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INTERACTIONS BETWEEN CELLULAR COMPONENTS AND INFERRG
HAPLOTYPES FROM INFORMATIVE SNPS
by
KELLY WESTBROOKS
Under the Direction of Alexander Zelikovsky

ABSTRACT

Many problems in bioinformatics are inference peof$, that is, the problem objective is
to infer something based upon a limited amounhf@rmation. In this work we explore two
different inference problems in bioinformatics.

The first problem is inferring the structure ofrsadtransduction networks from
interactions between pairs of cellular componénts.present two contributions towards the
solution to this problem: an mixed integer progthat produces and exact solution, and an
implementation of an approximation algorithm in aakat was originally described by
DasGupta et al. An exact solution is obtained fprablem instance consisting of real data.

The second problem this thesis examines is thdgobf inferring complete haplotypes
from informative SNPs. In this work we describe tvawiations of the linear algebraic method
for haplotype prediction and tag SNP selection: Tifferent variants of the algorithm are

described and implemented, and the results sumeaariz
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1 Introduction

Solving an inference problem means reckoning abokimowns in the solution based
upon only partial information. Often the answemrtoinference problem is a “best guess”
determined using only the available data. This wte&ls with two different inference problems
in bioinformatics, namely, the problem of inferritige structure of signal transduction networks
from observations on the interactions between lkeelcomponents, and the problem of inferring
unknown haplotypes from informative SNPs. Both prois are worthy of study because fast
and efficient solutions to them could potentialtynly about other breakthroughs in medicine and

biology that could lead to treatments or cureggfemetic diseases.

1.1 Inferring the Structure of Signal Transduction Networks

In order to adapt to their environment and coopevath surrounding tissue, living cells
utilize a complex collection of interacting chenticand molecules to communicate changes and
respond to stimuli, a process knowrsamal transductionSignal transduction is the primary
mechanism for maintaining equilibrium between bk and its surroundings and allows cell to
react to events outside the cell membrane. In dodferrther understand how intracellular
signaling processes operate, biologists conductr@xents to record the the interaction strength
between the pairs of chemicals involved in theaigg pathways. Once enough observations
are recorded, the next task is to refine the in&diom by discarding weak interactions and to
infer the underlying structure of the signalingwetk formed by the interacting components.
Informally, the problem of inferring the structwésignal transduction networks (STNs) can be

stated in the following manner: given a set of osgons on interactions between various
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members of the signaling pathways, infer the sreflabset of observations that can explain the
entire set of interactions.

The fundamental difficulty when inferring signahmisduction network structure is that it
is experimentally difficult to distinguish betwedmect interactions between cellular components
and indirect interactions, brought about by casegadequences of direct interactions. For a
given pair of cellular components, it may be pdssib explain an interaction-observation in
more than one way, but impossible to determine kvbikplanation is the correct one. This work
focuses on a parsimonious approach to the problenattempt to explain the entire set of

interactions using the smallest subset of obsemafpossible.

1.1.1 STNs as Directed Graphs and the Binary Transite Reduction

One way to mathematically model the collectionnmdéraction data between cellular
components is to consider a directed graph whod&es represent the interacting cellular
components under study and whose edges repregeitdtieg interactions. Regulating
interactions can be of two different types: promgtinteractions, where one cellular component
increases the expression of the other componedtinaibiting interactions, where one cellular
component decreases the expression of the othgyaswnt. The resulting directed graph
captures the direct interactions between membettseadignaling pathways, but it may also
capture indirect interactions, resulting from awsgee of direct promoting or inhibiting
interactions. From this graph-theoretical perspectihe objective of inferring signal
transduction network structure is to detect andongrredges from the interaction graph that
represent indirect interactions.

Since using only the data in the interaction griajghimpossible to differentiate between
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direct and indirect interactions, in this work weeenpt to minimize false positive inferences at
the risk of making false negatives inferences witeriding which interactions are direct
interactions and which interactions are indireciththis objective in mind, we can see that in
order to solve the STN inferencing problem, we nimecbmpute a special version of the
transitive reduction on the interaction graph th&es into account the interaction types. This
“special” transitive reduction, known as a binaisitive reduction, maintains reachability

relationships across sequences of promotion ariitioim interactions.

1.1.2 Exact Solutions to the STN Inference Problemsing Mixed Integer Programming
One of the primary contributions of this work ifoamulation of the binary transitive
reduction problem as a mixed integer program. Mixeeger programming is one way to A
Java program is presented which translates instasfadie binary transitive reduction problem
into a form suitable for consumption by GLPK, a plap linear and mixed integer program
solver from the GNU Software Foundation. The solutgiven by GLPK is then re-mapped into
the original problem space and the solution toST#&l inference problem is outputted. The
computation time for problems of various sizesludmg both real and simulated data is

presented.

1.1.3 An Approximation Algorithm for the STN Inference Problem
Another contribution of this work is the implemetia of an approximation algorithm
for the binary transitive reduction problem by Dag@& et al. This algorithm works by

combining solutions for the special cases whergthblem instance is a directed acyclic graph
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with the case where the problem instance is aglyaonnected graph. A Java program which
implements this approximation algorithm is presdraed its output is compared to the output of

the mixed integer program in terms of both accuamy execution time.

1.2 Inferring Haplotypes using Informative Single Nwcleotide Polymorphisms

For a given species, the vast majority of the DNAwWeen individuals is identical.
However, some small subset of nucleotides exhdmiation across individuals within a species.
Each nucleotide position that exhibits variatioaajer across a population is known as a single-
nucleotide polymorphism (SNP). It is believed t8&tPs account for most of the genetic
variation between individuals in a given speciesl more importantly, can be used as accurate
predictors of the susceptibility of a given indiva to a particular genetic disease. When
genotyping individuals, sampling every individudSis expensive, and many of the sampled
SNPs don't contribute much information useful fetidguishing individuals, so it is desirable to
sample only the most informative subset of SNPgs&hnformative SNPs are knowntag

SNPs.

1.2.1 The Haplotype Prediction Problem

There are two problems related to tag SNPs. Thegnoblem is the tag SNP selection
problem. Informally, it can be stated as followseg a set of SNPs taken across a sample
population of haplotypes, find k tag SNPs thatiggiish the largest number of the haplotypes.
In this problem, the focus is the discovery anchidieation of specific SNP sites in the

haplotype population that are useful for distinging individuals. The second problem is the
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haplotype prediction problem: given a sample pamraof haplotypes along with the locations
of k tag SNPs in that population, and the values ofdageSNPs of some unknown haplotype,
reconstruct the entire unknown haplotype. In thabfgm, the tag SNP sites are known in
advance, and the values of the tag SNPs of theawrkimdividual, along with the entire sample
population are used to infer the values of allhef hon-tag SNPs in the unknown haplotype. The

later half of this thesis addresses the haplotypdigtion problem.

1.2.2 Linear Algebraic Method for Haplotype Predicton

There are a large number of published solutioribedaplotype prediction problem. In
this work, we expand upon previously published ltsdoy exploiting natural linear dependency
between SNPs. A subset of SNPs from the samplelgtapuis selected which forms a basis
over the space spanned by the SNPs in the sampldapion, and non-tag SNPs are represented
as linear combinations between the tag SNPs. Theeselt is a reduction in the amount of data
needed to accurately represent the sample popul&idava program is presented which takes
as input the sample population, the positions taigksites, and the values of the tag SNPs of
some unknown haplotype and produces the reconstrineplotype as output. Leave-one-out

validation is used to measure the quality of tigoathm.

1.3 Roadmap

This work is organized in the following manner: @tex 2 presents the signal
transduction network inferencing problem. Firsg biological motivation for the problem is
introduced. In section 2.1, we show how the probdam be mathematically modeled as a binary
transitive reduction problem on a graph. Secti@hs2mmarizes previous work on the binary

transitive reduction problem. Section 2.3 descrébesixed integer program that successfully



solves the binary transitive reduction problemSéttion 2.4, we present an approximation
algorithm to compliment the exact algorithm. Satt®5 concludes the chapter with a discussion
of the maximum confidence transitive reduction feal which may prove to be a more
appropriate mathematical abstraction in future worgignaling networks.

Chapter 3 focuses on the haplotype prediction agd&NP selection problems. The
chapter begins by providing the reader with théigaht biological background necessary to
motivate the haplotype prediction problem. In s&tB.1, the notations and mathematical
formalism that are to be used throughout the reffiteochapter are introduced. Section 3.2
summarizes previous work on the problem. Secti@rd8scribe a framework for building a
greedy tag selection algorithm from any haplotypedjetion algorithm. Section 3.4 introduces
the linear algebraic SNP prediction algorithm (LA§Hh Euclidean space. Section 3.5
concludes the chapter with a variant of LASPA tt@ifines computations to a finite field.

Chapter 4 provides implementation details for taealprograms that were developed for
solving the BTR and haplotype prediction proble@isapter 5 contains a discussion of the

performance and results of the methods of thisghEsally, chapter 6 concludes the thesis.



2 Inferring the Structure of Signal Transduction Networks

Living cells use a complex network of interactiredlelar components to communicate
changes in their environment, respond to stimuld @aintain equilibrium with their
surroundings. These cellular components consigtaitins, DNA, RNA, and other small
molecules which participate in chemical reactiotith wther cellular components [4]. Sequences
of these regulatory interactions effectively behbike signals propagating across a network,
carrying information about events and state chatgesher parts of the cell. The process of
transmitting information inside a cell though aisgiof chemical reactions is callenal
transductionand the structure formed by the various signgtiathways between the cellular

components is known assagnal transduction network

The complex structure of signal transduction neksa@ives cells their biological
characteristics and distinguishes them from simpd&-living chemical systems. Therefore,
understanding the structure of the signaling payiswaside the network is critical to
understanding how biological processes operatealdar level. However, there are a number
of difficult experimental problems to overcome lire taboratory when mapping out signaling

networks.

The primary problem lies in the way the data mestdllected. It is difficult to determine
if there is any interaction between two cellulampmnents in isolation; the data must be
collected inside the cell where it is possible thtéer unknown cellular components participate
in the interaction. As a consequence, the dataaelll consists of both direct and indirect
interactionsDirect interactionsoccur when one cellular component directly infloes another

via chemical reactions, whiladirect interactionsoccur when one cellular component influences
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another through a series of intermediate direetradtions. The fundamental objective of the
signal transduction network inferencing problertoigdentify which interactions are direct and

which are indirect.

Other problems exists as well. Since signaling \waits are used inside the cell for self-
regulation and equilibrium maintenance, they apéctlly self-intersecting. Experimental
evidence suggests that cellular signaling networkg consist of thousands of cellular
components, however these experiments may not etiveossible regulatory interactions
[10,11,20,21]. Further, interactions between ddfércomponents can occur with differing

strengths and timings, yet be equally important tvens of the signaling pathway.

Conversely, not every cellular component has emlaience over the entire signaling
pathway. One key to solving some of the probleratedtabove is to identify which cellular
components affect the entire process the mostdat@mine which interactions these key
components are directly involved in [9]. Once tkislone, biologists will have a partial idea of
what the signaling network looks like, which thenase to make educated guesses about which

types of experiments would be most useful in cotmiethe overall picture.

There are three types of evidence that are usefigtermining if a pair of cellular
components participate in a regulatory interactidre first type is biochemical evidence
obtained by direct observation of protein-proteieiactions. Biochemical evidence of a
regulatory interaction requires some knowledge abimispecific chemical reactions involved
between the two cellular components and often léaddgerences about direct interactions. The
second type is genetic evidence based upon obgeryaif how wild-type and mutant organisms
differ in their responses to a specific stimulusti/genetic evidence, the specific chemical

reactions related to the regulatory interaction to@yinknown, but it is still possible to infer the
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presence of an indirect interaction because thamirganism lacks the cellular component that
completes the signaling pathway and, consequédatly,to express the traits related to that
pathway. Finally, pharmacological evidence in whicé experimenter artificially eliminates or
substitutes cellular components in the pathwakelpful for inferring the presence of indirect
interactions. Although biochemical evidence produoéerences on direct interactions, genetic
and pharmacological evidence is more common aridreasobtain. However, since biological
evidence for specific interactions exists, it ipormant that algorithmic methods for
differentiating between direct and indirect intéi@aas accept as an input the assumed initial set

of direct interactions.

In addition to regulatory interactions being cléssi as either direct or indirect, they can
also be classified in another manner as well: ati#ons can either be of theomotingsense,
where one cellular component increases the expressithe other component, or of the
inhibiting sense, where one cellular component decreasesphession of the other component
[22]. Since an indirect interaction is composedhath promoting and inhibiting direct
interactions, it is possible to determine the serisn indirect interaction by using the following

rules:

® An indirect interaction is of the promoting senfsi ¢contains an even number of

inhibiting direct interactions.

® An indirect interaction is of the inhibiting sen§& contains an odd number of inhibiting

direct interactions.

In biological terms, the signal transduction netivoferencing problem can be
formulated in the following manner: Given a sebbservations of promoting and inhibiting

interactions between cellular components and theedwof the observations that are assumed to
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be direct interactions, from the remaining setr@énown interactions infer which are direct and
which are indirect. Any feasible solution to theNsififerencing problem should have the
following two characteristics: The promoting/intiibg sense of each indirect interaction in the
solution should be explainable by the senses efjaence of the inferred direct interactions, and
the assumed set of direct interactions should sahaet of the inferred set of direct interactions.
As stated previously, in this work we seek solugitmthe STN inferencing problem which

minimize the size of the inferred set of direcenaictions.

2.1 Signal Transduction Networks as Weighted Directe Graphs

Any algorithmic method for automatically inferrirsggnal transduction network structure
needs to recast the problem as a computationalgonotly mapping biological concepts onto
mathematical concepts. For the STN inferencing Iprapthe mathematical framework which is
most useful for modeling the problem is computatlagraph theory. In this section, we describe
how the STN inferencing problem is mapped ontoexisp type of transitive reduction problem

in graph theory called tHanary transitive reduction

Consider a directed graph whose vertices represdintar components and whose edges
represent interactions. To capture promoting/inimgisense information about each interaction,
we label edges in the graph with O if they reprepemmoting interactions and with 1 if they
represent inhibiting interactions. The choice ahg$) and 1 for indicating the interaction sense
is not arbitrary. According to the aforementionatés for determining the sense of an indirect
interaction, the modulo-2 sum of the edge labelsagh direct interaction constituting the

indirect interaction determines the sense of tbeeaat interaction. Finally, the subset of edges
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representing the interactions which are assumée tirect will be further labeled as “critical’

edges. This simple model is sufficient for captgratl the information available to any

algorithmic method for separating direct interagsidrom indirect interactions.

In order to completely formalize the STN inferemcproblem mathematically, we

introduce the following notations:

G

(V,E) is adirected graph whose vertex ¥etonsists of cellular components and

whose edge sé& consists of both direct and indirect interactions.

Let ueV be any vertex.outgoin¢(u)=E Denotes the set of directed edges witis

the tail, while incomin¢(u)SE denotes the set of directed edges wits the head.

w:E—{0,1} is the edge-labeling function whebelenotes a promoting interaction

and1 denotes an inhibiting interaction.

E.iica EE IS the initial set of interactions that are assunaeele direct.

Theparity of a pathP from vertexu to vertexv is e; w(e)(mod2) A path of parity
hasevenparity while a path of parity hasodd parity.

u—,Vv denotes an edge from vertexo vertexv with edge labelingcand u=,v
denotes a path from vertexo vertexv with parityx.
For a subset of edge&'<E , reachabl(E') is the set of all ordered triples
(u,v,x) suchthatu=,V is a path in the restricted subgragh’ ,E")
The binary transitive reduction problem is defirzsdfollows:

Problem name: Binary Transitive Reduction (BTR)
Instance: A directed graphG=(V ,E) with an edge-labeling function
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w: E—{0,1} and a set of critical edge&.ica EE
Valid solutions: A subgraph G'=(V ,E') where E ;. <E'SE and
reachabl«(E')=reachabl«( E)
Objective: Minimize |E’|

The binary transitive reduction problem is a gelimation of the standard transitive
reduction problem familiar to any student of graipdory. In the standard transitive reduction
problem, we seek the smallest subgraph that masmtaachability relationships in the original
graph. The binary transitive reduction probleminsilar, but with two primary differences: first,
standard transitive reduction doesn't contain anipn of path parity. Path parity in binary
transitive reduction is a crucial part of the peybland generalizes the notion of reachability.
Second, in the binary transitive reduction we ingpthst the solution contain some subgraph
given as input to the problem, whereas the stanglangitive reduction problem imposes no

such requirement.

Consider the example in fig 2.1. In this case,pifublem instance consists of 3 vertices
and 3 edges. No edges are marked as critical efigeseachability set of the problem instance
is{(1,2,1), (1,3,0), (3,2,1).JThe edg€1,2)is not present in the binary transitive reduction

vertex2 is 1-reachable from vertek by traversing edgé,3), then edgé3, 2).
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Figure 2.1. Minimum non-trivial instance. The pril instance is on the left, and the solution ithen
right. Edge (1,2) can be eliminated since it daesmitribute any additional reachability relatioipshto the
graph.

1 2 1

0 1_}0

3 3

2

Figure 2.2. Instance with a critical edge. The f@obinstance is on the left, and the solution ishright.
Edge(1,2)is a critical edge. Even though ed¢es3) and(3,2) together satisfy the reachability relationship
between vertice$ and2, edge(1,2)is critical and therefore must be in binary tréasireduction.
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This is the smallest example of a problem instamcere the binary transitive reduction differs
from the original problem instance. Figure 2.2imsilgr to figure 2.1 with one exception: edge
(1,2) is a critical edge. In this case, no edgesheaeliminated from the graph without either

breaking a reachability relationship or removingritical edge.

2.2 Previous Work

Problems related to the transitive reduction aadditive closure of a graph are some of
the most well-studied problems in computationapgrtheory. The paper of Aho et al. [3]
presents a comprehensive treatment of the tramsigistuction problem without considering edge
parities. One of the primary contributions of thaper was showing the equivalence of the
transitive reduction and transitive closure proldeAnother important contribution from this
work is a polynomial time algorithm for computirfgettransitive reduction of a directed acyclic
graph. In section 2.4.1, the ideas of the Aho .ear@ extended to give a polynomial time
algorithm for finding the binary transitive reduntiin the case where the problem instance is

acyclic.

If all edges in the problem instance are labelath @iand there are no critical edges, then
the binary transitive reduction problem reducetheminimum equivalent digrapfMED)
problem. The MED problem is known to be MAX-SNP Hlafhe papers of Khuller et al.
[16,17,18] presents an approximation algorithmtfier MED problem with an approximation
ration of 1.617¢ for any € > 0. The algorithm of the Khuller et al. papersisgcles to solve the
MED problem for the strongly connected componeftsi® problem instance, contracts the
cycles to single vertices, and recurses. A sindlea is employed in section 2.4.2 for the binary

transitive reduction problem in the case whereptiodlem instance is strongly connected.
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2.3 An Exact Solution to the BTR Problem using Mixednteger Programming

An optimization problem is one where we seek toim&e or minimize a given
objective function subject to a given set of coaists. If the objective is a linear function and al
of the constraints are linear inequalities, thenghoblem becomeslimear programming
problem. Linear programming is well-known in theldi of operations research and there are a
number of general techniques for solving lineargpaonming problems, the simplex method
being the most well-known among them. If we impthsefurther restriction that all of the
unknown variables in the solution be integers, timenproblem is known as ameger linear
programmingproblem. If some variables in the solution mustiribegers, while others are free
from the restriction, then the problem is calleshiaed integer programmingroblem. Integer
and mixed integer programming is useful in compstgence and discrete mathematics because
it allows for the reformulation of any NP-complg®blem into an equivalent integer linear

program.

It is interesting to note that, in general, a gif-complete problem can be encoded into
many different integer linear programs. For anyegimethod for solving general mixed integer
programs (such as the simplex method), differemethinteger programs for the same problem
can have vastly different performance charactesstn this section, we describe one way to
encode the binary transitive reduction problema asxed integer program that makes use of the
idea of aflow networkbetween vertices in the problem instance. Althotlngine are more
efficient methods for encoding the binary transgitreduction into a mixed integer program,

network-flow based mixed integer programs are #west to understand and implement.

The first difficulty encountered when encoding Hueary transitive reduction problem as

a mixed integer program is that some edges aréethivath O, while others are labeled with It
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would simply things significantly if we could, viome transformation, remove the edge
labellings from the problem. The following procedwonstructs a new grapk,=(V, E,)
from the original graphG=(V ,E) which preserves the reachability relationshipshi t

original graphG while simultaneously eliminating the need for etigeellings.

(1) Start withG; empty
(2) Add every vertex irs to G,
(3) For each edgee=u—,V in G, adde to G,
(3a) Ifeis a critical edge, then maekas a critical edge 6,
(4) For each edgee=u—,V in G:
(4a) Add a new vertew to G,
(4b) Add edges€e;=u—;Ww and €,=W—;V toG,

(4c) If e is a critical edge, then maek ande; as critical edges i,

After performing this procedure, every edgésnhas the same labeling, so we may
simply disregard the edge labellingsGn To find the binary transitive reduction Gf we will

simply calculate the binary transitive reductiorGafand map the results back o@o

The first step when formulating any linear, integermixed integer program is to specify
the space in which our problem is embedded. Tylgictlis means to decide which variables the
objective function and constraint inequalities larxear combinations of. For the binary transitive

reduction problem, the problem space can be fagttote two different sets of variables:

e Forevery e€E, we introduce thedge variable X,€{0,1] where x.=0 indicates

that edgee is a not member of the transitive reductiorGafwhile X.=1 indicates that

edgeeis a member of the transitive reductionGaf

e Forevery U,veV ,eeE, we introduce variables,f &*" and % | both takin
y uve uve g
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values in the nonnegative real numbers, callecdtle@andodd flow variables
respectively. Later, we will show how the flow \asies are used to guarantee that
feasible solutions of the mixed integer programehthhe same reachability as the original
graph.

Note that, for the problem instanc€=(V ,E) , the solution space has

IVFx|E,|+|E,| dimensions, of which |E,| dimensions are discrete, taking values in

{0,1} while the remaining |V[°x|E,| dimensions are continuous, taking any nonnegative

real value. The mixed integer program which colyeslves the binary transitive reduction

program is given below:

Objective:  minimize Z

ecE, Xe

Subject to: (1) YV e€E, andeis a critical edge, thex=1.

2 V e=u—VveE , the following constraints hold:
(22)  2scougong [ =1
(2b) if w(e)=0 then 2 . oo fon—fin=—1
otherwise if w(e)=1 then 2, fom— fom=1

x€incoming(v)

(2c) V' xeV,—{u,v} | the following constraints hold:
even__ odd _
Zyeincoming(x) uvy yeoutgoing(x) fUVy 0 and

Z f odd _ Z f even__ 0
y€incoming(x) = U%y yeoutgoing(x) ~ uvy

3)  VeeE,u,veV,Y foeny folicy

uve uve —

The objective ensures that the solution will bertieimum subgraph that satisfies the
constraints, and the first constraint in this mixeeger program ensures that the solution will
contain every critical edge. The second set ofttaimgs are used to ensure that the solution has

the same reachability properties as the originaplyrand are derived from the concept of flow
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networks from graph theory. In order to further laxphow these “flow constraints” guarantee

connectivity of the solution, it is useful to inv@khe following analogy.

Imagine if each edge in the problem instance waipethrough which water flows.
Water is continually produced at a fixed rate aingle sourcevertex in the graph. Another
vertex, known as thgink, continually consumes water at the same ratepitdduced at the
source. Every other vertex in the graph is a jamcthere pipes converge together or split off to
other junctions. In order for such a system toanstself, the source vertex must be connected
to the sink, otherwise water would accumulate ime@art of the network, unable to drain down
the sink. In particular, the existence of a flovwvizeen the source and the sink implies that the

sink is reachable from the source.

In the binary transitive reduction problem, there t&vo different types of path parities:
even and odd. For every edge in the problem instahe flow constraints in the mixed integer
program assume the existence of a flow networkensblution (an even or odd flow network,
depending upon if the edge in the original probiestance was labeled with O or 1). Each flow
variable represents a specific edge relative toesthow and its parity in the original problem
instance. The first of the flow constraints, (Zamply states that there is some positive flow
coming from the source in the flow network. Thems®tconstraint, (2b), states that the flow is
consumed at the sink in the flow network. The fioahstraint, (2c), states that the flow is
conserved across every vertex that is not a sauraesink. Constraint (3) exists so that if a flow
variable for some edge is used in some flow netwitwn that edge is in the solution. Although
these constraints are sufficient for obtaining latgzn for the BTR problem, in practice an
implementation of the mixed integer program wikelly use additional constraints and/or a

modified objective function to assist with mappitg solution of the BTR problem @ back
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to the original problem instan€& The implementation details in chapter 4 desdnitpe this can

be done.

In a nutshell, each edge in the problem instangeesents a reachability relationship that
should be present in the solution, so for each @dgee problem instance, we assume the
existence of a flow network in the solution andgssalues to the flow variables for each edge,
which in turn selects edges that must be presethieisolution. There are many different ways
we could do this, but the objective of the mixetger program guarantees that we pick the
solution with the minimum number of edges chosémalfy, if we assume that the reachability
relationship in question represents a direct itéva (i.e. The edge is a critical edge), we

automatically include that edge in the solution.

2.4 An Approximation Algorithm for the Binary Transi tive Reduction Problem

Since the binary transitive reduction problem is&¢itnplete, there isn't much hope of
finding an exact method that scales well to langdlem instances. While the mixed integer
program presented in the previous section is pedat for many types of problem instances, it
suffers on highly connected instances where eatbxes reachable from most other vertices.
For many NP-complete problems like the binary ttaresreduction problem, approximation
algorithms can be employed that trade exactneseddolution for speed. In this section, we
describe an approximation algorithm for the bin@aysitive reduction problem. This method is
a hybrid of two different methods for two differeqnibclasses of problem instances. First, we
describe an exact method for solving the BTR probléhere the problem instance is acyclic.

Next, we examine an approximation algorithm whéeegroblem instance is a single, strongly
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connected component. Finally, we combine the twthods to create an approximation

algorithm for use in the general case.

2.4.1 An Exact Solution for Directed Acyclic Graphs
For the case where the problem instance is a dalemtyclic graph (DAG), an optimal

polynomial-time algorithm for computing the binargnsitive reduction exists:

(1) Topologically sortthe vertices into a sequengeV,, ..., .
(2)Fori=ntol
(3)Forj=itol
(4) If there is an edgee=V;—,V; with edge labeling
(5) If there is a pathv;=,V; that doesn't contaia
(6) Deleteedgee

This algorithm moves backwards topologically throdlge graph. For every pair of
vertices in the graph, if there exists a reachghiélationship (an edge) between the vertices that
can be satisfied without using that edge itse#,étige is deleted from the graph. When the
algorithm terminates, the edges that remain carnstthe binary transitive reduction for the
graph. This algorithm is a simple extension ofdlgorithm for finding the standard transitive

reduction for a directed acyclic graph.

It is obvious that this algorithm only producessiéée solutions since an edge is deleted
if and only if there is already a path betweentthe vertices of that edge. This characteristic of
the algorithm guarantees that the reachabilityo&#te reduced graph must be identical to that of
the original graph. Second, the solution is optissate every path in the graph corresponds to

an element of the reachability set; the deletioarnf additional edge will necessarily break paths
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and delete elements from the reachability setef#duced graph.

2.4.2 Approximating the Binary Transitive Reductionfor Strongly Connected

Components

A strongly connected component of a directed gisphsubgraph with the following
property: for any pair of vertices in the subgraiere is a path in the subgraph connecting
them. It is well known that every directed graph ba partitioned into a set of strongly
connected components. Another important result fieerstudy of strongly connected
components shows us that if one replaces eachgbfroonnected component of a directed graph

G with a single vertex, the result is a directedcéicygraph known as theomponent grapbf G.

As was mentioned previously, if the BTR problentamse has all edge labellings 0 and
consists of a single strongly connected componbkat the problem reduces to finding a
Hamiltonian cycle in the graph, a problem for whaghproximation algorithms already exist. In
this section we show how to build an approximaadgorithm for the BTR problem by
combining an algorithm that uses cycles to appraténthe transitive reduction for strongly
connected components with the exact algorithm e@ptievious section that is invoked on the

component graph in order to unify the sub-solutimmseach strongly connected component.

2.4.3 Single and Multiple Parity Components
Each strongly connected component of a BTR prolifestance is either a single parity

component or a multiple parity componentsiAgle parity componeritas the property that for
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any pair of vertices in the component, there isegia even parity or and odd parity path between
them, while anultiple parity componerttas the property that for any pair of verticethim
component, there is both an even and an odd paaitythat connect them. There is a simple
way to determine if a strongly connected comporgesingle or multiple parity: if the
component contains any simple cycle of odd pattitgn the entire component is multiple parity,
since one may produce paths of even or odd pagttyden any two vertices simply by

traversing the odd cycle the appropriate numbeingds.

Determining if a strongly connected component cdostan odd cycle is possible by
invoking a variation of the popular Floyd-Warshaljorithm for computing all-pairs shortest
paths on a graph. The algorithm is identical to/éHdVarshall, except all addition should be
performed modulo-2. Using this method, it is polestb classify each strongly connected
component in the graph as either single or mulfgalety. This is necessary because later, as we
shall see, single parity components and multipktypaomponents and multiple parity

components are handled separately in the finaloxpation algorithm.

Figure 2.3 illustrates the difference between glsiand a multiple parity component.
The graph on the left is a single parity componéitpaths between any two vertices in the
graph have exactly the same parity. The graph emigiht is an instance of a multiple parity
component. Between any two vertices in that graps possible to generate both a path of even

parity and a path of odd parity, simply by travegsihe cycle one additional time.
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Figure 2.3. Single and multiple parity componeiitee graph on the left is a single parity compon&he
graph on the right has multiple parity. Note timathie graph on the right it is possible to genepatas of
any parity between any two vertices simply by trawvey the cycle an appropriate number of times.

2.4.4 The Cycle-Contraction Algorithm [16,17]

The cycle-contraction algorithm described in Khué¢ al. is an approximation algorithm
for theminimum strongly connected spanning subgr@pmimum SCSS) problem. The
minimum SCSS is the MED problem restricted to thgecwhere the problem instance is a single
strongly connected component. Observe that theigolto the MED problem for a strongly
connected component is a Hamiltonian cycle thrabghvertices in the problem instance. The
Khuller et al. algorithm works by recursively seang for cycles in the graph and contracting
the cycle to a single vertex. Each edge removed fitee graph during the contraction phase is

reported to be present in the solution.

When searching for cycles in the graph to contiaatyder to avoid exponential search
time, a maximum cycle lengthis chosen beforehand. The algorithm searchesyfie< of
lengthk, then of lengtlk-1, thenk-2, etc. until the algorithm is finally searching foycles of
length3. Another result of Khuller et al. is an exact algon when the problem instance
contains no cycles of length greater tBakiVhen the cycle contraction algorithm finally

descends to searching for cycles of lerjtih switches to the exact algorithm. The algoritism
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as follows:

CONTRACT-CYCLES(G):
fori =k, k-1, k-2, ...,3
while the graph contains a cycle with at least i edges
Contract the edges on such a cycle
Invoke the exact algorithm CONTRACT-CYCLE®N the remaining graph
return the contracted edges

The details of the exact algorithm for CONTRACT-CMES; can be found in the
Khuller et al. paper. Essentially, it selects aeerat random from the graph and runs a depth-
first search from that vertex. Every time it treses an edge that completes a cycle in the
explored subgraph longer than length 2, it addisdtige to a set of edg8%nown to be in the
solution and deletes that edge from the graphhéend of the procedure, the the Sttken

together with every cycle of length 2 from the drapnstitute the solution.

DasGupta et al. describes a way to generalizeyitie contraction algorithm of Khuller
et al. to solve the BTR problem when the problestance is a single strongly connected
component. In order to use the cycle-contractigorthm for the BTR problem, two obstacles
need to be overcome. First, how should the cyctgraotion algorithm be extended to handle
the case then the set of critical edges is non¥fpecond, how should handle multiple parity

components be handled?

Handling critical edges is simple: for each critiedge €=u—,V of parityx, delete the
edge from the problem instance and replace it avilew vertexv and two new edges:
e,=u—,W and e,=w—,V . Edges; ande, will always be selected by the cycle-contraction
algorithm, since by not selectirg ande,, either reachability to or from vertexwill violated, if

not during the recursive phase of the algorithnm tthering the invocation of CONTRACT-
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CYCLES.

Handling components of multiple parity is also edaym our earlier discussion of
single and multiple parity components, if a strgngbnnected component has at least 1 simple
cycle of non-zero parity, then it is a multiple ipacomponent. LeC be such a cycle. Note that
if each edge i€ is included with the output from the cycle-conti@ae algorithm, then its
inclusion would yield paths of both even and oddtpdetween any pair of vertices in the
component. Any odd cycle is sufficient for inclusid he modified Floyd-Warshall algorithm

discussed earlier identifies such cycles.

2.4.5 Combining the Algorithms

Suppose that we identify each of the strongly cotedecomponents in the graph. We can
use the modified version of the cycle-contractityoathm from the previous section to obtain
approximate solutions for each component. The fijpgstion remains: how can we connect each
of the approximate solutions together to obtaimjoroximate solution for the entire graph? One
simple way of doing this would be to simply run thect algorithm for directed acyclic graphs
detailed in section 2.4.1 on the component grapheald those edges to the union of all of the
edges obtained by solving each strongly conneaatponent separately. However, a more

sophisticated method exists.

The idea, first proposed by DasGupta et al, iepdace each strongly connected
component with a directed acyclic graph in a manhatr doesn't alter the reachability
relationships between components. The replacenieh@s are known agadgets After

replacement, the entire graph is acyclic, and tbeguure of section 2.4.1 is invoked. This
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approach requires that we have two more procedaneethod for constructing a gadget to
replace a single parity component, and a methoddostructing a gadget to replace a multiple
parity component. Ironically, gadgets for replacingltiple parity components are actually

easier to build than those for single parity congas.

To replace a multiple parity component, simply @pde the entire component to a single
vertex. For each incoming edgeé=u—,V into the component, add a new edge=u—,Vv
and for each incoming edgé=u—,V into the component, add a new ed§e=U—,V so that

each incoming edge has a corresponding “brothedppbsite parity. Finally, we apply the same

transformation to each outgoing edge in the compioriegure 2.4 illustrates the procedure.

Replacing single parity components with gadgetsase complicated. The gadget
contains four vertices: one vertexfor incoming paths of even parity, one vertgxor
incoming paths of odd parity, one vertgxfor outgoing paths of even parity, and one vevtex
for outgoing paths of odd parity. For every incogngdge into the component from vertex u with

label O, introduce edgesl —,V,, and u—;V; . For every incoming edge into the component

from vertex u with label 1, introduce edges—; Vv, and u—;V,, . Outgoing edges are
constructed in a similar manner: each outgoing dage the original component becomes two
outgoing edges in the gadget, one for each pdritg.tails of each outgoing edge in the gadget

arev,, andvy;. The set of internal edges in the gadget is gimpl

[Vio =0 Voo Vio =1 Vo1: Vit =0 Vo1, Vi =1 Vool . This transformation is illustrated in figure 2.5.
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Figure 2.4. A gadget for multiple parity componeffise multiple parity component on the top is repth
by the gadget on the bottom.

We now have all of the pieces needed to build gpeaimation algorithm. First,
identify each strongly connected component in tta@ly and classify as either single parity or
multiple parity. Then, solve each component separatsing the modification of the cycle-
contraction algorithm detailed in section 2.4.AdHy, replace each component with an

appropriate gadget and use the algorithm from@e&i4.1 to unify the solutions.
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Figure 2.5. A gadget for single parity componefitse single parity component on the top is repldned
the gadget on the bottom.

2.5 A Formulation of the Maximum Confidence Binary Transitive Reduction Problem

In the original STN inferencing problem, the idda@ritical edge was introduced to
represent an interaction that the experimentemassuo be direct based upon biochemical
evidence. In reality, biochemical evidence dodsrily with 100% certainty that a given
interaction is definitely direct. The experimentegty have various levels of confidence that
certain interactions are direct or indirect. Anaalthmic method for inferring the structure of
STNs would be more useful if it could take into @act the experimenters level of confidence in
the directness of each interaction. In this sectimpresent a generalization of the original

problem formulation that takes levels of confideide account.

In the maximum confidence transitive reduction peab vertices still continue to
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represent cellular components and edges continteptesent interactions. Interactions are still
either of the promoting or inhibiting sense. Instedmarking some subset of edges as critical
edges, to each edge we will assign a confidencasumnedhat reflects the experimenters
confidence that the given interaction is a dirat¢riaction. Edges that previously were marked as
critical are now assigned a high confidence measumge other edges that were not previously

marked as critical will have lower confidence measu

Before we present the formal problem statementhlermaximum confidence binary

transitive reduction problem, it is necessary tooduce the following notations:

® A problem instance for the maximum confidence lyrteansitive reduction problem
consists of a directed graph G=(V,E), an edge ilafpeiv: E—{0,1} and a confidence

measure.

® Theconfidence measuiie a function c: E—[0,1] that assigns a confidence level to
every edge of the problem instancé) = lindicates 100% confidence that the given

edge represents a direct interaction.

e For any subgrapt' = (V, E)where E'cE , thetotal confidence; of G' is
c=]l.cc cle)

The objective of the maximum confidence binary siéwve reduction problem is the
following: from all subgraph&' of G whose binary transitive closure is equal to tmaky
transitive closure o, identify the one that has maximum total confidenthis problem differs
from the previous one in two respects: First, thipctive doesn't explicitly attempt to minimize
the number of edges in the solution. Second, weotloequire that any specific edges be inside

the solution, whereas in the previous problemgctiieal edges were always present in the
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solution. In the future, we will attempt to use thesting ideas for solving the standard binary
transitive reduction problem to devise exact arngr@gdmate methods for solving the maximum

confidence binary transitive reduction problem.
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3 Inferring Haplotypes from Informative SNPs

The DNA of a diploid organism is organized into te&is of genetic structures called
chromosomes. During sexual reproduction, one seti@mosomes is donated from the male
gamete, while the other set comes from the femateete. Each chromosome consists of a long
chain of nucleotides, each nucleotide being congpo$éwo linked nucleobases. The sequence
of the nucleotides encode all of the informatioeded for manufacturing the proteins necessary
for sustaining a living cell. Together, the infoia contained in the two sets of chromosomes
are known as the organisngenotypewhile the information in a single set of chromoss is

known as the organisnt&plotype

The vast majority of the DNA between two individsi@ the same species is identical,
that is, the same nucleobase-pairs appear in pomdsg positions of the nucleotide sequence.
However, a small number of positions in the nudateosequence exhibit variation across
individuals in a species. These nucleotide postia® known asingle nucleotide
polymorphismsor SNPs. SNPs are responsible for genetic diffeze between individuals in a
given species. Since all non-SNP nucleotide postare identical in all organisms in a species,
a unique genetic identifier for a particular orgamican be constructed by using only SNPs
alone. Further, it has been observed by scientiatsvirtually every known SNP occurs in
exactly two different forms. The most frequentlysetved form of a SNP is known as thikd
typeof the SNP, while the less frequently observedfa known as thenutant typeof that

SNP.

Obtaining a genetic identification of an organisynsampling each of the SNPs for that
organism's species is a process knowgesmtyping After genotyping, a SNP whose specific

value is known is called tgpedSNP. Genotyping an organism involves inspecting Sites and
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determining if the nucleotide at the site is of wilel or mutant type. In disease association
studies, the DNA of individuals from a healthy ptgtion and a sick population is sampled and
the contrasting haplotype structure between thepwypulations is served as evidence for the
genetic basis of the disease. The statisticalfiaggnice of the study is a function of the size of
the sample population, but the total cost of theis a function of the number of SNPs typed.
Often, many of the SNPs in an organism are higblyetated with each other. For example,
simultaneous mutations at two different SNPs majatsd for the organism, and since we never
observe that combination of mutations in living amgms, the frequency of non-fatal

combinations is higher.

In practice, it is experimentally difficult to deteine the exact values of specific
nucleotides on the individual haplotypes that casepa single genotype. More often, only
genotype data is available, that is, the experigrecdan determine if a specific SNP site is
homozygous-wild, heterozygous, or homozygous-mutardn organism, but if the organism is
heterozygous, it is unknown which particular haypet contains the mutant nucleotide.
Determining haplotypes from genotypes is an intergproblem unto itself, but it is not the
subject of this thesis. In this work, we assume téifable haplotype data is available, either
through direct experimental observation, or viaakgorithmic inferencing process on genotype

data.

The objective of the haplotype prediction problamoai infer the values of all other SNPs
in an organism based upon the values of an infovegubset of SNPs. The informative SNPs
are known atag SNPs. Once tag SNPs are identified for a givenispegenotyping a member
of that species will be possible by merely insperthe values of the tag SNPs and predicting

the values of the remaining SNPs based upon thesalf the tag SNPs. Inferring haplotypes
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actually involves two related, but distinct probgenrihe first problem is determining which set
of SNPs to use as tag SNPs. Ideally, the expergnevii want to choose the set of SNPs that
yields the highest accuracy when predicting theeslbof the other SNPs. The second problem is
how to predict the values of the non-tag SNPs ¢ine¢ag SNPs have been identified. Although
we will briefly discuss methods for solving th foenproblem, it is the latter problem which is

the main focus of this chapter.

3.1 Mathematically Modeling Haplotype Populations ainary Matrices

Since SNPs occur in a sequence and the nucleatidg®ccur in one of two different
forms, it is possible to model a haplotype as doreaf binary digits. Each position in the bit
vector corresponds to a particular SNP on a chromesn the genome. If the bit at a given
position in the vector is 0, then the SNP at theesponding location on the chromosome is of
the wild type, while a 1 in the same position ia tlector corresponds to the mutant type. A
population of organisms can then be representedbagary matrix; each haplotype in the
population occupies a single row in the matrix, levisorresponding SNPs share the same

column in the matrix.

In order to give a mathematically rigorous formiglatto the haplotype prediction

problem, we must first introduce the following centions and notations:
e The haplotype population sam@eonsists o haplotypes sampled acrasSNPs.

e S,€(0,1] is the value of the jth SNP on the ith haplotypéhia population. S;=0

means that the SNP in question is of the wild tyglele S;=1 mean that the SNP is

of the mutant type.
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® urepresents the unknown haplotype to be predictEqi.E{O,l} is the value of the SNP

at positionj in the unknown haplotype.
® k<n ofthe SNPs are designated as tag SNPs. Tag SHEgs@oted by, b, ..., t.

Figure 3.1 shows an example of 5 haplotypes typeasa 11 nucleotide positions. Note
that only 3 of the 11 nucleotide positions exhiitiation, these are the SNPs. Further, notice
that each SNP comes in two forms: the more fregioent (the wild type) and the less frequent
form (the mutant type). Each nucleotide sequence-encoded into a 0-1 SNP sequence in the
following manner: first eliminate all of the nuctate positions that don't exhibit variation (i.e.
the ones that are not SNPs). Then for a given 8Nie haplotype in question exhibits the wild

type, we assign 0. Otherwise, we assign 1.

Figure 3.2 shows a sample of 8 haplotypes typeasact3 SNPs. SNPs in positions 3, 6,
and 8 are designated as tag SNPs. In this exampleetter choice for tag SNPs can be made,
since the values of tag SNPs can completely disismgany two haplotypes. In practice,
however, it may not always be possible to choogé&tdPs in a way that completely
distinguishes any pair of haplotypes in the sangitber due to the haplotypic structure inherent
to the sample, or because the cost of typing thgpafor so many tag SNPs exceeds the

available resources.
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53 8 8

ATGCCAGATTA 100
ATGCCCGATGA 111
AGGCCCGATTA mmp 010
AGGCCAGATGA 001
AGGCCAGATTA 000

Figure 3.1. Mapping nucleotide sequences onto gBesices. 5 nucleotide sequences of length 11 are
encoded into bit vectors of length 3. The blacloas on top of the nucleotide sequences indicate the
positions of the SNPs.

5 88

0100100101101 001
1011011111111 111
0011000001101 100
1100101001010 =) 000
0000110001101 010
1111100110010 101
0100110101010 011
0010010010110 110

Figure 3.2. Selecting tag SNPs from a sample ptipalaA sample of 8 haplotypes consisting of 13 SNP
3 of the SNPs are designated as tag SNPs. Inabés these 3 tags make a particularly good chwoice s
they completely distinguish any two haplotypesgddenced by the projection of the sample ontddhe
on the right.

The Haplotype Prediction Probleoan be formulated as follows: Given a sample of a
population of haplotypeSovern SNPs, as well as the positionskofag SNPs, reconstruct an
entire unknown haplotype using only the valueshefunknown haplotype's tag SNPs. In this
work, we introduce two variants of a linear algebesed method for tag SNP selection and
corresponding methods for inferring non-typed SK&s tag SNPs. Both methods infer
haplotypes by embedding the population samplenretic space. One variant uses the

mathematics of continuous Euclidean space, whéeother uses the mathematics of finite fields.
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3.2 Previous Work in Haplotype Prediction and tag SIR Selection

For the problem of tag SNP selection, methodsdtvirsg the problem fall into two
different campsblock-basednethods and methods that ignore block structu5]. The term
linkage disequilibriunrefers to the phenomenon that SNPs that are dlogether tend to be
highly correlated; A sequence of SNPs can effelstilbe partitioned into blocks of low diversity.
Then, tag SNPs are selected for the each blockettiqh the other non-typed SNPs inside the
block. Clark et al. [7] contains a discussion & benefits and limitations of block-based
methods. On the other harock-freemethods that ignore block structure have the dhfyatf

allowing tag SNPs to infer the values of non-tyj$#Ps that are located far away in the genome
[2].

The problem of predicting haplotypes based on upuytag SNPs has received less
attention. The paper of Zhang et al. [23] recoms$srhaplotypes using a variation of the
partition-ligation-expectation-maximization algdwib. The block-free method of Halldorsson et
al. [12] considers a graph whose vertices repreSHifts; the presence of edge indicates that one
SNP can be used to reliably predict the other hadSNPs whose representative vertices with
high degree are chosen as tags. To infer a haglptlip neighbor's of each vertex representing
non-typed SNPs are inspected and a majority vaeken. The Halldorsson et al. method is
tested with leave-one-out cross-validation andreanver 90% of the haplotype data using only
20% of SNPs as tags. Halperin et al. [13] descrébeethod for haplotype inference and then
uses it to develop a method for tag SNP selechimm-typed SNPs are predicted by inspecting
the two closest tag SNPs on both sides; the vdltieeainknown SNP is given by majority vote.
Dynamic programming is used to select tags théd yiee best prediction score. The Halperin et

al. method is able to infer haplotypes with 80%uaacy on the SNPs in the Daly et al. [8] data
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set using only two SNPs as tags.

3.3 A Greedy Framework for Prediction-Based Tag Setgion

As stated earlier, any haplotype prediction al¢pomih, accepts as its input the values of
ktagst, t, ..., k of an unknown haplotype along with the known sampfin which every SNP
in the sample is typed. The output/pfis the reconstruction of x, that & infers the values of
each of the non-tag SNPsunIn this section, we show how any haplotype prgghcalgorithm

can give rise to a corresponding tag SNP seleetigorithm.

A fundamental assumption of haplotype predictioth& any method that can reliably
infer unknown haplotypes will also reliably infédretknown haplotypes in the sample population
S Assuming the truth of this “self-similarity” pagate, we can derive a tag SNP selection
algorithm from any haplotype prediction algorit#nby adopting the following procedure: For
everyk-tuple of tag SNPs, choose tk¢uple with the minimal number of errors when potidg
the non-tag SNPs in the sampled population. Althoilig SNPs in the sample population are
completely typed, a haplotype prediction algorittam still make errors because the number of
SNPs may be not sufficient to distinguish any twplaotypes in the sample population. The

procedure described above is the brute-force salut the following problem:

Tag SNP Selection Proble@iven a prediction algorithma, and a sampl§, find k tags
such that the prediction erreiof A, averaged over all of the SNPsSiincluding the tag

SNPs) is minimized.
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Obviously, testing each and every subset of catelidays of siz& becomes
prohibitively expensive dsbecomes large. Instead of testing each subsegirop®se the
following Greedy Tag Selection Algorithm (GTSA) ftag selection using any arbitrary
prediction algorithm:

GTSAA S)

Let T=0

fori=1,2,..,k

LEt Rmaxzoo
forj=1,2,..,nand J&T
R = the error rate from usind to predict each haplotygein Susing tags irT.
if R < Rnax
Rnax=R
t=j
T=Tult]

return T as the set of tag positions

This algorithm works by first finding the best tlag predicting the values of the other
SNPs in the sample S. Then, it finds the next tagstalong with the first that together predict
the remaining SNPs in the sample. It continuesdiseselecting tags in this manner until k tags
have been chosen. It is possible that the segsfdhosen by this algorithm is not optimal; there
could exist some other set of tags of size k thaieaes higher prediction accuracy, but whose

tags taken individually are poorly suited for prtgin. However, in practice, the above

algorithm is both computationally feasible as vesisufficiently accurate.

3.4 LASPA: The Linear-Algebraic SNP Prediction Algoiithm
The matrix representation of the sample populagtoongly suggests that is might be

fruitful to embed the sample population in a higm&hsional vector space. Each haplotype in
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the sample population corresponds to a specifitovea this vector space; each SNP
corresponds to a particular dimension. The sea@BNPs becomes a subspace of this vector
space, and the task of predicting a haplotype bssledy upon its SNPs reduces to the task of
predicting the coordinates of a vector based uggoprbjection onto the subspace defined by the

tags SNPs.

TheLinear-Algebraic SNP Prediction AlgorithtbhASPA) [14] iteratively predicts the
value of each non-typed SNP of the unknown hapggparately. The following is a high-level
overview of how the method works: On each itergtiboonstructs two candidate vectors, one
vector assumes the unknown SNP is of the wild tieepther assumes it is of the mutant type.
Each vector is then projected onto the space spamnéhe unknown haplotype restricted to the
tags SNPS together with the sample populationicestirto the tag SNPs. The distance between
the candidate vector and its projection is compatadithe candidate vector that is closest to its

projection determines the predicted value for SdP.

More formally, suppose we are attempting to preitietvalue of théh non-tag SNP. Let
Ur be the unknown haplotype restricted to the tag Siiel letS; represent the sample
population restricted to the tag SNBds the sample population restricted to the nonSiNg

we are predicting. Consider the following matrix:

] I
U, U o U X;

U, x Sy, Si, - Sy Sy
Sr Si = SZt1 Szt2 Sztk SZi
ISmtl S, - Sm, SmiI

The vector Co=[ g] and Cl=[ é] are the candidate vectors. We project each cardidat
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U . . .
vector onto the space spanned by the columnMo#[ ST] by forming the projection matrix
T
P=M-(M"M)™MT and then calculatingd,=|c,—P-c,| and d,=|c,—P-c,| and if
d,<d; then we predick to be 0, otherwise we preditto be 1. Note that the matrixneeds

to be calculated only once for each haplotypeapredict.

The method just described has been implementedimiiementation details are in
Chapter 4 and experimental results are in Chapter this method, all addition, subtraction, and
multiplication is done using vectors in ordinarydigiean space, and it is the variant for which
we report results. In the next section, we diseuggher (unimplemented) variant of the method
where addition and multiplication are done ik-@imensional vector space over the finite field

GF(2).

3.5 Vector Spaces over GF(2)

One drawback of the algorithm in section 3.4 ig tha projection of the candidate
vectors onto the space spanned by the tag SNRsfafie outside of the set0,1]™ . An

alternative variation of the algorithm which kegpeject computations inside0,1]" is to
perform all operations inside the finite field G} (3uppose that we take the algorithm of section

3.4 and we make the following substitutions:
® Replace ordinary addition with bitwise exclusive(§OR)

® Replace ordinary multiplication with bitwise AND
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® Replace Euclidean distance with Hamming distance

The first two modifications ensure that the pra@ttoperation is closed inside wkdimensional
binary vector space. The third modification givesan appropriate way to measure the distance

between two binary vectors.

This variant of the linear algebraic method forlb&ype prediction has not yet been
implemented. Hopefully future research into linalgebraic methods for haplotype inference

will allow for the comparison of this variant withe method described in the previous section.
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4 Implementation Details

This chapter contains the implementation detailallodf the software that was developed
for exploring the two inference problems discusisetthis thesis. Unless noted otherwise, all
software was developed using version 1.5 of tha g@egramming language and tested on a PC

running Microsoft Windows XP.

4.1 BTR — A Java Program that Solves the Binary Trasitive Reduction Problem
BTR (pronounced as it is spelled: B-T-R) is a JA&wagram that solves the Binary

Transitive Reduction Problem using the mixed intggegram presented in section 2.3. The
program is packaged as a JAR file and is invokethfthe command line with two parameters.
The first parameter is the name of a XML file tbahtains the problem instance. The second
parameter is the name of a file to output the tegutransitive reduction to. Both the input and
output BTR take the same format: an XML file thahcisely describes a directed graph along
with 0-1 edge labellings as well as a flag for eadbe to indicate if that edge is critical or not.

The following command invokes BTR with input comifigmi nput . xm and output being

written toout put . xni :
% java -jar btr.jar input.xm output.xn

The schema for the XML file in which the problenstiances are encoded is informally
described as follows. Thegr aph> tag is the root tag of the XML that contains thelglem
instance. Thegr aph> tag contains zero or moredge> tags. Eackedge> tag corresponds

to a specific edge in the problem instance. Eamiige> tag has four mandatory attributes

® sour ce —the id of the tail vertex for the edge
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e target —theid of the head vertex for the edge

e | abel —the edge label/parity for the edge. Eitbear 1.

e critical —Eithertrue orfal se depending on if the edge is a critical edge or not

Vertex lds are positive integers and must be uniqueach vertex in the problem
instance. Ids were chosen to be positive integera f/ariety of reasons. First, since both the
mixed integer program as well as the approximagigorithm demand the creation of new
vertices at runtime, the code should contain agatore for creating new vertices with
predictable ids. Also, having positive integeryagex ids simplifies the implementation of the
Floyd-Warshall algorithm, which is used for detegtand classifying strongly connected

components.

Figure 4.1 is graphical representation of a sanmsiance of the BTR problem. Vertex
ids are adjacent to their vertices and criticalesdgre marked in bold. The instance contains 21
vertices and 25 edges. Figure 4.2 shows this exatrmbslated into the XML format that the

BTR program accepts.

The output format of the BTR program is the sammenéd as the input. However, only
edges that remain inside the binary transitivewrlefiave <edge> tags present in the output.
Choosing the input and output formats for the BDRecto be identical has the benefit that, as a
smoke test, the output can be re-inputted intg@tbgram, and if the output from this “sanity

check run” differs from the input, then we can imfiee presence of a bug in the code.
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Figure 4.1 A sample BTR problem instance

<?xm version="1. 0" encodi ng="UTF-8""?>
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<gr aph>
<edge source="1" ‘target="3" |abel="0" critical="false"/>

<edge source="1" ‘target="16" |abel="0" critical="false"/>

<edge source="2" target="1" |abel="0" critical="true" />
<edge source="3" target="2" |abel="0" critical="false"/>
<edge source="4" target="3" |abel="0" critical="false"/>
<edge source="4" target="5" |abel="0" critical="false"/>
<edge source="6" target="5" |abel="0" critical="true" />

<edge source="6" target="12" |abel="0" critical="false"/>

<edge source="7" target="6" |abel="1" critical="false"/>
<edge source="8" ‘target="7" |abel="0" critical="false"/>
<edge source="8" ‘target="9" |abel="0" critical="true" />

<edge source="8" target="10" |abel="0" critical="false"/>
<edge source="9" target="11" |abel="1" critical="false"/>
<edge source="13" target="11" |abel ="0" critical="false"/>
<edge source="13" target="14" |abel ="1" critical="false"/>
<edge source="14" target="12" |abel ="1" critical="true" />
<edge source="16" target="18" |abel ="1" critical="false"/>
<edge source="17" target="16" |abel ="1" critical="true" />
<edge source="18" target="15" |abel ="0" critical="false"/>
<edge source="19" target="15" |abel="1" critical="false"/>
<edge source="19" target="20" |abel="0" critical="false"/>
<edge source="19" target="21" |abel ="0" critical="false"/>
<edge source="20" target="21" |abel ="0" critical="false"/>
<edge source="21" target="8" |abel="1" critical="false"/>
<edge source="21" target="10" |abel="1" critical="false"/>

</ graph>
Figure 4.2. XML encoding of the problem instance

The BTR code doesn't actually solve the mixed itggogram itself. Instead, it merely
re-encodes the problem instance as a mixed infgggram and then passes control to GLPK.
GLPK, the GNU Linear Programming Kit, is a freggliviperformance general-purpose linear
program solver. After GLPK solves the mixed integeygram instance, it hands control back

over to BTR, which maps the solution of the mixetkger program back into the problem
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domain and outputs the solution.

BTR binds to GLPK via a Java-to-native code adalgieary. During the testing of BTR,
this adapter library was found to be rather budgiyfortunately, once the problem instance
scales beyond several tens of vertices or edgesdapter library fails in unpredictable ways, so
it is difficult to judge the true performance o&thixed integer program. Hopefully future
research will have a more robust GLPK Java bindwaglable for testing larger problem
instances. Another way to overcome this limitat®to use a different linear program solver,

such as ILOG CPLEX.
The Java code for BTR is organized into three pgega
® Dbtr.nodel contains classes to model a problem instance
® bDbtr.io contains classes to load and save problem ingax&ML

® Dbtr.inpl contains the classes which build the GLPK mixedger program from the

problem instance.
e The main entry point into the program is in a cla&ss Mai n

Figure 4.3 shows the interfaces in the. nodel package. The problem instance model
in the BTR program is designed so that graph-nutadperations, such as adding or removing
vertices and edges, would be as computationallgcls possible. Another objective of the
implementation was to allow for reuse of the objaodel for the problem instance later when
implementing the approximation algorithm for thelgem. Each interface has a corresponding

implementation class.
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btr.model

2<interfacerr
Edge

getSourcel) @ Werte:x
getTarget]) : Werex
getlabell: int

izCritical) : boolean

<Zintefaces>
zraph

createVere:)  Wertex

createVere:id @ int) : Werbex

createEdgelzource : Wertex,target : Wertexlabel :int critical : boolean): Edge
getertices)) : Set

getEdges : Set

deleteertexwertex: : Werbex) | woid

deleteEdgeledge : Edge) : void

i

izraphlmpl

wertices : Set

Zdinterfaces>
Wartex

getld) :int
getlinzomingEdges): Set
getOutgoingEdges] : Set

& edges: Set
: createEdgelzource : Wertex target : Wertex label :int critical : boolean): Edge f:}‘
1 createVere:) : Wertex
L createVere:id @ int) : Werbex
Edgelmpl deleteEdgefedge : Edge) : void

sourge ;| Wertex
target : Werex

getEdgesl : Set
]

getWertices]) : Seat

getlabelly : int Q

Werexlmpl

|
|
|
|
|
deleteVertexretex : WVertex)  waid :
|
|
|
|
|
|

getSource) | WVertex
getTarget] : Vertex
isCritical() : boolean

incomingEdges : Set
outgoingEdges : Set

getldiy: int
getlncomingEdges] : Set
getOutgoingEdges) : Set

Figure 4.3 The classes and interfaces irbthre. nodel package

Thebt r. i o package, shown in Figure 4.4, contains two class@shl nput St r eam
andG aphaQut put St ream Both classes employ the standard subclassingrpahcouraged by
the design of Java 10. The classes are resporisibiearshaling and unmarshaling the object
model of the problem instance to and from XML. XMtocessing is done using XOM, an open-

source, easy-to-use XML library for Java.
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bir.ia
GraphlnputStream zraph0OutputStream
readiy: int writelh : int) : waid
readGraphil : Graph graphigraph : Graph): waid

Figure 4.4 The classes and interfaces irbthe. i o package

Figure 4.5 shows the btr.impl package. This packageains the code necessary to solve
the problem by translating the problem instance ithe mixed integer program and invoking the
linear program solver. It is organized into aniféee and an implementation class. The
implementation class is the only place in the dbdé has a strong dependency on GLPK;
switching to a different linear program solver sashlLOG CPLEX is as simple as writing a

new implementation of the interface.

btr.impl

Z2interface==
BinaryTransitiveReducer

reduceigraph : Graphl: Graph

i

BinaryTransitiveReducerimpl

reducelgraph @ Graphl): Graph

Figure 4.5 The classes and interfaces irbthe. i npl package
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4.2 LAHP — A Java Program that implements the LASPAAIlgorithm

LAHP, or Linear Algebraic Haplotype Predictor, iSava Program that implements the
LASPA algorithm of section 3.4. The program is pegéd as a JAR file and accepts four
command line parameters. The first parameter isiéinee of a file containing the sample
population. The second parameter is the name it edntaining the indices of the tag SNPs.
The third parameter is the name of a file contairtime only the values of the tag SNPs of the set
of haplotypes to be predicted. The final paramisténe name of the output file; at the end of
execution it will contain the fully predicted haplpes from the third file. The following
command invokes LAHP using the sample populatiortained insanpl e. t xt , the tags in
t ags. t xt, the unknown haplotypes imknowns. t xt and writes the predicted haplotypes to

predicted. txt:
% java -jar lahp.jar sanple.txt tags.txt unknowns.txt predicted.txt

The format of the first, third, and forth files afe same, only the second file differs in
the structure of its contents. The first, thirdd dowurth files all contain newline-delimited string
consisting of Os and 1s. The second file contamiagle line of comma-delimited positive
integers, each the index of some tag SNP. The metodccur in any specific order, and counting
begins with 1, not 0. Figure 4.6 contains threemanmput files. In this example, the sample
consists of 10 haplotypes typed across 10 SNPsSNfs in positions 2, 9, and 10 are
designated as tag SNPs and we are predicting 8tlyppk. The projection matrix needs to be
recomputed 3 times, once for each haplotype weradicting. For each haplotype, we are

predicting each of the 10 — 3 = 7 non-typed SNiparseely.
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1001101001
0100100110
1100101011
0001010110
0110101000 001
1010101100 2,9,10 011
1010100100 111
0101001001
0000100111
1010101110

sample population 4, i yices  unknown haplotypes
(first argument) restricted to tags

Figure 4.6 Sample input for LAHP

The LAHP code is organized very similar to the vi8yR was organized. There are three

packages:

® | ahp. nodel contains the interfaces and classes necessagpitesent large boolean

matrices and lists of tags.
® | ahp.io contains code to read and write binary matricestag lists to and from disk.

® |ahp.inpl contains the implementation of the linear algebraethod for haplotype

prediction.
® The entry point into the program is in the classp. Mai n

Figure 4.7 is a package diagram of ithap. nodel package. The package consists of a
singlemat ri x interface, and a clasat ri xI npl that implements the interface. The class
contains a number of common linear-algebraic omerst such as methods for elementary row
operations, which are composed together to creatértal algorithm. Many of the methods,

including theconcat enat e* () andsubmat ri x() methods, are implemented using anonymous



inner proxy classes to avoid the overhead of hatongake copies of the original matrix in

memory. This optimization increased the performamatieer dramatically.

lamph.model
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<<interfaces>
o atriz

i atrizlmpl

getRaouwes : int

getCalumns] : int

concatenate OnBottomimatriz : hdatrix) : bl atriz
concatenate OnRightmatriz : b atriz) ; b atriz
submatrizgstartRom : intstatColumn @ int,endRow : intendColumn : int) ; b atriz
transposel) : Matrixz

irwerhl) ;b atriz

projection) : M atrix

multiphy(m atriz: : batriz) : W atriz
get(i:int,j:int):int

sefizint,j @ inth: int): void

anapRovsi cint,j : int): void
multiplyAndAddRoves(i @ int,j @ inthk : int): woid
multiplyRowi : int,j : int): void
distance(matrix : hatriz) - double

multip lyimatriz bl atrizg) ;b atriz
distancelmatrix : hatri) : double

concatenate InBottomimatriz : hd atriz) : hd atriz
concatenate OnRight{matrix : b atriz) - batriz
getli : int,j : int):int

getColumna] @ int

getRows) : int

et : b atriz

multiphwAndAddR o @ intj :inth: int) : wvoid
multiplyRowdi © int,j @ int) : void

projectionC : bl atri:

sefi:intj :intk: ind) : woid
submatrizastartRow : intstadColumn : int,endRov : int,endCalumn @ity Matriz
amapRomsi @ int,j : inf) : woid

transposel) @ Matrix

Figure 4.7 The classes and interfaces irl tigph. nodel package

Thel ahp. i o package contains three classes:r i xReader, Matri xWiter, and

TagReader . Mat ri xReader is used to read the first and third parametersnitri x data

structuresTagReader reads the file in the second parameter intdosa of I nt eger S.

Matri xWiter is responsible for creating the file specifiedtby forth parameter. Like the 10

classes in the BTR prograimghp. i o classes conform to the standard Java subclasanagligm

of Java IO. Figure 4.8 is diagram containing tlesseés in theahp. i o package.
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lamph.io

hl atrizReader

readhd atriz) : bl atrix
closel): vaid
readicbuf : char,off : int.len @ int: int

TagReader b atriziriter

readTags : List vurite b atrizrmatriz ; bl atri=) ; woid
clozel): woid clozel) : woid

readicbuf : char,off : intlen @ int): int flushi) @ waid

vurite(cbuf : char,off : int.len @ int) : wvaoid

Figure 4.8 The classes and interfaces irl tiiep. i 0 package

Thel ahp. i npl package, illustrated in figure 4.9, contains ttiial algorithm
implementations for both tag selection and hapletypediction. The interface
TagSel ecti onAl gorit hmand its corresponding implementation class setagtSNPs from the
sample according to the procedure outlined in se@i3. The interfacer edi cti onAl gorithm
is a generic interface that any type of predicatgorithm implementation can conform to. In

this case, there is only 1 implementation classear Al gebr ai cMet hod.
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lamph.impl

=<zintefacer»
FredictionAlgarithm

predict=ample ; Matrix,tags : List,unknowens @ b atriz) ;o bl atriz

75

Lineardlgebraichiethod

predict=ample ; Matrix,tags : List,unknowens @ b atriz) ;o bl atriz

<zintefacer»
Tag5electionAlgarithm

selectpredictionAlgorithm : PredictionAlgarithm,zample : M atriz,numberdfTags : int) : List

Py

Tag5electionAlgarithmimpl

selectpredictionAlgorithm : PredictionAlgarithm,sample : Matriz,numberdfTags : inf) : List

Figure 4.9 The classes and interfaces ifl goagph. i npl package

56
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5 Results

5.1 Results for the Binary Transitive Reduction Protem using BTR
The BTR program was tested using several inteigstitl representative instances. The
test instances were manually constructed as ttywdat the program output matched the

expected output. Figure 5.1 shows 8 example instawnith which BTR was tested.

1?: ‘_\1 Oi EO 1? :1 1i :1
1 0 0 0

_ _ (3) minimum (4) instance (3)
(1) 1-3 cycle (2) 0-3 cycle nontrivial + critical edge
instance

0
(5) 3 simple (6) 3 multiple
parity parity
components components

i""i

!..!

(7) K-4 (all edges (7) K-4 (all edges
labeled 0) labeled except 1)

Figure 5.1 BTR test instances

Each example test instance from the figure is desdrbelow:
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e® Testinstance 1 consists of three vertices condecta cycle, each edge having odd

parity and no critical edges. In this case, thatsmi is identical to the instance.

® Testinstance 2 is identical to test instance &epkin this case, all edge parities are even
instead of odd. In this case, BTR needs to sptihealge into two edges of odd parity

before solving; the solution is identical to thetamce.

e Testinstance 3 is an example of a minimal nonatrimstance. In this case, the bottom

edge is dropped from the graph; only the top twgesdemain in the solution.

® Test instance 4 is identical to test instance 8epithis time the edge that would

normally be dropped is marked as critical. The tmiuis identical to the instance.

® Test instance 5 consists of three strongly condexdenponents, each with single parity.

In this case, the bottom, leftmost edge can beprdfrom the graph.

e® Testinstance 6 is similar to instance 5, exceipttiime each strongly connected
component has multiple parity. Like the previoustamce, the bottom, leftmost edge can

be dropped from the graph.

e® Testinstance 7 is a maximally-connected graph witkrtices; each edge is labeled with
0, making the graph a single parity componenthis ¢ase, BTR should identify a

Hamiltonian cycle in the graph.

® Test instance 8 is similar to test instance 7, gixte=dge is of odd parity, making the
entire graph a multiple parity component. Like pnevious test case, BTR should

identify a Hamiltonian cycle in the graph.

In addition to these test instances, a instancsistimg or real data was available. The

author would like to thank Bhaskar DasGupta ofilinversity of lllinois at Chicago for
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contributing the data to this project. This inst@eonsists of 49 vertices connected by 68 edges
(54 even edges, 14 odd edges, 16 critical edgé®x. processing the data through BTR, it was
found that 55 edges remained inside the binarsittg@ closure; 13 edges were redundant.

Appendix A contains the data for this instancenglwith the solution.

5.2 Results for the Haplotype Prediction problem usig LAHP

In contrast to the binary transitive reduction peofy significantly more real data is
available for testing algorithms for the haplotypediction problem. Each of these following
datasets were used in previous research by Halpeah and Halldorsson et al., so we have also
used the same datasets in order to conduct a ngdalnoomparison study. As stated previously,
our algorithm accepts haplotype data as inputttmitivailable data is genotype data, so
following Halperin et al, we use GERBIL [19] to @eathe genotypes into haplotypes and use
the resulting haplotypes as test data sets. Edahsdaconsisted of family trios. A family trio

consists of a mother, father, and offspring. THeWaNng data sets were used:

Three ENCODE Regions from HapMap.Three Regions (ENm013, ENr112, ENr113) from 30
CEPH family trios are obtained from HapMap ENCOD®jéxct [1]. These regions are derived
from 500 KB regions of chromosomes 7q:21:13, 2pHi@ 4926. The number of typed SNPs in

each region is 361, 412 and 515 respectively.

Two gene Regions form HapMapTwo gene regions STEAP and TRPM8 from 30 CEPH
family trios are obtained from HapMap. We took HegpMap SNPs that are spanned by the gene

plus an additional 10,000 kilobases upstream amchsi@am from the site. The number of SNPs
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genotyped in each gene region is 23 and 102 SNPs.

Chromosome 5q31The data set collected by Daly et al. is derivednfthe 616 kilobase region
of human Chromosome 5g31 that may contain a gewatiant responsible for Crohn's disease.

This data set contains 103 SNPs for 129 trios.

LPL & Chromosome 21.The Clark et al.5 data set consists of the hap&styof 71 individuals
typed over 88 SNPs in the human lipoprotein lipg$t.) gene. The Chromosome 21 data set

consists the first 1,000 of 24,047 SNPs typed @@ehaploid copies of human Chromosome 21.

In order to simulate unknown haplotypes, we appave-one-out cross-validation.
Leave-one-out cross validation works in the follogvimanner: One by one, each haplotype in
the data set is removed and acts as the unknowoitysag we wish to predict; the remaining
haplotypes act as the sample population. The hgggdhat was “left out" is reconstructed based
only on its tag SNPs and the haplotypes in the Eanijne average number of errors in the
reconstruction of every left-out haplotype is uasch measure of the prediction accuracy of the

method. Table 1 presents the results of leave-ohexperiments on the 6 datasets.

Datasets Prediction Accuracy %

(Number of SNPs) 80| 85 90/ 91 92 93 94 95 96 97 98 99
ENmO13 (360) 20 3 6 6 7 8 9 9 11 15 22 254
ENr112 (410) 6/ 9 14 16 18 20 24 33 63 95 126 187
ENr113 (514) 4 5 10 11 18 15 18 40 55 80 104 200
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STEAP (22) 1 2 2 2 3 3 4 4
TRPMS (101) 5 7 8 10 15 15 24
5g31 (103) 5 7 9 18 16 21 31 41 55

Table 1. Performance of GTSA/LASPA and LMTSA/LASPA.

Table 2 compares GTSA/LASPA with STAMPA and IdSeléor each method, we

present the minimum number of tag SNPs neededathr®0% and 90% prediction accuracy in

the leave-one-out tests. According to Halperinl.eid&elect obtains the number of tag SNPs

based on Pearson Correlation. Our experiments stitmv§&TSA/LASPA needs fewer tags than

other methods. For example, for the ENr113 dataseimethods use half as many tags as

STAMPA to obtain the same 80% prediction accuracy.

Data Set 80% Accuracy 90% Accuracy
GTSA/LASPA| STAMPA| IdSelect| GTSA/LASPA STAMPA IdSelect
ENmMO013 2 5 84 6 12 189
ENr112 6 9 97 14 17 169
ENr113 4 11 83 10 18 325
STEAP 1 20 1 22
TRPM8 1 3 38 6 35
5031 1 2 64 5 6 91

Table 2. Comparison GTSA/LASPA with STAMPA and |tse.

In Table 3 we compare our GTSA/LASPA with STAMP AdadapBlock. The number of

tag SNPs is determined according to Halperin diyalising HapBlock with default parameters.

In all of the data sets, GTSA/LASPA obtains bepiexdiction accuracy. For small data sets, the

GTSA/LASPA method is significantly faster than STRM); for larger data sets, the difference

in running time is less significant.
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Data Set| Number of Prediction Accuracy Running Times (seconds)
tag SNPs | Aspa | STAMPA| HapBlock LASPA| STAMPA HapBlock
ENmMO13 15 0.971 0.929 0.759 100 78 8,710
ENr112 33 0.951 0.939 0.822 132 87 3,810
STEAP 3 0.985 0.951 0.763 0 3 5
TRPMS8 12 0.966 0.942 0.811 6 34 140
5q31 17 0.954 0.949 0.889 22 179 17,311

Table 3. Comparison LASPA with STAMPA and HapBlark Prediction and speed performance.
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6 Conclusion

This thesis discussed two different inference moigl in bioinformatics. The first
problem was inferring the structure of signal tcrgdion networks from observations on the
interactions between pairs of cellular componente problem was reduced to a type of
generalized transitive reduction problem knownhashtinary transitive reduction. An exact
algorithm using mixed integer programming was pnese that successfully solved the problem
and tested on real and simulated instances andmoxamation algorithm for the problem
originally suggested by DasGupta et al. was digmigsinally, a formulation of the maximum-
confidence binary transitive reduction problem w#ered as a generalized version of the binary
transitive reduction problem. Future research s &hea should result in a successful working
implementation of the approximation algorithm, withich we can compare with the exact

results provided by the mixed integer program.

The second problem, inferring haplotypes from infative SNPs, was introduced along
with a related problem, tag SNP selection. A framewior generating greedy tag SNP Selection
algorithms based on any haplotype prediction agoriwas presented. The linear algebraic
method for haplotype prediction was explained, amdmplementation was developed and tested
against real datasets. A variant of the methodung vector spaces over finites fields was
introduced, but no results are available yet. Futasearch will hopefully develop an
implementation of the GF(2) variant of the linegégedraic method for haplotype prediction and

a comparison with the Euclidean variant.
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Real Instance of BTR Problem Data
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