
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

11-20-2008

Proxy Module for System on Mobile Devices
(SyD) Middleware
Joseph Gunawan

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Computer Science Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Recommended Citation
Gunawan, Joseph, "Proxy Module for System on Mobile Devices (SyD) Middleware." Thesis, Georgia State University, 2008.
https://scholarworks.gsu.edu/cs_theses/58

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

PROXY MODULE FOR SYSTEM ON MOBILE DEVICES (SyD) MIDDLEWARE

by

JOSEPH GUNAWAN

Under the Direction of Sushil K Prasad

ABSTRACT

Nowadays, users of mobile devices are growing. The users expect that they could

communicate constantly using their mobile devices while they are also constantly moving.

Therefore, there is a need to provide disconnection tolerance of transactions in the mobile devices’

platforms and its synchronization management. System on Mobile Devices (SyD) is taken as one of

the examples of mobile devices’ platforms. The thesis studies the existing SyD architecture, from

its framework into its kernel, and introduces the proxy module enhancement in SyD to handle

disconnection tolerance, including its synchronization. SyD kernel has been extended for the

purpose of enabling proxy module. SyDSync has been constructed for synchronization with the

proxy. The timeout has been studied for seamless proxy invocation. A Camera application that tries

to catch a stolen vehicle has been simulated for the practical purpose of using the proxy module

extension.

INDEX WORDS: Proxy, System on Mobile Devices, SyD, SyDSync, SyD API, Client, Server,
Mobile, Synchronization, Fault-tolerant, Transactions, Timeout time,
Disconnection, Tolerance

PROXY MODULE FOR SYSTEM ON MOBILE DEVICES (SyD) MIDDLEWARE

by

JOSEPH GUNAWAN

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Sciences

Georgia State University

2008

Copyright by

Joseph Gunawan

2008

PROXY MODULE FOR SYSTEM ON MOBILE DEVICES (SyD) MIDDLEWARE

by

JOSEPH GUNAWAN

 Committee Chair: Sushil K Prasad

 Committee: Raj Sunderraman

 Saeid Belkasim

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2008

iv

To my father, Johan Gunawan,

for his advice, encouragement, support, and sacrifice.

To my mother, Kwa Minawati,

for her prayer, dedication, and encouragement.

To my brother and my sister,

thank you for allowing me to be a good example.

v

ACKNOWLEDGEMENTS

Two years is a quite long time. But, I thank God for letting me to get through all those

years strongly. God has been so good to me for placing me into Georgia State University as a

place to further my knowledge until what I am now, writing my thesis for my Master of Science

degree requirement in Computer Science. He is good and always good to my unprecedented life

and career. I know that He is with me and guides me on all challenges that I face.

My next gratitude goes to my advisor, Dr. Sushil K Prasad, for his time, guidance,

encouragement, and constant support. His knowledge, perceptiveness, and innovative ideas have

guided me throughout my graduate study. I also would like to express my sincere gratitude to my

committees, Dr. Raj Sunderraman and Dr. Saeid Belkasim, for their help and their interest on my

work. It has been a pleasure for me to meet and to work with them for the past few years. They

are always there to support and to lead me to the right direction. Without their guidance and

encouragements, my thesis would not have been possible.

In addition, I want to thank students in DiMoS group, Srilaxmi Maladi who introduced

SyD to me, Sunetri Priyanka who first helped me setting up SyD on my work environment, Chad

Frederick who always calls me “Junior,” and Akshaye Dhawan who shares his thought to me. I

thank you guys for all of your support and encouragement.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

LIST OF TABLES viii

LIST OF FIGURES ix

CHAPTER

1. INTRODUCTION 1

1.1 Purpose of the proxy 1

1.2 Motivation 3

1.3 Thesis outline 4

2 . BACKGROUND 5

2.1 Intelligent mobile agent 5

2.2 Checkpointing and message logging 10

2.3 System replication 13

2.4 SyD proxy module using replication technique 20

3. OVERVIEW OF SYSTEM ON MOBILE DEVICES (SyD) 22

3.1 SyD framework 22

3.2 SyD kernel and its module 24

4. PROXY MODULE EXTENSION FOR SYSTEM ON MOBILE DEVICES
(SyD) 29

4.1 SyDProxy functionalities 29

4.2 SyDProxy design architecture and its description 31

4.3 SyDProxy implementation 45

5. PERFORMANCE ANALYSIS 50

vii

5.1 Relationship between the timeout and failure rate. 51

5.2 The numbers of clients requesting services vs. response time 51

5.3 The numbers of services responded by either server or proxy 55

5.4 The best time for timeout 59

6. CASE STUDY: A CAMERA APPLICATION TO MONITOR A STOLEN

VEHICLE 66

6.1 Application description 66

6.2 Application design 67

6.3 Application implementation 71

6.4 Execution flow 73

6.5 Experimental results 74

6.6 Extending a camera application 78

CONCLUSION 79

REFERENCES 80

APPENDICES 83

APPENDIX A SyDSync API 83

APPENDIX B APIs for SyD 91

APPENDIX C Camera application 101

viii

LIST OF TABLES

Table 1. The SyDSync API with its description. 43

Table 2. The numbers of clients vs. the average response time on certain timeout

time.
52

Table 3. The numbers of clients vs. the numbers of responses by the server and

proxy.
56

Table 4. The timeout time on 500 ms of service time. 59

Table 5. The timeout time on 750 ms of service time. 60

Table 6. The timeout time on 1000ms of service time. 61

ix

LIST OF FIGURES

Figure 1. Client/Server model and agent model to do the computation [3]. 6

Figure 2. A generic Java based mobile agent [3]. 7

Figure 3. The five states of mobile agent live cycle [7]. 8

Figure 4. The internal architecture of SyD mobile agent [8]. 9

Figure 5. A simple message logging with three mobile devices. 11

Figure 6. The maximum recoverable state [18]. 12

Figure 7. The mobile device network model. 15

Figure 8. The replication technique on SyD. 20

Figure 9. The System on Mobile Devices (SyD) framework [39]. 23

Figure 10. The architecture of SyD kernel and its application [39]. 24

Figure 11. The state transition of SyDDirectory. 25

Figure 12. The state transition of SyDRegistrar. 26

Figure 13. The state transition of SyDEngine. 27

Figure 14. SyDProxy module. 30

Figure 15. The simple scenario where the proxy comes as a solution to handle

failures.
31

Figure 16. The higher level view of SyD Proxy architecture. 32

Figure 17. The lower level design of SyDProxy architecture and its application

modules.
35

Figure 18. The storage (database) schema of Directory Server. 35

Figure 19. The new state transition of the SyDDirectory. 37

Figure 20. The state transition of proxy and object registration in SyDRegistrar

extension.
38

x

Figure 21. The SyDEngine extension for seamlessly remote method invocation. 40

Figure 22a. The empty stored request data. 41

Figure 22b. The stored state request data contains the methods and the objects. 41

Figure 22c. The stored state request data. It contains two saved state requests of

client.
42

Figure 23a. Server tries to synchronize with its proxy using downlink thread module. 44

Figure 23b. Server finishes its synchronization with its proxy. 44

Figure 24. The Directory Server code snippet. 45

Figure 25. Increasing number of failure rate increases the average response time. 51

Figure 26. The increasing numbers of clients and service time on the server

influence the timeout time linearly.
62

Figure 27. The comparison of the new experiment scenario with the previous one. 64

Figure 28. The improvement of the new experiment by (100 * # of clients) ms. 64

Figure 29. The overall design of camera application. 70

Figure 30. The sequence flow of the camera application. 74

Figure 31. The sync time vs. avg. response time for one client invocation. 75

Figure 32. The sync time vs. avg. response time for one hundreds clients invocation

with timeout time for eighty five clients.
77

Figure 33. The improvement of sync time vs. avg. response time for one hundreds

clients invocation with timeout time for eighty five clients.
78

1

1. INTRODUCTION

Nowadays, there are many interesting features being offered by mobile devices’ (cell

phones, PDA, smart phones, etc) software vendors. The reason behind it is because there are

increasing demands of the users on mobile devices. Microsoft, as an example, offers Microsoft

Office for mobile on top of Windows Mobile OS 6 such as Word, Presentation, Outlook, etc to

let its users to get their work done while they are travelling on the wireless network connection.

On the other side, Yahoo offers Yahoo onePlace service, which is based on a familiar

bookmarking process, to let its users to easily link into practically any pieces of contents (news

feeds, websites, videos, etc) from anywhere while they are still maintaining Internet connection.

Google, partnered with T-Mobile and HTC, lately introduces Google Android, which offers OS

and middleware platform for mobile devices.

Different than Android, System on Mobile Devices (SyD), developed by Distributed and

Mobile Systems (DIMOS) research team, introduces its proxy module extension to provide

disconnection tolerance of transactions not only for mobile devices, but also for any devices

either on wired or wireless network connection. In other word, a proxy module has been

constructed on SyD to let its users to seamlessly getting the requested of the services within the

network connection.

1.1 Purpose of the proxy

The present of wireless network makes all mobile devices’ features become possible,

which lets the mobility communication and continuous access to the services and resources to

happen. The combination of wireless network and mobility will [1] “engender new applications

2

and services, such as collaborative software to support impromptu meetings, electronic bulletin

boards whose contents adapt to the current viewers, lighting and heating that adjust to the needs

of those present, and navigation software to guide users in unfamiliar places and on tours.”

Since wireless communication normally interacts with the signals, there are some

obstacles that are faced within the communications, such as lower bandwidths, higher error rates,

frequent spurious disconnections, which in turn, is going to increase communication latency.

Mobility that becomes the main purpose of people having mobile devices could also cause

wireless connections to be lost or degraded. In some point, the network bandwidth could be

overloaded since there are large numbers of users using the network.

Therefore, mobile devices providing users’ services (normally mobile device server

application) may become unavailable due to the following reasons:

• First, involuntary failure of mobile devices.

Ex.: Loss of battery power, mobile devices are overloaded by requested service computations.

• Second, voluntary disconnection of the mobile devices by their users.

Ex.: Users shutdown the system.

• Third, it might be caused by the wireless link failure or overloaded.

If the scenario above happens, there will be no responses on the users’ requested services.

The proxy comes as one of the solutions to tolerate the failures on the users’ requests (fault-

tolerant). It means that the proxy works as a replication of the actual failure of a mobile device

providing services. Proxy could also mean a “substitution”. Therefore, the proxy keeps of all the

state transactions of the users’ requested services. When the mobile device is not in the failure

mode, it, upon synchronization with its proxy, gathers and processes all of the users’ requests

transactions.

3

1.2 Motivation

There are many technologies that could be used to develop collaborative applications that

are running on heterogeneous, possible mobile, devices such as JXTA, .Net, J2ME, etc, that

could tolerate the failures. But, developing applications using those technologies requires too

many details and also consumes too much time. Therefore, there is a need to provide a mobile

platform or framework that is very systematic and streamlined for rapid development and

deployment of collaborative applications. This is where System on Mobile Devices (SyD) comes

as a solution (Chapter 3 describes about the existing SyD, including its framework and its

kernel).

Even though it allows less time to develop mobile applications using SyD, the current

SyD architecture is unable to handle the failures, which result in the discontinuity of the services

of the users’ requests. Therefore, as being mentioned above, a proxy comes as one of the

solutions toward the failures. With the enhanced proxy on SyD, users’ requests could be handled

properly even though the registered mobile device server providing services is in the failure

mode.

Camera application has been designed and constructed to introduce the practical use of

proxy module for SyD platform. The camera application is used to look for a specified stolen

vehicle. This is done by capturing a vehicle license plate numbers on every vehicle passing

through the camera. The simulation model (described more on chapter 6) represents a camera as

a mobile device (laptop) that runs SyD client and server. Since it runs SyD client and server, a

camera could act both as a server and a client. The old, non portable desktop computer is used as

a proxy of a camera. A proxy only runs SyD server. A proxy is intended to be a smart proxy,

4

which not only gives a receipt of every requested user’s transactions, but also saves the current

user’s state invocation upon the failure of a camera. Another mobile device (laptop), running also

SyD client and server, acts as a client. It is used by the user to request transaction remotely into

the camera and a place for the camera to tell the client that a specified car has been found or not.

A client, in the context of camera application, is the user of camera application. Otherwise, a

client is the one who initiates the requests of services to the server.

1.3 Thesis outline

In the chapter 1, we give an introduction about the purpose of having the proxy module

on the existing SyD platform to allow disconnection tolerance of transactions possible. In chapter

2, we introduce the background of choosing proxy, “substitution”, as the best fit for SyD

platform. Overview of the existing SyD platform is introduced in chapter 3. Chapter 4 is going to

describe the extended version of SyD platform implementing the proxy module. The

performance analysis of our SyD proxy module is introduced in Chapter 5. A case study

presenting a developed camera application is presented in chapter 6. Chapter 7 summarizes the

thesis and presents our direction for the future work.

5

2. BACKGROUND

This chapter lays out the road map of our chosen design proxy module to work as a

“substitution” of a mobile device (normally a mobile server application) for the System on

Mobile Devices (SyD) platform. We have gathered all possible related works being done in the

area by many researchers. Among our top three categories: intelligent mobile agent, checkpoint

and message log, and replication technique, we come to the conclusion to design and to

implement our SyD proxy module based on the replication technique. The camera application,

described in chapter 6, is designed using a product of our proxy module extension on the existing

SyD platform.

There are many ways to handle the failures that happen on the transactions within the

mobile device system. In this thesis, we have categorized into three ways to handle such failures:

using intelligent mobile agent, using checkpointing and message logging, and using replication

technique. The proxy module design for SyD is almost similar to the way of replication technique

being used to handle mobile device’s failures. Our proxy design not only replicates a mobile

device server’s functionalities, but also works “smarter.” It is a smart proxy in the way of storing

the current user’s transactions when there is a failure in a mobile device server. Upon

synchronization, the current state transactions, which were saved before, are processed.

2.1 Intelligent mobile agent

Intelligent mobile agent is introduced as a technique to tolerate the disconnection of

transactions in the mobile environment. Chess et al [2] defined mobile agents as “programs,

typically written in a script language, which may be dispatched from a client computer and

6

transported to a remote server computer for execution.” In their paper, Wong et al [3] also

mention that the mobile agent concept grows on the influence of the previous technologies:

process migration [4], remote evaluation [5], and mobile objects [6]. All are developed in order

to improve the remote procedure calling (RPC) for the distributed programming.

Process migration is introduced [3] by allowing an entire address space to be moved from

one computer into another. The network bandwidth is overloaded when multiple RPC calls are

needed to execute an application. Then, remote evaluation programming comes to allow [3] “one

computer to send another computer a request in the form of a program (rather than an entire

process address space).” After the remote computer executes the received program referenced in

the request within its own local address space, it returns the results to the sending computer.

Mobile objects (based on formal OOP techniques) come as the extension of the remote

evaluation. Mobile objects encapsulate more program behaviors or states to be sent to do more

computation remotely. Finally, mobile agents come up with the much improvement from the

mobile objects. The emerald system [6] is said to be the first mobile object that leads to the

development of mobile agent.

Mobile agents indeed reduce the network bandwidth for applications processing large

quantities of data. Not only that, compare to the client/server model, mobile agents extend the

model by allowing the program module to be sent to do the computation into the server and come

back to the sending client after finishing the computation as shown in Figure 1 [3] below.

Figure 1. Client/Server model and agent model to do the computation [3].

7

Mobile agents provide some autonomy which let them to dynamically decide when and

where to travel to a particular destination to perform some computation. Mobile agents also

provide a way for executable code, program state information, and other data to be transferred to

whichever devices the agents need necessarily to carry out the actions specified in the

applications. Mobile agents are also ready to adapt to the changes in both the program state and

the network environment (such as network partitioning and disconnected devices) to modify their

routing behavior. With these abilities of the mobile agents, it allows them to be used as the fault-

tolerant technique in the mobile environment to do transient transactions. Upon the failure,

mobile agent that is sent by the mobile device can finish what needed to be done, then, return

back with the result to the sending mobile device whenever it is recovered.

Wong [3] also introduces the generic architecture of mobile agent based on Java. The

architecture consists of six major components: an agent server, an agent manager, an inter-agent

communications manager, a security manager, a reliability manager and application gateway, and

a directory manager. Figure 2 [3] shows the complete architecture of Java based mobile agent.

Figure 2. A generic Java based mobile agent [3].

8

 The agent server has the purpose to create the agent. On the other side, the agent manager

has the following purposes:

• To send agent to the remote host.

• To receive agents for execution on the local host.

• To serialize the agent and its state before migrate it.

• To pass the agent to the reliability manager.

• To reconstruct the agent and the objects it references.

The reliability manager is used to ensure that the agent, passed by the agent manager, is received

by the agent manager on the remote device and to guarantee the persistence of the state

information whenever the host fails. The security manger has the job to make sure that only the

authorized agent could extract and do the computation within the mobile device. The inter-agent

communication provides the layer for the agents to do communication throughout the network.

Finally, the application gateway serves as security entrance through which the agent can interact

with the host.

 Gong-ping et al [7] introduce the mobile agent life cycle and its life states. They define an

agent life cycle as “a series of stages through which an agent passes during its lifetime.” It is

normally used to monitor and to control the transition of the state agent (Figure 3).

Figure 3. The five states of mobile agent live cycle [7].

creating deleting

running

suspending migrating

activate

terminate

resume
suspend

dispatch

9

 Their mobile agents’ life cycle consists of five states as describing below:

• The creating state. The state when the mobile agent begins its life cycle (not activated).

• The running state. The agent is activated and is able to perform the actions to accomplish its

goals.

• The deleting state. The state when the agent is terminated.

• The suspending state. The state when the agent is in the halt position and stay in the agent

server.

• The migrating state. The state when the agent is travelling between two server instances.

Madiraju et al [8] introduces mobile agent technique used in the existing SyD

architecture. They claim that mobile agent approach inherently has advantages when compared to

the original SyD, which is implemented using Java RMI (Remote Method Invocation). The

mobile agent once is transported to a destination host can perform the computation even in the

case of the connection failure. The mobile agent returns the result of computation to the host,

which initiates requests, whenever the connection is alive. The model of mobile computing used

in the scenario is most likely based on client/server model. Mobile devices can work as clients or

servers and form ad hoc mobile network. There might be base station (directory server) within

the network system. Figure 4 shows their mobile agent architecture using µCode [9].

Figure 4. The internal architecture of SyD mobile agent [8].

10

 On the process of execution, based on the SyD platform, the mobile device 1 first of all

sends an agent to the directory service or base station to get the physical location information (in

the form of IP address) of device n. Upon receiving the IP address of the mobile device n, the

mobile device 1 dispatches mobile agent to mobile devices n to perform the computation. In the

case, every mobile device has a listener to listen for incoming agents. Finishing performing the

computation, mobile device n returns the result back through an agent to mobile device 1. In

case, if the connection fails between mobile device 1 and n, mobile agent sent by mobile device 1

is going to wait and perform its computation on mobile device n. It will return back with the

result whenever the connection between mobile device 1 and mobile device n is established

again. The technique provides fault-tolerance in a mobile environment.

2.2 Checkpointing and message logging

Checkpointing [10] is the process of saving the program state, normally into stable

storage, so that it can be used for reconstruction later in time prior to failure. The primary

purpose of the checkpointing is to provide the backbone for rollback recovery. The combination

of checkpointing and rollback recovery allows fault tolerance on failures.

On the other hand, message logging [11] is a technique, which requires that the state

information of the mobile device needs to be recorded periodically and the received messages

upon successful record transaction is logged. Strom and Yemini [21] explains PWD (piecewise

deterministic) within the message logging. PWD ensures the recorded log information by

requiring that all nondeterministic events that a mobile device executes could be identified and

the information needed for recovery is logged into the event’s determinant. Message logging is

11

normally good to be used to interact with the outside world (consist of all input and output

devices that cannot rollback).

On the simple scenario, message logging normally consists of fixed numbers of mobile

devices that only communicate by transferring messages. Figure 5 shows a simple message

logging scenario. m1 and m2 in the Figure 5 describe state intervals, which initially from the

nondeterministic events and stored in the deterministic events for the purpose of the consistency.

Most of the time, state interval can be recovered if there is sufficient information to replay the

execution up to that state interval prior future failures in the system.

Figure 5. A simple message logging with three mobile devices.

Whenever the failure of the mobile device appears, the mobile device is given the

appropriate recorded local state (checkpoint) and the logged messages in the order they were

originally received so that it can recover. The recovered mobile device needs to make sure that its

state is consistent with others (no orphan, the surviving mobile devices whose states are

consistent with the recovered state of a failed mobile device). [12 - 20] are examples of message

logging protocols.

What is called by no orphan sometimes produces problem called as rollback propagation.

Rollback propagation might enforce the surviving mobile device to rollback to its previous state

prior failure with the purpose to maintain consistency, which is normally up to the maximum

Outside
World Input

Output

m1

m2

MD 1

MD 2

MD 3

12

recoverable state [18], which is the most recent recoverable consistent system state (shown in

Figure 6 below).

Figure 6. The maximum recoverable state [18].

Based on Figure 6, suppose mobile device 2 and mobile device 3 fail before logging the

message m5 and m6, the message m7 becomes orphan message since mobile device 3 cannot

regenerate the existence of m6 and mobile device 2 cannot regenerate the existence of m7

without the original m6. Because of the case, mobile device 1 becomes orphan device and is

forced to roll back (rollback propagation).

With the formation of state X, Y, and Z to be the most recent recoverable consistent state,

consistent recovery could be achieved. Mobile device 1, 2, and 3 will be rolled back to the state

A, B, and C respectively since those states are considered to be consistent up to the maximum

recoverable state (X, Y, and Z). Upon rollback to the previous state (state B), mobile device 2

needs to replay m1. The similar process is also done by mobile device 1 and 3 by replaying the

m3 and m2 respectively.

In the other scenario, rollback propagation might cause the function of the whole system

in the network to roll back to the initial state (A’, B’, and C’ shown in Figure 6). The saved state

information or the saved work might be gone. The situation is well known as the domino effect

MD 1

MD 2

MD 3

m1 B�

B

A

C

m2

m3 m4

m5 m6

m7

Maximum recoverable state

X

Z

Y

C�

A�

13

[24], which normally appears as the result of the independent or uncoordinated checkpoint

technique.

Chandy and Lamport [23] introduce the coordinated checkpointing technique to hinder

the domino effect problem. In the coordinated checkpointing, the mobile devices try to

coordinate their state in order to save a system-wide consistent state, which could be used to

bound the rollback propagation. A stable storage such as base station normally stores a system-

wide consistent state.

A stable storage has to ensure that the recovery state information persists upon the

tolerated failures and upon the recovery process. The stable storage such as volatile memory can

be used if it is used to tolerate a single failure [25]. If the transient failure within a cell needed to

be tolerated, stable storage such as a local disk could be used. But, if the purpose is used to

tolerate non-transient failures, there are needs of stable storages such as local disks to be put

outside the cell (into another cell) by using replication.

Alvisi and Marzullo [22] bring in three strategies for the message logging: pessimistic,

optimistic, and causal. Pessimistic approach tends to log the events periodically to the stable

storage. Pessimistic approach helps much on the recovery process, but it hurts on the normal

performance. Optimistic, on the other hand, reduces the failure-free performance, but hurts the

recovery. And, the casual approach tends to strike the balances between pessimistic and

optimistic approach.

2.3 System replication

The replication techniques have been developed since the past, especially in the

traditional hardware implementation, which known as N concepts (N-versions). Replication,

14

within the mobile host, such as mobile device, is most likely done by replicating the existing

mobile system (redundancy). This method [26] is done with the purpose of retrying the same

operation in hope that the failure state could be resolved on the other chances of trying. The

concept of redundancy is based on the ad hoc method of recovery block founded by Randell [27],

which work mostly in transient faults.

The system replication techniques applied to the software to do fault-tolerant could also

be slightly applied as the fault-tolerant techniques on mobile devices. As we already discussed

that the nature of the mobile devices are constantly moving, there are problems that could appear

within the mobile devices communication, especially the involuntary failure of mobile devices

and the wireless link disconnection problem. Not only the movement of mobile devices might

cause the problems, but their designs, with the limitation of storages, and the purpose of saving

the energy also cause the problems.

Normally, there is one base station, stable storage stores mobile devices information, in

each cell of the network. The connection between the mobile devices (MDs) and the base station

(BS) within a cell are normally happen through wireless medium. Beacon protocol [28] is

normally used as one of the protocols which a mobile device establishes its contact with the new

base station following by informing the id from its previous base station. The following Figure 7

below is the normal scheme of the mobile devices networks.

 It is more likely that mobile devices are highly dependent on the base station. The

scenario model makes the base station to be highly fault-tolerant or persistent. If not, the failure

of the base station will make big troubles on the mobile devices. All the important state

information stored within the base station is gone. Mobile devices are forced to wait or freeze

until the base station is being recovered.

15

Figure 7. The mobile device network model.

 On replicating the base station, Alagar et al [38] in their paper propose two schemes to

tolerate the simultaneous failures of base station up to k numbers of base stations. They do it by

replicating the information stored at the primary base station into several secondary base stations.

If the base station fails, the mobile devices within its cell could switch into one of their secondary

base stations to continue their computation. The switching might cause the movement of the

mobile devices to the new cells, which carry their state information.

 In their model, they assume that a logical communication channel exists between every

pair of base stations, which is done only by message passing. Communication channels are FIFO

with the finite amount of time to deliver messages. Fail-stop failure model [29] is used as the

model for the base station with the purpose of hiding the visibility of the error by responding to

the internal failure. Mechanism which the failure of a base station can be detected by its

neighbors and the mobile devices in the cells is assumed to be there.

 Mobile devices store their state information in their base station. All communication

among the mobile devices happens through and with the control of the base stations. As in Figure

Static Network

BS I

MD

MD

BS III

MD

BS II

MD

MD

MD

cell

cell

cell

16

7 as an example, in order for the MD in BS I to communicate with MD in BS II, MD in BS I

needs to send the package/message into BS I first. Receiving package from MD, BS I sends it to

BS II. Finally, BS II sends it to the appropriate MD. Within a cell, BS also works as a medium to

send the package among MDs themselves. This way, the BS holds all the state information of its

MDs. Its failure causes the MDs to halt till it recover.

 Alagar et al [38] overcome the problem by replicating the state information of mobile

device into several secondary base stations. Each of base stations has its sets of selected

secondary BSs. The secondary base stations must be at least k in order to tolerate k numbers of

BS failures.

They call their schemes as pessimistic and optimistic replication. In pessimistic

replication method, the primary/original base station needs to ensure that all selected secondary

base stations maintain the same state of the mobile device. The only delay that happens here is in

delivering the messages/packages to base station or mobile devices. Once the primary base

station fails, mobile device can switch to one of the secondary base stations (there is some delay

happens in the process) and continues its computation without any delay.

On the other hand, optimistic replication replicates the state information of the mobile

device asynchronously. In the optimistic method, there is no delay on delivering the

messages/packages to mobile devices or base stations since the state information is transferred

into one of its secondary base stations whenever its primary base station fails. But, the technique

makes recovery process costly whenever mobile device switches to one of the base stations upon

failure of its primary base station.

 Two strategies on selecting the secondary base stations are also being introduced. The

first strategy considers a certain localities of the mobile device’s movements (mobility pattern of

17

a mobile device is known). The candidates for the secondary base stations are a fixed set within

the locality. The state information of the mobile device within primary base station is maintained

to its secondary base stations. The technique causes the mobile device’s movement easily and

does not require additional handoff procedure.

 On the second strategy, the selection of the secondary base stations is the neighbors of the

primary base station. This technique is based on the assumption of the dynamic base stations.

Therefore, the neighbor of base station might not be the same all the time. Movement of the

mobile device from its primary base station’s cell into other cells might require the copy of the

state information of the mobile device in the original base station and the costly handoff

procedures.

 Using the same model as Alagar, Rangarajan et al [30] also introduces some replication

technique. The state information of the mobile devices, which is stored at the primary base

station, is replicated into other base stations that their coverage overlaps the primary base

station’s coverage. With the technique, if the primary base station fails, the mobile device could

retrieve its state information from other base stations that overlaps its primary base station. If

there are no other base stations that overlap its primary base station, then the mobile device might

lose its information upon the failure of its primary base station.

 Gifford [31], in his paper, introduces the replication technique known as weighted voting.

The technique introduced is mainly on the algorithm for the maintenance of the replicated state

information in mobile environment (or replicated files in the distributed system). Although his

technique is more into the fault-tolerant of distributed computing system, it can be categorized as

the replicating technique for mobile environment since the mobile system environment is more

18

likely similar to the distributed system environment. The rest of the replication techniques is

more likely on the client-server approach on mobile environment.

 The replicated information is stored in the stable system such as base station, which each

copy of the replications is assigned some version numbers. Copies of the replications are shared

into others group base stations within the network. Votes are assigned to the base stations carry

the copies.

A serial transaction is used when the mobile device tries to access its information in the

base station. In the situation which the base station fails, the technique will create several

requests of information to other closed base stations in parallel. Numbers of votes responded by

the base stations are weighted in order to get the correct decision requests.

Herlihy [32] explores an alternative approach to managing replication information by

presenting two replication methods in which concurrency control and replica management are

handled by a single integrated control. Remember that replication technique tends to copy the

information and stores them at the multiple base stations to enhance the availability whenever

one of the base stations fails. Concurrency and replica management become so much important

in the case.

If the mobile device, upon failure the mobile host, has method to retrieve its state

information from many other base stations that store it, concurrency is needed so that it ensures

the incorrect behavior cannot occur as the result of concurrent access by mobile device. On the

other side, replica management is used to ensure that mobile device can gather its state

information back from other sources of base stations whenever its base station fails. A single

integrated technique introduced to manage the performance between concurrency and replica

19

management in order they can be traded off: constraint on concurrency may be relaxed by

tightening constraints on availability, and vice versa.

Upon the failure of the base station, mobile device retrieve its state information to others

of its base stations using what is called as a schedule. A schedule maintains the concurrency of

the transaction that could appear when the mobile device retrieving its information from many

sources of base stations. Others [33 - 35] also use similar techniques of replication to maintain

the availability of the state information of the mobile device.

Satyanarayanan [36], based on the CODA file system, also introduces the replication

technique that are optimistic than the one introduced by [31 - 35]. The optimistic approach is

used to ensure the consistency of the replicated state information on many base stations (problem

in pessimistic approach) and to restrict the placement of unacceptable limits of replication

information.

Disconnected operation and replication on base station are introduced with the purpose of

handling transient transaction (fault - tolerant) within mobile devices system. Sometimes, a cache

is also implemented into a mobile device with the purpose of reducing the dependency of a

mobile device with its base station. In case of all base stations, hold the replicated state

information, fail, a mobile device can still retain its state information through its cache storage to

continue its computation.

Hara’s [37] method of replication can also be applied to a mobile device by replicating

the state information in the mobile device, including itself, within the same network. This is

based on the assumption that if the base station fails, mobile devices in the cell can form ad hoc

network and still maintaining the connection with other cells.

20

2.4 SyD proxy module using replication technique

Looking at the techniques on handling the failures done by the researches above, we come

to the conclusion to use the replication technique as the base on doing disconnection tolerance of

transactions for System on Mobile Devices (SyD) platform. The one, which is going to be

replicated, is not the base station, but a mobile device, which provides services (normally mobile

device server). The replication itself is done by implementing the SyD proxy module in another

mobile device. It means that a mobile device, which implements SyD proxy module, acts as a

proxy. It replicates and also provides similar services applications with different functionalities.

Therefore, we could say that proxy is a “substitution.” Figure 8 below displays the replication

technique on SyD implementing SyD proxy.

Figure 8. The replication technique on SyD.

In case there is a failure on the mobile device providing services, the proxy, implementing

the proxy module, comes as a solution to provide a “substitution.” The proxy recovers the failure

by providing similar services with “smart” solution. The proxy informs the client, requesting

services, that the requests have been received. Then, it stores the state transaction requests of the

clients. Upon synchronization with the mobile device, proxy lets the mobile device to gather all

stored state of transactions. Finally, mobile device transacts the state transaction requests.

Directory
Server

21

Functionality, design, and implementation of our proxy module extension on SyD could be seen

on chapter 4. Performance analysis of our SyD proxy and an application running SyD proxy are

introduced in chapter 5 and 6 respectively. Chapter 3 tells about the existing SyD platform.

22

3. OVERVIEW OF SYSTEM ON MOBILE DEVICES (SyD)

SyD was developed by Yamacraw Embedded System research team with the goal of

providing such kind of middleware platform for mobile devices that allows: uniform connected

view of device, data and network; ease of development and deployment of distributed server

applications hosted on mobile devices; high level development and deployment environment.

Therefore, SyD claims to be [39] “a new platform technology that addresses the key problems of

heterogeneity of device, data format and network, and mobility.” To achieve its goal, SyD

models a mobile device running as an object (based on Object-Oriented approach). Each object

of mobile devices could run as a client or as a server. Sometimes, it could run both as a server

and a client within a mobile device object.

3.1 SyD framework

Each of the mobile devices runs SyD middleware platform is an object. As an object, the

device is assumed to be independent of each other and does not share a global schema. Together,

all object devices cooperate to perform interesting tasks. To achieve its tasks, SyD has the

following framework, as described in the Figure 9 [39] below.

At the lowest layer, SyD Deviceware consists of a listener module and an engine module.

A listener module is normally used to register objects and to execute local methods in response to

remote invocations. On the other hand, an engine module is used to invoke methods on remote

objects. This layer also contains individual data stores, represented by device objects, and

methods or operations for access and manipulation on the data. Simply, at this layer, a mobile

23

Figure 9. The System on Mobile Devices (SyD) framework [39].

device is an object that could act as a server, registers and provides services, as a client, invokes

services on remote objects, or as both client and server.

At the middle layer, there is SyD Groupware, which is a logically coherent collection of

services, APIs, and objects to facilitate the execution of application programs. The layer consists

of a directory service module, group transactions and global event support, with application-level

Quality of Service (QoS). Simply, the middle layer is where SyD middleware platform is located.

At the highest level, we could find SyD applications, which rely only on these groupware and

deviceware SyD services, and are independent of device, data and network. An instantiation of

server object, which contains an aggregation of the device object and SyD middleware object, is

included in the layer. As the conclusion, each of mobile devices runs SyD applications is an

object, which is following Object-Oriented approach.

24

Those three layers architectures of SyD enable applications to be developed without

knowledge of device, database and network details. SyD groupware holds the most important

roles in the framework since SyD middleware platform is located in this layer. It provides a

directory service module to interact with the Directory Server, a storage storing information for

all registered SyD object devices. Therefore, the layer is responsible to make the object device

applications (anywhere) aware of the named objects and their methods or services, to execute

these methods on behalf of applications, to allow the construction of SyD Application Objects

(SyDAppOs) that are built on the device objects. It provides only a named device object for use

by the SyDApps, applications written for the end users that operate on the SyDAppOs alone and

are able to define their own services that utilize the SyDAppOs, without revealing the physical

address, type or location of the information store.

3.2 SyD kernel and its modules

SyD uses simple yet powerful idea of kernel or core system to develop applications

within mobile devices. SyD kernel captures the essential features of the overall SyD framework

and several SyD based applications. Figure 10 [39] below describes the kernel application of the

existing SyD middleware platform.

Figure 10. The architecture of SyD kernel and its application [39].

25

 SyDDirectory, SyDListener, SyDEngine, SyDBond, and SyDEventHandler are modules

developed within the SyD kernel architecture. Those are the main core of the existing SyD

platform.

• SyDDirectory

The module is located in the middle layer of SyD framework (SyD Groupware). It

provides users’ objects publishing, management, and lookup services to SyD device objects.

Basically, it contains all information of every registered object devices (normally server

application objects), including their locations, their methods of services, and their important

information. Figure 11 below is the state transition of existing SyDDirectory.

Figure 11. The state transition of SyDDirectory.

SyDDirectory module is quite important module and has to be started first of all so that

all other SyD applications could do their jobs, such as providing services, requesting services,

registering services, etc. As simple as we could say, it works as a mediator, opening the

connection to Directory Server. After it is started, it waits for the objects’ requests.

26

• SyDListener

It is normally located at the bottom layer of SyD framework. SyD object devices use it to

publish their services (server applications) locally in the device and globally via Directory

Service. SyDRegistrar module in SyDListener is used for that purpose. Figure 12 explains the

state transition of the existing SyDRegistrar in SyDListener module.

Figure 12. The state transition of SyDRegistrar.

When the object device (normally server applications) registers its information, including

its identities and services, it is going to find where it is located (normally IP address) first. Then,

it collects all documents, in XML, containing the methods of services, address location, all ports

either local RMI port or remote listener port, and etc. If the application object has not been

registered yet, it then gets registered golabally in the Directory Server and locally in the device

object. The object now waits for remote invocation.

It also works as a “listener” to listen and to ivoke local registered services in the device

upon requests. SyDListener module in SyDListener is used for the purpose. Simply to say, it

27

opens the port communication between the object server and the object client. It also allows for

the object client and server to communicate each other remotely by exchanging documents, in

XML. The object client uses SyDListenerDelegate module for this purpose.

• SyDEngine

It is located at the bottom layer of SyD framework. SyDEngine allows the client to

dispatch, using SyDDispatcher module, services remotely and to aggregate the results. The

module will make the invocation on the remote object transparently. Figure 13 pictures the state

transition within the existing SyDEngine.

Figure 13. The state transition of SyDEngine.

In order for the user’s client to invoke services remotely, it needs to get the remote

object’s url, which is listed as IP address. A remote object is usually the object server. The user’s

client, then, bundles all of the needed information into a XML document. The information

normally contains a method of a service and its parameters values. The client sends the XML

message document to the remote object server. The object server un-bundles the message

document and processes the client’s request. It, then, sends the result back to the user’s client in

the form of XML message documents also.

28

• SyDBond

It enables a SyD object device to link to other devices for automatic updates and to create

and enforce interdependencies.

• SyDEventHandler

It handles local and global event registration, monitoring, and triggering.

29

4. PROXY MODULE EXTENSION FOR SYSTEM ON MOBILE DEVICES (SyD)

Mobile device may become unavailable due to the following reasons. First, involuntary

failure of mobile device, such as loss of battery power, mobile device becomes overloaded by

requested service computations, etc. Second, voluntary disconnection of the mobile device by

their users, such as users shutdown the system. Third reason might be caused by the wireless link

failure or overloaded.

Therefore, there is a need to build a platform that could handle those failures on mobile

device system. The existing SyD platform, taken as one of the mobile device’s platforms and has

been described in chapter 3 above, could not handle those failures. As a result, the existing SyD

platform has been extended for the purpose of implementing disconnection tolerance of

transactions in the mobile device system. The proxy comes as a solution and its module has been

constructed in the existing SyD platform.

The extension of SyD not only considers the disconnection tolerance of transactions, but

it also allows the synchronization to happen between mobile devices (normally between the

mobile object server and its proxy). The existing SyD framework is still used for this

implementation, but the existing SyD kernel has been modified and extended. SyDDirectory,

SyDListener, and SyDEngine are the main SyD kernel that has been extended. SyDSync has been

added for the purpose of server-proxy synchronization.

4.1 SyDProxy functionalities

The main reasons to build the proxy module as the extension module in the existing SyD

platform (SyDProxy) are as following:

30

• To handle failures within mobile device system by letting the disconnection tolerance of

transactions to happen (the mobile object client’s request could be handled by the mobile

object proxy temporarily upon the failure of the mobile object server).

• Since disconnection tolerance of transaction needs to happen, there is also a need for

allowing synchronization of the transaction to happen within mobile device system (upon the

time for the mobile object server to be in active mode, it allows the object server to

synchronize its state of data with its object proxy to process the mobile object client’s

transaction request and to give a response).

To let those functionalities happen, the SyDProxy module has been built to extend the

main existing SyD kernel, such as SyDDirectory, SyDEngine, and SyDListener. The purpose is

to allow disconnection tolerance of transaction to happen. In addition to that, SyDSync has been

constructed for the purpose of synchronization. Figure 14 displays the SyDProxy module.

Figure 14. SyDProxy module.

In the design of proxy module for SyD, we consider the following failures conditions:

• Voluntary disconnection.

The status of an object, which provides services (an object server), is in off mode. It

means that a mobile device (a server) has been shut down. The device at that time could not

provide services.

31

• Involuntary disconnection.

An object, which provides services (an object server), is in busy mode. That means an

object does too many workloads for a request. So, it could not handle the other received requests.

Or, an object could not listen to a client’s request eventhough the Internet network is still

connected. This might happen because of an object server’s listener is in off mode.

• Wired or wireless link is overloaded.

An object server’s listener is getting too busy handling too many clients’ requests.

Thefore, it becomes overloaded.

The new design of SyD, implementing proxy module, now could handle those failures

(allowing disconnection tolerance of transactions and synchronization). Figure 15 displays the

simple scenario. Condition 1 allows normal invocation of a client to a server. If listener of a

server is in off or busy mode, client’s invocation is handled by a proxy (condition 2). The similar

situation also appears when the server itself is in off or busy mode. Synchronization appears

between the server and its proxy.

Figure 15. The simple scenario where the proxy comes as a solution to handle failures.

4.2 SyDProxy design architecture and its description

With the proxy module that has been enabled for SyD, SyDDirectory could provide users’

objects publishing, management, and lookup services not only to SyD device objects but also

32

their proxies now. SyDListener, using SyDRegistrar module, also allows the registration process

of SyD device objects with their proxies. SyDEngine lets seamlessly remote transactions to occur

either to the SyD device objects or to their proxies. Finally, SyDSync allows the synchronization

of the data between the objects and their proxies to happen. Figure 16 below explains the higher

level view of SyDProxy module extension (disconnection tolerance and synchronization) on top

of existing SyD platform. The details of the use of the proxy module extensions for SyD,

including the SyDSync module, are explained below.

Figure 16. The higher level view of SyD Proxy architecture.

Disconnection tolerance of transaction in the SyD platform extension

33

 Looking into Figure 16 above, all SyD objects, includes SyD object proxy, SyD object

server, not Client, before it can be located and can provide methods of services, need to be

registered first. Registration is done using SyDRegistrar module in SyDListener, which is going

to be registered globally in the Directory Server and is going to be registered locally into the RMI

registry of the object afterward. After registration, every registered SyD object is ready to provide

services and is considered as a SyD object server. In the case, SyD object server and SyD object

proxy are normally servers. They also need to listen to every single request of services from

clients.

 For that reason, SyDListener is provided for each of the SyD object servers. Practically,

SyDListener keeps the assigned port and uses it exclusively only to listen and to execute local

method of a service based on a remote request. The request is normally in the XML documents.

SyDListener gets the request, extracts and executes it locally, and sends a response on behalf of

the SyD object server. Since SyD objects are independent of each others, each of the SyD object

servers is required to have one SyDListener to listen and to execute.

 The one, which requests SyD server’s services, is normally SyD object client (Clients).

To request a service, a client needs to use SyDEngine. In the process of invoking a request to a

SyD object server, a request is bundled into SyD documents, using SyD standard XML, which is

similar to SOAP message, within SyDEngine. SyDEngine uses SyDListenerDelegate to send the

request of document afterward. The communication between the object client and the object

server using SyDListenerDelegate and SyDListener is done through TCP/IP.

There is a time, a “timeout”, to allow a client to wait for a response from a server after

invocation. The reason behind implementing a “timeout” here is for not letting a client to wait a

34

response from a server too long. A server might be overloaded with works or might be off. If a

client does not get a response at the end period of a “timeout” time, SyDEngine, used by a client,

seamlessly invokes a request to a proxy.

The proxy works smartly in the essence of keeping of all requests, which could not be

processed by a server at the time of client’s requests of invocation. The proxy also acts similarly

as a server by sending a response to a client that a request of a service is accepted. In this case,

client does not know if a server is in a failure mode since a proxy also sends a similar receipt of

an acceptance of a request. At this case, a client only thinks that its request is accepted and is

going to be processed. A client then waits for a response.

All requests kept by a proxy could be processed later by a server if a server knows that

there are requests of services for it. To let a server knows if there are requests for it,

synchronization, using downlink module, between a server and a proxy is needed here. Upon the

synchronization (SyDSync) process, a server gets all stored requests from a proxy. A server

extracts requests and processes each of the stored requests. The chapter below will explain the

details of the process of synchronization. Figure 17 below shows the overall SyDProxy

architecture, which is approached from lower level design.

Disconnection tolerance of transactions upon client’s requests

35

Figure 17. The lower level design of SyDProxy architecture and its application modules.

SyDDirectory

As it has been mentioned, SyDDirectory is used to provide users’ objects publishing,

management, and lookup services to SyD device objects and their proxies. Its module provides

interaction with all information of every registered object devices, including their locations and

their methods of services. It is an interface to connect into Directory Server (could also be called

as a base station). Directory Server’s function is used as storage of all device objects’

information. Figure 18 shows the storage (database) schema of Directory Server.

Figure 18. The storage (database) schema of Directory Server.

Synchronization between the SyD server and its proxy

36

There are 6 objects in the Directory Server schema as shown in Figure 18: SYD_USER,

SYD_APPO, SYD_PROXY, SYD_METHOD, APPO_METHOD_MAPPING, and

USER_APPO_MAPPING.

• SYD_USER

It is an object, which contains all information of the registered users’ applications,

normally server applications. It stores server application name and password for identification

purpose. Where the application is published (userurl) and its published time (publishtime) are

also recorded in the object. Application location is normally shown as IP address. At the end, it

also contains the condition of the application (livebit – on/off), the local RMI device port, which

contains registered methods of services (serverport), and the object listener port for remote

invocation (listenerport).

• SYD_APPO

It contains the identity of the registered application, such as application name.

• SYD_METHOD

It lists all registered methods of services, such as method names, parameters of the

methods, and the return types of the methods.

• APPO_METHOD_MAPPING

It holds the relationship of the applications with their registered methods of services.

37

• USER_APPO_MAPPING

It maps the registered users with their registered applications.

• SYD_PROXY

It contains the relationship of the registered users with its published proxies and its

published applications.

The way SyDDirectory works is still similar to the existing one, but with the extension of

allowing proxy publication or registration to happen. Figure 19 is the state transition that happens

in Directory Service of SyDDirectory.

Figure 19. The new state transition of the SyDDirectory.

 Directory Server in SyDDirectory needs to be started first in order that object server

applications could register and setup their methods of services or object client applications could

fetch information or requests. Since the extension of SyD has proxy module enabled, proxy needs

to be published or registered first in the Directory Server.

38

Once it is registered, a proxy object ID is listed(remember that SyD makes a device as an

object and provides only a named device object). Object application, normally object server

application, which will be registered after the proxy, needs to provide proxy object ID for the

registration process. That way, object application will have its object proxy. At the current

development, one registered object application, which is an object server application, only has

one object proxy. It is likely to say that one server has one proxy.

SyDListener

Located in the bottom layer of SyD framework, it has three main modules (described in

chapter 3): SyDRegistrar, SyDListener itself, and SyDListenerDelegate. SyDRegistrar is used by

SyD object devices to publish their services (server applications) locally in the device and

globally via Directory Server. Figure 20 describes the state transition of proxy and server object

registration in the extended SyDRegistrar.

Figure 20. The state transition of proxy and object registration in SyDRegistrar extension.

39

As you can see the difference of SyDRegistrar from the previous one, every user’s object

application, either already registered or not registered, is going to turn its status livebit ON. This

is a signal that the application is up and running.

SyDListener is a “listener,” which is used to listen users or other applications objects’

methods invocations. Since it is the only way to do the communication between the remote

objects, it opens the communication port for the registered server applications. The object

client’s requests of services are received by the object server through the open communication

port. Once the requests are received, it locally accesses and executes the active services from the

object’s local registry.

On the other hand, SyDListenerDelegate allows the SyD object device (object client) to

communicate with other devices (normally server applications and proxy application) remotely to

exchange the data. A “timeout” has been implemented in the SyDListenerDelegate with the

purpose of controlling client’s request of service to get seamlessly process either to the server or

to its proxy. SyDListenerDelegate and SyDListener is a pair of TCP/IP socket communication

within SyD. The only difference is that SyDListenerDelegate is in the client applications side and

SyDListener is in the server applications.

SyDEngine

It is located at the bottom layer of SyD framework. It allows users to dispatch

(SyDDispatcher) services remotely and to aggregate the results. SyDEngine allows transparent

services invocation. Figure 21 below shows the state transition process of the extended

SyDEngine using SyDDispatcher module to allow seamlessly remote method invocation.

40

Figure 21. The SyDEngine extension for seamlessly remote method invocation.

The extension of SyDEngine is different than the previous one, shown in the chapter 3.

The extension of SyDEngine holds the important roles of controlling the flow of client’s

requested services, either to get responses from the server or from server’s proxy. There is a

“timeout” that has been introduced on SyDListenerDelegate that carries through SyDEngine.

SyDListenerDelegate is the one, which initiates the “timeout” time. SyDEngine then

determines whether it should invoke the server or the proxy within or after the “timeout” time.

Within the allowed time (time <= timeout), the client is going to get the services’ responses from

the server. But, if it is over the allowed time (time > timeout), the client is going to get the

responses of services from the proxy. Proxy is a “substitution” of the actual server application.

Initialize in
SyDListenerDelegate

41

SyDSync

In the case that a server application is busy or not alive, the proxy comes to substitute the

server. The proxy substitution has similar functionalities to its server application. It is a “smart”

proxy in the essence of keeping all of the states of the transactions of the requested services that

are missed. Synchronization between the server and the proxy could happen upon user’s request

within the user’s sync time. To allow that happen, we have designed and implemented SyDSync

module to ease the SyD server developer’s job.

We try to make it as uniform as possible by following the existing SyD architecture. If

there is a failure in the object server, requested services will be stored as a state of XML data by

the object proxy. Figure 22 below shows the XML format data of stored state request.

Figure 22a. The empty stored request data.

Figure 22b. The stored state request data contains the methods and the objects.

42

Figure 22c. The stored state request data. It contains two saved state requests of client.

As it is shown in Figure 22a, b, and c, all the data will be bounded by <SERVERDATA> tag.

Within the <SERVERDATA> tag, there is <REQUEST> tag to store all client state requests. To

count manually of how many requests that have been saved by object proxy is by counting

numbers of <REQUEST> tag. <OBJECTS> tag is used to store the live variable objects of the

application, either server or proxy (shown in Figure 22b). At the Figure 22b, camera is the live

object parameter within the application, either server or proxy. It has a Boolean variable type and

the true value.

<OBJECT id = “…”> tag is the attribute to know the object server’s ID (object server

application’s ID) that was requested by the object client. <METHOD name = “…”> tag is also

43

the attribute for the method of service that was requested by the object client. All parameters

values of a requested method of service are stored within <PARAMETERS> tag.

 Within the SyDSync module, there are APIs to ease the synchronization process between

the proxy and the server. Table 1 below lists all of the SyDSync APIs.

Table 1. The SyDSync API with its description.

SYDSYNC CONSTRUCTOR
SyDSync Constructor.

SYDSYNC DATA MANIPULATION
createAFile To create a data file.
readData To read a data in a file.
writeData To write a data into a file.
formatData To format a data. It eliminates ‘<’, ‘>’, ‘\’, ‘/’.
cleanUpServerResData To cleanup a response data.

SYDSYNC DATA REQUESTS MANIPULATION
writeEmptyRequest To write an empty request.
createRequest To create requests.
updateRequest To update requests.
readDeleteRequest To read and delete requests.

SYDSYNC MAIN METHODS (UPLINK AND DOWNLINK)
uplink To setup uplink. Allowing the client’s server to setup variables in

the proxy server.
contDownLink To do continuous downlink synchronization between the server

and proxy.
runDownLink To run continuous downlink.
downlink To setup downlink synchronization.

SYDSYNC GET METHODS
getCurrentDirectory To get the current directory where the SyD file will be stored.
getFormatObjectId To get the object ID after the data being formatted.
getFormatMethodName To get the method name after the data being formatted.
getFormatParamT To get the types of parameters after the data being formatted.
getFormatParamV To get the values of parameters after the data being formatted.
getFormatObjectT To get the types of objects after the data being formatted.
getFormatObjectV To get the values of objects after the data being formatted.
getFormatObjectName To get the name of the objects after the data being formatted.
getNumOfSavedRequest To get numbers of stored state requests.

44

getObjectId To get the object ID.
getMethodName To get the method of service name.
getParamtT To get the types of parameters.
getParamV To get the values of parameters.
getObjectT To get the types of the objects.
getObjectV To get the values of the objects.
getObjectName To get the name of the objects.
fillData To fill the data into the vector.

Two main important APIs within SyDSync are uplink and downlink. Uplink API is

normally used by the object server’s client to setup data in the proxy server. We expect that the

developer of SyD server, knowing all information about its proxy also, uses the uplink API to set

the proxy data. On the other hand, the downlink API is normally used for synchronization

purpose between the server and its proxy. Condownlink is a thread module that wraps the

synchronous downlink module. The detail of SyDSync API is provided in appendix A. Figure

23a and b below picture the scenario before and after server synchronizes with its proxy.

Figure 23a. Server tries to synchronize with its proxy using downlink thread module.

Figure 23b. Server finishes its synchronization with its proxy.

SERVER OBJECT

CONDOWNLINK
MODULE

PROXY OBJECT

<SERVERDATA>

</SERVERDATA>

<SERVERDATA>
A
B

</SERVERDATA>

Synchronization

SERVER OBJECT

CONDOWNLINK
MODULE

PROXY OBJECT

<SERVERDATA>
A
B

</SERVERDATA>

<SERVERDATA>

</SERVERDATA>

Synchronization

45

4.3 SyDProxy implementation

In section 4.1 and 4.2 above, we present the proxy module design architecture and its

descriptions for SyD. In this section, we would like to present the core implementation of the

proxy module design for System on Mobile Devices (SyD). The following below explains the list

of files used as the core of proxy module in SyD.

SyDDirectory

• DirectoryServer.java

Basically, it is used to get a reference to a bootstrap local object registry for remote

invocation. Then, it binds the reference with the Directory Server, which contains all information

of registered object applications, in the local object device. The implementation is shown in

Figure 24 below.

Figure 24. The Directory Server code snippet.

• MemberShip.java

The implementation of the membership file here is used by a remote object to be a part of

the members within the network, connected all SyD device objects. The main methods used in

the module are “publish”, “lookUp”, “advanceLookUp”, “lookUpObject”, “turnOff”, and

“setUp”. “publish” method is used for the object’s registration purposes. In the implementation

46

of proxy module, it is suggested that every object, which will have the proxy, needs to register its

proxy first then the object itself. If the object will not have a proxy, then the object must

registered as a proxy object.

“lookUp”, “advanceLookUp”, and “lookUpObject” are methods used for lookup a

specified attribute for an object, more attributes for an object, and an object or a proxy

information, such as object url, object ID, respectively. “turnOff” method is used to turn off the

status of an object, either livebit is on or is off, and bring the proxy object information. “setUp”

method is used to set the attribute of an object.

SyDListener

• SyDRegistrar.java

This is where the registration process of an object or a proxy takes place. In the module,

the object or the proxy is registered globally into Directory Server and locally into the object into

RMI registry afterward.

• SyDListenerDelegate.java

Client, which requests services from an object server or an object proxy (if an object

server is in failure mode), uses SyDDispatcher module in SyDEngine, to do the invocation.

Communication between the client and the object server or the object proxy, which is done

through SyDDispatcher by exchanging SyD XML document, appears to be happened in this

module. Basically, the SyDDispatcher is used to invoke remote object server by using the

SyDListenerDelgate to send SyD likely XML SOAP document message.

47

Therefore, SyDListenerDelegate is normally used in the client side. A “timeout” time has

also been implemented in the module. The purpose of a “timeout” time is to give an enough time

for a client to get a response from a server. If the client has not received a response for a given

“timeout” time, it allows SyDDispatcher to invoke the object proxy since it will assume that the

object server is in busy or in fail mode.

• SyDListener.java

The implementation of the module resides in the server side. Together with

SyDListenerDelegate module in the client side, it lets the communication of the client-server to

happen through socket listener on certain port numbers (8888 is normally used as the convention

for listener port of an object server). It also invokes the local services of the object server or the

object proxy if the object server fails.

SyDEngine

• SyDDispatcher.java

The module works as an engine module used by a client to do remote invocation. It works

together with SyDListenerDelegate module to determine whether to invoke an object server or an

object proxy.

SyDUtil

• SyDDoc.java

A client, requesting a service, has to create a request document in the form of SyD likely

SOAP message to be sent remotely. The module contains a method to enable the default

48

document message creation. It has the methods to parse the message documents and also to

create a message response of a requested service.

• SyDSync.java

Synchronization between an object server and an object proxy is needed for the purpose

of allowing disconnection tolerance of transactions on the client-server invocation. The module

provides an easy implementation of synchronization process. Appendix A explains the details of

the module.

SyDObject

• ObjProxy.java

The module is a template for an object proxy. The main methods are publishProxyDoc

and registerProxy, which are to publish proxy services in the form of SyD XML message

document and to register those services in the proxy respectively.

ObjProxy myProxy = new ObjProxy();
myProxy.publishProxyDoc(…);
myProxy.registerProxy(…);

• ObjAppo.java

The module is also a template for an object server to create a SyD XML message

containing of all services and to publish those services in the object server. The main methods

are publishAppoDoc and registerAppo, which are to publish services in the form of SyD likely

SOAP message and to register those services respectively.

ObjAppo myServer = new ObjAppo();
myServer.publishAppoDoc(…);

49

myServer.registerAppo(…);

• ObjClient.java

The module is also a template for a client. To invoke a remote object server, a client will

only need to provide the parameter values needed for a service, a server name, and a method of a

service to be requested.

ObjClient myClient = new ObjClient (ServerName, parameter values, a method name);
myClient.run();

50

5. PERFORMANCE ANALYSIS

The experiment has been conducted to get the idea of what the performances of the

extended SyD are. What is the relationship between the timeout and the percentages of servers’

failures, the average responses vs. numbers of clients requested services, numbers of requested

clients responded by the server or the proxy server, and the best time used to be given for the

timeout are analyzed in the section.

To analyze the performance of the SyD extension, we run the experiment using the

following instruments (all machines run different OS and are placed in different locations):

• SunOS machine with 900 MHz Ultra SPARC III Cu processor.

• Windows XP machine with Intel Pentium IV 1.7 GHz mobile.

• Windows Vista Business with 1.67 GHz of Intel Centrino Duo machine.

The following below are the scenarios of the experiment:

• Oracle 10g database server runs on SunOS box.

• The proxy is an object that runs in SunOS machine. Proxy runs as SyD object server.

• The server application is an object that runs in Windows XP machine. The server runs as SyD

object server.

• The users’ client is also another object that runs in Windows Vista machine. The users’ client

also acts as a SyD object client.

• There is no beOnLookOut method of service that is being requested by users’ client (service

time is equal to 0ms) for section 5.1 to 5.3. For section 5.4, we apply service time.

• There are no network failures. All network connections are always up and running.

• SyDDirectory module in each object is used to fetch the data directly from the database.

51

5.1 Relationship between the timeout and failure rate

Based on our experiment, we found that there is no relationship between the timeout and

the failure rate on the server. As long as the server fails, the proxy takes in charge and responses

the client’s request. But, with the increasing percentage of numbers of failures on the actual

server, the clients’ requests get response from proxy increasingly. As long as proxy is responding

the request, the average response time is linearly increasing. It is shown in Figure 25 below.

Figure 25. Increasing number of failure rate increases the average response time.

5.2 The numbers of clients requesting services vs. response time

On the 5.1, we have concluded that as long as the server fails, proxy takes in charge of

server’s responsibility. Since proxy takes the control, there is another trip for the request to go to

the proxy. Therefore, there is a delay for the client to get its response back.

52

Knowing that there will be a delay of time for the client to get its response back if the

server fails, we would like to know what the best timeout time is needed to be implemented so

that the server could handle all the clients’ requests without going into the proxy. As we notice,

we have implemented the timeout time within the SyD proxy module. The timeout time is used

to control the client’s request to get the response from the server or the proxy. The

implementation of timeout time is very critical in the SyD proxy module since we do not want

the clients to wait too long to get the response from the server while the server is in failure mode.

Other problems will rise as long as the client waits too long: communication between the client

and the server is occupied for only that specified client (synchronous invocation), it will not give

other client’s chance to request services on the server, etc.

Table 2 below shows our experiment using increasing timeout time to see the relationship

of numbers of clients requested services versus the average response time.

Table 2. The numbers of clients vs. the average response time on certain timeout time.
Timeout time : 150 ms

Timeout time : 200 ms

53

Timeout time : 250 ms

Timeout time : 500 ms

Timeout time : 1000 ms

Timeout time : 2000 ms

Timeout time : 3000 ms

54

Timeout time : 4000 ms

Timeout time : 5000 ms

Timeout time : 6000 ms

Timeout time : 7000 ms

55

On our experiment above, there is linearly incrementation toward the average response

time on many numbers of clients requesting server’s services. We also could see clearly that as

long as the given timeout time is higher, the average response time and the maximum response

time is getting smaller for the clients to get their response. For 200 numbers of clients using

timeout time of 150 ms, the average response time and the maximum resopnse time for the

clients to get their response is about 39.19 seconds and is about 59.29 seconds. But, for 200

numbers of clients using timeout time of 7000 ms, the average response time and the maximum

response time needed for the clients to get their response is about 15.16 seconds and is about

35.57 seconds. The reason behind it is what we believe that server could handle all the clients’

requests if we put the appropiate timeout time (section 5.3 clearly tells you that the server could

handle more request on the higher timeout time).

5.3 The numbers of services responded by either server or proxy

In the section 5.3 here, based on our experiment, we study that there is the influence of

the given timeout time toward the numbers of clients requesting services. If we let the timeout

time to be smaller, then we could see that the proxy most of the time handles the client’s request.

The server could handle the client’s request as long as the appropriate timeout time is given. As

56

we notice in our experiment, if we let the timeout time on 150 ms, for 200 numbers of clients

requesting services, proxy takes in charge of responding 200 clients’ requests. But, on the higher

timeout time, such as 7000 ms, for 200 numbers of clients requesting service, proxy only

responses 94 requests. 106 requests are responded by the server. Table 3 below shows the details

of the numbers of services that could be handle either by the server or by the proxy for the given

timeout time.

Table 3. The numbers of clients vs. the numbers of responses by the server and proxy.
Timeout time : 150 ms

Timeout time : 200 ms

Timeout time : 250 ms

Timeout time : 500 ms

57

Timeout time : 1000 ms

Timeout time : 2000 ms

Timeout time : 3000 ms

Timeout time : 4000 ms

58

Timeout time : 5000 ms

Timeout time : 6000 ms

Timeout time : 7000 ms

59

5.4 The best time for timeout

In section 5.1, we could notice that as long as the proxy processes a client’s request, the

average time for a client to get a response is linearly higher. Even though there are other

parameters, a “timeout” time and increasing numbers of clients’ requests, play in the experiment

in section 5.2, it also tells that the linearly increasing numbers of clients’ requests of services and

timeout time also linearly increases the average response time for a client to get an answer back.

This is because some of clients’ requests are processed by proxy, shown in section 5.3.

In the section 5.4 below, we would also like to study what the influence of another

parameter, service time, is with the linearly increasing of numbers of clients on the timeout time

on the extended SyD platform. Table 4, 5, and 6 below are the results of experiments.

Table 4. The timeout time on 500 ms of service time.

60

Table 5. The timeout time on 750 ms of service time.

61

Table 6. The timeout time on 1000ms of service time.

62

The service time is used as another additional parameter in the above experiment on

determining the best timeout time because there is a process that needs to be done upon clients’

requests on a server, such as beOnLookOut process used to look out a vehicle license plate

numbers (in camera application described in chapter 6).

On the process of making decision, based on table 4, 5, and 6 above, to determine the

timeout time on additional parameter, service time, with the increasing numbers of clients’

requests, we maximize the best timeout time by taking the maximum timeout time for allowing

all clients’ requests to be processed and responded by server. Figure 26 below displays our result

of experiment on determining the best timeout time for the extension of SyD platform.

Figure 26. The increasing numbers of clients and service time on the server influence the

timeout time linearly.

of clients

Y=517.42x+559.43 Y=733.61x+385.25 Y=1025.6x+366.8

63

As a result shown in Figure 26 above, there is a linearly increasing of a time for timeout

to be allowed for linearly increasing numbers of clients requesting services and the time for

allowing services to be processed (service time). Based on our analysis of the experiment, we

conclude the following best timeout time.

T è The best timeout time (ms).
ST è The service time, such as beOnLookOut service computation (chapter 6) (ms).
x è Numbers of clients request services.
K è A constant number (ms). K = 600ms as a result of our experiment.

 As an addition, we also conduct another experiment to improve the performance of the

above experiment. In the above experiment, SyDDirectory module is used by each of the objects

to get the data directly into the database. This is done by implementing direct JDBC-RMI remote

connection into the SyDDirectory module. That situation, as we expected, creates much traffic

congestion between the object hosting the database and the object requesting the data.

Instead, to boost the performance, when the object wants to request data into the database,

we implement the basic RMI call to call the SyDDirectory module in the object hosting the

database. Then, the data is fetched locally in that object. Figure 27 below pictures the comparison

between the previous scenario and the new scenario.

The improvement of the experiment has been conducted as the following:

• Oracle 10g database server runs on Windows XP.

• The proxy is an object that runs in Windows Vista machine.

• The server application is an object that runs in Windows XP machine.

• The client runs in Windows Vista machine.

T(x) = (ST * x) + K

64

Figure 27. The comparison of the new experiment scenario with the previous one.

Figure 28 below shows the summary of the experiment.

Figure 28. The improvement of the new experiment by (100 * # of clients) ms.

Y=466.19x+325.82 Y=668.03x+426.23 Y=913.93x+397.54

65

As a result shown in Figure 28 above, there is also a linearly increasing of a time for

timeout to be allowed for linearly increasing numbers of clients requesting services and the time

for allowing services to be processed (service time). It looks like that the performace is improved

slightly by (100 * the numbers of clients) ms. Therefore, according to our analysis of the

experiment, we conclude the following best timeout time.

T è The best timeout time (ms).
ST è The service time, such as beOnLookOut service computation (chapter 6) (ms).
x è Numbers of clients request services.
K è A constant number. K = 500ms as a result of our experiment.

T(x) = ((ST – 100ms) * x) + K

66

6. CASE STUDY: A CAMERA APPLICATION TO MONITOR A STOLEN VEHICLE

The chapter presents the details of the camera application that has been developed to

show the work progress of proxy module implementation on SyD and its SyDSync API

implementation.

6.1 Application description

A camera application has been taken as an example of the working progress of proxy

module in the extended SyD middleware platform. The example has been substantiated by taking

into consideration of all the assumptions that are involved and its actual relevancies to the real

world.

Nowadays, there are many cameras that have been installed on the roadways. The purpose

of those cameras is to capture the vehicles’ license tag numbers for all vehicles passing through

the stop red light. Getting the license plate numbers, the police issue a ticket for the suspect and

send a ticket to the suspect through mail based on the suspect’s identity on the vehicle license tag

numbers. The process might make the life easier, right? Also, in the long term, it will save the

state much money by not hiring too many police for the purpose of monitoring any vehicles

crossing the red light.

From that point of view, we make our decision to also use a camera application for our

example application to demonstrate our SyD proxy module. The goal of using a camera in the

example is the same, which is to capture a vehicle license tag numbers. But, our camera

application is used for a different purpose. We use our camera application to look for stolen

vehicles not to catch the suspect who breaks the traffic law.

67

Before we present with the actual details of how the camera application can be

accomplished, we take the following assumptions on designing a camera application.

• Cameras have been installed on the roadways.

• Image processing software has been implemented in each of the cameras.

• Each of the cameras has a wireless card installed and could get its Internet connection

automatically.

• There will not be any wireless network failures. But, we still consider the overloaded

bandwidth on the network.

• The most important thing is that the cameras always work correctly on capturing images

without any defects.

• Proxy of the camera is not a camera, but it is such kind of portable or non-portable devices

(depending on the one who implements). It is assumed to be installed in the office of the

police.

• Users’ clients of the cameras are the police using mobile devices, such as cell phone, PDA,

smart phone, etc.

With the assumption in mind, we are going to go in the details of the design and implementation

of the camera for looking stolen vehicles using the extended SyD middleware platform with the

proxy module.

6.2 Application design

Based on our idea of designing SyD, every user of the SyD applications is considered as

an object. An object could act as a client, a server, or both a client and a server. An object will

provide methods of services if it is a server. As a client, an object will normally request the

68

registered services. An object will provide services and request remote services if it has both of

the server and client’s functionalities.

Design such camera application using the extended SyD middleware platform is not

required tedious work. SyD platform already provided high-level application designs to develop

such kind of application. API has been designed to ease the developers’ job for implementing the

camera application. Therefore, details like SyDDirectory, SyDEngine, SyDListener,

SyDListenerDelegate, and its synchronization will be transparent enough on the developers. The

section discusses the overall process design from the proxy to the camera and to the users’ clients

of camera.

6.2.1 Design of the camera proxy

As being mentioned above, the purpose of the proxy is to “substitute” the actual

application. The design of the proxy should be standard enough and has the following functions:

• It should be an object and should be registered as an object server.

• Since it is a server, it needs to register its services to its local device and globally via

Directory Service (Synchronization using downlink method indeed needs to be registered).

• Locate the place to store the state transactions (there is a default API to do this).

• It should be “smart.” Not only it will “substitute” the job of the actual server application, but

it will also store the missed of requested state transactions.

6.2.2 Design of the camera application

The purpose of having a camera in the application is used to look for the specified vehicle

that has been stolen by capturing every vehicle license plate numbers on the roadways within

69

period of time. The design of the camera itself should have both the server’s and the client’s

capabilities. The following below are the things needed to be in a camera.

• It also should be an object, different from the proxy object.

• It consists of an object server and an object client.

• As a server, it needs to register its services (especially lookout services) into local device and

globally via Directory Service.

• Similar to its proxy, it also needs to have a place to store the data for synchronization

purposes.

• As a client, it needs to initiate the process of synchronization with its proxy within

synchronization period of time.

6.2.3 Design of the camera client

The design of a client for requesting services to a camera, similar to a camera itself, also

needs to act as an object that has a client’s and a server’s capabilities. As a client, its main

purpose is to invoke the services provided by a camera server application. Lookout services

provided in the design of a camera server application is the main services used to look out a

stolen vehicle and is normally invoked by the client.

The client mainly needs to provide a vehicle license plate numbers and duration of time

that the camera will look out the specified vehicle. With the given parameters, the client

instantiates the invocation to a camera server application. The camera object’s server will extract

the given parameters and will start to look for the specified vehicle.

70

On the other hand, as a server, a client needs only to provide a service, such as a

confirmation service. The camera object’s client uses a confirmation service provided by the

client’s server to let a client knows that the suspect vehicle has been found or not.

6.2.4 Overall design of camera application

Figure 29 is the overall design of the actual camera application. Proxy works as a

“substitution” of the camera application. Since a client and a camera need to act as object clients

and object servers, both of them need to have SyDListener and SyDEngine to work as a server

and as a client. On the other hand, a proxy needs only SyDListener component since it works as a

server.

Figure 29. The overall design of camera application.

71

As shown in figure above, every request from a client to the servers (either a camera or a

proxy) needs to go to the Directory Server first. The reason for this is because Directory Server

holds all services and information of the registered servers. Therefore, prior to the invocation to

the server application, client needs to know where the servers that need to be invoked is located.

As being mention before, IP address is used in SyD for the purpose of locating the server object.

A client, then, invokes a server upon receiving a server’s address location. In the case if the

server is busy or in off mode (timeout time goes on), the proxy takes care the responsibility of the

server.

6.3 Application implementation

Implementation of the design comes later as long as the design is solid. The following

below are the main files used to implement the camera application.

• CameraModule.java

Camera module contains only the interfaces of the remote method invocation of camera

application.

• CameraModuleImpl.java

It contains the implementation of the remote method invocation of camera application. At

the current implementation of the camera application, the followings are the API methods of

services providing by the server applications once it is registered: setDownLink, runDownLink,

beOnLookOut, readDeleteRequest, and sendConfirmation.

72

SetDownLink method is used to do one-time synchronization by the server with its proxy.

But, runDownLink method is used to do continuous synchronization. ReadDeleteRequest method

is used to read and delete the data. SetDownLink, runDownLink, and readDeleteRequest

methods of services need to be registered in the proxy so that the client side in the camera could

synchronize with the proxy and delete the data after synchronization. SendConfirmation method

is used to send confirmation whenever the one, a stolen vehicle tag numbers, that being look for

is found or is not found. Normally, the user’s client’s server needs to register the

sendConfirmation method. So that whenever the camera application object either finds or does

not find it, its client will invoke sendConfirmation on the remote client object’s server to let it

knows that the vehicle is found or not. beOnLookOut method, on the other hand, is used by the

camera server to do lookout on specified vehicle. Camera server, indeed, needs to register the

beOnLookOut module.

• CameraProxyServer.java

It contains the API modules of services for proxy server to register and to provide its

services. It also contains registered services of other server applications. The services will be

registered locally in the object device and globally via Directory Server. The main important

methods that need to be registered here is the synchronization method (either setDownLink or

runDownLink).

• CameraServer.java

It contains the actual server implementation and its registered services. It also contains the

client implementation that invokes the synchronization method with its camera proxy.

73

• CameraClientServer.java

It contains the implementations and the services for server on the client site. The main

service that needs to be provided is the method that allows the client to send confirmation

message whether the vehicle has been found or not (sendConfirmation).

• CameraMultiClients.java

This is where the implementation for the client application to do remote method

invocation toward the registered methods of services of the camera server and the camera proxy

if the camera server fails.

6.4 Execution flow

In order for the camera application is up and running as described on figure above. It

needs to follow the following execution flow.

• Directory Server needs to be up and running.

• All appropriate listener modules need to be setup and run.

• The proxy of the camera needs to be registered first.

• The camera’s server is then registered with its services (especially beOnLookOut service) and

binds it with its proxy by registering proxy object ID.

• Finally, the object client is used to do invocation by providing parameters, such as vehicle tag

numbers, and period of time needed to do lookout.

• Figure 30 below tells all the sequence diagram of the camera application with its proxy and

Directory Server.

74

Figure 30. The sequence flow of the camera application.

6.5 Experimental results

After the design and the implementation of the camera application have been done, we

run the experiment to study the influence of synchronization time between the proxy and the

server against numbers of clients. Experiment is conducted on Windows Vista machine with 1.67

GHz Intel Centrino Duo processor and on Windows XP machine with Intel Pentium IV 1.7 GHz

mobile. The camera and the Directory Server run on Windows XP machine. But, the proxy and

the user’s client run on Windows Vista machine. There will be no failures on the network

connection as being stated on the assumption above. We also use our standard estimation of our

timeout time formula (described in chapter 5 above).

Running the camera application using only one client, which requests beOnLookOut

service on the remote camera for about 1000ms, using timeout time of 1600ms (calculated based

on chapter 5 above), as we have expected, it shows a steady linear average response time as

shown in Figure 31 below.

75

Figure 31. The sync time vs. avg. response time for one client invocation.

The reason behind a linear steady average response time is because our calculation

timeout time (timeout(# of client) = (beOnLookOut Service time * # of client) + k, k = 600ms,

explained in chapter 5) allows a good enough time for the user’s client to do beOnLookOut

invocation on the camera server application. A requested of beOnLookOut service is not going to

be responded by the proxy (no state transaction being stored in the proxy). Because of that, there

is no effect, which is carried by the synchronization of proxy and the camera server. We also

expect a linear steady average response time higher than the above figure if we use 100 numbers

of clients using our timeout calculation time of 100600ms with the 1000ms of beOnLookOut

service.

of Client : 1
beOnLookOut : 1000 ms
timeout : 1600 ms

76

 We also want to know what happen if the proxy is involved on the requested

beOnLookOut service. This case could be achieved if we let our timeout calculation time smaller

than what it should be. Since our timeout calculation time depends on numbers of clients that try

to request services from the camera server (chapter 5), we took 85% from the actual numbers of

clients. For example, we would like to run with 100 clients requesting beOnLookOut service

from camera server. But, for the timeout calculation, we use only 85 clients. Therefore, from

what we will expect, approximately 15 clients will get responses from proxy.

 Experiment is still taken in the same environment, where the proxy of the camera and the

users’ clients run on Windows Vista machine with Intel Centrino Duo processor and the camera

and the Directory Server run on Windows XP machine. Figure 32 below shows the result of

experiment for 100 clients with the beOnLookOut service time of 2000ms and the timeout time

of 170600ms (only use 85 clients to calculate timeout time).

Analyzing the experiment shown in Figure 32, we saw that there is a minimum peak for

synchronization time of 1000ms. We come to the conclusion that the minimum peak appears as

the combination of two graphs, one graph is from the left (sync of 1ms to 1000ms) of 1000ms

and the other graph is from the right of 1000ms (sync time of 1000ms to 10000ms).

The graph on the left of 1000ms shows negative gradient (decreasing slope). It is because

that as the sync time is getting higher, it is lessening the average time for the users’ client getting

response from the camera server (synchronization time of 1000ms between the proxy and the

camera happens not frequently as when the synchronization time of 1ms). On the other hand, the

graph on the right of 1000ms shows positive gradient (increasing slope). The reason for the case

is because there are some numbers of users’ clients’ requests that are kept in the proxy (camera

server is too busy handling too many requests at the time). As we increasing the sync

77

Figure 32. The sync time vs. avg. response time for one hundreds clients invocation with

timeout time for eighty five clients.

time, the average response time for the users to get the response from the camera server is higher

since the camera server will invoke the proxy’s stored state transactions after the synchronization

with its proxy happens.

 In the other hand, we also analyze the performance using the improved technique by

enabling remote RMI call into the remote object and getting the data locally (similar to the

experiment shown in chapter 5). The similar environment is described below:

• The Directory Server is run on Windows XP.

• The camera proxy is an object that runs in Windows Vista machine.

• The camera server application is an object that runs in Windows XP machine.

• The client requesting services from the camera server runs in Windows Vista machine.

of Client : 100
beOnLookOut : 2000 ms
timeout : 170600 ms (for 85 clients)

78

Different than the result above, the new scenario of the experiment shows only the increasing

slope as shown in the figure 33 below. We believe that the trend is the result of the consistency

of enabling the RMI call and the local data fetching. Because of it, synchronization time is not

influenced by tremendous remote data access transactions to the Directory Server done by the

clients. As long as the synchronization time is smaller, it is quick enough for the camera server to

sync with its proxy and to make a quick response on the clients’ requests.

Figure 33. The improvement of sync time vs. avg. response time for one hundreds clients

invocation with timeout time for eighty five clients.

6.6 Extending a camera application

The simple yet powerful scenario of developing camera application for a stolen vehicle

could be extended for some other similar applications. It could be extended for military purposes

or U.S. intelligent agent, such as look for Osama Bin Laden (the terrorist) as an example.

of Client : 100
beOnLookOut : 2000 ms
timeout : 162000 ms (for 85 clients)
Timeout time has been improved by
approximately 8500 ms (100ms * 85 clients).

79

CONCLUSION

 Proxy module has been successfully extended in the existing System on Mobile Devices

(SyD) platform. There are two main reasons for extending the existing SyD platform. First, there

is a need to provide disconnection tolerance of transactions upon failures in the existing SyD

platform. Second, there is also a need to provide synchronization among the SyD object devices

with their proxies in order to make the disconnection tolerance of transactions to happen.

The design, analysis, and implementation of the proxy module for SyD have been

conducted and presented in the paper. The main SyD kernel (SyDDirectory, SyDListener, and

SyDEngine) has been extended and synchronization (SyDSync) module has been provided to

extend the SyD (SyDProxy). We have shown that linearly increasing numbers of clients request

services and services time will also linearly increase a “timeout” time. Analysis to determine a

best “timeout” time for allowing seamlessly invocation either to the object or to its proxy has

been experimented. A simple yet powerful implementation of camera application has been

implemented to show the work progress of the SyD proxy module.

For the future work, we would like to secure all of the SyD state transactions. An

improvement of the SyD installation package will be provided. Also, we would like to have the

SyD virtual machine to run the SyD byte code and to have the SyD Operating System.

80

REFERENCES

[1] M.Weiser, “Some Computer Science Issues in Ubiquitous Computing,” Comm. ACM,
Vol. 36, No. 7, July 1993, pp.75-84.

[2] David Chess, Colin Harrison, Aaron Kershenbaum, Mobile Agents: Are They a Good
Idea?, pp. 25-47, Proceedings of the Second International Workshop on Mobile Object
Systems, Jan Vitek, Christian Tschudin (Ed.), Lecture Notes in Computer Science,
Springer-Verlag, Linz, Austria, Lecture Notes in Computer Science, Vol. 1222, July
1996.

[3] Wong, D., Paciorek, N., and Moore, D. 1999. Java-based mobile agents. Commun. ACM
42, 3 (Mar. 1999), 92-ff.

[4] Powell, M., and Miller, B. Process Migration in DEMOS/Mo. In Proceedings of the
Ninth ACM Symposium on Operating Systems Principles (Bretton Woods, N.H., Oct. 11-
13), ACM/SIGOPS, New York, 1983, pp. 110-119.

[5] Stamos, J., and Gifford, D. Remote evaluation. ACM Trans. Comput. Sys. 12, 4 (Oct.
1990), 537-565.

[6] Jul, E., Levy, H., Hutchinson, N., and Black, A. Fine-grained mobility in the Emerald
system. ACM Trans. Comput. Sys. 6, 1. (Feb. 1998), 109-133.

[7] Gong-ping, Yang, Guang-zhou, Zeng. Mobile Agent Life State Mangement. IMACS
Multiconference on Computational Engineering in Systems Applications. Vol. 1, 4-6 Oct.
2006. Page(s):448-451.

[8] Madiraju, Praveen, Prasad, Sushil K., Sunderraman, Rajshekhar, and Dogdu, Erdogan.
An Agent Module for a System on Mobile Devices. In Procs. of the 3rd Intl. Workshop
on Agents and Peer-to-Peer Computing (AP2PC) in conjunction with Third Intl. Joint
Conf. on Autonomous Agents and Multi Agent Systems (AAMAS). LNCS, New York,
July, 2004.

[9] Gian Pietro Picco. µCode: A lightweight and flexible mobile code toolkit. In Mobile
Agents, Procs. Of the 2nd Intl. Workshop on Mobile Agents (MA), vol. 1477, Page(s):
160-171. Springer, LNCS, Stuggart, 1998.

[10] http://www.cs.utk.edu/~plank/ckp.html
[11] Alvisi, L., Marzullo, K. Message logging: pessimistic, optimistic, causal, and optimal.

IEEE Transactions of Software Engineering. Vol. 24, Issue 2, Feb. 1998. Page(s):149-
159.

[12] A. Borg, J. Baumbach, and S. Glazer. A Message Systems Supporting Fault Tolerance.
Proc. Symp. Operating Systems Principles. Page(s):90-99, ACM SIG OPS, Oct. 1983.

[13] M.L. Powell and D.L. Presotto, “Publishing: A Reliable Broadcase Communication
Mechanism,” Proc. Ninth Symp. Operating SystemPrinciples, pp. 100-109. ACM
SIGOPS, Oct. 1983.

[14] R.B. Strom and S. Yemeni, “Optimistic Recovery in Distributed Systems,” ACM Trans.
Computer Systems, vol. 3, no. 3, pp. 204-226, Apr. 1985.

[15] D.B. Johnson and W. Zwaenepoel, “Sender-Based Message Logging,” Digest of Papers:
17th Ann. Int’l Symp. Fault-Tolerant Computing, pp. 14-19, IEEE Computer Society,
June 1987.

http://dret.net/biblio/authors#DavidChess
http://dret.net/biblio/authors#ColinHarrison
http://dret.net/biblio/authors#AaronKershenbaum
http://dret.net/biblio/titles#che96
http://dret.net/biblio/titles#che96
http://dret.net/biblio/reference/mos96
http://dret.net/biblio/reference/mos96
http://dret.net/biblio/reference/mos96
http://dret.net/biblio/reference/mos96
http://www.cs.utk.edu/~plank/ckp.html

81

[16] R.E. Strom, D.F. Bacon, and S.A. Yemini, “Volatile Logging in n-Fault-Tolerant
Distributed Systems,” Proc. 18th Ann. Int’l Symp. Fault-Tolerant Computing, pp. 44-49,
1988.

[17] A.P. Sistla and J.L. Welch, “Efficient Distributed Recovery Using Message Logging,”
Proc. 18th Symp. Principles of Distributed Computing, pp. 223-238, ACM
SIGACT/SIGOPS, Aug. 1989.

[18] D.B. Johnson and W. Zwaenepoel, “Recovery in Distributed Systems Using Optimistic
Message Logging and Checkpointing,” J. Algorithms, vol. 11, pp. 462-491, 1990.

[19] S. Venkatesan and T.Y. Juang, “Efficient Algorithms for Optimistic Crash Recovery,”
Distributed Computing,” vol. 8, no. 2, pp. 105-114, June 1994.

[20] E.N. Elnozahy and W. Zwaenepoel, “Manetho: Transparent Rollback-Recovery with Low
Overhead, Limited Rollback and Fast Output Commit,” IEEE Trans. Computers, vol. 41,
no. 5, pp. 526-531, May 1992.

[21] Strom, R. AND Yemini, S. 1985. Optimistic recovery in distributed systems. ACM
Transactions on Computing Systems 3, 3, 204-226.

[22] Alvisi, L. and Marzullo, K. 1998. Message logging: pessimistic, optimistic, causal and
optimal. IEEE Transactions on Software Engineering 24, 2, 149-159.

[23] Chandy, M. and Lamport, L. 1985. Distributed snapshots: Determining global states of
distributed systems. ACM Transactions on Computing Systems 31, 1, 63-75.

[24] Randell, B. 1975. System structure for software fault tolerance. In Proceedings of the
international Conference on Reliable Software (Los Angeles, California, April 21 - 23,
1975). ACM, New York, NY, 437-449.

[25] Borg, A., Blau, W., Graetsch, W., Hermann, F. and Oberle, W. 1989. Fault tolerance
under UNIX. ACM Transactions on Computing Systems 7, 1, 1-24.

[26] Inacio, chris, “Software Fault Tolerance.”
http://www.ece.cmu.edu/~koopman/des_s99/sw_fault_tolerance/

[27] Randell, B. 1975. System structure for software fault tolerance. In Proceedings of the
international Conference on Reliable Software (Los Angeles, California, April 21 - 23,
1975). ACM, New York, NY, 437-449.

[28] Ioannidis, J., Duchamp, D., and Maguire, G. IP-based protocols for mobile
internetworking. In Proceedings of ACM SIGCOMM Symposium on communication
Architecture and Protocols (1991), pp. 235-245.

[29] Schlichting, R. D., and Schneider, F. B. Fail-stop processors: an approach to designing
fault-tolerant distributed computing systems. ACM Trans. Comput. Syst. 1, 3(1985), 222-
238.

[30] Rangarajan, S., Ratnam, K., Dahbura, A.T. A fault-tolerant protocol for location directory
maintenance in mobile networks. Twenty-fifth International symposium of Fault-Tolerant
Computing, 1995. 27-30 June 1995. Pages(s):164-173.

[31] Gifford, D. K. Weighted voting for replicated data. In Proceedings of the Seventh ACM
Symposium on Operating Systems Principles (Pacific Grove, Calif., Dec. 1979)

[32] Herlihy, M. 1987. Concurrency versus availability: atomicity mechanisms for replicated
data. ACM Trans. Comput. Syst. 5, 3 (Aug. 1987), 249-274.

[33] Paris, J-F. Voting with witnesses: A consistency scheme for replicated files. In
Proceedings of the sixth IEEE International Conference on Distributed Computing
Systems (Cambridge 1986).

82

[34] El Abbadi, A. and Toueg, S. Maintaining availability in partitioned replicated databases.
ACM Trans. Database Syst. 14, 2 (June 1989).

[35] Long, D. E. Analysis of replication control protocols. In Proceedings of the IEEE
Workshop on Management of Replicated Data, Houston, Tex, Nov. 1990.

[36] Satyanarayanan, M. 2002. The evolution of Coda. ACM Trans. Comput. Syst. 20, 2 (May.
2002), 85-124.

[37] Hara, T. 2003. Replica allocation methods in ad hoc networks with data update. Mob.
Netw. Appl. 8, 4 (Aug. 2003), 343-354.

[38] S. Alagar, R. Rajagopalan, S. Venkatesan, “Tolerating Mobile Support Station Failures,”
Computer Science Technical Report, Univ. of Texas at Dallas, November, 1993.

[39] Sushil K. Prasad, Vijay Madisetti, Shamkant B. Navathe, Raj Sunderraman, Erdogan
Dogdu, Anu Bourgeois, Michael Weeks, Bing Liu, Janaka Balasooriya, Arthi Hariharan,
Wanxia Xie, Praveen Madiraju, Srilaxmi Malladi, Raghupathy Sivakumar, Alex
Zelikovsky, Yanqing Zhang, Yi Pan, and Saied Belkasim. SyD: A Middleware Testbed
for Collaborative Applications over Small Heterogeneous Devices and Data Stores,, In
Proceedings of ACM/IFIP/USENIX, 5th International Middleware Conference, Toronto ,
Ontario , Canada , October 18th - 22nd, 2004.

83

APPENDIX A SyDSync API

 The following appendix describes the methods in the SyDSync module. The SyDSync

API is provided for easing the developers’ jobs to synchronize between the objects (normally

between the mobile object server and its proxy). The uplink and downlink methods are the main

methods in the SyDSync module. The uplink method is normally used for the purpose of setting

up the data in the object. In this case, the developer of the SyD server could use the uplink

method to setup the server’s proxy. The downlink method is used for the synchronization

purpose. Upon the synchronization with its proxy, the server invokes the proxy to get the stored

states of transactions. Then, the transactions are parsed and are processed by the server so that the

server could give the responses on the client’s requests.

CONSTRUCTOR DETAIL
SyDSync

public SyDSync()
Defines a SyD synchronization object with the initial synchronization time of 1000ms.

METHOD DETAIL

Synchronization Data Manipulation
createAFile

public String createAFile(String _fileName)
Create a data file with the specified file name if a file has not existed yet.
Parameters:

_fileName – a name of a data file.
Returns:

The physical location of a created file (a path of a file).

readData

public StringBuffer readData(String _loc)
Read a data based on the specified location.
Parameters:

_loc – a location of a data file.
Returns:

A data file.

84

writeData

public void writeData(StringBuffer _data, String _loc)
Write a data on the specified location. Data normally written in XML format.
Parameters:

_data – a data to be written on the specified location.
_loc – a location of a data file.

formatData

public StringBuffer formatData(StringBuffer _data)
Format a data.
This function is normally used to pass the XML data remotely into remote objects. It
eliminates ‘<’, ‘>’, ‘\’, and ‘/’ character.
Parameters:

_data – a XML data needed to be formatted.
Returns:

A new format data.

cleanUpServerResData
public StringBuffer cleanUpServerResData(StringBuffer _data)

Cleanup a data responded back by remote object.
After processing an object client’s request, an object server sends a response back. A
response from a server is wrapped with XML SyD SOAP envelope format. The function
un-wraps the envelope format and gets a data response.
Parameters:

_data – a wrapped SyD likely SOAP data response message.
Returns:

An un-wrapped data response message.

Synchronization Data Requests Manipulation
writeEmptyRequest

public void writeEmptyRequest(String _loc)
Write an empty request bundled in SyD likely XML SOAP message.
Parameters:

_loc – a location to write a request.

createRequest
public StringBuffer createRequest(String _objectID,

String _methodName,
Vector _parameterTypeList,
Vector _parameterValueList,
Vector _objectTypeList,
Vector _objectValueList,
Vector _objectNameList)

85

Create a request bundled in SyD likely XML SOAP message.
Parameters:

_objectID – an object id of a remote object, which should process a request (an object
server).

_methodName – a remote method invocation. A service requested by an object client.
_parameterTypeList – a list contains of all parameters types of a requested method of

service.
_parameterValueList – a list contains of all parameters values of a requested method

of service.
_objectTypeList – a list contains of all live objects types.
_objectValueList – a list contains of all live objects values.
_objectNameList – a list contains of all live objects names.

Returns:
A XML request data bundled in XML SyD likely SOAP message.

updateRequest

public void updateRequest(StringBuffer _data, String _loc)
Update a request bundled in SyD likely XML SOAP message.
Parameters:

_data – an additional request data.
_loc – a location to update a request.

readDeleteRequest

public StringBuffer readDeleteRequest(String _loc)
Read stored requested data and delete it in the specified location path.
Parameters:

_loc – a location of request data.
Returns:

Stored, requested data.

Synchronization Main Methods – The main methods in SyDSync
uplink

public void uplink(StringBuffer _data, String _loc)
Setup live objects parameters in a remote object.
The function is normally used to setup live parameter objects in proxy through server by
remote invocation.
Parameters:

_data – a XML data contains live object parameters.
_loc – a location to keep object parameters setup.

downlink

public void downLink(String _recipientServerPort,
String _recipientServerAppName,
String _recipientObjectID,

86

String _storeRecipientDataToloc,
String _reqServerAppName,
String _reqServerParamValue,
String _reqServerMethodName)

Get stored requested data in remote objects, keep it in local object, and process stored
requests. Responses are sent after the process.
The function is normally used for synchronization purposes among remote objects (object
servers with their proxies). Responses are sent to objects that request methods of services.
Parameters:

_recipientServerPort – a listener port of a remote object that requests services.
_recipientServerAppName – a remote object name that requests services.
_recipientObjectID – a remote object id that request services.
_storeRecipientDataToLoc – a remote object location to store requested services.
_reqServerAppName – a remote object name that provides requested services.
_reqServerParamValue – parameter values of requested services.
_reqServerMethodName – a service name that was requested.

contDownLink

private class contDownLink implements Runnable
A continuous synchronization thread object.

runDownLink
public void runDownLink(Long _elapsedTime,

String _recipientServerPort,
String _recipientServerAppName,
String _recipientObjectID,
String _storeRecipientDataToloc,
String _reqServerAppName,
String _reqServerParamValue,
String _reqServerMethodName)

Run continuous synchronization thread object for a given period of time.
Parameters:

_elapsedTime – a time specified to run synchronization process.
_recipientServerPort – a listener port of a remote object that requests services.
_recipientServerAppName – a remote object name that requests services.
_recipientObjectID – a remote object id that request services.
_storeRecipientDataToLoc – a remote object location to store requested services.
_reqServerAppName – a remote object name that provides requested services.
_reqServerParamValue – parameter values of requested services.
_reqServerMethodName – a service name that was requested.

Synchronization Get Data Methods
getCurrentDirectory

private String getCurrentDirectory()

87

Get current directory.
Returns:

A directory location path.

getFormatObjectId

public String getFormatObjectId(StringBuffer _data)
Get Object ID from the formatted XML data.
Parameters:

_data – a formatted XML data.
Returns:

An object ID of an object that provides a service.

getFormatMethodName
public String getFormatMethodName(StringBuffer _data)

Get method of service name from the formatted XML data.
Parameters:

_data – a formatted XML data.
Returns:

An object ID of an object that provides a service.

getFormatParamT
public Vector getFormatParamT(StringBuffer _data)

Get parameters types from the formatted XML data.
Parameters:

_data – a formatted XML data.
Returns:

A container contains parameter types.

getFormatParamV

public Vector getFormatParamV(StringBuffer _data)
Get parameters values from the formatted XML data.
Parameters:

_data – a formatted XML data.
Returns:

A container contains parameter values.

getFormatObjectT
public Vector getFormatObjectT(StringBuffer _data)

Get live object parameters types from the formatted XML data.
Parameters:

_data – a formatted XML data.
Returns:

A container contains live object parameter types.

getFormatObjectV

88

public Vector getFormatObjectV(StringBuffer _data)
Get live object parameters values from the formatted XML data.
Parameters:

_data – a formatted XML data.
Returns:

A container contains live object parameter values.

getFormatObjectName

public Vector getFormatObjectName(StringBuffer _data)
Get live object parameters names from the formatted XML data.
Parameters:

_data – a formatted XML data.
Returns:

A container contains live object parameter names.

getNumOfSavedRequest
public int getNumOfSavedRequest(String _loc)

Get numbers of stored requests.
Parameters:

_loc – a location of stored requests.
Returns:

A numbers of stored requests.

getObjectId

public Vector getObjectId(StringBuffer _data, int _numOfSavedRequest)
Get object IDs from the stored XML requests data.
Parameters:

_data – a stored XML requests data.
_numOfSavedRequest – numbers of stored requests.

Returns:
A container contains object IDs.

getMethodName

public Vector getMethodName(StringBuffer _data, int _numOfSavedRequest)
Get method names from the stored XML requests data.
Parameters:

_data – a stored XML requests data.
_numOfSavedRequest – numbers of stored requests.

Returns:
A container contains method names.

getParamT

public Vector getParamT(StringBuffer _data, int _numOfSavedRequest)
Get parameters types from the stored XML requests data.
Parameters:

89

_data – a stored XML requests data.
_numOfSavedRequest – numbers of stored requests.

Returns:
A container contains parameters types.

getParamV

public Vector getParamV(StringBuffer _data, int _numOfSavedRequest)
Get parameters values from the stored XML requests data.
Parameters:

_data – a stored XML requests data.
_numOfSavedRequest – numbers of stored requests.

Returns:
A container contains parameters values.

getObjectT

public Vector getObjectT(StringBuffer _data, int _numOfSavedRequest)
Get live object parameters types from the stored XML requests data.
Parameters:

_data – a stored XML requests data.
_numOfSavedRequest – numbers of stored requests.

Returns:
A container contains live object parameters types.

getObjectV

public Vector getObjectV(StringBuffer _data, int _numOfSavedRequest)
Get live object parameters values from the stored XML requests data.
Parameters:

_data – a stored XML requests data.
_numOfSavedRequest – numbers of stored requests.

Returns:
A container contains live object parameters values.

getObjectName

public Vector getObjectName(StringBuffer _data, int _numOfSavedRequest)
Get live object parameters names from the stored XML requests data.
Parameters:

_data – a stored XML requests data.
_numOfSavedRequest – numbers of stored requests.

Returns:
A container contains live object parameters names.

fillData

private void fillData(String _dataType, String _dataValue, Vector _vData)
Fill the specified data based on its data type into a container.
Parameters:

90

_dataType – a data type.
_dataValue – a data value.
_vData – a container holds all data.

91

APPENDIX B APIs for SyD

 This appendix lists the rest of all the APIs in the SyD middleware platform.

SyDObject module
The module is used as a wrapper for each of the objects applications to implement SyD, such
as proxy, server, or client. ObjProxy is used for the object to act as a proxy, ObjAppo is used
for the object to act as a server, and ObjClient is used for the object to act as a client.

ObjClient

ObjClient

public ObjClient()
Client object constructor.

ObjClient

public ObjClient(Vector _ServerAppName, Vector _paramValue, String _methodName)
Another client object constructor.
Parameters:

_ ServerAppName – the name of the server app that is going to be invoked remotely.
_paramValue – the parameter values of the requested method or service.
_methodName – the requested method or service name.

run

public void run()
To run the object client to invoke the remote object.

run

public String run(boolean isRevoceryServer)
To also run the object client to invoke the remote object.
Parameters:

isRevoceryServer – the boolean value to state that the object will always invoke the
live object.

Returns:
The result of the remote invocation.

getDirectory

public String getDirectory()
To get the location of the directory server.
Returns:

The location of the directory server.

getListenerPort

92

public String getListenerPort(String serverAppName)
To look up for the listener port based on the given server name.
Parameters:

serverAppName – the name of the server.
Returns:

The listener port for the specified server name.

getDirecUrl

public String getDirecUrl(String serverAppName)
To look up for the directory url based on the given server name.
Parameters:

serverAppName – the name of the server.
Returns:

The directory url for the specified server name.

getMethodName

public String getMethodName(String serverAppName)
To look up for the method or service name based on the given server name.
Parameters:

serverAppName – the name of the server.
Returns:

The method or service name for the specified server name.

getParamType

public String getParamType(String methodName)
To look up for the parameter types based on the method name.
Parameters:

methodName – the name of the service or method.
Returns:

The parameter types for the specified method name.

lookupAndInvoke

public String lookupAndInvoke(int listenerPort, String dirUrl, Vector serverAppName,
Vector paramType, Vector paramValue, String methodName)

To look up and invoke the remote object.
Parameters:

listenerPort – the remote object listener port.
dirUrl – the directory url of the remote object.
serverAppName – the name of the remote server.
paramType – the parameter types of the remote method or service.
paramValue – the parameter values of the remote method or service.
methodName – the name of the method or service.

Returns:
The result of the remote invocation.

93

ObjAppo / ObjProxy

ObjAppo / ObjProxy

public ObjAppo()
Server object constructor.

getAppoPort / getProxyPort

public String getAppoPort()
To get the RMI port of the server object.
Returns:

The RMI port of the server object.

getDirectoryServerPort

public String getDirectoryServerPort()
To get the port of the directory server.
Returns:

The port of the directory server.

getListenerPort

public String getListenerPort()
To get the listener port of the server object.
Returns:

The listener port of the object server.

getAppoUrl / getProxyUrl
public String getAppoUrl()

To get the location of the object server.
Returns:

The location of the object server.

getDirectoryUrl

public String getDirectoryUrl()
To get the location of the directory server.
Returns:

The location of the directory server.

getProxyID
public String getProxyID(String proxyObjectName)

To get the proxy ID of the given object server ID.
Parameters:

proxyObjectName – the ID of the object server.
Returns:

The location of the object server.

setAppo

94

public void setAppo(String attribute, String userName)
To set the livebit of the object (normally object server).
Parameters:

attribute – 1=> turn off and 2 => turn on.
userName – the name of the object server.

publishAppoDoc / publishProxyDoc

public String publishAppoDoc(String userName, String userPassword, String appoUrl, String
appoID, String appName, Vector methodNames, Vector returnTypes, Vector paramTypes, int
portNum, int listenerPort)

To create SyD likely SOAP doc for the object publication.
Parameters:

userName – the name of the object server.
userPassword – the password of the object server.
appoUrl – the location of the object server.
appoID – the proxy ID of the object server. “null” is given if the object registered as
the object proxy.
appName – the application name.
methodNames – the methods or services that are going to be registered.
returnTypes – the return types of the methods or services.
paramTypes – the parameter types of each of the methods or services.
portNum – the RMI port of the object server.
listenerPort – the listener port of the object server.

Returns:
The SyD likely SOAP document.

registerAppo / registerProxy

public void registerAppo(String appServerName, int appoPort, String directoryServerName,
int directoryServerPort, Object appInstance, String publishAppoDoc)

To register the object server.
Parameters:

appServerName – the name of the object server.
appoPort – the RMI port of the object server.
directoryServerName – the name of the directory server.
directoryServerPort – the port of the directory server.
appInstance – the remote object application.
publishAppoDoc – the SyD likely SOAP doc.

SyDUtil module

The module is used as the tool utilities on processing SyD.

Publisher

95

Publisher
public Publisher()

The constructor of the publisher method.

Publisher

public Publisher(String newdoc)
The constructor of the publisher method.
Parameters:

newdoc – a SyD likely SOAP message.

getString

public String getString()
To get the string document of the SyD likely SOAP message.
Returns:

The string of the SyD likely SOAP message.

getMethodNames

public Vector getMethodNames()
To get the method names.

getReturnTypes

public Vector getReturnTypes()
To get the return types.

getParamTypes

public Vector getParamTypes()
To get the parameter types.

createPublishUserMethodsRequest

public void createPublishUserMethodsRequest(String userID,String userPasswd,String
userURL, String proxyID,String appName, Vector methodNames, Vector returnTypes,
Vector paramTypes, String serverPort, String listenerPort)

To create the SyD likely SOAP document for the user publishied methods registration.

SyDPropertyFile

getValue

public String getValue(String propName,String name) throws MissingResourceException
To get the property value in the file based on the property name file.
Parameters:

propName – the name of the file holds the properties.
name – the name of the property.

Returns:
The property value.

96

SyDDoc

SyDDoc

public SyDDoc()
Constructor of SyD document.

SyDDoc

public SyDDoc(StringBuffer xmlString)
Another constructor for SyD document.
Parameters:

xmlString – the SyD likely SOAP message document.

getString

public StringBuffer getString()
To get the string of SyD likely SOAP document.

createRequest

public void createRequest(String objectID, String methodName, Vector parameterTypeList,
Vector parameterValueList)

To create requests of the services.

getObjectID

public String getObjectID()
To get the object ID.

getMethodName
public String getMethodName()

To get the method name.

getParameterValue
public Vector getParameterValue()

To get the parameter value.

getParameterType

public Vector getParameterType()
To get the parameter type.

createResponse
public void createResponse(Object ob)

To create response.

SyDListener module

There are three main functions of the module: to register object (SyDRegistrar), to listen and
execute the local services (SyDListener), and to communicate with the remote object

97

(SyDListenerDelegate)

SyDListenerDelegate

invoke

public String invoke(String inputString) throws IOException
To communicate with the remote object server.
Parameters:

inputString – the SyD likely SOAP doc containing the methods or services to be
invoked

Returns:
SyD likely SOAP doc response.

SyDListener

work

private void work(Socket clientSocket)
To communicate with the remote object client.
Parameters:

clientSocket – the TCPIP socket used to listen on the requests of services.

invoke
private String invoke (String message)

To parse the message and get the response upon local method invocation.
Parameters:

message – the SyD likely SOAP documents containing the request of service.
Returns:

The response of the invocation.

public String invoke (String objectName, String methodName, Vector parameterTypes,
Vector parameterValues)

To invoke the local registered methods or services.
Parameters:

objectName – the object ID of the server.
methodName – the method of service name.
parameterTypes – the parameter types of the method.
parameterValues – the parameter values of the method.

Returns:
The response of the invocation.

SyDRegistrar

register

public void register (Object appInstance, String publishDoc, int liveBit)
To register the object with the services (register globally and locally afterward).

98

Parameters:
appInstance – the application method of service name to be registered.
publishDoc – the published document.
liveBit – the status of the registered object.

registerToRMIRegistry

public void registerToRMIRegistry (Object appInstance, String objectName)
To register the object locally.
Parameters:

appInstance – the application method of service name to be registered.
objectName – the object ID of the registered object.

registerToDirectoryService

public void registerToDirectoryService (String publishDoc, int liveBit)
To register the object globally.
Parameters:

publishDoc – the published document of the object in the form of SyD likely SOAP.
livebit – the status of the object.

SyDEngine module

The module is used for remote objects invocation. Normally, the object client to the object
server.

SyDDispatcher

invoke

public Vector invoke(Vector userlist, String methodname, Vector paramtype, Vector
paramvalue) throws IOException

To invoke the remote object (normally done by the object client).
Parameters:

userlist – the list of the object servers that is going to be invoked.
methodname – the requested method or service name.
paramtype – the parameter types of the requested method or service.
Paramvalue – the parameter values of the requested method or service.

Returns:
The result of the object invocation.

SyDDirectory module

The module contains all of the connection to the Directory Server.

MemberShip

MemberShip

99

public MemberShip() throws RemoteException
The membership constructor.

getConnection

public static Connection getConnection() throws SQLException
The SQL connection.
Returns:

The connection to the Directory Server.

lookUp

public String lookUp(String objecttype,String returnattritutename, String attributename,
String attributevalue) throws RemoteException

To lookup the value.

setUp

public void setUp(String objecttype, String attributename, String attributename2, String
attributevalue, String attributevalue2) throws RemoteException

To update the value.

publish
public String publish(String info, int liveBit) throws RemoteException

To register the object.

lookUpObject

public Vector lookUpObject(String objecttype,String returnattritutename, String
attributename, String attributevalue) throws RemoteException

To look up for attributes, such as url, specified on an object or a proxy of an object
Returns:

A list contains: isRecoveryServer(FALSE/TRUE), object url, object id, listener Port.

advanceLookUp

public Vector advanceLookUp(String objecttype,String returnattritutename, String
attributename, String attributevalue) throws RemoteException

Advanced look up for fetching more attributes

turnOff

public Vector turnOff(String objecttype, String attributename, String attributename2, String
attributevalue, String attributevalue2) throws RemoteException

To turnoff the status of an object and to get the proxy information of the object.
Returns:

A list contains: object ID, url, and listener Port.

addMember

public void addMember(String groupName, String name) throws RemoteException
To add a member in the group.

100

deleteMember

public void deleteMember(String groupName, String name) throws RemoteException
To delete a member in the group.

listMember

public String listMember(String groupName) throws RemoteException
To list all the members in the group.

findMember

public String findMember(String groupName,String name) throws RemoteException
To find a member in the group.

findGroup

public String findGroup(String name) throws RemoteException
To find a group for a specified member.

unpublish

public void unpublish(String info) throws RemoteException
To un-publish.

listGroup

public String listGroup() throws RemoteException
To list all the groups.

101

APPENDIX C Camera application

Camera Module and Implementation

CameraModule.java
package syd.sydapp.Apps.camera;

import java.rmi.*;
import java.util.*;

public interface CameraModule extends Remote
{
 //String readData(String _loc) throws RemoteException;
 void setIdentities(Boolean _setCamera, String _objID, String _appName) throws
RemoteException;
 //void setDownLink(String _storeRecipientDataToloc, String _reqServerAppName,
String _reqServerParamValue, String _reqServerMethodName) throws RemoteException;
 void runDownLink(Long _elapsedTime, String _storeRecipientDataToloc, String
_reqServerAppName, String _reqServerParamValue, String _reqServerMethodName) throws
RemoteException;
 Boolean beOnLookOut(String _characters, Long _requestedTime, String _requestTo,
String _responseTo) throws RemoteException;
 String readDeleteRequest(String _loc) throws RemoteException;
 void sendConfirmation(Boolean _isFound) throws RemoteException;
}

CameraModuleImpl.java
package syd.sydapp.Apps.camera;

import java.lang.*;
import java.io.*;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.net.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import java.math.*;
import syd.sydutil.*;
import syd.syddirectory.*;
import syd.sydobject.*;

public class CameraModuleImpl extends UnicastRemoteObject implements CameraModule

102

{
 private SyDSync serverSync;
 private boolean isCameraOn = true;
 private String objectID = "";
 private String appName = "";
 //private Vector responseTo = new Vector();
 private String responseTo = "";
 private Registry r;
 private MemberShipI member = null;
 private String genObjectID = "";
 private String genUserID = "";
 private long totResponseTime;

 public CameraModuleImpl() throws RemoteException
 {
 try
 {
 String host =
InetAddress.getLocalHost().getHostAddress();//getHostName();
 String url = "rmi://" + host + "/CameraModule"; // Original
 System.out.println("url = " + url);
 Naming.rebind(url,this);
 System.out.println("Server bound to: " + url);

 r = LocateRegistry.getRegistry(host);
 member = (MemberShipI)r.lookup("DirectoryService");

 serverSync = new SyDSync();
 }
 catch(java.net.UnknownHostException ex)
 {
 System.err.println("Couldn't get local host");
 System.exit(1);
 }
 catch(RemoteException ex)
 {
 System.err.println("Couldn't connect to rmiregistry");
 System.exit(1);
 }
 catch(MalformedURLException ex)
 {
 System.exit(1);
 }
 catch(Exception ex)
 {

103

 System.exit(1);
 }
 }

 public void setIdentities(Boolean _setCamera, String _objID, String _appName)
 {
 isCameraOn = _setCamera.booleanValue();
 objectID = _objID;
 appName = _appName;
 }

 //public String readData(String _loc)
 //{
 // StringBuffer result = serverSync.readData(_loc);
 // return result.toString();
 //}

 private String getRecepientServerPort()
 {
 SyDPropertyFile prop = new SyDPropertyFile();
 String serverPort = prop.getValue("appo", "appserverport");

 return serverPort;
 }

 public void runDownLink(Long _elapsedTime, String _storeRecipientDataToloc, String
_reqServerAppName, String _reqServerParamValue, String _reqServerMethodName)
 {
 serverSync.runDownLink(_elapsedTime, getRecepientServerPort(), appName,
objectID, _storeRecipientDataToloc, _reqServerAppName, _reqServerParamValue,
_reqServerMethodName);
 }

 //public void setDownLink(String _storeRecipientDataToloc, String
_reqServerAppName, String _reqServerParamValue, String _reqServerMethodName)
 //{
 // serverSync.downLink(getRecepientServerPort(), appName, objectID,
_storeRecipientDataToloc, _reqServerAppName, _reqServerParamValue,
_reqServerMethodName);
 //}

 public String readDeleteRequest(String _loc)
 {
 StringBuffer result = serverSync.readDeleteRequest(_loc);
 return result.toString();

104

 }

 public void sendConfirmation(Boolean _isFound)
 {
 if (_isFound.booleanValue())
 System.out.println("THE STRING THAT HAS BEEN LOOKED FOR IS
FOUNDED...");
 else
 System.out.println("THE STRING THAT HAS BEEN LOOKED FOR IS
NOT FOUNDED...");

 String filePath = serverSync.createAFile("data3.txt");

 StringBuffer readData = serverSync.readData(filePath);
 String readD = readData.toString();
 int i = readD.indexOf(":");
 readD = readD.substring(i+1, readD.length()).trim();
 System.out.println("Start Time: " + readD);
 long startTime = Long.parseLong(readD);

 long endTime = System.currentTimeMillis();
 endTime -= startTime;
 System.out.println("End Time: " + endTime);

 totResponseTime += endTime;
 System.out.println("Total Response Time: " + totResponseTime);

 filePath = serverSync.createAFile("data4.txt");
 StringBuffer data = new StringBuffer();
 data.append("Total Response Time: ").append(totResponseTime);
 serverSync.writeData(data, filePath);
 }

 public Boolean beOnLookOut(String _characters, Long _requestedTime, String
_requestTo, String _responseTo)
 {
 boolean isRequestAccepted = true;
 //responseTo.addElement(_responseTo);
 responseTo = _responseTo;
 String storeReqLoc = "";

 if (isCameraOn)
 {
 Thread t = new Thread(new lookOut(_characters, _requestedTime));

105

 t.start();
 }
 else
 {
 Vector paramTList = new Vector();
 paramTList.addElement("java.lang.String");
 paramTList.addElement("java.lang.Long");
 paramTList.addElement("java.lang.String");
 paramTList.addElement("java.lang.String");
 //paramTList.addElement("java.lang.String");
 Vector paramVList = new Vector();
 paramVList.addElement(_characters);
 paramVList.addElement(_requestedTime);
 paramVList.addElement(_requestTo);
 paramVList.addElement(_responseTo);
 storeReqLoc = serverSync.createAFile("CameraProxyDoc.xml");
 //paramVList.addElement(storeReqLoc);
 Vector objTList = new Vector();
 Vector objVList = new Vector();
 Vector objNList = new Vector();

 try
 {
 // Get ObjectID of the requestTo Server
 genUserID =
member.lookUp("SYD_USER","userID","userName", _requestTo.toString());
 genObjectID =
member.lookUp("USER_APPO_MAPPING","objectID","userID",genUserID.toString());
 }
 catch(Exception e){}

 StringBuffer dataReq = serverSync.createRequest(genObjectID,
"beOnLookOut", paramTList, paramVList, objTList, objVList, objNList);
 serverSync.updateRequest(dataReq, storeReqLoc);
 }

 try
 {
 Thread.sleep(_requestedTime.longValue());
 }
 catch(InterruptedException e) {}

 return Boolean.valueOf(isRequestAccepted);
 }

106

 private class lookOut implements Runnable
 {
 private long responsetime=0, starttime=0, endtime=0;
 private Integer length;
 private String characters;
 private Boolean isCharMatch = Boolean.valueOf(false);
 private Long requestedTime;

 public lookOut(String _characters, Long _requestedTime)
 {
 characters = _characters;
 requestedTime = _requestedTime;
 length = new Integer(characters.toString().length());;
 }

 public void run()
 {
 starttime = System.currentTimeMillis();

 while ((endtime - starttime) <= requestedTime.longValue())
 {
 //System.out.println("RESPONSE TIME: " + (endtime -
starttime));
 //System.out.println("REQUESTED TIME: " + requestedTime);
 String randomChar = generateCharacters(length);
 System.out.println("GENERATED RANDOM CHAR: " +
randomChar);
 randomChar = "123";
 if (randomChar.equals(characters.toString()))
 {
 isCharMatch = Boolean.valueOf(true);
 break;
 }
 endtime = System.currentTimeMillis();
 }

 //for (long i=0; i < requestedTime.longValue(); ++i)
 //{
 //System.out.println("HELLLLLLLLLLLLLLLLLLLLLLLLLO");
 //}

 //if (!isCharMatch)
 // System.out.println("CHARACTERS IS NOT FOUND....");
 //else

107

 // System.out.println("CHARACTERS IS FOUND...." +
responseTo.elementAt(0));

 //for (int i=0; i<responseTo.size(); ++i)
 //{
 Vector serverAppName = new Vector();
 //serverAppName.addElement(responseTo.elementAt(i));
 serverAppName.addElement(responseTo);
 Vector paramValue = new Vector();
 paramValue.addElement(isCharMatch.toString());
 ObjClient objClient = new ObjClient(serverAppName,
paramValue, "sendConfirmation");
 objClient.run();
 //}

 //responseTo.clear();
 }
 }

 private String generateCharacters(Integer _charLength)
 {
 String randomChars = "";
 Vector vLetters = getVLetters();

 for (int i = 0; i < _charLength.intValue(); i++)
 {
 Random generator = new Random();
 int index = generator.nextInt(vLetters.size());

 randomChars += String.valueOf(vLetters.elementAt(index).toString());
 }

 return randomChars;
 }

 private Vector getVLetters()
 {
 Vector vLetters = new Vector();
 vLetters.addElement("A");
 vLetters.addElement("B");
 vLetters.addElement("C");
 vLetters.addElement("D");
 vLetters.addElement("E");
 vLetters.addElement("F");
 vLetters.addElement("G");

108

 vLetters.addElement("H");
 vLetters.addElement("I");
 vLetters.addElement("J");
 vLetters.addElement("K");
 vLetters.addElement("L");
 vLetters.addElement("M");
 vLetters.addElement("N");
 vLetters.addElement("O");
 vLetters.addElement("P");
 vLetters.addElement("Q");
 vLetters.addElement("R");
 vLetters.addElement("S");
 vLetters.addElement("T");
 vLetters.addElement("U");
 vLetters.addElement("V");
 vLetters.addElement("W");
 vLetters.addElement("X");
 vLetters.addElement("Y");
 vLetters.addElement("Z");
 vLetters.addElement(" ");
 vLetters.addElement("a");
 vLetters.addElement("b");
 vLetters.addElement("c");
 vLetters.addElement("d");
 vLetters.addElement("e");
 vLetters.addElement("f");
 vLetters.addElement("g");
 vLetters.addElement("h");
 vLetters.addElement("i");
 vLetters.addElement("j");
 vLetters.addElement("k");
 vLetters.addElement("l");
 vLetters.addElement("m");
 vLetters.addElement("n");
 vLetters.addElement("o");
 vLetters.addElement("p");
 vLetters.addElement("q");
 vLetters.addElement("r");
 vLetters.addElement("s");
 vLetters.addElement("t");
 vLetters.addElement("u");
 vLetters.addElement("v");
 vLetters.addElement("w");
 vLetters.addElement("x");
 vLetters.addElement("y");

109

 vLetters.addElement("z");
 vLetters.addElement("1");
 vLetters.addElement("2");
 vLetters.addElement("3");
 vLetters.addElement("4");
 vLetters.addElement("5");
 vLetters.addElement("6");
 vLetters.addElement("7");
 vLetters.addElement("8");
 vLetters.addElement("9");
 vLetters.addElement("0");
 return vLetters;
 }

 public static void main(String[] args)
 {
 try
 {
 CameraModuleImpl server = new CameraModuleImpl();
 }
 catch(RemoteException ex)
 {
 System.err.println("Trouble creating server: "+ex.getMessage());
 ex.printStackTrace();
 }
 }
}

Object Camera Proxy

CameraProxyServer.java
package syd.sydapp.ProxyApp;

import java.util.*;
import java.net.*;
import java.lang.reflect.*;
import java.rmi.registry.*;
import java.io.*;

import syd.sydlistener.*;
import syd.sydutil.*;
import syd.sydobject.*;
import syd.sydapp.Apps.camera.*;
import syd.syddirectory.*;

110

public class CameraProxyServer
{
 private static String userName = "hello";
 private static String userPassword = "hello1";
 private static String proxyURL = "";
 private static int proxyPort = 0;
 private static String publishProxyDoc = "";
 private static Vector methodParams;
 private static Vector params;
 private static Vector methods;
 private static Vector returnTypes;
 private static int directoryServerPort = 0;
 private static int listenerPort = 0;

 private static BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in));

 public static void main(String args[]) //throws IOException
 {
 ObjProxy myProxy = new ObjProxy();

 proxyPort = Integer.parseInt(myProxy.getProxyPort());
 proxyURL = myProxy.getProxyUrl();
 directoryServerPort = Integer.parseInt(myProxy.getDirectoryServerPort());
 listenerPort = Integer.parseInt(myProxy.getListenerPort());

 try
 {
 System.out.print("Username: ");
 userName = stdin.readLine();
 System.out.print("Password: ");
 userPassword = stdin.readLine();
 }
 catch(Exception e){}

 try
 {
 // Setting up method object
 methods = new Vector();
 returnTypes = new Vector();
 methodParams = new Vector();
 params = new Vector();

 // method 1

111

 methods.addElement(new String("setIdentities"));
 returnTypes.addElement(new String("java.lang.Void"));
 methodParams.addElement(new String("java.lang.Boolean"));
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.String"));
 params.addElement(methodParams);

 // method 3
 //methods.addElement(new String("setDownLink"));
 //returnTypes.addElement(new String("java.lang.Void"));
 //methodParams = new Vector();
 //methodParams.addElement(new String("java.lang.String"));
 //methodParams.addElement(new String("java.lang.String"));
 //methodParams.addElement(new String("java.lang.String"));
 //methodParams.addElement(new String("java.lang.String"));
 //params.addElement(methodParams);

 // method 2
 methods.addElement(new String("beOnLookOut"));
 returnTypes.addElement(new String("java.lang.Boolean"));
 methodParams = new Vector();
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.Long"));
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.String"));
 params.addElement(methodParams);

 // method 3
 methods.addElement(new String("readDeleteRequest"));
 returnTypes.addElement(new String("java.lang.String"));
 methodParams = new Vector();
 methodParams.addElement(new String("java.lang.String"));
 params.addElement(methodParams);

 // method 4
 methods.addElement(new String("runDownLink"));
 returnTypes.addElement(new String("java.lang.Void"));
 methodParams = new Vector();
 methodParams.addElement(new String("java.lang.Long"));
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.String"));
 params.addElement(methodParams);

112

 // method 5
 methods.addElement(new String("sendConfirmation"));
 returnTypes.addElement(new String("java.lang.Void"));
 methodParams = new Vector();
 methodParams.addElement(new String("java.lang.Boolean"));
 params.addElement(methodParams);

 // Setting up Server Application
 CameraModuleImpl helloSydObject = new CameraModuleImpl();

 // Publish proxy doc
 publishProxyDoc = myProxy.publishProxyDoc(userName, userPassword,
proxyURL, "null", "CameraModule", methods, returnTypes, params, proxyPort, listenerPort);

 // Register myProxy
 myProxy.registerProxy(proxyURL, proxyPort, proxyURL,
directoryServerPort, helloSydObject, publishProxyDoc);
 }
 catch (Exception e)
 {
 }

 // Setting up the data
 SyDSync newSync = new SyDSync();
 String filePath = newSync.createAFile("CameraProxyDoc.xml");
 newSync.writeEmptyRequest(filePath);

 // Client of the Camera Proxy Server
 // ---
------------ START setIdentities
 ObjClient objClient = new ObjClient();
 String dirurl = objClient.getDirectory();

 Registry r;
 MemberShipI member = null;
 String userid = "";
 String objectID = "";

 try
 {
 r = LocateRegistry.getRegistry(dirurl);
 member = (MemberShipI)r.lookup("DirectoryService");
 userid = member.lookUp("SYD_USER","userID","userName",
userName.toString());

113

 objectID =
member.lookUp("USER_APPO_MAPPING","objectID","userID",userid);
 }
 catch(Exception e) {
 System.out.println("Error " + e);
 }

 Vector serverAppName = new Vector();
 serverAppName.addElement(userName);
 Vector paramValue = new Vector();
 paramValue.addElement("false");
 paramValue.addElement(objectID);
 paramValue.addElement(userName);

 String methodName = "setIdentities";
 objClient = new ObjClient(serverAppName, paramValue, methodName);
 objClient.run(true);
 // ---
------------ END setIdentities

 return;
 }
}

Object Camera Server

CameraServer.java
package syd.sydapp.Apps.camera;

import java.util.*;
import java.net.*;
import java.lang.reflect.*;
import java.rmi.registry.*;
import java.io.*;

import syd.sydlistener.*;
import syd.sydutil.*;
import syd.sydobject.*;
import syd.syddirectory.*;

public class CameraServer
{
 private static String userName = "";
 private static String userPassword = "hello1";

114

 private static String proxyObjectName = "";
 private static String appServerName = "";
 private static int portNum = 0;
 private static String objUrl = "";
 private static String publishAppoDoc = "";
 private static Vector methodParams;
 private static Vector params;
 private static Vector methods;
 private static Vector returnTypes;
 private static String directoryServerName = "";
 private static int directoryServerPort = 0;
 private static int listenerPort = 0;

 private static BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in));

 public static void main(String args[])
 {
 /*
 if (args.length != 6)
 {
 System.out.println("Usage: java TestSyDRegistrar rmiServerPort flag
directoryServerName directoryServerPort userName");
 System.exit(1);
 }
 */

 ObjAppo myAppo = new ObjAppo();

 portNum = Integer.parseInt(myAppo.getAppoPort());
 directoryServerPort = Integer.parseInt(myAppo.getDirectoryServerPort());
 listenerPort = Integer.parseInt(myAppo.getListenerPort());
 objUrl = myAppo.getAppoUrl();

 try
 {
 System.out.print("Username: ");
 userName = stdin.readLine();
 System.out.print("Password: ");
 userPassword = stdin.readLine();
 System.out.print("Proxy Object Name: ");
 proxyObjectName = stdin.readLine();
 }
 catch(Exception e){}

115

// Setting Up Methods
 methods = new Vector();
 returnTypes = new Vector();
 methodParams = new Vector();
 params = new Vector();

 // method 1
 methods.addElement(new String("setIdentities"));
 returnTypes.addElement(new String("java.lang.Void"));
 methodParams.addElement(new String("java.lang.Boolean"));
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.String"));
 params.addElement(methodParams);

 // method 3 void setDownLink(String _storeRecipientDataToloc, String
_reqServerAppName, String _reqServerParamValue, String _reqServerMethodName) throws
RemoteException;
 //methods.addElement(new String("setDownLink"));
 //returnTypes.addElement(new String("java.lang.Void"));
 //methodParams = new Vector();
 //methodParams.addElement(new String("java.lang.String"));
 //methodParams.addElement(new String("java.lang.String"));
 //methodParams.addElement(new String("java.lang.String"));
 //methodParams.addElement(new String("java.lang.String"));
 //params.addElement(methodParams);

 // method 2 Boolean beOnLookOut(String _characters, Long _requestedTime,
String _recipientAppName, String _recipientObjectID, String _storeReqLoc) throws
RemoteException;
 methods.addElement(new String("beOnLookOut"));
 returnTypes.addElement(new String("java.lang.Boolean"));
 methodParams = new Vector();
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.Long"));
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.String"));
 params.addElement(methodParams);

 // method 3
 methods.addElement(new String("readDeleteRequest"));
 returnTypes.addElement(new String("java.lang.String"));
 methodParams = new Vector();
 methodParams.addElement(new String("java.lang.String"));
 params.addElement(methodParams);

116

 // method 4
 //runDownLink(Long _elapsedTime, String _storeRecipientDataToloc, String
_reqServerAppName, String _reqServerParamValue, String _reqServerMethodName)
 methods.addElement(new String("runDownLink"));
 returnTypes.addElement(new String("java.lang.Void"));
 methodParams = new Vector();
 methodParams.addElement(new String("java.lang.Long"));
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.String"));
 methodParams.addElement(new String("java.lang.String"));
 params.addElement(methodParams);

// End Setting Up Methods

 try
 {
 publishAppoDoc = myAppo.publishAppoDoc(userName, userPassword,
objUrl, myAppo.getProxyID(proxyObjectName), "CameraModule", methods, returnTypes,
params, portNum, listenerPort);
 CameraModuleImpl helloSydObject = new CameraModuleImpl();
 myAppo.registerAppo(objUrl, portNum, objUrl, directoryServerPort,
helloSydObject, publishAppoDoc);

 }
 catch (Exception e)
 {
 System.out.println("Error in setting up the Application Server: " +
e.toString());
 }

 // Setting up the data
 SyDSync newSync = new SyDSync();
 String filePath = newSync.createAFile("CameraAppoDoc.xml");
 newSync.writeEmptyRequest(filePath);

 // Client of the Camera Server
 // ---
------------ START setIdentities

 //paramValue.addElement("//export//home//students//jgunawan//syddemo//syd//sydapp//P
roxyApp//CameraAppoDoc.xml");
 //paramValue.addElement(
"C:\\Users\\Joseph\\Desktop\\syddemo\\syd\\sydapp\\ProxyApp\\CameraAppoDoc.xml");

117

 ObjClient objClient = new ObjClient();
 String dirurl = objClient.getDirectory();

 Registry r;
 MemberShipI member = null;
 String userid = "";
 String objectID = "";

 try
 {
 r = LocateRegistry.getRegistry(dirurl);
 member = (MemberShipI)r.lookup("DirectoryService");
 userid = member.lookUp("SYD_USER","userID","userName",
userName.toString());
 objectID =
member.lookUp("USER_APPO_MAPPING","objectID","userID",userid);
 }
 catch(Exception e) {
 System.out.println("Error " + e);
 }

 Vector serverAppName = new Vector();
 serverAppName.addElement(userName);
 Vector paramValue = new Vector();
 paramValue.addElement("true");
 paramValue.addElement(objectID);
 paramValue.addElement(userName);
 String methodName = "setIdentities";

 objClient = new ObjClient(serverAppName, paramValue, methodName);
 objClient.run(true);
 // ---
------------ END setIdentities

 // ---
------------ START runDownLink
 // void runDownLink(Long requestedTime, String _storeRecipientDataToloc,
String _reqServerAppName, String _reqServerParamValue, String _reqServerMethodName)
throws RemoteException;

 serverAppName.clear();
 serverAppName.addElement(userName);
 paramValue = new Vector();
 paramValue.addElement("10000");

118

 paramValue.addElement(filePath);
 //paramValue.addElement(
"C:\\Users\\Joseph\\Desktop\\syddemo\\CameraAppoDoc.xml");
 paramValue.addElement("CameraProxy");
 //paramValue.addElement(
"//export//home//students//jgunawan//syddemo//CameraAppoDoc.xml");
 paramValue.addElement(
"C:\\Users\\Joseph\\Desktop\\syddemo\\CameraProxyDoc.xml");
 paramValue.addElement("readDeleteRequest");
 methodName = "runDownLink";

 objClient = new ObjClient(serverAppName, paramValue, methodName);
 objClient.run(true);
 // ---
------------ END runDownLink

 return;
 }
}

Object Camera Client

Server of Camera Client

CameraClientServer.java
import java.util.*;
import java.net.*;
import java.lang.reflect.*;
import java.rmi.registry.*;
import java.io.*;

import syd.sydlistener.*;
import syd.sydutil.*;
import syd.sydobject.*;
import syd.sydapp.Apps.camera.*;
import syd.syddirectory.*;

public class CameraClientServer
{
 private static String userName = "hello";
 private static String userPassword = "hello1";
 private static String proxyURL = "";
 //private static String proxyServerName = "";

119

 private static int proxyPort = 0;
 private static String publishProxyDoc = "";
 private static Vector methodParams;
 private static Vector params;
 private static Vector methods;
 private static Vector returnTypes;
 //private static String directoryServerName = "";
 private static int directoryServerPort = 0;
 private static int listenerPort = 0;

 private static BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in));

 public static void main(String args[]) //throws IOException
 {
 ObjClientServer myProxy = new ObjClientServer();
 //proxyServerName = myProxy.getProxyServerName();
 proxyPort = Integer.parseInt(myProxy.getProxyPort());
 proxyURL = myProxy.getProxyUrl();
 //directoryServerName = myProxy.getDirectoryServerName();
 directoryServerPort = Integer.parseInt(myProxy.getDirectoryServerPort());
 listenerPort = Integer.parseInt(myProxy.getListenerPort());

 try
 {
 System.out.print("Username: ");
 userName = stdin.readLine();
 System.out.print("Password: ");
 userPassword = stdin.readLine();
 }
 catch(Exception e){}

/*
 System.out.println("Username: " + userName);
 System.out.println("UserPassword: " + userPassword);
 System.out.println("proxyPort: " + proxyPort);
 System.out.println("proxyUrl: " + proxyURL);
 System.out.println("directoryServerName: " + directoryServerName);
 System.out.println("directoryServerPort: " + directoryServerPort);
*/
 try
 {
 // Setting up method object
 methods = new Vector();
 returnTypes = new Vector();

120

 methodParams = new Vector();
 params = new Vector();

 // method 1
 //void sendConfirmation(Boolean _isFound) throws RemoteException;
 methods.addElement(new String("sendConfirmation"));
 returnTypes.addElement(new String("java.lang.Void"));
 methodParams.addElement(new String("java.lang.Boolean"));
 params.addElement(methodParams);

 // Setting up Server Application
 CameraModuleImpl helloSydObject = new CameraModuleImpl();

 // Publish proxy doc
 publishProxyDoc = myProxy.publishProxyDoc(userName, userPassword,
proxyURL, "null", "CameraModule", methods, returnTypes, params, proxyPort, listenerPort);

 // Register myProxy
 myProxy.registerProxy(proxyURL, proxyPort, proxyURL,
directoryServerPort, helloSydObject, publishProxyDoc);
 }
 catch (Exception e)
 {
 }
 return;
 }
}

Client of Camera Client

ClientThread.java
import syd.sydengine.*;
import syd.sydutil.*;
import syd.sydlistener.*;
import syd.syddirectory.*;
import syd.sydobject.*;

import java.lang.*;
import java.util.*;
import java.io.*;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.net.*;

121

public class ClientThread implements Runnable
{
 private Vector ServerAppName;
 private Vector paramValue;
 private int pos;
 private String methodName;

 public void setupClient(Vector _serverAppName, Vector _paramValue, int _pos, String
_methodName)
 {
 ServerAppName = _serverAppName;
 paramValue = _paramValue;
 pos = _pos;
 methodName = _methodName;
 }

 public void run()
 {
 System.out.println("\n\nStart to run the client # " + pos + " ...");
 ObjClient myClient = new ObjClient(ServerAppName, paramValue,
methodName);
 myClient.run();
 System.out.println("Finish running the client # " + pos + " ...");
 }
}

CameraMultiClients.java
import syd.sydengine.*;
import syd.sydutil.*;
import syd.sydlistener.*;
import syd.syddirectory.*;

import java.lang.*;
import java.util.*;
import java.io.*;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;
import java.net.*;

public class CameraMultiClients
{
 private static BufferedReader stdin = new BufferedReader(new
InputStreamReader(System.in));

122

 public static void main(String[] args) throws IOException
 {
 SyDSync newSync = new SyDSync();

 // Holding multiple clients & values
 Vector multiClients = new Vector();
 Vector multiValues = new Vector();

 System.out.println("Running Trial Application V.1.1 (Camera Application) ...");

 System.out.println("How many client(s) do you want to run (X for eXit)?");
 String userAnswer = stdin.readLine();
 while ((userAnswer.equals("X")) || (Integer.parseInt(userAnswer) == 0))
 {

 if (userAnswer.equals("X"))
 {
 System.out.println("Exit the application!");
 System.exit(0);
 }

 System.out.println("There must be at least one client need to be run.");
 System.out.println("Please enter number of client(s) do you want to run (X
for eXit)?");
 userAnswer = stdin.readLine();
 }

 int numOfClients = Integer.parseInt(userAnswer);

 String serverName = "";
 for (int i = 0; i < numOfClients; i++)
 {
 Vector ServerAppName = new Vector();
 Vector paramValue = new Vector();

 if (i == 0)
 {
 System.out.print("Enter the camera application name: ");
 serverName = "CameraServer";
 //serverName = stdin.readLine();
 ServerAppName.addElement(serverName);
 }
 else
 ServerAppName.addElement(serverName);
 System.out.print("Enter the vehicle license plate to be looked for: ");

123

 paramValue.addElement("jh43iotre");
 //paramValue.addElement(stdin.readLine());
 System.out.print("Enter the duration of the time for looking (in
miliseconds): ");
 String lookOutTime = "2000";
 paramValue.addElement(lookOutTime);
 //paramValue.addElement(stdin.readLine());
 paramValue.addElement(serverName); // serverName suppose to be a
server that the client would like to invoke, but the server is not there (off).
 System.out.print("Where do you want to get a response from the camera
after look out for " + lookOutTime + " miliseconds: ");
 paramValue.addElement("CameraClient");
 //paramValue.addElement(stdin.readLine()); // response to what server
client
 // location to store the unanswered request
 //paramValue.addElement(
"//export//home//students//jgunawan//syddemo//CameraAppoDoc.xml");

 multiClients.addElement(ServerAppName);
 multiValues.addElement(paramValue);
 }

 Vector clientTemp = new Vector();
 for (int i = 0; i < numOfClients; i++)
 {
 Random generator = new Random();
 int clientNo = generator.nextInt(numOfClients);

 if (clientTemp.size() == 0)
 clientTemp.addElement(clientNo);
 else
 {
 while(clientTemp.contains(clientNo))
 clientNo = generator.nextInt(numOfClients);
 clientTemp.addElement(clientNo);
 }
 }

 String filePath = newSync.createAFile("data3.txt");
 long startTime = System.currentTimeMillis();
 StringBuffer data = new StringBuffer();
 data.append("Start Time: ").append(startTime);
 newSync.writeData(data, filePath);

 for (int i = 0; i < clientTemp.size(); i++)

124

 {
 int pos = (Integer)clientTemp.elementAt(i);
 ClientThread expectedClient = new ClientThread();
 expectedClient.setupClient(((Vector)multiClients.elementAt(pos)),
((Vector)multiValues.elementAt(pos)), pos, "beOnLookOut");
 Thread threadClient = new Thread(expectedClient);
 threadClient.start();
 }
 }
}

	Georgia State University
	ScholarWorks @ Georgia State University
	11-20-2008

	Proxy Module for System on Mobile Devices (SyD) Middleware
	Joseph Gunawan
	Recommended Citation

	

