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AN AUTOMATED XPATH TO SQL TRANSFORMATION METHODOLOGY 

FOR XML DATA 

by 

SANDEEP JANDHYALA 

Under the Direction of Rajshekhar Sunderraman 

ABSTRACT 

In this thesis we present an automated system that allows users to execute XPATH 

queries against an XML data source. The system exploits the shared-inlining mapping 

from XML to Relational data. At the core of the system is an XPATH to SQL 

transformation algorithm that produces corresponding SQL queries for a subset of 

XPATH. This approach allows one to utilize standard relational databases to store XML 

data. Given a DTD, the system creates appropriate relational tables based on the shared-

inlining method. The system is capable of transforming an XML data source that 

conforms to the DTD into relational data. The main component of the system is the 

XPATH interpreter that parses an XPATH expression for the XML data source and 

transforms it into an equivalent SQL query. The SQL query is then executed against the 

relational database and results are packaged into XML and returned as the answer to the 

XPATH query. The use of the relational database to store and query the XML data is 

transparent to the user as they interact only with the XPATH interpreter. This 

methodology provides a novel technique to provide an XML database system 

implementation.  

 

Index Words:  XML SQL transformation, XPATH to SQL queries, XSU, Data mapping. 
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1. INTRODUCTION 

 

              For any organization to run successfully, the data of the firm needs to stored and 

maintained effectively. There are always issues of performance as per time efficiency, 

cost incurred, safety of the data, and convenience as per maintaining distributed 

databases. Mismanagement and inconsistency of data leads to the loss of huge amounts of 

money.  Hence, lots of efforts and money are being invested in this area; even so more 

are the revenues being generated. Databases are the main source for storing large 

volumes of data. XML provides a platform independent way of storing data. Hence the 

two of them form the main hosts of data storage and retrieval.  

 

            In many organizations there is a requirement to map the data that is in one form to 

another form for reasons depending on the specifications of the projects. For example, the 

users may prefer to store all the data which is in XML files in the relational database or 

the relational data in the XML format. There may also a need to perform the operations 

which can be done on XML in relational database and vice versa such as run queries 

against the relational database and generate results in XML. This XML document may 

need to conform to a DTD given in the specifications.  Two organizations using different 

format of data storage, may need to exchange data. XML being platform independent is 

one main reason why people prefer data transfer in the XML file format.   
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              The thesis is to meant to serve these business needs, and at the same time to 

explore the feasibility and complexity of mapping data in relational format to XML and 

vice versa.  The shared inlining method is used to map the DTD of an XML file to the 

corresponding relational schema. The system then loads the data from the XML file 

confirming to the given DTD into the database. At the stage the user can run all his SQL 

queries and generate results in XML. At the core of the thesis is an automated system for 

converting XPATH queries into SQL queries. The storage of data in the relational format 

and the data retrieved in relational format by posing SQL queries to the relational 

database is kept transparent to the user. The results are retrieved back in the XML format. 

This methodology provides a novel technique to provide an XML database system 

implementation.  
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2. BACKGROUND INFORMATION 

 

     A thesis is an intellectual proposition. The following chapter contains information on 

the technologies and other facts that have been used to successfully complete the research 

and achieve my findings. This can be used as a guide and reference for the 

implementation methodology. 

 

2.1 Extensible Markup Language (XML) 

     Both HTML and XML are subsets of SGML. While HTML tags deal with the display 

styles and format of a data item, XML was designed to describe the content of the data. 

XML is used to store information and data is stored in the plain text format. Hence it has 

become a means for data communication among the systems in the web. It provides a 

software- and hardware-independent way of sharing data. The clients and applications can 

access the data stored in XML like they are accessing data from databases. XML has now 

become the leading standard for data communication in the World Wide Web and 

between databases. Few Database vendors have started releasing products which provide 

support for data exchange between their database and XML.   

 

2.2 Relational Database Management System (RDBMS) 

     The success factor for any company is the way they store and retrieve data. This data 

is stored in tables in the databases, which represent a relation among certain entities 

called columns. In addition to the content of the data, the constraint the data has to satisfy 

is very crucial to the database. Three such important constraints are primary key, foreign 
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key and not null. ORACLE is leading database vendor and it supports SQL to create, 

query the database and perform other transactions. It also provides support for PL/SQL so 

as to run procedures on the data.  

 

2.3 JAVA and DATA Structures 

     JAVA is an Object Oriented Programming Language. JAVA programs are converted 

into byte code, which is run by the JVM. Because of this reason JAVA supports 

portability on several platforms and JVM addresses security issues. It is the predominant 

programming language of the web. Vector is a data structure which is included the Utility 

package of JAVA. It implements a dynamic array. Hash table is yet another data structure 

which is similar in nature to a dictionary. It is integrated into the Collections framework 

in JAVA. 

     Hash table stores key/value pairs. One can specify the Key object in order to get back 

its corresponding value or detect the presence of a value in the hash table.  

 

2.4 JAVA Database Connectivity (JDBC) 

     ORACLE supports JDBC API for applications using JAVA to connect to the database. 

With the use of JDBC, applications can connect to many databases simultaneously such 

as SYBASE, DB2 by loading their appropriate drivers. The steps involved in connecting 

to a database from an application involve 

• Loading the database driver 

• Creating a connection object, this is like establishing a connection with the 

database by giving it the username and password of the database. 
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• Creating a statement object, this is needed to specify a query to be run on the 

database. 

• Executing the statement and process the results as per the application. 

 

2.5 XML parsing in JAVA 

     JAVA is an object oriented programming language and is platform independent. Since 

XML documents are used by many applications, support for extracting data from those 

documents is necessary. ORACLE provides an XML parser package in JAVA that 

provides implementations for the extracting data from XML documents. There are two 

such parsers namely SAX and DOM. SAX parser doesn’t store the entire XML document 

in memory as it uses an event call back mechanism. Hence it is suitable for applications 

which require just one pass of the XML document to extract the data. DOM parser 

creates a node tree of the XML document and loads it into memory. Hence it is mostly 

used for those applications which require multiple passes of the XML document. It is 

more efficient than SAX.  The DOM tree consists of nodes which correspond to the 

elements, attributes of the XML document. It has several functions which such as get 

siblings, get parent, get children, get node value which provide a lot of useful information 

about the XML document to the applications.  

 

2.6 Document Type Definition (DTD) 

     The structure of an XML document is defined in a DTD. They are similar to schema 

and are easier to specify. The DTD specifies the data types of the elements, order of 

elements, whether the elements have attributes, whether specifying an attribute for an 
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element is mandatory or optional, the child elements of an element, the number of 

occurrences of elements and a lot more. The DTD validates the XML document and 

raises an error if any elements or attributes are violating the given format. This way the 

applications which involve data transfer using XML can do the error handling.  

 

2.7 XPATH  

     XPATH is a language used to query a XML document for data. The query is an 

expression.  Given an XPATH expression, XPATH navigates through the XML 

document to fetch the results matching the predicates and conditions mentioned in the 

expression. The following are the components of XPATH expressions. 

 

Expression Description 

Node name Selects all child nodes of the node 

/ Select from the root node 

// Selects nodes in the document from the current node 

that match the selection no matter where they are 

. Selects the current node 

.. Selects the parent of the current node 

@ Selects the attributes 

 

 

Table 1. Operators in XPATH 
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     Predicates are embedded in square brackets. In addition to the above operators * is 

also used to match any element node. If @* is mentioned, XPATH matches it with any 

attribute nodes of the XML document. XPATH uses a library of standard functions such 

as numeric functions, string functions, and functions on nodes, sequences, contexts, 

which aid the users to specify simpler queries. XPATH cannot address join queries, but it 

is very crucial. XPATH is used in many tools like XSLT, XQUERY, X pointer, X link 

and DOM parsing.  

 

2.8 XML SQL Utility (XSU) 

     Mapping data between XML and relational databases has become necessary for many 

organizations, because these days XML is used as a data store in many applications. 

Oracle provides support for this through XSU.  Some of the points here are referred from 

[8].  

Through XSU one can 

• Transform data retrieved from object-relational database tables or views into 

XML when a query is given. 

•  Extract data from an XML document, and using a canonical mapping, insert the 

data into appropriate columns or attributes of a table or a view given a schema for 

the tables or views. 

•  Extract data from an XML document and apply this data to updating or deleting 

values of the appropriate columns or attributes.  
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• Generated DTD’s  dynamically 

• Generate XML Schema given an SQL query. 

• SQL identifier to XML identifier escaping. Sometimes column names are not 

valid XML tag names. To avoid this you can either alias all the column names or 

turn on tag escaping 

• Generate XML documents in their string or DOM representations.  

• Insert XML into database tables or views. 

The following figures are taken from [8].  

XSU can be installed at the database end in which case the overall picture looks like 

 

 

Figure 1    XSU tool in the database server 
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     If the architecture needs an application server in the middle tier, and there is a 

need for XML support there, then XSU can be installed in the middle tier, the overall 

picture looks like 

 

 

Figure 2.         XSU in the Application tier 

 

XSU can also be installed in the web server, for this the web server needs to support  

servlets.  

 

Figure 3.         XSU in the Web Server end 
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                     XSU can also be installed in the client tier.  

XSU can be invoked from a   

• Java application or through the command prompt using java commands. 

• Write PL/SQL applications that access XSU through its PL/SQL API  

• Access XSU functionality directly through SQL  

The following is an example of XML document generated for an SQL query on the 

employee table whose schema is 

CREATE TABLE EMP 

( 

   EMPNO NUMBER,  

   ENAME VARCHAR2 (20), 

   JOB VARCHAR2 (20), 

   MGR NUMBER, 

   HIREDATE DATE, 

   SAL NUMBER, 

   DEPTNO NUMBER 

);  

Assume we have certain records in the emp table. Now, given the query,  

“select * from emp” ;  XSU can generate the following XML document  

 <?xml version='1.0'?> 

<ROWSET> 

  <ROW num="1"> 

    <EMPNO>7369</EMPNO> 

    <ENAME>Smith</ENAME> 

    <JOB>CLERK</JOB> 
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    <MGR>7902</MGR> 

    <HIREDATE>12/17/1980 0:0:0</HIREDATE> 

    <SAL>800</SAL> 

    <DEPTNO>20</DEPTNO> 

  </ROW> 

  <! -- additional rows ... --> 

</ROWSET> 

 

The <ROWSET> element contains one or more <ROW> elements .Each tag within the 

<ROW> corresponds to a column in the table and the attribute num=”1” signifies that this 

is the first record in the emp table. XSU also provides facilities where in a user can set 

the tag names to his desired names in the output XML document. 

 

2.9 JAVA support for XSU 

The following two classes make up the XSU Java API: 

• API for XML generation: oracle.xml.sql.query.OracleXMLQuery  

• API for XML save, insert, update, and delete: 

oracle.xml.sql.dml.OracleXMLSave  

     One can use either the JAVA command line or a JAVA program to obtain the desired 

results. Shown below is the manner in which we get the results in XML using command 

line invocation through JAVA. For example, to generate an XML document by querying 

the EMP table, the getXML command is used as follows: 

java OracleXML getXML -user "scott/tiger" "select * from EMP"  
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Here the user name and the query are passed as arguments to the getXML command.  

To insert an XML document into the EMP table, the putXML command is used with the 

following syntax: 

java OracleXML  

putXML -user "scott/tiger" -fileName "/tmp/temp.xml" "emp" 

 
We pass the username, the name of the XML file to be inserted and the table into which 

the file is to be inserted.  

 
There are several other options associated with these commands to display XML in the 

desired format such as giving the output tag names as well as set the column names. 

 

We can also use the XSU in an application as shown 

 
import oracle.jdbc.driver.*; 
import oracle.xml.sql.query.OracleXMLQuery; 
import java.lang.*; 
import java.sql.*; 
 
// class to test the String generation! 
class testXMLSQL { 
 
   public static void main(String[] argv) 
   { 
 
     try{ 
      // create the connection 
      Connection conn  = getConnection("scott","tiger"); 
 
      // Create the query class. 
      OracleXMLQuery qry  
               = new OracleXMLQuery(conn, "select * from emp"); 
 
      // Get the XML string 
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      String str = qry.getXMLString(); 
 
      // Print the XML output 
      System.out.println(" The XML output is:\n"+str); 
      // Always close the query to get rid of any resources. 
      qry.close(); 
     }catch(SQLException e){ 
      System.out.println(e.toString()); 
     } 
   } 
 
   // Get the connection given the user name and password..! 
   private static Connection  
          getConnection(String username, String   password) 
     throws SQLException 
   { 
      // register the JDBC driver.. 
      DriverManager.registerDriver 
                    (new oracle.jdbc.driver.OracleDriver()); 
                                                                                
 
      // Create the connection using the OCI8 driver 
       Connection conn = 
        DriverManager.getConnection 
                        ("jdbc:oracle:oci8:@",username,password); 
 
      return conn; 
   } 
} 
Using a JAVA program one can obtain the XML output as a DOM Object output or XML 

String output.  

 
For obtaining the output as a DOM object we use the following command 

org.w3c.DOM.Document domDoc = qry.getXMLDOM(); 
 

For obtaining the output as an XML String we use the following command. 

  String xmlString = qry.getXMLString(); 
 

2.10 Inlining Technique  

          This technique is used to create a relational schema given an XML DTD. Some of 

the content below is taken from [4]. 
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2.10.1 Mapping a DTD to relational schema  

     The goal is to store any document conforming to the DTD in the relational schema and 

any XML semi structured query over a document conforming to the DTD can be 

evaluated over the relational database resulting in same data. While mapping this way, 

one needs to also consider the position of an element relative to its siblings and parent-

child relationship between elements in the XML document. To accomplish this goal a 

complex DTD is simplified using certain transformations.  

Flattening transformations: These convert the nested definition into a flat representation  

Eg: (e1,e2)* ------         e1*,e2* 

   (e1,e2)? -----          e1?, e2? 

  Simplification transformations: These convert many unary operators into a single unary 

operator. 

Eg: e1** -----------  e1* 

   e1*? -----------  e1* 

   e1?* -----------  e1* 

   e1?? -------------  e1? 

Although some ordering may be lost here, we can when loading the data preserve that 

ordering by adding certain fields.  

 

2.10.2 The Algorithm 

     Based on a node graph created for a DTD, the nodes with an in-degree of one are 

inlined. The nodes which have in-degree of zero are made into separate relations as they 

cannot be reached from any other node. Relational data model does not support set 

valued attributes. If an XML element has * occurrences of a child, we cannot create a 
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column for the child, with parent element name as a table, as it results in many values for 

one column. The best way to handle such situations is to create a table for the parent 

element with its attributes, child elements, which have only one occurrence, attributes of 

child elements if any as columns of the table. For each child which has a * occurrence in 

the DTD, create a separate table with its attributes, its child elements and their attribute 

names as column names. Then we are to link the parent table with the table created for a 

* occurrence child by adding certain fields. Each record in a table will be uniquely 

identified by a field called ‘id’ which tells about the index of occurrence of the element in 

the XML document. Tables which have dependencies, i.e tables which correspond to 

XML elements which have * occurrences, have an additional ‘parent id’ field which 

references the id field of its parent table. This way one can preserve the ordering and 

solve the problem of set valued attributes. This is illustrated in the following example.  

The following is the DTD of a book database XML document. 

<!ELEMENT books (book*, library)> 

<!ELEMENT book (booktitle, year)> 

<!ELEMENT booktitle (bookname,header*,color)> 

<!ELEMENT year (monthpub, datepub)> 

<!ELEMENT monthpub (#PCDATA)> 

<!ELEMENT datepub (#PCDATA)> 

<!ELEMENT bookname (#PCDATA)> 

<!ELEMENT header (hdrsize)> 

<!ELEMENT color (#PCDATA)> 

<!ELEMENT hdrsize (#PCDATA)> 

<!ELEMENT library (#PCDATA)> 

<!ATTLIST book author CDATA #REQUIRED> 
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The root of this DTD is element books. The schema created in the database using the 

above technique is as follows.  

Create table books(  

booksid int,  

library varchar (25),  

primary key (booksid)) 

 

Create table book( 

bookid int, 

author varchar(25), 

bookname varchar(25), 

color varchar(25), 

monthpub varchar(25), 

datepub varchar(25), 

parentid int,  

primary key (bookid), 

foreign key (parentid) references books) 

 

Create table header( 

headerid int,  

hdrsize varchar(25),  

parentid int,  

primary key (headerid), 

foreign key (parentid) references book) 

 

     The root element ‘books’ is converted to a table and the single occurrence child 

library to a column name. The element ‘book ‘is a multiple occurrence child, so a 

separate table has been created for it, with its children as column names. The element 

book has an attribute ‘author’, hence we have a column name author in the book table. 

Since the element ‘booktitle’ has an in-degree of one, it is inlined into the ‘book’ table, 

  



 17
 
 

 
but its children namely ‘bookname’ and ‘color’ are text nodes, so we need to store that 

information. Hence there are column names for those elements in the book table. Similar 

is the case with the ‘year’ element. The element ‘header’ had it been a single occurrence 

type, its children like ‘hdrsize’ would be included in the book table. But, since it is a 

multiple occurrence child we are separating it into another table. Here the default data 

type is taken as varchar (25) for simplicity. Each table has a column name ‘id’ which 

uniquely identifies each record. The multiple occurrence child tables have a field ‘parent 

id’ which references its parent table.  
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3. SYSTEM ARCITECTURE 

 

This chapter gives an overview of the system developed and its chief components. 

It also speaks about the flow of the application as per the components and the limitations 

used in the thesis. 

3.1 Components and flow  

          The System comprises of the components shown in the figure. The DTD checker 

accepts a DTD document, validates the file against certain scope check conditions and 

accepts the DTD if the check passes. It then creates the relational schema corresponding 

to the DTD and the tables are created. Then the Data Loader component accepts the valid 

DTD and an input XML file. It validates the XML file against the DTD and if the XML 

file is valid, it loads the data in the XML format into the database in relational format. At 

this stage we have the entire XML document structure and data preserved in the database.  

 

        The Data Loader then invokes the Xpath to SQL converter. This prompts the user to 

enter an Xpath expression. The input expression is validated against certain scope check 

conditions, and if it passes those, the Xpath expression is converted into an equivalent 

SQL query and presented to the user. At this stage one can access the database and run 

the query against it, to get back the results in the relational format.  Along with the data, 

the results also display the ‘id’ and ‘parent id’ fields. Through these fields one can 

analyze the position of the XML element in the document and relative to its parent. 

The Xpath to SQL converter then invokes the XSU XML generator. This takes as input 

the generated SQL query and runs it against the database to get back the results in the 
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DOM format or the XML string format. These results in XML are displayed back to the 

user. This way mapping data from XML to database and vice versa are done. 

                                                 

Figure 4. Application flow among system components 

 

3.2 Limitations on the DTD and XPATH imposed in the thesis 

Because the aim of the thesis is to show the feasibility of a two way mapping 

between XML and relational database using the inling technique, the feasibility of 
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implementing an XPATH to SQL converter, and also due to time limitations, the 

following constraints are imposed on the DTD’s accepted and also the XPATH queries.  

 

A DTD in which the following operators or keywords occur is not accepted to be valid 

• ENTITY  

• ANY  

• | (or) operator  

• ID, IDREF 

Besides these the DTD needs to be single rooted and elements can’t have a list of 

attributes.  

In Xpath, the // operator and functions are not considered. The expressions begin with a / 

operator. 

  

3.3 Application flow in brief 

The application implements the inlining technique to create a relational schema 

for the XML document based on its DTD. It makes use of the ORACLE supported JAVA 

API for XML parsing (DOM methodology) by making a depth first traversal through the 

entire document to load the XML data into the relational database. The application then 

prompts the user for an Xpath expression and converts it to an equivalent SQL query. 

One can use this query to obtain results in relational format by connecting to the database 

from the application or logging into the database. This SQL query is then utilized by 

XSU to generate the results in XML. At every stage error checking is done and the 

accepted DTD and Xpath are valuated against the constraints.  
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4. SOFTWARE DESIGN 

This chapter gives a description of the design of the system. The algorithms used, 

the inputs to the system, the outputs from each stage, the processing and the flow of the 

application are explained here.  

 

 4.1 Loading DTD into application  

The application needs some data store of the XML structure for further 

processing. For this purpose hash tables and vectors in JAVA are used. An input DTD 

file is accepted as a command line argument.  Reading line by line from the file, the 

application stores elements and attributes details in their respective hash tables. Each has 

table has a format of Key value pair. This way the parent elements form the keys and 

child elements form the values. When reading through the file, if ENTITY and ANY 

keywords are found, the DTD is rejected; otherwise the application proceeds to the next 

step.  

 

4.2 Creating Relational Schema for XML  

For the purpose of identifying the table names, the column names within a table 

and checking the presence of recursion in the DTD, a module is designed. The root of the 

document is first passed to the module. The child elements of the root are fetched from 

the hash table filled out in the earlier section. For each of those child elements the same 

process is repeated, by storing the column names in vectors until there are no more 

elements to process. If an element has an attribute, it is recognized as a column. If it is a 
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text node, it is recognized as a column name.  If the application encounters multiple 

occurrence elements they are treated as special elements and stored in a separate vector. 

It is in this module that the presence of | (or) operator, ID, IDREF fields are checked.  

If any of those are found the DTD is not accepted. When the control returns to the called 

function from the module for the root element pass, the application has details of all 

column names for the root element and all tables that are to be created for the multiple 

occurrence elements. If there are no columns detected for the root element, then no table 

is created for it. Here we are creating columns having data type as varchar for the sake of 

simplicity as it supports both numbers and characters. The application then invokes the 

module for each of the special elements found, to detect its column names and possibly 

the presence of multiple occurrence elements with in it. If such elements are found the 

same process is repeated yet again even for those elements. After all these, the 

application has the list of all table names and their corresponding column names to be 

created. As the application loops through the child elements, it also stores the hierarchy in 

vectors so that, this can be used in future to detect the parent elements. Thus the presence 

of recursion within the DTD is also checked. Once the control returns of this module for 

all cases, the application checks if the DTD is single rooted and if so, the application 

connects to the database using JDBC and creates the tables. If not, the DTD is rejected.  

 

4.3 Loading Data into Tables  

Oracle supports JAVA API for XML parsing. The reason for choosing DOM API 

here is that, there will be multiple passes through the XML document in order to load the 

data, as the algorithm used is a depth first traversal. Since DOM creates a document node 
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tree in the memory, it best suits the needs. The application accepts an XML file as the 

input. 

Given the DTD, the DOM parser validates the XML file against the DTD and 

reports an error if it violates the DTD.  The function designed for this purpose executes 

recursively  

starting with passing the root of the XML document to it, and runs over the roots first 

child and continues that way with that child becoming the root for the next iteration in 

order to determine its children. Here is a small snippet of the code which is used to 

traverse the entire XML document.  

Void load (root) 

{ 

for(child=(XMLNode)root.getFirstChild();child!=null; 

                       child=(XMLNode)child.getNextSibling()) 

// at the end of this loop, we invoke the function with load 

(child) 

} 

 

The following code specifies handlers for different types of child nodes; it can be a text 

node or an element node. 

if (child.getNodeType()==child.TEXT_NODE) 

 

 if(child.getNodeType()==child.ELEMENT_NODE)   

 

If there was a table created for the root, during the schema creating process, then we store 

that table name in a global variable for this function. In every iteration, we check if the 

root which is a parameter to this function, has any attributes, if so, then we have a column 

value to be inserted, so we create an entry for it taking a hash table where in we have the 
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key as the table name and value as the attribute value. If the child is identified to be a text 

node, then the value of the node is a column value, the application modifies the hash table 

for insert statements with that table name, by adding this new value. How do we identify 

which column name belongs to which table? It is done as follows. 

 

If the child is an element node, then the application has to detect the presence of a 

table name while traversing the document so that it collects values of the column names 

for respective table names. For this purpose, as we have other table names only for 

multiple occurrence elements, while traversing the document we need to search for 

multiple occurrence elements cases,  by looking at an elements next sibling and previous 

sibling. If the element name is same as either of these, then the application changes the 

value of table name variable, and proceeds through the same logic as described above. In 

some cases even though the element is declared to a multiple occurrence one in the DTD, 

it occurs only once in the XML document. In such cases, we need to check the hash table 

created for the table names during the schema creating process.  

 

In this process the application needs to identify two fields namely ‘id’ and ‘parent 

id’. Once we finish a row of values for a particular table name, if the application 

identifies one more row, then we increment the id field for that table name and store it in 

a hash table. We fill in the parent id field for each table name, once the application 

detects a new table name. Using the hierarchy vectors for table names and another hash 

table which stores the occurrence of the table names, we can determine these; this will be 

illustrated in the code. 
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The output of this function is stored in a hash table which contains all the insert 

statements in the SQL format. When the control returns to the calling function, we loop 

through this hash table, referring to the order in which table names ought to occur as per 

the DTD, fetching the insert statements for each table one by one. The application then 

connects to the database and performs the insert operations. So at the end of this we have 

created the schema and loaded all the data in the tables. 

 

4.4 XPATH to SQL conversion 

The application prompts the user to enter an Xpath expression. Once the user 

enters the expression, the application has to compute three clauses namely the select 

clause, the from clause and the where clause. The application identifies the select clause 

by looking at the last fragment of expression in the Xpath expression. However, the 

application adds the fields of id, and parent id so that we can determine exactly where the 

element occurs in the XML document. The application splits the Xpath expression based 

on the operator ‘/’. A check is done of the hierarchy of elements mentioned in the Xpath 

expression. This is checked against the hierarchy vectors and if does exist, then it is a 

valid expression. Each of the fragments which are split based on ‘/’ operator may or may 

not contain a predicate. If it does contain there will be presence of [] operator. So if there 

are such operators, then we get the where clause from those predicates. Inside the [] 

operator there can another Xpath expression where there may @ operator or a specifying 

some expression of the form LHS =RHS. Then we are to determine which table name is 

that LHS a column of. For that we make use of hierarchy vectors, table names hash 

tables. The last part of LHS is the desired column name. Once we get the table name we 
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add the condition table name. column name= RHS to the ‘where’ clause.  The ‘from’ 

clause and where clause are interdependent. If in the where clause there exists a condition 

of LHS=RHS, Then that table name will become a part of the from clause of it doesn’t 

already exist. This way all the fragments in the Xpath expression are looked into to 

determine from and where clause. The application thus converts the Xpath expression 

into an equivalent SQL query and presents it to the user. The user can then login to the 

database and query the database using this query to get back the results. The application 

can also directly connect to the database to achieve the same functionality.  

 

4.5 XSU’s XML generation 

Once the application has the SQL query, since the results are also to be displayed 

in the XML format, the Oracle supported XSU tool is used for this purpose. This accepts 

the SQL query as the input, connects to the database, runs the query, gets the results in 

relational format and converts the results to XML and displays the XML format output to 

the user. For code details refer to the background section in thesis. Here we can configure 

several options that are supported by the XSU to display the output in the desired format 

to the user. Thus the application achieves the backward mapping of relational to XML 

format.  
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5. IMPLEMENTATION AND TESTING 

This chapter presents the test cases and displays the GUI and the outputs 

generated by the program.   

Example 1:  Given below is a DTD of a books database XML document. We give this as 

one of the inputs to the program along with a XML file. 

DTD 

<!ELEMENT books (book*,library)> 

<!ELEMENT book (booktitle,year)> 

<!ELEMENT booktitle (bookname,header*,color)> 

<!ELEMENT year (monthpub,datepub)> 

<!ELEMENT monthpub (#PCDATA)> 

<!ELEMENT datepub (#PCDATA)> 

<!ELEMENT bookname (#PCDATA)> 

<!ELEMENT header (hdrsize)> 

<!ELEMENT color (#PCDATA)> 

<!ELEMENT hdrsize (#PCDATA)> 

<!ELEMENT library (#PCDATA)> 

<!ATTLIST book author CDATA #REQUIRED> 

 

The following is the XML file given as another argument to the program at the 

command line. This XML file is to confirm with the DTD given and this check is made in 

the application. 

XML Document 

<?xml version="1.0"?> 

<!DOCTYPE books SYSTEM "book.dtd">  

<books> 

<book author="james"> 

 <booktitle> 
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 <bookname>Marine Biology</bookname> 

  <header> 

    <hdrsize>20</hdrsize> 

  </header> 

  <header> 

   <hdrsize>10</hdrsize> 

  </header> 

  <color>blue</color> 

 </booktitle> 

 <year> 

  <monthpub>may</monthpub> 

  <datepub>18th</datepub> 

 </year> 

</book> 

<book author="Foster"> 

 <booktitle> 

 <bookname>Mass Communications</bookname> 

  <header> 

    <hdrsize>30</hdrsize> 

  </header> 

  <header> 

   <hdrsize>20</hdrsize> 

  </header> 

  <color>Orange</color> 

 </booktitle> 

 <year> 

  <monthpub>may</monthpub> 

  <datepub>25th</datepub> 

 </year> 

</book> 

<book author="Kimberley"> 

 <booktitle> 

 <bookname>Organic Chemistry</bookname> 
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  <header> 

    <hdrsize>30</hdrsize> 

  </header> 

  <header> 

   <hdrsize>15</hdrsize> 

  </header> 

  <color>Red</color> 

 </booktitle> 

 <year> 

  <monthpub>jun</monthpub> 

  <datepub>18th</datepub> 

 </year> 

</book> 

<book author="Jacob"> 

 <booktitle> 

 <bookname>Philosophy</bookname> 

  <header> 

    <hdrsize>20</hdrsize> 

  </header> 

  <color>Grey</color> 

 </booktitle> 

 <year> 

  <monthpub>feb</monthpub> 

  <datepub>19th</datepub> 

 </year> 

</book> 

<library>Central Library</library> 

</books> 

 

Given these two arguments to the program, the following output is generated. The 

output schema generated are displayed first and then the insert statements are displayed.  
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The relational schema equivalent to the DTD is 

create table books( 

booksid int, 

library varchar(50), 

 primary key (booksid)) 

 

 

create table book ( 

bookid int, 

author varchar(50), 

bookname varchar(50), 

color varchar(50), 

monthpub varchar(50), 

datepub varchar(50), 

parentid int, 

primary key (bookid), 

foreign key (parentid) references books) 

 

create table header ( 

headerid int, 

hdrsize varchar(50), 

parentid int, 

primary key (headerid), 

foreign key (parentid) references book)  

The program now goes into the data loading stage with the following messages 

being displayed. 

 finished parsing the XML document, loading data into relational database...... 

insert into books values(1,'Central Library') 

insert into book values(1,'james','Marine 

Biology','blue','may','18th',1) 

insert into book values(2,'Foster','Mass 

Communications','Orange','may','25th',1) 
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insert into book values(3,'Kimberley','Organic 

Chemistry','Red','jun','18th',1) 

insert into book 

values(4,'Jacob','Philosophy','Grey','feb','19th',1) 

 

insert into header values(1,'20',1) 

insert into header values(2,'10',1) 

insert into header values(3,'30',2) 

insert into header values(4,'20',2) 

insert into header values(5,'30',3) 

insert into header values(6,'15',3) 

insert into header values(7,'20',4) 

The data loading stage is now completed.  At this stage there are tables generated in the 

database.  

BOOKSID LIBRARY 
1 Central Library 

Table 2. Books 

Table 3. Book 

BOOKID AUTHOR BOOKNAME COLOR MONTHPUB DATEPUB PARENTID
1 James Marine Biology Blue May 18th 1 
2 Foster Mass 

Communications
Orange May 25th 1 

3 Kimberly Organic 
Chemistry 

Red Jun 18th 1 

4 Grey Philosophy Grey Feb 19th 1 

HEADERID HDRSIZE PARENTID 
1 20 1 
2 10 1 
3 30 2 
4 20 2 
5 30 3 
6 15 3 
7 20 4 

Table 4. Header table 
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The program is tested against some sample queries shown below.  

SAMPLE QUERIES 

1. enter an xpath expression, You will get back an SQL query 

/books/book/booktitle/bookname 

the equivalent SQL query is. 

select bookid,bookname,book.parentid  

from book 

 You can login to database and run this query to get results in relational format. The 

following is the output generated because of the XSU. 

 The XML output is: 

<?xml version = '1.0'?> 

<ROWSET> 

   <ROW num="1"> 

      <BOOKID>1</BOOKID> 

      <BOOKNAME>Marine Biology</BOOKNAME> 

      <PARENTID>1</PARENTID> 

   </ROW> 

   <ROW num="2"> 

      <BOOKID>2</BOOKID> 

      <BOOKNAME>Mass Communications</BOOKNAME> 

      <PARENTID>1</PARENTID> 

   </ROW> 

   <ROW num="3"> 

      <BOOKID>3</BOOKID> 

      <BOOKNAME>Organic Chemistry</BOOKNAME> 

      <PARENTID>1</PARENTID> 

   </ROW> 

   <ROW num="4"> 

      <BOOKID>4</BOOKID> 
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      <BOOKNAME>Philosophy</BOOKNAME> 

      <PARENTID>1</PARENTID> 

   </ROW> 

</ROWSET> 

 

Explanation of the query:  The query is to generate all the names of the books. 

The field bookname is under booktitle which is under book which is a table. If we look at 

the output XML and compare it with the XML document we notice the tag name 

<BOOKNAME> and its corresponding value. The field BookID indicates which 

occurrence of bookname is it starting from the first bookname which follows the given 

hierarchy. For example, the Bookname “Philosophy “ has Bookid 4, which means to say, 

it is under the fourth book under consideration and the PARENTID 1 corresponds to this 

book having a parent whose ID is 1.  

 

2.  Queries with attribute operator 

enter an xpath expression, You will get back an SQL query 

/books/book[@author='Foster'] 

the equivalent SQL query is 

select author,bookid  

from book  

where book.author='Foster' 

 You can login to database and run this query to get results in relational format  

The XML output is: 

<?xml version = '1.0'?> 

<ROWSET> 
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   <ROW num="1"> 

      <AUTHOR>Foster</AUTHOR> 

      <BOOKID>2</BOOKID> 

   </ROW> 

</ROWSET> 

 

Explanation of the query:  The query is to identify the book tag with author name 

“Foster”. If we look at the output XML and compare it with the XML document we 

notice the tag name <AUTHOR> and BOOKID with their corresponding values. The 

field BookID indicates which book under the tag BOOKS has an author with name given 

in the AUTHOR tag. Here it is the second book under BOOKS tag as per the given XML 

document.  

 

3. Queries using predicate [] operator with expressions in it 

enter an xpath expression, You will get back an SQL query 

/books/book[booktitle|header|hdrsize='15']/year/monthpub 

the equivalent SQL query is 

select bookid,monthpub,book.parentid  

from book,header  

where header.hdrsize='15' and header.parentid=book.bookid; 

 

 You can login to database and run this query to get results in relational format  

 The XML output is: 

<?xml version = '1.0'?> 

<ROWSET> 

  



 35
 
 

 
   <ROW num="1"> 

      <BOOKID>3</BOOKID> 

      <MONTHPUB>jun</MONTHPUB> 

      <PARENTID>1</PARENTID> 

   </ROW> 

</ROWSET> 

 

 

Explanation of the query: The query is to find the month of publication of a book 

whose header size is 15. If we look at the output XML and compare it with the XML 

document we notice the tag name <MONTHPUB>, BOOKID and PARENTID with their 

corresponding values. The field BOOKID indicates which book under the tag BOOKS 

satisfies the property that the header size of it is 15. Here it is the third book under 

BOOKS tag as per the given XML document. PARENTID indicates that this book’s 

parent has ID 1 which is the Tag BOOKS. 

 

In the next example we consider employees, customers, orders database represented in an 

XML document having the following DTD. We supply the DTD and the XML file as 

arguments to the program and an XML file is generated as an output when some XPATH 

expression is entered.  

 

Example 2 DTD 

<!ELEMENT modb (employees,customers,orders)> 

<!ELEMENT employees (employee*)> 

<!ELEMENT employee (eno,ename,city,zip)> 

<!ELEMENT eno (#PCDATA)> 

<!ELEMENT ename (#PCDATA)> 

<!ELEMENT city (#PCDATA)> 
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<!ELEMENT zip (#PCDATA)> 

<!ELEMENT customers (customer*)> 

<!ELEMENT customer (cno,cname,street,ccity,czip)> 

<!ELEMENT cno (#PCDATA)> 

<!ELEMENT cname (#PCDATA)> 

<!ELEMENT street (#PCDATA)> 

<!ELEMENT ccity (#PCDATA)> 

<!ELEMENT czip (#PCDATA)> 

<!ELEMENT orders (orderr*)> 

<!ATTLIST orderr ono CDATA #REQUIRED> 

<!ELEMENT orderr (takenBy,cno,receivedDate,shippedDate,items)> 

<!ELEMENT takenBy (#PCDATA)> 

<!ELEMENT receivedDate (#PCDATA)> 

<!ELEMENT shippedDate (#PCDATA)> 

<!ELEMENT items (item*)> 

<!ELEMENT item (partNumber,quantity)> 

<!ELEMENT partNumber (#PCDATA)> 

<!ELEMENT quantity (#PCDATA)> 

 

Given below is an XML file which confirms with the above DTD. This check is 

performed  in the application as part of XML parsing in JAVA. 

 

XML FILE 

<?xml version="1.0"?> 

<!DOCTYPE modb SYSTEM "mailorder.dtd"> 

 

<modb> 

  <employees> 

    <employee> 

      <eno>1000</eno> 

      <ename>Jones</ename> 
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      <city>Wichita</city> 

      <zip>67226</zip> 

    </employee> 

    <employee> 

      <eno>1001</eno> 

      <ename>Smith</ename> 

      <city>Fort Dodge</city> 

      <zip>60606</zip> 

    </employee> 

    <employee> 

      <eno>1002</eno> 

      <ename>Brown</ename> 

      <city>Kansas City</city> 

      <zip>50302</zip> 

    </employee> 

  </employees> 

  <customers> 

    <customer> 

      <cno>1111</cno> 

      <cname>Charles</cname> 

      <street>123 Main St</street> 

      <ccity>Wichita</ccity> 

      <czip>67226</czip> 

    </customer> 

    <customer> 

      <cno>2222</cno> 

      <cname>Bertram</cname> 

      <street>237 Ash Avenue</street> 

      <ccity>Wichita</ccity> 

      <czip>67226</czip> 

    </customer> 

    <customer> 

      <cno>3333</cno> 
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      <cname>Barbara</cname> 

      <street>111 Inwood St</street> 

      <ccity>Fort Dodge</ccity> 

      <czip>60606</czip> 

    </customer> 

    <customer> 

      <cno>4444</cno> 

      <cname>Jonathan</cname> 

      <street>111 Elm St</street> 

      <ccity>Fort Dodge</ccity> 

      <czip>60606</czip> 

    </customer> 

  </customers> 

 

  <orders> 

    <orderr ono="1020"> 

      <takenBy>1000</takenBy> 

      <cno>1111</cno> 

      <receivedDate>10-DEC-94</receivedDate> 

      <shippedDate>12-DEC-94</shippedDate> 

      <items> 

        <item> 

          <partNumber>10506</partNumber> 

          <quantity>1</quantity> 

        </item> 

        <item> 

          <partNumber>10507</partNumber> 

          <quantity>1</quantity> 

        </item> 

        <item> 

          <partNumber>10508</partNumber> 

          <quantity>2</quantity> 

        </item> 
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        <item> 

          <partNumber>10509</partNumber> 

          <quantity>3</quantity> 

        </item> 

      </items> 

    </orderr> 

 

    <orderr ono="1021"> 

      <takenBy>1000</takenBy> 

      <cno>1111</cno> 

      <receivedDate>12-JAN-95</receivedDate> 

      <shippedDate>15-JAN-95</shippedDate> 

      <items> 

        <item> 

          <partNumber>10601</partNumber> 

          <quantity>4</quantity> 

        </item> 

      </items> 

    </orderr> 

     

    <orderr ono="1022"> 

      <takenBy>1001</takenBy> 

      <cno>2222</cno> 

      <receivedDate>13-FEB-95</receivedDate> 

      <shippedDate>20-FEB-95</shippedDate> 

      <items> 

        <item> 

          <partNumber>10601</partNumber> 

          <quantity>1</quantity> 

        </item> 

        <item> 

          <partNumber>10701</partNumber> 

          <quantity>1</quantity> 
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        </item> 

      </items> 

    </orderr> 

     

    <orderr ono="1023"> 

      <takenBy>1000</takenBy> 

      <cno>3333</cno> 

      <receivedDate>20-JUN-97</receivedDate> 

      <shippedDate>20-FEB-96</shippedDate> 

      <items> 

        <item> 

          <partNumber>10800</partNumber> 

          <quantity>1</quantity> 

        </item> 

        <item> 

          <partNumber>10900</partNumber> 

          <quantity>1</quantity> 

        </item> 

      </items> 

    </orderr> 

  </orders> 

</modb> 

 
Once the user supplies the DTD and an XML file which corresponds to the DTD, 

the schema for the DTD is created and data of the XML file is inserted into the database. 

The following are the results produced by the program.  

EMPLOYEEID ENO ENAME CITY ZIP 
1 1000 Jones Wichita 67226 
2 1001 Smith Fort Dodge 60606 
3 1002 Brown Kansas City 50302 
 

Table 5. Employee Table 
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CUSTOMERID CNO CNAME STREET CCITY CZIP 
1 1111 Charles 123 Main st Wichita 67226 
2 2222 Bertram 237 Ash 

Avenue 
Wichita 67226 

3 3333 Barbara 111 Inwood 
St 

Fort Dodge 60606 

4 4444 Jonathan 111 Elm 
Street 

Fort Dodge 60606 

Table 6. Customer Table 

 

ORDERRID ONO TAKENBY CNO RECEIVEDDATE SHIPPEDDATE
1 1020 1000 1111 10-DEC-94 12-DEC-94 
2 1021 1000 1111 12-JAN-95 15-JAN-95 
3 1022 1001 2222 13-FEB-95 20-FEB-95 
4 1023 1000 3333 20-JUN-96 20-JUN-96 
 

Table 7. Orderr Table 

 

ITEMID PARTNUMBER QUANTITY PARENTID 
1 10506 1 1 
2 10507 1 1 
3 10508 2 1 
4 10509 3 1 
5 10601 4 2 
6 10601 1 3 
7 10701 1 3 
8 10800 1 4 
9 10900 1 4 
 

Table 8. Item Table 

The following queries are run against the XML file and the results are back in 

XML. The storage of data in the database is transparent to the user. 
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SAMPLE QUERIES 

enter an xpath expression, You will get back an SQL query 

/modb/orders/orderr[ono='1021']/takenBy 

the equivalent SQL query is 

select orderrid,takenBy  

from orderr  

where orderr.ono='1021' 

 

 You  can login to database and run this query to get results in relational format  

 The XML output is: 

<?xml version = '1.0'?> 

<ROWSET> 

   <ROW num="1"> 

      <ORDERRID>2</ORDERRID> 

      <TAKENBY>1000</TAKENBY> 

   </ROW> 

</ROWSET> 

 

Explanation of the Query: The query here is to get the employee number who has 

taken an order with order number 1021. We get this information looking at the 

TAKENBY tag in the ORDERR tag of the XML file. The output XML generated 

indicates that the order corresponding to order number 1021 has ORDERID 2 i.e. the 

second occurrence of ORDERR in the XML document. We have an extra R in the 

ORDERR tag because of the conflict with keyword ‘order’ in the relational database. We 

can see that that particular order has been taken by employee 1000.  
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Query 2 

enter an xpath expression, You will get back an SQL query 

/modb/customers/customer/cname 

the equivalent SQL query is 

select customerid,cname  

from customer 

You can login to database and run this query to get results in relational format  

 

 The XML output is: 

<?xml version = '1.0'?> 

<ROWSET> 

   <ROW num="1"> 

      <CUSTOMERID>1</CUSTOMERID> 

      <CNAME>Charles</CNAME> 

   </ROW> 

   <ROW num="2"> 

      <CUSTOMERID>2</CUSTOMERID> 

      <CNAME>Bertram</CNAME> 

   </ROW> 

   <ROW num="3"> 

      <CUSTOMERID>3</CUSTOMERID> 

      <CNAME>Barbara</CNAME> 

   </ROW> 

   <ROW num="4"> 

      <CUSTOMERID>4</CUSTOMERID> 

      <CNAME>Jonathan</CNAME> 

   </ROW> 

</ROWSET> 
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Explanation of the query:  The query here is to get the names of all customers. 

The output XML generated contains the tag CNAME along with the CUSTOMERID. 

The CUSTOMERID tag gives the position of the customer tag in the XML document. 

The customer whose name is “Jonathan”, is the 4th customer. Here we have 4 

customers in total. 

Query 3 

Enter a query 

/modb/orders/orderr[items|item|partNumber='10601']/cno 

the equivalent SQL query is 

 

select orderrid,cno 

from orderr,item  

where item.partNumber='10601' and  

item.parentid = order.orderrid; 

 You can login to database and run this query to get results in relational format  

 The XML output is: 

<?xml version = '1.0'?> 

<ROWSET> 

   <ROW num="1"> 

      <ORDERRID>2</ORDERRID> 

      <CNO>1111</CNO> 

   </ROW> 

   <ROW num="2"> 

      <ORDERRID>3</ORDERRID> 

      <CNO>2222</CNO> 

   </ROW> 

</ROWSET> 
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Explanation of the query:  The query here is to get the customer number who has 

placed an order for a part number 10601. The PARTNUMBER is a tag under ITEM 

of the ITEMS under ORDERR. The output XML document contains two fields 

namely the ORDERID and the CNO. All the orders In which the part number 10601 

is ordered are given along with the customer numbers who have placed those orders.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 46
 
 

 
6. CONCLUSION AND FUTURE WORK 

 

The system developed addresses the issue of mapping XML data into relational 

database by creating the schema corresponding to the DTD of a given XML file. 

ORACLE provides such software but they have not yet delivered one for query mappers. 

The system developed acts as an automatic converter of XPATH queries to SQL queries 

and generates the results in relational data format as well as XML format. Using some 

technologies which are developed earlier, the system presents the novel approach to 

query mapping. Companies can use such systems to ensure data transfer among them. 

Users who are good at XML can pose XPATH queries and get back the results in XML, 

where in the data storage in relational format remains transparent to them. Many 

organizations which require data transfer from XML to database or vice versa will be 

benefited by more work in this field. 

 

Future work in this field will be to develop a similar kind of system which solves 

a broad range of problems. The limitations imposed in the thesis as per the DTD 

operators and XPATH operators can be removed and a full fledged system can be 

developed. The use of XML Schema to represent the structure of the XML document and 

the XQUERY language which is more close to posing queries in the SQL format will 

address more problems as with the use of XQUERY one can also issue join queries.  
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