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by 
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ABSTRACT 

SecA is a central component of the general secretion system that is essential for 

growth and virulence of bacteria. A series of fluorescein analogs were tested against AT-

Pase activities of Escherichia coli SecA. Rose Bengal (RB) and Erythrosin B are potent 

inhibitors abolishing the activities of three forms of SecA ATPase with IC50 in µM range. 

Both inhibit SecA intrinsic ATPase with two mechanisms depending on ATP concentra-

tions, indicating they influence the two non-identical nucleotide binding sites differently. 

RB shows different inhibitory effects against three forms of SecA ATPase activities, sug-

gesting that the inhibition is related to the conformation of SecA. RB with IC50 at sub-µM 

level is the most potent inhibitor of SecA ATPases and SecA-dependent protein translo-

cation to date. The fluorescein analogs inhibit intrinsic ATPase of Bacillus subtilis SecA 

similarly, and also exhibit antibacterial effects in E. coli and B. subtilis. Our findings in-



dicate the value of fluorescein analogs as probes for mechanistic studies of SecA and the 

potential development of new SecA-targeted antimicrobial agents. 

A series of SecA derivatives with truncated C-terminus within the first long α-

helix of the helix-bundle extending the ATPase catalytic domain of N68 was analyzed. 

These SecA variants interact with lipids, and those containing the C-terminal portion of 

the long α-helix starting at residues #639 form the ring-like structure in liposomes, indi-

cating the critical domains for forming the protein-conducting channel. The presence and 

length of the C-domain influence the response to RB of NBDII mutants and C-terminal 

truncates of SecA. Thus this region may interact with the inhibitors and is involved in the 

structure and regulation of SecA ATPase activity. 

B. subtilis SecA was analyzed for interspecies comparison. Despite sharing high 

homology, this SecA homolog cannot complement E. coli mutants with SecA defect. 

Phospholipids do not stimulate ATPase activities of B. subtilis SecA, but induce its con-

formational changes, leading to the lipid-specific domains and ring-like structures similar 

to E. coli SecA. These pore-ring structures may represent part of the protein-conducting 

channels. Therefore, the potential structural roles of SecA in the protein translocation 

machinery may be universal in both Gram-negative and Gram-positive bacteria. 

 
 
INDEX WORDS: SecA, ATPase, Inhibitor, Fluorescein dyes, Protein conduction chan-
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1 INTRODUCTION  

Protein secretion in bacteria. In all organisms, the translocation of proteins into 

various cellular and extra-cellular compartments is important to maintain normal physio-

logical functions. In bacteria, more than one-third of the proteins are located in or outside 

the cellular cytoplasmic membrane. These secreted proteins are involved in stress sens-

ing/response, signal transduction, nutrients uptake, communication with the environment 

or other cells, microbe-host attachment, adhesion on specific surfaces, virulence of pa-

thogen, and other essential processes (Chitlaru, Gat et al. 2006; Zhou, Theunissen et al. 

2010). 13.2% of Escherichia coli genome is allotted to various transporters, indicating 

the importance of protein transport systems to the life cycles (Serres, Goswami et al. 

2004). Sixteen systems involved in protein export and secretion have been identified in 

bacteria (Economou, Christie et al. 2006). These systems can be divided into two catego-

ries – Sec-dependent and Sec-independent.  

Sec-pathway mediates the transport of proteins inserted into or across the cytoplas-

mic membrane. In Gram-positive bacteria, these proteins will be retained in the cell wall 

or released into medium after fold into the native conformation (van Wely, Swaving et al. 

2001). SecA-dependent systems operate a two-step process in Gram-negative bacteria. In 

step one, proteins pass the inner membrane and reach the pariplasmic space. Then in step 

two, other secretion systems are utilized to direct proteins into or through the outer mem-

brane. These systems include the type II secretion system (T2SS), some of the type IV 

secretion system (T4SS) related to toxin secretion (Rambow-Larsen and Weiss 2004), 
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autosecretion (T5SS), chaperon-usher for pili, and two-partner secretion (TPS) 

(Economou, Christie et al. 2006).  

 Sec-independent pathways include the type I secretion system (T1SS, ATP-binding 

cassette (ABC) transporters), type III secretion system (T3SS), some T4SS related to con-

jugation system, newly discovered type VI secretion system (T6SS) in some Gram-

negative bacteria, and Esc (originally called ESAT-6 (Pallen 2002)) in Gram-positive 

bacteria (Economou, Christie et al. 2006). The twin arginine translocation (Tat) system 

mediates the delivery of fully folded proteins with specialized N-terminal signal peptides 

carrying the consensus sequence of twin-arginine motif across the cytoplasmic membrane 

(de Leeuw, Granjon et al. 2002). In Gram-negative bacteria, these proteins are further 

transported across the outer membrane through T2SS (Voulhoux, Ball et al. 2001). 

Components and the current model of Sec-pathway. Sec-pathway is responsible 

for the transport of the majority of exported proteins. Proteins destined to this route carry 

N-terminal signal sequences, composed of a positive-charged N-terminus, a hydrophobic 

core of 8-12 residues, and a hydrophilic C-terminus with the consensus sequence for sig-

nal peptidases (Tjalsma, Antelmann et al. 2004; Papanikou, Karamanou et al. 2007). Pre-

proteins are recognized by signal-recognition particle (SRP) or Sec system specific cha-

perone (SecB) and directed to the translocase by docking FtsY or SecA, respectively 

(Papanikou, Karamanou et al. 2007).       

There are a series of proteins involved in the Sec translocation apparatus. The cur-

rent model for Sec-pathway (Wickner and Leonard 1996) illustrates that the core channel 

for protein translocation is formed by heterotrimeric SecYEG complex (Akimaru, 

Matsuyama et al. 1991; Nishiyama, Mizushima et al. 1992; Hanada, Nishiyama et al. 
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1994). SecYEG is the homolog of Sec61 channel complex in the endoplasmic reticulum 

(van Wely, Swaving et al. 2001; van der Sluis and Driessen 2006). The proposed translo-

cation channel is composed of oligomers of SecY complex, and the pore is formed by one 

copy of SecY (Osborne and Rapoport 2007). In this structure, the pore is blocked by a 

short helix, termed plug, which can be moved upon the interaction with signal peptides to 

open the channel (Van den Berg, Clemons et al. 2004; Osborne, Rapoport et al. 2005). 

The peripheral protein SecA hydrolyzes ATP to provide the energy required for the 

movement of preproteins across the plasma membrane (Eichler and Wickner 1997). 

Integral membrane protein complex, SecDFYajC, can stabilize the SecYEG complex and 

increase the efficiency of protein secretion but is not the essential component of the sys-

tem (Economou, Pogliano et al. 1995; Driessen and Nouwen 2008). Membrane protein 

YidC is involved in the insertion of membrane proteins (Samuelson, Chen et al. 2000; 

Chen, Xie et al. 2002). SecB is a molecular chaperone that rapidly binds to precursor pro-

teins to maintain their unfolded status and then targets them to SecA for translocation 

(Fekkes and Driessen 1999). There is no SecB homolog found in Gram-positive bacteria 

(van der Sluis and Driessen 2006), and CsaA is a chaperone proposed for preprotein-

SecA targeting in Gram-positive bacteria (Muller, Ozegowski et al. 2000). 

The quaternary structure of SecA. SecA can form oligomers, and its quaternary 

structure may be related to allosteric control and physiological function. SecA is found in 

solution as dimers and undergoes equilibrium between monomer and dimer depending on 

temperature, concentration, and ionic strength (Akita, Shinkai et al. 1991; Driessen 1993; 

Woodbury, Hardy et al. 2002; Ding, Hunt et al. 2003). Both monomer and dimer struc-

tures have been illustrated by X-ray crystallography of various SecA proteins (Sardis and 
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Economou 2010). However, in which status SecA functions in membranes during the 

protein translocation is still controversial. Some reports conclude that monomer is the 

active form of SecA because acidic phospholipids, a synthetic signal peptide (Or, Navon 

et al. 2002), and SecYEG (Alami, Dalal et al. 2007) trigger the dissociation of SecA di-

mer. Contradictory results show signal peptides induce SecA oligomerization and mem-

brane insertion (Benach, Chou et al. 2003; Shin, Kim et al. 2006). The inactive SecA mo-

nomeric mutant (Jilaveanu, Zito et al. 2005) and active cross-linked SecA dimers (de 

Keyzer, van der Sluis et al. 2005; Jilaveanu and Oliver 2006) lead to the conclusion of 

dimer as the active form. We have also shown that SecA functions in membrane as dimer 

in vivo and in vitro, and the dissociation into monomer is not essential for protein translo-

cation (Wang, Na et al. 2008). With the same approach, genetically constructed SecA 

trimer show similar activity and structures in vitro as the tandem dimer (Wang and Tai, 

unpublished data), raising the possibility that SecA may exist in higher order status (such 

as hexamers) in membranes. Thus the quaternary oligomeric state of functional SecA still 

remains unclear, and more work is needed to resolve this puzzle. 

Domains of SecA. Soluble SecA consists of two separable domains, the N-terminal 

68 kDa fragment (N68) and the C-terminal 34 kDa regulatory domain (C34). N68 holds 

high ATPase activity equivalent to the translocation ATPase which is down-regulated by 

IRA1 in C34 (Karamanou, Vrontou et al. 1999). N68 catalytic domain contains several 

subdomains of SecA: two nucleotide-binding domains (NBDI and NBDII) and preprotein 

cross-linking domain (PPXD). NBDI is composed of the conserved Walker A and B mo-

tifs and is responsible for the high affinity binding and hydrolysis of ATP (Mitchell and 

Oliver 1993; Sianidis, Karamanou et al. 2001). NBDII comprises a consensus sequence 
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of Walker A and a putative Walker B motif (Mitchell and Oliver 1993). There is no expe-

rimental demonstration of nucleotide binding to NBDII. Instead, NBDII binds to NBDI 

and plays the role as intramolecular regulator of the hydrolysis of ATP (IRA2) 

(Nakatogawa, Mori et al. 2000). N68 contains conserved DEAD superfamily II motifs in 

NBDI and IRA2 and represents a DEAD motor (Sianidis, Karamanou et al. 2001). SecA 

interacts with preproteins at PPXD which is inside NBDI but composes a separate do-

main in the tertiary structure (Hunt, Weinkauf et al. 2002; Papanikou, Karamanou et al. 

2005). 

C-34 can be divided into three structural subdomains: the α-helical scaffold domain 

(HSD), the α-helical wing domain (HWD), and the C-terminal domain (CTD) (Hunt, 

Weinkauf et al. 2002). HSD is composed by the bundle of three α-helixes. The first long 

α-helix (amino acid #621-668) extends through the whole length of SecA, with one side 

interacting with NBDI and NBDII (IRA2) and the other side interacting with the other 

protomer in the homodimer. The second and third α-helixes form the helix-loop-helix 

(HLH) structure in which the IRA1 is located (Karamanou, Vrontou et al. 1999). The 

third helix interacts with PPXD, keeping IRA1 at the opposite side of NBDI and IRA2. 

HSD is suggested to be a global conformational template, binding to the subdomains to 

ensure their relative positions of each other. HWD is inserted between the first and 

second α-helixes of HSD and is weakly linked to other parts of SecA. CTD is not well 

conserved in SecA and is not essential for its function (Kakeshtia, Kageyama et al. 2010). 

The extreme C-terminal region of CTD is involved in SecB and lipid binding (Breukink, 

Nouwen et al. 1995), and is connected to the rest of C-34 by C-terminal linker peptide 

(CTL). CTD has dynamic structure and is not observed in the crystal structure (Hunt, 
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Weinkauf et al. 2002; Sharma, Arockiasamy et al. 2003). These major structural domains 

are summarized in Figure 1.1. 

SecA is the major component of the bacterial Sec-system that is found both in the 

cytoplasm and the membrane (Cabelli, Dolan et al. 1991). SecA ATPase functions as a 

molecular motor that hydrolyzes ATP to provide the essential energy for the Sec-

dependent protein translocation. The intrinsic ATPase activity of SecA is relatively low, 

while the membrane ATPase could be stimulated by anionic phospholipids or mem-

branes. Binding to SecYEG complex and precursor proteins further fully activates the 

ATPase activity referred to as SecA translocation ATPase (Lill, Dowhan et al. 1990; 

Wang, Miller et al. 2000).  As a central component of Sec-system, SecA interacts with 

almost all other components involved in protein translocation through different regions. 

Besides the domains already mentioned above, several binding sites for other proteins 

and ligands have been identified. Both C-terminus and N-terminus of SecA are involved 

in SecB binding (Fekkes, de Wit et al. 1999; Randall and Henzl 2010). N-terminal part 

(residues 221-227) of PPXD is essential for signal peptide binding while the C-terminal 

part (residues 267-340) may be the binding site for mature domain of preproteins 

(Kimura, Akita et al. 1991; Vrontou and Economou 2004). SecA interacts with the cytop-

lasmic membrane by low-affinity binding with anionic phospholipids, and high-affinity 

binding with SecYEG (Hartl, Lecker et al. 1990; Lill, Dowhan et al. 1990). SecA inte-

racts with SecYEG complex through contact with SecY. Both the C-terminal region 

(Snyders, Ramamurthy et al. 1997) and the N-terminal catalytic domain of SecA (Dapic 

and Oliver 2000; Vrontou, Karamanou et al. 2004) show interaction with SecY. In addi-

tion, the first 8 residues of the N-terminus of SecA can bind to SecG (Mori, Sugiyama et 
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al. 1998). Therefore, the interaction of SecA and SecYEG may involve multiple areas of 

contact. 

SecA as target for new antibiotics. Because of the improper use and overcon-

sumption of antibiotics, drug-resistant bacteria strains have emerged and spread with in-

creased rapidity (Chen, Chopra et al. 2009). This emergence has created a demand for 

new antibacterial agents, especially those agents with alternative mechanisms that will 

avoid cross-resistance with existing antibiotics (Payne 2008). Protein secretion systems 

have been proposed as new antibiotic targets as a consequence of the importance for bac-

terial cell growth and virulence (Stephens and Shapiro 1997). The general secretion 

(Sec)-pathway mediates the majority of protein transportation and is highly conserved in 

bacteria (van Wely, Swaving et al. 2001; Driessen and Nouwen 2008). Among the com-

ponents of the Sec-system, SecA is of particular interest because of the following rea-

sons: (1) SecA is essential for both Gram-positive and Gram-negative bacteria, including 

a variety of pathogens (Segers and Anne 2011). (2) Unlike SecYEG, which is homolog-

ous to the Sec61 channel complex in the endoplasmic reticulum in yeast and mammalian, 

there is no structurally-similar human counterpart of SecA (Manting and Driessen 2000; 

Pohlschroder, Hartmann et al. 2005; van der Sluis and Driessen 2006). (3) Several puta-

tive ligand-binding sites have been found in EcSecA and can serve as potential drug tar-

gets (Segers and Anne 2011). (4) Potential inhibitors can be screened through rapid func-

tional assays of SecA ATPase activity. With all these features, SecA is an ideal target for 

the development of new antibacterial drugs. 

Azide is a well-known SecA inhibitor used as a molecular tool to probe the Sec-

system (Knott and Robinson 1994), but it only inhibits the translocation ATPase, not in-



8 

trinsic or membrane ATPase (Oliver, Cabelli et al. 1990; Nakane, Takamatsu et al. 1995). 

However, azide also inhibits many other enzymes in mammalian cells, such as cytoch-

rome oxidase (Berndt, Callaway et al. 2001) and superoxide dismutase (Marklund 1984). 

The general cytotoxicity in host cells and the simple structure with less potential for fur-

ther optimizing make azide a less-favored candidate. Antibacterial activities are found 

from natural SecA inhibitors. Only translocation ATPase is repressed by CJ21058, but 

the effects on the intrinsic and membrane ATPase are unknown (Sugie, Inagaki et al. 

2002). The effect against SecA function is not reported in the study of pannomycin 

(Parish, de la Cruz et al. 2009). There is still a need to search for SecA inhibitors with a 

correlation between their ability to inhibit SecA and the antimicrobial activities. The ob-

tained SecA inhibitors should provide a new perspective for pharmaceutical application 

and help us gain insight into the molecular mechanism of SecA-dependent protein trans-

location.  

SecA as protein conducting channels. Although the model of SecYEG complex as 

the protein conducting channel in the cytoplasmic membrane is widely accepted, there is 

controversy over the necessity of SecYEG for protein translocation. Membranes depleted 

of SecY and SecE are still active in translocation of some precursor proteins, suggesting 

these two proteins are not essential for the transportation of all proteins (Watanabe, 

Nicchitta et al. 1990; Watanabe and Blobel 1993; Yang, Lian et al. 1997; Yang, Yu et al. 

1997). On the other hand, the membrane-integral form of SecA and two lipid-specific 

domains have been identified (Chen, Xu et al. 1996). Pore-like structures of EcSecA in 

lipids detected by electronic microscopy (EM) and atomic force microscopy (AFM) re-

veal the ability of SecA itself to form the channel-like structure, which is independent of 
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ATP or on-going protein translocation (Wang, Chen et al. 2003). Electro-physiological 

data show EcSecA, but not SecYEG, is the major contributor for channel activity, provid-

ing more evidence that SecA can form the protein-conducting channel (Lin, dissertation, 

2006) (Hsieh, Zhang et al. 2011). Therefore, we are testing the hypothesis that in addition 

to catalyzing ATP hydrolysis, certain domains of SecA play an important structural role 

in the translocation machinery, constructing part of the protein-conduction channels. 

SecA in Gram-positive bacteria. Because of the difference of cellular structure, 

secreted proteins in Gram-positive bacteria only need to cross a single membrane to reach 

the extra-cellular environment. Gram-positive bacteria (e.g., Bacillus species) have the 

ability to secrete a large amount of protein into the extra-cellular medium; therefore, they 

are often used in industry for commercial production of secreted proteins. The genome 

sequence analysis implies that the protein secretion systems of Gram-positive and Gram-

negative bacteria are quite similar because they share the major components (van Wely, 

Swaving et al. 2001). The availability of the X-ray crystallography and domain analysis 

of B. subtilis SecA enhances our understanding of its structure and function (Hunt, 

Weinkauf et al. 2002). The research in our lab centers on the structure and function of 

SecA, using E. coli as the model system. Currently, we are expanding our interest to oth-

er bacteria. In particular, SecA from B. subtilis (BsSecA) and S. pyogenes (SpSecA) are 

used in this study as models of Gram-positive bacteria. 

Here we explore the structure and function of SecA with multiple approaches. This 

dissertation includes three parts: (1) Screening and analysis of SecA inhibitors as poten-

tial antibacterial agents; (2) The structural and functional analysis of the first α-helix of 
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C-terminal domain of EcSecA; and (3) A comparative study of Gram-positive SecA. This 

study will help us to elucidate the role of SecA in protein-translocation systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.1. Structure of SecA. (a) The structure of one protomer of the homodimer 

of EcSecA (Protein Data Bank (PDB) number 2FSF) (Papanikolau, Papadovasilaki et 

al. 2007); (b) Positions of the subdomains. The boundaries are labeled with the resi-

due numbers. NBD: nucleotide binding domain; PPXD: preprotein cross-linking do-

main; IRA: intramolecular regulator of the hydrolysis of ATP; HSD: α-helical scaf-

fold domain; HWD: α-helical wing domain; CTD: C-terminal domain. 

a 

b 
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2.1 Abstract 

SecA is a central component of the general secretion system that is essential for 

bacterial growth. A series of fluorescein analogs were tested against the ATPase activity 

using the SecA catalytic domain. Rose Bengal (RB) and Erythrosin B (EB) were found to 

be potent inhibitors with IC50 values of 0.5 µM and 2 µM, respectively, while azide, a 

well-known SecA inhibitor which has no effect up to 10 mM. RB and EB inhibit the cata-

lytic SecA ATPase more than the F1F0-proton ATPase. RB and EB also inhibit the SecA 

intrinsic ATPase activity  with IC50 of 20-30 µM. Kinetics study reveals that the SecA 

intrinsic ATPase is affected by these fluorescein analogs competitively at low ATP con-

centrations and non-competitively at high ATP concentrations. The membrane and trans-

location ATPases are inhibited non-competitively by RB, with IC50 of about 4 µM and 

1µM, respectively. In contrast, the inhibition by EB for all 3 forms of SecA ATPase re-

mains constant with IC50 about 20-30 µM. The in vitro translocation of proOmpA precur-

sors into membrane vesicles is strongly inhibited by RB with IC50 of about 0.25 µM, 

making RB so far the most potent inhibitor of SecA ATPases and SecA-dependent pro-

tein translocation. These compounds also exhibit antibacterial effects. Our findings show 

the value of fluorescein analogs as probes for mechanistic studies of SecA functions, and 

for the potential development of new antimicrobial agents with SecA as the target. 

 

2.2 Introduction 

In all growing cells, the translocation of proteins into various cellular and extra-

cellular compartments is essential to maintain normal physiological functions. In bacteria, 

more than 30% of the proteins are located in or outside the cellular cytoplasmic mem-
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brane. The general secretion (Sec)-pathway mediates the transport of most unfolded pro-

teins across or inserted into the cytoplasmic membrane before these proteins reach their 

final destinations in the cytoplasmic membrane, periplasmic space or outer membrane 

(Papanikou, Karamanou et al. 2007). The bacterial Sec-pathway consists of a series of 

membrane proteins including SecY, SecE, and SecG that constitute an oligomeric com-

plex, which is homologous to the Sec61 channel complex in the endoplasmic reticulum 

(Mori and Ito 2001; Driessen and Nouwen 2008). SecA is the major component of the 

bacterial Sec-system that is found both in the cytoplasm and the membrane (Cabelli, 

Dolan et al. 1991), and functions as an ATPase that provides the essential energy for the 

Sec-dependent protein translocation. The intrinsic ATPase activity of SecA is relatively 

low, while the membrane ATPase could be stimulated by anionic phospholipids. Binding 

to SecYEG complex and precursor proteins further fully activates the ATPase activity 

referred to as SecA translocation ATPase (Lill, Dowhan et al. 1990; Wang, Miller et al. 

2000). 

Inhibitors can be useful tools for probing the conformational changes of SecA 

during protein translocation. Azide is a well-known SecA inhibitor (Knott and Robinson 

1994; Nakane, Takamatsu et al. 1995). However, azide inhibits only the translocation 

ATPase but not the intrinsic and membrane ATPases of SecA (Oliver, Cabelli et al. 1990; 

Nakane, Takamatsu et al. 1995). It has been reported that a natural fungal fermentation 

product CJ21058 also inhibits the translocation ATPase, though the effect on the intrinsic 

or membrane ATPase of SecA has not been reported (Sugie, Inagaki et al. 2002). More 

recently, a secondary metabolite (pannomycin) from fungi with similar structure was iso-

lated by the antisense-based screening against SecA (Parish, de la Cruz et al. 2009). This 
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compound only shows weak antibacterial activity with MIC in the mM range, and the 

inhibitory effect against SecA function was not reported. By virtual screening and opti-

mizing, we recently found several thiouracil-based compounds capable of inhibiting the 

intrinsic SecA ATPase (IC50 20-60 µM) (Li, Huang et al. 2008). A subsequent study syn-

thesized a series of thiazolo[4,5-d]pyrimidine derivatives with the most potent compound 

having an IC50 value of 135 µM against EcSecA intrinsic ATPase, but showed minor ef-

fect on the translocation ATPase (Jang, De Jonghe et al.). It has also been reported that 

some halogenated fluorescein analogs could influence the activity of phosphatase as non-

hydrolyzable nucleotide analogs (Mignaco, Lupi et al. 1996). In this work, the effects of 

several fluorescein analogs were tested against SecA ATPase activity. Rose Bengal and 

Erythrosine B show strong inhibitory effects on the three forms of SecA ATPase activity 

and the in vitro protein translocation, as well as exhibit antimicrobial effects. 

 

2.3 Material and methods 

Bacterial strains, medium, and chemicals. Escherichia coli K-12 strain 

MC4100 (Casadaban 1976), NR698 (MC4100 imp4213), a leaky mutant with increased 

outer membrane permeability (Ruiz, Falcone et al. 2005) from T. Slhavy, and BA13 

(MC4100 secA13(am) supF(ts)) (Cabelli, Chen et al. 1988) from D. Oliver and Bacillus 

subtilis strain 168 (lab stock) were used in this study. Luria-Bertani (LB) liquid and solid 

(1.5% agar) media with 0.2% glucose were used for bacterial growth. Fluorescein ana-

logs were purchased from Sigma-Aldrich Corp (St. Louis, MO) and were dissolved in 

water (for Rose Bengal, Erythrosin B, and fluorescein) or 100% DMSO (for diiodofluo-

rescein, Ecosin Y, and dinitrofluorescein). 
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Determination of bacteriostatic and bactericidal concentrations of fluoresce-

in analogs. Plate assay: 0.5 mL culture of bacterial cells (exponential phase, OD600=0.5) 

was mixed with 4 mL of LB with 0.2% of glucose and 0.75% soft agar and then was 

poured into petri dishes. After the soft agar solidified, 1 µL of the potential inhibitors was 

spotted on the surface of the culture. Bacteriostatic effect was judged by the appearance 

of a clear zone of growth inhibition after overnight incubation at 37°C. Liquid culture 

assay: Bacterial cells of exponential phase (OD600 about 0.5-0.8) were diluted to 

OD600=0.05 with LB with 0.2% of glucose. 90 µL of diluted culture was incubated at 37 

°C, at 1,000 rpm (Eppendorf Thermomixer R, Brinkmann Instruments, Inc.) in the pres-

ence of 10 µL of inhibitors or equal volume of water as control. After 14 hours of incuba-

tion, cell growth was determined by OD600. Inhibition of cell growth (or bacteriostatic 

effect) was illustrated by decreasing OD. Bactericidal effect assay: 40 µL inhibitors were 

added into 360 µL of bacteria cultures (exponential phase, OD600=0.5) while the same 

volume of water was used as control. After one hour treatment at 37°C, cultures were 

spread on LB plate after serial dilutions, and the colony forming unit (CFU) of survival 

cells were enumerated after overnight incubation at 37°C. Inhibitory effect (or bactericid-

al effect) was illustrated by the decreasing of the log value of CFU. All assays were done 

at least in triplicate, and the results were presented as line or bar graphs with standard er-

ror of the means. 

Preparations of various SecA proteins, F1F0-ATPase, proOmpA, and mem-

brane vesicles. The N-terminal catalytic domain of SecA from E. coli (EcN68) was over-

expressed from pIMBB28 (Karamanou, Vrontou et al. 1999) obtained from A. Econo-

mou. EcN68 was used for the early screening because it has higher intrinsic activity and 
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is more sensitive to inhibitors. The full-length SecA from E. coli (EcSecA) and B. subtilis 

(BsSecA) were over-expressed from plasmids pT7-SecA (Cabelli, Chen et al. 1988) and 

pT7div (McNicholas, Rajapandi et al. 1995) respectively, both obtained from D. Oliver. 

SecA proteins were purified as described (Chen, Xu et al. 1996; Chen, Brown et al. 

1998). F1F0-ATPase enriched membrane of E. coli strain KY7485 (Kanazawa, Miki et al. 

1979) obtained from W. Brusilow was prepared as described (Foster and Fillingame 

1979). F1F0-ATPase was partially purified by sucrose gradient fractionation and then re-

constituted into liposomes by dialysis. The purification of proOmpA was described with-

out radioactive labeling (Chen, Xu et al. 1996). SecA-depleted BA13 membrane vesicles 

were prepared as described (Tai, Tian et al. 1991), and washed with 6 M urea to reduce 

endogenous ATPase activity. 

In vitro ATPase activity assay. ATPase activity assays were performed as de-

scribed (Lill, Dowhan et al. 1990) with minor modifications. For intrinsic and membrane 

ATPase assay, 50 µL reaction mixtures contained 1.8 µg EcN68, or 1.5 µg EcSecA un-

less specified otherwise, 20 µg ovalbumin, 1.2 mM ATP, 50 mM Tris-HCl (pH7.6), 20 

mM KCl, 20 mM NH4Cl, 2mM Mg(OAc)2, 1 mM DTT, and (for membrane ATPase) 3 

µg urea-washed E. coli BA13 membrane. For translocation ATPase assay, reaction mix-

tures contained 1 µg proOmpA in addition to membranes. For proton ATPase activity, 

reconstituted-liposomes containing partially purified F1F0-proton ATPase were assayed in 

the same condition as the intrinsic ATPase.  All reactions were carried out at 40°C for an 

appropriate time in the linear ranges of the activity assay that was determined by the re-

lease of inorganic phosphate detected by the photometric method (Lanzetta, Alvarez et al. 

1979) with the absorption measured at 660 nm (SmartSpec Plus, Bio-Rad Laboratories, 
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Inc.). The inhibitory effects were illustrated by the percentage (%) of remaining ATPase 

activity as compared to the controls in the absence of potential inhibitors. All assays were 

performed at least in triplicate, and the results were presented as line graphs with stan-

dard error of the mean. 

In vitro protein translocation assay. Protein translocation assay was carried out 

as previously described using 35S-labeled proOmpA as a marker (Wang, Na et al. 2008). 

The protease-resistant translocated proteins were analyzed by SDS-PAGE, autoradio-

graphed, and quantified by a densitometer (GS-800 Calibrated Densitometer, Bio-Rad, 

Hercules, CA).  

Molecular simulation of docking complexes. For simulating the binding profiles 

of DI, EB, RB and CJ-21058, their structures were docked into the ATP site of EcSecA 

using the DOCK 6 program (Ewing, Makino et al. 2001; Moustakas, Lang et al. 2006). 

Residues within a radius of 6 Å around the center of ATP were defined as the active site 

to construct a grid. The active site included residues Gly80, Met81, Arg82, His83, Phe84, 

Gln87, Arg103, Thr104, Gly105, Glu106, Gly107, Lys108, Thr109, Leu110, Arg138, 

Asp209, Glu210, Arg509 and Gln578. The subsequent computational work was con-

ducted as described previously (Li and Wang 2006; Li and Wang 2007). Briefly, the 

docked complexes were solvated by using the TIP3P water model (Jorgensen, 

Chandrasekhar et al. 1983), and then subjected to 500 steps of molecular mechanics mi-

nimization and molecular dynamics simulations at 300 K for 1.5 ns using the SANDER 

module in AMBER 8 program (Case, Cheatham et al. 2005). 
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2.4  Results  

Fluorescein analogs as ATPase inhibitors. 

A series of commercially available fluorescein analogs were screened against the 

in vitro intrinsic ATPase of SecA. For measuring higher intrinsic ATPase activity, we 

used the N-terminal catalytic domain of EcSecA (EcN68) without the C-terminal domain 

possessing the unregulated ATPase activity (Karamanou, Vrontou et al. 1999; 

Karamanou, Sianidis et al. 2005). The inhibitory effect of the potential SecA inhibitors is 

illustrated (Figure 2.1) and the IC50 values of fluorescein analogs with significant inhibi-

tory effects are summarized in Table 1. Among the screened compounds, RB and EB are 

the most effective, with IC50 of 0.5 µM and 2 µM, respectively (Figure 2.2). Since RB 

and EB are known to inhibit some ATPases from animal tissues (Morris, Silbergeld et al. 

1982; Silbergeld, Anderson et al. 1982; Fricke 1985), we tested whether these com-

pounds inhibit other E. coli ATPases such as F1F0-ATPase. The IC50 values of RB and EB 

for F1F0-ATPase are about 10 μM and 30 μM, respectively (Figure 2.2). The data indicate 

that RB and EB may be general ATPase inhibitors. However, they are more effective on 

the catalytic SecA ATPase. RB has been reported to inhibit some ATPases by photo-

oxidation (Watson and Haynes 1982; Glaser, Cadenas et al. 1988). We found that RB 

shows similar inhibitory effects of SecA ATPase in normal room illumination and in dark 

conditions (Figure 2.3), suggesting that photo-oxidation is probably not related to the in-

hibition of SecA under the conditions used. 

 

RB and EB show different inhibitory effects on three forms of EcSecA AT-

Pase activity. 
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Since the ATPase activity of the catalytic domain of SecA could be inhibited by 

these fluorescein analogs, we examined the inhibitory effects on the ATPase activity of 

full-length SecA. RB and EB strongly inhibit the intrinsic ATPase activity of EcSecA, 

with IC50 of about 20-30 µM. We further investigated the inhibitory effects of RB and EB 

on the membrane and translocation ATPases of EcSecA. The data show that RB and EB 

inhibit all three forms of EcSecA ATPase activities (Figure 2.4 a-c). EB shows similar 

inhibitory effects to all three forms of ATPase activity with IC50 of about 10-20 µM (Fig-

ure 2.4 a-c, Table 2.2); interestingly, RB shows significantly different potencies depend-

ing on the form of ATPase tested. While the inhibition of the intrinsic ATPase by RB is 

similar to EB, the membrane ATPase is more sensitive to RB with IC50 of 4 µM, and the 

translocation ATPase is the most sensitive with IC50 of 0.9 µM (Table 2.2). The lipid-

stimulated ATPase activity is also inhibited by RB and EB (Figure 2.4d). 

Since RB shows different inhibitory effects on three forms of SecA ATPase, we 

determined their kinetic parameters to elucidate the mechanism of inhibition. Data were 

fit by nonlinear regression analysis to determine the apparent Michaelis-Menten constants 

(Table 2.3). The sigmoid Michaelis-Menten plot of intrinsic ATPase indicates that there 

may be two inhibition sites (Figure 2.5a). Double reciprocal plots clearly demonstrate 

two inhibitory mechanisms in different concentration ranges of the substrate (Figure 2.5b 

and c). At low ATP concentrations (below 0.6 mM), RB acts as a competitive inhibitor 

against the intrinsic ATPase with an apparent Ki of 22.44±3.33 µM, increased Km and 

about constant Vmax (Table 2.3). At high ATP concentrations (above 1mM), RB acts as a 

non-competitive inhibitor with an apparent Ki of 57.11±3.37 µM, constant Km, and de-

creased Vmax (Table 2.3). The inhibition of the SecA membrane ATPase by RB exhibits a 
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“mixed-mechanism.” It has both competitive and non-competitive inhibition characters 

but more toward the later, resulting in an average Ki of 1.42±0.22 µM, slightly increased 

Km, and decreased Vmax (Figure 2.6 and Table 2.3). On the other hand, RB inhibits the 

translocation ATPase of SecA only non-competitively in a broad range of ATP concen-

trations with Ki of 0.43±0.02 µM, constant Km, and decreased Vmax (Figure 2.7 and Table 

2.3). 

Similarly, the inhibition of EB on the intrinsic ATPase activity of SecA also 

shows differential effects of various ATP concentrations. Thus at low ATP concentra-

tions, EB inhibits the SecA ATPase competitively with Ki of 4.06 ± 0.32 µM, while at 

high ATP concentrations, it inhibits SecA ATPase non-competitively with Ki of 34.29 ± 

8.08 µM (Figure 2.8). These data indicate that RB and EB affect the intrinsic SecA AT-

Pase in a similar manner. Since different forms of SecA show similar sensitivities to EB 

but drastically different ones to RB, it would be interesting to compare the inhibitory me-

chanisms of these two inhibitors against the translocation ATPase. Unlike RB inhibits the 

translocation ATPase non-competitively (Figure 2.7), EB shows an obvious mixed-

mechanism of competitive and non-competitive inhibition with average Ki of 1.17 ± 0.24 

µM (Figure 2.9). These data reveal the difference between these two structure-alike inhi-

bitors.   

  

RB and EB also inhibit ATPase activities of BsSecA.  

Gram-positive Bacillus subtilis SecA (BsSecA) has high homology (51% identity) 

to EcSecA, and has much higher intrinsic ATPase activity. We determined the inhibition 

profile of RB and EB on BsSecA. As expected, both RB and EB show inhibitory effects 



21 

on BsSecA intrinsic ATPase activities, with RB as a stronger inhibitor (Figure 2.10).  

Different forms of BsSecA ATPase with E coli membrane and OmpA precursor have 

similar sensitivities for RB and EB, with IC50 of 10-20 µM and 40-70 µM, respectively 

(Table 2.2). The inhibitory mechanism of RB against the intrinsic ATPase of BsSecA al-

so shows the similar two-site inhibition: at low ATP concentrations (below 0.6 mM), RB 

acts as a competitive inhibitor against the BsSecA intrinsic ATPase with an apparent Ki 

of 4.97 ± 1.07 µM. At high ATP concentrations (above 1 mM), RB acts as a non-

competitive inhibitor with an apparent Ki of 7.99± 0.69 µM (Figure 2.11). This phenome-

non indicates that the inhibitory mechanisms of RB against the intrinsic ATPase of BsSe-

cA and EcSecA are similar. 

 

RB and EB inhibit the protein translocation in vitro.  

The translocation ATPase activity of SecA is essential for the translocation of 

precursor proteins in vitro (Oliver, Cabelli et al. 1990; Sianidis, Karamanou et al. 2001). 

Since the translocation ATPase of EcSecA is significantly affected by RB and EB (Table 

2), we further investigated the effects of RB and EB on the SecA-dependent protein 

translocation in vitro. We found that the in vitro translocation of precursor proOmpA into 

membrane vesicles is severely inhibited by RB and EB (Figure 2.12). Interestingly, the 

protein translocation is about three to four folds more sensitive to RB and EB than the 

translocation ATPase. Consistent with the result of translocation ATPase, RB shows 

stronger inhibitory effect (with IC50 of 0.25 µM) than EB (with IC50 of 4 µM). 

 

RB is bactericidal on both Gram-positive and Gram-negative bacteria. 
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It has been reported that RB can inhibit the growth and kill Staphylococcus au-

reus in dark, while kills various bacteria through photo-oxidation (Banks, Board et al. 

1985; Rasooly and Weisz 2002; Kim, Park et al. 2008; Waite and Yousef 2009). Since 

SecA is an essential protein for bacterial growth, we next examined the antimicrobial ef-

fect of these SecA inhibitors. The fluorescein analogs that inhibit EcN68 ATPase in vitro 

were subjected to the following study. These compounds inhibit the growth of both 

Gram-positive and Gram-negative bacteria in plate assay (Table 2.4). Gram-negative bac-

teria E. coli MC4100 is very resistant to the fluorescein analogs possibly because of the 

outer-membrane barrier but its permeable leaky  mutant NR698 (Ruiz, Falcone et al. 

2005) shows similar sensitivity to Gram-positive B. subtilis. Among the tested fluoresce-

in analogs, diiodofluorescein (DI), Ecosin Y (EY), and dinitrofluorescein (DN) show the 

MIC at mM level, while RB and EB have stronger inhibition with MIC at low µM level. 

RB also inhibits the growth of both Gram-positive and Gram-negative bacteria in liquid 

culture. The growth of E. coli NR698 and B. subtilis 168 can be completely inhibited at 

low concentration level (50-75 µM) (Figure 2.13). RB shows the same potency of bacte-

riostatic activity with or without 0.2% glucose in the media, suggesting that F1F0-proton 

ATPase indeed is not the primary target of the inhibition. The bactericidal effects of RB 

and EB were also tested. After one-hour treatment on exponential-phase cells, the CFU 

was determined after overnight incubation. The leaky mutant NR698 is very sensitive to 

RB. With 100 µM of RB, cell survival decreases about 10 log units (Figure 2.14a). With-

out the barrier of outer membrane, RB shows strong bactericidal effect on B. subtilis in a 

concentration dependent manner (Figure 2.14b). Cell density does not drop in the pres-
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ence of 100 µM RB up to 90 min (Figure 2.15), indicating that the bactericidal effects of 

RB on both bacteria are not caused by cell lysis. 

 

The structures of RB and EB fit in the SecA ATP pocket. 

Earlier studies show that fluorescein analogs bind to enzymes containing nucleo-

tide binding sites with high affinity (Jacobsberg, Kantrowitz et al. 1975; Yip and Rudolph 

1976; Morris, Silbergeld et al. 1982). In order to examine the binding profile between 

SecA and fluorescein analogs, in silico modeling was conducted by molecular simulation.  

The structures of RB, EB, and DI were docked into the ATP site of EcSecA. RB and EB 

show very similar binding profiles, while DI shows a different conformation because of 

the lack of the diiodo-moiety (Figure 2.16). For comparison, the binding mode of CJ-

21058, a natural product SecA inhibitor, was also examined. RB and CJ-21058 seemed to 

occupy the same position and with the same orientations. 

 

2.5 Discussion  

  In the present study, we have found that several fluorescein-related analogs can 

inhibit the ATPase activity of SecA, the SecA-dependent in vitro protein translocation, 

and the growth of cells with bactericidal effects. Among these, RB is the most potent and 

show different inhibitory mechanisms for the SecA ATPases. 

It has been previously reported that some ATPases from animal tissues could be 

inhibited by RB and EB mediated photo-oxidation (Watson and Haynes 1982; Glaser, 

Cadenas et al. 1988). The singlet oxygen attacks the essential amino acid residues and 

causes structural and functional degradation of enzymes. Photo-oxidation has been re-
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ported to be the primary mechanism for RB and some halogenated fluoresceins working 

as the photosensitizer in antimicrobial actions (Banks, Board et al. 1985; Rasooly and 

Weisz 2002; Kim, Park et al. 2008; Waite and Yousef 2009). In our studies, all assays 

have been performed under the condition of normal room illumination without special 

light excitation. Moreover, reactions with or without light show no difference in IC50. 

Thus the inhibitory effects against the three forms of SecA ATPase activities or cell 

growth are not likely due to photo-oxidation. Other earlier reports also show that RB, EB, 

and DI can inhibit the ion-pump related ATPases from animal tissue without photo-

oxidation (Morris, Silbergeld et al. 1982; Silbergeld, Anderson et al. 1982; Fricke 1985). 

Non-photooxidation antibacterial activities of halogenated fluoresceins are also reported, 

but the mechanism is not clear (Banks, Board et al. 1985; Rasooly and Weisz 2002; Kim, 

Park et al. 2008; Waite and Yousef 2009). Prior studies demonstrate that the fluorescein 

derivatives influence the enzymes as the non-hydrolyzable nucleotide analogs (Mignaco, 

Lupi et al. 1996; Linnertz, Kost et al. 1998; Linnertz, Urbanova et al. 1998; Tanfani, 

Linnertz et al. 2000). Here we demonstrate the inhibitory effects of these fluorescein ana-

logs on SecA ATPase and E. coli F1F0-ATPase. The results here indicate that fluorescein 

analogs are general ATPase inhibitors but may be more specific for SecA because the 

catalytic ATPase of SecA is more sensitive, and the antibacterial activity is observed in 

the presence of glucose that minimizes the effects on F1F0-proton ATPase. Taken togeth-

er, the results suggest that SecA may be the target of fluorescein analogs and the inhibi-

tion of ATPase and translocation may contribute to the antibacterial effects. 

A striking feature of RB and EB is that these two inhibitors influence the intrinsic 

ATPase of SecA in a competitive manner at low ATP concentrations and a non-
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competitive manner at high ATP concentrations. One possible interpretation of these 

findings is that RB and EB affect two non-identical nucleotide binding sites on SecA. 

Two nucleotide binding sites (NBDs) have been identified in SecA through sequence 

alignment and biochemical studies (Mitchell and Oliver 1993; Economou, Pogliano et al. 

1995; van der Wolk, Boorsma et al. 1997; Karamanou, Vrontou et al. 1999; Nakatogawa, 

Mori et al. 2000). NBDI binds to ATP with high-affinity and is considered as the catalyt-

ic site; however, there is no direct evidence of binding, and less is known about the low-

affinity site (NBDII). In this study, kinetics analysis suggests that RB and EB apparently 

prefer to bind to the high-affinity site; therefore, competitive inhibition is observed at low 

ATP concentrations. It is also interesting to note that the high-affinity site has a lower 

Vmax while the low-affinity site has a 2.5 times higher Vmax. A possible interpretation of 

the results presented above is that high concentration of ATP may be a signal for increas-

ing the ATPase activity of SecA and NBDII may serve as the sensor. At high ATP con-

centrations, RB and EB inhibit the activity arisen from the low-affinity site non-

competitively. Some fluorescein-related pseudo ATP analogs have been shown to be use-

ful probes for biochemical study of the two ATP binding sites of P-type ATPase 

(Linnertz, Kost et al. 1998; Linnertz, Urbanova et al. 1998; Tanfani, Linnertz et al. 2000). 

RB and EB inhibit the two ATP binding sites differently, and this result suggests that 

these fluorescein analogs may be a useful tool for unraveling the functional significance 

of the two nucleotide binding sites of SecA. 

Interestingly, the inhibitory mechanisms of RB against the membrane and translo-

cation ATPases of EcSecA are different from the intrinsic ATPase. RB inhibits the mem-

brane ATPase by a “mixed-mechanism” between competitive and non-competitive man-
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ners (but more toward the later), and the translocation ATPase by a non-competitive 

manner in a broad range of ATP concentrations. It is likely that binding to the membrane 

and precursor proteins dramatically changes the conformation of EcSecA and causes the 

alteration of inhibition profiles. RB has various inhibitory effects on three forms of EcSe-

cA ATPase activities, with IC50 values range from translocation ATPase (0.9 µM) < 

membrane ATPase (5 µM) < intrinsic ATPase (25 µM). The significant differences of the 

sensitivities of three forms of ATPase of EcSecA also indicate that conformational 

changes of SecA in the interaction with membranes and precursors may influence the ac-

cessibility of the enzyme to inhibitors. RB and EB share the fluorescein-based chemical 

structure, and these two compounds show similar binding profiles in the computer model-

ing. Even with these similarities, EB shows similar inhibitory effects on the three forms 

of ATPase of EcSecA. One possible explanation is that RB and EB are docked into the 

intrinsic EcSecA conformation which may be very different from the changed SecA con-

formation induced by the presence of membrane and precursor. Thus, the modeling could 

not reveal the dissimilar binding profiles between RB and EB with EcSecA in the pres-

ence of membrane and/or precursor proteins. The BsSecA ATPases are also inhibited by 

RB and EB. RB showed stronger inhibitory effect on the intrinsic ATPase of BsSecA 

than EcSecA. However, the intrinsic, membrane and translocation ATPases show similar 

sensitivities to the same inhibitor. These data raise the possibility that the conformational 

changes of BsSecA for the membrane and translocation ATPases are different since the 

heterogeneous components (Ec membrane and precursors proOmpA) are used in the as-

say. 
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The translocation ATPase activity of SecA is essential for the SecA-dependent in 

vitro translocation. Azide inhibits the translocation ATPase of SecA and the transport of 

precursor proteins across the inner membrane vesicles in vitro (Oliver, Cabelli et al. 

1990). SecA mutants that lose stimulated translocation ATPase show defect of preprotein 

translocation in vitro (Sianidis, Karamanou et al. 2001). The in vitro translocation of pre-

cursor protein proOmpA into membrane vesicles is also inhibited by RB and EB. The in 

vitro translocation is even more sensitive to RB and EB than the translocation ATPase of 

EcSecA. This difference is also reported for azide and but the in vitro protein transloca-

tion and the cell growth show similar sensitivities (Oliver, Cabelli et al. 1990). In the case 

of RB and EB, in vivo growth is significantly less sensitive than in vitro protein transloca-

tion. This may due to the different membrane permeability of inhibitors. Azide is a small 

inorganic molecule while RB and EB are much bigger organic molecules with lower 

permeability across bacterial membranes. In fact, the outer membrane leaky mutant 

shows stronger inhibitory effects than its parent. 

In recent years, antibiotic-resistant strains have become a serious problem because 

of the overuse of antibacterial medicine. There is an urgent need for development of nov-

el antibacterial agents. Protein secretion system is essential for bacterial viability and vi-

rulence; therefore, it has been considered as an ideal target for pharmaceutical interests 

(Stephens and Shapiro 1997). The majority of secreted and membrane proteins is me-

diated by the Sec pathway. This fact makes the components of the Sec system potentially 

valuable for antibiotic targeting (Economou 2001). SecA is the central element of the Sec 

pathway and is highly conserved in bacteria and is involved in the major route of bacteri-

al protein translocation that is essential for the growth and virulence of bacterial cells. 
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More importantly, SecA has no human counterpart, making it a good target for develop-

ment of new antibiotics (Stephens and Shapiro 1997). Thus SecA has the potential to be 

the target of a new class of antimicrobial drugs, and SecA inhibitors have the potential to 

be new antibacterial agents. Up to now, there are very few inhibitors against SecA have 

been studied. Sodium azide is the most well-known SecA ATPase inhibitor; however, the 

intrinsic ATPase of SecA was not inhibited by sodium azide up to 10 mM. The inhibitory 

effect of azide against translocation ATPase of SecA and in vitro protein translocation are 

relatively high, with IC50 at low mM ranges (Oliver, Cabelli et al. 1990). On the other 

hand, RB inhibits the translocation ATPase and protein translocation very efficiently, 

with sub-µM IC50 which is several thousand times more effective than azide. The IC50 of 

natural compound from fungi (CJ21058) against translocation ATPase of SecA is 38.7 

µM (Sugie, Inagaki et al. 2002). The organic thiouracil-based compounds that we recent-

ly found by virtual screening and following optimizing inhibit the intrinsic ATPase of 

SecA with IC50 of 20-60 µM (Li, Huang et al. 2008; Chen, Huang et al. 2010), which 

may be further optimized. While this manuscript is in preparation, a few inhibitors 

against the intrinsic ATPase of SecA of Candidatus Liberibacter asiaticus with low IC50 

(around 2-5 µM) have been shown by structure-based screening (Akula, Zheng et al.), but 

the effects on other forms of ATPase and the protein translocation were not reported. It is 

worthwhile to mention here that RB and EB are the first inhibitors against all three forms 

of SecA ATPase with low μM concentration level, and RB inhibits protein translocation 

at sub-µM range. The inhibitory effects on enzyme activity and bacterial growth may 

lead to some useful antimicrobial strategies. The fluorescein analogs used in this study 

are hydroxyxanthenes. Xanthene derivatives are well known and used as additive food 
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dyes for some time. Although some xanthenes dyes have safety concern, there are still ten 

of them certifiable as regulated by FDA for food, drug, or cosmetic use (Waite and 

Yousef 2009). Rose Bengal was reportedly in phase II trials in a study for treatment of 

metastatic melanoma (Thompson, Hersey et al. 2008; Foote, Burmeister et al. 2010). 

Erythrosine B (FD&C Red No. 3) is at present the only xanthenes derivative with ap-

proval for food use (US 2011). These fluorescein analogs have several advantages as Se-

cA inhibitors: the convenience of commercialized availability, the high solubility in wa-

ter, the known chemical structure for further modification, and with relatively low or no 

toxicity for food and drug use. 

  



30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 

Figure 2.1. The inhibitory effect of fluorescein analogs against ATPase of EcN68. 

ATPase activity of the catalytic domain of SecA (EcN68) was assayed with different 

concentrations of fluorescein analogs. The inhibitory effects were illustrated by the 

percentage (%) of remaining ATPase activity as compared to the controls in the ab-

sence of inhibitors. 

 1 Chemical* IC50 
Rose Bengal (RB) 0.5 μM 
Erythrosin B (EB) 2 μM 
Diiodofluorescein (DI) 30 μM 
Ecosin Y (EY) 25 μM 
Dinitrofluorescein (DN) 50 μM 
Sodium azide >10 mM 

Table 2.1. Screening of fluorescein analogs 
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Figure 2.2. The inhibitory effect of RB and EB against different ATPases. ATPase 

activities of the catalytic domain of SecA (EcN68) and the F1F0-proton ATPase were 

assayed with different concentrations of RB and EB. The inhibitory effects were illu-

strated by the percentage (%) of remaining ATPase activity as compared to the con-

trols in the absence of inhibitors. 

Figure 2.3. The lack of light effect on the inhibitory effect of RB. 

ATPase activity of EcN68 was assayed with 0.5 µM RB at normal room 

illumination and in dark condition. 
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Figure 2.4. The inhibitory effects of RB and EB against different forms of 

ATPase of EcSecA. (a) intrinsic, (b) membrane, and (c) translocation ATPase; 

(d) with lipid. The inhibitory effects were illustrated by the percentage (%) of 

remaining ATPase activity as compared to the controls in the absence of inhibi-

tors. The values of IC50 were summarized in Table 2.2. 

a                                                                       b 

c                                                                       d 
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Table 2.2. IC50 of RB and EB against different forms of ATPases of SecA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1                      Inhibitor 
ATPase 

RB 
(µM) 

EB 
(µM) 

Ec 

Intrinsic 25 21 
Lipid 10 50 
Membrane 5 12 
Translocation 0.9 10 

Bs 
Intrinsic 7 70 
Membrane 15 50 
Translocation 22 33 
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Figure 2.5. Kinetics study of the inhibitory mechanisms of RB against the intrinsic ATPase of 

EcSecA. (a): Michaelis-Menten plot; (b and c): Lineweaver-Burk plots. The assays were carried out 

as described in Materials and Methods per 50 µL reaction with 5 µg of EcSecA, in the presence of 

various concentrations of RB and ATP (0.15-2.4 mM). (b): Competitive inhibition at low ATP con-

centrations (<0.6 mM, filled symbols), and non-competitive fashion at high ATP concentrations (>1 

mM, open symbols) of the intrinsic ATPase by RB; (c): enlarged circle area of (b). 

 

a 

b c 
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Figure 2.6. Lineweaver-Burk plot of the inhibitory mechanism of RB against the 

membrane ATPase of EcSecA. The assays were carried out as described in Materials 

and Methods per 50 µL reaction with 1.5 µg of EcSecA and 3 µg of BA13 membrane, in 

the presence of various concentrations of RB and ATP (0.198-1.8 mM). RB inhibits the 

EcSecA membrane ATPase by a mixed-competitive and non-competitive manner. 

Figure 2.7. Lineweaver-Burk plot of the inhibitory mechanism of RB against the 

translocation ATPase of EcSecA. The assays were carried out as described in Materials 

and Methods per 50 µL reaction with 0.5 µg of EcSecA, 1 µg of BA13 membrane, and 1 µg 

proOmpA, in the presence of various concentrations of RB and ATP (0.198-1.8 mM). RB 

inhibits SecA translocation ATPase by a non-competitive manner. 
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Table 2.3. Apparent Michaelis-Menten constants for the three forms of ATPase of 

EcSecA* in the presence of RB.  

 

   RB concentration 
   0 µM 20 µM 40 µM 

intrinsic 

High 
[ATP] 

Vmax
† 7.37 6.08 3.99 

Km (mM) 1.68±0.21 1.68±0.21 1.68±0.21 

Low 
[ATP] 

Vmax
† 3.07±0.16 3.07±0.16 3.07±0.16 

Km (mM) 0.14 0.25 0.46 

membrane 
 0 µM 2 µM 4 µM 
Vmax

† 26.95 13.61 8.18 
Km (mM) 0.31±0.03 0.31±0.03 0.31±0.03 

translocation 
 0 µM 0.75 µM 1 µM 
Vmax

† 57.27 23.42 15.06 
Km (mM) 0.18±0.01 0.18±0.01 0.18±0.01 

 

*Experimental conditions were as Figure 2.5-2.7. The values of Km and Vmax were deter-

mined by nonlinear regression analysis by Prism 5 (GraphPad Software, La Jolla, CA). 

†Unit: molePi∙moleSecA-1min-1 
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Figure 2.8. Lineweaver-Burk plot of the inhibitory mechanism of EB against the in-

trinsic ATPase of EcSecA. Competitive inhibition at low ATP concentrations (< 0.6 mM, 

filled symbols), and non-competitive inhibition at high ATP concentrations (> 1 mM, open 

symbols) for intrinsic ATPase activity of EcSecA by EB. The assays were carried out as 

described in Materials and Methods with 5 µg of EcSecA, in the presence of various con-

centrations of inhibitors and ATP (For clarity, data below 0.24 mM are not shown). 

Figure 2.9. The Lineweaver-Burk plot of the inhibitory mechanism of EB against 

the translocation ATPase of EcSecA. Mixed-mechanism of competitive and non-

competitive inhibition in a board range of ATP concentrations for translocation ATPase 

activity of EcSecA. The assays were carried out as described in Materials and Methods 

per 50 µL reaction with 0.5 µg of EcSecA, 1 µg of BA13 membrane, and 1 µg proOm-

pA, in the presence of various concentrations of EB and ATP (0.24-2.42 mM).  
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Figure 2.10. The inhibitory effects of RB and EB against three forms of ATPase of BsSecA.  

(a) intrinsic, (b) membrane, and (c) translocation ATPase. The inhibitory effects were illustrated 

by the percentage (%) of remaining ATPase activity as compared to the controls in the absence of 

inhibitors. The values of IC50 were summarized in Table 2.2. 

 
 

a                                                                       

b                                                                       

c                                                                       
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Figure 2.11. Lineweaver-Burk plot of the inhibitory mechanism of RB against the intrinsic 

ATPase of BsSecA. Competitive inhibition at low ATP concentrations (< 0.6 mM, filled sym-

bols), and non-competitive inhibition at high ATP concentrations (> 1 mM, open symbols) for in-

trinsic ATPase activity of BsSecA by RB. The assays were carried out as described in Materials 

and Methods with 3.75 µg of BsSecA, in the presence of various concentrations of inhibitors and 

ATP (For clarity, data below 0.24 mM are not shown). 

Figure 2.12. The inhibitory effects of RB and EB against the SecA-dependent in vitro transloca-

tion of proOmpA. The translocation of proOmpA precursors into membrane vesicles was assayed in 

the presence of RB and EB. The insert is the expanded presentation for RB. The inhibitory effects 

were illustrated by the percentage (%) of translocated proteins as compared to the controls in the ab-

sence of inhibitors. The results were presented as line graphs with standard error of the mean. This 

work was carried out by H. Wang. 
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Table 2.4. MIC† of fluorescein analogs on growth of microbes of plate assay 
                                Bacteria 
Chemical* E. coli MC4100 E. coli NR698 B. subtilis 168 

Rose Bengal (RB) >1 mM 3.1 μM 3.1 μM 
Erythrosin B (EB) >10 mM 250-500  μM 250-500 μM 
Diiodofluorescein (DI) >3 mM 200-500  μM 1 mM 
Ecosin Y (EY) NA 1-2.5 mM 2.5 mM 
Dinitrofluorescein (DN) NA 10-20 mM 10 mM 
 

†Minimal inhibition concentrations (MIC) were determined by the concentration of inhi-

bitors showing a clear zone after overnight incubation as compared to the surrounding 

area. 

*Fluorescein analogs were applied to the bacteria cells as described in Material and Me-

thods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13. The bacteriostatic effect of RB against Gram-negative and Gram-positive bacteria 

in liquid culture. Cells of exponential phase of permeability leaky mutant E. coli NR698 and B. 

subtilis 168 were treated with RB with and without 0.2% glucose in the media. The bacteriostatic 

activities are illustrated by the decrease of OD600 after 14 hour growth with various concentrations 

of inhibitors. 
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a                                                           b                            

Figure 2.14. The bactericidal effect of RB on Gram-positive and Gram-

negative bacteria. The bactericidal activities are illustrated by the number of sur-

vived cells as CFU after one hour treatment with various concentrations of inhibi-

tors (gray bar) as compared to the controls (white bar) in the absence of inhibitors. 

(a) Permeability leaky mutant E. coli NR698; (b) B. subtilis 168. 

Figure 2.15. Cell density of Gram-positive and Gram-negative bacteria during RB 

treatment. Bacterial cells were treated with RB as the same condition as Figure 2.13 and the 

cell density was monitored in time course up to 30 min after the standard bactericidal assay. 

Open symbol: permeability leaky mutant E. coli NR698; closed symbol: B. subtilis 168.  
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Figure 2.16. The chemical structures and docking conformations of DI (light blue), EB 
(grey), RB (heavy blue) and CJ-21058 (orange) around EcSecA ATP-site. This figure is 
provided by M. Li. 
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3 The structural and functional analysis of the C-terminal regulatory domain of 

EcSecA 
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3.1 Abstract 

SecA plays an essential role in the Sec-dependent protein translocation in Esche-

richia coli. Molecular modeling and experimental results indicate that the interaction 

among the three α-helixes in HSD of the C-terminal regulatory domain may be important 

for its structure and function. A series of SecA truncates in the region of the first long α-

helix (a.a. 621-668) of the helix-bundle was analyzed. None of these SecA derivatives 

can complement the SecA temperature-sensitive mutant in vivo. All of the N-fragments 

of SecA with various length of the α-helix show the response to lipids and slightly differ 

in the regulated intrinsic ATPase activities, suggesting that different elements are respon-

sible for lipid stimulation and down-regulation. Moreover, N-fragments with half and 

longer α-helix form pore structures with liposomes as observed in AFM, indicating this 

region is critical for the structural role of SecA as part of the protein-conducting chan-

nels. Phe586 in the intramolecular regulator region was illustrated for important function. 

NBDII mutants of N68 and full-length SecA differ in the response to the ATPase inhibi-

tor. C-terminal truncated SecA derivatives increase the resistance to inhibitors with the 

extension of the long α-helix. Thus, this part of C-regulatory domain may interfere with 

the approach of the inhibitor. These results demonstrate that the first long α-helix of HSD 

plays an important role in the structure and regulation of SecA ATPase. 

 

3.2 Introduction 

SecA plays the central role in the Sec-dependent protein translocation system; it is 

the most abundant component of the Sec system in the cell (Driessen 1994). It interacts 

with almost all the other components (Hartl, Lecker et al. 1990; Hendrick and Wickner 
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1991; Kimura, Akita et al. 1991; Snyders, Ramamurthy et al. 1997), indicating its impor-

tance for the protein translocation system in bacteria.  

SecA consists of two separable domains, the N-terminal 68 kDa fragment (N68) 

and the C-terminal 34 kDa regulatory domain (C34). N68 holds high ATPase activity that 

is down-regulated by C34 (Karamanou, Vrontou et al. 1999). There are two nucleotide 

binding domains (NBDs) identified in SecA, NBDI and NBDII. NBDI, which is located 

in the N68 catalytic domain, contains the conserved Walker A and B motifs and is re-

sponsible for high affinity binding and hydrolysis of ATP (Mitchell and Oliver 1993; 

Sianidis, Karamanou et al. 2001). NBDII comprises a consensus sequence of Walker A 

and a putative Walker B motif (Mitchell and Oliver 1993). There is no experimental 

demonstration of nucleotide binding to NBDII. Instead, NBDII binds to NBDI and plays 

the role as intramolecular regulator of the hydrolysis of ATP (IRA2) (Sianidis, 

Karamanou et al. 2001). The predicted Walker B is outside of the N68 domain and lo-

cated in a long α-helix (Figure 3.1). This α-helix is the first of the bundle of three α-

helixes of the α-helical scaffold domain (HSD) in the C34 (Hunt, Weinkauf et al. 2002). 

Our preliminary genetic and biochemical data suggest that the interactions among the 

three α-helixes may be important for the function of SecA. The hydrophobic amino acid 

residue of the third α-helix of HSD (amino acid 810-829) is important for the minimal 

length of SecA (Na and Tai, unpublished data). In order to further identify the role of the 

first α-helix of HSD (amino acid 621-668), a series of C-terminal truncated SecA con-

structs of this region were made (Figure 3.1). This work provides more detailed structural 

analysis of SecA for understanding the mechanism of the Sec-dependent protein translo-

cation across bacterial membranes. 
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3.3 Material and methods 

Bacterial strains, medium, chemicals, and liposomes. E. coli DH5α was used 

for DNA cloning and plasmid isolation. E. coli BL21(λDE3) (Studier and Moffatt 1986) 

was used for overproduction of various truncated SecA proteins. SecA temperature-

sensitive mutant E. coli BL21.19 (Mitchell and Oliver 1993) was used for the comple-

mentation assay. Luria-Bertani (LB) and TAG (1% (w/v) tryptone, 0.5% (w/v) NaCl, 40 

mM potassium phosphate buffer (pH7.0), 7.6 mM ammonium sulfate, 1.6 mM sodium 

citrate, and 1% (w/v) glucose) liquid and solid (1.5% agar) media were used for bacterial 

growth. Chemicals were purchased from Sigma-Aldrich Corp (St. Louis, MO) and Fisher 

Scientific (Pittsburg, PA) unless indicated otherwise. E. coli total lipid extract was from 

Avanti Polar Lipids Inc. (Alabaster, Alabama). Liposomes were prepared by sonication 

(Sonic Dismembrator Model 500; Fisher Scientific, Pittsburgh, PA) from E. coli total li-

pid extract resuspended in TK buffer (10 mM Tris-HCl, pH7.6, and 50 mM KCl, for AT-

Pase assay) or TKM buffer (TK with 2 mM MgCl2, for AFM) as described previously 

(Wang, Chen et al. 2003). The size and quality of liposomes were determined by Submi-

cron Particle Size Analyzer N5 (Beckman Coulter, Miami, FL). 

Cloning, complementation test, and protein purification. To construct the C-

terminal truncated SecA derivatives (Figure 3.2), DNA fragments were amplified by PCR 

(Mastercycler gradient; Eppendorf, Hauppauge, NY) with 5’ primer (TATACA-

TATGCTAATCAAATTGTTAACT) and 3’ primers listed in Table 3.1 using pET5a-

SecA as the template. The amplified DNA fragments encoding SecA with desired C-

terminal ends were cloned to pET5a through NdeI and BamHI. For N68R509K without 

N-terminal His-tag, pR509K (Mitchell and Oliver 1993) was used as the template to yield 
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N68R509K/pET5a. Plasmids carrying SecA derivatives were transformed into SecA 

temperature sensitive mutant BL21.19 for complementation test. Bacterial cells were 

streaked on LB/Amp plate and incubated at 42°C for overnight growth. A duplicate con-

trol plate was incubated at 30°C. SecA derivatives were over-expressed from plasmids 

constructed as listed in Table 3.1, pT7-SecA (Schmidt and Oliver 1989) (for full-length 

SecA), pIMBB28 (Karamanou, Vrontou et al. 1999) (for His-N68), pIMBB69 

(Karamanou, Vrontou et al. 1999) (for His-N68R509K), and pR509K (Mitchell and 

Oliver 1993) (for SecAR509K), pN68R509K/pET5a (for N68R509K) in E. coli 

BL21(λDE3) and purified as previously described (Chen, Xu et al. 1996; Chen, Brown et 

al. 1998). 

In vitro ATPase activity assay. ATPase activity assays were performed as de-

scribed (Lill, Dowhan et al. 1990) with minor modifications. For intrinsic, lipid, and 

membrane ATPase assay, 50 µL reaction mixture contained 3 µg of SecA derivatives 

(unless specified otherwise), 20 µg ovalbumin, 1.2 mM ATP, 50 mM Tris-HCl (pH7.6), 

20 mM KCl, 20 mM NH4Cl, 2 mM Mg(OAc)2, 1 mM DTT, and 6 µg liposomes (for lipid 

ATPase) or 6 µg urea-washed E. coli BA13 membrane (for membrane ATPase). For 

translocation ATPase assay, reaction mixtures contained 1 µg proOmpA in addition to 

membranes. All reactions were done at 40°C or 30°C for an appropriate time. The AT-

Pase activity was determined by the release of inorganic phosphate detected by the pho-

tometric method (Lanzetta, Alvarez et al. 1979) and the absorption at 660 nm was meas-

ured (SmartSpec Plus, Bio-Rad Laboratories, Inc.). The inhibitory effects were illustrated 

by the percentage (%) of remaining ATPase activity as compared to the controls in the 
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absence of potential inhibitors. All assays were performed at least in triplicate, and the 

results were presented as line graphs with a standard error of the mean. 

Atomic force microscopy (AFM). AFM slides were prepared as previously de-

scribed (Wang, Chen et al. 2003) with minor modifications. Briefly, the proper amount of 

SecA derivatives (2-5 µg) and liposomes (20 µg) in 10 µL TKM buffer were mixed by 

vortex and incubated on ice for 30 min. The mixtures were applied to freshly cleaved mi-

ca and then were held at room temperature for 15 min, rinsed three times with deionized 

water, and dried in a dessicator over night. AFM images were obtained with di Multi-

Mode V (Veeco Instrument Inc., Woodburry, NY) by using the tapping mode and ana-

lyzed by image-processing software (Nanoscope v700) according to the manufacturer’s 

manual. The size of the objectives was estimated by using gold particles as the standards. 

 

3.4 Results and discussion 

Lipids stimulated the ATPase activities of N-fragments of SecA. In the process 

of preparing the various HSD C-terminal truncated SecA fragments, we found that the 

over-expressed proteins with uncharged or hydrophobic amino acids at the C-terminus 

tend to form inclusion bodies. Most renatured proteins (except N75, which has the com-

pleted long α-helix) from 6M urea retained very low ATPase activities. Molecular model-

ing based on the crystal structure of E. coli SecA (Papanikolau, Papadovasilaki et al. 

2007) suggests the hydrophobic interactions among the three α-helixes in the HSD are 

important for the function (Na and Tai, unpublished data). The hydrophobic amino acid 

at the C-terminus may destabilize the structure of the partial long α-helix of the frag-

ments. These data indicate that the long α-helix is important for the conformation and 
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ATPase activity of the N-fragments of SecA. Charged amino acids were chosen from the 

neighboring region or introduced by PCR to obtain soluble and active SecA fragments 

(Figure 3.2). All N-fragments of SecA in this region (N68-N75) showed the stimulation 

effect by lipids (Figure 3.3). The intrinsic ATPase activity slightly decreased when the α-

helix was extended (Figure 3.4a). Thus, the region between N68 and N75 confers do-

mains in response to lipids and down-regulation elements. Since the lipid-stimulation ef-

fect appears in the shorter N-fragments (N68-N70) before the down-regulation occurs 

(N71.5D and longer N-fragments), the elements for these two events should locate diffe-

rently.  The ATPase activities of N-fragments (N68-N75) are significantly stimulated by 

lipids (2.5 to 4 fold) and membranes (milder effect, around 2 fold), but not by proOmA. 

In contrast, full-length SecA is obviously stimulated by lipids (3.6 fold), membranes (4.8 

fold), and proOmA (up to 16 fold) (Figure 3.4b). These results suggest the long α-helix 

(a.a. 621-668) can “sense” and interact with lipids. Elements located in this region may 

be involved in the interaction with membrane proteins to cause the different responses to 

lipids and membranes. These N-fragments with a partial or whole α-helix possess high 

intrinsic ATPase activities since they do not contain the entire C-terminal regulatory do-

main; therefore, precursor proOmA does not further activate the ATPase activity. 

His-tag changed the biochemical characteristics of N-terminal catalytic do-

main of SecA. Lipids can stimulate the ATPase of N68 significantly (up to 3 fold, Figure 

3.3). This data is in controversy to a previous study that found N68 possess high basal 

ATPase activity equivalent to the fully activated translocation ATPase of SecA 

(Karamanou, Sianidis et al. 2005). Therefore, His-N68 from the same study was analyzed 

for comparison. As expected from the literature, lipids did not further stimulate the AT-
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Pase activity of His-N68 (Figure 3.4). Besides, His-N68 and N68 showed different ther-

mo-stabilities. His-N68 and N68 have similar activity at 30°C, but N68 has only about 

50% activity of His-N68 at 40°C (Figure 3.3). The positive-charged His-tag may influ-

ence the neighboring structure, and the change of the β-sheet structure of the N-terminus 

of SecA affects the behavior in response to lipids (Floyd and Tai, unpublished data) and 

the biochemical function (Das, Stivison et al. 2008) (Floyd and Tai, unpublished data). 

The result indicates that His-tag may stabilize or change the conformation of N68, caus-

ing different responses to lipids and temperature change. The N-terminal fragments were 

constructed without His-tag in this study; therefore, the possible influence of His-tag 

could be excluded.   

N-fragments of SecA formed ring-like structures induced by phospholipids. 

Ring-like structures of EcSecA and the tandem dimer EcSecAA upon interacting with 

phospholipids have been shown previously by AFM (Wang, Chen et al. 2003; Wang, Na 

et al. 2008). The lipid-specific domains, N39 and M48, also form a partial ring structure 

in the presence of phospholipids (Floyd and Tai, unpublished data). The N-fragments 

(N68-N75) contain the major part of M48. The ATPase activities of N68-N75 are greatly 

stimulated by lipids, indicating the drastic conformational changes induced by lipids. 

Therefore, the structures of these N-fragments in lipids were examined by the same ap-

proach.  N71.5D (SecA1-F639D) and larger fragments formed ring-like structures with 

shapes and depths that appear to be similar to full-length EcSecA (Figure 3.5). N-

fragments without or with up to half of the long α-helix, N68-N71 (SecA1-609 to SecA1-

632), did not form ring-like structures (Figure 3.5), even though the ATPase was also sig-

nificantly activated by lipids. Thus, although the N-terminal part of the long α-helix can 
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interact with the lipids for stimulated ATPase, some elements located in the C-terminal 

half of the α-helix are required for composing the protein conducting channel.  

N-fragments of SecA (SecA1-609 to SecA1-668) did not complement SecA mu-

tant. The complementation ability of SecA fragments with truncated C-terminus was de-

termined. None of the N-fragments in this region (N68-N75) could complement E. coli 

BL21.19 at the non-permissive temperature. The inability of complementation is consis-

tent with our observation of the minimal length of functional SecA (Na and Tai, unpub-

lished data) and a previous report of N-terminal truncate (SecA-N664) with similar length 

(Dapic and Oliver 2000). SecA-N664 does not have robust translocation ATPase activity 

and shows deficiency in protein translocation activity, which causes the failure of com-

plementation in the same study. N68-N75 similarly possess low (uninducible) transloca-

tion ATPase; therefore, the defect of complementation may result in the insufficient pro-

tein secretion. Thus, although the long α-helix plays some critical roles, such as the inte-

raction with lipids and membrane proteins, these N-fragments of SecA do not possess full 

physiological function.   

 

Lipids did not stimulate the ATPase activity of N69F586L. In the process of 

PCR, a random mutagenesis happened and resulted in N69F586L, in which the 586th 

amino acid residue phenylalanine was replaced by leucine. This mutation reduced the 

basal ATPase activity of N69 and abolished the stimulation effect of lipids (Figure 3.6). 

Phe586 is part of the conserved sequence of motif XI in the region of IRA2 (Sianidis, 

Karamanou et al. 2001). N69F586L and N69WT showed similar activities at 40°C, but 

the mutant only possesses less than 50% of activity as wild-type at 30°C (Figure 3.6). 
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Some IRA2 mutations that down-regulate the NBDI ATPase have been reported, and the 

inference is more severe at lower temperature (Sianidis, Karamanou et al. 2001). Interes-

tingly, both N68R577K (Sianidis, Karamanou et al. 2001) and N69F586L are single point 

mutations in motif XI of IRA2 but have striking effects in response to lipids/membrane 

and/or preprotein. In these two mutants, the original amino acid residues are replaced by 

amino acids with similar characteristics; however, replacement still causes compromised 

function. Here we show another unassailable amino acid residue (Phe586) in IRA2 which 

is important for its function. 

 

ATPase inhibitor showed different inhibitory effects on NBDII mutant of Se-

cA. Previous studies suggest that the NBDII is a low-affinity ATP binding site and not 

essential for ATP hydrolysis since the NBDII mutant SecAR509K still keeps the high-

affinity-ATP binding and basal ATPase activity. However, this mutant loses the response 

to the stimulatory effects of membranes and preproteins (Mitchell and Oliver 1993; 

Sianidis, Karamanou et al. 2001). The high catalytic ATPase activity of N68 is signifi-

cantly reduced in the mutant N68R509K (Karamanou, Vrontou et al. 1999). These phe-

nomena indicate the regulatory role of NBDII on hydrolysis of ATP. We recently found a 

fluorescence dye, Rose Bengal (RB) that may interfere with the two NBDs of SecA diffe-

rently (Chapter 2, submitted for publication). Here, the SecA ATPase inhibitor, RB, is 

used as a probe for the mechanistic insight and structural understanding of the different 

NBDs. The inhibitory effects of RB on wild-type SecA and NBDII mutant (R509K) were 

determined. SecAR509K was slightly more sensitive to RB than the wild-type SecA, with 

IC50 about 20 μM and 30 μM, respectively (Figure 3.7a). The catalytic ATPase activity of 
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N68 was much more sensitive (IC50= 0.75 μM) to RB than the full-length SecA (compare 

Figure 3.7a and 3.7b). Surprisingly, N68R509K showed high resistance to RB without 

significant inhibition up to 50 μM (Figure 3.7b). Wild-type and R509K mutant of N68 

with His-tag were analyzed as well. Again, the ATPase activity of His-N68R509K was 

not significantly repressed by RB up to 50 µM, while wild-type His-N68 was very sensi-

tive (IC50= 0.5 µM, Figure 3.7c). His-tag does not influence their sensitivity to RB since 

N68 and His-N68 have similar values of IC50. This result eliminates the possibility that 

the resistance is caused by the N-terminal His-tag. Molecular modeling suggests that 

Arg509 can interact with RB by forming a salt bridge, while the replacement Lys cannot. 

One possible explanation is that the C34 regulatory domain may interact with NBDII and 

suppress the primary effect of the inhibitor RB on NBDII.  

 

N-fragments of SecA showed various sensitivities to ATPase inhibitor. Since 

NBDII mutant in Walker A motif (R509K) and wild-type SecA differ in response to inhi-

bitor RB, we determined the inhibition of RB to the series of SecA fragments with vari-

ous lengths of the predicted Walker B sequence of NBDII. Even though they have similar 

values of IC50, the SecA fragments became more resistant to higher concentrations of RB 

while the α-helix extended, and the full-length SecA showed the highest resistance (Fig-

ure 3.8). This phenomenon suggests that the presence of the C-domain may mask the 

access of RB as a structural barrier. We have found that the sensitivity to RB of SecA is 

related to its conformation. Among the three forms of SecA ATPases, the translocation 

ATPase (in the presence of membrane and precursor proteins, the most open state of Se-

cA) is the most sensitive to RB, while the intrinsic ATPase (closed state) is the least sen-
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sitive (Chapter 2, Figure 2.4). Together with the increasing resistance with the extension 

of the C-regulatory domain, it shows the relationship of the structure and function of Se-

cA. 
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....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

EcSecA FSSIYKLDTVVVPTNRPMIRKDLPDLVYMTEAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAAIVAQAGYPAAV
N68 FSSIYKLDTVVVPTNRPMIRKDLPDLVYMTEAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAAIVAQAGYPAAV
N69 FSSIYKLDTVVVPTNRPMIRKDLPDLVYMTEAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAAIVAQAGYPAAV
N70D FSSIYKLDTVVVPTNRPMIRKDLPDLVYMTEAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAAIVAQAGYPAAV
N71 FSSIYKLDTVVVPTNRPMIRKDLPDLVYMTEAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAAIVAQAGYPAAV
N71.5D FSSIYKLDTVVVPTNRPMIRKDLPDLVYMTEAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAAIVAQAGYPAAV
N71.6 FSSIYKLDTVVVPTNRPMIRKDLPDLVYMTEAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAAIVAQ AGYPAAV
N72K FSSIYKLDTVVVPTNRPMIRKDLPDLVYMTEAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAAIVAQAGYPAAV
N73 FSSIYKLDTVVVPTNRPMIRKDLPDLVYMTEAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAAIVAQAGYPAAV
N74R FSSIYKLDTVVVPTNRPMIRKDLPDLVYMTEAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAAIVAQAGYPAAV
N75 FSSIYKLDTVVVPTNRPMIRKDLPDLVYMTEAEKIQAIIEDIKERTAKGQPVLVGTISIEKSELVSNELTKAGIKHNVLNAKFHANEAA IVAQAGYPAAV

510 520 530 540 550 560 570 580 590 600
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

EcSecA TIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLEAGGLHIIGTERHESRRIDNQLRGRSGRQGDAGSSRFYLSMEDALMRIFAS
N68 TIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLEAGGLHIIGTERHESRRIDNQLRGRSGRQGDAGSSRFYLSMEDALMRIFAS
N69 TIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLEAGGLHIIGTERHESRRIDNQLRGRSGRQGDAGSSRFYLSMEDALMRIFAS
N70D TIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLEAGGLHIIGTERHESRRIDNQLRGRSGRQGDAGSSRFYLSMEDALMRIFAS
N71 TIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLEAGGLHIIGTERHESRRIDNQLRGRSGRQGDAGSSRFYLSMEDALMRIFAS
N71.5D TIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLEAGGLHIIGTERHESRRIDNQLRGRSGRQGDAGSSRFYLSMEDALMRIFAS
N71.6 TIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLEAGGLHIIGTERHESRRIDNQLR GRSGRQGDAGSSRFYLSMEDALMRIFAS
N72K TIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLEAGGLHIIGTERHESRRIDNQLRGRSGRQGDAGSSRFYLSMEDALMRIFAS
N73 TIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLEAGGLHIIGTERHESRRIDNQLRGRSGRQGDAGSSRFYLSMEDALMRIFAS
N74R TIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLEAGGLHIIGTERHESRRIDNQLRGRSGRQGDAGSSRFYLSMEDALMRIFAS
N75 TIATNMAGRGTDIVLGGSWQAEVAALENPTAEQIEKIKADWQVRHDAVLEAGGLHIIGTERHESRRID NQLRGRSGRQGDAGSSRFYLSMEDALMRIFAS

610 620 630 640 650 660 670 680
....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|....|

EcSecA DRVSGMMRKLGMKPGEAIEHPWVTKAIANAQRKVESRNFDIRKQLLEYDDVANDQRRAIYSQRNELLDVSDVSETINSIR
N68 DRVSGMMRK-----------------------------------------------------------------------
N69 DRVSGMMRKLGMKPGEAIE-------------------------------------------------------------
N70D DRVSGMMRKLGMKPGEAIEHPWVTKAIAD---------------------------------------------------
N71 DRVSGMMRKLGMKPGEAIEHPWVTKAIANAQR------------------------------------------------
N71.5D DRVSGMMRKLGMKPGEAIEHPWVTKAIANAQRKVESRND-----------------------------------------
N71.6 DRVSGMMRKLGMKPGEAIEHPWVTKAIANAQRKVESRNFD----------------------------------------
N72K DRVSGMMRKLGMKPGEAIEHPWVTKAIANAQRKVESRNFDIRK-------------------------------------
N73 DRVSGMMRKLGMKPGEAIEHPWVTKAIANAQ RKVESRNFDIRKQLLEYD-------------------------------
N74R DRVSGMMRKLGMKPGEAIEHPWVTKAIANAQRKVESRNFDIRKQLLEYDDVANDQRR-----------------------
N75 DRVSGMMRKLGMKPGEAIEHPWVTKAIANAQRKVESRNFDIRKQLLEYDDVANDQRRAIYSQRNELLD------------

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. The structure of EcSecA. Some functional domains are 

labeled with colors: orange: NBDI: A1(102-109), B1(198-210); dark 

blue: NBDII: A2(503-511), B2(631-653); α-helical scaffold domain 

(HSD): red (621-668), light blue (756-788), pink (802-829). 

Figure 3.2. Sequence of the C-terminal truncated SecA fragments  
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N75 SecA1-668 CGCTGGATCCTTATTAATCCAACAGTTCGT 
N74 SecA1-657 GCTGGGATCCTTATTAGCGACGCTGATCGT 
N73 SecA1-649 GATCGGATCCTTATTAATCATATTCCAGCA 
N72 SecA1-643 CCAGGGATCCTTATTACTTACGAATGTCGA 
N71.6 SecA1-640 GCAGGGATCCTTATTAGTCGAAGTTACGGC 
N71.5D SecA1-639F639D* GTTGGGATCCTTATTAGTCGTTACGGCTTTCAACTTTACG 
N71 SecA1-632  AGTTGGATCCTTATTATTTACGCTGGGCGT 
N70D SecA1-629 N629D* CAACGGATCCTTATTAGTCGGCAATCGCTTTAGTCACCCA 
N69 SecA1-619 TAGTGGATCCTTATTATTCAATGGCTTCGC 
N68 SecA1-609 CTGGGGATCCTTATTATTTACGCATCATGC 
N68R509K SecA1-609R509K CTGGGGATCCTTATTATTTACGCATCATGC 

 

 

 

 

 

 

 

 

 

* Charged amino acid residues were introduced by the bold and italic sequence of primers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1. 3’primers used for construction of C-terminal truncated SecA fragments 
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Figure 3.3. Different forms of ATPase of N-fragments of EcSecA. (a): specific activi-

ty; (b): stimulation effect illustrated in folds. The assays were carried out as described in 

Materials and Methods per 50 µL reaction with 3 µg of proteins at 30°C. 
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 Figure 3.5. Ring-like pore structures of N-fragments of SecA observed by AFM.  

Figure 3.4. Lipid stimulation effect and thermo-stability of HisN68 

and N68. The assays were carried out as described in Materials and Me-

thods per 50 µL reaction with 3 µg of protein in the absence or presence 

of 6 µg of lipids or BA13 membrane.    
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Figure 3.6. Lipid stimulation effect of IRA2 mutant N69F586L. 

The assays were carried out as described in Materials and Methods 

per 50 µL reaction with 3 µg of protein in the absence or presence 

of 6 µg of lipids or BA13 membrane. 
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Figure 3.7. The inhibitory effect of RB against MBDII mutant R509K variants of 

SecA. The assays were carried out as described in Materials and Methods per 50 µL 

reaction with 1.5 µg of SecA derivatives (a) SecA, (b) N68, and (c) His-N68 at 40°C 

(a and c) or 30°C (b). The inhibitory effects were illustrated by the percentage (%) of 

remaining ATPase activity as compared to the controls in the absence of inhibitors. 

 

a b 

c 
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Figure 3.8. The inhibitory effect of RB against SecA variants 

with different lengths of C-domain. The assays were carried 

out as described in Materials and Methods per 50 µL reaction 

with 1.5 µg of SecA derivatives at 30°C. The inhibitory effects 

were illustrated by the percentage (%) of remaining ATPase ac-

tivity as compared to the controls in the absence of inhibitors. 
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4 The structural and functional analysis of SecA from Gram-positive bacteria 

 

 

 

 

 

 

 

 

 

 

 

Part of manuscript to be submitted for publication by 

Ying-Ju Huang, Hsiuchin Yang, and Phang C. Tai  

“The structural and functional analysis of SecA from Gram-positive bacteria” 
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4.1 Abstract 

SecA plays an essential role in the Sec-dependent protein translocation in Esche-

richia coli. The genome sequence analysis indicates the similarities of the Sec-pathway 

between Gram-positive and Gram-negative bacteria. In this study, SecA from Bacillus 

subtilis (BsSecA) and Streptococcus pyogenes (SpSecA) were used for interspecies com-

parison. Although BsSecA and SpSecA are highly homologous to Escherichia coli SecA 

(EcSecA), neither of them can complement the growth of E. coli SecA temperature-

sensitive mutants. Although the ATPase activities of BsSecA and SpSecA were not sig-

nificantly stimulated by liposomes, conformational changes of BsSecA were induced by 

phospholipids, and proteolysis examinations revealed the lipid-specific domains corres-

ponding to those of EcSecA. The ring-like structure of BsSecA was observed by atomic 

force microscope, suggesting that BsSecA interacts with phospholipids to form lipid-

specific structures. These results indicate that, although EcSecA and BsSecA cannot 

complement each other, they share functional and structural similarities in the transloca-

tion machinery, constituting part of the protein-conduction channels. 

 

4.2 Introduction 

SecA plays an essential role in protein translocation. Besides the ATPase activity 

functioning as the molecular motor, recent studies have shown that SecA may be in-

volved in the structure of the translocase. Analysis of protease-resistant fragments 

showed SecA integrates inner membranes in two forms (Chen, Xu et al. 1996; Chen, 

Brown et al. 1998). Phospholipids could induce conformational changes of SecA to form 

membrane-specific domains, resulting in resistance to proteolysis (You, Liao, and Tai, 
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unpublished data). SecA forms ring-like structures in lipids without SecYEG (Wang, 

Chen et al. 2003; Wang, Na et al. 2008). These data suggest that in addition to catalyzing 

ATP hydrolysis, certain domains of SecA play an important structural role in the translo-

cation machinery, forming part of the protein-conduction channels. 

Unlike in Gram-negative bacteria, secreted proteins in Gram-positive bacteria on-

ly need to cross a single membrane to reach the extra-cellular environment. Gram-

positive bacteria (e.g., Bacillus species) have the ability to secrete a large amount of pro-

tein into the extra-cellular medium; therefore, they are often used in industry for com-

mercial production of secreted proteins. The genome sequence analysis implies that the 

protein secretion systems of Gram-positive and Gram-negative bacteria may be similar 

because they share the major components (van Wely, Swaving et al. 2001). In Gram-

positive bacteria, the Sec system generally controls the transport of newly translated pro-

teins before folding has been completed. The Sec-dependent pathway consists of a series 

of Sec proteins. Membrane proteins SecY, SecE, and SecG constitute an oligomeric 

complex that is homologous to the Sec61 channel complex in the endoplasmic reticulum 

(Manting and Driessen 2000; van Wely, Swaving et al. 2001). SecA is an ATPase, driv-

ing the translocation of secretory proteins (Chen and Tai 1987; Lill, Cunningham et al. 

1989; van Wely, Swaving et al. 2001). SecD and SecF stabilize the core structure and in-

crease the efficiency of protein export (Mori and Ito 2001; van Wely, Swaving et al. 

2001). The study of the crystallization and domain analysis of B. subtilis SecA enhances 

our understanding of its structure and function (Hunt, Weinkauf et al. 2002). The research 

in our lab centers on the structure and function of SecA, using E. coli as the model sys-

tem. Currently, we are expanding our studies to other bacteria. In particular, SecA from 
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B. subtilis (BsSecA) and S. pyogenes (SpSecA) are used in this study as models of Gram-

positive bacteria.  BsSecA and SpSecA have high homologies (51% and 55.7% identities, 

respectively) to EcSecA. Previous study has shown that the characteristic membrane-

associated conformation of EcSecA may be responsible for its function (You, Liao, and 

Tai, unpublished data). Based on the high homology among these proteins, we examined 

the structure and function of Gram-positive SecAs by similar approaches applied to Ec-

SecA for the interspecies comparison. This study will help to elucidate the mechanisms 

of protein exporting in Gram-positive bacteria, which are of significant interest because 

of their potential biotechnological applications. 

 

4.3 Material and methods 

Bacterial strains, medium, and chemicals. E. coli DH5α was used for DNA 

cloning and plasmid isolation. E. coli BL21(λDE3) (Studier and Moffatt 1986) and 

BL21.19 (Mitchell and Oliver 1993) were used for overproduction of various SecA pro-

teins. SecA mutants E. coli BL21.19, MM52 (Schmidt, Rollo et al. 1988), and BA13 

(MC4100 secA13(am) supF(ts)) (Cabelli, Chen et al. 1988) were used for the comple-

mentation assay. S. pyogenes NZ131 was a gift from Z. Eichenbaum. Luria-Bertani (LB) 

liquid and solid (1.5% agar) media were used for E. coli, and Todd-Hewitt broth with 

0.2% w/v yeast extract (THY) (Difco Laboratories, Sparks, MD) was used for the growth 

of S. pyogenes. E. coli total lipid extract was from Avanti Polar Lipids Inc. (Alabaster, 

Alabama). Other chemicals were purchased from Sigma-Aldrich Corp (St. Louis, MO) 

and Fisher Scientific (Pittsburg, PA), unless indicated otherwise. 
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Construction of plasmids carrying SecA derivatives. The gene encoding SecA 

was amplified by PCR (Mastercycler gradient; Eppendorf, Hauppauge, NY) with 5’ pri-

mer (AAAGGGCATATGGCCAATATTCTACGCAAA) and 3’ primer 

(GGGCCCCCATG GTTATGAGAAGGATTTACGAC) using the genomic DNA of S. 

pyogenes (a gift from Z. Eichenbaum) as the template and cloned to pET20b through 

NdeI and NcoI to yield SpSecA/pET20b. For tighter control of protein expression, the 

same DNA fragment was cloned to pBAD/Mys-HisC (Invitrogen, Carlsbad, CA) by the 

same method through NcoI and PstI to yield SpSecA/pBAD. DNA encoding the N-

fragment of BsSecA (Bs234) was amplified by PCR with genomic DNA of B. subtilis, 

and then cloned into expression vector pET20b via NdeI and NcoI to yield 

Bs234/pET20b. DNA encoding the chimeric BsEc was amplified by PCR using DNA 

encoding the N-terminal fragment of BsSecA (1-718 bp) and C-terminal fragment of Ec-

secA (699-1189 bp) as the template, and then was cloned into pET5aEcSecA cassette via 

NdeI and SfuI to yield BsEc/pET5a. 

 

Preparation of SecA proteins and liposomes. SecA proteins of E. coli (EcSe-

cA), B. subtilis (BsSecA) and S. pyogenes (SpSecA) were over-expressed from pT7-SecA 

(Cabelli, Chen et al. 1988), pT7div (McNicholas, Rajapandi et al. 1995), and SpSe-

cA/pET20b, respectively, in E. coli BL21(λDE3) (Studier and Moffatt 1986) (for EcSe-

cA) and BL21.19 (Mitchell and Oliver 1993) (after depletion of endogenous EcSecA, for 

BsSecA and SpSecA), and purified as described (Chen, Xu et al. 1996; Chen, Brown et 

al. 1998). Liposomes were prepared by sonication (Sonic Dismembrator Model 500; 

Fisher Scientific, Pittsburgh, PA) from purchased E. coli total lipid extract or phospholi-
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pids of S. pyogenes prepared by methanol-chloroform (2:1, v/v) extraction, which were 

resuspended in TKM buffer (TK with 2 mM MgCl2, for AFM) or in TK buffer (10 mM 

Tris-HCl, pH7.6, and 50 mM KCl, for ATPase assay and proteolysis assay) as described 

previously (Wang, Chen et al. 2003). The size and quality of liposomes were determined 

by Submicron Particle Size Analyzer N5 (Beckman Coulter, Miami, FL). 

 

In vitro ATPase activity assay. ATPase activity assays were performed as de-

scribed (Lill, Dowhan et al. 1990) with minor modifications. For intrinsic, lipid, and 

membrane ATPase, 50 µL reaction mixture contained 3 µg EcSecA, BsSecA, or SpSecA, 

1.2 mM of ATP, 50 mM Tris-HCl (pH 7.6), 20 mM KCl, 20 mM NH4Cl, 2 mM 

Mg(OAc)2, and 1 mM DTT, and 6 µg liposomes (for lipid ATPase) or urea-washed E. 

coli BA13 membrane (for membrane ATPase). For translocation ATPase, as well as the 

same amounts of BsSecA, ATP, BA13 membrane, 1 µg proOmpA and corresponding 

buffer were used. All reactions were done at 30°C (for intrinsic and lipid ATPases) or 

40°C (for membrane and translocation ATPases) for an appropriate time and were 

stopped by the subsequent addition of 800 µL of malachite green and then 100 µL of 

34% sodium citrate in one minute. After incubation at room temperature for 40 minutes, 

the absorption at 660 nm was measured (SmartSpec Plus; Bio-Rad Laboratories, Inc.). 

The ATPase activity was determined by the release of inorganic phosphate detected by 

the photometric method (Lanzetta, Alvarez et al. 1979). All assays were done at least in 

triplicate, and the results were presented as bar graphs with standard error of the mean. 
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Determination of lipid-specific domains of SecA by limited proteolysis. 10 µg 

of various SecA proteins were incubated in the presence or absence of 20 µg (unless spe-

cified otherwise) of liposomes in DTK buffer (1mM DTT, 10 mM Tris-HCl, pH 7.6, 50 

mM KCl) on ice for 15 min. Then SecA proteins were digested with 3 µg/mL of trypsin 

on ice for 15 min. The proteolysis reaction was stopped by adding 4X SDS-sample buffer 

(0.25 M Tris-HCl, pH 6.8, 8% SDS, 40% glycerol, 0.04% Bromophenol Blue) and heated 

at 100°C for 15 min. Fragments of SecA were separated by SDS-PAGE and visualized by 

Coomassie blue staining. These fragments were transferred to PVDF membrane (ProB-

lott; Applied Biosystems, Foster City, CA), and individual bands were subjected to N-

terminal sequencing carried out in the Core Facility of Georgia State University by using 

a protein sequencer (Procise 492cLC; Applied Biosystems, Foster City, CA). 

 

Cellular fractionation of SpSecA. S. pyogenes cells were grown at 37°C until 

OD600 reached 2.0. The harvested cells were resuspended in phosphate buffer (25 mM 

KPO4, pH6.4) and treated with lysozyme (0.5 mg/mL, 10 min). The spheroplast suspen-

sion was passed through the French Press (10,000 psi) three times and freeze-sorted three 

times to break cells. Unbroken cells and cellular debris were removed by centrifugation 

(6,000 g, 5 min, Centrifuge 5417R, Eppendorf, Hauppauge, NY). The supernatant was 

applied to ultra-centrifugation (265,100 xg, 60 min, Optima Ultracentrifuge, Beckman 

Coulter, Inc., Brea, CA) to separate the membrane and cytoplasmic fractions. The mem-

brane fraction was resuspended with phosphate buffer. Both fractions were applied to 

SDS-PAGE, and SpSecA was detected by Western blot with polyclonal antibodies raised 

against BsSecA.  
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Atomic force microscopy (AFM). AFM slides were prepared as previously de-

scribed (Wang, Chen et al. 2003) with minor modifications. In brief, the proper amount 

of SecA and liposomes (20 µg) in 10 µL TKM buffer were mixed by vortex and incu-

bated on ice for 30 min. The mixtures were applied to freshly cleaved mica and then were 

held at room temperature for 10 min, rinsed three times with deionized water, and dried 

in a dessicator over night. AFM images were obtained with a CP-Autoprobe (Park Scien-

tific, Sunnyvale, CA) by using the noncontact mode or di MultiMode V (Veeco Instru-

ment Inc., Woodburry, NY) by using the tapping mode, and analyzed by image-

processing software (SPMLab NT Ver. 5.01 or Nanoscope v700, respectively) according 

to the manufacturer’s manual. 

 

Complementation test. Plasmids carrying BsSecA, BsSecAN234, BsEcSecA, or 

SpSecA were transformed into SecA deficient mutants, BL21.19, MM52, or BA13. Bac-

terial cells were streaked on LB/Amp plate and incubated at 42°C for over-night growing. 

A duplicate control plate was incubated at 30°C. 

 

4.4 Results and discussion 

The lipid-specific domains of BsSecA were induced upon interaction with 

phospholipids. We have previously shown two membrane-integral forms of EcSecA 

from proteolysis-resistant fragments (Chen, Xu et al. 1996; Chen, Brown et al. 1998). We 

later proved that phospholipids could induce conformational change of EcSecA, generat-

ing a 39 kDa N-terminal domain (N39) and a 48 kDa domain located in the central region 

(M48) as membrane-embedded SecA (You, Liao, and Tai, unpublished data). To deter-
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mine whether the lipid-specific domains exist in SecA of bacteria other than Gram-

negative E. coli, the same approach was applied to SecA from Gram-positive bacteria. 

Limited proteolyses were performed with BsSecA and SpSecA, and the proteolytic pro-

files were analyzed. The tryptic digest patterns of BsSecA were similar to those of EcSe-

cA, but each fragment was slightly smaller because BsSecA is 60 amino acid residues 

shorter than EcSecA. The profiles of proteolytic fragments of BsSecA were very distinct 

in the presence and absence of phospholipids (Figure 4.1a). Trypsin digestion of soluble 

BsSecA produced a major 64 kDa fragment. Differently, there were two major phospho-

lipid-induced lipid-specific domains in BsSecA as verified by N-terminal sequencing: a 

46 kDa fragment starting at 341Glu, and a 36 kDa fragment starting at 1Met, correspond-

ing to M48 and N39 of EcSecA, respectively. The minor 64 kDa fragment starting at 

15Thr was probably integral SecAs form, as in EcSecA (Chen, Brown et al. 1998). Our 

data illustrate that phospholipids induce conformational changes of BsSecA to form lipid-

specific domains similar to EcSecA, indicating these two proteins share functional and 

structural similarities. On the other hand, no lipid-specific domains of SpSecA were de-

tected in the presence of various amounts of Ec or Sp phospholipids (Figure 4.1b). It is 

presumably because there are more trypsin-cutting sites in SpSecA. Therefore, the con-

formational change might be hard to be detected by this approach. It has been reported 

previously that SecA is distributed unevenly into a unique microdomain of the cellular 

membrane in S. pyogenes (Rosch and Caparon 2004). This microdomain is named ExPor-

tal and has been proposed as an organelle involved in the biogenesis of secreted proteins 

in S. pyogenes (Rosch and Caparon 2005). However, a subsequent study showed that 

SpSecA is located throughout the periphery and cytoplasm of cells (Carlsson, 
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Stalhammar-Carlemalm et al. 2006). Here traditional biochemical immunoblot was ap-

plied to resolve these contradictory results. Soluble and membrane-associated SpSecAs 

were separated by untra-centrifugation, analyzed by SDS-PAGE, Western Blot, and 

quantified by Quantity One (BioRad, Hercules, CA). Our data showed that the majority 

(about 80%) of SpSecA is membrane-associated, but not exclusively (Figure 4.2, compar-

ing lane 3 and 4). The specific localization of SecA is also detected in B. subtilis within 

clusters located along spiral-like structures, and the distribution could be influenced by 

the change of phospholipid contents (Campo, Tjalsma et al. 2004). The lipid-specific 

domains of BsSecA reveal the interactions between SecA and phospholipids, which may 

contribute the subcellular distribution of SecA in Gram-positive bacteria. 

 

BsSecA formed ring-like structures induced by phospholipids. Ring-like 

structures of EcSecA and the tandem dimer EcSecAA have been shown previously by 

AFM (Wang, Chen et al. 2003; Wang, Na et al. 2008). Based on the high homologies be-

tween EcSecA and BsSecA, we examined the structure of BsSecA in lipids by the same 

approach. BsSecA forms ring-like pore structures in the presence of phospholipids (Fig-

ure 4.3). The shape of this structure is remarkably similar to what was observed in EcSe-

cA, and with estimated 15-20 nm diameter and a hole 4-6 nm wide which are similar as 

compared to EcSecA detected by the new AFM machine (Figure 3.5). This unique struc-

ture could only be observed upon the interaction with phospholipids, indicating that it 

may be related to the lipid-specific domains described earlier. Our observation suggests 

that the ring-like pore structures may represent the structural role of BsSecA as part of 

the core of bacterial protein-conducting channel. Moreover, we prove that the potential 
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structural role of SecA in the protein translocation machinery is not restricted to Gram-

negative bacteria, suggesting a universal case also in Gram-positive bacteria. 

 

BsSecA and SpSecA do not complement EcSecA mutant. Previous studies 

showed that even though the full-length BsSecA failed to restore the growth and protein 

translocation, the N-terminal fragment containing 234 amino acid residues of BsSecA can 

complement the EcSecA temperature-sensitive mutant MM52 (Takamatsu, Nakane et al. 

1994). A subsequent study demonstrated the full ability of complementation of a chimer-

ic protein that contains the first 242 amino acid residues of BsSecA and the rest of EcSe-

cA (McNicholas, Rajapandi et al. 1995). These studies suggest the barrier between spe-

cies locates at the C-terminal of SecA. Surprisingly, the corresponding fragment from 

Pseudomonas aeruginosa did not show the ability to complement the SecA-deficient mu-

tant of E. coli (Yu and Tai, unpublished data). However, in the N-terminal region, P. ae-

ruginosa (Pa) SecA has higher homology (71% identity) to EcSecA than BsSecA (64% 

identity). To confirm this result and for interspecies comparison, N-terminal fragment of 

BsSecA (BsSecAN234) and chimeric BsEcSecA which contains N-234 BsSecA and the 

rest part of EcSecA were cloned, and the streak test was performed in this study. Since an 

unknown leakage of over-expression occurs, we were able to observe a plasmid effect on 

E. coli MM52, a strain lacking an essential factor to over-produce a gene carried by the 

T7 promoter. Unexpectedly, BsSecAN234 could not complement E. coli MM52 at the 

non-permissive temperature. Immunoblotting did not detect the intact N-fragment but did 

detect some degraded pieces (Figure 4.4). It indicates that BsSecAN234 may not be sta-

ble in cells under this condition. In the previous study, the N-234 fragment is fused with 
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LacZ (Takamatsu, Nakane et al. 1994). It might have stabilized the protein and caused 

the inconsistent result. The chimeric BsEcSecA could complement both E. coli MM52 

and BL21.19. This result is consistent with the earlier study (McNicholas, Rajapandi et 

al. 1995), while our construct has slightly shorter N-domain of BsSecA. Another Gram-

positive SecA from S. pyogenes (SpSecA) with high homology (55.7% identity) with Ec-

SecA was cloned, and the ability of complementation was verified. Although SpSecA 

could be steadily expressed, it could not complement E. coli BL21.19 (Figure 4.5). In a 

system with tighter control, SpSecA/pBAD could be expressed but still fail to comple-

ment E. coli BA13 with various amounts of arabinose (0.002%-0.2%, Figure 4.6). These 

data once more show evidence for the difference between Gram-positive and Gram-

negative SecA proteins. Immunoblotting observed successfully expressed and stable 

BsSecA and SpSecA in E. coli SecA defect mutants; therefore, failure to complement 

was not caused by incomplete or unstable Gram-positive SecA proteins in E. coli.   

 

The ATPase activities of BsSecA and SpSecA were not significantly stimu-

lated by lipids, membrane, and precursor proteins. EcSecA has low intrinsic ATPase 

activity, while the lipid ATPase could be stimulated by anionic phospholipids. In the 

presence of SecYEG complex and precursor proteins, the activity would be fully acti-

vated and referred to as translocation ATPase (Lill, Dowhan et al. 1990). BsSecA has rel-

atively high intrinsic ATPase activity, about 4.5 times of EcSecA, in terms of specific 

activity (Figure 4.7). Interestingly, in the presence of lipids, the ATPase activity was only 

slightly stimulated up to 1.4 fold (Figure 4.7), which is comparable to an earlier report 

(van der Wolk, Klose et al. 1993). A substantial activating effect on BsSecA could be de-
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tected when a high concentration of B. subtilis lipid is used (van der Wolk, Klose et al. 

1993). Similar to BsSecA, SpSecA possesses a high endogenous ATPase activity that 

was not notably stimulated by lipids (Figure 4.7). Under this experimental condition, 

when the same ratios of SecA/membrane and precursor protein (proOmA) were used, the 

membrane ATPase and translocation ATPase of BsSecA were only slightly stimulated 

(up to 1.5 fold), while the corresponding of EcSecA was dramatically activated (up to 5 

fold for membrane ATPase and higher than 15 fold for translocation ATPase, Figure 3.4). 

A moderate stimulation (about 3 fold) is observed even when high concentrations of 

components (BsSecA, Ec membrane, proOmA, and EcSecB) are applied (van der Wolk, 

Klose et al. 1993). One possible explanation is that since the heterogeneous components 

(Ec membrane/SecYEG and proOmA) are used in the assay, the ideal conformational 

changes of the membrane and translocation ATPase may not be completed. It has been 

reported that BsSecA cannot function in the translocation system of E. coli in vivo and in 

vitro, suggesting that the inefficient interaction between BsSecA and EcSecYEG causes 

the incompatibility (Takamatsu, Fuma et al. 1992; McNicholas, Rajapandi et al. 1995). A 

subsequent study reveals a rigid requirement of homologous BsSecYEG in the BsSecA 

dependent in vitro translocation, although still minor stimulation of translocation ATPase 

is observed (Swaving, van Wely et al. 1999). The C-terminal linker (amino acid residues 

781-819) of Gram-positive SecA is not highly conserved to Gram-negative SecA 

(Kakeshita, Kageyama et al. 2010), and this region is in the vicinity of the intramolecular 

regulator of ATP hydrolysis (IRA) (Karamanou, Vrontou et al. 1999). It raises the possi-

bility of differences between BsSecA and EcSecA with regard to the C-terminal-domain-

mediated regulatory mechanisms. 
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Figure 4.1. Comparison of the proteolysis pattern of soluble SecA and phos-

pholipid-associated SecA. (a) Phospholipids induce conformational changes of BsSecA 

detected by limited-proteolysis. Left panel: the proteolysis patterns of BsSecA in the 

presence and absence of lipids. After proteolysis as described in Materials and Methods, 

protein fragments were separated by SDS-PAGE and visualized by Coomassie blue stain-

ing. Right panel: schematic presentation of identification of lipid-specific fragments of 

BsSecA. Numbers and letters represent the starting point and amino acid residues of 

fragments verified by N-terminal sequencing. (b) No lipid-specific fragment of SpSecA is 

detected by limited-proteolysis. Comparison of Ec and SpSecA with different liposomes 

(Ec lipid mixture (E) and Sp phospholipids (S); numbers indicate the ratio of SecA/lipids, 

w/w). Positions of molecular weight markers are shown by bars. 

a 

b 
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Figure 4.2. Cellular distribution of SpSecA. Cellular fractiona-
tion was performed as described in Materials and Methods. SpSe-
cA was detected by antibody against BsSecA. Lane 1-3: mem-
brane fraction (equivalent to fractions from 600, 300, and 30 µL 
of cell lysate); lane 4-5: cytoplasm (30 and 10 µL); lane 6-7: un-
broken cells and cellular debris; Mr: molecular weight marker.  
 

1       2     3             4      5              6    7     Mr 
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Figure 4.3. BsSecA forms ring-like pore structures in lipids as observed 

by AFM. Purified BsSecA was incubated with (a, b, lower panel of c and d) 

or without (upper panel of c and d) lipid bilayers prepared from E. coli total 

lipid extract and applied to freshly cleaved mica as described in Material and 

Methods. (a-b): image obtained by CP-Autoprobe (Park Scientific) using the 

noncontact mode; (b): a zoom-in image of (a); (c-d): image obtained by di 

MultiMode V di MultiMode V (Veeco Instrument Inc.) using the tapping 

mode; upper panel: BsSecA with lipids; lower panel: BsSecA along. (d): 3-D 

image of (c). The bars in (b-d) show the depth of the image. 

a b 

c d 
5.1 nm 
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Figure 4.4. Stability of BsSecAN234 in E. coli MM52. Expressing 

BsSecAN234 (lane 1-4) and EcSecA (lane 5) in MM52 by leakage of 

over-expression; lane 6: over-expressing BsSecAN234 in BL21.19; Mr: 

molecular weight marker. SecAs were detected by polyclonal antibodies 

against BsSecA. 

Figure 4.5. Complementation test of SpSecA to E. coli secA mutant 

BL21.19.  (a): 30°C; (b): 42°C. SecAs were induced by 5µM IPTG. 1-10: 

SpSecA/pET20b/BL21.19; 11: pT7Div/BL21.19; 12: pT7-SecA/BL21.19. 
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Figure 4.6. Complementation test of SpSecA to E. coli secA mutant BA13. 

SpSecA/pBAD/BA13 was grown at (a): 30°C; (b-d): 42°C. (b, c, and d): 

SpSecA were induced by arabinose (0.002%, 0.02% and 0.2%, respectively). 

a                                                            b 

c                                                            d 
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Figure 4.7. In vitro ATPase activities of BsSecA and SpSecA are not significantly 

stimulated by lipids. The intrinsic ATPase (open bars) and lipid ATPase (close bars) of 

Ec, Bs, and SpSecA were performed as described in Materials and Methods. All assays 

were done in multiples, and the result was presented as bar graphs with standard error of 

the mean. 
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5 CONCLUSIONS 

5.1 General conclusion and discussion 

The over-all aim of our research is to understand the mechanism of protein secre-

tion in bacteria, with a focus on the SecA-dependent protein translocation. In this study, 

multiple approaches were used to analyze the structure and function of SecA.  

SecA ATPase inhibitors and possible applications. We found that fluorescein 

analogs Rose Bengal (RB) and Erythrosin B (EB) can inhibit all three forms of SecA 

ATPase as well as in vitro protein translocation effectively. Most likely, the fluorescein 

analogs are general ATPase inhibitors because various ATPases are repressed by these 

compounds (Morris, Silbergeld et al. 1982; Silbergeld, Anderson et al. 1982; Fricke 

1985). However, SecA may still be the more susceptible target of RB and EB in bacteria, 

because the catalytic ATPase is more sensitive than F1F0-proton ATPase. These com-

pounds also exhibit bacteriostatic and bactericidal effects on both Gram-negative and 

Gram-positive bacteria in the presence of glucose to minimize the effects on F1F0-proton 

ATPase. In the experimental condition, photo-oxidation is not the primary mechanism for 

the antimicrobial activities and inhibitory effect against ATPase of RB, as previously re-

ported (Watson and Haynes 1982; Banks, Board et al. 1985; Glaser, Cadenas et al. 1988; 

Rasooly and Weisz 2002; Kim, Park et al. 2008; Waite and Yousef 2009). Our results 

show that SecA is one of the targets of fluorescein analogs, and the antibacterial effects 

can be caused by the inhibition of ATPase and protein translocation.  

Only a few SecA inhibitors have been found to date. The well-known SecA inhi-

bitor, sodium azide, merely prevents the translocation ATPase and in vitro protein trans-

location at mM range, which is a thousand times weaker than RB, and has no effect on 
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the intrinsic and membrane ATPase (Oliver, Cabelli et al. 1990; Nakane, Takamatsu et al. 

1995). Inhibitory effects against ATPase or bacterial growth are observed from other in-

hibitors from natural sources, such as CJ21058 (Sugie, Inagaki et al. 2002) and pannomy-

cin (Parish, de la Cruz et al. 2009), or synthesis (Li, Huang et al. 2008; Chen, Huang et 

al. 2010; Akula, Zheng et al. 2011; Jang, De Jonghe et al. 2011), although none of them 

have been reported to hold compatible potency and the comprehensive effects both in vi-

tro and in vivo as RB. The fluorescein analogs are commercially available, with high so-

lubility for easy manipulation, and with relatively low or no toxicity for food and drug 

application. Therefore, they can serve as good starting materials for further structural op-

timization. Taken together, our data suggest that fluorescein analogs are good candidates 

for development of new antibacterial agents using SecA as the target. Being the central 

component of the protein secretion pathway and without a counterpart in humans, SecA 

provides an ideal target for potential medicines through an alternative action with existing 

antibiotics. This new strategy may help solve the serious problem of antibiotic resistance. 

SecA possesses three levels of ATPase activities: intrinsic, membrane, and trans-

location ATPases, depending on the conformation, which is in response to the presence 

of legends or other components of the Sec system (Lill, Dowhan et al. 1990). RB shows 

dramatically different inhibitory effects and mechanisms against three forms of SecA 

ATPase, suggesting the inhibition is related to the conformation of SecA. RB and EB in-

hibit the intrinsic ATPase of SecA competitively at low ATP concentration and non-

competitively at high ATPase concentration, indicating they influence the two non-

identical nucleotide binding sites of SecA. Kinetics study suggests that RB and EB prefer 

to bind to the high-affinity site, acting as a competitive inhibitor at low ATP concentra-
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tion. NBDII acts as a sensor for the signal from high ATP concentration to increase the 

activity. RB and EB then inhibit the raised activity non-competitively. This interpretation 

is consistent with the most widely accepted view of SecA: NBDI is responsible for the 

high-affinity binding and acts as the real catalytic site. NBDII is a regulatory site for the 

activity of NBDI and has been suggested as the intramolecular regulator of ATP hydroly-

sis (IRA2) (Karamanou, Vrontou et al. 1999; Nakatogawa, Mori et al. 2000; Sianidis, 

Karamanou et al. 2001). These interesting features of RB and EB lead to a potential ap-

plication. Specifically, these inhibitors or their derivatives can provide useful tools for 

biochemical analysis, such as to probe the conformational changes of SecA during pro-

tein translocation and to clarify the functional significance of the two nucleotide binding 

sites of SecA. 

The structural role of the C-terminal domain of SecA: Can (and which do-

main of) SecA form the protein-conducting channel? The current model for Sec-

dependent protein transportation (Wickner and Leonard 1996) illustrates that the core 

channel for protein translocation is formed by heterotrimeric SecYEG complex 

(Akimaru, Matsuyama et al. 1991; Nishiyama, Mizushima et al. 1992; Hanada, 

Nishiyama et al. 1994). The peripheral protein SecA hydrolyzes ATP to provide the 

energy required for the movement of preproteins across the plasma membrane (Eichler 

and Wickner 1997). However, membranes with deletion of SecY and SecE are still active 

in translocation of some precursor proteins, suggesting these two proteins are not essen-

tial for the transportation of all proteins (Watanabe, Nicchitta et al. 1990; Watanabe and 

Blobel 1993; Yang, Lian et al. 1997; Yang, Yu et al. 1997). The membrane-integral form 

of SecA and two lipid-specific domains have been identified (Chen, Xu et al. 1996). 2-D 
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and 3-D structures of EcSecA in lipids detected by electronic microscopy (EM) and 

atomic force microscopy (AFM) reveal the ability of SecA itself to form the channel-like 

structure that is independent of ATP or on-going protein translocation (Wang, Chen et al. 

2003). Electro-physiological data show EcSecA, but not SecYEG, is the major contribu-

tor for channel activity, providing more evidence that SecA can form the protein-

conducting channel (Lin, dissertation, 2006) (Hsieh, Zhang et al. 2011). In this study, we 

investigated the structural role and function of the first long α-helix of C-terminal domain 

of SecA. This α-helix is not necessary for ATPase activity because N68 without the helix 

possesses high intrinsic ATPase and responds to the interaction with lipids with stimu-

lated activity. We have found that the lack of stimulation in the literature is the effect 

from the N-terminal His-tag. On the other hand, the α-helix is important for the mem-

brane interaction and the ring-like structure of SecA with lipids. This helix is located at 

the middle of the lipid-specific domain M48, which can form a partial pore-like structure 

in lipids (You and Tai, unpublished data). Here SecA1-F639D to SecA1-668 (N71.5D-N75), 

which contains major part of M48 and whole N39 (the other lipid-specific domain), can 

form a comparable ring structure similar to the full length of SecA. Thus, the minimal 

essential elements for the ring structure should be located in this region, and the precise 

position still needs to be defined. 

The structural role of SecA has been analyzed in our lab using EcSecA as the 

model. In order to confirm that our finding is not an extraordinary case that can only be 

detected in this specific protein, BsSecA was analyzed in the comparative study. With the 

same approaches, a lipid-specific domain corresponding to M48 of EcSecA is deter-

mined. The ring-like structure of BsSecA in lipids is also similar to what has been found 
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in EcSecA by AFM. With this supporting evidence, we can conclude that the structural 

role of SecA is not an exceptional event in E. coli, but is universal in bacteria. SecA from 

Gram-positive and G-negative bacteria share common features of their structural role in 

the protein transportation machinery, even though the species barrier exists in other bio-

chemical functions. Thus, EcSecA and BsSecA are not exchangeable and cannot com-

plement each other (Takamatsu, Fuma et al. 1992; van der Wolk, Klose et al. 1993; 

McNicholas, Rajapandi et al. 1995; Swaving, van Wely et al. 1999).  

In this study, the structure and function of SecA from various bacteria are further 

examined. We show more evidence to support our working hypothesis that SecA can 

form a protein-conducting channel. These comparative studies provide a more compre-

hensive view to understand the protein translocation in bacterial physiology. 

 

5.2 Future directions 

Based on what we have accomplished in this study, we will further determine the 

structures and function of SecA in two aspects: (1) to examine SecA inhibitors and the 

applications; and (2) to further characterize the structure and function of lipid-specific 

domains of SecA and the structural role of SecA as part of the protein-conducting chan-

nel.  

RB and EB will be applied for further structural optimization for several aims, 

such as to increase the potency, to decrease the molecular weight for better permeability, 

and to verify the functional group of the compound. The binding site of the inhibitor may 

be determined by cross-linking. RB, EB, or their derivatives may be applied in co-

crystallization for the structural study. 
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We found that the SecA variant containing the C-terminal portion of the α-helix 

starts to gain the ability to form the ring-like structure in the presence of lipids. The SecA 

derivatives beyond the first α-helix will be constructed, to determine the role of the other 

two α-helixes of HSD. The minimum required elements for pore-structure forming and 

functional channels need to be defined. SecA domain mapping will be achieved with 

multiple approaches, including structural studies with AFM, the electro-physiological 

studies for the channel activity, and in vitro translocation for biochemical functions. With 

these comprehensive data, we will try to correlate the structural and functional role of 

various SecA domains. 
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7 APPENDICES  

Appendix A: Discovery of the First SecA Inhibitors Using Structure-Based Virtual 

Screening 
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7.1 Abstract 

Bacterial protein secretion is a critical and complex process. The Sec machinery 

provides a major pathway for protein translocation across and integration into the cellular 

membrane in bacteria. Small molecule probes that perturb the functions of individual 

member proteins within the Sec machinery will be very important research tools as well 

as leads for future antimicrobial agent development.  Herein we describe the discovery of 

inhibitors, through virtual screening, that specifically act on SecA ATPase, which is a 

critical member of the Sec system. These are the very first inhibitors reported for intrinsic 

SecA ATPase. 

 

7.2 Introduction 

It is well known that protein synthesis primarily occurs in the cytosolic ribo-

somes.  However, their sites of eventual localization vary. It has been said that no less 

than 10% of protein products cross a membrane before arriving at the final location of 

function (Mori and Ito 2001). There are others that need to be integrated into a mem-

brane.  Therefore, protein transport across and integration into membranes are very im-

portant to their proper functions. However, the study of protein transport is not a trivial 

task. In bacteria, there are several protein transport mechanisms (Saier 2006). Among 

them, the Sec machinery (or translocase) provides a major pathway of protein transloca-

tion from the cytosol across or into the cytoplasmic membrane.  The Sec machinery has 

seven proteins including SecA, SecD, SecE, SecF, SecG, SecY, and YajC. They also 

form complexes such as SecYEG and SecYEGDFYajC in the membrane as functional 

units for protein transport. Among the Sec proteins, SecA is found both in the cytoplasm 
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and bound to the inner membrane.  When SecA is bound to the SecYEG complex, acidic 

phospholipids and a precursor protein such as proOmpA (the precursor of outer mem-

brane protein A), it becomes fully active as an ATPase, which drives protein transloca-

tion (Lill, Dowhan et al. 1990; van Klompenburg, Ridder et al. 1997). Small molecule 

probes that perturb the function of individual components of the Sec family will be very 

important for studying the details of the transport mechanisms for various proteins.  They 

are also useful tools to examine the detailed mechanisms of how the Sec system func-

tions. SecA has no human counterpart. Therefore, SecA inhibitors also have the potential 

to be of a novel class of antimicrobial agents with minimal toxicity.   In our own re-

search, we are in need of inhibitors of SecA ATPase as tools to probe the detailed me-

chanism of function of the SecYEG-SecA transport system. Currently, inorganic azide is 

the only inhibitor available (IC50: 1 mM) as a research tool to probe the SecA system 

(Knott and Robinson 1994). However, such inhibitory activities are only known for the 

SecYEG-SecA translocase activities, not for the intrinsic SecA ATPase activities though 

azide-resistant mutation has been mapped on SecA (Oliver, Cabelli et al. 1990).  In addi-

tion, azide is also an inhibitor of many other enzymes such as cytochrome c oxidase 

(Yoshikawa, Shinzawa-Itoh et al. 1998; Bowler, Montgomery et al. 2006), superoxide 

dismutase (Stoddard, Ringe et al. 1990) alcohol dehydrogenase (Yound and Wang 1971), 

and ceruloplasmin (Zaitsev, Zaitseva et al. 1999). Its multitude of activities make azide a 

poor probe for SecA functions in vivo or in cellular preparations. In 2002, Sugie reported 

an organic compound (CJ-21058) that inhibits SecYEG-SecA translocase activities using 

partially purified membrane preparations (Sugie, Inagaki et al. 2002). It was inferred that 

the observed effect was due to SecA ATPase inhibition. However, no enzyme inhibition 
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studies were conducted to allow for true characterization of the compound as a SecA 

ATPase inhibitor or whether the inhibition mechanism was due to its effect on other fac-

tors. Furthermore, CJ-21058 is a natural product isolated from marine source and is not 

readily available to those interested in using it a research probe. Therefore, up to date and 

to the best our knowledge, there has not been a confirmed organic SecA ATPase inhibitor 

reported in the published literature. Herein we report the discovery of inhibitors of SecA 

ATPase by taking advantage of the newly available E. coli SecA crystal structure through 

virtual screening (Papanikolau, Papadovasilaki et al. 2007). The inhibitors identified will 

be extremely important tools to labs interested in studying bacterial protein transport. 

Furthermore these inhibitors are commercially available from Maybridge, which will 

make it very convenient for interested labs to obtain. In the long term, the inhibitors iden-

tified can also serve as important structural leads for the development of SecA inhibitors 

as novel antimicrobial agents with minimal host toxicity. 

For our effort to discover SecA ATPase inhibitors, we decided to use structure-

based virtual screening. This decision was largely due to the recent availability of the 

published crystal structure of E. coli SecA ATPase (Papanikolau, Papadovasilaki et al. 

2007). In a structure-based virtual screening approach, large compound databases can be 

docked into the active site/binding pocket and estimated binding free energies are used to 

select compounds for experimental testing (Lyne 2002; Schneider and Bohm 2002). 

There have been many examples in which such an approach was used successfully 

(Bajorath 2002; Bologa, Revankar et al. 2006). With the available SecA ATPase crystal 

structure, we screened compounds in the MayBridge Screening Collection against the 

holo-form (PDB entry: 2FSG) (Papanikolau, Papadovasilaki et al. 2007). Figure 7.1 
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represents the docking conformations of these 31 hits and ATP around the ATP-site of 

SecA ATPase. All hit compounds seem to have similar proposed orientations as ATP 

when binding with E. coli SecA. The chemical structures and docking scores for all these 

31 compounds (1-31) are presented as supplementary information (Figure 7.2 and Table 

7.1). 

 

7.3 Material and methods 

Protocol of virtual screening. The 2D structures of these compounds were first 

converted into 3D structures using the CONCORD program (Pearlman 1987). Before 

docking, hydrogen atoms were added into the protein structure and all atoms were as-

signed with Kollman-all charges by the SYBYL 7.1 program (2005). Hydrogen atoms 

were added to the 3D ligand structures and all atoms were assigned with AM1-BCC par-

tial charges (Jakalian, Bush et al. 2000; Jakalian, Jack et al. 2002) by the QuACPAC 1.1 

software (2007). Residues within a radius of 6 Å around the center of ATP were defined 

as the active site to construct a grid for the virtual screening. The active site included re-

sidues Gly80, Mse81, Arg82, His83, Phe84, Gln87, Arg103, Thr104, Gly105, Glu106, 

Gly107, Lys108, Thr109, Leu110, Arg138, Asp209, Glu210, Arg509 and Gln578. The 

Maybridge database, containing about 60,000 compounds, was screened and scored on a 

40-node Linux Biocluster. The position and conformation of each compound were opti-

mized first by the anchor fragment orientation and then by the torsion minimization me-

thod implemented in the DOCK 6 program (Ewing, Makino et al. 2001; Moustakas, Lang 

et al. 2006). Fifty conformations and a maximum of 100 anchor orientations for each 

compound were generated, and all of the docked conformations were energy minimized 
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by 100 iterations following procedures as described in literature (Moustakas, Lang et al. 

2006). The docked molecules were ranked based on the sum of the van der Waals and 

electrostatic energies implemented in the DOCK 6 program to obtain the top 1000 com-

pounds. After collecting the top hits, re-analysis of virtual screening results was con-

ducted using drug-like property criteria (Muegge 2003) by the FILTER 2.0.1 

software.(2007) We then performed consensus scoring evaluation (Feher 2006) by 

ChemScore (Eldridge, Murray et al. 1997; Murray, Auton et al. 1998), PLP (Verkhivker, 

Bouzida et al. 2000), ScreenScore (Stahl and Rarey 2001), ChemGauss and ShapeGauss 

(McGann, Almond et al. 2003) implemented in the FRED 2.2.3 software (2007) as well 

as hydrogen bond and hydrophobic profiles checked by the IDEA 8.8 software (2007). 

As the final step, a manual binding orientation and conformational analysis was per-

formed to come up with the final 31 hits for biological evaluation. 

Molecular simulation of docking complexes. Molecular simulations were per-

formed on a 40-node Linux Biocluster following similar procedures as described in earli-

er publications from our lab (Li and Wang 2006; Li and Wang 2007). In brief, the docked 

complexes were solvated by using the TIP3P water model (Jorgensen, Chandrasekhar et 

al. 1983), subjected to 500-steps of molecular mechanics minimization and molecular 

dynamics simulations at 300 K for 1.5 ns using the SANDER module in AMBER 8 pro-

gram (Case, Cheatham et al. 2005). The resulting structures were then analyzed using 

PyMOL 0.99 (DeLano 2006), HBPLUS 3.06 (McDonald and Thornton 1994) and Ligplot 

4.22 (Wallace, Laskowski et al. 1995) programs to identify specific contacts between li-

gands and SecA. 
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Assays of compounds against EcN68 SecA ATPase. EcN68 was over-expressed 

from pT7-SecA (Schmidt and Oliver 1989) and pIMBB-8 (Karamanou, Vrontou et al. 

1999) and purified as described in the literatures (Chen, Xu et al. 1996; Chen, Brown et 

al. 1998). ATPase activities were determined by the release of phosphate (Pi) detected 

spectrophotometrically using malachite green (Sugie, Inagaki et al. 2002). All potential 

inhibitors were dissolved in 100% DMSO (Sigma) to make a 10 mM stock solution and 

kept at 4 °C before use. Potential inhibitors were diluted to proper concentrations with 

DMSO. SecA ATPase assay was performed as described in the literature (Lill, Dowhan 

et al. 1990) in the presence of 10% (vol/vol) DMSO.  The malachite green solution was 

incubated on ice for at least 2 hours (Sugie, Inagaki et al. 2002). Briefly, reaction mixture 

in 50 μL contained 9 μg EcSecA or 2.25 μg N68, 2 mM ATP, 50 mM Tris-HCl (pH7.6), 

20 mM KCl, 20 mM NH4Cl, 1 mM DTT, and 2 mM Mg(OAc)2. Tubes were incubated at 

40 °C for 40 or 20 minutes for EcSecA or N68, respectively. The reactions were stopped 

by adding 800 μL of malachite green and then 100 μL of 34% citric acid in 1 min. The 

mixtures were incubated at room temperature for 40 minutes and then the absorptions at 

660 nm were measured. Inhibition is illustrated by showing the percentage (%) of the re-

maining ATPase activities. 

 

7.4 Results and discussion 

These compounds were purchased from Maybridge Chemical Company (Trevil-

let, Tintagel, Cornwall PL34 OHW, UK). ATPase assays with E coli N68SecA (SecA 

residue #1-610) were conducted to test their inhibitory activities. N68SecA ATPase does 
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not have the 34kDa regulatory domain and represents the unregulated ATPase activity 

(Dempsey, Economou et al. 2002). Several compounds showed significant inhibitory ef-

fects as shown in Figure 7.3. For example, at 100 μM, about one third of the tested com-

pounds, including 9, 11, 13, 15, 16, 19, 20, 21, 23 and 25, showed >50% inhibition of the 

E coli SecA activities with 15 and 16 showing the highest activities with about 80% inhi-

bition. 

The six most potent compounds, 9, 13, 15, 16, 20 and 21 (Figure 7.4), were fur-

ther studied for their fifty-percent inhibitory concentrations (IC50) as described in litera-

ture (Lill, Dowhan et al. 1990). The IC50 values of the two most potent compounds 15 

(HTS-12302) and 16 (SEW-05929) were about 30 μM.  The IC50 values were about 80 

μM for 20 (BTB-06881) and 21 (CD-09529) and 150 μM for 9 (KM-03277) and 13 (SP-

00934). The inhibitory curves for these six compounds are represented in Figure 7.4. 

Full kinetic studies were performed for 16 and 21. Both compounds were compet-

itive inhibitors of SecA ATPase with Ki of 18 μM for 16 and 40 μM for 21.  Using the 

same method, we also examined azide, which is known to inhibit the SecYEG-SecA 

translocase activities with IC50 of about 1 mM (Oliver, Cabelli et al. 1990). No inhibition 

was observed of the N68SecA ATPase activities at concentrations as high as 10 mM.  

Such results indicate that azide has no inhibitory activities on the unregulated SecA AT-

Pase.  

The structures of 16 and 21 were re-docked into the active site and the interac-

tions were optimization by molecular mechanics and molecular dynamics. After refine-

ments, compound 16 seems to bind with SecA by forming hydrogen bonds with Lys108, 
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Glu210 and Arg509 and through hydrophobic interactions with residues Thr104, Gly105, 

Gly107, Gly392, Gly510 and Thr511 as shown in Figure 7.5. 

Compared with 16, compound 21 has a slightly different binding profile with Se-

cA. It mainly depends on strong hydrophobic interactions with Phe 84, Gln106 and 

Gln578, as well as hydrogen bond interactions with Gly105, Gly107 and Lys108. The 

proposed binding profile of compound 21 is depicted in Figure 7.6. 

 

7.5 Conclusion 

In summary, this study describes the successful discovery of the first SecA AT-

Pase inhibitors using structure-based virtual screening against E. coli SecA. In the initial 

screening, ten compounds (hit rate of 10/31 = 32%), including 9, 11, 13, 15, 16, 19, 20, 

21, 23 and 25, showed >50% inhibitory activities against E coli SecA at 100 μM concen-

trations. Among them, two compounds, 16 and 21, showed Ki values of 18 and 40 μM, 

respectively. These inhibitors will be extremely useful to researchers interested in ex-

amining the roles that SecA ATPase plays in the transport of various bacterial proteins.  

Furthermore, since SecA has no human counterpart, the inhibitor structures identified can 

serve as important lead scaffolds for structural optimization for the eventual development 

of a new class of antimicrobial agents with minimal toxicity. 
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Figure 7.1. Docking conformations of 31 hits (white lines) and ADP (purple sticks) 

around the ATP-site (yellow box) of E. coli SecA (ribbons). 
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Figure 7.2. The chemical structures of all 31 hit compounds. 
 

 



107 

Cmpd Name ChemScore ChemGauss PLP ScreenScore ShapeGauss Consensus 
Score Score Rank Score Rank Score Rank Score Rank Score Rank 

1 SPB-05073 -12.65 25 -57.58 64 -51.14 3 -123.73 0 -507.9 20 112 
2 PD-00493 -12.28 34 -56.66 77 -40.9 49 -100.01 8 -503.28 26 194 
3 BTB-14348 -7.79 189 -61.43 23 -42.82 24 -89.08 27 -519.26 15 278 
4 HTS-10275 -8.35 155 -60.42 33 -41.89 33 -85.44 46 -499.07 31 298 
5 HTS-03173 -14.83 8 -55.11 99 -44.88 14 -79.5 83 -448.22 121 325 
6 HTS-12079 -11.26 51 -59.05 45 -35.53 113 -80.88 74 -471.26 70 353 
7 HTS-05045 -9 121 -57.21 68 -36.44 95 -87.42 36 -496.8 35 355 
8 HTS-10337 -7.28 222 -56.57 78 -46.54 8 -96.52 13 -492.26 43 364 
9 KM-03277 -7.09 230 -66.28 5 -40.07 55 -84.5 52 -491.73 46 388 

10 BTB-01260 -7.43 211 -54.82 107 -42.39 28 -88.05 31 -518.6 16 393 
11 SEW-04870 -6.54 275 -65.39 9 -39.5 58 -82.98 65 -590.92 3 410 
12 CD-09529 -8.3 161 -56.69 74 -38.02 72 -78.31 90 -498.7 32 429 
13 SP-00934 -10.72 61 -59.38 43 -41.73 35 -89.47 26 -417.97 264 429 
14 BTB-06579 -11.24 52 -53.55 139 -37.21 84 -79.83 82 -466.09 80 437 
15 HTS-12302 -10.89 56 -53.1 151 -33.11 151 -90.34 23 -482.68 59 440 
16 SEW-05929 -20.22 0 -50.55 218 -56.58 0 -103.95 2 -424.78 222 442 
17 BTB-13683 -12.18 37 -53.06 152 -46.28 10 -97.21 11 -420.15 249 459 
18 HTS-11506 -14.3 13 -55.62 90 -44.21 16 -92.64 18 -403.23 356 493 
19 SPB-02704 -11.46 47 -48.36 300 -46.51 9 -111.22 1 -434.49 170 527 
20 BTB 06881 -5.27 356 -74.32 0 -36.73 90 -79.26 84 -580.23 5 535 
21 CD 09529 -6.61 267 -55.85 87 -43.52 19 -94.09 14 -438.01 155 542 
22 HTS 06914 -6.7 256 -58.63 51 -32.14 166 -84.86 49 -505.23 24 546 
23 HTS 08056 -10.58 67 -53.92 129 -53.85 1 -102.41 5 -404 351 553 
24 HTS 12053 -11.38 48 -55.16 98 -34.58 129 -87.31 38 -419.5 252 565 
25 HTS 13291 -7.9 183 -53.22 148 -38.78 67 -83.21 63 -450.15 110 571 
26 KM 06566 -12.45 28 -55.01 102 -30.39 189 -67.26 167 -458.23 90 576 
27 KM 10368 -8.91 126 -53.34 144 -43.07 22 -102.64 4 -414.52 281 577 
28 RDR 02782 -7.57 201 -71.01 2 -27.93 244 -73.01 124 -547.53 8 579 
29 SEW 03687 -10.63 64 -54.62 112 -36.17 98 -72.21 130 -432.65 185 589 
30 S 04453 -5.68 323 -53.44 142 -44.2 17 -103.59 3 -450.87 106 591 
31 RJF 01981 -5.38 349 -60.88 26 -36.56 93 -73.51 122 -528.12 11 601 

 

 

 

 

Table 7.1 Consensus scores of all 31 hit compounds 
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Figure 7.3.  Inhibition of unregulated SecA ATPase activities by tested compounds 

at 100 μM 
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Figure 7.4. The chemical structures of SecA inhibitors and their inhibitory curves 

against E. coli SecA. 
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Figure 7.5. (A) The proposed docking conformation of compound 16 (blue sticks) 

and ATP (purple sticks) around SecA ATP-site; (B) the proposed schematic interac-

tions of compound 16 with SecA. (For interpretation of color mentioned in this figure 

the reader is referred to the web version of the article.) 
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Figure 7.6. (A) The proposed docking conformation of compound 21 (blue sticks) 
and ATP (purple sticks) around SecA ATP-site; (B) the proposed schematic interac-
tions of compound 21 with SecA. (For interpretation of color mentioned in this figure 
the reader is referred to the web version of the article. 
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Appendix B: First Low µM SecA Inhibitors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This work has been published by 
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“The first low μM SecA inhibitors”. (2010) Bioorg Med Chem.18(4):1617-25. 

The biological assays were done by Y. Huang. The synthesis of chemicals was done by 

W. Chen, and the computer simulation was done by M. Li. 
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7.6 Abstract 

SecA ATPase is a critical member of the Sec family, which is important in the 

translocation of membrane and secreted polypeptides/proteins in bacteria. Small molecule 

inhibitors can be very useful research tools as well as leads for future antimicrobial agent 

development. Based on previous virtual screening work, we optimized the structures of 

two hit compounds and obtained SecA ATPase inhibitors with IC50 in the single digit mi-

cromolar range. These represent the first low micromolar synthetic inhibitors of bacterial 

SecA and will be very useful for mechanistic studies. 

 

7.7 Introduction 

With the rapid emergence of drug resistant bacteria, there is an urgent need for the 

development of new antimicrobial agents, especially those with a unique mechanism of 

action. With this ultimate goal in mind, we are interested in the development of inhibitors 

of bacterial protein translocation. Several protein transport mechanisms exist in bacteria 

(Saier 2006). Among them, the Sec machinery (or translocase) provides a major pathway 

of protein translocation from the cytosol across or into the cytoplasmic membrane.  The 

Sec machinery has seven proteins including SecA, SecD, SecE, SecF, SecG, SecY, and 

YajC. Assembly and complex formation are required to yield the functional translocase. 

Among the Sec proteins, SecA is found both in the cytoplasm and bound to the inner 

membrane.  When SecA is bound to the SecYEG complex, acidic phospholipids and a 

precursor protein such as proOmpA (the precursor of outer membrane protein A), it be-

comes fully active as an ATPase and a protein translocase (Lill, Dowhan et al. 1990; van 

Klompenburg, Ridder et al. 1997). Recently, several seminal papers described in intricate 
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details as to how the SecA machinery functions in transporting proteins (Erlandson, 

Miller et al. 2008; Tsukazaki, Mori et al. 2008; Zimmer, Nam et al. 2008). 

It has been said that in any given organism, membrane and secreted polypep-

tides/proteins comprise more than 30% of the proteome; and no less than 10% of proteins 

cross a membrane before arriving at their final locations of function (Mori and Ito 2001; 

Vrontou and Economou 2004). Such actions are often mediated by protein translocases. 

Therefore SecA is essential for bacterial survival. We envision that inhibitors of SecA 

can be very useful tools for studying bacterial protein transport and potential antimicrobi-

al agents, especially because SecA has no human counterpart. We have previously re-

ported effort in using virtual screening against the Escherichia coli SecA crystal structure 

(Papanikolau, Papadovasilaki et al. 2007) to search for possible structural features suita-

ble for SecA inhibitor development (Li, Huang et al. 2008). In this paper, we describe our 

effort in optimizing the structural features of the initial hits for the development of bac-

terial SecA inhibitors. Several low µM inhibitors have been found. Considering the fact 

that currently inorganic azide, which is a SecA inhibitor with an IC50 value of about 3 

mM, has cross reactivities against a number of enzymes (Stoddard, Ringe et al. 1990; 

Bowler, Montgomery et al. 2006) and is the primary research tool for probing bacterial 

protein translocation, the newly discovered SecA inhibitors will be very important. 
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7.8 Results and Discussions 

7.8.1. Chemistry 

In our earlier virtual screening efforts, two hits, 1 (SEW-05929) and 2 (HTS-

12302), were shown to have modest SecA inhibitory activities (IC50 values of about 100 

µM) (Li, Huang et al. 2008). In our earlier screening, these two compounds were found to 

have IC50 values of about 30 μM. However, upon more rigorous studies, 2 was found to 

have IC50 of 100 μM. 1 showed similar inhibition activities as 2, but started having 

solubility problems when approaching 100 μM. Since there were no other known SecA 

inhibitors except one natural product, for which the true inhibition mechanism was not 

known (Sugie, Inagaki et al. 2002), our effort to search for potent SecA inhibitors started 

with the optimization of these two modest inhibitors (Figure 7.7).  

Our optimization effort first started with the isoxazole carboxamide series (1) 

with the focus being on optimizing the aryl group attached to the amide.  In this series, 14  

analogs were synthesized.  The synthesis started with conversion of halogenated benzal-

dehyde 3 to the corresponding oxime 4 (Scheme 1). Isoxazole acid 6 was prepared by 

reacting 5 with ethyl acetoacetate followed by hydrolysis.(Maloney, Parks et al. 2000) 

Subsequent coupling/amidation reactions using EDCI and DMAP gave the final isox-

azole carboxamide derivatives 7a-7n. In this series, there were amides of aniline com-

pounds 7a-g, primary alkylamines 7h, i, secondary alkyamines 7j-l, and benzylamines 

7m,n. 

In optimizing the second series (2, Figure 7.7), we first started by testing different 

aryl structures flanking the central ring.  In our initial effort, 6-chloro-2-

mercaptobenzothiazole and 2-mercaptobenzoxazole derivatives were prepared by react-
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ing potassium ethylxanthate 8 with 2,4-dichloroaniline 9 or substituted 2-aminophenol 10 

(Scheme 2). Further, 5-cyano-6-aryl-2-thiouracils were prepared “by condensation of an 

aldehyde with ethyl cyanoacetate and thiourea in the presence of piperidine”.(Abdou and 

Strekowski 2000) The symmetrical compounds 15a-g or 16a-i were obtained by reacting 

two equivalents of compounds 11a-g or 14a-i with p-xylylene dibromide in acetonitrile in 

the presence of K2CO3 (Scheme 3). One successful series of analogs was the 2,2'-(α,α’-

xylene)bis(sulfanediyl)bis-(6-aryl-5-cyano-4-oxopyrimidine) 16a-i (see below for bio-

logical results). For this series, we were interested in further simplifying the structure to 

understand the core structural need. Therefore, "monomer" series 17d,e,g-i was prepared 

by benzylation of compounds 14d,e,g-i with benzyl chloride, and the difference in activi-

ties between the "dimer" and "monomer" series was also studied. 

 

7.8.2. Biological evaluation 

7.8.2.1. In vitro study 

The synthesized compounds were first evaluated using EcN68 SecA, which is a 

truncated version without the C-terminal regulatory/inhibitory domain, by following pro-

cedures published earlier (Li, Huang et al. 2008). Briefly, ATPase activities were deter-

mined by the release of phosphate (Pi), which can be detected spectrophotometrically us-

ing malachite green (Sugie, Inagaki et al. 2002). For compounds 7a-n, none of them 

showed improved activities over the original hit (1) or significant inhibition at 100 μM 

(Figure 7.8). Such results coupled with the weak activities of the original hit compound 

led to the decision of not pursuing this class of compounds any further. 
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For analogs of 2, compounds 15a-g did not show significant improvement over 

the initial hit (data not shown). However, the substituted thiouracils (16) showed very 

significant activities when screened at 100 (data not shown) and 30 μM (Figure 7.9). 

Those compounds that showed potent inhibition at 30 μM were further screened at 5 μM 

(Figure 7.10). Within the symmetrical compound series 16a-i, there were two substitution 

patterns: one with a phenyl ring substituted at the 4-position and the other with a phenyl 

ring substituted at the 3-position. The results showed that the 4-substituted analogs were 

more potent than the 3-substituted class, which was in turn slightly more potent than the 

ones without phenyl substituent. For example the activities of the 4-methyl substituted 

(16c, Figure 7.9) was higher than the 3-methyl analog (16b, Figure 7.9), which was in 

turn higher than the unsubstituted one (16a, Figure 7.9). With the initial indication that 

derivatives with a phenyl ring bearing a 4-substituent were more active, the subsequent 

effort was focused on optimizing this series of compounds. One approach adopted was to 

use relatively bulky alkyl groups at the 4-position. It turned out that these compounds 

were more potent than the corresponding 4-methyl substituted compounds. Among these 

compounds, those with an electron donating (e.g., methoxy) substituent seemed to be less 

active than the unsubstituted ones (e.g., 16f < 16a, Figure 7.9). At 5 μM, analogs with a 

halogen or aryl group substitution at the 4-position were more potent than the analogues 

with an alkyl substitution (e.g., 16g,h,i > 16c,d,e Figure 7.10). For the examination of the 

difference between the “dimers” and “monomers”, S-benzyl-2-thiouracils analogues 17d, 

e, g-i were also tested (Figure 7.11). First of all, both thiouracil-based “dimer” and 

“monomer” compounds showed more potent inhibition than the benzothiazole or ben-

zoxazole compounds 15a-g. However, the "dimer" series 16d,e,g-i were more potent than 
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the "monomer" series 17d,e,g-i, respectively. This higher potency for the “dimer” series 

seems to come from better fitting of the binding pocket of these compounds (see below). 

In the “monomer” series, it was observed that a large sized R’ group seemed to confer 

high potency (e.g., 17h > 17g ≈ 17e > 17d). However, when the substituented phenyl ring 

was replaced by a larger 1-naphthyl group, the activity seemed to decrease slightly. 

We determined the IC50 values of compound 16 g and 16 h since they showed the 

most potent activities of all the compounds screened at 5 μM. The result showed they had 

low micro molar inhibition (IC50: 2 μM, Figure 7.12), which is 50-fold more potent than 

the hit compound 2 (IC50: 100 μM) (Li, Huang et al. 2008). 

Inhibition tests using whole EcSecA gave similar results (16g IC50: 20 μM, 16h 

IC50: 50 μM and 17h IC50: 60 μM, Figure 7.13), which suggested that the EcN68 inhibi-

tion assay was more sensitive than the whole SecA inhibition assay. This is understanda-

ble since EcSecA contains a regulatory domain, which is essentially an inhibitor. 

7.8.2.2. In vivo study 

The biological activities of “dimer” and “monomer” compounds 16h and 17h 

were assessed against leaky mutant NR698 and wild-type E. coli strain MC4100 by de-

termining the minimum inhibition concentration (MIC) (Figure 7.14). “Monomer” com-

pound 17h exhibited the most potent inhibition effects against NR698, whereas “dimer” 

compounds 16h did not exhibit significantly antimicrobial activities. However, neither 

17h nor 16h exhibited inhibition effects against wild-type E. coli strain MC4100. Such 

results suggested that the permeability of 16h against NR698 and 17h against MC4100 
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might be a key factor and for in vivo applications future studies should focus on low mo-

lecular weight compounds such as 17h for structural optimization. 

7.8.3. Computational modeling 

In order to achieve a detailed understanding the binding mode between SecA and our 

compounds, in silico modeling was conducted by using molecular simulation (Li and 

Wang 2006; Li and Wang 2007; Li, Ni et al. 2008; Zheng, Kaur et al. 2008). Herein, the 

parent compound, HTS-12302 and the most active compound, 16g, were docked into the 

ATP site of SecA using DOCK 5.4. The docked complexes were then optimized by mo-

lecular mechanics and molecular dynamics simulation implemented in AMBER 8. Final-

ly, the possible ligand-protein interactions were examined by following similar proce-

dures we used in previous studies (Li, Huang et al. 2008). After molecular simulation, 

compound HTS-12302 seems to bind SecA through interactions with Thr 104 by forming 

hydrogen bond and with Met 81, Phe 84, Gln 87, Gly 105, Glu 106, Gly 107, Lys 108, 

Thr 109, Leu 110, Gly 392 and Arg 509 through hydrophobic interactions (Figure 7.15). 

Compound 16g has a similar binding conformation and orientation, in which it seems to 

engage in more hydrogen bond interactions with Phe 84, Gln 87, Lys 108 and Glu 210. 

Moreover, compound 16g still bears hydrophobic interactions with Met 81, Thr 104, Gly 

105, Glu 106, Gly 107, Leu 110 and Arg 509. Upon analysis of the structural features of 

these two compounds, it seems that the inclusion of the thiouracil moiety may contribute 

to the inhibitory activity because of more hydrophobic interaction and hydrogen bonds 

when compared with lead compound HTS-12302. Such structural insights will play a 

very critical role in future design of potent SecA inhibitors and in further structural opti-

mizations. 
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7.8.4. Conclusion 

Through optimization of two hit compounds 1 (SEW-05929) and 2 (HTS-12302) 

identified from virtual screening, we have found a series of thiouracil derivatives that are 

much more potent than the primary hits. The two most potent compounds, 16g and 16h, 

are 50-fold more active than the hit compounds. Results of antimicrobial tests suggest 

that future work should focus on low molecular weight analogs of 17h for in vivo appli-

cations. These compounds are the first in its class and should be very useful as research 

tools in studying bacterial protein transport. The new inhibitory structural features identi-

fied should also be very useful for further structural optimization in search of even more 

potent inhibitors as potential antimicrobial agents. 

 

7.9 Experimental 

7.9.1. Chemistry 

General Chemical Methods. All reagents and solvents were reagent grade or 

were purified by standard methods before use. Column chromatography was carried out 

on flash silica gel (Sorbent 230-400 mesh). TLC analysis was conducted on silica gel 

plates (Sorbent Silica G UV254). NMR spectra were recorded at 1H (400 MHz) and 13C 

(100 MHz) with a Bruker instrument. Chemical shifts (δ values) and coupling constants 

(J values) are given in ppm and Hz, respectively, using TMS (1H NMR) and solvents (13C 

NMR) as internal standards. 

General procedure for the preparation of isoxazole carboxamide derivatives 

(7a-7n). Under N2 atmosphere, a solution of an isoxazole carboxylic acid (6, 0.1 mmol), 

amine (0.12 mmol), EDCI (23 mg, 0.12 mmol), DMAP (14.7 mg, 0.12 mmol) and HOBt 
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(27 mg, 0.2 mmol) in DMF (2.5 mL) was stirred at room temperature overnight. Then 

most of the solvent was removed under reduced pressure. To the residue was added 10 

mL H2O and 10 mL EtOAc. Then the aqueous solution was extract by EtOAc (20 mL × 

2).  The organic layer was subsequently washed with brine (20 mL). The crude com-

pound was purified by flash chromatography on silica gel using hexane and EtOAc (9:1) 

as the mobile phase to give 7a-7n. 

3-(2,6-Dichlorophenyl)-5-methyl-N-m-tolylisoxazole-4-carboxamide (7a). 

Yield 76%; 1H NMR (CDCl3) δ 1.70 (s, 3H), 2.86 (s, 3H), 6.74 (bs, 1H), 7.00-7.07 (m, 

2H), 7.18 (td, 1H, J = 1.6 Hz, 7.2 Hz), 7.44 (dd, 1H, J = 6.4 Hz, 9.6 Hz), 7.50 (m, 2H), 

7.90 (d, 1H, J = 8.0 Hz); 13C NMR (CDCl3) δ 13.7, 16.9, 112.0, 123.0, 125.4, 127.0, 

127.3, 128.3, 129.1, 130.6, 132.7, 135.3, 136.6, 155.7, 159.0, 176.4. HRMS-ESI (+): 

Calc. for C18H15N2O2Cl2: 361.0511. Found: 361.0527 [M+H]+. 

N-(3-Bromobenzyl)-3-(2,6-dichlorophenyl)isoxazole-4-carboxamide (7b). 

Yield 71%; 1H NMR (CDCl3) δ 2.27 (s, 3H), 2.84 (s, 3H), 6.85 (m, 3H), 7.11 (m, 2H), 

7.48 (dd, 1H, J = 6.4 Hz, 9.6 Hz), 7.54 (m, 2H); 13C NMR (CDCl3) δ 13.5, 21.7, 112.1, 

117.1, 120.8, 125.8, 127.3, 129.0, 129.0, 132.7, 136.4, 137.2, 139.3, 155.9, 158.9, 175.7. 

HRMS-ESI (+): Calc. for C18H15N2O2Cl2: 361.0511. Found: 361.0516 [M+H]+. 

(3-(2,6-Dichlorophenyl)-5-methylisoxazol-4-yl)(morpholino)methanone (7c). 

Yield 81%; 1H NMR (CDCl3) δ 1.63 (s, 3H), 2.18 (s, 3H), 2.80 (s, 3H), 6.62 (bs, 1H), 

6.82 (s, 1H), 6.92 (d, 1H, J = 8.4 Hz), 7.37 (dd, 1H, J = 6.4 Hz, 9.6 Hz), 7.44 (m, 2H), 

7.66 (d, 1H, J = 8.4 Hz); 13C NMR (CDCl3) δ 13.7, 16.9, 21.0, 112.0, 123.2, 127.4, 

127.5, 128.6, 129.0, 131.2, 132.7, 135.3, 136.6, 155.7, 159.0, 176.2. HRMS-ESI (+): 

Calc. for C19H17N2O2Cl2: 375.0667. Found: 375.0679 [M+H]+. 
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(3-(2,6-Dichlorophenyl)-5-methylisoxazol-4-yl)(piperidin-1-yl)methanone 

(7d). Yield 67%; 1H NMR (CDCl3) δ 2.24 (s, 3H), 2.78 (s, 3H), 6.70 (dd, 1H, J = 2.4 Hz, 

8.4 Hz), 6.75 (bs, 1H), 7.12 (d, 1H, J = 2.4 Hz), 7.29 (d, 1H, 8.8 Hz), 7.43 (dd, 1H, J = 

6.4 Hz, 9.6 Hz), 7.49 (m, 2H), 7.62 (m, 5H); 13C NMR (CDCl3) δ 13.6, 23.3, 111.9, 

118.8, 120.1, 122.2, 127.2, 129.0, 132.8, 132.8, 136.3, 136.5, 139.0, 155.8, 158.8, 175.9. 

HRMS-ESI (+): Calc. for C18H14N2O2Cl2Br: 438.9616. Found: 438.9633 [M+H]+. 

3-(2,6-Dichlorophenyl)-N-(2,4-dimethylphenyl)-5-methylisoxazole-4-

carboxamide (7e). Yield 55%; 1H NMR (CDCl3) δ 2.87 (s, 3H), 6.92-6.99 (m, 2H), 7.08 

(t, 1H, J = 7.6 Hz), 7.20 (bs, 1H), 7.47 (dd, 1H, J = 6.4 Hz, 9.6Hz), 7.52 (m, 2H), 8.33 

(td, 1H, J = 1.6 Hz, 8.0 Hz); 13C NMR (CDCl3) δ 13.7, 111.8, 114.7, 114.9, 121.6, 124.7, 

124.8, 124.8, 124.8, 126.3, 129.1, 132.8, 136.3, 153.4, 155.9, 158.8, 176.4. HRMS-ESI 

(+): Calc. for C17H12N2O2Cl2F: 365.0260. Found: 365.0269 [M+H]+. 

N-(3-Chlorophenyl)-3-(2,6-dichlorophenyl)-5-methylisoxazole-4-carboxamide 

(7f). Yield 42%; 1H NMR (CDCl3) δ 2.79 (s, 3H), 6.81 (bs, 1H), 6.84 (m, 1H), 6.98 (m, 

1H), 7.09 (t, 1H, J = 8.0 Hz), 7.30 (t, 1H, J = 1.6 Hz), 7.45(dd, 1H, J = 6.4 Hz, 9.6 Hz), 

7.50 (m, 2H); 13C NMR (CDCl3) δ 90.2, 113.8, 128.2, 128.6, 132.0, 158.2, 160.2, 176.0. 

HRMS-ESI (+): Calc. for C17H12N2O2Cl3: 380.9964. Found: 380.9962 [M+H]+. 

N-Cyclohexyl-3-(2,6-dichlorophenyl)-5-methylisoxazole-4-carboxamide (7g). 

Yield 59%; 1H NMR (CDCl3) δ 2.83 (s, 3H), 6.83 (bs, 1H), 6.87 (m, 1H), 6.98 (t, 1H, J = 

8.8 Hz), 7.42 (dd, 1H, J = 2.8 Hz, 6.8 Hz), 7.50 (dd, 1H, J = 6.4 Hz, 9.6 Hz), 7.55 (m, 

2H); 13C NMR (CDCl3) δ 13.6, 111.7, 116.8, 117.0, 119.6, 119.7, 121.4, 121.6, 122.4, 

127.1, 129.1, 132.9, 133.8, 136.3, 154.0, 155.7, 156.4, 158.9, 176.1. HRMS-ESI (+): 

Calc. for C17H11N2O2FCl3: 398.9870. Found: 398.9885 [M+H]+. 
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3-(2,6-Dichlorophenyl)-5-methyl-N-o-tolylisoxazole-4-carboxamide (7h). 

Yield 79%; 1H NMR (CDCl3) δ 0.83 (m, 2H), 1.04 (m, 1H), 1.19-1.32 (m, 4H), 1.39 (m, 

1H), 2.02 (m, 2H), 2.73 (s, 3H), 3.74 (m, 1H), 5.02 (m, 1H), 7.39 (dd, 1H, J = 6.4 Hz, 9.6 

Hz), 7.45 (m, 2H); 13C NMR (CDCl3) δ 13.3, 24.1, 25.5, 32.5, 47.4, 112.0, 127.8, 128.7, 

132.4, 136.3, 156.1, 159.9, 174.7. HRMS-ESI (+): Calc. for C17H19N2O2Cl2: 353.0824. 

Found: 353.0838 [M+H]+. 

N-(4-Bromo-3-methylphenyl)-3-(2,6-dichlorophenyl)-5-methylisoxazole-4-

carboxamide (7i). Yield 82%; 1H NMR (CDCl3) δ 0.28 (m, 2H), 0.65-0.70 (m, 4H), 0.81 

(d, 2H, J = 6.8 Hz), 0.94 (m, 2H), 1.16-1.25 (m, 2H), 1.31-1.44 (m, 4H), 1.49-1.58 (m, 

4H), 1.75 (m, 2H), 3.63 (m, 1H), 4.10 (m, 1H), 7.39-7.51 (m, 5H); 13C NMR (CDCl3) 

δ13.2, 13.4, 22.2, 22.3, 29.6, 29.8, 31.5, 31.9, 32.9, 33.6, 44.3, 48.3, 111.8, 112.0, 127.7, 

127.9, 128.7, 128.9, 132.3, 132.6, 136.2, 136.4, 156.0, 156.2, 159.8, 160.0, 174.5, 175.3. 

HRMS-ESI (+): Calc. for C18H21N2O2Cl2: 367.0980. Found: 367.0991 [M+H]+. 

(3-(2,6-Dichlorophenyl)-5-methylisoxazol-4-yl)(thiomorpholino)methanone 

(7j). Yield 85%; 1H NMR (CDCl3) δ 1.34 (bs, 4H), 1.52 (m, 2H), 2.56 (s, 3H), 3.38 (bs, 

4H), 7.32 (m, 1H), 7.40 (m, 2H); 13C NMR (CDCl3) δ 12.4, 24.4, 25.9, 113.6, 127.7, 

128.4, 131.5, 135.9, 157.5, 161.6, 169.6. HRMS-ESI (+): Calc. for C16H17N2O2Cl2: 

339.0667. Found: 339.0668[M+H]+. 

3-(2,6-Dichlorophenyl)-N-(2-fluorophenyl)-5-methylisoxazole-4-carboxamide 

(7k). Yield 84%; 1H NMR (CDCl3) δ 2.52 (s, 3H), 3.36 (bs, 8H), 7.30 (dd, 1H, J = 6.4 

Hz, 9.6Hz), 7.37 (m, 2H); 13C NMR (CDCl3) δ 12.6, 66.7, 112.8, 127.4, 128.6, 131.8, 

135.9, 157.3, 161.9, 170.4. HRMS-ESI (+): Calc. for C15H15N2O3Cl2: 341.0460. Found: 

341.0466 [M+H]+. 
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N-(3-Chloro-4-fluorophenyl)-3-(2,6-dichlorophenyl)-5-methylisoxazole-4-

carboxamide (7l). Yield 72%; 1H NMR (CDCl3) δ 2.30 (bs, 4H), 2.52 (s, 3H), 3.62 (bs, 

4H), 7.30 (dd, 1H, J = 6.4 Hz, 9.6Hz), 7.37 (m, 2H); 13C NMR (CDCl3) δ 12.6, 27.8, 

113.0, 127.4, 128.6, 131.9, 135.9, 157.2, 162.2, 170.4. HRMS-ESI (+): Calc. for 

C15H15N2O2SCl2: 357.0231. Found: 357.0237 [M+H]+. 

N-(2-Bromobenzyl)-3-(2,6-dichlorophenyl)-5-methylisoxazole-4-carboxamide 

(7m). Yield 73%; 1H NMR (CDCl3) δ 2.73 (s, 3H), 4.37 (d, 2H, J = 6.0 Hz), 5.62 (bs, 

1H), 7.04 (m, 1H), 7.16 (m, 2H), 7.26-7.33 (m, 3H), 7.38 (d, 1H, J = 8.0 Hz); 13C NMR 

(CDCl3) δ 13.4, 43.9, 111.6, 123.9, 127.3, 127.9, 128.8, 129.5, 130.6, 132.3, 132.8, 

136.2, 136.9, 156.1, 160.6, 175.2. HRMS-ESI (+): Calc. for C18H14N2O2Cl2Br: 438.9616. 

Found: 438.9627 [M+H]+. 

3-(2,6-Dichlorophenyl)-5-methyl-N-(4-methylcyclohexyl)isoxazole-4-

carboxamide (mixture of cis & trans) (7n). Yield 93%; 1H NMR (CDCl3) δ 2.74 (s, 

3H), 4.28 (d, 2H, J = 5.6 Hz), 5.27 (bs, 1H), 6.91 (d, 1H, J = 7.2 Hz), 7.04 (m, 2H), 7.29 

(d, 2H, J = 7.6 Hz), 7.34 (d, 2H, J = 7.6 Hz); 13C NMR (CDCl3) δ 13.4, 42.9, 111.5, 

122.9, 126.2, 127.3, 128.8, 130.2, 130.4, 132.5, 136.0, 139.8, 156.1, 160.7, 175.2. 

HRMS-ESI (+): Calc. for C18H14N2O2Cl2Br: 438.9616. Found: 438.9635 [M+H]+. 

General procedures for the preparation of and 2-mercaptobenzoxazole (11b 

– 11g). To a solution of a substituted 2-aminophenol (3 mmol) was added potassium 

ethylxanthate (484 mg, 3 mmol) in absolute ethanol (10 mL). The resulting mixture was 

heated under reflux overnight and then cooled to room temperature. The precipitate was 

dissolved in H2O (10 mL) and washed with ethyl acetate (10 mL × 3) and the aqueous 
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solution was then neutralized to pH = 5 by slow addition of glacial acetic acid. Then the 

product precipitated (crystallized) out to give 11b – 11g. 

2-Mercaptobenzoxazole (11b). Yield 52%; 1H NMR (DMSO-d6) δ 7.29 (m, 3H), 

7.53 (d, 1H, J = 7.6 Hz), 13.90 (bs, 1H); 13C NMR (DMSO-d6) δ 110.0, 110.5, 123.7, 

125.1, 131.2, 148.1, 180.1. HRMS-ESI (+): Calc. for C7H6NOS: 152.0170. Found: 

152.0170 [M+H]+. 

2-Mercapto-5-methylbenzoxazole (11c). Yield 45%; 1H NMR (DMSO-d6) δ 

2.37 (s, 3H), 7.05 (m, 2H), 7.34 (m, 1H), 13.73 (bs, 1H); 13C NMR (DMSO-d6) δ 20.8, 

109.4, 110.4, 124.2, 131.2, 134.7, 146.3, 180.2. HRMS-ESI (+): Calc. for C8H8NOS: 

166.0327. Found: 166.0333 [M+H]+. 

2-Mercapto-6-methylbenzoxazole (11d). Yield 64%; 1H NMR (DMSO-d6) δ 

2.39 (s, 3H), 7.10 (d, 1H, J = 7.6 Hz), 7.16 (t, 1H, J = 7.6 Hz), 7.31 (d, 1H, J = 7.6 Hz), 

13.95 (bs, 1H); 13C NMR (DMSO-d6) δ 16.1, 107.2, 121.1, 123.6, 126.0, 130.4, 147.9, 

180.1. HRMS-ESI (+): Calc. for C8H8NOS: 166.0327. Found: 166.0333 [M+H]+. 

2-Mercapto-3-nitrobenzoxazole (11e). Yield 14%; 1H NMR (DMSO-d6) δ 7.44 

(t, 1H, J = 8.0Hz), 7.91 (d, 1H, J = 8.0 Hz), 8.06 (d, 1H, J = 8.0 Hz); 13C NMR (DMSO-

d6) δ 115.8, 119.8, 123.4, 128.0, 131.4, 149.8, 181.7. HRMS-ESI (+): Calc. for 

C7H5N2O3S: 197.0021. Found: 197.0013 [M+H]+. 

2-Mercapto-5-nitrobenzoxazole (11f). Yield 25%; 1H NMR (DMSO-d6) δ 7.17 

(d, 1H, J = 8.8 Hz), 7.95 (d, 1H, J = 2.4 Hz), 7.99 (dd, 1H, J = 2.4 Hz, 8.8 Hz); 13C NMR 

(DMSO-d6) δ 101.8, 112.3, 119.8, 139.7, 150.3, 153.2, 188.4. HRMS-ESI (+): Calc. for 

C7H5N2O3S: 197.0021. Found: 197.0018 [M+H]+. 
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2-Mercapto-5-chlorobenzoxazole (11g). Yield 36%; 1H NMR (DMSO-d6) δ 

7.30 (d, 2H, J = 7.6 Hz), 7.53 (d, 1H, J = 8.0 Hz), 14.04 (bs, 1H); 13C NMR (DMSO-d6) δ 

110.3, 111.2, 123.5, 129.3, 132.6, 147.0, 180.8. HRMS-ESI (+): Calc. for C7H5NOSCl: 

185.9780. Found: 185.9789 [M+H]+. 

General procedures for the preparation of 2-thiouracils 14a – 14i. To a solu-

tion of an aldehyde (RCHO, 10 mmol), ethyl cyanoacetate (1.0 mL, 10 mmol), and thiou-

rea (0.76 g, 10 mmol) in absolute ethanol (50 mL) was added piperidine (2.0 mL, 20 

mmol); the mixture was heated under reflux overnight and then cooled to room tempera-

ture. The precipitate was dissolved in 0.5M NaOH (20 mL) and washed with ethyl acetate 

(10 mL × 3). The aqueous solution was then neutralized to pH = 2 by slow addition of 

1M HCl. Then the product precipitated (crystallized) out to give 14a – 14i. 

5-Cyano-6-phenyl-2-thiouracil (14a). Yield 67%; 1H NMR (DMSO-d6) δ 7.62 

(m, 5H), 13.19 (s, 1H), 13.32 (bs, 1H); 13C NMR (DMSO-d6) δ 90.2, 113.8, 128.2, 128.6, 

132.0, 158.2, 160.2, 176.0. MS-ESI (+): 252.0 [M+Na]+. 

5-Cyano-6-(3-tolyl)-2-thiouracil (14b). Yield 31%; 1H NMR (DMSO-d6) δ 2.39 

(s, 3H), 7.46 (m, 4H), 13.17 (s, 1H), 13.26 (bs, 1H); 13C NMR (DMSO-d6) δ 20.9, 90.6, 

114.7, 125.9, 128.4, 129.1, 129.2, 132.8, 137.9, 158.5, 160.9, 176.2. HRMS-ESI (+): 

Calc. for C12H10N3OS: 244.0545. Found: 244.0555 [M+H]+. 

5-Cyano-6-(4-tolyl)-2-thiouracil (14c). Yield 43%; 1H NMR (DMSO-d6) δ 2.45 

(s, 3H), 7.41 (d, 2H, J = 7.6 Hz), 7.61 (d, 2H, J = 8.4 Hz); 13C NMR (DMSO-d6) δ 12.2, 

81.7, 105.9, 118.4, 120.1, 121.2, 135.3, 150.9, 153.2, 168.2. HRMS-ESI (+): Calc. for 

C13H12N3OS: 258.0701. Found: 258.0702 [M+H]+. 
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5-Cyano-6-(4-ethylphenyl)-2-thiouracil (14d). Yield 25%; 1H NMR (DMSO-d6) 

δ 1.22 (t, 3H, J = 7.6 Hz), 2.71 (q, 2H, J = 7.6 Hz), 7.42 (d, 2H, J = 8.0 Hz), 7.61 (d, 2H, 

J = 8.0 Hz), 13.15 (bs, 1H); 13C NMR (DMSO-d6) δ 15.2, 28.1, 90.4, 114.8, 126.6, 127.9, 

128.9, 148.6, 158.5, 160.9, 176.2. HRMS-ESI (+): Calc. for C14H14N3OS: 272.0858. 

Found: 272.0867 [M+H]+. 

5-Cyano-6-(4-isopropylphenyl)-2-thiouracil (14e). Yield 37%; 1H NMR 

(DMSO-d6) δ 1.24 (d, 6H, J = 6.8 Hz), 3.00 (septet, 1H, J = 6.8 Hz), 7.46 (d, 2H, J = 8.0 

Hz), 7.62 (d, 2H, J = 8.0 Hz), 13.15 (bs, 2H); 13C NMR (DMSO-d6) δ 23.6, 33.5, 90.3, 

114.9, 126.5, 126.7, 129.0, 153.1, 158.6, 160.8, 176.2. HRMS-ESI (+): Calc. for 

C14H14N3OS: 272.0858. Found: 272.0867 [M+H]+. 

5-Cyano-6-(4-methoxyphenyl)-2-thiouracil (14f). Yield 21%; 1H NMR 

(DMSO-d6) δ 3.86 (s, 3H), 7.12 (d, 2H, J = 8.8 Hz), 7.68 (d, 2H, J = 8.8 Hz), 13.13 (bs, 

2H); 13C NMR (DMSO-d6) δ 55.7, 89.9, 114.0, 115.2, 121.1, 131.0, 158.8, 160.6, 162.5, 

176.3. HRMS-ESI (+): Calc. for C12H10N3O2S: 260.0494. Found: 260.0496 [M+H]+. 

5-Cyano-6-(4-bromophenyl)-2-thiouracil (14g). Yield 39%; 1H NMR (DMSO-

d6) δ 7.63 (d, 2H, J = 8.4 Hz), 7.80 (d, 2H, J = 8.4 Hz), 13.21 (s, 1H), 13.37 (bs, 1H); 13C 

NMR (DMSO-d6) δ 91.1, 114.6, 125.9, 128.5, 130.9, 131.6, 158.4, 160.0, 176.2. HRMS-

ESI (+): Calc. for C11H7N3OSBr: 307.9493. Found: 307.9504 [M+H]+. 

5-Cyano-6-(biphenyl-4-yl)-2-thiouracil (14h). Yield 75%; 1H NMR (DMSO-d6) 

δ 7.45 (t, 1H, J = 7.2 Hz), 7.53 (t, 2H, J = 7.2 Hz), 7.78 (d, 4H, J = 8.4 Hz), 7.89 (d, 2H, J 

= 8.4Hz) 13.19 (s, 1H), 13.35 (bs, 1H); 13C NMR (DMSO-d6) δ 90.6, 114.8, 126.6, 127.0, 

128.1, 128.4, 129.2, 129.6, 138.7, 143.7, 158.5, 160.5, 176.2. HRMS-ESI (+): Calc. for 

C17H12N3OS: 306.0701. Found: 306.0714 [M+H]+. 
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5-Cyano-6-(1-naphthyl)-2-thiouracil (14i). Yield 22%; 1H NMR (DMSO-d6) δ 

7.64 (m, 3H), 7.74 (d, 1H, J = 6.8 Hz), 7.99 (dd, 1H, J = 6.0 Hz, 6.4 Hz), 8.06 (dd, 1H, J 

= 6.0 Hz, 6.4 Hz, ), 8.15 (d, 1H, J = 8.4 Hz), 13.11 (s, 1H), 13.46 (bs, 1H); 13C NMR 

(DMSO-d6) δ 93.1, 114.5, 124.7, 125.2, 126.8, 127.2, 127.5, 128.3, 128.5, 129.5, 131.2, 

132.8, 158.7, 161.1, 176.8. HRMS-ESI (+): Calc. for C15H10N3OS: 280.0545. Found: 

280.0554 [M+H]+. 

General procedure for the preparation of 2,2'-(α,α’-

Xylene)bis(sulfanediyl)bisbenzothiazole (15a), 2,2'-(α,α’-

Xylene)bis(sulfanediyl)bisbenzoxazole (15b-g), and 2,2'-(α,α’-

Xylene)bis(sulfanediyl)bis-4-oxopyrimidine (16a-i). To a solution of the 2-

mercaptobenzothiazole, 2-mercaptobenzoxazole, or 2-thiouracil derivatives (11a-g or 

10a-h, 0.1 mmol) and α, α’-xylenedibromide (12 mg, 0.045 mmol) in acetonitrile (2.5 

mL) was added K2CO3 (42 mg, 0.3 mmol).  The mixture was heated under reflux over-

night and then cooled to room temperature. The liquid was removed on a rotavapor and 

the residue was washed with 0.5M NaOH (20 mL). Then the white solid residue was 

dried in vacuum oven at 40 ºC overnight to give 15a-15g or 16a-16h. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-chlorobenzothiazole) (15a). Yield 

84%; 1H NMR (DMSO-d6) δ 4.62 (s, 4H), 7.45 (s, 4H), 7.47 (dd, 2H, J = 2.0 Hz, 8.4 Hz), 

7.84 (d, 2H, J = 8.4 Hz), 8.11 (d, 2H, J = 2.0 Hz); 13C NMR (DMSO-d6) δ 36.3, 120.8, 

121.7, 126.2, 128.7, 135.4, 135.9, 151.0, 166.6. HRMS-ESI (+): Calc. for C22H15N2S4Cl2: 

504.9495. Found: 504.9499 [M+H]+. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis(benzoxazole) (15b). Yield 35%; 1H NMR 

(DMSO-d6) δ 4.60 (s, 4H), 7.34 (m, 4H), 7.49 (m, 4H), 7.65 (m, 4H); 13C NMR (DMSO-
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d6) δ 35.1, 110.2, 118.3, 124.3, 124.6, 129.2, 136.1, 141.2, 151.3, 163.8. HRMS-ESI (+): 

Calc. for C22H17N2O2S2: 405.0731. Found: 405.0732[M+H]+. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(5-methylbenzoxazole) (15c). Yield 57%; 

1H NMR (DMSO-d6) δ 2.40 (s, 6H), 4.57 (s, 4H), 7.12 (d, 2H, J = 8.0 Hz), 7.46 (m, 8H); 

13C NMR (DMSO-d6) δ 20.9, 35.1, 109.6, 118.3, 125.1, 129.2, 134.0, 136.2, 141.4, 

149.5, 163.6. HRMS-ESI (+): Calc. for C24H21N2O2S2: 433.1044. Found: 433.1041 

[M+H]+. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-methylbenzoxazole) (15d). Yield 86%; 

1H NMR (DMSO-d6) δ 2.49 (s, 6H), 4.59 (s, 4H), 7.18 (m, 4H), 7.43 (d, 2H, J = 7.6 Hz), 

7.49 (s, 4H); 13C NMR (DMSO-d6) δ 16.0, 35.2, 107.5, 124.0, 125.1, 128.3, 129.3, 136.2, 

140.4, 151.0, 162.6. HRMS-ESI (+): Calc. for C24H21N2O2S2: 433.1044. Found: 

433.1050 [M+H]+. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(4-nitrobenzoxazole) (15e). Yield 61%; 

1H NMR (DMSO-d6) δ 4.66 (s, 4H), 7.50 (t, 4H, J = 8.0 Hz), 7.52 (s, 4H), 8.01 (d, 2H, J 

= 8.0 Hz), 8.08 (d, 2H, J = 8.0 Hz); 13C NMR (DMSO-d6) δ 35.3, 115.6, 119.8, 123.5, 

128.8, 135.4, 136.9, 152.6, 168.1. HRMS-ESI (+): Calc. for C22H15N4O6S2: 495.0433. 

Found: 495.0438 [M+H]+. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-nitrobenzoxazole) (15f). Yield 81%; 

1H NMR (DMSO-d6) δ 4.67 (s, 4H), 7.53 (s, 4H), 7.85 (d, 2H, J = 8.4 Hz), 8.27 (dd, 2H, 

J = 2.0 Hz, 8.4 Hz), 8.62 (d, 2H, J = 2.0 Hz); 13C NMR (DMSO-d6) δ 35.4, 106.9, 118.2, 

121.0, 129.4, 135.9, 143.9, 146.6, 150.6, 170.0. HRMS-ESI (+): Calc. for C22H15N4O6S2: 

495.0433. Found: 495.0431 [M+H]+. 



130 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(5-chlorobenzoxazole) (15g). Yield 49%; 

1H NMR (DMSO-d6) δ4.60 (s, 4H), 7.36 (dd, 2H, J = 2.0 Hz, 8.8 Hz), 7.48 (s, 4H), 7.67 

(d, 2H, J = 8.8 Hz), 7.76 (d, 2H, J = 2.0 Hz); 13C NMR (DMSO-d6) δ 35.2, 111.5, 118.1, 

124.3, 129.0, 129.3, 136.0, 142.5, 150.1, 165.9.  HRMS-ESI (+): Calc. for 

C22H15N2O2S2Cl2: 472.9952. Found: 472.9974 [M+H]+. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-phenyl-5-cyano-4-oxopyrimidine) 

(16a). Yield 80%; 1H NMR (DMSO-d6) δ 4.26 (s, 4H), 7.31 (s, 4H), 7.44 (m, 6H), 7.77 

(m, 4H); 13C NMR (DMSO-d6) δ 33.6, 88.8, 119.9, 127.8, 127.9, 128.6, 129.3, 137.2, 

137.7, 166.8, 170.3, 171.5. HRMS-ESI (-): Calc. for C30H19N6O2S2: 559.1011. Found: 

559.0989 [M-H]-. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-(3-tolyl)-5-cyano-4-oxopyrimidine) 

(16b). Yield 62%; 1H NMR (DMSO-d6) δ 2.35 (s, 6H), 4.24 (s, 4H), 7.31 (m, 8H), 7.54 

(s, 4H); 13C NMR (DMSO-d6) δ 21.0, 33.6, 88.9, 120.1, 125.3, 127.9, 128.6, 128.8, 

130.2, 137.2, 137.4, 137.8, 167.2, 170.5, 171.6. HRMS-ESI (-): Calc. for C32H23N6O2S2: 

587.1324. Found: 587.1348 [M-H]-. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-(4-tolyl)-5-cyano-4-oxopyrimidine) 

(16c). Yield 80%; 1H NMR (DMSO-d6) δ 2.36 (s, 6H), 4.25 (s, 4H), 7.26 (d, 4H, J = 8.0 

Hz), 7.32 (s, 4H), 7.68 (d, 4H, J = 8.0 Hz); 13C NMR (DMSO-d6) δ 21.0, 33.7, 88.6, 

120.2, 128.1, 128.6, 128.9, 134.9, 137.4, 139.4, 166.9, 170.7, 171.7.  HRMS-ESI (-): 

Calc. for C32H23N6O2S2: 587.1324. Found: 587.1306 [M-H]-. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-(4-ethylphenyl)-5-cyano-4-

oxopyrimidine) (16d). Yield 96%; 1H NMR (DMSO-d6) δ 1.21 (t, 6H, J = 7.6 Hz), 2.65 

(q, 4H, J = 7.6 Hz), 4.26 (s, 4H), 7.29 (d, 4H, J = 8.0 Hz), 7.32 (s, 4H), 7.70 (d, 4H, J = 
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8.0 Hz); 13C NMR (DMSO-d6) δ 15.5, 28.1, 33.7, 88.6, 120.3, 127.5, 128.2, 128.9, 135.2, 

137.4, 145.6, 166.9, 170.7, 171.7.  HRMS-ESI (-): Calc. for C34H27N6O2S2: 615.1637. 

Found: 615.1613 [M-H]-. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-(4-isopropylphenyl)-5-cyano-4-

oxopyrimidine) (16e). Yield 87%; 1H NMR (DMSO-d6) δ 1.25 (d, 12H, J = 7.2 Hz), 

2.98 (septet, 2H, J = 7.2 Hz), 4.52 (s, 4H), 7.36 (s, 4H), 7.38 (d, 4H, J = 8.4 Hz), 7.87 (d, 

4H, J = 8.0 Hz); 13C NMR (DMSO-d6) δ 22.7, 32.7, 33.7, 91.8, 114.9, 125.8, 128.2, 

128.4, 132.2, 135.3, 152.1, 161.1, 165.3, 166.4.  HRMS-ESI (-): Calc. for C36H31N6O2S2: 

643.1950. Found: 643.1943 [M-H]-. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-(4-methoxyphenyl)-5-cyano-4-

oxopyrimidine) (16f). Yield 46%; 1H NMR (DMSO-d6) δ 3.81(s, 6H), 4.28 (s, 4H), 6.97 

(d, 4H, J = 8.8 Hz), 7.30 (s, 4H), 7.82 (d, 4H, J = 8.8 Hz); 13C NMR (DMSO-d6) δ 33.7, 

55.3, 88.2, 113.5, 120.4, 128.9, 129.8, 130.0, 137.4, 160.6, 166.3, 170.6, 171.4.  HRMS-

ESI (-): Calc. for C32H23N6O4S2: 619.1222. Found: 619.1230 [M-H]-. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-(4-bromophenyl)-5-cyano-4-

oxopyrimidine) (16g). Yield 95%; 1H NMR (DMSO-d6) δ 4.25 (s, 4H), 7.31 (s, 4H), 

7.67 (d, 4H, J = 8.4 Hz), 7.72 (d, 4H, J = 8.8 Hz); 13C NMR (DMSO-d6) δ 33.7, 88.9, 

119.9, 123.3, 128.9, 130.2, 131.1, 136.8, 137.3, 165.9, 170.2, 171.8.  HRMS-ESI (-): 

Calc. for C30H18Br2N6O2S2: 714.9221. Found: 714.9213 [M-H]-. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-(biphenyl-4-yl)-5-cyano-4-

oxopyrimidine) (16h). Yield 68%; 1H NMR (DMSO-d6) δ 4.28 (s, 4H), 7.35 (s, 4H), 

7.40 (t, 2H, J = 7.2 Hz), 7.49 (t, 4H, J = 7.6 Hz), 7.75 (m, 8H), 7.88 (d, 4H, J = 8.4 Hz); 

13C NMR (DMSO-d6) δ 33.7, 88.8, 120.3, 126.3, 126.8, 127.8, 128.7, 128.9, 129.0, 
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136.7, 137.4, 139.5, 141.3, 166.4, 170.4, 171.8.  HRMS-ESI (-): Calc. for C42H27N6O2S2: 

711.1637. Found: 711.1661 [M-H]-. 

2,2'-(α,α’-Xylene)bis(sulfanediyl)bis-(6-(1-naphthyl)-5-cyano-4-

oxopyrimidine) (16i). Yield 92%; 1H NMR (CD3OD) δ 4.37 (s, 4H), 7.32 (s, 4H), 7.44-

7.57 (m, 8H), 7.74 (d, 2H, J = 8.0 Hz), 7.91 (d, 2H, J = 8.2 Hz), 7.96 (dd, 2H, J = 2.0 Hz, 

7.0 Hz); 13C NMR (CD3OD) δ 35.7, 94.1, 119.1, 126.2, 126.5, 127.4, 127.8, 127.9, 129.5, 

130.3, 130.9, 132.0, 135.2, 136.6, 138.5, 171.6, 174.0, 175.0.  HRMS-ESI (-): Calc. for 

C38H23N6O2S2: 659.1324. Found: 659.1343 [M-H]-. 

General procedure for the preparation of S-benzyl-2-thiouracils (17d, e, g-i). 

To a solution of the 2-thiouracil derivatives (10d, e, g-i, 2 mmol) and benzylchloride (253 

mg, 2 mmol) in acetonitrile (10 mL) was added K2CO3 (829 mg, 6 mmol). The mixture 

was heated under reflux for 8 h and then cooled to room temperature. The liquid was re-

moved on a rotavapor, and the residue was washed by H2O (20 mL). Then the solid was 

dried in a vacuum oven at 40 ºC overnight to give 17d, e, g-i. 

S-Benzyl-5-cyano-6-(4-ethylphenyl)-2-thiouracil (17d). Yield 28%; 1H NMR 

(DMSO-d6) δ 1.27 (t, 3H, J = 7.6 Hz), 2.71 (q, 2H, J = 7.6 Hz), 4.40 (s, 2H), 7.21 (m, 

1H), 7.28 (m, 4H), 7.41 (d, 2H, J = 7.2 Hz), 7.74(d, 2H, J = 8.4 Hz); 13C NMR (DMSO-

d6) δ 16.0, 29.8, 36.0, 90.6, 120.1, 128, 128.8, 129.2, 129.4, 129.8, 130.1, 136.0, 139.8, 

148.2, 170.2, 174.9. HRMS-ESI (+): Calc. for C20H18N3OS: 348.1171. Found: 348.1185 

[M+H]+. 

S-Benzyl-5-cyano-6-(4-isopropylphenyl)-2-thiouracil (17e). Yield 40%; 1H 

NMR (DMSO-d6) δ 1.23 (d, 6H, J = 6.8 Hz), 2.94 (septet, 1H, J = 6.8 Hz), 4.30 (s, 2H), 

7.22 (t, 1H, J = 6.8 Hz), 7.31 (m, 4H), 7.40 (d, 2H, J = 7.2 Hz), 7.73 (d, 2H, J = 7.6 Hz); 
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13C NMR (DMSO-d6) δ 23.7, 33.3, 33.8, 88.7, 120.3, 126.0, 126.7, 128.2, 128.3, 128.8, 

135.3, 139.0, 150.2, 166.8, 170.5, 171.5. HRMS-ESI (+): Calc. for C21H20N3OS: 

362.1327. Found: 362.1335 [M+H]+. 

S-Benzyl-5-cyano-6-(4-bromophenyl)-2-thiouracil (17g). Yield 33%; 1H NMR 

(DMSO-d6) δ 4.27 (s, 2H), 7.22 (t, 1H, J = 7.2 Hz), 7.29 (t, 2H, J = 7.2 Hz), 7.39 (d, 2H, 

J = 7.2 Hz), 7.67 (d, 2H, J = 8.4 Hz), 7.71 (d, 2H, J = 8.4 Hz); 13C NMR (DMSO-d6) δ 

33.8, 88.9,120.0, 123.2, 126.7, 128.3, 128.9, 130.2, 131.1, 136.9, 139.0 165.8, 170.1, 

171.8. HRMS-ESI (+): Calc. for C18H13N3OSBr: 397.9963. Found: 397.9950 [M+H]+. 

S-Benzyl-5-cyano-6-(biphenyl-4-yl)-2-thiouracil (17h). Yield 37%; 1H NMR 

(DMSO-d6) δ 4.32 (s, 2H), 7.23 (t, 1H, J = 7.6 Hz), 7.31 (t, 2H, J = 7.6 Hz), 7.40 (m, 

3H), 7.50 (t, 2H, J = 7.6 Hz), 7.74 (d, 2H, J = 8.0 Hz), 7.77 (d, 2H, J = 8.4 Hz), 7.90 (d, 

2H, J = 8.0 Hz); 13C NMR (DMSO-d6) δ 33.8, 89.1, 126.4, 126.8, 126.8, 127.9, 128.3, 

128.8, 128.9, 129.0, 136.6, 139.0, 139.4, 141.4, 166.4, 169.7, 171.3. HRMS-ESI (+): 

Calc. for C24H18N3OS: 396.1171. Found: 396.1187 [M+H]+. 

S-Benzyl-5-cyano-6-(1-naphthyl)-2-thiouracil (17i). Yield 43%; 1H NMR 

(DMSO-d6) δ 4.26 (s, 2H), 7.23 (t, 1H, J = 7.2 Hz), 7.29 (t, 2H, J = 7.2 Hz), 7.39 (d, 2H, 

J = 7.2 Hz), 7.55 (m, 5H), 7.78 (d, 1H, J = 8.0 Hz), 7.99 (t, 2H, J = 6.8 Hz); 13C NMR 

(DMSO-d6) δ 33.8, 92.4, 119.3, 125.2, 125.4, 126.0, 126.2, 126.4, 126.8, 128.2, 128.3, 

128.9, 130.1, 133.1, 135.9, 138.9, 168.7, 167.6, 171.4. HRMS-ESI (+): Calc. for 

C22H16N3OS: 370.1014. Found: 370.1015 [M+H]+. 
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7.9.2. Biological evaluation 

General in vitro biological methods: EcN68, the N-terminal fragment of SecA 

from E. coli without the C-terminal regulatory domain, and EcSecA, the full length SecA 

from E. coli,  were over-expressed from pIMBB-8(Karamanou, Vrontou et al. 1999) and 

pT7-SecA,(Cabelli, Chen et al. 1988) respectively, and purified as described.(Chen, Xu et al. 

1996; Chen, Brown et al. 1998) EcN68 was used for screening because it has higher intrinsic activi-

ty and is more sensitive to inhibitors. 

All potential inhibitors were dissolved in 100% DMSO. The ATPase activity was 

determined by the release of phosphate (Pi) detected by malachite green as 

described(Lill, Dowhan et al. 1990) in a modified procedure(Maloney, Parks et al. 2000) 

and in the presence of 10% DMSO. Inhibitory effect was determined by the percentage of 

the remaining ATPase activity as compare to the controls without test compounds. 

Briefly, 50 µL reaction mixture was prepared so that it contained 2.25 µg N68 or 5 µg 

SecA, 2 mM ATP, 50 mM Tris-HCl (pH7.6), 20 mM KCl, 20 mM NH4Cl, 1 mM DTT, 

and 2 mM Mg(OAc)2. Reactions took place at 40 °C for 20 min (for N68) or 40 min (for 

SecA) then were stopped by adding 800 µL of malachite green and then 100 µL of 34% 

citric acid within 1 min. The mixtures were incubated at room temperature for 40 min and 

then the absorption at 660 nm was measured. All assays were done at least in triplicate, 

and the results were presented as bar graphs with standard error of the mean. 

General in vivo biological methods: Log-phase growing cells (O.D. 600nm~ 0.5 

to 1.0) were diluted to an absorbance of 0.05 at O.D. 600 nm, added with indicated com-

pounds, and followed by culturing in an Eppendorf Thermomixer R (Brinkmann instru-
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ments, Inc.) at 37 °C,1050 rpm for 10 to 12 hours.  All cultures contain 5% DMSO with a 

final volume of 100 µl. All tested compounds were dissolved in 100% DMSO (Sigma). 

Bacterial strain: NR698 (MC4100 imp4213)(Ruiz, Falcone et al. 2005) with in-

creased outer membrane permeability. MC4100, an Ecoli K-12 wild-type strain 

(Casadaban 1976).  

7.9.3. Computational method 

Molecular simulation of ligand-SecA complexes. The 3D structures for these 

compounds were refined using the PM3 method in the MOPAC 7 program (Stewart 

1990) and assigned with AM1-BCC partial charges (Jakalian, Bush et al. 2000; Jakalian, 

Jack et al. 2002; Tsai, Wang et al. 2008) by the QuACPAC program. All partial charges 

on the atoms of the homology model were derived from AMBER 8 parameters. Docking 

of the ligands into SecA around the active site (included residues Gly80, Mse81, Arg82, 

His83, Phe84, Gln87, Arg103, Thr104, Gly105, Glu106, Gly107, Lys108, Thr109, 

Leu110, Arg138, Asp209, Glu210, Arg509 and Gln578) was performed by using DOCK 

5.4. (Moustakas, Lang et al. 2006). After docking, MD simulations were conducted with 

the ligand-receptor complexes following similar procedures we reported before (Li and 

Wang 2006; Li and Wang 2007; Li, Ni et al. 2008; Zheng, Kaur et al. 2008). In brief, the 

docked complexes were solvated by using the TIP3P water model (Jorgensen, 

Chandrasekhar et al. 1983), subjected to 500-steps of molecular mechanics minimization 

and molecular dynamics simulations at 300 K for 1.0 ns using the SANDER module in 

the AMBER 8 program (Case, Cheatham et al. 2005). The resulting structures were then 

analyzed using PyMOL 1.0, (DeLano 2006) HBPLUS 3.06 (McDonald and Thornton 

1994) and Ligplot 4.22 (Wallace, Laskowski et al. 1995) to identify specific contacts be-
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tween ligands and SecA. During the computation, molecular docking (DOCK 5.4), 

binding analysis (HBPLUS 3.06 and Ligplot 4.22) and visualization (PyMOL 1.0) were 

carried out on a Xeon-based Linux workstation. Molecular mechanics calculations and 

molecular dynamics simulations (AMBER 8) were performed on URSA, a 160-processor 

computer based on the Power5+ processor and IBM’s P series architecture.  
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Figure 7.7. Two hit compounds and their derivatives.  
 

 

 

Scheme 1. Synthesis of isoxazole carboxamides 7a–n. Reagents and conditions: (a) 

HONH2•HCl, NaOH, EtOH, H2O, reflux; (b) NCS, DMF; (c) ethyl acetoacetate, MeO-

Na, THF; (d) NaOH, EtOH, H2O; (e) EDCI, HOBt, DMAP, DMF. 
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Scheme 2. Synthesis of compounds 11a–g and 14a–i. Reagents: (a) EtOH, reflux; (b) 

piperidine, EtOH, reflux.  

 

 

 

Scheme 3. Synthesis of compounds 15a–g, 16a–i and 17d,e,g–i. Reagents: (a) K2CO3, 
CH3CN, reflux. 
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Figure 7.9. Inhibitory effect of compounds 16a–i at 30 μM against EcN68 Sec A 
 

 

 

Figure 7.10.  Inhibitory effect of compounds 16c–e,g–i at 5 μM against EcN68 Sec A.  
 

 

Figure 7.8. Inhibitory effect of compounds 1 and 7a-n at 

100 μM against EcN68 Sec A. 
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Figure 7.11. Inhibitory effect of compounds 17d,e,g–i at 30 μM against EcN68 Sec A. 
 

 

 

 

 

 

Figure 7.12. The inhibitory curves of the two most potent compounds, 16g and 16h, 

against EcN68 Sec A. 
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Figure 7.13. The inhibitory curves of 16g,h and 17h against EcSecA. 
 

 

 

 

 

 

 

Figure 7.14. The inhibitory curves of 16g,h and 17h against bacterial growth. 
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Figure 7.15. (A) The proposed docking conformation of HTS-12302 (white sticks) and 

compound 16g (green sticks) around SecA ATP-site; (B) The proposed schematic inter-

actions of HTS-12302 with SecA; (C) The proposed schematic interactions of compound 

16g with SecA. 
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