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ABSTRACT 

People have complex thoughts, and they often express their thoughts with complex sentences 

using natural languages. This complexity may facilitate efficient communications among the audience 

with the same knowledge base. But on the other hand, for a different or new audience this composition 

becomes cumbersome to understand and analyze. Analysis of such compositions using syntactic or se-

mantic measures is a challenging job and defines the base step for natural language processing. 

In this dissertation I explore and propose a number of new techniques to analyze and visualize 

the syntactic and semantic patterns of unstructured English texts. 

The syntactic analysis is done through a proposed visualization technique which categorizes and 

compares different English compositions based on their different reading complexity metrics. For the 

semantic analysis I use Latent Semantic Analysis (LSA) to analyze the hidden patterns in complex compo-

sitions. I have used this technique to analyze comments from a social visualization web site for detecting 



the irrelevant ones (e.g., spam). The patterns of collaborations are also studied through statistical analy-

sis. 

Word sense disambiguation is used to figure out the correct sense of a word in a sentence or 

composition. Using textual similarity measure, based on the different word similarity measures and 

word sense disambiguation on collaborative text snippets from social collaborative environment, reveals 

a direction to untie the knots of complex hidden patterns of collaboration. 
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1 INTRODUCTION  

People have complex thoughts and they often express their thoughts with complex sentences 

using natural languages. This complexity may facilitate efficient communication among the audience 

with the same knowledge base. But on the other hand, for different or new audiences this mismatch of 

compositional complexity becomes cumbersome to understand and analyze. The natural languages 

generally consist of set of mathematically ambiguous grammatical rules, which adds the most complica-

tion and challenge for analysis and understanding.  Analysis of such compositions using syntactic or se-

mantic measure is a challenging job and defines the base step for natural language processing [1].  

Analysis of natural languages or text mining [2-5] is a challenging domain where computer scien-

tists, linguistics and statisticians work together. The overall approach for finding solution to this problem 

is to use different statistical techniques, artificial intelligence methodologies and modeling linguistic pat-

terns. The goal of this field is to find a generalized pattern for natural human expressions.  

Computer and internet has become a part of our daily life for every other need. A huge amount 

of information is available in the internet in the form of natural language based compositions. Analyzing 

natural languages would be the greatest help in this regard. Therefore this field carries a great amount 

of potential, but it has lot to achieve. For example if we need any information on a topic we throw some 

keywords from that topic in the search engines. As a result we expect to get the most appropriately re-

lated information on that topic. Today’s search engines are very efficient but still they only understand 

everything in terms of keywords based match. What happens if we want to search a topic comprising of 

few lines of text? Unfortunately today’s search engine fails on such a task. But in future we expect to 

work through machine’s understanding of natural languages.  In that case we expect that we would be 

able to communicate with the machine more easily and naturally. Retrieval of adequate and proper in-
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formation is the first step for any knowledge based automation, control, communication. Therefore, 

retrieval of information and automation depend on the analysis of natural language a lot. 

Due to the nature and diversity of natural languages, numerous divergent techniques are em-

ployed to figure out proper syntax and semantics of such language composition. Readability is one of 

such important syntactic aspect of a natural language; whereas the meaning of the components of a 

textual composition carries a primary role in semantics. Here I am introducing some visualization me-

thods to syntactically analyze English textual compositions. Based on one of such measure I am trying to 

introduce a content oriented recommendation technique as well. To reveal the semantic meaning of a 

document I am executing some mathematical and statistical technique. In addition to this I am employ-

ing word meaning based measure to find textual similarity of compositions for small textual snippets. 

For this purpose I chose to retrieve some online text from online social network services and employ 

some descriptive and analytical statistics on the retrieved data. 

1.1 Problem Statement 

Analyzing natural language is an arduous job. The natural trend of such analysis begins with ana-

lyzing the structure of such compositions. The normal question pops out as: does the component of such 

structure provide any clue for analysis? Can those structures be presented in a more formidable way so 

that people can have better perception? Can there be some guidelines to categorize such structures? 

These aforementioned nominal questions come up from the syntactic structure of a natural language 

based text.  

Now to understand the underlying meaning of such compositions, what kind of rules or tech-

niques can we use? Can we find a way to compare meaning of such structure and if even exact compari-

son turns out too complicated, can we at least have a way to express the comparison in a more percep-

tive way? Can we employ some well learned techniques from other fields in this domain? All these con-

cerns now relate to the semantic structure of the compositions. 
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1.2 Motivation 

Most of the time our thoughts get expressed using the natural language based communication, 

which consists of complex sentences. This leads to creation of tons of compositions and documents, 

which are not very simple in nature always. Nowadays with the increase of quintessential popularity of 

web, almost all information is on the web. Still most of the aforementioned information is in the form of 

unstructured text composed from some natural human language.  

Now the natural languages by their own nature have ambiguous grammars. Natural languages 

sometime contain components, which expresses different meaning at different times. Also sometime 

multiple components point toward same meaning. With such level of diverse complexities, the field it-

self brings serious challenges. 

We have huge amount of important and interesting information present online today and most 

of them are in the form of unstructured texts. Analysis of such compositions using syntactic or semantic 

measure is a challenging job and defines the base step for natural language processing. If somehow we 

can create an automatic analytic measure for the documents, we could make all these information con-

nected in appropriate order. If we can generalize the automatic measure and analytic understanding of 

such texts, it will solve enormous amount of unsolved problems. As if we feed that generalized under-

standing to the machine, it would understand human sense of expressions and perform exactly the way 

we expect. Starting from the information searching, to generalize ideas to recommend certain stuff, 

every daily need of ours could be done at their best potential if we can create an appropriate natural 

language analysis tool. The motif behind such work is practically limitless. Also the expected outcomes 

of such work are incredibly important as well. Therefore analyzing natural language carries a great chal-

lenge with outstanding interest. 
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1.3 Significance 

Analysis of natural languages is the base step for natural language processing [1]. It is a very important 

and challenging field in today’s aspect, as it deals with a lot of real world problems. This analysis directly 

impacts the understanding, organization and categorization of text documents or unstructured texts 

available on the web. Also this leads to locating areas of a composition which may need improvement. 

Following are the few of many topics where natural language analysis has significant impact. 

� Categorize Text: Analyze and categorize the text as per its complexity level. It helps providing a 

grade level to the text which helps user to choose texts as per their level of comfort.   

� Information Retrieval (IR): As most of the information in web is in the form of unstructured text, 

information retrieval heavily depends on natural language analysis. It deals with searching and 

retrieving appropriate information.  

� Pattern Recognition: Analyzing short text snippets in a social collaboration environment could 

reveal collaboration pattern. Using semantic understanding of texts spam/unwanted compo-

nents could be found. This also can be used to measure web security in terms of analyzing its 

content. 

� Recommendation: Content based recommendation works through analyzing the contents of 

recommendation left by a user. After analysis similar syntactic or semantic structural recom-

mendations are suggested for the same category users. 

� Information Extraction (IE): Basically this works through the extraction of semantic information 

from text. This covers tasks such as named entity recognition, relationship extraction, corefe-

rence resolution, etc. 

� Named Entity Recognition (NER): This technique finds out which items in a text map to proper 

names, such as people or places, and also annotates the type definition of each such name (e.g. 

person, location, organization). 
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� Coreference resolution is basically determining which words in a given texts refer to the same 

objects or entities. 

� Relationship extraction is given a chunk of text, identifying the relationships among named enti-

ties (i.e. who is the wife of whom) mentioned in the text. 

� Automatic summarization: This deals with generating a summary from a given text. Generally it 

helps in information retrieval a lot. 

� Natural Language Generation: This works through the help of automatic summarization and in-

formation retrieval. Given a chunk of text, an automatic summary could be made and that 

summary text could be used to retrieve meaningfully related information from the web to 

create new text composition. 

� Question Answering: This works through determining answer of question composed in natural 

human languages. This is a part of automatic summarization for the case of decision type an-

swer (e.g. yes/no) and for more descriptive answers it works through Natural language genera-

tion. 

� Natural Language Understanding: Analyzing chunk of texts semantically and then form that into 

more formal representations such as first-order logic structures that are easier for computer 

programs to manipulate. 

� Word sense disambiguation: The words used in a natural language based compositions, often 

carry multiple meanings; Natural language analysis could lead to the selection the most appro-

priate meaning of a word in its context. Generally to resolve this kind of problem, the words and 

its associated multiple senses are given as a repository or through a taxonomy and the job is to 

choose the exact word and its appropriate sense pair by looking at the compositional context 
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� Clause level/Phrase level/Part-of-speech Tagging: Given a sentence, its clause level/Phrase lev-

el/Part-of-speech distributions could be found. This helps in compositional structure recognition 

and natural language understanding. 

 

1.4 Organization 

The remaining dissertation is organized as follows:  Section 2 provides the literature review in 

syntactic and semantic complexity measure of Natural languages, specifically English. It also covers the 

background work of the natural language composition analysis and some related visualization tech-

niques and topics in reference to this dissertation.  Section 3 demonstrates work related to the syntactic 

analysis.   Section 4 describes work related to the analysis of social visualization sites.   Section 5 pro-

vides the details of semantic analysis work.   Finally, Section 6 provides the conclusion and related future 

works. 
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2 LITERATURE REVIEW 

Having internet as the backbone of everyday need, we have outstanding number of machine 

readable documents available.  It is estimated that 80% of information lives in the form of text [6, 7]. 

The usual approach of logic-based programming [8] paradigm has guided the initial direction of textual 

understanding from such information. The fuzzy and often ambiguous relations in natural language limit 

the effectiveness of this approach.  

What is text mining? Data mining applied to textual data. Text mining aims at unveiling the hid-

den information in the textual compositions. To achieve this, it has to deal with large number of words 

and structures in natural languages along with the vagueness, uncertainty and fuzziness. Text is unstruc-

tured, amorphous, and difficult to deal with but also the most common vehicle for formal exchange of 

information. Therefore, the motivation for trying to extract information from it is compelling, even if 

success is only partial. 

Back in 1958 H. P. Luhn noted "the resolving power of significant words" [9] in primary text in 

his influential paper on automatic abstracting of textual compositions. In 1961 Lauren B. Doyle men-

tioned "natural characterization and organization of information can come from analysis of frequencies 

and distributions of words in libraries"[10] to focus initial direction towards text mining and related me-

thods. 

By the time this field was consolidating in the domain of textual content analysis, Swanson [11] 

had already put the idea into practice by developing a system to discover meaningful new knowledge in 

the biomedical literature. Swanson and Smalheiser developed a software, now called ARROWSMITH [12, 

13], helps by finding common keywords and phrases in "complementary and noninteractive" sets of ar-

ticles or literatures and juxtaposing representative citations likely to reveal interesting co-occurrences. 

According them two literatures are complementary if together they can reveal useful information not 

apparent in the two sets considered separately – e.g., one may reveal a natural relationship between A 
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and B, and the other a relationship between B and C, so that together they suggest a relationship be-

tween A and C. The articles are defined noninteractive, if their articles do not cross-cite and are not co-

cited elsewhere in the literature. Swanson's system remains far from fully automated; it is highly medi-

cal domain-specific. But as this works out least partially, Swanson has been recognized as an early pio-

neer by self-described text mining practitioners. Lindsay et al. [14] and Kostoff et al. [15, 16] have ex-

tended Swanson's approach afterwards without calling it text mining. 

IBM created a product named "Intelligent Miner for Text" [17, 18] in 1998 for natural language 

composition analysis. It consists of set of tools which can be seen as information extractors that enrich 

documents with information about their contents in the form of structured metadata. 

Text mining or the natural language text analysis is the basic building block for the natural lan-

guage processing. The history of natural language processing dates back to 1950s while Turing Test [19] 

was developed by Alan Turing as a criterion of intelligence. But thereafter the progress was quite slow in 

the following years. In 1960s quite notably successful NLP systems developed of that time, called 

SHRDLU [20], but it was very restricted in its range with restricted vocabularies. Also in the 70's many 

programmers worked and published “conceptual ontologies” [21, 22], which structured real-world in-

formation into computer-understandable data. The actual revolution in NLP started in the late 80s with 

the introduction of machine learning [23] algorithms for language processing and the steady increase in 

computational power resulting from Moore's Law [24]. Since then tons of work has been done in this 

domain and this topic is still under focus and need much more development.  Statistical natural-

language processing is a prime focus in this field which comprises all quantitative approaches to auto-

mated language processing, including probabilistic modeling, information theory, and linear algebra 

[25]. 

Modern father of linguistics Noam Chomsky brought the avalanche of cognitive revolution by his 

study of language and its structures through another approach. He focused in multidimensional topics 
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with multiple levels of significant depth and from there the computational languages got their first clean 

grammatical form [26]. 

The Penn Tree Bank is a great initiative to construct humongous corpora of English texts to 

launch enhanced research of natural language processing, speech recognition, integrated spoken lan-

guage systems as well as theoretical linguistics [27]. These kinds of treebanks are generally used in cor-

pus linguistics (the study of language as expressed in samples or "real world" text) for studying syntactic 

phenomena.  They are also employed in computational linguistics for training or testing parsers. Of 

course there exist multiple different focuses in different treebanks, but in general there are two main 

groups. One, which depends on the phrase structure or language constituent parts annotation like the 

Penn Treebank [27] and the other one focuses finding the relation between words and its dependents, 

not its order through dependency structure e.g. Prague Dependency Treebank[28]. 

To define the syntax and semantics of a natural language Barwise et al. [29] explored the limita-

tions of first order logic quantifiers for the natural language and established an interesting and impor-

tant relationship between the syntax, semantics and logic in a natural language. Since then there were 

manifold divergent approaches to crack the natural language syntax and semantics.  

Following are few of many approaches to crack natural language syntax.  The syntax of complex 

compound words and those involving derivational and inflectional affixation has been studied by Selkirk. 

In that study the focus revolve around a syntactic standpoint that encompasses both the structure of 

words and the system of rules for generating that structure [30].  Steedman [31] focused on an elabo-

rated study of Natural grammar to find appropriate compatibility with language syntactic structures. I 

start my journey of syntactic analysis of natural language through the readability. The following section 

elaborates more on that. 
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2.1 Syntax Analysis through Readability 

Readability of a document is an indicator of its understandability to particular groups of readers. 

National literacy surveys have shown that an average adult in the United States reads at the 8th grade 

level, and a college graduate at the 10th-grade level [32].  Jeanne Chall and Edgar Dale stated readability 

as "The sum total (including all the interactions) of all those elements within a given piece of printed 

material that affect the success that a group of readers have with it. The success is the degree to which 

they understand it, read it at an optimal speed, and find it interesting” [33]. On one hand, higher text 

readability improve readership, comprehension, memorization, reading speed, and reading persistence 

[34]. On the other hand, a mismatch of document's readability and reader's reading level can result in 

disinterest, misunderstanding, and even deception [35].  Long back in 1889 in Russia, revolutionary writ-

er Nikolai A. Rubakin [49] concentrated on a study of over 10,000 texts written by soldiers, craftsmen, 

and farmers. There he found that the main obstacles to readability were firstly unfamiliar vocabulary 

and secondly the use of too many long sentences [48]. 

To quantify the readability, researchers have proposed many readability indexes that classify a 

document into a specific grade level [36]. A typical readability index is a single average number or classi-

fication for the entire document. These indexes are calculated from two categories of readability me-

trics: word complexity and sentence complexity. Although their simplicity can be beneficial in many cas-

es -- such as quick classification -- the readability indexes are often too simple, formulaic, and abstract 

for in-depth analysis. For example, a multiple authored document may contain a section that is particu-

larly difficult to read, but this inconsistency is often not reflected in the overall readability index. Two 

documents may have similar readability indexes but very different distribution of complex words and 

sentences. There are other perspectives of limitations to these formulas as well [38]. There are many 

readability indexes. The most well known ones include the Flesch-Kincaid Reading Ease [38], Flesch-

Kincaid Grade Level, Gunning Fog Score [42], SMOG Index [37], Coleman Liau Index [43], Automated 
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Readability Index [37], Dale-Chall readability formula [44], etc. They have been used extensively to help 

evaluate and develop textbooks, medical literature, business publications, military documents, web site 

contents, etc. [36]. For example, both Microsoft Word and Google Docs can calculate the Flesch-Kincaid 

Reading Ease [38] score for a document. The state of Florida requires that life insurance policies have a 

Flesch-Kincaid Reading Ease [38] index of 45 or higher. Flesch-Kincaid Reading Ease formula is also a 

standard used by many U.S. government agencies for evaluating technical documents. 

Although there are a variety of readability formulas, they are largely based on two metrics -- the 

complexity of sentences and the complexity of words. In those methods, the complexity of sentences is 

typically measured by the average words per sentence, while the complexity of words is measured in 

slightly different ways. For example, Flesch-Kincaid Reading Ease [38] test and Flesch-Kincaid Grade Lev-

el test use the average number of syllables per word, while the Coleman-Liau Index [43] and the Auto-

mated Readability Index [44] uses the average number of characters per word. Gunning Fog Score [42] 

and SMOG index [37] use the percentage of polysyllabels (complex words, or words with more than 

three syllables), while the Dale-Chall Readability Formula [45] uses the percentage of difficult words that 

are not on a 3,000 familiar word list. 

In general, the different readability indexes correlates well at the document level, but not so at 

the paragraph level. There is a need for good tools that help writers or readers to analyze the complexity 

of writing at paragraph level. My work consists of visualizing the fundamental readability metrics -- word 

complexity and sentence complexity -- so that a writer or reader can visually analyze the complexity of 

each paragraph.  

The proposed visualization techniques [50] supplement the conventional readability indexes. 

But more importantly, my visualization techniques address a major limitation of the readability indexes. 

While traditional readability indexes try to quantify text complexity, my method is an attempt to visual-

ize text complexity that is hard to quantify.  
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There are some related works [46, 47] on text visualization, but my project differs from them in 

terms of visualization techniques, focus, and application areas. For example, Keim and Oelke developed 

a literature fingerprinting method [46] for visual literary analysis. In their method, a text document is 

divided into blocks, and various literary analysis variables for each block are color coded into a small 

square. The focus of their work is on author attribution and literature forensic analysis. On the other 

hand, my visualization technique attempts to preserve the form of the original text and make the syn-

tactical complexity easily visible. In other words, Keim and Oelke’s method provide a “zoomed-out” view 

of a document, while my method provides a “zoomed-in” view of a document that allows for more de-

tailed analysis.  

DocuBurst [47] provides a visual summary of the semantic content of text documents. Using a 

radial, spacing-filling layout of hyponymy, this visualization does not preserve the form of the original 

text. This technique is designed for literature forensic analysis, document categorization, and authorship 

attribution. Unlike DocuBurst [47], my method [50] here focuses on the syntactical complexity of the 

document (rather than the semantic content).    

Also there are two main issues with the traditional readability indexes mentioned earlier. First, 

as seen from the above examples, a typical readability index is a single average number or classification 

for the entire document. It does not describe the readability variation at the paragraph level. In addi-

tion, the various readability indexes do not correlate well at the paragraph level. Therefore instead of 

relying on a specific readability index, it is better to calculate multiple readability indexes at the para-

graph level and display them side by side. This is what motivates my study.  

My work [51] is also inspired in part by the Web of Trust (WOT) [52], which is a community-

based website reputation rating tool that uses a traffic-light style color coding to visualize a web site’s 

reputation. My visualization technique employs similar color coding based ring shapes to mark the rea-

dability score category. Another inspiration is Herman Chernoff [53], who developed a novel method to 
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represent multivariate data using cartoon of a face whose features such as size and shape of the eye, 

curvature of the mouth would correspond to different variables. Since human cognition is very respon-

sive to facial expression, using faces to visualize multivariate data is very efficient and can lead to quick 

identification of outliers. 

Another motivation for my research [51] is that readability indexes are not integrated with the 

visual presentation of text. For example, Microsoft Word and Google Docs can calculate the Flesch-

Kincaid Reading Ease [38] score for a document, but it only returns a single number for a document but 

my method provides visual parameters for each paragraphs of the text. 

2.1.1   Readability Metrics Based Recommendation  

Recommender systems attempt to help users by lowering the information overload and select-

ing a subset of items from a universal set. Examples of such systems include top-N lists [54], book [56] 

and movie [57] recommenders, and intelligent avatars [58].  

The two main recommendation modeling approaches are content-based filtering [56] and colla-

borative filtering [55]. Collaborative filtering recommends items to users based on the user’s previous 

choices. On the other hand, content-based filtering recommends items based on the information con-

tent present regarding the item. Balabanovic et al. [59] took a hybrid approach to design a content-

based collaborative system Fab that incorporates multiple topics of interest in storage and then clusters 

the information to generate recommendations. 

Green et al. [60] developed a content-based recommendation technique by collecting text de-

scriptions and using this textual aura to compute the similarity between items. Semeraro et al. [61] in-

fused knowledge into words by associating knowledge sources and reasoning model. Also there are 

some works on the semantic knowledge based on the contents for recommendation. For example Tsat-

sou et al. [62] developed a recommendation system that combines ontological knowledge with content 

extracted linguistic information, derived from pre-trained lexical graphs, in order to produce high quali-
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ty, personalized recommendations. Yu et al. [63] proposed a technique for e-learners which takes know-

ledge about the learner (user context), knowledge about content, and knowledge about the domain be-

ing learned into consideration. Ontology is also utilized to model such knowledge for recommendation. 

My approach [68] is different from these earlier approaches in that I focus on recommendation 

by compositional structure. I want to find documents that not only contain the user specified keywords, 

but also possess user preferred composition style. This idea is inspired in part by the shape based 3D 

model search methods proposed by Funkhouser et al. [64], where a new query interface is generated 

which integrates text, 2D sketches, 3D sketches, and 3D models for searching the 3D models. In this 

work they also have developed a new matching algorithm that uses spherical harmonics to compute 

discriminating similarity measures without requiring repair of model degeneracies or alignment of orien-

tations for the shape-based queries.  

A number of methods have been proposed to compare the structural similarity of text based 

documents. For example, resemblance and containment of the documents are considered by Broder et 

al. [65], Latent Semantic Analysis based indexing method is employed by Deerwester et al. [66], and 

Fourier transform based similarity measures between XML documents are introduced by Flesca et al. 

[67]. Here I take a different approach by examining the clause level syntactical structures of texts which 

is done employing the Stanford Natural Language parser [39, 40] which parse sentences and return its 

grammatical structure. 

2.2 Semantic Analysis 

This section is concerned with the semantics of natural languages. Semantics is defined as the 

study of meaning expressed by elements of a language or combinations thereof. As like syntactic, there 

are numerous different approaches in semantic exploration of natural language. 

Liddy et al. provided a natural language processing system [69] through semantic vector repre-

sentation of the text where the text is summarized through it’s subject code look up and psycholinguistic 
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approach based word sense matching. Resnik presented a measure [70] of semantic similarity in an IS-A 

taxonomy based on the notion of natural language based shared information content. Lytinen presents 

an approach [71] to natural language processing where the syntactic and semantic processing take place 

at the same time. There are better working systems developed in this domain with restricted explora-

tion. For example, a general biomedical domain-oriented NLP engine, MedScan [72] is developed that 

efficiently processes sentences from MEDLINE (National Library of Medicine's premier bibliographic da-

tabase) abstracts and produces a set of regularized logical structures representing the meaning of each 

sentence. By combining a lexical taxonomy structure with corpus statistical information Jiang et. el. 

presents a new approach for measuring semantic similarity/distance between words [73] and concepts. 

A natural language interface system [74] is created based on trained statistical model by Miller et al. 

which goes through basically three stages of processing: parsing, semantic interpretation and discourse. 

Over the time the deployment of statistical techniques in the domain of semantic understanding of nat-

ural languages found heavily growing and influencing. 

2.2.1   Latent Semantic Analysis 

LSA is a method for extracting and representing the contextual meaning of words through statis-

tical computations over a large text corpus [66, 75, 76, 79]. It has been applied to fields such as psychol-

ogy, sociology, data mining, etc. [66, 75-83]. It was first applied to Information Retrieval (IR) and was 

known as Latent Semantic Indexing in the late 1980s. Later, it was used to deal with the synonym and 

polysemy problems in IR [66]. LSA starts by using an algebraic method called Singular Value Decomposi-

tion (SVD) to condense the large input data into smaller and manageable rectangular matrices of words, 

grouped by logical passages. Each cell of the matrix contains a transform of the frequency of the given 

word in the passage. Next, the matrix is decomposed so that each passage is represented as a vector 

whose value is the sum of all vectors representing its component words. 
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The words-to-words, passages-to-words, and passages-to-passages similarities are computed as 

cosines, dot products, etc. [75, 81]. LSA has been well correlated with human studies with regards to 

association or semantic similarity [76]. One of the benefits of LSA is that the similarity estimates are not 

mere frequency counts or correlations based on word usage. Instead, the results reflect the semantic 

meaning of the text under the mathematical analysis.  

A number of LSA variants have emerged since then [78, 80, 83]. Wang et al. [78] proposed a M-

LSA technique that was used in establishing multiple co-occurrence relationships between different 

types of objects. The problem was that multiple co-occurrence relations need to be represented by mul-

tiple co-occurrence matrices. The researchers constructed an undirected graph G(V,E) to show this rela-

tionship. Specifically, the goal was to find the latent semantic representations for each type of object. 

And, based on the co-occurrence data of G(V, E), they identified the most significant concepts based on 

the mutual reinforcement principle. Finally, each object is represented in a unified low-dimensional 

space. The results of their experimentation show that the M-LSA variant outperformed standard LSA 

results and was applicable to collaborative filtering, text clustering, and text categorization. 

In another study, Pino and Eskenazi [83] demonstrated the use of LSA in word sense discrimina-

tion for words with related and unrelated meanings within a tutor application of English vocabulary 

learning for non-native speakers. An indexed database containing manually annotated documents was 

used. LSA performance for words with related meanings and for words with unrelated meanings was 

investigated. Lastly, they examined if reducing the document to a selected context of the target word 

improved performance. Their method overcame the sparseness of short contexts such as questions and 

resulted in an improvement over the exact match baseline.  

Comparing with the above two methods, my method [84] is more general and closer to the tra-

ditional LSA method. The target of my study is Many Eyes [85], a social visualization web site and also an 

IBM research project which allows users to upload their data, construct data visualizations, share the 
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data visualization with others, and comment on data visualizations. I performed LSA by constructing a 

similar database as in Pino and Eskenazi [83]. However, my input data was an amalgamation of cross 

domain topics, which, in the beginning phases did not readily result in any trends, compared to the pre-

determined dataset in [83]. In addition, my method [84] differs from previous work [78, 83] in the ab-

sence of a rank-lowering algorithm because my dataset is relatively small and not noisy. I also intro-

duced an optimization of the term frequency (based in part on Landauer [78]) over the traditional LSA. 

By incorporating an initial co-occurrence matrix and TF-IDF solution, my LSA method is leaner and more 

efficient for small scale data sets when compared with M-LSA [77]. 

 2.2.2   Semantic Analysis in a Social Collaborative Environment 

In recent years, online social data visualization has emerged as a new platform for users to con-

struct, share, and comment on data visualizations online. This emerging technology can be seen as the 

extension of Cloud Computing and Web 2.0 technologies to the field of data visualization. A typical on-

line data visualization tool allows users to upload their data to a server, construct data visualizations 

online, and publish or share the data visualizations. Users can view and manipulate the data visualiza-

tions online and write comments. 

The online data visualization shares the same advantages of cloud computing. The users do not 

have to install any special software on their own computer. They create data visualizations in their web 

browsers. The data and data visualizations are stored at the hosting company’s server, and are accessi-

ble online from anywhere. In addition, the data and data visualizations can be easily shared with other 

people, and people can leave comments on the visualizations in the same way as blogs. 

The first notable online social data visualization tools are Swivel [86] and ManyEyes [85, 87]. Swi-

vel is a commercial product, with a private collection (paid access) and public collection (free access) of 

data visualizations. On the other hand, Many Eyes [85] is an IBM research project and all the data visua-

lizations are publicly accessible. Both Swivel and Many Eyes are online since 2007. 
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More recently, a number of new online visualization tools have emerged. For example, Tableau 

Software announced the Tableau Public [88] in April 2010 – a free version of the Tableau visualization 

tool that allows users to publish and share their visualizations online. Google announced its Public Data 

Explorer [89] in March 2010, which also supports online data visualization construction and sharing. Mi-

crosoft’s Pivot [90], launched in November 2009, is another new addition to the online social visualiza-

tion tools. 

With these developments, online social data visualization has been quickly gaining attractions. 

Therefore it is important to understand its impact on how people construct, view, and discuss visualiza-

tions. This is the motivation for my research. 

I report [91] my preliminary analysis of Many Eyes [85], based on over 7,000 data visualizations 

and over 30,000 user generated comments from 2007 to 2010. I choose Many Eyes for my study over 

other online visualization tools for several reasons. First, Many Eyes have a longer history than many 

newer tools, such as Tableau Public, Google Public Data Explorer, and Pivot. As a result Many Eyes has a 

larger collection of data visualizations. Second, all the data visualizations on Many Eyes are publicly ac-

cessible. Therefore we can see the complete picture of user generated data visualizations on that web 

site. Third, Many Eyes has a large number of users who add many new data visualizations every day. 

I believe Many Eyes is the largest experiment on user generated data visualizations. An analysis of 

the patterns and trends of these data visualizations can give us unprecedented insights into how people 

construct visualizations, what types of visualization are most associated with different subject areas, 

what types of visualizations receive the most interest (i.e. comments), etc. Such insights can help im-

prove the design of data visualizations and visualization tools. The work reported here [91] is the first 

attempt and first step toward that goal. I am working further on this topic with advanced statistical 

techniques to establish and find more profound pattern of collaboration. 
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Collaboration is in overall an intense form of interaction, facilitates effective communication as 

well as the sharing of competence and other resources [105]. Due to the complicated and fuzzy nature 

of human natural behavior and expression stays active in collaboration, it becomes tremendously critical 

to track down such in quantitative domain. Despite all these, science indicators has provided additional 

quantitative information of a more direct and objective nature of geographical patterns in lieu of coop-

eration among scientific institutions [106]. In literature many studies tried to come up with the compar-

ative measures of collaboration in two fields (or subfields) or to show the trend towards multiple au-

thorships in a discipline. In this scenario as primitive approaches the mean number of authors per paper 

has been indicated and termed as Collaborative Index (CI) [107] and the proportion of multiple-authored 

papers has been called Degree of Collaboration (DC) [108]. Ajiferuke et al. [109] has shown the inade-

quacy of the above and defined a normalized 0-1 scale Collaboration coefficient (CC) (0 corresponds to 

single authors) [109] which comprise of the merits of both CI and DC. With the advent of internet online 

collaboration came in picture and nowadays it’s the biggest hype. Hathorn et al [110] discussed and 

pointed out factors of participation, interaction, and interdependence in respect of collaboration with 

elaboration. Holding the hand of online collaboration the craze of social networking followed. The first 

one in the field is Sixdegrees [111], came out in 1997 and since then quite many appeared and today it’s 

the age of facebook [112], twitter [113] and linkedin [114] etc.  

Social data visualization platforms have taken a recent trend of interest amongst users for con-

structing, sharing, and commenting on data visualizations online. This aspiring direction of technology 

could be considered as the data visualization oriented advancement of Cloud Computing and Web 2.0 

technologies.  The first few prominent online tools in this domain are Swivel [11] and Many Eyes [12] 

[13]. Swivel is a commercial product, geared for both private collection (paid access) and public collec-

tion (free access) of data visualizations. On the other hand, Many Eyes [12, 13] is an IBM research 

project on the social data visualization, allows all the visualizations publicly available. Both Swivel and 
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Many Eyes came to the online domain since 2007. More recently, numerous new online visualization 

tools have came up. For example, Tableau Software started the Tableau Public [14] in April 2010 – a free 

version of the Tableau visualization tool that allows users to publish and share their visualizations on-

line. Google came up with its Public Data Explorer [15] in March 2010, which also supports online con-

struction and sharing of data visualizations.  Microsoft announced Pivot [16], in November 2009, is 

another new addition in the domain. Many Eyes already received attention on their user behavior ana-

lytics [91]. 

In this online social collaboration domain users express the collaboration through expressions 

composed in natural languages, so natural language processing based analysis becomes important. One 

of the key approaches in natural language processing and related areas is textual similarity measure. 

Vectorial model in information retrieval might be one of the earliest applications in this domain, where 

the document most relevant to an input query is determined by ranking documents in a collection in 

reversed order of their similarity to the given query [115]. The application of textual similarity measure 

has been used in many direction:  relevance feedback and text classification [116], word sense disam-

biguation [99], and more recently for extractive summarization [117], and methods for automatic evalu-

ation of machine translation [118] or text summarization [119]. The stereotypical approach in textual 

similarity has been the lexical matching, while improvements came up on top as stemming, stop-word 

removal, part-of-speech tagging, longest subsequence matching, as well as various weighting and nor-

malization factors [120]: which didn’t provide appropriate success. Another outstanding approach is LSA 

(Latent Semantic Analysis) [74] in this domain, aims to find similar terms in large text collections, and 

measure similarity between texts by including these additional related words. However due its compu-

tational implementation cost complexity and also the “black-box” effect that does not allow for any 

deep insights into why some terms are selected as similar during the singular value decomposition 

process it hasn’t been used in large scale. 
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Here I employ the word-to-word similarity metrics and word specificity based the textual similarity 

measure [121] on the textual snippets collected from online social visualization site to analyze and vi-

sualize the pattern of collaboration. 
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3 VISUALIZING THE SYNTACTIC ASPECT OF UNSTRUCTURED ENGLISH TEXTS 

The syntactic aspect of unstructured English text is explored in terms of readability of the text. 

As readability caries the notion of how easy a document, it carries a good point in the analysis. Also as 

the readability metrics are comprised of different syntactic elements of the language. 

3.1 Analyzing and visualizing Text Readability 

Readability of a document is an indicator of its understandability to particular groups of readers. 

National literacy surveys have shown that an average adult in the United States reads at the 8th grade 

level, and a college graduate at the 10th-grade level [32]. To quantify the readability, researchers have 

proposed many readability indexes that classify a document into a specific grade level. On one hand, 

higher text readability improve readership, comprehension, memorization, reading speed, and reading 

persistence. On the other hand, a mismatch of document's readability and reader's reading level can 

result in disinterest, misunderstanding, and even deception.   

A typical readability index is a single average number or classification for the entire document. 

These indexes are calculated from two categories of readability metrics: word complexity and sentence 

complexity. Although their simplicity can be beneficial in many cases -- such as quick classification -- the 

readability indexes are often too simple, formulaic, and abstract for in-depth analysis. For example, a 

multiple authored document may contain a section that is particularly difficult to read, but this inconsis-

tency is often not reflected in the overall readability index. Two documents may have similar readability 

indexes but very different distribution of complex words and sentences. To address this issue, I propose 

a method for visualizing readability metrics.  

My visualization method [50] highlights complex words and visualizes sentence complexity. The 

complex words are visualized with color coding. The sentence complexity is visualized as a stacked bar 

chart.  Each sentence is represented by a single bar that may be divided into several sub-sections. Each 
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sub-section represents a sub-clause in the sentence. The gaps between the sub-sections encode the syn-

tactical complexity of the sentence. This visualization preserves the familiar text document format and 

allows users to quickly compare word complexity; sentence lengthens, and sentence syntactical com-

plexity.  

My visualization [50] enhances the traditional formulaic readability calculation by enabling users 

to perform more sophisticated and nuanced readability analysis based on visual patterns. With the rea-

dability visualization, both readers and writers can visually identify the paragraphs or sentences that are 

difficult to read, or compare the readability of multiple documents or multiple versions of the same 

document.  For example, the visualization may help readers visually identify different writing styles with-

in a multi-author document. A writer can use it to assess the readability at the paragraph level, checking 

how various readability metrics are distributed across the document so as to identify specific areas for 

revision. 

3.1.1   Methods 

A.  Measuring Word Complexity 

There are three ways to measure word complexity: number of characters per word, number of 

syllables per word, and vocabulary based method. I adopt all three in my visualization so that users can 

choose different options and compare the results.  

It is straightforward to count the number of characters per word, but counting the number of syl-

lables is a little more complicated [41]. The number of syllables is the number of vowels (a, e, i, o, u) 

heard in a word. I first count the number of vowels (a, e, i, o and u), and then subtract the number of si-

lent vowels (e.g. the silent 'e' at the end of a word) and diphotongs (e.g. oi, oy, ou, ow, au, aw, oo, etc.). 

Dale and Chall [45] developed a vocabulary based approach for measuring word complexity. They 

have constructed a 3,000 familiar word list, and any word not on this list is considered a difficult one. 
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However, the 3,000 word list only contains the base form of words, and the complete word list is actually 

much larger. For example, the words “easy”, “easier”, and “easiest” are all considered familiar words, but 

only 'easy' is on the 3,000 word list. I use Mathematica's WordData functions to find each word and its 

morphological derivatives. In the end, the complete familiar word list contains 23,574 words. 

B. Visualizing Word Complexity 

The word complexity is visualized with color coding. By default, simple or familiar words are dis-

played in darker color, while complex words are displayed in lighter color. However, the color mapping 

can be adjusted by users for different purposes. In my program, users can use a slide bar to adjust and 

even reverse the color mapping. For example, an ESL student who is learning English may want to reverse 

the color mapping so that the complex words are highlighted to help her expand her vocabulary. A writer 

may also want to highlight all the complex words for possible revision. Figure 1 and 2 illustrate this capa-

bility. 

 

Figure 1. This is a visualization of word complexity. Each horizontal bar represents a sentence, and each 

section on the bar represents a word. Six different shades of gray color visualize word complexity in terms 

of word length. The shorter the word, the darker the color is. 
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Figure 2. This is the same visualization as above, but the color mapping is reversed with the slider. Now 

the complex words are visualized in darker color.  

C.  Measuring Sentence Complexity 

The most common metric for sentence complexity is the number of words per sentence. In addi-

tion to this, I also want to visualize the structural complexity of the sentences.  

The syntactic structure of a sentence is generally divided into three levels: clauses, phrases, and 

words. Here I focus on the clause level. (In the future, extending this method to the phrase level would be 

interesting) A complex sentence typically contains two or more clauses – often connected by conjunc-

tions -- and each clause may contain sub-clauses, and so on. My idea is to visualize the complexity of a 

sentence by visually marking the division of clauses in that sentence. But first, I need a tool that can au-

tomatically parse the sentences and return its grammatical structure. The tool I use is the Stanford Natu-

ral Language Parser (SNLP) [39, 40].   

The Stanford Natural Language Parser [39, 40] is a statistical parser that can group words into 

clauses and phrases and classify words into different types, such as subject or object. For example, the 

result of parsing the following sentence is shown below. 
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"The people who live in that small yellow house with the picket fence across the street from me 

raise emus." 

(ROOT 

  (S 

    (NP 

      (NP (DT The) (NNS people)) 

      (SBAR 

        (WHNP (WP who)) 

        (S 

          (VP (VBP live) 

            (PP (IN in) 

              (NP 

                (NP (DT that) (JJ small) (JJ yellow) (NN house)) 

                (PP (IN with) 

                  (NP (DT the) (NN picket) (NN fence))))) 

            (PP (IN across) 

              (NP 

                (NP (DT the) (NN street)) 

                (PP (IN from) 

                  (NP (PRP me))))))))) 

    (VP (VBP raise) 

      (NP (NNS emus))) 

(..))) 
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Figure 3 shows a parse tree generated by SNLP. 

 

Figure 3. Parse tree generated by the SNLP parser. 

My program reads in the SNLP output and then further parses it to identify the clause divisions. 

This information is then used to guide the visualization of sentence complexity.   

D.  Visualizing Sentence Complexity 

The length of the sentence is visualized in the form of bar charts. Each sentence is represented by 

a horizontal bar that is scaled to occupy only one line. Therefore the readers can pre-attentively compare 

the sentence length. The original text can be displayed side by side with the visualization. When the user 

clicks on a bar, the corresponding word is highlighted in the original text (figure 9). 

The visualization is based on parsing the output of SNLP, as described in the previous section. I vi-

sualize each sub-clause as a gray bar. The length of each gray bar is either character count or the word 

count of that clause. The gray bars are separated by white gaps. The length of a white gap depends on 

the depth of this clause in the SNLP parse tree. The shorter the white gap, the deeper the clause is placed 

in the parse tree. Therefore readers can quickly identify not only the number of clauses, but also the 
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depth of the clause division. The latter is also an indicator of the sentence complexity. In other words, the 

more divisions on a sentence bar, the more complex it is. The more variant the white gaps in a sentence 

bar, the more complex it is.  

For example the sentence “While all restriction policies are based on the uniform guidelines, 

there may be minor variations in the details to account for local conditions” is visualized below. 

 

 

                       Figure 4. This is a visualization of sentence structural complexity. 

 

The gray sections represent sub-clauses, whose length is defined by the number of characters. 

The white gaps are indicators of the depth the sub-clause appears in the parse tree. The smaller the 

white gap, the lower the sub-clause is placed on the parse tree. This sentence is divided into three 

clause levels: the first sub-clause “While” appears at the second level of the tree, while the other two 

sub-clauses “all restriction policies are based on the uniform guidelines” and “there may be minor varia-

tions in the details to account for local conditions” appears at the third and fifth level of the parse tree, 

respectively. The above visualization clearly depicts the depth of division. 

3.1.2   Implementation and Results 

In this section I present examples of my readability visualization techniques (see figures 5 to 9). 

All of the visualizations were created in Mathematica 7.0, which provides a rich set of functions for visua-

lization and text processing. 
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Figure 5. This is a visualization of the movie review of “Alice in Wonderland” by Roger Ebert (Chicago 

Sun-Times). Each bar represents a sentence. Each section represents a word. The gray sections 

represent words from the Dale-Chall list, red sections are words not from the list, and the black sections 

are non words (e.g. numbers).  

 

 

 

Figure 6. This is a visualization of the movie review of “Alice in Wonderland” by Dana Stevens 

(slate.com). Each bar represents a sentence. Each section represents a word. The gray sections 

represent words from the Dale-Chall list, red sections are words not from the list, and the black sections 

are non words (e.g. numbers). It is clear that Ebert’s writing is more readable.  
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Figure 7. This is a visualization of the movie review of “Alice in Wonderland” by Roger Ebert. Each bar 

represents a sentence. Each gray section represents a sub-clause. The white gaps are indicators of the 

level of depth the sub-clauses appear in the parse tree. The higher the sub-clause is on the parse tree, 

the bigger the white gap.  

 

 

Figure 8. This is a visualization of the movie review of “Alice in Wonderland” by Dana Stevens 

(slate.com). Each bar represents a sentence. Each gray section represents a sub-clause. The white gaps 

are indicators of the level of depth the sub-clauses appear in the parse tree. The higher the sub-clause is 

on the parse tree, the bigger the white gap. It is clear that in general Stevens write more complex sen-

tences than Ebert.  
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Figure 9. The visualization and the original text can be displayed side by side. When the user moves the 

mouse cursor over to a bar, the corresponding word is highlighted in the text. The word is also displayed 

in the tooltip. 

3.1.3   Conclusion 

My readability visualization is an attempt to address several issues.  First, traditional readability 

indexes are too simplistic for in-depth and localized analysis. My visualization allows readers and writers 

to quickly identify the distribution of complex words and sentences across a document. Second, tradi-

tional readability indexes use only simple sentence length to measure sentence complexity. My visuali-

zation can help users quickly compare not only sentence lengths but also the syntactic structures of sen-

tences. In this context the extension of the work to the phrase level structural complexity shows a prom-

ising one.  

My case studies have demonstrated that the text readability can be effectively visualized. The 

different writing styles of different authors are clearly visible. The visualization is particularly useful for 

quick comparison, and can also serves as a map for writers to quickly locate areas to revise. 

 

3.2      Recommendation by Composition Style 

A Recommender systems attempt to reduce information overload by selecting a subset of items 

from a large data set based on user preferences. There are generally two types of recommendation sys-

tems: collaborative filtering and content-based approach. Collaborative filtering methods make recom-
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mendations not based on content but rather on previous users’ selections. Content-based approaches, 

on the other hand, explore the semantic aspect of the content using statistical and machine learning 

techniques. 

However, there is one aspect that is often missing in the traditional recommendation system: 

composition style. Composition style is often an important factor in readers' selection of reading mate-

rials. For example, a reader may seek out articles written in similar style as his or her favorite writer. But 

neither the collaborative filtering nor the traditional content-based approaches address this issue. Here I 

propose a novel recommendation system based on the composition style. I use the Stanford Natural 

Language Parser (SNLP) [39, 40] to create clause level diagram of the syntactical structure of the docu-

ment. Then my program searches other documents with similar syntactical structures. The syntactical 

structures are represented by matrices, and I compare the syntactical similarity based on the distance 

metric between two matrices. After the first round of automatic selections, users can then visually com-

pare these documents to make a final selection. By incorporating human visual perception with com-

puter based recommendation, users can find the document that fits their preferred composition style. 

This approach is beneficial for recommending textual documents such as online product re-

views, movie reviews, books, magazine articles, etc. 

3.2.1   Methods 

A. Converting sentence structure diagrams to matrices 

With the help of SNLP I can visualize the compositional structure of a document by stacking ho-

rizontally each sentence’s gray-white bar representation (see Figure 4). To compare the syntactic struc-

tural similarity between documents, I convert the sentence structural diagrams into matrices. As each 

gray section of the bar equals to the numbers of character that clause made of and each white section 
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length represent the depth level in the tree, I collect these numbers for each sentence as a row in the 

matrix and whole document constitutes the whole matrix this way.  

B.   Measuring the similarity between sentence structure matrices 

I measure the similarity between two matrices by two metrics: distance and mismatched ele-

ments.  

• Distance: 

If the rank of two matrices A  and B  are the same, for example r, then the regular distance be-

tween them could be found as 

)(tan BANormceDis −=  

If the rank for matrices A  and B  are Ar and Br  respectively with the constraint   Ar  > Br  then I 

try to find a matrix C of rank Br  that is the closest to matrix A through the best rank approximation me-

thod so that I can find the difference of the matrices. The regular distance between B and C are defined 

as, 

)(tan CBNormceDis −=  

Here I chose Frobenius norm, which is defined for a matrix A of dimension m×n as, 
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where ija is the i th row and j th column element of the matrix A. 

If the two matrices in comparison are not of the same order, then I pad the smaller matrix with 

zeros to equate the dimension of the bigger one. 

• Mismatch Elements: 
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If a small matrix is a subset of the big one and the big matrix consists of a few additional ele-

ments that are numerically large, then the similarity between the matrices in terms of Frobenius norms 

will be big. But this may not reflect the nature of their similarity. To address this issue I try to measure 

similarity in terms of the number of similar elements.  

If C is the biggest common element between the case matrix A and control matrix B, and the 

dimension for A, B, C are dA, dB and dC respectively, then  

Control Mismatch = AC dd−1 , 

Case Mismatch = BCB dd −  

and considering the mismatch has similar effect on case and control I define,  

chCaseMismatmatchControlMistchTotalMisma ×+×= 5.05.0  

 

• Dissimilarity: 

Taking both distance and mismatched elements into account, I define the dissimilarity between 

two matrices as a linear combination of both factors: 

tchTotalMismaceDisityDissimilar *tan* βα +=  

where α and β are two coefficients who’s sum varies between 0 and 1. 

Hence I can use the above dissimilarity measurement to compare the syntactical structure simi-

larity of two text documents.  In this regard the matrix is formed through the gray and white bar lengths 

of a sentence as a row of a matrix and the number different lengths acts as the different columns in that 

row of the matrix. The number of sentences in the text serves as the number of rows here as well. 
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3.2.2   Implementation and Results 

In this section I present examples of my visualization and compare them. For this purpose I have 

chosen simonblog [92] for iphone related blog by a blogger as my control data and collected ipad related 

three more blogs by the same blogger as my case data. The visualizations are presented in figures 10 to 

13. 

 

Figure 10. This picture shows the structural complexity of sentences taken from iphone related blog by a 

blogger. Each bar represents a sentence. Each gray section represents a sub-clause. The white gaps are 

indicators of the level of depth the sub-clauses appear in the parse tree. The higher the sub-clause is on 

the parse tree, the bigger the white gap. 

 

 

Figure 11. This picture shows the structural complexity of sentences taken from the first ipad related 

blog by the same blogger. 
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Figure 12. This picture shows the structural complexity of sentences taken from the second ipad related 

blog by the same blogger. 

 

 

Figure 13. This picture shows the structural complexity of sentences taken from the third ipad related 

blog by the same blogger. The composition style is quite visually similar for figures. 

I computed the aforementioned matrix distance for the figures 11, 12, 13 with respect to the 

figure 10 and they are respectively 0.786, 0.69 and 0.62 and the TotalMismatch for all the three figures 

came as 1. Interestingly as the distance here turns out to be less than one in for all the cases turns out 

there is some similarity. Unless two texts has exact similar subsections (i.e in case one text copied 

somepart of the other text) the TotalMismatch is generally 1. Now if one text has a multiplied volume 

subset of another text, TotalMismatch becomes less effective in finding mismatch and in that case more 

rigorous and computational expensive matrix matching techniques has to be employed. With the help of 

distance metric and visual perception I justify structurally similar texts. 
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3.2.3   Conclusion 

I have described a recommendation method that adds composition style comparison on top of 

the traditional keyword based search. In addition to specifying a list of keywords, a user also provides a 

sample text document. My system will then search documents first based on keywords, but then rank 

the search results based on their syntactical structure similarity to the sample text. Users can then vi-

sually compare the structure of the documents and make a final selection.  

As a result, my method helps users choose a document that is not only relevant in content but 

also conform to his/her preferred composition style. My preliminary results have shown that it has great 

potential for providing personalized search results, and thus improving user experience. 

 

3.3      Visualizing Multiple Readability Indexes 

 A typical readability index is a single average number or classification for the entire document. 

Although readability indexes can help quickly classify a document, the traditional form of readability in-

dexes are often too simple and abstract for in-depth analysis. For instance, two documents with very 

different distribution of complex words and sentences can have similar readability indexes. In case of a 

multiple authored document the overall readability index may hide a particularly difficult section written 

in more complex style compared to its overall readability index. Another issue is that although the dif-

ferent readability indexes correlate well at the document level, they often do not correlate well at the 

paragraph level. 

To address this issue, I propose a method to visualize readability metrics for each paragraph of a docu-

ment so that a writer or reader can visually understand and analyze the complexity of each paragraph. 

My visualization method [51] employs two forms of visualization schemes. First, the overall readability 

index for each paragraph is visualized as a color coded ring. The color represents the readability score. 

This allows users to quickly understand the complexity of the document at the paragraph level. I also 
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created an explanatory visualization that shows all the different readability indexes for a paragraph. In 

this visualization different readability indexes are represented by color coded abbreviation such as “ARI” 

for Automatic Readability Index, “CL” for Coleman-Liau index, “FK” for Flesh Kinkaid readability ease, 

etc.  

  The second scheme in the aforementioned is to use Chernoff faces to encode multiple readabili-

ty indexes for each paragraph. Each component of the face composition (such as size of the eye, curva-

ture of the moth etc.) encodes a different readability index. The Chernoff face scheme uses the human 

cognitive system’s familiarity with facial expressions to help readers or writers to quickly identify out-

liers.   

This visualization [51] improves the presentation of the readability indexes from its traditional numerical 

expressions to visual patterns that can be quickly recognized. With such readability visualization, both 

readers and writers can visually determine the difficult paragraphs, or tally the readability of multiple 

documents or multiple versions of the same document.  Particularly, a writer can use it to evaluate the 

readability of the composed document at the paragraph level through inspecting how various readabili-

ty metrics are distributed across the document and find specific areas for revision. 

3.3.1   Methods 

B. Calculating the readability indexes 

I computed five readability indexes: Flesh Kinkaid reading ease, Gunning Fog score, Coleman-Liau 

index, SMOG index and Automatic Readability index. Here are their formulas [141].   

Flesch-Kincaid Reading Ease index: 









×−








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syllablestotal

sentencestotal

wordstotal
6.84015.1835.206

 

Gunning Fog index: 
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Coleman-Liau index: 

8.155.2989.5 −







×−








×

words

sentences

words

characters
 

Simple Measure of Gobbledygood (SMOG) index:  

1291.330043.1 +××
sentencesofnumber

lespolysyllabofnumber
 

All of the these indexes involve the computation of sentence length in terms of words, word 

length in terms of characters and syllables and paragraph length in terms of the number of sentences. 

Counting the number of characters per word is straightforward, but counting the number of syllables is 

a little more complicated [41]. The computation of syllable count is described in section 3.1.1 A. 

C. Categorizing and color coding the indexes 

I divide the whole range of possible readability index scores into five categories, from the highest 

to the lowest. Each category is assigned a color: red represents the worst readability index; green 

represents the best; orange, yellow, and cyan represent the indexes in between. After computing the 

readability index of a paragraph, the result is classified into one of the five categories. The overall reada-

bility index is calculated by averaging the different readability indexes for a paragraph. The overall reada-

bility index is then assigned the corresponding color code. A ring with the assigned color is then generat-

ed and displayed alongside the paragraph. An example is shown in Figure 14. 
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Figure 14.  Overall readability index visualization as a color coded ring 

Users can also choose to display the individual readability indexes as text abbreviations. The rea-

dability indexes are separated by ‘-‘. An example is shown in Figure 15. 

 

Figure 15.  Visualization for different readability indexes 



41 

D. Visualizing readability indexes using Chernoff faces 

Chernoff faces [53] are cartoon like characters that visualize multiple variables with different 

parts of the face. Here I have five different types of readability indexes mapped to five facial characters:  

• Flesh Kinkaid is mapped to the shape of face (circular to oval); 

• Gunning Fog is mapped to the size of the eyes; 

• SMOG is mapped to the orientation of the eyes  (acute angle to perpendicular with the nose ); 

• Coleman-Liau is mapped to the size of the mouth; 

• ARI is mapped to the orientation of the mouth (smiling to sad).  

Figure 16 and 17 show some examples.  

 

 

  

Figure 16.  Example of Chernoff faces 

 

Figure 17 shows an example of mapping different readability indexes to different facial characters.  
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Figure 17.  Visualizing five readability indexes with one Chernoff face per paragraph. 

3.3.2   Implementation and Results 

All of the visualizations were created in Mathematica 7.0, which provides a rich set of functions for 

visualization and text processing. As a case study, I present the visualization of two reviews of the movie 

“Alice in the Wonderland”, one by Roger Ebert (Chicago Sun-Times) and the other by Dana Stevens 

(slate.com). The visualizations are presented in Fig. 18, 19 and 20.  

Comparing Figure 18 and Figure 19 we can see that Roger Ebert’s composition has more green 

indexes compared to Dana Stevens’, suggesting that Roger Ebert’s writing is more readable. In Figure 20, 

we can compare Roger Ebert’s writing (left) with Dana Stevens’ (right) by Chernoff faces. We can see that 

all the faces in Roger Ebert’s section have smiley mouths, with some of them big smiles with more hori-

zontal eyes. But the faces in Dana Stevens’ section have one sad face with smaller smiles and more angu-

lar eyes. Therefore readers can quickly recognize that Stevens’ composition is somewhat more difficult to 

read than Ebert’s.  
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Figure 18.  This is a visualization of the movie review of “Alice in Wonderland” by Roger Ebert (Chicago 

Sun-Times). The left section shows the overall readability index for each paragraph and the right section 

shows different readability indexes in their abbreviations. 
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Figure 19.  This is a visualization of the movie review of “Alice in Wonderland” by Dana Stevens 

(slate.com). The left section shows the overall readability index for each paragraph and the right section 

shows different readability indexes in their abbreviations. 
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Figure 20.  This is the Chernoff face visualization of the movie review of “Alice in Wonderland” by Roger 

Ebert (the left section) and Dana Stevens (the right section). Each Chernoff face encodes five readability 

indexes for that paragraph.  
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3.3.3   Conclusion 

My readability index visualization addresses the issue that the traditional readability indexes are 

too abstract for in-depth analysis of the document. My visualization allows readers to quickly identify 

article sections with low readability. For writers, it can help quickly locate the sections that need revi-

sion. It is particularly helpful for analyzing and revising multi-authored documents. 
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4 ANALYSIS OF A SOCIAL DATA VISUALIZATION WEB SITE 

In the past few years, online social data visualization has emerged as a new platform for users to 

construct, share, and comment on data visualizations online. The most well known online data visualiza-

tion tools include Many Eyes, Swivel, and Tableau Public. In here, I report my analysis of Many Eyes – an 

IBM research project. By analyzing all the data visualizations constructed by users from 2007 to 2010, I 

provide insight into online user behavior as well as patterns and trends in social data visualization. 

4.1 Descriptive Analysis 

As I believe ManyEyes is the largest experiment on user generated data visualizations, I chose 

this site for analysis. In ManyEyes a user can create or search the data visualizations as well as comment 

on existing visualizations. This gives me enough motif to collect information from this social collabora-

tive environment to explore the nature of collaboration. For every data visualization, I retrieved the fol-

lowing information 

� Author’s name 

� Date posted 

� Title of the visualization 

� Type of the visualization 

� Tag (if any) 

� Rating (if any) 

� All the comments 

For each comment, I retrieved the following 

� Information 

� Author’s name 

� Data posted 
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� Comment 

After the retrieval I concluded the report with the help of descriptive statistics. 

• Descriptive Statistics 

Descriptive statistics are used to describe the basic features of the data in a study. This provides 

simple summaries about the sample and the measures. This forms the basis of virtually every quantita-

tive analysis of data which could be enhanced with simple graphical analysis of the data as well. 

In the single variable or Univariate analysis generally three major characteristics are explored: 

� the distribution  

� the central tendency  

� the dispersion  

The distribution is a summary of the frequency of individual values or ranges of values for a vari-

able. 

The central tendency of a distribution is an estimate of the "center" of a distribution of values. 

There are three major types of estimates of central tendency: 

� Mean  

� Median  

� Mode  

Dispersion refers to the spread of the values around the central tendency. There are two com-

mon measures of dispersion, the range and the standard deviation.  
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4.1.1   Implementation and Analysis 

Collecting data from the Many Eyes web site is not trivial. Although a user can browse or search 

the data visualizations, the web site does not provide a downloadable database of all the visualizations. 

The web site does provide a RSS feed that broadcasts every new comment. However, at the time of my 

study, I could only retrieve comments made after March 2009. Therefore I used a Web data extraction 

tool to retrieve the data page by page. 

Overall, I collected over 7,000 data visualizations and over 33,000 comments, made between 

January 2007 and June 2010, and saved them in a SQL database. My analysis was based on the queries 

made to this database. Note that I exclude comments automatically generated by the computer. 

A. Activity Analysis 

I) The number of data visualizations  

Table 1. The number of data visualizations and comments by year 

 
Year Number of data visualiza-

tions 

Number of com-

ments 

# comments / 

# visualization 

2007 2172 13180 6.07 

2008 1630 10619 6.51 

2009 3260 10635 3.26 

2010(up until June) 2433 7357 3.02 

Total 9495 41791  

 

From Table 1, I see that the popularity of Many Eyes is getting stronger over the years. After a 

dip in 2008, the number of data visualizations bounced back strongly in 2009, and the number in 2010 

is also strong. An interesting fact is that the average number of comments per visualization has been 

declining from 2007 to 2009, and then bounces back in 2010, meaning that people are commenting 

more on data visualizations in 2010. This suggests that the level of social interaction is getting higher 

this year. But it is unclear why there is a sudden increase of social interaction in 2010. It will be inter-
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esting to monitor this number in the coming months and see which direction it is going. 

Upon close inspection, I find that the comments are very unevenly distributed. The lively dis-

cussions were concentrated on a small number of data visualizations, while the vast majority of the 

visualizations attract little attention. 

I also analyzed the number of data visualizations and the number of comments created per month 

but did not find clear patterns. There is often a big variation in the number of data visualizations or 

comments created for each month over different years. However, I did find some outliers in the num-

ber of comments made in certain months. For example, the number of comments made in January 

2007 (2249 comments) and April 2010 (2308 comments) are much higher than the other months. 

April 2010 also has the highest monthly number of user generated data visualizations (499 data visua-

lizations) in my study. The case of January 2007 is easy to explain because that was Many Eyes’ first 

month of operation and there were a lot of curious new users. A possible explanation for the high 

number in April 2010 is that April 15 is the deadline for filing income taxes in the United States. There 

were probably a lot of data visualizations and comments about personal finance and the economy. 

Further investigation is needed to confirm this hypothesis. 

II) Data visualization types 

 
Table 2. Most created chart types by year 

 

2007 2008 2009 2010 

Bubble Chart Bubble Chart Word Cloud Word Cloud 

World Map Bar Chart World Map Bubble Chart 

Tag Cloud Network Diagram Word Tree Word Tree 

Bar Chart Tag Cloud Bubble Chart Matrix Chart 

Network Diagram Word Cloud  Tag Cloud World Map 

Treemap Matrix Chart Bar Chart Bar Chart 

Line Graph Word Tree Matrix Chart Treemap 

Scatterplot World Map USA Map Tag Cloud 

US State Map USA Map Treemap Network Diagram 

Stack Graph for Categories Line Graph Network Diagram USA Map 
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Table 3. Overall most created and commented chart types by year 
 

10 Most created chart types 10 Most commented chart types 

Bubble Chart World Map 

Word Cloud Bubble Chart 

World Map Network Diagram 

Bar Chart US State Map 

Tag Cloud Stack Graph 

Word Tree Scatterplot 

Network Diagram Word Tree 

Matrix Chart Bar Chart 

Treemap Word Cloud 

Line Graph Tag Cloud 

 

 

Table 2 and 3 shows the most created and commented visualization types. First of all, the pop-

ularity of Bubble Chart is somewhat surprising. It will be interesting to investigate the type of data the 

Bubble Chart were used for and how readers commented on them. It is not yet clear why Bubble Chart 

is so attractive to many users and whether it’s an effective visualization type. Second, text visualiza-

tions such as Word Cloud, Tag Cloud, and Word Tree are quite popular, indicating that lots of users are 

using data visualization for text analysis. Third, the typical business and scientific data charts such as 

Line Graph and Scatterplot are ranked relatively low (e.g. lower than Treemap). This may indicate that 

the users of Many Eyes are more likely to use it for fun and curiosity than for business or scientific re-

search purposes. Fourth, Pie Chart and Stack Graph are ranked low in popularity, perhaps indicating 

that after years of educational efforts by peoples like Tufte, the drawbacks of Pie Charts and Stack 

Graph are accepted by the general public. 
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B. User Analysis 

I)  Creators 

 

Table 4. Registered users who created more than 20 visualizations (by year) 
 

2007 2008 2009 

Martin Wattenberg (273) Martin Wattenberg (34) Best_Baseball_Players_2009 (28) 

Fernanda Viegas (122) Belarius (26) Irene Ros (26) 

Fran Van Ham (95) Iamcurious (20) Jovirox (23) 

Cgreen (78)  Fernanda B. Viegas (21) 

Grjenkin (52)   

Belarius (41)   

Matt McKeon (37)   

Colm (35)   

Lee Byron (30)   

Jesse (26)   

0c73d86e-ad2f-11dd-84b8-

000255111976 (25) 

  

Dcjohn (24)   

JasonW (21)   

 

Table 5. Creator analysis 

 2007 2008 2009 

Number of registered users who created at 

least one visualization 

310 428 381 

Number registered users who created 10 

or more visualizations 

22 14 12 

Number of visualizations created by Ano-

nymous users 

627 692 2374 
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From Table 5, I can see that the vast majority of the visualizations are created by anonymous 

users. There is a big increase in the numbers of visualizations created by anonymous users in 2009, while 

the numbers of visualizations created by the registered users are relatively stable over the years. Since I 

know there is also big increase in the total number of visualizations created in 2009, it is reasonable to 

assume that there is a big increase in the number of anonymous users in 2009. Because the number of 

comments made in 2009 is similar to 2008, I speculate that these new anonymous users constructed 

many data visualizations but made few comments. 

If I define an active contributor as a registered user who created more than 10 visualizations, 

then the percentage of active contributors was very low. Among the registered users who created at 

least one visualization, only 7% of them in 2007, 3% in 2008, and 3% in 2009 were active contributors. 

(Also note that these active contributors include some of the IBM research team members.) Only three 

registered users in 2008 made more than 20 visualizations and one of them was from the IBM research 

team. The situation in 2009 is similar: only 4 users created more than 20 visualizations and one of them 

was from the IBM research team. The year 2007 was different because it is the first year of Many Eyes’ 

operation and the IBM research team (Wattenberg, Viegas, van Ham, McKeon, and perhaps Jesse) 

created large numbers of visualizations, probably for testing the system. (It seems that the IBM research 

team made far fewer data visualizations in 2008 and 2009.) 

Overall, the vast majority of Many Eyes’ users are casual users, making very small number of vi-

sualizations. This is not a surprise. However, I am surprised by how low the number of active contribu-

tors is. 

There could be anonymous users who make many data visualizations. However, it is impossible 

for us to identify. But based on the registered users’ behavior, it is unlikely that the anonymous users 

will be much different. 

 



54 

II)  Commenter 
 

Table 6. Commenter analysis 

 

 2007 2008 2009 

Number of registered users 

who made at least one 

comment 

328 436 440 

Number of registered users 

who made more than 10 

comments 

81 71 57 

Comments posted by Ano-

nymous users 

4421 4840 5540 

 

The situation with the commenters is similar to the situation with the contributors. From Table 

6, I can see that the vast majority of the comments were made by anonymous users. Among registered 

users who made at least one comment, only 24% in 2007, 16% in 2008, and 12% in 2009 were active 

commenters (with over 10 comments). The percentage of active commenters though higher than that 

of the active creators, is decreasing over the years. In addition, the top commenters often include 

members from the IBM research team (e.g. Wattenberg and Viegas). 

About 50% of the comments were made by anonymous users. Unlike the number of creators, I 

don’t see a significant increase in the number of anonymous comments in 2009. 

4.1.2   Conclusion 

I have presented my preliminary analysis of online social visualization web site Many Eyes. 

Since a number of new online social visualization tools have been launched in the past year, the inter-

est in this area is strong. Therefore the lessons I learned from Many Eyes web site will be valuable for 

the other online social visualization services. 
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My key findings are as follows. 

• The number of data visualizations created on Many Eyes has been steadily increasing since 2008. 

User activity remains high. But the increase of data visualizations in 2009 is likely due to a large 

number of new anonymous users.  

• Bubble Chart and World Map are the most created and commented visualization types.  

• Text visualizations, such as Word Cloud, Tag Cloud and Word Tree, are among the most popular 

visualization types, indicating that the interest in text visualization is very high.  

• After a steady decline over three years, the number of comments per visualization suddenly rises 

in 2010. It seems that new users who came to Many Eyes in 2010 are more interested in com-

menting on others’ data visualizations than previous users. The social interactions on Many Eyes 

seem are getting stronger in 2010, which is an interesting trend.  

• Overall the number of comments per visualization is still relatively low. A large number of com-

ments are concentrated on a very small number of data visualizations. The vast majority of the 

data visualizations attract little attention.  

• The number and percentage of active creators are very low. The number of active commenters is 

decreasing. About 50% of the comments were made by anonymous users. 

• The vast majority of users seem to be casual users who create data visualizations for fun and cu-

riosity. Very few people use this web site for serious data exploration or discussion. 

Overall, online social visualization web sites such as Many Eyes need to find ways to attract 

more serious, active users and to promote more extensive social interactions among users. The success 

of a social media web site relies heavily on a relatively small group of very active contributors. The num-

ber of active contributors on Many Eyes, after excluding the IBM research team members, is surprisingly 

low and decreasing. The situation with the number of active comenters is similar. An extended analysis 

using Swivel, Tableau Public, and Google Public Data Explorer in the same context would be quite prom-
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ising in future. 

4.2 Exploring Relationship in Social Collaborative Website Retrieved Data 

With potential amount of growth in today’s world online social data visualization has been 

started gaining the hype for tomorrow. As a result people’s interaction in such an environment has been 

analyzed at a very basic level [91] to understand how the users are constructing, viewing and discussing 

visualizations. Therefore the importance of such analysis continues in lieu of how different temporal 

factors affecting specific type of visualizations and their respective comments. Also Many Eyes attach 

some system generated tags to each and every visualization gets created on their platform; does this 

really relevant to the category of the charts or is it arbitrary? Therefore my motivation here to explore 

the answers for this questions using some analytical statistics. 

The focused part of the data analysis covers categorical data collected from the Many Eyes site. In 

categorical data analysis two-way contingency tables formed by cross classifying categorical variables 

and are typically analyzed by calculating chi-square values testing the hypothesis of independence since 

Karl Pearson’s phenomenal introduction in 1900 [94]. In the 1970s, a dramatic change was brought in 

the analysis of cross-classified data through the publication of a series of papers on loglinear models by 

L.A. Goodman [103][104]. 

4.2.1   Methods 

C Data which are reflecting the classification of objects into different categories are referred as 

categorical data. A contingency table is a tabular representation of categorical data. It usually shows 

frequencies for particular combinations of values of discrete random variables represented in the table 

dimensions. 

In contingency table the initial analysis is done through finding association between variables 

with the use of various kinds of Chi Square tests. 
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A. Pearson’s Chi Square Test: 

Pearson's chi-square test [94] (χ2) is one of a variety of chi-square hypothesis tests which em-

ploys the chi-square distribution to conclude the result of the test. It is used to test the association of 

row and column variables in a contingency table.  

It tests a null hypothesis that the relative frequencies of occurrence of observed events follow a speci-

fied frequency distribution.  For the test, 

Null Hypothesis H0 : There is no association between the row and column variables of the con-

tingency table 

Alternative Hypothesis H1 : There is association between the variables. 

The Chi-square statistic for the null hypothesis is calculated by finding the difference between 

each observed and theoretical frequency for each possible outcome (the total number of cells present in 

the table) in the contingency table, squaring them, dividing each by the theoretical frequency, and tak-

ing the sum of the results. The number of degrees of freedom is equal to the number of possible out-

comes minus 1. 
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where  Oi = an observed frequency;  

Ei = an expected (theoretical) frequency, asserted by the null hypothesis;  

n = the number of possible outcomes of each event.  

This χ2 statistic value is compared with the χ2 distribution of n degrees of freedom.  

Now if the probability of finding that value is found low in the distribution, then the null hypothesis is re-

jected with the conclusion that there is association between the row and column variables of the contin-

gency table. 
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B. Cramer’s V : 

Cramer's [138] V is a method for calculating correlation in contingency tables,   

used mainly for the tables containing rows and columns. Once the Chi-square test  

establishes the association between the categorical variables of a contingency table,  

this technique is performed to figure out the strength of the association.  

V is calculated by first calculating chi-square, then using the following calculation: 

)1(

2

−
=

kn

c
V

          [139]

 

 

where c
2
 is chi-square and k is the number of rows or columns in the table. 

The values of Cramer's V range from 0 and 1. If the value comes out close to 1,  

indicates the strong association between the variable under consideration from the  

contingency table, where as the value close to zero  refers weakness. 

C. Loglinear Modelling: 

One of the specialized cases of generalized linear models is the loglinear model, which comes in 

action for Poisson distributed data [132].  

Poisson distribution [132] represents counts or frequency of some event across time or over an 

area. According to statistical theory, the Poisson distribution is a discrete probability distribution that 

expresses the probability of a given number of events occurring in a fixed interval of time and/or space if 

these events occur with a known average rate and independently of the time since the last event. 

Loglinear modeling is an extension of the two-way contingency table analysis. There conditional rela-

tionship between two or more discrete, categorical variables is analyzed by taking the natural logarithm 

of the cell frequencies within a contingency table. This analysis doesn’t distinguish variables as depen-
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dent or independent variables; instead it treats all the variables as response variables and eventually 

results the analysis through directing the association between variables. 

The following loglinear model [134], corresponds to a 2 x 2 contingency table with two categori-

cal variables A and B each with two levels, is evaluated to find out the association between the categori-

cal variables of the tbale. 

Ln(Fij) = µ + λi
A  

+ λj
B
 + λij

AB 
    [134] 

where, Ln(Fij) = is the log of the expected cell frequency of the cases for cell ij in the contingency table. 

µ = is the overall mean of the natural log of the expected frequencies of the table 

λ = represeants the variable effects on the cell frequencies. 

i and j = refer to the categories within the variables 

Therefore: λi
A
 determines the main effect for variable A  

λj
B
  determines the main effect for variable B 

λij
AB

 determines the interaction effect for variables A and B 

The above loglinear model is the representation of the saturated one in this context, as it incor-

porates all possible one-way (variable A and B) and two-way effects (the interaction effect for variables 

A and B). When the model only incorporates some effects not all, considered as an unsaturated model. 

For example in this model if we assume that variable A has no effect on variable B, or vice versa then we 

can set the effect parameter λij
AB

 to zero and the unsaturated model [134] turns out as : 
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Ln(Fij) = µ + λi
A  

+ λj
B
      [134] 

As this particular model doesn’t contain the interaction variable, it represents the independence 

model. This model eventually depicts the variables in the table are unassociated: therefore this serves as 

the alternative to the chi-square hypothesis test of independence. 

The primary strategy in loglinear modeling involves fitting models to the observed 

count/frequency of the categorical variables from a contingency table.  Basically the expected frequen-

cies represent the model perfectly. Now depending on how good the model reflects the actual contin-

gency table, the expected data reflects closeness to the observed data. Therefore after computing the 

expected frequencies through the modeling, multiple models are compared hierarchically for the best 

match. The model which reflects most parsimoniousness to the observed data is chosen. To figure out 

the appropriate best model, the goodness-of-fit statistics associated with models are compared. 

The overall goodness-of-fit of a model is assessed by comparing the expected frequencies (Fij) to 

the observed cell frequencies (fij) for each model.  The Pearson Chi-square statistic or the likelihood ratio 

(L
2
) can be used to test a models fit. The formula for the L

2 
statistic is as follows [134]:  

L
2
 = 2Σ fij ln(fij/Fij)       [134] 

L
2
 follows a chi-square distribution with the degrees of freedom (df) equal to the number of cell 

counts minus the number of non redundant parameters (Therefore the saturated model always has de-

grees of freedom zero and the degrees of freedoms increase for the unsaturated cases).  The larger the L
2
 

relative to the available degrees of freedom, the more the expected frequencies depart from the actual 

cell entries [134].  Therefore, the larger L
2
 values indicate that the model does not fit the data well and 

thus, the model should be rejected. 
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4.2.2   Implementation and Analysis 

Collecting data from the Many Eyes web site is not trivial.  The web site does not provide a 

downloadable database of all the visualizations or comments in the site. But the web site provides a RSS 

feed that broadcasts every new comment. I used a Web data extraction tool to retrieve the data page by 

page. For each data visualization, I retrieved the following data for my current analysis 

� Type of Visualization 

� Timestamp Information of the visualization 

� Tag for the visualization 

� Comments on the visualization 

� Timestamp Information of the visualization 

 

On overall, the retrieval accumulated over 7,000 data visualizations and over 33,000 com-

ments, made between January 2007 and June 2010. The retrieved data is saved in a MS SQL Server 

database. My analysis was based on the queries made to this database. Using the queries I excluded 

the system generated comments so that I can draw real collaboration from the users only. 

In IBM’s ManyEyes, the social collaborative environment, the data has been captured and visua-

lized with time stamp information. This time stamp information includes year, month and day type of the 

week. I observe the creation or collaboration traffic of the different visualizations have quite a variation in 

their distribution. Inherently I try to find if there is any relationship between these different types of visu-

alizations and time it has been created/collaborated. 

A.   Visualization Data 

There are 31 different types of visualizations and out of which 12 are just specific different type 

of maps whose counts are very low so they are merged together into ‘Other Map’ type and eventually I 
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have 20 different types of visualizations. There were 7444 such visualizations out of which 6209s have a 

specific type.  

I performed the contingency table analysis of the 20 types of visualization data with four different 

years (2007-2010) and twelve different months. The cells of each table contain the frequency of counts in 

that category. Running FREQ procedure with specific options I found the following for the above data. 

   Table 7. Chi-Square analysis of year wise creation of different visualization types 

Statistic DF Value Probability 

Chi-Square 57     943.3191 <.0001 

Cramer's V  0.2250  

 

  Table 8. Chi-Square analysis of month wise creation of different visualization types 

Statistic DF Value Probability 

Chi-Square 209     1176.5832     <.0001 

Cramer's V  0.1313  

All the tables above have very hi chi-square value and the p values are really low; therefore it 

shows association of the visualization types with the temporal factors(years, and months) with respect 

to the comment counts. I can therefore say the comment counts of certain visualization types depend 

on the temporal factors. With the value of Cramer’s V in the tables above I can’t depict very strong asso-

ciation as it is closer to zero than one. 

To test my analysis result I also executed both unsaturated and saturated loglinear models on 

the same data on SAS using CATMOD procedure and the unsaturated model fits, which again reflects the 

association as well. 
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B.   Comment Data 

As like the visualization data here are also 31 different types of visualizations and out of which 12 

are just specific different type of maps whose counts are very low so they are merged together into ‘Oth-

er Map’ category and therefore I have 20 different types of visualizations. 

There were 33258 comments retrieved. Similar to the visualization data analysis, I performed the 

contingency table analysis of the 20 types of visualization data with four different years (2007-2010), 

twelve different months and seven different day types of a week. The cells of each table contain the fre-

quency of counts in that category. Running FREQ procedure with specific options I found the following for 

the above data. 

To test my analysis result I also executed unsaturated loglinear models on the same data on SAS 

using CATMOD procedure and that guarantees the association as well.  

Table 9. Chi-Square analysis of year wise comment counts on different visualization types 

Statistic DF Value Probability 

Chi-Square 90 11139.7972 <.0001 

Cramer's V  0.3341  

 

Table 10. Chi-Square analysis of month wise creation of different visualization types 

Statistic DF Value Probability 

Chi-Square 209     18526.4748     <.0001 

Cramer's V  0.2250  
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Table 11. Chi-Square analysis of day type wise creation of different visualization types 

Statistic DF Value Probability 

Chi-Square 114    4129.3310     <.0001 

Cramer's V  0.1414  

All the tables above have very high chi-square value and the p-values are really low; therefore it 

shows association of the visualization types with the temporal factors(years, months and day types) with 

respect to the comment counts. I can therefore say the comment counts of certain visualization types 

depend on the temporal factors. With the value of Cramer’s V in the tables above I can’t depict very 

strong association as it more closer tro zero than one and definitely at the day type of the week level: I 

can say that the comment counts on the certain visualization doesn’t depend that strongly on the differ-

ent days of the week, so it’s little arbitrary there. 

To test my analysis result I also executed both unsaturated and saturated loglinear models on 

the same data on SAS using CATMOD procedure and the unsaturated model fits, which again reflects the 

association as well; following are the tables for the maximum likelihood analysis of variance for the log-

linear models. 

Table 12. Maximum Likelyhood Analysis of Variance for   Unsaturated Loglinear Model of Year  

                                    Effect 

 

Source DF Chi-Sq Pr > Chi-Sq 

visType 19 12960.90 <.0001 

year   3 2066.43 <.0001 

Likelihood Ratio 54 8698.22         <.0001 
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Table 13. Maximum Likelyhood Analysis of Variance for Unsaturated Loglinear Model of Day Type Effect 

 

Source DF Chi-Sq Pr > Chi-Sq 

visType 19 14129.54         <.0001 

dayType  6 1414.75         <.0001 

Likelihood Ratio 114 3907.82         <.0001 

 

I saw there are total of 45 different comment counts starting from 1 to 45 and I performed con-

tingency table analysis using FREQ procedure in SAS for these 45 different comment count categories 

and 4 different years, following is the outcome of that.  

Table 14. Chi-Square analysis of year wise comment count categories 

Statistic DF Value Probability 

Chi-Square 513 10710.4655     <.0001 

Cramer's V  0.31  

 

The result here also shows association between these factors and the Cramer’s V value shows 

little higher association direction than the earlier factors. 

I also performed the loglinear modeling using SAS CATMOD procedure on the two categorical 

variables where I justify the association quite well too. Following is my findings from the modeling, here 

I show the result of the unsaturated model as it outperforms the saturated one: 

              Table 15. Maximum Likelyhood Analysis of Variance for  Loglinear Model 

Source DF Chi-Sq Pr > Chi-Sq 

countCategory 27 3531.58 <.0001 

visType   19 1252.35         <.0001 

Likelihood Ratio 143 538.45         <.0001 
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Here in the model it shows both ‘countCategory’ and ‘visType’ are significant as the probability 

is so low for the Wald test [133]. 

C.   System Generated Tag Analysis 

I also concentrated my focus onto the system generated tags on the visualizations. I wanted to 

explore if they have any relationship with the visualization types, i.e. I wanted to know if for certain tags 

correspond to certain visualization types. In this sector I had 20 visualization types but 2519 different 

system generated tags (which are possibly the collection of terms from the visualization title or so) and 

the contingency table has very low count distributed frequencies with total sample counts of 5156. I 

performed the contingency table analysis for this categorical variables using SAS FREQ procedure and 

later used the loglinear modeling (employed an unsaturated model, as it outperforms the saturated one) 

using the CATMOD procedure as well. 

       Table 16. Chi-Square analysis of System Generated Tags and Visualization Types 

Statistic DF Value Probability 

Chi-Square 54607 105885 <.0001 

Cramer's V  0.84151  

 

              Table 17. Maximum Likelyhood Analysis of Variance for Loglinear Model 

Source DF Chi-Sq Pr > Chi-Sq 

visTag 2E3 4159.19 <.0001 

visType   26 175.34         <.0001 

Likelihood Ratio 609 811.29         <.0001 
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The noticeable fact from the above is the Cramer’s V value for the association. Here it is very 

close to 1, so reflects a strong association: so the system tags have a strong associative relationship with 

the visualization types. 

4.2.3   Conclusion 

I have presented some explorative analysis of the user interaction in online social visualization 

web site Many Eyes. As this online social data visualization service has grabbed quite an attention 

around us and multiple such tools has been launched lately, the interest of analysis in this field is poten-

tially quite strong. The findings from the explorative data analysis from Many Eyes could be used for fu-

ture guidelines of improvement for such online social visualization services. 

My explorative analysis produced the following primary findings. 

� The temporal factors such as the years and months have association with the type of visualiza-

tions created.  

� The temporal factors such as the years, months and day type of the week have association with 

the type of visualizations in terms of comments.  

� The temporal factors such as the years and have association to the different category of com-

ments, considering each category representing certain number of comments. .  

� The system generated tags have strong association with the visualization types.  

 

      The overall attention for Many Eyes is to provide the ease amongst users to interact, share and 

create data visualizations. The success of a social media web site relies heavily on a relatively small 

group of very active contributors.  Also the temporal factors show a direction for the types of popular 

charts at different temporal points. So this could be taken into account and some improvement or focus 

could be employed on those to get more user attention. As the earlier analysis by Zhu et al. [91] pro-

vides some points to the most popular type of charts or mostly commented charts; those information 
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could be interested with this analytics and some more analytical aspects could be explored to pin down 

the user’s attention and focus in such collaborative environment. 

As a matter of fact some multifactor and constrained based multi dimensional contingency table 

analysis in this regard could result some more interesting pattern in user behavior in such a service plat-

form. 
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5 ANALYZING THE SEMANTIC ASPECT OF UNSTRUCTURED ENGLISH TEXTS 

The semantic aspect of a textual composition deals with the underlying meaning of the texts. As normal 

English texts are is one kind of a natural human language, it contains extreme ambiguities and fuzziness 

in its compositional meaning as usual. Nowadays people freely express themselves with such textual 

snippets in online social networks more often than anything else. Semantic exploration of such texts 

from online social network carries a tremendous promise in this regard. 

5.1 Analyzing Social Collaborative Visualization using LSA 

Enabled by Web 2.0 and Cloud Computing technologies, social media web sites have become an 

important part of our daily lives. These social media web sites succeed because they effectively facilitate 

communication and collaboration among large groups of people. For example, users can easily post 

comments and respond to each other’s comments. However, the explosion of the social media web sites 

also leads to information overloading. To understand and analyze the huge amount of user generated 

contents, I need effective computing tools.  

Here I present my study of a social visualization web site using Latent Semantic Analysis (LSA) 

[66, 75, 76, 79]. LSA is a statistical method for extracting and representing the contextual meaning of 

words. The main idea behind LSA is that the entire word collection of the text corpus provides mathe-

matical clues that can help determine the similarities of the words’ meanings [66, 75]. LSA has passage-

based coherence and can handle noisy data.  

The target of my study is Many Eyes [85], a social visualization web site and also an IBM re-

search project. Many Eyes allows users to upload their data, construct data visualizations, share the data 

visualization with others, and comment on data visualizations. I chose Many Eyes because it is one of 

the first social visualization web sites and by far the most popular. Between 2007 and 2010, there are 

over 8,000 user created data visualizations and over 10,000 comments. Analyzing these visualizations 
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and comments can provide insights into the patterns and trends of user generated visualizations. These 

insights can lead to better visualization tools. The presented study is the first attempt to provide such an 

analysis.  

My study shows that LSA is effective for analyzing and classifying user comments based on their 

semantic meanings. My method can help identify the most relevant comments and potential spam. The 

technique presented here is useful for developing effective search engines that automatically retrieve 

the most relevant user comments. It’s also useful for developing spam filters that identify and block irre-

levant comments. 

5.1.1   Methods 

Latent Semantic Analysis 

Latent Semantic Analysis (LSA) [66, 75, 76, 79], also known as Latent Semantic Indexing (LSI) lit-

erally means analyzing documents to find the underlying meaning or concepts of those documents. If 

each word only meant one concept, and each concept was only described by one word, then LSA would 

be easy since there is a simple mapping from words to concepts [131]. 

 

Unfortunately, this problem is difficult because English has different words that mean the same 

thing (synonyms), words with multiple meanings, and all sorts of ambiguities that obscure the concepts 

to the point where even people can have a hard time understanding [131]. 
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For example, the word bank when used together with mortgage, loans, and rates probably 

means a financial institution. However, the word bank when used together with lures, casting, and fish 

probably means a stream or river bank. 

Latent Semantic Analysis arose from the problem of how to find relevant documents from 

search words. The fundamental difficulty arises when I compare words to find relevant documents, be-

cause what I really want to do is compare the meanings or concepts behind the words. LSA attempts to 

solve this problem by mapping both words and documents into a "concept" space and doing the com-

parison in this space. 

Since authors have a wide choice of words available when they write, the concepts can be ob-

scured due to different word choices from different authors. This essentially random choice of words 

introduces noise into the word-concept relationship. Latent Semantic Analysis filters out some of this 

noise and also attempts to find the smallest set of concepts that spans all the documents. 

In order to make this difficult problem solvable, LSA introduces some dramatic simplifications 

[131]. 

1. Documents are represented as "bags of words", where the order of the words in a document is not 

important, only how many times each word appears in a document. 
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2. Concepts are represented as patterns of words that usually appear together in documents. For ex-

ample "leash", "treat", and "obey" might usually appear in documents about dog training. 

3. Words are assumed to have only one meaning. This is clearly not the case (banks could be river 

banks or financial banks) but it makes the problem tractable. 

 LSA works through Singular Value Decomposition (SVD) on the word-document count matrix/ tf-

idf(term frequency inverse document frequency) matrix, which is described below.  

Singular Value Decomposition (SVD) : 

Given a matrix M, it’s SVD is found as  

 M = U × S × V(T) 

Where U is the matrix of left singular vectors,  

S is the diagonal matrix of singular values and 

V(T) is the transpose of the matrix of right singular values 

After the decomposition a reduced dimension of the matrix is considered to reconstruct the 

sense of the document by eliminating potential noise in text. The dimensionality reduction is then per-

formed by discarding all but the top few hundred singular values. 

To comprehend LSA, the following example is provided. 

A.  LSA Example [131] 

As a small example, a search for books using the word “investing” is done at Amazon.com and the top 

10 book titles that appeared there is taken. One of these titles was dropped because it had only one in-

dex word in common with the other titles. An index word is any word that: 

• appears in 2 or more titles, and 

• is not a very common word such as “and”, “the”, and so on (known as stop words). These words 

are not included because do not contribute much (if any) meaning. 
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In this example I have removed the following stop words: “and”, “edition”, “for”, “in”, “little”, “of”, 

“the”, “to”. 

Here are the 9 remaining tiles. The index words (words that appear in 2 or more titles and are not stop 

words) are underlined. 

1. The Neatest Little Guide to Stock Market Investing  

2. Investing For Dummies, 4th Edition  

3. The Little Book of Common Sense Investing: The Only Way to Guarantee Your Fair Share of Stock  

        Market Returns  

4. The Little Book of Value Investing  

5. Value Investing: From Graham to Buffett and Beyond  

6. Rich Dad's Guide to Investing: What the Rich Invest in, That the Poor and the Middle Class Do Not!  

7. Investing in Real Estate, 5th Edition  

8. Stock Investing For Dummies  

9. Rich Dad's Advisors: The ABC's of Real Estate Investing: The Secrets of Finding Hidden Profits Most  

        Investors Miss  

Next the index word by title matrix is built. In the following matrix, I have left out the 0's to reduce clut-

ter. 

 

Figure 21. Word by title matrix for the aforementioned example [131] 

Here is the complete 3 dimensional Singular Value Decomposition of my matrix. Each word has 3 num-

bers associated with it, one for each dimension. The first number tends to correspond to the number of 

times that word appears in all titles and is not as informative as the second and third dimensions, as I 
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discussed. Similarly, each title also has 3 numbers associated with it, one for each dimension. Once 

again, the first dimension is not very interesting because it tends to correspond to the number of words 

in the title. 

 

Figure 22. SVD decomposition of the word by title matrix of figure 21 [131] 

Leaving out the first dimension, as discussed, the figure 23 is drawn using the second and third dimen-

sions using a XY graph. We'll put the second dimension on the X axis and the third dimension on the Y 

axis and graph each word and title. It's interesting to compare the XY graph with the table I just created 

that clusters the documents. 

In figure 23, words are represented by red squares and titles are represented by blue circles. For exam-

ple the word "book" has dimension values (0.15, -0.27, 0.04). I ignore the first dimension value 0.15 and 

graph "book" to position (x = -0.27, y = 0.04) as can be seen in the graph. Titles are similarly graphed. 
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Figure 23. Word by title distribution from the aforementioned example [131] 

 

B.  Modify the counts by TFIDF 

In sophisticated Latent Semantic Analysis systems, the raw matrix counts are usually modified so that 

rare words are weighted more heavily than common words. For example, a word that occurs in only 5% 

of the documents should probably be weighted more heavily than a word that occurs in 90% of the doc-

uments. The most popular weighting is TFIDF (Term Frequency - Inverse Document Frequency). Under 

this method, the count in each cell is replaced by the following formula [131]. 

TFIDFi,j = ( Ni,j / N*,j ) * log( D / Di ) where 

• Ni,j = the number of times word i appears in document j (the original cell count). 

• N*,j = the number of total words in document j (just add the counts in column j). 
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• D = the number of documents (the number of columns). 

• Di = the number of documents in which word i appears (the number of non-zero columns in row i). 

In this formula, words that concentrate in certain documents are emphasized (by the Ni,j / N*,j ratio) and 

words that only appear in a few documents are also emphasized (by the log( D / Di ) term). 

5.1.2   Implementation and Results 

My implementation of LSA starts by creating a database of the words retrieved from the user 

comments on Many Eyes website. The text is formatted slightly to form lexemes and regular expressions 

are employed to determine the total number of objects in the title arrays for comparison. Pairings of the 

subject titles and comments are generated and the database is updated. The term frequency is calcu-

lated by obtaining the number of times a word occurs in a document (i.e. all the comments for a particu-

lar visualization). To distinguish words from other documents, I alternatively count the number of times 

each term occurs in each document and sum them. The second part of the term frequency is the inverse 

document frequency, which diminishes the weight of words occurring very frequently in the word bank. 

Together, the term frequency (TF) and inverse document frequency (IDF) help normalize the weight of 

infrequently occurring words. The results are stored in a matrix and visualized in a sparse plot with den-

sity markings indicating the rate of collaboration between authors on articles. 

I visualize the result of my analysis using sparse graphs with an adapted visual marker technique 

[51]. Sparse graphs are effective for visualizing dense data and exploring visual trends in text data, such 

as blogging and online comments. With such visualization, I am able to identify comments that are most 

closely related to the subject of the visualization. Figure 24 shows the plot of comments on the data vi-

sualization: “US Government Expenses 1962-2004”. The original visualization subject line is the red line 

that is crowded with densely populated comments. In the figure, the semantic closeness of the com-

ments to the subject is represented by the slopes of the line segments that connect the marker and the 
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origin. Further scaling of the plot can reveal the most closely related comments. In this case, C3 is the 

comment that is the most relevant to the subject of this visualization. 

Figure 25 visualizes the semantic analysis of comments made to the visualization: “World Map 

of Social Networks in June 2009”. As seen in Table 18 and Figure 25, C9 is the most relevant comment to 

the subject line. The slopes of C6, C8, C12 are also close to the baseline and their similar word counts are 

also high. Of the total 11 words in the baseline subject title, the highest TF-IDF belongs to C9, which is 

the most closely related comment. On the other hand, comments C3 and C4 are very distant from the 

subject in terms of their semantic meanings.  

 

Figure 24. US Government Expenses 1962-2004. The red line is the subject line or baseline. C3 is 

the most relevant comment. 
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Figure 25. World Map of Social Networks in June 2009. 

Figure 26 shows a stark comparison of the subject and comments. The visualization in question 

features comments that are unrelated to the baseline marker. Hence, the slopes of those lines do not 

match and I conclude that the disparate marker is spam, too little data, or outliers. Closer inspection of 

the data revealed that the comment is indeed Spam. 

Table 18. World Map of Social Networks in June 2009. The total words in the article and the 

closely related comments are shown. 
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Figure 26. Parole dei messaggi della Madonna. Spam identification via disparate slopes and  

                                    comment magnitude. 

 

My analysis shows a strong correlation between words and phrases in user comments. Using the 

frequency of the comments and the number of words in common between the baselines and com-

ments, I can establish basic trends in user comments. In general, data visualizations with many com-

ments demonstrate strong collaboration between authors. However, some data visualizations have 

fewer but strongly correlated comments due to the quality and depth of the semantic meaning con-

tained within such data.  

Though I am able to capture the semantics in word pairings, my method has its limitations. For 

instance, polysemous words are not always properly accounted for due to the limitation of LSA. Another 

limitation is that the order of the words and sentence grammar is ignored when forming the word pair-

ings. As a result, the subtle semantic meaning of some words may be lost in the analysis, particularly in 

dealing with long sentences. 
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5.1.3   Conclusion 

I have discussed my method and results for analyzing user comments on a social media web site: 

Many Eyes. Based on the traditional LSA techniques, I optimized the term-frequency relations and de-

veloped a robust co-occurrence matrix and TF-IDF solution. I have used my method to analyze several 

thousand comments on Many Eyes. Based on the co-occurrence frequencies, I am able to identify the 

most relevant comments and potential spam. My method is useful for developing effective search en-

gines that automatically retrieve the most relevant user comments. It’s also useful for developing spam 

filters that identify and block irrelevant comments.  

My experiments showed that LSA is effective for analyzing and classifying user comments based 

on their semantic meanings. The specific variant of LSA that I propose, designed for relatively small data 

size, is particularly useful for such application due to its efficiency. The proposed method can be readily 

applied to other social media web sites as well. 

 

5.2 Mining Collaboration through Textual Semantic Interpretation 

In recent days collaboration is the most and everywhere happening thing. Collaboration is a 

deep, collective, determination to reach an identical objective in recursive manner where two or more 

people or organizations work together to realize shared goals. Practically collaboration happens through 

sharing knowledge, learning and building consensus. Communication is a key aspect in collaboration. 

The greatest and broadest means of communication happens in today’s world through internet. So 

while we communicate with a collaborative goal, how much do we achieve in that direction? Is there 

any direction so that we can achieve better? Do we at least understand the components which express 

non-collaboration? Even if we achieved some, can we do it better? These are pretty reasonable ques-

tions to answer as we are so much into this. 

A typical social collaboration happens through communication in natural language expressions. 
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In the online media people come and collaborate on the topic of their interest generally through textual 

snippets written in natural languages as well. Therefore to disclose the mystery of collaboration natural 

language processing demands a darn importance. In this domain though syntactic and semantic under-

standing and analysis of the natural texts can lead the way to success but the later carry more weight as 

it provides the inner meaning of the whole composition. 

In semantic textual analysis multiple directions has been approached based on training me-

thods, mathematical techniques but direct component (terms/words) based analysis has still 

rare/limited success and attention. Therefore incorporating such approach based upon the textual ele-

ments of a composition i.e. the word or terms would be really interesting. Of course while taking such 

approach the limitation of the components as a part of the whole text has to be considered carefully 

through multiple angles; just for example word sense disambiguation, which tries to find the sense of 

the word used in a composition as words could have multifold meanings at different contexts. 

To justify such textual similarity based measure upon collaboration analytics, a choice of appro-

priate collaboration platform is important. My work took the attention of online social data visualization 

hype as this allows users to upload to upload their data to a server, construct data visualizations, and 

publish or share the data visualizations with comments: which gives a perfect and complete object of 

analysis in this field. As the online data visualization tools utilizes the advantages of cloud computing, so 

that gives the user more comfort in using the application: helps to accumulate more user data, which is 

great for such analysis. In such analysis along with quantitative metrics as a figure of merit, creative vi-

sualizations always enhance the understanding and diagnosis. 
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5.2.1   Methods 

A.   Semantic Analysis 

Given two textual comments on a visualization, I want to find how collaborative they are: i.e. giv-

en two textual compositions I want to find out a score that indicate their semantic level similarity, not 

usual syntactic level lexical matching or so. Ideally a comprehensive metric of text semantic similarity 

should be based upon the relation between the words in addition to the role played by the various enti-

ties involved in the interactions described by each of the two texts. Following this the semantic similarity 

of textual components are based upon the similarity of the component words in them. So the overall tex-

tual similarity is chosen to be based upon the word to word similarity and potential language models.  

 

I)   WordNet: 

WordNet [122] is like a dictionary in that it stores words and their meanings, but differs from 

the traditional ones. Words in WordNet are arranged semantically instead of alphabetically for example. 

Synonymous words representing single distinct sense are gathered together there to form synonym 

sets, or synsets. For instance, the synset {base, alkali} represents “the sense of any of various water-

soluble compounds capable of turning litmus blue and reacting with an acid to form a salt and water”. 

Monosemous words or the words with one sense (e.g. ‘wristwatch’) appear in only one synset in 

the WordNet, but words with multiple senses (homonymous or polysemous words) are present in mul-

tiple synsets. For instance the word base occurs in two noun synsets,{ base, alkali} and{ basis, base, 

foundation, fundament, groundwork, cornerstone} , and the verb synset { establish, base, ground, 

found}. WordNet also stores information regarding the parts-of-speech of the words: nouns, verbs, ad-

jectives and adverbs. 

Along with single words WordNet synsets contains compound words consisting of two or more 

words but are treated like single words in concepts (e.g.  “banking concern”, “depository financial Insti-
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tution” etc.) [136]. Every synset in WordNet consist of a short entry, called definition or gloss, which ex-

plains the meaning of the concept represented by the synset (e.g. the synset { basis, base, foundation, 

fundament, groundwork, cornerstone} defines “lowest support of a structure” ).  

WordNet also consists of an array of semantic and lexical relations between words and synsets.  

While semantic relations define a relationship between two synsets(e.g. the noun synset { robin, red-

breast, robin redbreast} is related to the noun synset {bird} through the IS–A semantic relation since a 

robin is a kind of a bird), lexical relations describe a relationship between two specific words within two 

synsets (e.g. the ‘antonymy’ relation relates the words ‘embarkation’ and ‘disembarkation’ but not the 

rest of the words in their respective synsets which are {boarding, embarkation, embarkment} and {de-

barkation, disembarkation, disembarkment}). Following Figure 27 [135] shows an example of semantic 

relationship amongst synsets. 

 

 

Figure 27. Sample WordNet Noun Taxonomy [135] 

 

Now in a semantically related taxonomy such as in WordNet, a simple and practical approach to 

find similarity happens through presenting the taxonomy as an undirected graph and define the meas-
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ure of similarity as the distance in terms of path length between the two synsets. The lesser the distance 

between two synsets, the more similar they are (e. g. in Figure 27 the synset {island} is closer/similar to 

{land, dryland, earth} than it is to {living thing, animate thing}). The similarity between synsets s1 and s2 

is defined as ������,��	
	� �
�����,��	�    [135], while �������,��	  is the distance between them (either 

counted node wise or edge wise). 

Therefore employing the node count, the distance between {person} and {object, physical ob-

ject} is 4, so the similarity score is 1/4. 

The depth of a synset, is a similar concept as distance,  is simply the distance between that syn-

set and the root of the taxonomy in which the synset is located. A shared parent of two synsets in the 

taxonomy is called a subsumer. The Least Common Subsumer (LCS) of two synsets is the subsumer that 

does not have any children that are also subsumers of the two synsets (e.g. in Figure 27 the subsumers 

of {living thing, animate thing} and {land, dry land, earth} are {object, physical object} and {entity} and 

the LCS of {object, physical object} since this is more specific than {entity} [135]. 

II)   Word Level Semantic Similarity: 

There exists numerous different word-to-word similarity metrics: ranging from distance based 

measures computed on semantic networks to metrics based on models of distributional similarity 

learned from large text collections. Amongst all these I concentrated upon six different metrics as they 

outperform in the domain of natural language processing (e.g. word sense disambiguation etc. Patward-

han et al. 2003 [140]) and relatively computationally efficient as well. In the following I describe them in 

brief. Now the metrics below described mostly based on concept to concept which could be easily 

mapped to word to word by following the concept behind the words. All the metrics mentioned are im-

plemented using WordNet::Similarity package (Patwardhan et al., 2003 [140]). 
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i) Lesk: 

The original Lesk algorithm [99] is used in disambiguating words in short phrases. Using Lesk algorithm a 

word’s dictionary definition or gloss of each of its senses is compared to the glosses of every other word 

in the phrase and the largest match becomes the winner for the sense of the word. 

ii) Leacock & Chodorow: 

Here similarity [123] is defined as [121],       																������ = 	− log�
�
�����,��	

�� 	, 

where �������,��	 is the length of the shortest path between two concepts/synsets s1 and s2 using node-

counting, and D is the maximum depth of the taxonomy. 

iii) Wu and Palmer: 

This similarity metric [124] measures the depth of the two concepts/synsets in the WordNet taxonomy, 

and the depth of the least common subsumer (LCS) to find it’s similarity score as [121]:  

���� ! =
2 ∗ �$%�ℎ�'(�	

�$%�ℎ���	 + 	�$%�ℎ���	
 

iv) Resnik: 

This measure [70] returns the information content (IC) of the LCS of two concepts [121]: 

���*+� = ,(�'(�	 

where IC is defined as [121]:   

,( = −-./0�1	 

Where and P(c) is the probability of encountering an instance of concept c in a large corpus. 

v ) Lin: 

This measure [125] works through normalizing Resnik’s [70] measure, and adds a normalization factor 

consisting of the information content of the two input concepts [121]: 

����
2 =
2 ∗ ,(�'(�	

,(���	 + 	,(���	
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vi) Jiang & Conrath : 

This measure [126] finds information concept based semantic distance as [121], 

�$�3���4�2 = ,(���	 + 	,(���	 − 	2,(�'(���1, �2		   

 

And the similarity measure as [121],  ���4�2
	� 6+7�
��89:�  

 

III)   Language Models: 

Other than the semantic similarity of the words, specificity of a word also accounts in the under-

standing of the natural language based text. Actually this emphasizes the higher weight of semantic 

matching of very specific words (e.g. ‘hound’ and ‘whippet’), and lower importance to generic concept 

oriented word (e.g. ‘go’ and ‘be’). Apparently the specificity of a word is addressed partially by the hie-

rarchical taxonomy of semantic dictionaries, but the factor could be reinforced by incorporating a cor-

pus based specificity measure, more specifically the distributional frequency of the word. 

The frequency of words might not be a good measure of word importance but the distribution 

of words across an entire collection can be a good indicator of the specificity of the words. Words or 

terms occurring in few documents with higher frequency carry a distinguished factor in the understand-

ing of the document compared to the terms appearing in every documents of the collection. Incorpora-

tion of the inverse document frequency introduced in [127], which is defined as the total number of 

documents in the corpus, divided by the total number of documents that include that word, is a good 

one for the enhancement of specificity of words in documents. 

IV)  Semantic Similarity of Text: 

Incorporating the semantic similarity between words and words specificity Corley et al devel-

oped a semantic similarity measures between textual compositions. The measure works through pairing 

up those words that are found to be most similar to each other, and weighting their similarity with the 
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corresponding specificity score. The methods works by first creating sets of open-class words in the text, 

with a separate set created for nouns, verbs, adjectives, and adverbs. Using parts of speech tagger the 

text is basically tagged to different parts of speech and cardinal numbers are also tagged as well. Next 

the pairs of similar words across the sets corresponding to the same open-class in the two text segments 

are found. For noun and verb class the WordNet [122] based semantic similarity is measured in this 

technique and for other class the lexical matching is employed. Now I consider that if I cannot associate 

the other classes (e.g adjectives, adverbs) with the nouns and verb class properly then a lexical matching 

could result in the wrong direction (e.g. between “He is very good” and “He is very bad” if I cannot take 

account where ‘very’ is associating, then it could reflect higher score with lexical matching which is re-

verse of original semantic understanding); Therefore I only consider the noun and verb class pair match-

ing here. For each noun (verb) in the set of nouns (verbs) belonging to one of the text segments, I 

choose the noun (verb) in the other text segment that has the highest semantic similarity (maxSim) is 

identified, using one of the six word similarity measures described earlier. If this similarity measure turns 

out a positive value, then the word is added to the set of similar words for the corresponding word class 

WSpos. In this technique the textual similarity of Ti with Tj is found using the scoring function [121], 

����;
, ;4	<= =	
∑ �∑ ��?@����AB	 ∗ ,3C�D	�DЄFG6HI�J 	!K�

∑ ,3C�D�DЄL<=HI�M
 

This score provides directional similarity for Ti (values ranging from 0 to 1)and similarly the directional 

similarity of Tj could be fund as well. The scores from both directions are combined into a bidirectional 

similarity using a simple average function [121] as: 

����;
, ;4	 =
����;
, ;4	<= + ����;
 , ;4	<8

2  
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B.   Visualization of Collaboration 

The goal of the collaboration visualization is to visualize the strength and pattern of collaboration. 

Now I am trying to map the strength of collaboration in terms of semantic similarity of textual snippets in 

an online social collaborative visualization environment. Therefore a network graph containing all the 

users collaborating for one issue/topic would be interesting while the connection of the network strength 

depicts the similarity or the connection of the users in terms of collaboration. So basically if the network 

strength in terms of similarity measure is mapped to the edge attributes of the network would be inter-

esting.  

To employ such network graph I chose At&T research Lab’s current popular tool in the market: 

Graphviz [128]. Graphviz is network visualization software for creating high-quality, readable node-link 

diagrams of large-scale data sets, brought in by the focus of John Ellson [129] of At&T recently. Graphviz 

works through a graph description language based on textual notation named the DOT [130] language 

and it has set of tools that can generate and/or process DOT files to produce visualizations. 

 

5.2.2   Implementation and Results 

A.   Collection of Data 

I chose IBM’s collaborative data visualization tool Many Eyes [12][13] as the data repository. Us-

ers are allowed to upload data and then produce graphic representations on this website for others to 

view and collaborate through commenting upon the visualizations. Although a user can browse or 

search the data visualizations at Many Eyes [12][13], but collecting data from the site is a cumbersome 

process as it does not provide a downloadable database of all the visualizations. The web site does pro-

vide a RSS feed that broadcasts every new comment on the created visualizations. However, at the time 

of my experiment I collected data until March 2010. I used a Web data extraction tool to retrieve the 
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data page by page. Here for analysis I collected each visualization data along with the comments asso-

ciated with them and the user information as well. 

B.   Cleaning and Preparation of Data 

Using the web extraction tool the data is stored in a MS SQL server database. Multimodal queries 

are executed to find the user and their visualization and comments information. The web extraction tool 

collected the comments as string composed of the user and timestamp information. Therefore the string 

clean and up and processing queries are also executed to find the raw comments along with it’s identify-

ing user and timestamp information. Due to the availability of free form of collaborative writing quite 

some user data is found using spoken languages, symbols like smileys, use of non English platforms etc; 

so the final comment data has been manually cleaned up to be processed by the semantic analysis tool 

(described below) for the experiment. 

C.   Semantic Analysis 

  The comments data is semantically analyzed after being preprocessed. As the comments data is 

expressed in Natural language (English predominantly) it’s semantic understanding and analysis is done 

using the word sense disambiguation. Using word sense disambiguation the identity and probable sense 

of the words present in a comment is found. All the word metrics are computed utilizing the WordNet 

repository. Later word sense based textual similarity between two textual comments of visualization is 

computed. Using this textual semantic similarity of multiple comments present in visualizations, the col-

laboration metric of IBM’s ManyEyes has been explored. All the computations have been performed us-

ing Perl. 

D.   Data Preparation for Visualization 

The similarity measures found were properly normalized first to aid the visualization come ap-

propriate. Before the normalization the textual similarities calculated comes in the range of 0 to 1; the 
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ones closer to 1 signifies more similarity. In the normalization process these scores has been first mapped 

to a different range of 1-10 with one decimal approximation and then the scores has been reversed, i.e. 

higher the scores are now represent they are less similar (i.e. now they represent distance in terms of 

similarity). These distance measures would be now directly mapped to the edge length of the network 

graphs to be produced. As I used Graphviz to implement the commenting user’s network using comment 

similarity, all the measures are transformed to the attributes of the network edges using the DOT lan-

guage for processing. All these transformations are done using perl. These visualizations are very graphi-

cal in nature and provides a whole snapshot of the fully connected network in terms of the connection 

strengths as the length of the network edges. 

  Also the selection of such similarity measures has been taken to generate a quantitative visualiza-

tion using MS-Excel. 

I concentrated my analysis on the visualization where multiple users came and provided com-

ments on a single visualization to understand collaboration. One of the shortcomings of such web service 

is if the user’s decide to not register any identification and interact using anonymous or defaults user 

identity then it’s little tough to understand the collaboration: this could be a good case for employing the 

full proof model to identify clusters of same identity users using similarity clusters though, once a full 

proof model is present.   

Now in most of the visualization I found higher weight age of anonymous users, which represents 

the most users are casual visitors and they do not want to waste time by creating identity, instead they 

just want to provide their comment; therefore an identity creation driven directional goal should be im-

plemented by such service to get more richer collaboration pictures. Now due to this I found some 19 

commented visualizations have the more identified diverse users and they commented more than once 

in occasions; therefore I chose my attention on the analysis of such visualization profiles first. Following is 
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the user comment distribution of one such 19 commented visualization in IBM’s Many Eyes, the one I 

chose to analyze next.  

 

Table 19.  Commenter Distribution in a 19 Commented Visualization in Many Eyes 

User Identity Number of Times Commented 

Bernie_Hogan 2 

Anonymous 3 

Colm 4 

Jbw 1 

Sammy54 1 

Martin_Wattenberg 1 

Jacket 4 

Fernanda_B_Viegas 1 

Karim 1 

Frank_van_Ham 1 

 

Following are the six Graphviz visualizations (Fig. 28-33) generated of the 19 commenter’s textual 

similarity distribution wise network graph. In these graphs the lower the length of the edges between the 

nodes i.e. the closer the nodes are in the network, they are more similar. These graphs show the whole 

network with the apparent idea of similarity difference; in case of closer similarity comparison these 

graphs are not that helpful though. 
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Figure 28. Lesk Measure of Word similarity wise textual similarity based collaboration pattern amongst 

the users off the 19 commented visualization 

 

 

 

Figure 29. Lacock-Chodorow Measure of Word similarity wise textual similarity based collaboration 

pattern amongst the users off the 19 commented visualization 
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Figure 30. Wu-Parmer Measure of Word similarity wise textual similarity based collaboration pattern 

amongst the users off the 19 commented visualization 

 

 

 

Figure 31. Resnik Measure of Word similarity wise textual similarity based collaboration pattern 

amongst the users off the 19 commented visualization 
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Figure 32. Lin Measure of Word similarity wise textual similarity based collaboration pattern amongst 

the users off the 19 commented visualization 

 

 

 

Figure 33.  Jiang-Conrath Measure of Word similarity wise textual similarity based collaboration pattern 

amongst the users off the 19 commented visualization 
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As the comparative measure is not that apparent in the figures above, I picked up the top 20 simi-

larity measures for each word based similarity techniques and displayed in the following cascaded bar 

graphs. 

 

 

Figure 34. Lesk(top) and lch(bottom) word similarity measure based top 10 textual similarity measure 

with users in a 19 commented visualization 

 

Figure 34 depicts the top 10 user similarity measure plotted as bar graph for the Lesk and Lea-

cock-Chodorow measures. The other discussed method ones could be plotted and compared similarly. 

0 1 2 3 4

Bernie_Hogan-colm

Anonymous-colm

Bernie_Hogan-colm

Anonymous-Jacket

Jacket-Karim

Anonymous-jbw

colm-colm

Bernie_Hogan-…

Jacket-colm

colm-colm

0 1 2 3 4

Anonymous-Anonymous

colm-colm

Bernie_Hogan-Bernie_Hogan

Anonymous-colm

Anonymous-Jacket

Bernie_Hogan-…

Anonymous-jbw

Bernie_Hogan-colm

colm-colm

colm-Frank_van_Ham



96 

From Figure 34 I see that two different measures produce little different similarity measure for same us-

ers, although some are same like the measures between ‘Anonymous’ and ‘Jacket’ or ‘Anonymous’ and 

‘colm’. So I can certainly see this textual measure gives us certain positive direction towards the collabo-

ration analysis using user comments’ textual similarity measure comparison.  

5.2.3   Conclusion 

Online social collaborative visualizations are in attention these days, so a proper analysis of the 

collaboration happening there carries a potential problem to enhance the service. In online social envi-

ronment users collaborate through natural language based compositions, so textual similarity measure 

based comparison of textual snippets for the user collaboration analysis shows great potential and result. 

The use of different word similarity based measure, an enhanced word taxonomy, word sense disambi-

guators to measure textual similarity of compositions shows potential turn out. 

In comparing such similarity measures using network graph shows the whole network in terms of 

its connectivity strengths. So if the collaboration in such an environment is loose, then a very sparse net-

work graph would come up while a dense graph will reflect strong collaboration. Here I utilize such exit-

ing measure and compare textual snippet based collaboration pattern visually, which turns out quite di-

rective. 

In the textual component similarity measure only nouns and verbs are accounted which basically 

holds the sense the backbone of an expression. Now the traditional way of the other connectors in a sen-

tence like adjectives, adverbs, cardinals etc are lexically matched. But in traditional lexical matching a 

completely wrong result could be boosted as explained earlier. So instead if the sentential composition 

based structure [50] of the text is first considered and then the structural similarity is calculated through 

finding the apparent coordinate of its constituent words and their associated connectors: this kind of me-

thod would reflect much more appropriate result and that would be a very bright direction in the field of 

natural language processing. 
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Also if the data is collected from a social networking site where identity id mandatory such as 

facebook [8], then a lot more effective study could be done as unidentified users’ information is mis-

leading in this kind of analysis. 
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6 CONCLUSION AND FUTURE WORKS 

6.1 Conclusion 

In this dissertation, I tried to analyze the syntactic and semantic aspect of unstructured English 

texts through different techniques and visualizations. 

I started from exploring the definition and understanding of syntactic understanding of natural 

English texts. As the existing methods of analysis on this perspective don’t provide any clear and tho-

rough idea, I introduced some visualizations for such analysis. The visualizations introduced seem quite 

effective in thorough explanation of the textual distribution in terms paragraph wise or every textual 

line based distribution. In this topic I initially focused on frequent/non frequent words, word length in 

terms of character lengths/syllable lengths. Later I defined the complexity of a textual composition 

through its clause level structural distribution. These visualizations immensely improve the syntactic un-

derstanding of text which actually impacts the readability.  Based on such structural complexity distribu-

tion I introduced a content based recommendation technique as well, which focuses on providing better 

access to similar texts in terms of material’s reading complexity. 

Also I developed visual markers to express existing readability of a document at the paragraph 

level in terms of existing readability metrics. These visualizations give much more thorough understand-

ings of a document compared to just the metrics. 

While exploring the semantic domain, the initial challenge was to find appropriate textual data 

for analysis. As online social network provides the platform for people to come and communicate on 

some topic; I chose these kinds of networks as the source to capture texts which could have some sort 

of similarity in terms of the semantics. As I retrieved quite a huge amount of data for this purpose from 

an online social data visualization website (IBM’s Many Eyes), my first focus was to understand and ex-

plore the data. In that sector I used descriptive and analytical statistics for such research and found in-

teresting observations and results. 
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To experiment semantically first I employed latent semantic analysis technique on the retrieved 

data comments from Many Eyes. Based on the co-occurrence frequencies, I am able to identify the most 

relevant comments and potential spam. My method holds useful potential for developing effective 

search engines that automatically retrieve the most relevant user composed texts. It’s also suitable for 

developing spam filters that identify and block irrelevant comments.  

The final domain of work in this dissertation is textual snippet comparison based on the textual 

similarity measure. Word sense disambiguation methods based word distance measures in existing 

strong semantic word taxonomy was the play ground for this work. To figure out the pattern of textual 

similarity in an online collaborative environment, I calculated such measures and employed network 

graph to display such collaboration network’s similarity and distance metrics. This visualization gives an 

overall idea of which users are in same cluster, collaborating about similar topic through their textual 

comment snippets. Also to compare thoroughly such similarity measure I used primitive bar graph, 

which could be used efficiently as the detail on demand feature of the just earlier mentioned visualiza-

tion.  

Therefore eventually quite some multi directional approach has been explored in here to ap-

proach panoramic disclosure of textual syntax and semantics mystery and in turn I received some satis-

factory results and some potential prominent directions for the future. 

6.2 Future Works 

Although several directions in the syntactic and semantic analysis and visualization of natural 

text based compositions are explored in my research, but there are interesting close context ideas came 

up in my focus. In the syntactic analysis domain, an extension of the clausal structure of a sentence in a 

document seems very promising and interesting. If each sentence could be shaped as a tree consisting 

of clauses as branches, then the whole document could be a forest of such trees. In such development 
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then multi-document could be compared by comparing some forest measure techniques. Some close 

related directions in the semantic orientation, but not limited to, are listed below. 

 
 

6.2.1 Employing LSA on Google Chart API 
 
 

On user generated request, the Google Chart API [93] dynamically generates different type of 

charts. The Google Chart API [93] returns a chart image in response to a URL GET or POST request. It 

actually creates a PNG image of a chart from data and formatting parameters in an HTTP request. These 

charts could be embedded in a web page of user’s choice, or downloaded as image for local and offline 

use. Actually using these API many different kind of charts could be created; currently line, bar, pie, and 

radar charts, as well as Venn diagrams, scatter plots, sparklines, maps, graphviz charts, google-o-

meters, and QR codes are supported. All the information regarding the chart e.g. chart data, size, col-

ors, and labels etc. are supplied as a part of the url in a specified format. 

An exciting idea is to create a search tool for google chart with enhanced features. As a google 

chart could be created by producing a url following the chart grammars, parsing such url the parame-

ters specific to a chart could be found.  Now such parameters could be used to search for the similar 

charts. But enhancing such search through LSA [66] technique on the textual part of the charts like 

chart topics, chart legends would produce more appropriate and meaningful indexing on the chart 

search. This would result more appropriate and advanced chart search which will incorporate natural 

language understanding as a chart parameter to find out more pertinent results. 

 

6.2.2 Studying LSA, p-LSA, LDA and Defining a Hybrid Approach 

            LSA fails to handle the polysemy (same words used with multiple meanings at different contexts) 

and concludes the outcome with noisy effects. Each occurrence of a word is treated in LSA as having 

the ditto meaning due to the word being represented as a single point in space. For example if the 
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word “bank” occur in a document as “river bank” and the “the federal bank”, LSA would take the mean-

ing as same. 

Some advanced variant of LSA such as pLSA [101] incorporates probabilistic approach and also 

shows profound promise in analysis of text. Unlike regular Latent Semantic Analysis which arises from 

linear algebra and executes a Singular Value Decomposition of co-occurrence tables, the pLSA [101] is 

based on a mixture decomposition derived from a latent class model. It is accepted as promising unsu-

pervised learning method with a wide range of applications in text learning and information retrieval. 

There are other advancements on LSA as well. For example LDA [102] is a generative probabilistic model 

of a corpus. The basic idea behind LDA [102] is that the documents are represented as random mixtures 

over latent topics, where a topic is characterized by a distribution over words. LDA [102] is a generative 

model where sets of observations are explained by unobserved groups that explain why some parts of 

the data are similar. For example, if observations are words collected into documents, it assumes that 

each document is a mixture of a small number of topics and that each word's creation is attributable to 

one of the document's topics. LDA [102] is actually similar to probabilistic latent semantic analysis (pLSA) 

[101], except that in LDA [102] the topic distribution is assumed to follow a Dirichlet prior distribution. 

An explorative study on some of the related topic based compositions in English would be potentially 

interesting, which can lead to the derivation of a hybrid approach for the semantic disclosure of natural 

language based texts. 
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