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TRYPTOPHAN 2,3-DIOXYGENASE AND MAUG  
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Under the Direction of Aimin Liu

 

ABSTRACT 

 

TDO utilizes b-type heme as a cofactor to activate dioxygen and insert two oxygen atoms 

into free L-tryptophan. We revealed two unidentified enzymatic activities of ferric TDO from 

Ralstonia metallidurans, which are peroxide driven oxygenation and catalase-like activity. The 

stoichiometric titration suggests that two moles of H2O2 were required for the production of one 

mole of N-formylkynurenine. We have also observed monooxygenated-L-tryptophan. Three 

enzyme-based intermediates were sequentially detected in the peroxide oxidation of ferric TDO 

in the absence of L-Trp including compound I-type and compound ES-type Fe-oxo species. The 

Fe(IV) intermediates had an unusually large quadrupole splitting parameter of 1.76(2) mm/s at 

pH 7.4. Density functional theory calculations suggest that it results from the hydrogen bonding 



 

 

 

 

to the oxo group. We have also demonstrated that the oxidized TDO was activated via a homolytic 

cleavage of the O-O bond of ferric hydroperoxide intermediate via a substrate dependent process 

to generate a ferrous TDO. We proposed a peroxide activation mechanism of the oxidized TDO. 

The TDO has a relatively high redox potential, the protonated state of the proximal histidine upon 

substrate binding as well as a common feature of the formation of ferric hydroxide species upon 

substrate or substrate analogues binding. Putting these together, we have proposed a substrate-

based activation mechanism of the oxidized TDO.  Our work also probed the role of histidine 72 as 

an acid-base catalyst in the active site. In H72S and H72N mutants, one water molecule plays a 

similar role as that of His72 in wild type TDO. 

MauG is a c-type di-heme enzyme which catalyze the biosynthesis of the protein-derived 

cofactor tryptophan tryptophylquinone. Its natural substrate is a monohydroxylated tryptophan 

residue present in a 119-kDa precursor protein of methylamine dehydrogenase (MADH). We have 

trapped a novel bis-Fe(IV) intermediate from MauG, which is remarkably stable. A tryptophanyl 

radical intermediate of MADH has been trapped after the reaction of the substrate with the bis-

Fe(IV) intermediate. Analysis by high-resolution size-exclusion chromatography shows that MauG 

can tightly bind to the biosynthetic precursor and form a stable complex, but the mature protein 

substrate does not. 

INDEX WORDS: Tryptophan 2,3-dioxygenase, MauG, Hydrogen peroxide, Ferryl species, Bis-
Fe(IV) intermediate, Ferric hydroperoxide, Ferric hydroxide, Protein radical, 
Acid-base catalyst, Protein-substrate complex, Mössbauer spectroscopy, 
Electron paramagnetic resonance sepectroscopy, Site-directed mutagenesis  

 



 

 

 

 

 
BIOCHEMICAL AND SPECTROSCOPIC CHARACTERIZATION OF 

 TRYPTOPHAN OXYGENATION:  

TRYPTOPHAN 2,3-DIOXYGENASE AND MAUG  

 

by 

 

RONG FU 

 

 

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of 

 

Doctor of Philosophy 
 

in the College of Arts and Sciences 

Georgia State University 

 

 

 

2009 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Copyright by 

Rong Fu 
2009 



 

 

 

 

 
BIOCHEMICAL AND SPECTROSCOPIC CHARACTERIZATION OF 

 TRYPTOPHAN OXYGENATION:  

TRYPTOPHAN 2,3-DIOXYGENASE AND MAUG  

    
by 

    
RONG FU 

    
    
    
    
    
    
    
    
    
    
    
    
  Committee Chair: Aimin Liu 
   
  Committee: Binghe Wang 
   Giovanni Gadda 
    

Electronic Version Approved:    
    

Office of Graduate Studies    
College of Arts and Sciences    
Georgia State University    
August 2009    



iv 

 

 

 

DEDICATION 

 

This thesis is dedicated to my wonderful parents, Jinhui Fu and Yuanyan Wu. Thank you for all 

the unconditional love, guidance, and support.  

 

谨以此文献给我敬爱的父亲和母亲：傅金辉先生和吴元燕女士！ 

 



v 

 

 

 

ACKNOWLEDGEMENTS 

I would like to thank my supervisor, Dr. Aimin Liu, an excellent scientist, who has guided me 

with his enthusiasm, inspiration, persistent and integral view on research to think and behave like 

a scientist. I have benefited greatly from his vast knowledge and skills in many areas.   

I would like to thank the other members of my committee. I wish to thank Dr. Binghe Wang for 

his support and guidance. I sincerely thank Dr. Giovanni Gadda for his insight and guidance 

during the thesis preparation.  I wish to thank Dr. Dabney White Dixon for helping me revise 

resume and giving me career advices.   

I am deeply indebted to the professors sitting in my former committee at the University of 

Mississippi Medical Center: Dr. Victor L. Davidson, Dr. Johathan P.Hosler, Dr. Drazen Raucher 

and Dr. Parminder J.S.Vig. I would like to express my appreciation to Dr. Davidson for the 

access to the stopped-flow and redox titration equipment as well as assistance with the kinetic 

analysis, insightful discussions about the experiment. I thank Dr. Hosler for his kindly providing 

help on the ICP experiments, and for allowing me to use oxygen electrode and valuable advice. I 

am very grateful to Dr. Raucher for allowing me to use the sonicator in his lab and early training 

on the molecular cloning technique. I want to articulate my sincere thanks to my class instructors 

Dr. Mark Olson, Dr. Donald B. Sittman, Dr. Michael Hebert, Dr. David T. Brown, Dr. Charles L. 

Woodley, and Dr. John J. Correia.   

I would like to express my appreciation to Dr. Siming Wang for helping conducting mass 

spectrometry and invaluable discussions. I would like to express my gratitude to Professor 



vi 

 

 

 

Michael P. Hendrich of Carnegie Mellon University for the Mössbauer spectroscopy experiments 

and providing insightful discussions on TDO project. My thanks also go out to Professor Castern 

Krebs of Pennsylvania State University for the Mössbauer spectroscopy analyses on the MauG 

samples. I wish to thank Professor Tadhg P. Begley of Texas A&M University for generously 

providing the TDO plasmid for me to start the TDO project. I thank Professor Drs.  Rodney C.  

Baker and Dr. Naila M.  Mamoon for their assistance in the initial stage of the mass spectrometry 

analysis on TDO. My appreciation also goes out to Professor David Brown of the Genomics 

facility in theUniversity of Mississippi Medical Center for helping constructing the TDO 

mutants. 

I want to articulate my sincere thanks to Dr. Xianghui Li for assisting me conducting stopped-

flow and redox potential experiments. I wish to thank to Mr. Lakshman Varanasi for helping me 

with the oxygen electrode experiment. I am grateful to Dr. Hongzhi Xu who has provided me 

help in pirin project. I want to express my sincerely thanks to my co-workers, Dr. Tingfeng Li, 

Mr. Thomas W. Flanagan, Mr. Channing Twyner, Ms. Antoinetter L. Waler, Mr. Nafez Abu 

Tarboush, Mr. Ian Davis, Ms. Yan Chen, Ms. Fange Liu, Mr. Kednerlin Dornevil, Ms. Heyne 

Lee for their cooperation in experiments, for correcting the grammar of my manuscripts and this 

thesis, for exchanging knowledge, skills, and venting of frustration during my graduate program. 

The four years have been quite an experience and they all have made it a memorable time of my 

life. 

I must acknowledge the faculty and students of the Department of Biochemistry at University of 

Mississippi Medical Center for their assistance during my Ph.D study. I wish to thank the 



vii 

 

 

 

faculty, staff and students of the Department of Chemistry at Georgia State University for their 

assistance after I was transferred to here.  

Last but not the least, my greatest appreciation goes out to all my beloved family members for 

their sustaining love, support and encouragement. No matter how far, how long I am away from 

them, I can always feel the warmest and strongest support from them.  

I acknowledge a fellowship support from the Molecular Basis of Disease (MBD) program of 

GSU. I wouldn’t be able to complete my research work and this thesis without the generous 

MBD support. 



viii 

 

 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ------------------------------------------------------------------------------ v 

LIST OF TABLES --------------------------------------------------------------------------------------- xiii 

LIST OF FIGURES -------------------------------------------------------------------------------------- xiv 

LIST OF SCHEMES ----------------------------------------------------------------------------------- xviii 

CHAPTER 1     INTRODUCTION --------------------------------------------------------------------- 1 

1.1 The Properties of Heme ------------------------------------------------------------------------------ 1 

1.2 The Functions of Heme Proteins ------------------------------------------------------------------- 2 

1.2.1 Monooxygenation ---------------------------------------------------------------------------------- 3 

1.2.2 Heme Degradation --------------------------------------------------------------------------------- 7 

1.2.3 Peroxidation ---------------------------------------------------------------------------------------- 10 

1.2.4 Dismutation of H2O2 ------------------------------------------------------------------------------ 15 

1.2.5 O2 Transportation and Storage ------------------------------------------------------------------ 17 

1.2.6 Electron Carrier and Gas Sensors --------------------------------------------------------------- 19 

1.2.7 Heme Dependent Dioxygenase ------------------------------------------------------------------ 20 

1.2.7.1 Tryptophan 2, 3-dioxygenase (TDO) ------------------------------------------------------ 20 

1.2.7.2 The cofactor of TDO/IDO ------------------------------------------------------------------ 22 

1.2.7.3 Crystal structure of TDO/IDO -------------------------------------------------------------- 24 

1.2.7.4 Spectroscopic methodology of binding of substrate or substrate analogue ----------- 26 

1.2.7.5 O2 binding and redox properties ----------------------------------------------------------- 28 

1.2.7.6 Catalytic mechanism of TDO -------------------------------------------------------------- 28 

1.3 High-valent Iron-oxo Intermediates in Heme-Containing Proteins --------------------------- 34 



ix 

 

 

 

1.4 The Protonation of Ferryl Species ----------------------------------------------------------------- 39 

1.5 The Protein Radical Formation and Identification by EPR Spectroscopy ------------------- 42 

1.6 The Objectives --------------------------------------------------------------------------------------- 45 

CHAPTER 2     MATERIALS AND METHODS --------------------------------------------------- 47 

2.1 Chemicals --------------------------------------------------------------------------------------------- 47 

2.2 Overexpression and Preparation of TDO --------------------------------------------------------- 47 

2.3 Overexpression and Preparation of  57Fe-enriched TDO --------------------------------------- 48 

2.4 Construction of TDO Derivatives by Site-directed Mutagenesis ------------------------------ 49 

2.5 Electrophoretic Analysis and Concentration Determination of Protein ---------------------- 50 

2.6 Steady State Kinetic Analysis of TDO and Its Derivatives ------------------------------------ 51 

2.7 Mass Spectrometry ---------------------------------------------------------------------------------- 51 

2.8 Oxygen Production ---------------------------------------------------------------------------------- 52 

2.9 Rapid Freeze Quench EPR Samples -------------------------------------------------------------- 52 

2.10 Stopped-flow Spectroscopy ----------------------------------------------------------------------- 53 

2.11 Electron Paramagnetic Resonance Spectroscopy ---------------------------------------------- 53 

2.12 Mössbauer Spectroscopy -------------------------------------------------------------------------- 55 

2.13 Metal Content Analysis --------------------------------------------------------------------------- 56 

2.14 UV-Vis Spectra of the Ferric TDO upon Reacting with Hydrogen Peroxide in the 

Presence of L-Trp under Anaerobic Condition ------------------------------------------------------- 57 

2.15 Effect of the Concentration of L-Trp on Reduction of Ferric TDO ------------------------- 58 

2.16 Effect of the Concentration of H2O2 on the Activity of Ferric TDO for Dioxygenation 

Reaction --------------------------------------------------------------------------------------------------- 58 



x 

 

 

 

2.17 Stoichiometry of Hydrogen Peroxide Consumption to Product Formation under 

Anaerobic Conditions in the Presence or Absence of Hydroxyurea ------------------------------- 59 

2.18 The Effect of Hydroxyurea on the Catalytic Reaction of Ferric TDO upon Reacting with 

H2O2 ------------------------------------------------------------------------------------------------------- 59 

2.19 Substrate Activation of Ferric TDO under Anaerobic Conditions --------------------------- 60 

2.20 Preparation of His72 and Its Mutants at Different pH Conditions --------------------------- 60 

2.21 PH Dependence Studies --------------------------------------------------------------------------- 61 

2.22 Redox Titrations of TDO ------------------------------------------------------------------------- 61 

CHAPTER 3     HYDROGEN PEROXIDE AS A SUBSTRATE OF OXIDIZED 

TRYPTOPHAN 2,3-DIOXYGENASE ---------------------------------------------------------------- 63 

3.1 Abstract ----------------------------------------------------------------------------------------------- 64 

3.2 Introduction ------------------------------------------------------------------------------------------ 65 

3.3 Materials and Methods ------------------------------------------------------------------------------ 67 

3.4 Results and Discussion ----------------------------------------------------------------------------- 72 

3.5 Acknowledgements --------------------------------------------------------------------------------- 90 

CHAPTER 4     EXPERIMENTAL AND COMPUTATIONAL INVESTIGATIONS OF 

AN AUTHENTIC FERRYL INTERMEDIATE IN TRYPTOPHAN 2,3-DIOXYGENASE

 ----------------------------------------------------------------------------------------------------------------- 93 

4.1 Abstract ----------------------------------------------------------------------------------------------- 94 

4.2 Introduction ------------------------------------------------------------------------------------------ 94 

4.3 Results and Discussion ----------------------------------------------------------------------------- 95 

4.4 Materials and Methods ---------------------------------------------------------------------------- 109 



xi 

 

 

 

4.5 Acknowledgements ------------------------------------------------------------------------------- 111 

CHAPTER 5     REVISIT THE MECHANISM OF HYDROGEN PEROXIDE 

ACTIVATION OF OXIDIZED TDO --------------------------------------------------------------- 112 

5.1 Introduction ---------------------------------------------------------------------------------------- 112 

5.2 Results and Discussion --------------------------------------------------------------------------- 113 

CHAPTER 6     ENZYME ACTIVATION BY SUBSTRATE --------------------------------- 132 

6.1 Introduction ---------------------------------------------------------------------------------------- 132 

6.2 Results and Discussion --------------------------------------------------------------------------- 133 

CHAPTER 7     A SITE-DIRECTED MUTAGENESIS ANALYSIS ON THE ROLE OF 

THE CONSERVED ACTIVE SITE RESIDUES ------------------------------------------------- 149 

7.1 Introduction ---------------------------------------------------------------------------------------- 149 

7.2 Results and Discussion --------------------------------------------------------------------------- 149 

CHAPTER 8      THE POTENTIAL LOCALIZATION OF THE PROTEIN RADICAL 

GENERATED IN PEROXIDE DRIVEN OXYGENATION REACTION OF OXIDIZED 

TDO -------------------------------------------------------------------------------------------------------- 179 

8.1 Introduction ---------------------------------------------------------------------------------------- 179 

8.2 Results and Discussion --------------------------------------------------------------------------- 180 

CHAPTER 9     KINETIC AND PHYSICAL EVIDENCE THAT THE DI-HEME 

ENZYME MAUG TIGHTLY BINDS TO A BIOSYNTHETIC PRECURSOR OF 

METHYLAMINE DEHYDROGENASE WITH INCOMPLETELY FORMED 

TRYPTOPHAN TRYPTOPHYLQUINONE ------------------------------------------------------ 185 

9.1 Abstract --------------------------------------------------------------------------------------------- 185 



xii 

 

 

 

9.2 Introduction ---------------------------------------------------------------------------------------- 186 

9.3 Experimental Procedures ------------------------------------------------------------------------- 189 

9.4 Results and Discussion --------------------------------------------------------------------------- 190 

CHAPTER 10      A CATALYTIC DI-HEME BIS-FE(IV) INTERMEDIATE, 

ALTERNATIVE TO AN FE(IV)=O PORPHYRIN RADICAL ------------------------------- 199 

10.1 Abstract -------------------------------------------------------------------------------------------- 199 

10.2 Introduction --------------------------------------------------------------------------------------- 200 

10.3 Results --------------------------------------------------------------------------------------------- 203 

10.4 Discussion ----------------------------------------------------------------------------------------- 208 

10.5 Materials and Methods -------------------------------------------------------------------------- 211 

10.6 Acknowledgements ------------------------------------------------------------------------------ 212 

CHAPTER 11      A PROTEIN-BASED SUBSTRATE RADICAL IS GENERATED BY 

THE BIS-FE(IV) MAUG INTERMEDIATE ------------------------------------------------------ 214 

11.1 Abstract -------------------------------------------------------------------------------------------- 214 

11.2 Introduction --------------------------------------------------------------------------------------- 215 

11.3 Materials and Methods -------------------------------------------------------------------------- 217 

11.4 Results --------------------------------------------------------------------------------------------- 220 

11.5 Discussion ----------------------------------------------------------------------------------------- 226 

CHAPTER 12      SUMMARY ------------------------------------------------------------------------ 231 

12.1 Tryptophan 2,3-dioxygenase ------------------------------------------------------------------- 231 

12.2 A Novel Di-heme Protein MauG --------------------------------------------------------------- 234 

REFERENCES CITED -------------------------------------------------------------------------------- 237 



xiii 

 

 

 

LIST OF TABLES 

Table 1.1 Comparison of UV-Visible characteristics of heme proteins. 38

Table 1.2 The Fe-O distances in heme proteins determined by crystallography. 39

Table 1.3 Summary of Mössbauer parameters for ferryl species. 41

Table 3.1 Kinetic properties of the ferric TDO catalized reactions.  
 

87

Table 4.1 Results of various models for TDO ferryl species 1a.  104

Table 5.1 UV-Vis absorption of TDO in the Soret band and visible regions. 114

Table 6.1 EPR parameters of ferric signals of TDO in the presence of L-Trp. 140

Table 7.1 Absorption spectra for TDO derivatives. 153

Table 7.2 Heme occupancy and the extinction coefficient of TDO derivatives. 153

Table 7.3 Kinetic parameters for wild-type TDO and its derivatives with L-Trp as 
substrate. 
 

154

Table 7.4 The g parameters of as-isolated TDO derivatives. 159

Table 11.1 EPR P1/2 parameter of the MADH biosynthetic precursor radical intermediate. 
 

223



xiv 

 

 

 

LIST OF FIGURES 

Figure 1.1 The chemical structures of heme moieties. 1

Figure 1.2 The electronic structure of iron at various formal oxidation states. 3

Figure 1.3 The active site of X.campestris TDO in absence of substrate (A) and 
presence of substrate (B).  
 

24

Figure 1.4 (A) The active site hydrogen bond network in the presence of L-Trp in 
x.campestris TDO (PDB: 2NW8) and (B) The active site residues in the 
presence of 4-phenylimidazole in human IDO (PDB 2D07). 
 

26

Figure 1.5 Crystal structure of MauG at 2.1 Å resolution (courtesy C. M. Wilmot). 32

Figure 3.1 Difference spectra for each 5 equivalents of the titration of H2O2 with 5 
µM ferric TDO in the presence of 5 mM L-Trp under anaerobic 
conditions.  
 

73

Figure 3.2 ESI-Mass spectrometric characterization of (A) L-Trp, (B) the product of 
H2

16O2 driven oxygenation mediated by ferric TDO and (C) the product of 
H2

18O2 driven oxygenation mediated by ferric TDO. 
 

76

Figure 3.3 Solvent exchange of NFK characterized by ESI-Mass spectrometry.  78

Figure 3.4 LC-MS characterization of the product formation of monooxygenated L-
Trp and NFK.  
 

80

Figure 3.5 Mass spectrometric characterization of m/z 220 and m/z 222 ion peaks.  82

Figure 3.6 Stopped flow UV-visible spectral changes of ferric TDO reacting with 6 
equivalents of H2O2 at 405 nm versus time. 
 

84

Figure 3.7 The increase of O2 concentration after addition of 75 µM hydrogen 
peroxide to 5 µM ferric TDO. 
 

85

Figure 3.8 The ferric TDO mediated reaction carried out in an oxygen electrode cell 
at 25°C, 50 mM Tris-HCl pH 7.4 in the presence of glucose and glucose 
oxidase. 
 

91

Figure 4.1 The formation and decay of the compound I-type ferryl intermediate in the 
reactions of ferric TDO with H2O2 monitored by EPR spectroscopy at 10 
K. 

97



xv 

 

 

 

Figure 4.2 The high spin EPR signal of TDO (A), H2O2 treated TDO at 30 s (B).  98

Figure 4.3 EPR signal amplitude as a function of reaction time for the g = 2 (wine 
colored trace, ) and g = 6 (navy, ), respectively. 
 

99

Figure 4.4 The relaxation properties of the g = 2 free radical. 100

Figure 4.5 Mössbauer spectra of TDO at 4.2 K.  102

Figure 4.6 The structural model (3A) that yields the best predictions of the 
Mössbauer properties for the TDO ferryl species 1. 
 

107

Figure 5.1 The effect of concentrations of H2O2 on the enzymatic activity of ferric 
TDO upon peroxide activation. 
 

115

Figure 5.2 UV-Vis spectra of ferric TDO reacted with H2O2 in the presence of L-Trp.  116

Figure 5.3 Mössbauer spectra of the 57Fe-TDO mixtures.  118

Figure 5.4 The formation of the ferrous-CO-L-Trp complex.  120

Figure 5.5 EPR spectra of ferric TDO reacted with H2O2 in the absence and presence 
of L-Trp. 
 

121

Figure 5.6 The effect of hydroxyurea on the enzymatic activity of ferrous TDO.  123

Figure 5.7 The effect of radical scavenger on the enzymatic activity of ferric TDO 
upon peroxide activation mixing with H2O2. 
 

125

Figure 5.8 The difference spectra of 5 μM ferric TDO titrated with 35 equivalents of 
H2O2 containing 5 mM L-Trp in the absence of hydroxyurea (A); in the 
presence of 10 mM hydroxyurea (B). 
 

127

Figure 6.1 UV-Vis spectra of ferric TDO incubated with 5 mM L-Trp under 
anaerobic conditions.  
 

134

Figure 6.2 The chemical structures of substrate, L-Trp, and its analogues. 135

Figure 6.3 The activation of ferric TDO upon binding substrate analogues.  135

Figure 6.4 EPR spectra of ferric TDO mixed with substrate or substrate analogues.  138

Figure 6.5 EPR spectra of the time dependence of incubation of ferric TDO with L-
Trp under anaerobic conditions. 

139



xvi 

 

 

 

 
Figure 6.6 Anaerobic spectrochemical titrations of TDO at 100 mM potassium 

phosphate buffer pH 7.0. 
 

142

Figure 6.7 Mössbauer spectra of ferric 57Fe-TDO in the absence or presence of L-Trp. 143

Figure 6.8 Mössbauer spectrum of ferrous 57Fe-TDO.  144

Figure 6.9 Mössbauer spectrum of ferrous 57Fe-TDO in the presence of L-Trp.  144

Figure 6.10 Crystal structure of the water molecule near His55 in the distal site and 
His240 in the proximal site of xcTDO (PDB: 2NW8). 
 

147

Figure 7.1 UV-Vis spectra of TDO derivatives. 151

Figure 7.2 EPR spectra of TDO derivatives.  155

Figure 7.3 pH profile of WT TDO and His72 derivatives.  163

Figure 7.4 EPR spectra of WT TDO and His72 mutants treated with L-Trp.  166

Figure 7.5 EPR spectra of ferric H72S treated with various concentration of L-Trp.  167

Figure 7.6 EPR spectra of 200 µM ferric H72S mixed with 20 mM substrate or 
substrate analogues. 
 

169

Figure 7.7 EPR spectra of the effect of pH on ferric WT TDO in the absence and 
presence of L-Trp. 
 

172

Figure 7.8 EPR spectra of the effect of pH on ferric H72S in the absence and 
presence of L-Trp. 
 

173

Figure 7.9 EPR spectra of the effect of pH on ferric H72N in the absence and 
presence of L-Trp.  
 

174

Figure 7.10 EPR spectra of the effect of pH on ferric Q73F in the absence and 
presence of L-Trp.  
 

175

Figure 8.1 EPR spectra of ferric TDO and its derivatives treated with H2O2.   183

Figure 9.1 MauG-dependent TTQ biosynthesis. 187

Figure 9.2 MauG-dependent TTQ biosynthesis.  
 

191



xvii 

 

 

 

Figure 9.3 Steady-state kinetic analysis of MauG-dependent TTQ biosynthesis.  192

Figure 9.4 Gel filtration analysis of the enzyme MauG (E), the product of its reaction 
MADH (P), its substrate the MADH biosynthetic precursor (S) and 
mixtures of E + P and E + S. 
 

195

Figure 9.5 Anion exchange separation of components of the 189 kDa fraction 
obtained during size exclusion chromatography of the 2:1 mixture of 
MauG and the MADH biosynthetic precursor.  
 

198

Figure 10.1 MauG-dependent TTQ biosynthesis.  202

Figure 10.2 EPR analysis of the formation and decay of the intermediate formed by 
reaction of di-ferric MauG with a stoichiometric amount of H2O2. 
  

205

Figure 10.3 Mössbauer spectra of MauG recorded at 4.2 K in a 53-mT magnetic field.  209

Figure 10.4 EPR analysis of the reaction of the high-valent MauG intermediate with its 
natural substrate.  
 

213

Figure 11.1 (A) Visible absorption spectral changes of the 3.8 uM ferric MauG upon 
addition of 7.6 uM H2O2 in 10 mM potassium phosphate buffer, pH 7.5, at 
25ºC. 
 

221

Figure 11.2 EPR spectrum of the microwave power saturation behavior the protein 
based radical intermediate. 
 

222

Figure 11.3 Separation of the reaction complex by MonoQ anion exchange 
chromatography identifies the location of the free radical intermediate. 
 

224

Figure 11.4 Optical spectrum of the substrate/protein radical intermediate after the 
MonoQ separation (solid trace). 

225



xviii 

 

 

 

LIST OF SCHEMES 

Scheme 1.1 Catalytic cycle of CYP450. 5

Scheme 1.2 The pull-push effect in cytochrome P450. 7

Scheme 1.3 The proposed mechanism of HO. 9

Scheme 1.4 The catalytic cycle of peroxidase.  11

Scheme 1.5 The mechanism for O-O bond cleavage in HRP. 
 

12

Scheme 1.6 The active site structure and acid-base function in chloroperoxidase. 13

Scheme 1.7 The mechanism of cytochrome c peroxidase. 15

Scheme 1.8 The catalytic mechanism of catalase. 16

Scheme 1.9 The tryptophan kynurenine pathway. 21

Scheme 1.10 The catalytic mechanisms of oxygen activation of extradiol and intradiol 
non-heme Fe dioxygenases. 
 

23

Scheme 1.11 The mechanistic models of Criegee rearrangement and dioxetane 
mechanisms. 
 

29

Scheme 1.12 Proposed mechanism of ferric hydroperoxide intermediate formation at 
C3 position of L-Trp. 
 

30

Scheme 1.13 TTQ biogenesis mediated by MauG. 31

Scheme 1.14 Rebound mechanism for CYP450 hydroxylation reaction. 42

Scheme 3.1 The chemical reactions catalyzed by ferric TDO using H2O2 as a 
substrate in the presence (A) or absence of (B) L-Trp. 
 

74

Scheme 3.2 The proposed two possible mechanisms of solvent exchange with 
carbonyl group of NFK. 
 

79

Scheme 3.3 The proposed ferric TDO dioxygenation mechanism using H2O2 as 
oxidant. 
 

83



xix 

 

 

 

Scheme 4.1 The dioxygenation reaction catalized by oxidized TDO. 95

Scheme 4.2 The proposed L-Trp dioxygenation mechanism using H2O2 as the 
oxidant.  
 

96

Scheme 4.3 Two parallel paths in reaction of with L-Trp with O2 catalyzed by 
reduced TDO which are under investigation. 
 

108

Scheme 5.1 The proposed mechanism of peroxide activation of ferric TDO. 128

Scheme 6.1 The two protonation states of proximal His257 in TDO. 146

Scheme 6.2 Proposed mechanism of substrate activation of ferric TDO. 148

Scheme 7.1 Proposed active site hydrogen bonding interaction in H72S and H72N. 177

Scheme 11.1 Proposed mechanism of MauG-dependent TTQ biosynthesis. 230

Scheme 12.1 Proposed mechanism of TDO reactions. 236

 



1 

 

 

 

CHAPTER 1     

INTRODUCTION 

 

1.1 The Properties of Heme 

A heme is a large tetrapyrrole macrocycle that contains an iron atom in the center of 

protoporphyrin ring. Hemes differ in terms of both the types and the substitution of the porphyrin. 

To date, there are a total of six known types of hemes, the most common and abundant heme of 

which is heme b (Figure 1.1), also called protoporphyrin IX. Other common types include heme 

c and heme a.  

Figure 1.1. The chemical structures of heme moieties. 

Heme b (protoporphyrin IX) is the active site prosthetic group for a number of proteins, 

including myoglobins and hemoglobins, cytochrome P450s (CYP450), peroxidases, catalase and 

tryptophan 2,3-dioxygenase (TDO) (1). It is held in the protein matrix by a non-covalent bond by 

Heme b                                               Heme c                                          Heme a 
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an axial ligand and hydrophobic interactions that are provided by the protein environment. Since 

there is only one non-covalently bonded ligand, heme b is easily lost from the heme pocket 

during protein manipulation.  

Heme c is synthesized from heme b. There are some differences between the two types of hemes. 

For instance, compared to the b-type heme, the c-type heme is covalently bound to a protein by 

two thioether bonds between two heme peripheral vinyl groups and two cysteine amino acid side 

chains at the 2 and 4 positions (2, 3). Most cytochromes utilize c-type heme as cofactors to 

function as electron carriers in a large number of redox processes found in nature. Another 

example of heme utilization is the a-type heme in cytochrome c oxidase (CcO). In this case, 

heme a differs from heme b in the substitution at the 2- and 8- positions of 17-

hydroxyethyfarnesyl moiety and formyl group in place of 2-vinyl and 8-methyl respectively 

(Figure 1.1). Less commonly, there are also heme d, heme d1, and heme o in nature (1-3).  

1.2 The Functions of Heme Proteins 

The common oxidation states for heme iron are ferrous (Fe2+), ferric (Fe3+), and ferryl (Fe4+). 

The ferryl species found in biology all have an inherent exogenous oxygen in the oxo form 

which usually refers to Fe(IV)=O. The electronic energy level diagrams depicted in Figure 1.2 

show the common spin states of iron in heme proteins. In most cases, the resting formal 

oxidation state of heme proteins is in ferric form. The porphyrin ring possesses an extensive 

conjugation structure that allows the electron to delocalize. Often, the porphyrin ring participates 

in a one-electron transfer process. It is also possible for the electron to transfer from the 
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porphyrin ring to the nearby amino acids such as tryptophan, tyrosine, or cysteine to form 

protein-based radicals. 

The heme prosthetic group carries out a wide range of biological functions including oxygen 

transport and storage, electron transfer, chemical catalysis such as monooxygenation, 

peroxidation, dioxygenation and oxygen reduction as well as gas sensing (4). Heme b is an 

extremely versatile prosthetic group in biological systems. The various functionalities of heme 

proteins are attributed to the various protein environments they operate in. For example, in the 

heme type, the metal ligands to iron, the distribution of amino acid residues around the active site, 

and the iron coordination number and formal oxidation state of iron all affect its ultimate 

function. The proximal ligand in heme b includes histidine, cysteine, tyrosine and methionine, 

whereas in heme c, the ligand is generally histidine (4).  

S = 0 S = 1 S = 2 S = 1/2 S = 3/2 S = 5/2 S = 1 S = 2

dx2 - y2, z2

dxy, xz, yz

Fe(IV)Fe(III)Fe(II)

d

 
Figure 1.2. The electronic structure of iron at various formal oxidation states. 

1.2.1 Monooxygenation 

Cytochrome P450 (CYP450) is a superfamily of enzymes that activates dioxygen and catalyzes 

monooxygenation reactions, incorporating one oxygen atom to an organic substrate. The other 

oxygen is reduced to a water molecule during catalysis (4). A variety of reactions are catalized 
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by CYP450 such as aliphatic and aromatic hydroxylations, epoxidations, N-, S-, and O-

dealkylation, the oxidation of heteroatoms, among others (4). 

The active site of CYP450 contains a heme b iron center. The b-type heme group is embedded in 

a hydrophobic environment without significant exposure to the solvent. The fifth ligand is 

cysteine. The substrate binding pocket is relatively flexible when compared to other heme 

proteins, an aspect that allows large substrates to access the active site. 

A normal catalytic cycle of CYP450 mediated reaction requires two electrons and two protons 

from an exogenous donor, such as NADH + H+. The resting state of CYP450 contains a six-

coordinate low-spin ferric form (S = ½) in which water coordinates on the distal ligand site. 

Substrate addition induces a change in the conformation of the active site, which results in 

displacing the water molecule and forming a five-coordinate high-spin ferric state (S = 5/2). This 

spin state facilitates an electron transfer from the exogenerous reductant, usually in the form of a 

closely associated CYP450 reductase. Dioxygen then binds to the ferrous enzyme and generates 

a low-spin ferrous-dioxygen complex or a ferric superoxide complex (Scheme 1.1).   

The catalytic cycle continues as a second electron is transferred to form a ferric peroxide species. 

This is the rate limiting step of the CYP450 reaction during which the ferric peroxide 

intermediate is transient. This is rapidly followed by the acceptance of a proton to generate a 

ferric hydroperoxide intermediate. This intermediate accepts a second proton and undergoes 

heterolytic O-O bond cleavage to generate an oxoferryl porphyrin π cation radical intermediate, 

which is widely known as compound I. compound I is the central catalytic competent 

intermediate in CYP450 reaction cycle with a strong oxidizing capacity. It is capable of inserting 
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an oxygen atom into organic substrates to complete the monooxygenation reaction. Upon 

completion of the cycle, the enzyme returns to the ferric state with water rebound to the sixth 

ligand position of the active site. (Scheme 1.1) 
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Scheme 1.1. Catalytic cycle of CYP450. 
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 The ferric peroxide and ferric hydroperoxide intermediates of CYP450 have been observed 

using cryoradiolysis in conjugation with Electron Paramagnetic Resonance (EPR) spectroscopy 

(5). The oxoferryl species in CYP450 is short-lived. It has been demonstrated that hydrogen 

peroxide, peracids, and alkyl hydroperoxide can provide both the oxygen and electrons required 

to generate the same ferric hydroperoxide and compound I species from the ferric enzyme as 

would occur in normal catalytic cycle (6). This provides an alternative shunt pathway to generate 

and characterize the high-valent intermediate during the CYP450 reaction. In employing this 

advantage, both compound I and compound ES have been observed in stopped-flow studies 

when mixing meta-chloroperoxybenzoic acid (m-CPBA) with ferric CYP119, which is a 

CYP450 enzyme from the thermophile Sulfolobus solfactaricus (7). Compound ES results from 

intramolecular electron transfer from a nearby amino acid to the porphyrin ring cation radical of 

compound I. Recent EPR and Mössbauer studies using peracetic acid as oxidants have indicated 

that the compound ES species of CYP450 are associated with tyrosyl or tryptophanyl radicals (8-

11).  

It has been demonstrated that the active site environment plays an important role on the cleavage 

of the O-O bond of ferric hydroperoxide to generate compound I. Scheme 1.2 shows that the 

hydrogen bond network of CYP450 at the distal pocket and the proposed mechanism of the 

“pull-push” effect are responsible for compound I formation (12). The cysteine axial ligand 

functions as a strong electron donor, which lowers the redox potential for electron transfer and 

increases the basicity of the heme group. The process results the provision of a push effect on the 

electron transfer to the heme group. On the other hand, the two conserved distal site amino acids, 

Thr and Asp provide a pull effect that facilitates the protonation of the terminal oxygen of the 
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ferric hydroperoxide intermediate and the subsequent O-O bond heterolytic cleavage (13). Site-

directed mutagenesis has been employed to investigate the stated role of the above active site 

amino acids. When Thr is replaced with Ala, or Asp is mutated to Asn, the rate of the 

protonation step is dramatically reduced (14, 15). The alternative of the hemolytic O-O bond 

cleavage generates compound II species, which has been thought to not be involved in the 

normal process (4). 
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Scheme 1.2. The pull-push effect in cytochrome P450. 

1.2.2 Heme Degradation 

Heme oxygenase (HO) catalyzes the degradation of heme to biliverdin and carbon monoxide. It 

plays a vital role in maintaining iron homeostasis and other important biological functions, such 

as antioxidant defenses, a messenger in signaling pathways by generating CO (16). HO is not a 
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heme protein but it is known to utilize heme as both a prosthetic group and substrate, in which 

heme is bound to HO in a 1:1 ratio and held in distal site for a site-specific, oxidative 

degradation of heme itself (4, 17). 

The ligands of the iron center are comprised of histidine residue and a water molecule in HO 

(18-20). The resting state enzyme is in a ferric from. Upon one electron reduction, dioxygen 

binds to the ferrous ion center. A second electron reduction and protonation of the ferrous-

dioxygen complex generate a ferric hydroperoxide complex, Fe-OOH, which is proposed as the 

active oxygen species of the enzyme (21, 22). This catalytic reactive species initiates an 

electrophilic attack at the α-meso position of the porphyrin to generate an α-meso-hydroxyheme 

species. This species undergoes oxidative ring opening and releases iron and carbon monoxide. 

This hydroxylation reaction is highly stereospecific at the α position due to the blocking of all 

other meso- directions by the nearby amino acids (18, 23) (Scheme 1.3). 

Most heme enzymes utilize high-valent iron species as the oxidizing species, whereas HO 

utilizes ferric hydroperoxide as the meso-hydroxylating active intermediate (16, 21, 22). This 

intermediate is thought to be generated in the normal catalytic cycle by dioxygen, cytochrome 

P450 reducatase, and NADPH. It has been proposed that the ferric hydroperoxide can undergo 

either heterolytic or homolytic cleavage to generate three different species as OH+, OH- and OH. 

for the hydroxylation reaction. Either electrophilic hydroxylation generating ferric-OOH+ 

intermediate or nucleophilic attack generating ferric-OOH- species form via a concerted pathway 

that is assisted by a general acid-base catalyst and a chain of water molecules (16, 24, 25). A 

tetrahedral hydroxylated-heme intermediate is formed, which then undergoes a rearrangement 

and loss of H2O to generate α-meso-hydroxyheme (16, 26).  
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Scheme 1.3.  The proposed mechanism of HO. 

H2O2 can substitute for both of the oxygen and electron donors to produce α-meso-hydroxyheme. 

There is no ferryl intermediate generated during the reaction of ferric HO with H2O2 (25, 27). 

High-valent species with one oxidizing species in a protein radical and the other in porphyrin can 

be observed when using other peroxide analogues, such as alkyl and acyl hydroperoxide as an 

oxidant.  However, there was no α-meso-hydroxyheme product observed, which indicates that 

the ferryl species is not involved in biliverdin formation, thus it is insignificant (27). Using the 

cryoreduction technique, the ferric hydroperoxide intermediate has been detected by EPR and 

ENDOR (26, 28). 

The crystallographic studies show that the α-meso-edge of the heme is partially exposed at the 

surface of the protein to allow the electron transfer and oxidation reaction. There are several 

water molecules in the active site that form an extensive network of hydrogen bonds. Of these, 
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one of the water molecules is bound to the heme iron ion (18, 29, 30). EPR analysis suggests that 

the metal-bound dioxygen ligand is hydrogen bonded (31), however there is no polar amino acid, 

and particularly no histidine to form a hydrogen bond with the iron bond oxygen atoms. It has 

been proposed that the water molecules also provide hydrogen bonds (18, 29, 30). An interesting 

feature of the structure of heme oxygenase is its similarity to that of myoglobin rather than to 

other heme-containing enzymes. When the axial ligand of histidine has been mutated to either 

cysteine or tyrosine, neither of the mutant proteins has catalytic activity (32).  

1.2.3 Peroxidation 

Peroxidase catalyzes one electron peroxide oxidation of different exogenous electron donors. It 

is termed based on the various substrates, such as horseradish peroxidase, choloperoxidase, and 

cytochrome c peroxidase. Peroxidases utilize heme b as a cofactor and are only partially exposed 

to solvent. Histidine is the proximal ligand bound to the iron center (33, 34).  

The general catalytic oxidation-reduction cycle of peroxidases is shown in Scheme 1.4. The 

resting state of peroxidase contains a high-spin ferric form (S = 5/2). Hydrogen peroxide 

displaces the water molecule and binds to the iron center. A conserved histidine is proposed to 

abstract a proton from hydrogen peroxide, which leads to a ferric hydroperoxide intermediate. 

An arginine facilitates the heterolytic O-O bond cleavage to release a water molecule, which 

generates an oxoferryl species that is two oxidizing equivalents above the ferric iron. In most 

eukaryotic peroxidases, the oxidizing equivalents manifest as an Fe(IV)-oxo and a porphyrin π 

cation radical (35). Alternately, in some cases, the two oxidizing equivalents are stored in an 

Fe(IV)-oxo center and nearby amino acid residue, such as a tryptophan radical in cytochrome c 
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peroxidase (36). An electron provided either by cytochrome c or an organic substrate like 

aromatic phenol reduces compound I to compound II. In such a case, a second electron transfer 

to regenerate the resting state of the ferric form followed (Scheme 1.4).  
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Scheme 1.4.  The catalytic cycle of peroxidase. 

It should be noted that both compound I and compound II species are active in peroxidases and 

are relatively long-lived in comparison to those found in other heme proteins. Horseradish 

peroxidase (HRP) has well-studied active site machinery for the formation of oxoferryl species 

(Scheme 1.5). The conserved histidine shown in Scheme 1.5 is proposed to function as an active 

site acid-base catalyst which accepts a proton from the hydrogen peroxide to form ferric 

hydroperoxide intermediate and then donate the proton to form a leaving water (4, 37-39). The 

conserved distal Arg stabilizes the negative charge on the exiting hydroxide during bond 

cleavage. Also, the neutral proximal His ligand differs from the cysteine ligand in CYP450 due 
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to its ability to donate electrons. The His ligand can, however, stabilize higher oxidation states on 

the heme iron by the strong hydrogen bond network, thus effectively stabilizing the positive 

charge of the Fe ion (40, 41).  
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Scheme 1.5.  The mechanism for O-O bond cleavage in HRP. 

Chloroperoxidase (CPO) from Caldariomyces fumango catalyzes the oxidative chlorination of 

substrates using hydrogen peroxide and Cl- as substrate. The marked difference between CPO 

and HRP is the axial ligand; in CPO it is cysteine, while in HRP, it is histidine (41).   

In CPO, the ferric enzyme reacts with hydrogen peroxide to generate a known compound I 

species. Compound I may be reduced by two electrons to the ferric enzyme, which generates a 

water molecule. On the other hand, CPO is capable of inserting one oxygen atom into a substrate 

when performing epoxidation (42)  and sulfoxidation (43). The source of the oxygen atom 

incorporated into the epoxide comes from hydrogen peroxide, which is identified by 18O-labeled 

H2O2 (44).  These elements make CPO a better model for the studies of heme monooxygenation. 

The active site of CPO is hydrophilic, which is similar to peroxidases. On the other hand, the 

distal site polar residue of CPO is a glutamic acid. A histidine residue is located near Glu but is 

away from the Fe center. The arginine in peroxidases active site pockets is not present in CPO 
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(Scheme 1.6) (41).The glutamic acid functions first as proton acceptor and then proton donor, 

which facilities by the active site histidine. 
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Scheme 1.6.  The active site structure and acid-base function in chloroperoxidase. 

Cytochrome c peroxidase (CcP) catalyzes the reduction of peroxide to water. In CcP, a 

compound I species is generataed and reduced by two successive one-electron transfer reactions 

back to ferric form.Yeast CcP is the first heme enzyme for which a high-resolution crystal 

structure of the oxoferryl species was determined (45). EPR spectrum suggests that the Fe(IV)-

oxo radical species is located on a nearby tryptophan residue of the protein, while in other 

peroxidase the radical is located on the porphyrin (46). The hydrogen bond network in the distal 

site of CcP is a Trp-His-Arg triad while it is a Phe-His-Arg triad in HRP (47). Trp contributes to 

the stabilization of oxyferryl intermediate via a hydrogen bond interaction. Since Phe is not a 

hydrogen bond donor, the effect of the triad is different between HPR and CcP in oxoferryl 

species generation. This also explains the formation of tryptophan radical in CcP but not in HRP. 

Site-directed mutagenesis analysis has been conducted to elucidate the functions of the active 

site amino acids residues. For example (48-50), the mutants of Arg to Leu or Lys suggest that the 

arginine residue makes the distal side more polar and help to the cleavage of the O-O bond of the 

bound peroxide by stabilizing the separating charge (51).  Kinetic studies of the distal histidine 
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mutant shows distal site histidine is an essential acid-base catalyst for proton transfer (52, 53). 

On the other hand, the enzyme activities can partially rescured if imidazole is supplemented to 

the histidine mutant in the active site. Notably, when the axial His was mutated to Cys in HRP, a 

low-spin ferric EPR signal resembling that of ferric substrate-bound CYP450cam was observed. 

However, little peroxidase activity was detected of the mutant (54).  

Bacterial CcP contains two c-type hemes. Recently, two crystal structures were obtained for two 

diheme peroxidase enzymes from both Pseudomonas aeruginosa and Paracoccu spantatrophus 

(55, 56). The oxidized form of the enzyme exhibits low-spin six-coordinate conformation for 

both hemes, but different distal ligand coordination in which one is His/His while the other is a 

His/Met coordination. The two hemes have distinct redox potential due to their different protein 

environments. In general, the heme with His/His coordination has low redox potential whereas 

that with His/Met coordination has high redox potential. The resting state of the enzyme is 

inactive in the fully oxidized form. During activation, the high redox potential of heme obtains 

one electron from a redox protein such as ferrocyt. c551 or the Cu1+ in azurin (57) and forms 

ferrous His/Met form. At the same time, a conformational change of the low redox potential of 

heme results in the displacment of histidine residue from the heme center, which leads to the 

formation of high-spin ferric form (58-61). This mixed-valent species is catalytically active for 

hydrogen peroxide binding, followed by producing ferric hydroperoxide intermediate (58-61). 

Upon reduction of hydrogen peroxide, one electron is transferred from the reduced high-potential 

heme, which is then oxidized to ferric form. The low-potential heme porphyrin group provides 

the second electron with the formation of an oxyferryl center. Differing from the monoheme 

peroxidase, the second heme with the His/Met coordination functions as an electron reservoir 
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where an electron is stored. This stands in contrast to other peroxidase where the second electron 

is stored on nearby active site residue or porphyrin. The oxoferryl species accepts two electrons 

from the exogenous donor and is reduced to ferric state. This process requires intramolecular 

electron transfer from the high-redox potential to low-redox potential heme (Scheme 1.7).  
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Scheme 1.7. The mechanism of cytochrome c peroxidase. 

1.2.4 Dismutation of H2O2 

Catalase is the enzyme that catalyzes the decomposition of hydrogen peroxide and generates 

water and dioxygen molecule. Catalase can also oxidize different toxins, such as formaldehyde, 

formic acid, phenols, and alcohols. Catalase is one of the most efficient enzymes in nature (62).  

Catalase is a tetramer with four identical subunits that has been identified in many sources 

including bacterial and mammalian cells. Each subunit contains one heme b prosthetic group 

with tyrosine as axial ligand. The heme is deeply buried in the enzyme and is accessible by the 
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20 Å hydrophobic channel, which allows hydrogen peroxide (but not dioxygen) to get into the 

distal pocket (63-65).  
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Scheme 1.8. The catalytic mechanism of catalase. 

The resting state of catalase contains a high-spin ferric ion. The current working hypothesis 

(Scheme 1.8) contends that the first hydrogen peroxide enters the iron center, and then one 

proton of the hydrogen peroxide is abstracted by an active site base to form a ferric 

hydroperoxide intermediate. The O-O bond heterolytic cleavage of the intermediate generates a 

compound I species and a water molecule by accepting the proton from the active site base (66). 

This process is facilitated by two active site residues, asparagine and histidine (67). The 

relatively short Fe-phenolic oxygen distance with 1.9 Å and the proximal Arg residue contribute 

to the ionization of proximal tyrosine residue (68). The tyrosine residue, being negatively 
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charged, also contributes to the generation of compound I. Compound I species reacts with a 

second hydrogen peroxide molecule and is reduced to one dioxygen and one water molecule. 

After the catalytic cycle, the enzyme returns to ferric form.  

1.2.5 O2 Transportation and Storage 

Myoglobin and hemoglobin are well known for their oxygen storage and transportation 

capabilities. Both of these proteins contain b-type heme and bind dioxygen reversibly. The heme 

group is located in a crevice in myoglobin and is surrounded by non-polar residues, except for 

two polar histidine residues which are important for the functionality of myoglobin. One axial 

histidine is bound to the iron center as a metal ligand and one histidine is located at the distal 

side (69, 70). The native deoxy form of myoglobin is a ferrous ion with a five-coordinate high-

spin state (S =2), dioxygen is reversibly bound to the sixth vacant coordination site (71). The 

distal site histidine controls the correct shape of the active site cavity, which allows only small 

molecules (such as O2) to access and react with the iron atom. It also helps to make the O2 biding 

reaction reversible (72, 73). The ferrous heme binds oxygen as a ferric superoxide complex. Due 

to the antiferromagnetic coupling, there is no EPR signal detected for the ferric superoxide 

species, although Mössbauer quadruple splitting of the heme iron has demonstrated a ferric state 

(74). Myoglobin is a monomer whereas hemoglobin is a tetrameric protein with four subunits 

that bind oxygen cooperatively and allow the binding and dissociating of oxygen in a narrow 

range of oxygen partial pressure (75-77). Accordingly, it is ideal for O2 transportation. On the 

other hand, the well-designed heme binding pocket of myoglobin allows it to be a good storage 

area for O2 in the body. 
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Myoglobin is a well-studied heme protein with a small molecular weight of 17 kDa. Myoglobin 

has been used as a model for structure and functionality studies to provide additional insights 

about other heme-containing proteins. Myoglobin can react with peroxide in a manner similar to 

peroxidases to form compound I species (78), which is unstable in wild type myoglobin. It is, 

however, detected to be stable in F43H/H64L mutant wherein the His43 can stabilize the 

porphyrin π cation radical species (79-81). Myoglobin has also been engineered to perform 

peroxidase, catalase (82, 83) and monooxygenase activities (81, 84). L29H/H64L and 

F43H/H64L mutants are constructed to possess peroxidase and catalase activity to oxidize 

peroxidase substrate such as ABTS and guaiacol and dismutate H2O2 (81, 84). One tryptophan 

residue has been engineered into the active site to mimic the substrate binding site for aromatic 

compounds as seen in the CYP450 monooxygenation reaction (85).  

Although myoglobin can mimic multiple functionalities, the reaction rates are much slower when 

compared to the naturally-occuring enzyme. It has been proposed that at least three strategies can 

be employed in the stabilization and cleavage of the active site intermediate in heme proteins. 

One such strategy involoves stabilizing the negative charge on the oxygen atoms of the leaving 

group by a polar amino acid is one strategy, such as Arg in peroxidase and Asn in catalase. The 

proper position and distance of the active site acid-base catalyst to the heme center can facilitate 

the heterolytic O-O bond cleavage. For example, the distances between the heme iron centers to 

Nε of the distal histidine are 5.6 and 4.8 Å in CcP and beef liver catalase, respectively (39, 64, 

86). It has been suggested that about 5.0-5.5 Å could be the optimal distance for the hydrogen 

bonding interactions between the protonated distal histidine and the terminal oxygen of the iron 

bound hydroperoxide (87). Finally, hydrogen bond networks play a role in compound I 
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formation in both distal and proximal site. In peroxidase, Asp forms a hydrogen bond to the 

proximal His to compensate for the neutral feature of histidine for electron transfer. Replacement 

of Asp in HRP with Val could decreases the compound I formation (39, 86).  

1.2.6 Electron Carrier and Gas Sensors 

The c-type hemes covalently attach to the protein via thioether bonds, which are derived from the 

two cysteine residues of the conserved CXXCH motif and the vinyl groups of the heme. Most of 

the c-type cytochromes have a histidine as the fifth axial ligand that is provided in the CXXCH 

motif (1-3). The most common function of c-type heme is to work as an electron carrier that is 

involved in a wide range of redox processes, including photosynthesis, various processes of 

respiration, and the cycling of nitrogen and sulfur. Redox potential is an important measure of 

cytochrome c because it determines the direction of the electron flow and controls the driving 

force of the electron transfer kinetics (1-3). Cytochrome c has an amazingly wide range of redox 

potentials covering over 1V, from +640 mV in cytochrome c552 of Thiobacillus ferrooxidans to 

-400 mV in cytochrome c3 of Desulfovibrio (88). The redox potential of cytochrome c can be 

tuned by the heme environment, heme structure itself and the character of the axial His ligand. 

Cytochrome c generally has either His/Met or bis-His heme axial ligation (1-3).  The redox 

potential of His-Met coordination tends to be higher than that of bis-His coordination due to the 

weak methionine-heme interaction (3). 

Cytochrome c peroxidase contains two c-type hemes with well-separated midpoint redox 

potentials, as discussed in the peroxidase section above. The bifunctional catalase-peroxidases 

also contain two c-type hemes and have some similarities with the bacterial cytochrome c 
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peroxidase (89-91). Other enzymes utilize c type heme as the redox center, such as the tetraheme 

cytochrome c554 in Nitrosomanas europaea (92) and monoheme in hydroxylamine 

oxidoreductase (93), both of which have biological nitrification activity. Also, the SoxAX 

complex, which is a heterodimeric c-type heme-containing protein is involved in thiosulfate 

oxidation (94) and the rubber oxygenase RoxA which cleaves the carbon backbone of ploy (cis-

1,4-isoprene) (95) 

Some c-type heme proteins have been identified as gas or redox sensors (2). For example, 

tetraheme cytochrome c3 binds CO at the heme center and acts as a CO sensor; cytochrome c 

binds NO to suppress the toxic levels of NO. The c-type heme sensor proteins are generally 5-

coordinate when oxidized, thus leaving an open coordination site for the physiological effectors 

molecules to access. Oxygen binding is uncommon for c type heme proteins, which are normal 

in heme b-containing proteins. Although the function is still unknown, oxygen binding 

characteristics have been identified in Sphaeroides heme c protein (96). 

1.2.7 Heme Dependent Dioxygenase 

1.2.7.1 Tryptophan 2, 3-dioxygenase (TDO) 

TDO is a heme-containing enzyme that catalyzes the oxidative cleavage of the indole ring of L-

tryptophan (L-Trp), converting it to N-formylkynurenine (NFK) (Scheme 1.9) (4, 97, 98). TDO 

was first discovered in mammalian liver by Kotake and Masayama in 1936 (99) and was first 

characterized in rat liver at its purified protein level in 1955. A decade later, its isoform enzyme 

indoleamine 2,3-dioxygenase (IDO) was discovered and isolated from rabbit intestine (100, 101).  
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Scheme 1.9. The tryptophan kynurenine pathway. 

TDO is mostly present in the liver, but has also been found in mammalian mucous membranes, 

and in a few cases in epididymic and brain of mouse (102, 103). It has also been found outside of 

mammals in mosquitoes and bacteria such as Pseudomonas acidovorans (4, 97). IDO is 

primarily present in mammals, however and is ubiquitously distributed in various tissues of 

mammals except liver (4). TDO has a high specificity to L-tryptophan. It can also use a few 

tryptophan derivatives as substrate, for example, 6-fluoro-tryptophan. IDO has a much broader 

substrate specificity; it can utilize D-tryptophan, tryptamine and 5-hydroxytryptamine (serotonin) 

other than L-Trp as its substrate (4). The expression of IDO is induced by interferon-γ and linked 

to various immune-related pathophysiological conditions wherein TDO is induced by 

glucocorticoid hormones and regulated by its physiological substrate, L-Trp (4, 104-109).  

TDO is a biologically significant enzyme. It catalyzes the first and committing step of L-Trp 

degradation in the kynurenine pathway (Scheme 1.9). The kynurenine pathway constitutes the 

major route of de novo biosynthesis of NAD, which is one of the essential redox cofactors in all 

living systems (110). Excessive accumulation of many of the intermediate metabolites of this 

pathway can lead to numerous physiological and pathological conditions, including cataract 

formation, cerebral malaria, Alzheimer's disease, HIV infection, Huntington's disease and 
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ischemic brain injury (111-120). TDO is responsible for oxidizing over 99% of the free L-Trp in 

intracellular and extracellular pools. Less than 1% Trp is metabolized via the serotonergic 

pathway, which synthesizes very important neurotransmitters such as serotonin and melatonin 

(104). Therefore, TDO plays a critical role in controlling the relative Trp metabolic flux between 

the serotonergic and kynureninic pathways.  

TDO/IDO is also one of the earliest enzymes explored in dioxygen chemistry. In the 1950s, 

Mason and Hayaishi, upon using an 18O labeling experiment demonstrated that one or both of the 

oxygen atoms of dioxygen could be incorporated into substrate during an enzymatic reaction 

(121, 122). The revelation changed traditional views about how nature uses dioxygen. Hayaishi 

designated this kind of enzyme as oxygenase. Shortly after the discovery of oxygenase, Hayaishi 

further identified that both of the atoms from dioxygen were incorporated into TDO/IDO and he 

named it as tryptophan 2,3-dioxygenase which was exclusively used until now (123). The 

discovery of the oxygenase enzyme has provided a great opportunity for chemistry research.  

1.2.7.2 The cofactor of TDO/IDO 

Hemoproteins perform a wide range of biological functions including oxygen transport and 

storage, electron transfer, monooxygenation, and reduction of dioxygen (4). However, they 

rarely express a dioxygenase activity as their native biological function. Dioxygenation reactions 

are typically catalyzed by non-heme metalloenzymes (124) but TDO is the first described 

exception. As an oxygenation enzyme, TDO/IDO are distinctive members of the dioxygenase 

family as they utilize a histidine-ligated ferrous heme rather than a non-heme iron to carry out 

the oxygen activation and insertion reactions. 
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Scheme 1.10.  The catalytic mechanisms of oxygen activation of extradiol and intradiol non-
heme Fe dioxygenases. 

The role of the metal in non-heme Fe-dependent dioxygenases is to facilitate a shift in electron 

density from the aromatic substrate to the bound oxygen (125). As for most of the non-heme iron 

dioxygenase, the non-heme iron active sites generally have two histidines, one carboxylate and 

two or three water ligands, which allow simultaneous binding of both substrate and dioxygen 

(124). The substrate and oxygen are activated and each presents some type of radical character so 

that the subsequent attack of oxygen on the aromatic substrate is spin allowed (124).  

Most of the non-heme iron dioxygenases can be classified into extradiol and intradiol 

dioxygenase, which differ in their mode of ring cleavage and the oxidation state of the active-site 

metal (Scheme 1.10). The ferrous extradiol enzymes activate O2 directly for reaction, whereas 

the ferric intradiol enzymes activate the substrate for O2 attack. Although they have different 

mechanisms, they share same common features, one of which is substrate directly binds to iron 

ion and forms the common enzyme-substrate complex.  However, this mechanism cannot be 

applied to the enzymes with a heme cofactor because heme enzymes would not allow a 

simultaneous binding of the two substrates onto the Fe ion. In the ligand-bound crystal structure 

of TDO, the primary substrate (L-Trp) binds to a relatively hydrophobic pocket near (but not 
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directly at) the Fe ion (Figure 1.3) (126). The role of the Fe cofactor in the heme-dependent 

dioxygenase cannot be the same as the well-studied non-heme Fe counterpart. The dioxygenase 

activity of TDO must therefore proceed using a distinct new mechanism relative to that of the 

non-heme Fe-dependent dioxygenases. A recent discovery has exposed a third hemoprotein 

(PrnB) with dioxygenase activity (127). Therefore, a potential heme-dependent dioxygenase 

enzyme superfamily of which TDO is a prototype member has been suggested (127).  

 

Figure 1.3. The active site of X. campestris TDO in absence of substrate (A) and presence of 
substrate (B). The protein residues are numbered according to the corresponding rmTDO 
sequence. 

1.2.7.3 Crystal structure of TDO/IDO 

The crystal structures of TDO, from Xanthomonas campestris and Ralstonia metallidurans, and 

IDO from humans have provided critical insights into the molecular details of the active site 

architecture (128-130). More studies on TDO either from human or bacteria sources have been 

performed to elucidate substrate recognition and the role of active site environment (131-136).  
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TDO is a tetrameric protein that contains four subunits. The overall structure of TDO exhibits as 

a dimer of dimers in which the N-terminal amino acid from the adjacent subunits swapps into 

another subunit and provids part of the area of the binding cavity for substrate binding (128-130). 

In contrast, IDO is a monomeric protein. It contains two distinct, large C-terminal and small N-

terminal domains. The large domain of IDO is almost superimposed with a monomer of TDO 

and the active site structures are essentially identical. These enzymes have similar structures but 

share less than 14% amino acid sequence identity (137).  

The crystal structure of TDO in a binary complex with L-Trp has been determined from xcTDO 

in the reduced form. In the ligand-bound crystal structure of xcTDO, the primary substrate (L-Trp) 

binds to a relatively hydrophobic pocket near but not directly to the Fe ion (Figure 1.4) (126). 

The structure in Figure 1.4 reveals the detailed interactions between substrate and the 

surrounding amino acids residues in the active site of xcTDO. In the structure of xcTDO, the NH 

of the indole ring forms a hydrogen bond with His55 (corresponding to His72 in rmTDO and 

Ser167 in hIDO); the carboxyl group of L-Trp form hydrogen bonding and ionic bonding with 

Tyr113, Arg117 and Thr254 (corresponding to Tyr130, Arg134 and Thr271 in rmTDO; Phe226, 

Arg231in hIDO); whereas, the ammonium group of L-Trp forms hydrogen bonds with the side 

chain hydroxyl group of Thr254 and the 7-propionate group of heme. The active site cavity is 

surrounded by several hydrophobic residues, including Phe51 and Tyr24 (corresponding to 

Phe68 and Tyr43 in rmTDO and Phe163 and Tyr126 in hIDO). The indole ring of L-Trp forms a 

stacking interaction with the aromatic ring of the amino acid residues around the active site. 

Though the extensive interactions, L-Trp is bound to the active site.  
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The large domain of the monomeric IDO contains a complete active site that is almost conversed 

to that of TDO. Based on the similar functions and structure in the active site, the substrate 

bound IDO is assumed to be similar to that observed in TDO. However, IDO has less extensive 

hydrogen bonding interaction with the carbonyl group of the bound L-Trp. In this case there is no 

residue corresponding to Thr254 in xcTDO in the active site and Arg117 residue is away from 

the active site to form a hydrogen bond with the carbonyl group of L-Trp. These structural 

arrangements appear to allow the flexibility of the substrate binding. 

Figure 1.4. (A) The active site hydrogen bond network in the presence of L-Trp in X. campestris 
TDO (PDB 2NW8) and (B) The active site residues in the presence of 4-phenylimidazole in 
human IDO (PDB 2D07). 

1.2.7.4 Spectroscopic methodology of binding of substrate or substrate analogue 

Spectroscopic methodology has been applied to help distinguish the differences in substrate 

binding as well as the substrate and cofactor interactions in oxygen activation. The effect of L-

Trp on the active site environment has been detected by EPR spectroscopy (134, 135, 138-140). 
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Taking the advantage that NO can be used as a probe for a ferrous ion center, the EPR spectra 

suggests that the symmetry of the heme is changed upon binding of L-Trp (138). Ferric TDO 

exhibits high-spin Fe EPR signal. The spin transition of ferric TDO has been observed in the 

presence of L-Trp (135, 139).This is indicated by the conversion of EPR high-spin signal at g = 6, 

2 to low-spin signal at g = 2.66, 2.20, 1.81 (139). A recent EPR study of rhTDO and hIDO shows 

a mixture of a high-spin and a low-spin signals (135). The g values of the low-spin species are 

similar to that observed in rhIDO (140). Resonance Raman spectroscopy demonstrates the 

formation of ferric hydroxide species (132, 141). Thus, the low spin signal has been interpreted 

as a ferric hydroxide species in the substrate bound form. 

Resonance Raman spectroscopy is sensitive to hydrogen bonds, hydrophobic interactions, and 

steric interactions. This method is employed to detect the substrate-protein interactions and 

provides structural information regarding the active site structures of heme proteins. The 

resonance Raman spectra of TDO indicated that the L-Trp binds in the vicinity of the heme, 

triggering the spin transition from the high-spin to low-spin state of the ferric ion (131-133). CO 

is used as a structural probe for distal ligand binding site of heme proteins since it has a high 

affinity toward the ferrous ion. In hTDO, the NH group of L-Trp forms a hydrogen bond with 

histidine residue but not CO, while in hIDO it forms a hydrogen bond with CO (132, 133). This 

suggests that the active site substrate binding geometry of CO and ferrous ion is different in TDO 

and IDO. Batabyal and colleagues utilized tryptophan analogues such as L-Trp, D-Trp, 

tryptamine and indole propionic acid as structural probes to distinguish the substrate-protein 

interaction among different mutants in the presence of CO. Four possible conformers of L-Trp or 

L-Trp analogue-bound enzymes were proposed (132).  
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1.2.7.5 O2 binding and redox properties 

In TDO, the Michaelis–Menten complex is formed by L-Trp binding to the active site, followed 

by dioxygen binding to the ferrous iron center. Moreover, the substrate binding order is much 

more flexible in IDO, in which it can bind to dioxygen regardless of L-Trp (142, 143). Both TDO 

and IDO can be activated by the binding of superoxide to the ferric enzyme as well as dioxygen 

to the ferrous form (4, 144). The spectroscopic evidence of the oxy-intermediate has been 

reported for a bacterial TDO from Pseudomonas fluorescens, which shows a Soret band at 417 

nm and visible region at 543 nm and 576 nm (145) (146). H72S which mimic the active site 

residue of serine in IDO and H72A which replaces the only polar active site residue in TDO are 

constructed. The oxy-intermediate of H72S and H72A mutants are more stable compared to wild 

type TDO (132). hTDO and hIDO have similar redox potential. Upon substrate binding, the 

electrochemical midpoint redox potential for both of them increased (129, 135, 140, 147). This 

type of an increase leads to the thermodynamic stabilization of the active ferrous form.  

1.2.7.6 Catalytic mechanism of TDO 

TDO was identified over seventy years ago (148) and was studied at several well-established 

laboratories (149-156). Hamilton has proposed an ionic mechanism for the formation of a 

hydroperoxide intermediate at C3 position of the indole ring. It is generally believed that the 

further reaction proceeds through either a Criegee rearrangement or a concerted dioxetane 

mechanism (Scheme 1.11) (4, 128, 157-160). In the dioxetane mechanism, dioxygen inserts into 

the substrate in a concerted manner, while in the Criegee rearrangement, dioxygen molecule 

inserted into the substrate one by one. An alternative radical- based mechanism has also been 
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proposed by Leeds, in which electron transfer from the deprotonated L-Trp to ferric TDO is 

followed by radical recombination to generate the common hydroperoxide intermediate (161). 

However, previous studies have not been able to find solid evidence establishing either 

mechanism. 
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Scheme 1.11. The mechanistic models of Criegee rearrangement and dioxetane mechanisms. 

It has been suggested that both the dioxetane and Criegee rearrangement mechanisms are 

possible in enzymatic reactions (4). The dioxetane pathway is controversial because of the 

thermodynamic consideration of ring strain. It is less favorable to go through this pathway due to 

the formation of the highly strained dioxetane intermediate. The Criegee rearrangement pathway 

has been described in catechol dioxygenases (162, 163). Criegee rearrangement types of 

reactions require an acid-base catalyst for the proton transfer in order to facilitate the O-O bond 

cleavage. It has been proposed that the active site histidine residue in TDO functions as an acid-

base catalyst to facilitate the O-O bond cleavage (132, 133, 141). However, the IDO active site 

does not have the conserved amino acid required. It is proposed that dioxygen itself can function 
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as an acid-base catalyst for dioxygen activation in IDO (Scheme 1.12B) (134, 140, 147). Most 

recently, an electrophilic addition mechanism (Scheme 1.12C) was proposed based on 

knowledge on indole chemistry when reexamining the activity of TDO/IDO with 1-methyl-L-Trp 

(164). It was proposed that C2 or C3 position of the indole ring of substrate was attacked by 

electrophilic addition and a cation at N1 was formed. Density functional theory (DFT) 

calculations by Chung and colleagues provides computational support for this mechanism (165). 
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Scheme 1.12. Proposed mechanism of ferric hydroperoxide intermediate formation at C3 
position of L-Trp. 
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1.2.8 Protein Cofactor Synthesis 

 

Scheme 1.13. TTQ biogenesis mediated by MauG. 

TTQ is the protein-derived catalytic cofactor for amine oxidations in several enzymes (166-169). 

In methylamine dehydrogenase (MADH) from Paracoccus denitrificans, TTQ is present on each 

β subunit of the 119 kDa hetero-tetrameric α2β2 protein (Figure 1.5) (170, 171). The biogenesis 

of TTQ requires incorporation of two oxygen atoms into Trp57 and a cross-linking of the indole 

rings of Trp57 and Trp108 of the β subunits (Scheme 1.13). Such a biosynthesis is not a self-

processing event but an enzyme-mediated posttranslational process that requires the action of at 

least one processing enzyme encoded in the methylamine utilization (mau) gene cluster (172, 

173). It has been shown that MauG, the mauG gene product, is the crucial enzyme for tryptophan 

tryptophylquinone (TTQ) biogenesis (174, 175). Deletion of mauG in the mau gene cluster 

causes accumulation of a 119 kDa biosynthetic precursor of MADH in which Trp57 is mono-

hydroxylated at C7 and the cross-link is absent (174). This 119 kDa protein precursor of MADH 
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is the natural substrate of MauG. MauG-dependent TTQ-biosynthesis from the precursor is 

achievable in vitro using either O2 plus electrons from an external donor or H2O2 (175-178). 

 

Figure 1.5. Crystal structure of MauG at 2.1 Å resolution (courtesy C. M. Wilmot). 

MauG is a 42.3 kDa protein containing two covalently bound c-type hemes, one low-spin and 

one high-spin (176). MauG catalyzes the second oxygenation at C6 of the Trp57 phenyl ring, the 

cross-linking of the two tryptophan residues Trp53 and Trp108, and the oxidation of the 

semiquinone intermediate during the TTQ biogenesis (Scheme 1.13) (177). Overall the MauG-

mediated reaction is a six-electron oxidative process. 
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MauG is the first enzyme described that utilizes c-type hemes to catalyze an oxygenation 

reaction. Its sequence is homologous to that of bacterial di-heme cytochrome c peroxidase, but it 

possesses negligible peroxidase activity (176). The initial EPR study performed provides 

important clues into MauG’s biological activity debunking the hypothesis that MauG is a 

peroxidase on the basis of a sequence similarity to di-heme cytochrome c peroxidase (176). The 

EPR spectra of the ferric hemes of oxidized MauG are atypical of c-type cytochromes and 

different from di-heme cytochrome c peroxidases (176). The high-spin heme EPR signal has 

been found to be similar to those of myoglobin and the heme oxygenase-heme complex. The 

low-spin heme EPR signal is similar to those of complexes of CYP450cam with an exogenous 

axial sixth ligand (176). The intrinsic oxidation-reduction midpoint potential study of MauG has 

suggested a redox cooperativity, i.e. facile equilibration of electrons, between the two hemes 

(179). However, our EPR study shows that the two hemes are not spin-coupled (176, 180). 

Therefore, the two hemes must be distantly located even though they efficiently share electrons. 

A recent resonance Raman study confirms that one heme is 5-coordinate and the other is 6-

coordinate (179). The crystal structure of MauG, which is currently under refinement, confirms 

our EPR results in that the two Fe ions are physically separated, at ~ 21 Å distance. The heme 

edges are within 10 Å of each other and are connected by Trp93 (Figure 1.5). Two His residues, 

His35 and His205, were also confirmed to provide the proximal axial heme ligands (C. M. 

Wilmot of University of Minnesota, unpublished results). Surprisingly, it is a Tyr residue, rather 

than a His residue suggested by the Raman study (179), that provides the distal axial ligand in 

the low-spin heme. 
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One special aspect of MauG is its cofactor utilization. MauG employs two c-type hemes to 

perform oxygenation and subsequent oxidation reactions. This is in contrast to other 

hemoproteins that generally utilize b-type hemes, such as CYP450 [3-5], for the oxygenase 

activities. Most recently, a few other enzymes have also been found to utilize c-type hemes to 

perform similar reactions. For instance, RoxA is a rubber oxygenase that utilizes two c-type 

hemes for an oxidative cleavage of poly(cis-1,4-isoprene) (181). MauG remains the best 

characterized protein in this emerging new class of hemoproteins. Therefore, MauG is an ideal 

model system for studying the catalytic mechanisms of those covalently bound c-type heme 

cofactors. Another special aspect of MauG is that its substrate is a 119 kDa protein, which is 

about 3-fold larger than the enzyme. Therefore, characterization of the MauG-mediated process 

introduces a new dimension to our current views about protein evolution and protein structure-

function relationships, and provides insight for protein engineering strategies to introduce new 

functional groups into proteins. 

1.3 High-valent Iron-oxo Intermediates in Heme-Containing Proteins  

High-valent iron (IV)-oxo species have been identified as the oxidizing species in many heme 

and non heme Fe enzymes (4, 182-184). The oxidation state of compound I and II species are 

identical. Compound ES species is one electron more oxidized than compound II. The six-

coordinate ferryl porphyrins are low-spin (S =1) d4 complexes. In compound I, the radical can 

couple with the ferryl moiety (S = 1) in a ferromagnetic (S = 3/2) or antiferromagnetic (S = 1/2) 

fashion (185, 186). The high-valent iron intermediates have been trapped and are characterized 

and distinguished by the heme-containing proteins mentioned above, with an exception for 

TDO/IDO. They are also observed in nitric oxide synthase (NOS) with cysteine ligand (187), 
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prostaglandin H synthase (PGHS) (188), and cytochrome c oxidase (CcO) (189). These 

intermediates have been characterized by various spectroscopic techniques, including EPR, 

Mössbauer, resonance Raman, extended X-ray absorption fine structure (EXAFS), and electron-

nuclear double resonance (ENDOR) spectroscopy (182, 183, 190, 191).  

The formation and stabilization of high-valent iron-oxo species is dependent on the nature of the 

heme active-site environment, the axial ligand, and the oxidants. The axial ligand in CcP, 

myoglobin and HRP is a histidine while in CYP450 it is a cysteine, and in catalase, it is tyrosine. 

The optical features of the high-valent Fe species of some heme-containing proteins are listed in 

Table 1.1. In most b type heme, compound I or II can be characterized by the shift of Soret band 

in UV-Vis spectroscopy. 

Compound I species of HPR exhibits a green color with a broad Soret band at 400 nm and 651 

nm, which is similar to that of metalloporphyrin π cation radical; compound II has absorption at 

418, 527 and 554 nm. A Mössbauer spectroscopy analysis indicates that the Fe ion in compound 

I and II have the same oxidation state. The EPR spectrum of compound I shows a broad signal 

around the g = 2 region, which suggests the radical is located in the porphyrin ring and it is spin 

ferromagnetic coupled with the ferryl species. 

The first high-resolution crystal structure of the oxoferryl species in heme enzymes was 

determined in CcP. The brown compound I species of CcP exhibits a different UV-Vis spectrum 

compared to that of HRP and other heme enzymes. The compound I species had been previously 

characterized by EPR and Mössbauer spectroscopy. It has been concluded that the second 

oxidizing equivalent is located on a nearby tryptophan residue (192) (46), which has been termed 
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as compound ES. Using site-directed mutagenesis analysis, the protein radical was identified and 

pointed to Trp119 (193).  

The compound I of chloroperoxidase (CPO) has a thiolate axial ligand and represents the best 

characterized enzymatic model for the oxyferryl intermediate of CYP450. Compared to those 

histidine- and tyrosine-ligated oxoferryl species, the Soret band of the thiolate ligated oxoferryl 

species in CPO shifts away from the resting state with absorption at 367 nm and 689 nm. The 

intermediate has a transient lifetime--around 30 ms at room temperature. The rapid-freeze 

quench EPR spectrum of the CPO compound I exhibits signals at g = 2.00, 1.73, 1.64 with a 

much larger ferromagnetic exchange interaction when compared with that of HRP (185, 194). 

This variation might be due to the thiolate axial ligand acquiring some radical characters during 

oxoferryl formation.  

Compound I in catalase has a much shorter lifespan than peroxidase and is thus hard to detect 

using hydrogen peroxide as oxdiant. Using a peroxide analogue, such as peroxyacetic acid, 

compound I species was observed. The EPR spectrum of compound I from Micrococcus luteus 

catalase (MLC) shows an EPR signal at g = 3.3, 2.0, which suggests a porphyrin π cation radical 

quite different from those reported previously for the compounds I from horseradish peroxidase 

and chloroperoxidase (195). A similar EPR signal has also been detected in bovine liver catalase 

(BLC), in which the porphyrin π cation radical intratransfer to a Tyr residue within 0.04 - 15 s 

(196).  

The compound I intermediate has never been detected in the native dioxygen-driven catalytic 

reaction of CYP450 because of the very short-lived transient state. Many attempts, including the 
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use of the cryoradiolysis method and various computational chemistry approaches, have been 

made to characterize the compound I intermediate in CYP450 (5, 197, 198). Taken the advantage 

of peroxide shunt pathway which has much slower reation rate relative to the normal catalytic 

cycle, the proton transfer and compound I formation can be investigated. The reaction of 

CYP101 and meta-chloroperbenzoic acid (mCPBA) generated an intermediate with UV-Vis 

spectrum at 367 nm and 690 nm which is similar to the π cation radical of compound I (199). 

The assignments are supported by subsequent DFT studies. (200, 201) Similar results have been 

observed in CYP119 in the peroxide reaction. Further EPR analysis suggests the presence of a 

ferryl ion and a protein radical species (7). Multifrequency EPR studies indicate that the radical 

is harbored by a tyrosine residue (9). Due to the difficulties in isolating high-valent intermediate 

during catalytic cycle, Davydov and his colleagues have developed a cryoradiolysis method 

coupled with EPR or ENDOR spectroscopy to characterize the high-valent intermediate (5, 197).  

Since the first successful determination of crystal structure of CcP compound I in 1987 (45), 

several crystal structures of the high-valent intermediates of CcP, catalase, CYP450, myoglobin 

and HRP have been reported. Table 1.2 summarizes of the Fe-O distance in heme proteins 

determined by crystallography (202). It should be noticed that CcP intermediate has a radical 

located on a nearby amino acid, thus its Fe-O bond length is close to compound II species. 

Computational studies have been employed to generate structural information about high-valent 

intermediates. These methods use some approximations to then choose the specific surrounding 

environment of the protein to obtain the bond length information after energy minimizations. The 

studies on the geometric and electronic structure of heme-containing protein have been reviewed 
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Table 1.1. Comparison of UV-Visible characteristics of heme proteins. 

 Resting state Compound I Compound II Heme 

Type 

Radical Fifth 

ligand 

Horseradish peroxidase 402,490,640  

(203-206) 

400,577,620,651  

(205, 206) 

418,527,554  

(205-207) 

Heme b  His 

Chloroperoxidase 399,514,650 (208) 367,610,689 (209) 438,542,571 (209) Heme b  Cys 

Mitochondrial 

cytochrome c peroxidase 

406,630 (210) 414,528,556 (211)  Heme c Trp His 

Lignin peroxidase 409,502 (212) 409 (213)  Heme b  His 

Yeast cytochrome c 

peroxidase 

408,507,647 (214) 419-420;529-530;560-

561 (214) 

418,530,560 (215) Heme c Trp His 

Catalase 405 405,660 (195) 424,534,567 (195) Heme b  Tyr 

CYP450 101 417,535,571 367,694 (216) 429,536,568 Heme b  Cys 

CYP450 119 415,533,566 (217) 370,608,690 (7) n.d Heme b Tyr Cys 
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Table 1.2. The Fe-O distances in heme proteins determined by crystallography. 

 Compound I Compound II Axial ligand pH 

HPR (47, 218) 1.70 1.84 His 6.5 

CcP (219) 1.87  Cys 6.0 

Mb (220, 221) 1.76 1.92 His 5.2 

CYP450 (222, 223) 1.67  Cys 7.4 

Catalase (224) 1.76* 1.86 Tyr 5.2 

*The compound II from Micrococcus lysodeikticus (MLC) and compound I from Proteus 
mirabilis (PMC). 

[223, 224]. Green and his colleagues use the empirical Badger’s rule, which is based on the 

Fe(IV)-O stretching frequencies obtained from resonance Raman spectroscopy to predict the 

bond length information (225). Mössbauer spectroscopy is the classical standard in determining 

the formal oxidation state of iron. Experimental data suggest the isomer shift parameter of Fe(IV) 

is in the range of   0-0.2 mm/s (226). 

1.4 The Protonation of Ferryl Species 

 Compound I and II are traditionally described as Fe(IV)-oxo species. Recent studies suggest that 

the ferryl oxygen can be protonated in enzymes. Upon protonation, the spin population is 

transferred from the oxo ligand to the iron, thus the protonated ferryl species will have a longer 

bond length with a single bond characteristic when compared to the unprotonated one (227). 
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Although protons cannot be observed in X-ray structure determination, its protonation state can 

be interpreted based on the bond length. It has also been suggested by experimental data and 

DFT calculation that the quadrupole splitting parameter for Fe(IV) corresponding to the 

protonation state of ferryl ion (227). Recent crystallographic studies, Mössbauer spectroscopy, 

resonance Raman studies of ferryl ion are consistent with the predication. In crystallographic 

studies, a relatively long bond length ranging from 1.82 to 1.92 Ǻ are observed in CPO-II, CCP-I, 

CAT-II, Mb-II and HRP-II (47, 219, 221, 228, 229) which suggest a protonated form in CPO-II 

species. Mössbauer spectra of Catalase II, CPO II, CYP450BM3 and CYP450cam identifies two 

Fe(IV) species, one with quadruple splitting of 1.0-1.6 mm/s and the other one with 2.0-2.3 mm/s, 

which are assigned respectively to unprotonated ferryl and protonated ferryl species (Table 1.3). 

The bond length of Fe(IV)-OH is also interpreated to be in the range of 1.76-1.81 Å or 1.81-1.85 

Å using density functional calculations on heme model systems (225, 230), which is in line with 

the bond length of  X-ray crystal structure. Resonance Raman is applied for the bond distance 

calculation based on the stretching frequency with 750-840 cm-1 for Fe(IV)=O whereas 540-630 

cm-1 for Fe(IV)-OH (225). Comparative EPR, ENDOR and annealing studies have been 

conducted on a cryoreduced group of heme protein to identify the protonated features (197, 227, 

231).  

The discovery of basic ferryl species provides further insights into the heme-driven 

hydroxylation reaction, especially in CYP450. In CYP450 (Scheme 1.14), compound I 

withdraws one electron and proton from the C-H bond to form an Fe(IV)-OH intermediate, 

which rapidly recombines with cation carbon radical of substrate to generate hydroxylation  
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Table 1.3. Summary of Mössbauer parameters for ferryl species. 
 
Intermediate Iron species Spin δ  

(mm/s) 

ΔEQ  

(mm/s) 

CcP-I (232) [Fe4+=O2
-]+• S = 1 0.05 1.55 

HRP-I (233) [Fe4+=O2
-]+• S = 1 0.08 1.25 

HRP-II (47, 192) Fe4+=O2
- S = 1 0.03 1.61 

JRP-I (234) [Fe4+=O2
-]+• S = 1 0.10 1.33 

JRP-II (235) Fe4+=O2
- S = 1 0.03 1.59 

Mb-II (221) Fe4+=O2
- S = 1 0.09 1.43 

Mb (annealed) (236) Fe4+=O2
- S = 1 0.10 1.49 

Catalase-II (237) Fe4+=O2
- S = 1 0.07(2) 1.47(2) 

Basic Catalase-II (237) [Fe4+=O2
-]H+ S = 1 0.03(2) 2.29(2) 

CPO-I (238) Fe4+=O2
- S = 1 0.14 1.02 

CPO-II (238) Fe4+=O2
- S = 1 0.11(3) 1.59 

Basic CPO-II(238) [Fe4+=O2
-]H+ S = 1 0.10(3) 2.06(3) 

CYP450BM3-II (190) Fe4+=O2
- S = 1 0.11 1.05 

Basic CYP450BM3 (190) [Fe4+=O2
-]H+ S = 1 0.09 2.17 

CYP450cam-II (190) Fe4+=O2
- S = 1 0.14 0.66 

Basic CYP450cam-II 

(190) 

[Fe4+=O2
-]H+ S = 1 0.11 1.84 
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product. It has been shown that the capability of metal-oxo to abstract hydrogen increased in 

conjunction with an increase in the strength of the formation of O-H bond (239). 

The protonation status of the ferryl species and the distal site hydrogen bond to the oxygen atom 

of oxoferryl ligand may play important roles in proton transfer during the reaction. High-valent 

ferryl species are generally to be electrophilic in nature; the basic ferryl species has been 

proposed as a general feature in which hydrogen abstraction of the substrate can be facilitated.  

The formation of compound II in peroxidases is accompanied by the uptake of a proton. The 

ferryl species is modulated by a carboxylate side chain that is hydrogen-bonded to a proximal 

histidine. This might increase the basicity of ferryl species and the enzyme activity. In 

myoglobin, the proximal histidine ligand is hydrogen-bonded to a neutral backbone carbonyl 

group, implying a smaller proton affinity. It has been observed that the lower pH associates with 

increased reactivity in myoglobin, which is consistent with the increased proton affinity of the 

protonated ferryl species. (240)   

Fe4+

O

Fe4+

O
HC H C

O

Fe3+

HC

 Scheme 1.14. Rebound mechanism for CYP450 hydroxylation reaction. 

1.5 The Protein Radical Formation and Identification by EPR Spectroscopy 

In the past three decades, evidence has strengthened for the hypothesis that enzyme-based 

protein radicals are the catalytic driven force or the key transient intermediate in enzymatic 
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reactions. Spectroscopic data from EPR implicate these highly reactive species can be stored 

with remarkable stability inside an enzyme either as a transient intermediate or a paramagnetic 

center, and they catalyze a wide range of biological reactions in electron transfer and 

oxidation/reduction.  

It was not known that a protein can harbor a stable free radical derived from an amino acid 

residue until the discovery and later identification of the first tyrosyl radical from the smaller R2 

subunit of the Escherichia coli ribonucleotide reductase (RNR) in the 1970’s (241). Later it was 

discovered that a transient cysteine-based thiyl radical is formed at the expense of the tyrosyl 

radical during catalysis and that the transient thiyl radical is responsible for the catalytic 

reduction of the ribonucleotide substrates (242, 243).  

Tyrosine and tryptophan are the common sites of free radical location in proteins. Tyrosyl 

radicals have been found in bovine catalase, human hemoglobin, soybean leghemyoglobin, horse 

and sperm whale myoglobin treated with H2O2 (244) (196) (245-248), in Mycobacterium 

tuberculosis catalase-peroxidase treated with peroxyacetic acid (249), turnip isoperoxidases 

(250), and in PGHS (251) (252). Tryptophan-based radicals have been observed in CcP (46), 

peroxidase from Bjerkandera adusta (253), in recombinant pea cytosolic ascorbate peroxidase 

(rAPX) reacting with H2O2 (254). Site-directed mutagenesis provides the information on the 

radical location of specific amino acid residues within the protein. However, these studies would 

not be conclusive. For example, wild type sperm whale Mb can generate a Tyr103 radical, while 

in Y103F mutant, a radical signal still be observed which is located in Tyr151 instead of the 

original location on Y103 (247).  



44 

 

 

 

Most of the known protein-based tyrosyl radicals, either stable or transient, exhibit a lineshape 

resembling one of the above unless they are strongly spin-coupled with another paramagnetic 

center, such as that found in galactose oxidase (255, 256). An intriguing finding is although the 

EPR spectra are distinct; the spin density distributions of the unpaired electron in these tyrosyl 

radicals are almost invariant. Although the observed EPR spectra are distinct, the differences in 

EPR spectral characteristics are mainly due to the dihedral angles θH, defined by the locations of 

the β-methylene protons, β-methylene carbon, ring carbon C1, and its 2pz axis relative to the 

phenyl ring of the side chain (257). 

It should be noted that no structure analysis is available for the radical-containing form in the 

above enzymes with the exception of one radical-containing form obtained by oxidizing the 

crystals of E. coli R2 by H2O2 (258). The electronic structure and orientation of the active tyrosyl 

radical are determined by EPR-based techniques in conjunction with isotope-labeling of the 

radicals in ribonucleotide reductase (259, 260) and in PGHS (261). The tyrosyl radicals in R2 

proteins are stable because the free electron is delocalized to the phenyl ring and the radical 

center is shielded from reaction by a hydrophobic pocket.   

It is rare to obtain the crystal structure of a biological radical within its catalytic site In most 

other cases, free radical intermediates are not sufficiently stable to survive crystallization and the 

X-ray diffraction, thus EPR spectroscopy is the most pertinent tool to for defining structures of 

the radicals.  
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1.6 The Objectives 

Our objective in this thesis is to study the molecular biochemistry exhibited by two structurally 

diverse heme-containing enzymes that oxidize either free tryptophan or protein-bound 

tryptophan residues. Tryptophan 2,3-dioxygenase (TDO) inserts two oxygen atoms into free 

tryptophan in a four electron oxidizing process by a b-type heme cofactor. This enzyme is a 

representative of a potentially new hemoprotein dioxygenase superfamily, whose oxygenase 

activity remains poorly understood. MauG is a novel enzyme that utilizes two c-type hemes to 

catalyze a posttranslational modification of a 119 KDa protein. Such a modification endows 

endogenous tryptophan residues with a new catalytic activity. The reaction is a six-electron 

oxidation and the utilization of two c-type hemes by MauG to perform a hydroxylation reaction 

and the subsequent oxidation reactions is unprecedented.  

A biochemical and spectroscopic research study with two intellectually distinct aims is 

conducted to characterize the unique catalytic and structural properties of the two tryptophan 

oxidizing enzymes:  

1) Elucidation of the capability of oxidized TDO using hydrogen peroxide as a competent 

oxygen and electron donor in an oxidized TDO mediated tryptophan oxygenation process; 

spectroscopic characterization and a computational study of the intermediates generated during 

the peroxide-driven reaction catalyzed by the oxidized TDO; providing insights into a peroxide 

activation mechanism of oxidized TDO; illustration of the substrate activation mechanism of 

oxidized TDO; probing the contribution of the conserved active site histidine residue to the 

catalytic reaction via site-directed mutagenesis, and constructing mutants with regard to the 
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conserved Trp and Tyr residues in the active site to identify the radical generated during the 

peroxide-driven oxygenation. 

2) Probing of protein structure-function relationship of MauG, MADH biosynthetic precursor 

and mature MADH via chromatographically studies; spectroscopically trapping the intermediates 

during the H2O2-dependent oxygenation and further characterization of the chemical properties 

and reactivity of the intermediates; identification of the protein-based radical intermediate 

generated on the substrate protein during the H2O2-dependent oxygenation. 
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CHAPTER 2     

MATERIALS AND METHODS 

 

2.1 Chemicals 

H2
16O2 (30%, v/v), L-tryptophan, D-tryptophan, 5-hydroxy-L-tryptophan, 5-fluoro-DL-

tryptophan were obtained from Fisher Scientific.  The concentration of H2O2 was calculated 

based on the extinction coefficient of ε240 = 43.6 M-1cm-1.  H2
18O2 (2% v/v solution) and 

H2
18O were obtained from Icon Isotopes, New Jersey, at 90 and 97.6 atom %, respectively. 

All experiments were performed in 50 mM Tris-HCl pH 7.4 buffer unless otherwise specified. 

2.2 Overexpression and Preparation of TDO  

The construction of the plasmid encoding full-length Ralstonia metallidurans TDO has been 

described elsewhere (262, 263). Cultures were started by streaking the frozen glycerol stock cells 

into an ampicillin agar plate. The plate was incubated at 37 °C overnight. A single ampicillin-

resistant colony of E. coli cells was picked up and inoculated in 20 ml of Luria-Bertani (LB) 

media containing 100 µg/ml ampicillin at 37 °C until the OD600 nm reached 0.6. This starter 

culture was then inoculated into 500 ml of LB media containing 100 µg/ml ampicillin with an 

initial OD600 nm  of 0.002. The cells were grown under a constant shaking rate of 200 rpm at 37 °C 

until an OD600 nm value of 0.3 was reached. Aminolevulinic acid was added to a final 

concentration of 10 mg/500 ml of culture; ferrous ammonium sulfate was added to reach 35 µM 

final concentrations. The cells were allowed to grow until OD600 nm reached 0.6. Next, Isopropyl-
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β-D-thiogalactopyranoside (IPTG) was added to a final concentration of 0.6 mM after which the 

culture was allowed to proceed for additional 12 h at 28 °C with agitation at 200 rpm. The cells 

were then harvested by centrifugation at 8000 × g for 15 min at 4°C and stored at -80 °C. 

The frozen cells were resuspended in a 50 mM potassium phosphate buffer pH 7.6 containing 

5% glycerol and 20 mM ß-mercaptoethanol. Protease inhibitors including 1 mM PMSF, 2 µM 

leupeptin, and 0.02 mg/ml aprotinin were added, and the cells were sonicated in ice. The debris 

of the cells was removed by centrifugation at 20,000 g for 20 min at 4°C. The protein 

purification was conducted using ÅKTA FPLC protein purification system. The clear 

supernatant was then applied to 80 mL Ni-NTA-affinity chromatography (Qiagen) equilibrated 

with a 50 mM potassium phosphate buffer pH 7.6 containing 150 mM NaCl; 20 mM imidazole 

and 5% glycerol. Before application to the Ni-NTA column, the imidazole concentration of the 

supernatant solution was adjusted to 20 mM. TDO was eluted from the column with 50 mM 

potassium phosphate buffer pH 7.6 containing 150 mM NaCl, and 5% glycerol with an imidazole 

gradient from 20 mM - 350 mM over 7 column volume (CV). The fractions containing TDO 

were combined and exchanged into 50 mM Tris pH 7.4 containing 10% glycerol using a 

Sephadex G50 column (GE healthcare, NJ). The desalted fractions were pooled and concentrated 

using an Amicon Ultra (Millipore) centrifugal device with a 10,000 Da molecular weight cut-off. 

Concentrated protein was frozen by liquid nitrogen and stored at -80 °C. 

2.3 Overexpression and Preparation of 57Fe-enriched TDO  

The 57Fe-enriched TDO was obtained by growing cell culture with metal-depleted medium 

supplemented with 57Fe. The 57Fe stock solution was prepared by dissolving the 57Fe-enriched 
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metal foil (95.38% 57Fe-enrichment) in 2.5 M sulfuric acid under O2-free condition. The mixture 

was incubated at 60°C while stirred using septum-sealed vials under anaerobic condition until 

the metal totally dissolved. This stock solution was ready to be added directly to the medium. 

For expression of the 57Fe-enriched TDO for Mössbauer spectroscopy, the LB culture medium 

was forced through a Chelex-100 column which eliminated naturally abundant 56Fe from the 

medium. The following reagent grade compounds were also added at the final concentrations:  5 

μM 57Fe solution, 90 μM MgSO4 and 140 μM CaCl2.  When cultures enriched in 57Fe reached an 

OD600 nm  of 0.3, aminolevulinic acid was added to a final concentration of 10 mg/500 ml of 

culture and  57Fe stock solution was added to reach 35 µM final concentration. The cells were 

allowed to grow until OD600 nm  reach 0.6. Then IPTG was added to a final concentration of 0.6 

mM and the culture was allowed to proceed for an additional 14 h at 28 °C with shaking at 200 

rpm. The cells were then harvested by centrifugation at 8000 × g for 15 min at 4°C and stored at 

-80°C. 

57Fe enriched TDO was purified using the same procedure as that used for 56Fe TDO 

purification. 

2.4 Construction of TDO Derivatives by Site-directed Mutagenesis 

The plasmid containing His-tagged TDO was used as a template for construction of all of the 

mutants, including H72S, H72N, Q73F, Y43W, Y43F, W119F, W253F, W119F/W253F, and 

H257C. The constructions were conducted by Dr. David T. Brown (the Genomics facility at 

University of Mississippi Medical Center, Jackson, MS). Y130F was kindly provided by Dr. 

Tadhg P. Begley (Department of Chemistry, Texas A&M University, TX). 
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2.5 Electrophoretic Analysis and Concentration Determination of Protein 

The expression levels and enzyme purities of TDO and its mutants were determined by SDS-

PAGE on 12% polyacrylamide gels. SDS polyacrylamide gels were prepared as described by 

Laemmli (264). SDS-PAGE was performed in a Mini Protein II electrophoresis apparatus (Bio-

Rad) with a constant voltage of 200 volts.  The gel was then stained using Coomassie blue 

solution for 5 min and then destained with Coomassie blue destaining solution for at least 1 hr 

with rotational shaker. 

Protein concentration was determined by using Coomassie Plus protein assay reagent (Pierce, 

IL). Albumin was used as standard and added to the reagent at the final concentrations of 0 

μg/ml, 25 μg/ml, 125 μg/ml, 250 μg/ml, 500 μg/ml, 750 μg/ml, 1000 μg/ml, 1500 μg/ml and 

2000 μg/ml. Absorbance at 595 nm was measured on an Agilent 8453 spectrophotometer 

(Agilent Technologies, CA) after mixing the varied concentration of albumin with the assay 

reagent. The absorbance values were then plotted over the albumin concentrations to obtain the 

protein concentration standard curve. An appropriate amount of desired protein was mixed with 

the assay reagent and the absorbance at 595 nm was recorded.  The amount of protein was 

adjusted until the recorded absorbance value fell into the range of the standard curve. The 

reading value was fitted into the standard curve to calculate the concentration of the desired 

protein. Unless otherwise stated, all protein concentrations are listed as monomer concentrations.  
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2.6 Steady State Kinetic Analysis of TDO and Its Derivatives 

All TDO samples were prepared in 50 mM Tris-HCl pH 7.4.  The absorption spectra were 

obtained with an Agilent 8453 UV-Vis spectrophotometer with ChemStation A09.01.76 software 

or a Cary 50 UV-Vis spectrophotometer (Varian Inc, CA) with a 1 cm light path.  

The enzyme activity of WT TDO and its mutants was measured by monitoring the rate of the 

production of NFK at 321 nm by a spectrophotometric assay. Reactions were performed at room 

temperature in 50 mM Tris-HCl pH 7.4 containing 1 mM ascorbic acid and varied concentrations 

of L-Trp. The reactions were initiated by addition of TDO; the initial rates were calculated from 

the absorbance increase at 321 nm with an extinction coefficient of 3,150 M-1 cm-1. Apparent Km 

and kcat values were determined by varying the concentration of each substrate and fitting the 

data to the Michaelis-Menten equation using Origin software (eq. 2.1), 

υ/ [Ε]= kcat[S]/(Km + [S])       (eq 2.1) 

where υ is the steady state velocity; [E] is the concentration of enzyme; [S] is the concentration 

of L-Trp; kcat is the catalytic rate, Km is the Michaelis-Menten constant. 

2.7 Mass Spectrometry 

The preparations of samples and data analysis were conducted by Rong Fu. Mass spectrometry 

was preformed by Dr. Siming Wang at Georgia State University. 

Samples for ESI-MS were prepared for infusion with 50:50 acetonitrile/water in 0.1% formic 

acid.  Water Q-TOF micro (Milford, Massachusetts) equipped with an electrospray ionization 
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source was operated in positive ionization mode.  In the MS-MS experiment, the collision energy 

was set at 30 V.  The Waters 2695 Alliance HPLC system (Milford, Massachusetts) was used for 

the LC-MS analyses.  Chromatographic separation was achieved on the analytical column Restek 

Allure C18 column (100 mm × 2 mm i.d., 3 μM).  Mobile phase A was composed of water 

containing 0.1% formic acid and mobile phase B was composed of acetonitrile containing 0.1% 

formic acid.  The gradient was developed from 100% A over 5 min; to 0% A over 10 min; to 0% 

A over 15 min; to 100% A over 20 min at the flow rate of 200 µL/min.  MassLynx 4.1 software 

was used for instrument control and data acquisition. 

2.8 Oxygen Production 

Oxygen production was measured using an YSI oxygen electrode coupled to a Hansatech 

Oxygraph (Kings Lynn, Norfolk, U.K.) at 25 °C.  The stirred cell was capped, and reagents were 

added with a Hamilton syringe.  Oxygen levels were continuously monitored in real-time during 

reaction.   

2.9 Rapid Freeze Quench EPR Samples 

Rapid freeze quench EPR samples were prepared using Update Instruments Model 715 freeze-

quench apparatus (Madison, WI). Ferric TDO (400 µM) or MauG (400 µM) were mixed with 6 

equivalents of H2O2 or 1 equivalents of H2O2 in a 1 : 1 ratio. Reactants were mixed through the 

shortest aging line (5.3 µl) and sprayed into an EPR tube, followed by freezing in 1 s in cold 

isopentene, -140 °C. 
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2.10 Stopped-flow Spectroscopy  

Pre-steady-state kinetic analysis of the ferric TDO oxidation reaction with H2O2 was performed 

using a RSM16 stopped-flow rapid scanning spectrophotometer (OLIS, Bogart, GA).  Dead time 

of the instrument is ca. 2 milliseconds.  One syringe contained 13 µM ferric TDO, and the other 

contained 6 equivalents of H2O2.  The reaction temperature was controlled at 25 ºC by a water 

bath. 

2.11 Electron Paramagnetic Resonance Spectroscopy  

All the EPR samples were prepared in 50 mM Tris pH 7.4 containing 10% glycerol unless 

otherwise stated. The enzyme concentrations used were heme concentration. EPR samples were 

made in reaction vials, transferred to EPR tubes and quickly frozen in cold isopentane (-140 °C) 

or liquid nitrogen after the desired reaction time. X-band EPR spectra were recorded in 

perpendicular mode on a Bruker EMX spectrometer at 100-kHz modulation frequency using a 

4119HS high-sensitivity resonator. The EPR measurement temperature was maintained with an 

ESR910 liquid helium cryostat, LLT650/13 coolant transfer tube, Oxford ITC503S and Bruker 

ER4131VT temperature controllers. Spin concentration was determined by double integration of 

the sample spectrum obtained under low microwave power conditions and comparing the 

resulting intensity to that of a copper standard (0.5 mM CuSO4, 5 mM EDTA) obtained under 

identical conditions. Spectral baseline corrections were performed using the WinEPR software 

package (Bruker). EPR simulation was accomplished by using the WEPR program developed by 

Dr. Frank Neese (265) and by the theoretical predictions according to the spin Hamiltonian 
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described in SimFonia version 1.25 (GmbH, 1995). No assumptions were made regarding the 

orientations of the principal axis of g and A in the calculations. 

For the experiments of ferric TDO and its derivatives with peroxide and its analogues in the 

absence of L-Trp, typically EPR samples with 0.15 – 0.20 mM TDO or its derivatives were made 

in each set of experiments with 6 equivalents of H2O2 in different experiments in 50 mM Tris pH 

7.4 buffer containing 10% glycerol. The samples were transferred into EPR tubes and frozen in 

liquid nitrogen as soon as they were adequately mixed.  

In the reaction of ferric TDO with peroxide in the presence of L-Trp, EPR samples with 0.15 – 

0.20 mM TDO were mixed with 10 equivalents of L-Trp and 6 equivalents of H2O2 at the same 

time and mixed well, followed by transferring to EPR tubes and frozen in liquid nitrogen. The 

total time was 30 s. 

For experiments with ferric TDO derivative binding to substrate or substrate analogues, TDO 

was mixed well with varied concentrations of substrate or substrate analogues, followed by 

transferring to an EPR tube and frozen in liquid nitrogen. The total time was 30 s. Experimental 

EPR spectra were recorded at 10 K with 3 mW microwave power at 9.4 GHz.  

The EPR relaxation property of the free radical at different temperatures was analyzed from the 

EPR spectra obtained with microwave power added in triplets of dB. At each given temperature, 

sixteen EPR spectra were recorded within 0.002 – 200 mW of microwave power. The values of 

half-saturation parameter (P1/2) were obtained by fitting the data according to eq 2.2: 
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                            I ∝ 1/(1 + P/P1/2)b/2                                           

[eq 2.2] 

where I is the EPR signal amplitude, b is an inhomogeneous broadening parameter, and P is 

microwave power. 

2.12 Mössbauer Spectroscopy  

The preparation of samples was performed by Rong Fu. The measurements were conducted by 

Professor Michael P. Hendrich and his student, Rupal Gupta (Department of Chemistry Carnegie 

Mellon University, Pittsburgh) and Professor Castern Krebs at Pennsylvania State University. 

The Mössbauer samples were prepared from 1.7 mM TDO (70% 57Fe/56Fe ratio) reacting with 

either six or eight equivalents of peroxide and frozen in liquid nitrogen. The experiments were 

conducted for three times. The total reaction time for the intermediate samples was between 28 s 

and 50 s. As for substrate-bound ferric 57Fe-TDO, 1.5 mM sample was mixed well with 10 

equivalents of L-Trp in a sealed vial for 3 min under anaerobic condition before being frozen. 

Around 460 µl of mixture was transfered into a Mössbauer cap using a gas-tight syringe and 

slowly frozen in liquid nitrogen.  

Ferrous 57Fe-TDO sample was prepared by treating with 10 equivalents of sodium dithionite 

under anaerobic conditions. The sample was allowed to incubate under anaerobic condition for 

an additional 15 min, followed by transfer into a Mössbauer cap using a gas-tight syringe, and 

then slowly frozen in liquid nitrogen. Substrate-bound 57Fe ferrous with 1.5 mM concentration 

was prepared by mixing enzyme prepared as above with 10 equivalents of L-Trp under anaerobic 
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condition. CO bubbled into a substrate-bound 57Fe ferrous sample to generate a substrate-bound 

57Fe ferrous-CO complex.  

To detect the formation of ferrous ion in the reaction of 57Fe ferric TDO treated with H2O2 in the 

presence of L-Trp, 1.5 mM 57Fe ferric TDO was treated with 10 equivalents of L-Trp followed 

by bubbling with CO, then 2 equivalents of H2O2 were added into the reaction mixture and 

mixed well before being transferred into a Mössbauer cap and frozen in liquid nitrogen.  

Mössbauer spectra were recorded on a constant acceleration instrument with an available 

temperature range of 1.5 to 200 K.  Isomer shifts are reported relative to Fe metal at 298 K.  

Least-square fitting of the spectra was performed with the WMOSS software package (WEB 

Research, Edina, MN).  The low-temperature Mössbauer spectra of resting TDO were fit with 

the standard spin Hamiltonian of eq 2.3: 

      H = gβB.S + D[Sz
2- S(S+1)/3] + E(Sx

2 – Sy
2) + Aiso(S.I) -gnbnB·I + (eQVzz /12) [3Iz

2-I(I + 1) 

+ η(Ix
2- Iy

2)]             

[eq 2.3]                           

2.13 Metal Content Analysis 

The preparation of samples and data analysis was conducted by Rong Fu. The measurements 

were conducted by Dr. Johnathan P. Hosler at the University of Mississippi Medical Center. 

Metal contents were determined by inductively coupled plasma optical emission spectroscopy 

(ICP-OES) using a Spctro Genesis spectrometer (Spectro Analytical Instrument GmbH & Co. 



57 

 

 

 

KG, Germany). The spectro genesis ICAL calibration standard (GENESIS-ICAL) and transition 

elements ICP-MS standard (CCS-6) (Inorganic Ventures Inc, Lakewood, NJ) were used as 

standards for instrument setup and calibration. Calibration curves were obtained by measuring 

the standards at the concentrations of each element at 0, 0.1, 0.3, 0.5, 1.0 and 10 ppm (mg/L). 

All the samples for ICP-OES experiments were prepared in 25 mM Tris pH 7.4. Before metal 

analysis, the proteins were desalted on a 5 ml HiTrap column (GE Healthcare, NJ) using an 

ÅKTA FPLC protein purification system to change the protein buffer into metal free 25 mM Tris 

pH 7.4 buffer. Protein concentrations were determined before and after the metal analysis as 

described before. The blank ICP buffer was also measured and the result was used as a control 

for subtraction. The measurement was repeated three times. Metal concentrations were converted 

from ppm to molar concentrations. 

2.14 UV-Vis Spectra of the Ferric TDO upon Reacting with Hydrogen Peroxide in the Presence 

of L-Trp under Anaerobic Condition 

L-Trp and H2O2 were freshly prepared in 50 mM Tris-HCl pH 7.4 buffer which had been 

previously degassed and purged with argon.  A vial containing concentrated ferric TDO was 

gently vacuumed and refilled with argon, and the enzyme was diluted into the O2-free buffer in a 

sealed cuvette containing 5 mM L-Trp.  A gas-tight microsyringe was used for the addition of 6 

equivalents of H2O2 of argon-saturated oxygen-free H2O2 to ferric TDO. Ferrous TDO-L-Trp 

complex was prepared by adding 10 equivalents of sodium dithionite under the same anaerobic 

condition in the presence of 5 mM L-Trp. In another parallel experiment, ferric TDO was mixed 
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with 5 mM L-Trp and bubbled with carbon monoxide for 5 min to allow equilibrium, followed 

by adding 6 equivalents of H2O2. 

2.15 Effect of the Concentration of L-Trp on Reduction of Ferric TDO  

The reduction of ferric TDO upon peroxide activation was performed under anaerobic condition. 

Stock solution of H2O2, L-Trp were freshly prepared using 50 mM Tris pH 7.4 buffers which had 

been previously degassed and purged with nitrogen gas. The stock ferric TDO was gently 

vacuumed and refilled with argon repeatedly.  Ferric TDO and L-Trp were transferred with a 

gas-tight syringe into a sealed cuvette in which ferric TDO has a final concentration of 5 µM, 

whereas L-Trp concentration ranged from 200 μM to 6,200 μM. The reaction mixture was 

vacuumed and refilled with argon by repeated cycles. The mixture was filled with 100% CO and 

allowed to reach equilibrium for 5 min. Six equivalents of H2O2 were added into the mixture and 

the optical absorption spectra were recorded with an Agilent 8453 UV-Vis spectrophotometer. 

The formation of ferrous-CO-L-Trp complex was monitored at 421 nm. The value of 421 nm 

was obtained from the difference spectrum between the recorded spectrum after and before 

peroxide activation. The extinction coefficient of ε405 = 130 mM-1cm-1 and ε421 = 123 mM-1cm-1 

was used to determine the concentration of ferric TDO and ferrous TDO-CO-L-Trp complex, 

respectively.  

2.16 Effect of the Concentration of H2O2 on the Activity of Ferric TDO for Dioxygenation 

Reaction 

The reaction mixture contained 0.77 μM ferric TDO, 5 mM L-Trp in 50 mM Tris pH 7.4 buffer. 

H2O2 was added into the mixture to initiate the reaction. The concentration of H2O2 ranged from 
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2 to 20 equivalents over the concentration of ferric TDO. The enzyme activity of ferric TDO was 

measured by monitoring the rate of production of NFK at 321 nm by a spectrophotometric assay 

with an Agilent 8453 UV-Vis spectrophotometer.   

2.17 Stoichiometry of Hydrogen Peroxide Consumption to Product Formation under Anaerobic 

Conditions in the Presence or Absence of Hydroxyurea  

L-Trp and H2O2 were freshly prepared in 50 mM Tris-HCl pH 7.4 buffer which had been 

previously degassed and purged with argon.  Concentrated ferric TDO was gently vacuumed and 

refilled with argon and diluted into the O2-free buffer in a sealed cuvette containing 5 mM L-Trp.  

A gas-tight microsyringe was used for stepwise additions of 5 equivalents of argon-saturated 

oxygen-free H2O2 to ferric TDO in the presence or absence of 10 mM hydroxyurea. The total 

amount was 35 equivalents of H2O2 over the enzyme concentration.  

2.18 The Effect of Hydroxyurea on the Catalytic Reaction of Ferric TDO upon Reacting with 

H2O2 

The reactions were conducted in 50 mM Tris pH 7.4. Three sets of experiments were designed to 

investigate the effect of a potential radical, generated via O-O bond cleavage of ferric 

hydroperoxide intermediate, on the enzymatic activity.  Ferric TDO was mixed with 6 

equivalents of H2O2. The reaction mixtures were incubated for varied times ranging from 5 s to 

100 s, followed by adding 2 mM L-Trp to initiate the catalytic reaction. In another set of 

experiments, the reaction mixtures were initiated by adding 5 mM hydroxyurea and 2 mM L-Trp 

at the same time.  Experiments were also set up for the reaction in which ferric TDO was mixed 

with 6 equivalents of H2O2 and 5 mM hydroxyurea. The reaction mixture was incubated for a 
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various time ranging from 5 s to 100 s, followed by adding 2 mM L-Trp to initiate the catalytic 

reaction. The rate of the reactions was measured by monitoring the rate of the production of NFK 

at 321 nm by a spectrophotometric assay with an Agilent 8453 UV-Vis spectrophotometer.   

2.19 Substrate Activation of Ferric TDO under Anaerobic Conditions 

All TDO samples were prepared in 50 mM Tris-HCl pH 7.4.  The reactions were conducted 

under anaerobic condition using a homemade long-arm sealed cuvette. The absorption spectra 

were recorded with an Agilent 8453 UV-Vis spectrophotometer with ChemStation A09.01.76 

software at room temperature.  All reagents were degassed and purged with argon prior to the 

actual experiments.  The cuvette was evacuated by vacuum, and refilled with argon repeatedly. 

Around 900 µl buffer containing 20 mM substrate analogue including D-Trp, 5-OH-Trp and 6-F-

Trp was transfered into the cuvette using a gas-tight syringe. The solution was evacuated by 

vacuum and again refilled with argon repeatedly. 5-6 μM ferric TDO was transferred into the 

mixture under anaerobic conditions to start the incubation. The incubations were conducted 

under anaerobic conditions for 3 h. 

2.20 Preparation of His72 and Its Mutants at Different pH Conditions 

The buffer with 50 mM Tris pH 7.4, containing 10% glycerol, of the stock proteins of WT TDO, 

H72S, H72N and Q73F were exchanged to various pH conditions on 5 ml HiTrap Desalting 

column (GE healthcare, NJ) using ÅKTA FPLC protein purification system. The buffers 

corresponding to different pH values of 6.0, 7.4 and 10.0 were 50 mM MES pH 6.0, 50 mM Tris 

pH 7.4 or 50 mM CHES pH 10.0 containing 10% glycerol. The desalted fractions were pooled 

and concentrated using an Amicon Ultra (Millipore) centrifugal device with a 10,000 Da 
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molecular weight cut-off to around 200 µM concentration. Concentrated protein was frozen by 

liquid nitrogen and stored at -80 °C. 

2.21 PH Dependence Studies 

Studies on pH dependence were performed on ferric TDO, H72S, H72N and Q73F over the pH 

range of 6.0-10.5 using a multicomponents buffer which contained 50 mM Tris, 50 mM MES 

and 50 mM glycine. This buffer was used to minimize the effects of using different buffers over 

a wide range of pH. NaCl was added to normalize the ionic strength effects in the buffer. The pH 

of the buffers was adjusted with 1 M NaOH or 1 M HCl with a pH meter. Steady-state kinetic 

assays were conducted at room temperature in 50 mM Tris-HCl pH 7.4 containing 1 mM 

ascorbic acid and 20 mM L-Trp. The reactions were initiated by addition of enzymes and the 

initial rates were calculated from the absorbance increase at 321 nm with extinction coefficient 

of 3,150 M-1 cm-1.  

2.22 Redox Titrations of TDO      

The redox potentials of TDO were determined with a Corning combination redox electrode in 

100 mM potassium phosphate pH 7.0 buffer under anaerobic condition. The electrode was 

calibrated using quinhydrone  (1:1 mixture of hydroquinone and benzoquinone) as a standard 

with an Em value of 280 mV at pH 7.0 (266). The electrode was tested by measuring the known 

potentials of 2,6-dichlorophenolindophenol (DCPIP), and amicyanin. The mediators used were 

10 μM 1,2-naphthoquinone,10 μM phenazine methosulfate and 10 μM 1,2-naphthoquinone 

mixture. The TDO sample was subjected to repeated cycles of evacuation by vacume and 

replacement with argon to remove O2 and then transferred into a sealed cuvette to a final 
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concentration of 5 μM. Sodium dithionite and potassium ferricyanide were used as titrants and 

the stock solutions were freshly prepared in 100 mM potassium phosphate pH 7.0, which had 

been previously degassed and purged with nitrogen gas. A gas-tight syringe was used for 

titration. The concentrations of the oxidized and reduced TDO were determined by comparison 

with the spectra of the completely oxidized and reduced forms of TDO. Em values were obtained 

by fitting the experimental data to the Nernst equation (eq 2.4) for a single electron process. 

Potentials are quoted against the standard hydrogen electrode (SHE). 

Fraction (reduced) = 1/(1+10(E-Em) / 0.059 )              (eq 2.4) 
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 CHAPTER 3     

HYDROGEN PEROXIDE AS A SUBSTRATE OF OXIDIZED TRYPTOPHAN 2,3-

DIOXYGENASE 

 
The section of chapter 3 is a direct copy of our prepared manuscript on TDO: Hydrogen peroxide 

as a substrate of oxidized tryptophan 2,3-dioxygenase. Rong Fu, Siming Wang, Michael P. 

Hendrich, Tadhg P. Begley, and Aimin Liu. (2009). The expression and purification of TDO 

protein, anaerobic and aerobic UV-Vis spectroscopy, kinetic assay, stopped-flow spectroscopy, as 

well as the preparation of samples for mass spectrometry, and the oxygen electrode experiments 

were all conducted by Rong Fu (Department of Chemistry, Georgia State University, Atlanta). 

Mass spectrometry was conducted by Dr. Siming Wang (Department of Chemistry, Georgia 

State University, Atlanta). Catalase-like activity of ferric TDO was suggested by Dr. Michael P. 

Hendrich (Department of Chemistry Carnegie Mellon University, Pittsburgh). The rmTDO 

plasmid was provided by Tadhg P. Begley (Department of Chemistry, Texas A&M University, 

Austin). The manuscript was prepared by Rong Fu and Dr. Aimin Liu. Other authors provided 

input for the manuscript. We thank Drs. Rodney C. Baker and Naila M. Mamoon for the initial 

attempts in the mass spectrometry analysis, Dr. Jonathan P. Hosler and Mr. Lakshman Varanasi 

for assistance with the oxygen electrode experiments, and Dr. Victor L. Davidson for access to 

the stopped-flow spectrophotometer as well as assistance with the kinetic analysis. This work is 

supported by the National Institutes of Health grants GM069618 (to TPB) and GM077387 (to 

MPH), and National Science Foundation (NSF) grant MCB 843537 (to AL).  RF acknowledges a 
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fellowship support from the Molecular Basis of Disease (MBD) program of Georgia State 

University (GSU). 

3.1 Abstract 

Tryptophan 2,3-dioxygenase (TDO) utilizes a ferrous heme to catalyze the dioxygenation 

reaction of L-tryptophan (L-Trp) to produce N-formylkynurenine (NFK).  Here we report that the 

ferric form of TDO possesses two previously unknown catalytic activities with hydrogen 

peroxide as a substrate.  Under either aerobic or anaerobic conditions, ferric TDO utilizes two 

moles of H2O2 to produce one mole of NFK from L-Trp.  In the presence of 18O-enriched H2O2 

or H2O, ESI-MS, LC-MS, and ESI-MS-MS spectrometric analyses show that both oxygen atoms 

inserted in NFK are derived from H2O2 and one of the oxygen atoms is solvent exchangeable, as 

suggested by the 18O-incorporation results. This observation is further validated by the 

experiment dissolving 16O-NFK into H2
18O followed by mass spectrometry analysis and re-

dissolving in H2
16O and analyzed by mass spectrometry again.  One 18O-incorporation and 

expulsion are observed from these experiments. Importantly, a monooxygenated product of L-

Trp with m/z of 221 in the 16O experiments, or 223 with 18O, is also observed.  These results 

point to a sequential addition of two oxygen atoms to L-Trp during catalysis, as opposed to a 

one-step concerted dioxygenation reaction.  In the absence of L-Trp, peroxide is also able to react 

with TDO and O2 is produced as a result of the reaction, which indicates that the ferric enzyme 

possesses catalase activity.  However, the production of O2 from H2O2 is significantly suppressed 

when L-Trp is present.  These findings propose the potential function of TDO as a peroxide 

scavenger, suggesting important implications for understanding the biological role of this 

enzyme under oxidizing environments. 
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3.2 Introduction 

Tryptophan 2, 3-dioxygenase (TDO) catalyzes oxidative cleavage of the indole ring of L-

tryptophan (L-Trp), converting it to N-formylkynurenine (NFK).  TDO is a biologically 

significant enzyme.  It utilizes a b-type heme to catalyze the first committed step for L-Trp 

degradation through the kynurenine pathway (155, 267-272). The kynurenine pathway 

constitutes the major route of de novo biosynthesis of NAD which is one of the essential redox 

cofactors in all living systems (267).  The intermediate metabolites of this pathway can lead to 

numerous physiological and pathological conditions, including: cataract formation, cerebral 

malaria, Alzheimer's disease, HIV infection, Huntington's disease and ischemic brain injury 

(268-271).  TDO is responsible for oxidizing over 99% of the free L-Trp in intracellular and 

extracellular pools (268).  In addition, the levels of tryptophan regulated by TDO can affect the 

synthesis of serotonin (268, 273-275), a known neurotransmitter. 

Hemoproteins perform a wide range of biological functions including oxygen transport, storage, 

electron transfer, monooxygenation, and reduction of dioxygen; however, they rarely express a 

dioxygenase activity as their native biological function.  TDO is the first described exception 

(148, 155, 276).  As an oxygenation enzyme, TDO and its orthologue, indoleamine 2,3-

dioxygenase (IDO) are distinctive members of the dioxygenase family in that they utilize a 

histidine-ligated ferrous heme rather than a non-heme iron to carry out the oxygen activation and 

insertion (126, 137, 262).   A number of recent biochemical and spectroscopic studies on 

substrate recognition have clarified the role of active site environment (277-283); however, the 

catalytic mechanism of TDO and IDO still remains to be elucidated.  The heme binding site of 

TDO has only one axial position for O2 binding and activation (126, 262, 282), and the primary 
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substrate, L-Trp, must bind to a pocket adjacent to the Fe ion (126).  In contrast, the non-heme 

iron or manganese dioxygenases typically have active sites with two histidines, one carboxylate 

and two or three solvent-derived ligands, which allow simultaneous binding of both substrate and 

dioxygen to the metal ion (124). The oxygen activation and insertion of O-atoms catalyzed by 

TDO must therefore proceed via a distinct mechanism relative to the non-heme iron dependent 

enzymes. The crystal structures of TDO, from Xanthomonas campestris and Ralstonia 

metallidurans (126, 262, 282), and IDO from human (137, 139) have provided critical insights 

into the molecular details of the active site architecture.  These two enzymes have similar 

structures but share less than 14% sequence identity.  A recent discovery has exposed a third 

hemoprotein, PrnB, with dioxygenase activity (284).  Therefore, the existence of a potential 

heme-dependent dioxygenase enzyme superfamily of which TDO is a prototype member has 

been suggested (284).  This intriguing property of TDO has generated much attention (126, 137, 

262, 277-283, 285-287). 

Hydrogen peroxide is known to activate oxidized TDO (285, 288, 289), but its activation 

mechanism has not been thoroughly studied.  In cytochrome P450, the oxidized enzymes can 

utilize peroxide as a substrate for catalysis, which is known as peroxide shunt mechanism (290-

295).  For those enzymes, hydrogen peroxide is used as the source for an oxygen atom and two 

electrons for substrate oxygenation, thereby bypassing the requirements of the normal catalytic 

cycle for dioxygen and exogenous electron donors.  Through biochemical and mass 

spectrometric analyses, two previously unidentified catalytic activities of oxidized TDO are 

revealed in this work.  Hydrogen peroxide is found to be an oxygen donor in the enzyme-
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mediated NFK production.  A sequential oxygen insertion into the L-Trp at the enzyme active 

site is also demonstrated by the mass spectrometry analyses. 

3.3 Materials and Methods 

Chemicals — H2
16O2 (30%, v/v) was obtained from Fisher.  The concentration of H2O2 was 

calculated based on the extinction coefficient of ε240 nm = 43.6 M-1cm-1.  H2
18O2 (2% v/v solution) 

and H2
18O were obtained from Icon Isotopes, New Jersey, at 90 and 97.6 atom %, respectively.  

All experiments were performed in 50 mM Tris-HCl pH 7.4 buffer unless otherwise specified. 

Expression and purification of ferric TDO — The construction of the plasmid encoding full-

length Ralstonia metallidurans TDO has been described elsewhere (262, 267). Cultures were 

started by streaking the frozen glycerol stock cells into an ampicillin agar plate. The plate was 

incubated at 37 °C overnight. A single ampicillin-resistant colony of E. coli cells was picked up 

and inoculated in 20 ml of Luria-Bertani (LB) media containing 100 µg/ml ampicillin at 37 °C 

until the OD600 nm reached to 0.6. This starter culture was then inoculated into 500 ml of LB 

media containing 100 µg/ml ampicillin with an initial OD600 nm  of 0.002. The cells were grown 

with constant agitation at 200 rpm at 37 °C until an OD600 nm value of 0.3 was reached. Then δ-

aminolevulinic acid was added to a final concentration of 10 mg/500 ml of the culture and 

ferrous ammonium sulfate was added to reach a final concentration of 35 µM. The cells were 

allowed to grow until OD600 nm reached 0.6. Isopropyl-β-D-thiogalactopyranoside (IPTG) was 

added to a final concentration of 0.6 mM and the culture was allowed to proceed for an 

additional 12 h at 28 °C with agitation at 200 rpm. The cells were then harvested by 

centrifugation at 8000 × g for 15 min at 4°C and stored at -80 °C. 
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The frozen cells were resuspended in 50 mM potassium phosphate buffer pH 7.6 containing 5% 

glycerol 20 mM ß-mercaptoethanol. Protease inhibitors including 1 mM PMSF, 2 µM leupeptin, 

and 0.02 mg/ml aprotinin were added, and the cells were sonicated in ice. The debris of the cells 

was removed by centrifugation at 20,000 g for 20 min at 4°C.The clear supernatant was applied 

to 80 mL Ni-NTA-affinity chromatography (Qiagen) equilibrated with 50 mM potassium 

phosphate buffer, pH 7.6 containing 150 mM NaCl; 20 mM imidazole and 5% glycerol. Before 

applying to the Ni-NTA column, the imidazole concentration of the supernatant solution was 

adjusted to 20 mM. TDO was eluted from the column with 50 mM potassium phosphate buffer 

pH 7.6 containing 150 mM NaCl; 5% glycerol with a imidazole gradient from 20 mM - 350 mM 

over 7 column volume (CV). The fractions containing TDO were combined and exchanged into 

50 mM Tris pH 7.4 containing 10% glycerol using a Sephadex G50 column (GE healthcare, NJ) 

using ÅKTA FPLC protein purification system. The desalted fractions were pooled and 

concentrated using an Amicon Ultra (Millipore) centrifugal device with a 10,000 Da molecular 

weight cut-off. Concentrated protein was frozen by liquid nitrogen and stored at -80 °C. The 

optical absorption spectrum of the as-isolated TDO enzyme used in this work typically displays a 

405/280 nm ratio greater than 1.4:1.   

Enzyme assay — All TDO samples were prepared in 50 mM Tris-HCl pH 7.4.  The absorption 

spectra were obtained with an Agilent 8453 UV-Vis spectrophotometer with ChemStation 

A09.01.76 software at room temperature.  The kinetics of the peroxide-driven oxygenation 

reaction were determined under anaerobic condition using a homemade long-arm sealed cuvette.  

All the reagents had been degassed and purged with argon prior to the actual experiments.  A vial 

containing concentrated ferric TDO was gently evacuated by vacuum, refilled with argon and 
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diluted into the O2-free buffer in a sealed cuvette containing 3 mM L-Trp either in the absence or 

in the presence of 50 mM glucose and 50 μg/ml glucose oxidase. The final concentration of TDO 

in the reaction system was 5 μM. A gas-tight microsyringe was used for additions of various 

amounts of argon-saturated oxygen-free H2O2 to initiate the reaction. The concentration of H2O2 

was ranged from 25 μM to 250 μM.  NFK concentration was determined with ε310 nm = 3,150 M-

1cm-1.  The apparent rates of the dioxygnation reactions were determined from the initial velocity 

of the NFK formation. Oxygen production was measured using an YSI oxygen electrode coupled 

to a Hansatech Oxygraph Plus (Kings Lynn, Norfolk, U.K.) at 25 °C. In the absence of L-Trp, the 

reaction was initiated by adding H2O2 to a final concentration of 10 μM to 50 mM. In the 

presence of L-Trp, the contration of H2O2 was ranged from 50 μM to 1.5 mM with the ratio of L-

Trp to H2O2 fixed at 50:1. The oxygen in the reaction mixture was consumed by adding 0.2 

equivalents of H2O2 to 5 μM ferric TDO containing L-Trp. The catalase-like reaction was 

initiated by adding H2O2. Kinetic data were fitted to the following equation using Microcal 

Origin package: 

     υ/ [Ε]= kcat[S]n/(Km
n + [S]n)              (4.1) 

where υ is the steady state velocity; [E] is the concentration of ferric TDO; [S] is the 

concentration of H2O2; kcat is the reaction rate; Km is the Michaelis-Menten constant and n is the 

Hill number or cooperativity index. 

Stoichiometry of hydrogen peroxide consumption to product formation under anaerobic 

conditions — L-Trp and H2O2 were freshly prepared in 50 mM Tris-HCl pH 7.4 buffer which 

had been previously degassed and purged with argon.  A vial containing concentrated ferric TDO 
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was gently vacuumed and refilled with argon, and the enzyme was diluted into the O2-free buffer 

in a sealed cuvette containing 5 mM L-Trp.  A gas-tight microsyringe was used for stepwise 

additions of equimolar amounts of argon-saturated oxygen-free H2O2 to TDO. 

H2
16O2/H2

18O2-driven reaction mediated by ferric TDO in the presence of L-Trp — 50 mM Tris 

pH 7.4 buffer was bubbled and purged with argon for hours. All the reagents were prepared 

using the anaerobic 50 mM Tris pH 7.4 buffer in a sealed vial and vacuumed and refilled with 

argon repeatedly prior to the experiments.  The reactions were performed on ice with stirring 

using septum-sealed vials.  Ferric TDO (100 µM) was allowed to react with H2O2 in the presence 

of 5 mM L-Trp, in which either H2
16O2 or H2

18O2 was added to a total of 4 mM concentration 

with a stepwise addition.  After 20 minutes of reaction, TDO was removed from the reaction 

system using a Centriprep-10 at 3000×g for 10 min, and the filtrate was collected for 

electrospray ionization-mass spectrometry (ESI-MS) analysis. 

Solvent exchange of the dioxygenation product (NFK) — Unlabeled NFK was prepared 

according to the procedures described above for the H2
16O2-driven reaction mediated by ferric 

TDO.  A sample of 16O-NFK was dissolved in H2
18O (75% 18O) on ice for 20 min and used for 

ESI-MS analysis.  Also, a parallel sample of 16O-NFK in H2
18O (75% 18O) was further diluted 

with H2
16O to a final 60:1 ratio of H2

16O:H2
18O.  The 18O-incorporation was analyzed by mass 

spectrometry for the above samples.  In another set of experiments involving H2
16O2, L-Trp and 

ferric TDO were prepared and dissolved in H2
18O buffer.  The reaction was performed with the 

procedure described in H2
16O2-driven reaction mediated by ferric TDO experiment above.  The 

18O-incorporation was analyzed by ESI-MS. 
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Mass spectrometric identification — Mass spectrometry (MS) analyses were conducted on a 

Waters ESI-Q-TOF micro mass spectrometer equipped with a Wates alliance 2695 HPLC system 

(Milford, Massachusetts) in a positive mode. Samples were analyzed through either a direct 

infusion or through HPLC separation before MS analysis. The samples were mixed with 50% 

acetonitrile in water containing 0.1% formic acid before analysis.  In MS-MS analysis, collision 

energy was set to 30 V.  HPLC separation was achieved on Restek Allure C18 column 

(100 mm × 2 mm i.d., 3 μM).  Mobile phase A was composed of water which contains 0.1% 

formic acid and mobile phase B was composed of acetonitrile which contains 0.1% formic acid.  

The gradient was developed from 100% A over 5 min; to 0% A over 10 min; to 0% A over 15 

min; to 100% A over 20 min at the flow rate of 200 µL/min.  MassLynx 4.1 software was used 

for instrument control and data acquisition. 

Oxygen production — Oxygen production was measured using an YSI oxygen electrode coupled 

to a Hansatech Oxygraph Plus (Kings Lynn, Norfolk, U.K.) at 25 °C.  The stirred cell was 

capped, and reagents were added with a Hamilton syringe.  Oxygen levels were continuously 

monitored in real-time during reaction.  In glucose/Glucose oxidase (GO) system, 50 mM D-

glucose and 50 µg/ml glucose oxidase were added to the cell and allowed to equilibrate. 

Stopped-flow spectroscopy — Pre-steady-state kinetic analysis of the ferric TDO oxidation 

reaction with H2O2 was performed using a RSM16 stopped-flow rapid scanning 

spectrophotometer (OLIS, Bogart, GA).  Dead time of the instrument is ca. 2 milliseconds.  One 

syringe contained 13 µM ferric TDO, and the other contained 6 equivalents of H2O2.  The 

reaction temperature was controlled at 25 ºC by a water bath. 
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Stoichiometry of hydrogen peroxide consumption to the formation of product in the presence of 

oxygen scavenger — L-Trp, H2O2, glucose and glucose oxidase were freshly prepared in 50 mM 

Tris-HCl pH 7.4 buffer which had been previously degassed and purged with argon.  A vial 

containing concentrated ferric TDO was gently vacuumed and refilled with argon, and the 

enzyme was diluted into the O2-free buffer in a sealed cuvette containing 5 mM L-Trp, 50 mM 

glucose and 50 µg/ml glucose oxidase. A gas-tight microsyringe was used for stepwise additions 

of argon-saturated oxygen-free H2O2 to TDO. The total addition is 40 equivalents of H2O2. 

3.4 Results and Discussion 

Stoichiometry of hydrogen peroxide consumption with ferric TDO and L-Trp in the absence of 

dioxygen — To determine if H2O2 can function as a substrate of ferric TDO and be used as the 

sole oxidant of the dioxygenation reaction, we performed a set of experiments in the absence of 

O2 and reducing agents.  Under strictly anaerobic condition, equimolar amounts of H2O2 were 

repeatedly added to ferric TDO and L-Trp, and the reaction was followed spectrometrically.   

These multiple small additions of H2O2 were designed to minimize potential oxidative damage to 

TDO by H2O2 during the measurements of product formation.  Figure 3.1 shows the 

development of a broad absorbance at 310 nm.  A similar absorbance development at 321 nm 

was observed when the reaction was mediated by reduced TDO and using O2 as the oxidant.  The 

absorbance in this region has previously been used to measure the formation of NFK (262, 267, 

280, 285, 296), because the synthesized NFK exhibits a similar absorbance band at 315 nm in 

water (296).  The broad 310 nm chromophore observed in the peroxide-driven reaction is 

consistent with the formation of the dioxygenation product.  Using the extinction coefficient of 
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NFK, the inset shows that the formation of the product was linear with respect to the amount of 

H2O2 added.  When H2O2 was incubated with L-Trp in the absence of TDO, the development of 

the 310 nm chromophore did not occur, confirming that the peroxide-driven oxygenation 

reaction is an enzymatic process. 
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Figure 3.1.  Difference spectra for each 5 equivalents of the titration of H2O2 with 5 µM ferric 
TDO in the presence of 5 mM L-Trp under anaerobic conditions. The initial L-Trp and the 
enzyme absorption are subtracted from each trace.  The arrow indicates development of 
absorbance at the 310 nm region.  The inset is the calculated product concentration as a function 
of the added peroxide. 

After a 40-step anaerobic addition of a total of 200 µM H2O2 in the presence of 5 µM of ferric 

TDO, approximately 90 µM of the product formed (Figure 3.1, inset).  These results indicate that 

2 moles of H2O2 are required for the formation of 1 mol of product under ideal conditions in 
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which two oxygen atoms are incorporated into L-Trp, and presumably, two other oxygen atoms 

have been reduced to water molecules (Scheme 3.1).  

HOOC
NH2

NH

(L-tryptophan)

HOOC
NH2

CHO
H
N

O
2 H2O2 +

(N-formylkynurenine)

2 H2O+

2 H2O2 2 H2OO2 +

Fe(III)-TDO

A.

B. Fe(III)-TDO

Scheme 3.1.  The chemical reactions catalyzed by ferric TDO using H2O2 as a substrate in the 
presence (A) or absence of (B) L-Trp. 

Mass spectrometry identification of the N-formylkynurenine product formation — To firmly 

establish that the broad 310-nm species from the peroxide-driven reaction is indeed NFK, a mass 

spectrometric analysis was conducted using H2
16O2 (Figure 3.2B) and H2

18O2 (Figure 3.2C) as 

oxidant.  L-Trp alone exhibits an ion of mass-to-charge ratio (m/z) 205 (Figure 3.2A), 

corresponding to the anticipated [M+H]+ form.  A new ion at m/z 237 is present in the reaction 

mixture with H2
16O2 as the oxidant in addition to the unreacted L-Trp (Figure 3.2B).  The 32-

Dalton mass shift compared to the substrate is consistent with the anticipated production of NFK 

in which 2 oxygen atoms have been inserted into L-Trp.  Thus, the development of the broad 

310-nm chromophore, with H2O2 as the oxidant, corresponds to the NFK formation in the ferric 

TDO mediated system.  

When H2
18O2 was used instead of H2

16O2, the mass spectrum in Figure 3.2C shows an ion of m/z 

241, which is consistent with the incorporation of two 18O atoms derived from H2
18O2 to the 

substrate.  It has been previsously known that oxidized TDO could be activiated by H2O2 for the 
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normal catalytic reaction. A small peak at 237 is also shown in this figure, which is likely 

produced during the process of removing enzyme from the system by filtration/centrifugation 

under non-anaerobic conditions in which O2 is available.  The mass spectrum in Figure 3.2C also 

shows an ion of m/z 239 which corresponds to the incorporation of one 16O and one 18O atom 

into L-Trp.  The source of the 18O scrambling is presumably due to solvent exchange.  To prove 

this, a sample of 16O-NFK was prepared, which presents the ion of m/z 237 as shown in Figure 

3.2B.  This 16O-NFK sample was re-dissolved in solvent with 1:4 ratio of H2
16O:H2

18O after a 

speed vacuum treatment.  While the ion of m/z 237, which corresponds to the 16O-NFK in Figure 

3.3A, is still present, a new ion of m/z 239 is generated by the H2
18O dilution, indicating that one 

18O from solvent, rather than two, has been exchanged to the 16O-NFK. 

To provide further evidence for solvent exchange on one of the oxygen site in NFK, we diluted 

the above sample with H2
16O to reach a H2

16O:H2
18O ratio of 60:1.  Figure 3.3B shows that the 

m/z 239 peak is substantially reduced while the original m/z 237 ion becomes the major peak in 

the mass spectrum.  This is consistent with the notion that the solvent exchange of NFK is 

readily reversible with solvent.  Since there is no m/z 241 peak in either case in this set of the 

experiments, we conclude that one and only one oxygen site in the product NFK is solvent 

exchangeable.  Furthermore, these observations rule out the possibility that the m/z 241 ion in 

Figure 3.2C is due to the solvent exchange.  Taken together, these observations suggest that the 

two new oxygen atoms in the NFK are derived from hydrogen peroxide, and one of them is 

exchangeable with solvent.  Unlike the m/z 237 ion in Figure 3.2C, which is due to the small 

amount of O2 contamination during the centrifugation step for removing TDO from the reaction 
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mixtures, the occurrence of m/z 243 in some of the samples is an experimental artifact. This ion 

is derived from Tris-HCl. It is not always present, due to sample dilution by water or acetonitrile. 
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Figure 3.2.  ESI-Mass spectrometric characterization of (A) L-Trp, (B) the product of H2
16O2 

driven oxygenation mediated by ferric TDO and (C) the product of H2
18O2 driven oxygenation 

mediated by ferric TDO. 

A. 

B. 

C. 
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To test whether a water molecule contributes oxygen to NFK during reaction and prior to the 

solvent exchange, we performed experiments using unlabeled H2
16O2 as oxidant in H2

18O solvent 

(Figure 3.3C) and labeled H2
18O2 as oxidant in H2

16O solvent (same as Figure 3.2C), respectively.  

If water contributes oxygen to the substrate during catalytic reaction or through solvent-exchange 

with an iron-bound oxygen intermediate, it should generate an oxygen scrambled NFK product 

with m/z 237 ion and m/z 239 in both of the mass spectra.  The m/z 237 and 239 ions are indeed 

present in the H2
16O2/H2

18O sample (Figure 3.3C), whereas m/z ions of 239 and 241 are present 

in the H2
18O2/H2

16O sample (Figure 3.2C).  The former is consistent with the post-catalytic 

reaction solvent exchange.  However, the m/z 241 ion is not present in the H2
18O solvent sample 

while it is observed with the sample containing H2
16O solvent.  These results indicate that H2O is 

not directly involved in the catalytic reaction.  These observations are also consistent with the 

conclusion that one, and only one, carbonyl group is exchangeable with solvent in NFK.   

Based on the fact that ketonic oxygen exchanges with water (297-299) and the amide group of 

NH-COH exchanges with solvent slower than aldehyde and ketone, we propose that the ketone 

group is the only exchangeable carbonyl group which exchanges oxygen atom with solvent via a 

diol- intermediate mechanism and two possible mechanisms are proposed for the solvent 

exchange (Scheme 3.2). In Scheme 1A, a transient state of a six-member ring structure facilitates 

the electrophilical attack at the ketone carbon by water to generate a diol-intermediate. While in 

Scheme 1B, the lone pair electron of the amide nitrogen atom nucleophilical attacks the carbonyl 

group of the ketone for the solvent exchange. However, considering the stability of the benzene 

ring structure, the solvent exchange reaction favors the mechanism in Scheme 1A. 
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Figure 3.3. Solvent exchange of NFK characterized by ESI-Mass spectrometry. (A) unlabeled 
NFK dissolved in H2

16O : H2
18O (1:4) solvent, (B) Sample from Figure 3.3A dissolved in H2

16O : 
H2

18O (60:1), (C) Sample of the reaction of H2
16O2-driven oxygenation mediated by ferric TDO 

performed in H2
18O. 

A. 

B. 

C. 



79 

 

 

 

-OOC
NH3

+

CHO

H
N

O

-OOC
NH3

+

CHO

H
N

O
H

O

H

-OOC
NH3

+

CHO

H
N

O
H

O

H

H
O

H

NH

O O
H

-OOC
NH3

+

NH

O OH
-OOC

NH3
+

H
O

H

HO
NH

OH
O

H
-OOC

NH3
+

HO
NH

O
O

H
-OOC

NH3
+

-OOC
NH3

+

CHO

H
N

OH

HO

H
O

H

H
O

H

A.

B.

Scheme 3.2. The proposed two possible mechanisms of solvent exchange with carbonyl group of 
NFK. 

It should be noted that a small, but reproducible, peak for an ion at m/z 221 (Figure 3.2) appears 

when H2
16O2 was used.  This ion is a 16-Dalton shift over L-Trp.  A corresponding m/z 223 ion, 

18-Dalton shift over L-Trp, is observed when H2
18O2 was used as oxidant.  This corresponds to 

the mass in positive mode of a monooxygenated L-Trp in which only one oxygen atom is 

inserted into the substrate.  Figure 3.4 shows the result from LC-MS analysis to identify the 

oxygenation products generated in the ferric TDO-mediated reaction using H2
16O2 as oxidant in 

the presence of H2
18O.  The species with m/z 221/223 indication of the formation of a 

monooxygenated L-Trp was eluted at the retentioin time of 5.25 min.  The 6.08 min species is the 

dioxygenation product of NFK. The m/z 243 ion with a 2.88 min retention time was an ion peak 

giving rise from Tris buffer used during sample preparation. 

 



80 

 

 

 

Time
0.00 5.00 10.00 15.00 20.00

%

0

100
16.62
205

6.10
239

5.25
2212.88

243 10.82
239

 

m/z
200 210 220 230 240

%

0

100 243

214

 

m/z
200 210 220 230 240

%

0

100 221

203

223

 

A. 

B. 

C. 



81 

 

 

 

m/z
200 210 220 230 240

%

0

100 239

237
222

 

Figure 3.4. LC-MS characterization of the product formation of monooxygenated L-Trp and 
NFK. (A) Chromatography of the reaction mixture of H2

16O2 driven oxygenation mediated by 
ferric TDO performed in H2

18O.  MS spectrum at retention time at (B) 2.88 min (C) 5.25 min (D) 
6.08 min.  

To better understand the origin of the m/z 221 ion and other small ions in the same region, ESI-

MS-MS experiments were also conducted to characterize the major products of m/z 237 and 239 

ions.  Figure 3.5 shows that m/z 220/202 and 222/204 are associated with m/z 237 and 239, 

respectively, as a consequence of one lost –OH or –18OH group during ionization.  Therefore, the 

m/z 220 and 222 ions are not associated with formation of the monooxygenated L-Trp.  These 

results also demonstrate that m/z 221 and, m/z 223 ion in the 18O case, are not the fragments of 

the NFK with m/z 237 and 239 ions.  Combined with the consistent presence of m/z 221 and m/z 

223 species when using H2
16O2 and H2

18O2 as oxidant, these results give an indication of the 

formation of monooxygenated L-Trp. This is also consistent with the fact that the heme cofactor 

in TDO does not allow a simultaneous coordination of two molecules of peroxide molecules. 

The heme group can only bind one peroxide molecule at a time. The monooxygenated L-Trp 

therefore must be generated by the reaction of TDO with the first peroxide molecule, which 

D. 



82 

 

 

 

m/z
200 210 220 230 240

%

0

100 239

205 237

206
240

m/z
200 210 220 230 240

%

0

100 202

220
202

220
237

m/z
200 210 220 230 240

%

0

100 204
222

204
222

239222

 

Figure 3.5. Mass spectrometric characterization of  m/z 220 and m/z 222 ion peaks. (A) ESI-MS 
spectrum of the product of H2

16O2 driven oxygenation mediated by ferric TDO in H2
18O solvent.  

MS/MS characterization of ion peak in (A) at (B) m/z 237 (C) m/z 239.   

A. 

B. 

C. 
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binds to the ferric heme and generates an enzyme-based intermediate.  This Fe-intermediate is 

capable of inserting an oxygen atom into L-Trp, as described in the monooxygenase reactions.   

These results suggest that the peroxide-driven oxygenation reaction must undergo sequential 

addition of two oxygen atoms to L-Trp during catalysis (Scheme 3.3A), as opposed to a one-step 

concerted dioxygenation reaction mechanism.  The m/z 221 ion peak was present after the 

reaction of mixed TDO-free monooxygenated L-Trp with excess H2O2 to proceed for 20 min. 

This suggests that the monooxygenated L-Trp does not further convert to NFK via a non-

enzymatic reaction. However, since the m/z 221 might also arise from by-product during the 

peroxide driven oxygenation, it remains unclear whether the oxidation of the monooxygenated L-

Trp to NFK by peroxide is necessarily enzyme-dependent.  An alternative mechanism is that it 

reacts with H2O2 in a non-enzymatic process as shown in Scheme 3.3B.    
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Scheme 3.3. The proposed ferric TDO dioxygenation mechanisms using H2O2 as oxidant. 

Catalase-like activity of ferric TDO in the absence of L-Trp — In the absence of L-Trp, ferric 

TDO is also able to consume large excess of H2O2, but at a much slower rate.  Figure 3.6 shows 
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an UV-visible spectral change of the Soret band of the enzyme induced by the addition of H2O2.  

The Soret band at 405 nm in the initial spectrum decreased in intensity and slightly red-shifted to 

406 nm (Figure 3.6 inset), which gives an indication of a compound I-like or compound ES-like 

species (for review, see refs. (292, 300, 301)). Such an absorption change at Soret band is not 

due to enzyme activation by peroxide, because the activation process leads to a significant shift 

of the Soret band from 405 nm to 432 nm and requires a different reaction condition (289) . 
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Figure 3.6. Stopped flow UV-visible spectral changes of ferric TDO reacting with 6 equivalents 
of H2O2 at 405 nm versus time. The inset is UV-visible spectral change at 405 nm. 

In the mechanism of catalase, the ferric heme reacts with the first peroxide molecule to produce 

H2O and a reactive oxoferryl (compound I), which subsequently reacts with a second peroxide to 

produce an O2 molecule and a second water.  Indeed, a ferryl intermediate species from TDO has 

been trapped (Fu, Gupta, Begley, Hendrich, and Liu, manuscript in preparation).  Similar high-

valent Fe intermediate has also recently been characterized in the reaction of oxidized MauG, 
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another heme-dependent enzyme oxidizing protein-bound tryptophan residues, with H2O2 (302).  

To understand the consumption of H2O2 by ferric TDO in the absence of the primary substrate L-

Trp, and to determine if ferric TDO possesses catalase-like activity, we examined the reaction 

using an oxygen electrode in a stirred cell at 25 °C to detect the generation of O2 via potential 

catalase-like activity.  The addition of 5 µM ferric TDO to the reaction buffer did not alter the O2 

concentration (Figure 3.7).  However, the addition of 15 equivalents of H2O2, in the absence of 

L-Trp resulted in an immediate increase in the oxygen concentration.  Oxygen generation at the 

same rate could be reinitiated by a second excessive addition of H2O2.  These results show that 

O2 is produced from H2O2, and hence demonstrates that ferric TDO possesses a catalase-like 

activity with H2O2 in the absence of L-Trp (Scheme 3.1).   
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Figure 3.7. The increase of O2 concentration after addition of 75 µM hydrogen peroxide to 5 µM 
ferric TDO.  Arrows indicate the time points in which the ferric TDO or H2O2 was added to the 
O2-electrode cell. 
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In steady state analysis, the apparent kcat and Km values of the TDO catalase-like activity are ca. 

13.5 s-1 and 16 mM, respectively (Table 3.1).  With the ratio of L-Trp to H2O2 as 50:1, the 

oxygen-electrode experiments suggest that the catalase-like activity is a minor but concomitant 

reaction with the apparent kcat and Km values of 0.9 s-1 and 1.2 mM, respectively.  The fact that 

both values of apparent kcat and Km undergo a more than 90% decrease but kcat /Km does not 

change significantly indicates that the peroxide-driven oxygenation reaction is in competition 

with the catalase-type of dioxygen production.  It appears that upon L-Trp binding, the active site 

of TDO shifts to an appropriate conformation in which the second substrate, H2O2, would be 

ligated to the Fe ion, and positioned at the correct distance and orientation for the peroxide-

driven dioxygenation reaction.  In subsequent experiments, we have found that the apparent 

kcat/Km value of the peroxide-driven dioxygenation reaction is ca. 4-fold higher than that of the 

catalase-like reaction either in the presence or in the absence of an oxygen scavenger system. 

These results suggest that the oxygenation reaction does not couple with the catalase-like 

reaction.  The Km of H2O2 in the oxygenation reaction is 77 µM, while it is 16 mM in the 

catalase-like reaction.  The large difference in H2O2 binding indicates that the incorporation of L-

Trp to the active site will facilitate the H2O2 binding.  In comparison with L-Trp, H2O2 is a small 

hydrophilic molecule to access the active site.  

As shown in Table 3.1, the kinetic of TDO is cooperative for the substrate of H2O2 in the 

peroxide driven oxygenation reaction. This gives an indication that there are at least two active 

site conformations for H2O2 binding which is consistent with two hydrogen bonding networks in 

the active site in the crystal structure of substrate-bound xcTDO. TDO is a tetrameric protein; the 

cooperative index is probably mediated by the subunit-subunit interaction. The central region of 
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the interaction between the subunits is in a hydrophobic active site binding pocket, in which 

Tyr43 is intruded from one subunit inserted from the adjacent subunit.  

Table 3.1. Kinetic properties of the ferric TDO catalized reactions.  

Peroxide-driven 

oxygenationa 

Km (µM) 

(H2O2) 

kcat (s-1) n kcat/Km (M-1s-1) 

no glucose / GO 77.0 ± 22.0 0.24 ± 0.10 1.8 ± 0.5 3,140.0 ± 584.0 

with glucose / 

GO 
247.0 ± 37.0 0.70 ± 0.08 1.3 ± 0.1 2,728.0 ± 95.0 

 

Catalase-like 

reactionb 

Km (µM) 

(H2O2) 

kcat (s-1) n kcat/Km (M-1s-1) 

no L-Trp 16,110 ± 3320 13.50 ± 1.60 1.0 ± 0.1  1,152.0 ± 65.0 

with L-Trp 1,200 ± 99 0.90 ± 0.10 4.0 ± 0.8 784.0 ± 13.0 

a. The peroxide-driven reaction mixtures contain 5 µM TDO and 3 mM L-Trp in 50 mM 
Tris-HCl pH 7.4 in a sealed cuvette at 25°C. The reactions were performed either in the 
presence or in the absence of 50 µg/ml glucose oxidase and 50 mM glucose under 
anaerobic conditions.   

b. The catalase-like reactions were performed in an oxygen electrode cell. In the presence of 
L-Trp, the concentration of H2O2 was ranged from 25 µM to 1500 µM with a ratio of L-
Trp to H2O2 fixed at 50:1. In the absence of L-Trp, the H2O2 concentration was ranged 
from 25 µM to 50 mM. 
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In the contrast, there is no cooperative effect on the catalase-like activity in the absence of L-Trp. 

This is consistent with the relative small molecule of H2O2 which may not be able to induce the 

cooperative effect at the active site. On the other hand, a significant positive cooperative index 

was observed on the catalase-like activity of TDO in the presence of L-Trp.  This suggests that L-

Trp facilitates the binding of H2O2 to the ferric heme. In addition, high concentration of H2O2, 

even in the presence of L-Trp, favors to the catalase-like activity of TDO and contributes to the 

relative big cooperative index. 

Peroxide-driven oxygenation in the presence of an oxygen scavenger —  The discovery of a 

second catalytic activity of ferric TDO with peroxide as substrate raises the question whether the 

oxygenation of L-Trp is due to the production of O2 from catalase-like activity.  This is unlikely a 

process because the O2 production process is more than one order of magnitude slower than the 

oxygenation reaction. So, the catalase-like activity is not capable of for providing enough O2 for 

the oxygenation reaction.  To further eliminate this concern, we introduced in a separate set of 

experiments an enzyme-based oxygen scavenger reaction system.  Glucose and glucose oxidase 

(glucose/GO) were employed as the oxygen scavenger which rapidly converts O2 generated by 

TDO’s catalase-like activity back to H2O2.  Figure 3.8A clearly indicates that the O2 

consumption via 50 mM glucose and 50 µg/ml glucose oxidase exceeded O2 production via the 

catalase-like activity of ferric TDO reacting with 50 equivalents of H2O2.  In the presence of this 

enzyme-based oxygen scavenger system, ferric TDO was added either in the absence (Figure 

3.8B) or presence of L-Trp (Figure 3.8C).  The O2 concentration did not change in either case.  

The source of peroxide in Figure 3.8B & 8C was from the reaction of glucose and O2 catalyzed 

by glucose oxidase.  In a parallel experiment shown in Figure 3.8C, either with or without 
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externally supplied H2O2, the electronic absorption spectra monitored in the 310 nm region 

indicate the formation of NFK (Figure 3.8C inset). 

The ability of H2O2 to function as an oxygen donor in the enzymatic oxidization of L-Trp by 

ferric TDO has not been previously established, although ferric TDO has been shown to be 

partially activated by superoxide or hydrogen peroxide under certain conditions.  The activation 

mechanism by H2O2 is not yet fully understood and thus a subject area for further investigation.  

To a great extent, the dioxygenase catalytic activity of ferric heme resembles the peroxide shunt 

activity described for various heme Fe-dependent oxygenase enzymes (4, 290, 291).  The 

detection of an intermediary monohydroxylated product of L-Trp in the present work suggests a 

stepwise oxygen insertion.  However, whether the ferrous enzyme and dioxygen share the same 

mechanism is a provoking question yet to be answered.   

It is remarkable that TDO is such an extraordinarily versatile enzyme, functionally active at both 

the oxidizing and reducing states and able to utilize either dioxygen or peroxide and superoxide 

as an oxidant.  It is also intriguing that ferric TDO expresses two distinct catalytic functions with 

H2O2 under the circumstances in which the primary substrate is present.  In the present mass 

spectrometry analyses, the L-Trp and peroxide ratio used was nearly 1:1 in most of the 

experiments.  Under this condition, the dioxygenase reaction is the dominating activity.  In the 

absence of L-Trp, TDO functions as a catalase.  It has been known that catalases display no or 

little peroxidase activity, and peroxidases exhibit very little catalase activity.  There are indeed 

some heme-dependent bifunctional enzymes that use a single heme active site to catalyze two 

distinct functions, such as catalase-peroxidases (89-91, 303, 304).  A rather unique feature of 

TDO is that the ferric form of the enzyme possesses both the dioxygenase and catalase activities, 
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depending on the availability of the primary substrate, from a single heme active site.  It has been 

reported that the catalase from Bacillus stearothermophilus possessed indole dioxygenase 

activity (305); however, in this case, catalase activity dominates over dioxygenase activity. In 

our studies, this is a unique example of a dioxygenase that expresses a catalase-like activity, i.e., 

a two-in-one enzyme with two competing catalytic activities, only one of which is pronounced at 

a time in most of the cases. 

The elucidation of activities for ferric TDO may be related to the normal regulation of the 

kynurenine pathway for tryptophan degradation.  It is known that H2O2 production is stimulated 

during apoptosis or when regulatory T-cells are suppressed as a result of infection, oxidative 

stress, or chemotherapy (306-309).  The results described here suggest that tryptophan 

degradation could be enhanced by increased levels of H2O2, causing depletion of the precursor 

for serotonin biosynthesis and accumulation of a downstream neurotoxin quinolinic acid (269, 

310).  On the other hand, the catalase activity of ferric TDO suggests that the enzyme could 

function as a peroxide scavenger when levels of L-Trp are low. 
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Figure 3.8. The ferric TDO mediated reaction carried out in an oxygen electrode cell at 25°C, 50 
mM Tris-HCl pH 7.4 in the presence of glucose and glucose oxidase. Arrows indicate the 
additions of (A) 5 µM TDO; 50 equivalents H2O2;  50 mM glucose; 50 µg/ml glucose oxidase 
and (B) 50 mM glucose; 50 µg/ml glucose oxidase;  and 5 µM TDO  (C) 50 mM glucose; 50 
µg/ml glucose oxidase; 2.5 mM L-Trp; 5 µM TDO, respectively.  Inset is the plot of NFK 
formation with the H2O2 concentration in the presence of 50 mM glucose and 50 µg/ml glucose 
oxidase. 
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CHAPTER 4     

EXPERIMENTAL AND COMPUTATIONAL INVESTIGATIONS OF AN AUTHENTIC 

FERRYL INTERMEDIATE IN TRYPTOPHAN 2,3-DIOXYGENASE 

 
The following section of chapter 4 is a direct copy of our prepared manuscript on TDO: 

Experimental and computational investigations of an authentic ferryl intermediate in tryptophan 

2,3-dioxygenase. Rong Fu, Yong Zhang, Rupal Gupta, Tadhg P. Begley, Michael P. Hendrich, 

and Aimin Liu (2009). EPR experiments were performed by Rong Fu (Department of Chemistry, 

Georgia State University, Atlanta). Mössbauer samples were prepared by Rong Fu and the 

spectroscopic analysis was conducted by Professor Michael P. Hendrich and his graduate student, 

Rupal Gupta (Department of Chemistry Carnegie Mellon University, Pittsburgh). Density 

functional theory (DFT) calculations were performed by Professor Yong Zhang (Department of 

Chemistry and Biochemistry, University of Southern Mississippi). The rmTDO plasmid was 

provided by Tadhg P. Begley (Department of Chemistry, Texas A&M University, TX). The 

manuscript was prepared by Dr. Aimin Liu, Dr. Yong Zhang, Dr. Michael P. Hendrich and Rong 

Fu. This work is supported by the National Institutes of Health grants GM069618 (to TPB), 

GM077387 (to MPH), and GM085774 (to YZ), and National Science Foundation (NSF) grants 

MCB 843537 (to AL) and EPSCoR award OIA-0556308 (to YZ). RF acknowledges a fellowship 

support from the Molecular Basis of Disease (MBD) program of GSU. YZ is also grateful to the 

Mississippi Center for Supercomputing Research and the USM Vislab for the generous use of the 

computing facilities. 
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4.1 Abstract 

The dioxygenation of L-tryptophan to N-formylkynurenine is catalyzed by tryptophan 2,3-

dioxygenase (TDO). The ferric form is catalytically active when treated with H2O2. Three 

enzyme-based intermediates were sequentially detected in the peroxide oxidation of ferric TDO. 

These spectroscopically distinguishable intermediates are:  An Fe(IV)-oxo species coupled with 

a porphyrin cation radical (compound I-type), an Fe(IV)-oxo species and a distant protein radical 

(compound ES-type), and a ferric intermediate that is more axial than the initial ferric ion. The 

last two species have also been characterized by Mössbauer spectroscopy. The authentic 

oxyferryl species is demonstrated by an isomer shift of 0.05(2) mm/s. However, the oxyferryl 

species exhibits an unusually large quadrupole splitting parameter of 1.76(2) mm/s at pH 7.4. 

Based on DFT calculations that evaluates all the possible structural influences to the iron axial 

ligands: 1) protonation of the oxo group, 2) hydrogen bonding to the oxo group, 3) hydrogen 

bonding to the proximal His, and 4) conformation of the proximal His, this unusual quadrupole 

splitting was proposed as a result of the hydrogen bonding to the oxo group due to a unique 

active site environment in TDO. 

4.2 Introduction 

Tryptophan 2,3-dioxygenase (TDO) inserts two oxygen atoms into tryptophan by a four electron 

oxidizing process utilizing a b-type heme as cofactor. This enzyme is a representative of a 

potentially new hemoprotein dioxygenase superfamily, whose oxygenase activity remains poorly 

understood. TDO is catalytically active with O2 as the oxidant at the ferrous oxidation state. It is 

known that peroxide is able to activate the resting state of TDO (4, 311-313), but the mechanism 
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of which is not well understood. The resting state of TDO contains a ferric heme. We have 

recently found that TDO can utilize peroxide as the sole oxygen donor for tryptophan 

dioxygenation (Scheme 4.1). An Fe(IV)-oxo species is proposed for the peroxide driven reaction 

(Scheme 4.2). In this study, such an intermediate is trapped in the peroxide oxidation of ferric 

TDO and characterized by using electron paramagnetic resonance (EPR) and Mössbauer 

spectroscopy. 
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Scheme 4.1. The dioxygenation reaction catalized by oxidized TDO. 

4.3 Results and Discussion 

TDO at the resting state displays a nearly axial EPR signal with resonances at the g = 1.999, 

5.690, and 6.091, typical a high-spin ferric ion in the heme environment (Figure 4.1A). Upon 

addition of 6-8 equivalents of H2O2 or m-CPBA , the high-spin ferric heme EPR signal at the g = 

6 region is shown to rapidly decrease concomitantly with the formation of a broad EPR signal 

extending from g values of 1.74 – 2.7 and a sharp signal at g = 2.002 (Figure 4.1B). The EPR 

signal shown in Figure 4.1B likely originated from a transient compound I (Cpd I)-type of 

species [Fe(IV)=O/porphyrin π-cation radical]. The broad feature is presumably due to the spin-

coupling between the Fe(IV)=O and porphyrin π-cation radical, which is similar to those known 
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ferryl species in other hemoproteins. For example, Cpd I in catalase exhibits well-resolved g = 2 

and 3.45 spectral components (314), and g = 2 and 3.27 resonances in ascorbate peroxidase (315). 

In P450cam, only the g = 2.0 free radical signal is observed for the Cpd I species by EPR 

spectroscopy (316, 317). The spin-coupling feature has not been observed from this 

monooxygenase. 
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Scheme 4.2. The proposed L-Trp dioxygenation mechanism using H2O2 as the oxidant.  

When the reaction proceeded further in the absence of substrate, the presumed Cpd I-type of 

species decayed to a second intermediate with a transient g = 2.002 signal that does not contain 

the broad feature assigned to the spin-coupling between Fe(IV)=O and porphyrin π-cation 

radical. This observation is interpreted as a result of transfer of the radical to an adjacent amino 

acid residue, i.e., formation of a compound ES [Cpd ES, Fe(IV)=O/amino acid radical]-type of 

species (318, 319). These intermediates are two oxidizing equivalents above the ferric state of 

the native enzyme. The formation of these ferryls was at the expense of the ferric heme.  
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Figure 4.1. The formation and decay of the compound I-type ferryl intermediate in the reactions 
of ferric TDO with H2O2 monitored by EPR spectroscopy at 10 K. Seven representative EPR 
spectra (traces A to G) are shown in a 2D plot for the reaction of 0, 12, 30, 60, 90, 240, and 600 s 
in the parallel samples of 150 µM oxidized TDO mixed with 900 µM H2O2.  

The high-spin ferric EPR signal gradually returned while the g = 2.002 radical decayed. The 

ferric ion changed to a more axial species with E/D = 0.005 comparing to the starting ferric ion 
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with E/D of 0.01 (Figure 4.2). Thus, this axial ferric species presumably originated from the 

decayed ferryl intermediates. The smaller E/D value indicates that the heme environment is not 

identical to the initial ferric ion, or the histidine ligand is in a different conformation. This 

intermediate eventually transformed to the initial ferric ion of the starting material after a 

prolonged time. However, the EPR signal intensity of the ferric heme did not come back to its 

original quantity. 

7 6.5 6 5.5 5

90 100 110 120 130 140

B

A

B0 (mT)

 

Figure 4.2.  The high-spin EPR signal of TDO (A), TDO treated with H2O2 at 30 s (B). The 
samples were monitored by EPR spectroscopy at 10 K. 

About 66% of the ferric signal returned after 10 minutes of reaction and 70% after 2 hours of 

reaction. About 30% of the heme Fe was lost after the peroxide oxidation under this condition 
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(Figure 4.3). This is consistent with the easy loss of the b-type heme cofactor in this protein. The 

fact that the 280 and 405 nm absorption did not change suggest that the protein was not degraded 

under these conditions.  
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Figure 4.3. EPR signal amplitude as a function of reaction time for the g = 2 (wine colored 
trace, ) and g = 6 (navy, ), respectively. The inset is a blow up for the first 90 s of the reaction 
that shows the intermediate is formed concomitant with the oxidation of the ferric heme of the 
enzyme. 
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Figure 4.4. The relaxation properties of the g = 2 free radical. The power saturation behavior of 
the 10 K ( ) and 100 K ( ) and the fit to equation 4.1 are shown in the logarithmic scale, where 
I represents EPR signal intensity (amplitude in this case) and P represents microwave power. 
The inset is a spectrum of the radical measured at 10 K. 

The microwave power saturation parameter of g = 2.002 EPR signal is 0.11 mW at 10 K, and 

0.16 mW at 100 K, respectively (Figure 4.4). Using the P1/2 values and the Fe–tyrosyl radical 

distances of mouse, E. coli, and M. tuberculosis ribonucleotide reductase enzymes (3.5 – 7.5 Å) 

as the comparing system (315, 320, 321), the greater value of the P1/2 value at 10 K suggests that 

the radical is located near the active site. The relatively small P1/2 value at 100 K suggests that 

the radical harboring residue has a great degree of conformational flexibility. Based on the 

temperature-dependence and the relaxation properties, this free radical species is not spin-
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coupled with the iron ion. The radical does not reside in the porphyrin ring. It is an amino acid 

residue-based radical near the heme cofactor, presumably derived from the transfer of the 

porphyrin radical of Cpd I. 

To explicitly detect the formal oxidation state of the iron ion, Mössbauer spectroscopy was 

employed to characterize the peroxide oxidation reaction of TDO. At 4.2 K, the resting state of 

the protein shows a single six-line magnetic pattern (Figure 4.5A). The simulation overlaid on 

the data (solid line) is calculated for an S = 5/2 iron site with δ = 0.42(1) mm/s, ΔEQ = 1.46(1) 

mm/s, E/D = 0.01, and Aiso = 195 G. The standard errors indicated in the parenthesis were 

obtained from multiple repeating experiments. These values are indicative of high-spin ferric 

heme (322). In another set of samples, protein solution was treated with 10 mM hydrogen 

peroxide (six equivalents of TDO) and frozen after 20 s. The Mössbauer spectrum of this sample 

at 4.2 K (Figure 4.5B) is composed of four species. Figure 4.5C shows the difference spectrum 

of B - 0.25A. This spectrum is composed of a six-line ferric heme species and three overlapping 

doublets. The six-line magnetic pattern accounts for 25% of the iron in the treated sample. 

Combined with the EPR data, the species is decayed ferryl intermediates, however, simulations 

of the Mössbauer spectrum are insensitive to this small change in E/D. The fit to the three 

doublets (solid lines) gives Fe species of: (1) δ = 0.05(2), ∆EQ = 1.76(2), 33%, (2) δ = 0.350, 

∆EQ = 0.703, 17% (3) δ = 0.585, ∆EQ = 1.5, 25%.  Species 1 is an authentic Fe(IV)=O heme 

species (S = 1). Since an uncoupled protein radical was also detected by EPR spectroscopy, this 

species is assigned to a Cpd ES intermediate of the enzyme. Other than the protein-based radical, 

the physical and chemical properties of the Fe center in Cpd ES and Cpd II are identical (323). 

The parameter range of isomer shift for Cpd II or Cpd ES heme species is 0 - 0.11 mm/s. The  
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Figure 4.5. Mössbauer spectra of TDO at 4.2 K. (A) the protein in the resting state (B) the 
protein treated with hydrogen peroxide and. Trace C a difference spectrum  (B) - 0.25(A). (D) is 
same as (C) except for sample temperatures of 100 K.  
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TDO intermediate’s value is well within this range. The remaining two species appear to be 

degradation products of the reaction. Species 2 has parameters typical of high-spin ferric hemes, 

and the diamagnetic doublet indicates that the hemes are forming µ-oxo bridges (324). Species 3 

is indicative of non-heme Fe(III) oxide formation, presumably due to loss of Fe from heme. The 

positions of the lines in the spectrum do not significantly change at higher temperature (Figure 

4.5D). Thus, the addition of H2O2 resulted in a total of 42% loss of the heme and Fe from TDO 

and generated 58% of Fe intermediates in the Mössbauer sample holder. This ratio is higher than 

that of the EPR experiments (42 vs 30%), presumable due to the 11.5-fold greater concentration 

of protein. Similar results were observed in two other repeating Mössbauer samples.  

The unusual quadrupole splitting of 1.76(2) mm/s of this ferryl intermediate is unique. Recent 

experimental and density functional theory calculation evidence have indicated that ∆EQ is a 

sensitive indicator of the protonation state of the oxyferryl species and the length of the Fe(IV)-

oxygen bond. The theoretical and experimental parameter range for a protonated Fe(IV)OH 

species is 2.0 – 2.5 mm/s and for unprotonated Fe(IV)=O is 1.0 – 1.62 mm/s (323, 325-327). The 

quadrupole splitting parameter of the ferryl intermediate in TDO is slightly greater than that of 

any other known Fe(IV)=O species (< 1.62 mm/s). On the other hand, it is significantly smaller 

than those of the protonated Fe(IV)-OH species (> 2.0 mm/s) (326). Thus, the parameters of the 

TDO Cpd ES species are not consistent with the values of a protonated Fe(IV)-OH heme species 

recently observed in several hemoproteins (323, 325-327).  

To probe the origin of this unique Mössbauer quadrupole splitting, density functional theory 

(DFT) calculations were performed on eleven structural models (Table 4.1). Since the iron 

equatorial ligand heme in TDO is the same as found with other heme proteins that display  



104 

 

 

 

Table 4.1. Results of various models for TDO ferryl species 1a 

 Model RFeO 

(Å) 

ΔEQ  

(mm/s)

δFe 

(mm/s) 

Expt   1.76 0.05 

1A FeIV(Por)2-(His)0(O)2- 1.654 1.54 0.14 

1B twisted His 1.648 1.97 0.13 

2A FeIV(Por)2-

(His)0(OH)1- 

1.799 3.02 0.08 

2B twisted His 1.795 3.19 0.11 

3A FeIV(Por)2-

(His)0(O…HB)2- 

1.663 1.78 0.12 

3B twisted His 1.657 2.20 0.11 

4A FeIV(Por)2-

(His…H2O)0(O)2- 

1.656 1.44 0.14 

4B twisted His 1.646 2.14 0.12 

5A FeIV(Por)2-

(His…H2O)0(O…HB)2-

1.665 1.66 0.11 

5B twisted His 1.660 2.11 0.11 

6A FeIV(Por)2-

(His)0(OH…HB)1- 

1.792 3.07 0.10 

a HB represents the Ser124-Gly125 residues hydrogen bonded to the oxo. 

 “normal” Mössbauer ΔEQ values for FeIV=O species, these structural models were used to 

evaluate the structural contributions that can directly affect the iron axial ligands: 1) protonation 

of the oxo group, 2) hydrogen bonding to the oxo group, 3) hydrogen bonding to the proximal 

His, and 4) conformation of the proximal His. All the models were generated on the basis of the 

x-ray crystal structure of the substrate-free TDO (PDB ID: 2NW7), the same condition as in this 
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work. Geometries of these structural models were optimized (see Table 4.1 for the optimized 

coordinates) with the terminal atoms fixed at the x-ray crystal structure positions to mimic the 

protein environment effect, using the previous method for other oxoferryl species (328). Both the 

Mössbauer quadrupole splittings and isomer shifts for these models were calculated using the 

DFT method that enabled accurate predictions of these two properties in various iron proteins 

and models covering all iron spin states and coordination states (328-332). 

As shown in Table 4.1, the predicted Mössbauer isomer shifts of these models are all close to the 

experimental value with no significant difference, indicating its insensitivity to the secondary 

structural changes along the axial positions. In contrast, the predicted Mössbauer quadrupole 

splittings display a large range from 1.44 mm/s to 3.19 mm/s, suggesting its role as a sensitive 

structural probe. Model 1A was first evaluated as a prototype oxoferryl species for heme proteins 

with an axial His ligand and indeed, the predicted ΔEQ value of 1.54 mm/s is very similar to 1.55 

mm/s for cytochrome c peroxidase compound ES, 1.59 mm/s for Japanese radish peroxidase Cpd 

II, or 1.61 mm/s for horse radish peroxidase Cpd II (333). But clearly, the deviation from the 

TDO experiment indicates that this model is insufficient. We then evaluated other structural 

models, including the effect of the protonation of the oxo group as well as three other effects 

along the axial ligands based on the examination of the x-ray structures of TDO: 1) the His 

ligand in the substrate-free TDO structure (PDB ID: 2NW7) is twisted from a normal 

perpendicular position with respect to the heme ring; 2) the Ser124-Gly125 residues are so close 

that the amide proton is within hydrogen bonding distance (H…oxo is ca. 2.2 Å), see Figure 4.6) 

the proximal His group has a water molecule hydrogen bonded to the Nδ position in the 

substrate-bound TDO structure (PDB ID: 2NW8). Compared to 1A, the proximal His in 1B was 
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fixed in the twisted conformation as found in the TDO x-ray structure, and this conformation 

effect was also evaluated for other structural models discussed below. This kind of twisted 

conformation of course decreases the symmetry of the iron environment, resulting in the increase 

of the ΔEQ value. But compared to 1A, this conformation effect in 1B overestimates ΔEQ, 

suggesting that this is not a good model. In fact, none of the twisted His models (Table 4.1) gave 

good ΔEQ predictions, so this twisted conformation is likely an artifact of the low resolution of 

this crystal structure (2.7 Å). To compare with the unprotonated FeIV=O models 1A and 1B, the 

protonated 2A and 2B models were used, which cause the largest errors in the predicted ΔEQ 

values. This clearly indicates that such models are highly unlikely. Interestingly, by 

incorporation of the nearby hydrogen bonding residues Ser-Gly (these two residues are fixed at 

their X-ray positions except for the peptide bond atoms CONH, which are allowed to be 

optimized), the predicted ΔEQ value of 1.78 mm/s for 3A is almost identical to the experimental 

measurement of 1.76 mm/s. This indicates that the unique Mössbauer quadrupole splitting of the 

TDO ferryl species is most probably a consequence of the unique active site environment of this 

hydrogen bonding that is not present in other heme proteins displaying normal Mössbauer 

quadrupole splittings. Models 4 and 5 were used to investigate another effect along the iron axial 

ligands, the effect of the hydrogen bonding to the proximal His, compared to Models 1 and 3. It 

can be seen from Table 4.1 that such effect generally decreases ΔEQ by ~0.1 mm/s, which is very 

mild.  

The best calculation of these hydrogen bonded His models is again the one (5A) that has the 

unique Ser-Gly hydrogen bond, with 1.66 mm/s, which is only second to the agreement between 

that for 3A and experiment. Since the effect of a hydrogen bond to the oxo atom in ferryl species 
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was not reported before, we also investigated 6A, which has this unique hydrogen bond with a 

protonated FeIV=O species, in addition to above investigated unprotonated ones: 3A and 5A, 

with and without a proximal His hydrogen bond, respectively. However, it again has the largest 

error of the predicted ΔEQ value (Table 4.1) as with other protonated models (2A and 2B), 

precluding its possibility as the TDO ferryl species. These results also suggest that the 

Mössbauer quadrupole splitting of the ferryl species has the following trend: unprotonated 

FeIV=O < hydrogen bonded FeIV=O < protonated FeIV=O. 

 

Figure 4.6. The structural model (3A) that yields the best predictions of the Mössbauer properties 
for the TDO ferryl species 1. 
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The present work suggests that the formation of ferryl intermediates upon oxidation by H2O2 is a 

general nature of TDO. The spectroscopic detection of the ferryl intermediate in TDO appears to 

favor the Criegee-type rearangment mechanism. However, it does not exclude the possibility that 

the O2-mediated catalytic cycle proceeds through a different path, e.g. the dioxetane mechanism 

(Scheme 4.3). If the Cpd I intermediate is indeed formed in the catalytic cycle with dioxygen as 

the oxidant, its formation mechanism must differ from that of Scheme 4.2 because the ferrous 

ion and O2 would give rise to an Fe(III)O2
•- species instead of an Fe(III)OOH intermediate. 

Subsequent attack of L-Trp by the presumed Fe(III)O2
•- species may require assistance of an 

active base catalyst. In the absence of such a base catalyst, a cationic radical would be formed on 

the enzyme-bound L-Trp. The formation of Cpd I is then ascribed to the O-O bond cleavage the 

Fe(III)-O-O- substrate moiety. The presumed Cpd I then attacks the oxazine of the L-Trp 

intermediate to insert the second oxygen.  
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Scheme 4.3. Two parallel paths in reaction of L-Trp with O2 catalyzed by reduced TDO which 
are under investigation. 
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4.4 Materials and Methods 

Preparation of TDO — The construction of the heteroexpression plasmid encoding full-length 

Ralstonia metallidurans TDO has been described elsewhere (262, 263). The 56Fe-containing 

TDO was prepared by growing the E. coli culture with LB medium supplemented with δ - 

aminolevulinic acid and ammonium ferrous sulfate prior to induction. Low-speed centrifugation 

was used in the protein purification to avoid loss of the heme Fe prosthetic group. TDO was 

obtained by using a 80 ml HiLoad nickel-affinity column and a Superdex 200 gel-filtration 

column on an ÅKTA FPLC system. The purified enzyme has a up to 62% of heme Fe occupancy 

based on the determination of protein concentration and Fe-content using inductively coupled 

plasma optical emission spectroscopy and electron paramagnetic resonance (EPR) spectroscopy. 

The optical absorption spectrum of the TDO enzyme used in this work typically displays a 

405nm/280nm ratio greater than 1.4. 

The 57Fe-enriched TDO was obtained by growing cell culture with metal-depleted medium 

supplemented with 57Fe. The 57Fe stock solution was prepared by dissolving the 57Fe-enriched 

metal foil (95.38% 57Fe-enrichment) in concentrated sulfuric acid under O2-free condition. The 

culture medium was forced through a Chelex-100 column prior to the addition of 57Fe at the final 

concentration of 35uM. 

UV-Vis spectroscopy — All TDO samples were prepared in 50 mM Tris-HCl pH 7.4, containing 

10% glycerol or 100mM potassium phosphate buffer pH7.0. The absorption spectra were 

obtained with an Agilent 8453 UV-Vis spectrophotometer with ChemStation A09.01.76 software 

at room temperature. 
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EPR spectroscopy — EPR samples were made in reaction vials, transferred to EPR tubes and 

quickly frozen in cold isopentane (-140 °C) or liquid nitrogen after the desired reaction time. 

Typically ten EPR samples with 0.15 – 0.50 mM TDO were made in each set of experiments 

with 1 – 8 equivalents of peroxide or meta-chloroperoxybenzoic acid (m-CPBA) in different 

experiments, and multiple sets of experiments were conducted to optimize the formation of 

reactive intermediates. X-band EPR first derivative spectra were recorded in perpendicular mode 

on a Bruker EMX spectrometer at 100-kHz modulation frequency using a 4119HS high-

sensitivity resonator. The EPR measurement temperature was maintained with an ESR910 liquid 

helium cryostat, LLT650/13 coolant transfer tube, Oxford ITC503S and Bruker ER4131VT 

temperature controllers. Spin concentration was determined by double integration of the sample 

spectrum obtained under low microwave power conditions and comparing the resulting intensity 

to that of a copper standard (0.5 mM CuSO4, 5 mM EDTA) obtained under identical conditions. 

The EPR relaxation property of the free radical at different temperatures was analyzed from the 

EPR spectra obtained with microwave power added in triplets of dB. At each given temperature, 

sixteen EPR spectra were recorded within 0.002 – 200 mW of microwave power. The values of 

half-saturation parameter (P1/2) were obtained by fitting the data according to Eq 3.1: 

                            I ∝ 1/(1 + P/P1/2)b/2                                            

[eq 3.1] 

where I is the EPR signal amplitude, b is an inhomogeneous broadening parameter, and P is 

microwave power. 
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Mössbauer spectroscopy — The Mössbauer samples were prepared from 1.72 mM TDO (70% 

57Fe/56Fe ratio) reacting with either six or eight equivalents of peroxide and frozen in liquid 

nitrogen. The total reaction time for the intermediate samples was about 28 s to 50 s. Mössbauer 

spectra were recorded on a constant acceleration instrument with an available temperature range 

of 1.5 to 200 K.  Isomer shifts are reported relative to Fe metal at 298 K.  Least-square fitting of 

the spectra was performed with the WMOSS software package (WEB Research, Edina, MN).  

The low-temperature Mössbauer spectra of resting TDO were fit with the standard spin 

Hamiltonian: 

H = gβB.S + D[Sz
2- S(S+1)/3] + E(Sx

2 – Sy
2) + Aiso(S.I) -gnbnB·I + (eQVzz /12) [3Iz

2-I(I + 1) + 

η(Ix
2- Iy

2)]                                                                                                                                            

[eq 3.2]        
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CHAPTER 5     

REVISITING THE MECHANISM OF HYDROGEN PEROXIDE ACTIVATION OF 

OXIDIZED TDO  

5.1 Introduction 

TDO is catalytically active at ferrous form. Reducing reagents such as ascorbic acid and sodium 

hydrosulfite are used to reduce the oxidized form to ferrous form. It has long been known that 

H2O2 is capable of activating the ferric form of TDO, but its activation mechanism has not been 

thoroughly understood (313, 334, 335). Until recently, this activation has been attributed to the 

production of Fe(II) heme from Fe(III) (eq. 5.1) (336, 337). 

 Fe(III) + H2O2 → Fe(II)-TDO      (eq. 5.1)  

This hypothesis (eq. 5.1) is largely based on the optical evidence that the Soret band of the ferric 

heme is shifted upon the peroxide oxidation as observed from 405 nm towards 432 nm, which is 

the wavelength for the ferrous heme. The redox potential of hydrogen peroxide is around 650 

mV at pH 7 (338), which is substantially higher than the 150 mV of heme moiety in TDO. Thus, 

it is difficult to understand why the Fe(III) ion becomes reduced after an oxidation reaction. One 

possibility is that the ferric iron is oxidized to an Fe(IV)=O species by reacting with H2O2. Ferryl 

species is a strong oxidizing species in nature and capable of withdrawing two electrons to 

reduce Fe(IV)=O and generate a Fe(II) ion subsequently. If so, the peroxide activation 

mechanism, which has been repeatedly documented and cited, deserves a careful investigation 

and reconsideration. 
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5.2 Results and Discussion 

Overexpression and purification of TDO — The study of the TDO/ IDO chemical mechanism 

has been hampered for a long time due to a technical problem. It is difficult to obtain the pure 

and active enzyme with a great degree of heme Fe occupancy. The b-type heme Fe cofactor is 

located near the protein surface, and its association with the protein mainly depends on the axial 

histidine ligand. The heme Fe cofactor is often easily lost during protein purification and 

manipulation. Unfortunately, the cofactor reconstitution has not been feasible for TDO. This 

does not seem to be a problem for crystallization, presumably due to the fact that the holoenzyme 

fraction appears to fold correctly and crystallize out from the protein portion which, in a few 

cases, does not contain a cofactor (apoenzyme) in a few cases. The low heme occupancy is, 

however, a significant problem in the biochemical and especially mechanistic studies of these 

enzymes. The expression and purification strategy reported in (110) (128) originally obtained 

TDO with less than 10% heme occupancy. In an experiment, we incorporated ferrous ammonium 

sulfate during expression and omitted any reducing reagent and substrate during the purification. 

The heme occupancy in the Ralstonia metallidurans TDO in our preparation was up to 70% with 

the ratio of the absorbance of 405 nm to 280 nm more than 1.5:1. 

UV-Vis spectra of TDO — The purified as-isolated TDO exhibits UV-visable absorbance 

characteristics of a ferric heme protein with Soret band at 405 nm. The addition of the substrate, 

L-Trp, to ferric TDO resulted in a shift of Soret band from 405 nm to 406 nm with a slight 

decrease in absorbance. This gives an indication of the formation of low-spin ferric TDO-L-Trp 

complex or a conformational change in the protein which modifies the surrounding environment 

of the heme group. Carbon monoxide (CO) is a strong field ligand for ferrous heme and forms 
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CO-ferrous complex with a shifted Soret band. When bubbling with CO, the spectrum of ferric 

TDO did not change regardless of L-Trp. When ferric TDO was reduced with sodium dithionite, 

the Soret band was shifted from 405 nm to 432 nm. Bubbling CO into the reduced TDO in the 

presence of L-Trp resulted in the formation of a ferrous TDO-CO-L-Trp complex with absorption 

peaks at 421 nm, 536 nm and 561 nm. In contrast, ferric TDO have small fractions of 541 nm 

and 576 nm in visible region (Table 5.1).  

Table 5.1. UV-Vis absorption of TDO in the Soret band and visible regions. 

 

Effect of the concentration of H2O2 on the enzymatic activity of ferric TDO upon peroxide 

activation — The effect of the concentration of H2O2 on the enzymatic activity of ferric TDO 

upon peroxide activation was examined and displayed in Figure 5.1. The enzymatic activity was 

monitored at the development UV-visiable absorbance at 321 nm corresponding to NFK product 

and normalized based on the maximal rate presented here. One and two equivalents of H2O2 over 

the concentration of ferric TDO induce 50% and 65% activity compared to the maximal 

 Soret band 

(nm) 

ε Soret band 

(mM-1 cm-1) 

Visible region  

(nm) 

Ferric TDO 405 130 505; 541; 576; 632 

Ferric TDO + L-Trp 406 127 505; 541; 576; 632 

Ferrous TDO 432 104 554; 588 

Ferrous TDO + L-Trp 432 89 553; 584; 657 

Ferrous TDO + CO + L-Trp 421 123 536; 561 
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activation activity, while 6 equivalents of H2O2 cause 80% activity. Further increasing the 

concentrations of H2O2 only resulted in only a slight increase in enzyme activity. The hyperbolic 

activation curve indicates that a higher concentration of H2O2 does not contribute to further 

activation of the enzyme. TDO is a tetrameric protein in which heme cofactor is buried in the 

protein matrix. Therefore, a little excess H2O2 is required to access the active site efficiently for 

the activation of oxidized TDO.  
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Figure 5.1. The effect of concentrations of H2O2 on the enzymatic activity of ferric TDO upon 
peroxide activation. 

UV-Vis spectra of the ferric TDO upon reacting with hydrogen peroxide in the presence of L-Trp 

under anaerobic conditions — In order to specifically study the reaction of ferric TDO and H2O2, 

we examined the UV-Vis absorbance of the reaction under anaerobic conditions. All the buffer, 

stock solution and ferric TDO were vacuumed and refilled with argon in repeated cycles. As 
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shown in Figure 5.2, upon addition of 6 equivalents of H2O2 to ferric TDO in the presence of L-

Trp, the Soret band of one third of the ferric TDO is shifted toward 432 nm which resembles that 

of the ferrous TDO. When the reaction was conducted in the presence of CO, an absorbance peak 

at 421 nm rather than 432 nm occurred (Figure 5.2B). The 421 nm species is similar to that 

observed in ferrous TDO and presumably ferrous TDO-CO-L-Trp complex corresponding to 

around one third ferric TDO conversion. This conversion is consistent with the observation in 

Figure 5.2A. In the absence of L-Trp, ferric TDO reacted with H2O2 does not generate the similar 

shift of the absorbance. These results suggest that the putative ferrous TDO was generated during 

the reaction of ferric TDO with H2O2 in the presence of L-Trp. 

A B

Figure 5.2. UV-Vis spectra of ferric TDO reacted with H2O2 in the presence of L-Trp. (A) Ferric 
TDO treated with 6 equivalents of H2O2 in the presence of 5 mM L-Trp and ferrous TDO in the 
presence of L-Trp. (B) Ferric TDO mixed with 5 mM L-Trp and bubbled with carbon monoxide, 
followed by adding 6 equivalents of H2O2. 

Mössbauer spectroscopy characterization of the ferrous ion in the reaction of ferric TDO with 

H2O2 — Since the observation concerning optical absorption bands is not sufficient to identify a 

ferrous species, Mössbauer spectroscopy experiments were conducted to seek a conclusive 
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evidence of the formation of ferrous species in the reaction of ferric TDO with H2O2. Five 

parallel Mössbauer samples were prepared for comparison and analysis. Figure 5.3 shows the 

Mössbauer spectra of the 57Fe-TDO obtained at 4.2 K with a magnetic field of 45 mT. The 

magnetic splitting pattern of spectrum A is characteristic of a ferric high-spin system with 

anisotropic magnetic hyperfine pattern, which coppresponds to the ferric 57Fe-TDO. Figure 5.3B 

illustrates the Mössbauer spectrum of the ferric 57Fe-TDO upon adding 10 equivalents of L-Trp 

followed by freezing in liquid nitrogen. Approximately 50% of the spectral area in spectrum B 

corresponds to a ferric low-spin ion, which suggests that around 50% of the high-spin ferric ion 

in the starting material is converted to the low-spin ferric ion. 

In another set of experiments, ferrous 57Fe-TDO was analyzed. The Mössbauer spectrum of 

ferrous 57Fe-TDO upon adding 10 equivalents of L-Trp is shown in Figure 5.3C. The solid line is 

the simulation resembling the substrate-bound ferrous 57Fe-TDO. The Mössbauer spectrum 

shows two doublets with ΔEQ = 3.55 mm/s, δ = 1.00 mm/s and ΔEQ = 2.55 mm/s, δ = 0.95 mm/s, 

respectively. The two species are present in a ratio close to 1:1, which suggests a typical high-

spin ferrous heme is present with two conformations in the presence of L-Trp (more discussions 

in Chapter 6). Furthermore, upon bubbling CO into the substrate-bound ferrous 57Fe-TDO under 

anaerobic conditions, a new component with ΔEQ = 0.55 mm/s and δ = 0.27 mm/s occurs which 

results when 50% of both of the ferrous hemes are converted to a ferrous-CO-L-Trp adduct. This 

spectrum is shown in Figure 5.3D.  

Figure 5.3E displays the Mössbauer spectra of the reaction of ferric TDO with H2O2 in the 

presence of L-Trp and CO.  Mössbauer spectroscopy has around 5 % detectable limitation.  In 
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Figure 5.3. Mössbauer spectra of the 57Fe-TDO mixtures. (A) Ferric 57Fe-TDO; (B) Ferric 57Fe-
TDO mixed with 10 equivalents of L-Trp; (C) Ferrous 57Fe-TDO mixed with 10 equivalents of 
L-Trp; (D) Ferrous 57Fe-TDO mixed with 10 equivalents of L-Trp followed by bubbling with CO; 
(E) Ferric 57Fe-TDO mixed with 10 equivalents of L-Trp and bubbled with CO, followed by 
adding 2 equivalents of H2O2; (F) Difference spectrum between spectrum E and spectrum B. The 
spectra were recorded at 4.2 K with a magnetic field at 45 mT.  
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order to stabilize and maximize the putative ferrous heme, CO was introduced into the reaction 

mixture. Upon adding 10 equivalents of L-Trp, the substrate-bound ferric 57Fe-TDO was 

bubbling with CO followed by adding 2 equivalents of H2O2. A new doublet species occurs 

which arises from the starting material and is mixed with the remaining ferric high-spin signal. 

The solid line in Figure 5.3F shows the simulation of the difference spectrum in which spectrum 

B is subtracted from spectrum E. The new doublet signal has the parameters with ΔEQ = 0.53 

mm/s and δ = 0.30 mm/s. In comparision with the spectrum of D, the new doublet is identical to 

that observed for ferrous TDO-CO-L-Trp complex and assigned as a ferrous-CO-L-Trp complex. 

These results demonstrate that a ferrous species is generated during the reaction of ferric TDO 

and H2O2 in the presence of L-Trp, which also confirms the assignment of 432 nm species as a 

ferrous heme in the optical observation in Figure 5.2.  

Effect of the concentration of L-Trp on reduction of ferric TDO — The effect of the concentration 

of L-Trp on the ferrous TDO formation in the peroxide activation reaction was examined under 

anaerobic conditions. Five µM ferric TDO were mixed with various concentrations of L-Trp. CO 

was introduced and allowed to equilibrate for 5 min before adding 6 equivalents of H2O2. Figure 

5.4 shows the plot of the yield of ferrous TDO-CO-L-Trp complex obtained after reaction over 

the concentration of L-Trp. In the presence of 2 mM L-Trp, around 20% ferric TDO was 

converted to ferrous form, whereas 33% ferrous TDO formed when the contenctration of L-Trp 

was 6 mM. This is consistent with the quantitation resulting from spectral change of the optical 

data shown in Figure 5.2. These results suggest the peroxide reduction of ferric TDO is a L-Trp 

dependent process.  
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Figure 5.4. The formation of the ferrous-CO-L-Trp complex. Ferric TDO was treated with H2O2 
in the presence of various concentrations of L-Trp in CO saturated buffer under anaerobic 
conditions.  

Low-spin ferric hydroperoxide intermediate in the presence of H2O2 and L-Trp — The ferric 

TDO exhibits a typical high-spin ferric signal near g = 6 and g = 2 shown in Figure 5.5A. Upon 

addition of 10 equivalents of L-Trp and 6 equivalents of H2O2, the sample was frozen in liquid 

nitrogen in 30 s. A set of new low-spin ferric signals is observed in Figure 5.5C which contains 

two overlapping species with g = 2.487, 2.143, 1.891 and g = 2.467, 2.143, 1.898 with a ratio 

close to 1 : 2. The remaining high-spin ferric signal becomes much more axial than the original 

one. These g-values are similar to those previously observed in CYP450Cam with g = 2.55, 2.25, 

1.88 using HCOO- as anionic ligand and g = 2.46, 2.25, 1.88 using CH3COO- or CH3CH2COO- 

as anionic ligand (339). Recent cryoradiolysis of oxy-ferrous complex has been utilized in heme-

containing proteins to generate low-spin ferric hydroperoxide species including CYP450, HO, 

HRP and hemoglobin. The EPR signal of the low-spin hydrooperoxo ferric hemes exhibit a  
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Figure 5.5. EPR spectra of ferric TDO reacted with H2O2 in the absence and presence of L-Trp. 
(A) 150 µM ferric TDO; (B) 150 µM ferric TDO mixed with 900 µM H2O2 at 30 s; (C) 150 µM 
ferric TDO mixed with 900 µM H2O2 and 1.5 mM L-Trp at 30 s. Experimental EPR spectra were 
recorded at 10 K with 1 mW microwave power at 9.4 GHz. An 8 G field modulation at 100 kHz 
was employed. Time constant, 40.960 ms; conversion constant, 81.920 ms and sweep time, 
83.886 s. 

range of the g values around 2.3-2.25, 2.2-2.14, and 1.94-1.97 (300). Thus, the low-spin ferric 

species here are assigned as ferric hydroperoxide intermediates of TDO during the peroxide 

activation reaction. The presence of two low-spin ferric species is consistent with the crystal 

structure of substrate-bound xcTDO, in which the active site water is involved in the formation 

of hydrogen bond network in two different scenarios. In one of the dimers, the water molecule 

forms a hydrogen bond with L-Trp while in the other dimer, it forms a hydrogen bond with the 
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active site histidine residue (His72) (129). The EPR spectra indicate that H2O2 displaces the 

active site water and generates a putative ferric hydroperoxide intermediate which maintains the 

similar hydrogen bond networks in the active site with either L-Trp or His72. 

The putative ferric hydroperoxide species undergoes an O-O bond cleavage to generate a ferryl 

species. When ferric TDO reacts with H2O2 in the presence of L-Trp, two distinguished Soret 

bands are observed: one toward 432 nm is a ferrous TDO, while another one remains a ferric 

form. In chapter 4, ferryl species has been characterized using EPR and Mössbauer spectroscopy. 

These suggest that ferric TDO might utilize both of the manners to break down the O-O bond of 

the putative ferric hydroperoxide intermediate. The two possible manners are heterolytic 

cleavage and homolytic cleavage, in which heterolytic cleavage of O-O bond generates 

compound I or compound ES-like species and a water molecule whereas homolytic cleavage 

generates compound II-like species and a hydroxyl radical. 

Effect of hydroxyurea on the catalytic activity of ferrous TDO — We probed the two manners of 

O-O bond cleavage of the putative ferric hydroperoxide intermediate by examining the effect of 

the potential radicals on the enzymatic activities. The protein radical in compound ES-like 

species is located in the nearby amino acid residues of the active site which do not migrate in the 

protein matrix. However, if ferric TDO also undergoes homolytic cleavage, a non-specifically 

located hydroxyl radical will be generated. Hydroxyl radicals are very reactive species and lead 

to the inactivation of the protein. A radical scavenger, hydroxyurea was introduced into the 

reaction to probe the potential radicals. 
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Figure 5.6. The effect of hydroxyurea on the enzymatic activity of ferrous TDO. Ferric TDO was 
treated with 2 equivalents of sodium dithionite and purged with argon for 15 min under 
anaerobic conditions. The reactions were conducted in O2-saturated buffer containing 5 mM L-
Trp in the absence or presence of hydroxyurea. 5 mM hydroxyurea is abbreviated as HU. 

In order to rule out the influence of hydroxyurea on the normal catalytic cycle, the experiments 

were conducted using ferrous TDO as cofactor and dioxygen molecule as oxidant in the presence 

of hydroxyurea.  Ferric TDO was reduced to ferrous form using 2 equivalents of sodium 

dithionite under anaerobic conditions. The reduced enzyme was 100-fold diluted into O2-

saturated buffer containing 5 mM L-Trp in the absence or presence of hydroxyurea to initiate the 

reaction. As shown in Figure 5.6, the reaction rates recorded as the developed absorbance at 321 

nm in the presence or absence of hydroxyurea are similar with the enzyme concentration at either 
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0.4 µM or 0.8 µM. This indicates that hydroxyurea does not affect the normal O2-driven 

dioxygenation. Thus, hydroxyurea can be used as a radical scavenger to specifically probe the 

peroxide activation reaction of ferric TDO. 

Effect of the radical generated during the peroxide activation on the catalytic activity under 

aerobic conditions — The effect of the potential radical generated during the peroxide activation 

on the catalytic activity was investigated by designing three sets of experiments in which radical 

scavenger, hydroxyurea, was used. The reaction mixtures containing 0.45 µM ferric TDO and 

2.7 µM H2O2 were initiated by adding 2 mM L-Trp. Before the initiation step, the reaction 

mixtures were incubated either in the presence or absence of 5 mM hydroxyurea for various 

times.  

As shown in Figure 5.7, when ferric TDO was incubated with H2O2 for various times before the 

initiation by L-Trp, the catalytic rate decreased dramatically with increasing incubation time. 

After 100 s incubation with H2O2, ferric TDO lost more than 70% activity.  A similar set of 

experiments were conducted with 5 mM hydroxyurea in the mixture for the incubation of ferric 

TDO with H2O2. The catalytic rate decreased much less compared with that in the absence of 

hydroxyurea. After 100 s incubation with H2O2 in the presence of 5 mM hydroxyurea, ferric 

TDO lost around 30% activity. In another set of experiments, hydroxyurea was included in the 

initiation step but not in the incubation of ferric TDO with H2O2. The plotted curve is similar to 

that in the absence of hydroxyurea.  

These results suggest that the hydroxyurea might quench the potential reactive radical species 

generated during the reaction of ferric TDO with H2O2 and prevent enzyme inhibition. The 
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potential reactive radical is probably a hydroxyl radical arising from homolytic cleavage of O-O 

bond of the ferric hydroperoxide intermediate. After the activation, the addition of hydroxyurea 

had no effect on the enzyme activity compared with that in the absence of hydroxyurea. This is 

also consistent with the observation in Figure 5.1, in which the enzyme activity exhibits a 

hyperbolic change when the concentration of H2O2 increases. From the beginning, neither the 

presence nor absence of hydroxyurea affects reaction rate, suggesting that the activation of ferric 

TDO is not a radical dependent process. 
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Figure 5.7. The effect of radical scavenger on the enzymatic activity of ferric TDO upon 
peroxide activation mixing with H2O2.  

The catalytic relevance of the protein radical in the peroxide driven oxygenation reaction under 

anaerobic conditions — In Chapter 3 and 4, compound ES-like species was trapped during the 
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peroxide driven reaction of ferric TDO with H2O2 in the absence of L-Trp. This compound ES-

like species must be generated via a heterolytic cleavage of O-O bond. The radical in compound 

ES-like species is located in the nearby amino acid residues of the active site. Protein radical 

generated during the reaction can be catalytic competent such as the tyrosyl radicals in PGHS 

and ribonucleotide reductase which are directly involved in the catalytic processes (340). The 

catalytic relevance of the protein radical species generated in the peroxide driven reaction using 

ferric TDO was also investigated. 

A typical high-spin ferric EPR signal of ferric TDO was shown in Figure 5.5A. Figure 5.5B 

displays an intensive g = 2 signal upon adding H2O2 into ferric TDO in the absence of L-Trp, 

which was identified as a protein radical in chapter 4. Furthermore, ferric TDO was mixed with 

H2O2 in the same condition except for the presence of L-Trp. As shown in Figure 5.5C, the yield 

of the protein based radical upon mixing with L-Trp decreases dramatically and the high-spin 

ferric signal increases compared with that in spectrum B. This observation indicates that the 

protein radical is involved in a catalytic reaction.  

In order to further clarify the catalytic competence of the protein radical in the peroxide driven 

oxygenation reaction, the experiment was conducted under anaerobic condition either in the 

presence or absence of hydroxyurea. As shown in Figure 5.8, 175 μM H2O2 was added stepwise 

to 5 μM ferric TDO in the presence of 5 mM L-Trp. After reaction, 152 μM NFK was generated 

using H2O2 as substrate and oxidant, which corresponds to around 87% conversion based on the 

estimated maximal product formation in which H2O2 is consumed. The ratio of the formation of 

NFK to the consumption of H2O2 can be normalized to 1:2. A set of parallel experiments was 

conducted in the presence of 10 mM hydroxyurea under the same conditions. After reaction, only 
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Figure 5.8. The difference spectra of 5 μM ferric TDO titrated with 35 equivalents of H2O2 
containing 5 mM L-Trp in the absence of hydroxyurea (A); in the presence of 10 mM 
hydroxyurea (B). 
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less than 5% NFK was generated. The results clearly indicate that the protein radical is 

catalytically relevant in the peroxide driven reaction. In the presence of radical scavenger 

hydroxyurea, the catalytic active intermediate, compound ES-like species can not be generated or 

stabilized to fulfill the peroxide driven dioxygenation reaction. 

Proposed mechanism for hydrogen peroxide activation of ferric TDO — Hydroperoxide has been 

frequently used in studying heme proteins such as in CYP450, in which H2O2 can provide both 

oxygen and electrons for an alternative way to bypass the requirement of a dioxygen molecule 

and reducing agents. In this alternative, so called peroxide shunt pathway, hydrogen peroxide 

binds to the ferric ion center and forms a ferric hydroperoxide intermediate.  
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Scheme 5.1. The proposed mechanism of peroxide activation of ferric TDO.  

In the presence of L-Trp, a set of low-spin ferric species is generated and proposed as a putative 

ferric hydroperoxide intermediate of TDO. In Chapter 4, the formation of compound ES-like 

species of ferric TDO reacted with H2O2 in the absence of L-Trp must undergo heterolytic 

cleavage of the ferric hydroperoxide intermediate. This compound ES-like species is catalytic 
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competent to generate NFK in the presence of L-Trp via peroxide driven oxygenation reaction 

and two-thirds of TDO remains in ferric form after reaction. On the other hand, upon peroxide 

activation of ferric TDO and H2O2, one-third of ferrous ion was observed in the presence of L-

Trp and characterized by UV-Vis and Mössbauer spectroscopy. The formation of ferrous ion 

requires substrate; however, it is a one-electron reduction process during the peroxide activation. 

While compound ES-like species generated via a heterolytic cleavage is capable of inserting an 

oxygen atom into the substrate via a two-electron reduction process. Thus it must have a 

different mechanism in peroxide activation reaction, in which TDO has the possiblity to break 

down the O-O bond via a homolytic cleavage to generate a compound II-like species. 

Mössbauer spectroscopy does not show a ferryl signal in the spectrum of ferric TDO treated with 

H2O2 in the presence of L-Trp. This demonstrates that the compound II-like species is catalytic 

competent, and able to provide two electrons simultaneously for a reduction. When the substrate 

for the oxygenation reaction is available, the peroxide activation is effective and H2O2 can be 

used as an activator to generate ferrous TDO. Thus, peroxide activation process should generate 

a catalytic competent intermediate, compound II-like species via homolytic cleavage of O-O 

bond of ferric hydroperoxide intermediate, followed by a substrate oxidation reaction to form a 

ferrous ion.  

A possible mechanism is proposed for peroxide activation as illustrated in Scheme 5.1. In the 

initiate step, hydrogen peroxide binds to the high-spin ferric heme and displaces the active site 

water molecule to generate a ferric hydroperoxide intermediate. In the presence of substrate, L-

Trp, this intermediate undergoes two manners of O-O bond cleavage, heterolytic and homolytic 

cleavage. Two-thirds of the enzyme goes through heterolytic cleavage in which a compound I-
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like species is generated followed by one electron transfer from nearby amino acid to form a 

compound ES-like species. In the presence of L-Trp, the compound ES-like species is 

catalytically competent to perform peroxide driven dioxygenation reaction whereas in the 

absence of L-Trp, it is capable of performing catalase-like reaction as was discussed in Chapter 3 

and 4. On the other hand, in the presence of L-Trp, another one-third of the enzyme undergoes a 

homolytic O-O bond cleavage, which generates a Fe(IV)=O intermediate, compound II-like 

species, and a hydroxyl radical. In contrast, Compound-II like species is capable of inserting one 

oxygen atom into L-Trp and reducing ferric TDO to ferrous form. When dioxygen is available, 

the active form of the ferrous enzyme enters the catalytic cycle to perform the O2-driven 

dioxygenation reaction.  Homolytic cleavage also generates a hydroxyl radical species which is 

reactive and non-specifically bound to the enzyme. This species explains the inhibition of ferric 

TDO during the prolonged peroxide activation.  

It has been known that most heme-containing proteins undergo heterolytic cleavage to generate 

compound I or compound ES species as a catalytic competent species (4, 341, 342). However, it 

has also been reported that the CYP450 catalyze both heterolytic and homolytic cleavages to 

break down O-O bond when using H2O2 and peroxyacids (343, 344). In sperm whale myoglobin, 

both O-O bond cleavages have been observed (345).  

Previous studies suggest that the heterolytic cleavage of O-O is subject to a general acid-base 

catalyst (346-348). The homolytic cleavage is relatively insensitive to general acid or base 

catalysis (348). In peroxidase, the conserved histidine and arginine residues in the active site 

facilitate the heterolytic O-O bond cleavage by pull-push effect. In this mechanism, the histidine 

residue facilitates the transfer of electron from the porphyrin ring to the oxygen atom and the 
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proton to the exiting oxygen atom of ferric hydroperoxide intermediate to facilitate the 

heterolytic O-O bond cleavage (38, 39).  

In CYP450, although the thiolate ligand with strong electron donation features favors heterolytic 

cleavage of the O-O bond of the ferric hydroperoxide intermediate (4), it can also catalyze 

homolytic cleavage. It has been suggested that the hydrophobic environment of active site 

enhances homolytic cleavage. When the active site amino acid of Glu318 or Thr319 in CYP450 

was mutated to hydrophobic amino acid residues such as Val and Ala, the portion of homolytic 

cleavage increased (349).  

It appears that the nature of substrate, the active site environment, and the heme conformation 

are involved in the O-O bond cleavage. The active site pocket of TDO is surrounded by mostly 

hydrophobic amino acids. There is one active site histidine residue in the substrate binding 

pocket. Since TDO undergoes heterolytic cleavage and homolytic cleavage with a ratio close to 

2:1, heterolytic cleavage is favored. It should be noticed that the formation of two overlapping 

ferric hydroperoxide intermediate at g = 2.487, 2.143, 1.891 and g = 2.467, 2.143, 1.898 has a 

ratio close to 1:2, which is consistent with two conformations of the active site hydrogen bonding 

network.The one-third portion at g = 2.487, 2.143, 1.891 species corresponds to the 

conformation in which the ferric hydroperoxide intermediate forms a hydrogen bond with the 

NH group of L-Trp, in which case the electron rich indole ring facilitates the homolytic cleavage 

of O-O bond. On the other hand, the two-thirds portion at g = 2.467, 2.143, 1.898 species is 

assigned to the conformation in which ferric hydroperoxide forms a hydrogen bond with the 

active site histidine which functions as an acid-base catalyst to facilitate the heterolytic cleavage.  
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 CHAPTER 6     

ENZYME ACTIVATION BY SUBSTRATE 

6.1 Introduction 

Most enzymes catalyzing the oxygenation reaction utilize ferrous ion as a cofactor to activate O2. 

Such enzymes include extradiol dioxygenase, α-ketoglutarate dioxygenase and Rieske 

dioxygenase. TDO is active at ferrous state, however, it has also been reported from several 

research groups that ferric TDO exhibits significant activity for the oxidation of L-Trp (141, 313). 

Previous studies have shown that the reaction of TDO does not require adding an exogenous 

electron donor. The required electron for oxidized TDO activation should be provided by 

substrate.  

It has been reported that intradiol dioxygenases utilize ferric ion as cofactor and the 

dioxygenation reaction proceeds via a substrate activation mechanism. The active site of 

intradiol dioxygenase is composed of two histidine, two tyrosine and one solvent-derived water 

ligands. Upon substrate binding, the tyrosine ligand is displaced and the substrate and dioxygen 

bind to Fe(III) ion center simultaneously to form a subtrate-peroxy-enzyme complex, in which 

the ferric ion center functions as a conduit for a shift in electron density from the aromatic 

substrate to the bound O2. The heme binding site of TDO has only one axial position for O2 

binding and activation, which does not allow for the formation of substrate-peroxy-enzyme 

complex. The substrate-based dioxygen activation catalyzed by oxidized TDO must undergo a 

distinct mechanism relative to intradiol dioxygenase. 
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In this chapter, we investigate the substrate-based activation of oxidized TDO and propose a 

substrate-based activation mechanism. 

6.2 Results and Discussion 

UV-Vis absorbance of ferric TDO mixed with L-Trp under anaerobic conditions — In the 

absence of any reducing agent, incubation of ferric TDO with L-Trp resulted in the developed 

UV-Vis absorbance at 321 nm which corresponds to the formation of NFK product. In order to 

study the effect of substrate on ferric TDO, the reaction mixture containing 5.5 μM ferric TDO 

and 5 mM L-Trp was incubated under anaerobic conditions. Upon adding L-Trp, the Soret band 

of ferric TDO slightly shifted 1 nm to 406 nm which suggests that L-Trp binds to the active site 

and disturbs the active site environment. During the 3 h incubation, the Soret band of 405 nm 

decreases and the absorption at 432 nm increases (Figure 6.1B). This suggests that ferrous TDO 

slowly forms in the presence of L-Trp and the formation is at the expense of the ferric TDO. The 

absorbance at 321 nm corresponding to the NFK product does not change during the 3 h 

incubation, suggesting that the formation of ferrous TDO does not require an oxygenation 

process. 

The absorption at 432 nm of the difference spectrum was used to calculate the formation of 

ferrous TDO. After 3 h and 6 h incubation, around 18% and 23% ferric TDO is converted to 

ferrous TDO, respectively (Figure 6.1A). When the 6 h-incubation reaction mixture was bubbled 

with CO, a shoulder peak was observed at 421 nm, corresponding to the formation of ferrous 

TDO-CO-L-Trp complex. The results suggest that L-Trp is an electron donor to provide one 

electron for the reduction of ferric TDO. 
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Figure 6.1. UV-Vis spectra of ferric TDO incubated with 5 mM L-Trp under anaerobic conditions. 
(A) The reprehensive spectra of the ferric TDO incubated with L-Trp. (B) The time trace of the 
absorption at 405 nm, 432 nm and 321 nm over 3 h incubation. 

UV-Vis spectra of substrate analogue-bound ferric TDO — In order to obtain better 

understanding of the interaction between substrate and the ferric TDO, substrate analogues 

which includes D-tryptophan (D-Trp), 5-hydroxy-L-tryptophan (5-OH-Trp) and 5-fluoro-DL-

trptophan (5-F-Trp) (Figure 6.2) were utilized to probe the interaction between the potential 

electron donors and the ferric TDO.   

Substrate analogues were mixed with ferric TDO under anaerobic conditions to detect the effect 

on the formation of ferrous TDO (Figure 6.3). Similar trends to that with L-Trp were observed 

with substrate analogues. The different spectra show an increased Soret band at 432 nm, visible 

absorptions at 554 nm and 588 nm and a decreased Soret band at 405 nm, resulting from the 

formation of a ferrous species at the expense of ferric TDO (Figure 6.3D). 



135 

 

 

 

NH2

N
H

O

OH

L-tryptophan

NH2

N
H

O

OH

D-tryptophan

NH2

N
H

O

HOHO

5-hydroxy-L-tryptophan

NH2

N
H

O

HOF

5-fluoro-DL-tryptophan  

Figure 6.2. The chemical structures of substrate, L-Trp, and its analogues. 

400 600

-0.1

0.0

0.1

0.2

D
iff

er
en

ce
 a

bs
or

ba
nc

e

λ (nm)

 D-Trp
 5-OH-Trp
 5-F-TrpD

360 420 480

A
bs

or
ba

nc
e

λ (nm) 

 + 5-OH-Trp
 After 3hrs

C

 

 

 

  + D-Trp
 After 3hrs

B  +5-F-Trp
 After 3hrs

A
432 nm

554 nm 588 nm

405 nm

Figure 6.3. The activation of ferric TDO upon binding substrate analogues. Ferric TDO mixed 
with (A) 20 mM D-Trp; (B) 20 mM 5-F-Trp; (C) 20 mM 5-OH-Trp for 3 h under anaerobic 
conditions; (D) the difference spectra of ferric TDO reacted with D-Trp, 5-F-Trp, 5-OH-Trp for 3 
h. 



136 

 

 

 

After 3 h incubation, the ferrous TDO formation based on the concentration of the starting ferric 

TDO was 11.6 % and 41.6 % for 5-F-Trp and 5-OH-Trp respectively. Compared with the 18 % 

ferrous TDO formation using L-Trp (Figure 6.1), 5-OH-Trp is 1.3-fold more effective whereas 5-

F-Trp is 35 % less efficient. As for D-Trp, only 2.5 % ferric TDO is converted to ferrous form. 

The activation has the following order: 5-OH-Trp > L-Trp > 5-F-Trp > D-Trp which does not 

correlate to the specificity of substrate.  These results clearly suggest that the formation of 

ferrous species is sensitive to the chemical properties as well as the geometry rather than the 

involvement in the catalytic reaction of the substrate or substrate analogues. Upon binding to the 

active site, the orientation and position of substrate analogues might be different, affecting the 

electron transfer from or through the indole ring of substrate or substrate analogue to the ferric 

heme ion. 

EPR spectra of substrate- or substrate analogue-bound ferric TDO — In order to obtain more 

information on the binding of substrate or substrate analogues to ferric TDO, EPR spectroscopy 

was employed to investigate the substrate- and substrate analogues-bound ferric TDO complex.  

Figure 6.4 displays the low temperature X-band EPR spectra of ferric TDO in the presence of 

substrate and substrate analogues. The EPR spectrum of substrate-free ferric TDO in 4A shows a 

rhombic high-spin ferric signal near g = 6 and 2. The samples of spectra B-E were prepared by 

mixing ferric TDO with 100 equivalents of L-Trp, D-Trp, 5-OH-Trp or 5-F-Trp, respectively for 

25 s, followed by freezing in liquid nitrogen. The L-Trp-bound ferric TDO is shown in 4B in 

which a low-spin ferric signal occurs at g = 2.69, 2.19, 1.80. In another parallel experiment, the 

quantitation results indicate that the formation of the low-spin ferric signal is at the expense of 
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50% high-spin ferric signal. The g-values of the low-spin ferric signal is similar to those of other 

heme-containing proteins (134, 135), which have been identified as a ferric hydroxide species. 

Thus, the low-spin ferric signal in ferric TDO is assigned to a ferric hydroxide species. The 

original high-spin ferric signal becomes more axial and a small amount of high-spin ferric signal 

at g = 6.66 occurs upon the binding of substrate (more details in Chapter 7), which is indicative 

of a perturbation in the active site environment.  

The binding of D-Trp to ferric TDO did not change the EPR signal as shown in 4C. On the other 

hand, the binding of 5-OH-Trp and 5-F-Trp to ferric TDO induce a similar EPR low-spin ferric 

signal at g = 2.69, 2.19, 1.80 corresponding to ferric hydroxide low-spin species as shown in 4D 

and 4E.  

It should be noted that D-Trp has only little effect on ferric TDO activation, whereas L-Trp, 5-

OH-Trp and 5-F-Trp have significant activation effect when incubated with ferric TDO under 

anaerobic conditions. These findings are in line with the observation in the EPR spectrum in 

which a low-spin ferric species was not observed when ferric TDO was mixed with D-Trp but 

with L-Trp, 5-OH-Trp and 5-F-Trp. This indicates the formation of ferrous TDO is correlated to 

the formation of hydroxide-ligated ferric intermediate. The fact that the spin transition is 

sensitive to the stereospecificity of the substrate reveals a conformational change upon the 

binding of substrate or substrate analogues.  

The low-spin ferric signal upon binding L-Trp to ferric TDO — The low-spin ferric hydroxide 

species is most possible to provide a conduit for the electron transfer from aromatic substrate to 

ferric ion center. If it does, it should be long-lived for the activation as the activation can be 
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observed for at least 6 h. EPR spectroscopy was used to detect the stability of the low-spin ferric 

species over a 5 h time scale. Parallel samples were prepared under anaerobic conditions for 

various reaction times in which ferric TDO mixed with L-Trp for 30 min, 2 h and 5 h  

100 200 300
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Figure 6.4. EPR spectra of ferric TDO mixed with substrate or substrate analogues. (A) 200 μM 
as-isolated ferric TDO; Spectra B-E shows the EPR spectra of  200 μM ferric TDO upon the 
reaction for 25 s with 20 mM (B) L-Trp; (C) D-Trp; (D) 5-OH-Trp; (E) 5-F-Trp. Experimental 
EPR spectra were recorded at 10 K with 3 mW microwave power at 9.4 GHz.  
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Figure 6.5. EPR spectra of the time dependence of incubation of ferric TDO with L-Trp under 
anaerobic conditions. EPR spectra of 200 μM as-isolated ferric TDO (A); Spectra B-D are the 
EPR spectra of 200 μM ferric TDO mixed with 6 mM L-Trp for (B) 30 min; (C) 2 h and (D) 5 h. 
Experimental EPR spectra were recorded at 10 K with 1 mW microwave power at 9.4 GHz. A 5 
G field modulation at 100 kHz was employed. 
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respectively before freezing in liquid nitrogen for EPR spectroscopy analysis (Figure 6.5). The 

low-spin ferric signal is present even after 5 h incubation. The high-spin ferric signal becomes 

more axial compared with the original one. These results clearly suggest that the low-spin ferric 

signal is a property of substrate-bound ferric TDO.  

Table 6.1. EPR parameters of ferric signals of TDO in the presence of L-Trp. 

 Spin State g % 

Site 1 
High-spin 5.78 40 

Low-spin 2.61 8 

Site 2 
High-spin 6.6 7 

Low-spin 2.69, 2.19, 1.80 43 

 

The simulation of the EPR spectrum of L-Trp bound ferric TDO reveals two overlapping low-

spin ferric signal with a ratio of 43 : 8 at g = 2.69, 2.19, 1.80 and g = 2.61, 2.19, 1.80 (Table 6.1). 

This finding gives an indication of two conformers of the ferric hydroxide species in the active 

site. 

The redox potential of TDO — In order to investigate the electron transfer driving force, redox 

potential of TDO was determined in the absence and presence of L-Trp. Selected spectra 

obtained during anaerobic redox titration of TDO are shown in Figure 6.6. Data is fitted to a 

single electron process (Nernst equation) at either 405 nm or 432 nm which gives results within 

error of one another. The reduction potential are 110 ± 2 mV for the substrate-free TDO and 191 
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± 10 mV for the L-Trp-bound TDO, which shows an increase of 81 mV over the value for the 

substrate-free TDO.  

The redox potential properties of heme group can be modulated by the hydrogen bonding 

network, electrostatic interactions in the active site environment as well as other modifications in 

the heme-binding pocket upon a change in ligands (350). In the peroxidase family, the 

interaction of Asp-His-ferric heme ion at the proximal heme side mainly contributes to a low 

redox potential by deprotonating the NH group of the proximal histidine. In TDO, proximal 

His257 is surrounded by a mostly hydrophobic environment and hydrogen bonded to Arg254 

through two water molecules. The His257 has no additional electrostatic interaction with the 

protein matrix. Putting these together contributes to the high redox potential of TDO.  

 It has been reported that the higher redox potential helps stabilize the catalytic oxyferrous 

intermediate. For example myoglobin has a redox potential around 50 mV (351). This suggests 

that the high redox potential in TDO increases the potential electron driving force of ferric heme 

ion of TDO. In CYP450, the resting state of the enzyme exhibits a mixture of spin state with 

high-spin and low-spin ferric in which the low-spin ferric state is favored in the absence of 

substrate. Upon substrate binding, the water molecule is displaced from the sixth ligand position. 

This modification increases the midpoint redox potential of iron center from -300 mV to -170 

mV  which facilitates the transfer of one elctron from the CYP450 reductase to activate the 

enzyme (352). It is likely that the increased redox potential in TDO upon substrate binding 

results in the increase in the thermodynamic driving force for electron transfer between L-Trp 

and the ferric ion center which facilitates the substrate-based ferric TDO activation. 
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Figure 6.6. Anaerobic spectrochemical titrations of TDO at 100 mM potassium phosphate buffer 
pH 7.0. (A) Absorption spectra obtained during redox titration of substrate-free TDO. (B) 
Absorption spectra collected during redox titration of TDO in the presence of 15 mM L-Trp. (C) 
Nernst plot for the reductive titration of TDO. Values of log [TDOox]/[TDOred] were obtained 
from the change of absorbance at 405 nm.  

Mössbauer characterization of TDO — The iron axial ligand in heme proteins always affects the 

electronic property of the porphyrin ring. Mössbauer spectroscopy was conducted to provide 

further information on the axial ligand.  
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Figure 6.7. Mössbauer Spectra of ferric 57Fe-TDO in the absence or presence of L-Trp. (A) ferric 
57Fe-TDO; (B) ferric 57Fe-TDO treated with 10 equivalents of L-Trp. The spectra were recorded 
at 4.2 K with a magnetic field at 45 mT.  

Mössbauer spectra shown in Figure 6.7 indicate that the addition of L-Trp to ferric TDO results 

in conversion of 60% of high-spin ferric signal to low-spin ferric signal. The ratio of the 

formation of low-spin ferric species in Mössbauer spectrum is consistent with the EPR 

experiment observation within the range of error. 

The Mössbauer spectrum of ferrous TDO shows a single doublet (single species) with relatively 

large quadrupole splitting of 3.55 mm/s. The observed isomer shift of 1.00 mm/s and line width 

of Γ = 0.56 mm/s is typical of high-spin ferrous heme as shown in Figure 6.8.   

Upon addition of 10 equivalents of L-Trp, 50% of the ferrous doublet is converted to a new 

ferrous species with a significantly smaller quadrupole splitting of 2.5 mm/s, line width of Γ = 

0.37 mm/s and the same isomer shift 0.95 mm/s (Figure 6.9). No change in isomer shift indicates 

that the oxidation state of iron remains high-spin ferrous. 



144 

 

 

 

 

Figure 6.8. Mössbauer Spectrum of ferrous 57Fe-TDO. The spectrum was recorded at 4.2 K with 
a magnetic field at 45 mT.  

 

Figure 6.9. Mössbauer Spectrum of ferrous 57Fe-TDO in the presence of L-Trp. The spectrum 
was recorded at 4.2 K with a magnetic field at 45 mT.  
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The lower quadrupole splitting g-value is typical of other heme proteins with a His proximal 

axial ligand, such as myoglobin (2.22 mm/s), hemoglobin (2.40 mm/s), and HRP (2.68 mm/s). 

The larger value of ΔEQ is rare, but a large value has been observed in hydroxylamine 

oxidoredutase (4.21 mm/s). Recent studies of synthetic model complexes have correlated the 

shift from small to large ΔEQ with the protonation state of Nδ of the proximal histidine (353). 

The smaller ΔEQ is observed for neutral imidazole (Nδ protonated), and the larger value observed 

for imidazolate (Nδ deprotonated) complexes. Thus, the L-Trp-bound ferrous TDO with ΔEQ = 

3.55 mm/s is correlated with an imidazolate complex, whereas the one with ΔEQ = 2.5 mm/s is 

correlated with a neutral imidazole complex. Site A and Site B in Scheme 6.1 refer to two 

different protonation states of the proximal His257 with regard to the imidazolate complex and 

neutral imidazole complex. In site A, the water forms hydrogen bond with Nδ  of His 257 in one 

subunit of the substrate-bound dimer and leads to more negative δ- in His257 compared with that 

of Site B, giving an imidazolate complex. On the other hand, in Site B, the proton moves from 

water to His257, giving a neutral imidazole complex with a small ΔEQ. 

The X-ray structure of substrate-bound xcTDO does not show difference at the water near the 

proximal histidine (Figure 6.10). Mössbauer data suggests that one subunit of the dimer of the 

histidine ligand has become more positively charged in the presence of L-Trp with a higher 

protonated character as shown in Scheme 6.1B. The positively charged proximal histidine 

influences the basicity of the four pyrrole nitrogens and thus decreases the electron density at the 

heme iron which facilitates electron transfer from potential nearby electron donor.   
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Scheme 6.1. The two protonation states of proximal His257 in TDO.  

Proposed substrate activation mechanism — In TDO, the binding of substrate or substrate 

analogues triggers the change in spin state to form low-spin ferric hydroxide species.  There are 

two overlapping low-spin ferric hydroxide signals at g =2.69, 2.19, 1.80 and g = 2.61, 2.19, 1.80. 

The X-ray structure of substrate-bound xcTDO (Figure 6.10) shows differences between 

Conformers A and B of the active site water molecules to the substrate and the distal site 

histidine. In one subunit of dimer, the active site water is close to L-Trp and forms hydrogen 

bond with Nδ group of L-Trp which is referred to as Conformer A. In the other subunit of dimer, 

the active site water is away from L-Trp and forms hydrogen bond with Nδ group of histidine, 

which is designated as Conformer B (Figure 6.10). Although the crystal structure of substrate-

bound rmTDO is not available, a similar hydrogen bonding network in the active site is assumed 

in rmTDO with regard to the observation of two overlapping low-spin ferric hydroxide 

intermediates. 

Our studies suggest the formation of ferrous TDO is sensitive to the geometry of the substrate or 

substrate analogues in the active site. Since electron transfer requires a conduit for the electron 
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shift from substrate or substrate analogue to ferric ion center, a ferric hydroxide-L-Trp complex 

is assumed during the substrate-based activation. Conformer A is effective for the ferric TDO 

activation in which the ferric hydroxide is close to C3 to form a ferric hydroxide-L-Trp complex. 

Conformer B has a hydrogen bond between ferric hydroxide intermediate and Nδ group of both 

of His72 and L-Trp is inefficient for the activation of ferric TDO. 

 

Figure 6.10. Crystal structure of the water molecule near His55 in the distal site and His240 in 
the proximal site of xcTDO (PDB: 2NW8). 

Combined with the higher redox potential, the protonation state of proximal histidine of TDO 

and the formation of ferric hydroxide low-spin ferric species, a substrate-based activation 

mechanism of ferric TDO is proposed as shown in Scheme 6.2. Upon substrate binding, the 

active site water shifts toward the ferric heme center which facilitates the formation of low-spin 

six-coordinated ferric heme complex with a hydroxide as the sixth ligand. The C2-C3 double 

bond of L-Trp moves close to and faces the hydroxide ferric intermediate in a hydrogen bond 

Conformer A                                         Conformer B 
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distance. Based on the indole chemistry, the highest spin density is located at C3 of L-Trp. The 

formation of the low-spin ferric hydroxide complex triggers an electrophilic attack at C3 and 

generates a hydroxyl-L-Trp-ferric TDO intermediate. The increased redox potential of the ferric 

ion and the imidazolate character of the proximal His257 upon the binding of substrate facilitate 

the electron transfer from the nearby potential electron donor to the iron center. Thus, one 

electron reduction occurs in ferric TDO to generate a ferrous TDO. After reduction, the proton is 

rebound to form ferrous hydroxide TDO intermediate and generates a tryptophan cation radical 

intermediate. When a dioxygen molecule is available, the water molecule in the active site is 

displaced and O2 driven dioxygenation reaction is initiated. However when ferric TDO was 

incubated with L-Trp under anaerobic condition, no protein radical is observed by EPR 

spectroscopy. This could be due to the very low reaction rate of the generation of the putative 

tryptophan cation radical. The heme binding pocket is partially exposed to the solvent, so the 

relatively small amount of radical is easily quenched by the solvent. 
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CHAPTER 7     

A SITE-DIRECTED MUTAGENESIS ANALYSIS ON THE ROLE OF THE 

CONSERVED ACTIVE SITE RESIDUES 

7.1 Introduction 

In order to probe the role of the active site residues (Figure I.4), a set of TDO derivatives was 

constructed, which includes proximal site His72 derivatives of H72S, H72N, Q73F; distal site 

tyrosine residue derivatives of Y43W, Y43F, Y130F, proximal site tryptophan residue 

derivatives of W119F, W253F, W119F/W253F and proximal ligand derivative of H257C.   

7.2 Results and Discussion 

Expression, purification, and characterization of TDO derivatives — The mutant proteins were 

purified with the same protocol as that of the wild-type TDO (WT TDO). The UV-Vis maximal 

absorptions of the ferric TDO derivatives are compared in Table 7.1. All of the mutants have 

similar UV-Vis spectral features with a Soret band of a ferric form within 1-2 nm range of 405 

nm and a ferrous form within 1-2 nm range of 432 nm, which are similar to that of WT TDO. 

These suggest that the corresponding mutations might not have significant effects on the active 

site structure of the mutants. The available crystal structures of TDO can provide reasonable 

information on the surrounding environments of the active sites to interprete the substrate-protein 

interaction of these mutants.  

There are two exceptions among them. One is Y43F, in which the ferric form has maximal 

absorptions at 411 nm, 532 nm and 576 nm. Another one is H257C, in which the ferric form 
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exhibits a Soret band at 403.5 nm and visible bands at 529 nm and 603 nm. The ferrous form 

shows a Soret maximal at 420 nm which is much different from other TDO derivatives and better 

resembles the features of cysteine ligated heme proteins.  

The mutants dramatically alter the heme binding capabilities as shown in Table 7.2.  WT TDO 

and Y130F as purified isolated protein contained 63% and 62% Fe/monomer. H72S, H72N, 

Y43W and W253F as purified isolated protein have 51%, 45%, 46% and 47% Fe/monomer heme 

occupancy respectively, followed Q73F, W119F and W119F/W253F with 37%, 35% and 32% 

respectively, and H257C has the lowest heme occupancy with 28%, determined by ICP.  

Kinetic parameters of kcat, Km and kcat/Km for all of the mutants were measured in 50 mM Tris pH 

7.4 and are presented in Table 7.3. In steady state analysis, the kcat and Km values of the WT 

TDO are 12 s-1 and 215 µM, respectively. The enzyme activity decreases in the order of W119F, 

Q73F, W253F, W119F/W253F and Y130F with 7.60 s-1, 5.0 s-1, 3.4 s-1 and 3.3 s-1, respectively.  

The activity of H72S and H72N with 0.68 s-1 and 0.020 s-1 are 18-fold and 630-fold slower 

relative to WT TDO. The two Tyr43 mutants of Y43W and Y43F have dramatically decreased 

activities with kcat values of 0.002 s-1 and 0.040 s-1 corresponding to 6000-fold and 310-fold 

slower compared with WT TDO. H257C has a very low enzyme activity (kcat value of 0.006 s-1).  

EPR spectroscopy was used to determine the heme coordination geometry of TDO derivatives. 

All the EPR samples were prepared in 50 mM Tris pH 7.4 containing 10% glycerol. Ferric TDO 

exhibits a typical rhombic high-spin ferric signal at g = 6, 2. H72N, Q73F, Y130F, W253F, 

W119F and W119F/W253F have similar rhombic high-spin ferric signal as that observed in WT 

TDO as shown in Figure 7.1 and Table 7.4. Compared with WT TDO, Y43W exhibits a much 
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axial high-spin ferric EPR signals. The most interesting mutant is H72S in the EPR study. A set 

of low-spin ferric signals is observed in the as-isolated H72S. Further discussion about the high-

to-low spin transition will be is provided in later chapters. There are two sets of high-spin ferric 

signals observed in H257C with g = 6.64 and g = 5.15, respectively. A low-spin ferric signal is 

also observed at g = 2.1, 1.99, 1.90 from H257C. It is also not surprising to observe the low-spin 

ferric signal in H257C which is designed to mimic the cysteine ligand in CYP450. The spin 

mixture of low-spin and high-spin ferric signal in H257C is consistent with the observation in its 

UV-Vis spectrum. In most of the TDO derivatives, there is a small portion of g = 2 signals, which 

may be due to a free radical signal, however, the identity is not yet understood. 
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Figure 7.1. UV-Vis spectra of TDO derivatives. 
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Table 7.1. Absorption spectra of the TDO mutant proteins. 

Sample Ferric form (nm) Ferrous form (nm) 

WT TDO 405; 505; 541; 632 432; 554; 588; 657 

H72N 403; 504; 539; 630 429; 552; 584; 656 

Q73F 405; 505; 540; 637 432; 554; 587; 661 

H72S 404; 504; 538; 637 430; 552; 586; 657 

Y130F 405; 504; 541; 633 432; 554; 589; 660 

Y43W 406; 503; 540; 636 433; 555; 589; 658 

H257C 403.5; 489; 529; 603 420; 535; 570; 658 

W253F 405; 502; 540; 641 430; 555; 588 

W119F 405; 505; 540; 640 430; 553; 588 

W119F/W253F 404; 505; 537; 631; 677 428; 555; 590; 659 

Y43F 411, 532, 576, 659 426; 532; 557; 650 

 

Table 7.2. Heme occupancy and the extinction coefficient of TDO derivatives.  

TDO Fe/Protein (%) 
εSoret band 

(mM
-1

cm
-1

) 

WT TDO 63 130 

H72S 51 120 

H72N 45 120 

Q73F 37 110 
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Y130F 62 130 

Y43W 46 140 

W119F 35 130 

W253F 47 110 

W119F/W253F 32 80 

H257C 28 90 

Y43F N/A N/A 

 

Table 7.3. Kinetic parameters for wild-type TDO and its derivatives with L-Trp as substrate. 

TDO Km (µM) kcat (s-1) kcat/Km(M-1 s-1) 

WT TDO 215.0 ± 13.0 12.0 ± 0.4 55,530.0 ± 1,680.0 

H72S 586.0 ± 80.0 0.68 ± 0.08 1160.0 ± 80.0 

H72N 1153.0 ± 120.0 0.020 ± 0.001 16.0 ± 1.0 

Q73F 996.0 ± 130.0 5.0 ± 0.07 5,410.0 ± 620.0 

Y130F 180.0 ± 10.0 3.30 ± 0.03 18,680.0 ± 1,040.0 

Y43W N/A 0.0020 ± 0.0003 N/A 

Y43F N/A 0.040 ± 0.005 N/A 

W119F 450.0 ± 37.0 7.60 ± 0.20 16,900.0 ± 900.0 

W253F 245.0 ± 20.0 14.50 ± 0.40 44,440.0 ± 2,380.0 

W119F/W253F 270.0 ± 50.0 3.40 ± 0.30 12,760.0 ± 1,360.0 

H257C N/A 0.006 ± 0.001 N/A 

N/A: 50 mM L-Trp was used for the determination of the apparent rate. 
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Figure 7.2. EPR spectra of TDO derivatives. The as-isolated purified TDO derivatives were 
prepared in ferric forms. (A) WT TDO; (B) H72S; (C) H72N; (D) Q73F; (E) W253F; (F) W119F; 
(G) W119F/W253F; (H)Y43W; (I) Y43F; (J) Y130F; (K) H257C. Experimental EPR spectra 
were recorded at 10 K with 1 mW microwave power at 9.4 GHz. A 5 G field modulation at 100 
kHz was employed. 
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Table 7.4. The g parameters of as-isolated TDO derivatives. 

Sample High-spin 1 High-spin 2 Low-spin 

 g-values g-values g-values 

WT TDO 6.11 5.7     

H72N 6.11 5.62 6.76    

Q73F 6.00 5.87 6.87    

H72S 6.11 5.72 6.66 2.98 2.31 1.90 

Y130F 6.11 5.67     

Y43W 6.0 5.8     

Y43F 6.04   2.44 2.29 1.99 

W253F 6.08 5.7 6.88    

W119F 6.11 5.66     

W119F/W253F 6.11 5.62 6.6    

H257C 5.46 5.15 6.64 2.1 2.06 2.03 

 

Distal site His72 derivatives: H72S, H72N and Q73F — His72 forms a hydrogen bond with the 

only distal water molecule in the active site in the ligand-free structure of the enzyme (262, 354). 

In the ligand-bound crystal structure in xcTDO, the indole nitrogen atom of the substrate is 

directly hydrogen-bonded to the His55 which corresponds to His72 in rmTDO (Figure 1.4) (354). 

The residue of His72 is the sole candidate, should an active site acid-base catalyst be required in 

the catalytic mechanism. However, it is serine in the corresponding position of IDO, which 
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appears less likely to play this role (130). The role of the histidine in the active site is still 

controversial. 

Site-directed mutagenesis of the distal histidine to serine or alanine decreases the reaction but 

can not eliminate the reaction (129, 132, 133). Recent resonance Raman studies suggest that 

His72 plays a role in regulating substrate binding (132). The intriguing observation in the crystal 

structures of H55S and H55A is that one additional water molecule is introduced to the active 

site when histidine is replaced (133).  

In order to determine the role of His72, three mutants, H72N, H72S, and Q73F, were constructed. 

The mutation of His72 to an asparagine (Asn) is capable of maintaining the hydrogen bonding 

interactions (though less effectively) or is incapable of functioning as an acid-base catalyst. 

Likewise, H72S is capable of forming hydrogen-bonds with its hydroxyl group but would be an 

ineffective acid-base catalyst. Gln73 is a conserved residue next to His72. The apparent role of 

this residue is to maintain the proper position of His72 in the active site. The substitution of Q73 

by a bulky and hydrophobic residue such as phenylalanine will not directly change His72, but 

will most likely affect its physical position. This would consequently interrupt the interactions 

between His72 and its hydrogen-bond partners.  

UV-Vis features of His72 derivatives — The UV-Vis spectra of H72N, H72S have a slightly 

different Soret band with 403 and 404 nm with regard to that of WT TDO at 405 nm. Q73F 

presents the Soret band at 405 nm but it has slightly different maximal absorptions in the visible 

region compared to those in the WT TDO. 
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EPR properties of the His72 derivatives — Figure 7.2A-E showed the low temperature X-band 

EPR spectra for WT TDO and His72 derivatives. The EPR spectrum of ferric H72S shows a 

dominant rhombic high-spin ferric signal at g = 6.11, 5.72, a small amount of rhombic high-spin 

ferric signal at g = 6.99, 6.66 and a low-spin ferric signal at g = 2.98, 2.31, 1.90. H72N has a 

rhombic high-spin ferric signal at g = 6.11, 5.62. In addition, a small amount of high-spin ferric 

signal with g = 6.76 is also observed in H72N. In contrast, only one rhombic high-spin ferric 

signal is observed at g = 6.11, 5.70 from WT TDO. These observations indicate that the 

replacement of His72 does not cause significant change to the electronic structure of the ferric 

center. On the other hand, the replacements sometimes make the active site environment more 

relaxed to allow two alternative high-spin ferric coordination geometries to be present. This is 

especially apparent in TDO H72S (Figure 7.2B). Q73F had a predominant axial high-spin ferric 

signals at g = 6.00, 5.87 and a small amount of rhombic high-spin ferric signal at g = 6.18, 5.87. 

The interpretation is that the replacement of Gln73 instead of His72 maintains the geometry of 

the active site environment, although the position and orientation of the components might be 

perturbed due to the mutation.  

The minor presence of the low-spin ferric signal at g = 2.98, 2.31, 1.90 in H72S is not observed 

in H72N and Q73F. By comparing these g-values with those hydroxide-bound ferric low-spin 

species identified in other heme-containing proteins (135, 140, 355), the g-values in H72S can 

not be assigned as such. On the other hand, g = 2.98, 2.31, 1.90 are similar to the observations in 

the heme proteins with imidazole in the sixth coordination position (356, 357). It might be 

explained that the replacement of His72 with a relatively small amino acid serine makes the 

active site more flexible for incorporation of other small molecules, such as imidazole. Since 
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imidazole, a histidine analogue was utilized during the purification using nickel affinity column, 

it can be incorporated into the active site to give rise to the low-spin signal. As for H72N, the 

Asn residue has a relatively large side chain, which does not allow imidazole access to the active 

site. Thus, the low-spin ferric species in H72S at g = 2.98, 2.31, 1.90 is assigned as an 

imidazole-ligated low-spin ferric heme.  

Steady-state kinetics of His72 derivatives — The kinetic parameters shown in Table 7.3 were 

determined at 50 mM Tris pH 7.4 using L-Trp as a substrate. The mutation of H72N to Asn leads 

to a dramatical decrease in kcat and kcat/Km with the values reduced by 630-fold and 3470-fold, 

respectively. The Km value increases 5.4- fold with regard to that of the wild-type enzyme. On 

the other hand, the mutation of H72S causes a less pronounced 17-fold decrease of the kcat with a 

a 1.7-fold increase of the Km, which lead to a 48-fold decrease of kcat/Km compared to that of WT. 

Meanwhile, Q73F has a limited effect on catalysis, considering both of catalysis and substrate 

affinity with only a 2.2-fold decrease of kcat and 4.6-fold increase of Km which collectively lead 

to a 10-fold decrease of kcat/Km.   

pH profile of TDO and His72 derivatives — The effect of pH on WT TDO and His72 derivatives 

was examined by measuring the activities at various pH values in the presence of 20 mM L-Trp. 

Four distinct patterns are observed in Figure 7.3. WT TDO shows an unsymmetrical bell-shape 

with an increased activity on the acidic side and slowly decreased activity on the alkaline side. A 

plateau forms between pH 7.0 and pH 9.0. Q73F mutant has a similar shape to that of WT TDO, 

except that the entire curve shifts 1.5 pH units towards the alkaline pH. H72S and H72N display 

different pH-dependent shapes compared to that of the WT and Q73F enzyme, in which the 

enzyme activity increases with the increasing pH up to 10.0.  
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Figure 7.3. pH profile of WT TDO and His72 derivatives. The activities were normalized based 
on the maximal activities of each enzyme. 

Previous studies have shown that WT TDO has little effect on the enzyme activity in the pH 

range of 6.5-8.5 (129, 133). The pH profile of WT TDO shown in Figure 7.2 revalidates this 

result. Furthermore, our results also reveal a pKa = 6, which could be assigned for histidine 

residue in the active site. The replacement of Gln73 with Phe increases the hydrophobic feature 

of the active site environment which should result in an increased pKa for the active site residue. 

The observation of an alkaline-shifted pH profile and the increased pKa = 7 in Q73F is consistent 

with this anticipation. The activity of H72N is almost completely diminished at pH < 7, whereas 

the activity increases with the increasing of pH. H72S has a similar pH profile as that observed in 

H72N and both of them have a pKa of more than 10.  
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All the mutations cause a decrease in the kcat values and a distingulished change in their pH 

dependence profile suggesting that the His72 residue plays a role in the catalytic reaction.  

EPR spectra of ferric His72 derivatives in the presence of L-Trp — The ferric H72S shows a spin 

mixture of rhombic high-spin ferric signals and a low-spin ferric signal as discussed. Upon 

adding L-Trp, there is a substantial decrease of the high-spin ferric signal concomitantly with the 

occurrence of a new low-spin ferric signal which is much more prominent than that of WT TDO 

under the same condition (Figure 7.4). These g-values at g = 2.70, 2.21, 1.79 are similar to those 

observed for WT TDO in the presence of L-Trp at g = 2.69, 2.19, 1.80 which is assigned as a 

hydroxide-bound species in Chapter 5. When the concentration of L-Trp was increased from 30 

equivalents to 100 equivalents over ferric H72S as shown in Figure 7.5, the high-spin ferric 

signal almost vanished and a new set of low-spin ferric signal at g = 2.70, 2.21, 1.79 appeared at 

pH 7.4. This observation suggests that the active site structure of H72S differs from that of WT 

TDO in which the active site water is much close to the ferric ion center within a hydrogen bond 

distance upon the binding of L-Trp. This conformation facilitates the formation of low-spin 

hydroxide-ferric intermediate. The original imidazole-ligated ferric signal at g = 2.97, 2.32, 1.90 

decreases and slightly shifts to g = 3.04, 2.31, 1.90 which indicates that the active site water 

competes with imidazole to bind to the active site in the presence of L-Trp.  

The mutants of H72N and Q73F were also studied by EPR spectroscopy upon substrate binding 

(Figure 7.4). A low-spin ferric signal at g = 2.69, 2.19, 1.80 is generated at the expense of high-

spin ferric signal which is similar to that observed in WT TDO and H72S. These findings are 

indicative of the formation of hydroxide ferric low-spin heme in H72N and Q73F. This spin 

transition is least efficient in Q73F relative to WT TDO and other His72 derivatives. Based on 
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the crystal structure of TDO, His72 provides a rigid surface for positioning the substrate bound 

to the active site by its ring structure. This surface would be more relaxed when His72 was 

mutated to Asn or Ser. It is possible that in Q73F the rigid geometry of the active site is still 

maintained by His72 which does not allow for the rearrangement of the hydrogen bond 

interaction in the active site, even if it is partially disrupted.  In contrast, the original hydrogen 

bond interactions between His72 and L-Trp or active site water are completely lost in H72S and 

H72N due to the missing of His72. They might cause a significant rearrangement of the 

hydrogen bond interaction in the active site due to the flexibility introduced by the replacement. 

These results suggest that the active site hydrogen bond interaction plays a role in the spin 

transition in ferric TDO. The binding orientation and geometry of substrate to the active site 

might be perturbed by His72 which results in the increased Km values and decreased kcat of His72 

mutants. 

One observation of WT TDO in the presence of L-Trp is that there is a small amount of high-spin 

species at g = 6.71 which does not present in the absence of L-Trp (Figure 7.4A). On the 

contrary, the similar g = 6.66 high-spin ferric species is observed in the absence of L-Trp rather 

than in the presence of L-Trp in H72S. Thus, the high-spin ferric species at g = 6.7 should not be 

due to the substrate dependent spin transition but resulted from the different hydrogen bond 

interaction in the active site.  

EPR spectra of ferric H72S in the presence of substrate analogues — As shown in Figure 7.6, 

the binding of D-Trp shifts the high-spin ferric signals of H72S to g = 6.99, 6.66 and 6.42 from 

the original ones at g = 6.11, 5.72 and g = 6.01, 5.45 whereas the imidazole-ligated low spin 

ferric species does not change. Low-spin ferric species corresponding to ferric hydroxide species 
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Figure 7.4. EPR spectra of WT TDO and His72 mutants treated with L-Trp. (A) WT TDO; (B) 
H72S; (C) H72N; (D) Q73F. Top: As-isolated purified TDO proteins; Bottom: As-isoalted TDO 
proteins treated with L-Trp. Experimental EPR spectra were recorded at 10 K with 3 mW 
microwave power at 9.4 GHz. 
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Figure 7.5. EPR spectra of ferric H72S treated with various concentration of L-Trp. (A) As-
isolated purified H72S TDO. Ferric H72S was mixed with 30 equivalents of L-Trp (B), 60 
equivalents of L-Trp (C) and 100 equivalents of L-Trp (D). Experimental EPR spectra were 
recorded at 10 K with 3 mW microwave power at 9.4 GHz. 

is not observed. By comparing with that of WT TDO, these findings give clear indication that the 

replacement of His72 with Ser makes substrate binding more flexible, which allows D-Trp to 

bind to the active site of ferric H72S in a geometry differing from WT TDO. On the other hand, 
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low spin hydroxide ferric species is not observed upon D-Trp binding in either H72S or WT 

TDO which gives an indication that the formation of the low spin hydroxide ferric species in the 

active site is sensitive to the stereochemistry of the substrate. It is most likely due to the missing 

hydrogen bond interaction between D-Trp and the active site water.  

Upon adding 5-OH-Trp, a set of clear low-spin ferric signals occurs at g = 2.70, 2.21, 1.78 which 

corresponds to the formation of a hydroxide ferric species, whereas the imidazole-ligated low-

spin ferric species disappears and the high-spin species dramatically decreases and becomes 

more axial. This demonstrates that 5-OH-Trp binds to the active site in a similar manner relative 

to L-Trp and it competes with imidazole and displaces it from the active site. Adding 5-F-Trp to 

H72S converts half of the high-spin ferric signal to low-spin ferric signal and the remaining 

high-spin ferric signal becomes more axial. All of these results indicate that substrate or substrate 

analogues can bind to H72S regardless of the replacement of the active site histidine. However, 

the binding effect is sensitive to the interactions involved in the substrate analogues and the active 

site water.  

As shown in Figure 7.6, a g = 2 signal exists in H72S. When 30 equivalents of L-Trp was added, 

the g = 2 signal disappeared. However, upon addition of 100 equivalents of other substrate 

analogues such as D-Trp, 5-F-Trp and 5-OH-Trp, the signal is still present regardless of the low-

spin ferric signal transition. Since D-Trp, 5-F-Trp and 5-OH-Trp are not substrates for 

dioxygenation reaction catalyzed by TDO, this observation indicates that the g = 2 signal is 

possibly a radical signal which is relevant to the catalytic activity of H72S. 
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Figure 7.6. EPR spectra of 200 µM ferric H72S mixed with 20 mM substrate or substrate 
analogues. (A) As-isolated ferric H72S. Ferric H72S mixed with (B) L-Trp; (C) D-Trp; (D) 5-OH-
Trp; (E) 5-F-Trp. Experimental EPR spectra were recorded at 10 K with 3 mW microwave power 
at 9.4 GHz. 
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EPR spectra of pH dependence of His72 and its mutants — The pH dependence profile shown in 

Figure 7.3 for H72N and H72S is strikingly different from that of WT TDO. The activity 

increases with pH with a pKa value more than 10. This gives an indication of the participation of 

an alternative base such as a hydroxide ion. 

The effect of pH on TDO was studied by EPR spectroscopy. TDO protein samples were 

exchanged to various pH using HiTrap Desalting column with buffers in 50 mM MES pH 6.0, 50 

mM Tris pH 7.4 or 50 mM CHES pH 10.0 containing 10% glycerol. In WT TDO when pH was 

changed from 7.4 to 6.0, the EPR spectrum shows an axial high-spin ferric signal, suggesting 

that the more rhombic high-spin ferric species is converted to the axial species. When pH was 

increased to 10.0, two high-spin ferric signals are observed, the dominant rhombic one at g = 

6.13, 5.7 and a small amount one at g = 6.6 (Figure 7.7).  

Upon adding L-Trp to ferric TDO at pH 7.4, there are two sets of overlapping spin species as 

listed in Table 6.1. When pH was increased to 10.0, the g = 6.6 species was intensified and the 

ratio of g = 6.6 to g = 6.13 species were close to 1:2. The addition of L-Trp to ferric TDO at pH 

6.0 shows an axial high-spin ferric signal and does not generate a low-spin ferric signal.  

Upon changing the pH of the sample back to pH 7.4 a low-spin ferric species is again observed. 

These results suggest that either the increased pH from acidic to alkaline condition or the binding 

of substrate to the active site induces an active site conformational change in which one 

alternative high-spin ferric signal occurs and the original one becomes more axial. This 

conformational change is reversible upon changing pH. 
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The effect of pH on ferric H72S was investigated in the same manner as that in WT TDO. As 

shown in Figure 7.8, the spectrum of H72S in the absence of L-Trp at pH 6.0 exhibits a typical 

high-spin ferric signal at g = 6.0, 5.78, 2.0. When pH was raised to 7.4, a spin mixture occurs 

with a set of overlapping high-spin ferric signals and a low-spin ferric signal as discussed. 

Raising the pH to 10.0, the g = 6.6 high-spin ferric signal dramatically increases whereas the 

low-spin ferric signal corresponding to imidazole-ligated ferric heme completely disappears. It is 

evident that the active site conformation favors the formation of g = 6.6 high-spin ferric species 

and the imidazole is displaced from the active site at alkaline condition.  

Upon adding L-Trp to H72S, half of the g = 6.0, 5.78, 2.0 high-spin ferric species is converted to 

low-spin ferric heme at pH 7.4 as discussed. In contrast, adding L-Trp to H72S at pH 10.0 

induced only a small amount of low-spin ferric species and the high-spin ferric signal did not 

change much. H72S is unstable at pH 6.0. Based on the observation on WT TDO at pH 6.0 in the 

presence of L-Trp, the change of the spectrum upon adding L-Trp to H72S at pH 6.0 is not 

expected to be observed. Together with the pH profile of H72S, the g = 6.6 high-spin ferric 

species is correlated to the increased catalytic activity in which a potential acid-base catalyst with 

pKa around 10 is involved. These suggest that the two sets of high-spin ferric species might 

result from two distinguished hydrogen bond networks in the active site in H72S, especially at 

alkaline condition.  

From the crystal structure of substrate-bound H55S in xcTDO, one water molecule (W1) is in the 

hydrogen bond distance to the heme iron center. One additional water molecule (W2) is 

introduced into the position of His55 and forms a hydrogen bond with serine. At alkali pH, the g 

= 6.6 high spin ferric signal might result from the rearrangement of W2 in the active site to the 
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Figure 7.7. EPR spectra of the effect of pH on ferric WT TDO in the absence and presence of L-

Trp. Experimental EPR spectra were recorded at 10 K with 3 mW microwave power at 9.4 GHz. 
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Figure 7.8. EPR spectra of the effect of pH on ferric H72S in the absence and presence of L-Trp. 
Experimental EPR spectra were recorded at 10 K with 3 mW microwave power at 9.4 GHz. 
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Figure 7.9. EPR spectra of the effect of pH on ferric H72N in the absence and presence of L-Trp. 
Experimental EPR spectra were recorded at 10 K with 3 mW microwave power at 9.4 GHz. 
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Figure 7.10. EPR spectra of the effect of pH on ferric Q73F in the absence and presence of L-Trp. 
Experimental EPR spectra were recorded at 10 K with 3 mW microwave power at 9.4 GHz. 
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position around the original His72. W2 forms a hydrogen bond with L-Trp and is presumed to 

function as an acid-base catalyst to partially rescue the enzyme activity. Surprisingly, a ferric 

hydroxide signal is not observed in H72S at pH 10.0 whereas it is present dominantly at pH 7.4. 

It might be explained that either in acidic or alkaline condition, the active site water molecule of 

H72S removes the hydrogen bonding distance from the ferric heme.  

H72N mutant was also examined upon changing pH as shown in Figure 7.10. The high-spin 

ferric signals of H72N show a similar trend as observed in H72S. At pH 6.0, the high-spin ferric 

exhibits a signal at g = 6, 5.73. When pH was increased to pH 7.4, the axial ferric signal 

becomes much more rhombic. Two overlapping high-spin ferric signals at g = 6.78 and g = 5.94, 

5.73 with 1:1 ratio is observed at pH 10.0. The g = 6.78 signal might give rise from the 

rearrangement of the hydrogen bond network in the active site. Upon adding L-Trp, a low-spin 

ferric signal is observed at g = 2.7, 2.21, 1.8 at either pH 7.4 or pH 10.0 in H72N. The high-spin 

ferric signals shift to g = 6.45 and g = 5.94, 5.73 at pH 10.0. The pH profile of H72N is similar 

to H72S in which the increased catalytic activity is in line with the increased pH. Thus, the 

dramatically increased g = 6.45 high-spin ferric signal might account for the catalytic activity in 

H72N which is similar to the observation in H72S.  

In Q73F mutant, the high-spin ferric signal does not have significant changes at various pH and 

regardless of the presence of substrate. Only a small amount of alternative high-spin ferric signal 

is observed at pH 10.0 other than the original one. Upon substrate binding, the similar low-spin 

ferric signal corresponding to ferric hydroxide species is observed. In Q73F, the relative rigid 

active site environment compared to H72S and H72N maintained by His72 and the increased 

hydrophobic features of the Phe residue are unfavorable for the formation of the alternative high-
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spin ferric signal even if at alkaline condition. On the other hand, His72 still functions as an acid-

base catalyst as indicated by the pH profile of Q73F (Figure 7.3).  
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Scheme 7.1. Proposed active site hydrogen bonding interaction in H72S and H72N. 

Proposed active site hydrogen bonding interaction in H72S or H72N — Although the crystal 

structure of H72N mutant is yet not available, a similar active site hydrogen bond network is 

allocated to H72N by comparing to H72S and is proposed for at neutral (A) and alkaline (B) 

conditions in Scheme 7.1. In H72S or H72N, an active site water molecule close to heme center 

is present and designated as W1 which is also observed in WT TDO from the crystal structure. 

Due to the replacement of His72, the hydrogen bond interaction between His72 and L-Trp is lost 

as well as the indole ring structure of His72 stabilizing the heme binding pocket. The binding 

pocket becomes more relaxed and one additional water molecule referred to W2 is introduced 

into the position close to Asn/Ser,  forming a hydrogen bond with Asn/Ser as shown in Scheme 

7.1A. When pH is increased, the conformation of the active site is rearranged which facilitates 

W1 to move away from the ferric ion center, and forms a hydrogen bond with Ser/Asn or W1 

which is correlated to the wide extending high-spin ferric signal around g = 6.6 observed in 

H72S and H72N as well as in WT TDO in the presence of L-Trp, whereas the original one is 
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around g =6.1. Upon substrate binding, a spin mixture is observed in H72S and H72N in which 

W1 is within hydrogen bond distance to the ferric heme center to form a low-spin ferric 

hydroxide and otherwise forms a set of high-spin ferric signals. W1 is located in the active site 

adjacent to W2 and forms a hydrogen bond with either W2 or Ser/Asn and the NH group of L-

Trp in the g = 6.6 high-spin signal (Scheme 7.1B). Based on the pH dependence EPR and pH 

profile, the pKa value of W2 is around 10 which is capable of functioning as an active site acid-

base catalyst to rescue dioxygenation activity in H72S and H72N (358). 
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CHAPTER 8      

THE POTENTIAL LOCALIZATION OF THE PROTEIN RADICAL GENERATED IN 

PEROXIDE DRIVEN OXYGENATION REACTION OF OXIDIZED TDO  

8.1 Introduction 

Identification of the amino acid residue that harbors the radical intermediate in the presence of 

H2O2 is necessary for a complete understanding of the peroxide activation of ferric TDO. Should 

a protein-based radical also be generated in the Fe(II) and dioxygen process, then it will likely be 

located at the same site. Some protein radicals formed in other heme and non-heme enzymes are 

directly involved in their catalytic processes. Most stable protein-based radicals are either tyrosyl 

or tryptophanyl radicals (243), because they are easily oxidizable residues and can stabilize the 

radical with their π-π conjugation ring structure. There are four tyrosine and tryptophan residues 

that are observed around the enzyme active site and strictly conserved. These are Y130, Y43* 

(which is intruded from another monomer), W119 and W253 (Figure I.4). In a distal site, Tyr43 

is extruded from the adjacent subunit into the active site; Y130 is close to the heme distal site 

and forms stacking interaction with L-Trp. In a proximal pocket, two tryptophan residues are 

highly conserved, W119 and W253, which surround proximal histidine and provide stacking 

interaction to stabilize the proximal pocket. We determined their potential involvement in the 

formation and localization of the protein radical by site-directed mutagenesis. The Y130F, 

Y43W, W119F, W253F and W119FW253F mutants were analyzed by EPR spectroscopy after 

the peroxide reaction. 
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8.2 Results and Discussion 

EPR spectra of the reaction of ferric TDO with hydrogen peroxide — The reactions of ferric 

TDO and its derivatives with H2O2 were investigated using EPR spectroscopy to obtain insight 

into the protein radical localization in the heme active site. All the EPR samples were prepared 

by mixing as-isolated TDO derivatives with 6 equivalents of H2O2 in 50 mM Tris pH 7.4 buffer 

containing 10% glycerol. The samples were packed into EPR tubes and frozen in liquid nitrogen. 

The total time was 25 s. The EPR spectra obtained from H2O2-treated TDO samples of Y130F, 

W119F, W253F and W119F/W253F are similar to that of WT TDO in which a radical signal 

appeared at g = 2.003 and the high-spin ferric signal dramatically decreases (Figure 8.1A). The 

EPR spectrum of the Y43W mutant has a small peak at g = 2.03 which accounts for the 

formation of a relative small amount of a radical.  

These differences in radical formation cannot yet be interpreted in detail. Based on the current 

observations on EPR spectra and the knowledge on the identification of protein radicals, the 

most probable candidate for the localization of the protein radical is tyrosine 43 (Tyr43). The 

UV-Vis spectrum of the ferric Y43W has a slightly different Soret band at 406 nm compared to 

that of WT TDO at 405 nm. Y43F was expressed in a very low yield compared to other TDO 

derivatives. It exhibits a dramatically shifted Soret band at 411 nm, as well as visible absorption 

peaks at 532 nm and 576 nm which correlate to a low-spin ferric species (Table 7.1).  

EPR spectra of ferric Y43W show a typical axial high-spin ferric signal at g = 6. From crystal 

structure, Tyr43 is intruded into the active site from the adjacent subunit of the dimer and is 7 Å 

away from the heme iron center. Except for the hydrogen bond with Glu76, there is no other 
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hydrogen bond interaction between Tyr43 and the nearby protein matrix. The axial high-spin 

ferric signal in Y43W compared to other TDO derivatives with rhombic high-spin ferric signals 

gives an indication that Y43 is involved in the rhombicity of the active site environment via the 

hydrogen bond interaction with Glu76 and the stacking interaction with L-Trp. When Y43 is 

replaced with Trp, the hydrogen bond interactions of Tyr43 with Glu76 are disrupted which 

attributes to the loss of the intersubunit interaction and the potential cooperative interaction 

within the tetrameric protein and leads to the axial high-spin ferric signal. Although the EPR 

spectrum of Y43F has a very weak high-spin ferric signal at g = 6.04 and does not resolve very 

well, it is similar to that observed in Y43W and is consistent with the loss of the intersubunit 

interaction as proposed for Y43W (Figure 8.1). Y43F displays a new low-spin ferric signal at g = 

2.44, 2.29, 2.09 indicating a dramatically changed active site environment in Y43F. The 

difficulty of expressing of Y43F might be due to the loss of the hydrogen bond interaction 

between Y43 and Glu76, which pushes Y43 away from the heme binding center and disrupts the 

proper active site pocket for heme and substrate binding. Very low activity is detected in both 

Y43 derivatives, with kcat of 0.002 s-1 and 0.038 s-1 for Y43W and Y43F respectively.  These 

results suggest Y43 plays an important role in catalytic reaction.  

When Y43W was treated with H2O2, the high-spin ferric signal does not change, but a radical-

like signal occurs at g = 2. This finding gives an indication that Tyr43 might not be involved in 

the formation of a protein radical when treated with H2O2.  

The UV-Vis, heme occupancy and EPR spectra features of Y130F are the same as that of WT 

TDO. The kinetic parameters indicate that the hydroxyl group of Try130 does not provide an 

important contribution to Km but contributes to the kcat value of Y130F in which the kcat value is 
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4.6-fold decreased. The radical generation of Y130F is as efficient as that of WT TDO. Thus, the 

protein radical is not located in Y130F. 

Protein radicals are mostly seen in the proximal site of a heme binding pocket. W119F and 

W253F are highly conserved in the proximal pocket in TDO. When one of them was mutated to 

Phe, the Soret band did not change. However, the Soret band is 1 nm blue-shifted to 404 nm in 

W119F/W253F double mutant. The heme occupancy of the three mutants decreases to 35%, 

47% and 32%, respectively. This suggests that the proximal tryptophan residues contribute to the 

heme binding stability and the mutations affect the heme binding in TDO. On the other hand, the 

three mutants do not have significant effect on the enzyme activity. The most significant effect is 

the 4-fold decrease of kcat value in W119F/W253F.  

As shown in Figure 8.1, in two tryptophan derivatives of TDO, W119F and W253F, the 

replacement of tryptophan with phenoalanine does not affect the radical formation, which is 

coupled with a decrease in the high-spin signal. In contrast, the tryptophan double mutant is 

affected. It concomitantly generates a relatively small portion of radical with a decreased high-

spin signal. Since neither of the W119F and W253F derivatives have significant effect on radical 

formation, there are two possibilities for the residues: (1) Either derivative is the location for 

radical generation and the radical is easily harbored and transferred between them. (2) Neither 

derivative is the location for radical generation. Since the double mutants have significant effect 

on the active site environment, it disrupts the radical generation.   
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Figure 8.1. EPR spectra of ferric TDO and its derivatives treated with H2O2.  (A) WT TDO; (B) 
Y130F; (C) Y43W; (D) W119F; (E) W253F; (F) W119F/W253F. Top line in each panal 
indicates as-isoalted purified protein; bottom line indicates as-isolated protein treated with H2O2. 
Experimental EPR spectra were recorded at 10 K with 3 mW microwave power at 9.4 GHz. 



185 

 

 

 

CHAPTER 9     

KINETIC AND PHYSICAL EVIDENCE THAT THE DI-HEME ENZYME MAUG 

TIGHTLY BINDS TO A BIOSYNTHETIC PRECURSOR OF METHYLAMINE 

DEHYDROGENASE WITH INCOMPLETELY FORMED TRYPTOPHAN 

TRYPTOPHYLQUINONE  

 
The section of chapter 9 is a direct copy of our published manuscript to Biochemistry on MauG: 

Kinetic and Physical Evidence that the Di-heme Enzyme MauG Tightly Binds to a Biosynthetic 

Precursor of Methylamine Dehydrogenase with Incompletely Formed Tryptophan 

Tryptophylquinone. Xianghui Li, Rong Fu, Aimin Liu and Victor L. Davidson (2008). The 

expression and purification of MauG protein, kinetic analysis were conducted by Dr. Xianghui 

Li (Department of Biochemistry, The University of Mississippi Medical Center, Jackson, 

Mississippi); High-resolution size-exclusion chromatography of protein mixtures was performed 

by Rong Fu (Department of Chemistry, Georgia State University, Atlanta). The manuscript was 

initially prepared by Dr. Xianghui Li. Other authors provided input for the manuscript. This 

work was supported by NIH grant GM-41574 (V.L.D.) and an ORAU Faculty Enhancement 

Award in Life Sciences (A.L.) 

9.1 Abstract 

Methylamine dehydrogenase (MADH) contains the protein-derived cofactor tryptophan 

tryptophylquinone (TTQ) which is generated by the post-translational modification of two 

endogenous tryptophan residues. The modifications are incorporation of two oxygens into one 
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tryptophan side chain, and the covalent cross-linking of that side chain to a second tryptophan 

residue. This process requires at least one accessory gene, mauG. Inactivation of mauG in vivo 

results in production of an inactive 119 kDa tetrameric α2β2 protein precursor of MADH with 

incompletely synthesized TTQ. This precursor can be converted to active MADH with mature 

TTQ in vitro by reaction with MauG, a 42 kDa di-heme enzyme. Steady-state kinetic analysis of 

the MauG-dependent conversion of the precursor to mature MADH with completely synthesized 

TTQ yielded values of kcat of 0.20 ± 0.01 s-1 and Km of 6.6 ± 0.6 μM for the biosynthetic 

precursor protein in an in vitro assay. In the absence of an electron donor to initiate the reaction 

it was possible to isolate the MauG-biosynthetic precursor (enzyme-substrate) complex in 

solution using high-resolution size-exclusion chromatography. This stable complex is non-

covalent and could be separated into its component proteins by anion exchange chromatography. 

In contrast to the enzyme-substrate complex, a mixture of MauG and its reaction product, mature 

MADH, did not elute as a complex during size-exclusion chromatography. The differential 

binding of MauG to its protein substrate and protein product of the reaction indicate that 

significant conformational changes in one or both of the proteins occur during catalysis which 

significantly affects the protein-protein interactions.  

9.2 Introduction 

Methylamine dehydrogenase (MADH) (359) from Paracoccus denitrificans catalyzes the 

oxidative deamination of methylamine to formaldehyde plus ammonia and then transfers 

substrate-derived electrons to amicyanin, a type 1 copper protein. MADH possesses a 

heterotetrameric α2β2 structure. Each smaller β subunit possesses a tryptophan tryptophylquinone 

(TTQ) (360) prosthetic group, which mediates both catalysis and electron transfer. TTQ is a 
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protein-derived cofactor (361) synthesized through post-translational modification of two 

endogenous tryptophan residues. This modification involves the incorporation of two oxygens 

into βTrp57 and cross-linking of βTrp57 and βTrp108 (362). The methylamine utilization (mau) 

gene cluster that encodes the MADH subunits also contains nine other genes that relate to 

MADH biosynthesis and function (363). One of these genes, mauG, has been shown to be 

absolutely required for TTQ biosynthesis (363-365). The gene product, MauG, is a 42.3 kDa 

protein which contains two covalently-bound c-type hemes, one low-spin and one high-spin 

(366), which exhibit cooperative redox behavior (367). In contrast to typical c-type cytochromes, 

reduced MauG is oxidized by O2, and the EPR parameters for MauG are atypical of c-type 

cytochromes and much more similar to those of hemes that bind and activate oxygen, such as 

ligand complexes of cytochrome P450CAM and the complex of heme oxygenase with heme 

(366).  

 

Figure 9.1. MauG-dependent TTQ biosynthesis. 
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A heterologous expression system for MADH was developed which included the structural genes 

for MADH as well as the other genes required for MADH biosynthesis (368). The recombinant 

MADH exhibits spectral and kinetic properties which are indistinguishable from native MADH. 

Deletion of mutation of mauG in this recombinant expression system results in production of a 

biosynthetic precursor of MADH with incompletely synthesized TTQ, in which βTrp57 is mono-

hydroxylated at C7 and the cross-link with βTrp108 is absent (364). This tetrameric protein 

precursor is catalytically inactive with respect to MADH activity. It also exhibits weakened 

subunit-subunit interactions relative to mature MADH, as determined by non-denaturing 

polyacrylamide gel electrophoresis (364). Incubation of this precursor with MauG in vitro in the 

presence of either O2 plus an electron donor or H2O2 results in formation of active MADH with 

fully synthesized TTQ with the second oxygen incorporated at C6 and the cross-link formed 

(Figure 9. 1), and normal strengthened subunit-subunit interactions (365, 369, 370). 

The process of MauG-dependent TTQ biosynthesis is of interest for several reasons. It is the first 

description of an enzyme-mediated post-translational modification to generate a protein-derived 

cofactor (361). It is also an atypical enzyme reaction as the substrate is a 119 kDa precursor 

protein which is much larger than the 42.3 kD enzyme, MauG. Furthermore, the specific amino 

acid residue which is modified is located in the interior of the protein substrate, not on its surface. 

Thus, the nature of the interactions between enzyme and substrate and the structure of the 

enzyme-substrate complex are not obvious. Whether the conventional Michaelis-Menten theory 

is a tenable model for this system is unknown. In this study the interaction between MauG and its 

biosynthetic precursor protein substrate are characterized by steady-state kinetics and analysis by 

high-resolution liquid chromatography, including size-exclusion and anion-exchange separation 
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of protein components. The results provide kinetic properties for this unusual reaction and 

demonstrate that MauG is able to strongly discriminate between its substrate, the biosynthetic 

precursor protein, and its product, mature MADH. 

9.3 Experimental Procedures 

MauG was homologously expressed in P. denitrificans and purified as described previously 

(366). The concentration of MauG was determined using its extinction coefficient of 208,000 M-

1cm-1 at 405 nm. Native MADH was purified from P. denitrificans as described previously (371) 

and its concentration was determined using its extinction coefficient of 26,200 M-1cm-1 at 440 

nm in the oxidized form (372). The biosynthetic precursor of MADH which contains mono-

hydroxylated βTrp57 and no crosslink to βTrp108 (364) was heterologously expressed in 

Rhodobacter sphaeroides and purified as described previously (368). The yield of this precursor 

protein which is very low (approximately 1 mg from 20 L cell culture) was quantitated using an 

extinction coefficient of 157,000 M-1cm-1 at 280 nm. Since the isolated precursor protein was not 

completely pure it was routinely run side by side on polyacrylamide gel electrophoresis with 

known concentrations of pure native MADH to verify concentration. In steady-state kinetic 

studies the amount of product (mature MADH) after completion of the reaction was determined 

from its extinction coefficient as described above, and compared with the estimated 

concentration of protein precursor substrate to further verify the substrate concentration in these 

experiments. 

Steady-state kinetic studies of MauG-dependent in vitro TTQ biosynthesis from the biosynthetic 

precursor protein were performed using a previously described spectrophotometic method (369). 



190 

 

 

 

Reactions were performed aerobically using ambient dioxygen as the oxygen donor and NADH 

as an electron donor. Electron donation to MauG was mediated by an NADH-dependent 

oxidoreductase which is present in the preparation of the biosynthetic precursor (369). The 

reaction was monitored by the rate of appearance of the TTQ chromophore at 450 nm. This 

wavelength was used rather than the absorption maximum at 440 nm to minimize interference 

from the strong Soret peak of MauG. Data were fit to eq 1, where S is the concentration of the 

MADH biosynthetic precursor protein, E is the concentration of MauG, v is the initial reaction 

velocity, kcat is the turnover number (Vmax/E), and Km is Michaelis constant. 

   v/E = kcat[S]/([S] + Km)                                                                 [10.1]  

High-resolution size-exclusion chromatography of protein mixtures was performed using a 

HiLoad 16/60 Superdex 200 column on an ÅKTA FPLC system (GE Healthcare Life Science). 

The column was equilibrated and eluted at 1 ml/min with 50 mM potassium phosphate, pH 7.5, 

containing 25 mM NaCl. The column was calibrated at the beginning, end, and between runs 

using the following molecular mass markers (Bio-rad): thyroglobin (670 kDa), γ-globulin (158 

kDa), ovalbumin (44 kDa), myoglobin (17 kDa) and vitamin B12 (1,350 Da). Anion exchange 

separation of fractions obtained during size exclusion chromatography of the mixture of MauG 

and the MADH biosynthetic precursor was performed using a MonoQ 4.6/100 PE column with a 

flow rate of 1 ml/min using a linear NaCl gradient in 50 mM potassium phosphate, pH 7.5. 

9.4 Results and Discussion 

It was previously shown (369) that four diverse electron donors; ascorbate, dithiothreitol, 

reduced glutathione and NADH were each able to provide reducing equivalents for MauG-
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dependent TTQ biosynthesis under aerobic conditions. Under anaerobic conditions in the 

absence of an electron donor, H2O2 could serve as a substrate for MauG-dependent TTQ  

 

Figure 9.2. MauG-dependent TTQ biosynthesis. Time courses are shown of the absorbance 
change at 450 nm in the presence of varying concentrations (0.76, 1.95 and 2.63 μM) of the 
MADH biosynthetic precursor protein. Each reaction mixture also contained 0.23 μM MauG and 
300 μM NADH in 10 mM potassium phosphate buffer, pH 7.5.  

biosynthesis. NADH was used as the electron donor in the current study for the following 

reasons. The rates of reaction with the other three electron donors were significantly slower than 

with NADH. For study of the steady-state reaction parameters with respect to the biosynthetic 

precursor protein substrate it was necessary to chose the fastest electron donor to insure that 

reduction of MauG was not the rate-determining step in the reaction. While H2O2 was an 

efficient alternative substrate, when present in large excess as needed in this experiment it caused 
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damage to MauG. The reaction with NADH is mediated by a non-physiological NADH-

dependent oxidoreductase which purifies under the same conditions used to purify the 

biosynthetic precursor protein (369). The current study exploits this opportunity to initiate the 

reaction with a safe and efficient source of electrons. As seen below, in this assay the rate and 

extent of the reaction is clearly dependent on the concentration of the biosynthetic precursor 

protein substrate and allows determination of the kinetic parameters of interest. 

 

Figure 9.3. Steady-state kinetic analysis of MauG-dependent TTQ biosynthesis. Initial rates were 
determined from the time courses shown in Figure 9.2 as well as from additional experiments. 
The dependence of the initial rates of reaction on the concentration of the MADH biosynthetic 
precursor is plotted and the data were fit to eq 10.1. A double reciprocal plot of these data is 
shown in the inset. 
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The biosynthetic precursor protein of MADH with incompletely formed TTQ does not exhibit 

any visible absorbance. Mature MADH with TTQ exhibits a broad absorption peak centered at 

440 nm. In these steady-state kinetic experiments the rate of product formation (i.e., appearance 

of MADH with completely synthesized TTQ) was monitored by following the increase in 

absorbance at 450 nm. The time courses of MauG-dependent TTQ biosynthesis at varying 

concentrations of the MADH biosynthesis precursor are shown in Figure 9.2. It should be noted 

that the substrate precursor protein is purified at very low levels of approximately 1 mg from 20 

L cell culture, and is relatively unstable. This prohibited using much higher concentrations of 

substrate in these steady-state experiments. The initial rate of MauG-dependent TTQ synthesis 

exhibited a hyperbolic dependence on the concentration of the biosynthetic precursor protein 

(Figure 9.3). A fit of these data to eq 1 yielded values of Km of 6.6 ± 0.6 μM and kcat of 0.20 ± 

0.01 s-1.  MauG-dependent TTQ biosynthesis is an unusual enzymatic reaction in that the 

substrate, a 119 kDa tetrameric precursor protein, is much larger than the enzyme, a 42 kDa di-

heme protein. The Km of 6.6 μM suggests that the enzyme and protein substrate exhibit a 

relatively strong affinity towards each other.  

It is usually not possible to isolate a stable enzyme-substrate complex since once formed the 

conversion of substrate to product will occur. In this reaction under aerobic conditions a source 

of electrons is required for the reaction. Thus, by omitting a source of electrons from the reaction 

mixture it was possible to examine the interactions between the enzyme and substrate without the 

possibility of conversion of substrate to product. The interactions between MauG, the MADH 

biosynthetic precursor protein, and mature MADH were studied using high-resolution size-

exclusion chromatography. Since no electron donor is present, even under aerobic conditions, the 
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biosynthetic reaction will not occur to a significant extent during the relatively rapid FPLC 

chromatography. The results clearly indicate that MauG forms a stable protein complex with the 

MADH biosynthetic precursor in solution, but not with mature MADH (Figure 9.4). MauG alone 

eluted primarily as a major single peak corresponding to a mass of approximately 43 kDa. The 

molecular weight calculated from the sequence of MauG including the hemes is 42319.7 Da. 

MADH alone eluted as a single peak of an apparent mass of 127 kDa. The molecular weight 

calculated from the sequence of MADH including posttranslational modifications is 119269.7 Da. 

A mixture of a 4:1 molar ratio of MauG and mature MADH resulted in two well-separated 

protein fractions corresponding to apparent mass of 43 and 127 kDa, respectively, with no 

evidence for stable complex formation between the proteins (Figure 9.4A). The MADH 

biosynthetic precursor protein alone eluted as a major peak at 131 kDa. The slightly larger 

apparent mass relative to mature MADH is consistent with previous suggestions that the MADH 

biosynthetic precursor has a less compact tetrameric complex structure than mature MADH 

(364). A mixture of a 2:1 molar ratio of MauG and the biosynthetic precursor protein eluted 

primarily as a peak corresponding to an apparent mass of 189 kDa (Figure 9.4B), indicating 

significant formation of a stable complex between these two proteins.  

To confirm the presence of both MauG and the biosynthetic precursor of MADH in the 189 kDa 

peak which eluted when the mixture of the two was applied to the Superdex column, that fraction 

was collected and immediately subjected to strong anionic exchange chromatography over a 

MonoQ 4.6/100 PE column (Figure 9.5). Two fractions were obtained. Visible absorbance 

spectra and SDS-PAGE showed that the fraction eluting at 210 mM NaCl was MauG and the 

fraction eluting at 400 mM NaCl was the MADH biosynthetic precursor protein. Thus the 
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Figure 9.4. Gel filtration analysis of the enzyme MauG (E), the product of its reaction MADH 
(P), its substrate the MADH biosynthetic precursor (S) and mixtures of E + P and E + S. (A) 
MauG (E, red), MADH (P, green), and a mixture of 4:1 MauG to MADH (black). (B) MauG (E, 
red), the MADH biosynthetic precursor (S, blue) and a mixture of 2:1 MauG to the MADH 
biosynthetic precursor (black). Chromatograms of the mixtures were scaled to size with respect 
to absorbance to allow easier comparison of peak positions. 
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mixture of MauG and the biosynthetic precursor protein form a stable enzyme-substrate complex 

which can endure size-exclusion chromatography while the MauG-MADH enzyme-product 

complex cannot. These data also show that there is no covalent bond between the biosynthetic 

precursor protein and MauG and that the tight binding is solely due to the protein-protein 

interactions. 

We have previously noted that the reactivity and EPR properties of MauG are similar to those of 

cytochrome P450s, despite the fact that MauG contains c-type hemes and different axial ligation 

(366, 369). The cytochrome P450 catalytic cycle is initiated by substrate binding to the oxidized 

enzyme with heme in the ferric state (373). The current study shows that MauG in the oxidized 

state is also capable of tightly binding its substrate. The observation that MauG binds tightly to 

the tetrameric MADH biosynthetic precursor, but not to mature MADH, suggests that there is a 

significant difference in the conformations of the precursor protein and mature MADH, or that 

the MADH biosynthetic precursor is a more dynamic structure than MADH, or both. It was 

previously reported (374) that a loop comprised of residues β90 – β108 on the β subunit of 

MADH forms about 52% of the interface between α and β subunits of MADH. This is significant 

as the residue at the end of loop, βTrp108, is crosslinked to form TTQ in the mature enzyme. In 

mature MADH, this loop is folded over TTQ and is anchored in place by the crosslink between 

βTrp57 and βTrp108. In the biosynthetic protein precursor substrate which lacks this crosslink, 

this loop would be much more flexible and disordered thereby destabilizing the subunit-subunit 

interactions and allowing access to the mono-hydroxylated residue βTrp57 by a processing 

enzyme, such as MauG. The different structural and dynamic properties of the biosynthetic 

precursor protein relative to mature MADH apparently allow MauG to bind its substrate 
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precursor protein with its active site, presumably the high-spin heme, accessible to βTrp57 for 

incorporation of oxygen. Once the MauG-dependent catalysis of TTQ formation is complete this 

loop is no longer flexible but now anchored in place. Subunit-subunit interactions are 

strengthened and the binding site for MauG is no longer accessible in the mature MADH. 

This work describes a kinetic characterization for MauG-dependent TTQ biosynthesis in vitro. 

This is the first such description of an enzyme-mediated post-translational modification to 

generate a protein-derived cofactor. The steady-state kinetic data show that the conventional 

Michaelis-Menten theory is still an appropriate model for this system. The relatively small Km 

for the biosynthetic precursor protein substrate suggests a strong affinity with MauG despite the 

fact that the substrate is nearly 3-fold larger than the enzyme itself (i.e., MauG). These kinetic 

results are supported by the demonstration that MauG and its natural precursor protein substrate 

form a complex which is sufficiently stable to sustain size-exclusion chromatography. While it is 

not unique that the substrate of an enzyme is a larger protein molecule, one rarely observes such 

a stable enzyme-substrate protein complex. In this study we were able to do so by exploiting the 

fact that the enzyme-substrate complex will not turn over in the absence of a reductant. In many 

other cases where the substrate is a big-size protein molecule, the interaction mode between the 

enzyme-substrate is often difficult to characterize because the reaction will proceed during 

chromatographic separation.  However, these data do not exclude the possibility that MauG also 

interacts with mature MADH in solution. We have previously shown that MauG and mature 

MADH may undergo an interprotein redox reaction. The enzyme and the mature MADH clearly 

do not form such a stable protein-protein complex. This suggests that significant conformational 
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changes in one or both of the proteins occur during catalysis which significantly affects the 

protein-protein interactions.  

 

Figure 9.5. Anion exchange separation of components of the 189 kDa fraction obtained during 
size exclusion chromatography of the 2:1 mixture of MauG and the MADH biosynthetic 
precursor.  
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CHAPTER 10      

A CATALYTIC DI-HEME BIS-FE(IV) INTERMEDIATE, ALTERNATIVE TO AN 

FE(IV)=O PORPHYRIN RADICAL 

 
 The section of chapter 10 is a direct copy of our published paper in PNAS on MauG: A 

Catalytic di-Heme bis-Fe(IV) Intermediate, Alternative to an Fe(IV)=O Porphyrin Radical. 

Xianghui Li, Rong Fu, Sheeyong Lee, Carsten Krebs, Victor L. Davidson, and Aimin Liu (2008). 

The expression and purification of 56Fe-TDO and 57Fe-TDO protein were conducted by Xianghui 

Li, Sheeyong Lee (Department of Biochemistry, The University of Mississippi Medical Center, 

Jackson, Mississippi); EPR experiment was conducted by Rong Fu (Department of Chemistry, 

Georgia State University, Atlanta); Mössbauer samples were prepared by Rong Fu and Aimin 

Liu. Mössbauer spectroscopy analyses were conducted by Dr. Carsten Krebs (Department of 

Biochemistry and Molecular Biology and Department of Chemistry, The Pennsylvania State 

University, University Park, Pennsylvania); The manuscript was prepared by Dr. Aimin Liu. 

This work was supported by National Institutes of Health grant GM41574 (V.L.D.), GM069618 

and ORAU Faculty Enhancement Award in Life Sciences (A.L.), Young Investigator Award 

from the Arnold and Mabel Beckman Foundation and Camille Dreyfus Teacher-Scholar Award 

from the Camille and Henry Dreyfus Foundation (C.K.). 

10.1 Abstract 

High-valent iron species are powerful oxidizing agents in chemical and biological catalysis. The 

best characterized form of an Fe(V) equivalent described in biological systems is the 
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combination of a b-type heme with Fe(IV)=O and a porphyrin or amino acid cation radical 

(termed compound I). This study describes an alternative natural mechanism to store two 

oxidizing equivalents above the ferric state for biological oxidation reactions. MauG is an 

enzyme which utilizes two covalently-bound c-type hemes to catalyze the biosynthesis of the 

protein-derived cofactor tryptophan tryptophylquinone (TTQ). Its natural substrate is a 

monohydroxylated tryptophan residue present in a 119 kDa precursor protein. An EPR-silent di-

heme reaction intermediate of MauG was trapped. Mössbauer spectroscopy revealed the 

presence of two distinct Fe(IV) species. One is consistent with an Fe(IV)=O (ferryl) species (δ = 

0.06 mm/s, ΔEQ = 1.70 mm/s). The other is assigned to an Fe(IV) heme species with two axial 

ligands from protein (δ = 0.17 mm/s, ΔEQ = 2.54 mm/s) which has never before been described 

in nature. This bis-Fe(IV) intermediate is remarkably stable but readily reacts with its native 

substrate. These findings broaden our views of how proteins can stabilize a highly reactive 

oxidizing species and the scope of enzyme-catalyzed posttranslational modifications. 

10.2 Introduction 

Tryptophan tryptophylquinone (TTQ) is the protein-derived catalytic cofactor of methylamine 

dehydrogenase (MADH) from Paracoccus denitrificans, a 119 kDa heterotetrameric α2β2 protein 

with a TTQ present on each β subunit (375, 376). TTQ biosynthesis requires incorporation of 

two oxygens into β Trp57 and cross-linking of the indole rings of β Trp57 and β Trp108 (Figure 

10.1A). This is not a self-processing event but requires the action of at least one processing 

enzyme. Deletion of mauG, a gene in the methylamine utilization (mau) gene cluster (172), 

causes accumulation of a biosynthetic precursor of MADH in which βTrp57 is 
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monohydroxylated at C7 and the cross-link is absent (175, 178). Formation of mature MADH 

with TTQ from the biosynthetic precursor is a six-electron oxidation process; two for insertion of 

the second oxygen, two for formation of the cross-link, and two for the oxidation of quinol to the 

quinone. MauG-dependent TTQ-biosynthesis from the precursor was achieved in vitro using 

either O2 plus electrons from an external donor, or H2O2 (177, 178).  

MauG is a 42.3 kDa enzyme containing two covalently-bound c-type hemes, one low-spin and 

one high-spin (176). The EPR parameters of oxidized MauG are atypical of c-type cytochromes 

but similar to those of the b-type hemes in oxygen-binding proteins and oxygenases (176). The 

two hemes have similar intrinsic redox potentials but exhibit cooperative redox behavior 

indicating that facile equilibration of electrons between the two hemes occurs (179), even though 

no spin-coupling is evident from the EPR spectra (176). The structure of MauG has not been 

determined. On the basis of the CXXCH c-type heme binding motifs in the sequence, each heme 

is expected to utilize a histidine for the proximal axial ligand with the heme vinyl groups 

covalently attached to the two cysteine sulfurs (377). No additional cysteines are present in the 

MauG sequence so it is not possible for cysteine to provide an axial ligand for either heme as is 

seen in cytochrome P450s. EPR and resonance Raman studies suggested that the high-spin heme 

possessed a single histidine axial ligand and that the low-spin heme exhibited signals most 

similar to hemes with bis-histidine axial ligands (176, 179). The resonance Raman spectrum 

exhibited marker bands associated with the low-spin heme at frequencies similar to those of c-

type heme proteins with bis-histidine coordination (378). However, on the basis of existing data 

the possibility of another amino acid residue providing the distal axial ligand cannot be excluded. 
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Figure 10. 1. MauG-dependent TTQ biosynthesis. (A) MauG catalyzes the formation of the 
protein-derive TTQ cofactor from a biosynthetic precursor protein of methylamine 
dehydrogenase with monohydroxylated βTrp57. The process requires oxidizing equivalents 
provided by an electron donor plus O2 or H2O2. (B) Proposed mechanism for the formation of the 
bis-Fe(IV) intermediate formed by reaction of di-ferric MauG with a stoichiometric amount of 
H2O2 

For heme and non-heme iron enzymes it is generally believed that the O2-dependent and H2O2-

dependent oxygenation mechanisms each proceed via a ferric hydroperoxy intermediate (125, 

292) which may then lose water to yield a high-valent Fe(IV)=O (ferryl) species (379, 380). 

Ferryl heme species with a π-porphyrin or amino acid radical (known as compound I) have been 

observed in several enzymes (reviewed in ref. (292, 301, 381). Here we report EPR and 
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Mössbauer spectroscopic analysis of MauG oxidized by H2O2 in the absence and presence of 

itsnatural substrate (i.e., the isolated biosynthetic precursor of MADH). In each case it was 

possible to trap and characterize an unprecedented intermediate species. Formation of mature 

MADH with TTQ from the biosynthetic precursor is a six-electron oxidation process; two for 

insertion of the second oxygen, two for formation of the cross-link, and two for oxidation of the 

quinol to quinone. After stoichiometric addition of H2O2 (i.e., one-third of the total requirement) 

to oxidized MauG alone, a high-valent bis-Fe(IV) intermediate is trapped. When the biological 

substrate of MauG is mixed with this MauG-based di-heme bis-Fe(IV) intermediate, the di-ferric 

MauG is regenerated and a new protein-based free radical species is concomitantly observed 

from the substrate. These results reveal new strategies for enzyme-catalyzed and heme-

dependent protein posttranslational modification reactions and for stabilization of protein-based 

reactive intermediates.  

10.3 Results 

Characterization of the product of the reaction of MauG with H2O2 by visible and EPR 

spectroscopy — To investigate the mechanism of oxygen activation by MauG, the di-heme 

enzyme was mixed with stoichiometric H2O2. Changes in the absorption spectrum of MauG 

occurred within 15 ms with a decrease in intensity of the Soret peak and a shift in its maximum 

from 405 to 407 nm (data not shown). The spectrum slowly returns to one very similar to the 

ferric MauG but with a slight increase and red shift in the Soret peak relative to the original ferric 

MauG. Parallel changes were observed in the X-band EPR spectrum (Figure 10.1B). The ferric 

MauG exhibits high-spin (g = 5.57, 1.99) and low-spin (g = 2.54, 2.19, 1.87) heme signals. A 

minor low-spin component with g values of 2.89, 2.32, and 1.52 is also apparent which was 
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previously assigned to a small fraction of non-reactive low-spin heme iron (176) which remains 

unchanged during the course of the experiment. After addition of H2O2 to ferric MauG, the 

reaction was quenched at various times by rapid freezing. Both hemes become EPR-silent in the 

first sample (2 s reaction time). No signal characteristic of compound I, the spin-coupled 

Fe(IV)=O (S = 1) and porphyrin cation radical (S = 1/2) (379, 382, 383) was observed. A weak 

radical-like EPR signal was observed at g = 2.003 which exhibits a peak-to-peak width of 1.3 

millitesla. At 10 K, microwave power at half saturation (P1/2) was estimated to be 9 µW. The 

combined EPR linewidth, g-value, and P1/2 indicate that the g = 2.003 species is an organic free 

radical. This signal overlaps with the spectrum of the high-spin ferric heme at the g = 2 region, 

which hinders precise spin quantitation for the radical component. The best estimation derived 

from spin double integrations of the g = 2 region on the intermediate samples is that the radical-

like signal represents about 1% of the protein, which is far from compensation for the loss of the 

two ferric heme EPR signals. This strongly suggests that the majority of both the high- and low-

spin heme iron was oxidized to the EPR-silent Fe(IV) state. The high- and low-spin Fe(III) 

signals returned concomitant with the disappearance of the weak radical signal. Thus, the 

observed g = 2 signal is not a non-specific side-product of peroxidation but an uncoupled MauG-

based cation radical which is likely in equilibrium with the two hemes (Figure 10.2). 

Identification of two distinct Fe(IV) heme species in the MauG reaction intermediate by 

Mössbauer spectroscopy — The H2O2-generated MauG species was further characterized by 

Mössbauer spectroscopy. Since MauG possesses covalently-bound c-type hemes, it was not 

possible to reconstitute purified protein with 57Fe, but necessary to isolate MauG from cells 

grown on 56Fe-depleted minimal medium supplemented with 57FeCl2.  Figure 10.3 shows 4.2 K 
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Mössbauer spectra of ferric 57Fe-labeled MauG before (a) and 45 s after addition of H2O2 (b). 

The dashed and solid lines in (a) are spin Hamiltonian simulations for the high- and low-spin 

hemes using typical parameters, respectively (384). The high- and low-spin hemes in ferric  
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Figure 10.2. EPR analysis of the formation and decay of the intermediate formed by reaction of 
di-ferric MauG with a stoichiometric amount of H2O2. After mixing EPR spectra were recorded 
at time intervals of 0 (a), 0.03 (b), 2 (c), 8 (d), and 20 (e) minutes. Each sample contained 200 
µM MauG. EPR parameters were temperature 10 K, microwave power 1 mW, modulation 
amplitude 5 G, time constant 40.96 ms, and sweep time 83.89 s. Each spectrum is the average of 
5 scans. 

MauG are present in an approximate 1:3 ratio rather than 1:1. This is likely due to a freezing 

artifact often seen in which the high-spin heme converts to low-spin on freezing (176, 385). It 

should be noted that heme quantitation, mass spectrometry and redox titrations of MauG 

indicated full presence of both hemes (176, 179). The spectrum of the H2O2-treated sample 

(hashed marks in 3b) contains several sharp lines that can be attributed to the intermediate, in 

addition to the broad, magnetically split features associated with the ferric hemes (solid line in 

3b). There is also a small fraction of nonreactive ferric species present in both the resting and 

intermediate states of the enzyme, as was seen in the EPR experiment (Figure 10.1). Removal of 

these ferric heme signals from (b) yields the spectral features of the EPR-silent MauG 

intermediate (c), which can be analyzed with two quadrupole doublets using the following 

parameters: isomer shift (δ1) of 0.06 mm/s and quadrupole splitting parameter (ΔEQ1) of 1.70 

mm/s (15 % of total Fe) and δ2 = 0.17 mm/s and ΔEQ2 = 2.54 mm/s (35 % of total Fe). The 

isomer shift values are typical of Fe(IV) species (384). The quadrupole splitting parameter of 

Species 1 is in the range typically observed for ferryl and protonated ferryl species (326). The 

quadrupole splitting parameter of Species 2 is unusually large (ΔEQ2 = 2.54 mm/s) and likely 

describes the Fe(IV) state of the proposed six-coordinate heme with two axial amino acid ligands. 

Such a spin-uncoupled bis-Fe(IV) species has not been previously described. It is an Fe(V) 

equivalent. Furthermore, a six-coordinate Fe(IV) heme species with two axial amino acid ligands 

has also not been previously described in a protein, but analogous bis-ligated high-valent  
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inorganic porphyrin model compounds have been previously generated and in all cases a small 

isomer shift (δ) and large quadruple splitting (ΔEQ) parameters are observed from those model 

compounds (386, 387). An antiferromagnetic coupled diamagnetic Fe(III)-radical has been 

observed in some model complexes by NMR spectroscopy (388). However, for MauG the 2-nm 

shift of the Soret band, lack of an intense EPR detectable ligand radical, and formal oxidation 

state of Fe(IV) revealed by Mössbauer spectroscopy eliminate the possibility of an Fe(III)-radical 

status for either of the Fe ions in this intermediate. Our data indicate that the two Fe(IV) species 

in the MauG intermediate account for approximately 50% of total iron contained in the sample, 

suggesting that some Fe(IV) heme has decayed to ferric MauG during the 45 s mixing/freezing 

period. Based on the fact that both the initial high- and low-spin hemes disappear upon peroxide 

oxidation (Figure 10.1), these two distinct Fe(IV) species must arise from two distinct heme sites. 

The ratio between the two Fe(IV) species is 3:7, suggesting that Species 1 is more reactive and 

thus less stable than Species 2. 

Reaction of the bis-Fe(IV) MauG intermediate with its natural substrate — To determine 

whether the novel bis-Fe(IV) MauG intermediate was catalytically competent, it was mixed with 

its natural substrate, i.e., the isolated MADH biosynthetic precursor protein (Figure 10.4). The 

MauG intermediate was generated by addition of one equivalent of H2O2 (spectrum a) and then 

immediately mixed with a stoichiometric amount of the precursor protein. Whereas in the 

absence of substrate the EPR-silent heme species is relatively long lived (see Figure 10.1), on 

addition of substrate the EPR signals of the original high- and low-spin hemes returned within 

the rapid mixing/freezing time (spectrum b). Furthermore, an intense new radical-like EPR signal 

appeared with a g of 2.006 determined from the baseline crossing of a 10 K spectrum. Addition 
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of 2 mM hydroxyurea, a known radical scavenger (389), caused an immediate decrease of the g 

= 2.006 EPR signal while it had little effect on the ferric heme signals (spectrum c). This radical 

intermediate is not present if hydroxyurea is pre-incubated with MauG. This demonstrates that 

the g = 2.006 EPR component (Figure 10. 4 inset) is a free radical intermediate generated during 

the reaction. Spin quantitation of the g = 2.006 signal by double integration and comparison to a 

g = 2 spin standard indicate that it corresponds to nearly stoichiometric concentration of the 

added precursor protein substrate. The new EPR signal exhibits a 1.9 mT peak-to-peak splitting 

and partially resolved hyperfine structures typical of a protein-based free radical species with an 

aromatic ring (243, 390). This new radical was also relatively long lived and remained on the 

MADH precursor after an anion-exchange chromatographic separation from MauG. It should be 

noted that this radical is observed when the reaction is initiated with stoichiometric H2O2 and 

MauG. Complete synthesis of TTQ from the precursor is a six-electron oxidation process. If 

excess oxidizing agents, either H2O2 or O2, are added then the catalytically active mature MADH 

with fully synthesized TTQ is formed. This demonstrates that the novel bis-Fe(IV) MauG is a 

catalytically competent reaction intermediate in TTQ biosynthesis. 

10.4 Discussion 

High-valent Fe(IV)=O intermediates are frequently invoked in the catalytic cycles of Fe-

dependent oxidizing enzymes (292, 391, 392). In heme-dependent enzymes, the two-electron 

oxidized intermediate (compound I) consists of an Fe(IV) species (S = 1) coupled to an organic  
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Figure 10.3. Mössbauer spectra of MauG recorded at 4.2 K in a 53-mT magnetic field. (a) The 
spectrum of ferric MauG (hashed marks) is overlaid with spin Hamiltonian simulations of a high-
spin Fe(III) heme (25% of total Fe, dashed line) and of a low-spin Fe(III) heme (75% of total Fe, 
solid line) with the following parameters: S = 5/2, g5/2 = 2, D5/2 = 10 cm-1, (E/D)5/2 = 0, δ = 0.50 
mm/s, ΔEQ = 2.0 mm/s, η = 0, A/gNβN = (-18.0, -18.0, -18.0) T and S = 1/2, g1/2 = (1.87, 2.19, 
2.54), δ = 0.25 mm/s, ΔEQ = 1.97 mm/s, η = -3, A/gNβN = (-36.2, +9.3, +30.0) T. (b) The 
spectrum of di-ferric MauG, which was reacted with H2O2 for 45 s (hashed line). The solid line 
indicates the contribution of ferric MauG (approx. 34% of total Fe). Removal of these features 
yields the reference spectrum of the Fe(IV) intermediates (c), which can be simulated with two 
quadrupole doublets: δ1 = 0.06 mm/s and ΔEQ1 = 1.70 mm/s (15%, dashed line) and δ2 = 0.17 
mm/s and ΔEQ2 = 2.54 mm/s (35%, solid line). 

radical (S = 1/2) that is located on the porphyrin ring/axial ligand or a nearby amino acid residue 

(compound ES). The unprecedented bis-Fe(IV) heme MauG intermediate is in essence an 

electronic equivalent of compound I but with the second oxidizing equivalent stored at the 

second heme Fe rather than as an organic radical. A non-heme Fe(IV)2O2 species with diamond 

core structure and Fe-Fe distance of 2.46 Å (Intermediate Q) was trapped and characterized in 

methane monooxygenase (393, 394). However, previous studies of MauG yielded no evidence of 

spin-coupling between hemes (176, 179) and sequence homology to the structurally 

characterized di-heme cytochrome c peroxidases (395) suggest the heme irons of MauG are well-

separated (> 20 Å) with the second oxidizing equivalent transferred via an intervening amino 

acid residue. 

MauG is an enzyme unique in several respects. It is the first Fe-dependent oxygenase to utilize c-

type hemes to catalyze an oxygenation reaction (176-178). In contrast to cytochrome P450s, the 

second oxidizing equivalent is not stored as a radical but on a second Fe(IV) heme. As the 

second heme is six-coordinate having two ligands provided by the protein our results describe 

the first example of a biological heme that is Fe(IV) without an exogenous ligand. This is also 

the first example of a bis-Fe(IV) system in which the two irons are not in very close proximity 
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and spin coupled. The bis-Fe(IV) MauG intermediate is also one of the most stable Fe(IV) 

species which has been characterized in biology. Its natural substrate is also unusual, a specific 

amino acid side-chain within a 119 kDa tetrameric precursor protein (174). Most iron-containing 

oxygenases and oxidases efficiently react with oxygen only in the presence of their substrates, 

because the generation of reactive intermediates in the absence of substrate may lead to 

deleterious autoxidation of the enzyme. Remarkably, the reaction of di-ferric MauG with 

hydrogen peroxide in the absence of its natural substrate yields a bis-Fe(IV) intermediate that is 

stable for minutes, yet this intermediate is chemically competent to oxidize its substrate.  

10.5 Materials and Methods 

The methods for homologous expression of MauG in P. denitrificans and its purification were as 

described previously (176). The concentration of MauG was determined using its extinction 

coefficient of 208,000 M-1cm-1 at 405 nm for the fully oxidized protein. The biosynthetic 

precursor of MADH with incompletely synthesized TTQ, which contains monohydroxylated 

βTrp57 and no crosslink to βTrp108 (174), was heterologously expressed in Rhodobacter 

sphaeroides (173) and purified as described previously (396). The concentration of the TTQ 

biosynthetic precursor of MADH was determined using its extinction coefficient of 157,000 M-

1cm-1 at 280 nm.  

Samples for spectroscopic analysis were prepared by rapid-freezing. For EPR analysis, samples 

were directly injected from a rapid freeze-quench device (times < 2 s) or transferred (times > 2 s) 

to EPR tubes and frozen in liquid nitrogen to avoid packing factors. X-band EPR first derivative 

spectra were recorded in perpendicular mode on an EMX spectrometer at 100-kHz modulation 
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frequency using a 4119HS high-sensitivity resonator and Oxford ITC503S temperature controller. 

Spin concentration of the radical species was determined by double integration of the sample 

spectrum obtained under non-saturating conditions and comparing the resulting intensity to that 

of a copper standard (1 mM CuSO4, 10 mM EDTA) obtained under identical conditions. 

Samples for Mössbauer spectroscopy were prepared in reaction vials and transferred into sample 

cups before immersion in liquid nitrogen. 

Separation of reaction mixtures of the H2O2-oxidized MauG high-valent intermediate and the 

MADH biosynthetic precursor was achieved using a MonoQ 4.6/100 PE column pre-equilibrated 

with 50 mM potassium phosphate buffer (pH 7.5) containing 25 mM NaCl and 5% glycerol 

(buffer A). Mixtures were applied to the column and eluted with a flow rate of 1 ml/min using a 

linear NaCl gradient generated over 20-column volumes from buffer A and 0-100% of buffer B 

(50 mM potassium phosphate buffer, pH 7.5, containing 1 M NaCl and 5% glycerol). 

Chromatography was performed using an ÅKTA-FPLC system (GE Healthcare Life Sciences, 

Piscataway, NJ).  

Footnote. A.L. and V.L.D. designed research.  X.L., R.F., S.L. and A.L. conducted kinetic and 

EPR experiments. CK performed Mössbauer analyses. AL, CK, and VLD wrote the paper. 
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Figure 10.4. EPR analysis of the reaction of the high-valent MauG intermediate with its natural 
substrate. Spectrum (a) is the high-valent MauG intermediate generated from reaction of di-ferric 
MauG with a stoichiometric amount of H2O2. Spectrum (b) is (a) further reacted with a 
stoichiometric amount of the biosynthetic precursor of MADH for 15 s before freezing in liquid 
nitrogen. The inset shows a spectrum of the g = 2 region. Spectrum (c) is a parallel sample of (b) 
further reacted with 2 mM hydroxyurea for 2 min. The blow-up (indicated by an arrow) is an 
enlarged g = 2 region of spectrum (b). EPR parameters were temperature 10 K, microwave 
power 0.5 mW and modulation amplitude 5 G. 
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CHAPTER 11      

A PROTEIN-BASED SUBSTRATE RADICAL IS GENERATED BY THE BIS-FE(IV) 

MAUG INTERMEDIATE  

 
The section of chapter 11 is modified from a pre-draft of our recent studies on MauG: A Protein-

Based Substrate Radical Is Generated By the bis-Fe(IV) MauG Intermediate and Remains Bound 

with MauG. Rong Fu, Xianghui Li, Victor L. Davidson and Aimin Liu. 

High-resolution size-exclusion chromatography of protein mixtures and EPR experiment were 

performed by Rong Fu (Department of Chemistry, Georgia State University, Atlanta). 

11.1 Abstract 

MauG is a di-heme protein with low- and-high spin c-type hemes that catalyzes the biosynthesis 

of tryptophan tryptophylquinone (TTQ) in methylamine dehydrogenase (MADH). TTQ is 

formed by posttranslational modification in which two oxygens are incorporated into Trp57 

which is also covalently crosslinked to Trp108. Freeze-quench experiments followed by EPR 

analysis were used to identify intermediates in the MauG-dependent reactions. After addition of 

H2O2 to oxidized MauG a high-valent Fe intermediate is trapped in which both hemes become 

EPR silent with appearance of a minor component of a MauG-based free radical (g = 2.003). The 

high-valent intermediate decomposes over two hours in the absence of a substrate and the EPR 

spectrum returns to that of the original ferric MauG (397). When the biological substrate of 

MauG, a biosynthetic precursor of MADH with Trp57 monohydroxylated and no crosslink, is 

mixed with the high-valent Fe intermediate the disappeared EPR signals of ferric MauG 
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immediately return and a protein-based free radical species with 1.9 millitesla linewidth is 

concomitantly observed at g = 2.006 at a stoichiometric amount. After separation of MauG from 

the MADH precursor by MonoQ chromatography the EPR spectrum of the radical remains 

observable only on the biosynthetic intimidate protein. Thus, the protein radical is a substrate-

based intermediate that is generated at the expense of the high-valent Fe MauG intermediate. 

This demonstrates that the peroxide-generated MauG intermediate is catalytically competent. It 

reacts with its natural substrate. A radical mechanism for the TTQ biosynthesis is thus proposed. 

11.2 Introduction 

 Tryptophan tryptophylquinone (TTQ) (360) is the prosthetic group of methylamine 

dehydrogenase (MADH) (359) and aromatic amine dehydrogenase (398). It is synthesized 

through the posttranslational modification of two endogenous tryptophan residues. In MADH 

from Paracoccus denitrificans, the modification involves the incorporation of two oxygen atoms 

into βTrp57 and the cross-linking between βTrp57 and βTrp108. Distinguished from many other 

protein-derived cofactors which are formed in a self-processing autocatalytic manner (361), 

biosynthesis of TTQ needs exogenous proteins. Included in the gene cluster which encodes the 

MADH subunits are four genes, mauFEDG, that are necessary for MADH biosynthesis (399, 

400). Whereas deletion of mauF, mauE or mauD results in undetectable MADH protein subunits 

in cell extracts and loss of the ability of the bacterium to grow on methylamine, mutation or 

deletion of mauG  in vivo causes accumulation of a biosynthetic precursor of MADH in which 

βTrp57 is monohydroxylated at the C7 position and the covalent cross-link is absent (370, 401). 

The second hydroxylation, cross-link formation and oxidation to the quinone could be catalyzed 

in vitro upon addition of MauG to the isolated biosynthetic precursor of MADH (401-403). 
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These observations confirm that MauG plays an essential role in the biosynthesis of TTQ. 

MauG is a 42,300 Da protein containing two c type hemes, one low-spin and one high-spin (404). 

The two hemes have similar intrinsic redox potentials but exhibit negatively cooperative redox 

behavior such the the potentials for two one-electron oxidation-reductions of MauG are -159 and 

-254 mv (367). These results indicate that facile equilibration of electrons between the two 

hemes occurs. The substrate for MauG is a 123 kDa protein, a biosynthetic precursor of MADH 

with a mono-hydroxylated βTrp57and incompletely formed TTQ. MauG catalyzes the insertion 

of the second oxygen into βTrp57and the formation of the cross-link with βTrp108 (370, 405). In 

contrast to typical c-type cytochromes, the reduced form of MauG binds CO and is oxidizable by 

O2. The sequence alignment of MauG has shown it to be 30% homologous to bacterial diheme 

cytochrome c peroxidase, but previous experiments have shown that MauG has very low 

peroxidase activity with artificial electron donors. Furthermore, the EPR parameters of oxidized 

MauG are atypical of c-type cytochromes or diheme cytochrome c peroxidases. The high-spin 

heme EPR signal is very similar to those of the heme oxygenase-heme complex and myoglobin. 

The low-spin heme EPR signal is more similar to those of ligand complexes of cytochrome 

P450cam (404). This further distinguishers MauG from the peroxidases and supports an atypical 

role for at least one of the c-type hemes of MauG. 

The MauG catalyzed TTQ biosynthesis is an oxidant-dependent reaction. In the catalytic cycle, 

the resting ferric MauG can accept either two electrons from its electron donors and utilize 

molecular oxygen as its oxygen donor, or directly interact with hydrogen peroxide through a 

shunt pathway as do cytochrome P450 monooxygenases (403). It is generally believed that the 

O2-dependent and H2O2-dependent mechanisms proceed via a ferric hydroperoxy intermediate 
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which loses water to yield a high-valent oxoferryl intermediate. An oxoferryl heme species with 

a π-porphyrin radical (compound I) and an oxoferryl heme species (compound II) have been 

observed in cytochrome P450s, catalase, chloroperoxidase, cytochrome c peroxidase and 

horseradish peroxidase (187, 406).  

Here we report an optical and EPR spectroscopic analysis of MauG oxidized by H2O2 in the 

presence of its natural substrate (i.e., the isolated biosynthetic precursor of MADH). Formation 

of mature MADH with oxidized TTQ from the biosynthetic precursor is a six-electron oxidation 

process; two for the insertion of the second oxygen, two for the crosslink, and two for the 

oxidation of the –OH groups to the quinone. After stoichiometric addition of H2O2 (i.e., one-third 

of the total requirement) to oxidized MauG alone, a high-valent Fe intermediate is trapped in 

which both hemes become EPR silent with appearance of a minor component of a MauG-based 

free radical. When the biological substrate of MauG is mixed then with this high-valent Fe 

intermediate, EPR signals of ferric MauG immediately return and a new protein-based free 

radical species is concomitantly observed. This species was stable and could be separated from 

MauG by chromatography for spectroscopic analysis. These characterizations of these 

intermediates reveal new strategies for enzyme-catalyzed heme-dependent oxygenation reactions 

and for stabilization of protein-based free radicals. 

11.3 Materials and Methods 

Protein purification — The methods for homologous expression of MauG in P. denitrificans and 

its purification were as described previously (404). The concentration of MauG was determined 

using its extinction coefficient of 208,000 M-1cm-1 at 405 nm for the fully oxidized protein. The 
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biosynthetic precursor of MADH with incompletely synthesized TTQ, which contains 

monohydroxylated βTrp57 and no crosslink to βTrp108 (407), was heterologously expressed in 

Rhodobacter sphaeroides and purified as described previously (408). The concentration of the 

TTQ biosynthetic precursor of MADH was determined using its extinction coefficient of 

157,000 M-1cm-1 at 280 nm.  

Conventional and stopped-flow UV-Vis spectroscopy — Static absorption spectra were recorded 

with a Shimadzu MultiSpec-1501 spectrophotometer. For observation of rapid changes in 

absorption on addition of H2O2, spectra were recorded with an On-Line instrument RSM 

stopped-flow rapid scanning spectrophotometer (OLIS, Bogart, GA). In these mixing 

experiments one syringe contained 5 µM ferric MauG, and the other contained various 

concentrations of H2O2. The reaction temperature was controlled at 20 ºC by a water bath. All 

experiments were performed in 10 mM potassium phosphate buffer, pH 7.5. The concentration 

of H2O2 was calculated based on the extinction coefficient of 43.6 M-1cm-1 at 240 nm. 

EPR spectroscopy — X-band EPR first derivative spectra were recorded in perpendicular mode 

on a Bruker (Billerica, MA) EMX spectrometer at 100-kHz modulation frequency using a 

4119HS high-sensitivity resonator as described elsewhere (409). Measurement temperature was 

maintained with an ESR910 liquid helium cryostat, and LLT650/13 liquid helium transfer tube 

(Oxford Instruments, Concord, MA), and Oxford ITC503S and Bruker ER4131VT temperature 

controllers. Spin concentration was determined by double integration of the sample spectrum 

obtained under non-saturating conditions and comparing the resulting intensity to that of a 

copper standard (1 mM CuSO4, 10 mM EDTA) obtained under identical conditions. EPR 

simulation was accomplished by using the WEPR program developed by Dr. Frank Neese (410). 
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The EPR relaxation property of the substrate/protein radical at different temperatures was 

analyzed from 16 EPR spectra at each given temperature obtained with increased microwave 

power. The values of half-saturation parameter (P1/2) were obtained by fitting the data according 

to Eq 1 

I ∝ 1/(1 + P/P1/2)b/2                                                            [1] 

where I is the EPR signal amplitude, b is an inhomogeneous broadening parameter, and P is 

microwave power. 

All samples for EPR were prepared in 10 mM potassium phosphate buffer, pH 7.5, containing 

5% glycerol. To analyze transient reaction intermediates the reaction mixtures were quenched at 

specific times using a Update Instrument Model 715 Rapid-freeze-quenching apparatus. Samples 

were transferred to EPR tubes and quickly frozen in liquid nitrogen rather than cold isopentane 

as the freezing agent to avoid packing factors. The entire reaction was about 15 seconds.  

Separation of the reaction mixture by anion exchange chromatography — Reaction mixtures of 

the H2O2-oxidized MauG high-valent intermediate and the MADH biosynthetic precursor were 

loaded onto a MonoQ 4.6/100 PE column pre-equilibrated with 50mM potassium phosphate 

buffer (pH 7.5) containing 25 mM NaCl and 5% glycerol (buffer A). The was eluted with a flow 

rate of 1 ml/min using a linear NaCl gradient generated over 20 column volumes from buffer A 

and 0-100% of buffer B (50 mM potassium phosphate buffer,  pH 7.5, containing 1 M NaCl and 

5% glycerol). Chromatography was performed using an ÅKTA-FPLC system (GE Healthcare 

Life Sciences, Piscataway, NJ).  
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11.4 Results  

Reaction of ferric MauG with H2O2 produces a long-lived intermediate in the absence of a 

substrate — Formation of mature MADH with oxidized TTQ from the biosynthetic precursor is 

a six-electron oxidation process; two for the insertion of the second oxygen, two for the 

formation of the crosslink, and two for the oxidation of the –OH groups to the quinone. In order 

to observe intermediates in this process a single equivalent of H2O2 was used to initiate the 

reaction. Upon addition of H2O2 rapid changes in the absorptions spectrum of MauG are 

observed (Figure 11.1A). The absorption intensity of the Soret peak decreases and its maximum 

shifts from 405 nm to 407 nm. A slight increase in absorption intensity is also seen in the region 

from 524 nm to 562 nm. The kinetics of the intial absorption change was further studied by rapid 

scan stopped-flow spectroscopy. When a five-fold excess of H2O2 was used in the reaction, the 

intermediate accumulated to the maximal amount within the dead time for mixing (i.e.< 2 ms). 

When added at approximately stoichiometric amounts the intermediate accumulated to the 

maximal amount in about 15 ms. The intermediate was relatively long lived with the Soret peak 

slowly increasing in intensity. After 20 min the absorption spectrum stabilized exhibiting 

features very similar to the ferric MauG but with a slight increase and red shift in the Soret peak 

relative to the original ferric MauG (Figure 11.1B).  

In Chapter 10, a protein based radical was trapped and characterized by EPR which exhibits a 1.9 

mT peak-to-peak splitting and partially resolved hyperfine structures typical of a protein-based 

free radical species with aromatic rings (397). The EPR spectrum of this new species measured 

under non-saturating conditions at 10 K with 0.002 mW microwave power is presented in Figure 

11.2 along with spectral simulation (Figure 10.4). The g = 2.006 free radical signal is observable 
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Figure 11.1. (A) Visible absorption spectral changes of the 3.8 uM ferric MauG upon addition of 
7.6 uM H2O2 in 10 mM potassium phosphate buffer, pH 7.5, at 25ºC. The insets are a blow-up of 
the Soret and α and β bands. The initial ferric MauG is shown in red (trace 1), and the time-
dependent change of 30 s (trace 2), 8 (trace 3) and 20 (trace 4) min after addition of H2O2 are 
shown in black. (B) Time course of absorbance changes at 405 nm after the addition of H2O2.  



222 

 

 

 

1E-3 0.01 0.1 1 10 100

0.01

0.1

1

log
 

00 P/I
PI/

logP [mW]

 

Figure 11.2. EPR spectrum of the microwave power saturation behavior the protein based radical 
intermediate. Protein concentration: 170 µM. Experiment conditions:  temperature 10 K for the 
spectrum shown and various temperatures for power saturation determinations as indicated in 
Table 11.1, modulation amplitude 3 G, and microwave power 0.001 mW, time constant 40.96 ms, 
sweep time 83.89 s (single scan). 

at a remarkable wide range of temperatures although the EPR signal intensity decreases at higher 

temperatures. Figure 3B shows the temperature dependence of the X-band EPR absorption 

intensity as a function of measuring temperature. Although there is an apparent linear 

relationship this radical component does not obey the Curie Law. The product of the double 

integration value and the absolute temperature should be constant when the Curie Law is 

followed, but this is not observed for the g = 2.006 spectral component. A possible reason is that 
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the radical sits in a rigid pocket within the protein that is less responsive to the increased free 

tumbling as temperature rises. This is similar to the protein-based tyrosyl radical in a class Ib 

ribonucleotide reductase (320) . 

Table 11.1 EPR P1/2 parameter of the MADH biosynthetic precursor radical intermediate. 
 
 Temperature (K) 

 10 20 30 50 80 100 200 

MADH 

biosynthetic 

precursor radical 

0.013 0.0227 0.0276 0.06 0.10 0.117 1.06 

Tyrosyl radical in 

class Ib RNR(320) 
0.09 0.25 0.31 0.62 - 1.28 15.60 

 

The protein radical as a MADH-based intermediat — The new g = 2.006 protein radical 

intermediate described above is stable for hours. The exact lifetime depends on the temperature 

and availability of oxidants in the environment. The signal disappears immediately on addition of 

excess H2O2. The long lifetime of the new radical intermediate provided an opportunity to isolate 

it from the products of the reaction mixture. The reaction mixture was subjected to ion-exchange 

FPLC at room temperature. Two major protein fractions eluted with a linear gradient of 0 – 1 M 

of NaCl and their UV-vis and EPR spectra were recorded. The first fraction was MauG which 

exhibited the EPR (Figure 11.3) and absorption spectra characteristic of the ferric form of the 

enzyme. No radical species was evident in its EPR spectrum. The second fraction was identified 
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Figure 11.3. Separation of the reaction complex by MonoQ anion exchange chromatography 
identifies the location of the free radical intermediate. The insets are the corresponding EPR 
spectrum of each major elution components. 

as the the MADH biosynthetic precursor which had reacted with the high-valent Fe MauG. This 

conclusion was based on analysis by SDS-PAGE, and the fact that it contained no heme Fe ion. 
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EPR analysis of this second fraction revealed a free radical signal at g = 2.006 with almost 

identical hyperfine structure as observed before the separation of the reaction mixture (Figure 

11.3 inset). Thus, the free radical is protein-based and it resides in the MADH biosynthetic 

precursor after its reaction with the high-valent Fe heme intermediate of MauG. The EPR signal 

intensity decreased after separation, suggesting that the free radical less stable after the MADH 

precursor is released from MauG. The MonoQ separation made it possible to observe the 

substrate/protein based radical without the interference of the heme Fe spectral characteristics. 

The optical spectrum of this species is shown in Figure 11.4. The protein-based radical 

intermediate presents a significant 410 nm absorption peak, a 330 nm shoulder and a broad and 

weak feature centered at 550 nm.  
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Figure 11.4. Optical spectrum of the substrate/protein radical intermediate after the MonoQ 
separation (solid trace). For comparison, the spectrum of substrate (biosynthetic precursor of 
MADH) is also shown (dashed trace).  
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11.5 Discussion 

Conversion of the biosynthetic precursor of MADH with incompletely formed TTQ to the 

mature oxidized MADH is a six-electron oxidation process. Two each are required for the 

insertion of the second oxygen, the formation of the crosslink, and the oxidation of the –OH 

groups to the quinone. As a stategy to trap reactive intermediates in the biosynthetic reaction in 

vitro, only two oxidation equivalents were given to MauG. The product of this reaction is an 

unprecedented stable high-valent Fe di-heme form of MauG. Once this MauG intermediate was 

formed, the biosynthetic precursor protein of MADH was added. This resulted in formation of 

another unprecedented protein-based radical intermediate which is stable enough to be separated 

from MauG column chromatography.   

It is well known that many hemoproteins which can activate oxygen, such as peroxidases, 

catalases and cytochrome P450s, generate high-valent iron-oxo complexes upon peroxide 

oxidation. In most of the cases, the ferric state of the hemoproteins is oxidized to an oxoferryl 

species (FeIV=O, S = 1) magnetically coupled with a porphyrin-π cation radical (S = 1/2) (35). In 

some other cases, such as cytochrome c peroxidase and cytochrome P450cam, the radical is 

found in a nearby amino acid, typically a tyrosine or tryptophan residue (9, 411). In this work, a 

novel high-valent iron-oxo species was captured after addition of H2O2 to MauG. When the high-

spin heme of MauG accepts the two oxidizing equivalents from H2O2, one oxidizing equivalent 

is present as an oxoferryl species at the high-spin heme, while the other is present as ferryl 

species at the low-spin heme after electron transfer, presumably through intervening amino 

acid(s) (Figure 10.1B). This is in essence an electronic equivalent of compound I but with the 



227 

 

 

 

second oxidizing equivalent stored at the second heme Fe center rather than as a porphrin cation 

radical. This is the first example of a second heme group storing the second oxidizing equivalent 

in the absence of substrate. The most closely related intermediate is the elusive Fe(IV)Fe(IV) 

intermediate trapped for methane monooxygenase, a non-heme Fe enzyme (412). The 

characterization of this novel high-valent Fe intermediate further distinguished MauG as a novel 

c-type di-heme protein which functions as an oxygenase. 

The amino acid sequence of MauG is about 30% homologous to that of diheme cytochrome c 

peroxidases. However, MauG does not present any peroxidase activity. Cytochrome c 

peroxidases contain two heme groups with redox potentials that are wildly separated (e.g., -320 

and +320 mV) (413). In MauG, the two hemes have similar redox potentials but exhibit negative 

redox cooperativity suggesting that facile electron transfer between hemes occurs during 

oxidation and reduction (367), even though the two hemes do not appear to be spin-coupled to 

each other (176). The structure of the diheme peroxidases reveals a tryptophan residue positioned 

between the hemes in a manner that could mediate electron transfer from the high-potential heme 

to the low-potential heme (55). This tryptophan is conserved in not only the peroxidases but also 

in the primary sequence of MauG. The structure of MauG is not yet available, however the 

sequence homology suggests that the weak free radical species centered at g = 2.005 during 

peroxide oxidation of MauG could be centered on this tryptophan.  

In the absence of substrate the high-valent MauG oxoferryl intermediate is relatively stable 

compared to the oxoferryl intermediates of other hemoproteins. This property may be attributed 

to storing the second oxidizing equivalent as Fe(IV) in the second heme instead of a porphyrin- 

or amino acid-based radical. This enhanced stability can not only protect the protein itself from 
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nonspecific damaging oxidation of active site amino acid residues, but also provide a longer time 

for binding its native substrate or conformational changes during the catalytic reaction or both. 

This latter feature may be critical for MauG. In contrast to most other heme-dependent 

oxygenases which utilize small molecules as substrates, the substrate of MauG is a 124 kDa 

tetramer protein, the biosynthetic precursor of MADH.  

When the biosynthetic precursor of MADH is added to the MauG intermediate, the high-valent 

Fe species immediately returned to the ferric state and, at the same time, a protein-based free 

radical was quantitatively produced. This radical is relatively stable in the absence of additional 

peroxide and could be separated from MauG. The successful separation confirmed that the 

radical was based on the MADH intermediate and not MauG. It also made it possible to record 

the EPR and absorption spectra of the protein-based radical intermediate without interference 

from the intense spectral features of the heme groups in MauG. The spectral feature found in 

aromatic radicals with hydroxyl groups, such as 2-methylthio-4-methylphenol and tyrosyl 

radicals, have an absorbance around 410 nm (414, 415). The optical spectrum of the radical 

intermediate of MADH biosynthetic precursor has maxima absorbance at 330 nm and 410 nm, 

and a broad and weak band centered at 550 nm. It is distinguished from neutral or cationic 

tryptophan radicals that have absorbance at 320~340 nm and 510~580 nm (415). The distinctive 

spectral features could be due to fact that in the biosynthetic intermediate of MADH the 

trytophan residue which harbors the radical is hydroxylated. The relaxation properties of the g = 

2.006 free radical component are also similar to the tyrosyl radical of the class Ib ribonucleotide 

reductase (416). The microwave power saturation occurred at very low values at each measured 

frozen temperature, and the value of P1/2 parameter is about one magnitude low than that of the 
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corresponding value of the ribonucleotide reductase radical (Table 11.1). It is known that the 

tyrosyl radical harboring residue is about 6. 5 - 7 Å away from the nearest iron ion (417-419). By 

analogy the g = 2.006 radical component which we believe is on residue βTrp57 of the substrate 

protein intermediate may similarly be located at least 7 Å away from the nearest ferric ion in 

MauG in the MauG-intermediate complex. This could explain why we observe such a stable 

radical species prior to the oxygenation. The initial radical transfer may occur over this long 

distance but further reorientation of the enzyme and protein substrate within the reactive 

complex is required to bring residue βTrp57 close enough to the oxo-ferryl heme iron for oxygen 

insertion. It is noteworthy that a transient intermediate with an absorption maximum at 330 nm 

was also observed in the H2O2-dependent MauG catalyzed TTQ biosynthetic reaction in vitro in 

the presence of excess peroxide. That intermediate formed at a relatively rapid rate, and then 

decreased with a slower rate accompanied by the formation of oxidized MADH. This suggests 

that the radical intermediate quenched here may be the one observed transiently during the 

overall conversion of the biosynthetic precursor to mature oxidized MADH with completely 

synthesized TTQ. 

The discovery of this protein-based radical intermediate is significant beyond the MauG catalytic 

reaction. It remains a debatable topic in the oxygenase field as to whether the oxygenation by a 

high-valent Fe-oxo species occurs via a radical mechanism or a concerted mechanism (420). 

Here we show that a discrete radical transfer occurs first followed by a slower oxygenation 

(Scheme 11.1). It is possible that this mechanism is not general but adopted by MauG because of 

the nature of its substrate, a specific amino acid residue within a large protein which must 

undergo conformational rearrangements to allow access of this residue to the reactive heme 
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within the enzyme-substrate complex. It is also possible that all heme-dependent oxygenases 

proceed via this mechanism but the unusual nature of the substrate in this reaction slowed the 

oxygenation reaction sufficiently to allow observation of the initial radical transfer step.  MauG 

provides an ideal system with which to dissect the monooxygenase reaction into its two 

component steps, radical transfer and oxygen incorporation. The characterization of the reaction 

intermediates described in this paper also allows us to more completely understand of the 

biosynthetic route of TTQ.  
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Scheme 11.1. Proposed mechanism of MauG-dependent TTQ biosynthesis. 
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CHAPTER 12      

SUMMARY 

 

12.1 Tryptophan 2,3-dioxygenase  

Tryptophan 2,3-dioxygenase (TDO) inserts two oxygen atoms into free tryptophan to produce 

NFK in a four electron oxidizing process by a b-type heme cofactor. This enzyme is a 

representative of a potentially new hemoprotein dioxygenase superfamily, whose oxygenase 

activity remains poorly understood. Spectroscopic, biochemical, and kinetic studies of TDO were 

described in this dissertation in order to understand the mechanism of the activation and 

functionality of TDO.  

TDO is catalytically active at the reduced state with a ferrous ion. In our recent study of the full-

length TDO from Ralstonia metallidurans, we revealed two unidentified enzymatic activities of 

ferric TDO.  We have found that the ferric form of the enzyme is catalytically active with H2O2 

serving as the oxygen donor in the presence of L-Trp. The oxidized enzyme expresses a catalase-

like activity in the absence of L-Trp, converting peroxide to O2. Titration experiments suggest 

that about two moles of H2O2 were required for the production of one mole of NFK. Since the Fe 

ion cannot simultaneously coordinate two H2O2 molecules, the oxygen insertion from H2O2 must 

be a stepwise process. It is the first experimental evidence suggesting that oxidized TDO can 

utilize peroxide as a substrate for a tryptophan oxygenation. Using mass spectrometry aided with 

isotop labeling, we have also observed monooxygenated-L-Trp and found that one and only one 
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carboxylate group of NFK is solvent exchangeable. Furthermore, water did not provide oxygen 

atom for the peroxide-driven oxygenation. 

Three enzyme-based intermediates were sequentially detected in the peroxide oxidation of ferric 

TDO in the absence of L-Trp. These spectroscopically distinguishable intermediates are:  An 

Fe(IV)-oxo species coupled with a porphyrin cation radical (compound I-type), an Fe(IV)-oxo 

species and a distant protein radical (compound ES-type), and a ferric intermediate that is more 

axial than the initial ferric ion. The last two species have also been characterized by Mössbauer 

spectroscopy. The authentic oxyferryl species is demonstrated by an isomer shift of 0.05(2) 

mm/s. However, the oxyferryl species exhibits an unusually large quadrupole splitting parameter 

of 1.76(2) mm/s at pH 7.4. Based on DFT calculations that evaluate all the possible structural 

influences to the iron axial ligands, this unusual quadrupole splitting was proposed as a result of 

the hydrogen bonding to the oxo group due to a unique active site environment in TDO. 

The TDO Fe(IV) intermediate exhibits some unexpected spectral properties, including a large 

quadruple splitting parameter which is greater than non-protonated Fe(IV) intermediates but 

smaller than the protonated Fe(IV) species reported from other hemoproteins. This is the first 

Fe(IV) intermediate trapped and characterized in the heme dioxygenase family. 

We examined the peroxide oxidation of ferric TDO in the presence of L-Trp and observed a 

putative ferric hydroperoxide intermediate. Two possibilities of the O-O bond cleavage of the 

ferric hydroperoxide intermediate have been proposed: homolytic and heterolytic cleavage. In 

homolytic cleavage, one-electron reduction yields a compound II-like species and a hydroxyl 

radical whereas heterolytic cleavage generates a compound ES-like species with a protein radical 
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via two electron reductions. We have established the formation of ferrous TDO in the reaction of 

ferric TDO with H2O2 in the presence of L-Trp by Mössbauer spectroscopy. The formation of 

ferrous TDO is a substrate-dependent process which is involved in two electron reductions of 

compound II species. On the other hand, the protein radical of the compound ES-like species is 

catalytically competent for peroxide driven oxygenation reaction. The proposed mechanism was 

summarized in Scheme 12.1. 

We have also found that ferric TDO could be activated via one electron reduction to form ferrous 

TDO when mixed with either L-Trp or substrate analogues, such as D-Trp, 5-F-Trp and 5-OH-

Trp. EPR studies showed that the binding of substrate or substrate analogues to TDO induced a 

spin transition to form a ferric hydroxide intermediate. Mössbauer spectroscopic studies suggest 

that the proximal histidine of two of the dimers was in a protonated form whereas the other was 

in a deprotonated form. Redox potential of TDO in the absence and in the presence of L-Trp has 

a value of 110 mV and 190 mV, respectively. Taken together, the data support a substrate-

activation scenario of ferric TDO in which the formation of ferrous TDO is accomplished by 

transferring one electron from substrate or substrate analogue to ferric heme through a ferric 

hydroxide intermediate. This process is driven by the positive features of the ferric heme center 

upon binding substrate or substrate analogues. The proposed mechanism is summarized in 

Scheme 12.1. 

The role of acid-base catalysis of His72 was examined through site-directed mutagenesis 

analysis of H72S, H72N and Q73F. Kinetic studies and the pH profiles of WT TDO and His72 

derivatives led us to propose that His72 plays a role in catalytic reaction and is probably an acid-

base catalyst in the WT TDO. One hydroxide group partially rescures the catalytic activities in 
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H72S and H72N. The rearrangement of the active site hydrogen bond network for the hydroxide 

group was probed by EPR spectra of H72S, H72N, Q73F and WT TDO at various pH values of 

6.0, 7.4 and 10.0. 

Kinetic studies of tyrosine derivatives of Y43W and Y43F indicate that Try43 plays an important 

role in the catalytic reaction. In addition, Try43 is emerging as the most likely candidate for the 

localization of the protein radical generated during the peroxide oxidation reaction. Additional 

experiments would be required to further elucidate the identity of this protein radical. 

12.2 A Novel Di-heme Protein MauG 

MauG is a novel enzyme that utilizes two c-type hemes to catalyze a posttranslational 

modification of a 119 kDa protein. Such a modification endows endogenous tryptophan residues 

with a new catalytic activity. The reaction is a six-electron oxidation and the utilization of two c-

type hemes by MauG to perform a hydroxylation reaction and the subsequent oxidation reactions 

is unprecedented. We have trapped novel Fe(IV) intermediate from MauG. The bis-Fe(IV) 

intermediate of MauG is an unprecedented species which stores two oxidizing equivalents as 

Fe(IV) on two distinct hemes. One Fe ion in the MauG intermediate is also the first example of a 

biological heme that is Fe(IV) but without bound exogenous oxygen ligand. The MauG bis-

Fe(IV) intermediate is one of the most stable, yet chemically and catalytically competent Fe(IV) 

species that has been characterized in biology. The oxidized MauG with a bis-Fe(III) di-heme 

cofactor is also able to use H2O2 as a substrate for its catalytic activity. A substrate-based 

radical intermediate of MADH has been trapped after reaction of the substrate with the high-

valent MauG species, and characterized by EPR and UV-Vis spectroscopy.  
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These unusual high-valent Fe intermediates expand our understanding of how nature generates, 

stabilizes, and utilizes powerful high-valent Fe(IV) species. These studies will elucidate 

fundamental relationships between the chemical structure of these intermediates and their 

biochemical reactivity. The studies with MauG will also be relevant to understanding the 

mechanisms of protein oxidation and posttranslational modification. 

High-resolution size-exclusion chromatography showed that MauG can form a stable 

complex with the MADH biosynthetic precursor but not the mature MADH, and the 

maximum stoichiometry of binding of MauG to the precursor is 1:1. This study indicates that 

significant conformational changes in one or both of the proteins occur during catalysis. 

These results provide a basis for using this system as a model to study the dynamics of 

protein-protein interactions and the induced fit model of enzyme-substrate interactions. 
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Scheme 12.1. Proposed mechanism of TDO reactions. 
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