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COMPUTATIONAL INTELLIGENCE BASED CLASSIFIER FUSION MODELS 

FOR BIOMEDICAL CLASSIFICATION APPLICATIONS 

by 
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ABSTRACT 
 

The generalization abilities of machine learning algorithms often depend on the 

algorithms’ initialization, parameter settings, training sets, or feature selections. For 

instance, SVM classifier performance largely relies on whether the selected kernel 

functions are suitable for real application data. To enhance the performance of individual 

classifiers, this dissertation proposes classifier fusion models using computational 

intelligence knowledge to combine different classifiers. The first fusion model called 

T1FFSVM combines multiple SVM classifiers through constructing a fuzzy logic system. 

T1FFSVM can be improved by tuning the fuzzy membership functions of linguistic 

variables using genetic algorithms. The improved model is called GFFSVM. To better 

handle uncertainties existing in fuzzy MFs and in classification data, T1FFSVM can also 

be improved by applying type-2 fuzzy logic to construct a type-2 fuzzy classifier fusion 

model (T2FFSVM). T1FFSVM, GFFSVM, and T2FFSVM use accuracy as a classifier 

performance measure. AUC (the area under an ROC curve) is proved to be a better 

classifier performance metric. As a comparison study, AUC-based classifier fusion 

models are also proposed in the dissertation. The experiments on biomedical datasets 

demonstrate promising performance of the proposed classifier fusion models comparing 



 

with the individual composing classifiers. The proposed classifier fusion models also 

demonstrate better performance than many existing classifier fusion methods.  

The dissertation also studies one interesting phenomena in biology domain using 

machine learning and classifier fusion methods. That is, how protein structures and 

sequences are related each other. The experiments show that protein segments with 

similar structures also share similar sequences, which add new insights into the existing 

knowledge on the relation between protein sequences and structures: similar sequences 

share high structure similarity, but similar structures may not share high sequence 

similarity. 
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Chapter 1 Introduction 

Over the past decade, we have witnessed the dramatic progresses in biotechnologies, 

including genome sequencing technology and DNA chip technology. As a result, many 

complex biological and medical datasets have increased in volume exponentially, e.g., 

genome sequences of many species, microarray gene expression data of different cells, 

protein sequences and structures, single nucleotide polymorphisms (SNPs) in the human 

genome, and etc. Accordingly, the bulk of research efforts have been shifted to 

biomedical data analysis, discovery of patterns, functions, and regularities of genes and 

proteins, and providing assistance and supports for disease diagnosis and biomedical and 

evolutionary research.  

Machine learning and data mining methods have largely been used in biomedical data 

analysis recently. The basis of machine learning is to program computers using example 

data or past experience to detect patterns and regularities. It includes various applications 

such as association, supervised learning, regression, and unsupervised learning. 

Classification is supervised learning which is capable of predicting class labels of unseen 

data examples based on existing data. The basic idea of classification can be illustrated in 

Figure 1.1. Given a set of empirical training data with class labels known: {(xi, yi)} 

(i=1…m), where xi is a data example represented by its feature vector in an input space 

ℜ, and yi is the corresponding class label indicating which class (cancer or normal tissue, 

for instance) xi belongs to. A classification algorithm is applied onto the training data to 

learn patterns. After the training process is finished, the system establishes a mapping 

relation (called classifier or model) between the input vector and the output label. When a 

1

 



 

set of unseen testing data is plugged into the classifier, the classifier will be able to 

predict whether the testing data examples belong to cancer class or normal class.  

 

 

Figure 1.1  The basic idea of classification 

 

In this dissertation, binary classification problems are focused. Multi-class 

classification problems can be reduced to binary classification problems through several 

strategies, among which one-against-the-rest strategy (Weston and Watkins, 1998) and 

pairwise strategy (Hastie and Tibshirani, 1996) are often used. The one-against-the rest 

schema breaks the original problem into k binary classification problems, where k is the 

number of classes. While the pairwise strategy creates )1(2
1 −kk  classifiers and the final 

decision is determined by a voting scheme such as majority voting. 

Classification algorithms have been used widely and successfully in biomedical data 

analysis. Many experimental results have been reported in the literature by applying 

classification methods to extract biological functions of genes and proteins, explore the 

relations between genes or protein patterns and diseases, and help disease diagnosis. For 

instance, Yao has proposed two neural network based approaches for breast cancer 

diagnosis (Yao and Liu, 1999); Roth has applied a Bayesian approach to help diagnose 

Leukemia and Lymphoma (Roth and Lange, 2004); Vlahou has classified ovarian cancer 

data using decision tree (Vlahou et al., 2003); Ramaswamy has classified datasets 

Classifier  Learning 
(M) Algorithm 

Training Data 
Testing Data

Normal Cancer 
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containing multiple tumors using support vector machines (SVMs) with the removal of 

irrelevant features (Ramaswamy et al., 2001). 

1.1 Problem: How to Select a Kernel Function in SVM Classification? 

When we solve a classification problem using SVM, we all know that we need to 

select one kernel function. This kernel function defines the feature space where data 

examples are classified and the separating hyperplane is determined. Kernel functions can 

directly affect the generalization ability of SVM classification. How to select an 

appropriate kernel function which fits a particular dataset best is one of the essential 

issues in SVM classification. One obvious method is brute-force method. That is, 

exhaustively trying many different kernels and selecting the one which works best. This 

approach could be extremely time-consuming if the size or the dimension of training data 

is huge. Are there any other ways through which don’t need to do the complete search but 

can still receive good classification performance? One possible less time-consuming 

method is to choose several SVM classifiers with different kernels to classify data 

examples, and then combine the classification results from the different classifiers in a 

certain way and generate a composite classifier. The resulting classifier is probably 

expected to have a better performance than each of its composing individual classifiers if 

the combination methods are effective. In both theory and practice, this combining 

method seems to outperform the brute force method in terms of both time complexity and 

classification performance. Indeed, the advantage of combination and complementary 

provides an effective way to enhance classifier performance (Kittler et al., 1998).  
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1.2 Drawbacks of Single Classifiers 

When solving a classification problem, we would like to choose the best classifier. 

However, the determination of the best classifier is a time-consuming process. This is 

because a classification algorithm may form different decision functions based on 

different initialization, different parameter settings, different training sets, or different 

feature selections. For instance, different initialization may result in different neural 

network classifiers. Different parameter choices can also result in different classifiers, 

such as kernel functions mentioned in Section 1.1 and regularization parameter in the 

SVM algorithm, and the number of neighbors in the k-NN algorithm. To obtain the best 

classifier, the brute-force method as mentioned earlier usually has to be applied to try all 

the possible initializations, parameters, training sets, and feature selections, which is 

obviously computationally expensive. 

Even if the best classifier is identified, it might not necessarily be an “ideal” choice. 

A classification algorithm is designed internally based on some classifier performance 

measure criteria, e.g., training accuracy or complexity of the classifier, and the “best” 

classifier is selected according to the criteria. Maybe more than one classifier has same 

training accuracy or meets the criteria. However, the learning algorithm simply selects 

one classifier and discards others. The discarded classifiers may correctly classify some 

data examples which are misclassified by the selected best classifier. Potentially valuable 

information might be lost by discarding the classification results from less-successful 

classifiers. 
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1.3 Idea of Combining Multiple Classifiers 

We know different classifiers have different knowledge regarding to a problem and 

may provide complementary information about data examples to be classified. Even poor 

classifiers may classify some data examples correctly which might be misclassified by 

some good classifiers. Combining different classifiers in an effective way can achieve 

better classification results than that from individual classifiers including the best 

classifier. The reason is that data examples misclassified by different classifiers would 

not necessarily overlap, which leaves the room for the classifier complementariness 

(Kittler et al., 1998).  Figure 1.2 illustrates the idea of combining multiple classifiers. 

Data examples are classified by multiple classifier hypotheses, h1, h2, …, hL first. The 

classification results are then combined altogether in a fusion model. How to construct a 

good classifier fusion model is one of the most active research areas in supervised leaning 

research. In this dissertation, I will mainly discover ensemble models particularly for 

combining SVM classifiers by considering their special characteristics. 

 

Sample X 

h3h1 h2 hL…

Fusion 

Result  

Figure 1.2  Combining multiple classifiers 
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1.4 Classifier Performance Evaluation  

Typically, accuracy (or error, which is 1 minus the accuracy) is the standard criterion 

to evaluate a classifier performance (Qin, 2005; Ling et al., 2003). In many scenarios, 

however, accuracy is not enough. For some applications, researchers are interested in 

more than mere positive / negative classification results. Instead, ranking of examples is 

more likely to be cared for (Ling et al., 2003; Huang and Ling, 2005). In addition, using 

accuracy assumes the misclassification costs are equal for all data examples and it would 

not be necessarily realistic for some real-world applications such as medical diagnosis 

(Qin, 2005). Accuracy is also not much meaningful when class distribution is skewed or 

unbalanced since a classifier can simply classify all data examples to the dominant class 

and still receive a high accuracy (Qin, 2005; Fawcett, 2003). Recently, Receiver 

Operating Characteristics (ROC) analysis is increasingly recognized in the machine 

learning and data mining research community and the area under the curve (AUC) of an 

ROC has been shown to be statistically consistent and more discriminating than accuracy 

empirically and theoretically (Qin, 2005; Ling et al., 2003; Huang and Ling, 2005). 

1.5 Organizations and Contributions 

The rapid development of biotechnologies such as genome sequencing technology 

and microarray DNA chip technology generates large scale biomedical data. Chapter 2 

briefly reviews the biological and bioinformatics backgrounds including the concepts of 

genes, proteins, and microarray technology. The chapter also addresses the current 

situations by applying computational intelligence algorithms and methods to solve 

biological problems. SVMs are a powerful and effective supervised learning technique 

and have been successfully applied in biological and medical domain to discover patterns 
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and regularities. Chapter 3 will review the basis of SVM theory. Chapter 3 also reviews 

the existing classifier combination methods which are effective approaches to enhance 

the performance of weak classifiers. Chapter 4 addresses fuzzy logic concept and fuzzy 

logic system. Then a fuzzy classifier fusion model (T1FFSVM) to combine SVM 

classifiers is proposed in the chapter and experiments on biomedical data have been 

performed and analyzed. The fuzzy MFs in the fuzzy classifier fusion model in Chapter 4 

are defined intuitively based on the classification experience. The shapes or the positions 

of MFs may not be optimal. Genetic Algorithms (GA) provide robust search and learning 

capabilities in complex space and are ideal for tuning the optimal MFs and discovering 

optimal FLS accordingly. In Chapter 5, GAs and genetic fuzzy systems (GFS) are first 

introduced. Then the fuzzy classifier fusion model described in Chapter 4 is optimized 

using GAs. The genetic fuzzy classifier model (GFFSVM) is tested on biomedical data 

and compared with the fuzzy classifier model constructed in Chapter 4. Classification 

accuracy is used to estimate the classifier performance in classifier fusion models defined 

in Chapter 4 and Chapter 5. However, accuracy is not an ideal performance measure in 

many cases. Instead, AUC is proven to be a better measure than accuracy or error. 

Chapter 6 introduces the concepts of confusion matrix, ROC, and AUC of a classifier. 

And then an AUC-based classifier fusion system is designed. Type-2 fuzzy sets and fuzzy 

logic system have the capability of handling uncertain and imprecision of a system better 

than traditional type-1 fuzzy logic. Chapter 7 introduces the basic knowledge of type-2 

fuzzy sets and fuzzy systems and then proposes a type-2 based fuzzy classifier fusion 

model (T2FFSVM). The comparison study between type-1 based and type-2 based fuzzy 

classifier fusion systems is made. Chapter 7 also compares the proposed fuzzy classifier 

7

 



 

fusion models with the existing classifier combination methods addressed in Chapter 3. 

Chapter 8 studies one interesting biological problem using classifier fusion methods: that 

is, how protein structures and sequences are related? Can one predict protein sequence by 

knowing its structure? Chapter 9 will draw the conclusions and also present the future 

direction of the work. 

Most of the dissertation work has been published in the refereed journals and 

conferences. Specifically, the basic idea of T1FFSVM classifier fusion model by 

constructing TSK fuzzy model (Chen et al., 2005a) was presented at IEEE International 

Conference on Granular Computing (IEEE-GrC) and its application in bioinformatics has 

been published in the Journal of Theoretical and Computational Nanoscience (Chen et 

al., 2005b).  Genetic fuzzy classifier fusion model (Chen et al., 2005c) was proposed at 

IEEE Congress on Evolutionary Computation (IEEE-CEC) and also published in the 

Journal of Intelligent & Fuzzy Systems (Chen et al., 2007a). Type-2 based classifier 

fusion model (Chen et al., 2006) was presented at IEEE International Conference on 

Fuzzy Systems (FUZZ-IEEE) and has been published in Applied Soft Computing Journal 

(Chen et al., 2007b). AUC-based classifier fusion model and its applications in 

bioinformatics (Chen et al., 2007c) were presented at International Symposium on 

Bioinformatics Research and Applications (ISBRA). 
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Chapter 2 Biological Background and Computational Intelligence in 

Bioinformatics 

The rapid growth of biotechnologies, especially genome sequencing technology and 

microarray DNA chip technology, generates large scale biomedical data. This chapter 

briefly reviews the concepts of genes, proteins, and microarray technology. The chapter 

also addresses the current research situations in which computational intelligence 

methods have been applied to solve biological problems. 

2.1 DNA and Proteins 

DNA is a nucleic acid molecule and arranged in chromosomes inside a cell. It 

contains the genetic information used in the development and functioning of living 

organisms (Liu, 2002). Human has 23 pairs of chromosomes. “Genome” refers to the 

collection of all the chromosomes in a cell. Not all segments of the genome carry the 

genetic instructions. “Genes” are the segments which do hold the genetic instructions. 

Human is identified to have around 30,000 genes, which only account for about 3% of 

the human genome. Genes encode the information necessary for making proteins. 

Proteins are action molecules of a cell and responsible for most of the work in an 

organism. Gene expression is a process by which the gene’s DNA sequence is transcribed 

to produce a functional protein.  

To make a protein molecule, a gene is first transcribed to an RNA via the process of 

transcription, and then to a protein from an RNA molecule via the translation process as 

shown in Figure 2.1 (National Health Museum). Transcription is the dominant regulation 

in the protein synthesis though there are several levels of gene regulation. Messenger 
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RNA (mRNA) plays an essential role during the transcription. mRNA is an easily 

degradable molecule and carries coding information to the sites of protein synthesis 

called ribosome. The amount of certain mRNA copies in a cell roughly reflects the 

expression level of the corresponding gene (Liu, 2002). 

 

 

Figure 2.1 Protein Synthesis 

 

2.2 DNA Microarray Technology 

DNA microarray is a powerful technology that allows simultaneous measurement of 

the levels of tens of thousands of mRNA expression. What does a microarray look like? 

A DNA chip is a collection of gene-specific sequence spots which are deposited or 

synthesized on a glass slide or a silicon chip in a predetermined spatial order. Each spot 

has a unique DNA sequence, and thus is a probe for the mRNA encoded by that gene. It 
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will hybridize only to its complementary DNA strand. To compare the expression levels 

of two types of cells such as cancer cell versus normal cell, the DNA materials from the 

two cells are first extracted. Those from one cell type, say, cancer cell, are labeled by 

fluorescence cy5 (red), and the other cell type by cy3 (green). The microarray is then 

exposed to the mixture of the two DNA samples for hybridization. When mRNA for a 

gene is more abundant in the cancer cell than in the normal cell, for example, the array 

spot corresponding to that gene will show a red color. Since the fluorescence intensities 

are correlated to the abundance of the corresponding mRNA transcript in the sample, 

DNA microarray can be used to measure the expression levels of genes in different cells. 

When more than two types of cells are in consideration, the microarray data often takes 

the form of a matrix, where each column corresponds to a cell type (e.g., lymphoma cell, 

leukemia cell, normal cell, etc.) or a treatment (Liu, 2002), and each row corresponds to a 

gene as shown in Figure 2.2. Thus, through the use of DNA microarrays, one can monitor 

simultaneously the expression levels of thousands of genes in different types of cells. 

DNA microarray can be used for gene discovery, disease diagnosis, drug discovery, and 

toxicological research. 
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Figure 2.2  Microarray chip and its conceptual view 

 

2.3 Computational Intelligence in Bioinformatics 

Computational intelligence methods refer to fuzzy logic, neural networks, and 

evolutionary algorithms. These methods are able to handle nonlinear separable data, deal 

with uncertainties and imprecision, search solutions in large spaces, and provide 

probabilistic or continuous rather than discrete classification results (Rajapakse et al., 

2007). The advantage of computational intelligence approaches makes them particularly 

suitable for solving complex biological problems. Recently, the application of 

computational intelligence methods in bioinformatics has increased. One special section 

in IEEE/ACM Transactions on Computational Biology and Bioinformatics collects 

papers that apply computational intelligence knowledge in biology domain (Rajapakse et 

al., 2007). 

Fuzzy logic and its theory have been applied on gene expression data to discover the 

relationship between genes and certain cancers to assist the understanding of the 

pathobiology of the diseases (Sjahputera et al., 2007). Multiclass classification and 
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imbalanced class distribution often happen in biological data. Multilayer perception 

neural networks together with hierarchical decomposition and up-sampling methods have 

been applied to classify small imbalanced bio-image database (Lerner et al., 2007). 

Analyzing bio-molecular interaction networks such as metabolic, protein-protein, and 

protein-DNA networks provides an important way to identify gene and protein functions. 

Li (Li et al., 2007) has constructed a dynamical system using evolutionary algorithms and 

artificial neural networks to analyze the molecular networks.   
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Chapter 3 Related Theories 

3.1 Support Vector Machines (SVMs) 

SVMs have been proved to be a powerful and effective supervised learning technique 

since they were introduced by Vapnik (Vapnik, 1995). SVMs have been largely and 

successfully applied in biological and medical domain to analyze microarray gene 

expression data, identify protein domains or homologies, and detect translation initiation 

sites.  

SVMs employ Structural Risk Minimization (SRM) principle to achieve better 

generalization ability than conventional machine learning algorithms, such as neural 

networks, decision trees, and etc, which apply Empirical Risk Minimization (ERM) 

principle instead.  

The goal of SVMs is to find an optimal decision hyperplane to separate classification 

data into two classes, say, cancer class and normal class. There are many possible 

separating hyperplane to separate two classes. SVMs select the one which maximizes the 

distance between the two classes as shown in Figure 3.1. The distance between the two 

classes is called margin, which is constituted of a small set of training examples, called 

support vectors, sitting just along the margin. Support vectors are the most informative 

and critical training data examples for the classification problem. Removal of support 

vectors could result in a change of the hyperplane. The data examples reside far away 

from the hyperplane have no influence on the decision of the separating hyperplane. 
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Figure 3.1 Support Vector Machines (SVMs) 

 

Unfortunately, for most real-world applications, there don’t exist hyperplanes that 

successfully and linearly separate two classes in the data’s space. To solve the linear 

inseparability problem, one solution is to map the data from their original space into a 

higher-dimensional space and determine a separating hyperplane there. This higher 

dimensional space is called feature space, as opposed to input space resided by the 

training data examples. For instance, the data examples in the XOR problem shown in 

Figure 3.2 cannot be separated in the original two-dimensional input space, no matter 

how hard we try. But when we transform the data examples into a three-dimensional 

feature space, we can easily find a separating hyperplane there to separate the two 

classes.  

 

margin
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Figure 3.2  XOR problem in input space vs. in feature space 

 

However, mapping the training data examples directly into a higher-dimensional 

feature space is not only computational expensive but also learning theoretic expensive.  

The beauty of SVMs relies on that data examples are not explicitly translated from their 

input space into the high feature space. Instead, the mapping process is done implicitly 

through a kernel function, which returns the dot products between data examples. By 

applying this kernel trick to define a transformed feature space via a kernel function, 

SVMs are able to perform efficiently in a nonlinear high-dimensional feature space 

without being adversely affected by the dimensionality of that space. Indeed, it is 

possible to work with a feature space of infinite dimension. For example, RBF kernel 

functions define infinite Hilbert feature spaces as shown in Figure 3.3. Therefore, SVMs 

can handle not only linear-separable but also nonlinear-separable classification problems 

efficiently. 
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Figure 3.3 RBF kernel functions in its original input space and mapping feature space 

 

The SVM hyperplane is determined by solving a quadratic programming. The 

decision function of a SVM classifier can be formulated as follows: 

⎟
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where x∈ Rn is the n-dimensional input vector of a test example, xi ∈ Rn is the input 

vector for the ith training examples, yi ∈ {-1, 1} is a class label for a binary classification 

problem, and N is the number of training data examples, and K is a kernel function. αi 

and b are the parameters of the model determined during the training of SVM. {αi} are 

Lagrange multipliers to the following given quadratic problem, one for each training data 

example.  
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Of all the training data examples, only support vectors have non-zero value αi. The upper 

bound of αi is defined by a regularization parameter C, which determines the tradeoff 
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between maximizing margin and minimizing the number of misclassified data examples. 

It is useful to handle non-separable problems and outliers.  The choice of C should reflect 

the knowledge of the noise on the data. 

We can see that kernel functions play an important role in SVM classification 

because kernel functions define the feature spaces in which data examples are classified. 

The following kernel functions have been used widely and successfully. 

Polynomial kernel with degree d: 

d
jiji xxxxK )1(),( ⋅+=   (3.4) 

Gaussian RBF kernel with tuning parameterσ: 

( )( )22
2/exp),( σjiji xxxxK −−=  (3.5) 

And sigmoid kernel with parameterθ: 

)tanh(),( θ−⋅= jiji xxxxK   (3.6)  

3.2 Combining Classifiers 

Classifier combination aims to achieve a higher accuracy than that of individual 

classifiers. If a set of classifiers is combined in an effective way, the combined classifiers 

may achieve better performance than the individual classifiers that make them up. This is 

because that the sets of data examples misclassified by the different individual classifiers 

would not necessarily overlap. Thus different classifier designs potentially offer 

complementary information about the data examples to be classified which could 

improve the performance of the selected classifiers.  

One sufficient condition for a combined classifier to be more accurate than any of its 

individual members is that the individual classifiers should be diverse (Hansen and 
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Salamon, 1990). “Diverse” means that the classifiers make different errors on data 

examples. To see why diverse is good, image that we have an ensemble of three 

classifiers: {h1, h2, h3} and consider a new data example x. If the three classifiers are not 

diverse, then when h1(x) is wrong, h2(x) and h3(x) will also be wrong. However, if the 

errors made by the classifiers are uncorrelated, then when h1(x) is wrong, h2(x) and h3(x) 

may be correct, so that a majority vote will classify x correctly. It is particularly 

important that combined classifiers are different: such as difference feature sets, different 

training sets, different classification algorithms, and so on (Kittler et al., 1998; Hansen 

and Salamon, 1990; Ho et al., 1994; Ho, 1995; Xu et al., 1994). 

3.2.1 Approaches to Combining Classifiers 

Many strategies can be used to design a classifier combination model (Kuncheva, 

2003): 

◊ Different combination schemes. Different classifiers are first created. Then one 

combination scheme is picked to combine the different classifiers.  

◊ Different classifier models. Homogeneous classifiers with different structures, 

parameters, or initializations, or heterogeneous classifiers can be used to generate 

different classifiers to be combined. 

◊ Different feature subsets. Different feature selections can be applied to generate 

different classifiers to be combined.  

◊ Different training sets: Combining classifiers can also come from different groups 

of training data examples. 
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3.2.2 Majority Vote and Weighted Majority Vote 

Majority vote is one of the simplest and most intuitive methods to combine 

classification decisions. Given a set of classifier H = {h1, . . ., hT} for a binary 

classification problem such that each individual classifier assigns a data example  

into a class label w

nR∈ix

1 or w2, ht: Rn  Ω, where Ω = {w1, w2}. The majority vote method is 

to assign the class label to x which is supported by the majority of individual classifiers. 

That is, h(x) = w1 if sign( ) is positive or zero, and h(x) = w∑
=

T

t
t xh

1

)( 2 otherwise, where t = 

1..T. The majority vote is guaranteed to do better than an individual classifier when the 

classifiers have accuracy greater than 50% (Lam, 2000). If certain individual classifiers 

are considered better classifiers than the others, weighted majority vote can be employed, 

where each hypothesis ht has a weighting factor kt, that is, h(x) = w1 if sign( ) is 

positive or zero, and h(x) = w

∑
=

T

t
tt xhk

1

)(

2 otherwise. 

3.2.3 Bagging 

Bagging, introduced by Breiman (Breiman, 1996), is one of the most effective 

ensemble algorithms. The essential idea of bagging is to combine many weak classifiers 

to produce a strong aggregated classifier.  The individual classifiers are constructed 

through resampling the original training data set using bootstrap replacement strategy.  

Each data example 〈xi, yi〉 may appear several times or not at all in a new version of data 

set, where input and outputn
i Rx ∈ }1,1{ −+∈iy , i = 1..N, for a binary classification 

problem. Given a training set D = , bagging algorithm is defined as follows: N
iii yx 1},{ =〉〈
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1) Construct T sets of bootstrap samples Dt (t = 1..T). Each bootstrap sample 

  is selected randomly from the original data set D with 

replacement.  

N
iiit yxD 1

** },{ =〉〈=

2) Train a machine on each Dt and obtain T outputs ht(x) (t=1,…,T) for each testing 

data example x.  

3) Aggregate the classifiers using the majority vote: 

∑
=

=
B

j
j xhsignxh

1
))(()(  (3.7) 

There are number of variations of the basic bagging algorithms. For instance, “sub-

bagging” constructs subsamples with the size less than the original training set size. No 

replacement bagging samples the training set without replacement. It’s proved that 

bagging algorithms can reduce variance of classifiers, increase the stability of classifiers, 

and enhance the performance of weak classifiers. 

3.2.4 Boosting 

Boosting (Schapire, 1990) is also a popular ensemble model for boosting the 

performance of a weak classifier. Unlike bagging algorithms, boosting adaptively 

changes the distribution of the training set based on the performance of previous 

classifiers. Boosting includes a family of methods. The most popular one is AdaBoost 

(Adaptive Boosting) (Freund and Schapire, 1995). Similar to bagging, the AdaBoost 

algorithm generates a set of classifiers and uses majority voting to make the final 

decision. Beyond this, the two algorithms differ substantially. The AdaBoost algorithm 

generates the classifiers sequentially, while Bagging can generate them in parallel. 

AdaBoost also changes the weights of the training data examples according to the 
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performance of the previous classifiers so that the next classifier focuses on data 

examples where the previous classifier failed. Adaptive is the main idea of AdaBoost. 

Thus, AdaBoost requires a classifier have ability to make weighted learning. Given a 

training set D = , AdaBoost is defined as follows: N
iii yx 1},{ =〉〈

1) Initialize the data distribution as P1(i) = 1/N, where N is the number of training 

data examples.  

2) For t = 1, …, T: 

2.1) Train a machine with weights Pt(i) and get the classifier ht  

2.2) Compute the weighted error of classifier ht: 

∑=
≠=

N

i ititt xhyiP
1

)]()[(ε  (3.8) 

2.3) Compute the importance of classifier ht:  

)1ln(2
1

t

t
t ε

εα −
=  (3.9) 

2.4) Update the distribution:  

))(exp()()(1 itittt xhyiPiP α−=+  (3.10) 

3) The final decision is based on weighted voting: 
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By applying re-weighting strategy, data examples identified correctly by the classifier 

are weighted less and those identified incorrectly are weighted more. Thus, AdaBoost 

algorithm focuses on remaining errors, directly addresses the representational problem, 

and is capable of enhancing the performance of a weak classifier (Freund and Schapire, 

1996). 
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3.2.5 Combining Posterior Probability Methods 

The classifier fusion models can also be established by combining posterior 

probability of individual classifiers. Suppose H = {h1, …, hT} be a set of classifiers and Ω 

= {w1, w2} be class labels for a binary classification problem. The classifier input is a n-

dimensional feature vector  and the classifier output is a 2-D vector hn
i Rx ∈ t(x) = [ht,1(x), 

ht,2(x)]T, where ht,j(x) is the degree that x comes from the class wj and is supported by 

classifier ht(x) (j = 1..2). Without loss of generality, ht,j(x) can be defined within the 

interval [0,1] (t = 1..T, j = 1..2). We call the classifier outputs “soft labels”. ht,j(x) is 

usually an estimate of the posterior probability P(wj|x). When the classifiers are applied to 

the combination methods, the probability of the class label wj, (j = 1..2), assigned to x can 

be defined as follows (Shipp and Kuncheva, 2002; Kuncheva, 2003): 

)2..1()),(,),((ˆ
,,1 =Θ= jxhxhP jTjj K  (3.12) 

where Θ is the combination method respectively for maximum, minimum, average, 

median, or product. The class wj with maximum  is the assigned class based on the 

different rules: 

jP̂

◊ Minimum Rule: First, the minimum of ht(x) (t=1..T) and the minimum of (1- ht(x)) 

(t=1..T) are selected. Second, two minimums are compared and the class with the 

larger value is selected. If the two minimums are same, then the second 

minimums are compared. 

◊ Maximum Rule: Similar to the minimum rule but the maximums are compared. 

◊ Average Rule: If the average of ht,1(x) (t=1..T) is greater than the average of ht,2(x) 

(t=1..T), the class w1 is selected as the final classifier output. Otherwise, the class 
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w2 is selected. In term of a binary classification, that means, the class wj (j=1..2) is 

selected if the average of ht,j(x) (t=1..T) is greater than 0.5. 

◊ Median Rule: Similar to the average method, if the median of ht,1(x) (t=1..T) is 

greater than 0.5, the class w1 is selected. Otherwise, the class w2 is selected. 

◊ Product Rule: First, the product of ht(x) (t=1..T) and the product of (1- ht(x)) 

(t=1..T) are calculated. Second, two products are compared and the class with the 

larger value is selected. 

Table 3.1 illustrates an example of how the combination methods work. 

 

Table 3.1 Combination Methods  
 

Classifier Support for w1 Support for w2 Final Decision

h1 0.3 0.7 W2

h2 0.4 0.6 W2

h3 0.8 0.2 W1

h4 0.4 0.6 W1

h5 0.7 0.3 W1

MAX 0.8 0.7 W1

MIN 0.3 0.2 W1

AVG 0.52 0.48 W1

PRO 0.02688 0.01512 W1
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Chapter 4 Combining SVM Classifiers Using Fuzzy Logic 

4.1 Fuzzy Logic 

Fuzzy logic was introduced by Zadeh (Zadeh, 1965) and has demonstrated the 

powerful framework in manipulating the imprecision in real-world applications. Fuzzy 

logic and fuzzy rule-based systems have been widely used to model complex systems to 

capture the uncertainties of human knowledge, such as “speed is high” or “temperature is 

cold”. In the domain of fuzzy logic, a linguistic variable like “speed” or “temperature” is 

defined as a set of fuzzy sets like “high” and “low”, or “warm” and “cold” in form of 

membership functions (MFs), which are used to express different grades of memberships 

in fuzzy sets. 

The basic structure of a fuzzy logic system (FLS) is shown in Figure 4.1. It is usually 

composed of four components: fuzzifier, fuzzy rule base, fuzzy inference engine, and 

defuzzifier. Fuzzifier maps crisp inputs into fuzzy sets. Fuzzy rule base is used to 

represent the fuzzy relationships between input and output fuzzy sets and is expressed in 

IF-THEN statements. The inference engine combines the fired fuzzy rules and maps crisp 

inputs into fuzzy output sets. The defuzzifier is used to convert output fuzzy sets into 

crisp outputs. 
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IF-THEN Rules 

 
 

Figure 4.1 The structure of a type-1 FLS 

 

A fuzzy system consists of a set of IF-THEN fuzzy rules. IF-THEN Fuzzy rule base is 

used to represent the fuzzy relationships between input and output fuzzy sets. Based on 

the different expression of the consequent part of an IF-THEN fuzzy rule, there are 

usually two popular models used to construct a FLS: rule-based Mamdani model 

(Mamdani, 1974) and parametric-based Takagi-Sugeno-Kang (TSK) model (Takagi and 

Sugeno, 1985). 

In the Mamdani-type fuzzy model, the consequence part of an IF-THEN fuzzy rule is 

defined by linguistic variables as follows (Mamdani and Assilian, 1973):  

Ri:  IF x1 is and xkA1 2 is and ... and xkA2 N is , THEN yk
NA 1 is and ykB1 2 

is and ... and ykB2 M is .  k
MB

where xj (j=1 .. N) and yl (l=1 .. M) are input and output linguistic variables, and and 

are fuzzy sets used to define the input and output linguistic variables respectively.  

k
jA

k
lB

Fuzzifier 

Inference 

Crisp  Crisp  
Defuzzifier Inputs Output 

(x) 

Input  
Fuzzy Sets 

Output 
Fuzzy Sets 

(y) 
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 Unlike the Mamdani model, the consequent of an IF-THEN fuzzy rule in the TSK 

model is crisp and defined as a polynomial function of input values as given (Takagi and 

Sugeno, 1985):  

Ri:  IF x1 is and xkA1 2 is and ... and xkA2 N is , THEN yk
NA i = fi(x1, x2, … , 

xN, λi).  

where xj and  are defined same as in the Mamdani model, yk
jA i is a function of input 

linguistic variables, and λi is the parameter vector of the function. 

All the fired fuzzy rules are invoked using the MFs of inputs. The result of a fuzzy 

system is calculated by aggregating individual fuzzy rule outputs and eventually 

defuzzified into a crisp value as the final result of the model. 

4.2 Architecture of Fuzzy Multi-SVM Fusion Model 

This chapter proposes a fuzzy logic based classifier fusion model for SVM classifiers. 

The model is designed based on the following observation. For a training data set, when 

we use different SVMs with different kernel functions to train a set of data examples, 

different SVM hyperplanes or classifiers are usually formed. When the different 

classifiers are applied onto a same set of testing data, different decisions might be made. 

Since different decisions may provide complementary information about the data 

examples to be classified, when we combine different SVM classifiers altogether in a 

fusion model, the composite classifier might outperform all its individual base SVM 

classifiers. Therefore, different kernel functions make individual SVM classifiers diverse, 

which is one of the essential conditions for a composite classifier to outperform its 

individual classifiers including the best. This idea can be easily observed from the 

following example. Suppose we have two data examples labeled as data1 and data2. 
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Data1 is a cancer tissue data example and data2 is a normal data example. SVM1 

classifies data1 as a cancer tissue correctly but misclassifies data2 as a cancer tissue. On 

the contrary, SVM2 misclassifies data1 as a normal tissue but correctly classify data2 as a 

normal tissue. When these two SVM classifiers are combined, the composite classifier 

might classify both data correctly. Therefore, the combined classifier might have better 

performance than the both individual SVM classifiers.  

Based on this consideration, the basic SVM fusion model is constructed as shown in 

Figure 4.2. The system can be divided into two phases. In Phase I, different SVMs are 

trained and classified to obtain classification decisions for testing data examples and 

individual SVM classifier accuracies. In Phase II, a SVM fusion model is constructed to 

combine multiple SVM classifiers. This fusion model will combine the different 

classification results from different SVM classifiers by take the consideration of the 

performance of each individual classifier to make the final decision. 

 

   

Figure 4.2 Basic architecture of multi-SVM fusion model 
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Although the model is designed for binary classification, it can also be expanded to 

solve multi-class classification problems by transforming a multi-class classification 

problem to several binary classification problems. Many strategies can be applied for the 

problem transformation, among which one-against-the-rest strategy (Weston and 

Watkins, 1998) and one-against-one strategy (Hastie and Tibshirani, 1996) are often 

used. Given a classification problem with k number of classes, the one-against-the-rest 

schema breaks the original problem into k binary classification problems, while the one-

against-one strategy creates )1(2
1 −kk classifiers. The classification decision is made by a 

voting scheme such as majority voting for one-against-one strategy or maximum class 

voting for one-against-the-rest strategy. 

To further clarify the model and the FLS, in the following sections, we will illustrate 

how to combine, as an example, THREE SVM classifiers to solve a binary classification 

problem using the proposed model. This process can be easily extended to combine 

arbitrary number of SVM classifiers or further to solve a multi-class classification 

problem in general. 

4.3 Combining THREE SVM classifiers 

4.3.1 Phase I: Training Individual SVM Classifiers 

In the first phase, training data are trained by three different SVMs. Three different 

SVM classifiers could differ in the types of kernel functions, such as polynomial kernel 

or Gaussian RBF kernel, or in the parameters of the same kernel type, like different 

degree d in polynomial kernel functions. After three SVM separating hyperplanes are 

trained, the validation dataset is then classified to obtain accuracies of three individual 
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SVM classifiers and the testing dataset is classified to obtain distance of each data 

example to three SVM hyperplanes. Accuracies and distances are then ready for the use 

in phase II. 

4.3.2 Phase II: FLS for Classifier Combination 

The SVM fusion model in Phase II in Figure 4.2 is constructed using the knowledge 

of the traditional fuzzy logic. Here, a layered Mamdani-type fuzzy rule-base system 

(Mamdani and Assilian, 1973) is established as shown in Figure 4.3 where three SVM 

classifiers are combined together to form a composite classifier.  

 

 

 
Figure 4.3 The FLS of combining multi-SVM classifiers 
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The first layer is the input layer, including three accuracy inputs ai (i=1..3) for three 

SVM classifiers, and three distance inputs di (i=1..3) of each data example to three SVM 

separating hyperplanes. In the next layer, the fuzzy sets and MFs are specified for all the 

fuzzy linguistic variables. Each of the six input linguistic variables are represented by two 

fuzzy sets. The fuzzy system has one output represented by 16 fuzzy sets according to 

Mamdani fuzzy model (Mamdani and Assilian, 1973), where the consequence of an IF-

THEN fuzzy rule is also defined as fuzzy sets. In the next layer, 64 fuzzy rules are 

formulated and the IF-THEN Fuzzy rule base is used to represent the fuzzy relationships 

between the input and output fuzzy sets. In the following layer, the firing strength of each 

fired rule is calculated based on the fuzzy reasoning. The aggregated output is then 

computed and defuzzified in the final layer. If the aggregated output is greater than or 

equal to zero, the data example is considered in the positive class and its defuzzification 

value is 1. Otherwise, it belongs to the negative class and its defuzzification value is -1. 

The following sections explain the system in further detail. 

4.3.2.1 Fuzzy Input and Output MFs 

The fuzzy MFs are defined as in Figure 4.4. Each accuracy input has two fuzzy sets: 

low and high, and each distance input is also represented by two fuzzy sets: negative and 

positive. Each output is defined by 16 fuzzy sets, one corresponding to one of 16 groups 

of 64 rule consequences. 
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Figure 4.4 The MFs for inputs and output 

 

The domain of accuracy MFs is defined in [Amin, Amax]. In a binary classification 

problem, each data example either belongs to the positive class or to the negative class. 

When a data example is close to the SVM hyperplane, say, when the distance of a data 

example to the hyperplane is in a certain range, like [-0.5, 0.5], SVMs are sensitive to it. 

Different SVM classifiers might classify the data example in different classes. Here we 

consider the data examples within the range partially in the positive class and partially in 

the negative class. Once the distance of a data example is beyond the range, it will purely 
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belong to either the negative or positive class. Thus, we define the domain of distance 

MFs in [Dmin, 0.5] for negative MF and in [-0.5, Dmax] for positive MF. The output value 

is defined in the range [-1, 1]. Defining the output value in other ranges makes no big 

difference if the defuzzification formula is adjusted accordingly. We will explain why 

there are 16 output fuzzy sets in the next section. An isosceles triangle is used to 

represent each output fuzzy set. 

4.3.2.2 Fuzzy Rule Base 

Based on the six inputs and one output, we define the ith (i = 1...64) fuzzy rule as 

follows: 

Ri:  IF a1 is Ai1 and a2 is Ai2 and a3 is Ai3 and d1 is Di1 and d2 is Di2 and 

d3 is Di3, THEN gi is Oi (i = 1...64). 

where aj (j=1..3) and dj (j=1..3) are input linguistic variables representing SVM accuracy 

and the distance of a data example to the SVM separating hyperplane; Ai1, Ai2 and Ai3 are 

fuzzy sets of accuracy linguistic variable in the universe of discourse {Low, High}; Di1, 

Di2 and Di3 are fuzzy sets of distance linguistic variable in the universe of discourse 

{Negative, Positive}; and Oi is a fuzzy set of the output in {O1...O16}. 

Since the fuzzy system has three accuracy inputs and three distance inputs, and each 

accuracy and each distance have two possibilities respectively, there are 2 ^ 6 = 64 

exhaustive fuzzy rules in total. 

If we make an analysis of these 64 rules, it is not difficult to find that some rules have 

close relations with some other rules. For example, the following two rules are actually 

quite similar: 
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Rm:  IF a1 is L and a2 is L and a3 is L and d1 is N and d2 is N and d3 is P, 

THEN gm is Om. 

Rn:  IF a1 is L and a2 is L and a3 is L and d1 is N and d2 is P and d3 is N, 

THEN gn is On. 

where L denotes “Low”, P denotes “Positive” and N denotes “Negative” fuzzy set. 

The two rules indicate a similar situation in which two SVMs have “Low” accuracies 

and classify a data example in “Negative” distance, and another one has “Low” accuracy 

and classifies the data example in “Positive” distance. We group such similar fuzzy rules 

together and end up with totally 16 groups for the 64 fuzzy rules. The rules in a same 

group have a similar <accuracy, distance> combination for all three SVMs, just like the 

example given above. That’s why we define 16 output fuzzy sets since there are 16 

groups of similar IF-THEN fuzzy rules. Table 4.1 shows the 64 fuzzy rules and their 

corresponding fuzzy consequences which are represented by one of 16 fuzzy sets. 
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Table 4.1 64 Fuzzy rules and their consequent output fuzzy set assignments 
 

Inputs Rule No. 
a1 a2 a3 d1 d2 d3

Output 

R1 H H H N N N O1

R2 L H H N N N 
R3 H L H N N N 
R4 H H L N N N 

O2

R5 L H H P N N 
R6 H L H N P N 
R7 H H L N N P 

O3

R8 L L H N N N 
R9 L H L N N N 
R10 H L L N N N 

O4
 

R11 L L H N P N 
R12 L L H P N N 
R13 L H L N N P 
R14 L H L P N N 
R15 H L L N N P 
R16 H L L N P N 
R17 H H H N N P 
R18 H H H N P N 
R19 H H H P N N 

O5

R20 L L L N N N O6

R21 L L H P P N 
R22 L H L P N P 
R23 H L L N P P 

O7
 

R24 L L L N N P 
R25 L L L N P N 
R26 L L L P N N 
R27 L H H N N P 
R28 L H H N P N 
R29 H L H N N P 
R30 H L H P N N 
R31 H H L N P N 
R32 H H L P N N 

 
O8

R33 L L L N P P 
R34 L L L P N P 
R35 L L L P P N 
R36 L H H P N P 
R37 L H H P P N 
R38 H L H N P P 
R39 H L H P P N 
R40 H H L N P P 
R41 H H L P N P 

O9
 

R42 L L H N N P 
R43 L H L N P N 
R44 H L L P N N 

O10
 

R45 L L L P P P O11

R46 L L H N P P 
R47 L L H P N P 
R48 L H L N P P 
R49 L H L P P N 
R50 H L L P N P 
R51 H L L P P N 
R52 H H H N P P 
R53 H H H P N P 
R54 H H H P P N 

O12
 

R55 L L H P P P 
R56 L H L P P P 
R57 H L L P P P 

 
O13

R58 L H H N P P 
R59 H L H P N P 
R60 H H L P P N 

 
O14

R61 L H H P P P 
R62 H L H P P P 
R63 H H L P P P 

O15

R64 H H H P P P O16
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4.3.2.3 Fuzzy System Output and Defuzzification 

The output is calculated by aggregating individual rule contributions: 

∑∑ ==
=

64

1

64

1 i ii ii gy ββ  (4.1) 

where denotes the output value of the ith rule and is represented by the centroid of the 

gravity of the ith isosceles triangle. 

ig

iβ  denotes the firing strength of the ith rule. It’s 

defined by product t-norm: 

)(*)(3
1 jDjAji da

ijij
µµβ =∏=   (4.2) 

where )( jA a
ij

µ  and )( jD d
ij

µ are the membership values of input and (j=1…3) in the 

fuzzy set A

ja jd

ij and Dij. By choosing t-norm “product” instead of other operators such as 

“min” to calculate the firing strength, the result is more precise since membership grades 

from all three SVM classifiers are considered.     

If the defuzzified result is greater than or equal to 0, we consider the data point in the 

positive class. Otherwise, it is in the negative class. Therefore, the output is defuzzified as 

follows: 

⎩
⎨
⎧

<−
≥+

=
0,1
0,1

)(ˆ
yif
yif

yZ  (4.3) 

4.4 Experiments on Biomedical Cancer Data 

4.4.1 Experimental Design 

The experiment is based on cross-validation. A dataset S is first divided into n 

subsets. One subset is used as a group of testing data and all the other subsets used as 

training data. So, there are n groups of testing data and training data. Each data example 
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is either in testing dataset or in training dataset in one group. Next, test individual SVMs 

n times (n-fold cross validation). The testing data here will be used as the testing data in 

Phase II of the system in Figure 4.2. The testing accuracy will be compared with the 

accuracy from the model in Phase II. The performance of the model is estimated by the 

average of n accuracies from n different testing data. If the dataset has been separated 

into training and testing data, only one fold is necessary in this stage. 

The system inputs in Phase II are prepared as follows. Three distance inputs of the 

input are the distances of each testing data example to the three individual SVM classifier 

hyperplanes. To obtain the individual SVM classifier performance in the FLS measured 

by accuracy, we have several choices:  

◊ The first choice is to use testing accuracies as the accuracy inputs in the FLS. But 

apparently, it’s not the right choice since testing accuracies are only used to 

evaluate how good the model is and in the real applications, the testing accuracies 

of unseen data are never known ahead. 

◊ The second choice is to use training accuracies as the accuracy inputs in the FLS. 

Unlike the first choice, training accuracies can be obtained easily by just 

classifying the training data using the SVM hyperplane formed by the same 

training data. However, training data cannot correctly reflect the distribution of 

testing data. It’s very common that one SVM has a high training accuracy but low 

testing accuracy. Therefore, if we use training accuracies as the accuracy inputs of 

the FLS, the performance of the model will definitely be distorted. 

◊ The third choice is to use the testing accuracies of a different group of data other 

than the testing data. This group of data plays the role of the validation data in the 
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model. The validation data are expected to have the similar distribution as the 

testing data in SVM feature spaces and thus can reflect the testing data well.  

In the dissertation, the validation data are prepared and the accuracies of the 

validation data are used as the three accuracy inputs of the fuzzy system.  The validation 

data are prepared as follows. Each of n-fold training data is further divided into m subsets 

(m-fold cross validation). One fold of the data is treated as the validation dataset and all 

the other data as second-level training data. The validation data are classified to get the 

validation accuracies. The average of m validation accuracies from m-fold classification 

will be used as the SVM accuracy inputs in the fuzzy fusion model. 

4.4.2 Experimental Data Description 

Two datasets from Kent Ridge Biomedical Data Set Repository (Li and Liu, 2003): 

and one dataset from UCI data mining repository (Merz, 1998) are used to estimate the 

performance of the fuzzy SVM fusion models. All the three datasets are binary 

classification data. The data have been normalized in [0, 1] before the classification. 

1) Colon Tumor Dataset: The dataset is gene expression data. It contains 62 data 

examples, among which 40 examples are tumor tissues and 22 are normal tissue. 

Each data example is composed of 2,000 genes as 2,000 features. 

2) Ovarian Cancer Dataset: Ovarian cancer is one of the deadly diseases among 

women. This dataset is proteomic data used to identify proteomic patterns in 

serum that distinguish ovarian cancer from non-cancer samples. It contains 253 

data samples, in which 91 samples are non-cancer normal data and the rest 162 

examples are ovarian cancer data. Each data example contains 15154 features, 

indicating the relative amplitude of the intensity at each molecular mass / charge 
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(M/Z) identity. The data have been normalized in the range [0, 1] before the 

experiment. 

3) Wisconsin Breast Cancer Dataset: The dataset is clinical data. It contains 683 

data examples, among which 239 examples are malignant data and the rest 444 

examples are benign data. Each data example contains 9 features. 

4.4.3 Experimental Results 

In the first phase, all the datasets are classified in 4-fold cross-validation (n=4) and 

each training data are further divided into 3-fold (m=3) in order to obtain the validation 

accuracies needed in the second phase. Table 4.2a-c show the testing and training 

accuracies of the datasets. The regularization parameter C of the SVMs is set to 1 during 

the SVM training. Two kinds of kernels: polynomial kernels and RBF kernels are used to 

train the data. The degree of the polynomial kernels is set to 1...5, and the parameter σ of 

the RBF kernels is set to 10-4, 10-3, 10-2, 10-1,100, 101. The data in Phase I of the model 

are classified using SVMlight (Joachims, 1999). 

 
Table 4.2(a) Training and testing accuracies for Colon Tumor Data  

(4-fold cross validation, n=4) 
 

Kernels Training Accuracy (%) Testing Accuracy (%) 

Polynomial     d 1 2  3 4 Avg. 1 2 3 4 Avg. 

poly_1 1 91.3 84.8 89.4 85.1 87.6 75.0 93.8 86.7 80.0 83.9 
poly_2 2 95.7 93.5 95.7 89.4 93.6 81.3 87.5 86.7 86.7 85.5 
poly_3 3 100 97.8 100 100 99.5 75.0 75.0 86.7 80.0 79.2 
poly_4 4 100 100 100 100 100 87.5 81.3 66.7 66.7 75.5 
poly_5 5 100 100 100 100 100 87.5 81.3 66.7 66.7 75.5 
RBF σ           

rbf_0.0001 0.0001 65.2 67.4 63.8 61.7 64.5 62.5 56.3 66.7 73.3 64.7 
rbf_0.001 0.001 65.2 67.4 63.8 61.7 64.5 62.5 56.3 66.7 73.3 64.7 
rbf_0.01 0.01 65.2 67.4 63.8 61.7 64.5 62.5 56.3 66.7 73.3 64.7 
rbf_0.1 0.1 65.2 67.4 63.8 61.7 64.5 62.5 56.3 66.7 73.3 64.7 
rbf_1 1 93.5 93.5 93.6 87.2 92.0 75.0 93.8 86.7 73.3 82.2 
rbf_10 10 100 100 100 100 100 62.5 56.3 66.7 80.0 66.4 
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Table 4.2(b) Training and testing accuracies for Ovarian Cancer data  

(4-fold cross validation, n=4) 
 

Kernels Training Accuracy (%) Testing Accuracy (%) 
Polynomial     d 1 2  3 4 Avg. 1 2 3 4 Avg. 

poly_1 1 100 100 100 100 100 100 100 100 100 100 

poly_2 2 100 100 100 100 100 100 100 98.4 100 99.6 

poly_3 3 100 100 100 100 100 96.9 100 98.4 98.1 98.4 

poly_4 4 100 100 100 100 100 96.9 98.4 98.4 96.3 97.6 

poly_5 5 100 100 100 100 100 96.9 98.4 92.1 95.4 95.7 

RBF σ           

rbf_0.0001 0.0001 91.0 88.9 91.1 92.1 90.8 89.1 92.1 87.3 90.5 89.7 

rbf_0.001 0.001 99.5 99.5 100 99.5 99.6 98.4 100 98.4 98.4 98.8 

rbf_0.01 0.01 100 100 100 100 100 92.1 92.1 84.1 87.3 88.9 

rbf_0.1 0.1 100 100 100 100 100 64.1 61.9 63.5 66.7 64.0 

rbf_1 1 100 100 100 100 100 64.1 61.9 63.5 66.7 64.0 

rbf_10 10 100 100 100 100 100 64.1 61.9 63.5 66.7 64.0 

 

 
Table 4.2(c) Training and testing accuracies for Breast Cancer data  

(4-fold cross validation, n=4) 
 

Kernels Training Accuracy (%) Testing Accuracy (%) 
Polynomial     d 1 2  3 4 Avg. 1 2 3 4 Avg. 

poly_1 1 97.46 97.85 97.27 96.88 97.37 94.74 95.93 97.66 98.25 96.65 

poly_2 2 100 99.80 100 99.61 99.85 90.06 93.02 94.15 93.57 92.70 

poly_3 3 100 100 100 100 100 90.06 94.77 93.57 95.32 93.43 

poly_4 4 100 100 100 100 100 91.23 93.60 92.40 95.91 93.29 

poly_5 5 100 100 100 100 100 90.64 94.19 91.81 95.91 93.14 

poly_6 1 100 100 100 100 100 91.81 95.35 91.81 97.08 94.01 

poly_8 2 100 100 -- 100 -- 92.40 94.77 -- 97.66 -- 

poly_10 5 34.96 34.96 -- 35.09 -- 35.09 34.88 -- 34.50 -- 

RBF σ           

rbf_0.0001 0.0001 97.85 96.09 95.70 95.52 96.29 91.23 96.51 97.66 98.83 96.06 

rbf_0.001 0.001 97.66 97.46 97.07 96.69 97.22 94.15 95.93 97.66 99.42 96.79 

rbf_0.01 0.01 98.44 98.05 97.46 96.88 97.71 92.98 95.93 98.25 98.83 96.50 

rbf_0.1 0.1 99.80 99.80 99.41 98.83 99.46 91.81 94.19 97.08 98.25 95.33 

rbf_1 1 100 100 100 100 100 86.55 84.30 87.13 91.81 87.45 

rbf_10 10 100 100 100 100 100 70.76 73.84 71.35 76.61 73.14 
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The averages of m-fold (m=3) validation accuracies for each of n-fold (n=4) testing 

are shown in Table 4.3. These accuracies will be used in the FLS as the accuracy inputs. 

 

Table 4.3 Average validation accuracies (%) based on m-fold validation for each of 4 
folds (n=4, m=3) 

 
Kernels Colon Tumor Ovarian Cancer Breast Cancer 

Polynomial     d 1 2 3 4 Avg. 1 2 3 4 Avg. 1 2 3 4 Avg.

poly_1 1 89.03 71.67 80.83 82.92 81.11 99.47 98.94 100 100 99.60 96.49 97.26 95.70 96.10 96.39

poly_2 2 89.03 82.92 85.14 74.58 82.92 99.47 98.41 100 100 99.47 93.76 92.97 93.56 90.45 92.69

poly_3 3 82.36 76.39 85.14 68.06 77.99 98.94 97.89 99.47 97.91 98.55 94.35 94.34 93.36 91.42 93.37

poly_4 4 82.36 78.47 83.06 65.83 77.43 97.36 97.37 97.89 94.77 96.85 94.54 94.14 93.56 92.19 93.61

poly_5 5 80.28 80.56 80.97 61.39 75.80 97.36 96.85 95.26 92.13 95.40 94.54 94.73 92.58 92.20 93.51

RBF σ                

rbf_0.0001 0.0001 65.28 67.36 63.89 61.67 64.55 80.95 79.42 83.73 76.90 80.25 97.27 95.30 94.73 94.33 95.41

rbf_0.001 0.001 65.28 67.36 63.89 61.67 64.55 95.77 96.84 97.36 97.38 96.84 97.47 97.46 95.70 95.51 96.54

rbf_0.01 0.01 65.28 67.36 63.89 61.67 64.55 85.19 82.58 85.82 80.03 83.41 97.47 96.87 95.51 95.70 96.39

rbf_0.1 0.1 65.28 67.36 63.89 61.67 64.55 64.02 64.69 64.23 63.19 64.03 96.30 95.89 94.92 94.33 95.36

rbf_1 1 86.95 78.20 80.83 80.83 81.70 64.02 64.69 64.23 63.19 64.03 86.94 87.30 86.71 85.19 86.54

rbf_10 10 65.28 67.36 63.89 61.67 64.55 64.02 64.69 64.23 63.19 64.03 67.64 66.22 66.02 66.08 66.49

 

 

Next, we select three SVMs and feed the fuzzy SVM fusion system with the 

validation accuracies shown in Table 4.3 as the three accuracy inputs and with the 

distances of one testing data example to the three SVM hyperplanes as the three distance 

inputs. The FLS will generate a crisp output in [-1, 1]. Based on the sign of the output, 

the data example is determined either in positive or in negative class. For all the testing 

data examples, we repeat the same procedure and thus obtain the accuracy of the fuzzy 

fusion model regarding to the entire testing dataset. Since we use 4-fold cross-validation, 

we have 4 groups of testing data. For the same three selected SVMs, we test the fuzzy 

fusion model 4 times using 4 different testing data. For instance, Table 4.4 shows one 
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selection of three SVMs, their validation accuracies used in the model and the model 

accuracies of each fold of testing data for ovarian cancer data. 

 

Table 4.4 Three selected SVMs, their validation accuracies (%), and the accuracies (%) 
from the fuzzy fusion model (T1FFSVM) 

 

Data Fold SVM1 
(poly_1) 

SVM2 
(poly_3) 

SVM3 
(rbf_0.01) Avg. T1FFSVM 

1 99.47 98.94 85.19 94.53 98.44 

2 98.94 97.89 82.58 93.14 100.0 

3 100.0 99.47 85.82 95.10 98.41 

4 100.0 97.91 80.03 92.65 98.41 

Ovarian 
Cancer 

Avg. 99.6 98.55 83.41 93.85 98.82 

 

 

In the experiment, we select six combinations of three SVMs for each dataset and 

repeat the same test shown in Table 4.4. Table 4.5a-c compare the average testing 

accuracies from the three individual SVMs with the ones from the fuzzy fusion model by 

combining the three SVMs. Each row in Table 4.5a-c lists the comparison result for one 

of the six tests. 

 

Table 4.5(a) Three selected SVMs, their testing accuracies (%) in Table 4.1 and the 
average model accuracies in 4-fold cross-validation (Colon Tumor) 

 
Test SVM1 Accuracy 

(%) SVM2 Accuracy 
(%) SVM3 Accuracy (%) Avg. Max T1FFSVM

1 poly_1 83.9 poly_3 79.2 rbf_0.01 64.7 75.9 83.9 87.1

2 poly_1 83.9 poly_2 85.5 rbf_0.1 64.7 78.0 85.5 88.8

3 poly_4 75.5 rbf_1 82.2 rbf_0.01 64.7 74.1 82.2 83.8

4 poly_1 83.9 poly_3 79.2 poly_5 75.5 79.5 83.9 80.6 

5 rbf_0.0001 64.7 rbf_0.01 64.7 rbf_1 82.2 70.5 82.2 77.7 

6 poly_5 75.5 rbf_0.001 64.7 rbf_0.1 64.7 68.3 75.5 72.5 

Avg.       74.4 82.2 81.7 
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Table 4.5(b) Three selected SVMs, their testing accuracies (%) in Table 4.1 and the 
average model accuracies in 4-fold cross-validation (Ovarian Cancer) 

 
Test SVM1 Accuracy 

(%) SVM2 Accuracy 
(%) SVM3 Accuracy 

(%) Avg. Max T1FFSVM

1 poly_1 100 poly_3 98.4 rbf_0.01 88.9 95.8 100.0 98.8 

2 poly_1 100 poly_2 99.6 rbf_0.1 64.0 87.9 100.0 99.6 

3 poly_4 97.6 rbf_1 64.0 rbf_0.01 88.9 83.5 97.6 98.0

4 poly_1 100 poly_3 98.4 poly_5 95.7 98.0 100.0 99.2 

5 rbf_0.0001 89.7 rbf_0.01 88.9 rbf_1 64.0 80.9 89.7 92.2

6 poly_5 95.7 rbf_0.001 98.8 rbf_0.1 64.0 86.2 98.8 98.4 

Avg.       88.7 97.7 97.7 

 

 

Table 4.5(c) Three selected SVMs, their testing accuracies (%) in Table 4.1 and the 
average model accuracies in 4-fold cross-validation (Breast Cancer) 

 
Test SVM1 Accuracy 

(%) SVM2 Accuracy 
(%) SVM3 Accuracy 

(%) Avg. Max T1FFSVM

1 poly_1 96.65 poly_3 93.43 rbf_0.01 96.50 95.53 96.65 96.05

2 poly_1 96.65 poly_2 92.70 rbf_0.1 95.33 94.89 96.65 96.35

3 poly_4 93.29 rbf_1 87.45 rbf_0.01 96.50 92.41 96.50 92.54 

4 poly_1 96.65 poly_3 93.43 poly_5 93.14 94.41 96.65 94.44 

5 rbf_0.0001 96.06 rbf_0.01 96.50 rbf_1 87.45 93.34 96.50 94.88 

6 poly_5 93.14 rbf_0.001 96.79 rbf_0.1 95.33 95.09 96.79 96.20

Avg.       94.28 96.62 95.08 

 

4.4.4 Experimental Analysis 

From Table 4.5, we can see that in all the six tests, the fuzzy fusion model performs 

better than the average of three individual SVM classifiers. One more important result is 

that in some tests, the fuzzy SVM classifier fusion model outperforms the best of its three 

composing individual SVM classifiers and achieves higher accuracies. The following 

lists the detailed analysis about the experimental results. 

1) Colon tumor dataset:  In three of the six tests (Tests 1-3), the fusion model 

outperforms the best individual SVM classifiers. Even if one or two of the three SVMs 
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have poor accuracy (64.7%), the fusion model can still achieve high accuracies (87.1%, 

88.8%, 83.8%). For example, in Test 1, the testing accuracies of the three SVMs are: 

83.9%, 79.22% and 64.7%, while the accuracy from the fusion model is 87.1%. This is a 

good example to demonstrate that different SVM classifiers can complement each other 

in the SVM fusion system to achieve a better performance than any of the individual 

SVM classifiers. In Test 4, and 5, the fusion model doesn’t beat the best of the three 

individual SVM classifiers though it achieves better performance than the average and 

the second best. The possible reason is that the three SVMs have the same type of the 

kernel function and the only difference lies in the parameters of the kernel. The three 

SVMs with a same kernel type may work similarly for the same data and don’t have too 

much information to complement. In Test 6, the fusion model doesn’t achieve a better 

performance than its best individual composing classifier either because two of 

composing classifiers are not accurate enough or diverse enough. 

2) Ovarian cancer dataset:  In five of the six tests (Tests 2-6), the fusion model 

achieves a better performance or a similar performance to its composing individual 

classifiers. Even if composing one very poor classifier (64.0%), the fusion model still 

performs well. Test 5 is also an excellent instance to show that the ensemble approach by 

combining several classifiers could achieve higher performance than any of its individual 

classifiers (fusion model: 92.2%, three SVMs: 89.7%, 88.9% and 64.0%). 

3) Breast cancer dataset:  In three of the six tests (Tests 1, 2, 6), the fusion model 

achieves a similar performance to its composing individual classifiers. In the other three 

tests, the fusion model doesn’t combine the classifiers well and doesn’t have a better 

performance than its composing classifiers. The possible reasons are:  
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1) The defined FLS or fuzzy MFs are not suitable for the dataset. 

(2) Individual classifiers behave similarly each other and are not able to provide 

much complementary information regarding to the data examples to be classified. 

(3) Accuracy measure for classifier performance might not be good for the problem. 
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Chapter 5 Optimization of Fuzzy Classifier Fusion Model 

The MFs in the fuzzy SVM fusion model in Chapter 4 are defined intuitively and 

manually according to the classification experience. The shapes or the positions of MFs 

may not be optimal. Genetic Algorithms (GAs) provide robust search and learning 

capabilities in complex space ideally for tuning optimal MFs and discovering optimal 

FLS accordingly. 

5.1 Genetic Algorithms (GAs) 

GAs are optimization algorithms which are inspired by natural evolution. The basic 

idea is to maintain a population of chromosomes over time through a process of variation 

and competition (Goldberg, 1989).  

The optimization process of GAs starts off with an initial population of chromosomes 

and advances toward better chromosome by applying genetic operators. The common 

genetic operators include: selection, which selects chromosomes from the previous 

population based on their fitness to reproduce the next generation; crossover, which 

creates new chromosomes from parts of parents; and mutation, which introduces 

variation into the population by changing selected genes of chromosomes. The process 

of selection, recombination and mutation is repeated iteratively, generation after 

generation, until either the required fitness is met or the user-defined number of 

iterations is reached. A fitness or objective function must be provided for the problem to 

be solved. The best chromosome in the final population contains the optimal or near 

optimal solution to the problem. There are various schemas for each genetic operator, 
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such as uniform, one-point, two-point or multi-point crossover, random or Gaussian 

mutation, and roulette wheel or tournament selection. 

5.2 Genetic Fuzzy Systems (GFS) 

Fuzzy captures uncertainties by defining linguistic fuzzy sets with fuzzy membership 

functions (MFs) and reasoning fuzzy rules in a rigorous mathematical discipline. 

However, the success of designing a fuzzy logic system (FLS) largely relies on high-

performance fuzzy MFs and fuzzy rules to interpret the expert knowledge. When lack of 

human expert, rather than choosing fuzzy MFs or defining fuzzy rules in a manual trail-

and-error manner, we may seek the assistant from a learning process. GAs provide robust 

search and learning capabilities in complex space and GA-based fuzzy systems are able 

to learn and search fuzzy MFs or fuzzy rules efficiently. 

A genetic fuzzy system (GFS) is basically a fuzzy system augmented by a learning 

process based on a genetic algorithm (Magdalena et al., 2004). The techniques of 

adapting fuzzy logic systems with GAs have been exploited by many researchers and 

genetic fuzzy rule-based systems have been addressed in plenty of papers, where GAs 

learn or train or tune different components of fuzzy logic systems (Magdalena et al., 

2004). For instance, some genetic fuzzy rule-based systems may learn and determine the 

number of IF-THEN fuzzy rules from all possible rules (Herrera et al., 1995; Karr, 1991). 

Other genetic fuzzy systems may tune MFs of a given fuzzy rule set, such as tuning 

positions or shapes of MFs (Homaifar and McCormick, 1995; Park and Kandel, 1994; 

Cordon and Herrera, 1997). 
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5.3 Genetic Fuzzy SVM Fusion Model 

The genetic fuzzy SVM fusion model constructed in Figure 5.1 adds one more phase 

than the basic architecture in Figure 4.3. This additional phase (Phase II) is used to tune 

the MFs using GAs to obtain the optimal fuzzy MFs.  

 

Training Data 

 

Figure 5.1 Genetic fuzzy SVM classifier fusion model (GFFSVM) 

 

The system is divided into three phases. Three different datasets are used in the 

system: training data, validation data, and testing data. The training data and validation 

data are used to construct the fuzzy fusion model. The testing data are merely used to test 

the performance of the model. In phase I, the training data are trained by different SVMs. 

And the validation data are classified to obtain individual SVM accuracies and distances 
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of validation data examples to the SVM hyperplanes. In phase II, a genetic fuzzy fusion 

model is constructed and the fuzzy MF parameters in the model are tuned according to 

the accuracies of composite classifiers using m-fold cross validation data. By the end of 

the phase, an optimal fuzzy fusion system has been adapted. Finally, in Phase III, testing 

data examples are classified using different SVM classifiers and then distance 

information are plugged into the tuned optimal fuzzy fusion system in Phase II to obtain 

the final decision. The model accuracies of testing data can be calculated and compared 

with the testing accuracies from individual base SVM classifiers to estimate the 

performance of the model. 

5.3.1 Tuning Fuzzy SVM Fusion Model 

The FLS is similar to the one defined in Figure 4.3 except that the MFs of both input 

and output variables are not fixed. The control parameters of the MFs will be tuned by 

GAs. The tuning system is constructed in a cross-validation manner. There are m groups 

of different validation datasets if m-fold cross-validation is applied. The objective 

function of the GAs is to maximize the average model accuracy of all m validation data.  

The fuzzy rule base, inference engine, system output, and defuzzification are 

similarly defined as in Chapter 4. The following sections will focus on the difference 

between, emphasizing on how to tune the MFs using GAs.  

5.3.2 Fuzzy Input and Output MFs 

All the memberships are defined as triangles shown in Figure 5.2. Again, each 

accuracy input is represented by two fuzzy sets: low and high. We use two control 

parameters to determine the shape of each accuracy fuzzy MF. For the fuzzy set “Low”, 

the two control parameters are labeled as Ll and Lr. At Ll and below, an accuracy input 
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fully belongs to the fuzzy set “Low”. At Lr and above, an accuracy input doesn’t belong 

to the set “Low” at all. Between Ll and Lr, the membership value decreases between 1 and 

0 linearly. The membership of the fuzzy set “High” is just similar but the membership 

value is increased linearly between the two control parameters Hl and Hr. The positions 

of the control points (Ll, Lr, Hl, Hr) of the memberships will be adjusted by the GA. The 

initial values of the two left parameters Ll and Hl in the first population of the GA are set 

to the minimum SVM accuracy of validation data, and two right parameters Lr and Hr are 

set to the maximum accuracy. Initializing the membership parameters this way can 

provide the following benefits comparing with initializing the parameters with random 

numbers within their ranges: 

◊ The MFs still cover all the possible accuracy inputs;  

◊ The MFs are more sensitive to the changes of accuracy inputs;  

◊ The convergence of the genetic process to the optimal values is faster;  

◊ The standard deviation can be kept at a lower level during the tuning process.  

Each distance input also has two fuzzy sets: negative and positive. The MFs of the 

distance fuzzy sets are not fixed. Each membership has two control points (Nl and Nr for 

“Negative” MF; Pl and Pr for “Positive” MF) used to tune the MFs by the GA. Whenever 

the distance of a data example is less than Nl, its membership value of the “Negative” 

fuzzy set is 1. At Nr and above, the distance input doesn’t belong to the set “Negative”. 

The membership of “Positive” set is similar. 

The output value is defined by 64 fuzzy sets. Here an isosceles triangle is used to 

represent each linguistic fuzzy set. The positions of the triangles are not fixed and will be 

tuned by the GA. Since we use the centroid of an isosceles triangle to represent the output 
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value of each fuzzy rule, only one control point for each MF is needed. We also 

considered a more complex MF like an arbitrary triangle for the output which needs three 

control parameters for each MF. Two reasons keep us away from the idea. Generally, a 

large number of control parameters results in a better model accuracy on the training 

data, but the data may be overfitting which leads to a poor generalization ability. In 

addition, more control parameters require more computation complexity to tune and 

converge to an optimal solution. 

 

 

Figure 5.2 The MFs of GFFSVM 
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In Chapter 4, we discussed that 64 fuzzy rules can be grouped into 16 groups based on 

the similarity of the fuzzy rules. The rules in a same group have a similar <accuracy, 

distance> combination from three SVM classifiers as discussed before. Although the 

rules in a group are similar, we still set their outcome fuzzy sets in the consequence parts 

of the rules differently and leave the GAs to optimize the MFs of the fuzzy sets for the 

purpose of searching the MFs in a larger and more flexible space. However, we also 

consider the similarity and define the same possible ranges for the positions of the fuzzy 

MFs which fall into in a same group. 

5.3.3 Tuning the MFs by GAs 

In general, there are two ways to tune fuzzy MFs in general: Pittsburgh approach and 

Michigan approach (Magdalena et al., 2004). Pittsburgh approach is to represent an entire 

fuzzy rule set as a chromosome and maintain a population of candidate rule sets using 

genetic operations to produce new generations of rule sets (Smith, 1980). Michigan 

approach is to represent an individual rule as a chromosome and the whole rule set is 

represented by the entire population (Holland and Reitman, 1978). We apply Pittsburgh 

approach to tune the MFs. 

5.3.4 Components of a Chromosome 

The GA is real-coded. Binary coded GAs can be less efficient. Each chromosome or 

individual is composed of the 72 membership control parameters. In Figure 5.2 we can 

see, accuracy has two fuzzy sets: “Low” and “High”. Each is represented by a 

membership function controlled by two parameters. Likewise, distance has two fuzzy 

sets: “Negative” and “Positive”, controlled by two parameters for each set as well. 

Therefore, to tune the input MFs, eight genes are required in each chromosome. Since 
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only one control parameter is needed to determine the MF of each output fuzzy set and 

there are 64 output fuzzy sets, we need 64 genes in a chromosome to tune the output 

MFs, one for each fuzzy set. Totally, we need 72 genes in each chromosome to tune and 

develop all the MFs by the GA. Figure 5.3 shows the component genes of a chromosome. 

In summary, each chromosome consists of 72 membership parameters: 4 for tuning 

accuracy MFs, another 4 for distance MFs, and the rest 64 for the output MFs. 

 

Ll Lr Hl Hr   Nl Nr Pl Pr   O1 O2 O3 O4 O5 O6 O7 O8  · · ·  O58 O59 O60 O61 O62 O63 O64 
Output Distance AUC  

Figure 5.3 Components of a chromosome 

 

As we mentioned earlier, in the initial population, accuracy membership parameters 

are set to the minimum and maximum SVM accuracy of m-fold validation data for left 

and right control points to ensure a fast convergence of the genetic process. Distance 

membership parameters are initialized to -1 and +1 for the left and right control points. 

Each output membership parameter is initialized as a random number within its range. In 

our fuzzy system, different fuzzy rules have different output fuzzy sets. The entire 64 

fuzzy rules and the corresponding 64 output fuzzy sets are categorized into 16 groups 

based on the similarity of the rules. Here we set a same data range for the fuzzy sets 

falling in a same group.   

In addition, we also consider the meaning of a fuzzy rule when determining its output 

range. For example, if one rule is defined like: 

Rule i:  IF a1 is H and a2 is H and a3 is H and d1 is N and d2 is N 

and d3 is N, THEN gi is Oi. 
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where H denotes “High” and N denotes “Negative” fuzzy set. 

The rule implies that all three SVMs have “High” accuracies and classify a data 

example in the “Negative” class. In this case, the centroid of the triangle for the fuzzy set 

Oi should reside at the left side of the output MFs in Figure 5.2. In other words, the 

widest range of the fuzzy set Oi should be [-1, 0).   

Setting the range of an output membership parameter based on the actual meaning of 

the fuzzy rule can not only make the fuzzy rule meaningful, but also prevent overtraining 

or overfitting effectively. If all the output parameters are set to their widest possible range 

[-1, 1], although a higher fitness value might be achieved, it doesn’t necessarily mean that 

the tuned model has better performance. In reality, the testing accuracy could be poor 

when the testing data are applied on the learned fuzzy system. The followings are the 

details of the GA. 

5.3.5 Fitness of the GAs 

The fuzzy system is constructed using m-fold cross-validation data. Thus, the fitness 

of the GA is defined to maximize the average accuracy of m groups of validation data by 

processing the fuzzy system m times with the same MFs defined in a chromosome. The 

fitness function is formulized as given: 
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where m is the number of fold of cross validation, N is the number of data examples in 

one set of validation data,  is the system output of the jth data example in the ith cross-

validation data, and is the desired output of the jth data example in the ith cross-

validation data. 

ijẐ
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5.3.6 Selection and Elitism 

Selection schema is standard proportional selection (also referred to as roulette-wheel 

selection). A chromosome, which contains 72 membership parameters, is selected from 

the population for the next generation in a way that is proportional to its fitness or the 

average accuracy of validation data. The higher the accuracy, the greater the chance it 

will be selected. However, it is not guaranteed that the best combination of MFs goes to 

the next generation. For this reason, we also apply elitism strategy: the best fuzzy MFs, 

with which the highest accuracy in the population can be achieved, are copied into the 

next generation directly without any modification. Elitism can improve the performance 

of the GA dramatically since it always keeps the best solutions to date.  

5.3.7 Crossover Operator 

There exist several crossover operators, such as one-point crossover, two-point 

crossover, multi-point crossover, and uniform crossover. One or multiple point crossover 

selects one or more crossover points to exchange genes of two intermediate chromosomes 

to reproduce offspring. Uniform crossover works in a different way that does not select 

crossover points and allows every locus a potential crossover point. Each gene of 

offspring chromosomes inherits from either of two parents randomly with a probability of 

50%. In this study, we use uniform crossover. Uniform crossover is believed to 

outperform one or multiple crossover in many applications (Spears and De Jong, 1991]. 

Figure 5.4 illustrates the different crossover methods. 
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Parent 1:         X X | X X | X | X X 

Parent 2:         Y Y | Y Y | Y | Y Y 

◊ One-point:  Offspring 1: X X  Y Y Y Y Y       Offspring 2: Y Y  X X X X X 
◊ Two-point:  Offspring 1: X X  Y Y X X X       Offspring 2: Y Y  X X Y Y Y 
◊ Multi-point:  Offspring 1: X X  Y Y X Y Y       Offspring 2: Y Y  X X Y X X 
◊ Uniform:  Offspring 1: X Y  X Y Y X Y      Offspring 2: Y X  Y X X Y X  

Figure 5.4 Crossover algorithms 

 

5.3.8 Mutation Operator 

We use Gaussian mutation in the system. Gaussian mutation modifies each gene of a 

chromosome by adding a Gaussian distributed random number with a mean of zero to it 

(Herrera et al., 1995). If the updated gene falls outside of the allowed range, the new gene 

value is cut and set to the boundary value. Gaussian mutation allows smaller alterations 

to happen more often than larger ones. It is more feasible for many applications than 

other mutation schemes, such as uniform mutation, which replaces a selected gene with a 

random number within its range. In the system, the standard deviation of the membership 

parameters for accuracy, distance and output are set differently since their MFs have the 

different domains. 

5.4 Experiments on Biomedical Data 

5.4.1 Experimental Method 

The model construction and testing are based on cross-validation manner. Given a 

dataset S, it is first divided into n subsets. Each subset is treated as a group of testing data 

and all the other subsets together form a group of training data. We classify individual 

SVMs n times (n-fold cross validation) on each testing dataset. The classification results 
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in this stage will not be used in the genetic fuzzy fusion model construction in Phase II in 

Figure 5.1 but used to assess the performance of the model in Phase III in the figure. The 

accuracy of the testing data from individual SVM classifiers will be compared with the 

accuracy from the model in Phase III. Since we use n-fold cross validation, the 

performance of the model is estimated by the average of n accuracies from n different 

testing datasets. 

The input data in Phase II are prepared as follows. Each training dataset above is 

further divided into m subsets (m-fold cross validation): one subset as a group of 

validation data and all the other subsets as a group of training data in the next level. The 

validation data are treated as the validation data in the model. All m group datasets are 

trained and classified by individual SVMs. The accuracies of validation data from three 

selected individual SVM classifiers are three accuracy inputs of the genetic fuzzy model. 

Three distances of each validation data example are the three distance inputs of the model. 

The model accuracy can be calculated for one validation dataset based on whether the 

defuzzified output of each data example is equal to the real desired output of the data 

example. The average accuracy of all m different validation datasets will be the fitness 

value of the genetic fuzzy model.  

After we tune the MFs using the GAs, the optimal fusion model is established with 

the best fuzzy MFs. Testing data are then fed into the constructed optimal model and the 

decision can be made on the testing data. When the testing data are classified using the 

tuned optimal fusion model, each accuracy input is the average accuracy of m validation 

accuracies. 
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5.4.2 Experimental Environments 

All the data are classified using SVMLight software (Joachims, 1999) in Phase I. The 

generalization parameter C of individual SVM classifiers is set to 1 when the data are 

trained. The genetic fuzzy fusion system has been implemented in C. The parameter 

settings for the GA are as follows: crossover probability of 70%, generation of 200, and 

population size of 3000. The standard deviations of Gaussian mutation for accuracy, 

distance and output membership parameters are set to 2, 0.001 and 0.01 respectively. All 

the code is executed under a PC window system with P4-2.80GHz of CPU and 768MB of 

RAM.  

5.4.3 Experimental Results 

Colon tumor dataset and ovarian cancer dataset introduced in Section 4.4 are applied 

on the genetic fuzzy classifier fusion model. All the datasets are tested by 4-fold cross 

validation (n=4) and the genetic fuzzy fusion model is constructed by dividing each 

training dataset further into 3-fold and each fold forms one validation dataset (m=3). 

As the experiment shown in Section 4.4, individual SVM classifiers are trained first 

and the training and testing accuracies are displayed in Table 4.1. The testing accuracies 

in this table will be compared with the accuracies of the proposed genetic fuzzy classifier 

fusion model later. 

Each of the four training subsets in Table 4.1 is divided into three folds as three 

validation datasets in Phase II. Three validation datasets coming from the same training 

dataset will be used in the genetic fuzzy system to tune the fuzzy MFs. To clarify the 

idea, Table 5.1 shows the SVM accuracies of the validation data coming from the 1st fold 

training dataset in Table 4.1a for colon tumor dataset.  
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Table 5.1 Accuracies of 1st fold validation data for Colon Tumor Data (3-fold cross 
validation, m=3) 

 
Kernels Training Accuracy (%) Validation Accuracy (%) 

Polynomial         d 1 2 3 Avg. 1 2 3 Avg. 

poly_1 1 90.00 90.32 90.32 90.21 93.75 80.00 93.33 89.03 

poly_2 2 96.67 96.77 100.0 97.81 93.75 80.00 93.33 89.03 

poly_3 3 100.0 100.0 100.0 100.0 93.75 73.33 80.00 82.36 

poly_4 4 100.0 100.0 100.0 100.0 93.75 73.33 80.00 82.36 

poly_5 5 100.0 100.0 100.0 100.0 87.50 73.33 80.00 80.28 

poly_6 6 100.0 100.0 100.0 100.0 81.25 73.33 80.00 78.19 

poly_8 8 100.0 100.0 100.0 100.0 75.00 73.33 80.00 76.11 

poly_10 10 100.0 100.0 100.0 100.0 68.75 80.00 73.33 74.03 

RBF σ         

rbf_0.0001 0.0001 66.67 64.52 64.52 65.24 62.50 66.67 66.67 65.28 

rbf_0.001 0.001 66.67 64.52 64.52 65.24 62.50 66.67 66.67 65.28 

rbf_0.01 0.01 66.67 64.52 64.52 65.24 62.50 66.67 66.67 65.28 

rbf_0.1 0.1 66.67 64.52 64.52 65.24 62.50 66.67 66.67 65.28 

rbf_1 1 93.33 93.55 93.55 93.48 87.50 86.67 86.67 86.95 

rbf_10 10 100.0 100.0 100.0 100.0 62.50 66.67 66.67 65.28 

 

 

Once we have accuracies and data example distances from individual SVM classifiers 

ready, the next step is to select three base SVM classifiers to be combined in the genetic 

fuzzy fusion system. Table 5.2 shows one selection of three SVM classifiers and their 

corresponding accuracies from Table 5.1. These three SVM classifiers will be used to 

construct the genetic fuzzy system. 

 

Table 5.2 Validation accuracies (%) of three selected SVMs for Colon Tumor 
 

Fold SVM1 
(poly_1) 

SVM2 
(poly_3) 

SVM3 
(rbf_0.01) Avg. 

1 93.75 93.75 62.50 83.33 

2 80.00 73.33 66.67 73.33 

3 93.33 80.00 66.67 80.00 

Avg. 89.03 82.36 65.28 78.89 
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After the genetic fuzzy system is adapted and optimized, the fuzzy model has been 

developed with the best-fit fuzzy MFs tuned. The testing data in Table 4.1 can then be 

used in the Phase III to evaluate the performance of the tuned model. The model accuracy 

on the testing dataset by combining the three selected SVM classifiers in Table 5.2 is 

shown in the first row of Table 5.3. Since we use n-fold (n=4) cross validation and have n 

different testing datasets, we test the fuzzy model n times by combining the same three 

individual SVM classifiers and obtain n model accuracies for n different testing datasets. 

The model accuracy by combining the three SVMs in Table 5.2 is just one of n cases. 

Table 5.3 shows all n (n=4) model accuracies of n testing data by combining the same 

three SVM classifiers in Table 5.2. In this table, GFFSVM denotes the proposed genetic 

fuzzy fusion model. The columns 2-4 show the average accuracies of 3-fold validation 

data. They are treated as accuracy inputs when the optimized model applies on the testing 

data to obtain the model accuracies. The last column shows the model accuracies. 

 

Table 5.3 Model accuracies by combining three selected SVMs in Table 5.2 
 

Fold SVM1 
(poly_1) 

SVM2 
(poly_3) 

SVM3 
(rbf_0.01) GFFSVM 

1 89.03 82.36 65.28 81.25 

2 71.67 76.39 67.36 93.75 

3 80.83 85.14 63.89 86.67 

4 82.92 68.06 61.67 93.33 

Avg. 81.11 77.99 64.55 88.75 

 

 

Table 5.3 shows one combination of three SVM classifiers. We have tested six 

combinations of three selected SVMs and the results are shown in Table 5.4. Table 5.3 is 
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Test 1 in Table 5.4. The first six columns in Table 5.4 are the three SVM classifiers 

followed by their testing accuracies from Table 4.1a. The next columns show the average 

accuracies and the maximum accuracies of the three SVM classifiers. The last column 

shows the model accuracies by combining the corresponding three base SVM classifiers 

in the columns 2-7.  

 

Table 5.4 Accuracies of individual SVM classifiers, fuzzy fusion model (T1FFSVM), and 
genetic fuzzy fusion model (GFFSVM) (Colon Tumor) 

 
Test SVM1 Accuracy 

(%) SVM2 Accuracy 
(%) SVM3 Accuracy 

(%) Avg. Max T1FFSVM GFFSVM 

1 poly_1 83.9 poly_3 79.2 rbf_0.01 64.7 75.9 83.9 87.1 88.8

2 poly_1 83.9 poly_2 85.5 rbf_0.1 64.7 78.0 85.5 88.8 88.8

3 poly_4 75.5 rbf_1 82.2 rbf_0.01 64.7 74.1 82.2 83.8 85.1

4 poly_1 83.9 poly_3 79.2 poly_5 75.5 79.5 83.9 80.6 82.3 

5 rbf_0.0001 64.7 rbf_0.01 64.7 rbf_1 82.2 70.5 82.2 87.1 88.4

6 poly_5 75.5 rbf_0.001 64.7 rbf_0.1 64.7 68.3 75.5 78.8 85.0

Avg.       74.4 82.2 84.3 86.1 

 

 

For ovarian cancer data, we repeat exactly the same process above. Table 5.5 lists the 

results of six tests by combining three selected base SVM classifiers. Just like colon 

cancer data, ovarian cancer data are also tested in 4-fold cross validation (n=4) and the 

model is constructed in 3-fold cross validation (m=3). Table 5.5 shows the average model 

accuracies and individual SVM accuracies of 4-fold testing data. 
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The curves in Figure 5.5 illustrate the six tests shown in Table 5.4 and Table 5.5 by 

comparing individual SVM classifiers with the ones from the genetic fuzzy fusion model, 

and from the fuzzy fusion model designed in Chapter 4 for the both datasets. 
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(b) Ovarian Cancer 

 

Figure 5.5 Comparison of individual SVM classifiers with fuzzy fusion model and 
genetic fuzzy fusion model 
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Table 5.5 Accuracies of individual SVM classifiers, fuzzy fusion model (T1FFSVM), and 
genetic fuzzy fusion model (GFFSVM) (Ovarian Cancer) 

 
Test SVM1 Accuracy 

(%) SVM2 Accuracy 
(%) SVM3 Accuracy 

(%) Avg. Max T1FFSVM GFFSVM 

1 poly_1 100 poly_3 98.4 rbf_0.01 88.9 95.8 100.0 98.8 99.2 

2 poly_1 100 poly_2 99.6 rbf_0.1 64.0 87.9 100.0 99.6 100.0

3 poly_4 97.6 rbf_1 64.0 rbf_0.01 88.9 83.5 97.6 98.0 98.4

4 poly_1 100 poly_3 98.4 poly_5 95.7 98.0 100.0 99.2 99.6 

5 rbf_0.0001 89.7 rbf_0.01 88.9 rbf_1 64.0 80.9 89.7 92.2 93.7

6 poly_5 95.7 rbf_0.001 98.8 rbf_0.1 64.0 86.2 98.8 98.4 98.8

Avg.       88.7 97.7 97.7 98.3 

 

5.4.4 Performance Analysis 

Since we use cross validation to build the model and also use cross validation to test 

the model, the performance should be fairly estimated.  

From Table 5.4, Table 5.5 and Figure 5.5, we can see that the proposed genetic fuzzy 

classifier fusion model performs better than any of its composing individual SVM 

classifiers in most cases. In more detail, during five of six tests on colon tumor data in 

Table 5.4 and four of six tests on ovarian cancer data in Table 5.5, the composite 

classifier can beat the best individual SVM classifier or has the same performance as the 

best. The model in the rest tests has very close performance to the best SVM. Therefore, 

we have good enough reason to conclude that the proposed genetic fuzzy fusion model 

performs reliable and robust generalization ability comparing with its individual SVM 

classifiers. 

In particular, for Test 1, 5, 6 on colon tumor data in Table 5.4 and Test 5 on ovarian 

cancer data in Table 5.5, the accuracies of three selected SVM classifiers are relatively 

low (<83.9%, 79.2%, 64.7%>, <64.7%, 64.7%, 82.2>, <79.5%, 64.7%, 64.7%>, <89.7%, 

88.9%, 64.0%>), while the genetic fuzzy classifier fusion model can achieve higher 
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accuracies of 88.8%, 88.4%, 85.0%, and 93.7% by combining the three relatively poor 

individual SVM classifiers. They are good examples to show that weak individual 

classifiers are able to complement with each other well in the composite classifier to 

reach a higher performance. 

Table 5.4, Table 5.5 and Figure 5.5 also demonstrate that the genetic fuzzy classifier 

fusion model outperforms the fuzzy classifier fusion model proposed in Chapter 4 in 

general. The genetic fuzzy system is capable of adapting optimal fuzzy MFs and 

therefore optimal fuzzy classifier fusion model. In more detail, for all the tests on colon 

tumor data and ovarian cancer data, the genetic fuzzy fusion model achieves better 

performance than the fuzzy fusion model. This makes much sense since the initial 

parameters in the genetic fuzzy fusion system are set in a way as if the initial stage of the 

genetic fuzzy fusion model is same as the fuzzy fusion model defined in Chapter 4. The 

experimental results also show that GAs are powerful and robust techniques to tune and 

adapt an optimal or near optimal FLS. 
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Chapter 6 Classifier evaluation and AUC-based classifier fusion model 

Traditionally, evaluation of a classifier performance is done by minimizing an 

estimation of a generalization error or some other related measures. However, accuracy 

or error of a classifier is not necessarily a good one. In fact, when the data distribution is 

strongly unbalanced, accuracy may be misleading since the all-positive or all-negative 

classifier may achieve a very good classification rate. Accuracy cannot maintain ranking 

data examples to be classified as well, which is often desirable for researchers. 

6.1 ROC Analysis for Binary Classification 

ROC curve can be a good alternative for model evaluation, since they can make the 

difference between errors on positive or negative examples. AUC, which is the area 

under an ROC curve, has been shown to be a better measure than accuracy when 

assessing classifier performances (Ling et al., 2003; Huang and Ling, 2005). 

6.1.1 Confusion Matrix 

For a binary classification problem, there are four possible outcomes for a testing 

example: true positive (TP) if the example is positive and classified as positive, false 

negative (FN) if the example is positive but classified as negative, true negative (TN) if 

the example is negative and classified as negative, and false positive (FP) if the example 

is negative but classified as positive. For a set of testing examples, a confusion matrix can 

be constructed as shown in Table 6.1 to illustrate the classification distribution of testing 

examples (Fawcett, 2003). 
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Table 6.1 Confusion matrix of a classifier  
 

 Predicated 
Positive 

Predicated 
Negative 

Total 
Examples 

Actual 
Positive 

(TP) True 
Positives 

(FN) False 
Negatives N +

Actual 
Negative 

 (FP) False 
Positives 

(TN) True 
Negatives N -

 

 

If the number of positives and negatives are denoted by N + and N - respectively, 

where N + = TP + FN and N - = FP + TN, then, the true positive rate (TPR) and the false 

positive rate (FPR) are defined as follows. 

+=
N
TPTPR  −=

N
FPFPR  (6.1) 

And the classification accuracy is defined as: 

−+ +
+

=
NN
TNTPAccuray  (6.2) 

6.1.2 ROC Graph 

An ROC graph depicts the trade-off between TPR and FPR (ROC curve plots TPR on 

the Y axis against the FPR on the X axis) as shown in Figure 6.1. It can also be viewed as 

a tradeoff between benefits (true positives) and costs (false positives) (Fawcett, 2003). 
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Figure 6.1 An ROC curve 

 

Some classifiers are discrete classifiers, such as decision trees, which are designed to 

produce only a positive/negative class label on each example. Such a discrete classifier 

can only generate a single confusion matrix. Thus only a single point can be drawn in the 

ROC graph. However, some other classifiers such as SVMs or neural networks yield a 

numeric value on each example representing the degree to which an example belongs to a 

class. This type of classifiers is called probabilistic classifiers (Fawcett, 2003). When 

various decision thresholds are applied to probabilistic classifier outputs to classify data 

examples (positive if the classifier output is above the threshold, and negative otherwise), 

different confusion matrixes can be obtained. Therefore, a series of points can be plotted 

in a ROC plane with pairs of {FPR, TPR} as their coordinates. Each threshold results in 

one point on the ROC curve representing the classifier which is generated by using this 

threshold as the cutoff point. The points (0,0) and (1,1) in the ROC curve represent two 

default classifiers which always produce negative and positive outputs respectively. We 
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may think the default classifiers are generated by using +∞ and –∞ as the thresholds. 

Therefore, an ROC curve of a probabilistic classifier can be viewed as an aggregation of 

classifiers from all possible decision thresholds (Qin, 2005). 

6.1.3 AUC: the Area under the Curve of an ROC 

An ROC curve is a two-dimensional depiction of classifier performance and its 

quality can be summarized in one value by calculating the area under the ROC curve 

(AUC). AUC represents the probability that one classifier ranks a randomly chosen 

positive example higher than a randomly chosen negative example (Fawcett, 2003). In 

other words, AUC depicts the quality of ranking of data examples by the classifier (Qin, 

2005). According to Hand (Hand and Till, 2001), AUC can be simply calculated in the 

following formula: 

−+
=

++∑
+

+−
=

NN
NNr

AUC
N

i i1
2/)1(

 (6.3) 

where ri denotes the rank of ith positive example in the ranking list if we arrange the 

classification results of data examples in ascending order. 

To illustrate how to use this formula to calculate the AUC value of a classifier, let’s 

take one example. Suppose we apply two classifiers on a set of testing data with 10 

examples. Table 6.2 shows the classification results from the two classifiers and the ranks 

of data examples in the each classification result. The AUC values of the two classifiers 

can be calculated as follows: 

96.0
5*5

2/6*5)109875(
1 =

−++++
=AUC  

8.01 =Accuracy  
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5*5

2/6*5)98761(
2 =

−++++
=AUC  

8.02 =Accuracy  

 

Table 6.2 Classification ranks of data examples from two classifiers 
 

Classifier 1 - - - - + - + + + + 

Rank     5  7 8 9 10 

Classifier 2 + - - - - + + + + - 

Rank 1     6 7 8 9  

 

 

We can see that two classifiers have the same accuracy but different AUC values. 

Because AUC can maintain the ranks of data examples to be classified and distinguish 

the different errors from positive or negative data examples, AUC is a better measure 

than accuracy which makes no difference between positive errors or negative errors. 

6.2 Genetic Fuzzy SVM Classifier Fusion Based on AUC 

When we construct the classifier fusion models in Chapter 4 and Chapter 5, we use 

classification accuracy as one of the system parameters to estimate the classifier 

performance. This accuracy metric might not be appropriate if the data distribution is 

unbalanced or skewed. Considering AUC is a better classifier performance measure, we 

may replace the accuracy input in the fusion model with AUC value so that the model 

may be further improved. 

The AUC based classifier fusion model is constructed in the similar way to create the 

genetic fuzzy classifier fusion model described in Figure 5.1 in Chapter 5 with one 
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exception: accuracy in the figure will be replaced by AUC. The system also has three 

phases. In Phase I, training data are trained by different individual SVM classifiers. 

Validation data are classified to obtain AUC values of individual SVM classifiers and 

distances of validation data examples to SVM hyperplanes. In Phase II, a GFS is 

constructed and the fuzzy MFs are tuned by GAs in cross validation manner. Finally, in 

phase III, testing data are fed into the optimal fuzzy fusion system to make the final 

decision and get the model AUC and accuracy. 

The fuzzy MFs of AUC inputs are defined similar to the ones of accuracy inputs in 

Chapter 5. Each AUC is also represented by two fuzzy sets: low and high. All the input 

and output MFs in the system are not fixed and will be tuned by GAs. Corresponding to 

the change, the accuracies in the fuzzy rules in Chapter 5 will also be replaced by AUC.  

6.3 Experiments on the AUC-based Classifier Fusion Model 

The experiments reported in Chapter 5 are repeated by using AUC classifier 

performance measure in the model. Table 6.3 and 6.4 show the experimental results on 

Colon Tumor data and Ovarian Cancer data respectively. 

 

Table 6.3 AUC and accuracies of individual SVM classifiers, genetic fuzzy fusion model 
(GFFSVM) in Chapter 5, and AUC-based fuzzy fusion model (Colon Tumor) 

 
Test SVM1 SVM2 SVM3 Avg. 

AUC 
Max 
AUC 

Avg. 
Accuracy 

Max 
Accuracy GFFSVM Fusion 

AUC 
Fusion 

Accuracy

1 poly_1 poly_3 rbf_0.01 0.86 0.89 75.9 83.9 88.8 0.92 88.8

2 poly_1 poly_2 rbf_0.1 0.88 0.89 78.0 85.5 88.8 0.89 90.0

3 poly_4 rbf_1 rbf_0.01 0.85 0.88 74.1 82.2 85.1 0.91 85.1

4 poly_1 poly_3 poly_5 0.83 0.89 79.5 83.9 82.3 0.91 85.2

5 rbf_0.0001 rbf_0.01 rbf_1 0.87 0.88 70.5 82.2 88.4 0.88 88.8

6 poly_5 rbf_0.001 rbf_0.1 0.85 0.88 68.3 75.5 85.0 0.89 83.3

Avg.    0.86 0.89 74.4 82.2 86.4 0.90 86.9 

70

 



 

Table 6.4 AUC and accuracies of individual SVM classifiers, genetic fuzzy fusion model 
(GFFSVM) in Chapter 5, and AUC-based fuzzy fusion model (Ovarian Cancer) 

 
Test SVM1 SVM2 SVM3 Avg. 

AUC 
Max 
AUC 

Avg. 
Accuracy 

Max 
Accuracy GFFSVM Fusion 

AUC 
Fusion 

Accuracy

1 poly_1 poly_3 rbf_0.01 0.99 1.00 95.8 100.0 99.2 1.00 100.0

2 poly_1 poly_2 rbf_0.1 0.95 1.00 87.9 100.0 100.0 1.00 100.0

3 poly_4 rbf_1 rbf_0.01 0.94 1.00 83.5 97.6 98.4 1.00 99.7

4 poly_1 poly_3 poly_5 0.99 1.00 98.0 100.0 99.6 1.00 100.0

5 rbf_0.0001 rbf_0.01 rbf_1 0.94 0.98 80.9 89.7 93.7 0.99 99.2

6 poly_5 rbf_0.001 rbf_0.1 0.99 1.00 86.2 98.8 98.8 1.00 99.9

Avg.    0.97 1.00 88.7 97.7 98.3 1.00 99.8 

 

 

From Table 6.3 and 6.4 we may see that the proposed AUC-based classifier fusion 

model demonstrates stable and robust classification capabilities.  It outperforms the best 

of three individual SVMs in terms of both AUC and accuracy. It indicates that AUC-

based classifier fusion model not only achieves nice AUC performance, but also excellent 

accuracy at the same time. 

From Table 6.3 on colon tumor experiments we can see, in all the six tests, the model 

accuracy is better than the best accuracy of three SVM classifiers. For example, in Table 

5, the model achieves 88% accuracy, but the best accuracy of the three classifiers is only 

about 82%. For all the six tests, the model achieves better AUC values or the same values 

as the best AUC of the three individual SVM classifiers. 

For Table 6.4 on ovarian cancer experiments we can see, in all the six tests, the model 

accuracy is better than the best accuracy or similar to the best. For Test 5, the model 

achieves 99% accuracy, but the best accuracy is only about 90%. For all the six tests, the 

model also achieves a better AUC or the same AUC as the best AUC of the three 

individual SVM classifiers. 
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We can conclude that the classifier fusion model that optimizes AUC measure not 

only achieves nice AUC performance, but also excellent accuracy as well (Ling and 

Zhang, 2002). The genetic fuzzy SVM fusion model based on AUC measure produces a 

combined classifier with the best AUC naturally because of the properties of AUC. This 

means that the accurate ranking of data examples is maintained and it provides 

researchers more interpretation of data examples than mere positive or negative 

classification results. 

72

 



 

Chapter 7 Combining SVM Classifiers Using Type-2 Fuzzy Logic 

In a FLS, uncertainties are handled by using fuzzy sets, which are represented by MFs. 

Type-1 fuzzy sets handle the uncertainties by using precise and crisp MFs and 

membership grades of type-1 fuzzy sets are any crisp values in [0, 1]. But once the MFs 

are determined, all the uncertainties will disappear (Liang and Mendel, 2001; Zeng and 

Liu, 2006). Unlike in the type-1 FLS, the MFs of type-2 fuzzy sets themselves are fuzzy 

such that membership grades of type-2 fuzzy sets are fuzzy sets in [0, 1] instead of crisp 

values in [0, 1]. Type-2 fuzzy sets are especially useful to handle the situations where the 

shapes, positions or other parameters of MFs are uncertain.  

To better handle the uncertainties in classification data and in MFs, type-2 fuzzy sets 

and FLS are applied to construct the SVM fusion model. General type-2 FLS is 

computationally difficult but the process can be simplified a lot if type-2 fuzzy sets are 

defined as interval type-2 fuzzy sets. Therefore, we construct one SVM fusion model 

using interval type-2 FLS in order to achieve better performance than type-1 SVM fuzzy 

fusion model.  

7.1 Type-1 vs. Type-2 Fuzzy Sets and MFs 

When we have difficulty to measure the exact value of one object, we know we can 

apply type-1 fuzzy sets and FLS to solve the problem and obtain a fuzzy set, which is 

generally more reasonable than a crisp set (Karnik and Mendel, 1998). This is the exact 

motivation that the concept of fuzzy logic was introduced by Zadeh (Zadeh, 1965). The 

theory of fuzzy logic has been applied to many real applications to handle the 

uncertainties associated with FLS inputs and outputs. However, the ability of type-1 
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fuzzy sets and FLS to handle uncertainties is limited because type-1 fuzzy sets handle 

uncertainties by defining precise and crisp MFs. Once the MFs are determined, all the 

uncertainties will be precisely described (John, 1998; Mendel, 2001; Karnik and Mendel, 

1998). It is much likely that the defined type-1 MFs will not be the best choice for a real 

application. Therefore, the way to define MFs in type-1 FLS restricts the ability of type-1 

fuzzy sets and FLS to model and minimize the effect of uncertainties.  

A type-2 FLS has the potential to outperform a type-1 FLS because a type-2 fuzzy set 

is represented by more parameters than a type-1 fuzzy set is (Mendel, 2001). Unlike a 

type-1 fuzzy set whose MF is defined precisely, the MF of a type-2 fuzzy set is defined 

blurrily and consisted of a set of admissible type-1 MFs called the footprint of 

uncertainty (FOU) of a type-2 MF (Liang et al., 2000; Liang and Mendel, 2000). As a 

result, the membership grade of a type-2 fuzzy set is a fuzzy set in [0, 1] instead of a crisp 

value in [0, 1] for a type-1 fuzzy set. Once a type-2 MF is reduced to a type-1 MF, the 

blurriness of the MF will no longer exist and it becomes a precise MF as defined in a 

type-1 FLS. Therefore, type-2 fuzzy logic can be viewed as a generalization of type-1 

fuzzy logic, and accordingly, type-2 fuzzy sets and MFs can also be considered as an 

extension of type-1 fuzzy sets and MFs with the increased ability to handle uncertainties 

existing in MFs and FLS. In the following sections, we will briefly introduce the theory 

of type-2 fuzzy sets and FLS. 

7.2 Structure of Type-2 FLS 

The distinction between type-1 and type-2 fuzzy logic is associated with the nature of 

the MFs, but the structure of a type-2 FLS shown in Figure 7.1 looks similar to that of a 

type-1 FLS. It also includes four components in general: fuzzifier, fuzzy rule base, fuzzy 
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inference engine, and output processor. Type-2 fuzzy rules remain the same as in the 

type-1 FLS and also are expressed in IF-THEN statements but with the antecedents 

and/or the consequences of rules replaced by type-2 fuzzy sets. 

 

  

 

Figure 7.1  The structure of a type-2 FLS 

 

However, there is one significant difference between a type-2 FLS and a type-1 FLS. 

That is, the output processor of a type-2 FLS needs one additional step: type-reducer just 

before defuzzifier. Type reduction is necessary because, unlike a type-1 FLS whose 

output is a type-1 fuzzy set, the output of a type-2 FLS is a type-2 fuzzy set which has to 

be reduced to a type-1 fuzzy set before defuzzifier is able to reduce the type-1 output 

fuzzy set further into a crisp value. 

7.3 Interval Type-2 FLS 

7.3.1 Interval Type-2 Fuzzy Sets and MFs 

As an extension of an original type-1 fuzzy set, a type-2 fuzzy set, denoted by A~ , is 

characterized by a type-2 MF ),(~ uxAµ , where Xx∈ and ]1,0[⊆∈ xJu , and can be 
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expressed as (Mendel and John, 2002): 

),/(),(~
~ uxuxA

Xx Ju A
x

∫ ∫∈ ∈
= µ      Jx ⊆ [0, 1] (7.1) 

where ∫ ∫ denotes union over all admissible x and u. Jx ⊆ [0,1] is called primary 

membership of x. The primary membership defines the domain of a type-2 fuzzy 

membership grade. Unlike a type-1 fuzzy set whose membership grade is a crisp value in 

[0, 1], the membership grade of a type-2 fuzzy set is a type-1 fuzzy set in [0, 1] (Liang, 

2000). 

The uncertainty in the primary memberships of a type-2 fuzzy set is called FOU, 

which is defined as the union of all primary memberships and consists of a bounded 

region (Mendel and John, 2002) as shown in Fig. 1a. The upper bound is called upper 

MF and denoted by )(~ xAµ . Similarly, the lower bound is called lower MF and denoted 

by )(~ x
A

µ . The both upper and lower MFs are type-1 MFs and denote the maximum and 

minimum membership grade of FOU respectively (Liang, 2000). FOU provides a way to 

describe the uncertainties in shapes or other parameters of MFs. When the uncertainties 

of MFs disappear, the type-2 fuzzy sets reduce to type-1 fuzzy sets whose MFs can be 

precisely determined. 

Corresponding to each primary membership, there is a secondary membership. The 

secondary membership is also defined in [0, 1] and used to represent the possibilities of 

the primary membership (Liang and Mendel, 2000). Many functions can be chosen to 

define a secondary MF. The name that is used to describe the entire type-2 MF is relevant 

to the name of its secondary MFs (Mendel, 2001). For example, when the secondary MF 

are an interval set as shown in Figure 7.2b, that is, when the secondary membership grade 

are either zero or one (fx(u)=1,  ∀u ∈ Jx ⊆ [0,1] and fx(u)=0,  ∀u ∉ Jx, where Jx is the 
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primary MF of x and fx(u) is the secondary MF), the type-2 fuzzy set is called an interval 

type-2 fuzzy set (Liang, 2000; Liang and Mendel, 2000). Interval secondary memberships 

reflect a uniform uncertainty at the primary memberships (Mendel, 2001). Due to its 

characteristic of unity, the interval set can be represented just by its right and left end-

points which are located on the upper and lower MFs in FOU. One cardinal advantage of 

defining interval secondary MFs is that the computation of a type-2 FLS can be 

significantly simplified (Mendel, 2001; Liang and Mendel, 2000). Specifically, when 

type-2 fuzzy sets are interval fuzzy sets, the process of type reduction in a type-2 FLS can 

be calculated in reasonable computational complexity. General type-2 FLS is 

computationally intensive. Because of its excellent ability to handle uncertainties in real 

applications and relevantly simple calculation, the interval type-2 FLS has succeeded to 

solve many real problems on decision making (Liang, 2000; Hagras, 2004; Liang and 

Mendel, 2001; Zeng and Liu, 2006; Aguero and Vargas, 2005). In the following sections, 

we will only consider interval type-2 FLS. 
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Figure 7.2 (a) FOU and interval type-2 MFs; (b) the secondary memberships are all equal 

to 1 for an interval type-1 set corresponding to x = x .1
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7.3.2 Fuzzy Inference of an Interval Type-2 FLS 

Fuzzy inference engine combines fired fuzzy rules and maps crisp inputs into type-2 

output fuzzy sets. The antecedents in fuzzy rules are connected by using the meet 

operation, the firing strength of the input fuzzy sets are combined with output fuzzy sets 

using the extended sup-star composition, and multiple rules are combined using the join 

operation (Mendel, 2001). 

In our interval type-2 FLS, we use the meet operation under product t-norm, so the 

firing strength is an interval type-1 set (Mendel, 2001): 

f i(x) = [ if (x), if (x) ] = [ if , if ] (7.2) 

where if (x) and if (x) can be written in (7.3) and (7.4), where * denotes the product 

operation: 

)(*.......*)()( ~1~
1

pFF
i xxxf i

p
i µµ=  (7.3) 

)(*.......*)()( ~1~
1

pFF
i xxxf i

p
i µµ=  (7.4) 

7.3.3 Type Reduction of an Interval Type-1 FLS 

The results from the inference engine are type-2 fuzzy sets. They must be reduced to 

type-1 fuzzy sets so that defuzzifier can be applied to generate crisp outputs. Type-

reducer is the additional step different from the type-1 FLS. In this study, center-of-sets 

(COS) type reducer algorithm developed by Karnik and Mendel (Mendel, 2001; Karnik 

et al., 1999] is used since it requires reasonable computational complexity comparing 

with expensive centroid type reducer.  
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COS type reducer can be divided into two phases. The first phase is to calculate the 

centroids of type-2 fuzzy rule consequences. The second phase is to calculate the reduced 

fuzzy sets.  

1) Calculation of the centroids of rule consequences: Suppose the output of an 

interval type-2 FLS is represented by interval type-2 fuzzy sets tG~ , where t = 1, …, T, T is 

the number of output fuzzy sets. In this stage, we will calculate the centroids of all the T 

output fuzzy sets first which will be used in the next phase to calculate the reduced fuzzy 

sets. The centroid of ith output fuzzy set is a type-1 interval set and can be expressed in 

the following formula (Mendel, 2001; Karnik et al., 1999): 

ty
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∫ ∈
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 (7.5) 

where  and are the leftmost and rightmost point of .   t
ly t

ry ty

Figure 7.3 displays Karnik-Mendel iterative algorithm (Mendel, 2001; Karnik et al., 

1999) to compute the rightmost point  for each type-2 output fuzzy set, where Z is the 

number of discretised points for each output fuzzy set, , , 

and , z =1…Z. Figure 7.4 shows how to calculate , ,  and 

needed by the algorithm. The leftmost point can be calculated in the similar way 

except at step 4 in Fig. 3, set θ

t
ry

],[ zzy RLJ
z
= 2/)( zzz RLh +=

2/)( zzz LR −=∆ zh zL zR

z∆
t
ly

z = hz + ∆z when z ≤ e and θz = hz - ∆z when z > e+1. It has 

been proved that this iterative procedure can converge in at most Z iterations to find  

or  (Mendel, 2001). 

t
ly

t
ry

 

79

 



 

    
1. Arrange yz in ascending order with  y1≤ y2≤ … ≤ yZ; 

2. Set θz = hz for z = 1, …, Z; Compute 
∑
∑
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== Z

z z

Z

z zzy
y
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1'
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θ
 

3. Find e ∈ [1, Z-1] such that ye ≤  y’ ≤ ye+1; 
4. Set θz = hz - ∆z for z ≤ e and  θz = hz + ∆z for z > e; Compute 

∑
∑

=

== Z

z z

Z

z zzy
y

1

1''
θ

θ
; 

5. Stop if ; Otherwise, set ''' yy == ''' yy =  and return to step 3; 

 

 

 

 

 

 

Figure 7.3 Karnik-Mendel iterative procedure to calculate . t
ry

 

µ  

 

Figure 7.4 Calculation of the parameters needed by each yz in the procedure in Figure 7.3 

 

2) Calculation of the reduced type-1 fuzzy sets: To compute a type-reduced set, it is 

sufficient to compute its upper and lower bounds of the reduced set yl and yr, which can 

be expressed as follows: 
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where and are the firing strength and the centroid of the output fuzzy set of ith rule 

(i = 1, …, M) associated with y

i
lf i

ly

l respectively; and are the firing strength and the 

centroid of the output fuzzy set of ith rule (i = 1, …, M) associated with y

i
rf i

ry

r.  

To compute yr, we use the iterative procedure in Figure 7.5 developed in (Mendel, 

2001; Liang and Mendel, 2000).  yl can be computed in the similar way by setting 

ii
r ff =  for i ≤ R and  ii

r ff = for i > R.  

 

1. Arrange the pre-calculated i
ry  from Fig. 3 in ascending order; i.e. 

≤ ≤ … ≤ ; 1
ry 2

ry M
ry

2. Set 2/)( iii
r fff +=  for i = 1, …, M; Compute yr’ using 

Equation (11);  
3. Find R ∈ [1, M-1] such that ; 1' +≤≤ R

rr
R
r yyy

4. Set ii
r ff = for i  ≤  R and  ii

r ff =  for i > R; Compute yr’’ using 
Equation (11); 

5. Stop if ; Otherwise, set ''' rr yy == ''' rr yy =  and return to step 3; 

 

 

 

 

 

 

Figure 7.5 Iterative procedure to calculate  ry

 

The iterative procedure is proved to converge in no more than M iterations to 

compute yr and no more than M iterations to find yl (Liang and Mendel, 2000). 

7.3.4 Defuzzification 

The final output of type-2 FLS is set to the average of yr and yl: 

2
)( rl yyxy +
=  (7.7) 
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7.4 Type-2 Fuzzy SVM Classifier Fusion Model 

7.4.1 Input and Output Interval Type-2 Fuzzy MFs 

When we consider combining the classification results from three SVMs, SVM 

accuracies and distances of one data example to three SVM hyperplanes are reasonable 

inputs for the type-2 FLS. The output of the type-2 FLS is the combined classification 

decision and defined in [-1, 1]. If the defuzzified crisp output from the FLS is less than 

zero, we will consider the data example in the negative class. Otherwise, it is in the 

positive class. So, we have three accuracy inputs and three distance inputs and one 

output. All the inputs and the output are defined as interval type-2 fuzzy sets as shown in 

Figure 7.6. 

µ

 

Figure 7.6 Interval type-2 fuzzy MFs 
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Each accuracy input is represented by two interval type-2 fuzzy sets: high and low, 

and each distance input is also described by two interval type-2 fuzzy sets: positive and 

negative. The output is represented by seven interval type-2 fuzzy sets. 

1) Type-2 MFs for accuracy inputs: As in type-1 fuzzy fusion model, each accuracy 

input is represented by two type-2 fuzzy sets. We set the minimum and maximum 

accuracies as the two bounds of the domains of the accuracy MFs such that the MFs are 

more sensitive to the changes of accuracy inputs than the ones by setting the domain to 

the entire range [0%, 100%]. The admissible ranges of the interval type-2 MFs are set to 

around 2%. 

2) Type-2 MFs for distance inputs: Each distance input is represented by two type-2 

fuzzy sets. The base point of “Negative” triangle MF is set to around +0.5 and the base 

point of “Positive” MF is set to around -0.5 as shown in Figure 7.6b. The admissible 

range of the interval type-2 MFs is set to 0.1~0.3. 

3) Type-2 MFs for the output:  There are sixteen interval type-2 fuzzy sets to 

represent the output. The admissible range of the type-2 MFs is set to around 0.1. 

7.4.2 Fuzzy Rule Base 

Since the system has three accuracy inputs and three distance inputs from three SVM 

hyperplanes, and each accuracy and each distance have two possibilities respectively, 

there are 2 ^ 6 = 64 fuzzy rules in total. The ith rule is defined as follows (i = 1...64): 

IF a1 is iA1
~ and a2 is iA2

~  and a3 is iA3
~  and d1 is iD1

~ and d2 is iD2
~ and d3 is iD3

~ , 

THEN gi is iO~  (i = 1...64). 
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where iA1
~ , iA2

~  and iA3
~ in {Low, High}, iD1

~ , iD2
~  and iD3

~  in {Negative, Positive}, and iO~ in 

{ 1
~O , ..., 7

~O }. 

When we decide the consequences of the fuzzy rules, we consider both the accuracy 

inputs and the distance inputs of three SVMs in the real classification. If all the 

accuracies of three SVM are high and they all classify one data example as the positive 

distances, the consequence of the corresponding rule is the output fuzzy set 16
~O , 

indicating the data example is more likely in the positive class. On the other hand, if all 

three accuracies are high and all three distances are negative, the consequence of the 

corresponding rule is the output fuzzy set 1
~O , indicating the data example is more likely 

in the negative class. Based on the same consideration, we determine the consequences of 

other rules. The output fuzzy sets of the fuzzy rule consequences are assigned according 

to Table 4.1. 

7.4.3 Fuzzy Inference and Output Processing 

In the inference engine of the type-2 fuzzy SVM fusion model, we use the meet under 

the product t-norm operation and the join under the maximum operation and the extended 

sup-star composition. We use center-of-sets type-reducer algorithm described in Figure 

7.3 and Figure 7.5 in Section 7.3 to reduce type-2 output fuzzy sets into type-1 sets. 

When we calculate the centroid of an output type-2 fuzzy set, we discretise the domain of 

the output type-2 fuzzy set into 50 points (Z = 50). After the type-reduction, the reduced 

type-1 fuzzy sets will be defuzzified to produce a crisp value in [-1, 1], the domain of the 

output. If the crisp output is less than zero, we consider the data example in the negative 

class. Otherwise, it belongs to the positive class. 
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In our experiments, the iterative procedure shown in Figure 7.3 to compute the 

centroids of the output type-2 fuzzy sets and the iterative procedure in Figure 7.5 to 

compute the two bounds of reduced type-1 sets usually converge in less than 5 iterations 

which are very fast though we set the discrete level to 50 (Z = 50) and the total number of 

rules is 64 (M = 64). 

7.5 Experiments on Biomedical Cancer Data 

The two datasets introduced in Chapter 5 from Kent Ridge Biomedical Data Set 

Repository (Li and Liu, 2003) have been used to estimate the performance of the type-2 

fuzzy SVM fusion model. The data in Phase I of the model are classified using SVMlight 

(Joachims, 1999). The type-2 fuzzy SVM fusion system to combine three SVM 

classifiers has been implemented in C program. All the software is executed under a PC 

window system with P4-2.80 GHz of CPU and 768 MB of RAM. 

7.5.1 Experimental Results 

The selected SVM classifiers have been combined in the proposed type-2 fuzzy 

classifier fuzzy model for each dataset. And the model accuracies are compared with the 

testing accuracies in Table 4.2. Table 7.1a-b show the experimental results from the type-

2 fuzzy classifier fuzzy model and the comparison results from the type-2 fuzzy fusion 

model, the individual classifiers, the type-1 based fuzzy fusion model in Chapter 4, and 

the genetic fuzzy classifier fusion model defined in Chapter 5. The comparison is also 

illustrated in Figure 7.7. 
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Table 7.1(a) Accuracies of individual SVM classifiers, fuzzy fusion model (T1FFSVM), 
genetic fuzzy fusion model (GFFSVM), and type-2 fuzzy fusion model (T2FFSVM) 

(Colon Tumor) 
 

Test SVM1 Accuracy 
(%) SVM2 Accuracy 

(%) SVM3 Accuracy 
(%) Avg. Max T1FFSVM GFFSVM T2FFSVM 

1 poly_1 83.9 poly_3 79.2 rbf_0.01 64.7 75.9 83.9 87.1 88.8 90.3

2 poly_1 83.9 poly_2 85.5 rbf_0.1 64.7 78.0 85.5 88.8 88.8 90.3

3 poly_4 75.5 rbf_1 82.2 rbf_0.01 64.7 74.1 82.2 83.8 85.1 90.3

4 poly_1 83.9 poly_3 79.2 poly_5 75.5 79.5 83.9 80.6 82.3 80.6 

5 rbf_0.0001 64.7 rbf_0.01 64.7 rbf_1 82.2 70.5 82.2 87.1 88.4 85.5

6 poly_5 75.5 rbf_0.001 64.7 rbf_0.1 64.7 68.3 75.5 78.8 85.0 82.0

Avg.       74.4 82.2 84.3 86.1 85.9 

 

 

Table 7.1(b) Accuracies of individual SVM classifiers, fuzzy fusion model (T1FFSVM), 
genetic fuzzy fusion model (GFFSVM), and type-2 fuzzy fusion model (T2FFSVM) 

(Ovarian Cancer) 
 

Test SVM1 Accuracy 
(%) SVM2 Accuracy 

(%) SVM3 Accuracy 
(%) Avg. Max T1FFSVM GFFSVM T2FFSVM

1 poly_1 100 poly_3 98.4 rbf_0.01 88.9 95.8 100.0 98.8 99.2 99.2 

2 poly_1 100 poly_2 99.6 rbf_0.1 64.0 87.9 100.0 99.6 100.0 100.0

3 poly_4 97.6 rbf_1 64.0 rbf_0.01 88.9 83.5 97.6 98.0 98.4 98.8

4 poly_1 100 poly_3 98.4 poly_5 95.7 98.0 100.0 99.2 99.6 99.2 

5 rbf_0.0001 89.7 rbf_0.01 88.9 rbf_1 64.0 80.9 89.7 92.2 93.7 97.3

6 poly_5 95.7 rbf_0.001 98.8 rbf_0.1 64.0 86.2 98.8 98.4 98.8 98.8

Avg.       88.7 97.7 97.7 98.3 98.9 

 

7.5.2 Performance Analysis 

From Table 7.1 and Figure 7.7, we can see that in most test cases, the type-2 based 

SVM fusion model outperforms the best of its three composing individual SVMs and 

achieves higher accuracies. We can also see that in general, the type-2 based fusion 

model has the better performance than the type-1 based fusion model since the type-2 

MFs are characterized by more parameters than type-1 MFs and thus the type-2 based 

fusion model is able to deal with uncertainties in a better way.  
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(b) Ovarian Cancer 
 

Figure 7.7 Comparison of individual SVM classifiers with fuzzy fusion model, genetic 

fuzzy fusion model, and type-2 fuzzy classifier fusion model 

 

The following gives the detailed analysis about the experimental results from the 

type-2 based fusion model. 

1) Colon tumor dataset:  In five of the six tests (Tests 1-3 and Tests 5-6), the type-2 

fusion model outperforms the best individual SVMs. Even if one or two of the three 
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SVMs have poor accuracy (64.7%), the type-2 fusion model can still achieve high 

accuracies (90.3%). For example, in Test 3, the testing accuracies of the three SVMs are: 

75.5%, 82.2% and 64.7%, while the accuracy from the type-2 model is 90.3%. This is a 

good example to demonstrate that different SVM classifiers can complement each other 

in the type-2 SVM fusion system to achieve a better performance than any of the 

individual SVMs. 

2) Ovarian cancer dataset:  Again in most tests, the type-2 fusion model outperforms 

the best individual SVMs or achieves the same performance. For example, In Test 5, the 

testing accuracies of the three SVMs are: 89.7%, 88.9% and 64.0%, while the accuracy 

from the type-2 model achieves much higher accuracy of 97.3%. 

7.5.3 Comparing with Other Classifier Fusion Methods 

The proposed fuzzy classifier fusion models are also compared with the existing 

classifier fusion methods introduced in Chapter 3, including Majority Vote, Average, 

Product, Minimum, and Maximum of posterior probabilities on the colon tumor dataset. 

The comparison results are listed in Table 7.2. We may see from this table that the 

proposed fuzzy classifier fusion models outperform the most existing classifier fusion 

methods and demonstrate more stable and robust generalization abilities when comparing 

with the composing individual classifiers. Among other fusion methods, product and 

minimum achieve better performance than the other methods. 
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Table 7.2 Comparison of the fuzzy classifier fusion models with the existing fusion 

methods 
 

Testing Cases 
Fusion  

Methods 
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Average 

SVM1 poly_1 poly_1 poly_4 poly_1 rbf_0.0001 poly_5  

SVM2 poly_3 poly_2 rbf_1 poly_3 rbf_0.01 rbf_0.001  

SVM3 rbf_0.01 rbf_0.1 rbf_0.01 poly_5 rbf_1 rbf_0.1  

Avg. 75.9 78.0 74.1 79.5 70.5 68.3 74.4 

Max 83.9 85.5 82.2 83.9 82.2 75.5 82.2 

T1FFSVM 88.8 88.8 85.1 82.3 88.4 85.0 86.1 

T2FFSVM 90.3 90.3 90.3 80.6 85.5 82.0 85.9 

Average 77.8 76.0 66.3 69.7 64.7 63.0 69.6 

Product 86.6 90.2 79.0 86.5 70.7 57.0 78.3 

Majority Vote 77.8 76.0 66.3 71.3 65.6 63.0 70.0 

Minimum 86.6 90.2 79.0 86.5 70.7 76.1 81.5 

Maximum 82.4 85.5 73.0 82.4 71.1 71.3 77.6 
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Chapter 8 Case Study: Relations between Protein Structures and 

Sequences 

8.1 Protein Structures 

Proteins are polymers of amino acids that are synthesized from the gene regions of 

the genome. Figure 2.1 illustrates the process of a protein synthesis. Proteins fold 

hierarchically into four different levels of structures in three dimensions: 

◊ Primary Structure: The amino acid sequence of residues in the peptide chain of a 

protein is called the primary structure. 

◊ Secondary Structure: Due to hydrogen bonds between backbone atoms, local 

regions of the polypeptide fold into three stable secondary structure, including 

alpha helices and beta strands, which are located at the core of a protein, and 

coils, which sit in outer regions. 

◊ Tertiary Structure: Secondary structural elements arrange themselves into the 

tertiary structure on the level of one whole polypeptide chain in three dimensions. 

◊ Quaternary Structure: If there is more than one polypeptide chain in a complex 

protein, several peptide chains interact among themselves and develop the 

quaternary structure. 

Knowing protein structures plays an essential role in understanding their biological 

functions. Scientist and researchers have put a lot of effort in determining protein 

structures. There are two main techniques to determine protein structures: X-ray 

crystallography, and Nuclear Magnetic Resonance (NMR). Most of the protein structures 

available in the PDB database are determined by X-ray crystallography. However, X-ray 
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crystallography is very expensive. The protein structures in the PDB database only 

accounts for a small part of the protein family. 

The prediction of protein structures based on their primary sequences is one of the 

most critical research tasks. Multiple sequence alignment has been the main tool to 

analyze protein sequences and structures for decades. Many computational methods and 

tools for sequence alignment have been proposed, including ClustalW (Thompson et al., 

1994), PSI-BLAST (Altschul et al., 1997), and etc. The basic idea using the sequence 

alignment tools is to find the proteins in the current protein database with the high 

sequence similarity with the target protein and predict the structure of the target protein 

based on the structures of the similar proteins. It’s generally believed that proteins share 

similar structures if they have similar sequences.  

Recent advances in machine learning, statistical learning, and graphical models 

provide more powerful algorithms and methods in understanding the correlation between 

protein sequences and structures. 

8.2 Protein Sequence-Structure Relations 

 Protein residues might be mutated, inserted, or deleted during the evolutionary 

process. However, protein structures and functions are usually conserved. Similar 

sequences form similar structures. How about the other direction? Do the similar local 

structures share similar sequences as well? People usually believe that similar protein 

structures may not share high sequence similarity. This chapter will study this question 

using machine learning methods and the proposed classifier combination methods. 

91

 



 

8.2.1 Generation of Protein Sequence Segments with Certain Structures 

Proteins used in this study come from the Protein Sequence Culling Server (PISCES) 

database (Wang and Dunbrack, 2003), which contains 2290 proteins, among which no 

proteins share more than 25% sequence identities. 

The protein sequence segments are generated by sliding windows with successive 

residues at the length range from 5 to 14. To study the sequence similarity problem, 

sequence segments with a desired secondary local structure are extracted from all 2,290 

studied proteins. For instance, if we are interested in studying the relation between local 

structure of alpha helix with a size of 10 and all its corresponding sequences, the 

sequence segments on an alpha helix with the length of 10 are extracted from the protein 

sequence database. When we say a sequence segment with helix structure, we mean 

every amino acid of the sequence segment is located on the same alpha helix local 

structure, but the two neighbor residues of the sequence segment don’t reside on a helix 

structure. We may represent this helix structure with a length of 10 as 

HHHHHHHHHHHH , where H denotes alpha helix, and H denotes non-helix. Before 

extracting the sequence segments, the secondary structures are first converted to three 

category classes based on the following method: H, G, and I to H; B and E to E; and all 

others to C. Table 8.1 shows the number of sequence segments extracted from the 

PISCES database which are satisfied with the certain local structure at the segment length 

range from 5 to 14, where H, E, and C denote alpha helix, beta strand, and coil structure 

respectively.  
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Table 8.1Number of sequence segments with the desired local structures 
 

Window Size n 5 6 7 8 9 10 11 12 13 14 

HHHH L  932 1,074 1,183 1,167 1,233 1,283 1,266 1,047 1,061 922 

CCCC L  5,310 3,486 2,349 1,591 1,265 947 640 504 357 252 

EEEE L  3,369 3,064 1,980 1,448 923 589 401 231 166 119 

 

 

From Table 8.1, we may see that the number of sequence segments with local 

structure of alpha helix is increased as the slide window size increases and gets its 

maximum value when the window size is 10. Then it is decreased. The number of 

sequence segments with local structure of beta strand or coil is decreased from the 

window size of 5. 

8.2.2 Representation of Protein Sequence Segments 

The sequence segments extracted are represented by their frequency profile defined in 

the HSSP (Homology-Derived Secondary Structure of Proteins) database (Sander and R. 

Schneider, 1991; Dodge et al., 1998). The HSSP frequency profile is based on a multiple 

alignment of the sequence and its structural homologues in the protein database. Each 

residue of a sequence in the HSSP is represented by the alignment occurrence frequency 

of each of 20 amino acids in that position. Thus, a sequence segment with the length of L 

is represented by 20L attributes, among which every 20 attributes are for one amino acid 

in the segment. For example, 200 attributes are used to represent a sequence segment 

with the length of 10.  
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8.2.3 Classification of Protein Sequence Segments 

To study the sequence similarity problem given similar structures, binary 

classification methods are applied. Training or testing data are composed of two classes 

of sequence segments at a certain size: one class from one local structure, such as alpha 

helix, and the other class either from a different local structure, such as beta strand, coil, 

partial helix and partial strand, alpha helix with the two neighbors of the segment also in 

helix, or from all the other structures’ combination. The following describes the scenarios 

considered in discovering whether similar structures share similar sequences:  

◊ Case 1 (Helix vs. All Others): One class of sequence segments comes from alpha 

helix structure and the other class comes from all the combinations of the rest 

other local structures. The purpose of this experiment is to discover whether the 

sequence segments with a certain structure are similar or have the significant 

different from sequence segments in other structures. 

◊ Case 2 (Helix vs. Helix with Helix Neighbors): In the previous scenario, the class 

of sequence segments in the helix structure doesn’t include the sequence segments 

which also have the helix structure but reside in a larger alpha helix structure. In 

other words, it doesn’t include the case in which the neighbors of the sequence 

segments also have the helix structure. The purpose of this experiment is to 

discover whether these two classes of segment sequences are similar. If so, it’s 

not proper for the above experiment to include the sequence segments which 

reside in a larger helix structure. Otherwise, the performance of the experiment 

would be degraded. 
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◊ Case 3 (Helix vs. Strand): One class of sequence segments comes from alpha 

helix structure and the other class comes from beta strand structure. The purpose 

of this experiment is to discover whether the sequence segments on helix structure 

have the significant different from sequence segments on the beta strand structure. 

◊ Case 4 (Helix vs. Coil): One class of sequence segments comes from alpha helix 

structure and the other class comes from coil structure. The purpose of this 

experiment is to discover whether the sequence segments on helix structure have 

the significant different from sequence segments on coil structure. 

◊ Case 5 (Strand vs. Coil): One class of sequence segments comes from beta strand 

structure and the other class comes from coil structure. The purpose of this 

experiment is to discover whether the sequence segments with strand structure 

have the significant different from sequence segments on coil structure. 

The sequence segments with window size of 8, 9, and 10 are classified by SVM 

classifiers. The numbers of features of data examples (here are sequence segments) at the 

window size of 8, 9, and 10 are 160, 180, and 200 respectively since each  residue of a 

segment is represented by 20 attributes according to the HSSP frequency profile. 

8.2.4 Classification Results 

The datasets are classified in 4-fold cross-validation (n=4) by SVMlight (Joachims, 

1999). The regularization parameter C of the SVMs is set to 5 during the training. Two 

kinds of kernels: polynomial kernels and RBF kernels are applied. The degree of the 

polynomial kernels is set to 1...5, and the parameter σ of the RBF kernels is set to 10-4, 

10-3, 10-2, 10-1,100, 101. Table 8.2 shows the testing accuracies from 4 folds on the “Helix 

vs. Coil” testing case with the segment length of 9. Tables 8.3-8.5 show the average 
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testing accuracies in 4-fold cross validation for all the testing cases with the segment 

length of 8, 9, and 10 respectively.  

 

Table 8.2 Testing accuracy (%) in 4-fold cross-validation (helix vs. coil) (size =9) 
 
Testing Accuracy (%) 

Kernels 
1 2 3 4 Avg. 

poly_1 91.05 89.10 91.67 89.42 90.31 

poly_2 89.62 87.50 90.71 89.10 89.23 

poly_3 89.14 87.82 91.51 89.58 89.51 

poly_4 88.50 88.78 91.19 88.94 89.35 

poly_5 87.70 88.46 90.87 88.94 88.99 

rbf_0.0001 50.64 50.64 50.64 50.64 50.64 

rbf_0.001 90.58 88.94 91.03 90.71 90.32 

rbf_0.01 91.69 91.03 92.47 90.22 91.35 

rbf_0.1 92.33 89.74 91.99 91.03 91.27 

rbf_1 84.82 83.33 85.90 82.05 84.03 

rbf_10 51.28 51.12 51.28 50.64 51.08 

 

 

Table 8.3 Average testing accuracy (%) in 4-fold cross-validation (size = 8) 
 

Testing Cases 

Kernels Case 1 
(H <-> All others) 

Case 2 
( HHHH ...  <-> HHHH... ) 

Case 3 
(H <-> E) 

Case 4 
(H <-> C) 

Case 5 
(E <-> C) 

poly_1 71.98 67.06 83.44 88.98 88.78 

poly_2 69.50 64.61 85.09 86.91 86.21 

poly_3 69.41 64.82 85.32 86.33 86.51 

poly_4 69.46 64.35 85.55 86.22 86.05 

poly_5 69.24 64.05 85.55 85.97 85.13 

rbf_0.0001 71.43 64.57 55.37 57.69 52.36 

rbf_0.001 71.30 65.17 80.19 86.62 87.86 

rbf_0.01 72.67 67.74 84.05 89.99 89.37 

rbf_0.1 73.10 69.41 86.00 89.92 88.98 

rbf_1 69.58 66.24 78.51 80.24 86.31 

rbf_10 51.41 50.94 55.75 57.98 52.75 
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Table 8.4 Average testing accuracy (%) in 4-fold cross-validation (size = 9) 

 
Testing Cases 

Kernels Case 1 
(H <-> All others) 

Case 2 
( HHHH ...  <-> HHHH... ) 

Case 3 
(H <-> E) 

Case 4 
(H <-> C) 

Case 5 
(E <-> C) 

poly_1 74.69 69.87 81.31 90.31 87.25 

poly_2 73.84 67.64 86.69 89.23 85.06 

poly_3 74.74 68.62 86.46 89.51 85.42 

poly_4 74.94 67.68 85.95 89.35 85.61 

poly_5 75.79 67.93 85.11 88.99 84.19 

rbf_0.0001 73.76 67.36 57.19 50.64 57.82 

rbf_0.001 74.98 66.91 75.47 90.32 80.03 

rbf_0.01 75.18 69.83 83.21 91.35 88.39 

rbf_0.1 76.64 70.64 85.16 91.27 87.80 

rbf_1 71.37 67.97 79.64 84.03 75.23 

rbf_10 50.41 50.45 57.19 51.08 57.82 

 

 

Table 8.5 Average testing accuracy (%) in 4-fold cross-validation (size = 10) 
 

Testing Cases 

Kernels Case 1 
(H <-> All others) 

Case 2 
( HHHH ...  <-> HHHH... ) 

Case 3 
(H <-> E) 

Case 4 
(H <-> C) 

Case 5 
(E <-> C) 

poly_1 77.71 72.45 82.11 90.45 85.68 

poly_2 75.52 67.19 85.53 90.90 84.64 

poly_3 75.99 66.99 86.11 90.94 85.03 

poly_4 76.16 67.34 85.69 90.40 84.12 

poly_5 76.73 66.10 84.40 90.04 81.97 

rbf_0.0001 49.47 66.88 68.54 57.54 61.66 

rbf_0.001 77.59 68.24 68.54 89.15 64.00 

rbf_0.01 79.00 71.75 84.51 92.20 87.31 

rbf_0.1 78.92 71.44 85.68 91.97 87.70 

rbf_1 71.30 65.90 72.07 79.47 68.17 

rbf_10 49.51 50.74 68.54 57.54 61.66 
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8.2.5 Classification Result Analysis 

From Table 8.3-8.5, we may see that for the three window sizes, Test Case 4 (helix 

vs. coil) has the highest classification accuracies (90-92%), Test Case 5 (strand vs. coil) 

has the second highest (87-89%), Test Case 3 (helix vs. strand) has the third performance 

(86%), Test Case 1 (helix vs. all others) has the fourth (73-78%), and the Test Case 5 

(helix vs. helix with helix neighbors) has the worst accuracies (69-72%). The following 

shows the information we can infer from the classification results: 

◊ From the Test Case 4, we can infer that the sequence segments with helix 

structure have the most significant difference from the sequence segments with 

coil structure. We can usually identify sequence segments with one structure from 

the other. This also shows similar structures share high sequence similarity. 

◊ From the Test Case 3 and 5, we can imply that the sequence segments with strand 

structure have also the significant difference from the sequence segments with 

either coil structure or helix structure. We can also identify sequence segments 

with strand structure from these two structures. This also shows similar structures 

share high sequence similarity, but don’t share high sequence similarity with other 

structures. 

◊ From the Test Case 1 and 2, we can imply that the reason that Test Case 1 doesn’t 

achieve high performance, or in other words, the reason that sequence segments 

with helix structure are not so significantly different from the segments with all 

the other structures is that there may exist some segments in the class that comes 

from all the other local structures but share high sequence similarity with the class 

that comes from the helix structure. Test Case 2 shows one such case. The fact 
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that Test Case 2 has lower accuracies than its corresponding Test Case 1 shows 

that the two classes in Test Case 2 have sort of sequence similarity. We can also 

infer that the segments with local structure of HHHH ...  are not significantly 

different from the ones with the local structure of . HHHH...

8.2.6 Combining the Individual Classifiers 

The Test Case 3 and 4 in Table 8.4 at window size of 9 have also been selected as the 

datasets for testing the proposed fuzzy classifier fusion. Similar to the experiments 

described in Chapter 5 and 7, these two datasets are applied to the type-1 and type-2 

based fuzzy classifier fusion models in cross validation manner. The training dataset in 

each fold is further divided into second level training and testing datasets. The average 

testing accuracies in the second level will be used as the accuracy inputs in the fuzzy 

classifier fusion models. Tables 8.6 and 8.7 show the accuracies from the individual 

classifiers and also from the two fusion models. We can again see that the proposed fuzzy 

fusion models perform more stable and more robust than their composing individual 

classifiers. Even if there is one or more poor classifiers such as SVM 1 in Test 5 and 

SVM2 in Test 7 (accuracies: 50.64%, 57.19%), both type-1 and type-2 based classifier 

fusion models can achieve a high accuracy even higher than the best of the individual 

classifiers.  
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Table 8.6 Accuracies of individual SVM classifiers, fuzzy fusion model (T1FFSVM), and 
type-2 fuzzy fusion model (T2FFSVM) (9helix vs.9coils) 

 
Test SVM1 Accuracy 

(%) SVM2 Accuracy 
(%) SVM3 Accuracy 

(%) Avg. Max T1FFSVM T2FFSVM

1 poly_1 90.31 poly_3 89.51 rbf_0.01 91.35 90.39 91.35 91.55 91.55

2 poly_1 90.31 poly_2 89.23 rbf_0.1 91.27 90.27 91.27 91.27 91.59

3 poly_4 89.35 rbf_1 84.03 rbf_0.01 91.35 88.24 91.35 90.99 91.27 

4 poly_1 90.31 poly_3 89.51 poly_5 88.99 89.60 90.31 90.63 90.71

5 rbf_0.0001 50.64 rbf_0.01 91.35 rbf_1 84.03 75.34 91.35 91.07 91.55

6 poly_5 88.99 rbf_0.001 90.32 rbf_0.1 91.27 90.19 91.27 91.59 91.71

7 poly_5 88.99 rbf_0.001 50.64 rbf_0.1 84.03 74.55 88.99 89.11 89.67

Avg.       85.51 90.84 90.89 91.15 

 

 
Table 8.7 Accuracies of individual SVM classifiers, fuzzy fusion model (T1FFSVM), and 

type-2 fuzzy fusion model (T2FFSVM) (9helix vs. 9strands) 
 

Test SVM1 Accuracy 
(%) SVM2 Accuracy 

(%) SVM3 Accuracy 
(%) Avg. Max T1FFSVM T2FFSVM

1 poly_1 81.31 poly_3 86.46 rbf_0.01 83.21 83.66 86.46 85.81 86.18 

2 poly_1 81.31 poly_2 86.69 rbf_0.1 85.16 84.39 86.69 86.13 86.41 

3 poly_4 85.95 rbf_1 79.64 rbf_0.01 83.21 82.93 85.95 85.21 86.04

4 poly_1 81.31 poly_3 86.46 poly_5 85.11 84.29 86.46 86.46 86.60

5 rbf_0.0001 57.19 rbf_0.01 83.21 rbf_1 79.64 73.35 83.21 83.30 83.95

6 poly_5 85.11 rbf_0.001 75.47 rbf_0.1 85.16 81.91 85.16 86.37 86.32

7 poly_5 85.11 rbf_0.001 57.19 rbf_0.1 79.64 73.98 85.11 84.14 85.67

Avg.       80.64 85.58 85.34 85.88 
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Chapter 9 Conclusions and Future Work 

9.1 Conclusion 

In this dissertation, several fusion models have been proposed to combine multiple 

SVM classifiers. Type-1 fuzzy fusion model for SVMs (T1FFSVM) defined in Chapter 4 

is constructed using the traditional fuzzy logic in consideration of classification 

accuracies and classification results from individual classifiers. This fuzzy classifier 

fusion model is optimized in Chapter 5 by constructing a genetic fuzzy classification 

fusion model (GFFSVM) in which the real-coded GAs are applied to tune the input 

membership parameters and the rule consequences simultaneously in a cross validation 

manner. The experiments have shown that the GFFSVM outperforms T1FFSVM because 

unlike the fuzzy MFs intuitively defined in T1FFSVM, GFFSVM provides the powerful 

searching abilities to find the optimal or near-optimal MFs. 

Classifier performance measures are studied in Chapter 6. The AUC-based classifier 

fusion model is proposed and compared with the accuracy based classifier. The 

experimental results show that the AUC-based classifier not only achieves nice AUC 

performance, but also excellent accuracy performance. 

The type-2 fuzzy based fusion model (T2FFSVM) proposed in Chapter 7 is 

constructed by interval type-2 fuzzy sets and interval type-2 FLS. The experimental 

results demonstrate that the type-2 fuzzy classifier fusion model handles the uncertainties 

in MFs and classification data better than the model constructed by the traditional type-1 

fuzzy logic does. 

The experiments also show that the proposed GFFSVM and T2FFSVM are more 

robust and more reliable than individual SVM classifiers. Different classifiers potentially 
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offer complementary information about data examples to be classified. Ensemble and 

fusion model provides a general idea to enhance the performance of a single weak 

decision. The proposed fuzzy fusion methods also demonstrate better performance than 

the existing fusion methods including majority vote, minimum, maximum, product, and 

average. 

The case study in Chapter 8 shows the sequence segments with similar protein 

structures generally have high sequence similarity and are different from the sequences 

with other structures. 

9.2 Future Work 

The study on the combination of classifiers is now only at its preliminary stage and is 

by no mean the final stage of my dissertation work. Although the experiments 

demonstrate a promising performance comparing with composing individual classifiers 

and other existing fusion methods, a lot of work could be done to improve the 

performance of the proposed fusion models: 

◊ The proposed models have been implemented and tested on combining three 

SVM classifiers. The system for combining other number of classifiers could be 

constructed and implemented. The comparison among the fusion models which 

combine different number of classifiers could be done in terms of both 

classification performance and time complexity. 

◊ AUC-based and accuracy based fusion models could be compared and analyzed 

theoretically and statistically in terms of different class distribution.  

◊ The proposed classifier fusion models only combine SVM-based classifiers. Other 

classifiers could also be investigated such as Bayesian classifiers, decision trees, 
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or neural networks. The models could be compared with SVM-based classifiers 

regarding to the performance of classifier fusion models. 

◊ The dissertation has proposed practically heuristic classifier fusion models. The 

parameter settings could be further studied in order to provide a general solution 

to the classifier fusion models. Theoretical study could also be discussed about 

why combination methods and strategies work well and in what case methods are 

better than other cases.  
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