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STRUCTURE LEARNING OF A BEHAVIOR NETWORK FOR 

CONTEXT DEPENDENT ADAPTABILITY 

by 

OU LI 

Under the Direction of Xiaolin Hu 

ABSTRACT 

 

One mechanism for an intelligent agent to adapt to substantial environmental 

changes is to change its decision making structure. Pervious work in this area has 

developed a context-dependent behavior selection architecture that uses structure change, 

i.e., changing the mutual inhibition structures of a behavior network, as the main 

mechanism to generate different behavior patterns according to different behavioral 

contexts. Given the important of network structure, this work investigates how the 

structure of a behavior network can be learned. We developed a structure learning 

method based on generic algorithm and applied it to a model crayfish that needs to 

survive in a simulated environment. The model crayfish is controlled by a mutual 

inhibition behavior network, whose structures are learned using the GA-based algorithm 

for different environment configurations. The results show that it is possible to learn 

robust and consistent network structures allowing intelligent agents to behave adaptively 

in a particular environment. 

 

INDEX WORDS: Mutual Inhibition, Behavior Network, Structure learning, Behavior 

pattern, Generic algorithm 
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CHAPTER 1   INTRODUCTION 

 

An important skill of intelligent systems is being able to adapt to external and internal 

environmental changes. Most these changes are limited in scope, significance, and 

occurrence speed, to which intelligent systems can adapt through continuous adjustment 

and learning. However, there are situations where changes are extensive, significant, and 

happen in an abrupt speed. These changes result in remarkably new circumstances that 

demand intelligent systems to significantly change their behavior patterns in order to 

survive in the new environments. For example, in animal behavior, the formation of 

social dominance hierarchy of a group of crayfish will dramatically change individual 

crayfish’s behaviors: when two (or more) size-matched crayfish are initially put together, 

they fight aggressively to compete for the dominant position in the hierarchy. But after 

the dominance hierarchy is formed, an abrupt change of behavior is observed as the new 

subordinate retreats and escapes from the attacks and approaches of the dominant [1, 2]. 

This type of environmental change that dramatically affects a system’s behavior is not 

unusual and calls for effective adaptation mechanisms that are able to quickly and 

efficiently address the substantial changes. One mechanism that has been employed by 

intelligent systems to respond to such changes is to modify the network structures of 

decision making. The change of network structures happens in coordinated and well-

designed ways, as the new network structure leads to a new behavior pattern, or solution, 

that is suitable for the new environment.  For example, in animal’s social dominance 
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hierarchy formation, it has been suggested that the new dominant and subordinate quickly 

change their neural circuit connections thus exercising behavior patterns, e.g., aggressive 

and defensive, corresponding to their new social positions [1, 3, 4]. Using structure 

change as an adaptation mechanism has the advantage that it can significantly and 

quickly change a system’s behavior. Meanwhile, from the decision theory point of view, 

since each network structure represents a durable behavior pattern, a system can reserve a 

discrete set of well-designed structures as candidate solutions, thus greatly reducing the 

search space of decision making in time-critical and resource-bounded situations. Given 

the importance of network structures, our work aims to develop architectures and 

methods that exploiting the structural property of decision networks for adaptability of 

intelligent agents. 

In an earlier work [5], we have developed a context-dependent behavior selection 

architecture that uses structure change as the main mechanism to generate different 

behavior patterns according to different behavioral contexts, each of which represents a 

particular type of operating environment. In this architecture, the bottom layer is an 

asymmetry mutual inhibition behavior network where different behaviors inhibit each 

other for behavior selection. The top “behavioral context” layer sets the behavior 

selection context by changing the structure (inhibitory coefficients) of the behavior 

network, thus modulating an agent’s overall behavior patterns according to different 

operating conditions. This architecture provides a simple yet effective mechanism for 

intelligent agents to dynamically and significantly change their behavior patterns in a 

dynamic environment. Based on this architecture, we developed a dynamic team 

formation multi-agent system, where mobile agents can switch from aggressive behavior 
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patterns before finding their partners to conservative behavior patterns after finding their 

partners by changing their behavior network structures. 

The context-dependent architecture assumes that an intelligent agent has a set of pre-

defined network structures corresponding to the different behavioral contexts. In order for 

the agent to exercise the “right” behavior pattern for a particular behavioral context 

(operating environment), it is important to provide it with the “right” network structure. 

Given a particular operating environment, a network structure can be manually defined 

by the designer. Alternatively and more interestingly, it is desirable to be able to find the 

“best” network structure using machine learning. In this work, we present the recent 

progress that we made on structure learning of a behavior network for context-dependent 

adaptability. Specifically, we designed a method based on Genetic Algorithm (GA) to 

evolve the behavior network structure of a crayfish model in a dynamic environment with 

a predator, a food source, and a shelter. The results of this work are encouraging and help 

us to explain the following important research questions related to structure learning: Is it 

possible to evolve a “best” behavior network structure for a particular operating 

environment? Will different runs of GA result in the “same” structure? Will different 

structures be learned for different operation environments (behavioral contexts)? 



 

 

CHAPTER 2   RELATED WORK 

 

Supporting adaptability is important for both artificial agents and robots. Researchers 

have developed techniques to support adaptability from different aspects such as decision 

architectures, action selection, and perception and motor control. Much research is 

conducted in the context of social behaviors [6, 7]. The rich diversity of social 

interactions (either with human or with other agents/robots) presents great challenges to 

adaptability of individual agents’ behaviors. A widely employed technique to handle 

these challenges is to incorporate cognitive concepts such as emotions, motivations, and 

affections. In these works, the underlying mechanism that enables adaptive behavior is 

based on internal state variables. For example, emotions are modeled as state parameters 

to compute and arbitrate an agent’s behaviors according to different situations [8, 9, 10]. 

We refer to this adaptation approach as state-based adaptation. The state-based approach, 

as argued by the work of “dual dynamics” [11], is insufficient to model the apparent 

stability and non-mixability of different behavioral patterns that are needed in extremely 

dynamic environments. Our work takes a different approach, the structure-based 

approach, to support adaptability for substantial environment changes. 

Learning and evolution has long been used to find the correct values for control 

parameters that lead to a desired behavior [12, 13]. In addition, techniques inspired by 

biological evolution have also been used in artificial agents and robots. For example, the 

work of [14] uses genetic programming to evolve behavior strategies for the predator 
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agents. [15, 16] use the method of co-evolution to evolve behaviors in multi-agent 

environments. However, none of them has focused on the structural aspect of decision 

networks. There are some works studied how to evolve the structure of neural network 

controller. For example, the work of [17] uses a genetic algorithm to evolve neural 

network controllers for simulated “prey” creatures that learn a herding behavior to help 

avoid predators. Not much work has been done to evolve network structures at the 

behavior level. Probably the most related work is [18], which employed GA to evolve the 

structure of Maes’ spreading activation network [19]. This work evolves the action 

selection network links among behaviors and between behaviors and motivations. The 

results show that it is possible to use GA to evolve networks that perform better in a 

given environment. However, little work was done to analyze the “similarity” of different 

evolved networks, and no analysis was provided to the problem that if different structures 

will be evolved for different environments.  



 

 

CHAPTER 3   REVIEW OF THE CONTEXT-DEPENDENT ARCHITECTURE 

 

The problem of behavior selection, often referred to as action selection in AI, is the 

problem of run-time choice between multiple parallel, competing, and overlapping 

behaviors to respond to a dynamic environment. Context-dependent behavior selection 

used in this paper refers to the capability for an intelligent agent to modulate its behavior 

selection process based on different explicitly modeled behavioral contexts, i.e., different 

operating environments. To support this, we developed a two-layer behavior-based 

architecture [5]. This architecture uses mutual inhibition as the major mechanism to 

achieve adaptive behavior selection among competitive behaviors. A behavior inhibits 

other behaviors through inhibitory coefficients. The coefficients for the different pairs of 

inhibiting and inhibited behaviors are different, and these differences help express the 

relative priorities of the behaviors. For example, if a behavior has relatively high priority, 

it will inhibit other behaviors with large values of inhibitory coefficients, and will be 

inhibited by other behaviors with small values of coefficients. The set of all inhibitory 

coefficients among behaviors defines the structure of the behavior network. In the 

context-dependent architecture, this behavior network structure can be changed by a top 

layer called “Behavioral Context”. This allows the relative priorities of the behaviors to 

be dynamically changed when the system switches to different operating conditions, 

which in turn makes the system exhibit different behavior patterns. Fig. 1(a) shows this 

two-layer behavior network architecture. Fig. 1(b) shows that the mutual inhibition 
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structure of three sample behaviors can be represented by a table of inhibitory 

coefficients. 

  

bsensory inputs b

b b

modulate

sensory inputs s

ss

behavioral context layer

behavior layer

  
 

(a) The two layer architecture 
 

b3b2b1

xc23c13b3

c32xc12b2
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b3b2b1

xc23c13b3

c32xc12b2

c31c21xb1

inhibiting
inhibited

Table: behaviors’ inhibitory coefficients

 
 

(b) The mutual inhibition structure of the behavior network 

Fig. 1: The context-dependent behavior selection architecture 
 

The bottom layer is the behavior layer with a network of behaviors. Each behavior 

mediates a different fixed action pattern and is excited by a particular pattern of sensory 

inputs. Behaviors inhibit each other and the strengths of inhibitions among pairs of 

behaviors are specified by inhibitory coefficients. These coefficients are real numbers 

between 0 and 1, with 0 meaning no inhibition and 1 meaning full inhibition. Mutual 

inhibition among the behaviors enables the one with the strongest net activity (i.e., its 

excitation minus the sum of the inhibitions from other behaviors) to govern the agent’s 

behavior. To give an example, assuming behavior_i and behavior_j are two behaviors 
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and cij is the inhibitory coefficient from behavior_i to behavior_j. Then the amount of 

inhibition BBij(t) from behavior_i to behavior_j at time step t is calculated according to 

Formula (1), where Ai(t-1) is the activation of behavior_i at the previous step.  Formula 

(2) shows behavior_j’s activation Aj(t) is calculated from its excitation Ej(t) subtracting 

the total inhibitions from other behaviors.  

)2()()()(

)1()1(*)(

∑
≠

−=

−=
ji

i
ijjj

iijij

tBtEtA

tActB

 

 
The top layer is the behavioral context layer, which consists of several discrete 

behavioral contexts. Each behavioral context defines its own set of inhibitory 

coefficients, i.e., the behavior network structure. Change from one behavioral context to 

another means the behavior network structure is switched accordingly. A rule-based 

system may be used to specify when to transit from one behavioral context to another. 

The transitions between behavioral contexts, by changing the behavior network structure, 

provide an effective way for intelligent agents to adapt to substantial environmental 

changes.  



 

 

CHAPTER 4   SYSTEM DESIGN OF STRUCTURE LEARNING 

 

In order to learn behavior network structures that lead to desired behavior patterns in a 

given environment, we implemented a genetic algorithm (GA) based evolution algorithm. 

We applied this algorithm to a model crayfish that uses a mutual inhibition behavior 

network to govern its behavior choice in a dynamic simulated world containing a 

predator, a shelter, and a food source. The model crayfish must avoid the predator, find 

the food source, and eat food to regain the energy depleted by its activity. We seek to 

determine if a “right” behavior network structure can be evolved to allow the crayfish to 

respond adaptively and make smooth transitions in this dynamic environment. 

 

4.1. The Simulation Environment 

The simulation environment, Fig. 2, is based on a crayfish behavior research that was 

originally implemented in Edwards’ work [20]. The simulated dynamic world contains a 

food source, a shelter, a predator, and crayfish itself.  
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Fig. 2: simulation environment 

Both crayfish and predator are able to move around in any directions within a 400×400 

2-dimensional world map and will reappear on the opposite side of the map if they 

happen to move off of the map at one edge. The predator is controlled by a state-based 

machine with random numbers to make its movement look realistic. In particular, the 

predator appears with an initial direction and cruising movement. If, while cruising, it 

comes within a fixed distance of 100 of the crayfish, it will double its speed and start to 

chase the crayfish. If the crayfish escapes to outside that distance or into its shelter, the 

predator will give up the chase and resume its cruising speed. The crayfish is considered 

to have been caught and eaten if the predator comes into contact with it (within a distance 

of 6). In order to simulate the dynamic world, the initial positions and direction of both 

crayfish and predator are specified randomly for each simulation round.  

The crayfish is governed by one of seven behaviors: ESCAPE, RETREAT, 

DEFENSE, HIDE, EAT, FORAGE, and SWIM. Each behavior is excited by some 

sensory inputs and carries out some actions. In general, behavior ESCAPE is to escape 

from the predator, RETREAT is to move away from the predator and to retreat to the 
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shelter, DEFENSE is to confront the predator, HIDE is to hide inside the shelter, EAT is 

to eat food and gain energy, FORAGE is to move towards the food, and SWIM is to 

swim away in a fast speed. Except the EAT behavior, all other behaviors consume energy 

(in different rate corresponding to their moving speeds). The crayfish is considered as 

dead if its energy drops below zero. Detailed descriptions for these behaviors, including 

how they are excited and what are the associated actions, can be found in [20]. The seven 

behaviors mutually inhibit each other and compete for behavior selection as described in 

[20]. A set of inhibitory coefficients are also provided in [20], which provides a reference 

for us to evaluate the structures evolved in this work. 

 

4.2. Definition of Behavior Network and Structure 

To establish the foundation for structure learning, it is important to provide a formal 

definition for the behavior network and its structure. We define a behavior network BN as 

a directed weighted graph. BN = (B, L, W), where B is the set of behaviors, L is the set of 

inhibitory links, and W is the set of coefficients. Each inhibitory link is a pair (b, d), 

where b, d ∈  B, and has an associated coefficient w, where w ∈ W. A coefficient is a real 

number in [0, 1] and defines the inhibition strength from one behavior to another, with 0 

meaning no inhibition and 1 meaning full inhibition. The range of [0, 1] can be extended 

to [-1, 1] to support not only inhibitory but also excitatory relationships between 

behaviors. 

An important task for the structure-based adaptation approach is to determine what 

kind of changes will make a network generate different behavior patterns. For example, 

considering wij being the inhibitory coefficient from behavior bi to behavior bj in a 



 12

network, a change of wij from 0.1 to 0.15 is unlikely to make much difference to an 

agent’s behavior pattern, because both cases represent weak inhibitions from bi to bj. 

However, a change from 0.1 to 0.9 probably will make a noticeable difference. More 

significantly, if the inhibitory relationship between bi to bj is reversed, e.g., bj starts to 

inhibit bi (assuming bj does not inhibit bi in the first place), more difference will result. 

Based on this observation, we explicitly differentiate a network and its structure. A 

structure is the enduring, orderly, and patterned relationship among elements in a 

network. It defines a general pattern and can be mapped to multiple specific networks. 

Given a behavior network BN = (B, L, W), we define its structure BNS = (B, L, S), where 

S is the finite set of structural relationships and is related to W by a transformation F: 

W→S. The kind of transformation that we use in this work is to map inhibitory 

coefficients to the domain of discrete structural relationships {weak inhibition, medium 

inhibition, strong inhibition} based on their numeric values. For example, coefficients in 

the range of [0, 0.3] are mapped as weak inhibition; coefficients in the range of [0.7, 1] 

are mapped as strong inhibition; the rest are mapped as medium inhibition. Oppositely, 

given a particular structure, a behavior network can be defined based on an inverse 

transformation F′: S→W. Since this is a one to many mapping, random numbers are 

needed to generate the specific network parameters. 

Structure learning of the asymmetry mutual inhibition behavior network is to find the 

“right” set inhibitory coefficients that allow an intelligent agent to perform well in a 

particular dynamic environment. The explicit differentiation between a behavior network 

and its structure gives us two options to evolve the behavior network of the agent. We 

can evolve the specific values of the set of coefficients, or we can evolve the structural 
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relationships such as weak inhibition, medium inhibition, and strong inhibition. In this 

paper, we focus on the second option to evolve the structural relationships between pairs 

of behaviors. The evolved structure are then mapped to specific randomly-generated 

behavior networks and be evaluated to see if they lead to the same desired and stable 

behavior pattern. 

 

4.3. GA-based Structure Learning 

A GA is a stochastic general search method which proceeds in an iterative manner by 

generating new populations of individuals from the old ones. We integrate a standard GA 

with the crayfish behavior simulation environment to evolve network structures for the 

model crayfish as described above. The interaction between GA and Crayfish simulation 

and the pseudo-code of GA and Crayfish simulation are presented in Fig. 3. 

 

Definition of a chromosome As the crayfish’s behavior is determined by its network, 

and the functioning of a network is controlled by its inhibitory coefficients, these 

coefficients are encoded in a fixed order to construct each individual of population. As 

mentioned before, the goal of this work is to extract the structure features of behavior 

network, which indicate several relative priorities of the behaviors, instead of aiming to 

obtain specific set of inhibitory coefficients. We expect to see these relative priorities can 

express a behavior pattern more appropriately than the specific set of inhibitory 

coefficients. So, instead of based on specific numeric values, the initial value of each 

inhibitory coefficient in the chromosome is randomly selected among L (weak 
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inhibition), M (medium inhibition), and H (strong inhibition), which represent the range 

of 0 - 0.2, 0.4 – 0.6, and 0.8 – 1.0 respectively. 

 
 

GA Crayfish Simulation 

Behavior Network Structure 

Fitness  
 
begin GA 
  g:=1  { generation counter } 

Initialize population P(g) with 100 structures 
  for each structure in P(g)  { Evaluate P(g) } 
     Invoke Crayfish simulation with structure  { compute fitness } 

end for           
  while not done do  
     g:=g+1  
     Select P’(g) from P(g)  
     Crossover P’(g)  
     Mutate P’(g)  

   for each structure in P’(g)    { Evaluate P’(g) } 
     Invoke Crayfish simulation with structure  { compute fitness } 
     end for      
     P := survive P, P’(g) { select the survivors from actual fitness } 
  end while  
end GA 
 
---------------------- 
 
For a given Behavior Network Structure provided by GA 
begin Simulation 
   for each simulation cycle up to 100 cycles 
      Initialize positions of crayfish and predator 
      Generate seed for predator’s random move selection 
      for each simulation step up to 2500 steps 
         Update simulation dynamics 
         Calculate step fitness 
         If(DEAD) Break   
      end for 
      Calculate simulation fitness 
   end for 
   Calculate overall fitness for given structure 
end Simulation  

 
Fig. 3 Interaction and Pseudo-code of GA and Simulation 

 
 

 

Design of Fitness function Basically the fitness of a crayfish is determined by how 

well it is able to survive in the environment in which it is placed. The main idea is that 

the crayfish should maintain a high level of energy and stay far away from the predator 
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all the time. Based on this idea, the fitness F is defined as    
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 Where Ei is crayfish’s Energy and Di is the distance between crayfish and predator at 

each simulation step. N is the number of simulation steps, and F is the Fitness of each 

simulation. The final Fitness of each individual structure is calculated by averaging the 

summed Fitness of 100 simulations. This indicates that those structures which can keep 

maximizing the Fitness function over its active lifetime are considered to be “salient” and 

can depict the behavior pattern of crayfish appropriately. 

 

Application of GA operators After evaluating of each structure in the population, 

we employ a standard “Roulette Wheel” selection process to generate the next generation 

of individuals. Next, a standard single point crossover operator and mutation operator are 

applied to the new population with probability p_crossover = 0.8 and probability 

p_mutation = 0.02 respectively. 



 

 

CHAPTER 5   EXPERIMENTAL RESULTS AND ANALYSIS 

 

This section presents some results obtained from our work of structure learning based on 

the crayfish behavior simulation. With these results, we conduct preliminary analysis and 

focus on several important aspects related to the structure learning: convergence, 

consistency, robustness, and diversity. The aspect of convergence tests how many 

generations it will need for GA to converge to a good structure; the aspect of consistency 

tests if different runs of GA will result in a “similar” structure; the aspect of robustness 

tests if a learned set of structural relationships, i.e., {weak inhibition, medium inhibition, 

and strong inhibition}, are robust, i.e., they are insensitive to the specific values of 

coefficients; the aspect of diversity tests if different behavior network structures will be 

learned in different environments. 

 

5.1. Convergence Analysis 

To conduct this analysis, we initiate a population consisting of 100 behavior network 

structures. As described before, the initial value of each inhibitory relationship in the 

chromosome is randomly generated among L (week inhibition), M (medium inhibition), 

and H (strong inhibition). In all simulations, 0.1, 0.5, and 0.9 are used to represent L, M, 

and H respectively in order to get a real number value of fitness. For each individual in 

the population we run 100 simulations (each simulation has 2500 time steps) and 

calculate the average fitness for that structure. Finally, we calculate an average fitness for 
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all 100 structures as the mean fitness for that GA generation. Our goal is to test if as the 

generation increases, the overall fitness will also increase and eventually stabilize, and 

when it stabilizes. 
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Fig. 4.1: Population fitness changed over many generations (averaged over several runs) 
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Fig. 4.2: Best fitness of each generation (averaged over several runs) 

 
Fig 4 shows the mean fitness and normalized standard deviation of fitness in each 

generation in our experiment. As can be seen, the fitness of population improves rapidly 

in the first 40 or so generations. By about 60 generations, the population began to settle 

into its final level with standard deviation also leveling off to a minimum. Based on this 

analysis, in all the following experiments, we set the maximum generation for the GA 
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process to be 80. This analysis confirms that it is feasible to find good behavior network 

structures using GA in a reasonable number of generations. 

 

5.2. Consistency Analysis 

This analysis aims to answer a very important question: will the network structures 

learned by different runs of GA consistent (similar) to each other? To conduct this 

analysis, we carried out multiple runs of GA using the same environment setting (actually 

they are not exactly the same because random numbers were used to decide the initial 

positions, directions, and the predator’s movement behavior). We expect that a consistent 

structure pattern (relative priorities of the behaviors), which can express the behavior 

pattern for that particular environment, can be discovered. 

In total 10 structure generated after 10 runs of the learning process, 3 of them are 

shown in Table 1, in which integer number 1, 2, and 3 represent L (week inhibition), M 

(medium inhibition), and H (strong inhibition) respectively.  

Inhibited behavior Inhibiting behavior
ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM

ESCAPE …… 2 2 2 1 1 3
RETREAT 3 …… 3 2 2 2 2
DEFENSE 1 1 …… 3 2 1 2
HIDE 1 3 1 …… 2 2 3
EAT 2 2 2 3 …… 1
FORAGE 3 1 3 2 3 ……
SWIM 1 2 2 2 2 1 …

1
3
…  

Inhibited behavior Inhibiting behavior
ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM

ESCAPE …… 2 2 2 1 1 3
RETREAT 3 …… 2 3 2 3 1
DEFENSE 2 1 …… 3 2 1 3
HIDE 3 3 2 …… 2 1 2
EAT 2 1 1 2 …… 1
FORAGE 3 2 3 1 2 ……
SWIM 1 1 1 1 1 1 …

2
3
…  
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Inhibited behavior Inhibiting behavior
ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM

ESCAPE ……. 1 2 2 1 1 2
RETREAT 3 …… 2 2 3 2 3
DEFENSE 1 3 …… 2 2 1 3
HIDE 2 2 3 …… 2 2 2
EAT 2 3 2 1 …… 1
FORAGE 3 1 2 1 3 ……
SWIM 1 1 1 2 3 1 …

3
3
…  

                        Table 1. 3 of 10 Behavior Network Structures obtained by GA 

 

Based on these three structures, some interesting conclusions can be drawn. For 

example in Fig. 5, it is clear that SWIM has the highest relative priority. This is because 

compared to other behaviors, SWIM generally strongly inhibits other behaviors (as 

indicated by the column of SWIM in the tables), and is weakly inhibited by other 

behaviors (as indicated by the row of SWIM in the tables). Similarly, HIDE has the 

second highest relative priority since crayfish will spend the most time in Shelter due to 

the short distance between Food Source and Shelter. Also it is clear that FORAGE has 

the lowest relative priority as it is strongly inhibited by other behaviors and weakly 

inhibits other behaviors. For other behaviors, it can be seen that ESCAPE and EAT also 

have high relative priorities, although not as strong as SWIM. Furthermore, between pairs 

of behaviors, ESCAPE always weakly inhibit SWIM; EAT and FORAGE always weakly 

inhibit ESCAPE. What is interesting is that all these salient structural relationships are 

expected and makes sense from the biological point of view. For example, SWIM and 

ESCAPE have high priority because so the crayfish can move away from the predator to 

save itself. In fact, the structures learned in our work is comparable with the set of 

coefficients manually tuned by the author of [20]. Another interesting feature we 

observed is that the salient structural relationships described above are commonly shared 
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by all the 10 structures. To better show this, Table 2 shows the Mean and Standard 

Deviation of the 10 structures.  

MEAN Inhibiting behavior
Inhibited behavior ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE ….. 1.4 2.0 2.2 1.0 1.0 2.1
RETREAT 2.7 ….. 2.0 2.2 2.4 2.6 2.2
DEFENSE 1.9 2.0 ….. 2.0 2.1 1.5 2.3
HIDE 1.9 2.2 2.1 ….. 1.8 1.9 2.3
EAT 2.0 2.4 1.5 2.3 ….. 1.2 2.4
FORAGE 2.9 1.7 1.8 2.1 2.6 ….. 3.0
SWIM 1.0 1.5 1.7 2.0 1.7 1.0 …..  

SD Inhibiting behavior
Inhibited behavior ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE ….. 0.49 0.63 0.60 0.00 0.00 0.70
RETREAT 0.64 ….. 0.45 0.75 0.49 0.49 0.87
DEFENSE 0.70 0.77 ….. 0.89 0.70 0.67 0.64
HIDE 0.83 0.75 0.83 ….. 0.75 0.54 0.78
EAT 0.45 0.66 0.67 0.64 ….. 0.40 0.66
FORAGE 0.30 0.64 0.75 0.83 0.49 ….. 0.00
SWIM 0.00 0.67 0.78 0.63 0.64 0.00 …..  

Table 2. Mean and Standard Deviation of 10 structures 
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Fig. 5: Summed inhibition of all the seven behaviors 

 
 

Based on Table 2, Figure 5 shows the summed inhibitions for all the seven 

behaviors to better support our analysis. Again, it can be seen that SWIM has the highest 

priority and FORAGE has the lowest priority. Figure 6 shows the “best” structure 

manually tuned by the author in [20]. Comparing Figure 5 and Figure 6, we can see the 
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structure features in current environment mostly conform to the original design in [20]. 

The differences between them might be caused by their different implementation. For 

example, ESCAPE has the highest priority in Figure 6 while in Figure 5 SWIM has the 

highest priority. This is because ESCAPE will cost double amount of energy than SWIM. 

Based on the Fitness Function in GA-based structure learning, a structure will be 

considered as “best” only if it can make crayfish maintain a high level of energy and stay 

far away from the predator all the time. Since in current environment the Food Source is 

close to Shelter, SWIM will be mostly selected to move the crayfish back to Shelter. So it 

makes sense that SWIM should have the highest priority. 
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Fig. 6: Summed inhibition of all the seven behaviors in [20] 

 

All these results show that all the learned network structures in current 

environment have a high degree of consistency. The reason behind this is likely because a 

“best” structure is highly dependent on the environment. Thus given a particular 

environment, the learned structures will always share a strong similarity. 
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5.3. Robustness Analysis 

The robustness analysis aims to prove our hypothesis that it is the structure (i.e., the 

salient structural relationships between pairs of behaviors), not the specific values of 

coefficients, that defines the behavior pattern of a behavior network. To conduct 

robustness analysis, each learned structure is used as the prototype to randomly generate 

100 behavior networks (with inhibitory coefficients) of that kind. Specifically, for each 

structural relationship that is depicted with L (week inhibition), M (medium inhibition), 

and H (strong inhibition), its coefficient is generated randomly from the range of 0 - 0.2, 

0.4 – 0.6, and 0.8 – 1.0 respectively. Then each behavior network is evaluated in the same 

simulation environment used in the learning process. The fitness is calculated after 

simulation as the measure indicating how well a specific behavior network performs. 
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Fig.7. Fitness of behavior networks for 3 structures (averaged over 100 simulations) 

 

Structure Mean Fitness SD MAX MIN 

A 1.776974885 0.194122328 2.131124097 1.276399159 

B 1.811156524 0.203804919 2.19823398 1.212239444 

C 1.810032587 0.227045309 2.274207994 1.200681876 
  

Table 3.  Mean Fitness, Standard Deviation of Fitness, Maximum, and Minimum for the 3 structures 
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Fig. 8: Mean Fitness and Standard Deviation for 10 structures 

 
 

Fig. 7 plots the Fitness of the randomly generated behavior networks for the three 

structures given in Table 1. Table 3 shows the Mean Fitness, Standard Deviation of 

Fitness, Max Fitness, and Min Fitness of the behavior networks for these three structures. 

We can see from Figure 7 that all the fitness for a particular structure appear within a 
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range and there are no outliers as can be seen from Table 3. The stable distribution of 

fitness indicates that the structures learned by GA are not sensitive to specific value of 

coefficients and thus can be used to define the crayfish’s behavior pattern. To better 

support this analysis, Figure 8 shows the Mean Fitness and Standard Deviation of Fitness 

of behavior networks for all the 10 structures that have been learned. The results show 

that most of the structures have higher Mean Fitness and Lower SD, and thus indicate the 

learned structures are robust. 

However, not all the structures have relatively high fitness and low SD in Figure 

8. These structures with relatively low fitness and high SD, such as structure 8, 9, and 10, 

cannot represent the behavior pattern of crayfish as well as those with relatively high 

fitness and low SD since the fitness can show how well crayfish is capable of surviving in 

a given environment. We expect those with relatively high fitness and low SD can bring 

stronger consistency on describing the behavior pattern.  

Inhibited behavior Inhibiting behavior
ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM

ESCAPE …... 1.5 1.8 1.8 1 1 2.3
RETREAT 2.8 …... 2.3 2.5 2.3 2.5 2.3
DEFENSE 1.5 1.5 …... 2.5 2.3 1.3 2.3
HIDE 1.8 2.3 2.3 …... 1.8 2 2.5
EAT 2 2.3 1.5 2 …... 1 2.3
FORAGE 3 1.5 2.3 1.3 2.5 …... 3
SWIM 1 1.5 1.3 2 2 1 …...  

 
Inhibited behavior Inhibiting behavior

ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE …... 0.5 0.43 0.43 0 0 0.83
RETREAT 0.43 …... 0.43 0.5 0.43 0.5 0.83
DEFENSE 0.5 0.87 …... 0.5 0.43 0.43 0.83
HIDE 0.83 0.83 0.83 …... 0.43 0.71 0.5
EAT 0 0.83 0.5 0.71 …... 0 0.83
FORAGE 0 0.5 0.83 0.43 0.5 …... 0
SWIM 0 0.5 0.43 0.71 0.71 0 …...  

Table 4. Mean and Standard Deviation of 4 structures 
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Fig. 9: Summed inhibition of all the seven behaviors based on Table 4 

 

Table 4 shows the Mean and Standard Deviation of 4 structures, which are 

structure 1, 2, 4, and 7 in Figure 8. Figure 9 shows the Summed inhibition of all the seven 

behaviors based on Table 4. Compared with Table 2, It is clear that Table 4 shows a 

higher degree of similarity on structure features. Especially two more pairs of behavior 

have the same inhibition relationship, which follows the conclusions of original design in 

[20].  ESCAPE always strongly inhibits FORAGE while FORAGE always weakly 

inhibits ESCAPE; ESCAPE always has middle level inhibition to EAT while EAT 

always weakly inhibits ESCAPE. Also Figure 9 shows that it mostly conforms to Figure 

5 and Figure 6 on relative priority of behaviors and makes sense from the biological point 

of view. These results indicate that robustness test can be used to filter the “non-

appropriate” structures and improve the consistency of structures learned by GA, and as a 

result the behavior pattern of crayfish can be better described. However, it is not clear 

enough that to what extent would a structure learned by GA be considered as 

“appropriate”, which indicates the method used here to select the structures need to be 

further elaborated by more detailed analyses.  



 

 

CHPTER 6   DIVERSITY ANALYSIS 

 

Previous analysis have shown that consistent and robust structures of Mutual Inhibition 

Behavior Network can be learned by GA in a given environment context. So an intuitive 

question followed is that whether the structures learned in different environment can still 

show consistency and robustness. To answer this question is the first purpose of this 

analysis. Changes will be made to the original simulation environment to define two 

different environments, which are “Increasing the distance between Shelter and fixed 

Food Source” and “Generate Food Source at random position”. In each situation 

consistency analysis and robustness analysis will be performed to see whether the learned 

structures will share a strong similarity and will be sensitive to specific value of 

coefficients. Also structures learned from different context will be compared to find the 

structure features related to the changes in different environment since the changes on 

context will affect how the Crayfish behaves.  

 

6.1. Increasing the distance between Shelter and fixed Food Source 

The Food Source in original simulation environment (Fig.2) is fixed at the center of the 

map and very close to the Shelter. It is very easy for Crayfish to reach the Food Source 

for energy supply and to escape from Predator by entering the Shelter. So the distance 

between Shelter and Food Source is extended and the Food Source is fixed at the upright 

of the map (Fig.8). We expect to see the increase on relative priority of FORAGE since 
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Crayfish has to have a higher tendency of moving towards to the Food Source than in the 

previous environment in order to keep its energy level and not to become starved. 

 
Fig. 10: new simulation environment 

 

Structure A Inhibiting behavior
Inhibited behavior ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE 0 1 2 2 1 1
RETREAT 1 0 2 2 1 3
DEFENSE 1 1 0 1 3 1
HIDE 3 3 1 0 1 3
EAT 2 3 2 2 0 1
FORAGE 3 1 1 2 3 0
SWIM 1 1 1 2 2 1

2
2
3
1
1
3
0

Structure B Inhibiting behavior
Inhibited behavior ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE 0 2 2 3 1 1
RETREAT 2 0 3 3 2 3
DEFENSE 2 1 0 1 3 2
HIDE 1 1 3 0 1 2
EAT 2 3 3 1 0 1
FORAGE 3 1 1 1 3 0
SWIM 2 1 1 1 1 1

1
2
1
2
2
2
0

Structure C Inhibiting behavior
Inhibited behavior ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE 0 2 2 2 1 1
RETREAT 2 0 1 3 1 3
DEFENSE 3 3 0 1 1 3
HIDE 3 1 2 0 2 2
EAT 1 3 3 3 0 1
FORAGE 3 1 1 1 3 0
SWIM 1 2 2 2 1 1

3
2
1
1
1
3
0  

Table 5.1. Mean and Standard Deviation of 10 structures 
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Inhibited behaviorInhibiting behavior
ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM

ESCAPE ….. 1.6 1.8 2.6 1.0 1.0 2.2
RETREAT 1.8 ….. 1.8 2.6 1.6 3.0 2.4
DEFENSE 1.8 1.8 ….. 1.0 2.4 2.4 2.2
HIDE 2.2 1.8 2.0 ….. 1.6 2.6 1.4
EAT 1.8 2.8 2.6 2.0 ….. 1.0 2.0
FORAGE 3.0 1.0 1.4 1.2 3.0 ….. 2.8
SWIM 1.2 1.2 1.2 1.8 1.6 1.2 …..
Inhibited behaviorInhibiting behavior

ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE ….. 0.49 0.40 0.49 0.00 0.00 0.75
RETREAT 0.75 ….. 0.75 0.49 0.49 0.00 0.49
DEFENSE 0.75 0.75 ….. 0.00 0.80 0.80 0.98
HIDE 0.75 0.75 0.89 ….. 0.49 0.49 0.49
EAT 0.40 0.40 0.49 0.63 ….. 0.00 0.89
FORAGE 0.00 0.00 0.49 0.40 0.00 ….. 0.40
SWIM 0.40 0.40 0.40 0.40 0.49 0.40 …..  

Table 5.2 . Mean and Standard Deviation of 10 structures 
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Fig. 11: Summed inhibition of all seven behaviors in new environment 

 
 

Table 5 shows the Mean and Standard Deviation of the 8 structures and Fig. 11 

shows the summed inhibitions for behavior ESCAPE, RETREAT, DEFENSE, HIDE, 

EAT, FORAGE, and SWIM based on the results in Table 5. The pair relationships of 

structures learned by GA in two different environments are compared in Table 5.  
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     Behavior Pair Fixed Food Source 1 Fixed Food Source 2
A B A     B A     B A     B A     B

1 ESCAPE RETREAT 2.7 1.4 1.8 1.6
2 ESCAPE DEFENSE 1.9 2.0 1.8 1.8
3 ESCAPE HIDE 1.9 2.2 2.2 2.6
4 ESCAPE EAT 2.0 1.0 1.8 1.0
5 ESCAPE FORAGE 2.9 1.0 3.0 1.0
6 ESCAPE SWIM 1.0 2.1 1.2 2.2
7 RETREAT DEFENSE 2.0 2.0 1.8 1.8
8 RETREAT HIDE 2.2 2.2 1.8 2.6
9 RETREAT EAT 2.4 2.4 2.8 1.6
10 RETREAT FORAGE 1.7 2.6 1.0 3.0
11 RETREAT SWIM 1.5 2.2 1.2 2.4
12 DEFENSE HIDE 2.1 2.0 2.0 1.0
13 DEFENSE EAT 1.5 2.1 2.6 2.4
14 DEFENSE FORAGE 1.8 1.5 1.4 2.4
15 DEFENSE SWIM 1.7 2.3 1.2 2.2
16 HIDE EAT 2.3 1.8 2.0 1.6
17 HIDE FORAGE 2.1 1.9 1.2 2.6
18 HIDE SWIM 2.0 2.3 1.8 1.4
19 EAT FORAGE 2.6 1.2 3.0 1.0
20 EAT SWIM 1.7 2.4 1.6 2.0
21 FORAGE SWIM 1.0 3.0 1.2 2.8  

Table 6: Pair relationships in current environment and in original environment  
. 
 

We can see from Fig. 11 that SWIM has highest relative priority and weakly 

inhibited by other behaviors; ESCAPE has the second highest relative priority and second 

lowest inhibition from other behaviors. This is because they are performed most often in 

order to get away from Predator. Also we can see, as expected, FORAGE has a higher 

relative priority. In Table 6, EAT always weakly inhibits ESCAPE; ESCAPE always has 

strong inhibition to FORAGE and only weakly inhibited by FORAGE; FORAG always 

strongly inhibits RETREAT and RETREAT always inhibits FORAGE with low 

inhibition level; HIDE always weakly inhibits DEFENSE; EAT always strongly inhibits 

FORAGE and is inhibited by FORAGE in a low inhibition level. Since the results in 

Table 5 have shown that all the 8 structures learned by GA in current simulation 

environment share the same structure relationships, we can consider them consistent. 
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Fig.12. Robustness test for the 3 structures (averaged over 100 simulations) 

 

Structure Mean Fitness SD MAX MIN
A 1.236526875 0.274809342 1.919545041 0.629055047
B 1.266434783 0.248548845 1.94017511 0.591297946

C 1.283501023 0.239092536 2.042778542 0.689778919  
Table 7.  Mean Fitness, Standard Deviation of Fitness, Maximum, and Minimum for the 3 structures 

 
 

Known the structures learned by GA in current environment are consistent, we 

should perform Robustness test to see if these structure are sensitive to the specific value 

of coefficients. The results of Robustness test for 3 structures learned in current 
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environment are obtained and presented in Fig. 12 and Table 7. Following the analysis 

method described in Chapter 5, these results indicate that the learned structures are robust 

and can be used to describe the behavior pattern of Crayfish in current environment. 

So far the first goal of this test has been achieved. Next we will try to figure out 

the structure features in the salient structures. Based on the results in Table 6, we can find 

six pair behaviors with “Significant” inhibition relationship, which are Pair9(RETREAT 

and EAT), Pair10(RETREAT and FORAGE), Pair12(DEFENSE and HIDE), 

Pair13(DEFENSE and EAT), Pair14(DEFENSE and FORAGE), and Pair17(HIDE and 

FORAGE). 

1) For Pair9(RETREAT and EAT) and Pair13(DEFENSE and EAT). 

RETREAT and EAT in original environment (Env1) inhibits to each other with equal 

level while in Current environment (Env2) RETREAT strongly inhibits EAT.  This is 

because the Food Source in Env1 is very close to Shelter. Crayfish do not have to 

start to RETREAT back to the Shelter very earlier while it is eating although the 

predator is approaching. But in Env2 Food Source is far from Shelter. Crayfish might 

be caught if it did not plan for RETREAT earlier while it is eating; Pair13 shares the 

same reason as Pair9. 

2) For Pair10(RETREAT and FORAGE) and Pair14(DEFENSE and FORAGE). 

In Env1 RETREAT inhibits FORAGE in a middle level and FORAGE inhibits 

RETREAT in a strong level. But In Env2, FORAGE has strong inhibition to 

RETREAT and RETREAT only weakly inhibits FORAGE. This change indicates that 

the crayfish has to take risk to move towards to the Food Source due to the low energy 
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level even though it is dangerous and most likely to get caught by predator; Pair14 

shares the same reason as Pair10. 

3) For Pair17(HIDE and FORAGE) and Pair12(DEFENSE and HIDE). 

HIDE and FORAGE in Env1 inhibits to each other with almost equal level while in 

Env2 FORAGE strongly inhibits HIDE and only is weakly inhibited by HIDE. This is 

because HIDE is not excited outside the shelter. Since Food Source is far from shelter, 

Crayfish will move to Food Source more often and spend more time outside the Shelter 

than in Env1; Pair12 shares the same reason as Pair17. 

Since above analyses can explain both the changes on Pair relationship and the 

changes on relative priority of behavior in Fig. 11, these six “Significant” pair inhibition 

relationships can be considered as the structure features related to the environment 

changes which affect the behavior pattern of Crayfish in current environment.  

 

6.2. Generate Food Source at random position 

The Food Source in previous two simulation environments was placed at a fixed position 

and the amount of Food Source never changed. In order to make the simulation 

environment more realistic and expect to see various changes on structure, the Food 

Source will be generated at random position in the map with certain amount when it is 

consumed up by Crayfish. Except changing the simulation environment, we will also 

change the configuration of behavior network by increasing the excitation and decreasing 

the energy cost of behavior FORAGE. We expect FORAGE to have a higher relative 

priority since Crayfish has to spend the most of time to search for Food Source in order to 

keep its energy level and expect to see the consistent and robust structures can still be 
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learned. Also we will compare the structures learned in both environments (Fixed Food 

Source with new behavior network configuration and randomly generated Food Source 

with new behavior network configuration) in order to find the changes on behavior 

pattern. 

Inhibited behavior Inhibiting behavior
ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM

ESCAPE …… 1.0 1.6 1.6 1.0 1.0 1.9
RETREAT 2.3 …… 1.7 2.3 1.9 1.4 1.4
DEFENSE 2.3 2.3 …… 2.1 2.1 2.1 1.9
HIDE 1.9 1.6 2.0 …… 2.1 2.3 2.0
EAT 2.0 1.7 1.9 2.0 …… 1.0 2.0
FORAGE 3.0 2.0 2.7 1.7 3.0 …… 2.1
SWIM 2.0 1.6 1.6 2.1 1.6 1.6 ……  
Inhibited behavior Inhibiting behavior

ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE …… 0.00 0.49 0.73 0.00 0.00 0.64
RETREAT 0.45 …… 0.70 0.70 0.83 0.73 0.73
DEFENSE 0.70 0.70 …… 0.83 0.83 0.83 0.83
HIDE 0.83 0.49 0.93 …… 0.99 0.45 0.93
EAT 0.53 0.70 0.83 0.93 …… 0.00 0.76
FORAGE 0.00 0.53 0.70 0.45 0.00 …… 0.83
SWIM 0.93 0.73 0.49 0.83 0.49 0.73 ……  

Table 8.  Mean and Standard Deviation of 7 structures 
(Fixed Food Source at center with new behavior network configuration) 
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Fig.13. Summed inhibition of all seven behaviors 

 (Fixed Food Source at center with new behavior network configuration) 
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Table 8 shows that Mean and Standard Deviation of 7 structures learned in the 

environment of “Fixed Food Source at center with new behavior network configuration”. 

Figure 13 presents the summed inhibition of seven behaviors based on Table 8. 

Comparing Table 8 with Table 2, the results show that they have the same inhibition 

relationship on some behavior pairs. For example, ESCAPE always has middle level 

inhibition to EAT while EAT always weakly inhibits ESCAPE; ESCAPE always strongly 

inhibits FORAGE while FORAGE always weakly inhibits ESCAPE. There are also some 

differences between these two patterns which caused by the changes of behavior network 

configuration. For example, in Table 8 FORAGE has higher inhibition to SWIM while 

SWIM has lower inhibition to FORAGE; in Table 8 ESCAPE always has middle 

inhibition level to SWIM while in Table 2 ESCAPE always has low inhibition level to 

SWIM. This is because the excitation of FORAGE is increased and the energy cost of 

FORAGE is decreased in new environment so that Crayfish can keep a higher level of 

energy. With enough energy, Crayfish do not need to worry about the high energy cost of 

behavior ESCAPE. So ESCAPE will be mostly selected instead of SWIM since ESCAPE 

can escape from Predator and return to Shelter in a very fast speed. To better support this, 

Figure 13 shows the Summed inhibition of all seven behaviors. We can see from Figure 

13 that the relative priority of SWIM (summed inhibition to other behaviors) significantly 

decreased and the relative priority of ESCAPE, FORAGE, and EAT do get improved. 

These results do demonstrate that the changes between this two behavior patterns are 

caused by the changes of behavior network configuration (increase on excitation and 

decrease on energy cost of FORAGE).  
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Inhibited behavior Inhibiting behavior
ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM

ESCAPE ….. 1.4 1.8 1.8 1.0 1.0 1.9
RETREAT 2.1 ….. 2.0 2.0 2.6 3.0 2.4
DEFENSE 2.1 1.7 ….. 1.8 2.1 1.9 2.0
HIDE 2.4 1.3 2.0 ….. 2.2 2.3 1.7
EAT 2.6 2.2 2.0 2.2 ….. 1.1 1.9
FORAGE 2.7 1.0 1.7 1.2 2.8 ….. 2.7
SWIM 1.0 1.0 1.9 1.8 1.9 1.0 …..  
 
Inhibited behavior Inhibiting behavior

ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE ….. 0.50 0.79 0.79 0.00 0.00 0.87
RETREAT 0.57 ….. 0.94 0.82 0.50 0.00 0.50
DEFENSE 0.87 0.82 ….. 0.42 0.87 0.87 0.67
HIDE 0.83 0.67 0.82 ….. 0.79 0.67 0.82
EAT 0.50 0.63 0.67 0.92 ….. 0.31 0.87
FORAGE 0.47 0.00 0.67 0.42 0.42 ….. 0.47
SWIM 0.00 0.00 0.87 0.79 0.87 0.00 …..  

Table 9.  Mean and Standard Deviation of 9 structures 
(Randomly generated Food Source with new behavior network configuration) 

 

ESCAPE RETREAT HIDE FORAGE SWIM
Rondom Food Source 12 377 221 1214 46
Fixed Food Source 38 491 403 1361 0  

Table 10: Numbers of behaviors selection (average over 100 simulations) 
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Fig.14. Summed inhibition of all seven behaviors 

(Randomly generated Food Source with new behavior network configuration) 
 

Table 9 shows the Mean and Standard Deviation of 9 structures learned in the 

environment of “Randomly generated Food Source with new behavior network 
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configuration”. Figure 14 presents the summed inhibition of seven behaviors based on 

Table 9. Based on the results, we can see that the relative priority (summed inhibition to 

other behaviors) of ESCAPE and RETREAT get lower while the relative priority of 

FORAGE and EAT do get improved as we expected. This is because Crayfish has to 

spend most of time to keep searching for Food Source in order to keep its energy level 

even though it might be caught by Predator. So FORAGE must have stronger inhibition 

to and weaker inhibition from other behaviors in order to be selected to perform; It also 

shows that SWIM has higher relative priority. This is because SWIM will cost less 

energy than ESCAPE since Crayfish cannot always keep a high level of energy as in the 

previous environment; Another observation is that the relative priority of HIDE is 

decreased. This is because HIDE will be excited only in Shelter. Since Crayfish has to 

spend most of time outside the Shelter, HIDE will less likely be selected. To better 

support this, Table 10 shows the averaged numbers of behaviors selection for ESCAPE, 

RETREAT, HIDE, FORAGE, and SWIM. We can find the same results in Table 11 as 

those described above. 

The above analyses show that the changes of environment (randomly generated 

Food Source) do cause the changes on the behavior pattern of Crayfish as we expected. 

Also since the structure features described above are commonly shared by all the 

structures as shown in Table 9, they can be considered to be consistent and can describe 

the behavior pattern of Crayfish in current environment.  
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Fig.15. Robustness test for the 4 structures (averaged over 100 simulations) 

(Randomly generated Food Source with new behavior network configuration) 
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Structure Mean Fitness SD MAX MIN
A 1.34790 0.12033 1.64230 1.06621
B 1.46671 0.11545 1.76014 1.07232
C 1.48765 0.10471 1.74480 1.19777

D 1.47982 0.11449 1.78552 1.17752  
Table 11.  Mean Fitness, Standard Deviation of Fitness, Maximum, and Minimum for the 3 structures 

(Randomly generated Food Source with new behavior network configuration) 
 
 

The results of Robustness test for 4 structures learned in current environment are 

obtained and presented in Fig. 15 and Table 11. We can see that all these structures 

display a stable distribution of fitness. Following the analysis method described in 

Chapter 5, these results demonstrate that the learned structures are robust and can be used 

to describe the behavior pattern of Crayfish in current environment. 

 

6.3. Apply same structures in different environments 

In this section we will apply robustness test to the structures learned from the first 

environment of “Fixed Food Source at center with original behavior network 

configuration” in previous two environments, which are “Fixed Food Source at corner 

with original behavior network configuration” and “Randomly generated Food Source 

with changed behavior network configuration”. The 3 structures learned in the first 

environment as shown in Table 1 will be used in this test. The results will be compared 

with Figure 7 and Table 3. Since these structures have shown the consistent and robust 

behavior pattern in the first environment, we expect that they can still deliver stable 

performance in different environment. More important, we expect them to show different 

performance in terms of survival ability in different environment since the learned 

structures highly depend on the given environment in which they are learned. 
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Fig.16. Robustness test for the 3 structures (averaged over 100 simulations) 
(Fixed Food Source at corner with original behavior network configuration) 
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Fig.17. Robustness test for the 3 structures(averaged over 100 simulations) 

(Randomly generated Food Source with changed behavior network configuration) 
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Structure Environment Mean Fitness Survival Steps
Fixed Food Source at center 1.777 1886

A Fixed Food Source at corner 0.819 926
Randomly generated Food Source 1.328 1717

Fixed Food Source at center 1.811 1910

B Fixed Food Source at corner 0.667 777
Randomly generated Food Source 1.233 1626

Fixed Food Source at center 1.810 1937
C Fixed Food Source at corner 0.892 993

Randomly generated Food Source 1.396 1778  
Table 12. Mean fitness and Survival steps of 3 structures in different environments 

(averaged over 100 simulations) 
 

The results in Figure 16, Figure 17, and Table 12 show that all these 3 structures 

can deliver stable performance in both testing environments in terms of Fitness 

distribution, Mean fitness, and Survival steps. But the results obtained in environment of 

“Randomly generated Food Source with changed behavior network configuration” are 

better than those in environment of “Fixed Food Source at corner with original behavior 

network configuration”. This is because the behavior FORAGE in the former one has a 

higher excitation and a lower energy cost, so that Crayfish in this environment can keep a 

high level of energy which help it maintain the more stable performance in different 

environments. More important, Table 12 shows that these 3 structures have the highest 

Mean fitness and Survival steps in the environment in which they are learned by GA. 

These results clarify that the “best” structure learned by GA is highly dependent on the 

environment. Thus given a particular environment, the learned structures will mostly 

share a strong similarity and can describe the behavior pattern in the current context.   
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6.4. Apply a different fitness function 

In order to test how the fitness function of the Genetic algorithm affects the learned 

structures, we will apply a different fitness function to the first simulation environment 

(Fixed Food Source at center with original behavior network configuration). The current 

fitness function is based on energy level of Crayfish and distance to Predator. We plan to 

change to a different fitness function that only depends on the “Survival steps” in the 

simulation, to see if a similar (or different) structure will be learned. 

Structure 1 Inhibiting behavior
Inhibited behavior ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE …… 2 2 1 1 1 2
RETREAT 2 …… 2 3 3 2 2
DEFENSE 1 2 …… 3 1 3 3
HIDE 1 1 3 …… 1 2 3
EAT 2 2 3 2 …… 1 2
FORAGE 3 3 2 1 2 …… 3
SWIM 1 1 1 3 1 1 ……
Structure 2 Inhibiting behavior
Inhibited behavior ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE …… 1 1 3 1 1 3
RETREAT 1 …… 3 2 2 3 1
DEFENSE 1 1 …… 2 2 3 3
HIDE 3 2 3 …… 3 2 2
EAT 2 1 2 2 …… 1 2
FORAGE 3 3 3 1 2 …… 2
SWIM 1 1 2 2 2 1 ……
Structure 3 Inhibiting behavior
Inhibited behavior ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE …… 1 2 3 1 1 3
RETREAT 3 …… 3 3 3 3 2
DEFENSE 1 2 …… 3 2 3 1
HIDE 2 2 2 …… 3 3 1
EAT 2 3 3 3 …… 1 2
FORAGE 3 2 1 2 3 …… 3
SWIM 1 1 1 1 1 1 ……
Structure 4 Inhibiting behavior
Inhibited behavior ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM
ESCAPE …… 2 1 3 1 1 2
RETREAT 2 …… 3 3 2 2 1
DEFENSE 3 2 …… 1 3 3 2
HIDE 2 1 3 …… 2 2 2
EAT 3 1 3 1 …… 1 1
FORAGE 3 3 3 2 2 …… 3
SWIM 1 1 1 3 3 1 ……  

Table 13.1  4 Behavior Network Structures learned by GA with new fitness function 
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Structure Survival steps
1 5044
2 4772
3 4441
4 4782  

Table 13.2  Fitness (Steps) of 4 learned Structures in Table 13.1 
 
 

Inhibited behavior Inhibiting behavior
ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM

ESCAPE …… 1.5 1.5 2.5 1 1 2.5
RETREAT 2 …… 2.8 2.8 2.5 2.5 1.5
DEFENSE 1.5 1.8 …… 2.3 2 3 2.3
HIDE 2 1.5 2.8 …… 2.3 2.3 2
EAT 2.3 1.8 2.8 2 …… 1 1.8
FORAGE 3 2.8 2.3 1.5 2.3 …… 2.8
SWIM 1 1 1.3 2.3 1.8 1 ……  

Inhibited behavior Inhibiting behavior
ESCAPE RETREAT DEFENSE HIDE EAT FORAGE SWIM

ESCAPE …… 0.5 0.5 0.87 0 0 0.5
RETREAT 0.71 …… 0.43 0.43 0.5 0.5 0.5
DEFENSE 0.87 0.43 …… 0.83 0.71 0 0.83
HIDE 0.71 0.5 0.43 …… 0.83 0.43 0.71
EAT 0.43 0.83 0.43 0.71 …… 0 0.43
FORAGE 0 0.43 0.83 0.5 0.43 …… 0.43
SWIM 0 0 0.43 0.83 0.83 0 ……  

Table 14. Mean and Standard Deviation of 4 structures 
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Fig.18. Summed inhibition of all seven behaviors based on Table 14 

 



 44

The structure learning with new fitness function follows the same process as 

described in Figure 3 except that the simulation step is increased up to 6000 (Steps) in 

order to prevent the fitness (Steps) from exceeding the original range of 2500 (Steps). 

Table 13.1 shows the 4 structures learned by GA with new fitness function (Survival 

steps). Table 13.2 presents the fitness for each of them and shows no one is higher than 

6000 (Steps). 

Table 14 shows the Mean and Standard Deviation of 4 structures. Figure 18 

presents the summed inhibition of all seven behaviors based on Table 14. The results of 

robustness test for the 4 structures learned in current environment are obtained and 

presented in Figure 19.  
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Fig.19. Robustness test for the 4 structures (averaged over 100 simulations) 

 

Compared with Table 2, we can see from Table 14 that they share many inhibition 

relationships. For example, FORAGE always weakly inhibits EAT and ESCAPE always 

weakly inhibit SWIM. More important, they have the same or similar pair inhibition 

relationships. For example, ESCAPE always has middle level inhibition to EAT while 

EAT always weakly inhibits ESCAPE; ESCAPE always strongly inhibits FORAGE 

while FORAGE always weakly inhibits ESCAPE; SWIM always strongly inhibits 

FORAGE while FORAGE always weakly inhibits SWIM. 

Compared with Figure 5, we can also see from Figure 18 that SWIM has a higher 

relative priority and is always weakly inhibited by other behaviors (lowest inhibition 

from other behaviors). Similarly, HIDE has the second highest relative priority since 

crayfish will spend the most time in Shelter due to the short distance between Food 
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Source and Shelter. Also it is clear that FORAGE has the second lowest relative priority 

as it is strongly inhibited by other behaviors and weakly inhibits other behaviors. 

These results indicate that the structures learned by GA with two different fitness 

functions mostly conform to each other in terms of structure features. Therefore, they can 

be considered similar. However, the results of robustness test for these 4 structures in 

Figure 19 are not as stable as those shown in Figure 7. The primary reason might be we 

only have 4 structures. It makes sense that survival ability (steps) can be employed to 

evaluate the performance of Crayfish in a given environment. So we believe the better 

robustness can be shown if we have learned enough structures with survival ability as 

fitness function. 



 

 

CHAPTER 7   CONCLUSION AND FUTURE WORK 

 
 

In this work, we first presented a GA-based structure learning method and then conducted 

the experiments in different environment against a DEVS-based model Crayfish which 

employ mutual inhibition behavior network as its behavior selection mechanism. The 

analysis results indicated that consistent and robust structures can be learned by GA so 

that we concluded it is the structure, not the specific value of a set of coefficients, that 

defines the behavior pattern of a behavior network. In order to find the structure features 

corresponding to the environment changes we compared the relative priority (summed 

inhibition to other behaviors) of behaviors and inhibition relationship of behavior pairs in 

different environment. The results show that different environment does lead to different 

structures and the structures learned by GA in different environment are still consistent 

and robust. Also we applied robustness test to the same structures in different 

environments. The results clarify that the “best” structure learned by GA is highly 

dependent on the environment. Thus given a particular environment, the learned 

structures will mostly share a strong similarity and can describe the behavior pattern in 

the current context. Moreover, we applied a different fitness function (Survival steps) to 

the first simulation environment in order to see if the similar structure will be learned. 

These results indicate that the structures learned by GA with two different fitness 

functions mostly conform to each other in terms of structure features and therefore can be 

considered similar. 
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However, the differences between the structures learned in different environments 

are not as “distinct and simple” as we initially expect. The method used in finding the 

structure features and the method to filter the “non-appropriate” structures should be 

further elaborated. This suggests more complex analyses are needed in the future work to 

characterize the structures learned in different environments. 
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