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EFFICIENT MOLECULAR DYNAMICS SIMULATION 

ON RECONFIGURABLE MODELS WITH 

MULTIGRID METHOD  

by 

 

EUNJUNG CHO 

 

Under the Direction of Anu G. Bourgeois 

 

ABSTRACT 

In the field of biology, MD simulations are continuously used to investigate biological 

studies. A Molecular Dynamics (MD) system is defined by the position and momentum of 

particles and their interactions. The dynamics of a system can be evaluated by an N-body 

problem and the simulation is continued until the energy reaches equilibrium. Thus, solving 

the dynamics numerically and evaluating the interaction is computationally expensive even 

for a small number of particles in the system. We are focusing on long-ranged interactions, 

since the calculation time is O(N
2
) for an N particle system.  

In this dissertation, we are proposing two research directions for the MD simulation. First, 

we design a new variation of Multigrid (MG) algorithm called Multi-level charge assignment 

(MCA) that requires O(N) time for accurate and efficient calculation of the electrostatic 

forces. We apply MCA and back interpolation based on the structure of molecules to enhance 



 

 

the accuracy of the simulation. Our second research utilizes reconfigurable models to achieve 

fast calculation time. We have been working on exploiting two reconfigurable models. We 

design FPGA-based MD simulator implementing MCA method for Xilinx Virtex-IV. It 

performs about 10 to 100 times faster than software implementation depending on the 

simulation accuracy desired. We also design fast and scalable Reconfigurable mesh (R-Mesh) 

algorithms for MD simulations. This work demonstrates that the large scale biological studies 

can be simulated in close to real time. The R-Mesh algorithms we design highlight the 

feasibility of these models to evaluate potentials with faster calculation times. Specifically, 

we develop R-Mesh algorithms for both Direct method and Multigrid method. The Direct 

method evaluates exact potentials and forces, but requires O(N
2
) calculation time for 

evaluating electrostatic forces on a general purpose processor. The MG method adopts an 

interpolation technique to reduce calculation time to O(N) for a given accuracy. However, our 

R-Mesh algorithms require only O(N) or O(logN) time complexity for the Direct method on 

N linear R-Mesh and N×N R-Mesh, respectively and O(r)+O(logM) time complexity for the 

Multigrid method on an X×Y×Z R-Mesh. r is N/M and M = X×Y×Z is the number of finest 

grid points. 

INDEX WORDS : Molecular Dynamics Simulation, Multigrid, Reconfigurable Model,  

      Reconfigurable Mesh Algorithm, FPGA 
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Chapter 1  

Introduction 

 

Extensive research has been focused on the field of Molecular Dynamics (MD) over the past 

20 years [2-5]. In the field of biology, MD simulations is continuously used to investigate 

biological studies including protein folding, enzyme catalysis, conformational changes 

associated with biomolecular function and molecular recognition of proteins, DNA, and 

biological membrane complexes. MD describes a classical particle molecular system as a 

function of time and has been successfully applied to understand and explain macro 

phenomena from micro structures, since it is in many respects similar to real experiments. An 

MD system is defined by the position and momentum of particles and their interactions 

(potential). The dynamics of a system can be evaluated by solving Newton’s equation of 

motion, which is an N-body problem [6]. The classical N-body problem requires a numerical 

solution because general analytical solutions are not enough to prove it.  

Solving the dynamics numerically and evaluating the interactions is computationally 

expensive even for a small number of particles in the system. In each iteration, MD 

simulation evaluates potential energy and acceleration, then updates the position of particles 

as changed by the forces. The simulation is continued until the energy reaches equilibrium. 

The interactions of particles to be evaluated are short-ranged interactions and long-ranged 

interactions. It takes O(N) time to calculate short-ranged interactions (the bonded potentials) 
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in a general purpose computer and O(N
2
) for long-ranged interactions (non-bonded 

potentials) in a general purpose computer. N is the number of particles in a molecular system. 

So we are focusing on long-ranged interactions due to the intensive computational time.  

Many applications use MD for biomolecular simulations and the simulations are performed 

in multiscale of time and length. The simulations of the relevant scales require strong and fast 

computing power, but it is even beyond the reach of the current fastest supercomputers [2, 7]. 

Many approaches have been proposed to improve the performance of MD simulation in terms 

of the time required. These approaches are divided into two categories by focusing on either 

modifying the software or the hardware. The software approach involves developing efficient 

algorithms to calculate the forces. Currently many algorithms have been introduced and large 

scale parallel computers are used to achieve reasonable computational time. Among the 

algorithms, Ewald’s method [8] runs in O(N
3/2
) time and Particle Mesh Ewald (PME) method 

[3, 9] applies discrete fast Fourier transforms (FFT) to compute long-range interactions 

(reciprocal force) and reduce O(N
3/2
) to O(NlogN). The multigrid (MG) [4, 5] method 

requires O(N) time complexity for a given accuracy on general purpose processor. Sagui and 

Darden [5] describe two techniques (LGM and LDM) based on MG method for classical MD 

simulations of biomolecules.  

In this work, we propose an efficient Multi-level Charge Assignment method (MCA) 

method [10] that reduces calculation time and achieves better accuracy in LGM and LDM. 
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We apply multi-level charge assignment and back interpolation based on the structure of 

molecules to enhance the accuracy of the simulation. Managing fast calculation time and 

accurate simulation results is a challenge in software approaches since the two properties are 

usually a trade off.   

The hardware approach has focused on running MD simulation in special purpose 

processors or developed Application-Specific Integrated Circuits (ASIC) to achieve much 

faster calculation times. Since MD simulations are performed for large number of atoms in a 

molecular system, many studies utilize supercomputing systems or parallel systems to 

achieve better performance. Alam et al. [2, 7] study the performance of supercomputing 

systems for running various MD simulation packages such as AMBER, NAMD and 

LAMMPS. NAMD and LAMMPS have been reported to scale up to a few thousand nodes, 

while AMBER’s PME method does not scale beyond 128 processors [2, 11] due to the 

communication overheads. They expect that petaFLOPS-scale computing power in the near 

future will meet the speed requirements for biological studies[7], but not at the current time. 

Special purpose processors [12, 13] and application-specific Integrated Circuits (ASIC) for 

MD simulation [14] require high costs, complicated processes, and long development spans. 

RASTRUN [12] and GRAPE-2A [13] have pipelines of digital signal processors to perform 

MD simulations. MODEL [14] is an ASIC machine for evaluating Lennard Jones (LJ) 

potential and Coulombic potential. Although the special purpose processors are very powerful, 
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it is much more expensive than microprocessor-based software solutions. The development of 

customized circuits is a very complicated process with a very long development span. In 

addition, it is hard to modify the circuit if the solution is changed at a later date. 

Another research direction to achieve better performance is to adopt reconfigurable models 

to run large scale problems. Reconfigurable models provide the ability to customize circuits 

to specific problem inputs at run time and the ability to reuse the same logic resources in 

different configurations from one phase of a computation to the next[1]. These features 

enable efficient solutions to many problems, including image and video processing, 

cryptography, object tracking, digital signal processing, and networking[1]. Navid Azizi et al. 

[15] show the feasibility of using Field Programmable gate arrays (FPGA) to implement 

large-scale application-specific computations by implementing MD simulation. They design 

an architectural model for Lennard Jones force and simulate the model in TM3 [16]. They 

also suggest several factors to improve performance of the implementation. Youngfeng Gu et 

al. [17] provide an FPGA implementation for Coulombic force as well as Lennard Jones 

force and use Direct method [3] to calculate Coulombic force. Previous work includes a 

FPGA-based MD simulator that achieved faster simulation time than the simulation on a 

general purpose processor [15, 17]. Besides reducing the time required, another advantage is 

that an FPGA board is much cheaper compared to ASIC and special purpose processor or 

supercomputing system. 



 

 

5 

We have been working on exploiting two reconfigurable models for Molecular Dynamics 

simulation. First, we proposed an efficient method, Multi-level charge assignment (MCA) 

[10] for evaluating electrostatic potential which is the most time consuming process in MD 

simulation. We then design an FPGA-based MD simulator implementing the MCA method on 

a Xilinx Virtex-IV [18]. It performs about 10 to 100 times faster than a software 

implementation with Intel Core Duo T2300/1.66 GHz processor depending on simulation 

accuracy desired[19].  

Second, we are proposing a project [20] that exploits another reconfigurable model to run 

MD simulations in a flexible and efficient manner. The Reconfigurable Mesh (R-Mesh) is a 

simple model to describe and understand since it uses a mesh topology to interconnect 

processors. Many published results use the R-Mesh (or variations) as the model of 

computation[21]. In this dissertation, we present fast and scalable R-Mesh algorithms for MD 

simulations and thus bring a new concept to the field of biology. This work demonstrates that 

the large scale biological studies can be simulated in close to real time. The R-Mesh 

algorithms we design highlight the feasibility of these models to evaluate potentials with 

faster calculation times. Specifically, we develop R-Mesh algorithms for both the Direct 

method and Multigrid method. The Direct method evaluates exact potentials and forces by 

using the equation in Chapter 2, but requires O(N
2
) calculation time for evaluating 

electrostatic forces on a general purpose processor. The Multigrid (MG) method adopts an 
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interpolation technique to reduce the calculation time to O(N) for a given accuracy. However, 

our R-Mesh algorithms require O(N) or O(logN) time complexity for the Direct method on N 

processors reconfigurable linear R-Mesh and N×N 2-dimensinal R-Mesh, respectively and 

O(r)+O(logM) time complexity for the MG method on time on an X×Y×Z 3-dimensional R-

Mesh. . r is N/M and M= X×Y×Z is the number of finest grid points applied to Multigrid 

method at a given parameter. 

The main contribution of this work is presenting an efficient approach to solve the 

intensively time consuming and large scale problem of molecular dynamics simulations. 

Although the R-Mesh is a theoretical model, our work supports the theory that reconfigurable 

models are a good direction for biological studies which require high computing power. 

We organize this dissertation as follows. In Chapter 2, we provide background of MD 

simulations and reconfigurable models, specifically the Reconfigurable Mesh (R-Mesh) 

model and Field Programmable Gate Arrays (FPGA). Chapter 3 provides current research 

directions for MD simulations. In Chapter 4, we describe our proposed algorithm, the MCA 

method. Chapter 5 describes the design of FPGA-based simulator implementing MCA 

method and Chapter 6 presents implementations of the FPGA-based simulator for MD 

simulation. In Chapter 7, we describe our proposed R-Mesh algorithms for MD simulations 

and summarized the results. Chapter 8 presents possible future directions for our research. 

Finally, Chapter 9 provides concluding remarks.  
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Chapter 2  

Background 

 

This chapter briefly describes the basics of Molecular Dynamics (MD) simulation. We also 

describe two reconfigurable models, Reconfigurable mesh and FPGA, that we utilize in our 

research for MD simulation. In sections 2.3, we describe the design process flow for 

implementing a new system on an FPGA. 

 

2.1. Basic of Molecular Dynamics Simulation  

In Molecular Dynamics (MD) simulation, dynamics are calculated by Newtonian mechanics 

[3]. MD simulation integrates acceleration to obtain position and velocity changes of atoms in 

the system. This process is typically continued every 1 femtosecond until the system 

stabilizes. 

F m a= ×  

There are other approaches to describe the forces of an MD system. Newton’s equation of 

motion describes nature conserving the energy, but other approaches modify the forces to 
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achieve equilibrium states satisfying certain specified requirements, such as constant 

temperature, constant pressure or rigid molecules. 

r
Fi  represents i

th
 atom’s force and can be described by the potential energy:  

 

r r r r r
F U x x x Fi i N i

extended= −∇ +( , ,..., )1 2 , 

 

 where U is the potential, N is the number of atoms in the system and 
r
Fi

extended        is an 

extended force like velocity-based friction.  

The potential U consists of several types of forces.  

 

U U U U

U U U U U

U U U

bonded non bonded external

bonded bond angle dihedral impropor

non bonded electrostatic Lennard Jones

= + +

= + + +

= +

−

− −

 

 

It takes O(N) time to calculate the bonded potentials and O(N
2
) for non-bonded potentials. So 

many researchers focus on the non-bonded interactions due to the intensive computational 

time. Non-bonded interactions can be divided into electrostatic potential (U 
electrostatic

) and 

Lennard-Jones (U 
Lennard-Jones

) potential. U 
electrostatic 

represents Coulomb potential and U 
Lennard-

Jones 
represents a van der Waals attraction and a hard-core repulsion.  

These potentials are pair-wise interactions and the formulation is given by 
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 U
q q

x
ij

electrostatic i j

ij

=
1

4 0

2πε r     ------------ (1), 

     

where π and ε0 are constants and qi and qj are the charges of atoms i and j. 
r
xij  is distance 

between atom i and j. 

 

                    ---------- (2), 

 

where Aij ≥ 0 and Bij ≥ 0 are the Lennard-Jones (LJ) parameters for atoms i and j. They define 

the energy minimum and the cross-over point, where the LJ function is zero.  

The U
Lennard-Jones

 can be calculated in O(N) time, since the LJ function decays very fast. But U 

electrostatic
 takes O(N

2
) time by Equation. (1). Many methods try to reduce the time complexity 

while still achieving reasonable accuracy. We also propose a method to reduce the O(N
2
) time 

to O(N) time, however we are able to achieve improved accuracy as compared to existing 

techniques.   

Our R-mesh algorithm (Refer to Section 4.3 for details) implementing the Direct method uses 

Equation 1 to evaluate the electrostatic potential by using the equation, the Direct method 

provides exact results for MD simulations. 

 

U
A

x

B

x
ij

Lennard Jones ij

ij

ij

ij

− = −
r r12 6
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2.2. Reconfigurable Models 

Reconfigurable bus-based models use dynamically alterable connections between processors 

to create various, changing, bus configurations. This allows efficient communication, and 

further, allows faster computation than on conventional non-reconfigurable models. 

Consequently, reconfigurable models have drawn considerable interest and numerous 

algorithms have been proposed for them [1]. Researchers have proposed a number of 

reconfigurable models including the Reconfigurable Mesh (R-Mesh) [22, 23], Fusing 

Restricted Reconfigurable Mesh (FR-Mesh) [24], Reconfigurable Network (RN) [25], 

Polymorphic Processor Array (PPA), Processor Array with Reconfigurable Bus System 

(PARBS), Reconfigurable Multiple Bus Machine (RMBM), Reconfigurable Buses with Shift 

Switching (REBSIS), Linear Array with Reconfigurable Pipelined Bus System (LARPBS) 

[26], the Pipelined Reconfigurable Mesh (PR-Mesh) [27, 28], and Field Programmable 

Arrays (FPGAs). Nakano [21] presented a bibliography of published research on 

reconfigurable models. However, we are focusing on R-Mesh and FPGA, since they can be 

exploited by complicated applications and are the most widely studied reconfigurable models.  

 

2.2.1. Reconfigurable Mesh Model 

An R × C Reconfigurable Mesh (R-Mesh) is a two-dimensional array of processors 

connected in an R × C grid [22, 23]. Each processor in the R-Mesh has Direct “external 
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connections” to adjacent processors through a set of four input/output ports. A processor can 

internally partition its set of ports so that ports in the same block of a partition are fused. 

These partitions, along with external connections between processors, define a global bus 

structure that connects the ports of processors. All ports that are part of the same bus are said 

to be in the same component of the R-Mesh.  

The important features of an R-Mesh are [29, 30]: 

1. An R × C R-Mesh is a 2-dimensional mesh connected array of processing elements 

(PEs). Each PE in the R-Mesh is connected to a broadcast bus which is itself 

constructed as an R × C grid. The PEs are connected to the bus at the intersections of 

the grid. Each processor has up to four bus switches that are software controlled and 

that can be used to reconfigure the bus into sub-buses. The ID of each PE is a pair(i, j) 

where i is the row index and j is the column index. The ID of the upper left corner PE 

is (0, 0) and that of the lower right one is (R-1, C-1). 

2. The up to four switches associated with a PE are labeled E (east), W (west) S (south) 

and N (north). Two PEs can simultaneously set (connect, close) or unset (disconnect, 

open) a particular switch as long as the setting do not conflict. The broadcast bus can 

be subdivided into sub-buses by opening (disconnecting) some of the switches.  

3. Only one processor can put data onto a given sub-bus at any time.  

4. In unit time, data put on a sub-bus can be read by every PE connected to it. If a PE is 
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to broadcast a value in register R to all the PEs on its sub-bus, then it uses the 

command broadcast(R). 

5. To read the content of the broadcast bus into a register R the statement 

R:=content(bus) is used.  

6. Row buses are formed if each processor disconnects (opens) its S switch and connects 

(closes) its E switch. Column and connecting the S switches.  

 

Figure 1 shows a 3 × 5 R-Mesh depicting the fifteen possible port partitions of a processor. 

The value written on the bus is called the bus data. The R-Mesh is a synchronous model that 

may change its bus configurations at each step. It also assumes negligible delay on buses [22, 

23]. In this work, we assume the concurrent read and exclusive write (CREW) model. 

 

 

Figure 1. Internal connections of an R-Mesh 

 

2.2.2. Field Programmable Gate Arrays (FPGAs)  
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A Field Programmable Gate Array (FPGA) is another reconfigurable model that has appeared 

in the literature [1]. Typically, these devices consist of an array of function blocks and a 

configurable interconnection fabric connecting them as shown in Figure 2.  It is possible to 

configure function blocks to perform different logic functions (such as addition, 

multiplication, etc.) and configure the interconnection fabric to connect different function 

blocks.  

 

 

Figure 2. Simple structure of FPGAs [1] 

 

Though other reconfigurable models and FPGA-based systems have evolved relatively 

independently, there is some common ground. For example, techniques for the bit-model R-

Mesh can implement rudimentary arithmetic operations on FPGAs. Some Reconfigurable 

Multiple Bus Machine (RMBM) techniques could prove useful in configuring FPGA 

I/O block 

Function 

Interconnect 

Switching matrix 
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interconnects. On the other hand, FPGA implementations can provide valuable clues to the 

direction of implementing devices with R-Mesh-type reconfiguration abilities [31]. 

Platform FPGAs provide a single platform that can address nearly any application. [32-34]. 

We can divide those applications into three categories. First, FPGAs are ideal platforms for 

Digital Signal Processing (DSP) applications. The 10 million gates Virtex-II architecture 

provides tremendous parallel processing capabilities. The result is up to 100 times higher 

performance than traditional programmable DSP solutions. Second, FPGAs offer a single 

platform for processing application. Embedded PowerPC processors, CoreConnect Buses, 

and related controllers and interfaces extend FPGA applications into embedded systems. 

Third, the flexibility of FPGAs to interconnect varying I/O standards has proven to be 

extremely valuable for systems integration. With the emergence of high bandwidth parallel 

and serial busses, IO interfaces are requiring even more complex cores and very high 

performance physical interface layers. Platform FPGAs provide very important connectivity 

and bridging between these emerging and traditional standards.  

We aim to design an FPGA-based system that simulates MD with our Multi-level Charge 

Assignment (MCA) method. MCA method is an efficient and accurate algorithm we propose 

that follows the MultiGrid (MG) method. (Refer to Section 4.1 for details) 
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Chapter 3  

Related work 

 

In this chapter, we provide current approaches for Molecular Dynamics (MD) simulations. 

The approaches are divided into software approaches that have designed efficient algorithms 

and hardware approaches that have developed special purpose processors or reconfigurable 

models. 

3.1. Software approaches  

As mentioned in the introduction, there are many methods that try to reduce the calculation 

time of electrostatic potential effectively. One has designed new algorithms and exploited 

those to evaluate the forces. The Muligrid (MG) method is one of the efficient algorithms that 

evaluates the electrostatic force in O(N) time at certain accuracy. We will explain current 

researches that are based on the MG method 

 

3.1.1. Multigrid method Background 

The Multigrid (MG) method was introduced in the 1960’s to solve partial differential 

equations (PDE). Recently it has been applied and implemented for N-body problems and 
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achieve O(N) time complexity at given accuracy. The basic idea of MG is to hierarchically 

separate the force potential into a short range part plus a smooth part (slowly varying part of 

energy). MG method uses gridded interpolation for both the charges (source) and the 

potentials (destination) to represent its smooth (coarse) part [9]. The splitting and coarsening 

are applied recursively and define a grid hierarchy (Refer to Figure 3). Figure 4 presents a 

recursive Multigrid scheme in pseudo code. 

 

Figure 3. The multilevel scheme of Multigrid algorithm [9] 

(1) Aggregate to coarser grids (2) Compute potential induced by the coarsest grid 

(3) Interpolate potential values from coarser grids (4) Local corrections 

 

The MG method is faster for a given error rate, but cannot provide better accuracy than 

other methods such as Ewald’s method [8] and Multipole method [35]. In order to use MG 

method, we need to map an arbitrary distribution of discrete particles onto a grid space.  

There are several mapping schemes, charge assignment schemes, and those schemes play an 
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important part in MD simulation, since both accuracy and efficiency depend on the charge 

assignment scheme. That is, the charges must be spread over a fairly large number of grid 

points, which can become the most time-consuming part of the algorithm. Beckers et al. [36] 

presented a new implementation of P3M method by solving Poisson’s equation in real space 

with a Successive OverRelaxation (SOR) method, but the accuracy is not good enough. So 

Sagui and Darden [5] proposed a modified Lattice Diffusion Multigrid (LDM) method that 

improved accuracy and speeds up the algorithm.  

 

 

Figure 4. Pseudo-code of a recursive Multigrid scheme [9] 

 

In addition, they proposed another method, Lattice Gaussian Multigrid (LGM) [5] method, 

which is more accurate, but more time consuming. 

 

main:  

 1. anterpolate position charges to the finest charge grid(1) - step(1) in Fig 3 

 2. call multiscale(maxLevel, level 1) 

 3. interpolate finest potential grid(1) to the position potentials - step(3) in Fig 3 

 4. correct position potentials – step(4) in Fig 3 

 5. compute forces and total energy 

multiscale(maxLevel, level k):  

 1. if maxLevel = k then 

  (a) compute potential values on coarsest grid(maxLevel) -step(2) in Fig 3 

 2. otherwise 

  (a) anterpolate charge grid(k) to coarser charge grid(K+1) - step(1) in Fig 3 

  (b) call multiscale(maxLevel, K+1) 

  (c) interpolate coarser potential grid(K+1) to potential grid(K) - step(3) in Fig 3 

  (d) correct potential grid(k) - step(4) in Fig 3 



 

 

18 

 

 

3.1.2. Fast-Fourier Poisson method 

York and Yang [37] presented the Fast-Fourier Poisson (FFP) method, which provides an 

accurate solution of the Poisson’s equation. They present the new form (second term in 

Equation (3)) to evaluate reciprocal force of electrostatic force that only needs evaluation at 

the lattice points. Their method is faster than Ewald summation[8] which requires to evaluate 

reciprocal potential(φrec r( ) ) at the point charge positions.   
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However, they still use Fourier transform in second term in Equation (3), which has proven 

difficult to implement on the current parallel machine. Sagui and Darden also use Equation 

(3), but provide a method that calculates the second term in the real lattice. We also present 

our method in real space and the method could be implemented on a parallel machine.   

 

3.1.3. Lattice Diffusion Multigrid Method  

Sagui and Darden [5] introduced B-splines, which provides smooth polynomial interpolation, 

together with recursion formulas for their analytic derivatives. This allows computation of the 
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forces through analytic differentiation in real space. They applied this technique to the Lattice 

Diffusion Multigrid (LDM) Method. LDM has four steps 

(1) Charge interpolation : Charges are interpolated onto the grid via B-splines 

 

                                                                       ---------------- (4) 

 

,where p (order of interpolation) = integer(      ), x is a point on the lattice, and rj indicates 

the coordinates of particle j. β is Gaussian coefficient and hx  is the size of fine grid 

(2) Charge smoothing:  

 

                               --------- (5) 

 

where,    are nearest-neighbor grid points (first- , second and Nt-th nearest-neighbor, Nt = 

integer(1 2 2/ β hx ), n stands for the time iteration. D´ is diffusion constant and adjustable 

parameter. Its initial value is ′ = + + −D h h hx y z1 2 1 1 12 2 2 1/ [( / ) ( / ) ( / )] . The initial value is 

decreased slowly until it reaches a value that minimizes the force error. 

(3) Solution on the grid: The electrostatic potential is evaluated on the mesh using an O(N) 

Multigrid technique. A Hermitian representation of Poisson’s equation or seven-point 

representation of Laplacian can be used [5, 38].  

q x B x rp i( ) ( )= −∑

q x q x D q xn n
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(4) Back interpolation : the particle energy and force are interpolated back using the same B-

splines  

 

                   ------------ (6)     

                          ------------ (7)   

 

As Beckers et al. [36] suggest in original diffusion scheme, D´ is an adjustable parameter. 

Sagui [5] find the optimal D´ by setting initial value and diminish it slowly.  

However, an adjustable parameter is not a systematic factor even if it works well in some 

molecules. Lattice Gaussian Multigrid (LGM) method is a more systematic approach to 

interpolate the particle charges and smoothing the charges to give better accuracy. 

 

3.1.4. Lattice Gaussian Multigrid Method 

Sagui and Darden [5] provide a modified fast-Fourier Poisson (FFP) method to avoid the use 

of Fourier transforms since FFT has proven difficult on the current parallel machines. This is 

due to the large communication overhead associated with the global shifting of data between 

different processors for FFT evaluations. 

The method performs all the calculations in real space, and solves Poisson’s equation via 

Multigrid methods, and by using exact analytical expressions in real space for the forces. 
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(1) Gaussian Charge assignment (GCA) & smoothing 

The charge assignment and smoothing is performed directly by Gaussian 

 

ρ
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π

βs j

i
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=
∑

3

3 2
1

2 2  ---------- (8) 

 

x is a point on the lattice, and rj indicates the coordinates of particle j which is cutoff Rc < |x-

rj|. This assignment works better for relatively high βs and a smaller Rc if needed for 

convergence.  

(2) Solution on the grid : The electrostatic potential is evaluated on the mesh using an O(N) 

Multigrid method. In LGM, Hermitian representation provides better performance. [5, 38] 

(3) Gaussian Back interpolation (GBI) : The energy can be directly computed on the grid as  

                       E x x h h hrec i s

x

x y z, ( ) ( )= ∑
1

2
ρ φ   ----------------- (9) 

 

and by taking derivative of the energy with respect to the coordinated of particle i, we can get 

the corresponding fore as 
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LGM is stable and accurate method but not efficient. While LDM is very efficient but not 
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stable and accurate.  

Banerjee et al. [39] proposed an approach to improve the evaluation time and keep the 

accuracy of LGM. 

 

3.1.5. Convolution charge assignment in LGM 

Banerjee et al. [39]points out that the execution time of Gaussian Charge Assignment (GCA) 

and Gaussian Back Interpolation (GBI) is over 70% of total execution time of LGM on single 

processor. Even on parallel processors, the execution time consumes the majority of time. 

They use convolutions in GCA and GBI to reduce the number of grid points needed to 

approximate a Gaussian charge distribution. 

In detail the proposed charge assignment (Convolution Charge Assignment, CCA) and 

back interpolation (Convolution Back Interpolation, CBI) approximate Gaussian charge 

distribution by Gaussian basis function and calculate weights for sampled Gaussian 

distributions. Then the weights are added to grid distribution ρm and convolutions are applied 

to the ρm with the Gaussian basis function. As more sample points are used in computing the 

weight, the error from center of the distribution is reduced. Thus, it is more accurate to use 

large number of sample points because it uses more weighted Gaussian distributions and the 

final grid points more match GCA. But this increases evaluation time. They compare 

performance with Sagui’s LGM [5]. It shows same accuracy level and reduces 60% total 
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execution time. However, the charge distribution is not consistent since it is an approximation 

of particles in the lattice and the distribution of particles could reduce the accuracy of most 

methods. 

We propose a method that improves the accuracy by applying Multi-level Charge 

Assignment (MCA) method for unbalanced distribution of particles in a molecule (Refer to 

Chapter 4). 

 

 

3.2. Hardware approaches 

The number of atoms in an MD system is typically large and the MD simulation must 

continue until the forces reach equilibrium. Therefore, the total time required is significantly 

large, even if efficient algorithms are applied to the simulation. Many hardware approaches 

provide rapid and accurate MD simulation. In this section, we provide three approaches 

related with our research. First approach is exploiting supercomputing systems to run 

software packages for MD simulations. Software packages implement various methods and 

tools for analysis of results. We provide the analysis of performance for the packages running 

on supercomputing systems. Second approach is focusing on running the simulations on 

special purpose processors or developed Application-Specific Integrated Circuits (ASIC). 

Third approach is utilizing a reconfigurable model, Field Programmable Gate Arrays 
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(FPGA)-based MD simulators that currently are proposed and developed. 

 

3.2.1. Supercomputing Systems  

In the field of biology, a number of commercial and free software packages are used to 

evaluate Molecular Dynamics. AMBER, CHARMM, GROMACS and NAMD are used by a 

large community of biologists. AMBER provides various algorithms to calculate the MD 

simulation and consists of about 50 programs that perform diverse functions for configuration 

processes and analysis of results. The main module of AMBER is sander, which stands for 

simulated annealing with NMR-derived energy restraints. Sander is also the "main" program 

used for MD simulations, and is also used for replica-exchange, thermodynamic integration, 

and potential of mean force (PMF) calculations. Alam et al. [2] used sander to investigate the 

performance characteristic of MD techniques using PME and Generalized Born (GB) method 

and analyze the performance of AMBER on two teraflops-scale systems, IBM Blue Gene/L 

and Gray XT3. Blue Gene/L is the current fastest supercomputing system. They run the 

experiments on a 1024-node Blue Gene/L system. A single Blue Gene/L processing node 

consists of an ASIC, which contains the code execution logic, on-chip memory and 

communication logic. The total processing power is 2.8 gigaFLOP/s per processor or 5.6 

gigaFLOP/s per processing node. The total memory available to an to an application is 512 

megaBytes and the off-chip memory bandwidth is 5.5 gigaBytes/s. it provide two network 
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topologies (tree-dimensional torus network and tree network) for message passing operations  

The bandwidth of tree network is 2.8 gigaBytes/s and the bi-directional bandwidth is 1.4 

gigabits/s in six torus directions. The Cray XT3 system builds on a single processor node or 

processing element (PE). Alam et al. used early system which contains over 5000 processing 

nodes XT3 system at Oak Ridge National Laboratory (ORNL) for the experiments. The XT3 

uses a commodity microprocessor, the AMD Opteron and connects these processors with 

customized interconnect based on an ASIC called SeaStar. The ORNL XT3 uses Opteron 

model 150 processors and Opteron core has a 2.4 Ghz clock and the peak floating point rate 

of this processor is 4.8 gigaFLOP/s. Each PE has 2 gigaBytes of memory the the peak 

memory bandwidth per processor is 6.4 gigaBytes/s. The PE is connected toe the SeaStar 

chip with a 6.4 gigaBytes/s HT path. The router in SeaStar provides six high-speed network 

links to connect to six neighbors in the 3D torus/mesh topology. Each of the six links has a 

peak band width of 7.6 gigaBytes/s. The Cray XT3 bypasses communication bottlenecks, 

such as the PCI bus. Alam et al. report that AMBER’s PME method does not even scale up to 

128 processors on Blue Gene/L and AMBER’s Generalized Born (GB) method scale up to 

1024 processors on a Cray XT3.  

IBM developed a new framework for MD on the Blue Gene/L called Blue Matter [40]. Its 

preliminary work allows scaling a small system up to 512-1024 processors. NAMD is a 

software framework and is reported to scale to thousands of processors. It used a 
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communication layer called CHARM++, which has been ported to the Blue Gene/L and XT3 

systems. LAMMP [7] is also a software framework from Oak Ridge National Laboratory and 

provides scaling up to thousands of processors. However current version of LAMMPS does 

not provide the energy minimization technique and lacks many functionalities for simulations 

and analysis, which are provided with AMBE and CHARMM. 

Currently most supercomputing systems cannot reach the computing power that is required 

for biological studies that include molecular systems over of 10,000 atoms. It is expected, 

however, but they expect that petaFLOPS-scale computing power in the near future will meet 

the speed for biological studies [7]. 

 

3.2.2. Special purpose machines and Application-Specific Integrated Circuits 

(ASIC) 

Shinjiro Toyoda et al. [14] developed a custom processor called MODEL (MOlecular 

Dynamics processing ELement) for calculating Lennard Jones force and Coulombic force and 

a scalable plug-in machine to a workstation. The processors work in parallel and have 

pipeline architecture. Their MD engine system consists of 76 MODELs and is approximately 

50 times faster than the equivalent software implementation on a 200 MHz Sun Ultra 2. They 

consider non-bonded forces (Lennard Jones force and Coulombic force) to be calculated. The 

magnitude of forces was determined through table lookup since computation of these forces 
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required greater than 99% of the CPU time in software-based simulations. The MD engine 

system using MODEL chips apply Ewald method [8] to calculate Coulombic forces and the 

method allows precise calculation of Coulombic forces. Although MODEL achieves highly 

improved simulation results, developing an ASIC such as MODEL not only takes much time, 

but also is very expensive. Most of all, it is hard to modify the circuits when the solution 

needs to be changed.  

GRAPE(GRAvity PipE) [12, 13] is one of the ASIC machines which is originally 

developed for gravitational problems and currently many GRAPEs have been developed for 

N-body problem such as MD simulation. Yuto Komeiji et al. [12] developed MD-GRAPE 

(Figure 5). MD-GRAPE is one of the GRAPEs and computes force and potential efficiently. 

The architecture of GRAPE is simple and easy to develop. They did not use floating point 

arithmetic throughout as was done in MODEL. Instead, position is stored as a 40-bit fixed-

point number and the force is accumulated onto an 80-bit fixed-point number. The switch to 

fixed-point reduces the hardware requirements substantially. However, floating-point was still 

used for the calculation of the forces. MD-GRAPE divides the force calculation into two part. 

Only the O(N
2
) operations were off-loaded to the hardware in this system and O(N) 

operations were performed on a host computer. Thus, the communication time with host 

limits the performance of the system if the number of particles is not large enough. 
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Figure 5. The hardware architecture of the MD-GRAPE system and the data flow between 

the machines [12] 

 

 

 

3.2.3. FPGA-based Application Specific Processor (ASP) 

While many researchers have designed ASIC machines for MD simulations [12-14] , it is 

difficult for them to be altered or upgraded due to a lack of flexibility in their dedicated 

hardware circuits. Recently, reconfigurable computing has emerged as an alternative to ASIC. 

It allows hardware circuits to be configured to perform the target task. Field Programmable 

Gate Arrays (FPGA) are semiconductor devices that processes digital information and can be 

reprogrammed without slowing performance. FPGA boards are cheap compared to ASICs 

and are very flexible due to its reprogrammable feature.   

Navid Azizi et al. [15] exploit FPGA technology for simulating Molecular Dynamics. They 



 

 

29 

show that FPGAs is a feasible technology to develop large-scale application specific 

computation, such as MD simulation and developed FPGA-based ASP (Application Specific 

processor) to calculate Lennard Jones force of MD simulation. Their platform is TM3[16], 

which contains multiple interconnected FPGAs and consists of four Virtex-E 2000 devices 

connected to each other via 98-bit bidirectional buses. In addition, each FPGA is connected to 

a dedicated 256k×64 bit external SRAM, I/O connector and a nibble bus that allows 

communication with the host computer for download and control functions. They propose 

effective organization (two arrays for position) of the memory and FPGA speed (100 MHz) to 

improve the performance 20 times better than software implementation (2.4 GHz P4). In 

longer simulations, the error in potential energy remained below 1% while kinetic energy 

differences between hardware and software were less than 5%. 

Navid Azizi et al. [15] introduce FPGA-based ASP for MD simulations, but they only 

calculate Lennard Jones force. Youngfeng Gu et al. [17] explore FPGA implementations for 

MD simulations and complete the calculation for non-bonded forces (Coulombic force and 

Lennard Jones force). They apply the direct method [3] to calculate the forces and used an 

Annapolis Microsystem Wildstar board Virtex-II XC2VP70-5 FPGA and simulate VP100, 

Xilinx Virtex-II Pro XC2VP100 -6 FPGA. They compare their FPGA implementation with 

2.0 GHz Xeon CPU and shows it can be accelerated from 31 times to 88 times with respect to 

a software implementation, depending on the size of the FPGA and the simulation accuracy. 
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Figure 6 shows the block diagram of the FPGA parts of Youngfeng Gu [17]’s system. 

 

 

Figure 6. Block diagram of the FPGA parts of the system [17] 
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Chapter 4  

Multi-level Charge Assignment (MCA) method 

 

Many current techniques for the Molecular Dynamics (MD) simulation are based on the 

Multigrid (MG) method since this method is efficient and can be implemented on a parallel 

machine. However, most applications using the MG method provide inconsistent accuracy by 

the structure of molecules to be simulated and adjust the parameters in an unsystematic way. 

Since particle charges are interpolated onto the grid, the grid charge or charge distribution on 

a grid point cannot well represent the particle charges when the particles of the molecule are 

not spread evenly. In this Chapter, we propose a method to provide consistent accuracy and 

reduce errors even if the distribution of particles is not balanced. In Section 4.1, we describe 

the basic concept of our proposed Multi-level Charge Assignment (MCA) method. Section 

4.2 provides the detail algorithms of the MCA. Section 4.3 provides the results and analysis 

of the MCA method.  

 

4.1. Basic concept of Multi-level Charge Assignement (MCA) method 

In the MG method, charge assignment and back interpolation are very important steps since 

accuracy and efficiency depend on these steps. We propose Multi-level Charge Assignment 

(MCA) [10] method which provides better accuracy with little additional cost. The main idea 



 

 

32 

of the MCA method is two fold; 1) the size of the finest grid is a factor to improve the 

accuracy, but the efficiency is decreased; 2) many molecules have different structures so grid 

points represent different number of particles. 

 The MCA method uses different sizes of finest grid when the finest grid represents more 

particles than a particular threshold value and interpolates the particle charges to the grids. 

The method consists of four steps: (1) calculate the density of particles for each grid point; 

(2) apply the MCA if the density of grid x is greater than threshold, k. Then interpolate and 

smooth the charges onto the grid; (3) calculate the electrostatic potential on the grid via the 

original MG methods; (4) back interpolate the forces and energy from the grid to the particle 

space.    

Figure 7 shows an example that applies the MCA on grid G4. Figure 7 (a) shows the charge 

assignment for the original MG method. The charges of particles (solid circle; A - G) are 

interpolated to G4 since the particles are located within Rc (cutoff distance). Figure 7 (b) 

shows an example when the MCA is applied to interpolate those particles (solid circle). We 

would consider that the charges for particles E, F and G are interpolated to g1 and g2 which 

are smaller grids and have smaller cutoff distance (Rc/2) since particle E is closer to g1 than 

G4 and particle F and G is closer to g2 than G4, therefore MCA is applied. Then, g1 and g2 

are interpolated to a coarser grid level G4. 
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Figure 7. Multi-level Charge Assignment example 

 

 

4.2. Multi-level Charge Assignment and Back Interpolation in LDM 

The steps of MCA method in LDM are as follows: 

(1) Preprocessing  

DOP(x) represents density of particle for each grid point and is calculated by following 

equation.     

DOP x Anterpolate x r
i

n

i( ) ( ( ))= −∑  

 

Anterpolate(y) return 1 if |y| < Rc otherwise return 0, x is a finest grid in regular assignment 

method, Rc is cutoff distance and ri indicates the coordinates of particle i. 
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(2) Assignment 

Charge assignment is divided into two cases. Case I is where x represents the particles less 

than a threshold, k. Case II is where x represent the particles greater than k and needs to apply 

MCA to the grid, x.  

Case I   

If DOP(x) <= k, perform regular charge assignment  

q x A x rp i( ) ( )= −∑  

Ap is interpolation function (Hermite or B-spine) and p (order of interpolation) = 

integer(1 / β ⋅hx ), β is Gaussian coefficient and hx  is size of fine grid. k is highest or second 

highest DOP value. If k is smaller, the method provides more accurate results but increases 

calculation time. x is a point on the lattice, and ri indicates the coordinates of particle i which 

is |x-ri| > Rc. 

Case II   

If DOP(x) > k, use smaller grids level (hx /2, hy /2, hz /2) and interpolate the smaller grid to 

fine grid level(hx, hy, hx). 

Step 1  calculate q(y), which y is smaller grid points near x.  

q y A y rp i( ) ( )= −∑  

, where ri indicates the coordinates of particle i and particle i was assigned at x 

in preprocessing. In this function, cutoff is Rc/2. 
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Step 2 interpolate charges of y to charges of x by Ap and update (θhx ,θhy ,θhz ) of the 

fine grid(hx, hy, hz) for back interpolation to obtain forces.  

(θx
,θy
,θz ) = (wsθhx +wfθhx /2 ,wsθhy +wfθhy /2 ,wsθhz +wfθhz /2 )/2 

,where ws and wf are currently set by value 1.  

(3) Smoothing 

This process is similar to smoothing process in LDM. (Refer to Section 3.1.3) 

(4) Solution on the grid 

The electrostatic potential is evaluated on the mesh using an O(N) Multigrid technique. A 

Hermitian representation of Poisson’s equation or seven-point representation of Laplacian can 

be used [5, 38]. 

(4) Back interpolation   

The particle energy and force are interpolated back using the same interpolation function Ap. 

However, Multi-level back interpolation should be applied. If the grid had MCA applied to it, 

then (θhx ,θhy ,θhz ) were already updated and these values are used to obtain particle energy and 

force by back interpolation.  

 

4.3. Results and analysis 

The proposed method has been implemented in C++ and Intel Core Duo processor T7400 and 

1 GB memory. We compare the accuracy and running time with a Multigrid implementation 
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of Protomol 2.0 [41]. Protomol 2.0 provides Simple, PME, Full Ewald and Multigrid (MG) 

implementation for the MD simulation and a platform for comparing various methods. 

Protomol implements a Lattice diffusion multigrid method and uses B-Spine and Hermite 

interpolation. Our tests were performed for a Calcium molecule with 309 atoms and Basic 

Pancreatic trypsin inhibitor (BPTI) with water that has 1101 atoms. These test data are 

standard and configuration files can be obtained from Protomol website or Protein Data Bank. 

All experiments provide comparisons for the three methods (simple, LDM and MCA). 

Simple method uses Equation (1) and provides exact simulation results. LDM and MCA 

method use 4th order Hermite interpolation and three grid level to perform MD simulations 

on Calcium and BPTI molecules.  

Figure 8 shows the potential energy for Calcium molecule and simulates this for 10000 

iterations and Figure 9 shows potential energy for BPTI molecule. Figure 8 and Figure 9 

show that the simulation results of three methods provide similar plot. That is, the MCA 

method provides correct simulation results.  
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Figure 8. Potential energy for each method, Simple, LDM and MCA method for Calcium 

molecule 

 
 

Figure 9. Potential energy for each method, Simple, LDM and MCA method for BPTI with 

water 

P
o
ten
tial en

erg
y
 

Steps  

 

P
o
ten
tial en

erg
y
 

Steps ( ×104) 



 

 

38 

 

To test the accuracy of LDM and MCA against the Simple method, we compared the energy 

relative errors (rel.error) defined as  

 

 

, where the subscript “Simple” refers to the exact electrostatic potential energy computed 

using Simple method. The subscript “m” refers to the potential energy computed using LDM 

or MCA method.  

The simulation with Calcium molecule shows that the relative error is 0.0217 in LDM 

method and 0.0204 in MCA method. It is a 6% improvement on accuracy. But the total 

execution time is 62.78sec in LDM method and 63.90sec in MCA, resulting in minimal 

additional calculation time.  The simulation with BPTI molecule shows that the relative 

error is 0.0022 in LDM method and 0.00177 in MCA method. It is a 19% improvement on 

accuracy. The total execution time is 118.14sec in LDM method and 119.17sec in MCA 

method, resulting in 1sec (0.8 %) additional calculation time.  

Table I shows the simulation results and compares the proposed method with Simple and 

LDM method. As can be seen, both experiments show improved accuracy for the proposed 

method and particularly the experiments on BPTI provides much better improvement (19.5%). 

The reason that BPTI displays better results than the Calcium molecule is that more atoms in 

rel error
E E

E

Simple m

Simple

. =
−
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BPTI molecule are applied to MCA method. As we mentioned, if the molecule is not spread 

evenly in grid, the MCA method provides efficient charge assignment and back interpolation.  

 

TABLE I. Total execution time and accuracy for Simple method, LDM and MCA method on 

Calcium molecule and BPTI molecule 

 Calcium Molecule BPTI Molecule 

 Simple LDM MCA Comparison 

MCA vs. LDM 

Simple LDM MCA Comparison 

MCA vs. LDM 

T
im
e 
(s
ec
) 69.62 62.78 63.90 1.78% slower 159.28 118.14 119.16 0.8% slower 

A
cc
u
ra
cy
 1 0.0217 0.0204 6%  

better accuracy 

1 0.0022 0.00177 19.5%  

better accuracy 

In summary, the MCA method achieves much better accuracy with just a little bit of cost in 

terms of time. The experiment of BPTI molecule in TABLE I show that the cost ratio of time 

to accuracy is 1:24.4.  

In this chapter, we prove the MCA method improves the accuracy for the MD simulation, 

but it still requires the calculation time similar to the original MG method. Since it is very 

crucial to reduce the calculation time for the MD simulation, we study another research 

direction that exploit reconfigurable models, FPGA and R-Mesh, to achieve fast calculation 

time as well as improved accuracy. Next chapters present the research directions. Chapter 5 

and 6 present our proposed FPGA-based MD simulator and Chapter 7 present R-Mesh 

algorithms for two method of the MD simulation.  
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Chapter 5  

Design of FPGA-based simulator for MD simulation 

 

It is difficult for Application-Specific Integrated Circuits (ASIC) machines to be altered or 

upgraded due to a lack of flexibility in their dedicated hardware circuits. Recently, 

reconfigurable computing has emerged as an alternative to ASIC machines. FPGAs are 

reconfigurable models that are semiconductor devices that processes digital information and 

can be reprogrammed without slowing performance [1]. Since FPGA boards are cheap and 

flexible compared to ASICs, many researchers have explored FPGA implementation for the 

MD simulation. Navid Aziz et al. [15] and Younfeng Gu et al. [17] designed FPGA 

implementations for calculating Lennard Jones force and non-bonded forces (Coulombic 

force and Lennard Jones force) of the MD simulation. They use the Direct method for 

Coulombic force and the calculation time of Direct method is O(N
2
) for an N particle system. 

However our proposed MCA method requires O(N) calculation time with improved accuracy 

and we designed an FPGA simulation implementing the MCA method. The MCA [10] 

method is categorized as a Multigrid(MG) method. Since the MG method is efficient and can 

be parallelized, many approaches for the MD simulation are based on the MG method. As we 

mentioned, most applications using the MG method provide inconsistent accuracy by 

distribution of particles in molecules to be simulated and adjust the parameters 
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unsystematically to get better accuracy. The MCA method applies multi-level interpolation 

that adjusts the grid charge and charge distribution and achieves a simulation that is more 

accurate without much increase in calculation time.  

In this Chapter, we design an FPGA-based MD simulator that achieves fast calculation 

times and improved accuracy. In Section 5.1, we describe the architecture of the FPGA-based 

MD simulator that implements the MCA method.  

 

5.1. System Architecture  

We break down the steps to demonstrate the design. Figure 10 describes 7 steps to design an 

FPGA-based MD simulator. Step 0 in Figure 10 is preprocessing density of fine grid in order 

to apply the MCA method to the grids which represent too many particles. Step 1 in Figure 10 

is MCA_Anterpolate process that maps particle charges to the finest grid level. Step 3-Step 6 

in Figure 10 are similar with the procedure of the original MG method.  
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Figure 10. Pseudo code of MCA method for FPGA-based MD simulator 

 

We consider the precision of proposed architecture since the precision of system affects 

arithmetic accuracy of the MD simulation which is calculated by designed circuits. Amisaki 

et al. [42] examined many factors that affect the arithmetic accuracy of a dedicated 

accelerator that calculate non-bonded interactions. They found that the pair-wise force should 

be calculated with at least 29 bits of precision using coordinates that, in turn, should have at 

least 25. Our system uses 46 bits with 26th binary point for the pair-wise force and 46 bits 

with 26th binary point of precision for coordinates of particles and performs much faster MD 

simulations without loss of accuracy. 

Step 0 : Preprocessing density of fine grid  

Step 1 : MCA_ANTERPOLATE particle charges � C_Grid(1)                

Step 2: WHILE K = 1 ..Max-1                                   

    ANTERPOLATE C_Grid(K) � C_Grid (K+1)  

Step 3 : COMPUTE energy values on C_Grid(Max)                       

Step 4 : WHILE K = Max .. 2                                                

    INTERPOLATE E_Grid(K+1) � E_Grid(K)        

    CORRECT E_Grid(K) 

Step 5 : INTERPOLATE E_Grid(1) � particles energies                

   CORRECT particles energies                       

Step 6 : COMPUTE forces and total energy  

* K level Charge Grid : C_Grid(K)  

* K level Energy Grid : E_Grid(K) 

* Finest charge grid : C_Grid(1)  

* Finest Energy grid : E_Grid(1) 

* Coarsest charge grid : C_Grid(Max)   

* Coarsest charge grid : E_Grid(Max)  
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Figure 11. Block Diagram of MD Simulator 

 

 

 

Figure 12. Verlet algorithm [43] 

 

Figure 11 shows the top level block diagram of the proposed architecture. Our system 

communicates with a host computer to update coordinates of particles during the MD 

simulation. The host computer stores coordinates and charges of particles in memory P and 

Q0~Ql respectively. Also, it calculates density of the finest grid as a preprocessing step of 

MCA method. Compute Force block is a main module to evaluate the forces(F0~Fl) and 
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potentials. Once the forces are evaluated, Acceleration Update block accumulates the forces 

and Verlet Update block updates position and velocity of particles. We are using Verlet 

algorithm [43] (Figure 12) to update the velocity.  

 

 

Figure 13. Compute Force Block of MD Simulator 

     

Figure 13 depicts the block diagram of Compute force module shown in Figure 11. It 

performs three phases: 1) interpolation and smoothing which interpolate charge of particles to 

charge of finest grids and interpolate charge of grids to charge of coarser grid (steps 1 and 2 

in Figure 10); 2) computing energy value on the grids (steps 3, 4 and 5 in Figure 10); 3) 

computing total energy value and force (step 6 in Figure 10). 
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Chapter 6  

Implementing FPGA-based simulator for MD 

simulation 

 

In Chapter 5, we described the process and architecture of our proposed FPGA-based 

simulator for the MD simulation. In this Chapter we present implementations of the FPGA-

based simulator. We introduce three methods for designing a system in FPGA and provide 

more detail for the method that we utilize. In Section 6.1, we present two versions of the 

FPGA model using SysGen and Simulink on Matlab so that the models apply the Multigrid 

method to calculate non-bonded interactions. Our models are implemented on the target 

FPGA, Virtex-IV of Xilink Inc.  

 

6.1. Methods for a system design in FPGA 

There are three methods to design a system in Xilink FPGAs [32]. First method is using 

hardware description language, such as VHDL or Verilog. VHDL stands for VHSIC (Very 

High Speed Integrated Circuits) Hardware Description Language. In the 1980’s the U.S. 

Department of Defense and the IEEE sponsored the development of this hardware description 

language (HDL) with the goal to develop very high-speed integrated circuit. Now it has 

become one of industry’s standard languages used to describe digital systems. The other 
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widely used hardware description language is Verilog. Both are powerful languages that 

allow us to describe and simulate complex digital systems. Although these languages look 

similar as conventional programming languages, there are some important differences. A 

hardware description language is inherently parallel, i.e. commands, which correspond to 

logic gates, are computed in parallel, as soon as a new input arrives. An HDL program 

mimics the behavior of a physical, usually digital system. It also allows incorporation of 

timing specifications (gate delays) as well as to describe a system as an interconnection of 

different components[44]. This method provides complete control of the design of 

implementations and tradeoffs.  

The second method is using pre-designed functional units, called cores. Xilinx provides 

Core Generator to customiz and generate these functional units. The pre-designed functional 

units such as adder, subtractor, multiplier or divider are available in such a way that they can 

be customized for a particular use. If designers can generate and customize their functional 

units by Core Generator and the cores meet their specification, the designers do not need to 

re-design. We describe the advantages and disadvantages of each method in Table II.    

We choose to use the third method, System Generator to design an FPGA implementation 

since System Generator helps to reduce the gap between system designer and FPGA 

implementer. System designers write an algorithm in pseudo code, using filters, certain C 

code and certain precision. They may be familiar with Digital Signal Processing (DSP) and 
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Simulink models, but may not know anything about FPGAs. Not only does he not know how 

to target an FPGA, he does not know how to take advantage of the FPGA architecture, or 

how to write a design to avoid a bad FPGA implementation. For example, when he is finished 

with his DSP design, he may have a working model in Simulink, but he must still design the 

same thing in VHDL, or he gives his design to an FPGA implementer who writes the VHDL 

for him. But if the implementer does not know about DSP, the implementer might end up 

using a core that does not do exactly what the designer wants,. The FPGA implementer is just 

trying to translate the pseudo code that came to him into VHDL for an FPGA.   

 

TABLE II. Three methods for design in FPGAs 

Method Advantage Disadvantage 

F
u
ll
 V
H
D
L
/V
er
il
o
g
 

• Portability 

• Complete control of the design 

implementation and tradeoffs 

• Easier to debug and understand a 

code that you own 

 

• Can be time-consuming  

• Do not always have control over the 

Synthesis tool 

• Need to be familiar with the 

algorithm and how to write it 

• Must be conversant with the 

synthesis tools to obtain optimized 

design 

C
o
re
 G
en
er
at
o
r 

• Can quickly access and generate 

existing functions 

• No need to reinvent the wheel and 

re-design a block if it meets 

specifications 

• Intellectual Property (IP) is 

optimized for the specified 

architecture 

• IP does not always do exactly what 

you are looking for 

• Need to understand signals and 

parameters and match them to your 

specification 

• Dealing with black box and have 

little information on how the 

function is implemented 
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S
y
st
em
 G
en
er
at
o
r 

• Huge productivity gains through 

high-level modeling 

• Ability to simulate the complete 

designs at a system level 

• Very attractive for FPGA novices 

• Excellent capabilities for designing 

complex testbenches 

• Hardware Description Language 

(HDL) Testbench, test vector and 

golden data written automatically 

• Hardware in the loop simulation 

improves productivity and 

provides quick verification of the 

system functioning correctly or not 

• Minor cost of abstraction: does not 

always give the best result from an 

area usage point of view 

• Customer may not be familiar with 

Simulink 

• Not well suited to multiple clock 

designs 

• No bi-directional bus supported 

 

 

MathWorks’ Simulink is a visual data flow tool and presents an alternative to using 

programming languages for system design. This enables designers to visualize the dynamic 

nature of a system while illustrating their complete system in a realistic fashion with respect 

to the hardware design. Most hardware design starts out with a block diagram description and 

specification of the system, very similar to the Simulink design[33]. The main part of 

Simulink is the Library browser that contains all the available building blocks to the user. 

This library is expandable and each block is parameterizable. Users can even create their own 

libraries of functions they have created. 
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Figure 14. Design Flow in FPGAs  

 

An important point of note about Simulink is that it can model concurrency in a system. 

Unlike the sequential manner of software code, the Simulink model can be seen to be 

executing sections of a design at the same time (in parallel). This notion is fundamental to 

implementing a high-performance hardware implementation.  

Figure 14 shows FPGA design flow using Simulink and System Generator. In the Figure, 

System Generator is a plug-in to the Simulink environment, adding a Blockset to the 

Simulink library browser. System generator is an Industry’s system-level design environment 

(IDE) for FPGAs and integrated design flow from Simulink to bit file. To provide system-

level designers with a portal into the FPGA, System Generator taps into existing technologies 
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(MATLAB, Simulink, HDL synthesis, IP Core libraries, FPGA implementation tools), 

leveraging the MathWorks tool suite to provide the foundations for system design and the 

Xilinx FPGA design flow to implement the design. 

 

 

Figure 15. System Generator for DSP Platform Designs [32] 

 

Figure 15 shows the process that System Generator performs for DSP platform design. The 

System Generator performs HDL co-simulation and Hardware in the loop simulation using 

black box block. The black box can be used to incorporate hardware description language 

(HDL) models into System Generator.  

In this work, we choose the third method of the three methods to design an FPGA-based 

MD simulator, since it provides very productive design span by high-level modeling and 

quick verification of the system functioning. We use Simulink/MATLAB to design the 
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FPGA-based simulator and System generator to target FPGAs. 

 

6.2. Implementation –Version 1 

First version of the model is our preliminary and early work. Figure 14 presents an 

Anterpolate module that assigns charges of particles to charges of the finest grids. 

Anterpolate step is the most time consuming part of a MG method and it takes O(K·N) 

calculation time, where N is the number of atoms in the molecular system and K is a large 

constant that depends on the order of the interpolation function. Anterpolate module 

simulates 4th order Hermite interpolation and three grid levels. For each iteration of the MD 

simulation, the module consumes 128 × N clock counts (each loop cycle consumes 128 

sample periods).  

 

Figure 16. Anterpolate module 
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In Figure 16, we are using two counters (Counter X, Counter Y) instead of three for x, y, 

and z axis in order to reduce the sample periods. This results in an increase of logic units 

required, specifically three multipliers in the Theta calculator module, but it improves the 

performance.  

 

 

Figure 17. Theta calculator module in Anterpolate module 

 

Figure 17 shows the Theta calculator module and the module provides all thetas for z axis 

in a subsystem (thetaZs) and reduces the sample period, but adds three multipliers. We could 

reduce theta calculation time to 32 × N clock counts (each loop cycle consumes 32 sample 
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periods) by removing one counter and add 15 more multipliers. Other modules of our first 

version of MD simulator are provided in Appendix. 

The real calculation time of the MD simulation system depends on the speed of the 

processor. However, we reduce the floating point operations using table look-ups to calculate 

the interpolation functions and the MCA method itself improves the performance and 

accuracy as Table I shows.  

Section 6.2 describes our improved version of the FPGA-based MD simulator and presents 

more detail of the modules.  

 

6.3. Implementation - Version 2 

We have optimized the first version and reduced the clock counts. Figure 18 presents an 

anterpolate module (Step 1 in Figure 10) that assigns charges of particles to charges of the 

finest grids. Anterpolate module also simulates 4th order Hermite interpolation and three grid 

levels. The module consumes (12 + N) clock counts and uses 12 look up tables to calculate 

theta values for Hermite interpolation.  



 

 

54 

 

Figure 18. Anterpolate module 

 

 

Figure 19. thetaX block in anterpolate module 
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Figure 19 shows thetaX block (red box in Figure 18) and the block provides theta values 

for X axis. This block uses four look up tables to generate theta values and the input of look 

up tables is weight which is distance of a grid point and particle. thetaY and thetaZ block also 

have similar patterns. 

 

 

Figure 20. FineToCoarse module 

 

Figure 20 presents an FineToCoarse module (Step 2 in Figure 10) which anterpolates 
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charges of grids to charges of coarser grids. A FineToCoarse module consumes (15 + number 

of grid points) clock counts at level L and the total number of clock counts for running the 

module is                 
(15 + N (i) N (i) N (i))x y z

i

⋅ ⋅
−

∑
l 1

  ,  

where Nx(i), Ny(i), Nz(i) = grid points at ith level and l = level of the MD simulation. We 

implement three grid levels.  

The module uses 12 multiplexers to calculate theta values for Hermite interpolation. Since 

the module uses grid points and the position of grid points are evenly spread, we can use the 

multiplexers instead of look up tables. Theta Calculator (Hermite interpolation) block 

generates values multiplying thetas to update charges of grid points (Refer to Appendix)  
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Figure 21. Theta_calculator (GridIntepolation) block of FineToCoarse module 

 

Figure 21 shows Theta_calculator(GridInterpolation) block of FineToCoarse module 

(Figure 20). The block provides theta values using index i, which is x coordinate of grid 

positions and we use four multiplexers since we perform 4the interpolation function. 

Theta_calculator(GridInterpolation)1 and Theta_calculator(GridInterpolation)2 block have 

similar patterns.      
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Figure 22. CoarseToFine module 

 

Figure 22 presents an CoarseToFine module (Step 4 in Figure 10) which interpolates 

potentials of grids to potentials of finer grids. This module also performs 4th order Hermite 

interpolation and 3 grid levels. Each CoarsToFine FineToCoarse module consumes (15 + 

number of grid points) clock counts at level L and the total number of clock counts for the 

module is                 
(15 + N (i) N (i) N (i))x y z

i

⋅ ⋅
−

∑
l 1

 , 

 where Nx(i), Ny(i), Nz(i) = grid points at i
th
 level and  l = level.  
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 The module uses 12 multiplexers to calculate theta values for Hermite interpolation. Other 

sub blocks of this module are similar with blocks of FineToCoarse module (Refer to 

Appendix) 

 

 

Figure 23. energy module 

 

Figure 23 presents an energy module (Step 6 in Figure 10). The module updates total 

energy values by multiplying charges of finest grid (level 0) and potential of the finest grids 

(level 0). It consumes ( 5+Nx(0)· Ny(0)· Ny(0) ) clock counts to complete.  
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Figure 24. Interpolate module 

 

Figure 24 presents the interpolate module (Compute Particle energy block in Figure 10) 

that evaluate forces. Interpolate step is also a time consuming part of the MG method like 

Anterpolate step. Our interpolate module simulates 4th order Hermite interpolation and 3 

grid levels. The module consumes (16 + N) clock counts and uses 12 look up tables to 

calculate ∆theta values for Hermite interpolation module.  
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Figure 25. dThetaXs block of Interpolate module 

 

Figure 25 shows the dThetaXs block and the block provides ∆thetas for X axis. This block 

uses four look up tables to generate theta values and the input of look up tables is weight 

which is distance of a grid point and particle. dThetaY and dThetaZ block also have similar 

patterns. 
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Figure 26. CalculateFx block of Interpolate module 

 

Figure 26 present CalculateFx block which generates values multiplying thetas and ∆thetas to 

update the forces of MD simulations. Theta Calculator(Hermite) block in Figure 26 performs 

the multiplication of thetas and ∆thetas (Refer to Appendix). Other modules for steps in 

Figure 10 are computed in host computer.  
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6.4. Results and Analysis 

In this section we describe the simulation results of a FGPA-based simulator and analyze its 

performance. We analyze modules of the simulator and software implementation on Protomol 

2.0 [41]. Protomol 2.0 provides Simple, Particle Mesh Ewald (PME), Full Ewald and 

Multigrid (MG) implementation for the MD simulation and a platform for comparing various 

methods. Table III compares the performance of the FPGA-based simulator versus the 

software implementation. FPGA-based simulator (second version of the model) needs 12+N 

clock counts and 16+N clock counts to run steps1 and 6 in Figure 10 on the FPGA board. 

Steps 2 and 4 consume (1) in Table III clock counts and it is a function of the number of grid 

points at each level. Steps 2 and 3 in Figure 10 are performed on host computer and its 

running time is also a function of the number of grid points at each level. Software 

implementation consumes K·N·order
3 
instructions to run steps1 and 6 in Figure 10. Steps 2, 3 

and 4 in Figure 10 need calculation time which is a function of the number of grid points at 

each level.  

For a large MD system, steps 1 and 6 in Figure 10 constitute the majority of the time 

required for the simulation. Therefore, we can focus our attention to these two steps, as the 

time required for the other steps are negligible in comparison. Our tests were performed for a 

Calcium molecule with 309 atoms and Basic Pancreatic trypsin inhibitor (BPTI) with water 

that has 1101 atoms and 14281 atoms. Table IV breaks down the timing for steps 1 and 6 for 
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both the software implementation and the FPGA implementation. It compares accuracy of 

software implementation versus FPGA-based simulator. The comparisons were made for 

multiple experiments over varying sizes of the molecular systems.  

Software implementation has been implemented in C++ and runs on Intel Core Duo 

T2300/1.66 GHz processor. The FPGA-based simulator runs on Virtex IV which has clock 

speed 500MHz. Both solution use MCA method and 4
th
 order Hermite interpolation with 

three grid levels. The FPGA-based simulator runs 900 times faster than software 

implementation to perform steps1 and 6 and about 10 to 100 times faster than software 

implementation depending on simulation accuracy desired without loss of accuracy. Table V 

shows the resources used to implement our proposed FPGA-based simulator. The simulator 

use 24 look up tables, 24 multiplexers and 773 multipliers. 

 

TABLE III. Comparison of performance 

N = Number of atoms, order = interpolation order, Nx(i), Ny(i), Nz(i)  = grid points at i
th
 level , l = level 

FPGA-based simulator  

FPGA (clock count) Host Computer (instruction) 

Software implementation 

(instruction) 

Step 1 12 + N   
 

Step 2 finetoCoase:   

                    

(1) 

Correction :  

 

 

 

 

 

 

 

Step 3    

Step 4    

Step 5    

Step 6 16 + N   

 

K ⋅ ⋅N order 3

K order
l

⋅ ⋅ ⋅ ⋅
−

∑ (N (i) N (i) N (i) )x y z

i

3
1

K
l
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−

∑ (N (i) N (i) N (i))x y z

i

1

(15+ N (i) N (i) N (i))x y z

i

⋅ ⋅
−

∑
l 1

K
l

⋅ ⋅ ⋅
−

∑ (N (i) N (i) N (i) )x

2

y

2

z

2
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1

K
l
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−

∑ (N (i) N (i) N (i) )x
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2
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2
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3
1
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−

∑
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TABLE IV. Time and accuracy results for the software implementation vs. FPGA-based 

simulator  (N = Number of atoms) 

 Case I (N = 309) Case II (N = 1101) Case III (N = 14281) 

Step1 (sec) 0.00030 0.0015 0.0210 

Step6 (sec) 0.00084 0.0026 0.0353 

Total (sec) 1.10e-003 4.10e-003 5.63e-002 

Software 

Implementa

tion 
Accuracy 0.0122 0.00177 1.7382 e-04 

Step1 (sec) 6.42 e-7 2.2260e-006 2.8586e-005 

Step6 (sec) 6.50e-7 2.2340e-006 2.8594e-005 

Total (sec) 1.2920e-006 4.4600e-006 5.7180e-005 

FPGA-

based 

simulator 
Accuracy 0.0138 0.00183 1.6195 e-04 

 

TABLE V. Required FPGA resources 

 Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Total 

Look up 

tables 
12     12 24 

Multiplexer  12  12   24 

Multiplier 192 192  192 1 196 773 

 

Previous FPGA simulators use the Direct method for Coulombic force and the calculation 

time of Direct method. However our proposed MCA method requires much less calculation 

time than the Direct method with improved accuracy. In addition, we provide the results of 

various experiments and prove that the simulator achieves better accuracy as well as better 

performance in terms of time. 
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Chapter 7  

Proposed Reconfigurable Mesh Algorithms  

 

FPGA-based simulators [15, 17, 18]  lead that feasibility of exploiting Reconfigurable 

models on a large scale problems such as the MD simulation. Compared to supercomputing 

systems, the circuits of FPGAs can be customized to MD simulations and reuse the same 

logic resources in different configuration. They accelerate MD simulations about 100 times. 

But it is hard to show the scalability of FPGA-based simulator due to the lack of facilities and 

usually FPGA implementations demonstrate a prototype of applications.  

In this Chapter, we present another reconfigurable model, Reconfigurable Mesh (R-mesh) 

to show not only efficiency but also scalability of reconfigurable model. Any MD simulation 

repeatively evaluates forces until the energy reaches equilibrium. If the function for 

evaluating forces requires O(N
2
) time complexity such as the Direct method, the entire time 

complexity is K· O(N
2
), where K is the number of iterations and is usually a large number. 

Therefore it is very important to reduce the time for evaluating forces. We are presenting the 

R-mesh algorithms for the Direct method in Section 7.1 and the Multigrid method in Section 

7.2. The algorithms require much less calculation time to perform MD simulations. Section 

7.3 summarizes the proposed R-mesh algorithms and provides theorems for the algorithms.  
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7.1. Algorithms for Direct method 

The Direct method uses Equation 1 to evaluate electrostatic potential and takes O(N
2
) time on 

a general purpose processor where N is number of atoms in a molecular system. We develop 

two versions (Algorithm 1 and Algorithm 2) of R-Mesh algorithms for the Direct method. 

Algorithms 1 and Algorithm 2 are the main modules of the MD simulations. Algorithm 1 

requires K·O(N) time complexity on an N processor linear mesh. In Algorithm 1, p(i) and q(i) 

are local data for the position and charge of atoms. DirectComputeForce( ) evaluates forces 

of each atom and is described in Algorithm 1-1. doOneAtomPair(i, j) in Algorithm 1-1 

evaluates the potential energy between atom i and atom j.  UpdateVelocity() and 

UpdatePosition() updates the velocity and position of atoms and takes O(1) time. 

 

Algorithm 1 (MD simulation with direct method) 

1. Model : N processors (N is # of atoms) 1-dimensional R-Mesh 

2. Input: proc(i) store p(i)={p0, p1, …, pN-1} and q(i)={q0, q1, …, qN-1} 

3. Output : proc(i) store force(i)={force0, force1, … forceN-1} and updated p={p0, p1, …, pN-1} and 

proc(0) store total energy in E 

 

begin   // K×O(N) (K is the number of iteration) 

MDSimulation_Direct ( ) 

while E is not changed do 

DirectComputeFoce(p, q) //  O(N) 

UpdateVelocity(pos, force, E) 

UpdatePostion(pos, force, E) 

proc(i) broadcast updated position of atom i and force to all process //  O(N) 

 end_while 

end 



 

 

68 

 

The Direct method uses Equation 1 to evaluate electrostatic potential and takes O(N
2
) time 

on a general purpose processor where N is number of atoms in a molecular system. We 

develop two versions (Algorithm 1 and Algorithm 2) of R-Mesh algorithms for the Direct 

method. Algorithms 1 and Algorithm 2 are the main modules of the MD simulations. 

Algorithm 1 requires K·O(N) time complexity on an N processor linear mesh. In Algorithm 1, 

p(i) and q(i) are local data for the position and charge of atoms. DirectComputeForce( ) 

evaluates forces of each atom and is described in Algorithm 1-1. doOneAtomPair(i, j) in 

Algorithm 1-1 evaluates the potential energy between atom i and atom j.  UpdateVelocity() 

and UpdatePosition() updates the velocity and position of atoms and takes O(1) time. 

Algorithm 1-1 (DirectComputeForce) 

1. Model : N processors (N is # of atoms) 1-dimensional R-Mesh 

2. Input: proc(i) store p(i)={p0, p1, …, pN-1} and q(i)={ q0, q1, …, qN-1}  

3. Output : proc(i) store force(i)={f0, f1, …, fN-1} and Proc(0) store total energy in E 

 

begin   // O(N)  

DirectComputeForce( ) 

     Step 1) each proc(i) 

        for  j1 to N-1 do  

  force(i) = force(i) + doOneAtomPair(i, j)  // O(1) 

         end_for 

      Step 2)  (i)  = e(i)  + Calculate_Energy(force(i))  // O(1), calculate energy for atom i 

      Step 3)  compute E = e(0)+e(1) + … +e(N-1) with N R-mesh  // O(logN) [1] 

      and proc(0) store E                                              

end 
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Algorithm 2-1 describes DirectComputeforceII(). The module evaluates forces of each atom 

with N×N processors and takes O(logN) time complexity. Step 4 in Algorithm 2-1 describes 

the process that uses each row to compute force of atom i and the steps for calculating 

force(i) is logN. Since each row can perform the process independently, overall time 

complexity is O(logN).  

Algorithm 2 (MD simulation with direct method II) 

1. Model : N*N processors (N is # of atoms) 2-dimensional R-Mesh 

2. Input: proc(0, j) store pj and qj  and proc(i, 0) store pi and qi 

3. Output : proc(0, i) store force(i) and proc(0,0) store E and proc(i, j) store new p(i,j) 

 

begin   // K×O(logN) (K is the number of iteration) 

MDSimulation_Direct ( ) 

for energy is not changed do 

DirectComputeFoceII( ) //  O(logN) 

proc(i, j) run UpdateVelocity(p, force, E) 

proc(i, j) run UpdatePostion(p, force, E) 

 end_for 

end 
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7.2. Algorithms for Multigrid method 

The Multigrid method takes O(N) time on a general purpose processor, where N  is the 

number of atoms in a molecular system. We developed an R-Mesh algorithm for the MG 

method that requires O(r)+O(logM) time complexity on an X×Y×Z 3-dimensional R-Mesh, 

where r is N/M and M= X×Y×Z is the number of finest grid points applied to the MG method 

for a given parameter. M is determined by three factors, size of the finest grid, molecular 

system size and interpolation order. To achieve accurate simulation results, it is important to 

choose appropriate values for the factors. Since molecular systems have various system size 

Algorithm 2-1 (DirectComputeForceII) 

1. Model : N*N processors (N is # of atoms) 2-dimensional R-Mesh 

2. Input: proc(0, j) store p(j) and q(j)  and proc(i, 0) store p(i) and q(i) 

3. Output : proc(0, i) store force(i) and proc(0,0) store E and proc(i, j) store new p(i,j) 

 

begin   // O(logN)  

DirectComputeForceII ( ) 

Step 1) proc(0, j) send pj and qj to column bus j 

       Pos_A(i, j )  pj, Q_A(i, j)  qj 

Step 2) proc(i, 0) send pi and qi to row bus j 

        Pos_B(i, j )  pj, Q_B(i, j)  qj 

Step 3) proc(i,j) run  

        temp(i, j)  doOneAtomPair(Pos_A(i, j), Pos_B(i,j), Q_A(i,j), Q_B(i,j))  // O(1)  

Step 4) compute force(i) = temp(i, 0)+..+temp(i, N-1) with row bus i  

    and proc(0, i) store force(i)  //O(logN) [1] 

Step 5) proc(0, i)  store e(i) = e(i) + Calculate_Energy(force(i))  // O(1) 

Step 6) compute E(i) = e(0)+..+e(N-1) with N*N R-Mesh and proc(0, 0) store E // O(1) [1] 

end 
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and number of atoms, it is hard to find optimal parameter values. The value of M is usually 

much smaller compared to N unless the molecular system to be simulated is very small. For 

example, MG method determines finest grid points to (13, 13, 13) for a the molecular system 

with N =309 atoms to achieve 0.0008 relative accuracy [18]. In this case M is 13×13×13 = 

2,197. Large molecular system that has N=14,281 atoms determines finest grid points (21, 21, 

21) to achieve 0.0005 relative accuracy [10]. In this case M is 21×21×21=9281 which is very 

small compared to the number of atoms (14,281). As mentioned earlier, MD simulations are 

usually performed for large molecules that include over 10,000 atoms. As the number of 

atoms is larger, M becomes much smaller as compared to N. 

Algorithm 3 is the main module of the MD simulation and requires K·(O(r)+O(logM)) time 

complexity. The main module is similar to Algorithm 1, but with a preprocessing function 

(Algorithm 3.1) that distributes atoms to the nearest 64 processors. Since we are using 4th 

hermite interpolation function, only 64 (4×4×4) processors correspond to the closest grid points to 

atoms. The function runs based on the flag (CheckChangedGrid) that is assigned by 

CheckGridPoint( ). This function checks the new position and its grid point. Usually the 

atoms retain their previous grid points assigned, so the calculation time of preprocessing( ) is 

negligible over the entire simulation.  
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Algorithm 3-1 describes preprocessing( ) that distributes information of atoms to nearby 

processors. proc(i, j, k) represents grid point (i, j, k) at level 0. calGridpoint (start+m, pstart+m) 

returns grid_pos and atom start+m assigned to grid_pos to interpolate. 

calThetas(grid_pos(i,j,k), pstart+m) calculates thetas and we use 4
th
 hermite interpolation 

function to calculate thetas. Anterpolate( ) module (Algorithm 3-2-1) uses this information to 

calculate Q0 (charge of finest grid). This algorithm takes O(N) time due to the N broadcasting 

steps required. 

Algorithm 3 (MD simulation with Multigrid method) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point) 

2. Input: proc(i, j, k) hold store p(i,j,k)={ pstart, .. , pstart+c-1} and q(i,j,k)={ qstart, .., qstart+c-1}, which 

start = i*c +j*X*c+k*X*Y*c and c = N/M 

3. Output : proc(i, j, k) store force(i,j,k)={f0, f1.. fr}, p(i,j,k)={p0, p1.. ,pr} and proc(0,0,0) hold E, 

r is number of atoms assigned in proc(i, j, k), 

 

begin   // K×O(1) (K is the number of iteration) 

MDSimulation_Multigrid ( ) 

while energy is not changed do 

        if(CheckChangedGrid == true) 

 Preprocessing( )    // O(N) 

        End_if 

  MultigridComputeForce(p(i,j,k), q(i,j,k))   

proc(i, j, k) run UpdateVelocity(p(i,j,k), force(i,j,k), E) 

proc(i, j, k) run UpdatePostion(p(i,j,k), force(i,j,k), E) 

proc(i, j, k) set CheckChangedGrid  CheckGridpoint(p(i,j,k)) 

 end_while 

end 
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MultigridComputeForce() described in Algorithm 3-2 evaluates the forces of each atom. 

Each processor represents the grid points for the finest grid. It consists of 6 steps. Step 1 is 

Anterpolate( ) to interpolate weights for the position of atoms and anterpolate the charge q 

onto the finest grid (level 0). Step 2 is coarsening that anterpolates the grid charge from the 

current level to level+1. Step 3 is computing the potential for the top grid level. Step 4 is 

interpolating the grid charge from level to level-1. Step 5 is computing the energy of the top 

grid level. Step 6 is interpolating the force from grid level 0.  

Algorithm 3-1 (Preprocessing) 

1. Model : M processors  

2. Input: proc(i, j, k) hold store p(i,j,k)={ pstart, .. , pstart+c-1} and q(i,j,k)={ qstart, .., qstart+c-1}, which 

start = i*c +j*X*c+k*X*Y*c and c = N/M  

3. Output : proc(i, j, k) store D(i,j,k) = {d0, d1.. dr}, which dm = (index, p, q thetas, grid_pos), r is 

number of atoms assigned in proc(i, j, k) 

 

begin    

Preprocessing ( ) 

If D(i,j,k)’s grid_pos is changed   //  O(N) 

  for  m  0 to c-1 do   // c = N/M 

   grid_pos calGridpoint (start+m, pstart+m ) 

       thetas calThetas(grid_pos(i,j,k), pstart+m ) 

   D(i,j,k).dm = (start+m, pstart+m,, qstart+m thetas, grid_pos)  

  end_for    

send D(i,j,k).dm to proc(D(i,j,k).dm.grid_pos) //N broadcasting times 

 else      //O(1) 

  keep previous D(i,j,k) 

 end_if 

end 
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Algorithm 3-2-1 describes Anterpolate( ) that anterpolates and interpolates weights for the 

position of atoms and anterpolates the charge of atoms onto grid level 0. The main process of 

this module is Step 1 which distributes charges of atom to grid level 0. Step 2 update 

temp(i,j,k) using Cal_GridCharge(A). Cal_GridCharge(A) function performs a equation, 

A.d.q×A.d.theta.X×A.d.theta.Y×A.d.theta.Z. This algorithm requires O(1) time complexity. 

Since each atom is interpolated to the nearest grids that are order×order×order grid points, 

broadcasting is performed on an order×order×order R-Mesh. The algorithm is designed so 

that there is no overlapping and processors can broadcast data simultaneously. The actual 

Algorithm 3-2 (Multigrid method for MD simulation with n atoms) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point ) 

2. Input: proc(i, j, k) hold D(i,j,k) = {d0, d1.. dr}, which dm = (index, p, q thetas, grid_pos), r is 

number of atoms assigned in proc(i, j, k) 

3. Output : proc(i, j, k) store force(i,j,k)={f0, f1.. fr}, p(i,j,k)={p0, p1.. ,pr} and proc(0,0,0) hold E, 

r is number of atoms assigned in proc(i, j, k),  

  

begin    

MultigridComputeForce(p, q) 

Step 1) Anterpolate( )        // O(1) 

Step 2) for i   0 to Levels-1    

       fineToCoarse ( i)    // O(1)               

       correction ( i)     // O( Nx(i)· Ny(i)· Nz(i))   

             end_for 

Step 3) direct ( )     // O( Nx(L)· Ny(L)· Nz(L))   

Step 4) for i  0 to Level-1           

          coarseToFine (i)   // O(1)    

             end_for 

Step 5) energy(  )                // O(logM) 

Step 6) interpolateForce (   )       // O(r) 

end 
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number of broadcasting steps is (order-1)
4
, where order is the order of the interpolation 

function. After broadcasting data, each processor updates Q0(i, j, k), which is the grid charges 

at level 0.  

Figure 27 shows that processor(i, j) broadcasts data to the nearest 15 processors. Figure 27 

(a) shows the first broadcasting step of processor(i, j) where i%4 ==0 and j%4 == 0. Then in 

the second step, the next group of nodes broadcast their data as shown in Figure 27 (b). These 

nodes have indices so that i%4 ==0 and (j-1)%4 == 0. This continues for a total of (order-1)
4
 

steps. 

 

      

(a)                                             (b) 

Figure 27. Example of broadcasting in Algorithm 3-2-1 with order = 4 

(a) Proc(0, 0), Proc(0, 4), proc(4, 0) and proc(4,4) broadcast data simultaneously 

(b) Proc(0, 1), proc(0, 5), proc(4, 1) and proc(4,5) broadcast data simultaneously 
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Algorithm 3-2-2 is the coarsening process. It coarsens grid charges from level to level+1 

and requires O(1) time complexity. The actual number of broadcasting steps is (order-1)
3
. 

Coarsening( ) in Algorithm 3-2-2 expands broadcasting to 64 processors similar to Algorithm 

3-2-1. 

Algorithm 3-2-1 (Anterpolate) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point ) 

2. Input: proc(i, j, k) hold Q0(i, j, k)=0 and hold D(i,j,k) = {d0, d1.. dr}, which dm=(index, p, q 

thetas, grid_pos), r is number of atoms assigned in proc(i, j, k) 

3. Output : proc(i, j,k) update Q0(i, j, k)  

 

begin    

Anterpolate ( )  // O(1) 

 Step1) proc(i, j, k) broadcast D(i, j, k,) to the nearest processors  

                        For rem0 to order-1 do 

                    For ix 0 to order-1 do 

                        For jx 0 to order-1 

           For kx0 to order-1 do 

                If (i+ix)%order==rem && (j+jx)%order==rem && 

(k+kx)%order==rem 

                   proc(i,j,k) broadcast D(i,j,k) to proc(i, j, k) 

      ~proc(i+order, j+order, k+order)  //O(1) 

   end_if 

     end_for 

                       end_for 

                                  end_for 

  Step 2) If Proc(i, j, k) received D(i,j,k),  

   update temp (i,j,k) Cal_GridCharge(D(i,j,k)) 

         Step3) Q0(i, j, k)   Q0(i, j, k)  + temp(i,j,k) 

end 
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Algorithm 3-2-2-1 describes Coarsening( ) and Figure 28 provides the idea of the 

broadcasting with a 2-dimensional R-Mesh. Figure 28 (a) shows that first broadcasting step 

where i%2==0 && j%2==0. Then in the second step, the next group of nodes broadcast their 

data as shown in Figure 28 (b). These nodes have indices so that i%2==0 && j%2==1. 

Figure 28 (c)-(d) shows the similar processes. For example, Proc(0,0) represents other 

processors((0,1), (1,0), (1,1)). Thus these processors broadcast their information to the 15 

processors that are the nearest processors to proc(0,0).  

Algorithm 3-2-2 (FinetoCoarse(L)) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at level L ) 

2. Input: proc(i, j, k) hold D(i,j,k) =(QL(i, j, k), theta) and L 

3. Output : proc(i, j, k) update QL+1(i, j, k)  

 

begin    

FinetoCoarse (L) // O(1) 

       Step1) proc(i, j, k) broadcast D(i, j, k,) to the nearest processors  

     For ix 0 to order-1 do 

         For jx 0 to order-1 

  For kx0 to order-1 do 

        If (i+ix)%order==0 && (j+jx)%order==0 && (k+kx)%order==0 

            Coarsening(i,j,k) //O(1) 

          end_if 

  end_for 

         end_for 

                  end_for 

         Step2) temp(i,j,k)  Cal_GridCharge(D(i,j,k)) // QL(i, j, k)*theta.X*theta.Y*theta.Z 

         Step3) QL+1(i, j, k)  Q L+1 (i,j,k) + temp(i,j,k) 

        end_for 

end 
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Algorithm 3-2-2-1 (Coarsening(i,j,k)) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at level L ) 

2. Input: proc(i, j, k) hold D(i,j,k) =(QL(i, j, k), theta) 

3. Output : proc(i, j, k) update D(i, j, k)  

 

begin    

Coarsening (i,j,k) // O(1) 

         if i%2==0 && j%2==0 && k%2==0   

 Broadcast data(i, j, k) to proc(i/2, j/2, k/2) ~ proc(i/2+order-1, j/2+order-1, k/2+order-1) 

        end_if 

        If i%2==0 && j%2==0 && k%2==1   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc(i/2+order-1, j/2+order-1, (k-1)/2+order-1) 

        end_if 

        If i%2==0 && j%2==1 && k%2==0   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc(i/2+order-1, (j-1)/2+order-1, k/2+order-1) 

        end_if 

        If i%2==0 && j%2==1 && k%2==1   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc(i/2+order-1, (j-1)/2+order-1, (k-1)/2+order-1) 

        end_if 

        if i%2==1 && j%2==0 && k%2==0   

 Broadcast data(i, j, k) to proc(i/2, j/2, k/2) ~ proc((i-1)/2+order-1, j/2+order-1, k/2+order-1) 

        end_if 

        If i%2==1 && j%2==0 && k%2==1   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc((i-1)/2+order-1, j/2+order-1, (k-1)/2+order-1) 

        end_if 

        If i%2==1 && j%2==1 && k%2==0   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc((i-1)/2+order-1, (j-1)/2+order-1, k/2+order-1) 

        end_if 

        If i%2==1 && j%2==1 && k%2==1   

 Broadcast data(i,j,k) to proc(i/2, j/2, k/2)~proc((i-1)/2+order-1, (j-1)/2+order-1, (k-1)/2+order-1) 

        end_if 

end 
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(a)                (b) 

 

                     
(c)      (d) 

Figure 28. Example of broadcasting in Algorithm 3-2-2 with order = 4 

(a) proc(0,0), proc(0,4), proc(4,0) and proc(4,4) broadcast data simultaneously 

(b) proc(0,1), proc(0,5), proc(4,1) and proc(4,5) broadcast data simultaneously and use same data bus with (a) 

(c) proc(1,0), proc(1,4), proc(5,0) and proc(5,4) broadcast data simultaneously and use same data bus with (a) 

(d) proc(1,1), proc(1,5), proc(5,1) and proc(5,5) broadcast data simultaneously and use same data bus with (1) 

 

Algorithm 3-2-3 is Correction(L). This module corrects grid charge(QL) after coarsening 

module (Algorithm 3-2-2) and update potential(VL) at level L. The initial step generates the 

matrix GCorrection(id, jd, kd). The number of loop iterations is C·ML, where ML=X×Y×Z 

which is the number of grid points at level L and C is constant number. As explained above, 

ML is a much smaller number than N. Thus we could consider Correction(L) requires O(1) 

time complexity.     
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Algorithm 3-2-4 describes Step 3 in Algorithm 3-1. The module computes the potential for 

the top level. The module updates VL, which is the potential of the top grid with grid charge 

and GDirect matrix. It generates the GDirext matrix in the initial step. The number of 

iterations for the loop in the module is C·Mt, where Mt=Xt×Yt×Zt ,which is the number of grid 

Algorithm 3-2-3 (Correction(L)) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at level L ) 

2. Input: proc(i, j, k) hold data =(QL(i, j, k), theta) and L, GCorrDim and GCorrection 

3. Output : proc(i, j, k) update VL(i, j, k)  

 

begin    

Correction (L)  

     Each proc(i, j, k)   

hi_l = min(i+GCorrDim.X, X); 

so_l = -GCorrDim.X+1 – min(i-GCorrDim.X+1, 0)  

lo_l = max(i-GCorrDim.X+1, 0) 

hi_m = min(j+GcorrDim.Y, Y); 

so_m = -GCorrDim.Y+1 – min(j-GCorrDim.Y+1, 0) 

lo_m = max(j-GCorrDim.Y+1, 0) 

    hi_n = min(k+GCorrDim.Z, Z); 

so_n = -GCorrDim.Z+1 – min(k-GCorrDim.Z+1, 0) 

lo_n = max(k-GCorrDim.Z+1, 0) 

for llo_l, l2 so_l to l < hi_l do 

  l0 l, id abs(l2) 

for mlo_m, m2 so_m to m < hi_m do 

   m0 m, jd abs(m2) 

for nlo_n, n2 so_n to n < hi_n do 

    n0 n, kd abs(n2) 

    temp = temp + QL(l0, m0, n0) * GCorrection(id, jd, kd) 

   end_for 

  end_for 

end_for 

VL(i, j, k) = VL(i, j, k)+ temp*scale 

end 
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points at the top level and C is a constant number. Since the size of grids at the top level is the 

biggest among the grids levels, Mt is very small and the module requires O(1) time 

complexity.  

  

Algorithm 3-2-5 computes the energy of the top grid level and appears as step 5 in 

Algorithm 3-1. Each processor calculates e(i,j,k) by grid charge (Q0)×potential (V0) and the 

values are added to E. E is stored by processor(0,0,0). This module requires O(logM) time 

complexity, where M is M=X×Y×Z is the number of finest grid. 

Algorithm 3-2-4 (Direct(L)) 

1. Model : N processors (X×Y×Z R-Mesh, N=X×Y×Z is # of grid point at top level ) 

2. Input: proc(i, j, k) hold data =(QL(i, j, k), VL(i, j, k), GDriect(i, j, k) ) 

3. Output : proc(i, j, k) update VL(i, j, k)  

 

begin    

Direct (L)  // O( Nx(L)· Ny(L)· Nz(L))  i.e) Nx(i)·Ny(i)·Nz(i)  = grid points at ith level 

     Each proc(i, j, k)   

for li  to l < X do 

i0abs(i-l) 

for m j to m < Y do 

   j0 abs(j-m) 

for nk+1 to n < Z do 

    k0 abs(k-n) 

    temp = temp + QL(l, m, n) * GDirect(i0, j0, k0) 

    VL(l, m, n) = VL(l, m, n)+ QL(i, j, k)*GDirect(0,0,0) 

   end_for 

   n=0 

  end_for 

  m0 

end_for 

VL (i, j, k) = VL (i, j, k) + QL(i, j, k)*GDirect(0,0,0) + temp 

end 
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Algorithm 3-2-6 interpolates grid charges from level to level-1. This algorithm updates 

Vlevel-1, which is the potential at level-1 with thetas. The preprocessing module (Algorithm 3-

1) generates thetas and the X, Y and Z field in thetas are an array with size order. Ratio and 

order are constant numbers and Ratio represents the ratio between Level L and L-1. This 

algorithm requires O(1) time complexity. 

 

 

 

Algorithm 3-2-5 (Energy) 

1. Model : N processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid ) 

2. Input: proc(i, j, k) hold Q0(i, j, k) and V0(i, j, k) 

3. Output : proc(0, 0, 0) hold E (total energy)  

 

begin    

Energy( )  // O(logM) 

     Each proc(i, j, k)   

 e(i, j, k) = Q0(i, j, k) * V0(i, j, k) 

 

compute force(i) = temp(i, 0)+..+temp(i, M-1) with row bus i and proc(0, i) store force(i). 

 add e(i, j, k) of processors with M processor into E of proc(0,0,0)     //O(logM)   

end 
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Algorithm 3-2-7 performs interpolating forces from grid level 0 for each atom. Its inputs 

are provided by preprocessing( ) (Refer to Algorithm 3-1). dTheta is ∆theta and it has the X, 

Y and Z arrays like theta in Algorithm 3-2-7. Each processor stores the forces of the finest 

grid point (i, j, k). This algorithm requires O(r) time complexity, r is N/M and M= X×Y×Z is 

the number of finest grid points applied to Multigrid method at a given parameter. 

 

 

Algorithm 3-2-6 (CoarseToFine(L)) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of grid point at L ) 

2. Input: proc(i, j, k) hold Vlevel(i, j, k) and theta ={X, Y, Z} 

3. Output : proc(i, j, k) update Vlevel-1(i, j, k) 

 

begin    

CoarseToFine(L)  // O(1) 

     Each proc(i, j, k)   

 Step 1) calculate temp using coarsened Vlevel and thetas 

      i1i/Ratio, j1j/Ratio, k1k/Ratio 

       for i00 to order-1 do 

  i2 i1+i0 

  for j00 to order-1 do 

   j2 j1+j0 

   for k00 to order-1 do 

    k2 k1+k0 

    temp=temp+ Vlevel(i2,j2,k2)*theta.X[i0]*theta.Y[j0]* theta.Z[k0] 

   end_for 

  end_for 

 end_for 

 Step2) Vlevel-1(i, j, k) = Vlevel-1(i, j, k) + temp  

end 
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7.3. Results and Analysis 

As explained Section 3.2.1, Cray XT3 and Blue Gene/L are only able to scale to up to a few 

thousands nodes due to the communication overheads [2, 7]. With this limitation, it is not 

possible to provide accommodating computing speed for biology activity with current 

Algorithm 3-2-7 (InterpolateForce) 

1. Model : M processors (X×Y×Z R-Mesh, M=X×Y×Z is # of finest grid point ) 

2. Input: proc(i, j, k) hold V0(i, j, k) Data = {d0, d1.. dr}, which d = (index, p, q, theta, dtTheta, 

grid_pos) and r is number of atoms assigned in proc(i, j, k) 

3. Output : proc(i, j, k) store force(i,j,k)={f0, f1.. fr} 

 

begin    

InterpolateForce( )  // O(r) 

     Each proc(i, j, k)     

 For m0 to r 

  Step 1) calculate temp to update force(i,j,k)  

       For i0 0 to order do 

For j0 0 to order do 

    For k0 0 to order do 

     Term = V0(i0+i, 0+j,k0+k) 

     fx = fx + Term* dTheta.X[i]*Theta.Y[j]*Theta.Z[k] 

     fy = fy + Term*Theta.X[i]*dTheta.Y[j]*Theta.Z[k] 

     fz = fz + Term*Theta.X[i]*Theta.Y[j]*dTheta.Z[k] 

    end_for 

   end_for 

        end_for  

 

  Step 2) qData(m).q 

  Step 3) force(i.j.k).fm += Vector3D(fx*q*HXr, fy*q*HYr, fz*q*HZr); 

end_for 

end 
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computing power. The communication overhead limits the performance and scaling on 

microprocessors and massively-parallel systems [45].  

We support the feasibility of reconfigurable models by providing theoretical theorems with 

R-Mesh algorithm for MD simulation. Our results for the two versions of Direct method 

require O(N) time complexity with an N linear R-Mesh and O(logN) time complexity with an 

N×N 2-demensional R-Mesh. We are able to improve upon the results for the Multigrid 

method. While we also are able to achieve O(r)+O(logM) time complexity, the number of 

processors required are much less. The R-Mesh algorithm requires M=X×Y×Z processors 

corresponding to the number of finest grid points, rather than N processors corresponding to 

the number of atoms in the system. For most systems M is much smaller than N, thus 

reducing the size of the simulating machine. This improvement is due to the natural mapping 

of the layout of the MD system in a grid pattern to the three-dimensional structure of the R-

Mesh. 

 

Theorem 1 Molecular Dynamics simulation of a molecular system with N atoms can be 

performed in K·O(N) time on an N processor linear R-Mesh, when the simulation exploits the 

Direct method to evaluate electrostatic potential. K is the number of iterations to reach 

equilibrium.  (Algorithm 1) 
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Theorem 2 Molecular Dynamics simulation of a molecular system with N atoms can be 

performed in K·O(logN) time on an N×N 2-dimensional R-Mesh, when the simulation 

exploits the Direct method to evaluate electrostatic potential. K is the number of iterations to 

reach equilibrium.  (Algorithm 2) 

 

Theorem 3 Molecular Dynamics simulation of a molecular system with N atoms can be 

performed in K·(O(r)+O(logM)) time on an X×Y×Z 3-dimensional R-Mesh, when the 

simulation exploits the Multigrid method to evaluate electrostatic potential. X, Y and Z are 

the number of finest grid points applied to Multigrid method at given parameter. K is the 

number of iterations to reach equilibrium. (Algorithm 3) 
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Chapter 8  

Future work 

 

In this section, we suggest three possible directions for future work. The first future work is 

to design Pipelined Reconfigurable Mesh (PR-Mesh) Algorithms for the MD simulation. 

Second direction performs MD simulations for non-structured molecular system. Third 

direction is to improve our proposed FPGA-based simulator in parallel manner.  

 

8.1. PR-Mesh Algorithm for MD Simulation 

Many researchers have proposed several reconfigurable models employing optical buses.  

The optical signal transmission possesses two advantageous properties: unidirectional 

propagation and predictable propagation delay per unit length. These two properties allow 

synchronized concurrent access to an optical bus, creating a pipeline of message. Therefore, 

the models based on optical bus can be very efficient for parallel computation due to the high 

bandwidth that comes with pipelining messages [1].  

The Pipelined Reconfigurable Mesh (PR-Mesh) is one of the optical reconfigurable models 

studies in the literature. It is a k-dimensional mesh of processors in which each processor has 

2k ports [28]. A two-dimensional PR-Mesh is an R×C mesh of processors in which each 

processor has four ports. The ports connect to eight segments of buses using directional 
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couplers [27] as shown in Figure 29. We will extend our work with 2-dimensional PR-mesh 

to parallelize the proposed system. We expect it will increase the performance of proposed 

system highly. 

 

 

Figure 29. PR-mesh processor connections [27] 

  

8.2. Molecular Dynamics Simulation for Non-structured Molecular System 

We would continue our research to another direction that performs MD simulations for non-

structured molecular system. Current methods for the MD simulation focus on a structured 

molecular system. However, many molecular systems are non-structured. If we consider non-

structured feature to perform MD simulations, it will achieve more accuracy corresponding to 



 

 

89 

the actual structure. In this study, we will grid the system by computing Convex Hull and 

Triangulation algorithms and apply Multigrid method. Many graph algorithms such as 

Convex Hull and triangulation algorithm, will be exploited to evaluate MD for non-structured 

molecular system and are computational intensive. Sung-Ryul Kim et al. [46] proposed an 

O(logN loglogN) time R-Mesh algorithm for the Simple Polygon Visibility Problem. Simple 

Polygon Visibility Problem is given a simple polygon P with N vertices and a point z in the 

interior of the polygon finds all the boundary points of P that are visible from z. We could 

design R-mesh algorithms to grid unstructured molecular systems and perform MD 

simulations on those molecular systems with reasonable calculation time. 

 

8.3. Parallelizing our proposed FPGA-based MD simulator 

We proposed FPGA-based MD simulator that is customized for the Multigrid method. We 

can improve the simulator by parallelizing the time consuming tasks. The Molecular 

Dynamics (MD) simulation can suffer from an imbalance in load characteristic that varies at 

run time[47]. Due to the dynamics of particle interaction and motion during MD simulation, 

the task of load balancing is a non-trivial task. Potential load imbalances can significantly 

impart an accelerator architecture’s resource utilization efficiency, especially when 

considering implementations based on custom architectures. Phillips et a.l [47] proposed 

architecture supporting dynamic load balancing on an FPGA for a MD algorithm.   
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Chapter 9  

Conclusion 

In the field of biology, Molecular Dynamics (MD) simulations are used continuously to study 

biological activities. Since the MD simulation is a large scale problem and multiscale in 

length and time, many approaches have been proposed to meet the speed required. In this 

dissertation, we have proposed two research directions. For the MD simulation we develop an 

efficient algorithm, Multi-level Charge Assignment (MCA) method [10] that achieves faster 

and accurate simulations and we also utilize Reconfigurable models to perform the MD 

simulation. Our MCA method is an O(N) Multigrid (MG) method for accurate and efficient 

calculation of the electrostatic forces. The MCA method gives consistent accuracy and 

reduces errors even if the distribution of particle is not balanced. We demonstrate Multigrid 

charge assignment scheme and back interpolation scheme which adjusts the grid charge on 

LDM. Using the MCA method, the MD simulation is more accurate while still requiring 

similar calculation time to current methods. 

We support the idea that exploits Reconfigurable models to perform large scale problems 

such as the MD simulation. The first reconfigurable model we utilized for the MD simulation 

is the FPGA. We design the architecture of an FPGA-based MD simulator and the simulator 

employs the MCA method. The simulator is especially suitable for large scale molecules that 

require a considerable amount of calculation time using a software solution [18]. Using 
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FPGAs, we achieve speed-up the simulation with a factor 10 to 100 compared to a software 

implementation on Protomol without loss of accuracy [19]. We also expect more speed up if 

we parallelize the modules of the proposed simulator, but this would require more space and 

cost.  

The second reconfigurable model we utilized for the MD simulation is a Reconfigurable 

Mesh (R-mesh). We develop R-Mesh algorithms for two MD simulation methods, Direct 

method and MG method. Direct method requires O(N
2
) time complexity for evaluating 

electrostatic forces and provides accurate results if executed sequentially. We develop two 

versions of R-Mesh algorithms that implement the Direct method. Our first version requires 

O(N) time complexity with an N processor linear R-Mesh (Theorem 1) and the second 

version requires O(logN) with an N×N 2-dimensional R-Mesh (Theorem 2). We also develop 

an R-Mesh algorithm that implements the MG method to evaluate electrostatic forces. The 

MG method requires O(N) calculation time at a given accuracy for a sequential 

implementation. However, our R-Mesh algorithm requires O(r)+O(logM) time complexity 

with an X×Y×Z 3-dimensional R-Mesh (Theorem 3). This algorithm requires M processors, 

where M is the number of finest grid points (M = X×Y×Z). Since M is usually a much smaller 

number compared to N, this algorithm provides very fast simulation time with a small 

number of processors. In conclusion, Reconfigurable Models provide not only an efficient but 

also a scalable method for MD simulation. Our R-Mesh algorithm implementing the MG 
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method with O(r)+O(logM) time complexity demonstrates that the R-Mesh is a feasible 

choice for developing the MG method for MD simulations and likely other large scale 

biological problems.  

As future work, we will design algorithms to utilize other reconfigurable model, Pipelined 

Reconfigurable Mesh (PR-Mesh) to run the MD simulation. This will simulate our proposed 

method widely used in reconfigurable computing. In addition, we are studying another 

direction that considers MD simulations for non-structured molecular system. By considering 

non-structured molecular system, we can expect more accurate simulation results. 
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Appendix  

Modules of our proposed FPGA-based Simulator  

 

 

ThetaCalculator block in anterpolate module in figure 16 
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thetaZs4 block in anterpolate module in figure 20 
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Particle to Grid block in anterpolate module in figure 16 

 

 

thetaX2 block in anterpolate module in figure 21 
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Particle to Grid block in coarseToFine module 

 

Theta Calculator block in coarseToFine module 
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thetaZs4 block in Theta Calculator block 
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Theta Calculator block in calculateFx block of InterpolateForce module 
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calculateFy block in InterpolateForce module 
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calculateFz block in InterpolateForce module 
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