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GENOTYPE/HAPLOTYPE TAGGING METHODS AND THEIR VALIDATION 

by 

Jun Zhang 

 

Under the Direction of Alex Zelikovsky 

ABSTRACT 

 

This study focuses how the MLR-tagging for statistical covering, i.e. either 

maximizing average R2 for certain number of requested tags or minimizing number of 

tags such that for any non-tag SNP there exists a highly correlated (squared 

correlation R2 > 0.8) tag SNP. We compare with tagger, a software for selecting tags 

in hapMap project. MLR-tagging needs less number of tags than tagger in all 6 cases 

of the given test sets except 2. Meanwhile, Biologists can detect or collect data only 

from a small set. So, this will bring a problem for scientists that the estimates 

accuracy of tag SNPs when constructing the complete human haplotype map.  This 

study investigates how the MLR-tagging for statistically coverage performs under 

unbias study. The experiment results shows MLR-tagging still select small amount of 

SNPs very well even without observing the entire SNP in the sample. 
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CHAPTER 1

INTRODUCTION

1.1 Biology Background: SNPs, Haplotypes, Genotypes, and

Notations

Figure 1.1. DNA, gene, chromosome, genome

Usually all living organisms are organized in 4 levels: Genome, chromosomes,

genes, and DNA (see Figure 1.1). DNA is a double helical molecule with specific base

pairing rules. Each of the two strands of the double helical structure serves as a tem-

plate for synthesis of a new DNA strand during replication. Before a cell divides, the

DNA within the cell nucleus is copied with exceptional fidelity. Information in DNA

is organized into Genes, which is the second level. Genes make up Chromosomes, and

all chromosomes taken together form an organism’s Genome. Every cell in an Indi-

vidual contains the genome. Cells are the fundamental working units of every living
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organism. Each cell contains a complete copy of an organism’s genome. The genome

is distributed along chromosomes, which are made of compressed and entwined DNA.

A gene is a segment of chromosomal DNA that directs the synthesis of a protein.

DNA is made of two complimentary strands of nucleotides. A’s complement is T and

G’s complement is C. Usually the more the living organism has evolved, the longer

genome they have. The length of DNA is measured by the number of base pairs (bp).

Humans have 46 total chromosomes, two copies of each of 23 different types.

Chromosomes 1 through 22 are the same in both males and females. The sex (X and

Y) chromosomes differ between the sexes. Males have one X and one Y chromosome,

whereas females have two X and no Y chromosomes. One copy of each chromosome

type is inherited from the mother and one from the father. A father contributes an

X chromosome to each of his daughters and a Y chromosome to each of his sons.

In diploid organisms each chromosome has two “copies” which are not completely

identical. Each of two single copies is called a haplotype, while a description of the

data consisting of mixture of the two haplotypes is called a genotype. For complex

diseases caused by more than a single gene it is important to obtain haplotype data

which identify a set of gene alleles inherited together. Genome difference between

any two people is about 0.1% of genome. These differences are Single Nucleotide

Polymorphisms (SNPs). Both substitutions have to be observed in the general pop-

ulation at a frequency greater than 1%. SNP’s occur as frequently as every 100-300

bases. This implies that in an entire human genome there are approximately 10 to

30 million potential SNP’s. More than 4 million SNP’s have been identified and the

information has been made publicly available. SNPs may occur in both coding (gene)

and non-coding regions of the genome. Many SNPs have no effect on cell function,

but they could predispose people to disease or influence their response to a drug.

The differences between any two human individuals are produced by mutation,

crossing over and genetic recombination during fertilization (union of egg and sperm).
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Mutation is the change in DNA of an organism which may result in that organism

being different than its parents. While there are many causes of mutations, some

factors are known which rapidly increase the incidence of mutation. In crossing over

which occurs in the production of sex cells or gametes in meiosis, there is an exchange

of chromosome pieces between the chromosome pairs associated with each other in

this process

Figure 1.2. Encode

SNP’s are bi-allelic and can be referred as 0 if it’s a majority and 1, otherwise. If

both haplotypes are the same allele, then the corresponding genotype is homogeneous,

can be represented as 0 or 1. If the two haplotypes are different, then the genotype

is represented as 2 (See Figure 1.2). Usually the major allele is expected to be the

wild type and the minor allele is expected to be a mutation. It is important to study

SNPs because they represent genetic differences among humans. Therefore biologists

are searching for risk factors for genetic diseases among SNPs.

3



The Human Genome Project [2] is the organized, international effort to map and

sequence the entire human genome. Much information about the human genome

including maps and sequences are available through the internet. The great majority

of the human DNA sequence has now been determined.

1.2 Tagging Motivation

Recent research found that it is essential to find a small subset of informative

SNPs (tag SNPs) that may be used as good representatives of the rest of SNPs.

Informative SNPs can be used for compaction of unphased genotype data. Indeed,

recent successes in high throughput genotyping technologies (e.g., Affimetrix Map

Arrays) drastically increase the length of available SNP sequences and they should

be compacted to be feasible for fine genotype analysis. Traditionally, such SNPs are

called tags and the selection procedure is referred as tagging. The decision which

SNPs should be typed (also referred as tag SNPs) and which should be inferred is

based on how well non-typed SNPs can be predicted from typed SNPs.

Informative SNP selection (Tagging) methods have been initially explored in sta-

tistical and pattern recognition community as well as following optimization com-

munity. In statistics, tags are required to statistically cover individual (non-tagged)

SNPs or haplotypes (sets of SNPs), where the quality of statistical covering is usually

measured by correlation, e.g., find minimum number of tags such that for any non-tag

SNP there exists a highly correlated (squared correlation R2 > .8) tag SNP [6, 7].

In the optimization community, the number of tags is usually minimized subject to

upper bounds on prediction error measured as how non-tag SNPs can be predicted

from the tag SNPs.

The generic informative SNP selection problem can be formulated as follows (see

Figure 2.1:

4



Given a sample S of a population P of individuals (either haplotypes or genotypes)

on m SNPs, find positions of k (k < m) tag SNPs such that one can predict (or

statistically cover) an entire individual (haplotype or genotype) from its restriction

onto the k tag SNPs.

0 ? 0 ? 0 ? ? ? 1 ? ? ? ? ? ?

0 ? 1 ? 1 ? ? ? 0 ? ? ? ? ? ?

1 ? 1 ? 1 ? ? ? 0 ? ? ? ? ? ?

Use only tag SNPs to 

computationally infer

non-tag SNPs

tag SNPs: 0, 2, 4, 8 

0 1 0 0 1 1 0 1 0 1 0 0 1 0 1

0 1 1 1 1 0 1 0 1 0 0 1 0 1 0

1 1 1 1 0 0 1 0 1 0 1 1 0 1 1

Figure 1.3. Problem formulation of Informative SNP Selection

The use of tag SNPs as a cost-effective means of capturing genetic diversity is

widespread. However, the quality of the tag SNPs selected depends on the initial

sample in which they are characterized. If the initial marker set is too sparse the

tag SNPs chosen will capture less information than analysis suggests. Tag SNPs

are commonly used as a means of capturing the genetic diversity in a region while

minimizing the amount of genotyping to be performed. It is usual to select the tSNPs

and judge their efficacy simultaneously. However, such an approach leads to biased

estimates of tag SNP performance [28]. Thus it is unclear when using standard tag

SNP procedures whether the initial marker coverage is sufficiently dense to select tag

SNPs, and whether the tag SNPs selected from these markers capture the required

proportion of the underlying variation in the region being studied. The density of

markers required will vary from one region to another depending on factors such as

recombination rate, marker frequency, mutation rate and population history. Recently

a procedure was proposed for assessing the sufficiency of the marker density when

selecting tag SNPs [42]. The procedure for estimating tag SNP unbiased performance

5



[42] is straightforward. If it is assumed that the k genotyped SNPs are drawn from the

same distribution as the unobserved SNPs the ‘true’ performance of the tag SNPs

can be estimated. Each of the k SNPs is excluded in turn, the tagging procedure

performed on the remaining k-1 SNPs, and the proportion of the variance (R2) at

the excluded SNP explained by the haplotypes formed from the tag SNPs calculated.

Averaging these k values should give an unbiased estimate of the performance of the

tag SNPs selected from a set of k-1 SNPs. This ‘leave-SNP-out’ approach [42], as

SNP-dropping) assumes both that the sample size is big enough that the haplotype

frequencies are representative of the whole population, and that the observed SNPs

have the same distribution as the unobserved SNPs. My work is to investigate MLR-

tagging for statistical covering to see how it performs in the unbias tag selection.

1.3 Tagging Validation

The use of tag SNPs as a cost-effective means of capturing genetic diversity is

widespread. However, the quality of the tag SNPs selected depends on the initial

sample in which they are characterized. If the initial marker set is too sparse the

tag SNPs chosen will capture less information than analysis suggests. Tag SNPs

are commonly used as a means of capturing the genetic diversity in a region while

minimizing the amount of genotyping to be performed. It is usual to select the tSNPs

and judge their efficacy simultaneously. However, such an approach leads to biased

estimates of tag SNP performance [28]. Thus it is unclear when using standard tag

SNP procedures whether the initial marker coverage is sufficiently dense to select tag

SNPs, and whether the tag SNPs selected from these markers capture the required

proportion of the underlying variation in the region being studied. The density of

markers required will vary from one region to another depending on factors such as

recombination rate, marker frequency, mutation rate and population history. Recently

a procedure was proposed for assessing the sufficiency of the marker density when

6



selecting tag SNPs [42]. The procedure for estimating tag SNP unbiased performance

[42] is straightforward. If it is assumed that the k genotyped SNPs are drawn from the

same distribution as the unobserved SNPs the ‘true’ performance of the tag SNPs

can be estimated. Each of the k SNPs is excluded in turn, the tagging procedure

performed on the remaining k-1 SNPs, and the proportion of the variance (R2) at

the excluded SNP explained by the haplotypes formed from the tag SNPs calculated.

Averaging these k values should give an unbiased estimate of the performance of the

tag SNPs selected from a set of k-1 SNPs. This ‘leave-SNP-out’ approach [42], as

SNP-dropping) assumes both that the sample size is big enough that the haplotype

frequencies are representative of the whole population, and that the observed SNPs

have the same distribution as the unobserved SNPs. My work is to investigate MLR-

tagging for statistical covering to see how it performs in the unbias tag selection.

1.4 Contribution

This thesis provides the following contributions.

Proposes a new SNP prediction using a robust tool for classification – Support Vector

Machine (SVM). An extensive experimental study on various datasets including three

regions from HapMap shows that the tag selection based on SVM SNP prediction can

reach the same prediction accuracy as the methods of Halldorson et al. [17] on the

LPL using significantly fewer tags. For example, our method reaches 90% non-tag

SNP prediction accuracy using only three tags for Daly et al. [9] dataset with 103

SNPs. The proposed tagging method is also more accurate (but considerably slower)

than multiple linear regression method of He et al. [20].

The corresponding software for haplotype tagging based on SVM is available for use.

Finalizes and implements tagging for statistical covering based on multiple linear

regression. An experimental result shows the method are as good as the state-of-the-

arts method for statical covering.
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Unbiased validation of MLR-tagging for statistically coverage performs shows MLR-

tagging still selects small amount of SNPs very well even without observing the entire

SNP in the sample.

In the chapter 1, we introduce the biological background of my research, tagging

problem formulation, and Motivation of Validation of Tagging Methods. Next we

summarize the previous tagging methods and describe my previous work on hapltoye

tag SNP selection by using support vector machine[21]. Chapter 3 describes the

method for statistic tagging based on multiple linear regression and its corresponding

software. Chapter 4 describes haplotype SNP selection by using support vector ma-

chine and the corresponding software. Finally, we discuss the unbias validation for

MLR-tagging and its experiment results.
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CHAPTER 2

TAGGING METHODS

The search for the association between complex diseases and single nucleotide

polymorphisms (SNPs) has been recently received great attention. For these studies,

it is essential to use a small subset of informative SNPs, named tags, accurately rep-

resenting the rest of the SNPs. Firstly, informative SNPs can be used for selective

SNP typing and computationally inferring all non-typed SNPs thus achieving con-

siderable budget savings. Secondly, informative SNPs can be used for compaction of

SNP data. Indeed, recent successes in high throughput genotyping technologies (e.g.,

Affimetrix Map Arrays) drastically increase the length of available SNP sequences

and they should be compacted to be feasible for fine genotype analysis. This chapter

summarizes the stat-of-the-art informative SNP seleciton tools.

2.1 Problem Formulation

The generic informative SNP selection problem can be formulated as follows (see

Figure 2.1:

Given a sample S of a population P of individuals (either haplotypes or genotypes)

on m SNPs, find positions of k (k < m) tag SNPs such that one can predict (or

statistically cover) an entire individual (haplotype or genotype) from its restriction

onto the k tag SNPs.

The use of tag SNPs as a cost-effective means of capturing genetic diversity is

widespread. However, the quality of the tag SNPs selected depends on the initial

sample in which they are characterized. If the initial marker set is too sparse the
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Figure 2.1. Problem formulation of Informative SNP Selection

tag SNPs chosen will capture less information than analysis suggests. Tag SNPs

are commonly used as a means of capturing the genetic diversity in a region while

minimizing the amount of genotyping to be performed. It is usual to select the tSNPs

and judge their efficacy simultaneously. However, such an approach leads to biased

estimates of tag SNP performance [28]. Thus it is unclear when using standard tag

SNP procedures whether the initial marker coverage is sufficiently dense to select tag

SNPs, and whether the tag SNPs selected from these markers capture the required

proportion of the underlying variation in the region being studied. The density of

markers required will vary from one region to another depending on factors such as

recombination rate, marker frequency, mutation rate and population history. Recently

a procedure was proposed for assessing the sufficiency of the marker density when

selecting tag SNPs [42]. The procedure for estimating tag SNP unbiased performance

[42] is straightforward. If it is assumed that the k genotyped SNPs are drawn from the

same distribution as the unobserved SNPs the ‘true’ performance of the tag SNPs

can be estimated. Each of the k SNPs is excluded in turn, the tagging procedure

performed on the remaining k-1 SNPs, and the proportion of the variance (R2) at

the excluded SNP explained by the haplotypes formed from the tag SNPs calculated.

Averaging these k values should give an unbiased estimate of the performance of the

tag SNPs selected from a set of k-1 SNPs. This ‘leave-SNP-out’ approach [42], as
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SNP-dropping) assumes both that the sample size is big enough that the haplotype

frequencies are representative of the whole population, and that the observed SNPs

have the same distribution as the unobserved SNPs. My work is to investigate MLR-

tagging for statistical covering to see how it performs in the unbias tag selection.

2.2 Overview of Previous Work

Informative SNP selection (Tagging) methods have been previously explored in

statistical and pattern recognition community as well as optimization community.

In statistics, tags are required to statistically cover individual (non-tagged) SNPs or

haplotypes (sets of SNPs), where the quality of statistical covering is usually measured

by correlation, e.g., find minimum number of tags such that for any non-tag SNP

there exists a highly correlated (squared correlation R2 > .8) tag SNP [6, 7]. In the

optimization community, the number of tags is usually minimized subject to upper

bounds on prediction error measured as how non-tag SNPs can be predicted from the

tag SNPs.

Previous research on tag SNP selection has explored both lossless and lossy meth-

ods. Lossless methods select a set of tag SNPs that capture 100% of the haplotypic

variation in the sample population. Lossy methods typically select fewer tags than

lossless methods, but with some tolerated amount of information loss.

Aviitzhak et al. [4] presented a method for selecting tags which can be used

in both a lossless and a lossy manner. The central idea behind both their lossless

and lossy methods is to eliminate tags that contribute the least to the Shannon

entropy for the haplotype set. First, identical columns and complimentary columns

are eliminated, then they eliminate columns that do not reduce the number of unique

rows. They note that selecting a maximal linearly independent set of column vectors

would miss opportunities to eliminate complimentary SNPs and illustrate that by the

2-by-2 identity matrix. Their lossless method reduces by 25% and 36% the number of
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SNPs describing the haplotype diversity within an African-American and Caucasian

population, respectively.

Zhang et al. [43] introduced a block-based, dynamic programming algorithm for

haplotype inference that is capable of reconstructing 90% of the original data using

only 35% of SNPs as tags. They used the partition-ligation expectation maximization

algorithm for haplotype inference, and as a result, provided a method of performing

association studies directly on genotype data.

Sebastiani et al. [35] described a lossless method called BEST (Best Enumeration

of SNP Tags) for identifying a minimal set of tag SNPs from haplotype data. BEST

selects tags by determining if a candidate tag is a boolean function of SNPs already

chosen as tags. The BEST method selected 14% of SNPs as tags from an African-

American population and 10% from an European-American population by considering

individual genes each ranging from 5 to 229 SNPs in length. However, its effectiveness

on a genome-wide scale is still unproven. According to their method, 95% of tags

selected from the European-American population were also selected from the African-

American population, which provides evidence for the a genetic bottleneck event that

occurred long ago as hominids migrated out of Africa to settle Europe and Asia.

Halldorson et al. [17] defined the informativeness measure of how well a set of

tags describes a haplotype sample. Both the informativeness measure, as well as

their tag SNP selection method consider a graph whose vertices are SNPs; an edge is

placed between to SNPs if one SNP can be used to reliably predict the other. Their

method seeks the set of SNPs that maximizes the informativeness measure on the

haplotype data. The method can achieve prediction rates of 90% based on only 20%

of SNPs. Halldorsson’s method differs from the others in that it is a block-free method.

Block-based methods are restricted to identifying tags only within local contiguous

sequences of SNPs where the haplotype diversity is low. Block-free methods have the
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capability to identify tags across an entire genome. Like Halldorsson’s method, the

linear reduction method we propose is a block-free method.

Lee et al. [26] introduce BNTagger, a new method for tagging SNP selection, based

on conditional independence among SNPs. Using the formalism of Bayesian networks

(BNs), their system aims to select a subset of independent and highly predictive SNPs.

For example, BNTagger uses 10% tags to reach 90% prediction accuracy. However,

BNTagger comes at the cost of compromised running time. Its running time varies

from several minutes (when the number of SNPs is 52) to 2-4 hours (when the number

is 103).

Our tagging problem formulations and above approaches do not take into account

haplotype frequency when selecting a tag SNPs. For a discussion of how haplotype

frequency affects tag SNP selection, see [7, 11, 37].

2.3 idSelect

IdSelect, developed by Carlson et al.[6], used a greedy approach for tag SNP

selection. They developed a greedy algorithm to identify subsets of tagSNPs for

genotyping, selected from all SNPs exceeding a specified MAF threshold. Starting

with all SNPs above the MAF threshold, the single site exceeding the threshold with

the maximum number of other sites above the MAF threshold is identified. This

maximally informative site and all associated sites are grouped as a bin of associated

sites. Not all SNPs within the bin are interchangeable, because pairwise association

is not an associative property: if R2 exceeds the threshold for SNP pairs A/B and

B/C, R2 for SNP pair A/C might not exceed the threshold. Thus, because the bin is

initially ascertained using a single SNP, all pairwise R2 within bin are re-evaluated,

and any SNP exceeding threshold R2 with all other sites in the bin is specified as a

tag SNP for the bin. Thus, one or more SNPs within a bin are specified as tagSNPs,

and only one tag SNP would need to be genotyped per bin. The tag SNP can be

13



selected for assay on the basis of genomic context (coding vs. noncoding or repeat

vs. unique), ease of assay design, or other user-specified criteria.

The binning process is iterated, analyzing all as-yet-unbinned SNPs at each round,

until all sites exceeding the MAF threshold are binned. Each bin is reported as a set

of all SNPs in the bin as well as the subset of tag SNPs within the bin, each of which

is above the r2 threshold with all other SNPs in the bin. If an SNP does not exceed

the r2 threshold with any other SNP in the region, it is placed in a singleton bin.

2.4 STAMPA

Halperin et al. [16] describes a new method STAMPA for SNP prediction and

tag selection. A SNP is predicted by inspecting the two closest tag SNPs from both

sides; the value of the unknown SNP is given by a majority vote over the two tag

SNPs. They use dynamic programming to select tags to reach best prediction score.

Their methods are compared with idSelect and HapBlock on a variety of data sets,

and could predict with 80% accuracy the SNPs in the daly dataset[9] using only 2

SNPs as tags. In general, this problem is computationally difficult and the runtime of

an exact algorithm may become prohibitively slow. Therefore, one can use heuristics

for the selection of k tags following Halperin et al.[16] who compare relatively slow

STAMPA with a fast random tag selection.

2.5 MLR

2.5.1 Introduction to Multiple Linear Regression

The general purpose of multiple linear regression is to learn the relationship be-

tween several independent variables and a response variable. The multiple linear

regression model is given by

y = β0 + β1x1 + β2x2 + ... + βkxk + ε = Xβ + ε (2.1)
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where y is the response variable (represented by a column with n coordinates (k ≤
n − 1)), xi, i = 1, . . . , k are independent variables (columns), βi, i = 1, . . . , k are

regression coefficients, and ε (a column) is the model error. The regression coeffi-

cient βi represents the independent contribution of the independent variable xi to the

prediction of y.

2.5.2 Multiple Linear Regression Tagging

A. Zelikovsky and J. He [20] proposed a new SNP prediction method based on

rounding of multivariate linear regression (MLR) analysis in sigma-restricted coding.

When predicting a non-tag SNP, the MLR method accumulates information about all

tag SNPs resulting in significantly higher prediction accuracy with the same number

of tags than for the previously known tagging methods. They also showed that the

tag selection strongly depends on how the chosen tags will be used – advantage of

one tag set over another can only be considered with respect to a certain prediction

method. Two simple universal tag selection methods have been applied: a (faster)

stepwise and a (slower) local-minimization tag selection algorithms. An extensive

experimental study on various datasets including 6 regions from HapMap shows that

the MLR prediction combined with stepwise tag selection uses significantly fewer tags

(e.g., up to two times less tags to reach 90% prediction accuracy) than the state-of-

art methods of Halperin et al. [16] for genotypes and Halldorsson et al. [17] for

haplotypes, respectively. Our stepwise tagging matches the quality of while being

faster than STAMPA [16].

The MLR-tagging method computes bi, i = 1, . . . , k estimating unknown true

coefficients βi, i = 1, . . . , k minimizing the error ||ε|| using the least squares method.

Geometrically speaking, in the estimation space span(X), which is the linear closure

of vectors xi, i = 1, . . . , k, we find the vector ŷ = b0 + b1x1 + b2x2 + ... + bkxk = Xb

estimating y. The vector ŷ minimizing distance (error) ||ε|| = ||ŷ−y|| is the projection
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of y on span(X) and equals

ŷ = X(X tX)−1X ty (2.2)

Given the values of independent variables x∗ = (x∗1, . . . , x
∗
k), the MLR method can

predict (estimate) the corresponding response variable y∗ with

ŷ∗ = x∗(X tX)−1X ty (2.3)

Formally, let T be the (n) × k matrix consisting of n1 rows corresponding to

n sample genotypes xi, i = 1, n, from X, gi = {xi,1, . . . , xi,k}, whose k coordinates

correspond to k tag SNPs. The SNP s is represented by a (n)-column with values

yi, i = 1, n. The multiple linear regression gives the R2 bewteen T and s

T =




x1,1 . . . x1,k

...
. . .

...

xn,1 . . . xn,k




s =




y1,k+1

...

yn,k+1
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CHAPTER 3

STATISTICAL COVERING

This chapter describes two methods I proposed for tag SNP selection: MLR-

tagging for statistically covering and haplotype SNP selection by using support vector

machine and the corresponding software.

3.1 Statistical Covering

A. Zelikovsky and J. He [20] proposed a new tag SNP selection method based

on multiple linear regression (MLR) analysis, i.e., MLR-tagging. When predicting a

non-tag SNP, the MLR-tagging method accumulates information about all tag SNPs

resulting in significantly higher prediction accuracy with the same number of tags

than for the previously known tagging methods. An extensive experimental study

on various datasets including 10 regions from HapMap shows that the MLR-tagging

for prediction matches the quality of while being faster than STAMPA [16]. Here,

we introduce MLR-tagging for statistical covering e.g., find minimum number of tags

such that for any non-tag SNP there exists a highly correlated (squared correlation

R2 > .8) tag SNP [6, 7] (see Figure 3.1).

3.1.1 Tag SNP Selection Based on SNP Statistical Covering

A. Zelikovsky and J. He [20] showed how to separate the tag selection from SNP

prediction. Following their work, we fist define SNP statistical covering algorithm as

follows:
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Figure 3.1. MLR-tagging for statistical covering. The shaded columns correspond to
k tag SNPs and the clear columns correspond to m− k non-tag SNPs. MLR-tagging
method ensures that non-tag SNPs can be statistically covered by tags

A SNP statistical covering algorithm Ak accepts as its input the values of k tags

(t1, · · · , tk) of a sample S. The output of Ak is R2, that is, R2 is correlation coefficient

between the non-tag SNPs and k tags.

We select tags by using SNP statistical covering algorithm as follows: We can

check each k-tuple of tags and choose the k-tuple either maximizing average R2 for

all SNPs or number of statistical covered SNPs. This manner of exhaustive search is

very expensive in terms of running time. We introduced a greedy manner of selection.

It starts with the auxiliary tag t0, finds such tag t1 which would be the best extension

of {t0} and continue adding best tags until reaching the set of tags of the given size

k. This produces hereditary set of tags, i.e., the chosen k tags contain the chosen

k − 1 tags. This hereditary property may be useful in case if the set of tags can be

extended. The runtime of greedy manner is O(knmT ), where T is the runtime of the

SNP statistical covering algorithm.
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3.1.2 Experimental Results

We apply our haplotype tagging algorithm (SVM/STA) to 4 dataset related a

genetic disease. Dataset of ADIPOQ-EA-1 are collect from 90 individuals of 30 SNPs.

Dataset of ADIPOQ-EA-2 are collect from 90 individuals of 65 SNPs. We apply the

statistical tagging software on both genotype and haplotype data of ADIPOQ-EA-

1 and ADIPOQ-EA-2. Table 3.1 and 3.2 shows how entire sample can be statical

covered by number of tags.

Table 3.1. Statistically covered number (/percentage) of SNPs to number (/per-
centage) of tags in ADIPOQ-EA-1

ADIPOQ-EA(Hap) (180 x 30) ADIPOQ-EA(Geno) (90 x 30)
tags Covered SNPs tags Covered SNPs

tags covered tags tags covered tags tags covered tags tags covered tags
1 5.26 5 26.31 1 5.26 5 26.31
2 10.52 9 47.36 2 10.52 10 52.63
3 15.78 11 57.89 3 15.78 11 57.89
4 21.05 12 63.15 4 21.05 12 63.15
5 26.31 13 68.42 5 26.31 13 68.42
6 31.57 14 73.68 6 31.57 14 73.68
7 36.84 15 78.94 7 36.84 5 78.94
8 42.15 16 84.21 8 42.15 16 84.21
9 47.36 17 89.47 9 47.36 17 89.47
10 52.63 18 94.74 10 52.63 18 94.74
11 57.84 19 100 11 57.84 19 100

Tagger is a tool for the selection and evaluation of tag SNPs from genotype data

such as that from the International HapMap Project. It combines the simplicity

of pairwise tagging methods with the efficiency benefits of multimarker haplotype

approaches. Tagger produces a list of tag SNPs and corresponding statistical tests

to capture all variants of interest, and a summary coverage report of the selected tag

SNPs. We compare MLR statis-tagging with tagger. The results shows MLR-tagging

has almost same quality as tagger as in 3.3. We do better than tagger in all cases of

the given test sets except 2 cases.
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3.1.3 Software

Here, we describe our tagging software base on multiple linear regression for statis-

tical covering. statis-tagging software package implements a novel genotype tagging

method based on multiple linear regression (MLR) analysis for statistical covering.

The software selects stepwise tags based on a haplotype/genotype sample data and

R2.

Downloading and Installing All relevant files including this pdf file are included

in the tar files: available at http://alla.cs.gsu.edu/ software/stat-tagging. Download

this tar file to your machine then extract the files from the archive.

tar -xvf statis-tagging.tar Currently, there is only Linux version available.

The package contains the following files:

1. taggingStatReadme.pdf: Readme file

2. statis-tagging: Binary code for tag selection

3. genoInput.txt: Sample input of a genotype population sample: 129 offspring

genotypes each with 103 SNPs from Daly et al.[9]

4. tagFile.txt: Sample input of tag positions

For running MLRsta:

type ./MLR-tagging-stat genoInput.txt 0.8 tagFile.txt G”

First parameter = the file name of a genotype sample population ”

Second parameter = Threshold R2

Third parameter = the name of output tag file (it contains selected k tag positions)

Fourth parameter = H for haplotype file input and G for genotype file input

File Formats:

genoInput.txt contain the following lines:

The number of genotypes

The number N of SNPs in each genotype

Description of data (can be empty)
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The first genotype represented by a sequence of 0/1/2’s without gaps, 0 stands

for homozygous major allele, 1 stands for homozygous minor allele, and 2 stands for

heterozygous SNP.

.......

The last genotype

tagFile.txt consists of k+3 lines:

The number of tags

Description of data (can be empty)

Description of data (can be empty)

The position of the first tag (a number in the range from 0 to N-1, where N is the

number of SNPs.)

.......

The last tag
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Table 3.2. Statistically covered number (/percentage) of SNPs to number (/per-
centage) of tags in ADIPOQ-EA-2

ADIPOQ-EA(Hap) (180 x 65) ADIPOQ-EA(Geno) (90 x 65)
tags Covered SNPs tags Covered SNPs

tags covered tags tags covered tags tags covered tags tags covered tags
1 1.53 17 26.15 1 1.53 15 23.08
2 3.07 43 66.15 2 3.07 26 40
3 4.61 51 78.46 3 4.61 33 50.76
4 6.15 56 86.15 4 6.15 38 58.46
5 7.69 58 89.23 5 7.69 43 66.15
6 9.23 60 92.31 6 9.23 45 69.23
7 10.76 61 93.84 7 10.76 47 72.30
8 12.31 63 96.92 8 12.31 48 73.84
9 13.84 64 98.46 9 13.84 49 75.38
10 15.38 65 100 10 15.38 50 76.92
- - - - 11 16.92 51 78.46
- - - - 12 18.46 52 80
- - - - 13 20 53 81.23
- - - - 14 21.03 54 83.26
- - - - 15 23.07 55 84.87
- - - - 16 24.61 56 86.15
- - - - 17 26.15 57 87.69
- - - - 18 27.69 58 89.23
- - - - 19 29.23 59 90.76
- - - - 20 30.76 60 92.37
- - - - 21 32.30 61 93.84
- - - - 22 32.84 62 95.38
- - - - 23 35.84 63 96.92
- - - - 24 36.92 64 98.51
- - - - 25 38.46 65 100

Table 3.3. Number of tags needed to statistically cover entire dataset

DataSet (SNPs) tags needed (MLR-tagging) tags needed (tagger)
ADIPOQ-AA (15) 10 12
ADIPOQ-EA (19) 11 14
ADIPOR1-AA (16) 12 10
ADIPOR1-EA (12) 5 8
ADIPOR1-AA (71) 27 32
ADIPOR1-EA (65) 25 17

22



CHAPTER 4

HAPLOTYPE TAG SELECTION BASED ON SUPPORT
VECTOR MACHINE

We propose a new SNP prediction using a robust tool for classification – Support

Vector Machine (SVM). For tag selection we use a fast stepwise tag selection algo-

rithm. An extensive experimental study on various datasets including three regions

from HapMap shows that the tag selection based on SVM SNP prediction can reach

the same prediction accuracy as the methods of Halldorson et al. [17] on the LPL

using significantly fewer tags. For example, our method reaches 90% non-tag SNP

prediction accuracy using only three tags for Daly et al. [9] dataset with 103 SNPs.

The proposed tagging method is also more accurate (but considerably slower) than

multiple linear regression method of He et al. [20].

4.1 SVM Overview

SVM has recently attracted a lot of attention in bioinformatics research (see,

e.g. [38]). This is because SVM produces very accurate results comparatively with

other data mining approaches such as Neural Networks. The SVM method is a

learning system which is developed by Vapnik and Cortes [41]. SVM is a powerful

methodology for solving problems in nonlinear classification, function estimation and

density estimation. The basic principle behind SVM is to find an optimal maximal

margin separating hyperplane between two classes. The goal is to maximize the

margin between the solid planes separating the two classes and at the same time

permit the least amount of errors as possible. SVM can also be used in the case
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when the data is not linearly separable. In this case, the data is mapped to a high

dimensional future space using a nonlinear function. When using SVM, the dot

products (x,y) in the future space must be fed to the SVM, which can be computed

through a positive definite kernel in the input space.

After given a training set (a set of pairs, input vector: features and target), SVM

builds a model. This model is later applied to unknown test set where the model maps

an input vector to +1 (positive class) or −1 (negative class) output target value.

SVMlight is an implementation of Vapnik’s Support Vector Machine [41]. In this

project, we have used SV M light software as a black box to do the prediction. The

SV M light software has many features such as changing the kernel function and other

parameters. We have used the Radial Basis Function (RBF) kernel in our project it

is the default and recommended kernel function.

exp(−γ ∗ |u− v|2)

For the trade-off between training error and margin, 0.05 is chosen (c value). Pa-

rameter gamma in RBF kernel was chosen as 0.1. These parameters were found by

testing different values in our experiments. We used the same for all the experiments.

4.2 SVM Haplotype Tagging

This problem can be formulated as Haplotype Tagging Problem (see Figure

4.1). Given the full pattern of all haplotypes in a small population sample, find the

minimum number of tag SNPs and the method for reconstructing each haplotype in

the entire population from these tags.

This tagging problem formulation implicitly relies on a certain SNP prediction

method. The corresponding SNP prediction problem is formulated as follows:

Given the values of k tags of the individual x with unknown SNP s and n individuals

with k tag SNP and known value of SNP s, find the value of s in x.
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Figure 4.1. Haplotype Tagging Problem. The shaded columns correspond to k
tag SNPs and the clear columns correspond to m − k non-tag SNPs. The unknown
m − k non-tag SNP values in tag-restricted haplotype (top) are predicted based on
the known k tag values and the sample population of n complete haplotypes.

In the SNP Prediction Problem, SVM builds a model after given n complete

haplotypes as training set. Then when an unknown haplotype is given to SVM as a

test sample, SVM is asked to predict the unknown SNP value (see Figure 4.2).

unknown SNP value 

=

  target value

binary class column
tag SNPs = features

0 1 0 0 ?

0 1 0 0 1

0 1 0 1 0

1 0 1 1  0 

1 1 0 1  1 

  test sample

n complete haplotypes 

           training set

=

Figure 4.2. The SNP Prediction Problem. Each haplotype with k tags in the
training set belongs to the 0- or 1- class. These binary class values are given in the
last column. For a given k tag-restricted haplotype (test sample), the unknown non-
tag SNP in the right corner should be classified based on the known tag SNP values
and training set.

4.3 Experimental Results

We apply our haplotype tagging algorithm (SVM/STA) to very well known hap-

lotype datasets. These datasets are original genotype datasets, but we phased them

to obtain haplotypes using GERBIL algorithms [12].
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Two gene Regions form HapMap. Two gene regions STEAP and TRPM8 from

30 CEPH family trios are obtained from HapMap [2]. We took the HapMap SNPs

that are spanned by the gene plus 10KB upstream and downstream. The number of

SNPs genotyped in each gene region is 23 and 102 SNPs. We only use 60 haplotypes

of parents.

Chromosome 5q31. The data set collected by Daly et al. [9] is derived from the

616 kilobase region of human Chromosome 5q31 that may contain a genetic variant

responsible for Crohn’s disease by genotyping 103 SNPs for 129 trios. We only use

258 haplotypes of offsprings.

LPL The Clark et al. [6] data set consists of the haplotypes of 71 individuals typed

over 88 SNPs in the human lipoprotein lipase (LPL) gene.

We apply leave-one-out cross-validation to evaluate the quality of the solution

given by the tag SNP selection and prediction methods. One by one, each individual

is removed from the sample. Then, tag SNPs are selected using only the remaining

individuals. The “left out” individual is reconstructed based on its tag SNPs and the

remaining individuals in the sample. The average number of errors in the reconstruc-

tion of all individuals is used as a measure of the overall prediction accuracy.

Table 4.1 presents the results of STA combined with SVM (SVM/STA) on leave-

one-out experiments on the 3 haplotype datasets. Table 4.2 compares SVM/STA with

multiple linear regression method (MLR) of He et al. [22] on the 3 haplotype datasets.

The proposed tagging method is more accurate than multiple linear regression method

of He et al. [20]. For example, for small number of tag SNPs, SVM/STA can obtain

(up to 8%) better prediction accuracy than MLR with same number of tag SNPs.

But SVM/STA is considerably slower. Indeed, for 5q31 dataset, SVM/STA needs 3

hours to select 1 tag SNPs while MLR only needs 0.77 seconds1.

1All experiments are performed on a computer with Intel Pentium 4, 3.06Ghz processor and 2
GB of RAM.
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Table 4.1. Leave-one-out tests are performed on 3 real haplotype datasets. The
minimum number of tag SNPs needed to reach from 80% to 99% prediction accuracy
is listed. The bold numbers indicate cases when the SVM/STA needs fewer tags than
the MLR method of He et al. [20] for reaching same prediction accuracy.

prediction accuracy %
datasets (# of SNPs) 80 85 90 91 92 93 94 95 96 97 98 99

5q31 (103) 1 1 3 3 4 5 6 8 10 22 42 51
TRPM8 (101) 1 1 2 5 5 6 7 8 10 15 15 24
STEAP (22) 1 1 1 1 1 1 1 2 2 2 2 2

Table 4.2. The comparison of our proposed SVM/STA method and the MLR method
of He et al. [20] over different number of tag SNPs.

number of tag SNPs
datasets (# of SNPs) methods 1 2 4 6 8 10

prediction SVM/STA 86.81 89.32 92.24 94.09 95.28 96.09
accuracy % MLR 81.15 83.84 88.15 90.91 92.66 93.49

5q31 (103) running SVM/STA 3 hour 5 hour 11 hour 16 hour 18 hour 1 day
time MLR 0.77 sec 1.16 sec 4.07 sec 7.27 sec 11.26 sec 15.92 sec

prediction SVM/STA 88.89 90.50 90.67 93.67 95.56 96.74
accuracy % MLR 80.68 85.32 90.75 93.74 95.16 96.38

TRPM8 (101) running SVM/STA 1 hour 2 hour 5 hour 9 hour 16 hour 23 hour
time MLR 0.357 sec 0.787 sec 1.895 sec 3.376 sec 5.181 sec 7.373 sec

prediction SVM/STA 94.02 98.18 99.68 99.73 99.79 99.80
accuracy % MLR 90.79 96.16 99.13 99.71 99.78 99.78

STEAP (22) running SVM/STA 14 min 27 min 1 hour 2 hour 3 hour 4 hour
time MLR 0.034 sec 0.052 sec 0.118 sec 0.203 sec 0.304 sec 0.413 sec

We also compare SVM/STA with the methods of Halldorson et al. [17] and the

method of He et al. [20] in leave-one-out tests on the LPL data set (see Figure 4.3).

Note that the method of Halldorson et al. imputes a SNP based on the tag SNPs

in the same neighborhood and in fact can be classified as a method for statistical

coverage. If there is no tag SNPs in the neighborhood, then their method does not

make any prediction. It is not surprising that it performs poorly for SNP prediction.

The SVM/STA method reconstructs each SNP based on the values of all tag SNPs

which may potentially be far away. On the LPL dataset, SVM/STA reaches, e.g.,

90% accuracy using only one tag.

4.4 SVM-tagging Software

Here, we describe our tagging software base on multiple linear regression. SVM-

tagging selects haplotype tag SNP using support vector machines. We first describe
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Figure 4.3. Comparison among three haplotype tagging method on LPL data:
SVM/STA, Halldorson et al. [17], and He et al. [20] in a leave-one-out experiment.
The x-axis shows the number of SNPs typed, and the y-axis shows the fraction of
SNPs correctly imputed.

how to download, compile, and run SVMtagging package. Then we describe input

and output formats.

Downloading and Installing All relevant files including this pdf file are included in

the tar files: SVMtagging.tar - Linux version available at http://alla.cs.gsu.edu/ soft-

ware.

Download this tar file to your machine then extract the files from the archive tar

-xvf SVMtagging.tar

Compile leaveOneOutSVM.cpp: g++ -o leaveOneOutSVMleave OneOutSVM.cpp

And checkExist.cpp: g++ -o checkExist checkExist.cpp

Download the SVMlight from http://svmlight.joachims.org/

Make sure perl is in ]!/usr/bin/perl

Make sure SVMlight and SVM-tagging package all are in same directory

Running the Program For running SVM-tagging:

type perl SVMtagging.perl hap.txt -g 10

- First parameter = the file name of a haplotype population sample

- Third parameter = desired number of tags K

The result tags will store in tag.txt.
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File Formats hap.txt contain the following lines:

- The number of haplotypes

- The number N of SNPs in each haplotype

- Description of data (can be empty)

- The first haplotype represented by a sequence of 0/1’s without gaps, 0 stands

for major allele, 1 stands for minor allele.

.....

-The last haplotype
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CHAPTER 5

UNBIASED VALIDATION OF TAGGING METHODS

Meanwhile, Biologists can detect or collect data only from a small part of pop-

ulation due to the reasons of technology and expense. For some data, we still have

no way to detect them and they are unobserved to us. So, this will bring a problem

for scientists that the estimates accuracy of tag SNPs when constructing the com-

plete human haplotype map. Iles [28] and Weale et al. [42] proposed a procedure

of ‘dropping SNP’ to investigate unbias performance of tagging method. Following

their ideas, this study investigates how the MLR-tagging for statistically coverage

performs under unbias study. The experiment results shows MLR-tagging still select

small amount of SNPs very well even without observing the entire SNP in the sample.

5.1 Validation of Tagging Methods

5.1.1 Leave-one-out and Leave-many-out

The standard way to validate tagging method is to apply leave-one-out cross-

validation to evaluate the quality of the (1) one by one, each genotype vector is

removed from the sample, (2) tag SNPs are selected using only the remaining geno-

types, and (3) the ”left out” genotype is reconstructed based on its tag SNPs and the

values of tag and non-tag SNPs in the remaining genotypes.

Instead of each time leave one out, leave-many-out cross validation method ran-

domly removes certain percentage of sample, and then the remaining works as training

sample.
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5.1.2 Illis’s validation procedure: Leave-SNP-out

Recently a procedure was proposed for assessing the sufficiency of the marker

density when selecting tag SNPs [42]. The procedure for estimating tag SNP unbiased

performance [42] is straightforward. If it is assumed that the k genotyped SNPs are

drawn from the same distribution as the unobserved SNPs the ‘true’ performance

of the tag SNPs can be estimated. Each of the k SNPs is excluded in turn, the

tagging procedure performed on the remaining k-1 SNPs, and the proportion of the

variance (R2) at the excluded SNP explained by the haplotypes formed from the tag

SNPs calculated. Averaging these k values should give an unbiased estimate of the

performance of the tag SNPs selected from a set of k-1 SNPs. This ‘leave-one-out’

approach [42], as SNP-dropping) assumes both that the sample size is big enough

that the haplotype frequencies are representative of the whole population, and that

the observed SNPs have the same distribution as the unobserved SNPs.

5.2 Experimental Results

The performance of the new approach was to test MLR method in iles’ manner.

We leave column out as a small sample. We selected percentage of 10%, 15% and

20% of entire dataset as our ’observed’ data separately and the remainder classed

as ’unobserved’. Then we randomly generated tag k = 1, 2, .., 8 and 10 or 30 were

selected from ’observed’ to calculate R2 to find the maximal average R2 in ’observed’

region and ’unobserved’ region. In such way, the average R2 between tags and nonTag

SNPs is maximum.Further, we use the tags selected from the leave-many-out sample

to test how good these tags can statically cover the entire sample. As result, in Daly

data, we use one tag can reach R2 27% in its selected sample data, this one tag can

cover the 15% of entire data. T represents tags, V represents visible SNPs and C

represents the entire chrosome.In future, long haplotypes will be our aim. We will

take a large dataset, such as 80K to test.
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The length of the region simulated makes little difference to the accuracy of the

results-what is important is the number of observed SNPs from which the tSNPs are

selected. As the number of observed SNPs increases, so the estimates become more

accurate.

5.2.1 Experimental Datasets

The following datasets are used to measure the quality of our algorithms. Cur-

rently, our algorithms cannot tolerate missing data. Following Halperin et al.[16],

we use GERBIL [12] to phase the genotypes and then combine the resulting two

haplotypes to recover any missing data.

Chromosome 5q31. The data set collected by Daly et al. [9] is derived from the

616 kilobase region of human Chromosome 5q31 that may contain a genetic variant

responsible for Crohn’s disease by genotyping 103 SNPs for 129 trios. We only use

258 haplotypes of offsprings.

Three gene regions. Three regions (ENm013, ENr112, ENr113) from 30 CEPH

family trios obtained from HapMap ENCODE Project [2]. The number of SNPs geno-

typed in each region is 361, 412 and 515 respectively. Regions ENr123 and ENm010

from 2 population: 45 singles Han Chinese (HCB) and 44 singles Japanese(JPT). The

number of SNPs genotyped in each region is 63 and 105.

5.2.2 The example of how we resoleved

The performance of the new approach was to test MLR method in iles’ manner.

We leave column out as a small sample. We selected percentage of 10%, 15% and

20% of entire dataset as our ’observed’ data separately and the remainder classed

as ’unobserved’. Then we randomly generated tag k = 1, 2, .., 8 and 10 or 30 were

selected from ’observed’ to calculate R2 to find the maximal average R2 in ’observed’

region and ’unobserved’ region. In such way, the average R2 between tags and nonTag

SNPs is maximum.Further, we use the tags selected from the leave-many-out sample
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to test how good these tags can statically cover the entire sample. As result, in Daly

data, we use one tag can reach R2 27% in its selected sample data, this one tag can

cover the 15% of entire data. T represents tags, V represents visible SNPs and C

represents the entire chrosome.In future, long haplotypes will be our aim. We will

take a large dataset, such as 80K to test.

The length of the region simulated makes little difference to the accuracy of the

results-what is important is the number of observed SNPs from which the tSNPs are

selected. As the number of observed SNPs increases, so the estimates become more

accurate.

We used four datasets to test our result.We leave-many-out as a small sample,then

we select Tag 1..K , in such way, the average R2 between tags and nonTag SNPs is

maximum. Further, we use the tags selected from the leave-many-out sample to test

how good these tags can statically cover the entire sample. As the number of observed

SNPs increases, so the estimates become more accurate. When there are more than 10

tag SNPs is observed, the relationship between two SNPs is more closed. In ENr113

dataset, we selected percentage as 10get R2 as below Fig1. From testing on different

dataset, we found the average R2 in observed small region is bigger than that in entire

region. Using 10 tags with average R2 0.75 in visible sample can cover average R2

0.63 in the entire sample, 20 tags with average R2 0.95 can reach 0.85 in invisible

region, 30 tags is for 0.91.

5.3 Discussion

An example of this for a region of different length with 8 SNPs ’observed’ is shown

in figure1. Here the average R2 captured at the unobserved SNPs by the tSNPs

selected in the leave-many-out process is 0.949, the average estimated by the leave-

many-out method is 0.833 while the average estimated by using only the observed

SNPs is 0.950. It can be seen from the line chart of figure 2 that as the number of
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Table 5.1. Tags for Daly data

tags prec = 10 prec = 15 prec = 20
S Set E Set S Set E Set S Set E Set

1 0.203 0.194 0.182 0.173 0.195 0.192
2 0.387 0.368 0.322 0.304 0.376 0.349
3 0.500 0.446 0.394 0.366 0.451 0.415
4 0.560 0.499 0.472 0.502 0.515 0.501
5 0.599 0.522 0.534 0.548 0.569 0.543
6 0.632 0.540 0.597 0.592 0.608 0.592
7 0.663 0.567 0.634 0.623 0.643 0.618
8 0.701 0.590 0.668 0.657 0.674 0.653

unobserved markers increases, so the apparent accuracy of the estimate increases. We

provide the result using the other dataset as well. See Fig3, Fig4, Fig5.
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Figure 5.1. Tag are selected from 10% of entire data. Average R2 over 1..to 8 tags
on Daly Data.
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Figure 5.2. Tag are selected from 15% of entire data. Average R2 over 1..to 8 tags
on Daly Data.
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Figure 5.3. Tag are selected from 20% of entire data. Average R2 over 1..to 8 tags
on Daly Data.
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Figure 5.4. Tag are selected from 10% of entire data. Average R2 over 1..to 8 tags
on Enm 013.
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Figure 5.5. Tag are selected from 15% of entire data. Average R2 over 1..to 8 tags
on Enm 013
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Figure 5.6. Tag are selected from 20% of entire data. Average R2 over 1..to 8 tags
on Enm 013
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Figure 5.7. Tag are selected from 10% of entire data. Average R2 over 1..to 8 tags
on ENr 112
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Figure 5.8. Tag are selected from 15% of entire data. Average R2 over 1..to 8 tags
on ENr 112
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Figure 5.9. Tag are selected from 20% of entire data. Average R2 over 1..to 8 tags
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