
Georgia State University
ScholarWorks @ Georgia State University

Computer Science Theses Department of Computer Science

6-12-2006

An Automated XPATH to SQL Transformation
Methodology for XML Data
Sandeep Jandhyala

Follow this and additional works at: https://scholarworks.gsu.edu/cs_theses

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Department of Computer Science at ScholarWorks @ Georgia State University. It has been
accepted for inclusion in Computer Science Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information,
please contact scholarworks@gsu.edu.

Recommended Citation
Jandhyala, Sandeep, "An Automated XPATH to SQL Transformation Methodology for XML Data." Thesis, Georgia State University,
2006.
https://scholarworks.gsu.edu/cs_theses/21

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarWorks @ Georgia State University

https://core.ac.uk/display/71421807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.gsu.edu?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/computer_science?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.gsu.edu/cs_theses?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.gsu.edu%2Fcs_theses%2F21&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@gsu.edu

AN AUTOMATED XPATH TO SQL TRANSFORMATION METHODOLOGY

FOR XML DATA

by

SANDEEP JANDHYALA

Under the Direction of Rajshekhar Sunderraman

ABSTRACT

In this thesis we present an automated system that allows users to execute XPATH

queries against an XML data source. The system exploits the shared-inlining mapping

from XML to Relational data. At the core of the system is an XPATH to SQL

transformation algorithm that produces corresponding SQL queries for a subset of

XPATH. This approach allows one to utilize standard relational databases to store XML

data. Given a DTD, the system creates appropriate relational tables based on the shared-

inlining method. The system is capable of transforming an XML data source that

conforms to the DTD into relational data. The main component of the system is the

XPATH interpreter that parses an XPATH expression for the XML data source and

transforms it into an equivalent SQL query. The SQL query is then executed against the

relational database and results are packaged into XML and returned as the answer to the

XPATH query. The use of the relational database to store and query the XML data is

transparent to the user as they interact only with the XPATH interpreter. This

methodology provides a novel technique to provide an XML database system

implementation.

Index Words: XML SQL transformation, XPATH to SQL queries, XSU, Data mapping.

AN AUTOMATED XPATH TO SQL TRANSFORMATION METHODOLOGY

FOR XML DATA

by

SANDEEP JANDHYALA

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science

In the College of Arts and Sciences

Georgia State University

2006

Copyright
Sandeep Jandhyala

2006

AN AUTOMATED XPATH TO SQL TRANSFORMATION METHODOLOGY

FOR XML DATA

by

SANDEEP JANDHYALA

 Major Professor : Dr.Raj Sunderraman
 Committee: Alex Zelikovsky

 Sushil K.Prasad

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
May 2006

 iv

Dedicated to everyone who was part of this
For all the support

 v

Acknowledgements

I would like to thank my advisor, Dr. Raj Sunderraman, for the guidance and

support provided by him during this study. He was open to new ideas and flexible with

the ways of implementing the thesis, keeping the goals in mind. I would also like to thank

Mr. Victor Fu, because of whom I was able to work on similar work in job field. Dr.

Sushil K. Prasad & Dr. Alex Zelikovsky were kind enough to review the manuscript and

provide me with fine pointers to meet the standards.

 vi

Table of Contents

Acknowledgements... v

List of Tables ..viii

List of Figures... ix

List of Abbreviations ... x

1 INTRODUCTION.. 1

2 BACKGROUND INFORMATION ... 3

 2.1 Extensible Markup Language (XML) .. 3

 2.2 Relational Database Management System (RDBMS).. 3

 2.3 JAVA and DATA structures ... 4

 2.4 JAVA Database Connectivity ... 4

 2.5 XML Parsing in JAVA... 5

 2.6 Document Type Definition (DTD) .. 5

 2.7 XPATH... 6

 2.8 XML SQL Utility (XSU).. 7

 2.9 JAVA Support for XSU.. 11

 2.10 Inlining Technique ... 13

 2.10.1 Mapping a DTD to relational schema... 14

 2.10.2 Algorithm .. 14

3 SYSTEM ARCHITECTURE .. 18

 3.1 Component and Flow ... 18

 3.2 Limitation on the DTD and XPath impossed in the thesis.. 19

 3.3 Application flow in brief .. 20

4 SOFTWARE DESIGN.. 21

 4.1 Loading DTD into application... 21

 4.2 Creating Relational Schema for XML.. 21

 vii

 4.3 Loading Data into Tables.. 22

 4.4 XPath to SQL conversion ... 25

 4.5 XSU's XML generation .. 26

5 IMPLEMENTATION AND TESTING .. 27

6 CONCLUSION AND FUTURE WORK .. 46

7 BIBLIOGRAPHY .. 47

 viii

List of Tables

Table 1. Operators in XPATH .. 16

Table 2. Books... 41

Table 3. Book .. 41

Table 4. Employee... 41

Table 5. Header .. 50

Table 6. Customer... 50

Table 7. Orderr ... 51

Table 8. Item ... 51

 ix

List of Figures

Figure 1. XSU tool in the database server.. 8

Figure 2. XSU in the Application tier ... 9

Figure 3. XSU in the Web Server end ... 9

Figure 4. Application flow among system components... ..19

 x

List of Abbreviations

Abbreviation Stands for

XML Extensible Markup Language

HTML Hyper Text Markup Language

SGML Standard Generalized Markup language

RDBMS Relational Database Management System

SQL Structured Query Language

PLSQL Procedural Structured Query Language

JDBC JAVA database Connectivity

DOM Document Object Model

DTD Document Type Definition

XSU XML SQL Utility

API Application Program Interface

XSLT Extensible Style sheet Language

Transformations

JVM Java Virtual Machine

 1

1. INTRODUCTION

 For any organization to run successfully, the data of the firm needs to stored and

maintained effectively. There are always issues of performance as per time efficiency,

cost incurred, safety of the data, and convenience as per maintaining distributed

databases. Mismanagement and inconsistency of data leads to the loss of huge amounts of

money. Hence, lots of efforts and money are being invested in this area; even so more

are the revenues being generated. Databases are the main source for storing large

volumes of data. XML provides a platform independent way of storing data. Hence the

two of them form the main hosts of data storage and retrieval.

 In many organizations there is a requirement to map the data that is in one form to

another form for reasons depending on the specifications of the projects. For example, the

users may prefer to store all the data which is in XML files in the relational database or

the relational data in the XML format. There may also a need to perform the operations

which can be done on XML in relational database and vice versa such as run queries

against the relational database and generate results in XML. This XML document may

need to conform to a DTD given in the specifications. Two organizations using different

format of data storage, may need to exchange data. XML being platform independent is

one main reason why people prefer data transfer in the XML file format.

 2

 The thesis is to meant to serve these business needs, and at the same time to

explore the feasibility and complexity of mapping data in relational format to XML and

vice versa. The shared inlining method is used to map the DTD of an XML file to the

corresponding relational schema. The system then loads the data from the XML file

confirming to the given DTD into the database. At the stage the user can run all his SQL

queries and generate results in XML. At the core of the thesis is an automated system for

converting XPATH queries into SQL queries. The storage of data in the relational format

and the data retrieved in relational format by posing SQL queries to the relational

database is kept transparent to the user. The results are retrieved back in the XML format.

This methodology provides a novel technique to provide an XML database system

implementation.

 3

2. BACKGROUND INFORMATION

 A thesis is an intellectual proposition. The following chapter contains information on

the technologies and other facts that have been used to successfully complete the research

and achieve my findings. This can be used as a guide and reference for the

implementation methodology.

2.1 Extensible Markup Language (XML)

 Both HTML and XML are subsets of SGML. While HTML tags deal with the display

styles and format of a data item, XML was designed to describe the content of the data.

XML is used to store information and data is stored in the plain text format. Hence it has

become a means for data communication among the systems in the web. It provides a

software- and hardware-independent way of sharing data. The clients and applications can

access the data stored in XML like they are accessing data from databases. XML has now

become the leading standard for data communication in the World Wide Web and

between databases. Few Database vendors have started releasing products which provide

support for data exchange between their database and XML.

2.2 Relational Database Management System (RDBMS)

 The success factor for any company is the way they store and retrieve data. This data

is stored in tables in the databases, which represent a relation among certain entities

called columns. In addition to the content of the data, the constraint the data has to satisfy

is very crucial to the database. Three such important constraints are primary key, foreign

 4

key and not null. ORACLE is leading database vendor and it supports SQL to create,

query the database and perform other transactions. It also provides support for PL/SQL so

as to run procedures on the data.

2.3 JAVA and DATA Structures

 JAVA is an Object Oriented Programming Language. JAVA programs are converted

into byte code, which is run by the JVM. Because of this reason JAVA supports

portability on several platforms and JVM addresses security issues. It is the predominant

programming language of the web. Vector is a data structure which is included the Utility

package of JAVA. It implements a dynamic array. Hash table is yet another data structure

which is similar in nature to a dictionary. It is integrated into the Collections framework

in JAVA.

 Hash table stores key/value pairs. One can specify the Key object in order to get back

its corresponding value or detect the presence of a value in the hash table.

2.4 JAVA Database Connectivity (JDBC)

 ORACLE supports JDBC API for applications using JAVA to connect to the database.

With the use of JDBC, applications can connect to many databases simultaneously such

as SYBASE, DB2 by loading their appropriate drivers. The steps involved in connecting

to a database from an application involve

• Loading the database driver

• Creating a connection object, this is like establishing a connection with the

database by giving it the username and password of the database.

 5

• Creating a statement object, this is needed to specify a query to be run on the

database.

• Executing the statement and process the results as per the application.

2.5 XML parsing in JAVA

 JAVA is an object oriented programming language and is platform independent. Since

XML documents are used by many applications, support for extracting data from those

documents is necessary. ORACLE provides an XML parser package in JAVA that

provides implementations for the extracting data from XML documents. There are two

such parsers namely SAX and DOM. SAX parser doesn’t store the entire XML document

in memory as it uses an event call back mechanism. Hence it is suitable for applications

which require just one pass of the XML document to extract the data. DOM parser

creates a node tree of the XML document and loads it into memory. Hence it is mostly

used for those applications which require multiple passes of the XML document. It is

more efficient than SAX. The DOM tree consists of nodes which correspond to the

elements, attributes of the XML document. It has several functions which such as get

siblings, get parent, get children, get node value which provide a lot of useful information

about the XML document to the applications.

2.6 Document Type Definition (DTD)

 The structure of an XML document is defined in a DTD. They are similar to schema

and are easier to specify. The DTD specifies the data types of the elements, order of

elements, whether the elements have attributes, whether specifying an attribute for an

 6

element is mandatory or optional, the child elements of an element, the number of

occurrences of elements and a lot more. The DTD validates the XML document and

raises an error if any elements or attributes are violating the given format. This way the

applications which involve data transfer using XML can do the error handling.

2.7 XPATH

 XPATH is a language used to query a XML document for data. The query is an

expression. Given an XPATH expression, XPATH navigates through the XML

document to fetch the results matching the predicates and conditions mentioned in the

expression. The following are the components of XPATH expressions.

Expression Description

Node name Selects all child nodes of the node

/ Select from the root node

// Selects nodes in the document from the current node

that match the selection no matter where they are

. Selects the current node

.. Selects the parent of the current node

@ Selects the attributes

Table 1. Operators in XPATH

 7

 Predicates are embedded in square brackets. In addition to the above operators * is

also used to match any element node. If @* is mentioned, XPATH matches it with any

attribute nodes of the XML document. XPATH uses a library of standard functions such

as numeric functions, string functions, and functions on nodes, sequences, contexts,

which aid the users to specify simpler queries. XPATH cannot address join queries, but it

is very crucial. XPATH is used in many tools like XSLT, XQUERY, X pointer, X link

and DOM parsing.

2.8 XML SQL Utility (XSU)

 Mapping data between XML and relational databases has become necessary for many

organizations, because these days XML is used as a data store in many applications.

Oracle provides support for this through XSU. Some of the points here are referred from

[8].

Through XSU one can

• Transform data retrieved from object-relational database tables or views into

XML when a query is given.

• Extract data from an XML document, and using a canonical mapping, insert the

data into appropriate columns or attributes of a table or a view given a schema for

the tables or views.

• Extract data from an XML document and apply this data to updating or deleting

values of the appropriate columns or attributes.

 8

• Generated DTD’s dynamically

• Generate XML Schema given an SQL query.

• SQL identifier to XML identifier escaping. Sometimes column names are not

valid XML tag names. To avoid this you can either alias all the column names or

turn on tag escaping

• Generate XML documents in their string or DOM representations.

• Insert XML into database tables or views.

The following figures are taken from [8].

XSU can be installed at the database end in which case the overall picture looks like

Figure 1 XSU tool in the database server

 9

 If the architecture needs an application server in the middle tier, and there is a

need for XML support there, then XSU can be installed in the middle tier, the overall

picture looks like

Figure 2. XSU in the Application tier

XSU can also be installed in the web server, for this the web server needs to support

servlets.

Figure 3. XSU in the Web Server end

 10

 XSU can also be installed in the client tier.

XSU can be invoked from a

• Java application or through the command prompt using java commands.

• Write PL/SQL applications that access XSU through its PL/SQL API

• Access XSU functionality directly through SQL

The following is an example of XML document generated for an SQL query on the

employee table whose schema is

CREATE TABLE EMP

(

 EMPNO NUMBER,

 ENAME VARCHAR2 (20),

 JOB VARCHAR2 (20),

 MGR NUMBER,

 HIREDATE DATE,

 SAL NUMBER,

 DEPTNO NUMBER

);

Assume we have certain records in the emp table. Now, given the query,

“select * from emp” ; XSU can generate the following XML document

 <?xml version='1.0'?>

<ROWSET>

 <ROW num="1">

 <EMPNO>7369</EMPNO>

 <ENAME>Smith</ENAME>

 <JOB>CLERK</JOB>

 11

 <MGR>7902</MGR>

 <HIREDATE>12/17/1980 0:0:0</HIREDATE>

 <SAL>800</SAL>

 <DEPTNO>20</DEPTNO>

 </ROW>

 <! -- additional rows ... -->

</ROWSET>

The <ROWSET> element contains one or more <ROW> elements .Each tag within the

<ROW> corresponds to a column in the table and the attribute num=”1” signifies that this

is the first record in the emp table. XSU also provides facilities where in a user can set

the tag names to his desired names in the output XML document.

2.9 JAVA support for XSU

The following two classes make up the XSU Java API:

• API for XML generation: oracle.xml.sql.query.OracleXMLQuery

• API for XML save, insert, update, and delete:

oracle.xml.sql.dml.OracleXMLSave

 One can use either the JAVA command line or a JAVA program to obtain the desired

results. Shown below is the manner in which we get the results in XML using command

line invocation through JAVA. For example, to generate an XML document by querying

the EMP table, the getXML command is used as follows:

java OracleXML getXML -user "scott/tiger" "select * from EMP"

 12

Here the user name and the query are passed as arguments to the getXML command.

To insert an XML document into the EMP table, the putXML command is used with the

following syntax:

java OracleXML

putXML -user "scott/tiger" -fileName "/tmp/temp.xml" "emp"

We pass the username, the name of the XML file to be inserted and the table into which

the file is to be inserted.

There are several other options associated with these commands to display XML in the

desired format such as giving the output tag names as well as set the column names.

We can also use the XSU in an application as shown

import oracle.jdbc.driver.*;
import oracle.xml.sql.query.OracleXMLQuery;
import java.lang.*;
import java.sql.*;

// class to test the String generation!
class testXMLSQL {

 public static void main(String[] argv)
 {

 try{
 // create the connection
 Connection conn = getConnection("scott","tiger");

 // Create the query class.
 OracleXMLQuery qry
 = new OracleXMLQuery(conn, "select * from emp");

 // Get the XML string

 13

 String str = qry.getXMLString();

 // Print the XML output
 System.out.println(" The XML output is:\n"+str);
 // Always close the query to get rid of any resources.
 qry.close();
 }catch(SQLException e){
 System.out.println(e.toString());
 }
 }

 // Get the connection given the user name and password..!
 private static Connection
 getConnection(String username, String password)
 throws SQLException
 {
 // register the JDBC driver..
 DriverManager.registerDriver
 (new oracle.jdbc.driver.OracleDriver());

 // Create the connection using the OCI8 driver
 Connection conn =
 DriverManager.getConnection
 ("jdbc:oracle:oci8:@",username,password);

 return conn;
 }
}
Using a JAVA program one can obtain the XML output as a DOM Object output or XML

String output.

For obtaining the output as a DOM object we use the following command

org.w3c.DOM.Document domDoc = qry.getXMLDOM();

For obtaining the output as an XML String we use the following command.

 String xmlString = qry.getXMLString();

2.10 Inlining Technique

 This technique is used to create a relational schema given an XML DTD. Some of

the content below is taken from [4].

 14

2.10.1 Mapping a DTD to relational schema

 The goal is to store any document conforming to the DTD in the relational schema and

any XML semi structured query over a document conforming to the DTD can be

evaluated over the relational database resulting in same data. While mapping this way,

one needs to also consider the position of an element relative to its siblings and parent-

child relationship between elements in the XML document. To accomplish this goal a

complex DTD is simplified using certain transformations.

Flattening transformations: These convert the nested definition into a flat representation

Eg: (e1,e2)* ------ e1*,e2*

 (e1,e2)? ----- e1?, e2?

 Simplification transformations: These convert many unary operators into a single unary

operator.

Eg: e1** ----------- e1*

 e1*? ----------- e1*

 e1?* ----------- e1*

 e1?? ------------- e1?

Although some ordering may be lost here, we can when loading the data preserve that

ordering by adding certain fields.

2.10.2 The Algorithm

 Based on a node graph created for a DTD, the nodes with an in-degree of one are

inlined. The nodes which have in-degree of zero are made into separate relations as they

cannot be reached from any other node. Relational data model does not support set

valued attributes. If an XML element has * occurrences of a child, we cannot create a

 15

column for the child, with parent element name as a table, as it results in many values for

one column. The best way to handle such situations is to create a table for the parent

element with its attributes, child elements, which have only one occurrence, attributes of

child elements if any as columns of the table. For each child which has a * occurrence in

the DTD, create a separate table with its attributes, its child elements and their attribute

names as column names. Then we are to link the parent table with the table created for a

* occurrence child by adding certain fields. Each record in a table will be uniquely

identified by a field called ‘id’ which tells about the index of occurrence of the element in

the XML document. Tables which have dependencies, i.e tables which correspond to

XML elements which have * occurrences, have an additional ‘parent id’ field which

references the id field of its parent table. This way one can preserve the ordering and

solve the problem of set valued attributes. This is illustrated in the following example.

The following is the DTD of a book database XML document.

<!ELEMENT books (book*, library)>

<!ELEMENT book (booktitle, year)>

<!ELEMENT booktitle (bookname,header*,color)>

<!ELEMENT year (monthpub, datepub)>

<!ELEMENT monthpub (#PCDATA)>

<!ELEMENT datepub (#PCDATA)>

<!ELEMENT bookname (#PCDATA)>

<!ELEMENT header (hdrsize)>

<!ELEMENT color (#PCDATA)>

<!ELEMENT hdrsize (#PCDATA)>

<!ELEMENT library (#PCDATA)>

<!ATTLIST book author CDATA #REQUIRED>

 16

The root of this DTD is element books. The schema created in the database using the

above technique is as follows.

Create table books(

booksid int,

library varchar (25),

primary key (booksid))

Create table book(

bookid int,

author varchar(25),

bookname varchar(25),

color varchar(25),

monthpub varchar(25),

datepub varchar(25),

parentid int,

primary key (bookid),

foreign key (parentid) references books)

Create table header(

headerid int,

hdrsize varchar(25),

parentid int,

primary key (headerid),

foreign key (parentid) references book)

 The root element ‘books’ is converted to a table and the single occurrence child

library to a column name. The element ‘book ‘is a multiple occurrence child, so a

separate table has been created for it, with its children as column names. The element

book has an attribute ‘author’, hence we have a column name author in the book table.

Since the element ‘booktitle’ has an in-degree of one, it is inlined into the ‘book’ table,

 17

but its children namely ‘bookname’ and ‘color’ are text nodes, so we need to store that

information. Hence there are column names for those elements in the book table. Similar

is the case with the ‘year’ element. The element ‘header’ had it been a single occurrence

type, its children like ‘hdrsize’ would be included in the book table. But, since it is a

multiple occurrence child we are separating it into another table. Here the default data

type is taken as varchar (25) for simplicity. Each table has a column name ‘id’ which

uniquely identifies each record. The multiple occurrence child tables have a field ‘parent

id’ which references its parent table.

 18

3. SYSTEM ARCITECTURE

This chapter gives an overview of the system developed and its chief components.

It also speaks about the flow of the application as per the components and the limitations

used in the thesis.

3.1 Components and flow

 The System comprises of the components shown in the figure. The DTD checker

accepts a DTD document, validates the file against certain scope check conditions and

accepts the DTD if the check passes. It then creates the relational schema corresponding

to the DTD and the tables are created. Then the Data Loader component accepts the valid

DTD and an input XML file. It validates the XML file against the DTD and if the XML

file is valid, it loads the data in the XML format into the database in relational format. At

this stage we have the entire XML document structure and data preserved in the database.

 The Data Loader then invokes the Xpath to SQL converter. This prompts the user to

enter an Xpath expression. The input expression is validated against certain scope check

conditions, and if it passes those, the Xpath expression is converted into an equivalent

SQL query and presented to the user. At this stage one can access the database and run

the query against it, to get back the results in the relational format. Along with the data,

the results also display the ‘id’ and ‘parent id’ fields. Through these fields one can

analyze the position of the XML element in the document and relative to its parent.

The Xpath to SQL converter then invokes the XSU XML generator. This takes as input

the generated SQL query and runs it against the database to get back the results in the

 19

DOM format or the XML string format. These results in XML are displayed back to the

user. This way mapping data from XML to database and vice versa are done.

Figure 4. Application flow among system components

3.2 Limitations on the DTD and XPATH imposed in the thesis

Because the aim of the thesis is to show the feasibility of a two way mapping

between XML and relational database using the inling technique, the feasibility of

 20

implementing an XPATH to SQL converter, and also due to time limitations, the

following constraints are imposed on the DTD’s accepted and also the XPATH queries.

A DTD in which the following operators or keywords occur is not accepted to be valid

• ENTITY

• ANY

• | (or) operator

• ID, IDREF

Besides these the DTD needs to be single rooted and elements can’t have a list of

attributes.

In Xpath, the // operator and functions are not considered. The expressions begin with a /

operator.

3.3 Application flow in brief

The application implements the inlining technique to create a relational schema

for the XML document based on its DTD. It makes use of the ORACLE supported JAVA

API for XML parsing (DOM methodology) by making a depth first traversal through the

entire document to load the XML data into the relational database. The application then

prompts the user for an Xpath expression and converts it to an equivalent SQL query.

One can use this query to obtain results in relational format by connecting to the database

from the application or logging into the database. This SQL query is then utilized by

XSU to generate the results in XML. At every stage error checking is done and the

accepted DTD and Xpath are valuated against the constraints.

 21

4. SOFTWARE DESIGN

This chapter gives a description of the design of the system. The algorithms used,

the inputs to the system, the outputs from each stage, the processing and the flow of the

application are explained here.

 4.1 Loading DTD into application

The application needs some data store of the XML structure for further

processing. For this purpose hash tables and vectors in JAVA are used. An input DTD

file is accepted as a command line argument. Reading line by line from the file, the

application stores elements and attributes details in their respective hash tables. Each has

table has a format of Key value pair. This way the parent elements form the keys and

child elements form the values. When reading through the file, if ENTITY and ANY

keywords are found, the DTD is rejected; otherwise the application proceeds to the next

step.

4.2 Creating Relational Schema for XML

For the purpose of identifying the table names, the column names within a table

and checking the presence of recursion in the DTD, a module is designed. The root of the

document is first passed to the module. The child elements of the root are fetched from

the hash table filled out in the earlier section. For each of those child elements the same

process is repeated, by storing the column names in vectors until there are no more

elements to process. If an element has an attribute, it is recognized as a column. If it is a

 22

text node, it is recognized as a column name. If the application encounters multiple

occurrence elements they are treated as special elements and stored in a separate vector.

It is in this module that the presence of | (or) operator, ID, IDREF fields are checked.

If any of those are found the DTD is not accepted. When the control returns to the called

function from the module for the root element pass, the application has details of all

column names for the root element and all tables that are to be created for the multiple

occurrence elements. If there are no columns detected for the root element, then no table

is created for it. Here we are creating columns having data type as varchar for the sake of

simplicity as it supports both numbers and characters. The application then invokes the

module for each of the special elements found, to detect its column names and possibly

the presence of multiple occurrence elements with in it. If such elements are found the

same process is repeated yet again even for those elements. After all these, the

application has the list of all table names and their corresponding column names to be

created. As the application loops through the child elements, it also stores the hierarchy in

vectors so that, this can be used in future to detect the parent elements. Thus the presence

of recursion within the DTD is also checked. Once the control returns of this module for

all cases, the application checks if the DTD is single rooted and if so, the application

connects to the database using JDBC and creates the tables. If not, the DTD is rejected.

4.3 Loading Data into Tables

Oracle supports JAVA API for XML parsing. The reason for choosing DOM API

here is that, there will be multiple passes through the XML document in order to load the

data, as the algorithm used is a depth first traversal. Since DOM creates a document node

 23

tree in the memory, it best suits the needs. The application accepts an XML file as the

input.

Given the DTD, the DOM parser validates the XML file against the DTD and

reports an error if it violates the DTD. The function designed for this purpose executes

recursively

starting with passing the root of the XML document to it, and runs over the roots first

child and continues that way with that child becoming the root for the next iteration in

order to determine its children. Here is a small snippet of the code which is used to

traverse the entire XML document.

Void load (root)

{

for(child=(XMLNode)root.getFirstChild();child!=null;

 child=(XMLNode)child.getNextSibling())

// at the end of this loop, we invoke the function with load

(child)

}

The following code specifies handlers for different types of child nodes; it can be a text

node or an element node.

if (child.getNodeType()==child.TEXT_NODE)

 if(child.getNodeType()==child.ELEMENT_NODE)

If there was a table created for the root, during the schema creating process, then we store

that table name in a global variable for this function. In every iteration, we check if the

root which is a parameter to this function, has any attributes, if so, then we have a column

value to be inserted, so we create an entry for it taking a hash table where in we have the

 24

key as the table name and value as the attribute value. If the child is identified to be a text

node, then the value of the node is a column value, the application modifies the hash table

for insert statements with that table name, by adding this new value. How do we identify

which column name belongs to which table? It is done as follows.

If the child is an element node, then the application has to detect the presence of a

table name while traversing the document so that it collects values of the column names

for respective table names. For this purpose, as we have other table names only for

multiple occurrence elements, while traversing the document we need to search for

multiple occurrence elements cases, by looking at an elements next sibling and previous

sibling. If the element name is same as either of these, then the application changes the

value of table name variable, and proceeds through the same logic as described above. In

some cases even though the element is declared to a multiple occurrence one in the DTD,

it occurs only once in the XML document. In such cases, we need to check the hash table

created for the table names during the schema creating process.

In this process the application needs to identify two fields namely ‘id’ and ‘parent

id’. Once we finish a row of values for a particular table name, if the application

identifies one more row, then we increment the id field for that table name and store it in

a hash table. We fill in the parent id field for each table name, once the application

detects a new table name. Using the hierarchy vectors for table names and another hash

table which stores the occurrence of the table names, we can determine these; this will be

illustrated in the code.

 25

The output of this function is stored in a hash table which contains all the insert

statements in the SQL format. When the control returns to the calling function, we loop

through this hash table, referring to the order in which table names ought to occur as per

the DTD, fetching the insert statements for each table one by one. The application then

connects to the database and performs the insert operations. So at the end of this we have

created the schema and loaded all the data in the tables.

4.4 XPATH to SQL conversion

The application prompts the user to enter an Xpath expression. Once the user

enters the expression, the application has to compute three clauses namely the select

clause, the from clause and the where clause. The application identifies the select clause

by looking at the last fragment of expression in the Xpath expression. However, the

application adds the fields of id, and parent id so that we can determine exactly where the

element occurs in the XML document. The application splits the Xpath expression based

on the operator ‘/’. A check is done of the hierarchy of elements mentioned in the Xpath

expression. This is checked against the hierarchy vectors and if does exist, then it is a

valid expression. Each of the fragments which are split based on ‘/’ operator may or may

not contain a predicate. If it does contain there will be presence of [] operator. So if there

are such operators, then we get the where clause from those predicates. Inside the []

operator there can another Xpath expression where there may @ operator or a specifying

some expression of the form LHS =RHS. Then we are to determine which table name is

that LHS a column of. For that we make use of hierarchy vectors, table names hash

tables. The last part of LHS is the desired column name. Once we get the table name we

 26

add the condition table name. column name= RHS to the ‘where’ clause. The ‘from’

clause and where clause are interdependent. If in the where clause there exists a condition

of LHS=RHS, Then that table name will become a part of the from clause of it doesn’t

already exist. This way all the fragments in the Xpath expression are looked into to

determine from and where clause. The application thus converts the Xpath expression

into an equivalent SQL query and presents it to the user. The user can then login to the

database and query the database using this query to get back the results. The application

can also directly connect to the database to achieve the same functionality.

4.5 XSU’s XML generation

Once the application has the SQL query, since the results are also to be displayed

in the XML format, the Oracle supported XSU tool is used for this purpose. This accepts

the SQL query as the input, connects to the database, runs the query, gets the results in

relational format and converts the results to XML and displays the XML format output to

the user. For code details refer to the background section in thesis. Here we can configure

several options that are supported by the XSU to display the output in the desired format

to the user. Thus the application achieves the backward mapping of relational to XML

format.

 27

5. IMPLEMENTATION AND TESTING

This chapter presents the test cases and displays the GUI and the outputs

generated by the program.

Example 1: Given below is a DTD of a books database XML document. We give this as

one of the inputs to the program along with a XML file.

DTD

<!ELEMENT books (book*,library)>

<!ELEMENT book (booktitle,year)>

<!ELEMENT booktitle (bookname,header*,color)>

<!ELEMENT year (monthpub,datepub)>

<!ELEMENT monthpub (#PCDATA)>

<!ELEMENT datepub (#PCDATA)>

<!ELEMENT bookname (#PCDATA)>

<!ELEMENT header (hdrsize)>

<!ELEMENT color (#PCDATA)>

<!ELEMENT hdrsize (#PCDATA)>

<!ELEMENT library (#PCDATA)>

<!ATTLIST book author CDATA #REQUIRED>

The following is the XML file given as another argument to the program at the

command line. This XML file is to confirm with the DTD given and this check is made in

the application.

XML Document

<?xml version="1.0"?>

<!DOCTYPE books SYSTEM "book.dtd">

<books>

<book author="james">

 <booktitle>

 28

 <bookname>Marine Biology</bookname>

 <header>

 <hdrsize>20</hdrsize>

 </header>

 <header>

 <hdrsize>10</hdrsize>

 </header>

 <color>blue</color>

 </booktitle>

 <year>

 <monthpub>may</monthpub>

 <datepub>18th</datepub>

 </year>

</book>

<book author="Foster">

 <booktitle>

 <bookname>Mass Communications</bookname>

 <header>

 <hdrsize>30</hdrsize>

 </header>

 <header>

 <hdrsize>20</hdrsize>

 </header>

 <color>Orange</color>

 </booktitle>

 <year>

 <monthpub>may</monthpub>

 <datepub>25th</datepub>

 </year>

</book>

<book author="Kimberley">

 <booktitle>

 <bookname>Organic Chemistry</bookname>

 29

 <header>

 <hdrsize>30</hdrsize>

 </header>

 <header>

 <hdrsize>15</hdrsize>

 </header>

 <color>Red</color>

 </booktitle>

 <year>

 <monthpub>jun</monthpub>

 <datepub>18th</datepub>

 </year>

</book>

<book author="Jacob">

 <booktitle>

 <bookname>Philosophy</bookname>

 <header>

 <hdrsize>20</hdrsize>

 </header>

 <color>Grey</color>

 </booktitle>

 <year>

 <monthpub>feb</monthpub>

 <datepub>19th</datepub>

 </year>

</book>

<library>Central Library</library>

</books>

Given these two arguments to the program, the following output is generated. The

output schema generated are displayed first and then the insert statements are displayed.

 30

The relational schema equivalent to the DTD is

create table books(

booksid int,

library varchar(50),

 primary key (booksid))

create table book (

bookid int,

author varchar(50),

bookname varchar(50),

color varchar(50),

monthpub varchar(50),

datepub varchar(50),

parentid int,

primary key (bookid),

foreign key (parentid) references books)

create table header (

headerid int,

hdrsize varchar(50),

parentid int,

primary key (headerid),

foreign key (parentid) references book)

The program now goes into the data loading stage with the following messages

being displayed.

 finished parsing the XML document, loading data into relational database......

insert into books values(1,'Central Library')

insert into book values(1,'james','Marine

Biology','blue','may','18th',1)

insert into book values(2,'Foster','Mass

Communications','Orange','may','25th',1)

 31

insert into book values(3,'Kimberley','Organic

Chemistry','Red','jun','18th',1)

insert into book

values(4,'Jacob','Philosophy','Grey','feb','19th',1)

insert into header values(1,'20',1)

insert into header values(2,'10',1)

insert into header values(3,'30',2)

insert into header values(4,'20',2)

insert into header values(5,'30',3)

insert into header values(6,'15',3)

insert into header values(7,'20',4)

The data loading stage is now completed. At this stage there are tables generated in the

database.

BOOKSID LIBRARY
1 Central Library

Table 2. Books

Table 3. Book

BOOKID AUTHOR BOOKNAME COLOR MONTHPUB DATEPUB PARENTID
1 James Marine Biology Blue May 18th 1
2 Foster Mass

Communications
Orange May 25th 1

3 Kimberly Organic
Chemistry

Red Jun 18th 1

4 Grey Philosophy Grey Feb 19th 1

HEADERID HDRSIZE PARENTID
1 20 1
2 10 1
3 30 2
4 20 2
5 30 3
6 15 3
7 20 4

Table 4. Header table

 32

The program is tested against some sample queries shown below.

SAMPLE QUERIES

1. enter an xpath expression, You will get back an SQL query

/books/book/booktitle/bookname

the equivalent SQL query is.

select bookid,bookname,book.parentid

from book

 You can login to database and run this query to get results in relational format. The

following is the output generated because of the XSU.

 The XML output is:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <BOOKID>1</BOOKID>

 <BOOKNAME>Marine Biology</BOOKNAME>

 <PARENTID>1</PARENTID>

 </ROW>

 <ROW num="2">

 <BOOKID>2</BOOKID>

 <BOOKNAME>Mass Communications</BOOKNAME>

 <PARENTID>1</PARENTID>

 </ROW>

 <ROW num="3">

 <BOOKID>3</BOOKID>

 <BOOKNAME>Organic Chemistry</BOOKNAME>

 <PARENTID>1</PARENTID>

 </ROW>

 <ROW num="4">

 <BOOKID>4</BOOKID>

 33

 <BOOKNAME>Philosophy</BOOKNAME>

 <PARENTID>1</PARENTID>

 </ROW>

</ROWSET>

Explanation of the query: The query is to generate all the names of the books.

The field bookname is under booktitle which is under book which is a table. If we look at

the output XML and compare it with the XML document we notice the tag name

<BOOKNAME> and its corresponding value. The field BookID indicates which

occurrence of bookname is it starting from the first bookname which follows the given

hierarchy. For example, the Bookname “Philosophy “ has Bookid 4, which means to say,

it is under the fourth book under consideration and the PARENTID 1 corresponds to this

book having a parent whose ID is 1.

2. Queries with attribute operator

enter an xpath expression, You will get back an SQL query

/books/book[@author='Foster']

the equivalent SQL query is

select author,bookid

from book

where book.author='Foster'

 You can login to database and run this query to get results in relational format

The XML output is:

<?xml version = '1.0'?>

<ROWSET>

 34

 <ROW num="1">

 <AUTHOR>Foster</AUTHOR>

 <BOOKID>2</BOOKID>

 </ROW>

</ROWSET>

Explanation of the query: The query is to identify the book tag with author name

“Foster”. If we look at the output XML and compare it with the XML document we

notice the tag name <AUTHOR> and BOOKID with their corresponding values. The

field BookID indicates which book under the tag BOOKS has an author with name given

in the AUTHOR tag. Here it is the second book under BOOKS tag as per the given XML

document.

3. Queries using predicate [] operator with expressions in it

enter an xpath expression, You will get back an SQL query

/books/book[booktitle|header|hdrsize='15']/year/monthpub

the equivalent SQL query is

select bookid,monthpub,book.parentid

from book,header

where header.hdrsize='15' and header.parentid=book.bookid;

 You can login to database and run this query to get results in relational format

 The XML output is:

<?xml version = '1.0'?>

<ROWSET>

 35

 <ROW num="1">

 <BOOKID>3</BOOKID>

 <MONTHPUB>jun</MONTHPUB>

 <PARENTID>1</PARENTID>

 </ROW>

</ROWSET>

Explanation of the query: The query is to find the month of publication of a book

whose header size is 15. If we look at the output XML and compare it with the XML

document we notice the tag name <MONTHPUB>, BOOKID and PARENTID with their

corresponding values. The field BOOKID indicates which book under the tag BOOKS

satisfies the property that the header size of it is 15. Here it is the third book under

BOOKS tag as per the given XML document. PARENTID indicates that this book’s

parent has ID 1 which is the Tag BOOKS.

In the next example we consider employees, customers, orders database represented in an

XML document having the following DTD. We supply the DTD and the XML file as

arguments to the program and an XML file is generated as an output when some XPATH

expression is entered.

Example 2 DTD

<!ELEMENT modb (employees,customers,orders)>

<!ELEMENT employees (employee*)>

<!ELEMENT employee (eno,ename,city,zip)>

<!ELEMENT eno (#PCDATA)>

<!ELEMENT ename (#PCDATA)>

<!ELEMENT city (#PCDATA)>

 36

<!ELEMENT zip (#PCDATA)>

<!ELEMENT customers (customer*)>

<!ELEMENT customer (cno,cname,street,ccity,czip)>

<!ELEMENT cno (#PCDATA)>

<!ELEMENT cname (#PCDATA)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT ccity (#PCDATA)>

<!ELEMENT czip (#PCDATA)>

<!ELEMENT orders (orderr*)>

<!ATTLIST orderr ono CDATA #REQUIRED>

<!ELEMENT orderr (takenBy,cno,receivedDate,shippedDate,items)>

<!ELEMENT takenBy (#PCDATA)>

<!ELEMENT receivedDate (#PCDATA)>

<!ELEMENT shippedDate (#PCDATA)>

<!ELEMENT items (item*)>

<!ELEMENT item (partNumber,quantity)>

<!ELEMENT partNumber (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

Given below is an XML file which confirms with the above DTD. This check is

performed in the application as part of XML parsing in JAVA.

XML FILE

<?xml version="1.0"?>

<!DOCTYPE modb SYSTEM "mailorder.dtd">

<modb>

 <employees>

 <employee>

 <eno>1000</eno>

 <ename>Jones</ename>

 37

 <city>Wichita</city>

 <zip>67226</zip>

 </employee>

 <employee>

 <eno>1001</eno>

 <ename>Smith</ename>

 <city>Fort Dodge</city>

 <zip>60606</zip>

 </employee>

 <employee>

 <eno>1002</eno>

 <ename>Brown</ename>

 <city>Kansas City</city>

 <zip>50302</zip>

 </employee>

 </employees>

 <customers>

 <customer>

 <cno>1111</cno>

 <cname>Charles</cname>

 <street>123 Main St</street>

 <ccity>Wichita</ccity>

 <czip>67226</czip>

 </customer>

 <customer>

 <cno>2222</cno>

 <cname>Bertram</cname>

 <street>237 Ash Avenue</street>

 <ccity>Wichita</ccity>

 <czip>67226</czip>

 </customer>

 <customer>

 <cno>3333</cno>

 38

 <cname>Barbara</cname>

 <street>111 Inwood St</street>

 <ccity>Fort Dodge</ccity>

 <czip>60606</czip>

 </customer>

 <customer>

 <cno>4444</cno>

 <cname>Jonathan</cname>

 <street>111 Elm St</street>

 <ccity>Fort Dodge</ccity>

 <czip>60606</czip>

 </customer>

 </customers>

 <orders>

 <orderr ono="1020">

 <takenBy>1000</takenBy>

 <cno>1111</cno>

 <receivedDate>10-DEC-94</receivedDate>

 <shippedDate>12-DEC-94</shippedDate>

 <items>

 <item>

 <partNumber>10506</partNumber>

 <quantity>1</quantity>

 </item>

 <item>

 <partNumber>10507</partNumber>

 <quantity>1</quantity>

 </item>

 <item>

 <partNumber>10508</partNumber>

 <quantity>2</quantity>

 </item>

 39

 <item>

 <partNumber>10509</partNumber>

 <quantity>3</quantity>

 </item>

 </items>

 </orderr>

 <orderr ono="1021">

 <takenBy>1000</takenBy>

 <cno>1111</cno>

 <receivedDate>12-JAN-95</receivedDate>

 <shippedDate>15-JAN-95</shippedDate>

 <items>

 <item>

 <partNumber>10601</partNumber>

 <quantity>4</quantity>

 </item>

 </items>

 </orderr>

 <orderr ono="1022">

 <takenBy>1001</takenBy>

 <cno>2222</cno>

 <receivedDate>13-FEB-95</receivedDate>

 <shippedDate>20-FEB-95</shippedDate>

 <items>

 <item>

 <partNumber>10601</partNumber>

 <quantity>1</quantity>

 </item>

 <item>

 <partNumber>10701</partNumber>

 <quantity>1</quantity>

 40

 </item>

 </items>

 </orderr>

 <orderr ono="1023">

 <takenBy>1000</takenBy>

 <cno>3333</cno>

 <receivedDate>20-JUN-97</receivedDate>

 <shippedDate>20-FEB-96</shippedDate>

 <items>

 <item>

 <partNumber>10800</partNumber>

 <quantity>1</quantity>

 </item>

 <item>

 <partNumber>10900</partNumber>

 <quantity>1</quantity>

 </item>

 </items>

 </orderr>

 </orders>

</modb>

Once the user supplies the DTD and an XML file which corresponds to the DTD,

the schema for the DTD is created and data of the XML file is inserted into the database.

The following are the results produced by the program.

EMPLOYEEID ENO ENAME CITY ZIP
1 1000 Jones Wichita 67226
2 1001 Smith Fort Dodge 60606
3 1002 Brown Kansas City 50302

Table 5. Employee Table

 41

CUSTOMERID CNO CNAME STREET CCITY CZIP
1 1111 Charles 123 Main st Wichita 67226
2 2222 Bertram 237 Ash

Avenue
Wichita 67226

3 3333 Barbara 111 Inwood
St

Fort Dodge 60606

4 4444 Jonathan 111 Elm
Street

Fort Dodge 60606

Table 6. Customer Table

ORDERRID ONO TAKENBY CNO RECEIVEDDATE SHIPPEDDATE
1 1020 1000 1111 10-DEC-94 12-DEC-94
2 1021 1000 1111 12-JAN-95 15-JAN-95
3 1022 1001 2222 13-FEB-95 20-FEB-95
4 1023 1000 3333 20-JUN-96 20-JUN-96

Table 7. Orderr Table

ITEMID PARTNUMBER QUANTITY PARENTID
1 10506 1 1
2 10507 1 1
3 10508 2 1
4 10509 3 1
5 10601 4 2
6 10601 1 3
7 10701 1 3
8 10800 1 4
9 10900 1 4

Table 8. Item Table

The following queries are run against the XML file and the results are back in

XML. The storage of data in the database is transparent to the user.

 42

SAMPLE QUERIES

enter an xpath expression, You will get back an SQL query

/modb/orders/orderr[ono='1021']/takenBy

the equivalent SQL query is

select orderrid,takenBy

from orderr

where orderr.ono='1021'

 You can login to database and run this query to get results in relational format

 The XML output is:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <ORDERRID>2</ORDERRID>

 <TAKENBY>1000</TAKENBY>

 </ROW>

</ROWSET>

Explanation of the Query: The query here is to get the employee number who has

taken an order with order number 1021. We get this information looking at the

TAKENBY tag in the ORDERR tag of the XML file. The output XML generated

indicates that the order corresponding to order number 1021 has ORDERID 2 i.e. the

second occurrence of ORDERR in the XML document. We have an extra R in the

ORDERR tag because of the conflict with keyword ‘order’ in the relational database. We

can see that that particular order has been taken by employee 1000.

 43

Query 2

enter an xpath expression, You will get back an SQL query

/modb/customers/customer/cname

the equivalent SQL query is

select customerid,cname

from customer

You can login to database and run this query to get results in relational format

 The XML output is:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <CUSTOMERID>1</CUSTOMERID>

 <CNAME>Charles</CNAME>

 </ROW>

 <ROW num="2">

 <CUSTOMERID>2</CUSTOMERID>

 <CNAME>Bertram</CNAME>

 </ROW>

 <ROW num="3">

 <CUSTOMERID>3</CUSTOMERID>

 <CNAME>Barbara</CNAME>

 </ROW>

 <ROW num="4">

 <CUSTOMERID>4</CUSTOMERID>

 <CNAME>Jonathan</CNAME>

 </ROW>

</ROWSET>

 44

Explanation of the query: The query here is to get the names of all customers.

The output XML generated contains the tag CNAME along with the CUSTOMERID.

The CUSTOMERID tag gives the position of the customer tag in the XML document.

The customer whose name is “Jonathan”, is the 4th customer. Here we have 4

customers in total.

Query 3

Enter a query

/modb/orders/orderr[items|item|partNumber='10601']/cno

the equivalent SQL query is

select orderrid,cno

from orderr,item

where item.partNumber='10601' and

item.parentid = order.orderrid;

 You can login to database and run this query to get results in relational format

 The XML output is:

<?xml version = '1.0'?>

<ROWSET>

 <ROW num="1">

 <ORDERRID>2</ORDERRID>

 <CNO>1111</CNO>

 </ROW>

 <ROW num="2">

 <ORDERRID>3</ORDERRID>

 <CNO>2222</CNO>

 </ROW>

</ROWSET>

 45

Explanation of the query: The query here is to get the customer number who has

placed an order for a part number 10601. The PARTNUMBER is a tag under ITEM

of the ITEMS under ORDERR. The output XML document contains two fields

namely the ORDERID and the CNO. All the orders In which the part number 10601

is ordered are given along with the customer numbers who have placed those orders.

 46

6. CONCLUSION AND FUTURE WORK

The system developed addresses the issue of mapping XML data into relational

database by creating the schema corresponding to the DTD of a given XML file.

ORACLE provides such software but they have not yet delivered one for query mappers.

The system developed acts as an automatic converter of XPATH queries to SQL queries

and generates the results in relational data format as well as XML format. Using some

technologies which are developed earlier, the system presents the novel approach to

query mapping. Companies can use such systems to ensure data transfer among them.

Users who are good at XML can pose XPATH queries and get back the results in XML,

where in the data storage in relational format remains transparent to them. Many

organizations which require data transfer from XML to database or vice versa will be

benefited by more work in this field.

Future work in this field will be to develop a similar kind of system which solves

a broad range of problems. The limitations imposed in the thesis as per the DTD

operators and XPATH operators can be removed and a full fledged system can be

developed. The use of XML Schema to represent the structure of the XML document and

the XQUERY language which is more close to posing queries in the SQL format will

address more problems as with the use of XQUERY one can also issue join queries.

 47

BIBLIOGRAPHY

[1] Herbert Schildt, The Complete Reference Java 2, Fifth Edition

[2] Subramanyam Allamaraju, Karl Avedal, Richard Browett, Jason Diamond, John

 Griffin, JAVA Server Programming J2EE Edition, Volume I

[3] Rajashekhar Sunderraman, ORACLE 9i PROGRAMMING, A PRIMER

[4] Jayavel Shanmugasundaram, Kristin Tufte, Gange He, Chun Zhang, David De Witt,

 Jeffrey Naughton, Relational Databases for Querying XML Documents: Limitations

 And opportunities

[5] www.w3schools.com

[6] www.xvon.org

[7] www.oracle.com

[8] http://www.cs.umb.edu/cs634/ora9idocs/appdev.920/a96621/adx08xsu.htm

[9] Wenfei Fan, Jeffrey Xu Yu, Hongjun Lu, Jianhua Lu, Rajeev Rastogi, Query

 Translation from XPATH to SQL in the Presence of Recursive DTDs

[10] Daniela Forescu, Donald Kossmann, Storing and Querying XML Data using an

 RDBMS.

[11] Mary Fernandez, Atsuyinki Morishima, Dan Suciu, Wang-Chiew Tan, Publishing

 Relational Data in XML: the SilkRoute Approach

[12] Ronald Bourret, Christof Bornhovd, Alejandro P. Buchmann, A Generic

 Load/Extract Utility for Data Transfer between XML documents and Relational

 Databases

http://www.w3schools.com/
http://www.xvon.org/
http://www.oracle.com/
http://www.cs.umb.edu/cs634/ora9idocs/appdev.920/a96621/adx08xsu.htm

	Georgia State University
	ScholarWorks @ Georgia State University
	6-12-2006

	An Automated XPATH to SQL Transformation Methodology for XML Data
	Sandeep Jandhyala
	Recommended Citation

	List of Figures

