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ABSTRACT 

With rapid growth of information on the Web, Web search engines have gained great momentum for 

exploiting valuable Web resources. Although keywords-based Web search engines provide relevant 

search results in response to users’ queries, future enhancement is still needed. Three important issues 

include (1) search results can be diverse because ambiguous keywords in queries can be interpreted to 

different meanings; (2) indentifying keywords in long queries is difficult for search engines; and (3) 

generating query-specific Web page summaries is desirable for Web search results’ previews. Based on 

clickthrough data,   this thesis proposes a query-concept bipartite graph for representing queries’ 

relations, and applies the queries’ relations to applications such as (1) personalized query suggestions, 

(2) long queries Web searches and (3) query-specific Web page summarization.  Experimental results 

show that query-concept bipartite graphs are useful for performance improvement for the three 

applications.    
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Chapter 1 INTRODUCTION 

With the exponential growth rate of online data, Web search engines play key roles in retrieving 

millions of Web documents from the Internet in response to users’ queries. Before keyword-based 

search engines were invented, Internet users might browse Web index sites like Yahoo Indexes for 

searching their desired information. Because the Web index sites are generally created by human 

editors and only cover a small portion of Web pages on the Internet, users may not be able to obtain 

their desired information although the information exists on the Internet. The current keywords-based 

Web search engines apply the Web Crawler technology to automatically collect and index billion of Web 

pages so that much more Web pages can be found by Web search engines than by Web index sites. For 

example, Google indexed almost 8 billion Web pages in 2004 and one trillion pages in 2008 [19]. 

Because of their simple interfaces and powerful searching abilities, search engines became very popular 

for internet users. As reported by Daniels, over 90% of web users use search engines to transverse the 

Web [13]. Currently, search engines are widely used in Web page searches, literature searches, news 

searches, E-commerce, and online advertisement.  

Although Web search engines provide relevant information in response to users’ queries, users 

often experience difficulties in inspecting thousands of search results, spending time for determining 

relevant results, and summarizing their desired information from inconsistent designed complex pages. 

Thus, many challenges remain to be solved, which include (1) making searching more accurate and 

efficient, and (2) discovering, understanding, and summarizing useful knowledge from the search results. 

The goal of this thesis is to provide users with accurate, effective and personalized results by 

understanding users’ information needs and relevant online text information.   

This thesis attempts to solve three research problems, incomplete query Web searches, long 

query Web searches, and Web search previews. The thesis proposes a new method to explore search 

queries’ relations and apply the relations to solve the above research problems. In the following 
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sections of the Chapter one, the research topics in this thesis are introduced first. Then, the common 

strategy used for solving the three research problems is presented.  Third, the challenges for the 

research topics in this thesis are discussed, followed by the organization of the thesis.     

1.1 Problem Definitions 

 In this section, three research topics, incomplete query Web searches, long query Web searches, 

and Web search previews, are introduced respectively. The reasons that they degrade search engine 

performance are discussed. The general approaches for solving these research problems are presented.   

1.1.1 Incomplete query Web searches 

Based on the Garrett’s conclusions [17], Web searches can be generally divided into two types: 

Recovery-based search and Discovery-based search. A Recovery-based search is a process of looking for 

existing online resources. Users know what they need to retrieve from the Internet and they may 

immediately recognize relevant results returned by search engines. For example, users may want to 

know the current weather of Atlanta and input “Atlanta weather” to retrieve relevant information. 

Different from Recovery-based search, a Discovery-based search is a process of exploiting valuable 

online resources. In other words, users do not have a clear idea of what they want to retrieve online, so 

they may use descriptive terms to express their information needs and hope to get some clues through 

the search results. For example, a computer scientist is interested in current hot research topics under 

cloud computing area. Thus, the scientist may submit a query “cloud computing hot research topics” to 

Web search engines and get several research topics about cloud computing. Then, the scientist may 

select on topic he/she is interested in, such as “cloud computing security.” Thus, a query used for 

Discovery-based search can be considered as an incomplete query since the query does not have intact 

searching requirement.  

Another reason that may result in incomplete queries is that users may have clear searching 

requirements but are unsure of appropriate terms to convey their requirements. Constructing accurate 
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queries depends on users’ domain knowledge.  If users search in unfamiliar domains, they may use 

vague or inaccurate terms to specify their requirements and result in a huge number of irrelevant 

search results [14]. In order to avoid incorrect terminology in queries and irrelevant search results, 

users may construct queries using a very few keywords only, and then clarify their requirements and 

refine queries based on the initial searching results.  

Because searching incomplete queries may result in diverse results, users have to identify the 

results meeting their information needs. Therefore, understanding users’ information needs on 

incomplete queries and providing accurate search results became an important research topic for Web 

search engines.  

Providing relevant keywords for the current query based on past search history and asking users 

to select appropriate keywords to expand queries is an effective way for handling incomplete queries. 

Formulation of complete queries helps users elicit their search requirements so that search engines may 

better understand users’ information needs. This strategy not only provides appropriate terminology 

where users do not have enough domain knowledge, but also helps users exploit their interested areas. 

For example, for one query “car”, car owners may be more interested in “car insurance” or “car 

maintenance” but car dealers may be more interested in “car trader.” Thus, providing appropriate 

keywords to different users based on their searching history is necessary for helping them elicit their 

search requirements. In this thesis, we proposed personalized query suggestion approach to assist users 

in completing their queries.  

1.1.2 Long query Web searches 

Although the typical length of search queries are only two to four terms [46], long queries, as an 

important query type among the searches on the Web, play a crucial role in many information search 

applications, such as literature searches, news searches, or searches in environments where queries are 

expressed as natural language texts but not keywords. The purpose of long query searches is to identify 
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the most relevant information, like articles, news or Web pages, to the contents of long queries. 

Although long queries are more convenient to express complex and specific information needs than the 

keyword-based queries, current commercial search engines, in general, perform worse with long 

queries than with short ones. The major reason is that most search engines respond to a user’s query by 

using the Bag-of-Words model [59], which assumes queries and Web documents are composed of 

individual words neither related nor ordered. However, for long natural language queries, tokens are 

ordered words and phrases with underlying semantic relationships. Thus, a lack of sufficient natural 

language parsing causes search engines not to understand semantic queries [29]. Also, since traditional 

search engines treat all terms from the users’ inputs equally, they lose focus on the key concepts that 

have the most impact on the retrieval results [3]. Thus, noise or redundant terms will further degrade 

the effectiveness of long query Web searches if searching all query terms equally [28]. Users may 

frequently experience the needs to convert their long natural language queries into a few adequate 

terms for retrieving precise search results, which increases users’ burdens.  

Choosing a few important words from the original query as the new query is the most common 

way for improving long query Web searches.  Then, search engines may retrieve the most relevant Web 

pages based on the keywords of the original query and thus avoid irrelevant results. In this thesis, the 

relevancies of long queries and short queries from browsing history are explored and appropriate short 

queries that represent the meanings of long queries are selected as substitutions. This approach 

improves the performance and effectiveness of long query Web searches because search engines may 

easily identify keywords from the short query substitutions.  

1.1.3 Web Search Previews 

Because current Web search engines return a large number of search results in response to a 

query, the query-specific snippets that provide searchers previews of document contents have played 

an important role for search results presentation [50, 10]. Ideally, snippets should allow users to 
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preview search results’ contents and determine a subset of results meeting their information needs. 

However, because Web search engines generate snippets by extracting query-related short fragments 

of texts from Web pages, it is difficult for snippets to provide users clear and comprehensive views of 

search results’ contents [57]. Thus, given a specific query, generating query-specific natural language 

summaries of result pages that aims to minimize users’ cognitive loads of accessing Web pages has 

become an important research topic for Web search engines.  

The basic function of query-specific Web page summary is to reveal the major query-related 

contents for a target Web page and to help a user selecting appropriate pages for their information 

needs. This thesis proposes a query-specific Web page summarization approach using appropriate 

queries from browser history to represent the query-related contents in the target Web page.  

1.2  Strategy for research problems 

Providing incomplete queries with relevant queries from browsing history as suggestions is an 

effective approach to explore users’ information needs. Thus, analyzing relevance between a given 

query and queries from the history is an important step for query suggestion. As discussed in section 1.1, 

we also apply queries’ relations to improve performance of long query Web searches and Web search 

previews. Thus, exploring queries’ relations is one step for all three applications in this thesis.       

Determining queries relevance is a difficult task in the information retrieval area. One reason is 

that search queries usually contain very few words and traditional text similarity measures cannot use 

the number of overlap words to determine their relevance [33]. Based on traditional text similarity 

measures, if queries do not contain any common terms, their relevance scores would be very low 

although they may express the same meaning. For example, “WTO” and “World Trading Organization” 

are semantically equivalent, but they do not contain common words. Conversely, although two queries 

may contain the same terms, they may represent different meanings. For example, “computer mouse” 

and “Mickey mouse” contain the same term, but they are irrelevant because they refer to different 
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meanings. However, traditional text similarity analysis would suggest that these two queries are very 

similar because they contain one common term “mouse.” 

This thesis proposes a query-concept bipartite graph for measuring queries’ relations. 

Compared to the text similarity analysis, this method explores queries’ exact meanings through their 

subsequently clicked Web pages and determines their relevance based on their meanings. Therefore, 

our approach may measure query relevance more precisely than the text similarity analysis.   

1.3 Challenges 

 Currently, most commercial search engine companies have adopted a lot of innovative 

algorithms to improve the performance of Web search engines. Also, a lot of academic researchers 

have proposed diverse approaches to optimize search engines. Different from Web search engineers 

from commercial companies, academic researchers usually lack enough research data, such as a huge 

number of searching logs, to verify their approach’s performance. Although a few organizations, such as 

Document Understanding Conference1 (DUC), have published a number of research data, like queries 

and descriptions of information needs, it is still not enough to evaluate search engine performance for 

retrieving billions of Web pages. Because the performance of search engines should be determined by 

users, researchers have to gather enough people to evaluate the quality of search results by their 

approach. However, since the evaluation is subjective and depends on users’ knowledge and interests, 

we may get different evaluation results from different users.  To evaluate quality of query-specific Web 

page summaries, we have to ask evaluators to manually create summaries for Web pages. Because 

different users may construct different query-specific summaries, the evaluation results may vary. In 

conclusion, we have following challenges in the data collection and evaluation steps.  

 Difficult to obtain commercial search engine logs to evaluate algorithm performance. 

                                                           
1 http://duc.nist.gov/ 
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 Difficult to obtain objective results from users to evaluate qualities of Web searches and query-

specific Web page summaries.   

1.4 Organizations of the Thesis 

 Chapter 2 surveys related work on exploring queries’ relations and relevant work in incomplete 

query Web searches, long query Web searches, and query-specific Web page summarization. Chapter 3 

presents the query-concept bipartite graphs for exploiting queries’ relations. Chapters 4-6 introduce the 

algorithms that apply the query-concept bipartite graphs for personalized query suggestions, long query 

reformulation, and query-specific Web page summarization, respectively. Finally, Chapter 7 concludes 

this dissertation and directs future work.  
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Chapter 2 RELATED WORK 

 In this section, the relevant works for exploring queries’ relations are introduced first. Because 

this thesis apply queries’ relations for solving three research problems, incomplete query Web searches, 

long query Web searches, and Web search previews, the related works for these topics are also 

introduced. For each research problem, the strength and weakness of related works are discussed.   

2.1 Related Work for Exploring Queries’ relations  

As discussed in the section 1.2, exploring queries’ relations is a difficult task because queries 

usually consist of a few words and traditional methods cannot accurately evaluate queries’ relations 

based on very limited contexts.  To expand search queries’ contexts, Metzler et al. [33] retrieved titles 

and snippets of top two hundred search results for a given query as its information supplement. Then, 

they proposed several measures including lexical matching to calculate queries’ relations based on their 

expanded contexts. Sahami and Heilman [40] proposed an approach to expand queries’ contexts by 

collecting keywords from top search results in response to queries. Then, they applied cosine measures 

to calculate relations of expanded queries. Because these two approaches expand queries’ contexts 

with relevant words, using lexical matching based methods to evaluate queries’ relations is possible. 

However, top search results may not be always relevant to queries. Without users’ justifications on 

results, irrelevant words may be added into queries’ contexts and thus original queries’ meanings may 

be obviated. Because users may select relevant results for queries, the exact meanings of queries may 

be discovered through their subsequently clicked Web pages. This thesis proposes a method to explore 

queries’ relations based on their exact meanings, so accurate queries’ relations can be obtained.  

Fonseca et al. [15] proposed an association rules-based query relevance evaluation approach. 

They assumed that Web search queries within the same session had association relations. Thus, the 

queries’ relations can be determined based on the frequency that the queries occurred in the same 

sessions. However, their approach cannot evaluate queries’ relations when those queries belong to 
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different sessions. Gabrilovich and Markovitch [16] applied external sources, such as Wikipedia, to 

evaluate queries’ relations. They represented queries as weighted vectors of Wikipedia-based concepts 

and then applied cosine similarities to evaluate queries’ relations.   

2.2 Related Work for Incomplete Query Web Searches 

Classifying Web search results in response to incomplete queries is a well-known method for 

improving performance on incomplete query Web searches. Kules et al. [27] proposed a features-based 

Web search results clustering approach that classified search results into appropriate categories based 

on their titles, snippets, and URLs. Wen et al. [55] proposed a Web search results clustering algorithm 

that used both clicked pages’ co-occurrence frequencies and similarities of the pages’ contents for 

classifying Web pages. Their methods considered two queries are related only if they contained similar 

terms or they resulted in the same Web pages clicked. Xue et al. [58] proposed a domain-based Web 

documents classification approach. Based on domains for a given document, this approach first 

obtained its category, and then focused the classification efforts on the selected category. Thus, this 

approach minimized the number of categories and thus improved the classification performance. The 

above relevant works have shown that classifying search results is a widely used approach for 

incomplete query Web searches.  However, since the hierarchy is predefined, it may be too coarse and 

may not contain a category that best represents user’s personal interests.  For example, if a user inputs 

a query “car”, he or she may be interested in “car rental” or “car accident” category, but not in “car 

vehicle” category.  

Extending incomplete queries based on relevant terms is another effective way for incomplete 

query Web searches. Carpineto et al. [6] presented a Query Expansion method that assigned scores to 

candidate expansion terms based on information theory. Then, terms with high scores were selected 

and queries were re-written according to the selected terms. Crabtree et al. [11] proposed a 

middleware for query expansion that identified the terms occurred in the search results but not in the 
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query, and selected appropriate identified terms for expanding original query. Cui et al. [12] proposed a 

framework that identified correlations between query terms and document terms by analyzing query 

logs. These correlations were then used to select high-quality expansion terms for new queries. 

Although above approaches expanded semantically related terms to the queries, they did not consider 

users’ preferences, so different users may get the same query extensions although they had different 

interests. 

2.3 Related Work for Long Query Web Searches 

Query reduction is a technique that eliminates noisy and redundant terms, and uses underlying 

retrieving models to extract key concepts from long queries. Formulating a shorter query from the 

original long query has been proven to lead to significant improvements in Web search applications [28]. 

Also, searching key concepts from long queries may result in adequate search results since searching 

long queries has a higher chance of retrieving fewer search results. Kumaran and Allan [28] proposed a 

query iterative reduction technique that used a small subset of concepts or entities from the original 

query to substitute the original query and let users determine the most appropriate combinations of 

term subsets. Their method obtains significant performance improvement on TREC queries. However, 

this technique is difficult to be implemented due to the exponential number of options that need to be 

analyzed. Also, this method makes users’ burdens heavier. Later on, Kumaran and Allan [29] proposed a 

selective interactive query reduction approach that determined appropriate query reductions based on 

users’ implicit feedback. The approach reduces users’ time and efforts for interacting with the query 

reductions.  Shapiro and Taksa [43] proposed a method that extracted intersecting terms from the long 

queries as sub-queries and merged the results from searching those sub-queries. Zukerman et al. [60] 

used decision graphs to identify the noisy attributes of query terms such as syntactic, paraphrase-based 

and frequency-based attributes from TREC queries, and remove terms with these attributes in long 

queries. Although query reduction is an effective way for long query Web searches, identifying key 
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concepts in long queries is still a challenge task because of its heavy reliance on corpus statistics. 

Moreover, since query reduction techniques removes context from the original query, it leads to lose 

specificity of the original query and to seek more diverse information than the original query.  

Query segmentation is a technique that segments queries into concepts, and thus search 

engines retrieve Web documents based on the concepts but not tokens [18]. Jones et al. [26] proposed 

a mutual information based approach to determine segmentation breaks between pairs of tokens. Tan 

and Peng [48] proposed an unsupervised machine learning approach to discover queries’ underlying 

concepts based on a generative language model, and used expectation-maximization (EM) algorithm to 

estimate the model’s parameters. Also, they incorporated Wikipedia to enhance the unsupervised 

machine learning. Since their approach identifies key concepts of queries, it greatly improves the 

retrieval performance for long queries. However, since the query segmentation method treats all query 

concepts equally and loses focus on the key concepts, it degrades the effectiveness of long query Web 

searches.  

Jones et al [28] proposed a query substitution approach that generated a modified query based 

on past similar queries or phrases, and replaced the original query by the modified query. They built a 

machine learning model to select the appropriate query candidates based on their features related to 

the original query and human judgments. Bonchi et al. [4] proposed a query decomposition approach 

that generated queries whose union of search results roughly matched the results of the original query. 

They first instantiated the query decomposition problem to the set cover problem, and then applied 

agglomerative clustering algorithm and dynamic programming to solve the problem. However, their 

approaches only deal with keywords based short query substitution. Also, replacing one query by 

relevant queries may lose contexts in the original query, so their approaches may obtain several non-

relevant results.  
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2.4 Related Work for Web search previews 

 Several summarization approaches that extract sentences containing query terms for 

constructing query-specific summaries have been proposed. White et al. [57] proposed a sentence 

scoring scheme through sentences locations in paragraphs, their semantic relations with other 

sentences, and the proportions of query terms they contain. A number of the highly-scored sentences 

were chosen to compose the summary. Wei et al. [54] used the mutual reinforcement chains between 

documents, sentences and terms to select the most representative sentences, and used the query-

sentence similarity to measure the affinity between the pair of texts. Otterbacher [35] constructed a 

graph representation of sentences based on intra-sentences cosine similarity. Then, based on query-

sentence lexical similarity, they identified the sentences most likely related to the query. Finally, they 

recursively retrieved relevant sentences based on the sentence connections on the graph. Although the 

above methods used different approaches to construct query-specific summaries, all of them 

attempted to collect salient sentences related to specific queries from the target Web pages as the 

summaries. We may conclude that these approaches are proposed based on the following two 

hypotheses. 

 H'1: Sentences that are similar to other sentences in contexts convey important information of 

Web pages.  

 H'2:  Sentences that contain a number of query terms are more likely to convey the information 

related to the query.  

Based on hypotheses H'1 and H'2, although we may retrieve sentences containing the major 

query-related contents of the Web pages, we may also collect several sentences conveying not 

important or even noisy information since the above hypotheses cannot distinguish the sentences 

containing query-related topics from the sentences containing common terms that co-occur frequently 

with the query terms. Thus, summaries created based on the above hypotheses may tend to be long 
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and do not minimize searcher’s cognitive load to identify their desired Web pages. Occasionally, the 

query-related topics may even not occur in target Web pages but require summarizers to underline 

scatter query-related information and paraphrase them with new sentences. However, the extractive 

summarization methods do not have such capabilities to analyze and understand the target Web pages’ 

contents and to paraphrase them.  

 In order to automatically identify query-related topics and contents in target Web pages, Lin 

and Hovy [31] constructed a topic knowledge base from a predefined corpus and then recognized 

query-related topics based on the knowledge base during the processes of summarization. However, 

constructing such a huge knowledge base or corpus that contains any query-related topics is difficult. To 

identify target Web pages’ topics easier, researchers studied clickthrough data and attempted to 

construct generic Web page summaries based on relations of search queries and their subsequently 

clicked Web pages.  

 The previous works [21, 41, 44] indicated that search queries could be used as semantic labels 

to describe the contents of the subsequently clicked Web pages. Thus, they proposed a query-based 

text-summarization framework that identified the queries leading to click the target page as labels of its 

query-related contents and then extracted sentences containing the labels from the page as summaries. 

Based on Beeferman and Berger’s report [2], the probability for two queries lead to one common Web 

page clicking is less than 10-4. Thus, the above approaches may not retrieve enough queries from the 

clickthrough data to uncover the major contents of target pages. Also, their approaches cannot 

construct high-quality query-specific summaries since the queries from the clickthrough data may 

uncover the major contents for the page but may not uncover contents related to one specific query. 

Svore et al. [47] suggested that news query terms or Wikipedia entities are strong signals of 

user interests so that sentences containing them should be good candidates for news summaries. They 

proposed a neural network based framework using query terms or Wikipedia entities as features for 
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constructing news article summaries. Hu et al. [22, 23] considered comments contributed by readers 

providing valuable information to better understand the Web document. They proposed frameworks to 

extract sentences from Web pages that best represent the topics discussed among its comments. 

Boydell and Smyth [5] proposed a Web pages summarization technique that used social bookmarking or 

search queries as basis for summary construction. For a given Web page, they first identified a set of 

queries that led to the selection of that page among search engine result lists. Second, they submitted 

the queries to a search engine and collected the query-sensitive snippets from the result sets. Third, 

they constructed the given Web page’s summaries by selecting and combining the snippets obtained in 

the second step. The above approaches used search queries or other resource as labels of important 

contents of Web pages for generic Web page summarization, and their experiment results showed 

significant improvements compared with summarizers without using those labels. However, they did 

not use these labels in query-specific Web page summarization.  

Wang et al. [53] suggested that two documents about one common topic have mutual influence 

and they would provide information to each other, so they proposed a framework to use mutual 

information from documents within one appropriate cluster context for collaborative document 

summarizations. Similar to their strategies, our approach attempts to retrieve queries whose 

subsequently clicked Web pages containing similar contents as the contents of the target Web page, 

and used these queries to uncover its query-related topics.   
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Chapter 3 CONSTRUCTING QUERY-CONCEPT BIPARTITE GRAPHS FOR EXPLORING QUERIES’ 

RELATIONS 

This chapter introduces Query-Concept bipartite graphs to investigate queries’ relations. In 

section 3.1, a well-known model for evaluating queries’ relevance is introduced, and its strength and 

weakness are discussed. Section 3.2 introduces the detailed steps to construct Query-Concept bipartite 

graphs. Two models are compared in section 3.3.   

3.1 Query-URL Bipartite Graphs 

The clickthrough data that contain users’ queries and subsequently clicked URLs are rich 

resources to investigate queries’ relations. Beeferman and Berger [2] believed that two queries were 

relevant if they resulted in clicking same Web pages. They constructed the Query-URL bipartite graphs 

to describe the relations of queries and their subsequently clicked URLs. For a given query and its URLs, 

the queries connected by the same URLs were considered as relevant queries. One major problem for 

the Query-URL model is that the number of common clicks on URLs for different queries is very limited. 

In a large clickthrough dataset from a commercial search engine, it was reported that the chance for 

two random queries to have a common click was less than 10-4 [2]. Therefore, it is very difficult to find 

the relevant queries for a given query based on the Query-URL bipartite graphs. Another problem with 

the Query-URL bipartite graphs is that although two queries may lead to same URLs, they may still be 

irrelevant because they may refer to totally different contents of the Web document. For example, in 

Figure 3.1, two queries “apple pie history” and “strawberry season” lead to click the same Web page2 

“Food day”, but these queries cannot be guaranteed to be relevant because they refer to different 

contents of “Food day.”  
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Figure 3.1 Two queries refer to different contents of one Web page 

3.2 Query-Concept Bipartite Graph 

The Query-Concept Bipartite Graph model is useful to analyze queries’ relations even if they do 

not result in same Web pages. For two given queries, their subsequently clicked Web pages may reveal 

their exact meanings. If the queries’ subsequently clicked Web pages contain very similar contents, the 

queries are considered to be relevant. We propose the following steps to construct Query-Concept 

Bipartite Graphs to investigate queries’ relations.  

A user browses several search results returned by the search engines and locates the 

information matching his/her query. We assume that if the browsing period for one Web page is long 

                                                                                                                                                                                           
2 http://www.globalgourmet.com/food/foodday/fd0197/fd012097.html 
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enough, that page may contain the information related to the query. Therefore, the following equation 

RQD(q, di) is proposed for measuring the relevance scores of one Web page di with the query q.  

    1

1 1
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j i
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i j
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RQD q d
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          (3.1) 

In the above equation, m means that the user clicks the Web page di m times, and the period of 

jth visiting is periodj(di); n is the total number of clicking Web pages for that query, and the divisor of the 

equation is the total visiting period of the clicked Web pages for that query. 

After the relations between queries and Web pages are calculated, Web pages that have top 

relevance scores with the query are selected as the user’s favourite Web pages. Then, context terms 

around the query from the selected Web pages are extracted to express the contents of the Web pages. 

Based on the assumption that if a keyword or a phrase appears frequently around the query in the 

user’s clicking web pages, it should be an important concept related to the query. The equation RQC(q, 

ci) is proposed to measure the relation between a particular concept ci and the query q.  

1

( , ) ( , ) ( )
k

m

i k d i

k

RQC q c RQD q d f c


        (3.2) 

In the above equation, RQD(q, dk) is the relation between the query q and document dk 

containing concept ci; fdk (ci) is the occurrence frequency of the concept ci in the document dk; m 

indicates the number of clicked Web pages containing the concept ci.  

After obtaining the relations between concepts and queries, the concepts that have top 

relevance scores with the given query are extracted to represent the users’ favourite information. For 

example, for the query “java”, based on the user’s clickthrough data, the related concepts are extracted 

from Web pages, such as “programming language”, “software”, “code”, “compiler”, “technology”, 

“virtual machine”, “island”, “Indonesia”, “Jakarta”, “resort”, “coffee”, “boca”, “tea”, and “gourmet.” 
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Fig. 3.2 shows a queries- Concept bipartite graph, where squares represent Concepts and 

rounds represent queries. For any two queries in the bipartite graph, we may speculate their relations 

based on the common number of context terms they connect.  

 
Figure 3.2 A Queries- Concept bipartite graph 

3.3 Comparisons of Query-URL Bipartite Graphs and Query-Concept Bipartite Graphs 

 Both Query-URL bipartite graphs and Query-Concept bipartite graphs are used to investigate 

clickthrough data for speculating queries’ relations. These two models assume that users may select 

query-related search results from results returned by search engines, and queries’ relations can be 

determined by queries’ subsequently clicked results.  

As discussed in section 3.1, although two queries may lead to one common Web page clicked, 

they may be still irrelevant since one Web page may contains multiple topics and the queries are 

related to different topics in that page. The Query- Concept model retrieves query-related concepts 

from queries’ subsequently clicked Web pages, so the concepts may indicate the query-related contents 

of the clicked Web pages. Two queries having same concepts from their pages are more likely relevant 

than two queries resulting in clicking same URLs. Thus, Query-Concept bipartite graphs may get more 

accurate queries’ relations than Query-URL bipartite graphs. Also, the probability that two queries result 

in clicking same Web pages is very low. The Query-Concept model may retrieve more relevant queries 
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for a given query than the Query-URL model. In summary, compared with Query-URL bipartite graphs, 

Query-Concept graphs have following advantages: 

 The Query-Concept bipartite graphs explore more precise queries’ relations than the Query-URL 

graphs because the latter model ignores clicked pages’ contents.  

 The Query-Concept graphs get more relevant queries for a given query than the Query-URL 

graphs because the probability of two queries having the same concepts in their subsequently 

clicked pages is higher than that of queries resulting in the same URLs clicked.  
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Chapter 4 QUERIES-CONCEPTS BIPARTITE MODEL FOR PERSONALIZED QUERY SUGGESTION 

 Query suggestion is a way to extend queries to allow search engines to better speculate exact 

meanings of incomplete queries. This chapter proposes an approach that uses the Query-Concept 

bipartite graphs and Concept Relation Trees for personalized query suggestion. 

 4.1 Methods 

This section introduces steps to generate personalized query suggestions for incomplete queries. 

In step 1, the clickthrough data that contain users’ queries and corresponding clicked URLs are analyzed, 

query-related concepts are extracted, and a Query-Concept bipartite graph is constructed. In step 2, 

based on concept semantic relations and co-occurrence frequencies, the extracted concepts are 

clustered, and then Concept Relation Trees (CRT) can be constructed. CRTs are tree-structure concept 

clusters in which concepts are represented as leaves and any two concepts’ relation is demonstrated as 

the weight of their lowest common ancestor. If queries are connected by CRTs, their relations can be 

calculated based on the relations of Query-Concept and Concept-Concept obtained in the first two steps. 

In step 3, queries that have strong relationships with the given query are retrieved as suggestions. In 

step 4, weights of Query-Concept and concepts’ relations in the CRTs are updated based on the users’ 

recent queries and clicked URLs. The architecture of the personalized query suggestion agent is shown 

in Figure 4.1.  
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Figure 4.1 The architecture of a personalized query suggestion agent 

4.1.1 Constructing queries-concept bipartite graphs 

Based on the approaches introduced in section 3.2, all clicked Web pages for a given query are 

collected and Query-Web page relations are calculated based on equation 3.1. Then, Web pages owning 

top query relevance scores are selected. Second, the concepts from those Web pages are extracted 

based on equation 3.2. Thus, we are able to construct a Queries-Concept bipartite graph as shown in 

Figure 3.2. 

4.1.2  Calculating the concepts’ relations  

After the concepts are extracted from the Web pages, these concepts are divided into different 

concept sets, and each concept set represents a cluster of closely-related concepts. To construct 

clusters of extracted concepts, the following equation RCC(ci, cj) is used to calculate the relationship 

between concept ci and concept cj. 

 
1

( , ) ( ( , ) ( , ))
2

i j i j i j
RCC c c SR c c CO c c                                       (4.1) 
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Based on the above equation, two concepts’ relation RCC(ci, cj) is determined by the concepts’ 

semantic relation SR(ci, cj) and the co-occurrence frequency CO(ci, cj). In the following parts, the 

methods to calculate the concepts’ semantic relations and co-occurrence frequencies are introduced.  

WordNet is a large lexical database in English, developed under the direction of George A. Miller 

[34]. Synonymous words are grouped together into synonym sets, called synsets. Each synset 

represents a single distinct sense or concept. Each WordNet sense is associated with a tree structure in 

the WordNet Is-A hierarchy. The nodes in these tree structures are WordNet hyponyms, each of which 

has a unique identifier in WordNet. Therefore, each sense can be related to unique hyponyms in the 

tree structure. In the Is-A hierarchy tree, each child node is an instance of the parent node, like “car” is 

instance of “vehicle”, and “vehicle” is instance of “physical entity.” A part of WordNet Is-A Hierarchy is 

shown in the figure 4.2.  

 

Figure 4.2 A part of WordNet Is-A hierarchy 

The semantic similarity between concepts can be estimated by the information content (IC) [39]. 

The information content of a concept x is defined as 

    ( ) ( ( ))IC x log p x  ,                                                    (4.2) 

where p(x) is the frequency of encountering an instance of concept x. The frequency of 

encountering a concept includes the frequency of encountering all its subordinate concepts since the 

count for a concept is added to its subsuming concept as well. If p(x) of the root node of the WordNet 
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Is-A tree is defined as 1, for any concept node c in that tree, its p(x) can be calculated by the equation: 

nc/na, where nc represents the number of descendants of that concept node c, and na represents the 

number of all nodes in the tree. Therefore, the information content of a concept is -log(nc/na). Then, by 

applying the Jaccard similarity coefficient [49], we propose the following equation SR(ci, cj) to calculate 

any two concepts’ relation, 

    

| |
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i j
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.                  (4.3) 

In the above equation, np is the number of descendants of the lowest common ancestors of ci 

and cj; nci is the number of descendants of the concept ci; ncj is the number of descendants of concept cj; 

na represents the number of all nodes in the tree. 

Based on the above equation, we may estimate that, in Figure 4.1, concepts “car” and “ship” 

have higher semantic relation than the concepts “car” and “cabin” because the lowest common 

ancestor of “car” and “ship”, “vehicle”, contains fewer concepts than the lowest common ancestor 

“physical entity” of “car” and “cabin”, although “car” and “cabin” have the same number of children 

nodes as the concept “car” and “ship.”  

The following equation CO(ci, cj) is used to calculate the frequency of co-occurrences of 

concepts ci and cj. 
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                                                                 (4.4) 

In the equation CO(ci, cj), f(ci ∩ cj) is the frequency of the Web pages containing both concepts ci 

and cj, and f(ci) is the frequency of the Web pages containing the concept ci. 

 



24 
 

  

4.1.3  Constructing concept relation trees 

After concepts are extracted based on frequencies of occurring in the users’ selected Web 

pages, concepts with high co-occurrence frequencies and similar semantic relations are grouped 

together. Based on the concepts’ relation equation RCC(ci, cj), an agglomerative clustering algorithm is 

developed to construct concept clusters, each of which contains closely-related concepts. Section 4.1.1 

extracts relevant concepts for queries. Then, the queries connected by the concepts in same clusters 

should have strong relationships, and one query of them may be considered as one suggestion of 

another. 

Before presenting Algorithm 4.1, the term “pseudo-concept”, a node grouped by the concepts 

and representing the union of set concepts, is introduced. 

In Algorithm 4.1, concepts are grouped together if their relation is larger than a threshold value 

δ2. The initial value of δ2 in Algorithm 4.1 is set as 0.3, and it can be adjusted later. Based on Algorithm 

4.1, the extracted concepts are clustered, and CRTs can be constructed. The CRTs are tree-structure 

concept clusters in which concepts are represented as leaves, and any two concepts’ relation is 

demonstrated as the weight of their lowest common ancestor. For the previous “Java” example, after 

the concepts related to the query “java” are extracted and their relations are calculated, based on 

Algorithm 4.1, following three CRTs are created as shown in Figure 4.3. The square nodes represent the 

concepts, and the round nodes represent the pseudo-concepts. The nodes’ weights indicate the 

relations between concepts. For any two concepts nodes in a CRT, their relation is demonstrated as 

their lowest common ancestor’s weight. For example, the relation of “island” and “resort” is 0.32. Once 

the CRTs are constructed, they are saved into users’ profiles, which can be used as knowledge for 

personalizing query suggestions.  
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ALGORITHM 4.1 Constructing CRTs 

INPUT:  

The extracted concepts, concepts’ co-occurrence frequencies and semantic relations 

OUTPUT:  

Several CRTs, each of which is a concept cluster containing closely-related concepts 

 

BEGIN 

Step 1: Based on the equation RCC(ci, cj), calculate the relations for all possible pairs of extracted 

concepts. The matrix of the concepts’ relations M is created. 

Step 2: Merge a and b, which are disjoint concepts, pseudo-concepts or one concept and another 

pseudo-concept, and they have the highest concepts’ relation. Then, create a pseudo-concept t to 

represent the union of set a and b. 

Step 3: Calculate the relations between that pseudo-concept t with other disjoint concepts and 

pseudo-concepts. The relation r between t and another concept or pseudo-concept t' is the highest 

concepts’ relation between the concepts from t and t'. Then, assign r to the relations between any 

concepts from t and t'. Next, update the corresponding concepts’ relations in the matrix M. 

Step 4: Repeat Steps 2 and 3 until all the relations between any concepts or pseudo-concepts are 

smaller than a threshold value δ2, or all concepts are grouped into one pseudo-concept.  

END ALGORITHM 4.1. 
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Figure 4.3 Concept relation trees for “java” 

For the concepts related to a single query, we can create multiple CRTs, each of which contains 

closely-related concepts. Also, we may construct separate CRTs related to queries if their concepts are 

completely unrelated. However, if the CRTs for different queries contain the same concepts, we may 

need to merge the CRTs together to indicate their relations. Thus, the following approaches are 

proposed to solve this problem. 

If concepts related to the query q1 are a sub set of concepts related to query q2, we only need to 

construct CRTs for q2. However, we still need to calculate the concepts’ relations for q1 based on the 

equation RCC(ci, cj) and use these relations to update concepts’ relations of the CRTs for q2. The updated 

relation for q2 is the average value of the old relation for q2 and corresponding concepts’ relation for q1. 

For the above “java” example, we construct three CRTs and one of them contains the concept “tea”, 

“boca”, “coffee”, and “gourmet.” Then, we have another query “Starbucks”, and the concepts extracted 

from the users’ clicking Web pages are “coffee” and “boca.” In that situation, we do not need to create 

separate CRTs for the “Starbucks”, but just calculate the relation for “coffee” and “boca” based on the 

equation RCC(ci, cj), and use that relation to update the “coffee” and “boca” relation in the CRT of 

“java.” After the concepts’ relations are updated, the structure of the CRTs needs to be updated to keep 

concepts’ relations in order. The concepts with lower common ancestors should have closer relations 
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than the concepts with higher common ancestors. Therefore, we propose Algorithm 4.2 to update CRT’s 

structures based on altered concepts’ relations. 

Based on Algorithm 4.2, if one altered weight is larger than the old weight, their CRT structure is 

updated, and the concepts’ leaves are adjusted closer. For the example shown in Figure 4.4, the 

updated relation between concepts “island” and “Jakarta” is 0.52, which is larger than the their 

previous relation 0.32 and the relation of “island” and “Indonesia.” Thus, we need to break the 

connection between “island” and “Indonesia”, and connect the “island” with the pair of “Jakarta” and 

“resort” first because they have larger weights. Then, “Indonesia” is connected with the newly created 

node that contains “island”, “Jakarta” and “resort.” After CRT is updated, “island” and “Jakarta” have a 

lower common ancestor than the concepts “Indonesia” and “Jakarta.” 

ALGORITHM 4.2 Updating CRT based on altered concepts’ relations 

INPUT:  

The old CRT with altered concepts’ relations 

OUTPUT:  

An updated CRT with new concepts’ relations and updated structure 

 

BEGIN 

Step 1: Store the concept pairs with altered relations in an array T. Then, rank the altered concepts’ 

relations decreasingly.  

Step 2: Select one concept pair (ci, cj) that has the highest altered relation in the T. Compare the 

altered relation of concepts (ci, cj) with their old relations. If the altered relation is higher than their 

old relation, go to step 3; otherwise, remove (ci, cj) with their concepts’ relation in the T. If no more 

concept pairs in T, then end the algorithm; otherwise, go back to step 2.  
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Step 3: Compare the altered relation of concepts (ci, cj) with the weights of ci’s parent p
1
 (ci) and cj’s 

parent p
1
 (cj). (The weight of p

1
 (ci) is the concepts’ relation between ci with its nearest neighbour 

concept.) If the altered relation of concepts (ci, cj) is smaller than the weights of p
1
 (ci) and p

1
 (cj), 

then compare the altered relation with the weights of p
1
 (p

1
 (ci)) and p

1
 (p

1
 (cj)), or p

2
 (ci) and p

2
 (cj). 

Repeat this step until the altered relation of concepts (ci, cj) is larger than the weight of p
i
 (ci) or p

i
 

(cj), or both. 

Step 4: If the altered relation of concepts (ci, cj) is larger than the weight of pi (cj) but smaller than 

the weight of p
i
 (ci), break the connection between the children nodes of p

i
 (cj). Then, merge p

i
 (ci) 

and the child nodes of pi-1 (cj). The weight for the new created connection is the altered relation of 

concepts (ci, cj). If the altered relation of concepts (ci, cj) is larger than the weights of pi (ci) and pi (cj), 

break the connection between the children nodes of pi (ci) and pi (cj).Then, merge pi-1 (ci) and pi-1 

(cj).The weight for the new created connection is the altered relation of concepts (ci, cj). 

Step 5: Merge the nodes whose connection are broken in step 4 and the new created nodes. Then, 

remove (ci, cj) with their concepts’ relation in the array T. If no more concept pairs in T, then end the 

algorithm; otherwise, go to step 2.  

END ALGORITHM 4.2. 
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Figure 4.4 Updating one CRT based on the altered concepts’ relation 

If the CRTs related to the queries q1 and q2 contain overlapping concepts, their CRTs are 

connected by linking the overlapping concepts. If two CRTs contain lots of overlapping concepts, the 

CRTs should have strong relationship, so the weight between them should be large; conversely, the 

weight between them should be small. Thus, the following equation RTT(CRT1, CRT2) is proposed to 

calculate the weight between CRTs, in which n(CRT1∩CRT2) represents the number of concepts 

occurring in the both CRTs and n(CRT1)+n(CRT2) represents the total number of the concepts occurring in 

CRT1 and CRT2. After the weight between CRTs calculated, Algorithm 4.3 is proposed to connect the 

overlapping concepts occurring in both CRTs. 
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n CRT CRT
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    (4.5) 

ALGORITHM 4.3 Connecting CRTs 

INPUT:  

CRT1 and CRT2 

OUTPUT:  

A connected CRT that contains CRT1 and CRT2 
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BEGIN 

Step 1: Based on the CRTs relation equation RTT(CRT1, CRT2), calculate the similarity between CRT1 

and CRT2. 

Step 2: Connect CRT1 and CRT2 by linking the concepts occurring in both of them. Then, assign the 

similarity of CRT1 and CRT2 to the linkages’ weights. 

END ALGORITHM 4.3. 

 

Given three queries “java”, “holiday tours” and “beverage recipes”, we may construct following 

CRTs as shown in Figure 4.5.  “Java” is associated with two CRTs, (“tea”, “boca”, “coffee”, and 

“gourmet”) and (“island”, “Indonesia”, “Jakarta”, and “resort”). “Beverage recipes” is associated with 

the CRT that contains concepts “tea”, “drink”, “coffee” and “bean.” “Holiday tours” is associated with 

the CRT that contains concepts “vacation”, “travel”, “Jakarta”, and “Florida.” For the above four CRTs, 

several concepts occur in more than one CRT such as “tea”, “coffee” and “Jakarta”, so the CRTs can be 

connected by linking the overlapping concepts “tea”, “coffee” and “Jakarta”. Then, assign the CRTs’ 

similarities, “0.5” and “0.25” to the linkage weights.  
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Figure 4.5 Connected CRTs based on overlapping concepts 

After CRTs are connected, the equations are needed to calculate concepts’ relations in the same 

CRT and in connected CRTs. If ci and cj are in the same CRT, only one path exists between them, so their 

relation d(ci, cj)  is their concepts’ relation obtained from Algorithm 4.1. If ci and cj are in two connected 

CRTs CRT1 and CRT2, and L connections exist between CRTs, ci and cj may have L possible concepts’ 

relations because one path between them may result in one concepts’ relation. In order to calculate L 

possible concepts’ relations between ci and cj, we have to find L concepts {sc1, sc2, …, scL} occurring in 

both CRTs. Then, the following equation CW(ci, cj) is proposed to calculate the relation of concepts ci 

and cj in the different CRTs.  

    
1 2

1

( , )
( , ) ( ( , ) ( , ))

2

L

i j i k k j

k

RTT CRT CRT
CW c c d c sc d sc c

L 

    (4.6) 

In the above equation, sck represents one concept occurring in both CRT1 and CRT2;   d(ci, sck) 

represents the concepts’ relation of concept ci and sck obtained in algorithm 4.1; L indicates the number 

of connections between concepts ci and cj; and RTT(CRT1, CRT2) represents the relation between CRTs. 
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Based on the above equation, one relation of ci and cj is the arithmetic average of d(ci, sck) and d(sck, cj) 

multiplies the weight between CRT1 and CRT2. The relation CW(ci, cj) of concepts ci and cj in two 

connected CRTs is an average value of all possible relations between ci and cj. 

For example, in Figure 4.5, the relation of concepts “drink” and “boca” can be calculated by 

applying the equation CW(ci, cj). Two concepts “tea” and “coffee” occur in the both CRTs, so two paths 

“drink-tea-boca” and “drink-coffee-boca” exist between “drink” and “boca.” For the path “drink-tea-

boca”, the relation between “drink” and “boca” should be RTT(CRT1, CRT2) multiplying the average of 

d(drink, tea) and d(tea, boca). As shown in Figure 4.5, the value of RTT(CRT1, CRT2) is 0.5, d(drink, tea) 

0.71 and d(boca, tea) 0.68. Then, for the path “drink-tea-boca”, the relation of “drink” and “boca” is 

0.5*(0.71+0.68)/2. Similarly, for the other path “drink-coffee-boca”, the relation of “drink” and “boca” 

is 0.5*(0.41+0.47)/2. The relation CW(drink, boca) is the average relations for the paths “drink-tea-

boca” and “drink-coffee-boca.” 

4.1.4  Calculating the queries’ relations 

Based on the relations between queries and concepts, and relations between concepts and 

concepts obtained from previous steps, queries’ relations can be calculated. If two queries have strong 

relationship, one of them can be a suggestion for the other. The following two strategies are proposed 

to calculate the queries’ relations. 
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Figure 4.6 Queries – CRTs bipartite graphs 

Strategy 4.1. Two queries qi, qj are considered to be relevant if most of concepts related to qi 

have strong relationships with most of concepts related to qj.  

Given two concept sets Ci and Cj related to the queries qi and qj, respectively, the following 

three equations RQQ1(qi, qj), AvgQC(qi, Ci), and AvgCC(Ci, Cj) are proposed to calculate the relations 

between qi and qj.  

1
1( , ) ( ( , ) ( , ) ( , ))

3
i j i i i j j j

RQQ q q AvgQC q C AvgCC C C AvgQC q C      (4.7) 

1 1

1
( , ) ( , )

n m

i j ih j k

h k

AvgCC C C CW c c
mn  

        (4.8) 

1

1
( , ) ( , )

m

i i i k

k

AvgQC q C RQC q c
m 
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In the equation RQQ1(qi, qj), AvgQC(qi, Ci) represents the average relations between qi and the 

concept set Ci, and AvgCC(Ci, Cj) represents the average relations between concept sets Ci and Cj.  

In the equation AvgCC(Ci, Cj), cih represents one concept in the concept set Ci and cjk represents 

one concept in the concept set Cj; CW (cih, cjk) represents the relation between concept cih and concept 

cjk. If Ci contains n concepts and Cj contains m concepts, there are m multiplying n combinations of 

concepts’ relations between Ci and Cj. Thus, the equation AvgCC(Ci, Cj) represents the average relations 
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between concept sets Ci and Cj. In the equation AvgQC(qi, Ci), RQC(qi, ck) represents the relation 

between query qi and concept ck, which can be obtained from the section 2.2.  

Strategy 4.2. Two queries qi, qj are considered to be related if one concept cih related to qi has a 

strong relationship with the concept cjk related to qj.  

We propose the following equation RQQ2(qi, qj) to calculate the closest relation between qi and 

qj. RQC(qi, cih) represents the relation between qi and cih, and CW (cih, cjk) represents the relation 

between cih and cjk. 

    2( , ) max( ( , ) ( , ) ( , ))
i j i ih ih jk jk j

RQQ q q RQC q c CW c c RQC c q    (4.10) 

Based on Strategy 4.1, one query can be a suggestion for another query if the concepts related 

to them have strong relationships. However, if the concepts related to one query are a small sub set of 

the concepts related to another query, we may not be able to conclude that the first query can be a 

suggestion for the second one. Thus, Strategy 4.2 is selected to calculate the queries relations. 

4.1.5  Dynamically updating the weights of query-concept 

For personalizing query suggestions, the relations between queries and concepts should be 

updated according to the users’ most recent clickthrough data. For example, the related concepts for 

the query “java” may be “code”, “software” and “coffee.” If a user is indeed interested in the concept 

“coffee”, and the user clicks on the Web pages containing the concept “coffee”, the query suggestions 

agent should gradually favour the concept “coffee” and the concepts in the same CRT with “coffee”, like 

“gourmet.” Then, the weight between the query “java” and the concept “coffee” is increased.  

The weight between a query and a concept is decreased with the time elapses. The weight will 

be increased if that query hits Web pages containing the concept again. The following equation WQC(q, 

c) is proposed to update the weights between queries and concepts. 
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 (4.11) 

In the above equation, the updated weight is determined by the current weight WQC(q, c), the 

elapse time elapse_time, and the relation RQC(q, c) obtained from the newest hitting. The initial values 

for the constant ξ and σ are 0.01 and 0.1 respectively.  

4.2 Experiments 

The experiments and performance analysis are presented in this section. First, test data sets 

were constructed based on the log data of a commercial search engine. Then, two experiments were 

conducted to evaluate performance of our method. 

4.2.1  Data collection 

The data sets were constructed based on the log data of AOL, a commercial search engine. The 

log data consist of more than 20M Web queries from 650k users over three months, from March 1, 

2006 to May 31, 2006. The number of clicked URLs for the 20M Web queries is 19,442,629. The AOL log 

data sets can be only used for research purpose only. 

For this collection, first, the queries were filtered by only keeping the queries that only 

contained alphabet characters and spaces. Second, the queries that resulted in at least five unique clicks 

per session were preserved. Since it was impossible to ask the original users to evaluate the results’ 

quality for the queries, we assumed the clicked Web pages containing the information that the users 

needed. Therefore, we used the clicks associated with the queries to approximate relevant Web pages. 

More relevant documents for a query made it easier to extract concepts related to that query. Third, to 

better construct users’ preference profiles, we only kept users’ IDs who submitted more than fifty 

unique queries. Finally, we randomly selected thirty users’ IDs satisfying above requirements as our test 

data sets. On average, each user submitted 68.5 distinct queries, and each query resulted in 8 distinct 

clicks in the data sets. The basic statistic for the data sets is listed in Table 4.1.  
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Table 4.1 The statistic of the data sets 

Item Statistic 

#Unique Queries 2055 

#Unique User ID's 30 

#Clicked URLs 16440 

#Clicked URLs/ #Queries 8 

 

4.2.2  Evaluation of extracting and clustering concepts  

The processes of extracting and clustering concepts aim at extracting important concepts from 

clicked Web pages and providing representative and distinguishing concepts’ clusters for a given query. 

We conducted an experiment to evaluate the performance of extracting and clustering concepts. The 

performance is measured using following aspects: 

 Concept, the number of concepts extracted for a given query; 

 Redundant concept, the number of not relevant concepts extracted for the query; 

 Cluster, the number of concept clusters constructed for the query; 

 Redundant cluster, the number of not relevant concept clusters constructed for the query; 

 Missing cluster, the number of relevant concept clusters not constructed for the query. 

We randomly collected one hundred non-ambiguous queries and one hundred ambiguous 

queries from the test data sets. Non-ambiguous query has only one interpretation while ambiguous 

query contains ambiguous terms and may have multiple interpretations. For the extracted queries, we 

divided them into ten groups. The first group contained 20 non-ambiguous queries and 0 ambiguous 

queries. From the second group, each following group contained two more ambiguous queries and two 
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less non-ambiguous queries than the previous group. Therefore, the tenth group contained twenty 

ambiguous queries and no non-ambiguous queries.  

In order to evaluate our algorithm performance, we used the following two well-known 

algorithms, TF-IDF [38] and DF-ICF [8], for comparison. 

TF-IDF is a text mining algorithm that uses the keywords’ occurrence frequencies for concepts 

extraction. In the experiment, TF-IDF algorithm was used for extracting all concepts related to queries. 

Then, based on the concepts’ co-occurrence frequencies, concepts’ clusters were constructed. 

DF-ICF is a concept clustering algorithm that derives a concept hierarchy from a web directory, 

and then exploits the semantic knowledge among the concept hierarchy. Based on the concepts’ 

semantic relations, concepts’ clusters can be constructed. Because DF-ICF cannot extract the concepts 

from text, we used the concepts gathered from our algorithm as a pre-processing step for DF-ICF. 

We selected one group of 10 ambiguous and 10 non-ambiguous queries to analyze the 

performance of our method, TF-IDF and DF-ICF. The results are shown in Table 4.2.  

Table 4.2 The concepts extraction and clustering performance by our method, TF-IDF and DF-ICF 

 #Concept #Redundant 

Concept 

#Cluster #Redundant 

Cluster 

#Missing 

cluster 

Our 

Method 

186 8 9 2 2 

TF-IDF 235 53 14 8 5 

DF-ICF 186 8 7 1 3 

 

We compared those three methods based on the ten groups of queries. The number of 

redundant and missing clusters created by the methods is shown in Figure 4.7.  
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Figure 4.7 The redundant and missing clusters created by our method, TF-IDF and DF-ICF 

Based on Table 4.2, TF-IDF method extracts much more redundant concepts than other 

methods because TF-IDF method determine the importance of concepts only based on the concepts’ 

occurrence frequencies, so it cannot filter common meaningless non-stop words such as “conversation”, 

“information” and “discussion.” Also, as shown in Figure 4.7, with growth of ambiguous queries, the 

number of redundant and missing clusters created by the TF-IDF method grows fast. However, the 

numbers of redundant clusters created by our method and DF-ICF grow slowly because these two 

methods use concepts’ semantic relations, not just the concepts’ co-occurrence frequencies, for 

clustering. Therefore, for a given concept, our method and the DF-ICF algorithm can extract more 

related concepts to it than the TF-ICF algorithm. Also, we observe that the DF-ICF algorithm misses 

more relevant clusters than our method because the DF-ICF algorithm determines the concepts’ 

similarities only based on a predefined category, which may be too coarse to cluster concepts into fine-

grained groups that users prefer. Our method calculates concepts’ semantic relations based on a 

predefined concept hierarchy, WordNet Is-A Trees. Thus, the performance of our method should be 

comparable with the DF-ICF algorithm. Moreover, our method uses the concepts’ co-occurrence 

frequency as a metric for clustering, so more fine-grained concepts’ clusters may be created if the 

concepts have high co-occurrence frequencies. 

4.2.3  Evaluation of query suggestion 
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In this section, we conducted an experiment to evaluate the performance of query suggestion. 

First, we randomly selected ten users’ IDs with their submitted queries and clicked URLs from the test 

data sets, and identified all ambiguous queries and non-ambiguous queries. Then, we divided the 

submitted queries into ten test cases, and each test case contained more ambiguous queries and less 

non-ambiguous queries than the previous test case. Second, for each unique user, we analyzed the 

submitted queries and clicked URLs, and best speculated the contents that user wanted to visit. Then, 

we used the expertise knowledge to manually cluster users’ submitted queries. Third, based on the 

users’ queries and clicks, we constructed CRTs and query-concept bipartite graphs. Thus, for any query, 

our algorithm can provide several suggestions based on the weights of query-concept and concept-

concept. Because it was impossible to ask the original users to evaluate the quality of our suggestions, 

we compared them with the queries’ clusters created in the second step. In other words, for a 

submitted query, we identified one queries’ cluster containing it, and compared the suggestions created 

by our algorithm with the queries in that cluster. More matched queries between them indicated higher 

suggestion quality.  

We used following three equations to evaluate the quality of query suggestion. The Q_relevant 

is set of query suggestions related to the query, and Q_retrieved is set of query suggestions provided by 

algorithms. 

    
| _ _ |

( )
| _ |

Q relevant Q retrieved
precision q

Q retrieved


  (4.12) 

    
| _ _ |

( )
| _ |

Q relevant Q retrieved
recall q

Q relevant


  (4.13) 
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F

precision recall


 


 (4.14) 
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We compared the query suggestion performance of our approach with the following three 

methods: Adjacency [24], Query-URL [2] and Query-Concept [37] on our test cases. The average 

precision and recall on our test cases performed by those methods are shown in Table 4.3. The F-values 

on the ten test cases performed by those four methods are shown in Figure 4.8.  

Adjacency. Given a query qi, this method lists all queries immediately following qi in the search 

history; ranks them based on the frequencies of following qi; and outputs top queries as suggestions.  

Query-URL. As discussed in section 3.  

Query-Concept. Given a query qi, this method extracts all related concepts from the clicked 

Web pages; constructs Query-Concept bipartite graphs; and outputs queries linked by the same 

concepts as suggestions.  

 

Table 4.3 The suggestion performance by our method, adjacency, query-url and query-concept 

 Precision Recall 

Our method 0.657 0.583 

Adjacency 0.352 0.257 

Query-URL 0.412 0.403 

Query-Concept 0.532 0.501 
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Figure 4.8 The F-Values performed by our method, adjacency, query-url and query-concept 

Based on Table 4.3, our method obtains highest precision and recall values in all four methods. 

Figure 4.8 shows that with growth of ambiguous queries, the F-values of all four algorithms decrease. 

Overall, the Adjacency algorithm performs worst in all four algorithms because it provides query 

suggestions only based on the queries’ co-occurrence frequencies. The Query-Concept algorithm 

performs better than the Query-URL algorithm because fewer queries are connected by the same URLs 

than the same concepts. Thus, more suggestions will be provided by the Query-Concept algorithm. Also, 

as discussed in Section 3.1, the fact of two queries connected by the same URL does not indicate that 

they must be closely-related queries. However, if two queries are connected by the same concept, they 

may be closely-related queries. Thus, the performance of the Query-Concept algorithm is better than 

the Query-URL algorithm. However, if a user submits an ambiguous query, such as “apple”, and the 

extracted concepts related to “apple” are “fruit” and “computer”, the Query-Concept algorithm cannot 

justify which concept should be more related to the query. Our method has the ability for identifying 

the most related concept for the query based on the weights of query-concept pairs. Moreover, 

because our method defines and updates the concepts’ relations in CRTs, more correct suggestions are 

provided by our algorithm than the Query-Concept algorithm. 

4.3 Discussion 
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Since queries submitted to Web Search Engines are usually short and ambiguous, it is difficult 

for Web Search Engines to speculate the exact meaning of the short queries. This section presents a 

personalized query suggestion agent that uses Query-Concept bipartite graphs and CRTs for query 

suggestion. Compared to the Query-URL and the Query-Concept algorithms, our method can better 

identify the queries’ relations and provide more accurate suggestions. Also, our agent can dynamically 

update the weights of Query-Concept and Concept-Concept based on the users’ clickthrough data, and 

therefore can provide personalized suggestions. From the simulation results, our personalized query 

suggestion agent outperforms other well-known methods.  

 The main contributions of our personalized query suggestion approach are: 

1. The query suggestion agent uses both concept semantic relations and co-occurrence 

frequencies for concept clustering. Thus, the clustering performance is higher than the method that 

uses concept co-occurrence frequencies only.  

2. The agent provides more relevant queries as suggestions than other methods.  

3. Based on the users’ most recent clickthrough data, the agent dynamically updates the 

weights of Query-Concept and concepts’ relations in the CRTs, and therefore adaptively provides the 

most relevant suggestions for the queries.  
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Chapter 5 QUERIES-CONCEPTS BIPARTITE GRAPH FOR LONG QUERY REFORMULATIONS 

Long queries are widely used in current Web applications, such as literature searches and news 

searches.  However, long queries are frequently expressed as natural language texts but not keywords, 

so the current keywords-based search engines, like GOOGLE, perform worse with long queries than 

with short ones.   This section proposes a query substitution and search result refinement approach for 

long query Web searches. 

5.1 Methods 

Current search engines generally perform worse with long queries than with short keywords-

based queries. Searching relevant short queries may provide approximate search results as searching 

the original long query to improve searching performance. Although the query substitution strategy 

may improve effectiveness of long query Web searches, diverse results and neighboring information 

may be still obtained because searching relevant short queries may ignore contexts and terms in the 

original long query. Thus, we propose the search result refinement strategy that filters non-relevant 

results by evaluating the similarities of contexts from results and contexts from the original long query.  

5.1.1 Substituting a long query by relevant short queries  

This section introduces the methods to select relevant short queries for a long query and to 

build long query substitutions based on these relevant short queries.  

The clickthrough data sets that contain users’ queries and corresponding clicked URLs are used 

as data sources to collect relevant short queries.  Because users’ clickthrough data sets commonly 

contain a huge number of queries, we need to construct an initial query set IQ including a small number 

of short queries that are potentially related to a given long query.  Because long queries may contain 

multiple sentences, the equation of sentence-query similarity is applied to calculate the relevance score 

of a long query and a short query [36].  
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For the above formula, R(LQ, SQ) represents the relevance score of the long query LQ and the 

short query SQ; Si denotes the i
th

 sentence in the long query LQ; |Si ∩ SQ| denotes the count of 

common terms occurring in Si and SQ; |SQ| represents the number of terms in SQ.  

Based on the relevance scores of the long query and short queries, the short queries are ranked 

and m short queries are stored in an initial query set IQ = {q1, q2, …, qm}. Because some short queries 

contain key concepts of the original long query but others may just contain noisy information, we have 

to determine which short queries are significant for the long query in the set IQ.  

For a short query, if a user clicks a corresponding result page, the sentences around the query 

terms in the clicked result page should contain users’ interesting information. Based on this observation, 

the following two assumptions may be proposed. 

Assumption 5.1. The short query’s meanings can be discovered from query-related contents in 

the query’s subsequently Web pages. 

Assumption 5.2. A short query and the long query are related if the context of the sentences 

around the short query terms in its clicked result page and the context of the long query are similar.  

Based on those assumptions, the following methods are proposed to calculate the contexts’ 

relations. First, the noun phrases are extracted from the set of sentences ST = {s1, s2, …, st} around the 

short query terms and from the long query. Then, the relations of the contexts of sentences in ST and 

the context of the long query will be determined by the number of common noun phrases they have.  

Since the set of sentences ST and the long query are natural language texts, we need to 

determine the noun phrases boundaries such as “(New York) (Art Center)” in the phrase “New York Art 

Center”; identify name entities such as the names of persons, organizations, and locations; and 

determine whether two entities refer to each other such as “John Kennedy” and “the president 
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Kennedy.” A machine learning- based noun phrase identification module [56] is applied to recognize 

fine-grained name entities in the long query and the sentences in ST. Also, a corpus-based machine 

learning approach [45] is adopted for noun phrase co-reference resolution, which resolves a certain 

type of noun phrase (e.g., pronouns) and also general noun phrases. Once co-referred entities are 

resolved, for a given referred entity en, all other referring entities are replaced by en in the long query 

and the sentences in ST.  

Once noun phrases boundaries are identified and co-referred entities are resolved, noun 

phrases are extracted from the long query and the sentences in ST as their features. Then, the following 

equation is proposed to calculate the context relations of the long query LQ and the set of sentences ST 

around the short query SQ.  

2 | |
( , )

| | | |

LQF STF
R LQF STF

LQF STF

 



                 (5.2) 

In equation 5.2, LQF denotes the features from the long query; STF denotes the features from 

the sentences in ST; |LQF ∩ STF| denotes the count of common features occurring in LQF and STF. 

  Based on the relations of the long query LQ and the set of sentences ST, we rank all the short 

queries in the query set IQ obtained in section 5.1.1; select top n short queries as the most relevant 

queries to the original long query; and put top n short queries into a relevant query set RQ = {q1, q2, …, 

qn}.  

  Since a long query may contain several topics, its relevant short queries may correspond to 

different topics of the long query. For example, for a query “Tropical Storm Fay, stalled near Cape 

Canaveral, Florida, soaked portions of east-central Florida late Wednesday. Florida Gov. Charlie Crist has 

asked President Bush to declare an emergency in the state to free up federal funding”, some relevant 

short queries may refer to the topic of “Fay stalled Florida”, but others may refer to the topic of 
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“governor declare an emergency.” Thus, we may construct clusters of queries in RQ and select the most 

representative queries from clusters as the substitutions of the original long query LQ.  

Since a short query in RQ may be included by several sentences in ST and each sentence may 

contain several common features in |LQF ∩ STF|, we construct a bipartite graph that connects the short 

queries in RQ and the features in LQF.  

Fig. 5.1 shows a short queries-long query features bipartite graph, where squares represent 

features and rounds represent queries. Then, we propose the following bipartite agglomerative 

clustering algorithm [2] to construct short query clusters based on the number of long query’s features 

they connect.  

The threshold value  in the following algorithm is a control factor for determining the sizes of 

clusters. A small value of  indicates that the queries in clusters have closer relations, and a large 

number of clusters may be created; a big value of  indicates inverse results. In our experiments, we 

pre-set a reasonable value of  for obtaining optimal results.  

 

Figure 5.1 A short queries-long query features bipartite graph 
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Figure 5.2 A process of constructing clusters of short queries 

Algorithm 5.1 – Constructing query clusters 

Input: A short queries-long query features bipartite graph G  

Output: A clustered short queries-long query features bipartite graph Gc  

1: Calculate the number of common features between all possible pairs of queries.  

2: Merge two queries A and B that connect the biggest number of common features.  

3: Calculate the number of common queries between all possible pairs of features.  

4: Merge pairs of features connected by the biggest number of common queries.   

5: Repeat the steps 1-4 until the number of common features of any pairs of queries is smaller than a 

threshold value  , or all queries are merged into one query.  

Fig. 5.2 shows a process of constructing clusters of short queries based on Algorithm 5.1. In Fig. 

2 (a), since q1 and q2 are connected by the biggest number of common features f2 and f3, we merge q1 

and q2. Then, we connect the new created query {q1, q2} with the features connected by q1 or q2 as 

shown in the Fig.5.2 (b). Since features f4 and f5 are connected by the biggest number of common 

queries {q1, q2} and q3, we merge f4 and f5 and connect the new created feature {f4, f5} with the {q1, q2} 

and q3. We iteratively merge queries and features, and finally obtain two query sets {q1, q2, q3} and q4.  

After clusters of relevant short queries are created, we applied the TF-IDF weight [25] to select 

the most representative query from each cluster and put them together as a new query. Assuming that 
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we have several clusters of queries C= {c1, c2, … , cm} and a query q from the cluster cj, we propose the 

following equation to calculate the query q’s score. 
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         (5.3) 

In equation (5.3), n denotes the number of terms that q contains; numj (ti) denotes the number 

of occurrence of term ti in the cluster cj; ∑k numj (ti) is the sum of number of occurrence of all terms in cj; 

|C| is the number of clusters; and |{c: ti ϵ c}| is the number of clusters containing term ti.  

For each cluster, we select the query that has highest score. Then, the selected queries from 

clusters are combined together as a substitution of the original long query. The newly created query will 

be submitted to commercial search engines for retrieving relevant documents.  

5.1.2 Web pages results refinement 

Although the newly created query contains the important features or topics of the original long 

query, we may still obtain non-relevant results since the new query may ignore a few contexts of the 

original one. Thus, we propose the following approach that filters non-relevant results by measuring the 

similarities of search results and the original long query.  

 First, in the search results, we identify the sentences containing the terms of the newly created 

query. Second, we apply the machine learning-based noun phrase identification module used in section 

5.1.1 to recognize entities or noun phrases in these sentences. Third, we propose equation 5.4 to 

calculate the relevance scores of search results and the original query. Then, the search results will be 

ranked based on the relevance scores and only top results will be returned to users.  
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                      (5.4) 

In equation (5.4), pi denotes the ith search result; fi denotes the features extracted from pi; tj 

denotes the j’s topic; F(tj) denotes the features related to topic tj in the original long query; and 
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constant k is a control factor to determine the impact of relatedness of features fi and F(tj). As k 

increases, the pi may obtain high scores if several common features exist between fi and F(tj).  

5.2 Experiments 

The experiments are presented in this section. First, we constructed our data sets based on the 

TREC Robust 2004 data and three month search log that we used in Chapter 4. Then, we compared our 

approach with other two well-known approaches. 

5.2.1 Data collection 

We constructed the long query test sets based on the TREC Robust 2004 test file, which 

contained 250 titles, descriptions and narrative sections. Since the descriptions are natural language 

texts and express the information needs, the descriptions of TREC Robust 2004 are considered as the 

long queries in the experiments. Since the titles express the same information needs as the descriptions 

and they commonly contain a few keywords, the titles are considered as short queries in the test sets. 

In the experiments, titles are considered as baseline to compare with our approach. The lengthy 

narrative sections express important attributes of search results. Thus, we may consider the narrative 

sections as measures to evaluate whether retrieved documents meet the information needs. Since the 

descriptions of TREC Robust 2004 always contain one topic, we selected 100 descriptions of TREC 

Robust 2004 as the single-topic long queries. Also, we manually created 100 multi-topics long queries by 

combining the descriptions with related topics from the narratives sections of TREC Robust 2004. We 

constructed two sets of long query testing data. The first test set contained all single-topic long queries. 

The second test set contained all single-topic and multi-topic long queries. The queries in second test 

set were divided to ten groups. The first group contained 20 single-topic queries and 0 multi-topic 

queries. From the second group, each following group contained two more multi-topic queries and two 

less single-topic queries than the previous group. Therefore, the tenth group contained twenty multi-

topic queries and no single-topic queries.  
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We constructed our short query data sets based on the log data that were used in Chapter 4. 

For the query collection, first, we filtered the queries by only keeping the queries written in English and 

only containing alphabet characters and spaces. Second, we only preserved the queries that contain less 

than three terms as short queries. Third, we preserved the queries that resulted in at least one click per 

session. Since it was impossible to ask the original users to evaluate the search results’ quality, we 

assumed that all the clicked Web pages containing the information that the users needed. Based on 

Assumption 5.1, the queries should represent the key contents of the sentences around the query 

terms in the clicked result pages. Then, for our long query test data, equations 5.1 and 5.2 are used to 

retrieve no more than twenty relevant short queries from the short query sets as the working sets.  

5.2.2 Experiment design 

Parameters Setting. Since our initial experiments showed that a large set of short query 

candidates may contain noisy information irrelevant to the original long query, we selected no more 

than five relevant short queries for a long query.  

Since the test sets contained one hundred single-topic long queries and one hundred multi-

topic long queries, and the average number of topics of long query test set was 1.7, we selected a 

reasonable value of parameter  to construct clusters of relevant queries in algorithm 5.1. Based on our 

initial experiments results, the value range of  should be between 1 and 3 so that we may create an 

approximate number of clusters as the number of topics in the test sets.  

In order to enlarge the impact of relatedness of features extracted from result pages and 

features from the original long query, we used k=2 in equation 5.4.  

Comparative Approaches. We used the titles of TREC Robust as baselines to analyze the 

performance of our approach. Also, we compared our approach with the following two well-known 

methods.  
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Concept Weighting. Bendersky and Croft [3] proposed a machine learning-based concepts 

weighting approach to identify key concepts in verbose queries. They constructed vectors containing 

seven weighting features to represent concepts. Then, for the training set, they seek to learn a ranking 

function so that the rank of concept i is higher than concept j if the function value of concept i’s feature 

vector is larger than concept j’s. Once the learning process finished, key concepts were selected from 

verbose queries based on their ranks.  

Query Reduction. Shapiro and Taksa [43] proposed an approach that contained following steps 

for query reduction: removing stop words from the original query and decomposing the original queries 

into several search terms; ranking those search terms based on the TF-IDF Weight; generating a 

fixed/variable number of sub-queries by randomly selecting terms from the search terms; submitting 

sub-queries as inputs to a search engine and merging the search results from those sub-queries into one 

rank list.  

Evaluation Measures. Two measures, P@10 and MAP, are used to compare our approach with 

others.  P@10 is the precision of top 10 rank documents returned by a search engine. MAP [9] is the 

arithmetic mean of average precisions (AP) of a set of queries and AP is the sum of the precision at each 

relevant document in the search results divided by the total number of relevant documents in the 

collection. 

Correct Results for Testing Data. Since we did not have a standard result set to evaluate the 

correctness of the search results of long query Web searches, we had to manually speculate the 

correctness of search results. In order to minimize the bias for the results speculation, we collected the 

search results from all approaches; constructed indexes for search results and put indexes in a separate 

file; put all results in a corpus and justified their correctness. Thus, before justifying search results, we 

did not know which approach creates them, so this approach minimizes justification bias.  

5.2.3 Experiment results 



52 
 

  

Our main hypothesis is that substituting a long query by relevant short queries and filtering non-

relevant search results are more beneficial than machine learning-based key concepts identification or 

query reduction. Also, compared with other approaches, our approach’s performance is less impacted 

by the number of multi-topic long queries. Thus, in the following experiments, we compare our 

approach with other approaches on the test sets one and two.  

Table 5.1 shows the comparison results of three approaches in terms of P@10 and MAP on the 

test set one. Baseline approach and the query reduction approach perform worse than concepts 

weighting and our approach, and our approach performance is slightly better than the concept 

weighting. In the baseline approach, queries are comprised of a few keywords, and they do not contain 

enough contexts to describe the information needs, so the search results may be diverse. The query 

reduction approach creates sub-queries by randomly selecting terms from the original query, so a lot of 

non-meaningful or noisy queries may be created. Thus, searching those sub-queries in parallel and 

combining their results may obtain numerous non-relevant results and greatly hurt the searching 

precision. Although the concept weighting approach achieves better performance than query reduction 

and baseline approaches, its performance is heavily relied on corpus statistics. Since our approach 

selects the most representative queries to substitute the original long query, and filter non-relevant 

results, our approach significantly improve the searching performance. 
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Table 5.1 Comparison of different methods by P@10   and MAP on test set 1 

Method Test Set 1 

    P@10                 MAP 

Baseline 0.235 0.209 

Query Reduction 0.218 0.184 

Concepts Weighting 0.314 0.281 

Query Substitution 0.334 0.317 

 

 

Figure 5.3 Comparison of different methods by P@10 on Test Set 2 

 

Figure 5.4 Comparison of different methods by MAP on Test Set 2 
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We still used P@10 and MAP as evaluation metrics to compare three methods on the second 

test set.  Since the second test set contains ten groups of long queries, and the latter group contains 

more multi-topic queries than the previous group, we showed all approaches’ performance on these 

ten groups of test data in Fig. 5.3 and Fig. 5.4. With the number of multi-topic queries increases, the 

trends of performance of these approaches can be observed.  

As shown in Fig. 5.3 and Fig. 5.4, with growth of the number of multi-topics queries, the 

performance of the query reduction and concepts weighting approaches drops fast while our 

approach’s performance is not heavily impacted. Among three approaches, the performance of query 

reduction drops fastest since it randomly selects terms from the original query to create new sub-

queries. With the number of topics increases in the query, more non-meaningful or noisy sub-queries 

will be created, and thus more non-relevant results will be retrieved. Since the concepts weighting 

approach identifies key concepts in single-topic queries instead of multi-topic queries, its multi-topic 

long query performance is not as good as the single-topic long query performance. Since our approach 

constructs clusters of short queries based on the topics that they refer to, and selects the most 

representative query from each cluster, our approach is less impacted by the multi-topic queries 

compared to other methods.  

5.3 Discussion 

This section proposes a query substitution-search result refinement approach that uses relevant 

short queries to replace the long query and then filter the non-relevant queries based on the context 

matching. The experiments prove that this approach performs better than concepts weighting and 

query reduction approaches. Also, for the multi-topic queries, this approach is less impacted than the 

above two approaches.  

The major contributions of this paper are: 
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1. Propose a Query Substitution – Search Result Refinement approach to improve the performance 

of long query Web searches.  

2. For the long queries containing several topics, this approach significantly improves the 

performance of Web searches. 
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Chapter 6 QUERIES-CONCEPTS BIPARTITE GRAPH FOR QUERY-SPECIFIC WEB PAGE SUMMARIZATION 

This chapter proposes a query-specific Web page summarization approach that retrieves 

relevant past queries to uncover the query-related contents of target Web pages and constructs query-

specific Web page summaries based on these retrieved queries.  

6.1 Methods 

 This section introduces steps to generate query-specific Web page summaries. For a given query, 

we locate the sentences containing query terms from the target Web page; identify context boundaries 

for the selected sentences; and extract context terms around the query terms. In the second step, we 

browse searching log data and retrieve past queries that have lexical similarities with the given query 

and its context terms as the candidate labels of the query-related topics of the target page. Since we 

may retrieve some irrelevant candidate labels for the target Web page, in the third step, we filter those 

irrelevant labels. We extract context terms around candidate labels from their subsequently clicked 

Web pages; compare them with context terms around the given query from its subsequently clicked 

Web pages; and remove labels from the candidate pool if their contexts are not similar to the given 

query’s contexts. Also, for a target Web page with multiple query-related topics, we may retrieve 

queries related to different topics. Thus, we construct label clusters based on similarities of their around 

context terms from their subsequently clicked Web pages with terms around the given query from the 

target Web page. Consequently, we may obtain label clusters to uncover query-related topics and one 

cluster may correspond to one topic. Next, we select the most representative label from one cluster 

and extract sentences containing the label’s terms from the target Web page as summaries of that 

query-related topic. If we cannot locate appropriate sentences containing the labels in the target Web 

page, the page may use different words conveying the same meanings, so we extract sentences from 

the target Web page that contain the context terms around labels as summaries.   
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Most current Web page summarizers attempt to construct query-specific summaries for all 

Web pages. Based on a search engine user behavior study [42], 62% of search users only click Web links 

on the first search result page and 90% of users only click links on the first three result pages. Thus, this 

chapter attempts to construct query-specific summaries for Web pages on the first three result pages.  

In the following sections, we introduce our approach for constructing query-specific Web page 

summaries based on relevant search queries. Section 6.1.1 presents the methods for retrieving query-

related context terms from the target Web page. Section 6.1.2 retrieves past relevant queries as the 

candidate labels for uncovering the query-related topics of the target page. Then, our approach filters 

irrelevant labels and constructs label clusters corresponding to the query-related topics. Section 6.1.3 

extracts appropriate sentences from the target Web page as the query-specific Web page summaries.   

6.1.1 Retrieving query-related context terms from the target Web page 

 Tombros and Sanderson [50] concluded that the sentences containing more query words more 

likely express important information related to the query. In order to identify the important context 

words related to a specific query, sentences containing enough query terms are located. The following 

sentence scoring formula is used to calculate the relevance scores of sentences for a given query: [10] 

1
( ) ( )

| | t T

x x t
x




                                 (6.1) 

where |x| is the number of distinct terms sentence x contains; T is the universal set of all terms 

used in the query q; and x(t) = 1 if the sentence x contains the term t and 0 otherwise.  

Based on the relevance scores of sentences, we rank the sentences from the source Web page, 

collect top m sentences, and build a set of selected sentences ST = {s1, s2, …, sm}. Once those query-

related sentences are located, the query-related context terms can be extracted from those sentences. 
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However, since the around contexts of selected sentences may also contain the query-related terms, 

context boundaries of the selected sentences are identified for better extracting query-related terms.  

Based on Varadarajan and Hristidis suggestions [19], we attempt to identify the context 

boundaries only inside the paragraphs containing the sentences. Then, we applied TextTiling [20] for 

detecting paragraphs subtopics shift and thus segmenting paragraphs. First, this approach calculates the 

sentences’ similarity scores by the following equation,  

1

1
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w w
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w w








 
                (6.2), 

where score(i) represents the similarity score between sentences si and si+1; t represents the terms from 

the paragraph; sti represents the terms from si; and wt, st is the weight assigned to term t in the sentence 

si, which is term t’s frequency in si. Since similarity scores of adjacent sentences are cues of topic 

shifting, we rank the similarity scores and select the gaps between sentences that have low scores. Then, 

for sentences selected based on equation 6.1, we identify their around gaps as the context boundaries 

for them.  

After context boundaries for query-related sentences are identified, query-related context 

terms are extracted from the sentence contexts. [50, 54] concluded that the frequency of terms co-

occurring with the query terms is one important factor to determine their significance to the query. 

Thus, we rank terms inside of query-related contexts and extract top rank terms as query-related 

context terms.  

6.1.2 Retrieving relevant queries as labels to uncover query-related contents  

In Section 6.1.1, context terms for a given query are retrieved from the target page, some of 

which may indicate query-related topics of that page while others may be normal terms and do not 

contain valuable information related to the query. The human editors may identify the query-related 
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topics from the context terms and thus construct summaries based on those topics. However, without 

external knowledge, it is difficult for machines to automatically identify correct terms as query-related 

topics.  

For a given query, its top ranking Web search results may contain popular query-related 

contents. Because of their popularity, some other relevant queries may be proposed for searching the 

similar contents also. Thus, we made the following hypothesis one.  

 H1: The query-related topics from its top ranking Web search results may be described by other 

relevant queries. 

Since we construct query-specific summaries only for Web pages on the first three result pages, 

appropriate queries that attempt to search similar contents as the given query may exist in the 

searching history. 

Because queries are created by users and for expressing their search needs, those queries may 

use a few keywords to convey the meanings of contents. Therefore, if one past query is strongly related 

to the current query and its context terms in the target Web page, the query may contain appropriate 

keywords for describing the relevant contents in the top ranking Web pages.  

In this section, we extract search queries strongly related to the given one and it’s around 

context terms from the target Web page as candidate labels to describe the contents. Based on the 

Term Frequency Weight [25], the following equation 6.3 is proposed to calculate relevance of past 

queries with the given one, 

, , ,( | , ) log( 1) (log( 1) log( 1))w c w q w t

w q

rel c q t tf tf tf


               (6.3) 

where tfw, c, and tfw, q are the frequencies of term w occurring in a past query c and the given query q, 

and tfw, t the frequencies of term w co-occurring with a context term t. σ is a control factor to 

determine the impact of tfw, t for the relevance scores. Based on the relevance of past queries and the 
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current query, we select top relevant past queries as candidate labels for describing the query-related 

topics of the target Web page. 

As discussed in the introduction part, not all labels refer to query-related contents of the page, 

so we need to identify and filter irrelevant labels from the candidate pools.  Based on the Sun et al. 

suggestions [44] mentioned in the introduction section, the hypothesis two is made to identify the exact 

meanings of queries. 

 H2: The meanings of queries may be described by the context around them in their 

subsequently clicked pages.  

Based on the hypothesis two, we may distinguish relevant and irrelevant labels by comparing 

their around context terms in their subsequently clicked pages with the context terms around the given 

query in the target Web page. Strong similarity between terms around one label and the terms around 

the given query may suggest that label is relevant to the query-related contents of the target page. Thus, 

we apply the steps used in section 6.1.1 to extract the context terms around labels from their 

subsequently clicked pages. Then, we build the following Contexts -Context Terms-Labels tripartite 

graph, where Contexts are extracted from the target page and contain the given query terms, Context 

Terms are important terms inside the contexts and around the query terms. Both of them can be 

obtained in the section 6.1.1.  

 

Figure 6.1 A Contexts-Context Terms-Labels tripartite graph 
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Figure 6.1 shows a Contexts-Context Terms-Labels tripartite graph, where squares represent 

context terms, diamonds represent contexts and rounds represent labels. A connection between one 

term and one label indicates that term occurring in the target page and the label’s subsequently clicked 

pages. A connection between one term and one context indicates the context containing the term. 

Based on the number of common context terms around labels and the given query, we propose the 

algorithm one to construct clusters of labels. After clustering, label clusters will uncover query-related 

topics of the target page and irrelevant labels will be removed. Also, the algorithm one constructs 

clusters of contexts and context terms so that the target page’s contents referred by label clusters can 

be identified.  

The cl and ct scores in the algorithm one are two metrics to evaluate label clusters’ similarities 

and context term clusters’ similarities respectively. They are defined in equations 6.4 and 6.5. 
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   (6.5). 

In equation 6.4, LC1 and LC2 denote the label cluster one and two; |LC1 ∩ LC2| denotes the 

number of common labels in both of them. TC1 denotes one term cluster in equation 6.5.  

The threshold value δ in the algorithm one is a control factor for determining the sizes of label 

clusters. A small value of δ suggests that the labels in clusters have strong relations and a large number 

of clusters may be created; a big value of δ suggests inverse results. In our experiments, we pre-set a 

reasonable value of δ for obtaining optimal results.  

Figure 6.2 shows a process of constructing clusters of labels based on the algorithm one. In 

Figure 6.2 (a), since l1 and l2 are connected by the largest number of common context terms, we merge 

l1 and l2. Then, we connect the new created label {l1, l2} with the context terms that were connected by 

l1 or l2 respectively as shown in Figure 6.2 (b). Since context terms t4 and t5 are connected by the largest 

number of common labels, we merge t4 and t5 and connect the new created term {t4, t5} with the {l1, l2} 
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and l3 in Figure 6.2 (c). In Figure 6.2 (d), since {l1, l1} and l3 are connected by the largest number of 

common context terms, we merge {l1, l1} and l3. Based on the algorithm one, we iteratively merge labels 

and context terms. Finally, we obtain two label sets {l1, l2, l3} and l4 and their corresponding term sets {t1, 

t2, t3, t4, t5, t6} and {t7, t8} as shown in Figure 6.2 (e). Then, we merge contexts so that context terms 

connected by one label are in the same context.  

Algorithm 6.1 – Constructing clusters of labels 

Input: A Contexts-Context Terms-Labels tripartite graph G  

Output: A clustered Contexts-Context Terms-Labels tripartite graph Gc  

1: If the cl scores between all pairs of labels are smaller than a threshold value δ, or all labels are in 

one cluster, go to step 4; otherwise, go to step 2.  

2: Calculate the cl scores between all possible pairs of labels. Merge two labels A and B that have the 

largest cl scores, and connect their corresponding terms to the new created label.  

3: Calculate the ct scores between all pairs of context terms. Merge two terms a and b that have the 

largest ct scores, and connect their corresponding labels and contexts to the new created term. Go to 

step 1.  

4: Repeat merge contexts until the all context terms connected by the same label are in one context.   
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Figure 6.2 A process of constructing label clusters 

After label clusters are created, we applied the TF-IDF Weight [25] to rank labels in each cluster. 

Assuming that we have clusters CL= {cl1, cl2, … , clm} and one label l from the cluster clj, we propose the 

following equation to calculate the l’s score. 
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    (6.6) 

In equation 6.6, n denotes the number of terms that l contains; numj (wi) denotes the number of 

occurrence of term wi in the cluster clj; ∑k numj (wi) the sum of number of occurrence of all terms in clj; 

|CL| the number of clusters; and |{cl: wi ϵ cl}| the number of clusters containing term wi. 

Given a query “Windows 7”, Figure 6.3 shows an example of retrieving relevant queries as the 

query-related content labels for the Web page “Windows 7-Wikipedia.” First, we identify the locations 

of the query and query-related context terms in the Web page. Also, we determine the contexts 

containing query terms based on the methods proposed in section 6.1.1. Second, based on the equation 

(3), we browse the search history and retrieve past queries related to the given one as candidates of 

query-related topic labels, such as “Windows 7 Operating System”, “Windows 7 development.” Third, 
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for the candidate labels, we collect their subsequently clicked Web pages based on the clickthrough 

data, and applied the methods proposed in section 6.1.1 to retrieve context terms around them in 

those pages. Based on the similarities of context terms for labels and the given query “Windows 7”, we 

apply the tripartite graph clustering algorithm to construct clusters of labels so that label clusters refer 

to query-related topics in the target page. Finally, we obtain four contexts, which are marked by the 

rectangles in Figure 6.3, and four clusters of labels refer to them. The labels and the terms occurring in 

both the target page and their subsequently clicked Web pages are contained by rectangular callouts. 

For example, the contents of second and the third sentences in the target page are referred by two 

labels, “Windows release date” and “Windows timelines” as shown in Figure 6.3. 

 

Figure 6.3 An example of retrieving relevant queries as labels of the query “Windows 7” related content 

in Web page “Windows 7” 
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6.1.3 Constructing summaries based on labels 

In section 6.1.2, we constructed label clusters based on the query-related topics that they refer 

to. In this section, we construct the query-specific summaries based on top rank labels in the clusters.  

Since multiple query-related topics may exist in the target page, we construct the summaries 

for one topic just based on its corresponding label clusters. Based on the algorithm one, we obtain label 

clusters and their corresponding contexts. Since the contexts containing contents that the clusters 

referring to, we attempt to locate sentences containing top rank label terms from the contexts and 

select appropriate sentences as summaries. In the following example, we identify the terms for the 

label “Windows 7 System Requirement” in the last paragraph of the target page “Windows 7 – 

Wikipedia.” 

Label Terms: Windows 7, System, Requirement 

Text: “Microsoft has publishing their minimum specifications for a system running Windows 7. 

Requirements for the 32-bit version are much the same as recommendations for premium editions of 

Vista, but the 64-bit version are considerably higher. Microsoft has released a beta version of an 

upgrade advisor that scans a computer to see if it is compatible with Windows 7. Minimum hardware 

requirements for Windows 7.”    

Then, we applied the Density-based Selection (DBS) approach [30] to rank and select the topic-

related sentences inside the contexts. In DBS approach, sentences in the contexts are assigned 

significance scores and the sentences with high significance scores are collected to construct the 

summary. Given a set of terms in labels, a sentence is scored based on the following equation.  
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              (6.7), 
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where Score(si)m is the significance score of the sentence si for the query-related topic m; K is the total 

number of words in the sentence si; wj is a term in the sentence sj and contained by top rank labels in 

cluster m; Score(wj)m is the term frequency of wj occurring in the label cluster m; distance(wj, wj+1) is the 

number of non-label terms between wj and wj+1. Based on equation 6.7, we may conclude the 

significance factors of sentences are determined by the significance scores of label terms in sentences 

and the number of non-label terms between them. 

Based on our initial experiments, if the number of label terms occurring in the target Web page 

divided by the total number of label terms is smaller than 0.3, we consider the page does not contain 

the labels since the authors of that page may not use the same terms to present the Web page. For 

example, in Figure 6.3, we retrieve the query “Windows 7 compared to XP and vista” to referring to the 

contents in the second paragraph, but we cannot locate the label in the second paragraph of the source 

Web page. One possible solution is retrieving sentences containing label terms from labels’ 

subsequently Web pages for summaries. However, using sentences from other Web pages to 

summarize the target page may deviate from its original meanings. Thus, we consider context terms co-

occurring in the target page and in labels’ pages as significant terms. Then, we apply the DBS approach 

to select appropriate sentences containing the significant terms as summaries. In the following example, 

we identify the significant terms for the label “Windows 7 Compared to XP and Vista” in the second 

paragraph of “Windows 7 – Wikipedia.” 

Significant Terms: Windows 7, Windows Vista, Multi-touch Support, Windows Shell, Home 

Networking System, Performance  

Text: “Presentations given by the company in 2008 focused on multi-touch support, a redesigned 

Windows Shell with a new taskbar, a home networking system called HomeGroup, and performance 

improvements.” 
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6.2 Experiments 

The data collections and experiments are presented in this section. First, we constructed two 

test data sets based on searching logs of a commercial search engine and CNN news. Then, we 

implemented our approach and compared ours performance with other two well-known approaches. 

6.2.1 Data collections 

We constructed the first test data set based on the log data of a commercial search engine used 

in chapter 4. For this collection, first, we filtered queries not satisfying the following three requirements: 

1. The queries were written in English and contained alphabet characters;  

2. The queries whose lengths were less than eight words;  

3. The queries that resulted in at least two unique clicks per session.  

Since this paper only studies the English-based query-specific Web page summarization, the 

research data should satisfy the first criterion. Also, the research data should satisfy the second 

criterion because it is difficult for search engines to identify key concepts of long queries and speculate 

users’ search needs. Moreover, since not all queries in the log data are effective for searching desired 

Web pages, enough clicked search results can verify the effectiveness of search queries. Then, we 

selected two hundred popular queries whose numbers of occurrence are larger than 5 and satisfying 

above criterions as our test data. Based on the ODP categories of these queries’ subsequently clicked 

Web pages and human judgements, we roughly divided the queries into following categories: News 45 

queries, Society 20 queries, Computer 74 queries, Travel 32 queries, and Sports 29 queries.  

We submitted the selected queries to GOOGLE. For each submitted query, we collected three 

search result pages based on their rankings, one from top ten, one from eleven to twenty, and one from 

twenty-one to thirty. Then, for the selected six hundred search result pages, eighteen human evaluators 

were employed to construct query-specific summaries. Those evaluators were divided into six groups, 

and each group was responsible for summarize one hundred search result pages. First, each evaluator 
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was requested to identify query-related contents of the pages. Second, based on the relations of 

identified contents, evaluators classified contents and thus recognized the query-related topics of the 

pages. For obtain consistency over three evaluators in one group, the topics concluded by two or more 

evaluators would be considered as benchmarks for evaluating experiment results. Third, although no 

constraint on the number of selected sentences was set up, evaluators were asked to only extract key 

sentences that they considered to be necessary for representing query-related topics. Also, the 

sentences selected by two or more evaluators for one query-related topic would be considered as 

benchmarks of summaries. Thus, we constructed the test data set DAT1, which contained two hundred 

queries, six hundred Web pages and summaries created by evaluators. Table 6.1 shows the number of 

query-related topics and the average number of sentences for one topic identified by evaluators.  

Table 6.1 The number of query-related topics and the average number of sentences for one topic 

 Number of Topics Average Number of  Sentences 

Group 1 152 1.7 

Group 2 137 2.4 

Group 3 149 2.2 

Group 4 186 2.9 

Group 5 112 1.4 

Group 6 193 3.1 

Also, we constructed a larger data set DAT2 based on the news from CNN.com to evaluate our 

query-specific summarization approach. Since CNN news have story highlights to summarize the whole 

news, we may extract highlights related to users’ queries as query-specific summaries. First, we 

extracted queries that lead to click CNN.com news based on the search engine log data. Second, we 

applied the Term Frequency Weight [25] to calculate the similarities of selected queries and highlights of 
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CNN news. Then, based on the similarity scores, we selected top ranking 1000 queries and their 

corresponding 1000 CNN news as our test data DAT2. The highlights that are highly relevant to queries 

are considered as query-specific summaries for the news.  

6.2.2 Comparative approaches and evaluation metrics 

Comparative Approaches. We implemented two effective and widely used query-specific 

summarization approaches for evaluating the performance of our label-clustering based summarization 

approach. The first approach, Query Relevance based summarization (QR), ranks sentences based on 

their relevance to the query and constructs summaries by selecting top rank sentences. The second 

approach, Graph-based summarization (GS) [51], constructs document-weight-graph based on sentence 

semantic relations, and then applies graph algorithms to find a minimal spanning tree T in the 

document graph so that every query term exists in the tree T and no node can be removed from the 

tree.  

Evaluation Metrics for Query-Related Topics Identification. The purpose of these metrics is 

verifying that our approach may retrieve relevant search queries as labels of query-related topics and 

construct label clusters for identifying the topics in the target page. Based on the algorithm one, we 

collected contexts created by the label clustering algorithm and compared them with the contexts for 

query-related topics that evaluators found. Strong similarities between them may indicate our approach 

correctly identify query-related topics in the target page.  

For contexts CI = {ci1, ci2,…,cim} created by the label clustering algorithm and contexts CE = {ce1, 

ce2, …, cen} identified by evaluators, we consider CE as benchmarks of contexts and applied the F-

measure [1] to verify the correctness of CI, which is given by the equation (6.8), 
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where Precision(cii, cej) is the number of common sentence in cluster cii and cej divided by the number 

of sentences in cluster cii, and Recall(cii, cej) is number of common sentence in cluster cii and cej divided 

by the number of sentences in cej. The correctness of query-related topics identification is determined 

by the following equation,  

1
( ) max{ ( , )}i

i

C CI F ci CE
n

              (6.9), 

where max{F(cii,CE)} is the max F-measure value of cii with one context in CE.  

Web Page Summarization Evaluation Metrics. We applied precision, Recall, and F-measure to 

evaluate summarization performance. The summaries created by evaluators would be considered as 

reference used for evaluating our summaries’ quality. Based on the number of common sentences 

occurring in our summaries and the reference summaries, the Precisions, Recalls and F-measures of the 

test set DAT1 can be calculated. However, highlights from news were created by editors but not 

extracted from the target Web pages, so we cannot use precision, Recall, and F-measure to evaluate the 

summaries’ quality on DAT2.  

We used ROUGE, a well known tool adopt by DUC [32], for evaluating summaries’ quality on 

both DAT1 and DAT2. It measures summaries’ quality by calculating the similarities between the 

candidate summaries and the reference summaries. Rouge-N is one n-gram recall measure defined in 

the following equation, 
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              (6.10), 

where n represents n-gram length, Countmatch(gramn) is the number of n-grams occurring in both 

candidate and reference summaries, and Count(gramn) is the number of n-grams in candidate 

summaries.  

6.2.3 Label Extraction Evaluation 
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In the dataset DAT1, we selected 200 queries from search logs and obtained 600 their search 

result pages. Then, we divided search result pages into three groups, each of which contained 200 

results. The first group contained search results whose ranks were in top ten, the second from eleven to 

twenty and the third from twenty-one to thirty. Next, we retrieved query-related context terms from 

the selected search results based on the methods we proposed in the section 6.1.1. Based on the 

equation (6.3), we calculated relevance of past queries with the given queries and their context terms, 

and extracted top 10% relevant queries to refer to query-related contents in the search result pages. 

The following Figure 6.4 shows the number of retrieved relevant queries for three groups of search 

results.  

 

Figure 6.4 The number of relevant queries for three groups of search results 

As shown in Figure 6.4, we retrieved more relevant queries for search result pages whose ranks 

were in top ten than pages whose ranks were from eleven to twenty and from twenty-one to thirty. 

This result is consistent with our hypothesis one “The query-related topics from its top ranking Web 

search results may be described by other relevant queries.” Also, it indicates that more relevant queries 

can be collected for pages with higher ranks. Since this paper attempts to construct query-specific 

summaries for search result pages whose ranks in top 30, our approach may retrieve enough relevant 

queries to uncover query-related topics in the result pages. 
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6.2.4 Evaluation for query-related topics identification 

For the dataset DAT1, we asked evaluators to determine query-related contents of selected 

result pages and construct clusters of them so that one content cluster containing one query-related 

topic. Based on the query-related topics that target pages contained, we divided pages into ten groups 

and each of them contained sixty pages. The first group owned the least query-related topics; the 

second one owned second least topics; and the last one owned the most topics.  

Also, we applied the methods proposed in section 6.1.1 and 6.1.2 to locate query-related 

contents and retrieve top 10% relevant queries to refer to them. Then, we applied the algorithm one to 

construct label clusters and merge the corresponding contents in the target pages. Since our test sets 

contained two hundred queries and six hundred result pages, and the average number of query-related 

topics for each page was 2.4, we selected a reasonable value of parameter δ for constructing label 

clusters in Algorithm 1. Based on our initial experiment, we set δ=0.3 so that we may construct almost 

same number of label clusters as the number of query-related topics in DAT1.  

For evaluating the topics identification performance of our algorithm, we implemented a term-

similarity based query-related contents clustering approach. First, we still applied the method proposed 

in section 6.1.1 to identify query-related contents. Second, we calculated query-related contents’ 

similarities based on their terms’ similarities and attempted to merge the relevant contents.  

We implemented our algorithm one and the above term-similarity based query-related 

contents clustering approach on DAT1. The following Figure 5 shows their performances of query-

related topics identification.  

As shown in Figure 6.5, the performances of query-related topics identification by the label 

clustering algorithm are better than by the term-similarity based clustering algorithm on all ten groups 

of search result pages. 
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Figure 6.5  F-measure values of query-related topics identification for two clustering approaches 

One possible reason is that the term-similarity based clustering algorithm attempts to merge 

contents based on their terms’ similarities. Thus, this approach cannot merge two contents if they do 

not share a lot of common terms although they may convey relevant meanings. However, the label 

clustering algorithm attempts to retrieve relevant Web pages (labels’ subsequently clicked pages) for 

the target page and merge its contents if its context terms can co-occur in the these relevant Web 

pages. In fact, the label clustering algorithm extends contexts of the target page by importing context 

terms from relevant Web pages. Thus, although two contents may not share a lot of common terms in 

the target page, after contexts extension, they may be relevant since their extended contexts may 

contain several common terms.  

Figure 6.5 shows that both of the clustering approaches perform worse on the groups 

containing more query-related topics than the groups containing fewer topics. Also, the performance of 

label clustering algorithm drops slightly faster than the term-based clustering algorithm. One reason is 

that the risk of merging two irrelevant contents by the label clustering algorithm is higher than the 

term-based clustering algorithm since the former approach extends contexts of the target page.  

6.2.5 Web Page Summarization Evaluation 

Figure 6.6 shows the summaries’ qualities for label clustering summarization approach (IS) with 

other two comparative approaches, QR and GS, on test sets DAT1 and DAT2. In Figure 6.6, the tag IS 
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(Label found) indicates that retrieved labels can be located in the target Web pages and we constructed 

summaries by extracting sentences containing label terms. The tag IS (Label not found) indicates labels 

cannot be located in the target pages, so we extracted sentences containing common context terms 

occurring in both the target page and labels’ contexts as summaries.  

Compared to the GS approach, IS (Label found) gains an improvement of 0.08 and 0.03 

measured by precision and F-measure respectively on DAT1. Since the IS attempts to construct 

summaries based on labels composed by human, it may identify keywords or key sentences of query-

related contents correctly and extract important sentences as summaries. However, since it attempts to 

extract only key sentences as summaries while ignore some sentences that evaluators may consider 

valuable for complementing summaries, the recall and ROUGE-1 values of IS (Label found) are slightly 

smaller than the GS. Although IS (Label not found) does not gain improvement as well as IS (Label found) 

in precision and F-measure, it performs slightly better than the latter approach in Recall and ROUGE-1. 

Since labels cannot found in Web pages, retrieving sentences containing important context terms may 

construct irrelevant summaries for queries, so precision and F-measure for IS (Label not found) may be 

lower than IS (Label found). However, retrieving sentences containing context terms may also build 

lengthy summaries and thus more query-related contents may be included, so recall and ROUGE-1 

values may be higher. Compared to summaries’ quality on DAT1, these approaches perform worse on 

DAT2. As shown in the Figure 6.6, the ROUGE-1 value for QR drops 0.21 on DAT2, GS 0.24, IS (Label 

found) 0.18, and IS (Label not found) 0.26. One reason is that highlights from news are generic 

summaries for the whole document but not for specific queries. The other reason is that editors may 

use their words instead of sentences from the news to create summaries. However, the ROUGE-1 

metric cannot judge whether the extractive summaries and news’ highlights convey the same meanings 

but just simply compare their words. Compared to QR and GS approaches, the IS (Label found) approach 

obtain a relatively better performance on DAT2. One possible reason is that IS (Label found) may 
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identify key query-related topics of the news and these topics probably occur in the editors’ concise 

highlights.   

 

 

Figure 6.6 Overall summarization performances on DAT1 and DAT2 

 
Figure 6.7 ROUGE-1 values for IS and IS+GS summarization on DAT1 and DAT2 

In order to evaluate the impacts of the number of the labels for the quality of IS based 

summaries, we divided the DAT1 into ten groups and each group contained 20 queries and 60 target 

Web pages. The first group contained Web pages that had least labels to uncover their query-related 

contents; the second one contained pages that had second least labels; and the last one contained 

pages that had most labels. Figure 6.7 shows that the IS approach performs worst for the group of 

pages with least labels on both DAT1 and DAT2. With the number of labels increasing, IS performs 

slightly better. Compared to the first group, IS achieves 0.05 and 0.053 improvements for the last group 
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on DAT1 and DAT2 respectively. These results indicate that more labels referring to query-related 

contents of target pages may result in high quality summaries by the IS approach.  

For studying the potential of improving the IS approach’s performance, we combined the IS and 

GS approaches on the ten groups of Web pages and compared results with IS. Since ROUGE-1 is recall 

based evaluation metric, combining results from IS and GS may improve ROUGE-1 values, so results of 

IS+GS are better than IS on all ten groups. However, with more labels found for Web pages, the 

difference between IS and IS+GS become smaller, which may indicate IS perform well if enough labels 

found.  

6.3 Discussion 

For a given query, constructing query-specific summaries for its searched result pages is an 

important task for most Web search engines. This paper incorporates relevant queries from search 

history to refer to the current query-related contents in the result pages and constructs the summaries 

based on the relevant queries. Our experiments show that this approach can identify query-related 

topics more precisely than the traditional term-similarity based summarization approach. Since we 

proposes this approach for constructing query-specific summaries on the top thirty search results, the 

experiment results reveal that we may retrieve enough queries for referring to Web pages and 

guarantee the summaries’ quality. Even if we cannot retrieve enough relevant queries, as our 

experiments show, the combination of our approach with another traditional query-specific 

summarization approach will construct good quality summaries.  

 The contributions of this paper are listed as following: 

1. This paper selects relevant queries from search history as labels to identify query-related topics 

of the target Web page. 
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2. This paper evaluates relevance of retrieved queries with the given query in the target Web page 

by comparing context terms around the retrieved queries from their subsequently clicked Web 

pages with terms around the given query from the target Web page. 
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Chapter 7 CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

Based on users’ clickthrough data, this thesis proposes Query-Concept bipartite graphs to 

investigate queries’ relations. Compared to lexical matching approaches, this new approach explores 

queries’ exact meanings through their subsequently clicked Web pages and then determines their 

relevance based on their meanings. Thus, this approach can evaluate queries’ relations correctly even 

they do not contain one common word. As discussed in section 3.1, the probability of two queries 

having same concepts from their subsequently clicked Web pages is larger than that of them resulting in 

the same Web pages. Therefore, Query-Concept bipartite graphs can find more relevant queries for a 

given query than Query-URL bipartite graphs.  

Query-Concept bipartite graphs are used in three applications of Web search engine 

improvements: personalized query suggestion, long query Web searches, and query-specific Web page 

summarization. As discussed in section 4.3, the approach using Query-Concept bipartite graphs obtains 

more meaningful suggestions for incomplete queries than the Query-URL based approach. As shown in 

section 5.2, compared with the concept weighting approach for long query reformulation, the Query-

Concept based long query substitution approach retrieves more accurate short terms to represent the 

long query’s meanings. This thesis proposes a query-specific Web page summarization approach using 

relevant short queries to represent the query-related contents in target Web page. Compared to 

machine learning based summarization approach, the new approach constructs more concise and 

precise query-specific Web page summaries.  

7.2 Future Works 

 We plan to integrate Personalized Query Suggestion model, Long Query Web Search model, and 

Query-Specific Web Page Summarization model into current Web search engines. The integrated Web 

search engine – Smart Search will contain the following modules: Smart Core, Personalized Query 
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Suggestion, Long Query Reduction, Query-Specific Web Page Summarization, Clickthrough Database, 

and Meta Web Search Engine. Figure 7.1 shows a sequence diagram to describe the modules and their 

interactions.  

 Different from engineers of commercial Web search engines, researchers from academic 

institutions generally do not own enough users’ search data to evaluate their methods. Implementing 

such a search engine may help us catch users’ clickthrough data and evaluate various approaches.  

Smart Cor

Top Package::User

Meta Search EngineClickthrough Database Personalized Query Suggestor Long Query Reductor
Query-Specific Web Page

Summarizer

Send Query

Store Query

Confirm

Send Back Search Results

Return Results

Click Result()

Store Clicked URL

Confirm

Send Request

Send Back Requested Page

Submit Query

Request Clickthrough Data

Send Back Data

Send Query and Clickthrough Data

Send Back Query Suggestions

Send Long Query and Clickthrough Data

Send Back Short Queries

{OR}

Return Relevant Queries

Select Query

Submit Query()

Send Query

Send Back Search Results

Request Clickthrough Data

Confirm

Send Search Results and Clickthrough Data

Send Back Page

Send Back Query-Specific Web Page Summaries

Return Results

 

Figure 7.1 The Sequence Diagram of the Smart Search Engine 
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