of client’s 

requested services, either to get responses from the server or from server’s proxy. There is a 

“timeout” that has been introduced on SyDListenerDelegate that carries through SyDEngine. 

SyDListenerDelegate is the one, which initiates the “timeout” time. SyDEngine then 

determines whether it should invoke the server or the proxy within or after the “timeout” time. 

Within the allowed time (time <= timeout), the client is going to get the services’ responses from 

the server. But, if it is over the allowed time (time > timeout), the client is going to get the 

responses of services from the proxy. Proxy is a “substitution” of the actual server application. 

 

Initialize in 
SyDListenerDelegate 
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SyDSync 

In the case that a server application is busy or not alive, the proxy comes to substitute the 

server. The proxy substitution has similar functionalities to its server application. It is a “smart” 

proxy in the essence of keeping all of the states of the transactions of the requested services that 

are missed. Synchronization between the server and the proxy could happen upon user’s request 

within the user’s sync time. To allow that happen, we have designed and implemented SyDSync 

module to ease the SyD server developer’s job. 

We try to make it as uniform as possible by following the existing SyD architecture. If 

there is a failure in the object server, requested services will be stored as a state of XML data by 

the object proxy. Figure 22 below shows the XML format data of stored state request. 

 
Figure 22a. The empty stored request data. 

 
 

 
Figure 22b. The stored state request data contains the methods and the objects. 
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Figure 22c. The stored state request data. It contains two saved state requests of client. 

 
 
As it is shown in Figure 22a, b, and c, all the data will be bounded by <SERVERDATA> tag. 

Within the <SERVERDATA> tag, there is <REQUEST> tag to store all client state requests. To 

count manually of how many requests that have been saved by object proxy is by counting 

numbers of <REQUEST> tag. <OBJECTS> tag is used to store the live variable objects of the 

application, either server or proxy (shown in Figure 22b). At the Figure 22b, camera is the live 

object parameter within the application, either server or proxy. It has a Boolean variable type and 

the true value.  

<OBJECT id = “…”> tag is the attribute to know the object server’s ID (object server 

application’s ID) that was requested by the object client. <METHOD name = “…”> tag is also 
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the attribute for the method of service that was requested by the object client. All parameters 

values of a requested method of service are stored within <PARAMETERS> tag. 

 Within the SyDSync module, there are APIs to ease the synchronization process between 

the proxy and the server. Table 1 below lists all of the SyDSync APIs. 

Table 1. The SyDSync API with its description. 
 

SYDSYNC CONSTRUCTOR 
SyDSync Constructor. 
 

SYDSYNC DATA MANIPULATION 
createAFile To create a data file. 
readData To read a data in a file. 
writeData To write a data into a file. 
formatData To format a data. It eliminates ‘<’, ‘>’, ‘\’, ‘/’. 
cleanUpServerResData To cleanup a response data. 
 

SYDSYNC DATA REQUESTS MANIPULATION 
writeEmptyRequest To write an empty request. 
createRequest To create requests. 
updateRequest To update requests. 
readDeleteRequest To read and delete requests. 
 

SYDSYNC MAIN METHODS (UPLINK AND DOWNLINK) 
uplink To setup uplink. Allowing the client’s server to setup variables in 

the proxy server. 
contDownLink To do continuous downlink synchronization between the server 

and proxy. 
runDownLink To run continuous downlink. 
downlink To setup downlink synchronization. 
 

SYDSYNC GET METHODS 
getCurrentDirectory To get the current directory where the SyD file will be stored. 
getFormatObjectId To get the object ID after the data being formatted. 
getFormatMethodName To get the method name after the data being formatted. 
getFormatParamT To get the types of parameters after the data being formatted. 
getFormatParamV To get the values of parameters after the data being formatted. 
getFormatObjectT To get the types of objects after the data being formatted. 
getFormatObjectV To get the values of objects after the data being formatted. 
getFormatObjectName To get the name of the objects after the data being formatted. 
getNumOfSavedRequest To get numbers of stored state requests. 
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getObjectId To get the object ID. 
getMethodName To get the method of service name. 
getParamtT To get the types of parameters. 
getParamV To get the values of parameters. 
getObjectT To get the types of the objects. 
getObjectV To get the values of the objects. 
getObjectName To get the name of the objects. 
fillData To fill the data into the vector. 
 

Two main important APIs within SyDSync are uplink and downlink. Uplink API is 

normally used by the object server’s client to setup data in the proxy server. We expect that the 

developer of SyD server, knowing all information about its proxy also, uses the uplink API to set 

the proxy data. On the other hand, the downlink API is normally used for synchronization 

purpose between the server and its proxy. Condownlink is a thread module that wraps the 

synchronous downlink module. The detail of SyDSync API is provided in appendix A. Figure 

23a and b below picture the scenario before and after server synchronizes with its proxy.  

 

Figure 23a. Server tries to synchronize with its proxy using downlink thread module. 

 

Figure 23b. Server finishes its synchronization with its proxy. 
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4.3 SyDProxy implementation 

In section 4.1 and 4.2 above, we present the proxy module design architecture and its 

descriptions for SyD. In this section, we would like to present the core implementation of the 

proxy module design for System on Mobile Devices (SyD). The following below explains the list 

of files used as the core of proxy module in SyD. 

 

SyDDirectory 

• DirectoryServer.java 

Basically, it is used to get a reference to a bootstrap local object registry for remote 

invocation. Then, it binds the reference with the Directory Server, which contains all information 

of registered object applications, in the local object device. The implementation is shown in 

Figure 24 below. 

 
Figure 24. The Directory Server code snippet. 

 
 
• MemberShip.java 

The implementation of the membership file here is used by a remote object to be a part of 

the members within the network, connected all SyD device objects. The main methods used in 

the module are “publish”, “lookUp”, “advanceLookUp”, “lookUpObject”, “turnOff”, and 

“setUp”. “publish” method is used for the object’s registration purposes. In the implementation 
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of proxy module, it is suggested that every object, which will have the proxy, needs to register its 

proxy first then the object itself. If the object will not have a proxy, then the object must 

registered as a proxy object. 

“lookUp”, “advanceLookUp”, and “lookUpObject” are methods used for lookup a 

specified attribute for an object, more attributes for an object, and an object or a proxy 

information, such as object url, object ID, respectively. “turnOff” method is used to turn off the 

status of an object, either livebit is on or is off, and bring the proxy object information. “setUp” 

method is used to set the attribute of an object. 

 

SyDListener 

• SyDRegistrar.java 

This is where the registration process of an object or a proxy takes place. In the module, 

the object or the proxy is registered globally into Directory Server and locally into the object into 

RMI registry afterward. 

 

• SyDListenerDelegate.java 

Client, which requests services from an object server or an object proxy (if an object 

server is in failure mode), uses SyDDispatcher module in SyDEngine, to do the invocation. 

Communication between the client and the object server or the object proxy, which is done 

through SyDDispatcher by exchanging SyD XML document, appears to be happened in this 

module. Basically, the SyDDispatcher is used to invoke remote object server by using the 

SyDListenerDelgate to send SyD likely XML SOAP document message. 
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Therefore, SyDListenerDelegate is normally used in the client side. A “timeout” time has 

also been implemented in the module. The purpose of a “timeout” time is to give an enough time 

for a client to get a response from a server. If the client has not received a response for a given 

“timeout” time, it allows SyDDispatcher to invoke the object proxy since it will assume that the 

object server is in busy or in fail mode. 

 

• SyDListener.java 

The implementation of the module resides in the server side. Together with 

SyDListenerDelegate module in the client side, it lets the communication of the client-server to 

happen through socket listener on certain port numbers (8888 is normally used as the convention 

for listener port of an object server). It also invokes the local services of the object server or the 

object proxy if the object server fails. 

  

SyDEngine 

• SyDDispatcher.java 

The module works as an engine module used by a client to do remote invocation. It works 

together with SyDListenerDelegate module to determine whether to invoke an object server or an 

object proxy. 

 

SyDUtil 

• SyDDoc.java 

A client, requesting a service, has to create a request document in the form of SyD likely 

SOAP message to be sent remotely. The module contains a method to enable the default 
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document message creation. It has the methods to parse the message documents and also to 

create a message response of a requested service. 

 

• SyDSync.java 

Synchronization between an object server and an object proxy is needed for the purpose 

of allowing disconnection tolerance of transactions on the client-server invocation. The module 

provides an easy implementation of synchronization process. Appendix A explains the details of 

the module. 

 

SyDObject 

• ObjProxy.java 

The module is a template for an object proxy. The main methods are publishProxyDoc 

and registerProxy, which are to publish proxy services in the form of SyD XML message 

document and to register those services in the proxy respectively. 

ObjProxy myProxy = new ObjProxy(); 
myProxy.publishProxyDoc(…); 
myProxy.registerProxy(…); 
 

• ObjAppo.java 

The module is also a template for an object server to create a SyD XML message 

containing of all services and to publish those services in the object server. The main methods 

are publishAppoDoc and registerAppo, which are to publish services in the form of SyD likely 

SOAP message and to register those services respectively. 

ObjAppo myServer = new ObjAppo(); 
myServer.publishAppoDoc(…); 
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myServer.registerAppo(…); 
 
• ObjClient.java 

The module is also a template for a client. To invoke a remote object server, a client will 

only need to provide the parameter values needed for a service, a server name, and a method of a 

service to be requested. 

ObjClient myClient = new ObjClient (ServerName, parameter values, a method name); 
myClient.run(); 
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5. PERFORMANCE ANALYSIS 

 

The experiment has been conducted to get the idea of what the performances of the 

extended SyD are. What is the relationship between the timeout and the percentages of servers’ 

failures, the average responses vs. numbers of clients requested services, numbers of requested 

clients responded by the server or the proxy server, and the best time used to be given for the 

timeout are analyzed in the section. 

To analyze the performance of the SyD extension, we run the experiment using the 

following instruments (all machines run different OS and are placed in different locations): 

• SunOS machine with 900 MHz Ultra SPARC III Cu processor. 

• Windows XP machine with Intel Pentium IV 1.7 GHz mobile. 

• Windows Vista Business with 1.67 GHz of Intel Centrino Duo machine. 

The following below are the scenarios of the experiment: 

• Oracle 10g database server runs on SunOS box. 

• The proxy is an object that runs in SunOS machine. Proxy runs as SyD object server.  

• The server application is an object that runs in Windows XP machine. The server runs as SyD 

object server. 

• The users’ client is also another object that runs in Windows Vista machine. The users’ client 

also acts as a SyD object client.  

• There is no beOnLookOut method of service that is being requested by users’ client (service 

time is equal to 0ms) for section 5.1 to 5.3. For section 5.4, we apply service time. 

• There are no network failures. All network connections are always up and running. 

• SyDDirectory module in each object is used to fetch the data directly from the database. 
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5.1 Relationship between the timeout and failure rate 

Based on our experiment, we found that there is no relationship between the timeout and 

the failure rate on the server. As long as the server fails, the proxy takes in charge and responses 

the client’s request. But, with the increasing percentage of numbers of failures on the actual 

server, the clients’ requests get response from proxy increasingly. As long as proxy is responding 

the request, the average response time is linearly increasing. It is shown in Figure 25 below. 

 
Figure 25. Increasing number of failure rate increases the average response time. 

 

5.2 The numbers of clients requesting services vs. response time 

On the 5.1, we have concluded that as long as the server fails, proxy takes in charge of 

server’s responsibility. Since proxy takes the control, there is another trip for the request to go to 

the proxy. Therefore, there is a delay for the client to get its response back. 
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Knowing that there will be a delay of time for the client to get its response back if the 

server fails, we would like to know what the best timeout time is needed to be implemented so 

that the server could handle all the clients’ requests without going into the proxy. As we notice, 

we have implemented the timeout time within the SyD proxy module. The timeout time is used 

to control the client’s request to get the response from the server or the proxy. The 

implementation of timeout time is very critical in the SyD proxy module since we do not want 

the clients to wait too long to get the response from the server while the server is in failure mode. 

Other problems will rise as long as the client waits too long: communication between the client 

and the server is occupied for only that specified client (synchronous invocation), it will not give 

other client’s chance to request services on the server, etc. 

Table 2 below shows our experiment using increasing timeout time to see the relationship 

of numbers of clients requested services versus the average response time. 

Table 2. The numbers of clients vs. the average response time on certain timeout time. 
Timeout time : 150 ms 

 
Timeout time : 200 ms 
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Timeout time : 250 ms 

 
Timeout time : 500 ms 

 
Timeout time : 1000 ms 

 
Timeout time : 2000 ms 

 
Timeout time : 3000 ms 
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Timeout time : 4000 ms 

 
Timeout time : 5000 ms 

 
Timeout time : 6000 ms 

 
Timeout time : 7000 ms 
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On our experiment above, there is linearly incrementation toward the average response 

time on many numbers of clients requesting server’s services. We also could see clearly that as 

long as the given timeout time is higher, the average response time and the maximum response 

time is getting smaller for the clients to get their response. For 200 numbers of clients using 

timeout time of 150 ms, the average response time and the maximum resopnse time for the 

clients to get their response is about 39.19 seconds and is about 59.29 seconds. But, for 200 

numbers of clients using timeout time of 7000 ms, the average response time and the maximum 

response time needed for the clients to get their response is about 15.16 seconds and is about 

35.57 seconds. The reason behind it is what we believe that server could handle all the clients’ 

requests if we put the appropiate timeout time (section 5.3 clearly tells you that the server could 

handle more request on the higher timeout time). 

 

5.3 The numbers of services responded by either server or proxy 

In the section 5.3 here, based on our experiment, we study that there is the influence of 

the given timeout time toward the numbers of clients requesting services. If we let the timeout 

time to be smaller, then we could see that the proxy most of the time handles the client’s request. 

The server could handle the client’s request as long as the appropriate timeout time is given. As 
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we notice in our experiment, if we let the timeout time on 150 ms, for 200 numbers of clients 

requesting services, proxy takes in charge of responding 200 clients’ requests. But, on the higher 

timeout time, such as 7000 ms, for 200 numbers of clients requesting service, proxy only 

responses 94 requests. 106 requests are responded by the server. Table 3 below shows the details 

of the numbers of services that could be handle either by the server or by the proxy for the given 

timeout time. 

Table 3. The numbers of clients vs. the numbers of responses by the server and proxy. 
Timeout time : 150 ms 

 
Timeout time : 200 ms 

 
Timeout time : 250 ms 

 
Timeout time : 500 ms 
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Timeout time : 1000 ms 

 
Timeout time : 2000 ms 

 
Timeout time : 3000 ms 

 
Timeout time : 4000 ms 
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Timeout time : 5000 ms 

 
Timeout time : 6000 ms 

 
Timeout time : 7000 ms 
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5.4 The best time for timeout 

In section 5.1, we could notice that as long as the proxy processes a client’s request, the 

average time for a client to get a response is linearly higher. Even though there are other 

parameters, a “timeout” time and increasing numbers of clients’ requests, play in the experiment 

in section 5.2, it also tells that the linearly increasing numbers of clients’ requests of services and 

timeout time also linearly increases the average response time for a client to get an answer back. 

This is because some of clients’ requests are processed by proxy, shown in section 5.3. 

In the section 5.4 below, we would also like to study what the influence of another 

parameter, service time, is with the linearly increasing of numbers of clients on the timeout time 

on the extended SyD platform. Table 4, 5, and 6 below are the results of experiments. 

Table 4. The timeout time on 500 ms of service time. 
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Table 5. The timeout time on 750 ms of service time. 
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Table 6. The timeout time on 1000ms of service time. 
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The service time is used as another additional parameter in the above experiment on 

determining the best timeout time because there is a process that needs to be done upon clients’ 

requests on a server, such as beOnLookOut process used to look out a vehicle license plate 

numbers (in camera application described in chapter 6). 

On the process of making decision, based on table 4, 5, and 6 above, to determine the 

timeout time on additional parameter, service time, with the increasing numbers of clients’ 

requests, we maximize the best timeout time by taking the maximum timeout time for allowing 

all clients’ requests to be processed and responded by server. Figure 26 below displays our result 

of experiment on determining the best timeout time for the extension of SyD platform. 

 
Figure 26. The increasing numbers of clients and service time on the server influence the 

timeout time linearly. 

# of clients 

Y=517.42x+559.43 Y=733.61x+385.25 Y=1025.6x+366.8 
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As a result shown in Figure 26 above, there is a linearly increasing of a time for timeout 

to be allowed for linearly increasing numbers of clients requesting services and the time for 

allowing services to be processed (service time). Based on our analysis of the experiment, we 

conclude the following best timeout time. 

 

T è The best timeout time (ms). 
ST è The service time, such as beOnLookOut service computation (chapter 6) (ms).  
x è Numbers of clients request services. 
K è A constant number (ms). K = 600ms as a result of our experiment. 
 

 As an addition, we also conduct another experiment to improve the performance of the 

above experiment. In the above experiment, SyDDirectory module is used by each of the objects 

to get the data directly into the database. This is done by implementing direct JDBC-RMI remote 

connection into the SyDDirectory module. That situation, as we expected, creates much traffic 

congestion between the object hosting the database and the object requesting the data. 

Instead, to boost the performance, when the object wants to request data into the database, 

we implement the basic RMI call to call the SyDDirectory module in the object hosting the 

database. Then, the data is fetched locally in that object. Figure 27 below pictures the comparison 

between the previous scenario and the new scenario. 

The improvement of the experiment has been conducted as the following: 

• Oracle 10g database server runs on Windows XP. 

• The proxy is an object that runs in Windows Vista machine.  

• The server application is an object that runs in Windows XP machine. 

• The client runs in Windows Vista machine. 

T(x) = (ST * x) + K 
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Figure 27. The comparison of the new experiment scenario with the previous one. 

 
 

Figure 28 below shows the summary of the experiment. 

 
Figure 28. The improvement of the new experiment by (100 * # of clients) ms. 

Y=466.19x+325.82 Y=668.03x+426.23 Y=913.93x+397.54 
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As a result shown in Figure 28 above, there is also a linearly increasing of a time for 

timeout to be allowed for linearly increasing numbers of clients requesting services and the time 

for allowing services to be processed (service time). It looks like that the performace is improved 

slightly by (100 * the numbers of clients) ms. Therefore, according to our analysis of the 

experiment, we conclude the following best timeout time. 

 

T è The best timeout time (ms). 
ST è The service time, such as beOnLookOut service computation (chapter 6) (ms).  
x è Numbers of clients request services. 
K è A constant number. K = 500ms as a result of our experiment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T(x) = ((ST – 100ms) * x) + K 
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6. CASE STUDY: A CAMERA APPLICATION TO MONITOR A STOLEN VEHICLE 

 

The chapter presents the details of the camera application that has been developed to 

show the work progress of proxy module implementation on SyD and its SyDSync API 

implementation.  

 

6.1 Application description 

A camera application has been taken as an example of the working progress of proxy 

module in the extended SyD middleware platform. The example has been substantiated by taking 

into consideration of all the assumptions that are involved and its actual relevancies to the real 

world. 

Nowadays, there are many cameras that have been installed on the roadways. The purpose 

of those cameras is to capture the vehicles’ license tag numbers for all vehicles passing through 

the stop red light. Getting the license plate numbers, the police issue a ticket for the suspect and 

send a ticket to the suspect through mail based on the suspect’s identity on the vehicle license tag 

numbers. The process might make the life easier, right? Also, in the long term, it will save the 

state much money by not hiring too many police for the purpose of monitoring any vehicles 

crossing the red light. 

From that point of view, we make our decision to also use a camera application for our 

example application to demonstrate our SyD proxy module. The goal of using a camera in the 

example is the same, which is to capture a vehicle license tag numbers. But, our camera 

application is used for a different purpose. We use our camera application to look for stolen 

vehicles not to catch the suspect who breaks the traffic law. 
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Before we present with the actual details of how the camera application can be 

accomplished, we take the following assumptions on designing a camera application. 

• Cameras have been installed on the roadways. 

• Image processing software has been implemented in each of the cameras. 

• Each of the cameras has a wireless card installed and could get its Internet connection 

automatically. 

• There will not be any wireless network failures. But, we still consider the overloaded 

bandwidth on the network. 

• The most important thing is that the cameras always work correctly on capturing images 

without any defects. 

• Proxy of the camera is not a camera, but it is such kind of portable or non-portable devices 

(depending on the one who implements). It is assumed to be installed in the office of the 

police. 

• Users’ clients of the cameras are the police using mobile devices, such as cell phone, PDA, 

smart phone, etc. 

With the assumption in mind, we are going to go in the details of the design and implementation 

of the camera for looking stolen vehicles using the extended SyD middleware platform with the 

proxy module. 

 

6.2 Application design 

Based on our idea of designing SyD, every user of the SyD applications is considered as 

an object. An object could act as a client, a server, or both a client and a server. An object will 

provide methods of services if it is a server. As a client, an object will normally request the 
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registered services. An object will provide services and request remote services if it has both of 

the server and client’s functionalities. 

Design such camera application using the extended SyD middleware platform is not 

required tedious work. SyD platform already provided high-level application designs to develop 

such kind of application. API has been designed to ease the developers’ job for implementing the 

camera application. Therefore, details like SyDDirectory, SyDEngine, SyDListener, 

SyDListenerDelegate, and its synchronization will be transparent enough on the developers. The 

section discusses the overall process design from the proxy to the camera and to the users’ clients 

of camera. 

 

6.2.1 Design of the camera proxy 

As being mentioned above, the purpose of the proxy is to “substitute” the actual 

application. The design of the proxy should be standard enough and has the following functions: 

• It should be an object and should be registered as an object server. 

• Since it is a server, it needs to register its services to its local device and globally via 

Directory Service (Synchronization using downlink method indeed needs to be registered). 

• Locate the place to store the state transactions (there is a default API to do this). 

• It should be “smart.” Not only it will “substitute” the job of the actual server application, but 

it will also store the missed of requested state transactions. 

 

6.2.2 Design of the camera application 

The purpose of having a camera in the application is used to look for the specified vehicle 

that has been stolen by capturing every vehicle license plate numbers on the roadways within 
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period of time. The design of the camera itself should have both the server’s and the client’s 

capabilities. The following below are the things needed to be in a camera. 

• It also should be an object, different from the proxy object. 

• It consists of an object server and an object client. 

• As a server, it needs to register its services (especially lookout services) into local device and 

globally via Directory Service. 

• Similar to its proxy, it also needs to have a place to store the data for synchronization 

purposes. 

• As a client, it needs to initiate the process of synchronization with its proxy within 

synchronization period of time. 

 

6.2.3 Design of the camera client 

The design of a client for requesting services to a camera, similar to a camera itself, also 

needs to act as an object that has a client’s and a server’s capabilities. As a client, its main 

purpose is to invoke the services provided by a camera server application. Lookout services 

provided in the design of a camera server application is the main services used to look out a 

stolen vehicle and is normally invoked by the client. 

The client mainly needs to provide a vehicle license plate numbers and duration of time 

that the camera will look out the specified vehicle. With the given parameters, the client 

instantiates the invocation to a camera server application. The camera object’s server will extract 

the given parameters and will start to look for the specified vehicle. 
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On the other hand, as a server, a client needs only to provide a service, such as a 

confirmation service. The camera object’s client uses a confirmation service provided by the 

client’s server to let a client knows that the suspect vehicle has been found or not. 

 

6.2.4 Overall design of camera application 

Figure 29 is the overall design of the actual camera application. Proxy works as a 

“substitution” of the camera application. Since a client and a camera need to act as object clients 

and object servers, both of them need to have SyDListener and SyDEngine to work as a server 

and as a client. On the other hand, a proxy needs only SyDListener component since it works as a 

server. 

 
Figure 29. The overall design of camera application. 

 
 



71 

As shown in figure above, every request from a client to the servers (either a camera or a 

proxy) needs to go to the Directory Server first. The reason for this is because Directory Server 

holds all services and information of the registered servers. Therefore, prior to the invocation to 

the server application, client needs to know where the servers that need to be invoked is located. 

As being mention before, IP address is used in SyD for the purpose of locating the server object. 

A client, then, invokes a server upon receiving a server’s address location. In the case if the 

server is busy or in off mode (timeout time goes on), the proxy takes care the responsibility of the 

server. 

 

6.3 Application implementation 

Implementation of the design comes later as long as the design is solid. The following 

below are the main files used to implement the camera application. 

 

• CameraModule.java 

Camera module contains only the interfaces of the remote method invocation of camera 

application. 

  

• CameraModuleImpl.java 

It contains the implementation of the remote method invocation of camera application. At 

the current implementation of the camera application, the followings are the API methods of 

services providing by the server applications once it is registered: setDownLink, runDownLink, 

beOnLookOut, readDeleteRequest, and sendConfirmation. 
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SetDownLink method is used to do one-time synchronization by the server with its proxy. 

But, runDownLink method is used to do continuous synchronization. ReadDeleteRequest method 

is used to read and delete the data. SetDownLink, runDownLink, and readDeleteRequest 

methods of services need to be registered in the proxy so that the client side in the camera could 

synchronize with the proxy and delete the data after synchronization. SendConfirmation method 

is used to send confirmation whenever the one, a stolen vehicle tag numbers, that being look for 

is found or is not found. Normally, the user’s client’s server needs to register the 

sendConfirmation method. So that whenever the camera application object either finds or does 

not find it, its client will invoke sendConfirmation on the remote client object’s server to let it 

knows that the vehicle is found or not. beOnLookOut method, on the other hand, is used by the 

camera server to do lookout on specified vehicle. Camera server, indeed, needs to register the 

beOnLookOut module. 

 

• CameraProxyServer.java 

It contains the API modules of services for proxy server to register and to provide its 

services. It also contains registered services of other server applications. The services will be 

registered locally in the object device and globally via Directory Server. The main important 

methods that need to be registered here is the synchronization method (either setDownLink or 

runDownLink). 

 

• CameraServer.java 

It contains the actual server implementation and its registered services. It also contains the 

client implementation that invokes the synchronization method with its camera proxy. 
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• CameraClientServer.java 

It contains the implementations and the services for server on the client site. The main 

service that needs to be provided is the method that allows the client to send confirmation 

message whether the vehicle has been found or not (sendConfirmation). 

 

• CameraMultiClients.java 

This is where the implementation for the client application to do remote method 

invocation toward the registered methods of services of the camera server and the camera proxy 

if the camera server fails. 

 

6.4 Execution flow 

In order for the camera application is up and running as described on figure above. It 

needs to follow the following execution flow. 

• Directory Server needs to be up and running. 

• All appropriate listener modules need to be setup and run. 

• The proxy of the camera needs to be registered first. 

• The camera’s server is then registered with its services (especially beOnLookOut service) and 

binds it with its proxy by registering proxy object ID. 

• Finally, the object client is used to do invocation by providing parameters, such as vehicle tag 

numbers, and period of time needed to do lookout. 

• Figure 30 below tells all the sequence diagram of the camera application with its proxy and 

Directory Server. 
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Figure 30. The sequence flow of the camera application. 

 

6.5 Experimental results 

After the design and the implementation of the camera application have been done, we 

run the experiment to study the influence of synchronization time between the proxy and the 

server against numbers of clients. Experiment is conducted on Windows Vista machine with 1.67 

GHz Intel Centrino Duo processor and on Windows XP machine with Intel Pentium IV 1.7 GHz 

mobile. The camera and the Directory Server run on Windows XP machine. But, the proxy and 

the user’s client run on Windows Vista machine. There will be no failures on the network 

connection as being stated on the assumption above. We also use our standard estimation of our 

timeout time formula (described in chapter 5 above). 

Running the camera application using only one client, which requests beOnLookOut 

service on the remote camera for about 1000ms, using timeout time of 1600ms (calculated based 

on chapter 5 above), as we have expected, it shows a steady linear average response time as 

shown in Figure 31 below. 
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Figure 31. The sync time vs. avg. response time for one client invocation. 

 
 

The reason behind a linear steady average response time is because our calculation 

timeout time (timeout(# of client) = (beOnLookOut Service time * # of client) + k, k = 600ms, 

explained in chapter 5) allows a good enough time for the user’s client to do beOnLookOut 

invocation on the camera server application. A requested of beOnLookOut service is not going to 

be responded by the proxy (no state transaction being stored in the proxy). Because of that, there 

is no effect, which is carried by the synchronization of proxy and the camera server. We also 

expect a linear steady average response time higher than the above figure if we use 100 numbers 

of clients using our timeout calculation time of 100600ms with the 1000ms of beOnLookOut 

service. 

# of Client  : 1 
beOnLookOut : 1000 ms 
timeout  : 1600 ms 
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 We also want to know what happen if the proxy is involved on the requested 

beOnLookOut service. This case could be achieved if we let our timeout calculation time smaller 

than what it should be. Since our timeout calculation time depends on numbers of clients that try 

to request services from the camera server (chapter 5), we took 85% from the actual numbers of 

clients. For example, we would like to run with 100 clients requesting beOnLookOut service 

from camera server. But, for the timeout calculation, we use only 85 clients. Therefore, from 

what we will expect, approximately 15 clients will get responses from proxy. 

 Experiment is still taken in the same environment, where the proxy of the camera and the 

users’ clients run on Windows Vista machine with Intel Centrino Duo processor and the camera 

and the Directory Server run on Windows XP machine. Figure 32 below shows the result of 

experiment for 100 clients with the beOnLookOut service time of 2000ms and the timeout time 

of 170600ms (only use 85 clients to calculate timeout time). 

Analyzing the experiment shown in Figure 32, we saw that there is a minimum peak for 

synchronization time of 1000ms. We come to the conclusion that the minimum peak appears as 

the combination of two graphs, one graph is from the left (sync of 1ms to 1000ms) of 1000ms 

and the other graph is from the right of 1000ms (sync time of 1000ms to 10000ms). 

The graph on the left of 1000ms shows negative gradient (decreasing slope). It is because 

that as the sync time is getting higher, it is lessening the average time for the users’ client getting 

response from the camera server (synchronization time of 1000ms between the proxy and the 

camera happens not frequently as when the synchronization time of 1ms). On the other hand, the 

graph on the right of 1000ms shows positive gradient (increasing slope). The reason for the case 

is because there are some numbers of users’ clients’ requests that are kept in the proxy (camera 

server is too busy handling too many requests at the time). As we increasing the sync 



77 

 
Figure 32. The sync time vs. avg. response time for one hundreds clients invocation with 

timeout time for eighty five clients. 
 
 
time, the average response time for the users to get the response from the camera server is higher 

since the camera server will invoke the proxy’s stored state transactions after the synchronization 

with its proxy happens. 

 In the other hand, we also analyze the performance using the improved technique by 

enabling remote RMI call into the remote object and getting the data locally (similar to the 

experiment shown in chapter 5). The similar environment is described below:  

• The Directory Server is run on Windows XP. 

• The camera proxy is an object that runs in Windows Vista machine.  

• The camera server application is an object that runs in Windows XP machine. 

• The client requesting services from the camera server runs in Windows Vista machine. 

# of Client  : 100 
beOnLookOut : 2000 ms 
timeout  : 170600 ms (for 85 clients) 
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Different than the result above, the new scenario of the experiment shows only the increasing 

slope as shown in the figure 33 below. We believe that the trend is the result of the consistency 

of enabling the RMI call and the local data fetching. Because of it, synchronization time is not 

influenced by tremendous remote data access transactions to the Directory Server done by the 

clients. As long as the synchronization time is smaller, it is quick enough for the camera server to 

sync with its proxy and to make a quick response on the clients’ requests. 

 
Figure 33. The improvement of sync time vs. avg. response time for one hundreds clients 

invocation with timeout time for eighty five clients. 
 

6.6 Extending a camera application 

The simple yet powerful scenario of developing camera application for a stolen vehicle 

could be extended for some other similar applications. It could be extended for military purposes 

or U.S. intelligent agent, such as look for Osama Bin Laden (the terrorist) as an example. 

# of Client  : 100 
beOnLookOut : 2000 ms 
timeout  : 162000 ms (for 85 clients) 
Timeout time has been improved by 
approximately 8500 ms (100ms * 85 clients). 
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CONCLUSION 

 

 Proxy module has been successfully extended in the existing System on Mobile Devices 

(SyD) platform. There are two main reasons for extending the existing SyD platform. First, there 

is a need to provide disconnection tolerance of transactions upon failures in the existing SyD 

platform. Second, there is also a need to provide synchronization among the SyD object devices 

with their proxies in order to make the disconnection tolerance of transactions to happen. 

The design, analysis, and implementation of the proxy module for SyD have been 

conducted and presented in the paper. The main SyD kernel (SyDDirectory, SyDListener, and 

SyDEngine) has been extended and synchronization (SyDSync) module has been provided to 

extend the SyD (SyDProxy). We have shown that linearly increasing numbers of clients request 

services and services time will also linearly increase a “timeout” time. Analysis to determine a 

best “timeout” time for allowing seamlessly invocation either to the object or to its proxy has 

been experimented. A simple yet powerful implementation of camera application has been 

implemented to show the work progress of the SyD proxy module. 

For the future work, we would like to secure all of the SyD state transactions. An 

improvement of the SyD installation package will be provided. Also, we would like to have the 

SyD virtual machine to run the SyD byte code and to have the SyD Operating System. 
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APPENDIX A   SyDSync API 

 

 The following appendix describes the methods in the SyDSync module. The SyDSync 

API is provided for easing the developers’ jobs to synchronize between the objects (normally 

between the mobile object server and its proxy). The uplink and downlink methods are the main 

methods in the SyDSync module. The uplink method is normally used for the purpose of setting 

up the data in the object. In this case, the developer of the SyD server could use the uplink 

method to setup the server’s proxy. The downlink method is used for the synchronization 

purpose. Upon the synchronization with its proxy, the server invokes the proxy to get the stored 

states of transactions. Then, the transactions are parsed and are processed by the server so that the 

server could give the responses on the client’s requests. 

CONSTRUCTOR DETAIL 
SyDSync 

public SyDSync() 
Defines a SyD synchronization object with the initial synchronization time of 1000ms. 

 
METHOD DETAIL 
 
Synchronization Data Manipulation 
createAFile 

public String createAFile(String _fileName) 
Create a data file with the specified file name if a file has not existed yet. 
Parameters: 

_fileName – a name of a data file. 
Returns: 

The physical location of a created file (a path of a file). 
 
readData 

public StringBuffer readData(String _loc) 
Read a data based on the specified location. 
Parameters: 

_loc – a location of a data file. 
Returns: 

A data file. 
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writeData 

public void writeData(StringBuffer _data, String _loc) 
Write a data on the specified location. Data normally written in XML format. 
Parameters: 

_data – a data to be written on the specified location. 
_loc – a location of a data file. 

 
formatData 

public StringBuffer formatData(StringBuffer _data) 
Format a data. 
This function is normally used to pass the XML data remotely into remote objects. It 
eliminates ‘<’, ‘>’, ‘\’, and ‘/’ character. 
Parameters: 

_data – a XML data needed to be formatted. 
Returns: 

A new format data. 
 

cleanUpServerResData 
public StringBuffer cleanUpServerResData(StringBuffer _data) 

Cleanup a data responded back by remote object. 
After processing an object client’s request, an object server sends a response back. A 
response from a server is wrapped with XML SyD SOAP envelope format. The function 
un-wraps the envelope format and gets a data response. 
Parameters: 

_data – a wrapped SyD likely SOAP data response message. 
Returns: 

An un-wrapped data response message. 
 
 
Synchronization Data Requests Manipulation 
writeEmptyRequest 

public void writeEmptyRequest(String _loc) 
Write an empty request bundled in SyD likely XML SOAP message. 
Parameters: 

_loc – a location to write a request. 
 

createRequest 
public StringBuffer createRequest(String _objectID, 

String _methodName, 
Vector _parameterTypeList, 
Vector _parameterValueList, 
Vector _objectTypeList, 
Vector _objectValueList, 
Vector _objectNameList) 
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Create a request bundled in SyD likely XML SOAP message. 
Parameters: 

_objectID – an object id of a remote object, which should process a request (an object 
server). 

_methodName – a remote method invocation. A service requested by an object client. 
_parameterTypeList – a list contains of all parameters types of a requested method of 

service. 
_parameterValueList – a list contains of all parameters values of a requested method 

of service. 
_objectTypeList – a list contains of all live objects types. 
_objectValueList – a list contains of all live objects values. 
_objectNameList – a list contains of all live objects names. 

Returns: 
A XML request data bundled in XML SyD likely SOAP message. 

 
updateRequest 

public void updateRequest(StringBuffer _data, String _loc) 
Update a request bundled in SyD likely XML SOAP message. 
Parameters: 

_data – an additional request data. 
_loc – a location to update a request. 

 
readDeleteRequest 

public StringBuffer readDeleteRequest(String _loc) 
Read stored requested data and delete it in the specified location path. 
Parameters: 

_loc – a location of request data. 
Returns: 

Stored, requested data. 
 

 
Synchronization Main Methods – The main methods in SyDSync 
uplink 

public void uplink(StringBuffer _data, String _loc) 
Setup live objects parameters in a remote object. 
The function is normally used to setup live parameter objects in proxy through server by 
remote invocation. 
Parameters: 

_data – a XML data contains live object parameters. 
_loc – a location to keep object parameters setup. 

 
downlink 

public void downLink(String _recipientServerPort, 
String _recipientServerAppName, 
String _recipientObjectID, 
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String _storeRecipientDataToloc, 
String _reqServerAppName, 
String _reqServerParamValue, 
String _reqServerMethodName) 

Get stored requested data in remote objects, keep it in local object, and process stored 
requests. Responses are sent after the process. 
The function is normally used for synchronization purposes among remote objects (object 
servers with their proxies). Responses are sent to objects that request methods of services. 
Parameters: 

_recipientServerPort – a listener port of a remote object that requests services. 
_recipientServerAppName – a remote object name that requests services. 
_recipientObjectID – a remote object id that request services. 
_storeRecipientDataToLoc – a remote object location to store requested services. 
_reqServerAppName – a remote object name that provides requested services. 
_reqServerParamValue – parameter values of requested services. 
_reqServerMethodName – a service name that was requested. 

 
contDownLink 

private class contDownLink implements Runnable 
A continuous synchronization thread object. 
 

runDownLink 
public void runDownLink(Long _elapsedTime, 

String _recipientServerPort, 
String _recipientServerAppName, 
String _recipientObjectID, 
String _storeRecipientDataToloc, 
String _reqServerAppName, 
String _reqServerParamValue, 
String _reqServerMethodName) 

Run continuous synchronization thread object for a given period of time. 
Parameters: 

_elapsedTime – a time specified to run synchronization process. 
_recipientServerPort – a listener port of a remote object that requests services. 
_recipientServerAppName – a remote object name that requests services. 
_recipientObjectID – a remote object id that request services. 
_storeRecipientDataToLoc – a remote object location to store requested services. 
_reqServerAppName – a remote object name that provides requested services. 
_reqServerParamValue – parameter values of requested services. 
_reqServerMethodName – a service name that was requested. 

 
 
Synchronization Get Data Methods 
getCurrentDirectory 

private String getCurrentDirectory() 
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Get current directory. 
Returns: 

A directory location path. 
 
getFormatObjectId 

public String getFormatObjectId(StringBuffer _data) 
Get Object ID from the formatted XML data. 
Parameters: 

_data – a formatted XML data. 
Returns: 

An object ID of an object that provides a service. 
 

getFormatMethodName 
public String getFormatMethodName(StringBuffer _data) 

Get method of service name from the formatted XML data. 
Parameters: 

_data – a formatted XML data. 
Returns: 

An object ID of an object that provides a service. 
 

getFormatParamT 
public Vector getFormatParamT(StringBuffer _data) 

Get parameters types from the formatted XML data. 
Parameters: 

_data – a formatted XML data. 
Returns: 

A container contains parameter types. 
 
getFormatParamV 

public Vector getFormatParamV(StringBuffer _data) 
Get parameters values from the formatted XML data. 
Parameters: 

_data – a formatted XML data. 
Returns: 

A container contains parameter values. 
 

getFormatObjectT 
public Vector getFormatObjectT(StringBuffer _data) 

Get live object parameters types from the formatted XML data. 
Parameters: 

_data – a formatted XML data. 
Returns: 

A container contains live object parameter types. 
 
getFormatObjectV 
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public Vector getFormatObjectV(StringBuffer _data) 
Get live object parameters values from the formatted XML data. 
Parameters: 

_data – a formatted XML data. 
Returns: 

A container contains live object parameter values. 
 
getFormatObjectName 

public Vector getFormatObjectName(StringBuffer _data) 
Get live object parameters names from the formatted XML data. 
Parameters: 

_data – a formatted XML data. 
Returns: 

A container contains live object parameter names. 
 

getNumOfSavedRequest 
public int getNumOfSavedRequest(String _loc) 

Get numbers of stored requests. 
Parameters: 

_loc – a location of stored requests. 
Returns: 

A numbers of stored requests. 
 
getObjectId 

public Vector getObjectId(StringBuffer _data, int _numOfSavedRequest) 
Get object IDs from the stored XML requests data. 
Parameters: 

_data – a stored XML requests data. 
_numOfSavedRequest – numbers of stored requests. 

Returns: 
A container contains object IDs. 

 
getMethodName 

public Vector getMethodName(StringBuffer _data, int _numOfSavedRequest) 
Get method names from the stored XML requests data. 
Parameters: 

_data – a stored XML requests data. 
_numOfSavedRequest – numbers of stored requests. 

Returns: 
A container contains method names. 

 
getParamT 

public Vector getParamT(StringBuffer _data, int _numOfSavedRequest) 
Get parameters types from the stored XML requests data. 
Parameters: 
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_data – a stored XML requests data. 
_numOfSavedRequest – numbers of stored requests. 

Returns: 
A container contains parameters types. 

 
getParamV 

public Vector getParamV(StringBuffer _data, int _numOfSavedRequest) 
Get parameters values from the stored XML requests data. 
Parameters: 

_data – a stored XML requests data. 
_numOfSavedRequest – numbers of stored requests. 

Returns: 
A container contains parameters values. 

 
getObjectT 

public Vector getObjectT(StringBuffer _data, int _numOfSavedRequest) 
Get live object parameters types from the stored XML requests data. 
Parameters: 

_data – a stored XML requests data. 
_numOfSavedRequest – numbers of stored requests. 

Returns: 
A container contains live object parameters types. 

 
getObjectV 

public Vector getObjectV(StringBuffer _data, int _numOfSavedRequest) 
Get live object parameters values from the stored XML requests data. 
Parameters: 

_data – a stored XML requests data. 
_numOfSavedRequest – numbers of stored requests. 

Returns: 
A container contains live object parameters values. 

 
getObjectName 

public Vector getObjectName(StringBuffer _data, int _numOfSavedRequest) 
Get live object parameters names from the stored XML requests data. 
Parameters: 

_data – a stored XML requests data. 
_numOfSavedRequest – numbers of stored requests. 

Returns: 
A container contains live object parameters names. 

 
fillData 

private void fillData(String _dataType, String _dataValue, Vector _vData) 
Fill the specified data based on its data type into a container. 
Parameters: 
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_dataType – a data type. 
_dataValue – a data value. 
_vData – a container holds all data. 
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APPENDIX B   APIs for SyD 

 

 This appendix lists the rest of all the APIs in the SyD middleware platform. 

SyDObject module 
The module is used as a wrapper for each of the objects applications to implement SyD, such 
as proxy, server, or client. ObjProxy is used for the object to act as a proxy, ObjAppo is used 
for the object to act as a server, and ObjClient is used for the object to act as a client. 
 

ObjClient 
 
ObjClient 

public ObjClient() 
Client object constructor. 

 
ObjClient 

public ObjClient(Vector _ServerAppName, Vector _paramValue, String _methodName) 
Another client object constructor. 
Parameters: 

_ ServerAppName – the name of the server app that is going to be invoked remotely. 
_paramValue – the parameter values of the requested method or service. 
_methodName – the requested method or service name. 

 
run 

public void run() 
To run the object client to invoke the remote object. 

 
run 

public String run(boolean isRevoceryServer) 
To also run the object client to invoke the remote object. 
Parameters: 

isRevoceryServer – the boolean value to state that the object will always invoke the 
live object. 

Returns: 
The result of the remote invocation. 

 
getDirectory 

public String getDirectory() 
To get the location of the directory server. 
Returns: 

The location of the directory server. 
 
getListenerPort 
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public String getListenerPort(String serverAppName) 
To look up for the listener port based on the given server name. 
Parameters: 

serverAppName – the name of the server. 
Returns: 

The listener port for the specified server name. 
 
getDirecUrl 

public String getDirecUrl(String serverAppName) 
To look up for the directory url based on the given server name. 
Parameters: 

serverAppName – the name of the server. 
Returns: 

The directory url for the specified server name. 
 
getMethodName 

public String getMethodName(String serverAppName) 
To look up for the method or service name based on the given server name. 
Parameters: 

serverAppName – the name of the server. 
Returns: 

The method or service name for the specified server name. 
 
getParamType 

public String getParamType(String methodName) 
To look up for the parameter types based on the method name. 
Parameters: 

methodName – the name of the service or method. 
Returns: 

The parameter types for the specified method name. 
 
lookupAndInvoke 

public String lookupAndInvoke(int listenerPort, String dirUrl, Vector serverAppName, 
Vector paramType, Vector paramValue, String methodName) 

To look up and invoke the remote object. 
Parameters: 

listenerPort – the remote object listener port. 
dirUrl – the directory url of the remote object. 
serverAppName – the name of the remote server. 
paramType – the parameter types of the remote method or service. 
paramValue – the parameter values of the remote method or service. 
methodName – the name of the method or service. 

Returns: 
The result of the remote invocation. 
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ObjAppo / ObjProxy 
 
ObjAppo / ObjProxy 

public ObjAppo() 
Server object constructor. 

 
getAppoPort / getProxyPort 

public String getAppoPort() 
To get the RMI port of the server object. 
Returns: 

The RMI port of the server object. 
 
getDirectoryServerPort 

public String getDirectoryServerPort() 
To get the port of the directory server. 
Returns: 

The port of the directory server. 
 
getListenerPort 

public String getListenerPort() 
To get the listener port of the server object. 
Returns: 

The listener port of the object server. 
 

getAppoUrl / getProxyUrl 
public String getAppoUrl() 

To get the location of the object server. 
Returns: 

The location of the object server. 
 
getDirectoryUrl 

public String getDirectoryUrl() 
To get the location of the directory server. 
Returns: 

The location of the directory server. 
 

getProxyID 
public String getProxyID(String proxyObjectName) 

To get the proxy ID of the given object server ID. 
Parameters: 

proxyObjectName – the ID of the object server. 
Returns: 

The location of the object server. 
 
setAppo 
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public void setAppo(String attribute, String userName) 
To set the livebit of the object (normally object server). 
Parameters: 

attribute – 1=> turn off and 2 => turn on. 
userName – the name of the object server. 

 
publishAppoDoc / publishProxyDoc 

public String publishAppoDoc(String userName, String userPassword, String appoUrl, String 
appoID, String appName, Vector methodNames, Vector returnTypes, Vector paramTypes, int 
portNum, int listenerPort) 

To create SyD likely SOAP doc for the object publication. 
Parameters: 

userName – the name of the object server. 
userPassword – the password of the object server. 
appoUrl – the location of the object server. 
appoID – the proxy ID of the object server. “null” is given if the object registered as 
the object proxy. 
appName – the application name. 
methodNames – the methods or services that are going to be registered. 
returnTypes – the return types of the methods or services. 
paramTypes – the parameter types of each of the methods or services. 
portNum – the RMI port of the object server. 
listenerPort – the listener port of the object server. 

Returns: 
The SyD likely SOAP document. 

 
registerAppo / registerProxy 

public void registerAppo(String appServerName, int appoPort, String directoryServerName, 
int directoryServerPort, Object appInstance, String publishAppoDoc) 

To register the object server. 
Parameters: 

appServerName – the name of the object server. 
appoPort – the RMI port of the object server. 
directoryServerName – the name of the directory server. 
directoryServerPort – the port of the directory server. 
appInstance – the remote object application. 
publishAppoDoc – the SyD likely SOAP doc. 
 

 
 
SyDUtil module 

The module is used as the tool utilities on processing SyD. 
 

Publisher 
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Publisher 
public Publisher() 

The constructor of the publisher method. 
 
Publisher  

public Publisher(String newdoc) 
The constructor of the publisher method. 
Parameters: 

newdoc – a SyD likely SOAP message. 
 
getString  

public String getString() 
To get the string document of the SyD likely SOAP message. 
Returns: 

The string of the SyD likely SOAP message. 
 
getMethodNames 

public Vector getMethodNames() 
To get the method names. 

 
getReturnTypes 

public Vector getReturnTypes() 
To get the return types. 

 
getParamTypes 

public Vector getParamTypes() 
To get the parameter types. 

 
createPublishUserMethodsRequest 

public void createPublishUserMethodsRequest(String userID,String userPasswd,String 
userURL, String proxyID,String appName, Vector methodNames, Vector returnTypes, 
Vector paramTypes, String serverPort, String listenerPort) 

To create the SyD likely SOAP document for the user publishied methods registration. 
 
SyDPropertyFile 
 
getValue 

public String getValue(String propName,String name)  throws MissingResourceException 
To get the property value in the file based on the property name file. 
Parameters: 

propName – the name of the file holds the properties. 
name – the name of the property. 

Returns: 
The property value. 
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SyDDoc 
 
SyDDoc 

public SyDDoc() 
Constructor of SyD document. 

 
SyDDoc 

public SyDDoc(StringBuffer xmlString) 
Another constructor for SyD document. 
Parameters: 

xmlString – the SyD likely SOAP message document. 
 
getString 

public StringBuffer getString() 
To get the string of SyD likely SOAP document. 

 
createRequest 

public void createRequest(String objectID, String methodName, Vector parameterTypeList, 
Vector parameterValueList) 

To create requests of the services. 
 
getObjectID 

public String getObjectID() 
To get the object ID. 
 

getMethodName 
public String getMethodName() 

To get the method name. 
 

getParameterValue 
public Vector getParameterValue() 

To get the parameter value. 
 
getParameterType 

public Vector getParameterType() 
To get the parameter type. 
 

createResponse 
public void createResponse(Object ob) 

To create response. 
 
 
SyDListener module 

There are three main functions of the module: to register object (SyDRegistrar), to listen and 
execute the local services (SyDListener), and to communicate with the remote object 



97 

(SyDListenerDelegate)  
 

SyDListenerDelegate 
 
invoke 

public String invoke(String inputString) throws IOException 
To communicate with the remote object server. 
Parameters: 

inputString – the SyD likely SOAP doc containing the methods or services to be 
invoked 

Returns: 
SyD likely SOAP doc response. 
 

SyDListener 
 
work 

private void work(Socket clientSocket) 
To communicate with the remote object client. 
Parameters: 

clientSocket – the TCPIP socket used to listen on the requests of services. 
 

invoke 
private String invoke (String message) 

To parse the message and get the response upon local method invocation. 
Parameters: 

message – the SyD likely SOAP documents containing the request of service. 
Returns: 

The response of the invocation. 
 
public String invoke (String objectName, String methodName, Vector parameterTypes, 
Vector parameterValues) 

To invoke the local registered methods or services. 
Parameters: 

objectName – the object ID of the server. 
methodName – the method of service name. 
parameterTypes – the parameter types of the method. 
parameterValues – the parameter values of the method. 

Returns: 
The response of the invocation. 

 
SyDRegistrar 
 
register 

public void register (Object appInstance, String publishDoc, int liveBit) 
To register the object with the services (register globally and locally afterward). 
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Parameters: 
appInstance – the application method of service name to be registered. 
publishDoc – the published document. 
liveBit – the status of the registered object. 

 
registerToRMIRegistry 

public void registerToRMIRegistry (Object appInstance, String objectName) 
To register the object locally. 
Parameters: 

appInstance – the application method of service name to be registered. 
objectName – the object ID of the registered object. 

 
registerToDirectoryService 

public void registerToDirectoryService (String publishDoc, int liveBit) 
To register the object globally. 
Parameters: 

publishDoc – the published document of the object in the form of SyD likely SOAP. 
livebit – the status of the object. 

 
 
SyDEngine module 

The module is used for remote objects invocation. Normally, the object client to the object 
server. 
 

SyDDispatcher 
 
invoke 

public Vector invoke(Vector userlist, String methodname, Vector paramtype, Vector 
paramvalue) throws IOException 

To invoke the remote object (normally done by the object client). 
Parameters: 

userlist – the list of the object servers that is going to be invoked. 
methodname – the requested method or service name. 
paramtype – the parameter types of the requested method or service. 
Paramvalue – the parameter values of the requested method or service. 

Returns: 
The result of the object invocation. 

 
 
SyDDirectory module 

The module contains all of the connection to the Directory Server. 
 

MemberShip 
 
MemberShip 
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public MemberShip() throws RemoteException 
The membership constructor. 

 
getConnection 

public static Connection getConnection() throws SQLException 
The SQL connection. 
Returns: 

The connection to the Directory Server. 
 
lookUp 

public  String lookUp(String objecttype,String returnattritutename, String attributename, 
String attributevalue) throws RemoteException 

To lookup the value. 
 
setUp 

public void setUp(String objecttype, String attributename, String attributename2, String 
attributevalue, String attributevalue2) throws RemoteException 

To update the value. 
 

publish 
public String publish(String info, int liveBit) throws RemoteException 

To register the object. 
 
lookUpObject 

public Vector lookUpObject(String objecttype,String returnattritutename, String 
attributename, String attributevalue) throws RemoteException 

To look up for attributes, such as url, specified on an object or a proxy of an object 
Returns: 

A list contains: isRecoveryServer(FALSE/TRUE), object url, object id, listener Port. 
 
advanceLookUp 

public Vector advanceLookUp(String objecttype,String returnattritutename, String 
attributename, String attributevalue) throws RemoteException 

Advanced look up for fetching more attributes 
 
turnOff 

public Vector turnOff(String objecttype, String attributename, String attributename2, String 
attributevalue, String attributevalue2) throws RemoteException 

To turnoff the status of an object and to get the proxy information of the object. 
Returns: 

A list contains: object ID, url, and listener Port. 
 
addMember 

public void addMember(String groupName, String name) throws RemoteException 
To add a member in the group. 
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deleteMember 

public void deleteMember(String groupName, String name) throws RemoteException 
To delete a member in the group. 

 
listMember 

public String listMember(String groupName) throws RemoteException 
To list all the members in the group. 

 
findMember 

public String findMember(String groupName,String name) throws RemoteException 
To find a member in the group. 

 
findGroup 

public String findGroup(String name) throws RemoteException 
To find a group for a specified member. 

 
unpublish 

public void unpublish(String info) throws RemoteException 
To un-publish. 

 
listGroup 

public String listGroup( ) throws RemoteException 
To list all the groups. 
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APPENDIX C   Camera application 
 
 

Camera Module and Implementation 
 
CameraModule.java 
package syd.sydapp.Apps.camera; 
 
import java.rmi.*; 
import java.util.*; 
 
public interface CameraModule extends Remote 
{ 
 //String readData(String _loc) throws RemoteException; 
 void setIdentities(Boolean _setCamera, String _objID, String _appName) throws 
RemoteException; 
 //void setDownLink(String _storeRecipientDataToloc, String _reqServerAppName, 
String _reqServerParamValue, String _reqServerMethodName) throws RemoteException; 
 void runDownLink(Long _elapsedTime, String _storeRecipientDataToloc, String 
_reqServerAppName, String _reqServerParamValue, String _reqServerMethodName) throws 
RemoteException; 
 Boolean beOnLookOut(String _characters, Long _requestedTime, String _requestTo, 
String _responseTo) throws RemoteException; 
 String readDeleteRequest(String _loc) throws RemoteException; 
 void sendConfirmation(Boolean _isFound) throws RemoteException; 
} 
 
CameraModuleImpl.java 
package syd.sydapp.Apps.camera; 
 
import java.lang.*; 
import java.io.*; 
import java.rmi.*; 
import java.rmi.server.*; 
import java.rmi.registry.*; 
import java.net.*; 
import java.awt.*; 
import java.awt.event.*; 
import java.util.*; 
import java.math.*; 
import syd.sydutil.*; 
import syd.syddirectory.*; 
import syd.sydobject.*; 
 
public class CameraModuleImpl extends UnicastRemoteObject implements CameraModule 
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{ 
 private SyDSync serverSync; 
 private boolean isCameraOn = true; 
 private String objectID = ""; 
 private String appName = ""; 
 //private Vector responseTo = new Vector(); 
 private String responseTo = ""; 
 private Registry r; 
 private MemberShipI member = null; 
 private String genObjectID = ""; 
 private String genUserID = ""; 
 private long totResponseTime; 
 
 public CameraModuleImpl() throws RemoteException 
 { 
  try 
  { 
   String host = 
InetAddress.getLocalHost().getHostAddress();//getHostName(); 
   String url = "rmi://" + host + "/CameraModule"; // Original 
   System.out.println("url = " + url); 
   Naming.rebind(url,this); 
   System.out.println("Server bound to: " + url); 
 
   r = LocateRegistry.getRegistry(host); 
   member = (MemberShipI)r.lookup("DirectoryService"); 
 
   serverSync = new SyDSync(); 
  } 
  catch(java.net.UnknownHostException ex) 
  { 
   System.err.println("Couldn't get local host"); 
   System.exit(1); 
  } 
  catch(RemoteException ex) 
  { 
   System.err.println("Couldn't connect to rmiregistry"); 
   System.exit(1); 
  } 
  catch(MalformedURLException ex) 
  { 
   System.exit(1); 
  } 
  catch(Exception ex) 
  { 
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   System.exit(1); 
  } 
 } 
 
 public void setIdentities(Boolean _setCamera, String _objID, String _appName) 
 { 
  isCameraOn = _setCamera.booleanValue(); 
  objectID = _objID; 
  appName = _appName; 
 } 
 
 //public String readData(String _loc) 
 //{ 
 // StringBuffer result = serverSync.readData(_loc); 
 // return result.toString(); 
 //} 
 
 private String getRecepientServerPort() 
 { 
  SyDPropertyFile prop = new SyDPropertyFile(); 
  String serverPort = prop.getValue("appo", "appserverport"); 
 
  return serverPort; 
 } 
 
 public void runDownLink(Long _elapsedTime, String _storeRecipientDataToloc, String 
_reqServerAppName, String _reqServerParamValue, String _reqServerMethodName) 
 { 
  serverSync.runDownLink(_elapsedTime, getRecepientServerPort(), appName, 
objectID, _storeRecipientDataToloc, _reqServerAppName, _reqServerParamValue, 
_reqServerMethodName); 
 } 
 
 //public void setDownLink(String _storeRecipientDataToloc, String 
_reqServerAppName, String _reqServerParamValue, String _reqServerMethodName) 
 //{ 
 // serverSync.downLink(getRecepientServerPort(), appName, objectID, 
_storeRecipientDataToloc, _reqServerAppName, _reqServerParamValue, 
_reqServerMethodName); 
 //} 
 
 public String readDeleteRequest(String _loc) 
 { 
  StringBuffer result = serverSync.readDeleteRequest(_loc); 
  return result.toString(); 
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 } 
 
 public void sendConfirmation(Boolean _isFound) 
 { 
  if (_isFound.booleanValue()) 
   System.out.println( "THE STRING THAT HAS BEEN LOOKED FOR IS 
FOUNDED..." ); 
  else 
   System.out.println( "THE STRING THAT HAS BEEN LOOKED FOR IS 
NOT FOUNDED..." ); 
 
 
  String filePath = serverSync.createAFile("data3.txt"); 
 
  StringBuffer readData = serverSync.readData(filePath); 
  String readD = readData.toString(); 
  int i = readD.indexOf(":"); 
  readD = readD.substring(i+1, readD.length()).trim(); 
  System.out.println("Start Time: " + readD); 
  long startTime = Long.parseLong(readD); 
 
  long endTime = System.currentTimeMillis(); 
  endTime -= startTime; 
  System.out.println("End Time: " + endTime); 
 
  totResponseTime += endTime; 
  System.out.println("Total Response Time: " + totResponseTime); 
 
  filePath = serverSync.createAFile("data4.txt"); 
  StringBuffer data = new StringBuffer(); 
  data.append("Total Response Time: ").append(totResponseTime); 
  serverSync.writeData(data, filePath); 
 } 
 
 public Boolean beOnLookOut(String _characters, Long _requestedTime, String 
_requestTo, String _responseTo) 
 { 
  boolean isRequestAccepted = true; 
  //responseTo.addElement(_responseTo); 
  responseTo = _responseTo; 
  String storeReqLoc = ""; 
 
  if (isCameraOn) 
  { 
   Thread t = new Thread(new lookOut(_characters, _requestedTime)); 
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   t.start(); 
  } 
  else 
  { 
   Vector paramTList = new Vector(); 
   paramTList.addElement("java.lang.String"); 
   paramTList.addElement("java.lang.Long"); 
   paramTList.addElement("java.lang.String"); 
   paramTList.addElement("java.lang.String"); 
   //paramTList.addElement("java.lang.String"); 
   Vector paramVList = new Vector(); 
   paramVList.addElement(_characters); 
   paramVList.addElement(_requestedTime); 
   paramVList.addElement(_requestTo); 
   paramVList.addElement(_responseTo); 
   storeReqLoc = serverSync.createAFile("CameraProxyDoc.xml"); 
   //paramVList.addElement(storeReqLoc); 
   Vector objTList = new Vector(); 
   Vector objVList = new Vector(); 
   Vector objNList = new Vector(); 
 
   try 
   { 
    // Get ObjectID of the requestTo Server 
    genUserID = 
member.lookUp("SYD_USER","userID","userName", _requestTo.toString()); 
    genObjectID = 
member.lookUp("USER_APPO_MAPPING","objectID","userID",genUserID.toString()); 
   } 
   catch(Exception e){} 
 
   StringBuffer dataReq = serverSync.createRequest(genObjectID, 
"beOnLookOut", paramTList, paramVList, objTList, objVList, objNList); 
   serverSync.updateRequest(dataReq, storeReqLoc); 
  } 
 
  try 
  { 
   Thread.sleep(_requestedTime.longValue()); 
  } 
  catch(InterruptedException e) {} 
 
  return Boolean.valueOf(isRequestAccepted); 
 } 
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 private class lookOut implements Runnable 
 { 
  private long responsetime=0, starttime=0, endtime=0; 
  private Integer length; 
  private String characters; 
  private Boolean isCharMatch = Boolean.valueOf(false); 
  private Long requestedTime; 
 
  public lookOut(String _characters, Long _requestedTime) 
  { 
   characters = _characters; 
   requestedTime = _requestedTime; 
   length = new Integer(characters.toString().length());; 
  } 
 
  public void run() 
  { 
   starttime = System.currentTimeMillis(); 
 
   while ((endtime - starttime) <= requestedTime.longValue()) 
   { 
    //System.out.println("RESPONSE TIME: " + (endtime - 
starttime)); 
    //System.out.println("REQUESTED TIME: " + requestedTime); 
    String randomChar = generateCharacters(length); 
    System.out.println("GENERATED RANDOM CHAR: " + 
randomChar); 
    randomChar = "123"; 
    if (randomChar.equals(characters.toString())) 
    { 
     isCharMatch = Boolean.valueOf(true); 
     break; 
    } 
    endtime = System.currentTimeMillis(); 
   } 
 
   //for (long i=0; i < requestedTime.longValue(); ++i) 
   //{ 
    //System.out.println("HELLLLLLLLLLLLLLLLLLLLLLLLLO"); 
   //} 
 
   //if (!isCharMatch) 
   // System.out.println("CHARACTERS IS NOT FOUND...."); 
   //else 
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   // System.out.println("CHARACTERS IS FOUND...." + 
responseTo.elementAt(0)); 
 
   //for (int i=0; i<responseTo.size(); ++i) 
   //{ 
    Vector serverAppName = new Vector(); 
    //serverAppName.addElement(responseTo.elementAt(i)); 
    serverAppName.addElement(responseTo); 
    Vector paramValue = new Vector(); 
    paramValue.addElement(isCharMatch.toString()); 
    ObjClient objClient = new ObjClient(serverAppName, 
paramValue, "sendConfirmation"); 
    objClient.run(); 
   //} 
 
   //responseTo.clear(); 
  } 
 } 
 
 private String generateCharacters(Integer _charLength) 
 { 
  String randomChars = ""; 
  Vector vLetters = getVLetters(); 
 
  for (int i = 0; i < _charLength.intValue(); i++) 
  { 
   Random generator = new Random(); 
   int index = generator.nextInt( vLetters.size() ); 
 
   randomChars += String.valueOf(vLetters.elementAt(index).toString()); 
  } 
 
  return randomChars; 
 } 
 
 private Vector getVLetters() 
 { 
  Vector vLetters = new Vector(); 
  vLetters.addElement("A"); 
  vLetters.addElement("B"); 
  vLetters.addElement("C"); 
  vLetters.addElement("D"); 
  vLetters.addElement("E"); 
  vLetters.addElement("F"); 
  vLetters.addElement("G"); 
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  vLetters.addElement("H"); 
  vLetters.addElement("I"); 
  vLetters.addElement("J"); 
  vLetters.addElement("K"); 
  vLetters.addElement("L"); 
  vLetters.addElement("M"); 
  vLetters.addElement("N"); 
  vLetters.addElement("O"); 
  vLetters.addElement("P"); 
  vLetters.addElement("Q"); 
  vLetters.addElement("R"); 
  vLetters.addElement("S"); 
  vLetters.addElement("T"); 
  vLetters.addElement("U"); 
  vLetters.addElement("V"); 
  vLetters.addElement("W"); 
  vLetters.addElement("X"); 
  vLetters.addElement("Y"); 
  vLetters.addElement("Z"); 
  vLetters.addElement(" "); 
  vLetters.addElement("a"); 
  vLetters.addElement("b"); 
  vLetters.addElement("c"); 
  vLetters.addElement("d"); 
  vLetters.addElement("e"); 
  vLetters.addElement("f"); 
  vLetters.addElement("g"); 
  vLetters.addElement("h"); 
  vLetters.addElement("i"); 
  vLetters.addElement("j"); 
  vLetters.addElement("k"); 
  vLetters.addElement("l"); 
  vLetters.addElement("m"); 
  vLetters.addElement("n"); 
  vLetters.addElement("o"); 
  vLetters.addElement("p"); 
  vLetters.addElement("q"); 
  vLetters.addElement("r"); 
  vLetters.addElement("s"); 
  vLetters.addElement("t"); 
  vLetters.addElement("u"); 
  vLetters.addElement("v"); 
  vLetters.addElement("w"); 
  vLetters.addElement("x"); 
  vLetters.addElement("y"); 
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  vLetters.addElement("z"); 
  vLetters.addElement("1"); 
  vLetters.addElement("2"); 
  vLetters.addElement("3"); 
  vLetters.addElement("4"); 
  vLetters.addElement("5"); 
  vLetters.addElement("6"); 
  vLetters.addElement("7"); 
  vLetters.addElement("8"); 
  vLetters.addElement("9"); 
  vLetters.addElement("0"); 
  return vLetters; 
 } 
 
 public static void main(String[] args) 
 { 
  try 
  { 
   CameraModuleImpl server = new CameraModuleImpl(); 
  } 
  catch(RemoteException ex) 
  { 
   System.err.println("Trouble creating server: "+ex.getMessage()); 
   ex.printStackTrace(); 
  } 
 } 
} 
 
 
Object Camera Proxy 
 
CameraProxyServer.java 
package syd.sydapp.ProxyApp; 
 
import java.util.*; 
import java.net.*; 
import java.lang.reflect.*; 
import java.rmi.registry.*; 
import java.io.*; 
 
import syd.sydlistener.*; 
import syd.sydutil.*; 
import syd.sydobject.*; 
import syd.sydapp.Apps.camera.*; 
import syd.syddirectory.*; 
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public class CameraProxyServer 
{ 
 private static String userName = "hello"; 
 private static String userPassword = "hello1"; 
 private static String proxyURL = ""; 
 private static int proxyPort = 0; 
 private static String publishProxyDoc = ""; 
 private static Vector methodParams; 
 private static Vector params; 
 private static Vector methods; 
 private static Vector returnTypes; 
 private static int directoryServerPort = 0; 
 private static int listenerPort = 0; 
 
 private static BufferedReader stdin = new BufferedReader(new 
InputStreamReader(System.in)); 
 
 public static void main(String args[]) //throws IOException 
 { 
  ObjProxy myProxy = new ObjProxy(); 
 
  proxyPort = Integer.parseInt(myProxy.getProxyPort()); 
  proxyURL = myProxy.getProxyUrl(); 
  directoryServerPort = Integer.parseInt(myProxy.getDirectoryServerPort()); 
  listenerPort = Integer.parseInt(myProxy.getListenerPort()); 
 
  try 
  { 
   System.out.print("Username: "); 
   userName = stdin.readLine(); 
   System.out.print("Password: "); 
   userPassword = stdin.readLine(); 
  } 
  catch(Exception e){} 
 
  try 
  { 
   // Setting up method object 
   methods = new Vector(); 
   returnTypes = new Vector(); 
   methodParams = new Vector(); 
   params = new Vector(); 
 
   // method 1 
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   methods.addElement(new String("setIdentities")); 
   returnTypes.addElement(new String("java.lang.Void")); 
   methodParams.addElement(new String("java.lang.Boolean")); 
   methodParams.addElement(new String("java.lang.String")); 
   methodParams.addElement(new String("java.lang.String")); 
   params.addElement(methodParams); 
 
   // method 3 
   //methods.addElement(new String("setDownLink")); 
   //returnTypes.addElement(new String("java.lang.Void")); 
   //methodParams = new Vector(); 
   //methodParams.addElement(new String("java.lang.String")); 
   //methodParams.addElement(new String("java.lang.String")); 
   //methodParams.addElement(new String("java.lang.String")); 
   //methodParams.addElement(new String("java.lang.String")); 
   //params.addElement(methodParams); 
 
   // method 2 
   methods.addElement(new String("beOnLookOut")); 
   returnTypes.addElement(new String("java.lang.Boolean")); 
   methodParams = new Vector(); 
   methodParams.addElement(new String("java.lang.String")); 
   methodParams.addElement(new String("java.lang.Long")); 
   methodParams.addElement(new String("java.lang.String")); 
   methodParams.addElement(new String("java.lang.String")); 
   params.addElement(methodParams); 
 
   // method 3 
   methods.addElement(new String("readDeleteRequest")); 
   returnTypes.addElement(new String("java.lang.String")); 
   methodParams = new Vector(); 
   methodParams.addElement(new String("java.lang.String")); 
   params.addElement(methodParams); 
 
   // method 4 
   methods.addElement(new String("runDownLink")); 
   returnTypes.addElement(new String("java.lang.Void")); 
   methodParams = new Vector(); 
   methodParams.addElement(new String("java.lang.Long")); 
   methodParams.addElement(new String("java.lang.String")); 
   methodParams.addElement(new String("java.lang.String")); 
   methodParams.addElement(new String("java.lang.String")); 
   methodParams.addElement(new String("java.lang.String")); 
   params.addElement(methodParams); 
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   // method 5 
   methods.addElement(new String("sendConfirmation")); 
   returnTypes.addElement(new String("java.lang.Void")); 
   methodParams = new Vector(); 
   methodParams.addElement(new String("java.lang.Boolean")); 
   params.addElement(methodParams); 
 
 
   // Setting up Server Application 
   CameraModuleImpl helloSydObject = new CameraModuleImpl(); 
 
   // Publish proxy doc 
   publishProxyDoc = myProxy.publishProxyDoc(userName, userPassword, 
proxyURL, "null", "CameraModule", methods, returnTypes, params, proxyPort, listenerPort); 
 
   // Register myProxy 
   myProxy.registerProxy(proxyURL, proxyPort, proxyURL, 
directoryServerPort, helloSydObject, publishProxyDoc); 
  } 
  catch (Exception e) 
  { 
  } 
 
  // Setting up the data 
  SyDSync newSync = new SyDSync(); 
  String filePath = newSync.createAFile( "CameraProxyDoc.xml" ); 
  newSync.writeEmptyRequest( filePath ); 
 
  // Client of the Camera Proxy Server 
  // -------------------------------------------------------------------------------------------------
------------ START setIdentities 
  ObjClient objClient = new ObjClient(); 
  String dirurl = objClient.getDirectory(); 
 
  Registry r; 
  MemberShipI member = null; 
  String userid = ""; 
  String objectID = ""; 
 
  try 
  { 
   r = LocateRegistry.getRegistry(dirurl); 
   member = (MemberShipI)r.lookup("DirectoryService"); 
   userid = member.lookUp("SYD_USER","userID","userName", 
userName.toString()); 
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   objectID = 
member.lookUp("USER_APPO_MAPPING","objectID","userID",userid); 
  } 
  catch(Exception e) { 
   System.out.println("Error " + e); 
  } 
 
  Vector serverAppName = new Vector(); 
  serverAppName.addElement(userName); 
  Vector paramValue = new Vector(); 
  paramValue.addElement("false"); 
  paramValue.addElement(objectID); 
  paramValue.addElement(userName); 
 
  String methodName = "setIdentities"; 
  objClient = new ObjClient(serverAppName, paramValue, methodName); 
  objClient.run(true); 
  // -------------------------------------------------------------------------------------------------
------------ END setIdentities 
 
  return; 
 } 
} 
 
 
Object Camera Server 
 
CameraServer.java 
package syd.sydapp.Apps.camera; 
 
import java.util.*; 
import java.net.*; 
import java.lang.reflect.*; 
import java.rmi.registry.*; 
import java.io.*; 
 
import syd.sydlistener.*; 
import syd.sydutil.*; 
import syd.sydobject.*; 
import syd.syddirectory.*; 
 
public class CameraServer 
{ 
 private static String userName = ""; 
 private static String userPassword = "hello1"; 
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 private static String proxyObjectName = ""; 
 private static String appServerName = ""; 
 private static int portNum = 0; 
 private static String objUrl = ""; 
 private static String publishAppoDoc = ""; 
 private static Vector methodParams; 
 private static Vector params; 
 private static Vector methods; 
 private static Vector returnTypes; 
 private static String directoryServerName = ""; 
 private static int directoryServerPort = 0; 
 private static int listenerPort = 0; 
 
 private static BufferedReader stdin = new BufferedReader(new 
InputStreamReader(System.in)); 
 
 public static void main(String args[]) 
 { 
  /* 
  if (args.length != 6) 
  { 
   System.out.println("Usage: java TestSyDRegistrar rmiServerPort flag 
directoryServerName directoryServerPort userName"); 
              System.exit(1); 
  } 
  */ 
 
  ObjAppo myAppo = new ObjAppo(); 
 
  portNum = Integer.parseInt(myAppo.getAppoPort()); 
  directoryServerPort = Integer.parseInt(myAppo.getDirectoryServerPort()); 
  listenerPort = Integer.parseInt(myAppo.getListenerPort()); 
  objUrl = myAppo.getAppoUrl(); 
 
  try 
  { 
   System.out.print("Username: "); 
   userName = stdin.readLine(); 
   System.out.print("Password: "); 
   userPassword = stdin.readLine(); 
   System.out.print("Proxy Object Name: "); 
   proxyObjectName = stdin.readLine(); 
  } 
  catch(Exception e){} 
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// Setting Up Methods 
  methods = new Vector(); 
  returnTypes = new Vector(); 
  methodParams = new Vector(); 
  params = new Vector(); 
 
  // method 1 
  methods.addElement(new String("setIdentities")); 
  returnTypes.addElement(new String("java.lang.Void")); 
  methodParams.addElement(new String("java.lang.Boolean")); 
  methodParams.addElement(new String("java.lang.String")); 
  methodParams.addElement(new String("java.lang.String")); 
  params.addElement(methodParams); 
 
  // method 3     void setDownLink(String _storeRecipientDataToloc, String 
_reqServerAppName, String _reqServerParamValue, String _reqServerMethodName) throws 
RemoteException; 
  //methods.addElement(new String("setDownLink")); 
  //returnTypes.addElement(new String("java.lang.Void")); 
  //methodParams = new Vector(); 
  //methodParams.addElement(new String("java.lang.String")); 
  //methodParams.addElement(new String("java.lang.String")); 
  //methodParams.addElement(new String("java.lang.String")); 
  //methodParams.addElement(new String("java.lang.String")); 
  //params.addElement(methodParams); 
 
  // method 2     Boolean beOnLookOut(String _characters, Long _requestedTime, 
String _recipientAppName, String _recipientObjectID, String _storeReqLoc) throws 
RemoteException; 
  methods.addElement(new String("beOnLookOut")); 
  returnTypes.addElement(new String("java.lang.Boolean")); 
  methodParams = new Vector(); 
  methodParams.addElement(new String("java.lang.String")); 
  methodParams.addElement(new String("java.lang.Long")); 
  methodParams.addElement(new String("java.lang.String")); 
  methodParams.addElement(new String("java.lang.String")); 
  params.addElement(methodParams); 
 
  // method 3 
  methods.addElement(new String("readDeleteRequest")); 
  returnTypes.addElement(new String("java.lang.String")); 
  methodParams = new Vector(); 
  methodParams.addElement(new String("java.lang.String")); 
  params.addElement(methodParams); 
 



116 

  // method 4 
  //runDownLink(Long _elapsedTime, String _storeRecipientDataToloc, String 
_reqServerAppName, String _reqServerParamValue, String _reqServerMethodName) 
  methods.addElement(new String("runDownLink")); 
  returnTypes.addElement(new String("java.lang.Void")); 
  methodParams = new Vector(); 
  methodParams.addElement(new String("java.lang.Long")); 
  methodParams.addElement(new String("java.lang.String")); 
  methodParams.addElement(new String("java.lang.String")); 
  methodParams.addElement(new String("java.lang.String")); 
  methodParams.addElement(new String("java.lang.String")); 
  params.addElement(methodParams); 
 
 
// End Setting Up Methods 
 
  try 
  { 
   publishAppoDoc = myAppo.publishAppoDoc(userName, userPassword, 
objUrl, myAppo.getProxyID(proxyObjectName), "CameraModule", methods, returnTypes, 
params, portNum, listenerPort); 
   CameraModuleImpl helloSydObject = new CameraModuleImpl(); 
   myAppo.registerAppo(objUrl, portNum, objUrl, directoryServerPort, 
helloSydObject, publishAppoDoc); 
 
  } 
  catch (Exception e) 
  { 
   System.out.println("Error in setting up the Application Server: " + 
e.toString()); 
  } 
 
  // Setting up the data 
  SyDSync newSync = new SyDSync(); 
  String filePath = newSync.createAFile( "CameraAppoDoc.xml" ); 
  newSync.writeEmptyRequest( filePath ); 
 
  // Client of the Camera Server 
  // -------------------------------------------------------------------------------------------------
------------ START setIdentities 
 
 //paramValue.addElement("//export//home//students//jgunawan//syddemo//syd//sydapp//P
roxyApp//CameraAppoDoc.xml"); 
  //paramValue.addElement( 
"C:\\Users\\Joseph\\Desktop\\syddemo\\syd\\sydapp\\ProxyApp\\CameraAppoDoc.xml" ); 
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  ObjClient objClient = new ObjClient(); 
  String dirurl = objClient.getDirectory(); 
 
  Registry r; 
  MemberShipI member = null; 
  String userid = ""; 
  String objectID = ""; 
 
  try 
  { 
   r = LocateRegistry.getRegistry(dirurl); 
   member = (MemberShipI)r.lookup("DirectoryService"); 
   userid = member.lookUp("SYD_USER","userID","userName", 
userName.toString()); 
   objectID = 
member.lookUp("USER_APPO_MAPPING","objectID","userID",userid); 
  } 
  catch(Exception e) { 
   System.out.println("Error " + e); 
  } 
 
  Vector serverAppName = new Vector(); 
  serverAppName.addElement(userName); 
  Vector paramValue = new Vector(); 
  paramValue.addElement("true"); 
  paramValue.addElement(objectID); 
  paramValue.addElement(userName); 
  String methodName = "setIdentities"; 
 
  objClient = new ObjClient(serverAppName, paramValue, methodName); 
  objClient.run(true); 
  // -------------------------------------------------------------------------------------------------
------------ END setIdentities 
 
  // -------------------------------------------------------------------------------------------------
------------ START runDownLink 
  // void runDownLink(Long requestedTime, String _storeRecipientDataToloc, 
String _reqServerAppName, String _reqServerParamValue, String _reqServerMethodName) 
throws RemoteException; 
 
  serverAppName.clear(); 
  serverAppName.addElement(userName); 
  paramValue = new Vector(); 
  paramValue.addElement( "10000" ); 
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  paramValue.addElement( filePath ); 
  //paramValue.addElement( 
"C:\\Users\\Joseph\\Desktop\\syddemo\\CameraAppoDoc.xml" ); 
  paramValue.addElement( "CameraProxy" ); 
  //paramValue.addElement( 
"//export//home//students//jgunawan//syddemo//CameraAppoDoc.xml" ); 
  paramValue.addElement( 
"C:\\Users\\Joseph\\Desktop\\syddemo\\CameraProxyDoc.xml" ); 
  paramValue.addElement( "readDeleteRequest" ); 
  methodName = "runDownLink"; 
 
  objClient = new ObjClient(serverAppName, paramValue, methodName); 
  objClient.run(true); 
  // -------------------------------------------------------------------------------------------------
------------ END runDownLink 
 
 
  return; 
 } 
} 
 
 
Object Camera Client 
 
Server of Camera Client 
 
CameraClientServer.java 
import java.util.*; 
import java.net.*; 
import java.lang.reflect.*; 
import java.rmi.registry.*; 
import java.io.*; 
 
import syd.sydlistener.*; 
import syd.sydutil.*; 
import syd.sydobject.*; 
import syd.sydapp.Apps.camera.*; 
import syd.syddirectory.*; 
 
public class CameraClientServer 
{ 
 private static String userName = "hello"; 
 private static String userPassword = "hello1"; 
 private static String proxyURL = ""; 
 //private static String proxyServerName = ""; 
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 private static int proxyPort = 0; 
 private static String publishProxyDoc = ""; 
 private static Vector methodParams; 
 private static Vector params; 
 private static Vector methods; 
 private static Vector returnTypes; 
 //private static String directoryServerName = ""; 
 private static int directoryServerPort = 0; 
 private static int listenerPort = 0; 
 
 private static BufferedReader stdin = new BufferedReader(new 
InputStreamReader(System.in)); 
 
 public static void main(String args[]) //throws IOException 
 { 
  ObjClientServer myProxy = new ObjClientServer(); 
  //proxyServerName = myProxy.getProxyServerName(); 
  proxyPort = Integer.parseInt(myProxy.getProxyPort()); 
  proxyURL = myProxy.getProxyUrl(); 
  //directoryServerName = myProxy.getDirectoryServerName(); 
  directoryServerPort = Integer.parseInt(myProxy.getDirectoryServerPort()); 
  listenerPort = Integer.parseInt(myProxy.getListenerPort()); 
 
  try 
  { 
   System.out.print("Username: "); 
   userName = stdin.readLine(); 
   System.out.print("Password: "); 
   userPassword = stdin.readLine(); 
  } 
  catch(Exception e){} 
 
/* 
  System.out.println("Username: " + userName); 
  System.out.println("UserPassword: " + userPassword); 
  System.out.println("proxyPort: " + proxyPort); 
  System.out.println("proxyUrl: " + proxyURL); 
  System.out.println("directoryServerName: " + directoryServerName); 
  System.out.println("directoryServerPort: " + directoryServerPort); 
*/ 
  try 
  { 
   // Setting up method object 
   methods = new Vector(); 
   returnTypes = new Vector(); 
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   methodParams = new Vector(); 
   params = new Vector(); 
 
   // method 1 
   //void sendConfirmation(Boolean _isFound) throws RemoteException; 
   methods.addElement(new String("sendConfirmation")); 
   returnTypes.addElement(new String("java.lang.Void")); 
   methodParams.addElement(new String("java.lang.Boolean")); 
   params.addElement(methodParams); 
 
   // Setting up Server Application 
   CameraModuleImpl helloSydObject = new CameraModuleImpl(); 
 
   // Publish proxy doc 
   publishProxyDoc = myProxy.publishProxyDoc(userName, userPassword, 
proxyURL, "null", "CameraModule", methods, returnTypes, params, proxyPort, listenerPort); 
 
   // Register myProxy 
   myProxy.registerProxy(proxyURL, proxyPort, proxyURL, 
directoryServerPort, helloSydObject, publishProxyDoc); 
  } 
  catch (Exception e) 
  { 
  } 
  return; 
 } 
} 
 
Client of Camera Client 
 
ClientThread.java 
import syd.sydengine.*; 
import syd.sydutil.*; 
import syd.sydlistener.*; 
import syd.syddirectory.*; 
import syd.sydobject.*; 
 
import java.lang.*; 
import java.util.*; 
import java.io.*; 
import java.rmi.*; 
import java.rmi.server.*; 
import java.rmi.registry.*; 
import java.net.*; 
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public class ClientThread implements Runnable 
{ 
 private Vector ServerAppName; 
 private Vector paramValue; 
 private int pos; 
 private String methodName; 
 
 public void setupClient(Vector _serverAppName, Vector _paramValue, int _pos, String 
_methodName) 
 { 
  ServerAppName = _serverAppName; 
  paramValue = _paramValue; 
  pos = _pos; 
  methodName = _methodName; 
 } 
 
 public void run() 
 { 
  System.out.println("\n\nStart to run the client # " + pos + " ..."); 
  ObjClient myClient = new ObjClient(ServerAppName, paramValue, 
methodName); 
  myClient.run(); 
  System.out.println("Finish running the client # " + pos + " ..."); 
 } 
} 
 
CameraMultiClients.java 
import syd.sydengine.*; 
import syd.sydutil.*; 
import syd.sydlistener.*; 
import syd.syddirectory.*; 
 
import java.lang.*; 
import java.util.*; 
import java.io.*; 
import java.rmi.*; 
import java.rmi.server.*; 
import java.rmi.registry.*; 
import java.net.*; 
 
public class CameraMultiClients 
{ 
 private static BufferedReader stdin = new BufferedReader(new 
InputStreamReader(System.in)); 
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 public static void main(String[] args) throws IOException 
 { 
  SyDSync newSync = new SyDSync(); 
 
  // Holding multiple clients & values 
  Vector multiClients = new Vector(); 
  Vector multiValues = new Vector(); 
 
  System.out.println("Running Trial Application V.1.1 (Camera Application) ..."); 
 
  System.out.println("How many client(s) do you want to run (X for eXit)?"); 
  String userAnswer = stdin.readLine(); 
  while ( (userAnswer.equals("X")) || (Integer.parseInt(userAnswer) == 0) ) 
  { 
 
   if (userAnswer.equals("X")) 
   { 
    System.out.println("Exit the application!"); 
    System.exit(0); 
   } 
 
   System.out.println("There must be at least one client need to be run."); 
   System.out.println("Please enter number of client(s) do you want to run (X 
for eXit)?"); 
   userAnswer = stdin.readLine(); 
  } 
 
  int numOfClients = Integer.parseInt(userAnswer); 
 
  String serverName = ""; 
  for (int i = 0; i < numOfClients; i++) 
  { 
   Vector ServerAppName = new Vector(); 
   Vector paramValue = new Vector(); 
 
   if (i == 0) 
   { 
    System.out.print("Enter the camera application name: "); 
    serverName = "CameraServer"; 
    //serverName = stdin.readLine(); 
    ServerAppName.addElement( serverName ); 
   } 
   else 
    ServerAppName.addElement( serverName ); 
   System.out.print("Enter the vehicle license plate to be looked for: "); 
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   paramValue.addElement( "jh43iotre" ); 
   //paramValue.addElement( stdin.readLine() ); 
   System.out.print("Enter the duration of the time for looking (in 
miliseconds): "); 
   String lookOutTime = "2000"; 
   paramValue.addElement( lookOutTime ); 
   //paramValue.addElement( stdin.readLine() ); 
   paramValue.addElement( serverName ); // serverName suppose to be a 
server that the client would like to invoke, but the server is not there (off). 
   System.out.print("Where do you want to get a response from the camera 
after look out for " + lookOutTime + " miliseconds: "); 
   paramValue.addElement( "CameraClient" ); 
   //paramValue.addElement( stdin.readLine() ); // response to what server 
client 
   // location to store the unanswered request 
   //paramValue.addElement( 
"//export//home//students//jgunawan//syddemo//CameraAppoDoc.xml" ); 
 
   multiClients.addElement( ServerAppName ); 
   multiValues.addElement( paramValue ); 
  } 
 
  Vector clientTemp = new Vector(); 
  for (int i = 0; i < numOfClients; i++) 
  { 
   Random generator = new Random(); 
   int clientNo = generator.nextInt( numOfClients ); 
 
   if (clientTemp.size() == 0) 
    clientTemp.addElement( clientNo ); 
   else 
   { 
    while( clientTemp.contains( clientNo ) ) 
     clientNo = generator.nextInt( numOfClients ); 
    clientTemp.addElement( clientNo ); 
   } 
  } 
 
  String filePath = newSync.createAFile("data3.txt"); 
  long startTime = System.currentTimeMillis(); 
  StringBuffer data = new StringBuffer(); 
  data.append("Start Time: ").append(startTime); 
  newSync.writeData(data, filePath); 
 
  for (int i = 0; i < clientTemp.size(); i++) 
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  { 
   int pos = (Integer)clientTemp.elementAt(i); 
   ClientThread expectedClient = new ClientThread(); 
   expectedClient.setupClient( ((Vector)multiClients.elementAt( pos )), 
((Vector)multiValues.elementAt( pos )), pos, "beOnLookOut" ); 
   Thread threadClient = new Thread( expectedClient ); 
   threadClient.start(); 
  } 
 } 
} 
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