
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

8-2-2006

iC2mpi: A Platform for Parallel Execution of
Graph-Structured Iterative Computations
Harnish Botadra

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Computer Science Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Recommended Citation
Botadra, Harnish, "iC2mpi: A Platform for Parallel Execution of Graph-Structured Iterative Computations." Thesis, Georgia State
University, 2006.
https://scholarworks.gsu.edu/cs_theses/25

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F25&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

IC2MPI: A PLATFORM FOR PARALLEL EXECUTION OF GRAPH-STRUCTURED

ITERATIVE COMPUTATION

by

HARNISH A BOTADRA

Under the Direction of Sushil Prasad

ABSTRACT

Parallelization of sequential programs is often daunting because of the substantial

development cost involved. Various solutions have been proposed to address this

concern, including directive-based approaches and parallelization platforms. These

solutions have not always been successful, in part because many try to address all types

of applications. We propose a platform for parallelization of a class of applications that

have similar computational structure, namely graph-structured iterative applications.

iC2mpi is a unique proof-of-concept prototype platform that provides relatively easy

parallelization of existing sequential programs and facilitates experimentation with static

partitioning and dynamic load balancing schemes. We demonstrate with various generic

application graph topologies and an existing application, namely a time-stepped

battlefield management simulation, that our platform can produce good performance with

very little effort.

INDEX WORDS: Parallelization, Load Balancing, Graph Partitioning, Battlefiled

Management Simulation, Metis, PaGrid

IC2MPI: A PLATFORM FOR PARALLEL EXECUTION OF GRAPH-STRUCTURED

ITERATIVE COMPUTATION

by

HARNISH A BOTADRA

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

in the College of Arts and Science

Georgia State University

2006

Copyright by
Harnish A Botadra

2006

IC2MPI: A PLATFORM FOR PARALLEL EXECUTION OF GRAPH-STRUCTURED

ITERATIVE COMPUTATION

by

HARNISH A BOTADRA

Major Professor: Dr. Sushil Prasad
Committee: Dr. Raj Sunderraman

Dr. Alex Zelikovsky

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
August 2006

 iv

Acknowledgements

I would like to thank my advisor, Dr. Sushil K. Prasad, for his expert guidance.

He was always receptive to new ideas and ready to explore options. He always helped me

see the bigger picture thus helping me focus on the main issues in the system.

I would also like to thank Dr. Eric Aubanel and Dr. Virendra Bhavsar of

University of New Brunswick, Canada for their review of the manuscript.

Thanks to Qiong Cheng for helping me, with a portion of the Experimental

Results related to my research work.

Dr. Raj Suderraman & Dr. Alex Zelikovsky were kind enough to review the

manuscript and provide me with fine pointers to meet the standards.

 v

Dedicated to everyone who was a part of this

 For all the support

 vi

Table of contents

List of Tables…………………………………………………………………………...viii

List of Figures……………………………………………………………………………ix

1 INTRODUCTION……………………………………………………………………..1

1.1 Current Limitations……………………………………………………………1

1.2 Specific Goals…………………………………………………………………2

1.3 iC2mpi Solutions……………………………………………………………...3

2 METHODOLOGY……………….……………………………………………………5

2.1 Graph Topologies……………………………………………………………..5

2.2 Battlefield Management Simulation…………………………………………..7

3 PLATFORM ARCHITECTURE..…………………………………………………..10

4 DETAILED DATA STRUCTURES & ALGORITHMS.……………………….....16

4.1 Initialization Phase…………………………………………………………...16

4.2 Computation & Communication Phase……………………………………...19

4.3 Load Balancing & Task Migration Phase…………………………………....21

5 EXPERIMENTAL RESULTS….……………………………………………………28

5.1 Hexagonal Grids……………………………………………………………..28

5.2 Random Graphs……………………………………………………………...33

5.3 Battlefield Management Simulations………………………………………...36

5.4 Measurement of Overheads………………………………………………….39

5.5 Creation of Dynamic Load Imbalance……………………………………….41

6 RELATED WORK…………………………………………………………………...43

6.1 Zoltan………………………………………………………………………...43

 vii

6.2 CO2P3S………………………………………………………………………44

7 DESIGN ENHANCEMENTS..…..46

7.1 Future Extensions…………………………………………………………….47

8 CONCLUSIONS & FUTURE WORK...……………………………………………49

9 BIBLIOGRAPHY……………………...……………………………………………..50

Appendix A……………………………………………………………………………...53

Appendix B……………………………………………………………………………...64

Appendix C……………………………………………………………………………...70

Appendix D……………………………………………………………………………...94

 viii

List of Tables

Table 1.Possible state of processors during the parallel execution of task migration......27

Table 2. Execution Time (in seconds) on 32-node Hexagonal Grids………………………29

Table 3. Execution Time (in seconds) on 64-node Hexagonal Grids………………………29

Table 4. Execution Time (in seconds) on 96-node Hexagonal Grids………………………29

Table 5. Execution Time (in seconds) on 32-node Random Graphs………………………..33

Table 6. Execution Time (in seconds) on 64-node Random Graphs……………………….33

Table 7. Execution Time (in seconds) of Battlefield Simulator using Metis………………37

Table 8. Execution Time (in seconds) of Battlefield Simulator using BF Partition………37

Table 9. Execution Time (in seconds) of Battlefield Simulator using Row Band
Partition……………………………………………………………………………………………37

Table 10. Execution Time (in seconds) of Battlefield Simulator using Column Band
Partition……………………………………………………………………………………………38

Table 11. Execution Time (in seconds) of Battlefield Simulator using Rectangular Band
Partition……………………………………………………………………………………………38

 ix

List of Figures

Figure 1. Node Data Structure for Graph Topologies.………………………………………..6

Figure 2. Node Data Structures used for Battlefield Management Simulation.……………8

Figure 3. Data Structure maintaining node information for Battlefield Simulation………9

Figure 4. Layered Architecture View of iC2mpi Platform…………………………………..10

Figure 5. Detailed Architecture of iC2mpi Platform…………………………………………11

Figure 6. System Flow of Control………………………………………………………………14

Figure 7. Maintaining Node Information………………………………………………………18

Figure 8. Computation & Communication Functions……………………………………….20

Figure 9. Choosing B over A for task migration, keeping edge-cut to a minimum………24

Figure 10. Employment of task migration in parallel……………………………………….26

Figure 11. Speedup for Hexagonal Grids using Metis……………………………………….30

Figure 12. Metis vs. PaGrid for Fine and Coarse Grained 64-node Hexagonal Grids…30

Figure 13. Static v Dynamic Partitioning on 64-node Hexagonal Grids…………………31

Figure 14. Static v Dynamic Partitioning on 32-node Hexagonal Grids…………………32

Figure 15. Static v Dynamic Partitioning on 96-node Hexagonal Grids…………………32

Figure 16. Speedup for Random Graphs with Static Partition (Metis)……………………34

Figure 17. Metis vs. PaGrid on Fine and Coarse Grained 64-node Random Graphs….35

Figure 18. Performance of Dynamic Partitioning on 64-node Random Graphs………..35

Figure 19. Performance of Dynamic Partitioning on 32-node Random Graphs………..36

Figure 20. Performance of Battlefield Management Simulation for different Static
Partitioning Algorithms…………………………………………………………………………38

Figure 21. Overheads in iC2mpi Platform for fine grained (0.3 ms) 64-node Hexagonal
Grids………………………………………………………………………………………………40

 x

Figure 22. Overheads in iC2mpi Platform for fine grained (0.3 ms) 64-node Random
Graphs……………………………………………………………………………………………...40

Figure 23. Varying the grain size of the node for creating dynamic load imbalance……41

 1

1. Introduction

Many application domains, wherein distributed computation has been successfully

employed, fall into the class of iterative computations – this class can be characterized by

underlying mesh or graph structured application programs and iterative local

computations over nodes, dependent only on the neighboring nodes. Examples of such

application domains include many time-stepped simulations, such as battlefield

management [DMP98], weather forecasting [K90], or fluid dynamics [HMP03], and

mesh-structured computations, such as difference equations [Q04], finite element

methods [SG04], and cellular automata [CCE01]. Despite sharing essentially similar

program structures, there is no generic framework to help the programmers of these

applications to easily transition from their sequential implementations to distributed

machines or to grid platforms (see Section 6 for relevant literature). Our iC2mpi

platform addresses this and related issues.

1.1 Current Limitations

Typically, scientists and engineers have proven sequential C/C++ codes and converting

these to distributed versions in MPI entails challenges of explicit parallel programming,

debugging, and revalidating. Most applications programmers, therefore, are limited to

automatic loop-based parallelization, or to inserting compiler directives (as in OpenMP

[OP] and HPF [Z02]). If distributed versions are manually developed (usually employing

MPI), quite often these programs hard code a specific pattern of domain decomposition to

statically partition the application program graph/mesh among the processors of a target

machine topology, aiming to best balance computational load and minimize

 2

communication. Therefore, the resultant MPI code that programmers develop typically

requires code changes to study various static partitioning techniques, as these are not

developed in a framework-like fashion to easily enable such performance studies. When

load can be unpredictable, for example in a battlefield simulation where combat zones

form dynamically, they also need to employ dynamic load balancing, which requires even

more versatile design of the distributed programs, further challenging an application

programmer.

On the other hand, the algorithm designers of graph partitioning packages, such as

Metis [KK98], Jostle [WC01], and PaGrid [WA04, HAB06], are also limited as they can

only estimate the efficiency of their techniques analytically. There is currently no

general-purpose test-bed available that allows them to easily plug-in their algorithms, and

execute and verify the performances on various program graphs and processor

architectures.

1.2 Specific Goals

This work describes our project to develop a suitable platform with the following goals.

1. Design an MPI-based platform with an open architecture for the class of iterative

graph-structured application programs, possibly with dynamically varying

computational loads, into which application programmers can plug-in the code and

the data structures for their computational nodes, the graphs for their application

programs and for the processor network, and the third-party algorithms for

partitioning and load balancing.

2. Enable application programmers to

 3

a. easily execute their sequential code for iterative computations on distributed

architectures without any code change in their node computations or in the

basic node data structures, and without any MPI coding, and

b. to compare the performance of different static graph partitioners, and the

impact of various dynamic load balancing and repartitioning techniques,

without any additional coding.

3. Enable designers of algorithms for graph partitioning and for dynamic load balancing

to validate the efficiency of their techniques by actual execution over a variety of

graph-structured iterative computations and load characteristics on different parallel

and distributed architectures and heterogeneous grids instead of typical analytical

estimation.

4. Enable carrying out of refinements and performance tuning for efficient computation

and communication on the platform itself to impact the entire class of relevant

iterative computations.

1.3 iC2mpi Solution

Our resultant platform, namely iC2mpi (for enabling transition from an iterative

computation in C to an MPI-enabled execution), is our first prototype demonstrating a

proof of concept. Its initial goal has been to architect a generic platform, fulfilling Goals

1, 2, and 3. Although efficiency enhancements of the platform have not been taken up

yet (Goal 4), we do obtain reasonably good speedups over a variety of example codes.

Section 2 describes the methodology entailed in deploying various graph topologies and

Battlefield Management Simulation on our platform. Section 3 describes the overall

architecture of iC2mpi, and Section 4 gives the details of its internal algorithms and data

 4

structures. Section 5 shows the results of various experiments with different iterative

applications on iC2mpi platform. We employ Metis and PaGrid as examples of third-

party plug-ins to study various static partitioning schemes. We have also developed our

own simple repartitioning heuristic plug-in to experiment with dynamic task migrations.

We had earlier developed a large battlefield management simulator [DMP98]

which employs hexagonal grid-based terrain. Each grid cell simulates all its battlefield

units in each time step. It was efficiently parallelized earlier on hypercube machines

using PVM employing mesh-to-hypercube gray-code-based embedding. But its efficient

yet rigid array-based hex-cell data structure and associated messaging algorithms became

serious impediment to incorporate various static (or dynamic) partitioning schemes, and

needed major code changes. Using iC2mpi platform, we here demonstrate that we are

able to convert the C code and study various partitioning schemes with relative ease.

Section 6 briefly reviews related work, Section 7 talks about the possible design

enhancements and Section 8 concludes by discussing ongoing and future work in

extending the iC2mpi platform and improving its performance.

 5

2. Methodology

In this section we talk about the methodology entailed in parallelization of the various

graph topologies and the battlefield management simulation deployed on the iC2mpi

platform. We discuss three user plug-in points in each of the cases namely the

application program graph, node data structures and the node computation function.

2.1 Graph Topologies

Methodology for both the hexagonal grids and the random graphs would be the same, so

we shall just discuss one over here.

Application Program Graph:

Different size application program graphs are generated (32- and 64- node in case

of random graphs & 32-, 64- and 96- node in case of hexagonal grids). The application

program graph is input to the static graph partitioner (example: Metis and PaGrid). The

static graph partitioner gives the initial node to processor mapping. The initialization

phase uses this mapping and initializes the required data structures in the local memory of

the processors. The application program graph is supplied from the command line to the

platform as: mpirun –np num_procs MPIFramework $program_graph. Here,

‘num_procs’ is the number of processors and ‘$program_graph’ is the application

program graph.

Node Data Structures:

The struct type used for the node data structures is as shown in figure 1.

 6

‘globalID’ is the global node identifier. ‘data’ stores the actual node data. Updated node

data is stored in ‘most_recent_data’, since the old data might still be required for the

computation purposes of the neighboring nodes. Finally, ‘*next_node’ is a pointer to the

Figure 1: Node Data Structure for Graph Topologies

next node in the list. These node data structures are initialized and fed to the

‘Initialization Phase’ of the platform. In the platform’s current version, there’s no clean

interface for the user to input the node data structures. Providing a clean user interface

for the user to easily feed the node data structures to the ‘Initialization Phase’ of the

platform is one of the main design enhancements required in the current version.

Computation Function:

For these graphs, each node computes the average of the data maintained by all its

neighbors. A dummy ‘for loop’ is used to inject the grain size. A size of 0.3 ms is used

for the fine grain and 3 ms is used for the coarse grain. ‘Computation Phase’ of the

platform maintains a pointer to this computation function. For updating of a node, a list

is sent to this function with the current node’s data as the head followed by the data of its

neighbors. So this computation function needs to compute over the node using this

specification. Look at the appendix B with the user code for this computation function

and how the platform’s ‘Computation Phase’ invokes this node computation function by

maintaining a pointer to the same.

struct node_data
{
int globalID:
int data;
int most_recent_data;
struct node_data * next_node;
};

 7

2.2 Battlefield Management Simulation

As mentioned, Battlefield management simulations are employed to evaluate doctrine

and tactics, and to predict the battle outcome in various scenarios [DMP98]. These are

amongst the most computationally intense and complex simulations in existence.

Though, not tried with the dynamic load balancer on our platform, battlefield simulation

remains an interesting topic for researching load balancing because its computation load

dynamically changes with both time and space.

Application Program Graph:

32 x 32-hex battlefield (computational domain is divided into hexes and hex-to-processor

assignment is used for initial partitioning) graphs are used and various static graph

partitioners are used to obtain the initial partitioning.

Node Data Structures:

Figure 2 shows the node data structures used for deploying this application on the

platform. Figure 3 shows the data structures used for maintaining node information

(compare this with figure 7). Refer to [DMP98] for the initialization of these data

structures.

Computation Function:

As in the previous case, this function is invoked from the platform’s computation phase

which maintains a pointer to this function. Here, there’s one small customization in the

platform flow of control. For the battlefield management simulation the computation and

communication overlap with each other. Hence, the computation and communication

function sequence is called more than once, rather than just once.

 8

Figure 2: Node Data Structures used for Battlefield Management Simulation

typedef struct nData{
int globalID;
int data;
hex_node_data_struct *hexdata;
int most_recent_data;
struct nData *next_node;

} node_data;

typedef struct {
unsigned neighbor[6];/* the six neighboring processor node */
int hex_displacement[6];
hex_struct my_units[no_of_hexes_per_processor];
 /* my_units[i] contains the current units in `i'th hex */
hex_struct buffer[6][no_of_hexes_per_processor];
 /* temp space to store the neighbor's units */
target_type target[no_of_hexes_per_processor];
 /* target units for each of my_units */
unsigned

destroyed[no_of_hexes_per_processor][2][no_of_units_per_hex][7];
 /* destroyed[hex][0/1][i][j] is the number of assets
 that the red/blue unit i at `hex' has destroyed
 in the direction j (0..5 neighbor, 6 own hex)*/
hex_struct old_status_of_my_units[no_of_hexes_per_processor];

/* temp storage to save the status of my units
*/

unsigned my_unit_size, no_of_units, nodeid;
unsigned target_list_length, cumulative_target_list_length;

}hex_node_data_struct;

 9

Figure 3: Data Structure for maintaining node information for Battlefield Simulation

typedef struct own
{

int globalID;
char internal_or_peripheral;
int owning_proc;
struct nData *data_location;
int neighboring_nodes[BF_MAX_Neighbor_NUM];
int processor_neighbors[BF_MAX_Neighbor_NUM];
int shadow_for_procs[BF_MAX_Neighbor_NUM];
struct own *next_node;

} own_node;

 10

3. Platform Architecture

In this section we discuss the platform architecture, before we go in-depth with each of

the platform components in the next section. Figure 4 shows the layered architecture

view of the platform. The application program sits on top and provides the application

graph, node data structures and the node computation function as user plug-ins to the

platform. The platform uses a static graph partitioner for the initial partitioning. A

dynamic load balancer is incorporated in the platform for load balancing of dynamic

domain applications.

Application Program

iC2mpi Platform
Static Graph
Partitioner

Dynamic Load
Balancer

MPI

Figure 4: Layered Architecture View of the iC2mpi Platform

The platform uses an MPI approach for parallelization, one of the most widely

used methods to achieve parallelism on today’s clusters and multiprocessor

supercomputers [SM02]. Figure 5 shows the detailed platform architecture, and

explicitly indicates user plug-in points (application program graph, node data structures,

and node computation function) and the interaction of the platform components with the

data structures they use. The static graph partitioner and dynamic load balancer are the

third-party components. Solid templates are the platform components. To begin, Metis,

a package for partitioning irregular graphs [KK98] (or, PaGrid, another package designed

specially for heterogeneous grids), is used to obtain the initial partitioning. The

 11

application problem graph is input to Metis/PaGrid, which gives the initial node-to-

processor mapping. There are three major phases involved in the platform architecture:

initialization, computation & communication, and load balancing & task migration. The

initialization phase uses the node-to-processor mapping provided by the static graph

partitioner to initialize the required data structures in the local memory of the processors.

It takes the Application Node Data Structures as a user plug-in to initialize the Internal

MPI
Communication

Hash Table

Data Node List

Internal and Peripheral Node List
Processor Data Structures

Initialize

Static Graph
Partitioner

(Metis, PaGrid)

Application Program
and Processor

Network Graphs

Dynamic
Load

Balancer

Task Migration
Application Node

Data Structure

Application Node
function()

Compute
Over

Nodes

Figure 5: Detailed Architecture of iC2mpi Platform

 12

and Peripheral Node List, the Hash Table, and the Data Node List. Compute Over Nodes

is responsible for the node computation. It invokes the Application Node function for the

node computation and updates the data structures with the new node data. Updated

peripheral node data is then communicated to appropriate neighboring processors by MPI

Communication. Dynamic load balancer is periodically invoked to balance the work-

load on the fly for dynamic applications with varying load requirements. We briefly talk

about each of these components.

Initialization Phase: ‘Initialize Data Structures’ uses the node data structures provided

by the user to set up the data structures for maintaining node information and node data in

the local memories of the processors. In addition to the data of the nodes owned by the

processor, it also maintains shadow node information locally. The data structures set up

include internal and peripheral node list for maintaining node information, the data node

list for maintaining the node data and hash table for easy access of the node data. Note

that the data node list not only includes data for the nodes owned by the processor but

also the shadow node data. This phase can be a sizeable overhead for large application

program graphs. Good initial partitioning which more or less assigns the same amount of

work to each of the processors and minimizes the edge-cut would keep this overhead to a

minimum. Different static graph partitioners can be plugged-in not only to study the

different partitioning of the graph partitioners but also to fine tune the performance of the

iterative computation parallelized on the platform.

Computation & Communication Phase: ‘Compute over Nodes’ does the actual

computation for each of the nodes owned by the processor using data of the neighboring

nodes, also maintained locally. A list with the current node data as the head, followed by

 13

the data of the neighbors is passed to the Application Node function invoked using a

pointer maintained by this routine. Application Node function provided by the user

incorporates the actual code for the node computation. Updated peripheral node data

from the application node function is packed into communication buffers. By the time

‘Compute Over Nodes’ returns, the communication buffers to communicate the shadow

node information to the neighboring processors are already set up. Hence, ‘Communicate

Shadows’ just sends the necessary shadow node information packed in the buffers to the

neighboring processors and receives the updated shadow node information from its

neighbors. Note, that there’s an overlap in the overheads of computation and

communication so as to maximize the throughput.

Load Balancing & Task Migration Phase: The load balancing routine is periodically

invoked to check for any load imbalance. We incorporate a centralized heuristic

algorithm as the dynamic load balancer, which can also be a third party plug-in. It

measures the relative work done by each processor, before deciding if the load-imbalance

is substantial enough to invoke the task migration routine. Based on the load imbalance

statistics gathered by the load balancing routine, the task migration routine actually

balances the work load among the processors by sending the task from a busy processor

to its idle neighbor at different locations in the computational domain where there’s

substantial load-imbalance. Hence, this phase helps maintain the work load among the

processors. In essence, it provides node to processor remapping without having to go

through the initialization phase all over again. This phase is very important for dynamic

applications with varying load requirements. There’s no way a static graph partitioner

can capture varying load requirements. Dynamic load balancer balances the work-load

 14

on the fly. Invoking the initialization phase for re-partitioning from the scratch can be

very costly. Hence, this phase is vital to realize the true potential of a parallel platform.

Figure 6 shows the framework components in action in the system flow of control.

Dynamic Load Balancer

Graph Partitioner

Initialization

Computation

Communication

Task Migration

Check
Load?

Imbalance?

Y

N

Y

N

Figure 6: System Flow of Control

 15

Different templates used for Graph Partitioner and Dynamic Load Balancer, emphasize

that those can be third-party packages. Metis and PaGrid were employed as the static

graph partitioners. Later section on Experimental Results compare the performance of

these two partitioners on various graph topologies employed on the platform. For

attaining dynamic load balancing a centralized heuristic algorithm was used in the

platform. A third party dynamic load balancer can be used instead. Hence, the platform

provides a test bed to study partitioning algorithms and static and dynamic load

balancing strategies.

 16

4. Detailed Data Structures & Algorithms

We now discuss the data structures and algorithms involved in each of the three phases of

the platform in detail.

4.1 Initialization Phase

This phase is concerned with the data structures initialized in the local memory of each of

the processors, which are required for efficient computation and communication.

Selection of data structures is central to the efficient solving of irregular concurrent

problems on distributed memory architectures [PSC95].

During this phase, all the processors initialize data structures in their local

memories to maintain graph connectivity of the iterative problem, node information and

node data. In addition to the data of the nodes owned by the processor (some are internal

nodes and others are peripheral nodes, the ones which have at least one neighboring node

on another processor), it also maintains shadow node information locally (the non-local

nodes which are neighboring to its peripheral nodes). The data structures set up include

internal and peripheral node list for maintaining node information, the data node list for

maintaining the node data, and a hash table for fast access of the node data. As

mentioned the data node list not only includes data for the nodes owned by the processor

but also the shadow node data.

The initial input graph and the initial node-to-processor mapping yielded by graph

partitioner is stored into appropriate data structures. Typically, since file access is slower

than data structure access, the available information in file format is copied into data

structures for easy access and retrieval whenever required.

 17

Figure 7 shows the node information maintained by each processor. Maintaining

node information is important apart from maintaining node data. Properties of the node

determine the treatment that should be meted to the node. Here we deal with three types

of nodes namely internal, peripheral and shadow nodes. Node types might change during

the course of execution (due to repartitioning of the computational domain) and with that

the information attached with the node needs to be changed as well.

Each node in the iterative application problem graph has a unique global ID

signified by global_ID. A single character specifies the node type, internal or peripheral.

The owning processor of the node is specified by owning_proc. A pointer to the user

supplied node data structure is kept at *data_location. The neighbors of the node are

maintained in an array neighboring_nodes[]. Finally, the shadow_for_procs[] array

specifies the processors for which the current node is a shadow, if at all. This array helps

in setting up the communication buffers. By analyzing this array for each of its

peripheral nodes, a processor exactly knows the neighboring processors it needs to

communicate, and what to communicate. Note that a node is a shadow node for

neighboring processors only if it is a peripheral node.

Separate lists are maintained for the internal and the peripheral nodes owned by

processor. The advantage of maintaining the node information in separate lists is

leveraged by the load balancing phase, where separate maintenance of these lists allows

for easy updating of data structures (during task migration) related to node and thereby

easy migration to neighboring processors. Here, it should be noted that no separate

shadow node list is maintained by the processor. A processor is only concerned with the

 18

shadow node data which is easily accessible using the hash table which holds the location

for the same.

Figure 7: Maintaining Node Information

Apart from node information, node data is also maintained in the form of a list.

The global ID and the actual node data being the members of the structure used for the

same. After computation, updated shadow node information is received by the processor,

and this information is updated before proceeding to the next iteration of computation.

 Besides these data structures, hash tables are also set up in the local memory of

each processor. Hash tables are implemented as an array of pointers to sorted linked lists

which contain the locations for node data. A modulo hash function is applied on the node

global ID (key) to obtain the location for node data. The buckets (sorted linked lists)

maintain pointers to the node data in the data node lists. This helps provide an amortized

constant time access to the node data during computation without having to go through

the entire data node list [PSC95]. Note that the Hash tables play a dual role. Firstly, it

helps in accessing the node data during computation as mentioned, and secondly in the

updating of the node data after communication. Hash tables help in easy access of the

struct own_node
{

int global_ID;
char internal_or_peripheral;
int owning_proc;
struct node_data *data_location;
int neighboring_nodes[];
int shadow_for_procs[];
struct own_node *next_node;

};

 19

shadow node data from the data node list, which would be needed during the computation

of the node.

4.2 Computation & Communication Phase

During this phase, the processor performs computations for each of its nodes using data

of the neighboring nodes. After updating the node data, a processor sends the updated

peripheral node data to appropriate neighboring processors and then receives the updated

shadow node data from appropriate processors.

Figure 8 shows the computation and communication functions. For each node it

owns, it forms a list comprising of the current node’s data as the head followed by the

data of the neighbors to be passed to the application node computation function. The

platform maintains a pointer to the application node function supplied by the user. This

allows for a clean and robust decoupling between the iC2mpi platform and the

application program code.

Internal nodes are updated followed by the peripheral nodes. As the peripheral

node data is updated, this updated data is packed into communication buffers even as the

next peripheral node in the ‘for loop’ is ready to be updated. An array of pointers to an

array of structures, one for each neighboring processor, is used for the communication

buffers. This array is of the size equal to the number of neighboring processors with each

element in the array pointing to the communication buffer (array of structures) to be sent

to the processor corresponding to the index of that array element. From the initialization

phase, a processor already knows the neighboring processors it needs to communicate the

shadow node information to, and the number of such shadow nodes. Hence, the data

structure chosen for the communication buffers gives optimum memory usage. By the

 20

time the computation routine returns, the communication buffers are all set up, and

communication can proceed.

Figure 8: Computation & Communication Functions

For physical communication of these buffers, the structure type used to set up the

buffers is committed to an MPI data type (using MPI_Type_commit), since it is not a

void ComputeOverNodes()
{

for each internal node
{

form list of node and its neighbors;
invoke application node function();

}

for each peripheral node
{

form list of node and its neighbors;
invoke application node function;
pack updated peripheral node data into communication buffers;

}
}

// Communication buffers set up at this stage.

void CommunicateShadows()
{

for each neighboring processor
{

MPI_Isend(shadow nodes);
}

for each neighboring processor
{

MPI_Recv(shadow nodes);
}

}

 21

standard MPI data type but a derived data type. All the processors send these buffers at

one go. MPI_Isend(), a non-blocking call, is used for sending these buffers to

appropriate processors. MPI_Recv() receives these buffers which are then used to update

the locally maintained shadow node information.

A version of iC2mpi employs MPI_Irecv() to overlap the computations with

communications, by processing the peripheral nodes first and dispatching the shadow

nodes to neighboring processors, and while the communication takes place, proceeds

with the processing of the internal nodes. The resulting computation and communication

functions are shown in figure 8a. These and other performance enhancements are

currently underway – the results reported in Section 4 employs the basic prototype of

iC2mpi platform.

4.3 Load Balancing & Task Migration Phase

Dynamic applications require periodic load-balancing, since the computational workload

of individual nodes may change throughout the course of computation. For dynamic

applications, it is important to devote the available resources in sub-domains with higher

computational complexity which varies with time. Hence, this phase is vital for the

efficient parallelization of such applications. Repartitioning should not only balance the

work load among the processors but also keep the edge-cut to a minimum, so as to

minimize the inter-processor communication [KK98].

“Although, massively parallel computers can deliver impressive peak

performances, their computational power is not sufficient to simulate physical problems

with highly localized phenomena by using only brute force computations. Adaptive

computations offer the potential to provide large increases in performance for problems

 22

Figure 8a: Computation & Communication Functions

void ComputeOverNodes()
{

for each peripheral node
{

form list of node and its neighbors;
invoke application node function;
pack updated peripheral node data into communication buffers;

}
}

// Communication buffers set up at this stage.

void CommunicateShadows()
{

for each neighboring processor
{

MPI_Isend(shadow nodes); // non-blocking call
}

for each neighboring processor
{

MPI_Irecv(shadow nodes); // non-blocking call
}

}

void ComputeOverNodes()
{

// Do the remainder of computation even as communication continues
for each internal node
{

form list of node and its neighbors;
invoke application node function;

}
}

void CommunicateShadows()
{

// Wait for MPI_Irecv() to finish
MPI_Wait();
Unpack the buffers;

}

 23

with dissimilar physical scales by focusing the available computing power on the regions

where the solution changes rapidly. [CS96]” This only reiterates the importance of this

phase. Dynamic load balancing utilities incorporated in the framework make it robust

even in face of domain applications with varying load requirements.

We now briefly describe a centralized heuristic algorithm used in the platform in

order to attain dynamic load balancing. As mentioned a third party plug-in is possible

here.

1) A weighted processor network graph is set up. The execution time of the

processors for a specific number of iterations represents the weight on the nodes and the

weight of the edge connecting two processors is the amount of communication between

the two estimated by the length of the communication buffers.

2) A designated processor (chosen as the one with id = 0 in this case) examines

the processor graph so as to measure the relative workload on the processors spread

across the computational domain. The processor that does 25% more work (obtained

from the node weights) than all its neighbors is considered to be the ‘busy’ processor.

The one among its neighbors doing the least amount of work is labeled as an ‘idle’ one.

The central processor obtains all such ‘busy-idle’ pairs from the processor graph.

3) As a final step, we just need to decide upon the task that should be migrated

from the ‘busy’ processor to the ‘idle’ processor. The task which keeps the edge-cut to a

minimum becomes the candidate for ‘task migration.’ For example, in Figure 9, out of

the two nodes A and B which could be migrated from processor 0 to processor 1, we

choose the migration of node B. Migrating node A would cause three edges to cross the

 24

boundary of processor 0, which would increase the overall edge cut by 2, and so we

choose B in this case.

The statistics obtained by the dynamic load balancer namely a set of ‘busy-idle’

pairs is then fed to the task migration routine, which then balances the work load among

the processors. Now, we talk about the task migration routine which deals with the

migration of a task from the ‘busy’ processor to an ‘idle’ one. We discuss, how exactly a

task is migrated and the changes involved in the data structures of the concerned

processors.

Task Migration: This phase repartitions the computational domain balancing the

work load among the processors. A single task migration involves the ‘busy’ processor

which sends the task, an ‘idle’ processor which receives the task, and a set of processors

which hold shadows for the migrating node. Here, we talk about the changes in data

Figure 9: Choosing B over A for task migration, keeping edge-cut to a minimum

0

B

A C

1

 25

structures & the send/receive operations at each of these 3 types of processors upon

execution of task migration.

There are changes in the node information maintained by the ‘busy’ processor.

The internal nodes with an edge to the migrating node would become peripheral nodes.

Hence, such nodes need to be removed from the internal node list and added to the

peripheral node list. The migrating node needs to be removed from the peripheral node

list. Here, it should be noted that, the entry of the migrating node isn’t be removed from

the data node list and the hash table, since, the migrating node now becomes a shadow

node for the ‘busy’ processor, and it still needs to maintain its data for the computation of

the other nodes owned by the same. Apart from these changes in the data structures, the

‘busy’ processor also sends the data of the neighbors of the migrating node to the ‘idle’

processor. This is needed since the neighbors of the migrating node now become shadow

nodes for the ‘idle’ processor and it needs the same for the computation of the migrating

node, by the time the next iteration of the computation occurs.

As far as the ‘idle’ processor is concerned, it receives the data of the neighbors of

the migrating node sent from the ‘busy’ processor. Hash tables and data node lists would

need to be updated to maintain the data just received. Apart from that, in this case, there

is a possibility of the peripheral nodes becoming internal. So the internal and peripheral

node lists are updated accordingly. Besides, the node information of the migrating node

is added in the peripheral node list.

Finally, for the set of processors which hold the neighbors of the migrating node

other than the ‘busy’ and ‘idle’ processors needs to update the maintenance of shadow

node information. Now they receive the updated shadow node information of the

 26

migrating node from the ‘idle’ processor instead of the ‘busy’ processor due to the

change in ownership of the migrating node.

We have considered migration of a single task. In our framework such migrations

occur in parallel across the computational domain. For dynamic applications, the data

redistribution cost for load balancing can be comparable to the actual time for

computation [SKK00]. Further, it is only apt to leverage the maximum out of the

overhead incurred by the load balancing routine to gather the load statistics across the

computational domain. Figure 10 which show employment of task migration in parallel

helps achieve just this.

Here, it should be mentioned that there’s no limiting condition for the parallel execution

of task migration. It is possible for a processor to be a part of more than one migration.

Yet the migrations can take place in parallel. To understand this consider table 1. A

processor with respect to a single migration can be either a ‘busy’ processor, or an ‘idle’

Figure 10: Employment of task migration in parallel

P0

 27

processor or belongs to the set of processors which hold the shadow for the migrating

node.

Processor ‘Busy’ ‘Idle’ Holding Shadow for

the Migrating Node

Busy Y N N

Idle N Y Y

Holding Shadow for

the Migrating Node

N Y Y

Table 1: Possible state of the processors during the parallel execution of task migration.

When a processor for a particular migration is a ‘busy’ processor, it cannot be

either ‘idle’ or holding shadow for the migrating node of any other migration. From, the

centralized heuristic algorithm we know that a processor is designated as ‘busy’ when it

does 25% more work than all its neighbors. When, that’s the case, there’s no question of

it receiving any task from any of its neighbors. Further, since the neighbors of the ‘busy’

processor do not migrate any task for the current run (since, they do less work than the

‘busy’ processor), the ‘busy’ processor also cannot in the third category of processors,

namely the set of processors holding shadows for the migrating node. On the basis of

similar reasoning, we obtain the values for the second and third rows of table 1. So, the

two cases (corresponding to the 2nd and 3rd row of table 1) when a processor is a part of

two migrations, it handles those sequentially. Further, it is possible, that a processor

might be receiving two tasks from two different processors during the same run (P0 in

figure 10). The processor would then handle such situations sequentially (receive tasks

from the neighboring processors one after the other).

 28

5. Experimental Results

The experimental results were conducted on Silicon Graphics Origin-2000 computer with

24 CPUs. It has CRAY link high bandwidth interconnects, and is based on hypercube cc-

NUMA architecture. Two generic applications with hexagonal grid and random graph

topologies, and one existing application, namely battlefield management simulation

[DMP98], are parallelized using the iC2mpi platform. In each case, the application node

function and data structure was prepared and plugged into iC2mpi platform with relative

ease.

5.1 Hexagonal Grids

We tested the performance of the platform on hexagonal grids. Different size hexagonal

grids are used to deploy on the platform using different numbers of processors.

Each node computes the average of the data maintained by all its neighbors. A

dummy ‘for loop’ is used to inject a grain size of about 0.3 ms for fine grain and 3 ms for

coarse grain on the nodes.

Tables 2, 3 and 4 show the overall runtimes in seconds for parallelizing these

grids on the platform using Metis for the initial node-to-processor mapping. Most data

corresponds to average over five different fine grained graphs, unless specified otherwise.

Figure 11 shows the speedup plots for 20 iterations on 32, 64 and 96-node hexagonal

grids deployed on the iC2mpi platform. In figure 12, we compare the performance of

Metis [KK98] and PaGrid [WA04, HAB06]. We obtain the speedup plots using fine and

coarse grain computation for the nodes. This figure shows the speedup plots for 20

iterations for 64-node hexagonal grid using Metis and PaGrid as the static graph

 29

partitioners. As expected, we see that coarse grain node computation results in

considerably better speedups as compared to the fine grain node computation.

Processors

Iterations

1 2 4 8 16
10 .111 .0580 .0315 .0191 .028
15 .165 .085 .0462 .027 .035
20 .209 .113 .0605 .0435 .0434

Table 2: Execution Time (in seconds) on 32-node Hexagonal Grids

ProcessorsIterations

1 2 4 8 16
10 .218 .113 .0708 .0348 .039
15 .344 .178 .092 .0585 .056
20 .458 .236 .136 .0829 .0638

Table 3: Execution Time (in seconds) on 64-node Hexagonal Grids

ProcessorsIterations

1 2 4 8 16
10 .3528 .177 .0912 .0603 .052
15 .527 .254 .135 .0809 .071
20 .7016 .352 .180 .106 .085

Table 4: Execution Time (in seconds) on 96-node Hexagonal Grids

 30

Speed-up Plots for Static Partition

0

2

4

6

8

10

1 2 4 8 16

Processor

S
p

ee
d

-u
p

32-node Hexagonal
Grid

64-node Hexagonal
Grid

96-node Hexagonal
Grid

Figure 11: Speedup for Hexagonal Grids using Metis

Metis v PaGrid Speed-up Plots for Fine and Coarse Grain
(Hexagonal Grid)

0

2

4

6

8

10

12

1 2 4 8 16

Processor

S
p

e
e

d
-u

p

Fine Grain (0.3 milli-sec
grain size) - Metis

Coarse Grain (3 milli-sec
grain size) - Metis

Fine Grain (0.3 milli-sec
grain size) - PaGrid

Coarse Grain (3 milli-sec
grain size) - PaGrid

Figure 12: Metis vs PaGrid for Fine & Coarse Grained 64-node Hexagonal Grids

 31

We employed Chaco format [KK98] for the application program graph as input to

the partitioners employed, namely Metis and PaGrid. In addition, the processor network

graph used for PaGrid (hypercube) used the grid format specified in [WA04, HAB06].

Of particular interest is the “Rref” parameter for PaGrid, defined as the ratio of

communication time to the computation time per node in the application graph. For the

graph topologies discussed here, we used Rref = 0.45. For Metis, we set the parameter

fmt=0, indicating uniform weighted program graph; Metis does not use processor

network graph [KK98].

Next, we compare the performance of the platform with and without dynamic

load balancing utility. Figures 13, 14 and 15 show the comparison plots for the static and

dynamic load balancing utilities of the platform. Dynamic load imbalance is created by

varying the grain size for the node throughout the course of computation which cannot be

captured by the static partition. Speedups are measured for 25 iterations and load

balancing routine is invoked every 10 time steps. Dynamic load balancing is better, even

for finer grained grids.

Static v Dynamic Partition for 64-node
Hexagonal Grid

0

1

2

3

4

5

6

1 2 4 8 16

Processor

S
p

ee
d

-u
p Dynamic Load

Balancing Utility

Static Partition

Figure 13: Static vs. Dynamic Partitioning on 64-node Hexagonal Grids

 32

Static v Dynamic Partition for 32-node Hexagonal Grid

0

1

2

3

4

5

6

1 2 4 8 16

Processor

S
p

ee
d

-u
p Dynamic Load Balancing

Utility

Static Partition

Figure 14: Static vs. Dynamic Partitioning on 32-node Hexagonal Grids

Static v Dynamic Partition for 96-node Hexagonal Grid

0

1

2

3

4

5

6

1 2 4 8 16

Processor

S
p

ee
d

-u
p Dynamic Load Balancing

Utility

Static Partition

Figure 15: Static vs. Dynamic Partitioning on 96-node Hexagonal Grids

 33

5.2 Random Graphs

We also experimented with random graphs on the iC2mpi platform. As in case of

Hexagonal grids, even here each node computes the average of the data maintained by all

its neighbors. A dummy ‘for loop’ is used to inject a grain size of about 0.3 ms for fine

grain and 3 ms for coarse grain on the nodes.

Tables 5 and 6 give the overall runtimes in seconds with static partition on 32 and

64-node random graphs using different number of iterations and processors. Metis is

used as the initial static graph partitioner for both the case. The readings are an average

over 5 runs.

ProcessorsIterations

1 2 4 8 16
10 .108 .056 .030 .020 .035
15 .161 .082 .045 .037 .044
20 .215 .109 .059 .046 .049

Table 5: Execution Time (in seconds) on 32-node Random Graphs

Processors

Iterations

1 2 4 8 16
10 .218 .111 .064 .050 .051
15 .325 .167 .095 .059 .067
20 .434 .221 .126 .073 .083

Table 6: Execution Time (in seconds) on 64-node Random Graphs

 34

Figure 16 shows the speedup plots for 20 iterations for 32 and 64-node random

graphs. Note, that the speed-up dips slightly when the number of processors increases

from 8 to 16. Fine grain size used for the node computation in this case is partially

responsible for that. Using coarse grain size for node computation, we obtain better

speed-ups as expected.

In Figure 17, we compare the performance of Metis and PaGrid for 64-node

random graphs. We obtain the speedup plots using fine and coarse grain size for these

graphs for 20 iterations. Note that unlike hexagonal grids, PaGrid outperforms Metis for

random graphs, both for fine and coarse grains. Even the fine grain speed-ups for PaGrid

are better than the coarse grain speed-ups for Metis.

Figures 18, 19 show the performance comparison of random graphs with and

without dynamic load balancing utility. Speedups are calculated for 25 iterations, and

load balancing routine is invoked every 10 time steps for the dynamic load balancing

approach. The former approach beats the latter even with fine grain used for node

computation.

Speed-up Plots for Static Partition

0

1

2

3

4

5

6

7

1 2 4 8 16

Processor

S
p

ee
d

-u
p 32-node Random

Graph

64-node Random
Graph

Figure 16: Speedup for Random Graphs with Static Partition (Metis)

 35

Metis v PaGrid Speed-up Plots for Fine and Coarse Grain
(Random Graph)

0

2

4

6

8

10

12

14

1 2 4 8 16

Processor

S
p

e
e

d
-u

p

Fine Grain (0.3 milli-sec
grain size) - Metis

Coarse Grain (3 milli-sec
grain size) - Metis

Fine Grain (0.3 milli-sec
grain size) - PaGrid

Coarse Grain (3 milli-sec
grain size) - PaGrid

Figure 17: Metis vs. PaGrid on Fine & Coarse Grained 64-node Random Graphs

Static v Dynamic Partition for 64-node Random
Graph

0

1

2

3

4

5

6

1 2 4 8 16

Processor

S
p

e
e
d

-u
p Dynamic Load

Balancing Utility

Static Partition

Figure 18: Performance of Dynamic Partitioning on 64-node Random Graphs

 36

Static v Dynamic Partition for 32-node Random Graph

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16

Processor

S
p

e
e
d

-u
p Dynamic Load Balancing

Utility

Static Partition

Figure 19: Performance of Dynamic Partitioning on 32-node Random Graphs

5.3 Battlefield Management Simulations

Battlefield management simulations are employed to evaluate doctrine and tactics, and to

predict the battle outcome in various scenarios [DMP98]. These are amongst the most

computationally intense and complex simulations in existence. We show the test results

using different patterns of initial partitioning. In essence, the platform proves to be an apt

test-bed for the study of different static partitioning schemes.

The experiments were conducted on a 32 x 32-hex battlefield (computational

domain is divided into hexes and hex-to-processor assignment is used for initial

partitioning), varying the number of iterations and the number of processors using

different static partitioning schemes.

The different algorithms employed for the initial static partitioning include (i)

Metis [KK98], (ii) gray-code-based mesh-to-hypercube fine-grained embedding

[DMP98] wherein a hex and its six neighbors are allocated to different processors, (iii)

row band, (iv) column band, and (v) rectangular band partitionings. Tables 7, 8, 9, 10

and 11 show the overall runtimes in seconds for parallelizing the battlefield simulation

 37

deployed on iC2mpi platform. Figure 20 shows the speedup plots. From the figure it is

evident that Metis easily outperforms the rest of the static partitioning algorithms.

ProcessorsSimulation
Steps

1 2 4 8 16
5 .684 .654 .537 .461 .390
15 1.463 1.447 1.109 .869 .623
25 2.248 2.245 1.666 1.265 .847

Table 7: Execution Time (in seconds) of Battlefield Simulator using Metis

ProcessorsSimulation
Steps

1 2 4 8 16
5 .681 1.360 .926 .645 .454
15 1.410 3.578 2.279 1.413 .814
25 2.255 5.752 3.627 2.166 1.164

Table 8: Execution Time (in seconds) of Battlefield Simulator using Fine-Grained Mesh-
to-Hypercube Embedding (BF Partition)

ProcessorsSimulation
Steps

1 2 4 8 16
5 .680 .756 .606 .507 .467
15 1.456 1.780 1.347 1.006 .854
25 2.226 2.781 2.057 1.502 1.229

Table 9: Execution Time (in seconds) of Battlefield Simulator using Row Band Partition

 38

ProcessorsSimulation
Steps

1 2 4 8 16
5 .679 .666 .543 .465 .453
15 1.463 1.463 1.112 .887 .820
25 2.242 2.245 1.689 1.286 1.168

Table 10: Execution Time (in seconds) of Battlefield Simulator using Column Band
Partition

Processors

Simulation
Steps

1 2 4 8 16
5 .682 .663 .591 .503 .404
15 1.456 1.465 1.260 .981 .679
25 2.243 2.247 1.932 1.464 .950

Table 11: Execution Time (in seconds) of Battlefield Simulator using Rectangular
Partition

Speed-up Plots

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16

Processor

S
p

ee
d

-u
p

Metis

BF Partition

Row Band

Column Band

Rectangular

Figure 20: Performance of Battlefield Management Simulation for different Static
Partitioning Algorithms

 39

5.4 Measurement of Overheads

We measured the current overheads of the iC2mpi platform’s various phases. We plot

the overheads for fine-grained 64-node hexagonal grids and 64-node random graphs

varying the number of processors for 35 iterations (dynamic load balancer invoked every

10 time steps) in figures 21 and 22. Here, the phases and overheads comprise:

(i) Initialization: Includes setting up the data structures for graph connectivity,

node-to-processor mapping, internal and peripheral node lists, data node lists

and hash tables.

(ii) Computation Overhead: Setting up the list of the current node and its

neighbors to be passed on to the application node function for node

computation, and updating of the data node lists after computation.

(iii) Compute: Actual node computation.

(iv) Communication Overhead: Packing buffers for communication, unpacking the

received buffers and updating the data node lists. This is clearly the most

significant source of overhead.

(v) Communicate: Communication of the shadow node information to

appropriate processors and receiving the required information from neighbors.

(vi) Load Balancing & Task Migration: Gathering information about load

imbalance across the computational domain and balancing the work load

among the processors.

Note, that the compute and computation overhead comes down with the number of

processors as it should for both the cases.

 40

D ifferent P hases & O verheads

0

0.01

0.02

0.03

0.04

0.05

2 4 8 16

P rocessor

T
im
e
 i
n
 S
e
c
o
n
d
s

Initialization

C om putation

O verhead
C om pute

C om m unication

O verhead
C om m unicate

Load B alancing &

Task M igration

Figure 21: Overheads in iC2mpi Platform for fined grained (0.3ms) 64-node Hexagonal
Grids

D ifferent P hases & O verheads

0

0.01

0.02

0.03

0.04

2 4 8 16

P rocessor

T
im
e
 i
n
 S
e
c
o
n
d
s

Initialization

C om putation

O verhead

C om pute

C om m unication

O verhead

C om m unicate

Load B alancing &

Task M igration

Figure 22: Overheads in iC2mpi Platform for fined grained (0.3ms) 64-node Random
Graphs

 41

5.5 Creation of Dynamic Load Imbalance

In this section we talk about the creation of dynamic load imbalance, which was used for

testing the static v dynamic partitioning performances. We created dynamic load

imbalance, which couldn’t have been captured by static partitioner in any way, and that’s

where the dynamic load balancer scores over it. Here, we talk about the creation of

dynamic load imbalance on a 64-node graph. Figure 23 shows how the grain size for the

node was varied. Grain size was varied for nodes across the computational domain

throughout the course of execution.

Figure 23: Varying the grain size of the node for creating dynamic load imbalance

Note, that the dynamic load balancer is invoked every 10 time steps, and the total number

of iterations amount to 35. Each time the dynamic load balancer is invoked, we try and

if (iteration_num <= 10)
{

if (node globalID in the first 50%)
do more work; // coarse grain size

else
do less work; // fine grain size

}
else if (iteration_num <= 20)
{

if (node globalID between 25% to 75%)
do more work; // coarse grain size

else
do less work; // fine grain size

}
else if (iteration_num <= 30)
{

if (node globalID beween 50% and 100%)
do more work; //coarse grain size

else
do less work; // fine grain size

}

 42

create an inertial load imbalance across the computational domain. This imbalance is

captured by the dynamic partitioner, while there’s no way a static graph partitioner could

capture this phenomena.

 43

6. Related Work

Existing alternatives to time-consuming manual parallelization with MPI for application

programmers consist of the use of compiler directives to assist the compiler in

parallelizing sections of a sequential program. This approach has mainly been

implemented in High Performance Fortran [Z02] for multicomputers and OpenMP [OP]

for multiprocessors. The former has had limited success due to its limited expressivity for

a broad range of scientific applications. While OpenMP has been relatively successful, it

is mainly limited to expensive multiprocessor platforms, can produce non-deterministic

programs that are hard to debug, and requires significant work (sometimes comparable to

MPI) to achieve highly scalable programs. By restricting itself to iterative graph-based

applications, our platform can achieve good performance for a minor time investment on

the user’s part.

Other platforms to assist parallelization do exist. Here, we discuss two in

particular, namely Zoltan [DBH02] and CO2P3S [MSS00], “the correct object-oriented

pattern-based parallel programming system,” which come close to our goals. Some of

the other related frameworks include the Armada framework [OK02], which is an I/O

framework that allows data intensive applications to efficiently access geographically

distributed data sets, and TOP-C [PSC95], a package with its own MPI subset to

parallelize sequential applications.

6.1 Zoltan

Zoltan is a library of data management services for parallel, unstructured and dynamic

applications. Zoltan basically simplifies load-balancing, data movement, unstructured

 44

communication and memory usage difficulties that arise in dynamic applications such as

adaptive finite-element methods.

Zoltan provides utilities for the efficient functioning of an already parallel

application, while our platform does not need the iterative application to be already

parallelized. Zoltan uses call-back functions to interface with the application. These

functions query the application for the needed data, and the application in turn must

provide functions to answer those queries. Our iC2mpi platform, on the other hand, does

not require any coding on the part of the user, nor should the user be concerned about the

system architecture. But the user needs to model the iterative application as per the

platform specification. Zoltan provides utilities like distributed data directories for

locating off-processor data and a communication library to incorporate changing

communication patterns for dynamic applications. In our platform, these utilities are

built-in, so the user need not worry about them. All in all, Zoltan provides for efficient

management of an already parallelized application, while iC2mpi platform aims at easy

parallelization of the iterative applications and their efficient runtime management.

6.2 CO2P3S

It is a parallel programming system that combines three abstraction techniques, namely,

object-oriented programming, design patterns, and frameworks, using a layered

programming model which supports fast development of parallel programs and fine

tuning of the resulting programs for performance. CO2P3S uses design patterns to ease

the effort required to write parallel programs [MSS00].

While CO2P3S emphasizes easy parallelization of a range of applications based on

user selection of pattern templates and fine-tuning of the parallel programs for

 45

performance, there are no dynamic load balancing capabilities incorporated in the mesh

framework. While the approach would be a reasonable solution for domain applications

with more or less the same load across the computational domain throughout the course

of computation, it may not be effective for unstructured dynamic applications with

varying load requirements. CO2P3S uses a design pattern approach to generating a

framework which is a set of classes that implements the basic structure of the mesh

computation. Instead of directly adding code to the framework, the user creates

subclasses of the framework classes to provide the application-specific details. While

CO2P3S does well to separate the application-independent framework structure from

application-dependent code, it does not ensure that the mesh framework employed by the

same is a black box from the point of view of the user, whereas in our iC2mpi platform,

the user needs to model the iterative application as per the platform specification without

worrying about its architecture.

 46

7. Design Enhancements

In this section we talk about the possible design enhancements in the current platform

design.

To begin, in order to realize easy parallelization of domain applications, one of

the goals of this project, the user plug-in points need to be made crisper. Currently,

there’s no user interface for the user to plug-in data structures and node computation

function. Platform maintains a pointer to the latter, more detailing needs to be done on

the former. Currently, the platform design is good enough to incorporate varying domain

data structures, but more work needs to be done on that. Platform should be able make

certain template data structures independent of the domain data structures. This would

make the platform flexible enough for various domain applications. Currently, this is

possible but not without the customization of the data structures used by the platform.

Change in design of the computation and communication phase is desirable.

While, the platform does attempt to minimize the overheads for these phases, there’s

clearly no overlap between these phases. A different version using MPI_Irecv()

(currently underway, see figure 8a) could result in significant performance improvement

for applications with unstructured communication and possibly coarse grain size for the

node. Communication overhead and the actual communication can be a sizeable

proportion of the total runtime. This makes it that much more important to deal with it

efficiently.

Platform employed a centralized heuristic algorithm as a dynamic load balancer.

Interface for the same needs to be made cleaner so as to make third party plug-ins for the

 47

dynamic load balancer much easier so as to study the performance of various dynamic

load balancers. Improvements are also possible in the implementation of task migration.

Though, the task migration executes in parallel, it doesn’t send more than one task from

a ‘busy’ processor to an ‘idle’ one. A more rigorous algorithm can be used here, which

would specify the number of tasks that should be migrated from a ‘busy’ processor to an

‘idle’ one.

All in all, the basic prototype of the platform is set up. Further, design

enhancements and performance fine-tuning could make it more versatile. Now, we talk

about the possible future extensions for the platform.

7.1 Future Extensions:

While, the Battlefield Management Simulation was parallelized using static graph

partitioner, it would be interesting to see the performance of the platform while

parallelizing the same with the dynamic load balancer utilities. More domain

applications need to be tested on the platform so as to realize one of its main goals, which

is easy parallelization of domain applications which would help the user avoid all hassles

related to MPI programming for parallelization of iterative sequential applications.

There’s a possibility of incorporating library routines to deal with load balancing,

unstructured communication etc which could be invoked as per the user requirements.

Distributed data directory could be built which would help the processor locate off-

processor data. Currently, the processor is able to get all the required shadow node

information, but by the use of distributed directories, it might have a possible access to

the data of far off processors (which are not neighbors of the current processor). This

concept might be useful for certain types of domain applications.

 48

Finally, various static graph partitioners were employed to study the performance

of those algorithms. Similarly, different dynamic load balancers need to be tested for a

more comprehensive study on the dynamic partitioning on domain applications and

comparing the performance of static and dynamic load balancing utilities.

 49

8. Conclusions and Future Work

We have presented a unique proof-of-concept prototype platform for parallelization of

iterative graph-structured applications. It provides a relatively easy transition from

sequential programs to their distributed executions, and facilitates experimentation with

static partitioning and dynamic load balancing schemes. We demonstrated with two

generic iterative applications with underlying hexagonal and random graph structures,

and a time-stepped battlefield simulation, that our platform can produce good

performance with very little effort. The iC2mpi platform has good potential for further

improvements and extensions. Future work will include improving the performance of

our platform by reducing its overheads, and extending it to adaptive mesh-based

applications. We will also explore extending it to applications that use the BSP model

[HMS98], as this model essentially divides the computation from communication phases

as iC2mpi does. Finally, we will employ the platform to perform comprehensive

evaluation of static and dynamic partitioners.

 50

9. Bibliography

[C96] G. Cooperman, “TOP-C: A Task-Oriented Parallel C Interface”, International
Symposium on High Performance Distributed Computing (HPDC-5), 1996, IEEE Press,
pp. 141-150.

[CCE01] R. Cappuccio , G. Cattaneo , G. Erbacci , U. Jocher, A parallel implementation
of a cellular automata based model for coffee percolation, Parallel Computing, v.27 n.5,
p.685-717, April 2001

[CS96] Jose G. Castanos and John E. Savage, “The Dynamic Adaptation of Parallel
Mesh-Based Computation”, Technical Report: CS-96-31, 1996.

[DBH02] Karen Devine, Erik Boman, Robert Heaphy, Bruce Hendrickson and Courtenay
Vaughan, “Zoltan Data Management Services for Parallel Dynamic Applications”,
Computing in Science & Engineering, Vol. 4, No. 2, March/April 2002, pp. 90-97.

[DMP98] Narsingh Deo, Muralidhar Medidi and Sushil K Prasad, “Load balancing in
parallel battlefield management simulation on local- and shared-memory architectures”,
J. Computer Systems: Science & Engineering, Special Issue on ‘Simulation in parallel
and Distributed Computing Environments’, Guest Editor: A. Zomaya, Vol. 13, No. 1, pp.
55-65, 1998.

[HAB06] S. Huang, E. Aubanel, and V.C. Bhavsar, "PaGrid: A Mesh Partitioner for
Computational Grids", Journal of Grid Computing, Vol. 4 No. 1, pp. 71 - 88, 2006.

[HMS98] Jonathan M. D. Hill, Bill McColl, Dan C. Stefanescu, Mark W. Goudreau,
Kevin Lang, Satish B. Rao, Torsten Suel, Thanasis Tsantilas, and Rob Bisseling. BSPlib:
The BSP Programming Library. Parallel Computing, 1998, pp. 1947-80.

[HMP03] R. Henderson, D. Meiron, M. Parashar, R, Samtaney, "Parallel Computing
in Computational Fluid Dynamics". In J. Dongarra et al., editors,
"Sourcebook of Parallel Computing", Chapter 5, Morgan Kaufmann, 2003.

 51

[K90] Kauranne, T., 1990: An introduction to parallel processing in meteorology. The
Dawn of Massively Parallel Processing in Meteorology, G. R. Hoffman and D. K.
Maretis, Eds., Springer-Verlag, 3–20.

[KK98] George Karypis and Vipin Kumar, “Multilevel k-way Partitioning Scheme for
Irregular Graphs”, J. Parallel & Distributed Computing, 48(1): 96-129, 1998.

[MSS00] Steve MacDonald, Duane Szafron, Jonathan Schaeffer and Steven Bromling,
“Generating Parallel Program Frameworks from Parallel Design Patterns”, in proceedings
of 6th International Euro-Par Conference (Euro-Par 2000), Munich, Germany, August
2000, Lecture Notes in Computer Science 1900, Springer-Verlag, pages 95-104.

[OK02] Ron Oldfield and David Kotz, “Armada: A Parallel I/O Framework for
Computational grids”, Future Generation Computing Systems (FGCS), 18(4):501-523,
March 2002.

[OP] www.openmp.org

[PSC95] Ravi Ponnusamy, Joel Saltz, Alok Choudhary, Yuan-Shin Hwang and Geoffrey
Fox, “Runtime Support & Compilation Methods for User-Specified Irregular Data
Distributions”, IEEE Transactions on Parallel and Distributed Systems, 1995.

[Q04] Michael J. Quinn, Parallel Programming in C with MPI and OpenMP, McGraw-
Hill, 2004.

[SG04] I.M. Smith and D.V. Griffiths : Programming the finite element method, (John
Wiley & Sons, 2004, 4th edn.)

[SKK00] Kirk Schloegel, George Karypis and Vipin Kumar, “A Unified Algorithm for
Load-balancing Adaptive Scientific Simulations”, Supercomputing, 2000.

[SM02] Dale Shires and Ram Mohan, “An Evaluation of HPF & MPI Approaches and
Performance in Unstructured Finite Element Simulations”, Journal of Mathematical
Modeling and Algorithms 1:153-167, 2002.

 52

[WA04] R. Wanschoor and E. Aubanel, “Partitioning and Mapping of Mesh-Based
Applications onto Computational Grids”, 5th IEEE/ACM International Workshop on
Grid Computing (Grid 2004), Nov. 8, 2004, Pittsburgh, PA, USA, IEEE Computer
Society, pp. 156-162.

[WC01] C. Walshaw and M. Cross, "Multilevel Mesh Partitioning for Heterogeneous
Communication Networks", Future Generation Computer Systems,
17(5):601-623, 2001.

[Z02] H. P. Zima, “High Performance Fortran - History, Status and Future”, Proceedings
of the 4th international Symposium on High Performance Computing (May 15 - 17,
2002), Lecture Notes In Computer Science, vol. 2327. Springer-Verlag, London, 490,
2002.

 53

Appendix A

This appendix holds the procedures for the platform’s Initialization Phase.

/* Below listed procedures initialize data structures in the local memory of the processors to maintain node data and
node information*/

void InitializeGraph(int *num_of_vertices, int *num_of_edges, int *fmt)
{

FILE *f_input_file;
char line[MAX_STR_LENGTH],ch[10];
int graph_parameters[3],k=0,i=0,j=0,flag=0;

f_input_file = fopen("64_r_in.txt","r");

if (f_input_file == NULL)
{

printf("Cannot open input file!");
exit(1);

}

/* Getting the number of vertices, number of edges and the fmt parameters for the input graph */

fgets(line,MAX_STR_LENGTH,f_input_file);

while (line[i] != '\0')
{

while (line[i]==' ')
{

i++;
}

while (line[i] != ' ' && line[i] != '\0')
{

ch[j++] = line[i++];
}

ch[j]='\0';
graph_parameters[k++]=atoi(ch);
j=0;

}

*num_of_vertices = graph_parameters[0];
*num_of_edges = graph_parameters[1];
*fmt = graph_parameters[2];

fclose(f_input_file);
}

void InitializeInputArray(int **input_arr, int num_of_vertices, int fmt, int *vertex_weight)
{

FILE *f_input_file;
char line[MAX_STR_LENGTH],ch[10];
int i,j,k=0,l,cnt=0,m=0;

for (i=0;i<num_of_vertices;i++)
{

for (j=0;j<COLUMN_WIDTH_OF_INPUT_ARRAY;j++)

 54

{
input_arr[i][j]=0;

}
}

for (i=0;i<num_of_vertices;i++)
{

vertex_weight[i]=0;
}

f_input_file = fopen("64_r_in.txt","r");

if (f_input_file == NULL)
{

printf("Cannot open input file!");
exit(1);

}

fgets(line,MAX_STR_LENGTH,f_input_file); /* Bypass the first line with number of vertices, edges...etc */

 /* When fmt = 0, we're dealing with an unweighted graph,
fmt = 1, we're dealing with a weighted graph with weights on edges,
fmt = 10, we're dealing with a weighted graph with 'single' weight on vertices
fmt = 11, we're dealing with a weighted graph with weights on both vertices and

edges...*/

while (fgets(line,MAX_STR_LENGTH,f_input_file))
{

i=0,j=0,l=0,cnt=0;
while (line[i]!='\0')
{

while (line[i] == ' ')
{

i++;
}

while (line[i] != ' ' && line[i] != '\0')
{

ch[j++] = line[i++];
}

cnt++;
ch[j] = '\0';
j=0;

if (fmt == 0)
{

input_arr[k][l++] = atoi(ch);
}

if ((fmt==1)&&((cnt%2)!=0))
{

input_arr[k][l++] = atoi(ch);
}

if ((fmt==11)&&((cnt%2)==0))
{

input_arr[k][l++] = atoi(ch);
}

if ((fmt==11)&&(cnt==1))
{

 55

vertex_weight[m++] = atoi(ch);
}

if ((fmt==10)&&(cnt!=1))
{

input_arr[k][l++] = atoi(ch);
}

if ((fmt==10)&&(cnt==1))
{

vertex_weight[m++] = atoi(ch);
}

}

k++;
}

fclose(f_input_file);
}

void InitializeOutputArray(int *output_arr, int num_of_vertices)
{

FILE *f_output_file;
int i,j,k=0;
char ch[3],line[MAX_STR_LENGTH];

for (i=0;i<num_of_vertices;i++)
{

output_arr[i]=0;
}

f_output_file = fopen("64_r_out_16p.txt","r");

if (f_output_file == NULL)
{

printf("Cannot open input file!");
exit(1);

}

while (fgets(line,MAX_STR_LENGTH,f_output_file))
{

i=0,j=0;
while (line[i]!='\0')
{

ch[j++] = line[i++];
}

ch[j]='\0';
output_arr[k++] = atoi(ch);

}

fclose(f_output_file);
}

void InitializeGlobalDataList(struct node_data **global_data_head, int num_of_vertices)
{

int i=1,j=0;
struct node_data *temp, *r;

temp = *global_data_head;

if (*global_data_head == NULL)

 56

{
temp = malloc(sizeof(struct node_data));
temp -> globalID = 1;
temp -> data = 1;
temp -> next_node = NULL;

*global_data_head = temp;
}

while (j<num_of_vertices-1)
{

r = malloc(sizeof(struct node_data));
r->globalID = i+1;
r->data = i+1;
r->next_node = NULL;

temp->next_node = r;
temp = r;
i++;
j++;

}
}

/* This function peforms the initialization of node lists, namely the internal and peripheral node lists...*/

void InitializeNodeLists(struct own_node **internal_head, struct own_node **peripheral_head, struct node_data
**global_data_head, struct hash_node *hash_table[], int **input_arr, int *output_arr, int num_of_vertices, int fmt, int
*buffer_size_for_communication, MPI_Comm comm)
{

int myid,i,j,k,flag_node_check,insert_shadow_flag,hash_map;
struct own_node *internal_temp, *peripheral_temp, *r_internal, *r_peripheral;
struct node_data *temp_data_node;
struct hash_node *hash_temp, *r_hash;

internal_temp = *internal_head;
peripheral_temp = *peripheral_head;
temp_data_node = *global_data_head;

MPI_Comm_rank(comm,&myid);

for (i=0;i<num_of_vertices;i++)
{

flag_node_check=0;
if (output_arr[i] == myid)
{

for (j=0;input_arr[i][j]!=0;j++)
{

if (output_arr[input_arr[i][j]-1] != myid)
flag_node_check=1;

}

if (flag_node_check==1) /* we're dealing with a peripheral node */
{

if (*peripheral_head == NULL)
{

peripheral_temp = malloc(sizeof(struct own_node));
peripheral_temp -> globalID = i+1;
peripheral_temp -> internal_or_peripheral = 'p';
peripheral_temp -> owning_proc = myid;

temp_data_node = *global_data_head;

 57

for (;temp_data_node!=NULL;temp_data_node = temp_data_node ->
next_node)

{
if (temp_data_node -> globalID == i+1)
{

peripheral_temp -> data_location =
temp_data_node;

/* Calculate Hash function...*/
hash_map = (int)(pow(3,i+1)) %

HASH_TABLE_LENGTH;

if (hash_table[hash_map]==NULL)
{

hash_temp = malloc(sizeof(struct
hash_node));

hash_temp->globalID = i+1;
hash_temp->data_location =

temp_data_node;
hash_temp->next_node = NULL;
hash_table[hash_map] = hash_temp;

}
else
{

hash_temp = hash_table[hash_map];

while (hash_temp-
>next_node!=NULL)

hash_temp=hash_temp-
>next_node;

r_hash = malloc(sizeof(struct
hash_node));

r_hash->globalID = i+1;
r_hash->data_location =

temp_data_node;
r_hash->next_node=NULL;

hash_temp->next_node=r_hash;
}
break;

}
}

for (k=0;k<10;k++)
peripheral_temp -> neighboring_nodes[k]=-1;

for (j=0,k=0;input_arr[i][j]!=0;j++,k++) /* Populating
neighboring_nodes[] arr...*/

peripheral_temp -> neighboring_nodes[k] = input_arr[i][j];

for (k=0;k<10;k++)
peripheral_temp -> shadow_for_procs[k] = -1;

for (k=0;peripheral_temp -> neighboring_nodes[k]!=-1;k++) /*
Populating shadow_for_procs[] arr...*/

{
insert_shadow_flag=0;
if (output_arr[peripheral_temp -> neighboring_nodes[k] -

1] != myid)
{

 58

for (j=0;peripheral_temp ->
shadow_for_procs[j]!=-1;j++)

{
if (output_arr[peripheral_temp ->

neighboring_nodes[k] -1]==peripheral_temp->shadow_for_procs[j])
insert_shadow_flag=1;

}

if (insert_shadow_flag==0)
peripheral_temp ->

shadow_for_procs[j] = output_arr[peripheral_temp -> neighboring_nodes[k] - 1];
}

}

for (k=0;peripheral_temp->shadow_for_procs[k]!=-1;k++)
buffer_size_for_communication[peripheral_temp-

>shadow_for_procs[k]]++;

peripheral_temp -> next_node = NULL;

*peripheral_head = peripheral_temp;
}
else
{

r_peripheral = malloc(sizeof(struct own_node));
r_peripheral -> globalID = i+1;
r_peripheral -> internal_or_peripheral = 'p';
r_peripheral -> owning_proc = myid;

temp_data_node = *global_data_head;
for (;temp_data_node!=NULL;temp_data_node = temp_data_node ->

next_node)
{

if (temp_data_node -> globalID == i+1)
{

r_peripheral -> data_location = temp_data_node;

/* Calculate Hash function...*/
hash_map = (int)(pow(3,i+1)) %

HASH_TABLE_LENGTH;

if (hash_table[hash_map]==NULL)
{

hash_temp = malloc(sizeof(struct
hash_node));

hash_temp->globalID = i+1;
hash_temp->data_location =

temp_data_node;
hash_temp->next_node = NULL;
hash_table[hash_map] = hash_temp;

}
else
{

hash_temp = hash_table[hash_map];

while (hash_temp-
>next_node!=NULL)

hash_temp=hash_temp-
>next_node;

r_hash = malloc(sizeof(struct
hash_node));

 59

r_hash->globalID = i+1;
r_hash->data_location =

temp_data_node;
r_hash->next_node=NULL;

hash_temp->next_node=r_hash;
}
break;

}
}

for (k=0;k<10;k++)
r_peripheral -> neighboring_nodes[k] = -1;

for (j=0,k=0;input_arr[i][j]!=0;j++,k++) /* Populating
neighboring_nodes[] arr...*/

r_peripheral -> neighboring_nodes[k] = input_arr[i][j];

for (k=0;k<10;k++)
r_peripheral -> shadow_for_procs[k] = -1;

for (k=0;r_peripheral -> neighboring_nodes[k]!=-1;k++) /*
Populating shadow_for_procs[] arr...*/

{
insert_shadow_flag=0;
if (output_arr[r_peripheral -> neighboring_nodes[k] - 1] !=

myid)
{

for (j=0;r_peripheral -> shadow_for_procs[j]!=-
1;j++)

{
if (output_arr[r_peripheral ->

neighboring_nodes[k] -1]==r_peripheral->shadow_for_procs[j])
insert_shadow_flag=1;

}

if (insert_shadow_flag==0)
r_peripheral -> shadow_for_procs[j] =

output_arr[r_peripheral -> neighboring_nodes[k] - 1];
}

}

for (k=0;r_peripheral->shadow_for_procs[k]!=-1;k++)
buffer_size_for_communication[r_peripheral-

>shadow_for_procs[k]]++;

r_peripheral -> next_node = NULL;

peripheral_temp -> next_node = r_peripheral;
peripheral_temp = r_peripheral;

}
}
else /* we're dealing with an internal node */
{

if (*internal_head == NULL)
{

internal_temp = malloc(sizeof(struct own_node));
internal_temp -> globalID = i+1;
internal_temp -> internal_or_peripheral = 'i';
internal_temp -> owning_proc = myid;

temp_data_node = *global_data_head;

 60

for (;temp_data_node!=NULL;temp_data_node = temp_data_node ->
next_node)

{
if (temp_data_node -> globalID == i+1)
{

internal_temp -> data_location =
temp_data_node;

/* Calculate Hash function...*/
hash_map = (int)(pow(3,i+1)) %

HASH_TABLE_LENGTH;

if (hash_table[hash_map]==NULL)
{

hash_temp = malloc(sizeof(struct
hash_node));

hash_temp->globalID = i+1;
hash_temp->data_location =

temp_data_node;
hash_temp->next_node = NULL;
hash_table[hash_map] = hash_temp;

}
else
{

hash_temp = hash_table[hash_map];

while (hash_temp-
>next_node!=NULL)

hash_temp=hash_temp-
>next_node;

r_hash = malloc(sizeof(struct
hash_node));

r_hash->globalID = i+1;
r_hash->data_location =

temp_data_node;
r_hash->next_node=NULL;

hash_temp->next_node=r_hash;
}
break;

}
}

for (k=0;k<10;k++)
internal_temp -> neighboring_nodes[k] = -1;

for (j=0,k=0;input_arr[i][j]!=0;j++,k++) /* Populating
neighboring_nodes[] arr...*/

internal_temp -> neighboring_nodes[k] = input_arr[i][j];

/* No shadows for internal nodes! */
for (k=0;k<10;k++)

internal_temp -> shadow_for_procs[k] = -1;

internal_temp -> next_node = NULL;

*internal_head = internal_temp;
}
else
{

r_internal = malloc(sizeof(struct own_node));

 61

r_internal -> globalID = i+1;
r_internal -> internal_or_peripheral = 'i';
r_internal -> owning_proc = myid;

temp_data_node = *global_data_head;
for (;temp_data_node!=NULL;temp_data_node = temp_data_node ->

next_node)
{

if (temp_data_node -> globalID == i+1)
{

r_internal -> data_location = temp_data_node;

/* Calculate Hash function...*/
hash_map = (int)(pow(3,i+1)) %

HASH_TABLE_LENGTH;

if (hash_table[hash_map]==NULL)
{

hash_temp = malloc(sizeof(struct
hash_node));

hash_temp->globalID = i+1;
hash_temp->data_location =

temp_data_node;
hash_temp->next_node = NULL;
hash_table[hash_map] = hash_temp;

}
else
{

hash_temp = hash_table[hash_map];

while (hash_temp-
>next_node!=NULL)

hash_temp=hash_temp-
>next_node;

r_hash = malloc(sizeof(struct
hash_node));

r_hash->globalID = i+1;
r_hash->data_location =

temp_data_node;
r_hash->next_node=NULL;

hash_temp->next_node=r_hash;
}
break;

}
}

for (k=0;k<10;k++)
r_internal -> neighboring_nodes[k] = -1;

for (j=0,k=0;input_arr[i][j]!=0;j++,k++) /* Populating
neighboring_nodes[] arr...*/

r_internal -> neighboring_nodes[k] = input_arr[i][j];

/* No shadows for internal nodes! */
for (k=0;k<10;k++)

r_internal -> shadow_for_procs[k] = -1;

r_internal -> next_node = NULL;

internal_temp -> next_node = r_internal;

 62

internal_temp = r_internal;
}

}
}

} /* End of for loop */
}
void InsertShadowsIntoHashTable(struct own_node **peripheral_head, struct node_data **global_data_head, int
*output_arr, struct hash_node *hash_table[], MPI_Comm comm)
{

int myid,i,hash_map,insert_flag=0;
struct own_node *peripheral_temp;
struct node_data *temp_data_node;
struct hash_node *r_hash,*hash_temp;

MPI_Comm_rank(comm,&myid);

temp_data_node = *global_data_head;
peripheral_temp = *peripheral_head;

for (;peripheral_temp!=NULL;peripheral_temp=peripheral_temp->next_node)
{

for (i=0;peripheral_temp->neighboring_nodes[i]!=-1;i++)
{

if (output_arr[peripheral_temp->neighboring_nodes[i]-1]!=myid) /* viz..we're dealing
with a shadow! */

{
temp_data_node=*global_data_head;
for (;temp_data_node!=NULL;temp_data_node=temp_data_node->next_node)
{

if (temp_data_node->globalID==peripheral_temp-
>neighboring_nodes[i])

{
hash_map=(int)(pow(3,peripheral_temp-

>neighboring_nodes[i]))%HASH_TABLE_LENGTH;

if (hash_table[hash_map]==NULL)
{

hash_temp = malloc(sizeof(struct hash_node));

hash_temp->globalID=peripheral_temp-
>neighboring_nodes[i];

hash_temp->data_location=temp_data_node;
hash_temp->next_node=NULL;
hash_table[hash_map]=hash_temp;

}
else
{

hash_temp=hash_table[hash_map];
insert_flag=0;
while (hash_temp->next_node!=NULL)
{

/* Checkin if the shadow is already
inserted for some other node...*/

if (hash_temp-
>globalID==peripheral_temp->neighboring_nodes[i])

{
insert_flag=1;
break;

}
hash_temp=hash_temp->next_node;

}

 63

/* Checkin for the current node...(the last insert)
*/

if (hash_temp->globalID==peripheral_temp-
>neighboring_nodes[i])

insert_flag=1;

if (insert_flag==0)
{

r_hash = malloc(sizeof(struct
hash_node));

r_hash->globalID=peripheral_temp-
>neighboring_nodes[i];

r_hash-
>data_location=temp_data_node;

r_hash->next_node=NULL;

hash_temp->next_node=r_hash;
}

}
}

}
}

}
}

}

 64

Appendix B

This appendix holds the procedures which comprise the platform’s Computation &
Communication Phase.

void ComputeOverNodes(struct own_node **internal_head, struct own_node **peripheral_head, struct node_data
**global_data_head, struct hash_node *hash_table[], struct buffer_data_node *buffer_arr[], int num_procs, int
*buffer_size_for_communication, void (*simulator_ptr)(), MPI_Comm comm, int index, int num_of_vertices)
{

struct own_node *internal_temp,*peripheral_temp;
struct node_data *head_for_simulator_function; // Node list consisting of node and neighbors sent to the

simulator code...
struct node_data *temp_data_node1,*temp_data_node2,*r_for_simulator;
struct hash_node *temp_hash_node;
int i,j,hash_index,myid,cnt;

internal_temp = *internal_head;
peripheral_temp = *peripheral_head;

MPI_Comm_rank(comm,&myid);

// Scan through the internal nodes...
for (;internal_temp!=NULL;internal_temp=internal_temp->next_node)
{

head_for_simulator_function=NULL;

// Add the current internal node as head of the list to be sent to the simulator function...

temp_data_node1=malloc(sizeof(struct node_data));
temp_data_node1->globalID = internal_temp->globalID;
temp_data_node1->data = internal_temp->data_location->data;

temp_data_node1->next_node=NULL;
head_for_simulator_function=temp_data_node1;

for (i=0;internal_temp->neighboring_nodes[i]!=-1;i++)
{

// Obtain the location of the neighbor...
hash_index = ((int)pow(3,internal_temp-

>neighboring_nodes[i]))%HASH_TABLE_LENGTH;

for
(temp_hash_node=hash_table[hash_index];temp_hash_node!=NULL;temp_hash_node=temp_hash_node->next_node)

{
if (temp_hash_node->globalID == internal_temp->neighboring_nodes[i]) //

Neighbor obtained...
break;

}

temp_data_node1=head_for_simulator_function;
while (temp_data_node1->next_node!=NULL)

temp_data_node1=temp_data_node1->next_node;

r_for_simulator=malloc(sizeof(struct node_data));
r_for_simulator->globalID = internal_temp->neighboring_nodes[i];
r_for_simulator->data = temp_hash_node->data_location->data;
r_for_simulator->next_node=NULL;

temp_data_node1->next_node=r_for_simulator;

 65

}

(*simulator_ptr)(&head_for_simulator_function,&(*global_data_head),myid,num_of_vertices,index);
free(head_for_simulator_function);

}

// Allocate memory for buffer arrays...
for (i=0;i<num_procs;i++)
{

if (buffer_size_for_communication[i]!=0)
buffer_arr[i] = malloc(sizeof(struct

buffer_data_node)*buffer_size_for_communication[i]);
else

buffer_arr[i]=NULL;
}

// Initialize buffer arrays...
for (i=0;i<num_procs;i++)
{

if (buffer_size_for_communication[i]!=0)
{

for (j=0;j<buffer_size_for_communication[i];j++)
{

buffer_arr[i][j].globalID=-1;
buffer_arr[i][j].data=-1;

}
}

}

// Scan through peripheral nodes...
for (;peripheral_temp!=NULL;peripheral_temp=peripheral_temp->next_node)
{

head_for_simulator_function=NULL;

// Add the current peripheral node as head of the list to be sent to the simulator function...

temp_data_node1=malloc(sizeof(struct node_data));

temp_data_node1->globalID = peripheral_temp->globalID;
temp_data_node1->data = peripheral_temp->data_location->data;

temp_data_node1->next_node=NULL;
head_for_simulator_function=temp_data_node1;

for (i=0;peripheral_temp->neighboring_nodes[i]!=-1;i++)
{

// Obtain the location of the neighbor...
hash_index = ((int)pow(3,peripheral_temp-

>neighboring_nodes[i]))%HASH_TABLE_LENGTH;

for
(temp_hash_node=hash_table[hash_index];temp_hash_node!=NULL;temp_hash_node=temp_hash_node->next_node)

{
if (temp_hash_node->globalID == peripheral_temp->neighboring_nodes[i]) //

Neighbor obtained...
break;

}

temp_data_node1=head_for_simulator_function;
while (temp_data_node1->next_node!=NULL)

temp_data_node1=temp_data_node1->next_node;

 66

r_for_simulator=malloc(sizeof(struct node_data));
r_for_simulator->globalID = peripheral_temp->neighboring_nodes[i];
r_for_simulator->data = temp_hash_node->data_location->data;
r_for_simulator->next_node=NULL;

temp_data_node1->next_node=r_for_simulator;
}

(*simulator_ptr)(&head_for_simulator_function,&(*global_data_head),myid,num_of_vertices,index);

// Upto date data for the current node returns at this point...hence add the same,
// onto the buffer arr for communication...

for (i=0;peripheral_temp->shadow_for_procs[i]!=-1;i++)
{

// Obtain right position in buffer arr to add the peripheral node...
for (j=0;buffer_arr[peripheral_temp->shadow_for_procs[i]][j].globalID!=-1;j++);

buffer_arr[peripheral_temp->shadow_for_procs[i]][j].globalID = peripheral_temp-
>globalID;

buffer_arr[peripheral_temp->shadow_for_procs[i]][j].data = peripheral_temp-
>data_location->most_recent_data;

}

free(head_for_simulator_function);
}

// Update data to most recent data before the next iteration of computation...
internal_temp = *internal_head;
peripheral_temp = *peripheral_head;

for (;internal_temp!=NULL;internal_temp=internal_temp->next_node)
{

internal_temp->data_location->data = internal_temp->data_location->most_recent_data;
}

for (;peripheral_temp!=NULL;peripheral_temp=peripheral_temp->next_node)
{

peripheral_temp->data_location->data = peripheral_temp->data_location->most_recent_data;
}

}

void SimulatorFunction(struct node_data **head_for_simulator_function, struct node_data **global_data_head, int
myid, int num_of_vertices, int index)
{

struct node_data *temp_for_simulator, *temp_data_node;
int current_globalID, i, j;

temp_for_simulator = *head_for_simulator_function;
temp_data_node = *global_data_head;

current_globalID = temp_for_simulator->globalID;

for (;temp_data_node!=NULL;temp_data_node=temp_data_node->next_node)
{

if (temp_data_node->globalID == current_globalID)
break;

}

 67

temp_for_simulator = temp_for_simulator->next_node; /* Move to the next node, coz., 1st node is the
current node to be simulated...*/

/* Dummy calculation...*/
temp_data_node->most_recent_data = temp_data_node->data;
for (i=0;temp_for_simulator!=NULL;temp_for_simulator=temp_for_simulator->next_node,i++)
{

// if (i%2 == 0)
// {

temp_data_node->most_recent_data += temp_for_simulator->data;
// }
// else
// {
// temp_data_node->most_recent_data -= temp_for_simulator->data;
// }

}

// Dummy loop to get the measure of the load...
// for (j=0;j<100000;j++);

// Creating dynamic imbalance across the computational domain by varying the grain size...
if (index <= 10)
{

if (current_globalID <= (int)((50*num_of_vertices)/100))
{

for (j=0;j<100000;j++);
}
else
{

for (j=0;j<1000;j++);
}

}
else if (index <=20)
{

if ((int)((25*num_of_vertices)/100) <= current_globalID <= (int)((75*num_of_vertices)/100))
{

for (j=0;j<100000;j++);
}
else
{

for (j=0;j<1000;j++);
}

}
else if (index <=30)
{

if ((int)((50*num_of_vertices)/100) <= current_globalID <= (int)((100*num_of_vertices)/100))
{

for (j=0;j<100000;j++);
}
else
{

for (j=0;j<1000;j++);
}

}
}

void CommunicateShadows(struct buffer_data_node *buffer_arr[], struct buffer_data_node *recvbuffer_arr[], int
*buffer_size_for_communication, int num_procs, struct node_data **global_data_head, MPI_Comm comm)
{

int myid,i,j;
int blockcounts[1];
struct node_data *temp_data_node=NULL;

 68

MPI_Datatype buffer_datatype, oldtypes[1];
MPI_Aint offsets[1];
MPI_Status status;
MPI_Request pending;

/* Set up description of 2 MPI_INT fields: globalID and data of the struct type buffer_data_node...*/
offsets[0]=0;
oldtypes[0]=MPI_INT;
blockcounts[0]=2;

/* Define structured type & commit it...*/
MPI_Type_struct(1,blockcounts,offsets,oldtypes,&buffer_datatype);
MPI_Type_commit(&buffer_datatype);

MPI_Comm_rank(comm,&myid);

/* Allocate memory for recvbuffers...*/
for (i=0;i<num_procs;i++)
{

if (buffer_size_for_communication[i]!=0)
recvbuffer_arr[i] = malloc(sizeof(struct

buffer_data_node)*MAX_SIZE_FOR_RECVBUFFER);
else

recvbuffer_arr[i]=NULL;
}

/* Initialize recvbuffers...*/
for (i=0;i<num_procs;i++)
{

if (buffer_size_for_communication[i]!=0)
{

for (j=0;j<MAX_SIZE_FOR_RECVBUFFER;j++)
{

recvbuffer_arr[i][j].globalID = -1;
recvbuffer_arr[i][j].data = -1;

}
}

}

// Send buffers...
for (i=0;i<num_procs;i++)
{

if (buffer_size_for_communication[i]!=0)
{

MPI_Isend(buffer_arr[i],buffer_size_for_communication[i],buffer_datatype,i,1,comm,&pending);
}

}

// Recv buffers...
for (i=0;i<num_procs;i++)
{

if (buffer_size_for_communication[i]!=0)
{

MPI_Recv(recvbuffer_arr[i],MAX_SIZE_FOR_RECVBUFFER,buffer_datatype,i,1,comm,&status);
}

}

MPI_Barrier(comm);

// Unpacking the recv buffers...

 69

for (i=0;i<num_procs;i++)
{

if (buffer_size_for_communication[i]!=0)
{

for (j=0;recvbuffer_arr[i][j].globalID!=-1;j++)
{

temp_data_node = *global_data_head;
for (;temp_data_node!=NULL;temp_data_node=temp_data_node->next_node)
{

if (temp_data_node->globalID == recvbuffer_arr[i][j].globalID)
{

temp_data_node->data = recvbuffer_arr[i][j].data;
break;

}
}

}
}

}
}

 70

Appendix C

This appendix holds the ‘main’ function, and the load balancing and task migration phase
of the platform.

int main(int argc, char *argv[])
{

int num_of_vertices, num_of_edges, fmt, *output_arr, **input_arr, i, j, k, myid, num_procs,
*buffer_size_for_communication, *vertex_weight;

struct node_data *global_data_head = NULL, *temp;
struct own_node *internal_head = NULL, *peripheral_head = NULL, *internal_temp, *peripheral_temp;
struct hash_node *hash_table[HASH_TABLE_LENGTH],*hash_temp;
struct buffer_data_node **buffer_arr, **recvbuffer_arr;
int

load_imbalance=1,migrating_node,to_proc,from_proc,**task_migration_pairs,*migrating_node_arr,**proc_holding_s
hadows,f_proc,t_proc;

int **proc_node_graph_edges, **temp_buff, *isFiltered_arr, *isMigrated_arr, isFiltered, *to_proc_reserved,
migration_needed, bcast_flag;

double time_elapsed, proc_execution_time=0, proc_execution_time_for_one_iteration=0,
*proc_execute_timings;

MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&myid);
MPI_Comm_size(MPI_COMM_WORLD,&num_procs);

MPI_Barrier(MPI_COMM_WORLD);
time_elapsed = -MPI_Wtime();

/* Initialization Phase...*/
InitializeGraph(&num_of_vertices, &num_of_edges, &fmt);

input_arr = (int *)malloc(sizeof(int)*num_of_vertices);

for (i=0;i<num_of_vertices;i++)
{

input_arr[i] = (int *)malloc(sizeof(int)*COLUMN_WIDTH_OF_INPUT_ARRAY);
}

vertex_weight = (int *)malloc(sizeof(int)*num_of_vertices);
InitializeInputArray(input_arr,num_of_vertices,fmt,vertex_weight);

output_arr = (int *)malloc(sizeof(int)*num_of_vertices);
InitializeOutputArray(output_arr,num_of_vertices);

InitializeGlobalDataList(&global_data_head,num_of_vertices);

for (i=0;i<HASH_TABLE_LENGTH;i++)
hash_table[i]=NULL;

buffer_size_for_communication = (int *)malloc(sizeof(int)*num_procs);

for (i=0;i<num_procs;i++)
buffer_size_for_communication[i]=0;

InitializeNodeLists(&internal_head,&peripheral_head,&global_data_head,hash_table,input_arr,output_arr,nu
m_of_vertices,fmt,buffer_size_for_communication,MPI_COMM_WORLD);

 71

InsertShadowsIntoHashTable(&peripheral_head,&global_data_head,output_arr,hash_table,MPI_COMM_W
ORLD);

buffer_arr = malloc(sizeof(struct buffer_data_node)*num_procs); // Array of array of structures as buffer at
each proc for communication...

recvbuffer_arr = malloc(sizeof(struct buffer_data_node)*num_procs);

if (myid == 0) // Initialization of data structures for load-rebalancing strategies...
{

proc_execute_timings = (double *)malloc(sizeof(double)*num_procs);

proc_node_graph_edges = (int **)malloc(sizeof(int)*num_procs);
for (j=0;j<num_procs;j++)
{

proc_node_graph_edges[j] = (int *)malloc(sizeof(int)*num_procs);
}

temp_buff = (int **)malloc(sizeof(int)*num_procs);
for (j=0;j<num_procs;j++)
{

temp_buff[j] = (int *)malloc(sizeof(int)*num_procs);
}

for (i=0;i<num_procs;i++)
{

for (j=0;j<num_procs;j++)
{

proc_node_graph_edges[i][j]=0;
temp_buff[i][j]=0;

}
}

// Data structure which would hold the possible task migration pairs...
task_migration_pairs = (int **)malloc(sizeof(int)*num_procs);
for (j=0;j<num_procs;j++)
{

task_migration_pairs[j] = (int *)malloc(sizeof(int)*2);
}

for (i=0;i<num_procs;i++) // Note tht for the worst case scenario: for an application with n procs,
n-1 is the max number of task_migration pairs...

{
for (j=0;j<2;j++)
{

task_migration_pairs[i][j]=-1;
}

}

migrating_node_arr = (int *)malloc(sizeof(int)*num_procs); //arr which would hold the migrating
nodes for the from_proc/to_proc pairs...

for (j=0;j<num_procs;j++)
{

migrating_node_arr[j] = -1;
}

// DS which would be required to filter out from_proc/to_proc pairs...
proc_holding_shadows = (int **)malloc(sizeof(int)*num_procs);
for (j=0;j<num_procs;j++)
{

proc_holding_shadows[j] = (int *)malloc(sizeof(int)*10);
}

 72

for (i=0;i<num_procs;i++)
{

for (j=0;j<10;j++)
{

proc_holding_shadows[i][j]=-1;
}

}

// array which would specify whether the kth pair is filtered or not...
isFiltered_arr = (int *)malloc(sizeof(int)*num_procs);
for (i=0;i<num_procs;i++)

isFiltered_arr[i] = -1;

isMigrated_arr = (int *)malloc(sizeof(int)*num_procs);
for (i=0;i<num_procs;i++)

isMigrated_arr[i] = -1;

to_proc_reserved = (int *)malloc(sizeof(int)*num_procs);
for (i=0;i<num_procs;i++)

to_proc_reserved[i] =-1;
}
else
{

// Note tht for myid !=0, only the task migration pairs are needed to participate in task migration...
// Data structure which would hold the possible task migration pairs...
task_migration_pairs = (int **)malloc(sizeof(int)*num_procs);
for (j=0;j<num_procs;j++)
{

task_migration_pairs[j] = (int *)malloc(sizeof(int)*2);
}

for (i=0;i<num_procs;i++) // Note tht for the worst case scenario: for an application with n procs,
n-1 is the max number of task_migration pairs...

{
for (j=0;j<2;j++)
{

task_migration_pairs[i][j]=-1;
}

}

migrating_node_arr = (int *)malloc(sizeof(int)*num_procs); // arr which would hold the migrating
nodes for the from_proc/to_proc pairs...

for (j=0;j<num_procs;j++)
{

migrating_node_arr[j] = -1;
}

// DS which would be required to filter out from_proc/to_proc pairs...
proc_holding_shadows = (int **)malloc(sizeof(int)*num_procs);
for (j=0;j<num_procs;j++)
{

proc_holding_shadows[j] = (int *)malloc(sizeof(int)*10);
}

for (i=0;i<num_procs;i++)
{

for (j=0;j<10;j++)
{

proc_holding_shadows[i][j]=-1;
}

}

 73

// array which would specify whether the kth pair is filtered or not...
isFiltered_arr = (int *)malloc(sizeof(int)*num_procs);
for (i=0;i<num_procs;i++)

isFiltered_arr[i] = -1;

isMigrated_arr = (int *)malloc(sizeof(int)*num_procs);
for (i=0;i<num_procs;i++)

isMigrated_arr[i] = -1;

to_proc_reserved = (int *)malloc(sizeof(int)*num_procs);
for (i=0;i<num_procs;i++)

to_proc_reserved[i] =-1;
}

for (i=1;i<=20;i++)
{

proc_execution_time_for_one_iteration = -MPI_Wtime();

// Computation Phase...

ComputeOverNodes(&internal_head,&peripheral_head,&global_data_head,hash_table,buffer_arr,num_procs
,buffer_size_for_communication,SimulatorFunction,MPI_COMM_WORLD,i,num_of_vertices);

proc_execution_time_for_one_iteration += MPI_Wtime();
proc_execution_time += proc_execution_time_for_one_iteration;

// Communication Phase...

CommunicateShadows(buffer_arr,recvbuffer_arr,buffer_size_for_communication,num_procs,&global_data_
head,MPI_COMM_WORLD);

if (i % 10 == 0) // Periodically invoking load-rebalancing strategies...
{

// Building the proc-node graph...(nodes)
if (myid != 0)
{

MPI_Send(&proc_execution_time,1,MPI_DOUBLE,0,myid,MPI_COMM_WORLD);
}
else
{

proc_execute_timings[0] = proc_execution_time;
for (j=1;j<num_procs;j++)
{

proc_execute_timings[j]=0;
}

for (j=1;j<num_procs;j++)
{

MPI_Recv(&proc_execute_timings[j],1,MPI_DOUBLE,j,j,MPI_COMM_WORLD,&status);
}

}
MPI_Barrier(MPI_COMM_WORLD);

// Building the proc-node graph...(edges)
if (myid != 0)
{

MPI_Send(buffer_size_for_communication,num_procs,MPI_INT,0,myid,MPI_COMM_WORLD);
}
else

 74

{
for (j=0;j<num_procs;j++)

temp_buff[0][j] = buffer_size_for_communication[j];

for (j=1;j<num_procs;j++)
{

MPI_Recv(temp_buff[j],num_procs,MPI_INT,j,j,MPI_COMM_WORLD,&status);
}

for (j=0;j<num_procs;j++)
{

for (k=0;k<num_procs;k++)
{

if (j != k)
{

proc_node_graph_edges[j][k] = temp_buff[j][k]
+ temp_buff[k][j];

}
}

}
}

// Get Rebalancing parameters if susbtantial load-imbalance as per the load-rebalance
algorithm...

if (myid == 0)
{

load_imbalance =
GetLoadRebalancingParameters(proc_execute_timings,proc_node_graph_edges,task_migration_pairs,num_procs,MPI
_COMM_WORLD);

}
MPI_Barrier(MPI_COMM_WORLD);

// At this point proc 0 knows whtz the load_imbalance parameter
MPI_Bcast(&load_imbalance,1,MPI_INT,0,MPI_COMM_WORLD);

if (load_imbalance == 1)
{

// At this point all the task migration pairs are ready but with myid=0, which
wud broadcast to rest of the procs...

//
MPI_Bcast(&task_migration_pairs[0][0],num_procs*2,MPI_INT,0,MPI_COMM_WORLD);

for (k=0;k<num_procs;k++)
{

if (myid == 0)
{

f_proc = task_migration_pairs[k][0];
}
MPI_Bcast(&f_proc,1,MPI_INT,0,MPI_COMM_WORLD);
if (myid != 0)
{

task_migration_pairs[k][0] = f_proc;
}

if (myid == 0)
{

t_proc = task_migration_pairs[k][1];
}
MPI_Bcast(&t_proc,1,MPI_INT,0,MPI_COMM_WORLD);
if (myid != 0)
{

 75

task_migration_pairs[k][1] = t_proc;
}

}

for (k=0;task_migration_pairs[k][0]!=-1;k++)
{

from_proc = task_migration_pairs[k][0];
to_proc = task_migration_pairs[k][1];

// from_proc would get the migrating_node tht 'mite' be sent to
to_proc...

if (myid == from_proc)
{

migrating_node =
GetMigratingNode(&peripheral_head,to_proc,from_proc,input_arr,output_arr);

migrating_node_arr[k] = migrating_node;
}
MPI_Barrier(MPI_COMM_WORLD);

// At this point migrating node is decided and with from_proc which
wud broadcast to the rest of the procs...

MPI_Bcast(&migrating_node,1,MPI_INT,from_proc,MPI_COMM_WORLD);
if (myid != from_proc)
{

migrating_node_arr[k] = migrating_node;
}

// At this point all the load-rebalancing parameters are decided for the
kth pair, check is they get filtered for task migration...

if (k==0)
{

if (myid == from_proc)
{

UpdateMigratingNodeInfo(proc_holding_shadows,k,&peripheral_head,migrating_node_arr,task_migration_p
airs);

}

MPI_Bcast(&proc_holding_shadows[k][0],10,MPI_INT,from_proc,MPI_COMM_WORLD);

isFiltered_arr[k] = 1; // first task migration filtered...(no
condition check required, which is obvious)...

//
task_migrate(migrating_node,from_proc,to_proc,output_arr,&internal_head,&peripheral_head,hash_table,&

global_data_head,input_arr,num_procs,buffer_size_for_communication,MPI_COMM_WORLD);
}
else
{

// logic for filtering the pairs...
if (myid == from_proc)
{

isFiltered =
UpdateMigratingNodeInfo(proc_holding_shadows,k,&peripheral_head,migrating_node_arr,task_migration_pairs);

isFiltered_arr[k] = isFiltered;
}

MPI_Bcast(&proc_holding_shadows[k][0],10,MPI_INT,from_proc,MPI_COMM_WORLD);

MPI_Bcast(&isFiltered,1,MPI_INT,from_proc,MPI_COMM_WORLD);

 76

if (myid != from_proc)
{

isFiltered_arr[k] = isFiltered;
}

}
}

// Update the output_arr of all the procs coz. of the change of the owning_proc
of the migrating node...

for (k=0;k<num_procs;k++)
{

if (isFiltered_arr[k] == 1)
{

output_arr[migrating_node_arr[k] - 1] =
task_migration_pairs[k][1];

}
}

// Update isMigrated_arr as per isFiltered_arr...
for (k=0;k<num_procs;k++)
{

if (isFiltered_arr[k] == -1)
isMigrated_arr[k] = 1; // coz., there's no such kth pair to be

migrated...
}

while (1) // Note, tht now, even if a proc is receiving 2 tasks from different
neighboring procs, the migrations wud go ahead, but sequentially...(obvious)...

{
from_proc = -1;
to_proc = -1;
migrating_node = -1;
migration_needed = 0;

for (k=0;k<num_procs;k++)
to_proc_reserved[k] = -1;

for (k=0;k<num_procs;k++)
{

bcast_flag = -1;
if (isMigrated_arr[k] == -1)
{

migration_needed = 1;

if (myid == task_migration_pairs[k][0])
{

// check if to_proc reserved for this
migration, if yes, this migration not possible during the current iteration...

if
(to_proc_reserved[task_migration_pairs[k][1]] == 1)

{
bcast_flag = -1;

}
else
{

to_proc_reserved[task_migration_pairs[k][1]] = 1;
isMigrated_arr[k] = 1;
bcast_flag = 1;

from_proc = myid;

 77

to_proc =
task_migration_pairs[k][1];

migrating_node =
migrating_node_arr[k];

}
}
else if (myid == task_migration_pairs[k][1])
{

if
(to_proc_reserved[task_migration_pairs[k][1]] == 1)

{}
else
{

to_proc = myid;
from_proc =

task_migration_pairs[k][0];
migrating_node =

migrating_node_arr[k];
}

}

MPI_Bcast(&bcast_flag,1,MPI_INT,task_migration_pairs[k][0],MPI_COMM_WORLD);

if (bcast_flag == 1)
{

to_proc_reserved[task_migration_pairs[k][1]] = bcast_flag;
isMigrated_arr[k] = bcast_flag;

}
}

}

MPI_Barrier(MPI_COMM_WORLD);

if (migration_needed == 0)
break;

// task migrate in parallel...

task_migrate(migrating_node,from_proc,to_proc,output_arr,&internal_head,&peripheral_head,hash_table,&
global_data_head,input_arr,num_procs,buffer_size_for_communication,MPI_COMM_WORLD);

}
}

// Re - initialize the data structures for load-rebalancing strategies...
if (myid == 0)
{

for (k=0;k<num_procs;k++)
{

for (j=0;j<num_procs;j++)
{

proc_node_graph_edges[k][j]=0;
temp_buff[k][j]=0;

}
}

for (k=0;k<num_procs;k++)
{

for (j=0;j<2;j++)
{

task_migration_pairs[k][j]=-1;

 78

}
}

for (j=0;j<num_procs;j++)
{

migrating_node_arr[j] = -1;
}

for (k=0;k<num_procs;k++)
{

for (j=0;j<10;j++)
{

proc_holding_shadows[k][j]=-1;
}

}

for (k=0;k<num_procs;k++)
isFiltered_arr[k] = -1;

for (k=0;k<num_procs;k++)
isMigrated_arr[k] = -1;

for (k=0;k<num_procs;k++)
to_proc_reserved[k] = -1;

}
else
{

for (k=0;k<num_procs;k++)
{

for (j=0;j<2;j++)
{

task_migration_pairs[k][j]=-1;
}

}

for (j=0;j<num_procs;j++)
{

migrating_node_arr[j] = -1;
}

for (k=0;k<num_procs;k++)
{

for (j=0;j<10;j++)
{

proc_holding_shadows[k][j]=-1;
}

}

for (k=0;k<num_procs;k++)
isFiltered_arr[k] = -1;

for (k=0;k<num_procs;k++)
isMigrated_arr[k] = -1;

for (k=0;k<num_procs;k++)
to_proc_reserved[k] = -1;

}

proc_execution_time=0;
proc_execution_time_for_one_iteration=0;

}

 79

// MPI_Barrier(MPI_COMM_WORLD);
}

MPI_Barrier(MPI_COMM_WORLD);
time_elapsed += MPI_Wtime();

if (myid == 0)
{

printf("\nTime Elapsed = %f\n",time_elapsed);

/* for (j=0;j<num_procs;j++)
{

printf(":*:%f:*:",proc_execute_timings[j]);
}*/

for (i=0;i<num_procs;i++)
{

printf("\n");
for (j=0;j<num_procs;j++)

printf("*%d*",proc_node_graph_edges[i][j]);
}

}

// Displaying the initialized buffers for communication at the local memories of each proc...

/* printf("\nfor proc %d...",myid);
for (i=0;i<num_procs;i++)
{

printf("\n");
if (buffer_size_for_communication[i]!=0)
{

printf("%d:",i);
for (j=0;j<buffer_size_for_communication[i];j++)
{

printf("%d, %d ",buffer_arr[i][j].globalID,buffer_arr[i][j].data);
}

}
}*/

// Displaying the recv buffers after communication...

/* for (i=0;i<num_procs;i++)
{

printf("\n");
if (buffer_size_for_communication[i]!=0)
{

printf("%d:",i);
for (j=0;j<MAX_SIZE_FOR_RECVBUFFER;j++)
{

printf("%d, %d ",recvbuffer_arr[i][j].globalID,recvbuffer_arr[i][j].data);
}

}
}*/

// Displaying Hash Table for internal and peripheral nodes & shadows!...
for (i=0;i<HASH_TABLE_LENGTH;i++)
{

for (hash_temp=hash_table[i];hash_temp!=NULL;hash_temp=hash_temp->next_node)
printf("\nProc %d: %d -> %d -> %d ",myid,i,hash_temp->globalID,hash_temp-

>data_location->globalID);
}

 80

 // Displaying number of vertices, edges to be dealt with + input array (graph connectivity) +
// output array (node to proc assignment)...

/* printf("%d %d %d\n",num_of_vertices,num_of_edges,fmt);

for (i=0;i<num_of_vertices;i++)
{

printf("%d ",output_arr[i]);
}

printf("\n");

for (i=0;i<num_of_vertices;i++)
{

for (j=0;j<COLUMN_WIDTH_OF_INPUT_ARRAY;j++)
{

printf("%d ",input_arr[i][j]);
}
printf("\n");

}*/

// Displaying data lists...

temp=global_data_head;
printf("\n");
for (;temp!=NULL;temp=temp->next_node)
{

printf("%d->",temp->data);
}

// Displaying internal lists...

printf("\nfor proc %d...",myid);
printf("\ninternal lists...");

internal_temp = internal_head;
for (;internal_temp!=NULL;internal_temp=internal_temp->next_node)
{

printf("%d data location ->",internal_temp->globalID);
printf("%d ",internal_temp->data_location->globalID);

}

// Displaying peripheral lists...

printf("\n\nperipheral lists...");

peripheral_temp = peripheral_head;
for (;peripheral_temp!=NULL;peripheral_temp=peripheral_temp->next_node)
{

printf("%d(%d) data location ->",peripheral_temp->globalID,peripheral_temp->owning_proc);
printf("%d ",peripheral_temp->data_location->globalID);

}

free(input_arr);
free(output_arr);
free(global_data_head);
free(internal_head);
free(peripheral_head);
free(hash_table);
free(buffer_arr);
free(recvbuffer_arr);
free(vertex_weight);

 81

free(task_migration_pairs);
free(migrating_node_arr);
free(proc_holding_shadows);
free(isFiltered_arr);
free(isMigrated_arr);
free(to_proc_reserved);

MPI_Finalize();
return 0;

}

int UpdateMigratingNodeInfo(int **proc_holding_shadows, int k, struct own_node **peripheral_head, int
*migrating_node_arr, int **task_migration_pairs)
{

struct own_node *peripheral_temp;
int j,i,l;

peripheral_temp = *peripheral_head;

for (;peripheral_temp!=NULL;peripheral_temp=peripheral_temp->next_node)
{

if (peripheral_temp->globalID == migrating_node_arr[k])
break;

}

// Updating the proc_holding_shadows[][] DS...
for (j=0;peripheral_temp->shadow_for_procs[j]!=-1;j++)
{

proc_holding_shadows[k][j] = peripheral_temp->shadow_for_procs[j];
}

// All filtering conditions removed..., all the task migrations wud be xecuted!
return 1;

/* if (k==0)
{

return 1; // first migration wud take place no matter wht...
}
else
{

for (j=0;j<k;j++)
{

// if 'to_proc' for any two pairs clash, task migration cannot be xecuted in parallel...
if (task_migration_pairs[j][1] == task_migration_pairs[k][1])

return 0;
}
return 1;

} */

/* if (k==0)
{

return 1; // first migration wud take place no matter wht...
}
else
{

// logic for filtering...
for (i=0;proc_holding_shadows[k][i]!=-1;i++)
{

for (j=0;j<k;j++)
{

for (l=0;proc_holding_shadows[j][l]!=-1;l++)
{

 82

// Check if the intersection set of the procs holding shadows for the
migrating node for any

// two pairs clashes...if they do, then the current task cannot be
migrated!

if (proc_holding_shadows[j][l] == proc_holding_shadows[k][i])
return 0;

}
}

}
return 1;

}*/
}

int GetMigratingNode(struct own_node **peripheral_head, int to_proc, int from_proc, int **input_arr, int *output_arr)
{

struct own_node *temp;
int shadow_for_to_proc[10],i,k=0,num_shadow_for_to_proc=0,*node_edge_cut,min_index=0;

temp = *peripheral_head;

for (i=0;i<10;i++)
{

shadow_for_to_proc[i] = -1;
}

for (;temp!=NULL;temp=temp->next_node)
{

for (i=0;temp->shadow_for_procs[i]!=-1;i++)
{

if (temp->shadow_for_procs[i] == to_proc)
{

shadow_for_to_proc[k++] = temp->globalID;
break;

}
}

}

for (k=0;shadow_for_to_proc[k]!=-1;k++)
{
// printf("\n%d#",shadow_for_to_proc[k]);

num_shadow_for_to_proc ++;
}

node_edge_cut = (int *)malloc(sizeof(int)*num_shadow_for_to_proc);

for (k=0;k<num_shadow_for_to_proc;k++)
{

node_edge_cut[k]=0;
}

for (i=0;shadow_for_to_proc[i]!=-1;i++)
{

for (k=0;input_arr[shadow_for_to_proc[i] - 1][k]!=0;k++)
{

if (output_arr[input_arr[shadow_for_to_proc[i] - 1][k] - 1] == from_proc)
{

node_edge_cut[i]++;
}
else if (output_arr[input_arr[shadow_for_to_proc[i] - 1][k] - 1] == to_proc)
{

node_edge_cut[i]--;
}

 83

}
}

/* for (i=0;i<num_shadow_for_to_proc;i++)
{

printf("##%d##",node_edge_cut[i]);
} */

for (i=1;i<num_shadow_for_to_proc;i++)
{

if (node_edge_cut[i] < node_edge_cut[min_index])
{

min_index=i;
}

}

return shadow_for_to_proc[min_index];
}

int GetLoadRebalancingParameters(double *proc_execute_timings, int **proc_node_graph_edges, int
**task_migration_pairs, int num_procs, MPI_Comm comm)
{

int myid,i,j,k,imbalance_flag=0,proc_imbalance_flag;
int **relative_proc_load;

MPI_Comm_rank(comm,&myid);

/* for (j=0;j<num_procs;j++)
{

printf(":*:%f:*:",proc_execute_timings[j]);
}

for (i=0;i<num_procs;i++)
{

printf("\n");
for (j=0;j<num_procs;j++)

printf("*%d*",proc_node_graph_edges[i][j]);
} */

relative_proc_load = (int **)malloc(sizeof(int)*num_procs);
for (i=0;i<num_procs;i++)
{

relative_proc_load[i] = (int *)malloc(sizeof(int)*num_procs);
}

for (i=0;i<num_procs;i++)
{

for (j=0;j<num_procs;j++)
{

relative_proc_load[i][j] = 0;
}

}

// Set up the relative processor work load to check for imbalance...
for (i=0;i<num_procs;i++)
{

for (j=0;j<num_procs;j++)
{

if ((i != j) && (proc_node_graph_edges[i][j] > 0)) // check if edge exists between procs i
and j...

{
if (proc_execute_timings[i] > proc_execute_timings[j])

 84

{
relative_proc_load[i][j] = (int)(((proc_execute_timings[i] -

proc_execute_timings[j])/proc_execute_timings[j])*100);
}

}
}

}

for (i=0;i<num_procs;i++)
{

printf("\n");
for (j=0;j<num_procs;j++)

printf("(*%d*)",relative_proc_load[i][j]);
}

k=0;
for (i=0;i<num_procs;i++)
{

proc_imbalance_flag=1;
for (j=0;j<num_procs;j++)
{

if ((i != j) && (proc_node_graph_edges[i][j] > 0)) // check if edge exists between procs i
and j...

{
// Check if the imbalance among neighbors is within feasible threshold (25%)

here...
if (relative_proc_load[i][j] < 25)
{

proc_imbalance_flag=0;
break;

}
}

}

// At this point we obtain from_proc/to_proc pair, if proc_imabalance_flag =1...
// from_proc wud be i, while to_proc wud be the proc w.r.t. which i does max work...(viz. to_proc

is the idle most w.r.t. from_proc)
if (proc_imbalance_flag == 1)
{

task_migration_pairs[k][0] = i;

task_migration_pairs[k][1] = 0;
for (j=1;j<num_procs;j++)
{

if (relative_proc_load[i][j] > relative_proc_load[i][task_migration_pairs[k][1]])
{

task_migration_pairs[k][1] = j;
}

}

k++;
imbalance_flag=1;

}
}

for (i=0;i<num_procs;i++)
{

for (j=0;j<2;j++)
{

printf("*%d*",task_migration_pairs[i][j]);
}
printf("\n");

 85

}

free(relative_proc_load);
return imbalance_flag;

}

void task_migrate(int migrating_node, int from_proc, int to_proc, int *output_arr, struct own_node **internal_head,
struct own_node **peripheral_head, struct hash_node *hash_table[], struct node_data **global_data_head, int
**input_arr, int num_procs, int *buffer_size_for_communication, MPI_Comm comm)
{

int
myid,i,flag,k,j,insert_shadow_flag,neighbors_of_migrating_node[10],num_neighbors_of_migrating_node=0;

int blockcounts[1],hash_map,hash_flag=0,data_flag=0,p_flag=0;
struct own_node *temp,*prev,*temp1=NULL,*save_node=NULL,*temp_p,*r,*temp_i;
struct buffer_data_node send_buff[MIGRATING_NEIGHBORS],recv_buff[MIGRATING_NEIGHBORS];
struct hash_node *hash_temp,*r_hash;
struct node_data *temp_data, *p;
MPI_Datatype buffer_datatype, oldtypes[1];
MPI_Aint offsets[1];
MPI_Status status;

MPI_Comm_rank(comm,&myid);

/* Set up description of 2 MPI_INT fields: globalID and data of the struct type buffer_data_node...*/
offsets[0]=0;
oldtypes[0]=MPI_INT;
blockcounts[0]=2;

/* Define structured type & commit it...*/
MPI_Type_struct(1,blockcounts,offsets,oldtypes,&buffer_datatype);
MPI_Type_commit(&buffer_datatype);

for (k=0;k<MIGRATING_NEIGHBORS;k++)
{

send_buff[k].globalID = -1;
send_buff[k].data = -1;

}

if (myid == from_proc)
{

temp = *internal_head;
prev = *internal_head;

// output_arr[migrating_node - 1] = to_proc;

for (;temp!=NULL;temp=temp->next_node)
{

i=0;
flag=0;

for(;temp->neighboring_nodes[i]!=-1;i++)
{

if (output_arr[temp->neighboring_nodes[i]-1]!=myid)
{

flag=1;
break;

}
}

if (flag==1)
{

save_node = malloc(sizeof(struct own_node));

 86

if (temp == *internal_head)
{

temp1 = temp->next_node;
save_node = temp;
*internal_head=temp1;

}
else
{

prev->next_node = temp->next_node;
save_node = temp;

}

// Append the deleted node to the peripheral node list...
temp_p = *peripheral_head;

if (*peripheral_head != NULL)
{

while (temp_p->next_node != NULL)
temp_p=temp_p->next_node;

}

r = malloc(sizeof(struct own_node));

r->globalID = save_node->globalID;
r->owning_proc = myid;
r->data_location = save_node->data_location;

for (k=0;k<10;k++)
r->neighboring_nodes[k]=save_node->neighboring_nodes[k];

r->internal_or_peripheral = 'p';

for (k=0;k<10;k++)
r -> shadow_for_procs[k] = -1;

for (k=0;r -> neighboring_nodes[k]!=-1;k++) // Populating shadow_for_procs[]
arr...

{
insert_shadow_flag=0;
if (output_arr[r -> neighboring_nodes[k] - 1] != myid)
{

for (j=0;r -> shadow_for_procs[j]!=-1;j++)
{

if (output_arr[r -> neighboring_nodes[k] -1]==r-
>shadow_for_procs[j])

insert_shadow_flag=1;
}

if (insert_shadow_flag==0)
r -> shadow_for_procs[j] = output_arr[r ->

neighboring_nodes[k] - 1];
}

}

r->next_node=NULL;

if (*peripheral_head != NULL)
{

temp_p->next_node = r;
}
else

 87

{
*peripheral_head = r;

}

free(save_node);
}

if (flag == 0)
{

prev = temp;
}

}

// Remove the migrating node from the peripheral node list...
temp = *peripheral_head;
prev = *peripheral_head;

for (;temp!=NULL;temp=temp->next_node)
{

flag=0;
if (temp->globalID == migrating_node)
{

flag = 1;

// Get all the neighbors of the migrating node...
for (k=0;k<10;k++)
{

neighbors_of_migrating_node[k]=-1;
}
for (k=0;temp->neighboring_nodes[k]!=-1;k++)
{

neighbors_of_migrating_node[k]=temp->neighboring_nodes[k];
num_neighbors_of_migrating_node++;

}
}

if (flag==1)
{

if (temp == *peripheral_head)
{

temp1= temp->next_node;
free(temp);
*peripheral_head = temp1;

}
else
{

prev->next_node = temp->next_node;
free(temp);

}

break;
}

prev = temp;
}

// Updating the shadow_for_procs[] array for the peripheral nodes...
for (temp_p=*peripheral_head;temp_p!=NULL;temp_p=temp_p->next_node)
{

for (j=0;j<10;j++)
temp_p -> shadow_for_procs[j] = -1;

 88

for (k=0;temp_p -> neighboring_nodes[k]!=-1;k++) // Populating shadow_for_procs[]
arr...

{
insert_shadow_flag=0;
if (output_arr[temp_p -> neighboring_nodes[k] - 1] != myid)
{

for (j=0;temp_p -> shadow_for_procs[j]!=-1;j++)
{

if (output_arr[temp_p -> neighboring_nodes[k] -1] ==
temp_p->shadow_for_procs[j])

insert_shadow_flag=1;
}

if (insert_shadow_flag==0)
temp_p -> shadow_for_procs[j] = output_arr[temp_p ->

neighboring_nodes[k] - 1];
}

}
}

// Send all the neighbors of migrating node...

for (k=0;k<num_neighbors_of_migrating_node;k++)
{

send_buff[k].globalID = neighbors_of_migrating_node[k];

// Get location of the node from hash table to access the data for the same...
hash_map=(int)(pow(3,neighbors_of_migrating_node[k]))%HASH_TABLE_LENGTH;

for (hash_temp=hash_table[hash_map];hash_temp!=NULL;hash_temp=hash_temp-
>next_node)

{
if (neighbors_of_migrating_node[k] == hash_temp->globalID)
{

send_buff[k].data = hash_temp->data_location->data;
break;

}
}

}

MPI_Send(send_buff,num_neighbors_of_migrating_node,buffer_datatype,to_proc,1,comm);
}
else if (myid == to_proc)
{

for (k=0;k<MIGRATING_NEIGHBORS;k++)
{

recv_buff[k].globalID = -1;
recv_buff[k].data = -1;

}
MPI_Recv(recv_buff,MIGRATING_NEIGHBORS,buffer_datatype,from_proc,1,comm,&status);

for (k=0;recv_buff[k].globalID!=-1;k++)
{

hash_flag=0;
hash_map=(int)(pow(3,recv_buff[k].globalID))%HASH_TABLE_LENGTH;

for (hash_temp=hash_table[hash_map];hash_temp!=NULL;hash_temp=hash_temp-
>next_node)

{
if (recv_buff[k].globalID == hash_temp->globalID)
{

// Node found in hash table, update the received node data...

 89

hash_temp->data_location->data = recv_buff[k].data;
hash_flag=1;
break;

}
}

// If no entry found in the hash table..., then update/add the data node, and add node
information in the hash table

if (hash_flag==0)
{

temp_data = *global_data_head;
for (;temp_data!=NULL;temp_data=temp_data->next_node)
{

data_flag=0;
// Data node found, update it...
if (temp_data->globalID == recv_buff[k].globalID)
{

temp_data->data = recv_buff[k].data;
data_flag=1;
break;

}
}

// No data node found, add node information in the data list...
if (data_flag==0)
{

temp_data = *global_data_head;

while (temp_data->next_node!=NULL)
temp_data = temp_data->next_node;

p = malloc(sizeof(struct node_data));
p->globalID = recv_buff[k].globalID;
p->data = recv_buff[k].data;
p->next_node = NULL;

temp_data->next_node = p;
}

// Add node information in hash table...
if (hash_table[hash_map]==NULL)
{

hash_temp = malloc(sizeof(struct hash_node));

hash_temp->globalID=recv_buff[k].globalID;

for
(temp_data=*global_data_head;temp_data!=NULL;temp_data=temp_data->next_node)

{
if (temp_data->globalID == recv_buff[k].globalID)

break;
}
hash_temp->data_location=temp_data;
hash_temp->next_node=NULL;
hash_table[hash_map]=hash_temp;

}
else
{

hash_temp=hash_table[hash_map];
while (hash_temp->next_node!=NULL)
{

 90

hash_temp=hash_temp->next_node;
}

r_hash = malloc(sizeof(struct hash_node));

r_hash->globalID=recv_buff[k].globalID;

for
(temp_data=*global_data_head;temp_data!=NULL;temp_data=temp_data->next_node)

{
if (temp_data->globalID == recv_buff[k].globalID)

break;
}
r_hash->data_location=temp_data;
r_hash->next_node=NULL;
hash_temp->next_node=r_hash;

}
}

}

// output_arr[migrating_node - 1] = to_proc;

// Check if the peripheral nodes 'remain', if not, delete and insert in the internal node list...
for (temp=*peripheral_head,prev=*peripheral_head;temp!=NULL;temp=temp->next_node)
{

p_flag=0;
for (j=0;temp->neighboring_nodes[j]!=-1;j++)
{

if (output_arr[temp->neighboring_nodes[j]-1] != myid)
{

p_flag=1;
break;

}
}

save_node = malloc(sizeof(struct own_node));

if (p_flag == 0) // Remove peripheral node, and append the same to the internal node
list...

{
if (temp == *peripheral_head)
{

temp1 = temp->next_node;
save_node = temp;
*peripheral_head=temp1;

}
else
{

prev->next_node = temp->next_node;
save_node = temp;

}

// Append to the internal node list...
temp_i = *internal_head;
if (*internal_head != NULL)
{

while (temp_i->next_node != NULL)
temp_i=temp_i->next_node;

}

r = malloc(sizeof(struct own_node));

 91

r->globalID = save_node->globalID;
r->internal_or_peripheral = 'i';
r->owning_proc = myid;
r->data_location = save_node->data_location;

for (j=0;j<10;j++)
r->neighboring_nodes[j] = save_node->neighboring_nodes[j];

for (j=0;j<10;j++)
{

r->shadow_for_procs[j] = -1;
}

r->next_node = NULL;

if (*internal_head != NULL)
{

temp_i->next_node = r;
}
else
{

*internal_head = r;
}

}

if (p_flag == 1)
{

prev = temp;
}
free(save_node);

}

// Make an entry in the peripheral node list for the migrated task...
temp_p = *peripheral_head;

if (*peripheral_head != NULL)
{

while (temp_p->next_node != NULL)
temp_p=temp_p->next_node;

}

r = malloc(sizeof(struct own_node));

r->globalID = migrating_node;
r->internal_or_peripheral = 'p';
r->owning_proc = myid;

hash_map = ((int)pow(3,migrating_node))%HASH_TABLE_LENGTH;
for (hash_temp=hash_table[hash_map];hash_temp!=NULL;hash_temp=hash_temp->next_node)
{

if (hash_temp->globalID == migrating_node)
break;

}
r->data_location = hash_temp->data_location;

for (j=0;j<10;j++)
r->neighboring_nodes[j]=-1;

for (j=0;input_arr[migrating_node-1][j]!=0;j++)
r->neighboring_nodes[j]=input_arr[migrating_node-1][j];

for (j=0;j<10;j++)

 92

r -> shadow_for_procs[j] = -1;

for (k=0;r -> neighboring_nodes[k]!=-1;k++) // Populating shadow_for_procs[] arr...
{

insert_shadow_flag=0;
if (output_arr[r -> neighboring_nodes[k] - 1] != myid)
{

for (j=0;r -> shadow_for_procs[j]!=-1;j++)
{

if (output_arr[r -> neighboring_nodes[k] -1]==r-
>shadow_for_procs[j])

insert_shadow_flag=1;
}

if (insert_shadow_flag==0)
r -> shadow_for_procs[j] = output_arr[r -> neighboring_nodes[k] -

1];
}

}

r->next_node = NULL;

if (*peripheral_head != NULL)
{

temp_p->next_node = r;
}
else
{

*peripheral_head = r;
}

// Updating the shadow_for_procs[] array for the peripheral nodes...
for (temp_p=*peripheral_head;temp_p!=NULL;temp_p=temp_p->next_node)
{

for (j=0;j<10;j++)
temp_p -> shadow_for_procs[j] = -1;

for (k=0;temp_p -> neighboring_nodes[k]!=-1;k++) // Populating shadow_for_procs[]
arr...

{
insert_shadow_flag=0;
if (output_arr[temp_p -> neighboring_nodes[k] - 1] != myid)
{

for (j=0;temp_p -> shadow_for_procs[j]!=-1;j++)
{

if (output_arr[temp_p -> neighboring_nodes[k] -1] ==
temp_p->shadow_for_procs[j])

insert_shadow_flag=1;
}

if (insert_shadow_flag==0)
temp_p -> shadow_for_procs[j] = output_arr[temp_p ->

neighboring_nodes[k] - 1];
}

}
}

}
else
{
// output_arr[migrating_node-1] = to_proc;

// Updating the shadow_for_procs[] array for the rest of the procs...

 93

for (temp_p=*peripheral_head;temp_p!=NULL;temp_p=temp_p->next_node)
{

for (j=0;j<10;j++)
temp_p -> shadow_for_procs[j] = -1;

for (k=0;temp_p -> neighboring_nodes[k]!=-1;k++) // Populating shadow_for_procs[]
arr...

{
insert_shadow_flag=0;
if (output_arr[temp_p -> neighboring_nodes[k] - 1] != myid)
{

for (j=0;temp_p -> shadow_for_procs[j]!=-1;j++)
{

if (output_arr[temp_p -> neighboring_nodes[k] -1] ==
temp_p->shadow_for_procs[j])

insert_shadow_flag=1;
}

if (insert_shadow_flag==0)
temp_p -> shadow_for_procs[j] = output_arr[temp_p ->

neighboring_nodes[k] - 1];
}

}
}

}

MPI_Barrier(comm);

// Update the buffer_size_for_communication array for all procs...
for (j=0;j<num_procs;j++)
{

buffer_size_for_communication[j] = 0;
}

for (temp_p=*peripheral_head;temp_p!=NULL;temp_p=temp_p->next_node)
{

for (j=0;temp_p->shadow_for_procs[j]!=-1;j++)
{

buffer_size_for_communication[temp_p->shadow_for_procs[j]]++;
}

}
}

 94

Appendix D

This appendix shows the header file used.

/* header.h */

include <stdio.h>
include <stdlib.h>
include <math.h>
include <time.h>
include "mpi.h"

define MAX_STR_LENGTH 250
define COLUMN_WIDTH_OF_INPUT_ARRAY 10
define HASH_TABLE_LENGTH 10
define MAX_SIZE_FOR_RECVBUFFER 10
define MIGRATING_NEIGHBORS 10

struct node_data
{

int globalID;
int data;
int most_recent_data;
struct node_data *next_node;

};

struct buffer_data_node
{

int globalID;
int data;

};

struct own_node
{

int globalID;
char internal_or_peripheral;
int owning_proc;
struct node_data *data_location;
int neighboring_nodes[10];
int shadow_for_procs[10];
struct own_node *next_node;

};

struct hash_node
{

int globalID;
struct node_data *data_location;
struct hash_node *next_node;

};

void InitializeGraph(int *, int *, int *);
void InitializeInputArray(int **, int, int, int *);
void InitializeOutputArray(int *, int);
void InitializeGlobalDataList(struct node_data **, int);
void InitializeNodeLists(struct own_node **, struct own_node **, struct node_data **, struct hash_node *[], int **, int
*, int, int, int *, MPI_Comm);
void InsertShadowsIntoHashTable(struct own_node **, struct node_data **, int *, struct hash_node *[], MPI_Comm);
void ComputeOverNodes(struct own_node **, struct own_node **, struct node_data **, struct hash_node *[], struct
buffer_data_node *[], int, int *,void (*)(), MPI_Comm, int, int);

 95

void SimulatorFunction(struct node_data **, struct node_data **, int, int, int);
void CommunicateShadows(struct buffer_data_node *[], struct buffer_data_node *[], int *, int, struct node_data **,
MPI_Comm);
void task_migrate(int, int, int, int *, struct own_node **, struct own_node **, struct hash_node *[], struct node_data
**, int **, int, int *, MPI_Comm);
int GetLoadRebalancingParameters(double *, int **, int **, int, MPI_Comm);
int GetMigratingNode(struct own_node **, int, int, int **, int *);
int UpdateMigratingNodeInfo(int **, int, struct own_node **, int *, int **);

	Georgia State University
	ScholarWorks @ Georgia State University
	8-2-2006

	iC2mpi: A Platform for Parallel Execution of Graph-Structured Iterative Computations
	Harnish Botadra
	Recommended Citation

	tmp.1257870074.pdf.Qew6J

