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ABSTRACT  

 Ca2+, a “signal for death and life”, is closely involved in the regulation of 

numerous important cellular events. Ca2+ carries out its function through its 

binding to Ca2+-receptors or Ca2+-binding proteins. The EF-hand protein, with a 

helix-loop-helix Ca2+-binding motif, constitutes one of the largest protein families. 

To facilitate our understanding of the role of Ca2+ in biological systems (denoted 

as “calciomics”) using genomic information, an improved pattern search method 

(http://www.chemistry.gsu.edu/faculty/Yang/Calciomics.htm) for the identification 

of EF-hand and EF-like Ca2+-binding proteins was developed. This fast and 

robust method allows us to analyze putative EF-hand proteins at the genome-

wide level and further visualize the evolutionary scenario of the EF-hand protein 

family.  

This prediction method further enables us to locate a putative viral EF-

hand Ca2+-binding motif within the rubella virus nonstructural protease that 

cleaves the nonstructural protein precursor into two active replicase components. 

A novel grafting approach has been used to probe the metal-binding properties of 



  

this motif by engineering the predicted 12-residue Ca2+-coordinating loop into a 

non-Ca2+-binding scaffold protein, CD2 domain 1. Structural and conformational 

studies were further performed on a purified, bacterially-expressed NS protease 

minimal metal-binding domain spanning the EF-hand Ca2+-binding motif.  It was 

revealed that Ca2+ binding induced local conformational changes and increased 

thermal stability. Furthermore, functional studies were carried out using RUB 

infectious cDNA clone and replicon constructs. Our studies have shown that the 

Ca2+ binding loop played a structural role in the NS protease and was specifically 

required for optimal stability under physiological conditions.  

 In addition, we have predicted and characterized a calmodulin-binding 

domain in the gap junction proteins connexin43 and connexin44. Peptides 

encompassing the CaM binding motifs were synthesized and their ability to bind 

CaM was determined using various biophysical approaches. Transient 

expression in HeLa cells of two mutant Cx43-EYFP constructs without the 

putative CaM-binding site eliminated the Ca2+-dependent inhibition of gap 

junction permeability. These results provide the first direct evidence that CaM 

binds to a specific region of the ubiquitous gap junction protein Cx43 and Cx44 in 

a Ca2+-dependent manner, providing a molecular basis for the well-characterized 

Ca2+-dependent inhibition of Cx43-containing gap junctions. 

 

 

KEY WORDS:  Calcium, EF-hand, Calmodulin, Prediction, CD2, Rubella 
virus, Protein engineering, Pattern search, Gap junction, 
Connexin 
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1. Introduction 

 

1.1. The roles of Ca2+ in biological systems and calciomics 

Ca2+, a “signal for life and death”, acts as a universal and versatile 

messenger in cellular signal transduction, and functions as a pivotal regulator of 

the cell life cycle including cell division, differentiation and apoptosis (3). In recent 

years, accumulating evidence indicates that Ca2+ even play its unique roles in the 

lower form of lives, such as bacteria and viruses (4-6). A new term, calciomics, 

has been coined to describe the sophisticated roles of Ca2+ in biological systems 

in the post-genomic era.  

The versatile speed, amplitude and spatial-temporal patterning of Ca2+ in 

eukaryotic cells controls vital biological processes by precisely modulating the 

activity of a repertoire of signaling components including cellular receptors, ion 

channels, pumps, exchangers, Ca2+ buffers, Ca2+ effectors, Ca2+-sensitive 

enzymes and transcription factors in different cellular compartments (Fig. 1.1). 

The extracellular space and the internal Ca2+ stores serve as two sources of 

cytosolic Ca2+ signals. The temporal Ca2+ signaling pattern is mainly observed as 

Ca2+ oscillation in the cytosol, whereas the spatial pattern of Ca2+ is reflected by 

Ca2+ spikes and Ca2+ waves due to the dynamic changes of Ca2+ concentration 

in different compartments following signal stimulation. In general, the cellular 

ionized Ca2+ gradient follows the order of extracellular space ([Ca2+]o: ~10-3 mM) 

> sarcoplasmic reticulum (SR)/endoplasmic reticulum (ER) ([Ca2+]ER: ~10-3 mM) > 
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Figure 1.1. The choreography of Ca2+ signaling in eukaryotic cells.  Upon 
extracellular stimulation, the free cytosolic Ca2+ ([Ca2+]c) rapidly increases due 
to the entry of extracellular Ca2+ across the plasma membrane via Ca2+ 
channels, such as voltage-operated channels (VOC), receptor-operated 
channels (ROC), transient receptor potential ion-channel (TRP) and store-
operated channels (SOC), or by the release of Ca2+ from internal stores (e.g., 
endoplasmic reticulum (ER), Golgi complex, and lysosomes) through inositol-
1,4,5-triphosphate receptors (IP3R) and ryanodine receptors (RyR) due to 
activation of membrane receptors (G protein coupled receptor (GPCR) and 
receptor tyrosine kinase (RTK)) and the subsequent synthesis of IP3. At the 
resting state, [Ca2+]c is maintained at submicromolar range by extruding Ca2+ 
outside of the plasma membrane via plasma membrane Ca2+-ATPase 
(PMCA) and Na+/Ca2+ exchanger (NCX), or by pumping Ca2+ back into 
internal stores through sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 
(SERCA) or secretory pathway Ca2+-ATPase (SPCA). The Ca2+ signals are 
delivered by affecting the activity of Ca2+ buffers, Ca2+ effectors and Ca2+-
regulated enzymes. The signals can also have “long-term” effects by 
modulating the activity of transcriptional factors including nuclear factor of 
activated T cells (NFAT), cyclic AMP response element-binding proteins 
(CREB) and downstream regulatory element modulator (DREAM).  

IP3R

IP3R RyR
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Uniporter
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Ca2+ channels     

(ROC/SOC/VOC/TRP)
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Genes transcription        
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cytosol ([Ca2+]c: ~10-7 M to ~10-5 µM) > other internal calcium stores such as the 

mitochondrion ([Ca2+]o: ~10-7 M)  and nucleus ([Ca2+]n: ~10-7 M). Extracellular 

Ca2+, sensed by the extracellular Ca2+-sensing receptor, is believed to maintain 

the long-term Ca2+ homeostasis by replenishing the internal calcium stores. In 

contrast, the internal calcium stores are directly responsible for the changes in 

cytosolic Ca2+ concentration through the activity of two principal Ca2+ release 

channels, e.g., the ryanodine (RyR) receptor and the inositol 1,4,5-triphosphate 

(IP3) receptor (Fig. 1.1).  

Following signal stimulation or alteration in the membrane potential, the 

cytosolic Ca2+ concentrations can be elevated by 100 fold from 10-7 M to 10-5 M 

(7). Ca2+ carries out its functions by binding to specific Ca2+ receptors or Ca2+-

binding proteins (CaBPs) with varying affinities (Fig. 1.2A). According to the role 

Ca2+ ions or the proteins play in a biological context, most Ca2+ binding proteins 

may fall into one of three categories: trigger or sensor proteins (e.g., calmodulin) 

(8), buffer proteins (e.g., calbindin D9K and parvalbumin) (9), or Ca2+-stabilized 

proteins (e.g., thermolysin) (10) (Figs. 1.2B-D). The Ca2+-binding sites may be 

divided into continuous or discontinuous ones. In the continuous Ca2+-binding 

sites, the Ca2+-coordinating ligand residues are from a short continuous stretch of 

amino acids. A discontinuous Ca2+-binding pocket, however, is formed by ligands 

from a number of residues that are separated in the primary sequence but are in 

close spatial proximity in spatial arrangement. Among the continuous Ca2+-

binding sites, the helix-loop-helix EF-hand Ca2+-binding proteins can be found in 
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Figure 1.2. Tunable Ca2+-binding affinities and 3D representation of typical 
Ca2+-binding proteins. (A), The Ca2+-binding affinities of Ca2+-binding proteins 
may vary by 105, depending on their diversified function and location in the 
cellular compartments. (B), 3D cartoon of prototypical EF-hand protein 
calmodulin (PDB code: 3cln). (C), 3D representation of calbindin D9K or 
S100G (PDB code:1b1g). (D) 3D structure of thermolysin (PDB code: 1tlx). 
(E), 3D structure of prokaryotic CaM-like protein calerythrin (PDB code:1nya). 
(F-G), 3D cartoon of EF-hand-like Ca2+-binding proteins: alginate binding 
protein (F; pdb:1kw) and dockerin (G; PDB code: 1daq).Ca2+ ion is shown as 
black sphere. 
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each category and constitute more than 50% of all well-characterized Ca2+-

binding proteins (6,11).  

 

1.2. Properties of EF-hand Ca2+-binding proteins  

The helix-loop-helix EF-hand moiety is one of the most common motifs in 

proteins of bacteria, archaea, and eukaryotes (6,11). Since the delineation of the 

EF-hand motif in 1973, the family of EF-hand proteins has expanded to include at 

least 66 subfamilies thus far (11-13). By binding to Ca2+, this motif may undergo 

conformational changes enabling Ca2+-modulated functions, as seen in the 

trigger or sensor proteins calmodulin and troponin C (8,14), or may buffer the 

concentration of Ca2+ to maintain local Ca2+ homeostasis as reported in buffering 

proteins such as parvalbumin (12) and calbindin D9k (9). The coordination of Ca2+ 

in EF-hand motifs is fulfilled by adopting a pentagonal bipyramidal geometry with 

seven oxygen atoms from the side-chain carboxyl or hydroxyl groups, the main 

chain carbonyls, and a bridged water. Though EF-hands have been found 

abundantly in eukaryotes and bacteria (4-6,15-17), this Ca2+-binding motif has 

seldom been reported in viruses.  

EF-hand motifs are divided into two major types: the canonical EF-hands 

as seen in calmodulin (CaM) and the prokaryotic CaM-like protein calerythrin (Fig. 

1.2E), and the pseudo EF-hands exclusively found in the N-termini of S100 and 

S100-like proteins (Fig. 1.2B). The major difference between these two groups 

lies in the Ca2+-binding loop: the 12-residue canonical EF-hand loop binds Ca2+ 

mainly via side-chain carboxylates or carbonyls (loop sequence 
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Figure 1.3. Ligand residues and coordination geometry of typical helix-loop-
helix EF-hand Ca2+ binding motifs. (A), Cartoon illustration of the canonical 
EF-hand Ca2+-binding motif. (B), Cartoon illustration of the pseudo EF-hand 
Ca2+-binding motif. (C), the pentagonal bipyramidal geometry adopted by the 
Ca2+ binding site of the canonical EF-hand motif. 
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positions 1, 3, 5, 12) (Fig. 1.3A), whereas the 14-residue pseudo EF-hand loop 

chelates Ca2+ primarily via mainchain carbonyls  (positions 1, 4, 6, 9) (Fig. 1.3B). 

The residue at the –X axis coordinates the Ca2+ ion through a bridged water 

molecule. The EF-hand loop has a bidentate ligand (Glu or Asp) at axis –Z. 

Among all the structures reported to date, the majority of EF-hand motifs are 

paired either between two canonical or one pseudo and one canonical motifs. 

For proteins with odd numbers of EF-hands, such as the penta-EF-hand calpain, 

EF-hand motifs were coupled through homo- or hetero-dimerization (18-22). 

 

1.3. Prokaryotic EF-hand-like Ca2+-binding proteins  

Recently, EF-hand-like proteins with diversified flanking structural 

elements around the Ca2+-binding loop have been reported in bacteria (Figs. 

1.2F-G) (5,23,24). Several lines of evidence indicate that these prokaryotic EF-

hand-like proteins are widely-implicated in Ca2+ signaling and homeostasis in 

bacteria (4,5,17,25). They contain flexible lengths of Ca2+-binding loops that differ 

from the EF-hand motifs. However, their coordination properties resemble 

classical EF-hand motifs. For example, the semi-continuous Ca2+-binding site in 

D-galactose-binding protein (GBP) contains a nine-residue loop (aa 134-142). 

The Ca2+ ion is coordinated by seven protein oxygen atoms, five of which are 

from the loop mimicking the canonical EF-loop whereas the other two are from 

the carboxylate group of a distant Glu (aa 205). Another example is a novel 

domain named Excalibur (extracellular Ca2+-binding region) isolated from Bacillus 

subtilis. This domain has a conserved 10-residue Ca2+-binding loop strikingly 



8 

  

similar to the canonical 12-residue EF-hand loop (23). The diversity of the 

structure of the flanking region is illustrated by the discovery of EF-hand-like 

domains in bacterial proteins. For example, a helix-loop-strand instead of the 

helix-loop-helix structure is observed in periplasmic galactose-binding protein 

(Salmonella typhimurium, 1gcg) (24) or alginate-binding protein (Sphingomonas 

sp., 1kwh) (Fig. 1.2F) (26); the entering helix is missing in protective antigen 

(Bacillus anthracis, 1acc) (27) or dockerin (Clostridium thermocellum, 1daq) (Fig. 

1.2G) (28). Previous studies in our laboratory have also shown that the single 

Ca2+-binding loops from CaM are capable of binding Ca2+ either alone or with the 

flanking helices when they are inserted into a non-Ca2+-binding host protein CD2 

domain 1 with β-strand structure (1,2). The four EF-loops of CaM in the host 

protein have dissociation constants (Kd) ranging from 34 μM to 814 μM (1). NMR 

studies revealed that the grafted EF-loop is directly involved in chelating Ca2+ 

(29).  

 

1. 4. Viral Ca2+-binding proteins 

Being extremely adept at hijacking the host cellular machinery, viruses 

have been extensively reported to interfere with the Ca2+ signaling pathways or 

Ca2+-dependent processes, and thereby, achieve their optimal infectivity to 

produce progenies (30). The interplays between virus and Ca2+, in general, fall 

into three major categories: 1) viral particles or viral proteins directly or indirectly 

disturb the Ca2+ homeostasis by altering membrane permeability and/or 

manipulating key components of the Ca2+-signaling repertoire; 2) a number of 
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important structural or nonstructural viral proteins directly bind to Ca2+ for 

structural integrity or optimal functions; 3) virus-host interactions that require 

cellular Ca2+-sensitive proteins or processes.  

Ca2+-binding motifs are present in virus proteins and are involved in virion 

assembly and stability (31-43), virion-associated activities such as cell fusion 

(44,45), and neuraminidase activity (46,47). To date, almost all of the reported 

viral CaBPs are structural proteins.  

 

1.5. Calmodulin as a ubiquitous Ca2+ sensor protein in eukaryotic cells 

CaM is a small (148 amino acids; MW: 16.7 kDa) and acidic (pI: ~4.0) EF-

hand Ca2+-binding protein. It was first discovered in the brain and heart as cyclic 

nucleotide phosphodiesterase activator protein (PAF) (48). It consists of two 

globular and autonomous domains, each of which contains two helix-loop-helix 

EF-hand motifs. Through its reversible or irreversible binding to Ca2+, the 

resultant conformational changes and the interaction with target proteins, CaM is 

capable of transducing the intracellular Ca2+ signal changes into a myriad of 

divergent cellular events, such as cell proliferation, cell differentiation and 

apoptosis (3).  

Upon signal stimulation or alteration in the membrane potential, the 

cytosolic Ca2+ concentrations might be elevated by 100 fold from 10-7 M to 10-5 M. 

The elevation of [Ca2+]c can be effectively sensed by CaM since the Ca2+ binding 

affinity of CaM ranges from 0.2 µM to 2 µM. Ca2+ signaling is a fast process and 

takes place in milliseconds (3). To convert this transient Ca2+ signals into more 

sustained physiological processes, CaM undergoes conformational 
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Figure 1.4. The sophisticated and fine-tuned CaM-target network. Through 
Ca2+-dependent interaction with targets, CaM relays the Ca2+ signaling to a 
multitude of target enzymes or proteins, which are distributed in different 
subcellular compartments, to carry out diversified cellular functions.  
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Table 1.1. List of characterized CaM target proteins. 
 

Category Target Protein  

Receptors, ion channels, exchangers, and pumps 
 SK channels  

 EGFR  
 Na+/K+ Ca2+ exchanger   
 connexin   
 Ca2+ ATPase   

 IP3 receptor   
 L-type Ca2+ channel  

 Ca2+-pump PMCA  
 RyR receptor  
Signaling proteins 

 Adenylate cyclase I  

 G-protein coupled receptor  
 NOS I, III  
 cAMP phosphodiesterase  
Kinases and phosphatases 

 CaMK I-IV  
 CaMKKs  

 calcineurin  
 phosphorylase kinase  
 phosphofructokinase  
 NAD kinase  

 glycogen synthase kinase  
Cytoskeleton and motility 
 MLCK  
 caldesmon  
 spectrin  

 myosin  
 MARCKS  
 dystrophin  
 synthrophin  

 actinin  
 IQGAP1  

 P190  
 tau  
 synapsin  
Gene expression and regulation 

 p68 RNA helicase  
 hnRNP  
 p62  
Others 

 cyclin E  
 neuromodulin  

 neurogranin  
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changes and interacts with a variety of protein kinases and phosphatases, both 

of which are capable of covalently modifying downstream effectors by adding or 

removing a phosphate group (49-53). The time scale of these processes usually 

lasts for seconds or even minutes. In addition, to more efficiently modulate the 

signaling cascades, Ca2+-CaM (sometimes apo-CaM) targets to enzymes or 

proteins (e.g., adenylate cyclases, phosphodiesterase, nitric oxide synthase, G-

protein coupled receptor) involved in the conversion of other secondary 

messengers, such as cAMP and cGMP (49-53). These enzymes or proteins 

themselves do not respond to changes in Ca2+ concentration. Thus, CaM relays 

the Ca2+ signaling to more than 100 target enzymes or proteins to carry out 

corresponding cellular functions (Fig. 1.4; Table 1.1) (54). More importantly, the 

Ca2+ signal itself can be modulated by CaM through its interaction with 

membrane receptors, ion channels and pumps (55,56). CaM resides primarily in 

the cytosol and targets to a wide range of proteins (54). The sophisticated and 

fine-tuned CaM-target network leads to the occurrence of divergent cellular 

responses to transient Ca2+ signals in different types of cells. Our findings, as 

shown in Chapter 6, suggest that gap junction proteins can be added to the 

expanding list of CaM targets.  

 

1.6. A grafting approach to probe metal binding properties of continuous 

Ca2+- binding sites 

 A grafting approach has been developed in our laboratory to validate the 

Ca2+-binding capability of any predicted EF-hand motifs, and to further analyze 
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the factors governing the metal binding properties in an isolated EF-hand motif 

(1,57). In this approach, any single Ca2+-binding site can be engineered into a 

scaffold protein, obviating the expression and purification of the intact proteins 

and the complexity of cooperativity. Thus, it is possible to dissect key local factors 

that contribute to the intrinsic Ca2+-binding affinity and conformational properties.  

 Through previous study in our laboratory, we find that the domain 1 of the 

rat cell adhesion protein CD2 is an excellent scaffold protein (1,57). It can be 

used to make an accurate measurement of metal-binding affinity using aromatic 

residue-sensitized Tb3+ fluorescence resonance energy transfer (Tb3+-FRET) and 

a competition assay utilizing Trp residues in CD2 (Fig. 1.5). CD2 retains its native 

structure with the inserted Ca2+-binding sites, which allows for the measurement 

of the intrinsic Ca2+-binding affinity with a minimized contribution of protein 

conformational change and metal-metal interaction (1,2,29,57). The metal-

binding affinity of the grafted EF-loop is independent of the host protein 

environment. Using this grafting approach, we have reported the first estimation 

of the intrinsic Ca2+ affinities of the four EF-hand loops of CaM and their 

associated cooperativity (1). Further, this grafting approach can be applied to 

identify and verify continuous Ca2+-binding sites in naturally-occurring proteins.  

 

1.7. The objectives of this dissertation 

The objectives of this research are to predict and investigate EF-hand 

Ca2+-binding proteins using computational tools and protein engineering. The 

main focus of this research is to develop robust tools or methods to predict and 
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Figure 1.5. Schematic representation of the grafting approach.  Any 
continuous Ca2+-binding sequence can be inserted into a scaffold protein 
CD2 domain 1 (CD2.D1) between S52 and G53. The host protein CD2.D1 
remains stable at pH 4-11 and is highly tolerant to mutations and insertions. 
Triple-glycine (-GGG-) linkers are added on each side to render increased 
flexibility. The aromatic residue Trp32, which is buried between two layers of 
β-sheets, is within 20 Ǻ of the potential metal binding pocket. This unique 
design makes it possible to directly monitor Tb3+ binding utilizing 
fluorescence resonance energy transfer (Tb3+-FRET).  
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analyze the EF-hand Ca2+-binding motif as well as its interaction with target 

proteins. To reflect the implication of Ca2+ in all biological systems, 

representatives were particularly selected from prokaryotes (prokaryotic 

genomes), virus (Rubella virus nonstructural protease) and eukaryotes (CaM). 

Specifically, this research focuses on three key objectives, as follows:  

A. Developing a robust and reliable prediction method for EF-hand 

Ca2+-binding proteins and analyzing prokaryotic EF-hand proteins 

To facilitate the understanding of the role of Ca2+ in biological systems 

using genomic information, we will establish a web searching platform for the 

prediction of EF-hand and EF-hand-like Ca2+-binding proteins. Improvements will 

be introduced to currently existing patterns to increase prediction accuracy. 

Systemic analysis of prokaryotic and viral EF-hand proteins will be made to grasp 

the evolutionary scenario of EF-hand motifs. 

B. Investigating the biological role of a putative viral EF-hand motif  

 The biological role of a predicted viral EF-hand Ca2+-binding domain within 

the rubella virus (RUB) nonstructural (NS) protease will be investigated by three 

approaches. 1) A grafting approach will be applied to investigate the metal 

binding properties of the isolated EF-hand motif and its mutant. 2) A minidomain 

approach will be used to analyze the metal induced conformational changes. 3) 

The physiological relevance of the EF-hand Ca2+-binding motif to virus replication 

and posttranslational processing will be assessed using rubella virus infectious 

clone and its replicon systems. 
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C. Elucidating the molecular basis underlying the calmodulin-

connexin interaction in eukaryotic cells  

 We propose a model in which the regulation of gap junctions is mediated 

by calmodulin (CaM) in a Ca2+-dependent manner. The molecular basis for the 

interaction of CaM with putative CaM-binding sequences in the connexins will be 

revealed using various biophysical methods, including high resolution NMR. 

 

1.8. The significance of this dissertation 

The significance and high impact of this research is multifaceted. First, 

our development of easily accessible computational tools for the prediction of EF-

hand or EF-hand-like Ca2+-binding protein will benefit the whole metalloprotein 

field. To our knowledge, our server 

(http://www.chemistry.gsu.edu/faculty/Yang/Calciomics.htm) will be the first of its 

kind to provide such service for scientists. Second, the comprehensive prediction 

and detailed analysis on putative prokaryotic and viral EF-hand and EF-hand like 

Ca2+-binding  proteins will contribute to our understanding of the versatile roles 

Ca2+ ions play in various biological systems; Third, our study on the viral EF-

hand Ca2+-binding protein provides a novel approach to probe individual Ca2+-

binding site at simplified and more readily achievable levels, and concurrently 

overcomes the barriers encountered in the expression of intact proteins; Fourth, 

the biological relevance of the EF-hand Ca2+-binding motif within the rubella virus 

(RUB) nonstructural (NS) protease will be elucidated; Fifth, the confirmation of 

Ca2+-dependent CaM-Cx interaction model will facilitate understanding of 
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mechanisms underlying gap junction regulation, and thus provide a molecular 

basis of potential therapeutic intervention of diseases related to malfunction of 

gap junctions, such as cataracts and heart diseases. 

 

 Chapter 2 in this dissertation summarizes all the methods used in this 

study, including molecular cloning, protein engineering, protein expression and 

purification, spectroscopic techniques (UV, circular dichroism, fluorescence, 

NMR), biocomputational analyses of genomes, homology structure modeling, 

and biochemical assays. All mathematical equations used in this study are also 

listed in Chapter 2.  

 

 Chapter 3 explains the development of robust and complete patterns (or 

motif signatures) for the prediction of EF-hand Ca2+-binding proteins. It also 

includes our systemic genome-wide analysis of putative prokaryotic EF-hand 

proteins and discussion of possible evolutionary scenarios of the EF-hand protein 

family.  

 

 Chapter 4 summarizes most of the known mechanisms underlying virus-

mediated alterations in Ca2+ homeostasis and Ca2+-dependent virus-host 

interactions. The altered Ca2+-signaling is closely associated with virus entry, viral 

gene expression, virion maturation and release. In addition, a total of 93 EF-hand  

motifs in viral proteins that are worthy of further studies are predicted. 
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 Chapter 5 is devoted to the identification and confirmation of a viral EF-

hand Ca2+-binding, and Zn2+-binding domain in the rubella virus nonstructural 

protease. The unique and important biological relevance of this motif with the 

virus infectivity is characterized.  

 

 Chapter 6 in this dissertation is focused on the elucidation of the 

molecular basis underlying the interaction between gap junction protein 

connexins and calmodulin, a prototypical EF-hand Ca2+-binding protein. 

Predicted CaM-target sequences in the connexins are synthesized and their 

ability to bind CaM is determined using a range of biophysical approaches.  

 

Chapter 7 is a succinct summary of major discoveries of this dissertation.  

 

Appendices list preliminary results obtained from related side projects 

that remain incomplete. It includes: 1) analyzing key factors governing the metal 

binding events by inserting well-characterized Ca2+-binding sequences from 

cellular proteins into CD2.D1 with the grafting approach; 2) predicting putative 

CaM binding site(s) in rubella virus nonstructural protease. 



19 

  

 

2. Materials and methods 

  

2.1. Molecular cloning and plasmid construction 

 The sequence encoding the putative Ca2+-binding domain (RUBCa, aa 

1143-1252 of the NS-ORF) with 5’ BamH I and 3’ EcoR I sites was amplified from 

the RUB infectious cDNA clone Robo502 (58,59) by using standard PCR 

methods. The PCR product was subsequently inserted into the BamH I-EcoR I-

digested pGEX-2T vector (GE Healthcare) to produce the plasmid pGEX-2T-

RUBCa.  

 

2.2. Protein engineering 

 The predicted 12-residue Ca2+-binding loop  was directly inserted between 

S52 and G53 (denoted as pGEX2T-CD2.RUBCa) by PCR using an established 

protocol (60). The mutant (denoted as pGEX2T-CD2.RUBCa-AA) with double 

mutations D5A and D12A (numbered according to the loop position of inserted 

Ca2+-binding motif) was produced using standard PCR methods. All sequences 

were verified by automated sequencing on an ABI PRISM-377 DNA sequencer 

(Applied Biosystems) in the Advanced Biotechnology Core Facilities of Georgia 

State University.  

 

 

 



20 

  

2.3. Expression and purification of proteins 

 CD2.RUBCa and its mutant. The engineered proteins CD2.RUBCa and 

its mutant CD2.RUBCa.AA were expressed as GST fusion proteins in 

Escherichia coli BL21 (DE3) transformed with the plasmid pGEX2T-CD2.RUBCa 

or pGEX2T-CD2.RUBCa-AA in LB medium with 100 mg/L of ampicillin and 

grown at 37 °C. 100 µM of isopropyl-β-D-thiogalactopyranoside (IPTG) was 

added when the O.D.600 reached 0.6 to induce protein expression for another 3 to 

4 hours at 37 °C. The cultures were centrifuged at 7,000 rpm at 4 °C with a 

Sorvall centrifuge equipped with a SG-3 rotor. The harvested cell pellets were 

resuspended in lysis buffer consisting of 0.2% sarcosine, 1mM DTT, 1 mM 

AEBSF in PBS, pH 7.4.  The resuspended solution was sonicated 6 times with 

each time 20 seconds with 80% duty. After centrifugation at 17,000 rpm with a 

Sorvall centrifuge equipped with a SS-34 rotor at 4 °C, the clarified supernatant 

was passed through a flow-through affinity column loaded with 4-5 mL slurry 

GS4B beads (GE Healthcare). After a minimum of 10 bead-volume of washing 

with PBS, on-column cleavage was performed to remove the GST tag by adding 

20 units of thrombin to each column. The elutant containing the target protein 

was filtered through 0.45 µM filter and injected into Superdex 75 gel filtration 

column. The eluted proteins were pooled together and further purified by Hitrap 

SP cation exchange chromatography. The molecular weight of CD2.RUBCa and 

its mutant were also confirmed by MALDI-TOF-MS. The concentration was 

determined by using the absorption at 280 nm with an extinction coefficient of 

11,700 M-1 cm-1 (61). 
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RUBCa (Fig. 2.1). The RUBCa was expressed as a GST fusion protein in 

Escherichia coli BL21 (DE3) transformed with the plasmid pGEX-2T-RUBCa in 

LB medium with 100 mg/L of ampicillin and grown at 37 °C. 100 µM of isopropyl-

β-D-thiogalactopyranoside (IPTG) and 50 µM of ZnCl2 were added when the 

O.D.600 reached 0.7 to induce protein expression for another 3 to 4 hours. The 

proteins were purified following the protocols for GST-fusion protein purification 

(60) using glutathione sepharose 4B beads (GE Healthcare). The protein was 

cleaved from its GST tag on beads by taking advantage of the thrombin cleavage 

site and eluted. The elutants containing RUBCa were further purified using 

Superdex 75 and Hitrap SP columns (GE Healthcare). The molecular weight of 

RUBCa was confirmed by MALDI-TOF-MS in the Advanced Biotechnology Core 

Facilities of Georgia State University. The concentration of RUBCa was 

measured by its absorption at 280 nm with an extinction coefficient of 19,630 M-1 

cm-1, which was calculated according to previously described methods (62).  

CaM. Recombinant rat CaM was expressed in Escherichia coli strain 

BL21(DE3)pLysS transformed with the plasmid pET7-CaM that harbors the 

synthetic CaM gene (63). pET7-CaM transformed cells were grown in LB 

medium to obtain unlabeled CaM. 15N-labeled CaM was expressed in SV minimal 

medium using 0.5 g/L 15NH4Cl (Cambridge Isotope Laboratories, MA, USA) as 

the sole nitrogen source. Bacterially-expressed CaM was purified by phenyl-

Sepharose (Sigma, MO, USA) chromatography as previously described. The 

purity of CaM was examined by mass spectrometry or SDS-PAGE (Fig. 2.2). The 

concentration of CaM was determined by using the ε276 of 3,030 M-1cm-1 (64). 
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A 

 

B 

 
C 

 
 

Figure 2.1. The cloning, expression and purification scheme of GST fusion 
proteins. (A), Target genes are inserted into EcoR I and BamH I digestion sites 
of pGEX-2T vector which harbors a GST tag that could be removed by 
thrombin. (B), A typical purification scheme of GST fusion proteins. (C), SDS-
PAGE, elution profiles and MS spectrum of the purified protein RUBCa. The 
SDS-PAGE (left) shows the cleavage of GST fused RUBCa with thrombin for 
1 h (lane 1) and 3 h (lane 2), as well as the elutants containing target proteins 
(Lane 3). The elutants are further purified to homogeneity by gel filtration 
(Superdex) and cation exchange (SP) chromatography (middle). The 
molecular weight is finally confirmed by MALDI-TOF-MS (right). 
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Dansyl CaM was prepared according to the method of Johnson et al with slight 

modifications (65). Briefly, rat CaM was dansylated in the dark by mixing 1 ml 

protein (1 mM) with a 5-fold molar excess of dansyl chloride (dissolved in 1:1 

acetone/ethanol) in 10 mM Mops, 100 mM KCl, 1 mM CaCl2, pH 7.0 for 16 h at 

4 °C. The reaction mixture was then extensively dialyzed against 10 mM Tris, 

100 mM KCl at pH 7.4 to remove the residual free dansyl chloride. The 

modification of CaM by dansyl chloride was confirmed by ESI-MS with an 

increase of +233 in the molecular mass. The bound dye concentration was 

determined by using the ε 335 of 3980 M-1 cm-1 (65). An average of ~0.8 mol of the 

dansyl chromophore was incorporated into per mol of CaM.  

Peptides. The peptides Cx43136-158 (Ac-KYGIEEHGKVKMRGGLLRTYIIS-

NH2) and Cx44129-149 (Ac-VRDDRGKVRIAGALLRTYVFN-NH2) were synthesized 

by Sigma-Genosys (Sigma, USA) and purified by preparative reversed-phase 

HPLC with purity over 95%. A randomized control peptide (Ac-

LGGEYLVTMESKIHIKGKRIGYR-NH2), with the same composition of amino 

acids as Cx43136-158 but arranged in a different order, was similarly synthesized. 

The molecular weight of the synthetic peptide was determined by matrix-assisted 

laser desorption/ionization time-of-flight mass spectrometry. To mimic its protein 

environment and eliminate extra charges, the designed peptide was blocked at 

its N-terminus with an acetyl group and at its C-terminus with an amide group. 
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A 

 

B 

 
 
Figure 2.2. SDS-PAGE (A) and MS (B) spectrum of purified CaM. Upon 
binding to Ca2+, the CaM undergoes conformational changes by switching 
from a globular shape at its apo-form to an elongated dumbbell shape, and 
therefore, moves faster in the electric field. The measured molecular weight 
(16706.98 Da) matches well with the calculated theoretical molecular mass 
(16707 Da).   
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2.4. Mass spectroscopy 

   Electrospray ionization mass spectrometry (ESI-MS). The detection of 

metal-protein complex by ESI-MS was performed by using a Waters Micromass 

Q-Tof micro instrument. The data were acquired in positive ion mode by syringe 

pump infusion of the protein solutions at a flow rate of 7 µL/min. The protein 

sample stock (~1 mM) in 10 mM Tris, pH 7.4 was diluted 100 folds into water. 

Metal ions were added in 5 molar excess to the protein concentration to observe 

specific binding.  

 Inductively coupled plasma mass spectrometry (ICP-MS). All the 

glassware, plastiware and Teflon containers used in the preparation of samples 

were pretreated with 2% HNO3 (optima grade, Fisher Scientific). All buffers were 

pretreated with chelex-100 (Bio-Rad) to remove the background Ca2+ ions. 20 to 

30 µM of the refolded proteins were acidified with 2% HNO3 and analyzed by 

ICP-MS (Finnigan Element 2). The dialyzed buffer was used as a blank, and the 

residual Ca2+ background of 2-5 µM was subtracted from the measurement of 

protein samples. 

 

2.5. Circular dichroism spectroscopy 

          CD2.RUBCa and RUBCa. The CD spectra of proteins were recorded in a 

Jasco-810 spectropolarimeter at ambient temperature using a quartz cell of 10 

mm path length with protein concentrations ranging from 2 to 5 µM. All spectra 

were obtained as the average of at least eight scans with a scan rate of 100 

nm/min. The calculation of secondary structure elements was performed by using 
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DICHROWEB, an online server for protein secondary structure analyses (66). 

The thermal denaturation was studied using a 1 mm quartz cell with protein 

concentration of 15-30 µM in 10 mM Tris-HCl (pH 7.4), 10 mM KCl with 1 mM 

EGTA or 1 mM CaCl2. The ellipticity was measured from 190 to 260 nm and 

converted to mean residue molar ellipticity (deg cm2 dmol-1 res-1). To obtain the 

thermal transition point, the signal changes at 222 nm were fitted using the 

equation described previously (67).  

          CaM and CaM-Cx complex. Circular dichroism spectra were acquired in 

the far UV (190-260 nm) or near UV region (250-340 nm) on a Jasco-810 

spectropolarimeter at room temperature using a 1 cm path length quartz cuvette. 

All spectra were an average of 10-20 scans. The background signals from the 

corresponding buffers were subtracted from the sample signals. The far UV CD 

spectra of the peptide in different percentages of trifluoroethanol (TFE) were 

obtained using 10 mM of the peptide in 10 mM Tris-HCl, 10 or 100 mM KCl, pH 

7.4. In the peptide titration of CaM experiment, 2-5 µL aliquots of the peptide 

stock solution (150 µM in 10 mM Tris-HCl, 10 or 100 mM KCl, pH 7.4) was 

gradually added into a 2-mL solution containing 1-2 µM CaM in the same buffer 

with 5 mM CaCl2 or 5 mM EGTA. The signals from the peptide itself were 

subtracted. All the measurements were carried out in at least triplicate. The 

binding constants of the synthetic peptide to CaM were obtained with a 1:1 

binding model by fitting the following equation (Eq. 1):  

T

TTdTTdTT

CaM

PCaMKPCaMKPCaM
f

][2

][][4)][]([)][]([ 2 
  (1) 
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where f is the fractional change of CD signals at 222 nm, Kd is the dissociation 

constant for the peptide, and [P]T and [CaM]T are the total concentrations of the 

synthetic peptide and CaM, respectively. The secondary structure contents of the 

peptides or proteins were calculated with the online secondary structure 

prediction server DICHROWEB that integrates analysis algorithms such as 

SELCON, CONTINLL, CDSSTR and K2D (66). Near UV CD spectra were 

recorded with protein/peptide concentration of 80-100 µM in 10 mM Tris-HCl, 100 

mM KCl, pH 7.4 with 5 mM Ca2+ or 5 mM EGTA. 

 

2.6. Stopped-flow measurements 

Stopped-flow experiments were performed in a Jasco-810 

spectropolarimeter equipped with a BioLogic stopped-flow apparatus at 25 °C. 

The instrument dead-time is ~2.5 ms at a drive force of about 0.4 MPa. The 

optical cuvette pathlength is 0.5 cm. All the experiments were performed in 50 

mM Tris-HCl, 100 mM KCl, pH 7.4 with at least 15 traces recorded.  The changes 

of CD signal at 222 nm were monitored with 1 ms sampling interval in the time 

range of 0-2 s. EGTA-induced Ca2+ dissociation was studied by mixing 100 μL of 

2 μM CaM-peptide mixture (with 0.1 mM Ca2+) in Syringe 1 with an equal volume 

of 10 mM EGTA in Syringe 2 within 15 ms. The acquired data were fitted by a 

single exponential model.  
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2.7. Fluorescence spectroscopy 

 CD2.RUBCa and RUBCa. Fluorescence emission spectra were measured 

with a 1-cm pathlength cell on a PTI lifetime fluorometer at ambient temperature. 

For intrinsic tryptophan fluorescence, spectral measurements were carried out at 

protein concentrations of 2-4 µM in 20 mM PIPES-10 mM KCl at pH 6.8 with slit 

widths of 4 and 8 nm for excitation and emission, respectively. The emission 

spectra were collected from 300 to 400 nm with an excitation wavelength of 282 

nm. 8-Anilino-1-naphthalene sulfonic acid (ANS) fluorescence emission spectra 

were recorded from 400 to 600 nm with an excitation wavelength of 390 nm. 

Protein samples (5 µM) with 1 mM CaCl2 or 1 mM EGTA were added into the 

solution containing 40 µM ANS, 20 mM PIPES-10 mM KCl at pH 6.8.  

 Tyr/Trp-sensitized Tb3+ fluorescence energy transfer (Tb3+-FRET) 

experiments were conducted as described previously (68,69). For the metal 

competition studies, the solution containing 40 µM of Tb3+ and 1.5 µM of protein 

was set as the starting point. The stock solution of metal ions with the same 

concentration of Tb3+ and protein was gradually added into the initial mixture. 

The fluorescence intensity was normalized by subtracting the contribution of the 

baseline slope using logarithmic fitting. The Tb3+-binding affinity of protein was 

obtained by fitting normalized fluorescence intensity data using (Eq. 2): 

T

TTdTTdTT

P

MPKMPKMP
f

][2

][][4)][]([)][]([ 2 
     (2) 

where f is the fractional change, Kd is the dissociation constant for Tb3+, and [P]T 

and [M]T are the total concentrations of protein and Tb3+, respectively.  
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 The Ca2+ competition data were first analyzed using the apparent 

dissociation constant obtained by equation 1. By assuming that the sample is 

almost saturated with Tb3+ at the starting point of the competition, the Ca2+-

binding affinity is further obtained by using the equation (Eq. 3) 

][
,

,

,

TbTbd

Tbd

appCad MK

K
KK




      (3) 

where Kd,Ca and Kd,Tb are the dissociation constants of Ca2+ and Tb3+, 

respectively. Kapp is the apparent dissociation constant. All the measurements 

were conducted in triplicate. 

CaM. Steady-state fluorescence spectra were recorded using a QM1 

fluorescence spectrophotometer (PTI) with a xenon short arc lamp at ambient 

temperature. Tyrosine fluorescence was monitored using excitation at 277 nm 

and emission at 307 nm with 2-4 nm bandpasses. The Ca2+ binding constants 

were determined by titrating the CaM (8 mM) or 1:1 CaM-peptide mixture (8 µM) 

in 1 mM EGTA, 100 mM KCl, 50 mM Tris-HCl, pH 7.4 with 1-5 µL aliquots of 10 

mM Ca2+ stock solution in the same buffer containing equal concentrations of 

CaM and peptide. The pH change (0.03 to 0.04) was minimal during the titration 

process. To obtain the accurate Ca2+ concentrations during titration, Ca2+ 

concentration at each point was determined with the Ca2+ dye Oregon Green 488 

BAPTA-5N (0.2 µM; Kd = 20 µM; Invitrogen) with an excitation wavelength of 492 

nm and an emission wavelength of 520 nm. The ionized Ca2+ concentration was 

subsequently calculated according to the equation (Eq. 4): 
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where F is the fluorescence intensity of the dye at each titration point, Fmin and 

Fmax are the intensities of the Ca2+-free and the Ca2+-saturated dyes, respectively. 

The Ca2+ titration of CaM data was fit to the nonlinear Hill equation (Eq. 5): 
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
                      (5) 

Where, f is the relative signal change observed during the experiment; [M] is the 

concentration of free Ca2+; K refers to dissociation constants of Ca2+; and n is the 

Hill coefficient. 

  For dansyl-CaM fluorescence measurement, 1 mL solution containing 1-2 

µM dansyl-CaM in 10 mM Tris-HCl, 100 mM KCl, pH 7.4 with 5 mM Ca2+ or 5 mM 

EGTA was titrated with 5-10 µL aliquots of the peptide stock solution (10 µM) in 

the same buffer. The fluorescence spectra were recorded using an excitation of 

335 nm and an emission between 400 and 600 nm with the slit width set at 4-8 

nm.  

 Tb3+ luminescence lifetime measurement was performed on a QM1 

fluorescence spectrophotometer with a xenon flash lamp (PTI) at 25 °C. The 

buffer consists of 50 mM Tris, 100 mM KCl, pH 7.4. The lifetime value was 

obtained by fitting the acquired data to a single-component exponential decay 

function.  
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2.8. Isothermal titration calorimetry 

ITC experiments were performed on a Microcal VP-ITC microcalorimeter. 

Samples were prepared and dialyzed in a buffer consisting of 20 mM PIPES, 100 

mM KCl, 2 mM CaCl2, pH 6.8. All the solutions were degassed for at least 15 min 

prior to experiments. 4-6 µL aliquots of peptides (400-600 µM) were injected from 

the syringe into the reaction cell containing 25 µM CaM in the same buffer at 5 

min intervals at 25 °C. The heat of dilution and mixing was measured by injecting 

the same amount of peptides into the reaction cell that contained the reaction 

buffer and subtracted. All the data were analyzed by using the Microcal Origin 

software. The data fit well to a single-site binding mode which provided the 

stoichiometric information, Ka and thermodynamic parameters including enthalpy 

(ΔH) and entropy (ΔS) of binding.  

 

2.9. Surface plasmon resonance measurements 

 Real time binding was performed using surface plasmon resonance (SPR) 

at the Center for Disease Control and Prevention (Atlanta, GA, USA) on a 

Biacore 3000 system (Biacore AB, Uppsala, Sweden). CaM (500 nM in 10 mM 

sodium formate, pH 3.5) was directly immobilized onto the sensor chip CM5 

using an amine coupling kit as described by the manufacturer. Synthetic peptides 

with varying concentrations were subsequently injected over the sensor surface 

at a flow rate of 50 mL/min in binding buffers (5 mM Ca, 100 mM KCl, 50 mM 

Tris-HCl, pH 7.4). Two minutes later, peptide-free binding buffer was injected to 

monitor the dissociation process. All measurements were carried out in parallel 
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using two cells, one with immobilized CaM and the other as blank control with the 

carboxylated dextran matrix deactivated. Binding of peptide to CaM-immobilized 

flow cells was corrected for binding to control flow cells. The sensor chip was 

regenerated using 10 mM glycine, pH 2.2.  

  

2.10. Nuclear magnetic resonance spectroscopy 

 One-dimensional 1H NMR spectra were recorded on a Varian 500 MHz 

NMR spectrometer with a spectral width of 6600 Hz. Samples of 200 to 250 µM 

were prepared in 20 mM PIPES-10 mM KCl, 10% D2O at pH 6.8. La3+ stock 

solution was gradually added into the NMR sample tube. The program FELIX98 

(MSI) was used to process NMR data with an exponential line broadening of 2 

Hz window function and the suppression of water signal with a Gaussian 

deconvolution function with a width of 20.  

All NMR experiments were performed using either Varian Inova 500 or 600 

MHz spectrometers. NMR spectra were acquired with a spectral width of about 

13 ppm in the 1H dimension and 36 ppm in the 15N dimension at 35 °C. For the 

(1H, 15N)-HSQC experiment, 0.5 mM 15N uniformly-labeled CaM was titrated with 

10-20 µL aliquots of the peptide stock solution (2.1 mM) in a buffer consisting of 

10% D2O, 100 mM KCl, 50 mM Tris-HCl with 10 mM EGTA or 10 mM Ca2+. The 

pH values of both sample solutions were carefully adjusted to 7.4 with trace 

amounts of 2M KOH. NMR data were processed using the FELIX98 program 

(Accelrys).  

 For gradient diffusion experiments, spectra were collected using a 
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modified diffusion  LED pulse sequence in 20 mM PIPES- 10 mM KCl at 25 ⁰C as 

previously described (70). The diffusion constants (D) were obtained by fitting the 

integrated areas of arrayed spectrum with equation 6:  

I=I0 exp[-(γδG)
2
(Δ-δ/3)D]       ( 6) 

where γ is the gyromagnetic ratio of proton. The time between PFG pulse (Δ) and 

the PFG duration time (δ) were 100.5 and 5 ms, respectively. The gradient 

strength (G) was arrayed from 0.2 Gauss/cm to about 28.9 Gauss/cm using 50 

steps. I0 is the integrated area of selected resonances at 0 Gauss/cm and I is the 

integrated area of the desired resonances at each array spectrum after baseline 

corrections. PIPES and dioxane were used as internal references. The diffusion 

process of a spherical particle is governed by Stokes-Einstein’s equation:  

D=kT/6πηrs            (7) 

where k is the Boltzman constant, η is the solvent viscosity, rs is the 

hydrodynamic  radius.  

 

2.11. Cells, infectious clone and site-directed mutagenesis 

 The infectious genomic cDNA clone Robo502 was previously described 

(58,59). To generate the mutated construct Robo502AA (D1210A, D1217A), a two-

round asymmetric PCR strategy was employed to create the mutations in an 

amplified fragment between unique BsmI and RsrII sites at nts 3243 and 3897 of 

the RUB genome.  The doubly digested fragment was used to replace the 

corresponding fragment in Robo502.  The mutations were also transferred to the 

replicons, RUBrep-FLAG/GFP and RUBrep-HA/GFP (71), which express a P150 
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tagged with the FLAG or the HA epitope and the reporter protein, green 

fluorescent protein (GFP), in place of the SP-ORF. 

 

2.12. In Vitro transcription, transfection, Northern blotting and Western 

blotting 

 Vero cells were obtained from the American Type Culture Collection and 

maintained at 35 °C under 5% CO2 in Dulbecco’s modified Eagle’s medium 

(DEME, Gibco) supplemented with 5% fetal bovine serum and 10 μg/mL 

gentamicin. CsCl density gradient purified plasmids were linearized with EcoRI 

(New England Biolabs), followed by phenol-chloroform extraction and ethanol 

precipitation. RNA transcripts were synthesized at 37 °C in a 25-μl reaction 

mixture containing 40 mM Tris-HCl (pH 7.5), 1 μg DNA, 6 mM MgCl2, 2 mM 

spermidine, 10 mM dithiothreitol, 1 mM of each NTP, 1 unit of RNasin (Roche 

Applied Science), 2 mM cap analog m7G(5’)ppp(5’)G (New England Biolabs), and 

25 units of SP6 DNA-dependent RNA polymerase (Epicenter Technologies). The 

transcription reaction mixtures were directly used for cell transfection without 

DNase treatment. The transcripts were analyzed by electrophoresis of 2 μL 

aliquots of the reaction mixture in 0.8% agarose gel. The precise yield was 

determined using a UV/vis spectrometer (Shimadzu). Transfection of the RNA 

transcripts was done when using Vero cells at ~80% confluence in 60 mm2 

plates. Vero cells were washed twice with 3 mL of phosphate-buffered saline and 

once with 3 ml of Opti-MEMI (Gibco). 10 μL of the transcripts were subsequently 

mixed with 500 μL Opti-MEMI and 7 μL lipofectamine-200 (1 mg/ml). The mixture 
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and 1.5 mL of Opti-MEMI were added onto the plates to cover the monolayer of 

Vero cell. After 4 h of incubation, the transfection mixture was removed, and 4 ml 

of DMEM supplemented with 2% fetal bovine serum was added (transfection is 

designated as passage 0 or P0). Following development of significant cytopathic 

effect (CPE), the medium was harvested and passed twice in Vero cells (P1 and 

P2). Virus titers were determined by plaque assay as previously described 

(72,73). To determine if the D1210A and D1217A mutations were maintained 

following transfection and passage, plaques were picked from terminal dilution 

plaque assay plates of P1 culture fluid and amplified once in Vero cells. 

Following amplification, total infected cell RNA was extracted and the NS 

protease region of the genome was amplified by RT-PCR and the RT-PCR 

product was sequenced (74).  

The expression of reporter gene GFP in living, transfected cells was 

monitored by a Zeiss Axioplan upright microscope with epifluorescence capability 

and photographed with a Zeiss Axiocam. Northern blotting was used to detect 

replicon-specific RNA species by following previously established protocols (71). 

To detect in vivo NS protease activity, Vero cells transfected with RUBrep-

HA/GFP, RUBrepAA-HA/GFP, or RUBrepNS*-HA/GFP (containing a C1152A 

mutation of the catalytic site) were incubated at 35 ⁰C or 39 ⁰C.  6 hrs post-

transfection, the cells were lysed and resolved by 8% SDS-PAGE, electroblotted 

onto nitrocellulose membranes, and probed with anti-HA monoclonal antibodies 

(Sigma) according to a previously established procedure (71).  
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2.13. Dye transfer assay  

Confluent monolayers of HeLa cells grown on glass coverslips were 

loaded with the Ca2+ indicator Fura-2 AM (5 μM) in 2 ml HBSS++ buffer 

(containing 1.8 mM Ca2+, with added 10 mM HEPES, 5 mM NaHCO3, pH 7.2), 

then transferred to a microincubation chamber (model MSC-TD, Harvard 

Apparatus, Holliston, MA) as described previously (68).  Imaging of intracellular 

Ca2+ was performed with a Nikon TE300 (Nikon Inc., Melville, NY) inverted 

microscope equipped with Nikon filter blocks for Fura-2 emission and AF594 

optics (Chroma Technology Corp, Rockingham, VT), a Metaltek filter wheel 

(Metaltek Instruments, Raleigh, NC) housing excitation filters for Fura-2, a 75 

watt xenon short arc lamp, a Hamamatsu CCD digital camera (Hamamatsu 

Corporation, Bridgewater, NJ), and supported on a vibration isolation table 

(Technical Manufacturing, Peabody, MA).  [Ca2+]i was measured ratiometrically  

(λ340 / λ380) with Fura-2 throughout each experiment in the injected cell and the 

cells adjacent to the injected cell, and Ca2+ concentrations determined as 

described previously (75). MetaFluor software (Universal Imaging Corp., 

Downington, PA) was used for data collection.  Micropipettes (borosilicate glass 

capillaries: 1 mm O.D., 0.75 mm I.D, 100 μm internal microfilament; Dagan 

Corporation, Minneapolis, MN) were pulled on a Flaming/Brown-type pipette 

puller (P-87; Sutter Instruments, Novato, CA). Micropipettes had tip diameters of 

<1 µm and resistances of ~100-300 MΩ when filled with AlexaFluor 594 (1 mM) 

dissolved in deionized water. The micropipette was positioned with a low-drift 

hydraulic micromanipulator (MW-3; Narishige, Greenvale, NY), and AlexaFluor 
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594 was microinjected iontophoretically using a train of 5-ms current pulses 

applied every 100 ms for 60 s (3 s total injection time) at ambient temperature.  If 

the micropipette became plugged, it was replaced with a new micropipette, and 

the data from such a partial injection were excluded from the analysis. Current 

was generated with a Duo 773 (World Precision Instruments, Sarasota, FL). 

Current duration, magnitude, and polarity were controlled with an A310 

Accupulser pulse generator (World Precision Instruments, Sarasota, FL). 

Digitized images of AlexaFluor594 cell-to-cell transfer were recorded 2 min 

following the iontophoretic injection of fluorescent dye. A sustained elevation in 

[Ca2+]i was effected by adding 1 μM ionomycin to the medium, then  2 min later 

increasing the extracellular [Ca2+] from 1.8 mM to 21.8 mM. All these works were 

carried out by Dr. Monica Lurtz. 

 

2.14. Bioinformatic tools and homology structure modeling 

 Multiple sequence alignments and phylogenetic analysis. 1904 proteins 

with potential canonical EF-hands and 84 proteins with pseudo-EF-hands from 

SwissProt encompassing 66 distinct subfamilies of EF-hand proteins were 

included in our EF-hand databases. Typical members of each subfamily were 

collected to generate a sub-database for multiple sequence alignments and 

phylogenetic analysis. Multiple sequence alignment (MSA) was performed using 

the ClustalW program with a gap open penalty of 10 and gap extension penalty 

set at 0.5.(76) The same program was applied to generate N-J tree for further 

display by the TreeView program.(77)  

 Generation of profile HMM and patterns. Profile HMM (Hidden Markov 
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Models) was generated from multiple sequence alignment results using HMMER 

by choosing both hmmbuild and hmmcalibrate algorithms. The statistical profile is 

subsequently visualized as HMM logo using LogoMat-M.(78,79) The EF-hand 

patterns were generated by taking into account highly conserved residues within 

both the pseudo and canonical EF-hand motifs.  

 Evaluation of canonic and pseudo EF-hand pattern. The precision, 

sensitivity and positive predictive values (PPV) of canonical EF-hand patterns 

loop, eloop, loopf, and eloopf were compared to that of the pattern PS00018. A 

total of 170 hits, including true positive, false negative, and false positive, were 

randomly selected from the results of PS00018 and set as the sub-database for 

comparison. The newly generated pseudo EF-hand patterns, as well as the well-

established S100 pattern PS00303, were used to search for possible pseudo-EF-

hand Ca2+ binding domains against major protein sequence databases such as 

SwissProt, iProClass and NCBI reference sequences (RefSeq). The Ca2+-binding 

properties of the proteins in the selected dataset have been experimentally 

verified and the prediction is compared with the verified information to determine 

the true positive, true negative, false negative, and false positive. The methods 

are then applied to predict proteins with unknown Ca2+-binding properties in 

bacterial genomes. For statistical analysis, the precision, sensitivity, and PPV 

were determined as follows:  

FNFPTNTP

TNTP
precision




               (8) 

FNTP

TP
ysensitivit


                (9) 
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FPTP

TP
PPV


         (10) 

(TP: true positive; TN: true negative; FN: false negative; FP: false positive) 

 

 The Ca2+-binding motif signatures developed in our laboratory 

(http://www.chemistry.gsu.edu/faculty/Yang/Calciomics.htm) as well as the 

pattern PS00018 from PROSITE (http://us.expasy.org/cgi-

bin/nicedoc.pl?PDOC00018) were used to scan through the genome of rubella 

virus for any potential EF hand Ca2+-binding site (6). Sequence alignments were 

conducted by using the program ClustalW. The secondary structure was 

predicted based on the consensus prediction results using programs PSIPRED, 

JPRED, and PHD (80-82). The homology modeling of the engineered protein and 

the protease was constructed using the comparative structure modeling SWISS-

MODEL (83). CD2 (PDB code: 1hng) and the leader protease of foot-and-mouth 

disease virus (PDB code: 1qmy) were used as the templates for structure 

modeling based on their available high resolution structure (61,84). Prediction of 

Ca2+-binding sites in the modeled structure was conducted by using the program 

GG, a computational algorithm developed in our laboratory on the basis of the 

geometric description, graph theory and key structural and chemical features 

associated with calcium binding in proteins (85).    

 Bioinformatic analyses and prediction of CaM-binding site in connexins. 

The topology and orientation of transmembrane regions of the rodent connexin 

43 and sheep Cx44 were predicted on the basis of the consensus results using 

four different programs including SOSUI (86), TMHMM (87), MEMSAT (88), and 
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HMMTOP (89). The potential CaM binding sites were predicted using the CaM 

target database based on several criteria, including the distribution of 

hydrophobic and basic residues, propensity to form helix, and hydrophobicity of 

the sequence, that are common to more than 100 CaM target sequences (90).  

 

2.15. Determination of zinc amount by colorimetric PAR assay    

PAR colorimetric assay with slight modification was used as described 

(91). Protein samples were pretreated by Chelex 100 to remove background 

metal ions and then digested in a total volume of 100 μL with 100 μg protease K 

(Sigma) per mL in HSD buffer (50 mM HEPES-KOH, 200 mM NaCl, 5 mM 

dithiothreitol [DTT]), pH 7.0 at 56 ⁰C for 30 min. Subsequently, an identical 

volume of HSD containing 5 mM iodoacetamide (IAM; Sigma) and 200 μM 4-(2-

pyridylazo)resorcinol (PAR, Sigma) was added. The absorption ranging from 300 

nm to 600 nm was measured by RF-1501 UV spectrometer (Shimadzu). HSD 

containing 0-15μM standard ZnCl2 solution was used to create a standard curve. 

The amount of protein in the samples to be analyzed for metal content was 

adjusted so that the amount of metal released was in the linear range of the 

standard curve. Carbonic anhydrase that contained one zinc binding site is used 

as positive control.  
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3. Prediction of prokayotic EF-hand and EF-hand like Ca2+-

binding proteins 

  

Since the delineation of the EF-hand motif in 1973, the family of EF-hand 

proteins has thus far expanded to include at least 66 subfamilies. As noted in 

section 1.2, there are two types of EF-hand motifs: the canonical and pseudo EF-

hands. The major difference between these motifs lies in the Ca2+-binding loop: 

the 12-residue canonical EF-hand loop binds Ca2+ mainly via sidechain 

carboxylates or carbonyls (loop sequence positions 1, 3, 5, 12), whereas the 14-

residue pseudo EF-hand loop chelates Ca2+ primarily via backbone carbonyls 

(positions 1, 4, 6, 9) (Fig. 3. 1). The residue at the –X axis coordinates the Ca2+ 

ion through a bridged water molecule. The EF-hand loop has a bidentate ligand 

(Glu or Asp) at axis –Z.  

With the continuing expansion of genomic information, many efforts have 

been made to predict the continuous EF-hand Ca2+-binding proteins and to 

understand the role of Ca2+ in biological systems. Pattern (motif signature) 

search is one of the most straightforward ways to predict continuous EF-hand 

Ca2+-binding sites in proteins. Based on the sequence alignment results of 

canonical EF-hand motifs, especially the conserved side chains directly involved 

in Ca2+ binding, a pattern PS00018 (http://us.expasy.org/cgi-

bin/nicesite.pl?PS00018) has been generated to predict canonical EF-hand sites. 

Alternative patterns have also been proposed with the addition of other 
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conserved residues in the motif (92,93). For the pseudo EF-hand loop, however, 

each type of amino acid may serve as potential Ca2+ binding ligands because of 

the use of main chain, which makes prediction solely from the sequences 

relatively difficult. To circumvent this problem, the prediction of pseudo EF-hand 

sites was achieved by detecting the canonical EF-hands based on the 

assumption that all the pseudo EF-hands are paired by a C-terminal canonical 

EF-hand. The currently available pattern PS00303 from EXPASY website 

(http://us.expasy.org/cgi-bin/nicedoc.pl?PDOC00275) predicts the S100 type 

Ca2+ binding proteins by spanning the C-terminal canonical EF-hand motifs. It is 

worth pointing out that the prediction results obtained using this strategy do not 

directly provide the sequence of the pseudo EF-hand Ca2+ binding loop.  

Toward our goal of predicting and understanding the role of Ca2+ in 

biological systems (denoted as calciomics), we report herein our progress in 

identifying EF-hand and EF-like motifs from the primary sequences. A series of 

patterns were generated by taking advantage of the metal binding properties of 

currently available EF-hand proteins and considering the helical structural 

context around the Ca2+-binding loop. We modified the pattern PS00018 by 

allowing more choices (Glu, Gln, and Ser) at position 1 (axis X) and adding 

constraints at the flanking helical regions. By easing the constraints at the C-

terminal canonical EF-hand, and simultaneously incorporating reserved residues 

in the N-terminal pseudo EF-hand, we also generated a modified pattern for the 

prediction of pseudo EF-hand sites. Compared with the pattern PS00303, the 

new pattern, reflecting conserved genomic information in both the N- and C-
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terminal EF-hands, significantly improved the predictive accuracy and sensitivity. 

Finally we report our analysis of EF-hand proteins in bacterial genomes using the 

prediction method we developed. Our prediction results indicate that no pseudo 

EF-hand protein is found in bacteria, which provides an additional piece of 

evidence suggesting that pseudo EF-hand motif likely evolved later than 

canonical EF-hand motifs. 

 

3.1. Pattern development 

Based on the sequence alignment results and the statistical profile 

corresponding to each type of EF-hand Ca2+-binding site (Fig. 3.1), several 

patterns reflecting the most conserved information at particular positions have 

been developed and summarized in Table 3.1. Among them, patterns 1-4, in 

addition to the commonly used pattern PS00018, can be used for the prediction 

of canonical EF-hand Ca2+-binding sites with varying degrees of constraints on 

the sequences. Patterns PS00303 and PC (abbreviation of pseudo and canonical 

EF-hands pattern) can be used for the prediction of Ca2+-binding motifs within 

S100 and S100-like proteins. The patterns for EF-hand-like proteins are applied 

to the prediction of EF-hand-like Ca2+-binding motifs with the loop length ranging 

from 10 to 15 residues.  

 

3.2. Canonical EF-hand motif 

The widely applied pattern PS00018 has a stringent restraint at loop 

sequence position 1 (axis X) that only allows Asp, although Asn or Ser also 
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Table 3.1. Summary of patterns to predict EF-hand proteins. 
 

Pattern 
number 

Pattern name 
Conservation 

positions 
Motif signature 

To predict Canonical EF-hand   

1 

eloopf 
 
 

Canonical EF-loop 
and both flanking 
helices 

x-{DNQ}-x(2)-{GP}-{ENPQS}-x(2)-{DPQR}-[DNS]-x-

[DNS]-{FLIVWY}-[DNESTG]-[DNQGHRK]-{GP}-

[LIVMC]-[DENQSTAGC]-x(2)-[ED]-[FLYMVIW]-x(2)-

{NPS}-{DENQ}-x(3) 

2 

eloop 
 
 Canonical EF-loop 

and the entering helix 

x-{DNQ}-x(2)-{GP}-{ENPQS}-x(2)-{DPQR}-[DNS]-x-

[DNS]-{FLIVWY}-[DNESTG]-[DNQGHRK]-{GP}-

[LIVMC]-[DENQSTAGC]-x(2)-[ED] 

3 

loopf 
 
 
 

Canonical EF-loop 
and the exiting helix 

[DNS]-x-[DNS]-{FLIVWY}-[DNESTG]-[DNQGHRK]-

{GP}-[LIVMC]-[DENQSTAGC]-x(2)-[ED]-

[FLYMVIW]-x(2)-{NPS}-{DENQ}-x(3) 

4 

loop 
 
 

Canonical EF-loop  
[DNS]-x-[DNS]-{FLIVWY}-[DNESTG]-[DNQGHRK]-

{GP}-[LIVMC]-[DENQSTAGC]-x(2)-[ED] 

5 

PS00018
a
 

 
 

Canonical EF-loop 

D - x - [DNS] - {ILVFYW} - [DENSTG] - [DNQGHRK] - 

{GP} - [LIVMC] - [DENQSTAGC] - x(2) - [DE] - 

[LIVMFYW] 

To predict Pseudo EF-hand    

6 

PC 
 
 

Both helices of the 
pseudo EF-motif, 
both helices and the 
loop of the paired 
canonical EF-motif 

[LMVITNF]-[FY]-x(2)-[YHIVF]-[SAITV]-x(5,9)-

[LIVM]-x(3)-[EDS]-[LFM]-[KRQLE]-x(20,28)-[LQKF]-

[DNG]-x-[DNSC]-x-[DNK]-x(4)-[FY]-x-[EKS] 

7 

Pseudo 
 
 

Both helices of the 
pseudo EF-motif 

[LMVITNF]-[FY]-x(2)-[YHIVF]-[SAITV]-x(5,9)-

[LIVM]-x(3)-[EDS]-[LFM]-[KRQLE] 

8 

PS00303
b
 

 
 

Both helices and the 
loop of the paired 
canonical EF-motif 

[LIVMFYW](2) - x(2) - [LK] - D - x(3) - [DN] - x(3) - 

[DNSG] - [FY] - x - [ES] - [FYVC] - x(2) - [LIVMFS] - 

[LIVMF]  

To predict EF-hand-like   

9 

Excalibur 
 
 

The 10-residue loop D-x-D-x-D-G-x(2)-C-E 

10 

EF-hand-like 

The loop 
D - x - [DNS] - {ILVFYW} - [DEN] - G - {GP}-x(5, 6)-

[DE]  

a
 http://us.expasy.org/cgi-bin/nicesite.pl?PS00018 

b
 http://au.expasy.org/cgi-bin/nicesite.pl?PS00303 
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Figure 3.1. Consensus sequence of canonical EF-hand (A) and pseudo EF-
hand domains (B) drawn based on profiles HMM using LogoMat-M 
(http://logos.molgen.mpg.de/cgi-bin/logomat-m.cgi). n: the hydrophobic 
residues within the flanking helices. #: the potential Ca2+ binding ligands 
involving the mainchain carbonyl groups. 

A

B

n  *   * n  n  *   * n n  *   * n  n  *   *

n  *   * n  n  *   * n n  *   * n  n  *  *

X   *   Y   *   Z   *   #  n  -X  *   *   -Z    

X   *   *  Y  G  Z  *   *   #  n  -X  *   *  -Z    

-8                    -5     -4                   -1       1             3              5             7              9          12   13                    16    17                                  

-8                    -5    -4                           1                   4            6                 9           11      14   15                  18    19    
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occupy the position in a few EF-hands (Ca2+ and integrin binding protein 2 

(Q9Z309), CaBPE63-1 (P48593), rat CaM (pdb code: 3cln)). The pattern 

PS00018 focuses solely on the loop region and does not reflect conserved 

information within the flanking regions. To improve the pattern PS00018, we 

incorporated the diverse features of the flanking structural contexts and 

developed patterns catering to different constraints on EF-hands. Based on 

multiple sequence alignment results on over 1,000 canonical EF-hands from the 

SwissProt protein sequence database, constraints on both flanking helices and 

the 12-residue loop were well defined in separate patterns. As shown in Table 3.1, 

three patterns were derived: a) x-{DNQ}-x(2)-{GP}-{ENPQS}-x(2)-{DPQR} for the 

entering helix; b) [DNS]-x-[DNS]-{ILVFYW}-[DNESTG]-[DNQGHRK]-{GP}-

[LIVMC]-[DENQSTAGC]-x(2)-[ED] for the Ca2+-binding loop; and c) [FLYMVIW]-

x(2)-{NPS}-{DENQ}-X(3) for the exiting helix. As revealed by the sequence 

alignment, hydrophobic residues are favored at positions -1, -4, -5 and -8 in the 

entering helix and at positions 13, 16, and 17 in the exiting helix (Fig. 3.1A). 

Hence, hydrophilic residues or residues tending to interrupt helical structure were 

excluded at these positions. The prediction of loop only (b), E-loop (a+b), loop-F 

(b+c) and E-loop-F (a+b+c) can then be achieved using the patterns in 

combination. This strategy provides an alternative way to perform prediction of 

EF-hands as well as EF-hand-like sites with deviations at the flanking regions. 

Fig. 3.2A shows the statistical results of the prediction of canonical EF-

hand motifs using the pattern eloopf. According to the Prosite documentation 

PDOC00018, the pattern PS00018 results in more than 2,000 hits in the 
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SwissProt database. To compare our patterns with PS00018, a total of 170 

protein sequences were randomly selected from the SwissProt database. Of 

these, 119 are true canonical EF-hand proteins with experimental validation, 

while 51 are not. With these sequences as the testing database, prediction 

results show that patterns 1-5 have similar sensitivity while the precision and 

PPV of patterns 1-3 increased by 10% to 20% compared to the pattern PS00018. 

Fewer false positive hits were detected when using the patterns 1-3. Hence, 

additional constraints on the flanking regions enhance the overall accuracy of 

prediction and the true positive predictions.  

 

3.3. Pseudo EF-hand motif 

As listed in Table 3.2, pseudo EF-hands are mostly found in the S100 

protein family and among members of the “fused gene” family, such as 

trichohyalin, horenin and repetin (94-99). The small, acidic S100 protein, 

calbindinD9K, carries two distinct EF-hands: a canonical EF-hand at the C 

terminus and a pseudo EF-hand motif at the N-terminus. The canonical EF-

hands are highly-conserved among all the S100 proteins (Fig. 3.3). However, 

there is significant sequence variation in the Ca2+-binding loop of the pseudo EF-

hand (Fig. 3.1B). The pseudo EF-hand within the S100A10 even loses the 

capacity to bind Ca2+ ion due to the lack of chelating ligands (100). Therefore, 

one important concept that must be kept in mind is that the prediction of pseudo 

EF-hand does not presume the capability of binding Ca2+ ion.  

Using the multiple sequence alignment, we analyzed the Ca2+-binding 
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Figure 3.2. Statistical analysis on prediction performance of patterns. (A) 
Prediction results using patterns eloopf (gray bar) and PS00018 (open bar). 
The patterns were applied to search for canonical EF-hand proteins in a test 
database containing 170 proteins.  (B) Prediction results using the pseudo EF-
hand pattern PC (gray bar) and PS00303 (open bar). Both patterns were used 
to search for potential pseudo EF-hand proteins against major protein 
sequence databases SwissProt, NCBI RefSeq, and iProClass. 
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ligands of all pseudo EF-hands with known structures in Protein Data Bank 

(Table 3.2). Based on the statistical results, a profile HMM and the resultant HMM 

logo were built (Fig. 3.1B). Of the Ca2+-binding ligands, Ser and Ala are preferred 

at loop position 1 (X); Glu dominates at both positions 4 (Y) and 14 (-Z); Gly and 

Leu are preferred at the positions 5 and 10, respectively; Asp is most frequently 

found at position 6 (Z); and Thr and Lys reside equally at position 9 (-Y). By 

integrating highly conserved residues located at the flanking helices (positions –1, 

-4, -5, 15, and 16), we generated a pattern (Table 3.1, pattern pseudo) for the 

prediction of pseudo EF-hand Ca2+-binding site. The pattern PC was further 

developed by incorporating the conserved signature in the downstream canonical 

EF-hand (positions -1, 1, 3, 5, 10, and 12).  

To assess the performance of the developed patterns, we applied the 

patterns against major protein sequence databases such as SwissProt, 

iProClass (including PIR, trEMBL) and NCBI reference sequences (RefSeq). Fig. 

3.2B shows the comparison of the pattern PC and the pattern PS00303. A 

notable limitation of the pattern PS00303 is its failure to predict pseudo EF-hands 

within S100A13, S100A14, S100A16, S100A17 and S100P from some species 

due to stringent restraints at the C-terminal EF-hand motif. Moreover, since the 

prediction is based on the C-terminal canonical EF-hand, the prediction of 

PS00303 includes more false positive hits from the Ca2+-binding proteins 

possessing only canonical EF-hands, such as calneuron 1 and Ca2+-binding 

protein 7. In comparison with PS00303, 12.5% more true positive hits, in 

average, resulted with the pattern PC in the three databases. Meanwhile, the 
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Table 3.2. List of pseudo EF-hand proteins. 
 

Protein Synonyms PDB codes Accession Number (species*) 

S100A1 S-100 protein alpha chain 1k2h 
P02639 (b), P23297 (h), P56565 (m), 
P35467 (r), Q7LZT1 (weatherloach) 

S100A2 S-100L, CAN19  P10462 (b), P29034 (h) 

S100A3 S-100E  1kso P62818 (m), P62819 (r), P33764 (h) 

S100A4 
Metastasin, Calvasculin, Mts1 protein, 18A2, PEL98, 
Placental calcium-binding protein homolog, P9K,  
Nerve growth factor induced protein 42A 

1m31 
P35466 (b), P26447 (h), Q9TV56 (d), 
P07091 (m), P05942 (r) 

S100A5 S-100D  P63084 (m), P63083 (r), P33763(h) 

S100A6 Calcyclin, Prolactin receptor associated protein, 5B10  
1a03, 1cnp, 1jwd, 
1k8u, 1k96, 1k9k, 
1k9p, 2ncp 

P14069 (m), P05964 (r), P06703 (h), 
P30801 (rb), Q98953 (c), O77691 
(hs) 

S100A7 Psoriasin, Dermal allergen BDA11, Allergen Bos d 3 1psr, 2psr, 3psr P31151 (h), Q28050 (b) 

S100A8 

Calgranulin A, Neutrophil cytosolic 7 kDa protein P7, 
Migrion inhibitory factor-related protein 8,  

Chemotactic cytokine CP-10, MRP-8 

1mr8 
P28782 (b), P05109 (h), P27005 (m), 
P50115 (r) 

S100A9 

Calgranulin B, Neutrophil cytosolic 23 kDa protein, 
Migrion inhibitory factor-related protein 14 (MRP-14), 
P23, BEE22, P14, Leukocyte L1 complex heavy 
chain, Calprotectin L1H subunit  

1irj 
P28783 (b), P06702 (h), P50117 (rb), 
P31725 (m), P50116 (r) 

S100A10 
Calpactin I light chain, p10 protein, p11, Cellular 
ligand of annexin II, Nerve growth factor induced 
protein 42C  

1a4p, 1bt6 

P60902 (b), P60903 (h), P04163 (p), 
P620504 (rhesus macaque),  
P08207 (m), P05943 (r), P27003 (c), 
P27004 (African clawed frog) 

S100A11 
Endothelial monocyte-activating polypeptide, 
Calgizzarin, S100C, MLN 70, EMAP   

1nsh, 1qls 
P31949 (h), P24480 (rb), P50543 
(m), Q6B345 (r), P31950 (p), P24479 
(c) 

S100A11P 
Putative S100 calcium-binding protein A11 
pseudogene 

 O60417 (h) 

S100A12 
Calgranulin C, CAGC, Calcium-binding protein in 
amniotic fluid 1, CAAF1, RAGE binding protein, 
Neutrophil S100 protein, p6   

1e8a, 1gqm, 1odb 
P79105 (b), P80310 (p),  

P80511 (h), O77791 (rb) 

S100A13 8 kDa amlexanox-binding protein  P79342 (b), Q99584 (h), P97352 (m) 

S100A14 S114   Q9HCY8 (h), Q9D2Q8 (m) 

S100A15   Q86SG5 (h) 

S100A16 S100F   Q96FQ6 (h) 

S100A17 
clone:5430400H23 product:hypothetical EF-hand/S-
100/ICaBP type calcium binding protein  

 Q9D3P1 (m) 

S100B S-100 protein beta chain 

1b4c, 1cfp, 1mho, 
1dt7, 1mwn, 
1psb, 1qlk, 1sym, 
1uwo  

P50114 (m), P04631 (r), P04271 (h), 
P02638 (b) 

S100G 
Vitamin D-dependent calcium-binding protein 
intestinal, Calbindin D9K, Cholecalcin   

1b1g, 1boc, 1bod, 
1cb1, 1cdn, 1clb,  
1d1o,  1ht9, 1ig5, 
1igv, 1kcy, 1kqv, 
1ksm,1n65, 2bca, 
2bcb, 3icb, 4icb 

P29377 (h), P02632 (p), P02633 (b), 
P51964 (c), P02634 (r), P97816 (m) 

S100H 
Putative S100 calcium-binding protein 
H_NH0456N16.1 

 Q9UDP3 (h) 

S100P  1ozo, 1j55 P25815 (h) 

S100Z   Q8WXG8 (h) 

Hornerin   Q86YZ3 (h), Q8VHD8 (m) 

Ictacalcin   Q91061 (channel catfish) 

MRP-126   P28318 (c) 

Reptin   P97347 (m) 

Trichohyalin     Q07283 (h), P37709 (rb), P22793 (s) 

 
* The abbreviation for species: b, bovine; c, chicken; d, dog; h, human; hs, horse; m, mouse; r, rat; rb, rabbit; s, sheep 
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Figure 3.3. Multiple sequence alignment of the pseudo EF hand proteins. 25 
entries representing 84 proteins with pseudo EF-hand motif from SwissProt 
were used for alignment. The N-terminal pseudo EF-hand and C-terminal 
canonical EF-hand motifs with typical helix-loop-helix structure are shown at 
the top (box: helical structure; line: loop region). The oxygen atoms chelating 
the Ca2+ ion adopts a pentagonal bipyramid geometry. (n: the hydrophobic 
residues within the flanking helices. #: the potential Ca2+ binding ligands 
involving the mainchain carbonyl groups. bi: the bidentate chelating ligands.) 
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false positive hits were reduced by 10.5% on average. The average sensitivity 

and PPV of the pattern PC were 96 and 99%, respectively, which were 10 and 

13% higher than those of the pattern PS00303 (Fig. 3.2B). The pattern PC was 

able to identify the pseudo EF-hand motifs in at least 3 more subgroups of S100 

proteins including S100A13, S100A14, and S100A16 than the pattern PS00303 

was. The first half of the pattern PC (or pattern pseudo) could be of great 

advantage in predicting S100-like proteins with deviations in the downstream 

canonical Ca2+-binding loop or in predicting partially-characterized, incomplete 

hypothetical proteins. For instance, the pseudo EF-hand motifs in the novel Ca2+-

binding protein p26olf (named as the protein from frog olfactory epithelium) 

(101,102) could not be predicted by either PS00303 or PC since the C-terminal 

EF-hand contains an atypical EF-hand motif with a 4-residue insertion. However, 

without constraints on the C-terminus, the pattern pseudo (Table 3.1) can easily 

detect them.  

 

3.4. Properties of EF-hand like motif 

With the overall structural geometry of the Ca2+ coordination remaining 

conserved, “EF-hand-like” motif refers to the one containing the following 

deviations from the canonical EF-hand: (1) the length of the Ca2+-binding loop is 

shorter or longer than 12 residues and/or (2) the secondary structure elements of 

the flanking regions are not two helices. The first deviation can be represented in 

the motif signature by varying the length of the loop region (Patterns 9-10 in 

Table 3.1). However, the structural deviation in the flanking regions can hardly be 



53 

  

 
 
 
 
 
 
 
 

Table 3.3. EF-hand-like Ca2+-binding proteins with known structure. 

 
a. 1. Shorter loop.     2. Longer loop.     3. Entering helix missing.      4. Exiting 

helix missing.          5. Distal located ligands 
b. Ligand residues are underlined 
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predicted merely from the sequences. Therefore, we conducted a retrospective 

search of EF-hand-like proteins in the PDB database (Table 3.3). Four classes of 

EF-hand-like motifs are currently observed. The first class has a shorter loop (as 

seen in Excalibur) that contains a conserved 10-residue DxDxDGxxCE motif. The 

cysteine in the sequence may facilitate the orientation of the loop toward Ca2+ 

binding by forming disulfide bonds(23). The second class has a longer loop as 

seen in Slt35 (PDB code: 1qut), a soluble fragment of lytic transglycosylase B 

from Escherichia coli that has a 15-residue Ca2+-binding loop flanked by two 

helices (103,104). The third class lacks the entering helix as seen in protective 

antigen (PDB code: 1acc) from Bacillus anthracis (27) and dockerin from 

Clostridium thermocellum (PDB code: 1daq) (28). The fourth class lacks the 

exiting helix as seen in alginate-binding protein (PDB code: 1kwh) from 

Sphingomonas sp (26). Some EF-hand-like proteins even infringe the EF-hand 

paradigm by possessing two or more types of deviations (Table 3.3).  

 

3.5. EF-hand proteins in the bacterial genomes 

To understand the roles of Ca2+ in bacteria, we predicted putative EF-hand 

proteins in the bacteria genomes from the Non-Redundant REFerence protein 

database (NREF) (105). No pseudo-EF-hand motif was predicted using the 

pattern PC. A total of 467 EF-hand motifs in 397 entries of proteins were 

predicted using the pattern eloopf (Table 3.1) for the canonical EF-hand motifs 

(Table 3.4). There are 39 proteins that contain multiple EF-hand motifs ranging 

from 2 to 6. The other 358 proteins were predicted to contain mononuclear EF-
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hands. The roles of Ca2+ in most of these proteins are yet to be characterized. 

The 39 proteins with multiple EF-hand motifs, among which 16 proteins 

have been summarized before(4), are implicated in a variety of cellular activities, 

including Ca2+ homeostasis (106-108), chemotaxis (24,109,110), scaffold protein 

binding (111), resistance to acid stress (112,113) and so on. According to the 

sequence homology and assuming these proteins evolved from a common 

ancestor, they could be further classified into three major phylogenetic groups 

(Fig. 3.4). The first group includes calerythrin (Saccharopolyspora erythrea, 

P06495), calsymin (Rhizobium etli, AAG21376), putative glycosyl hydrolase 

(Bacteroides fragilis, NF02360737), α-xylosidase (Bacteroides thetaiotaomicron, 

NF01244792), and putative Ca2+ binding proteins from the Gram-positive 

bacterial genus streptomyces (Streptomyces ambofaciens, BAB19055; 

Streptomyces coelicolor, CAB76018, NP_628579, CAC16980). Calerythrin is the 

first characterized prokaryotic CaM-like protein possessing three canonical and 

an atypical EF-hand motif (114,115). Two of the three high-affinity sites 

cooperatively chelate the metal ions and the apo protein adopts a molten globule 

state conformation. It may function as Ca2+ buffer or transporter (116). Being 

highly homologous to calerythrin, several members in this group (BAB19055, 

CAB76018, NP_628579, CAC16980, and NF02549883) are expected to adopt 

similar Ca2+-dependent structural and biological behavior (117). Another protein 

calsymin was implicated in symbiotic nitrogen fixation (118). It contains three 

repeated homologous domains, each of which possesses two EF-hand motifs. 

Extracellular polysaccharide-degrading enzymes, putative glycosyl hydrolase and 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=115902
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=10644701
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02360737
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01244792
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=11691918
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=7105993
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=21222800
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=11323233
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=11691918
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=7105993
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=21222800
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=11323233
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02549883
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α-xylosidase are involved in the metabolism of the bacterial wall. The Ca2+ 

binding in the mesophilic xylanase and other members (NF02715683 and 

NF02518859) may protect the proteins from enzyme attack and thermal 

denaturation (119). 

The protein functions and the role of Ca2+ in the second group are not well 

understood except for the acid shock protein (AAB69346) from the Gram-

negative bacterial genus Brucella. This protein is actively synthesized in 

response to the low pH to facilitate adaptation to acidic environments (112). In 

addition, the putative EF-hand protein NF01724660 may link to the Ca2+-induced 

aggregation of the sulfate-reducing bacteria Desulfovibrio (120). 

The third group encompasses dockerin (Clostridium acetobutylicum, 

NF00465242, NF00464378), bacterial transaldolase (Synechocystis sp.  P72797), 

adhesin (Vibrio vulnificus, NF01147763), and others with unknown functions. 

Dockerin is involved in the degradation of the plant cell wall by incorporating 

glycosyl hydrolase into the extracellular cellulose complex “cellulosome” via 

interaction with the cohesion domain (111). Ca2+ induces the folding of dockerin 

(121). Bacterial transaldolase, like its eukaryotic homologues, is involved in the 

metabolism of glucose (122). No explanation has thus far been offered for the 

unique presence of EF-hand motifs in this bacterial enzyme. Autotransporter 

adhesin, a prototype of the adhesin family, mediates the specific attachment of 

bacteria to target cells (123). The binding of Ca2+ would probably provoke the 

efficient interaction and facilitate the attachment.  

  

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01724660
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00465242
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00464378
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1148
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=2501349
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01147763
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Figure 3.4. Phylogenetic analysis of prokaryotic proteins containing multiple 
EF-hand motifs ranging from 6 to 2. The 39 proteins can be classified into three 
groups (see Section 3.5 for details). 

Protein/domain name 

(Accession ID)
Organism

Bll5679 protein (NF01145262)        2                          Bradyrhizobium japonicum

Ca2+-binding EF-hand precursor (NF01530872)   4                          Rhodopseudomonas palustris

No.                                  

of EF-hands

Group 1

Group 2

Group 3

CaBP (NF02715386)                                              3                          Pseudomonas savastanoi

Ca2+-binding EF-hand precursor (NF02518859)   4                            Pseudomonas syringae

CaBP (NF00981304)                                              4                            Xanthomonas axonopodis
Calsymin (AAG21376)                                           6                            Rhizobium etli

SCO5464 (CAB76018)                                          2                         Streptomyces coelicolor
Ca2+-binding EF-hand (NF02549883)                   2                         Thermobifida fusca

EF hand domain protein (NF02637914)                 2                          Colwellia psychrerythraea

Putative CaBP (CAC16980) 2 Streptomyces coelicolor

Putative CaBP (NP_628579)                4                         Streptomyces coelicolor

Putative glycosyl hydrolase (NF02360737)                2                         Bacteroides fragilis                                

Alpha-xylosidase (NF01244792)                 2                          Bacteroides thetaiotaomicron

Calerythrin (P06495)                 4                          Saccharopolyspora erythrea

CaBP A (BAB19055) 3 Streptomyces ambofaciens

Calcium-binding EF-hand (NF02492865)                 2                          Cupriavidus necator

Putative calcium binding signal (NF00850536) 2 Ralstonia solanacearum      

EF hand domain protein (NP_421029) 2 Caulobacterr crescentus      

Hypothetical protein CC2193 (NP_420996) 3 Caulobacterr crescentus

Putative CaBP (AAK24164) 4 Streptomyces coelicolor

EF hand domain protein (NP_421548) 3 Caulobacter crescentus

mll5457 (BAB51906) 3                       Mesorhizobium loti

Acid shock protein (AAB69346) 3 Brucella melitensis                

EF hand domain protein (NF01724660) 2 Desulfovibrio vulgaris         

Bll6206 (NF01146006) 2                         Bradyhizobium japonicum                                

Hypothetical protein CC1180 (NP_419996) 4                         Caulobacter crescentus             

Hypothetical protein (NF01644848) 3 Rhodopirellula balti     

EF hand domain protein (NF01553463)                      2                          Geobacter sulfurreducens

mlr9645 (BAB54835)   2 Mesorhizobium loti                  

Hypothetical protein (NF01900066) 3 Desulfotalea psychrophila         

Dockerin and cellulose-binding (NF00465242) 2 Clostridium acetobutylicum          

Calcium-binding EF-hand precursor (NF02500531) 4 Pseudomonas syringae                  

EF-hand domain protein (NF01444486) 3 Pseudomonas syringae                 

Dockerin domain (NF00464378) 2 Clostridium acetobutylicum        

Slr0366 protein (NF00423899) 4 Synechocystis sp.

Autotransporter adhesin (NF01147763) 5 Vibrio vulnificus                        

Hypothetical protein  (NF02421939) 2 Corynebacterium jeikeium

Transaldolase (P72979) 2 Synechocystis sp.

CaBP (NF02412314) 3 Pseudomonas fluorescens                        
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3.6. Possible roles of single EF-hands 

The 358 predicted proteins containing single EF-hand motifs are in 162 

complete or incomplete bacterial genomes in the PIR-NREF database 

(http://pir.georgetown.edu/cgi-bin/nfspecies.pl). They are distributed across in the 

majority of bacterial species (Table 3.4). These proteins are implicated in a wide 

range of cellular processes such as drug resistance (multiple drug resistance 

protein, multidrug efflux transporter), ion and nutrilites transporting (K+-

transporting ATPase B, Na+-solute symporter, hemin ABC transporter, cation 

efflux system protein), nucleic acid modification and metabolism (tRNA 

synthetase, ribonuclease G, exodeoxyribonuclease V gamma chain, RNA 

polymerase beta subunit, ATP-dependent DNA helicase, DNA polymerase tau 

subunit, DNA gyrase subunit A, DNA methyltransferase), transcriptional 

regulation (transcriptional regulator), stress response (DnaK, acid shock proteins, 

heat shock protein HspG), chemotaxis (CheV, histidine kinase HAMP region), 

energy and nutrilites metabolism (GTP-binding protein, AMP nucleosidase, 

aminotransferase, acetyltransferase), redox reaction (flavodoxin oxidoreductase , 

thio-disulfide isomerase, iron-sulfur cluster binding protein, thioredoxin 

reductase), and cell wall modification and degradation (chitinase C, glycosyl 

hydrolase, exopolysaccharide synthesis protein, probably secreted sialidase, 

putative surface anchored protein).   

Among all of these matches, ATP-binding cassette (ABC) transporter and 

Shr are of particular interest considering their important roles in bacterial 

activities and the possible implication of Ca2+ in the biological context. ABC 

http://pir.georgetown.edu/cgi-bin/nfspecies.pl
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transporter couples the hydrolysis of ATP to the transport of various molecules 

including sugars, ions, antibiotics, and peptides across the cell membrane (124-

126). Shr in streptococcus encodes a large hydrophilic protein (putative Fe3+-

siderophore transport) that has no significant homologues in bacteria but shares 

partial homology with eukaryotic receptors such as Toll and G-protein dependent 

receptors. A leucine-rich repeat domain, an EF-hand domain, and two NEAT 

domains are identified in Shr. Shr directly binds heme-proteins such as 

hemoglobin, myoglobin, heme-BSA and the hemoglobin-heptoglobin complex 

(127,128). The presence of a nearly perfect EF-hand domain in Shr raises the 

possibility that Ca2+ may modulate its activity and represent a new type of Ca2+ 

regulated receptor involved in heme-protein binding and iron acquisition.  

 The single-handed EF-hand motifs were also observed in Arabidopsis 

(129). These observations raise the possibility that the ubiquitous EF-hand motif 

may function as an independent structural unit for Ca2+ binding. To date, the 

majority of known EF-hand motifs are coupled through the hydrophobic 

interaction of the flanking helices (21,22,130,131). Our previous work has shown 

that the isolated EF-loop III from CaM without the flanking helices in a host 

protein is able to bind Ca2+ and remains monomer in solution (70), whereas 

peptide fragments encompassing the helix-loop-helix EF-hand motifs were 

shown to dimerize in solution (132-135). We hope that our prediction could spur 

the exploration of the relationship between their function and Ca2+ binding 

capability.  
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Table 3.4. List of potential prokaryotic EF-hand-containing proteins. 

Accession 
ID 

Protein Name Sequence 
Range 

EF-hand 
number 

Organism 

NF01799660 Bifunctional protein 165-193 1 Acinetobacter sp. 
ADP3 

NF01800980 Hypothetical protein 134-162 1 Acinetobacter sp. 
ADP4 

NF00596974 AGR_C_660p 166-194 1 Agrobacterium 
tumefaciens 

NF00854152 Hypothetical protein Atu0377 147-175 1 Agrobacterium 
tumefaciens 

NF00853975 Potassium-transporting ATPase B 
chain 

555-583 1 Agrobacterium 
tumefaciens 

NF00854754 Two component response regulator 273-301 1 Agrobacterium 
tumefaciens 

NF00601861 AGR_C_1956p 288-316 1 Agrobacterium 
tumefaciens 

NF02630316 Haloacid dehalogenase-like 
hydrolase:E1-E2 ATPase-associated 
region 

556-584 1 Anaeromyxobacter 
dehalogenans 

NF02630616 DNA gyrase, subunit A precursor 501-529 1 Anaeromyxobacter 
dehalogenans 

NF02632976 Twin-arginine translocation pathway 
signal precursor 

227-255 1 Anaeromyxobacter 
dehalogenans 

NF02633157 TPR repeat precursor 343-371 1 Anaeromyxobacter 
dehalogenans 

NF02633311 Aminotransferase, putative 153-181 1 Anaeromyxobacter 
dehalogenans 

NF02145020 Prolyl-tRNA synthetase 220-248 1 Anaplasma marginale 

NF00005240 Na
+
:solute symporter 266-294 1 Aquifex aeolicus 

NF02418698 Initiation factor 2:Small GTP-binding 
protein domain 

712-740 1 Arthrobacter sp. FB24 

NF02419170 Regulatory protein, LysR:LysR, 
substrate-binding 

188-216 1 Arthrobacter sp. FB24 

NF02420554 Amino acid-binding ACT:Prephenate 
dehydrogenase 

325-353 1 Arthrobacter sp. FB24 

NF02183774 Hypothetical protein 129-157 1 Azoarcus sp. EbN2 

NF02110613 AcrA/AcrE family putative membrane-
fusion protein 

57-85 1 Azoarcus sp. EbN3 

NF02111329 Isoleucyl-tRNA synthetase 608-636 1 Azoarcus sp. EbN4 

NF02599343 Hypothetical protein 333-361 1 Azotobacter vinelandii 

NF02601050 Glycine cleavage system P-protein 678-706 1 Azotobacter vinelandii 

NF01002531 Polysaccharide deacetylase-like 
protein 

229-257 1 Bacillus anthracis 

NF01003358 Multidrug resistance protein, putative 174-202 1 Bacillus anthracis 

NF01293886 Acetyltransferase, GNAT family 61-89 1 Bacillus anthracis 

NF00452066 hypothetical protein pxo2_15 123-151 1 Bacillus anthracis 

NF01293170 Oxidoreductase, short-chain 
dehydrogenase/reductase family 

195-223 1 Bacillus anthracis 

NF01968462 Probable multidrug efflux transporter 174-202 1 Bacillus cereus 

NF01692216 Isoleucyl-tRNA synthetase 583-611 1 Bacillus cereus 

NF02763311 Polysaccharide deacetylase family 
protein, putative 

229-257 1 Bacillus cereus 

NF01693845 Acetyltransferase, GNAT family 61-89 1 Bacillus cereus 

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01799660
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=62977
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=62977
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01800980
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=62977
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=62977
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00596974
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=358
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=358
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00854152
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=358
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=358
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00853975
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00854754
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00601861
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02630316
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=161493
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=161493
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02630616
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=161493
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=161493
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02632976
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=161493
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=161493
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02633157
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=161493
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=161493
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02633311
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=161493
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=161493
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02145020
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=770
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00005240
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=63363
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02418698
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=290399
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02419170
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=290399
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02420554
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=290399
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02183774
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=76114
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02110613
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=76114
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02111329
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=76114
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02599343
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=354
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02601050
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=354
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01002531
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1392
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01003358
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1392
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01293886
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1392
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00452066
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1392
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01293170
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1392
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01968462
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1396
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01692216
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1396
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02763311
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1396
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01693845
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1396
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Accession 
ID 

Protein Name Sequence 
Range 

EF-hand 
number 

Organism 

NF01269023 3-oxoacyl-[acyl-carrier protein] 
reductase 

195-223 1 Bacillus cereus 

NF02058262 3-oxoacyl-[acyl-carrier-protein] 
reductase 

191-219 1 Bacillus clausii 

NF00639248 Ribonuclease G (Cytosolic axial 
filament protein) 

291-319 1 Bacillus halodurans 

NF01942957 Hypothetical protein (D-isomer specific 
2-hydroxyacid dehydrogenase, NAD 
binding domain) 

227-255 1 Bacillus licheniformis 

NF01943135 Putative L-2,4-diaminobutyrate 
decarboxylase 

216-244 1 Bacillus licheniformis 

NF00459033 Hypothetical oxidoreductase yoxD 191-219 1 Bacillus subtilis 

NF01847653 Probable multidrug efflux transporter 174-202  Bacillus thuringiensis 

NF01850556 Acetyltransferase, GNAT family 61-89 1 Bacillus thuringiensis 

NF02232249 Hypothetical protein 740-768 1 Bacillus thuringiensis 

NF01852124 Short chain dehydrogenase 195-223 1 Bacillus thuringiensis 

NF01982311 Hypothetical protein 9-37 1 Bacteroides fragilis 

NF02360737 Putative glycosyl hydrolase 1087-1115 
1123-1151 

2 Bacteroides fragilis 

NF01983199 K
+
-transporting ATPase B chain 545-573 1 Bacteroides fragilis 

NF01984037 Putative outer membrane protein 889-917 1 Bacteroides fragilis 

NF02360881 Putative AraC-family transcriptional 
regulator 

67-95 1 Bacteroides fragilis 

NF01247854 Putative outer membrane protein 856-884 1 Bacteroides 
thetaiotaomicron 

NF01244792 Alpha-xylosidase 1093-1121 
1129-1157 

2 Bacteroides 
thetaiotaomicron 

NF01247957 Hypothetical protein 57-85 1 Bacteroides 
thetaiotaomicron 

NF01243332 K
+
-transporting ATPase B chain 540-568 1 Bacteroides 

thetaiotaomicron 
NF01632112 Ribonuclease G 309-337 1 Bdellovibrio 

bacteriovorus 
NF01633060 Probable GTP-binding protein 120-148 1 Bdellovibrio 

bacteriovorus 
NF01125245 BglX 745-773 1 Bifidobacterium 

longum 
NF01125387 5'-nucleotidase family protein 412-440 1 Bifidobacterium 

longum 
NF01125928 Solute binding protein of ABC 

transporter for branched-chain amino 
acids 

360-388 1 Bifidobacterium 
longum 

NF01356204 Putative outer membrane protein 133-161 1 Bordetella 
bronchiseptica 

NF01357346 Putative exported protein 53-81 1 Bordetella 
bronchiseptica 

NF01358260 Putative exported protein 193-221 1 Bordetella 
bronchiseptica 

NF01360429 Potassium-transporting ATPase B 
chain 

582-610 1 Bordetella 
bronchiseptica 

NF01857138 Decorin binding protein B 94-122 1 Borrelia garinii 

NF01347842 Potassium-transporting ATPase B 
chain 

582-610 1 Bordetella 
parapertussis 

NF01351614 Potassium-transporting ATPase B 
chain 

582-610 1 Bordetella pertussis 

NF01354467 Putative exported protein 198-226 1 Bordetella pertussis 

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01269023
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1396
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02058262
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=79880
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00639248
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=86665
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01942957
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1402
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01943135
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1402
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00459033
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1423
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01847653
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1428
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01850556
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1428
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02232249
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1428
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01852124
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1428
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01982311
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=817
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02360737
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=817
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01983199
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=817
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01984037
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=817
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02360881
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=817
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01247854
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=818
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=818
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01244792
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=818
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=818
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01247957
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=818
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=818
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01243332
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=818
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=818
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01632112
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=959
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=959
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01633060
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=959
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=959
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01125245
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=216816
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=216816
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01125387
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=216816
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=216816
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01125928
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=216816
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=216816
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01356204
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=518
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=518
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01357346
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01358260
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01360429
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01857138
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29519
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01347842
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=519
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=519
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01351614
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=520
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01354467
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=520
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NF01143994 Bll5001 protein 92-120 1 Bradyrhizobium 
japonicum 

NF01144916 Bll3714 protein 4088-4116 1 Bradyrhizobium 
japonicum 

NF01146006 Bll6206 protein 28-56  
77-105 

2 Bradyrhizobium 
japonicum 

NF01145264 Bsr4957 protein 28-56 1 Bradyrhizobium 
japonicum 

NF01138884 Potassium-transporting ATPase B 
chain 

567-595 1 Bradyrhizobium 
japonicum 

     

NF01145262 Bll5679 protein 105-133 
139-167 

2 Bradyrhizobium 
japonicum 

NF02362000 Hypothetical protein 187-215 1 Brucella melitensis 

NF02362472 Chaperone protein DnaK 173-201 1 Brucella melitensis 

NF00882038 Cobalt-zinc-cadmium resistance 
protein CZCD 

213-241 1 Brucella melitensis 

NF00882425 Transporter 172-200 1 Brucella melitensis 

NF00729490 Acid-shock protein, putative 63-91 
120-148 

2 Brucella melitensis 

NF01092664 Hypothetical protein 191-219 1 Brucella melitensis 

NF01013862 Exodeoxyribonuclease V beta chain 542-570 1 Buchnera aphidicola 

NF00001599 Cell division protein ftsY homolog 20-48 1 Buchnera aphidicola 

NF02558178 Haloacid dehalogenase-like 
hydrolase:E1-E2 ATPase-associated 
region 

555-583 1 Burkholderia 
cenocepacia 

NF02562763 Pyridoxal-dependent decarboxylase 150-178 1 Burkholderia 
cenocepacia 

NF01994075 Hypothetical protein 100-128 1 Burkholderia mallei 

NF01995267 AMP nucleosidase 136-164 1 Burkholderia mallei 

NF01997459 K
+
-transporting ATPase, B subunit 556-584 1 Burkholderia mallei 

NF01974439 Putative exported protein 110-138 1 Burkholderia 
pseudomallei 

NF01975408 Potassium-transporting ATPase b 
chain 

547-575 1 Burkholderia 
pseudomallei 

NF01976188 AMP nucleosidase 136-164 1 Burkholderia 
pseudomallei 

NF02692726 Iron-sulfur cluster binding protein 285-313 1 Campylobacter coli 

NF02628440 Cj81-040 (Fragment) 130-158 1 Campylobacter jejuni 

NF02271643 Dihydroorotase, putative 157-185 1 Campylobacter jejuni 

NF00555721 Potassium-transporting ATPase B 
chain 

539-567 1 Campylobacter jejuni 

NF00556942 Hemin ABC transporter 101-129 1 Campylobacter jejuni 

NF02581023 Uncharacterized ACR, COG1427 169-197 1 Campylobacter lari 

NF02581415 Iron-sulfur cluster binding protein 282-310 1 Campylobacter lari 

NF02513884 Hypothetical protein 155-183 1 Campylobacter 
upsaliensis 

NF02514058 Hypothetical protein 48-76 1 Campylobacter 
upsaliensis 

NP_419996 hypothetical protein CC1180  96-124 
120-148 
197-225 
221-249 

4 Caulobacter 
crescentus  

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01143994
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01144916
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01146006
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01145264
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01138884
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01145262
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02362000
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29459
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02362472
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29459
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00882038
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29459
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00882425
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29459
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00729490
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01092664
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01013862
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=9
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00001599
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=9
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02558178
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=95486
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=95486
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02562763
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=95486
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=95486
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01994075
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=13373
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01995267
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=13373
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01997459
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=13373
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01974439
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28450
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28450
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01975408
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28450
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28450
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01976188
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28450
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28450
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02692726
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=195
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02628440
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=197
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02271643
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=197
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00555721
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=197
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00556942
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=197
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02581023
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=201
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02581415
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=201
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02513884
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28080
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28080
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02514058
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28080
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28080
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=16125432
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NP_420996 hypothetical protein CC2193 36-64 
77-105 
191-219 

3 Caulobacter 
crescentus  

NP_421029 EF hand domain protein 33-61 
59-87 

2 Caulobacter 
crescentus  

NP_421548 EF hand domain protein 294-322 
319-337 

2 Caulobacter 
crescentus  

NF00922900 Potassium-transporting ATPase B 
chain 

547-575 1 Caulobacter vibrioides 

NF00923077 Hypothetical protein CC1180 96-124 1 Caulobacter vibrioides 

NF00921487 Hypothetical protein CC2193 319-347 1 Caulobacter vibrioides 

NF00921074 TonB-dependent receptor 282-310 1 Caulobacter vibrioides 

NF00920950 EF hand domain protein 33-61 1 Caulobacter vibrioides 

NF00919601 EF hand domain protein 36-64 1 Caulobacter vibrioides 

NF00920207 dnaK-type molecular chaperone dnaK 173-201 1 Caulobacter vibrioides 

NF00170276 Hypothetical protein CPn0045 460-488 1 Chlamydophila 
pneumoniae 

NF01414521 Potassium-transporting ATPase B 
chain 

566-594 1 Chromobacterium 
violaceum 

NF01415832 Flagellar hook-associated protein 130-158 1 Chromobacterium 
violaceum 

NF01417084 Acid phosphatase 38-66 1 Chromobacterium 
violaceum 

NF00462703 DnaK protein 184-212 1 Clostridium 
acetobutylicum 

NF00464732 General secretion pathway protein E, 
ATPase 

4-32 1 Clostridium 
acetobutylicum 

NF00463611 Membrane flavodoxin oxidoreductase 367-395 1 Clostridium 
acetobutylicum 

NF00464531 dockerin domain 394-422 1 Clostridium 
acetobutylicum 

NF00462598 Possible non-processive 
endoglucanase family 5, secreted; 
CelA homolog secreted; dockerin 
domain 

418-446 
450-478 

2 Clostridium 
acetobutylicum 

NF00464704 Probably secreted sialidase; several 
ASP-boxes and dockerin domain 

768-796 
800-828 

2 Clostridium 
acetobutylicum 

NF00461910 Cellulase CelE ortholog; dockerin 
domain 

805-833 
837-865 

2 Clostridium 
acetobutylicum 

NF00464704 dockerin and cellulose-binding domain 647-675 
679-707 

2 Clostridium 
acetobutylicum 

NF00465242 dockerin and cellulose-binding domain 628-656 
660-688 

2 Clostridium 
acetobutylicum 

NF00464378 dockerin domain 662-690 
696-724 

2 Clostridium 
acetobutylicum 

NF00872981 Probable thioredoxin reductase 367-395 1 Clostridium perfringens 

NF01191711 Encapsulation protein capA 25-53 1 Clostridium tetani 

NF01192507 Putative cardiolipin synthetase 2 436-464 1 Clostridium tetani 

NF01190826 RNA polymerase sigma factor for 
flagellar operon fliA 

156-184 1 Clostridium tetani 

NF01191088 Putative S-layer protein 438-466 1 Clostridium tetani 

NF02636675 transcriptional regulator, LysR family 143-171 1 Colwellia 
psychrerythraea 

NF02635517 hypothetical protein CPS_0266 258-286 1 Colwellia 
psychrerythraea 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=16126432
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=16126465
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=16126984
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00922900
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=155892
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00923077
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=155892
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00921487
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=155892
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00921074
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=155892
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00920950
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=155892
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00919601
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=155892
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00920207
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=155892
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00170276
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=83558
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=83558
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01414521
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=536
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=536
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01415832
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=536
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=536
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01417084
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=536
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=536
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00462703
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00464732
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00463611
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00464531
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00462598
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00464704
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00461910
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00464704
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00465242
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00464378
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00872981
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1502
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01191711
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1513
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01192507
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01190826
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01191088
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02636675
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02635517
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
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NF02635672 DNA polymerase III, gamma/tau 
subunit 

72-100 1 Colwellia 
psychrerythraea 

NF02637464 EF hand domain protein 22-50 1 Colwellia 
psychrerythraea 

NF02637914 EF hand domain protein 6-34 
42-70 

2 Colwellia 
psychrerythraea 

NF02638565 hypothetical protein CPS_4268 89-117 1 Colwellia 
psychrerythraea 

NF02638842 patatin-like phospholipase family 
protein 

435-463 1 Colwellia 
psychrerythraea 

NF01120262 TnpC protein 21-49 1 Corynebacterium 
efficiens 

NF00925376 Conserved hypothetical secreted 
protein 

163-191 1 Corynebacterium 
glutamicum 

NF02423383 Putative surface-anchored protein 537-565 1 Corynebacterium 
jeikeium 

NF02421939 Hypothetical protein 136-164 
304-332 

2 Corynebacterium 
jeikeium 

NF02421622 ATP-dependent DNA helicase 287-315 1 Corynebacterium 
jeikeium 

NF02421112 Thiol-disulfide isomerase/thioredoxin 
precursor 

59-87 1 Corynebacterium 
jeikeium 

NF02492865 Calcium-binding EF-hand 70-98 
136-164 

2 Cupriavidus necator 

NF02493293 ATP-binding region, ATPase-
like:Histidine kinase A, N-terminal 

426-454 1 Cupriavidus necator 

NF02493847 Fungal/archaeal/bacterial haem 
catalase/peroxidase 

518-546 1 Cupriavidus necator 

NF02495396 Outer membrane autotransporter 
barrel 

496-524 1 Cupriavidus necator 

NF02497227 Histidine kinase, HAMP 
region:Bacterial chemotaxis sensory 
transducer 

349-377 1 Cupriavidus necator 

NF02497778 ATPase, E1-E2 type:Potassium-
translocating P-type ATPase, B subunit 

600-628 1 Cupriavidus necator 

NF02274727 hypothetical protein DET1403 195-223 1 Dehalococcoides 
ethenogenes 

NF02696634 Calcium-binding EF-hand 46-74 1 Dechloromonas 
aromatica 

NF02697139 Glycine cleavage system P-protein 613-641 1 Dechloromonas 
aromatica 

NF02274727 hypothetical protein DET1403 195-223 1 Dehalococcoides 
ethenogenes 

NF02650500 Similar to High-affinity K
+
 transport 

system ATPase chain B precursor 
26-54 1 Deinococcus 

geothermalis 
NF02648532 Hypothetical protein precursor 120-148 1 Deinococcus 

geothermalis 

NF00437343 Ribonuclease II family protein 88-116 1 Deinococcus 
radiodurans 

NF00435709 Hypothetical protein DR0685 179-207 1 Deinococcus 
radiodurans 

NF00438084 Hypothetical protein DR1404 14-42 1 Deinococcus 
radiodurans 

NF00435967 Hypothetical protein DR2551 191-219 1 Deinococcus 
radiodurans 

NF01898379 Hypothetical protein 161-189 1 Desulfotalea 
psychrophila 

     

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02635672
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02637464
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02637914
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02638565
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02638842
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28229
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01120262
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=152794
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=152794
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00925376
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1718
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1718
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02423383
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02421939
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02421622
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02421112
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02492865
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=106590
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02493293
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=106590
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02493847
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=106590
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02495396
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=106590
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02497227
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=106590
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02497778
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=106590
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02274727
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=61435
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=61435
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02696634
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=259537
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=259537
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02697139
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=259537
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=259537
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02274727
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=61435
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=61435
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02650500
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=68909
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=68909
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02648532
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=68909
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=68909
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00437343
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1299
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1299
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00435709
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1299
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1299
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00438084
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1299
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1299
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00435967
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1299
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1299
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01898379
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=84980
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=84980


65 

  

Accession 
ID 

Protein Name Sequence 
Range 

EF-hand 
number 

Organism 

     

NF01900066 Hypothetical protein 277-305 
384-412 
491-519 

3 Desulfotalea 
psychrophila 

NF01899559 Probable high affinity sulfate 
transporter (SulP) 

560-588 1 Desulfotalea 
psychrophila 

NF01722462 K
+
-transporting ATPase, B subunit 539-567 1 Desulfovibrio vulgaris 

NF01723330 EF hand domain protein 19-47 1 Desulfovibrio vulgaris 

NF01724660 EF hand domain protein 51-79 
152-180 

2 Desulfovibrio vulgaris 

NF01239980 Glycosyl hydrolase, family 
31/fibronectin type III domain protein 

1162-1190 1 Enterococcus faecalis 

NF02746267 DnaK molecular chaperone 173-201 1 Erythrobacter litoralis 

NF02746140 Hypothetical protein 97-125 1 Erythrobacter litoralis 

NF02746586 Hypothetical protein 93-121 1 Erythrobacter litoralis 

NF00704786 Hypothetical protein ECs5257 4-32 1 Escherichia coli 

NF00695695 N-acetylmuramoyl-L-alanine amidase 
amiB precursor 

379-407 1 Escherichia coli 

NF01134307 Rhamnulokinase 324-352 1 Escherichia coli 

NF01744738 Putative glycosyltransferase 174-202 1 Escherichia coli 

NF00692267 Resolvase family recombinase 6-34 1 Escherichia coli 

NF01491630 Zn-dependent hydrolase 462-490 1 Fusobacterium 
nucleatum 

NF01492715 Protease 388-416 1 Fusobacterium 
nucleatum 

NF02148420 Hypothetical conserved protein 73-101 1 Geobacillus 
kaustophilus 

NF01553463 EF hand domain protein 22-50 
59-87 

2 Geobacter 
sulfurreducens 

NF01551775 EF hand domain/PKD domain protein 1723-1751 1 Geobacter 
sulfurreducens 

NF01553119 Salmonella virulence plasmid 65kDa B 
protein 

1363-1391 1 Geobacter 
sulfurreducens 

NF01553013 Potassium-transporting ATPase 552-580 1 Geobacter 
sulfurreducens 

NF01419166 Gll3319 protein 106-134 1 Gloeobacter violaceus 

NF01422150 Glr3888 protein 757-785 1 Gloeobacter violaceus 

NF01420350 Transaldolase 357-385 1 Gloeobacter violaceus 

NF02258009 Cation efflux system protein 211-239 1 Gluconobacter 
oxydans 

NF01345996 Cell division protein FtsZ 259-287 1 Haemophilus ducreyi 

NF01345965 Hypothetical protein 60-88 1 Haemophilus ducreyi 

NF01744248 Adhesin 286-314 1 Haemophilus 
influenzae 

NF00736924 Hypothetical protein HI1594 179-207 1 Haemophilus 
influenzae 

NF02647744 Exodeoxyribonuclease V gamma chain 469-497 1 Haemophilus 
influenzae 

NF02647997 DNA translocase FtsK 290-318 1 Haemophilus 
influenzae 

NF01331967 Bacterial cell division topological 
specificity factor MinE 

51-79 1 Helicobacter hepaticus 

NF01331990 Aconitate hydratase 404-432 1 Helicobacter hepaticus 

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01900066
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=84980
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=84980
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01899559
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=84980
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=84980
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01722462
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=881
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01723330
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01724660
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01239980
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1351
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02746267
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=39960
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02746140
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=39960
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02746586
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=39960
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00704786
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00695695
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01134307
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01744738
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00692267
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01491630
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=851
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=851
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01492715
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=851
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=851
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02148420
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1462
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1462
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01553463
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=35554
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=35554
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01551775
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=35554
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=35554
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01553119
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=35554
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=35554
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01553013
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=35554
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=35554
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01419166
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33072
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01422150
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33072
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01420350
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33072
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02258009
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=442
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=442
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01345996
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=730
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01345965
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=730
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01744248
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=727
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=727
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00736924
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=727
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=727
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02647744
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=727
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=727
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02647997
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=727
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=727
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01331967
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=32025
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01331990
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=32025
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Protein Name Sequence 
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number 
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NF00574925 Ulcer associated adenine specific DNA 
methyltransferase 

290-318 1 Helicobacter pylori 

NF00572083 Hypothetical protein alpB 248-276 1 Helicobacter pylori 

NF02103893 DNA-directed RNA polymerase beta 
subunit 

405-433 1 Idiomarina loihiensis 

NF02104158 RND family efflux system membrane 
fusion protein 

62-90 1 Idiomarina loihiensis 

NF02105366 GntP family permease 335-363 1 Idiomarina loihiensis 

NF02106157 Outer membrane protein 535-563 1 Idiomarina loihiensis 

NF01526365 TnpR recombinase 29-57 1 Klebsiella pneumoniae 

NF02267084 Iron-sulfur cofactor synthesis protein 113-141 1 Lactobacillus 
acidophilus 

NF02266040 Alpha-glucosidase 953-981 1 Lactobacillus 
acidophilus 

NF01324779 Cysteine sulfinate desulfinase/cysteine 
desulfurase 

114-142 1 Lactobacillus johnsonii 

NF01585065 Hypothetical protein 330-358 1 Lactobacillus johnsonii 

NF01210549 Cation transporting P-type ATPase 9339-367 1 Lactobacillus 
plantarum 

NF01211534 Phosphoglucosamine mutase 234-262 1 Lactobacillus 
plantarum 

NF00449250 Maltose ABC transporter substrate 
binding protein 

111-139 1 Lactococcus lactis 

NF02043787 RNA polymerase beta' subunit 1365-1393 1 Legionella 
pneumophila 

NF00628534 O-methyltransferase, SAM-dependent 132-160 1 Legionella 
pneumophila 

NF02048951 DNA-directed RNA polymerase beta' 
subunit 

1379-1407 1 Legionella 
pneumophila 

NF01698417 Hypothetical protein 12-40 1 Leptospira interrogans 

NF01085961 Potassium-transporting ATPase B 
chain 

548-576 1 Leptospira interrogans 

NF00554020 Preprotein translocase SecY 41-69 1 Leptospira interrogans 

NF00844705 Potassium-transporting ATPase B 
chain 2 

543-571 1 Listeria innocua 

NF00813533 Lin0875 protein 48-76 1 Listeria innocua 

NF00813673 Lin2223 protein 232-260 1 Listeria innocua 

NF01748822 GGDEF domain protein 152-180 1 Listeria 
monocytogenes 

NF01746930 Transketolase 338-366 1 Listeria 
monocytogenes 

NF00812586 Lmo1869 protein 228-256 1 Listeria 
monocytogenes 

NF00604651 Mlr9645 protein 129-157 
152-180 

2 Mesorhizobium loti 

NF00606972 Mll5457 protein 69-97 
102-130 

2 Mesorhizobium loti 

NF00610956 Potassium-transporting ATPase B 
chain 

551-579 1 Mesorhizobium loti 

NF02036858 DNA gyrase, A subunit 518-546 1 Methylococcus 
capsulatus 

NF02038758 Hypothetical protein 209-237 1 Methylococcus 
capsulatus 

NF01628109 GyrA 496-524 1 Mycobacterium avium 

NF01628325 Hypothetical protein 76-104 1 Mycobacterium avium 

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00574925
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=210
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00572083
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=210
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02103893
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=135577
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02104158
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=135577
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02105366
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=135577
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02106157
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=135577
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01526365
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=573
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02267084
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1579
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1579
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02266040
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1579
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1579
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01324779
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33959
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01585065
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33959
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01210549
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1590
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1590
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01211534
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1590
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1590
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00449250
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1358
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02043787
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=446
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=446
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00628534
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=446
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=446
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02048951
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=446
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=446
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01698417
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=173
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01085961
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=173
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00554020
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=173
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00844705
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1642
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00813533
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1642
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00813673
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1642
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01748822
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1639
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1639
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01746930
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1639
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1639
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00812586
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1639
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1639
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00604651
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=381
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00606972
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=381
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00610956
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=381
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02036858
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=414
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=414
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02038758
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=414
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=414
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01628109
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1764
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01628325
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1764
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NF01324088 Potassium-transporting ATPase B 
chain 

570-598 1 Mycobacterium bovis 

NF01321371 DNA gyrase subunit A 495-523 1 Mycobacterium bovis 

NF00480640 probable DNA gyrase subunit A 916-944 1 Mycobacterium leprae 

NF00484231 P450 heme-thiolate protein 335-363 1 Mycobacterium 
tuberculosis 

NF00485681 Potassium-transporting ATPase B 
chain 

570-598 1 Mycobacterium 
tuberculosis 

NF01586715 Mannitol-permease IIBC component 43-71 1 Mycoplasma mycoides 

NF01587410 Hypothetical protein 9-37 1 Mycoplasma mycoides 

NF00630859 Putative type II restriction 
endonuclease NlaIV 

119-147 1 Neisseria gonorrhoeae 

NF01296409 DEAD/DEAH box helicase:HD domain 624-652 1 Nitrosomonas 
europaea 

NF01294890 Hypothetical protein 6-34 1 Nitrosomonas 
europaea 

NF01296468 Site-specific recombinase 215-243 1 Nitrosomonas 
europaea 

NF02020754 Putative potassium transporter B 
subunit 

544-572 1 Nocardia farcinica 

NF02023298 Hypothetical protein 23-51 1 Nocardia farcinica 

NF02024201 Putative resolvase 3-31 1 Nocardia farcinica 

NF00818483 All5017 protein 190-218 1 Nostoc sp. PCC 7120 

NF00819095 Alr7304 protein 3336-3364 1 Nostoc sp. PCC 7120 

NF00817274 RND multidrug efflux transporter 87-115 1 Nostoc sp. PCC 7120 

NF00817119 Asr1131 protein 45-73 1 Nostoc sp. PCC 7120 

NF01061743 NADH-dependent flavin 
oxidoreductase 

52-80 1 Oceanobacillus 
iheyensis 

NF01776242 Putative pyridoxal-dependent 
decarboxylase 

150-178 1 Pectobacterium 
atrosepticum 

NF01829006 Hypothetical methylamine utilization 
protein 

5-33 1 Photobacterium 
profundum 

NF01830545 Phosphoglycerate transport system 
transcription regulator 

250-278 1 Photobacterium 
profundum 

NF01831581 Hypothetical protein 500-528 1 Photobacterium 
profundum 

NF01833037 Hypothetical small protein A 21-49 1 Photobacterium 
profundum 

NF01831267 Hypothetical protein 278-306 1 Photobacterium 
profundum 

NF01423716 Similar to proteins involved in 
antibiotics biosynthesis 

1476-1504 1 Photorhabdus 
luminescens 

NF01426461 Hypothetical protein 106-134 1 Photorhabdus 
luminescens 

NF01427112 LsrR DNA-binding protein 13-41 1 Photorhabdus 
luminescens 

NF01410240 Secretion activator protein, putative 35-63 1 Porphyromonas 
gingivalis 

NF02499786 carboxysome shell protein CsoS2 102-130 1 Prochlorococcus 
marinus 

NF02499308 ornithine carbamoyltransferase 16-44 1 Prochlorococcus 
marinus 

NF01372938 Hypothetical protein precursor 38-66 1 Prochlorococcus 
marinus 

NF02498817 hypothetical protein PMN2A_0622 557-585 1 Prochlorococcus 
marinus 

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01324088
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1765
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01321371
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1765
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00480640
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1769
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00484231
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1773
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1773
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00485681
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1773
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1773
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01586715
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=2102
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01587410
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=2102
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00630859
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=485
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01296409
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=915
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=915
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01294890
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=915
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=915
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01296468
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=915
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=915
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02020754
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=37329
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02023298
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=37329
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02024201
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=37329
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00818483
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=103690
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00819095
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=103690
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00817274
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=103690
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00817119
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=103690
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01061743
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=182710
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=182710
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01776242
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29471
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29471
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01829006
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=74109
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=74109
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01830545
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=74109
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=74109
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01831581
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=74109
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=74109
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01833037
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=74109
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=74109
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01831267
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=74109
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=74109
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01423716
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29488
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29488
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01426461
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29488
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29488
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01427112
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29488
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29488
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01410240
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=837
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=837
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02499786
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1219
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1219
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02499308
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1219
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1219
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01372938
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1219
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1219
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02498817
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1219
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1219
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NF01854896 Cobalamin biosynthesis protein CobN 130-158 1 Propionibacterium 
acnes 

NF01010095 Similar to Histidine biosynthesis 
protein 

165-193 1 Pseudomonas 
aeruginosa 

NF00582290 Chaperone protein htpG 404-432 1 Pseudomonas 
aeruginosa 

NF00579604 TnpR protein (Fragment)  6-34 1 Pseudomonas 
aeruginosa 

NF00585284 Hypothetical protein 79-107 1 Pseudomonas 
aeruginosa 

NF00580099 Heat shock protein 66-kDa 187-215 1 Pseudomonas 
aeruginosa 

NF00584502 Hypothetical protein 203-231 1 Pseudomonas 
aeruginosa 

NF02412314 Calcium-binding protein 24-52  
60-88  
98-126 

3 Pseudomonas 
fluorescens 

NF02409575 K
+
-transporting ATPase, B subunit 551-579 1 Pseudomonas 

fluorescens 
NF01130810 Chaperone protein hscA homolog 187-215 1 Pseudomonas putida 

NF00593298 Resolvase 6-34 1 Pseudomonas putida 

NF01131075 Hypothetical protein 39-67 1 Pseudomonas putida 

NF01128446 Glycine dehydrogenase 613-641 1 Pseudomonas putida 

NF01131319 EF hand domain protein 143-171 1 Pseudomonas putida 

NF02715683 calcium-binding protein 101-159 
134-162 
180-208 

3 Pseudomonas 
savastanoi 

NF02713698 heat shock protein HtpG 405-433 1 Pseudomonas 
savastanoi 

NF02713796 hypothetical protein PSPPH_1452 119-147 1 Pseudomonas 
savastanoi 

NF02715540 type IV pilus-associated protein, 
putative 

990-1018 1 Pseudomonas 
savastanoi 

NF02713796 hypothetical protein PSPPH_1452 119-147 1 Pseudomonas 
savastanoi 

NF02518859 Calcium-binding EF-hand precursor 63-91  
100-128  
133-161  
179-207 

4 Pseudomonas 
syringae 

NF02518864 Heat shock protein Hsp90:ATP-binding 
region, ATPase-like 

407-435 1 Pseudomonas 
syringae 

NF02517892 Type IV pilus-associated protein, 
putative precursor 

989-1017 1 Pseudomonas 
syringae 

NF01447618 Chaperone protein htpG 405-433 1 Pseudomonas 
syringae group 
genomosp. 3 

NF01447738 Type IV pilus-associated protein, 
putative 

989-1017 1 Pseudomonas 
syringae group 
genomosp. 3 

NF01447731 Hypothetical protein 143-171 1 Pseudomonas 
syringae group 
genomosp. 3 

NF01444486 EF hand domain protein 4-32  
316-344  
391-419 

3 Pseudomonas 
syringae group 
genomosp. 3 

 

 
    

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01854896
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1747
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1747
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01010095
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=287
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=287
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00582290
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00579604
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00585284
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00580099
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=287
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=287
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00584502
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02412314
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02409575
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=294
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=294
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01130810
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=303
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00593298
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=303
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01131075
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=303
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01128446
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=303
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01131319
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=303
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02715683
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29438
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29438
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02713698
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29438
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29438
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02713796
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29438
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29438
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02715540
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29438
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29438
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02713796
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29438
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=29438
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02518859
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=317
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=317
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02518864
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=317
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=317
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02517892
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=317
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=317
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01447618
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=251701
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=251701
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=251701
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01447738
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=251701
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=251701
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=251701
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01447731
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=251701
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=251701
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=251701
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01444486
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Accession 
ID 

Protein Name Sequence 
Range 

EF-hand 
number 

Organism 

NF02500531 Calcium-binding EF-hand precursor 63-91  
100-128  
135-161  
179-207 

4 Pseudomonas 
syringae 

NF01410240 Secretion activator protein, putative 35-63 1 Porphyromonas 
gingivalis 

NF00853288 Potassium-transporting ATPase B 
chain 

605-633 1 Ralstonia 
solanacearum 

NF00849451 Hypothetical protein RSc1742 295-323 1 Ralstonia 
solanacearum 

NF00850536 Putative calcium binding signal peptide 
protein 

74-102, 
113-141 

2 Ralstonia 
solanacearum 

AAG21376 Calsymin 79-107 
122-150 
157-185 
189-217 
236-264 
269-297  

6 Rhizobium etli 

NF01530872 Calcium-binding EF-hand precursor 94-122 
128-156 

2 Rhodopseudomonas 
palustris 

NF01643065 Similar to CaM-like protein-putative 
secreted, membrane associated or 
paryphoplasmic Ca(2+)-binding protein 

50-78 1 Rhodopirellula baltica 

NF01643299 Hypothetical protein 257-285 1 Rhodopirellula baltica 

NF01649307 Hypothetical protein 103-131 1 Rhodopirellula baltica 

NF01643065 putative secreted, membrane 
associated or paryphoplasmic Ca

2+
-

binding protein 

50-78 1 Rhodopirellula baltica 

NF01644848 Hypothetical protein 214-242 
340-368 
417-445 

3 Rhodopirellula baltica 

NF01647263 Matrix metalloproteinase 516-544 1 Rhodopirellula baltica 

NF01647900 Probable lipase/esterase 76-104 1 Rhodopirellula baltica 

NF01643609 Alkaline phosphatase 1576-1604 1 Rhodopirellula baltica 

NF01649041 Putative ABC transporter integral 
membrane protein 

42-70 1 Rhodopirellula baltica 

NF01644544 Probable calmodulin 347-375 1 Rhodopirellula baltica 

NF01644969 Hypothetical protein 71-99 1 Rhodopirellula baltica 

NF01528433 Hypothetical protein precursor 64-92 1 Rhodopseudomonas 
palustris 

:NF01529160 Potassium-transporting atpase b 
chain, KdpB 

570-598 1 Rhodopseudomonas 
palustris 

NF01530032 Hypothetical protein precursor 26-54 1 Rhodopseudomonas 
palustris 

NF01530456 Hypothetical protein 245-273 1 Rhodopseudomonas 
palustris 

NF01530872 Calcium-binding EF-hand precursor 94-122 
128-156 

2 Rhodopseudomonas 
palustris 

NF01531759 Glycosyl hydrolase 64-92 1 Rhodopseudomonas 
palustris 

NF01532507 DUF218 94-122 1 Rhodopseudomonas 
palustris 

NF02577387 DnaK protein 172-200 1 Rickettsia felis 

 

 
    

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02500531
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=317
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=317
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01410240
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=837
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=837
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00853288
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=305
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=305
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00849451
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=305
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=305
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00850536
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=305
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=305
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=10644701
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01530872
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01643065
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=265606
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01643299
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01649307
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=265606
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01643065
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01644848
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01647263
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01647900
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01643609
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01649041
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01644544
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01644969
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01528433
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01529160
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01530032
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01530456
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01530872
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01531759
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01532507
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1076
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02577387
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=42862
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Accession 
ID 

Protein Name Sequence 
Range 

EF-hand 
number 

Organism 

P06495 Calerythrin 9-37 
60-88 
104-132 
138-164 

4 Saccharopolyspora 
erythrea 

NF00806470 probable glycogen debranching protein 35-63 1 Salmonella enterica 

NF02097096 Putative glycogen debranching protein 
homolog 

35-63 1 Salmonella paratyphi 

NF01911344 Putative glycogen debranching protein 35-63 1 Salmonella typhi 

NF00861463 Putative glycosyl hydrolase 35-63 1 Salmonella 
typhimurium 

NF01074234 Pyruvate formate-lyase 1 activating 
enzyme 

35-63 1 Shewanella oneidensis 

NF01074109 RTX toxin, putative 461-489 1 Shewanella oneidensis 

NF02205755 EF hand domain protein 30-58 1 Silicibacter pomeroyi 

NF02206123 Type I secretion target repeat protein 7295-7323 1 Silicibacter pomeroyi 

NF00616675 Potassium-transporting ATPase B 
chain 

541-569 1 Sinorhizobium meliloti 

NF00612473 Hypothetical protein SMc01708 784-812 1 Sinorhizobium meliloti 

NF00617441 Hypothetical protein SMb21413 137-165 1 Sinorhizobium meliloti 

NF00431107 Transposase B 519-547 1 Staphylococcus 
aureus 

NF02262335 LysM domain protein 235-263 1 Staphylococcus 
aureus 

NF01789691 Putative dihydrolipoamide 
dehydrogenase 

153-181 1 Staphylococcus 
aureus 

NF00433953 Similar to Zn-dependent hydrolase 465-493 1 Staphylococcus 
aureus 

NF01166407 Secretory antigen SsaA 108-136 1 Staphylococcus 
epidermidis 

NF00434602 HMG-CoA reductase 297-325 1 Staphylococcus 
epidermidis 

NF02269390 Tn554, transposase B 519-547 1 Staphylococcus 
epidermidis 

NF01165622 Hydroxymethylglutaryl-CoA reductase 297-325 1 Staphylococcus 
epidermidis 

NF01167423 Hypothetical protein SE0148 85-113 1 Staphylococcus 
epidermidis 

NF01165840 Hypothetical protein SE0787 465-493 1 Staphylococcus 
epidermidis 

NF02607639 Capsular polysaccharide synthesis 
enzyme CapE 

299-327 1 Staphylococcus 
haemolyticus 

NF02608469 Homoserine dehydrogenase 393-421 1 Staphylococcus 
haemolyticus 

NF02663555 Similar to unknown protein 465-493 1 Staphylococcus 
haemolyticus 

NF01048375 Proteinase, putative 626-654 1 Streptococcus 
agalactiae 

NF01049107 Hypothetical protein gbs1919 194-222 1 Streptococcus 
agalactiae 

NF01049640 Hypothetical protein gbs1489 371-399 1 Streptococcus 
agalactiae 

NF01113363 Hypothetical protein gbs1332 210-238 1 Streptococcus 
agalactiae 

NF00439678 Putative type II restriction 
endonuclease 

263-291 1 Streptococcus 
thermophilus 

     

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00806470
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=28901
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02097096
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=54388
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01911344
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=601
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00861463
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=602
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=602
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01074234
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=70863
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01074109
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=70863
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02205755
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=89184
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02206123
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=89184
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00616675
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=382
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00612473
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=382
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00617441
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=382
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00431107
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1280
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1280
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02262335
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1280
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1280
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01789691
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1280
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1280
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00433953
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1280
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1280
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01166407
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00434602
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02269390
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01165622
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01167423
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01165840
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1282
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02607639
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02608469
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02663555
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01048375
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1311
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1311
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01049107
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1311
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1311
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01049640
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1311
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1311
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01113363
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1311
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1311
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00439678
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1308
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1308
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Accession 
ID 

Protein Name Sequence 
Range 

EF-hand 
number 

Organism 

NF01280369 Putative calcium binding protein 9-37 
88-137 
137-165 

3 Streptomyces 
avermitilis 

NF01277143 Hypothetical protein 24-52 1 Streptomyces 
avermitilis 

NF01281064 Putative chitinase C 413-441 1 Streptomyces 
avermitilis 

NF01278333 Putative high-affinity potassium 
transport system 

555-583 1 Streptomyces 
avermitilis 

NF01277145 Putative calcium binding protein 6-34 1 Streptomyces 
avermitilis 

NF00543258 Putative calcium binding protein 10-38 
60-88 

2 Streptomyces 
coelicolor 

NF00549617 Putative calcium-binding protein 9-37 
60-88 
98-126 
132-160 

4 Streptomyces 
coelicolor 

NF00550219 Putative calcium binding protein 9-37 
60-88 
103-131 
137-165 

4 Streptomyces 
coelicolor 

NF00543851 ChiC (Chitinase C) (Putative secreted 
protein) (Fragment) 

415-443 1 Streptomyces 
coelicolor 

NF00549644 Potassium-transporting ATPase B 
chain 

567-595 1 Streptomyces 
coelicolor 

NF00548721 SCO5464 protein  6-34 1 Streptomyces 
coelicolor 

NF00543475 Hypothetical protein SCO4859 126-154 1 Streptomyces 
coelicolor 

NF00928474 Hypothetical protein spyM18_1868 523-551 1 Streptococcus 
pyogenes 

NF01861114 Putative Fe
3+

-siderophore transport 
protein 

525-553 1 Streptococcus 
pyogenes 

NF01223601 Putative PBP 5 synthesis repressor 63-91 1 Streptococcus 
pyogenes 

NF00442096 Penicillin-binding protein 3 167-195 1 Streptococcus 
pneumoniae 

NF01965281 Hypothetical protein 196-224 1 Symbiobacterium 
thermophilum 

NF02172090 Transaldolase 358-386 1 Synechococcus 
elongatus 

NF02171539 Carboxyl-terminal protease 152-180 1 Synechococcus 
elongatus 

P72797 Transaldolase 333-361 
356-384 

2 Synechocystis sp.  

NF00423899 Slr0366 protein 171-199 
277-305 
383-411 
489-517 

4 Synechocystis sp. 
PCC 6803 

NF00424738 Cation or drug efflux system protein 87-115 1 Synechocystis sp. 
PCC 6803 

NF00425666 Sulfate adenylyltransferase 99-127 1 Synechocystis sp. 
PCC 6803 

NF00968263 Septum formation inhibitor-activating 
ATPase 

28-56 1 Thermoanaerobacter 
tengcongensis 

NF02549883 calcium-binding EF-hand 61-89 
97-125 

2 Thermobifida fusca 

NF01023077 transaldolase 356-384 1 Thermosynechococcus 
elongatus 

NF00578072 50S Ribosomal Protein L4 1-28 1 Thermus thermophilus 

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01280369
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33903
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33903
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01277143
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33903
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33903
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01281064
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33903
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33903
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01278333
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33903
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33903
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01277145
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33903
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=33903
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00543258
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1902
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1902
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00549617
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00549617
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00549617
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00550219
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00549617
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00549617
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00543851
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1902
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1902
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00549644
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1902
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1902
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00548721
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1902
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1902
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00543475
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1902
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1902
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00928474
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1314
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1314
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01861114
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1314
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1314
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01223601
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1314
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=1314
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00442096
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01965281
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=2734
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=2734
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02172090
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02171539
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&val=2501349
http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1148
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00423899
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00424738
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00425666
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00968263
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=119072
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=119072
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02549883
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=2021
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01023077
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=146786
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=146786
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00578072
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=274
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Accession 
ID 

Protein Name Sequence 
Range 

EF-hand 
number 

Organism 

NF01703216 Hypothetical conserved protein 240-268 1 Thermus thermophilus 

NF00723911 Hemolysin-related protein 54-82 1 Vibrio cholerae 

NF00722357 Hypothetical protein VCA0849 3164-3192 1 Vibrio cholerae 

NF01185821 FlgA 125-153 1 Vibrio fischeri 

NF02302098 Iron-regulated protein FrpC 344-372 1 Vibrio fischeri 

NF01230959 Chemotaxis protein CheV 133-161 1 Vibrio 
parahaemolyticus 

NF01234459 Putative outer membrane protein 42-70 1 Vibrio 
parahaemolyticus 

NF01147763 Autotransporter adhesin 1196-1224 
2841-2869 

2 Vibrio vulnificus 

NF01149533 Multidrug resistance efflux pump 128-156 1 Vibrio vulnificus 

NF01147763 Autotransporter adhesin 887-915 
990-1018 
1093-1121 
1196-1224 
2841-2869 

5 Vibrio vulnificus 

NF01147228 FOG: Ankyrin repeat 310-338 1 Vibrio vulnificus 

NF01150679 ATPase component of various ABC-
type transport system 

353-381 1 Vibrio vulnificus 

NF01149533 Multidrug resistance efflux pump 128-156 1 Vibrio vulnificus 

NF01411038 Hypothetical protein 214-242  Wolinella 
succinogenes 

NF01840495 exopolysaccharide synthesis protein 
ExoD-related protein 

16-44 1 Wolbachia sp. wMel 

NF01840821 Exopolysaccharide synthesis protein 
ExoD-related protein 

16-44 1 Wolbachia sp. wMel 

NF01189636 Metallopeptidase 56-84 1 Xylella fastidiosa 

NF00981304 Calcium-binding protein 38-66 
74-102 
112-140 
143-171 

4 Xanthomonas 
axonopodis 

NF01010603 NodB-like protein 662-690 1 Xanthomonas 
campestris 

NF00974448 Hypothetical protein XCC0163 30-58 1 Xanthomonas 
campestris 

NF00977416 Polysaccharide deacetylase 714-742 1 Xanthomonas 
campestris 

NF00974241 Hypothetical protein XCC1206 172-200 1 Xanthomonas 
campestris 

NF02292841 EF hand domain protein 617-645 1 Xanthomonas oryzae 

NF02292473 Phage-related protein 342-370 1 Xanthomonas oryzae 

NF02292388 Polysaccharide deacetylase 662-690 1 Xanthomonas oryzae 

NF02294838 Hypothetical protein 88-116 1 Xanthomonas oryzae 

NF02293741 Hypothetical protein 505-533 1 Xanthomonas oryzae 

NF01189016 Hypothetical protein 36-64 1 Xylella fastidiosa 

NF02140272 DnaK molecular chaperone 173-201 1 Zymomonas mobilis 

NF02139509 Hypothetical protein 51-79 1 Zymomonas mobilis 

NF02139489 Hypothetical protein 58-86 1 Zymomonas mobilis 

NF02139845 Putative RTX family exoprotein 2479-2507 1 Zymomonas mobilis 

http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01703216
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=274
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00723911
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=666
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00722357
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=666
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01185821
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02302098
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01230959
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=670
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=670
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01234459
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=670
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=670
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01147763
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=672
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01149533
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=672
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01147763
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=672
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01147228
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=672
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01150679
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=672
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01149533
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=672
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01411038
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=844
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=844
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01840495
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=66077
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01840821
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01189636
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=2371
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00981304
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01010603
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=339
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=339
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00974448
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=339
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=339
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00977416
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=339
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=339
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF00974241
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=339
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=339
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02292841
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02292473
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02292388
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02294838
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02293741
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF01189016
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=2371
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02140272
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=542
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02139509
http://www3.ncbi.nlm.nih.gov/htbin-post/Taxonomy/wgetorg?lvl=0&id=542
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02139489
http://pir.georgetown.edu/cgi-bin/nfEntry.pl?id=NF02139845
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3.7. Evolutionary perspectives on EF-hand proteins 

The classification and evolution of EF-hand proteins was first analyzed by 

Kretsinger et al (11,136-138). A dendrogram of the EF-hand proteins has been 

published previously. Since then, more EF-hand subfamilies, especially pseudo-

EF-hand proteins, have been revealed. To analyze the potential evolutionary 

scenario of the EF-hands, particularly pseudo EF-hands, phylogenetic analysis 

was carried out with updated pseudo EF-hand members and the canonical EF-

hand proteins in this study on the basis of sequence alignments (Fig. 3.5).  

The pseudo EF-hand N-J tree revealed three major groups assuming that 

they are evolved from a common ancestral protein. The largest group consists of 

two closely-related subgroups, one with S100A2, S100A3, S100A4, S100A5, and 

S100A6 and the other with S100A1, S100P, S100B, S100Z, and S100A10. It is 

interesting to note that S100A10, separating early from other members in its 

subgroup, loses the capacity to chelate Ca2+ ion with mutations and deletions at 

the Ca2+ liganding positions in both canonical and pseudo-EF-hand motifs. The 

small phylogenetic distance between S100A2, S100A3, S100A4, S100A5, and 

S100A6 is consistent with the clustered organization of these genes (139). 

Additionally, S100A2, S100A3, S100A5, and S100A6 have been proposed to 

coordinate Zn2+ with varying affinity (140-143). The second major group is 

comprised of S100A8, S100A9, S100A12, trichohyalin, and MRP-126 from 

chicken. All of these proteins (except for trichohyalin) are excreted to the 

extracellular space, where Ca2+ concentration is at the millimolar level (144). 

Their common targets are the cytoskeletal or cell membrane proteins. In addition, 
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the proteins in this group are associated with pro-inflammatory functions by 

inducing chemotaxis or secretion of pro-inflammatory mediators. Interestingly, 

members in this group possess the Zn2+-chelating motif His-x-x-x-His at the C 

termini, with possible involvement of an upstream glutamate (145). The third 

major group consists of S100A7, S100A11, S100A11P, S100A15, S100H, and 

repetin. Repetin contains an N-terminal S100-like domain and central tandem 

repeats of glutamine-rich sequence (94). It is involved in epidermal differentiation. 

Repetin is separated early from other members in the group. The other members 

(S100A13 and S100A14, S100A16 and S100A17, and S100G and hornerin) form 

three minor groups. They are rather diverse and no valuable evolutionary clues 

can be inferred at present. Repetin, trichohyalin, and hornerin belong to the 

“fused gene” family. A proposed evolutionary pathway for hornerin involves the 

fusion of an S100-like Ca2+-binding protein with an ancestral epidermal structural 

gene containing tandem repeats that reside in the same chromosomal locus 

1q21 (94,146). 

The canonical EF-hands are ubiquitously distributed across eukaryote, 

bacteria, and archaea. The gene replication could also be tentatively used to 

explain the appearance of penta- (calpain subfamily) and hexa-EF-hands 

(calretinin and calbindin D28k), both of which have distinct phylogenetic 

pathways (Fig. 3.5) (147,148). The abundant single-handed EF-hand-like motifs 

found in the genomes of bacteria could provide clues for the origin of the 

prototypical EF-hand (4,25,149,150). The evolutionary mobile single Ca2+ binding 

loop first present in the ancestral protein could be “transplanted” to several 
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locations of the host protein or to several host proteins (5,151).  

In contrast to the canonical EF-hands, our study shows that the pseudo 

EF-hands are exclusively found in vertebrates with tissue- and cell-specific 

expression profiles and are not predicted in the bacteria genomes. The lowest 

organism containing pseudo EF-hand reported thus far is the spiny dogfish 

(Squalus acanthias) with a pseudo EF-hand protein that is closely related to 

S100A1 (13). Thus, it is reasonable to postulate that pseudo EF-hands are 

phylogenetically younger and have a shorter history than canonical EF-hands. 

Although more evidence is required to confirm this postulation, the current 

observation in natural proteins that pseudo EF-hands always pair with canonical 

EF-hands but canonical EF-hands do not necessarily pair with pseudo EF-hands 

also indicate that pseudo EF-hands appear later than the canonical EF-hands. 

Genomic study on human and rat S100 proteins has also indicated the recent 

origin of the S100 subfamily (13,139). It has been hypothesized that the evolution 

of pseudo EF-hands might be achieved by domain swapping through gene 

duplication or exon recombination from a CaM-type protein with subsequent loss 

of two of the four EF-hands (13). Then, evolutionary divergence of EF-hands 

follows, thereby creating the sequence diversity of pseudo EF-hands. During this 

process, pseudo EF-hands become distant relatives of canonical EF-hand and a 

number of pseudo EF-hands (S100B, S100A2, S100A3, S100A5, S100A6, 

S100A7, S100A12) acquire the ability to bind other metal ions such as Zn2+ or 

Cu2+ to further adapt to the tissue-specific temporal-spatial requirements(100). 

They evolved largely varied Ca2+ affinity from nM to mM to meet the versatile 
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Figure 3.5. Phylogenetic analysis of the EF-hand protein family. The unrooted 
N-J tree was generated on the basis of multiple sequence alignments of 27 
typical proteins containing pseudo EF-hand motifs and 22 proteins with 
canonical EF hand motifs. (Circle: canonical EF-hand; Square: pseudo EF-
hand; Solid: bind Ca2+; Open: do not bind Ca2+ or Ca2+ binding capability is 
unknown). 
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requirements in various cellular compartments (140,141,143,152,153).  

 

3.8. Summary 

With more and more EF-hand Ca2+ binding proteins being discovered and 

characterized in bacteria, archaea, and eukaryotes, structural and functional 

knowledge of the EF-hand proteins has expanded steadily in recent years. The 

EF-hand-like proteins contain Ca2+-binding sequences that closely resemble the 

canonical EF-hand motif yet with diversified flanking structural elements. An easy 

and straightforward searching method to identify both canonical and pseudo EF-

hands has been established based on our modified patterns. In addition to being 

supplementary to the signatures PS00018 and PS00303, the newly developed 

patterns convey information on the flanking structural contents with higher 

accuracy and sensitivity. Screening of the prokaryotic genome information 

revealed 397 entries of putative EF-hand proteins (467 motifs) implicated in a 

variety of cellular activities. The results enable us to envision possible scenarios 

regarding the evolutionary history of EF-hands. The pseudo EF-hands are likely 

to be phylogenetically younger than canonical EF-hand motifs. The prediction of 

Ca2+ binding motifs in bacteria genomes is helpful for the exploration of the role 

of Ca2+ and Ca2+ binding proteins in bacteria. Moving toward our goal of 

advancing calciomics, we have also carried out the prediction studies on other 

genomes, such as viruses (see Chapter 4), with our prediction method. This will 

further enable us to better understand the role of Ca2+ in diverse biological 

systems. 
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4. Ca2+, Ca2+-binding proteins and virus infection 

 

Ca2+, “a signal for life and death”, is one of the most important second 

messengers in transducing cellular signals. It plays a central role in the regulation 

of a number of cellular processes, such as cell division, differentiation and 

apoptosis (3). The versatile speed, amplitude and spatial-temporal patterning of 

Ca2+ in eukaryotic cells controls vital biological processes by finely modulating 

the activity of a repertoire of signaling components including cellular receptors, 

ion channels, pumps, exchangers, Ca2+ buffers, Ca2+ effectors, Ca2+-sensitive 

enzymes and transcription factors in different cellular compartments (Fig. 4.1) 

(154).  

Being extremely adept at hijacking the host cellular machinery, viruses 

have been extensively reported to interfere with the Ca2+ signaling pathways or 

Ca2+-dependent processes, and thereby, achieve their optimal infectivity to 

produce progenies. The interplays between viruses and Ca2+, in general, fall into 

three major categories: 1) viral particles or viral proteins directly or indirectly 

disturb the Ca2+ homeostasis by altering membrane permeability and/or 

manipulating key components of the Ca2+-signaling repertoire; 2) a number of 

important structural or nonstructural viral proteins directly bind to Ca2+ for 

structural integrity or optimal functions; 3) virus-host interactions that require 

cellular Ca2+-regulated proteins or processes. This chapter, which aims to 

stimulate more future studies on the role of Ca2+ in virus infection, is focused on 
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Figure 4.1. Examples of virus-induced perturbations on Ca2+ homeostasis. The 
versatile speed, amplitude and spatial-temporal patterning of Ca2+ in eukaryotic 
cells controls vital biological processes by precisely yet flexibly modulating the 
activity of a repertoire of signaling components including cellular receptors, ion 
channels, pumps, exchangers, Ca2+ buffers, Ca2+ effectors, Ca2+-sensitive 
enzymes and transcription factors in different cellular compartments. A variety 
of viral proteins (e.g., Tat, gp120 and Nef of HIV-1, p13II of HTLV-1, HBx of 
HBV, 2B protein of coxsachievirus,) can disturb the sophisticated intracellular 
Ca2+ homeostasis by interacting with these key Ca2+ signaling components. 
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such interplays that have been observed in almost every step of a typical viral life 

cycle by featuring recent discoveries in the roles of Ca2+ in virus infection.  

 

4.1. Effects of viral infections on Ca2+ homeostasis 

The intracellular Ca2+ homeostasis is controlled by an array of 

components in the Ca2+-signaling toolkit (154). The Ca2+ signal is derived from 

two sources:  the extracellular medium or the internal stores (Fig. 4.1). The entry 

of Ca2+ across the plasma membrane, usually triggered by stimuli that include 

membrane depolarization, mechanical stretch, external agonists, depletion of 

internal stores and intracellular messengers, is mediated by some particular 

cellular receptors and Ca2+ channels. The mobilization of Ca2+ from the internal 

store in response to Ca2+ itself or intracellular messengers, is primarily mediated 

by the IP3 receptors (IP3R) and the ryanodine receptors (RyR). Five distinct 

pumping mechanisms (the plasma membrane Ca2+-ATPase, the 

sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), the secretory 

pathway Ca2+-ATPase (SPCA), the Na+/Ca2+ exchanger (NCX), and the 

mitochondrial uniporter) are responsible for sequestering Ca2+ from the cytosol 

by transport Ca2+ either to an external medium or into different cellular 

compartments (154).  

The Ca2+ signaling system requires the exquisite choreography of the 

Ca2+-signaling toolkit (Ca2+ “signalsomes”) and undergoes constant remodeling 

to meet the specific spatio-temporal requirements. This flexibility, on the one 

hand, provides sufficient opportunities for the host cells to adjust to the virus 
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infection. On the other hand, viruses are adept at utilizing the universal Ca2+ 

signal to create a tailored cellular environment that meets their own demands. 

The development of a variety of cell-permeable Ca2+ indicators (e.g., the 

acetoxymethyl ester forms of Fura-2, Fluo-4 and Indo-1) and genetically 

targetable fluorescent indicators (e.g., pericam and aequorin) provide solid 

foundation for the quantitative measurements of cellular Ca2+ signal changes in 

response to virus infection or the treatment of viral proteins. A detailed summary 

of virus-induced cellular Ca2+-signaling alterations are listed in Table 4.1. Instead 

of exhaustively describing every virus that disturbs the Ca2+ homeostasis, this 

review will highlight several important viruses that are well-documented to alter 

the cellular Ca2+-signaling system.  

 

 

 

 

 

 

 

 

 

 

 



82 

  

Table 4.1. Virus-induced alterations on cellular Ca2+ homeostasis. 

Virus 
[Ca2+] 

Alteration 
Caused by Mechanisms Cellular effects 

Model 
System 
(Ca2+ probe) 

References 

(+) ssRNA viruses 

Coronaviridae       
  SARS-CoV  ↑[Ca2+]CYT Spike protein ↑Ca2+ influx 

due to   ER 
stress 

↑COX-2 expression 
via PLC pathway 

HEK293T 
(Fura-2 AM) 

(155) 

Flaviviridae       
HCV ↑[Ca2+]MIT  

 
Core protein Mitochondrial 

Ca2+ uniporter 
↑mitrochondrial 
ROS production 

Isolated liver 
mitochondria 
(Rhod-2 AM) 

(156) 

     Huh7  
(Pericam) 

 

 ↓[Ca2+]ER  ER stress, 
↑Calreticulin, 
impaired 
SERCA 
activity 

Induces apoptosis Huh7  
(erAEQ) 

(157)   

 ↑[Ca2+]CYT 

 
 ER Ca2+ 

leakage 
Activate NFAT 
pathway 

Jurkat T  
(Fura-2 AM) 

(158) 

 ↑[Ca2+]CYT p7 Functions as 
Ca2+ channel 

Channel activity 
inhibited by 
amantadine 

Artificial 
membrane 

(159) 

 ↑[Ca2+]CYT NS5A ↑ER Ca2+ 
efflux 

Activates NF-κB and 
STAT-3,  ↑ ROS 

Huh7 
 

(160) 

 ↓[Ca2+]ER Virus 
infection 

↑ER Ca2+ 
release 

Upregulates PP2A 
and  inhibits IFN-α 
pathway  

UHCV 57.3 
(Fura-2 AM) 

(161) 

  DV ↑[Ca2+]CYT virus 
infection  

↑Ca2+ influx 
induced by CF 

Enhances the 
cytotoxic activity  

Mouse spleen 
(45Ca) 

(162,163) 
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Virus 
[Ca2+] 

Alteration 
Caused by Mechanisms Cellular effects 

Model 
System 
(Ca2+ probe) 

References 

  JEV ↑[Ca2+]CYT virus 
infection 

↑Ca2+ influx 
induced by 
MDF 

Stimulate neutrophil 
activation  

Mouse  (164) 

 
Picornaviridae 

      

  Poliovirus ↑[Ca2+]CYT Virus 
infection 

Voltage-
sensitive Ca2+ 
channels 

 HeLa  
(Fura-2 AM) 

(165) 

    2BC  ↑Ca2+ influx  HeLa  
(Fluo-3 AM) 

(166) 

Coxsachie B3 
  virus 

↑[Ca2+]CYT, 
↓[Ca2+]ER, 
↓[Ca2+]MIT, 

↓[Ca2+]GOL 

2B  ↑Ca2+ influx;  
Pore 
formation on 
ER and Glogi 
membrane 

Suppresses 
apoptotic host cell 
response 

HeLa  
(Fura-2 AM, 
organelle-
targeted AEQ) 

(167,168) 

 ↑[Ca2+]CYT, 
↓[Ca2+]ER, 

Virus 
infection and 
2B protein 

↑Ca2+ influx;  
ER Ca2+ 
leakage 

Facilitates vRNA 
replication and virus 
release 

HeLa  
(Fura-2 AM) 

(169) 

  HRV2 ↑[Ca2+]CYT Virus 
infection 

↑Ca2+ influx Channel blockers 
inhibit virus 
replication and 
release 

HeLa T  
(Fluo-4 AM) 

(170) 

Togaviridae       
  SFV ↑[Ca2+]CYT, 

↑[Ca2+]MIT                        

(<5 h), 
↓[Ca2+]MIT   

(>5 h) 

Virus 
infection 

↑Ca2+ influx;  
Impaired 
mithochonrial 
permeability  

Impaired electron 
transport 

CEC and 
isolated 
mithochondira  
(45Ca) 

(171) 
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Virus 
[Ca2+] 

Alteration 
Caused by Mechanisms Cellular effects 

Model 
System 
(Ca2+ probe) 

References 

  Sindbis virus ↓[Ca2+]CYT      
(5 h) 

Virus 
infection 

 virus-induced 
apoptosis is 
dependent on viral 
replication 

N18  
(Fura-2 AM) 

(172) 

(-) ssRNA viruses 

Filoviridae       

  Ebola virus and 
  Marburg virus 

↑[Ca2+]CYT Virus 
infection 

 Activate TREM-1 Neutrophils 
(Fluo-4 AM, 
Fura-2 AM) 

(173) 

 
Orthomyxoviridae 

      

  Influenza A virus ↑[Ca2+]CYT 

(>6 d) 
Virus 
infection 

↑ER Ca2+ 
efflux via IP3R  

Reduces voltage-
dependent Ca2+-
currents 

Hippocampal 
neurons  
(Fluo-4 AM) 

(174) 

 ↑[Ca2+]CYT Virus 
infection 

↑IP3 (PLC 
pathway) 

Activates 
neutrophils  

Neutrophils 
(Fura-2 AM, 
45Ca) 

(175,176) 

Paramyxoviridae        
  Measles virus ↑[Ca2+]CYT Virus 

infection 
 Viral yield is 

inhibited by 
verapamil 

MA104, BGM 
(45Ca) 

(177) 

  Sendai virus ↑[Ca2+]CYT Virus 
infection 

 Maximizes viral 
fusion 

Human 
erythrocyte 
ghosts (obelin) 

(178) 

 ↑[Ca2+]CYT Virus 
infection 

↑Ca2+ influx Inducing rounding 
and fusion of 
infected cells  

Chicken 
erythrocyte 
(45Ca) 

(179) 

  Mumps virus ↓[Ca2+]CYT Virus 
infection 

↓Ca2+ influx  Reduces voltage-
dependent Ca2+ 
currents 

Hippocampal 
neurons  

(180,181) 
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Virus 
[Ca2+] 

Alteration 
Caused by Mechanisms Cellular effects 

Model 
System 
(Ca2+ probe) 

References 

(+) ssRNA viruses with DNA intermediates 

Retroviridae       
  HIV-1 ↑[Ca2+]CYT Nef Interacts with 

IP3R 
Promotes T cell 
activation via NFAT 
pathway 

Jurkat T  
(Fluo-3, Fura-
red AM, AEQ) 

(182) 

    Decreases store-
operated Ca2+ 
influx; Involves SH3-
mediated interaction 

Differentiated 
HL60  
(Fura-2 AM) 

(183) 

 ↑[Ca2+]CYT Tat ↑Ca2+ influx 
via DHP 
receptor 

Increases TNF-α 
production 

PBMC 
(Fluo-3 AM) 

(184) 

   ↑Ca2+ influx 
via NMDA 
receptor 

Induces 
neurotoxicity 

Rat 
hippocampal 
slices 
(Calcium-
orange AM) 

(185) 

   ↑Ca2+ influx 
via glutamate 
receptor;  
↑ ER Ca2+ 
release via 
IP3R 

Increases IP3 
production; Induces 
neurotoxicity 

Fetal neurons 
and astrocytes  
(Fura-2 AM) 

(186) 

   ↑Ca2+ influx Stimulates cytokine 
and chemokine 
production 

Microglia cells 
(Indo-1) 

(187) 

    Mutation C31W in 
subtype C Tat 
reduces Ca2+ flux 

PBMC 
(Fluo-4 AM) 

(188) 
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Virus 
[Ca2+] 

Alteration 
Caused by Mechanisms Cellular effects 

Model 
System 
(Ca2+ probe) 

References 

 ↓[Ca2+]CYT   Reduces glutamate 
and ATP-induced 
[Ca2+]CYT increase 

Glial cells  
(Fura-2 AM) 

(189) 

   Blocks the L-
type Ca2+ 
channels 

Inhibits NK cell 
function 

NK cells 
(Fura-2 AM) 

(190) 

 ↑[Ca2+]CYT gp120 ↑Ca2+ influx 
via L-type 
Ca2+ channels 

Induces 
neurotoxicity 

Fetal neurons 
and astrocytes  
(Fura2-AM) 

(191) 

   ↑Ca2+ influx Activates CD4+ T 
cell  signaling 

CHO-745, T 
cells 
(Fluo-4 AM) 

(192) 

   ↑Ca2+ influx Potentiates NMDA-
induced Ca2+ 
response  

Embryonic 
neurons (Indo-
1) 

(193) 

 ↑[Ca2+]i  ↑Ca2+ influx Induces cytotoxicity Synaptosomes  
(Fura2-AM) 

(194) 

  gp120/gp160 ↑Ca2+ release 
from caffeine-
sensitive  
Ca2+ store 

Alters ion secretion 
in the intestine and 
causes watery 
diarrhea 

HT-29-D4 
(Fura2-AM) 

(195) 

 ↑[Ca2+]CYT virus 
infection 

  H9 (196) 

  virus 
infection 

 Induces T-cell 
hyporesponsiveness 

PMBC, MT4, 
Jurkat T 

(197) 

  HTLV-1 ↑[Ca2+]CYT P12I ↑ ER Ca2+ 
release via 
IP3R; ↑Ca2+ 
influx 

Activates T cells via 
NFAT pathway 

Jurkat T (Indo-
1, Fura-2 AM) 

(198) 

    Enhances p300 
transcription 

 (199) 
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Virus 
[Ca2+] 

Alteration 
Caused by Mechanisms Cellular effects 

Model 
System 
(Ca2+ probe) 

References 

 ↓[Ca2+]MIT P13II ↑Mitochondrial 
membrane 
permeability 

Induces apoptosis Isolated 
mithochondria 
(Calcium-
Green) 

(200-202) 

Reoviridae       
  Rotavirus ↑[Ca2+]CYT Virus 

infection 
↑PM 
permeability; 
↓ER Ca2+ pool 

Tunicamycin and 
brefeldin A inhibits 
↑[Ca2+]CYT 

HT29, MA104 
(45Ca, Fura-2 
AM) 

(203) 

   ↑PM 
permeability; 
↑ER Ca2+ 
release via 
PLC pathway 

Facilitates virus 
entry and 
maturation 

Caco-2  
(Quin-2 AM) 

(204) 

   ↑Ca2+ influx 
via L-type 
Ca2+ channels 

 HT29, MA104 
(Fura-2 AM) 

(205) 

  NSP4 ↑ ER Ca2+ 
release via 
IP3R; ↑Ca2+ 
influx 

 HEK293, sf9 
(Fura-2 AM) 

(206) 

  CAV ↑[Ca2+]CYT Virus 
infection 

  Lymphocytes  (207) 

ssDNA viruses 

Parvoviridae       
  B19 ↑[Ca2+]CYT VP1 Activation of 

ICRAC 
Exhibits PLA2-like 
activity 

HMEC-1  
(Fura-2) 

(208) 

dsDNA viruses       

Herpesviridae       
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Virus 
[Ca2+] 

Alteration 
Caused by Mechanisms Cellular effects 

Model 
System 
(Ca2+ probe) 

References 

  CMV ↑[Ca2+]CYT UL37x1  ↑ ER Ca2+ 
release 

Blocks apoptosis 
and induces 
mitochondrial fission 

Fibroblast 
(Calcium-
Orange, Fluo-
3) 

(209) 

    Virus 
infection 

↑Ca2+ influx Inhibited by 
nifedipine and 
verapamil 

Fibroblast (210) 

  HHV-1/2 ↑[Ca2+]CYT Virus 
infection 

↑ ER Ca2+ 
release via 
IP3R; ↑Ca2+ 
influx via 
voltage-gated 
channels 

Triggers FAK 
phosphorylation 

CaSki, Vero 
(Fura-2 AM) 

(211) 

 ↑[Ca2+]CYT 
(H2O2-
induced) 

Virus 
infection 

 H2O2 enhances 
virus release 

FI cells 
(Fura-2 AM) 

(212) 

  KSHV ↑[Ca2+]CYT K1 Interacts with 
SH2-
containing 
proteins 

Activates T cells 293T(Indo-1) (213) 

  vMIP I/II ↑Ca2+ influx Induces signal 
transduction and 
chemotaxis 

THP-1, K562  
(Indo-1 AM) 

(214) 

  K7 ↑ ER Ca2+ 
release 

Associates with 
CAML to inhibit 
apoptosis 

BJAB 
(Indo-1 AM) 

(215) 

  EBV ↑[Ca2+]CYT Virus 
infection 

↑Ca2+ influx 
Ca2+ channels 

Activates B cells; 
Inhibited by 
verapamil or 
diltiazem 

B95-8  
(Quin-2) 

(216) 
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Virus 
[Ca2+] 

Alteration 
Caused by Mechanisms Cellular effects 

Model 
System 
(Ca2+ probe) 

References 

 ↓[Ca2+]CYT LMP2A Blocks BCR Blocks B cell signal 
transduction 

BJAB 
(Indo-1) 

(217) 

Polyomaviridae       
  SV40 ↑[Ca2+]CYT  ↑Ca2+ influx 

via 
capacitative 
channels 

 SV3T3  
(AEQ) 

(218) 

  HPV-18 ↑[Ca2+]CYT Virus 
infection 

Promotes 
progression of 
tumorigenicity 

 Keratinocytes (219) 

       
Poxviridae       
  Vaccinia virus ↑[Ca2+]CYT Virus 

infection 
 Viral yield is 

inhibited by 
verapamil 

MA104, BGM 
(45Ca) 

(177) 

    A38L ↑Ca2+ influx Increases PM 
permeability; 
decreases 
production of 
infectious viral 
particles 

BS-C-1 
 (45Ca) 

(220) 

 ↓[Ca2+]CYT 

(agonist-
induced) 

Virus 
infection 

↓PLC 
production or 
activity 

Alter agonist-
induced Ca2+ 
homeostasis 

BS-C-1  
(Fura-2 AM) 

(221) 

dsDNA viruses with RNA intermediates 
Hepadnaviridae       
  HBV ↑[Ca2+]CYT HBx Intracellular 

Ca2+ store 
release 

Transactivates JNK 
and MAPK 
pathways 

CHL-X 
(Fura-2 AM) 

(222) 
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Abbreviations: [Ca
2+

]CYT, cytosolic Ca
2+

 concentration; [Ca
2+

]ER, endoplasmic reticulum Ca
2+

 concentration; [Ca
2+

]MIT, mitochondrial Ca
2+

 
concentration; [Ca

2+
]GOL, Golgi complex Ca

2+
 concentration; [Ca

2+
]i, intrasynaptosomal  Ca

2+
 concentration; SARS-CoV, severe acute respiratory 

syndrome-associated coronavirus; COX-2, cyclooxygenase-2; HCV, hepatitis C virus; SERCA, sarcoplasmic/endoplasmic reticulum Ca
2+

-ATPase;  
PP2A, protein phosphatase 2A; IFN, interferon; erAEQ, ER-targeted aequorin; NFAT, nuclear factor of activated T cells; DV, dengue virus; CF, 
cytotoxic factor; JEV, Japanese encephalitis virus; MDF, macrophage derived neutrophil chemotactic factor; HRV2: human rhinovirus 2; SFV, 
Semliki Forest virus; TREM, triggering receptors expressed in myeloid cells; CEC: primary chicken embryo cells; PLC, phospholipase C; IP3R,  
inositol 1,4,5-triphosphate receptor; HIV, human immunodeficiency virus; Nef, negative factor; Tat, transactivator of transcription; DHP, 
dihydropyridine; PBMC, peripheral blood mononuclear cell; TNF, tumor necrosis factor; NK, natural killer cell; NMDA, N-methyl-D-aspartic acid, 
HTLV, human T-lymphotropic virus; PM, plasma membrane; CAV, chicken anemia virus; CRAC, Ca

2+
 release activated Ca

2+
 channel; PLA2, 

phospholipase A2; CMV: cytomegalovirus; HHV, human herpesvirus; FAK, focal adhesion kinase; KSHV, Kaposi's sarcoma-associated 
herpesvirus; CAML, Ca

2+
-modulating cyclophilin ligand; EBV, Epstein-Barr virus; LMP2A, latent membrane protein 2A; HPV, human papillomavirus; 

HBV, hepatitis B virus; JNK, ; MAPK, ; PMCA, plasma membrane Ca
2+

-ATPase; PyK2, proline-rich tyrosine kinase-2;  

Virus 
[Ca2+] 

Alteration 
Caused by Mechanisms Cellular effects 

Model 
System 
(Ca2+ probe) 

References 

   ↓Mitochondrial 
Ca2+ uptake; 
Impaired 
PMCA activity 

Induces apoptosis HepG2, HeLa 
(organelle-
targeted AEQ) 

(223) 

   Mitochondrial 
Ca2+ leakage 

Activated PyK2 HepG2 (224) 
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Hepatitis C virus. Hepatitis C virus (HCV), one of the major causative 

agents of hepatitis with a single-stranded positive-sense RNA genome, belongs 

to the Flaviviridae family. HCV infection has been shown to decrease the ER 

Ca2+ concentration and activate ER stress by upregulating the protein 

phosphatase 2A (PP2A), leading to the inhibition of interferon alpha signaling. 

Three viral proteins, the core protein, NS5A and p7, have been found to interfere 

with the cellular Ca2+ signaling.  

HCV core protein, which induces apoptosis in Huh7 cells, has been 

recently reported to induce ER Ca2+ depletion by impairing the function of 

SERCA2 (157). The core protein also increases mitochondrial ROS production 

and Ca2+ uptake partially by stimulating the activity of mitochondrial Ca2+ 

uniporter (156). It can also lead to the elevation of cytosolic Ca2+ concentration 

due to ER Ca2+ leakage, and thereby activates the NFAT pathway in Jurkat T 

cells (158). All these findings indicate that the core protein potently modulates the 

apoptosis of HCV-infected cells and is possibly responsible for chronic liver 

disease and tumor transformation.  

The nonstructural protein NS5A, which is embedded on the ER membrane, 

has been shown to alter the intracellular Ca2+ levels with increased ER Ca2+ 

efflux. The released Ca2+ can be readily taken by mitochondria and increase the 

production of mitochondrial oxidants. As a consequence, the NS5A functions as 

a transcriptional transactivator to induce the activation of NF-κB and STAT3 

(160).   
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Another viral protein p7, a small hydrophobic uncharacterized protein on 

the ER membrane, has been found to form hexamers and function reminiscent of 

a Ca2+ ion channel on artificial lipid membrane (159). The reconstituted channel 

can be blocked by amantadine or long-alkyl-chain iminosugar derivatives. This 

finding raises the possibility that p7 might be responsible for the flow of Ca2+ from 

ER to the cytoplasm.   

 

 Enterovirus. Poliovirus and coxsachievirus are two typical 

enteroviruses in the picornaviridae family that contains a positive-sense ssRNA. 

The single RNA genome encodes four structural proteins (VP1-4) and ten 

nonstructural proteins (2Apro, 2B, 2C, 3A, 3B, 3Cpro, 3Dpol, 2BC, 3AB, and 3CDpro). 

Among these, the 2BC protein of poliovirus has been shown to induce an 

increase in cytosolic Ca2+ concentration, possibly via the voltage-sensitive Ca2+-

channels 2 or 3 h postinfection. This time point is coincident with a period during 

which the viral proteins are actively synthesized (165). The 2B protein of 

coxsakievirus leads to the decrease of Ca2+ concentrations in subcellular 

compartments, such as mitochondria, Golgi complex and ER, by forming pores 

on these membranes and subsequently increasing Ca2+ efflux from these 

organelles. The substantial decrease of Ca2+ in ER and Golgi complex has been 

correlated with the inhibition of protein trafficking pathways, and thus down-

regulating host anti-viral immune response (225). More interestingly, the 

perturbation of Ca2+ homeostasis by the 2B protein induces the inhibition of 
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apoptotic cell response triggered in early infection and serves to provide the virus 

a suitable time window for viral RNA replication and protein synthesis (166-169).  

 

Human immunodeficiency virus type 1 (HIV-1). HIV, the etiological 

agent of acquired immune-deficiency syndrome (AIDS), contains a 9.2 Kb single-

stranded RNA genome that encodes for polyproteins processed into matrix 

protein, capsid protein, nucleocapsid (NC), gp 120, gp41, protease, reverse 

transcriptase, integrase and p6, as well as six accessory proteins (Vif, Vpr, Nef, 

Tat, Rev and Vpu). Three HIV-1 proteins, namely gp120, Nef, and Tat, have 

been individually shown to alter the Ca2+ homeostasis in HIV-infected cells.  

Gp120, one of the envelope glycoproteins that forms the HIV-1 surface 

spikes, is essential for the attachment of HIV to the membrane immunoglobulin 

CD4 and viral entry into host cells. The processing of the precursor protein gp160 

into gp120 and gp41 has been shown to be a Ca2+-dependent process (226). 

Furthermore, gp120 is capable of inducing neurotoxicity by increasing Ca2+ influx 

into the cytoplasm of fetal neurons and astrocytes via Na+/H+ exchangers, L-type 

voltage-sensitive Ca2+ channels and NMDA receptors (191,193). Gp120 can also 

induce the elevation of Ca2+ in presynaptic terminals of rat cortical synaptosomes 

(194) and in the cytoplasm of human intestinal epithelial cells HT-29-D4 (195). 

These findings suggest that drugs that block gp120-induced intracellular Ca2+ 

changes in the human brain might be potential candidates for the treatment of 

HIV-1 dementia and enteropathy.  
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Nef, a highly conserved accessory protein among primate lentiviruses, 

plays a major role in the down-regulation of immunologically relevant cell surface 

protein CD4 and MHCI (227). In addition, Nef has been demonstrated to induce 

cytosolic Ca2+ increase through its interaction with IP3R residing on ER 

membrane, and subsequently promotes the T cell receptor-independent 

activation of the NFAT pathway in Jurkat T cells (182). The activated NFAT, a 

transcriptional factor responding to the low-amplitude intracellular Ca2+ 

oscillations, can further promote the viral gene transcription and replication (228). 

The increase in cytosolic Ca2+ is also demonstrated in differentiated 

myelomonocytic HL60 cells (183). The elevation in the intraceullular Ca2+ storage 

seems to decrease store-operated Ca2+ influx and might be associated with Nef-

related pathophysiology. In addition, it is interesting to note that a Src-like 

protein-tyrosine kinase (PTK) coimmunoprecipitates with both Nef and the IP3R. 

Given this, it is hypothesized that Nef might modulate the activity of the IP3R 

activity via its interaction with the Src-like PTK (183).     

Tat, the HIV transcriptional transactivator, is mainly responsible for the 

regulation of the viral gene expression and replication. Tat has been reported to 

either increase or decrease cytosolic Ca2+ in mainly two types of cells: the 

immune cells and neuronal cells. Mediated by the L-type Ca2+ channel DHP 

receptors, Tat has been shown to promote extracellular Ca2+ influx to the 

cytoplasm and stimulate the production of TNFα in primary human monocytes 

(184). In comparison, the treatment of NK cells with HIV Tat blocks the 

phenylalkylamine-sensitive L-type Ca2+ channels and impairs the cytotoxic 
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function mediated by NK cells, thus exacerbating progressive 

immunosuppression during HIV infection (190). The increase in cytosolic Ca2+, 

due to either increased Ca2+ influx via NMDA type glutamate receptor or the 

release of Ca2+ from IP3-sensitive internal stores via IP3R, is observed in both 

fetal neurons, astrocytes and microglia cells (185-187). The Tat-induced 

dysregulation of intracellular Ca2+ leads to neurotoxicity and contributes to HIV-

related dementia.            

Taken together, these three HIV-1 proteins function in concert to alter 

intracellular Ca2+ signaling and further regulate T cell activation, apoptosis and 

cell proliferation.  

 

Human T-lymphotropic virus type 1 (HTLV-1). HTV -1, also called adult 

T-cell lymphoma virus type 1, is a human retrovirus that causes adult T-cell 

leukemia/lymphoma, HTLV-I-associated myelopathy, and Strongyloides 

stercoralis hyper-infection. The 8.5 Kb, single-stranded RNA genome encodes 

the gag, pol, pro and env genes, as well as five accessory proteins (p12I, p13II, 

p21Rex, p27I, p30II and) and two regulatory proteins (Tax and Rex).  HTLV-1 

dysregulates the Ca2+ signaling mainly through two accessory proteins: p12I and 

p13II.  

The accessory protein p12I, residing on the membrane of ER and Golgi 

complex, increase cytosolic Ca2+ by triggering Ca2+ release from ER possibly via 

IP3R, and meanwhile, enhances Ca2+ influx through Ca2+ release-activated Ca2+ 

channels (198). The elevated basal intracellular Ca2+ leads to the activation of 

http://en.wikipedia.org/wiki/HTLV-I-associated_myelopathy
http://en.wikipedia.org/wiki/Strongyloides_stercoralis
http://en.wikipedia.org/wiki/Strongyloides_stercoralis
http://en.wikipedia.org/wiki/Strongyloides_stercoralis
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nuclear factor activated T-cell (NFAT) mediated transcription, and thus promoting 

lymphocyte activation to support early viral infection. p12I has also been shown 

to interact with Ca2+-responsive protein, p300, to mediate various transcription 

factors (199) and further promote lymphocyte survival.  

The other accessory protein p13II is an 87-amino-acid mitochondrial 

protein that can cause swelling and depolarization of mitochondria by increasing 

inner membrane permeability to cations, such as Ca2+, Na+ and K+ (200). Such 

changes are believed to be responsible for promoting ceramide- or Fas ligand-

induced apoptosis in T lymphocytes expressing p13II (201).  

Thus, the two viral accessory proteins that are targeted to different cellular 

compartments function independently to modulate apoptosis and proliferation of 

infected cells. 

 

Rotavirus. Rotavirus, a member of the reoviridae family that contains 

double-stranded RNA genomes, is the major etiological agent of viral 

gastroenteritis in young children. Ca2+ plays a key role in the morphogenesis, 

replication and pathogenesis of rotavirus (229). Rotavirus-infected MA104 and 

HT29 cells have been shown to exhibit a progressive elevation of cytosolic Ca2+ 

due to increased membrane permeability (205). The entry of Ca2+ is partially 

blocked by L-type voltage-sensitive Ca2+ channel blocker metoxyverapamil 

(D600). More importantly, the permeability pathway is selectively permeable for 

the passage of divalent ions that include Ca2+, Ba2+, Sr2+, Mn2+ and Co2+, but is 

impermeable to the trivalent cations La3+ and Cr3+. Such metal ion selectivity is 
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observed commonly in divalent cation channels in both excitable and 

nonexcitable cells (230). Other mechanisms that involve both phospholipase C 

(PLC)-dependent and PLC-independent pathways have also been shown to 

account for intracellular Ca2+ increase (206,231). The exogenous NSP4, which 

can induce diarrhea in rodent pups,  increases cytosolic Ca2+ concentration via 

the activation of PLC and the resultant ER Ca2+ depletion through IP3R (206). In 

contrast, endogenously expressed NSP4 in Sf9 cells and HEK293 alters the ER 

membrane permeability and causes a sustained increase of cytosolic Ca2+ 

concentration that is independent of the PLC pathway (206,231). In this regard, 

further investigation is needed to elucidate the mechanisms underlying the 

alteration of intracellular Ca2+ homeostasis in rotavirus-infected cells.  

 

Herpesviruses. An increase in intracellular Ca2+ has been observed in 

epithelial and T cells infected with HHV-1, HHV-2 (211), HHV-4 (Epstein-Barr 

virus, EBV) (216,217), HHV-5 (cytomegalovirus, CMV) (210), and HHV-8 

(Kaposi’s sarcoma-associated herpesvirus, KSHV) (213-215). The alteration in 

Ca2+ signaling leads to a variety of cellular responses in cells transfected with 

different HSV. 

Exposure of epithelial cells (CaSki and Vero) with HHV-1 and HHV-2 has 

been shown to result in a rapid and transient increase in intracellular Ca2+ by 

triggering ER Ca2+ release via IP3R, but not Ca2+ influx through plasma 

membrane. Such change in turn triggers FAK phosphorylation 5-10 min following 

virus exposure (211). Notably, FAK phosphorylation has been demonstrated to 
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promote actin cytoskeleton reorganization and virus trafficking. In this way, 

altered Ca2+ signaling is directly linked to the phosphorylation event and plays a 

central role in facilitating early events in HHV-1/HHV-2 invasion.  

Epstein-Barr virus (EBV), or HHV-4, is the etiological reagent for infectious 

mononucleosis and a number of malignant diseases, such as Burkitt’s lymphoma 

and nasopharyngeal carcinoma. It has been shown that EBV infection can induce 

a rise in intracellular Ca2+ due to increased Ca2+ influx from the extracellular 

space (216). The rise in intracellular Ca2+, which is associated with protein kinase 

C traslocation from the cytosol to membrane bound compartments and the 

activation of B lymphocytes, can be blocked by verapamil, a L-type Ca2+-channel 

blocker (232).  The EBV latency-associated gene product latent membrane 

protein 2A (LMP2A) has been shown to function as a negative modulator of the 

activation of B lymphocytes by binding to the Src family kinases Lyn and Syk 

(233). Such interaction is responsible for blocking the Ca2+ mobilization in B 

lymphocytes and inhibiting the induction of lytic infection of EBV, and thus 

evading the host immune clearance of EBV infection (217).  

Infection of fibroblast cells by cytomegalovirus (CMV), or HHV-5, has been 

shown to induce more than 2-fold increase in cytosolic Ca2+ (210). The rise can 

be further blocked by nifedipine and verapamil, indicating that L-type Ca2+ 

channel might contribute to the intracellular Ca2+ increase. Moreover, a CMV-

encoded protein pUL37x1, which is capable of trafficking from ER to 

mitochondria, can induce Ca2+ release from the ER store with concomitant 

morphological changes, such as cell rounding, cell swelling, actin cytoskeleton 
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reorganization and mitochondrial fission (209). The altered Ca2+-signaling is 

further linked to the antiapoptotic activity of pUL37x1.   

Kaposi’s sarcoma-associated herpesvirus (KSHV), also called HHV-8, is 

the etiological agent of Kaposi’s sarcoma and closely associated with primary 

effusion lymphoma and multicentric Castleman’s disease (234,235). Alteration in 

Ca2+-signaling has been most often reported in cells expressing K1, K7 and viral 

macrophage inflammatory protein (vMIP) -I and –II, all of which are abundantly 

expressed during lytic phase of the viral life cycle. The KSHV K1 protein is a 

lymphocyte receptor-like protein that can transduce external stimuli to elicit 

downstream signaling pathways and induce cytokine production through its 

cytosolic immunoreceptor tyrosine-based activation motif (ITAM). By interacting 

with cellular Src homology 2-containing proteins including Lyn, Syk, p85, PLCγ2, 

and RasGAP, the expression of K1 protein leads to the intracellular Ca2+ 

immobilization and the subsequent activation of NFAT and AP-1 pathways (213). 

The K7 protein is a mitochondria-targeted protein expressed during the lytic 

replication of KSHV. K7 has been shown to enhance ER Ca2+ release through its 

interaction with the cellular Ca2+-modulating cyclophilin ligand and further inhibit 

apoptosis (215). Thus, the lytic K7 protein protects KSHV-infected cells from 

apoptosis and allows the completion of the viral lytic replication. vMIP-1 and 

vMIP-II are chemokine homologs involved in the signal transduction and 

chemotaxis of monocytes and T lymphocytes Both proteins are capable of 

inducing transient Ca2+ mobilization by activating the CC chemokine receptor 5 in 
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K562 cells. In addition, vMIP-1 can induce Ca2+ signal through its interaction with 

CC chemokine receptor 8(214).  

 

HBV. HBV is a para-retrovirus that infects 3-6% of the world’s population. 

The multifunctional hepatitis B virus X protein (HBx) has been shown to alter the 

Ca2+ signaling to benefit viral replication and core assembly. Upon HBx 

expression, the intracellular Ca2+ increases due to Ca2+ release from ER and 

mitochondria. The rise in cytosolic Ca2+ triggers the activation of a Ca2+-

dependent proline-rich tyrosine kinase-2, which in turn activates the Src kinase 

and up-regulates reverse transcription (224). More strikingly, such effects exerted 

by HBx can be substituted with simple increase in cytosolic Ca2+, suggesting a 

fundamental requirement of Ca2+ for HBV replication and infection. More than 

that, the increased Ca2+ by HBx has also been shown to enhance the HBV core 

assembly (40). Treatment of transfected HepG2 cells with the cell-permeable 

Ca2+-chelator BAPTA-AM and cyclosporine A results in reduced HBV capsid 

assembly, whereas the application of thapsigargin, a strong inhibitor of the 

sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA), increased HBV 

core assembly. Overexpression of HBx has been further demonstrated to 

stimulate caspase-3-dependent cleavage of the plasma membrane Ca2+-ATPase 

(PMCA), a pump that extrudes Ca2+ from cytoplasm to extracellular environment. 

HBx is also linked to apoptosis by inducing morphological changes and reducing 

Ca2+ uptake in mitochondria (223).  
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4.2. Viral Ca2+-binding proteins 

Ca2+ plays important roles in the replication cycle of some of viruses 

through its direct interactions with viral proteins. For some viruses, such as 

polyomaviruses (33,34), rotavirus (36,38,39,236), hepatitis B virus (40), turnip 

crinkle virus (41,42) and tobacco mosaic virus (33,43), Ca2+ is required to 

maintain the structural integrity and/or the proper assembly of virions. Ca2+ is 

required for cell fusion mediated by human immunodeficiency virus type 1 

envelope glycoprotein gp 160 (44,45). For influenza B virus, the binding of Ca2+ 

has been reported to enhance the stability of the virion associated neuraminidase 

and to promote its enzymatic activity (46,237). To date, the majority of the 

reported viral CaBPs are structural proteins, including both capsid proteins and 

envelope proteins.  

According to the location of Ca2+-coordinating residues, Ca2+-binding sites 

can be primarily divided into two types: discontinuous and continuous Ca2+-

binding sites. Both types of Ca2+-binding sites have been found in different 

families of viruses (Table 4.2).  

 

Discontinuous viral Ca2+-binding sites 

In discontinuous Ca2+-binding sites, Ca2+-coordinating ligand residues that 

are distantly separated in the primary sequence or originate from different 

polypeptides approximate in space to form Ca2+-binding pockets. By searching 

through the Protein Data Bank (PDB), such Ca2+-binding sites have been most 

frequently found in the coat protein of both RNA viruses (e.g., enteroviruses, 
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rhinovirus, sobemoviruses and rotavirus) and DNA viruses (e.g., parvoviruses 

and polyomaviruses), as well as in the NSP4 of rotavirus and the neuraminidase 

of Influenza viruses (Table 4.2).  

 

Coat protein 

The binding of viral coat protein to Ca2+ ions have been seen in some plant 

viruses (such as Sobemoviruses, Tobamoviruses and some viruses in the family 

of Tombusviridae), as well as a number of animal viruses including the 

picornaviruses, rotavirus, parvoviruses and polyomavirus  (Table 4.2).  In these 

viruses, Ca2+ ions are required for the efficient assembly and/or disassembly of 

viral particles. In the extracellular milieu, the Ca2+ concentration is maintained at 

millimolar level, whereas the Ca2+ concentration drops ~100-1000 fold in the 

cytoplasm. The viruses can make use of the much lower cytosolic Ca2+ 

concentration to initiate the uncoating event (238,239). Upon entry into the host 

cells, the viral particles undergo swelling or “solubilization” due to the repulsive 

forces between negatively charged residues that are otherwise neutralized by the 

bound Ca2+. The incorporated Ca2+ ions may situate between the interacting 

interfaces of capsid subunits (Fig. 4.2A) or sit on the symmetric threefold or 

fivefold axis (Fig. 4.2B). Moreover, the numbers of bound Ca2+ and coordinating 

geometry of the Ca2+-binding sites also differ for different viruses. Representative 

examples can be found in both plant and animal viruses that have icosahedral or 

helical (e.g., tobacco mosaic virus) capsids (Table 4.2). 
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Figure 4.2. Examples of viral Ca2+-binding proteins with determined 3D 
structures. (A), 3D representation of the icosahedral asymmetric unit of the 
cocksfoot mottle virus capsid and the location of the incorporated Ca2+ ions 
(PDB code: 1ng0). The assembling unit is formed by three subunits, A (blue), 
B (green) and C (red) that are chemically identical but slightly different in 
conformational arrangement. Ca2+ situates between the interfaces of 
neighboring subunits (A-B, A-C or B-C). The solid pentagon, triangle and oval 
represent five-, three-, and two-fold axes of the icosahedron. (B), Ca2+ ion 
located on the fivefold axis of the capsid of human rhinovirus 3 (HRV3) (PDB 
code: 1rhi). The icosahedral capsid of HRV3 is composed of 60 copies of 
each of the four capsid proteins VP1 (blue), VP2 (green), VP3 (red) and VP4 
(black). VP1, VP2 and VP3 are exposed to the external surface of the viral 
particle, whereas VP4 lines in the internal surface. A Ca2+ ion is found situated 
on the fivefold axis of the capsid and is coordinated by 5 oxygen atoms from 
the main chain carbonyl group of S1141 on VP1 (enlarged area). (C), The core 
Ca2+-binding pocket in the oligomerization domain of NSP4 from rotavirus 
(PDB code: 2o1j). The domain self-assembles into a paralleled tetrameric 
coiled-coil. Chains A, B, C and D are shown in blue, green, orange and red, 
respectively. The Ca2+ ion is coordinated by six oxygen atoms from the side 
chains of Q123 on chains A to D, as well as the side chains of E120 on chains A 
and C. In addition, the E120 on chains B or D form salt bridges with the residue 
R119 on the neighboring chains A or C. (D), The 3D structure of neuraminidase 
of influenza B virus (PDB code: 1nsb). The cartoon only represents half of the 
tetrameric form of this enzyme. Three Ca2+-binding sites are found in two 
identical subunits, A (blue) and B (red). Each subunit contains one octahedral 
Ca2+-binding site (upper panel). Another site (lower panel), coordinated by the 
fourfold symmetry-related E167. 
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Table 4.2. Roles of Ca2+ in the life cycle of virus and viral Ca2+-binding proteins (CaBPs). 
 

Virus Roles of Ca2+ 
Viral CaBPs 

(proposed Ca2+-binding site) 
Methods 
(Kd, µM) 

Reference 

(+) ssRNA 
viruses 

    

Dengue Virus Virus release   (240) 
Human rhinovirus Virus stability; acid-

induced uncoating 
Capsid proteins [PDB code: 1rhi; 1v9u] 
(D1137[HRV1A]; S1141[HRV3];Site 1: 
N1141; Site 2: E3200[HRV14]) 

X-ray (170,241,242) 

Coxsackievirus 
A21 

Capsid stability VP1 [PDB code: 1z7s] 
(S1021/S1024/T1022/N1067) 

Cryo-EM (243) 

Coxsachievirus B3 Capsid stability VP1 (D1133); VP3 (D3203)  X-ray (244) 
HAV Virus attachment   (245,246) 
STNV Capsid stability Coat protein [PDB code: 2buk] 

(Site 1: E25/S61/Q64/D194;                                      
Site 2: D55; Site 3:T138) 

X-ray; 
Fluorescence 
(Eu3+: 0.0011) 

(247-249) 

Rubella virus ↑viral protease stability NSP (D1206/S1208/D1210/T1012/D1217) Fluorescence; 
NMR  
(La3+: 14; Tb3+: 
47; Ca2+: 247 ) 

(250) 

TBSV ↑virus swelling  Coat protein [PDB code: 2TBV] 
(aa 149-155; 181-186) 

X-ray;                   
Cryo-EM 

(251-253) 

TCV Virus movement Coat protein  
(D155/D157/K160/E127/D199) 

X-ray (41,42,238) 

SeMV Capsid stability and 
assembly 

Coat protein [1smv] 
(D145/D149/Y205/N267/N268) 

X-ray (254) 

CfMV Capsid stability and 
assembly 

Coat protein [1ng0] 
(D136/D139/L196/N252/L253) 

X-ray (255) 

RYMV Capsid stability and 
assembly 

Coat protein [1f2n] 
(D126/D129/V182/N237/T238) 

X-ray (142) 

SCPMV Capsid stability and 
assembly 

Coat protein [4sbv] 
(D138/D141/F199/N259/L260) 

X-ray (256,257) 
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Virus Roles of Ca2+ 
Viral CaBPs 
(proposed Ca2+-binding site) 

Methods 
(Kd, µM) 

Reference 

TMV Capsid stability and 
assembly 

Coat protein X-ray; 
Electrode 
(Ca2+: ~100) 

(33,43) 

RCNMV Capsid stability Coat protein  
(aa 93-99; 125-130) 

Cryo-EM (258) 

TNV Capsid stability and 
assembly 

Coat protein [1c8n] 
(Site 1: D160/D163/T219/N275;  
Site 2: N93/S94/S173/N175) 

X-ray (259) 

(-) ssRNA viruses     

Ebola virus Triggers 
conformational 
change; ↑fusion with 
PM 

GP/fusogenic domain CD (260) 

Hantavirus ↑N-N interactions  N protein  
(aa 401–412) 

 (261) 

Influenza A virus  ↑enzymatic
 
activity and 

virus fusion 
Neuraminidase [PDB code: 3nn9] 
(D293/G297/N347/D324) 

X-ray (262-266) 

Influenza B virus ↑thermostability and 
enzymatic activity 

Neuraminidase [PDB code: 1nsb ] 
(Site 1: E167; Site 2: 
D292/T296/D323/G343/G345) 

X-ray (46,237) 

Parainfluenza  
viruses  

Enzymatic activity HN protein [PDB code: 1z4v; 1v2i; 1e8t] 
(D250/S253/A255/A285) 

X-ray (267-269) 

Sendai virus Virus morphogenesis; 
envelope protein 
transportation;  

  (270-272) 

 Within the core of 
tetrameric coiled coil 

Phosphoprotein 320-433 [PDB code: 1ezj] 
(N389) 

X-ray (273) 

RSV ↑fusion protein 
synthesis and 
syncytium formation 

  (274) 

(+) ssRNA viruses require DNA intermediates 
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Virus Roles of Ca2+ 
Viral CaBPs 
(proposed Ca2+-binding site) 

Methods 
(Kd, µM) 

Reference 

HIV-1 Triggers 
conformational change 
(α-helix→β sheet); 
↑virus fusion to PM 

gp41 N-terminal fusion peptide IR (275) 

 Virus fusion to PM gp41628-683 
(aa 628-648) 

Fluorescence 
(Ca

2+
: 40) 

(44,276) 

 gp160 processing   (226,277) 

 virus attachment and 
cell fusion 

  (45,278,279) 

ASV Alters enzymatic 
activity 

Integrase [PDB code: 1svi] 
(D64/D121) 

X-ray (280,281) 

BLV ↑gp51 and p24 
synthesis 

  (282) 

dsRNA viruses     
IBDV Capsid stability and 

assembly 
VP2 [PDB code: 2gsy; 2df7] 
(D31/D174) 

X-ray (283,284) 

Rotavirus Virus maturation and 
stability 

VP7 
(aa 270-282) 

 (38,39,229)  

 Capsid stability; 
assembly 

VP6 [PDB Code: 1qhd] 
(Site 1: Y248/N250; Site 2: 
D340/161/E134/D337; Site 3: D62/Q47; 
Site 4: D286/N266; Site 5: 
E379/D380/Q383/Q268) 

Cryo-EM (285) 

 NSP4 oligomerization NSP4 [PDB code: 1g1i; 2o1k] 
(E120/Q123) 

X-ray (286) 

ssDNA viruses     

CPV/FPV capsid stability and 
assembly 

VP2 [PDB code: 1c8d; 1c8g] 
(Site 1: D373/D375/G362/G363; Site 2: 
D237/D239; Site 3: D237/D240/D405) 

X-ray (287,288) 

dsDNA viruses     

Adenovirus 7 Virus internalization   (289) 
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Virus Roles of Ca2+ 
Viral CaBPs 
(proposed Ca2+-binding site) 

Methods 
(Kd, µM) 

Reference 

BKV Capsid stability VP1 
(Site 1: E331; Site 2: D346) 

Cryo-EM (290) 

MPyV Capsid assembly VP1  
(aa 266-277) 

45Ca binding (31) 

SV40 Assembly, cell entry 
and nuclear entry 

VP1 
(Site 1: E46/E48/S213/E216/E330;                 
Site 2: E157/E160/K214/E216/D345) 

X-ary (34,291,292) 

BFDV Capsid assembly VP1  
(aa 237-248) 

45Ca binding (293) 

dsDNAviruses with RNA intermediates 

HBV Core assembly and 
virus replication 

 TEM (40) 

     

Others     
Bacteriophage 
φX174 

Trigger conformational 
change; virus assembly 

F protein  
(Site 1: 
G1321/D1421/M1424/S1426/Q1004    
 Site 2: S1001/N1002); 
 G spike protein 
(Site 3: D2117) 

X-ray (294,295) 

Bacteriophage G4 Virus assembly F protein [PDB code: 1gff] 
(A1321/N1322/D1421/M1424/S1426) 

X-ray (296) 

     

Bacillus subtilis 
phage 41c 

Adsorption; 
penetration; 
Intracellular phage 
development 

  (297) 

fd and M13 virus Lateral aggregation and 
bundle formation 

 EM (298,299) 

     



108 

  

Abbreviations: Kd, dissociation constant; HAV, hepatitis A virus; STNV, Satellite tobacco necrosis virus; NSP, nonstructural protein; TBSV, tomato 
bushy stunt virus; EM, electron microscope; TCV, turnip crinkle carmovirus; SeMV, Sesbania mosaic virus; CMV, cocksfoot mottle virus; RYMV, 
rice yellow mottle virus; TMV, tobacco mosaic virus; RCNMV, Red clover necrotic mosaic virus; PM, plasma membrane; GP, envelope glycoprotein; 
CD, circular dichroism spectroscopy; HN: Hemagglutinin-neuraminidase; N protein, nucleocapsid protein; PDB, protein data bank; RSV, 
respiratory syncytial virus; HIV, human immunodeficiency virus; IR; infrared spectroscopy; BLV, bovine leukemia virus; IBDV, infectious bursal 
disease virus; CPV, canine parvovirus; FPV, feline panleukopenia virus; MPyV, Murine polyomavirus; SV40, simian virus 40; BFDV, budgerigar 
fledgling disease virus; HBV, hepatitis B virus; TEM, transmission electron microscope.  

 

 

 

 

 

 



109 

  

The virion of cocksfoot mottle virus (CfMV), which belongs to the genus 

Sobemovirus with a single-stranded, positive-sense RNA genome, has an 

icosahedral capsid composed of 180 copies of coat protein monomers 

assembled in T=3 quasi-equivalent symmetry (255). These monomers, all of 

which contain 253 amino acids, have a jelly-roll β-sandwich topology and exhibit 

three slightly different conformations, denoted as quasi-equivalent positions A, B 

and C (Fig. 4.2A). The subunits A, B and C are assembled as asymmetric units 

that eventually form the icosahedral capsid. Three Ca2+ ions, each incorporated 

between the interacting surfaces of subunits (A-B, B-C and A-C), function as 

reusable “glue” to stick adjacent subunits together and stabilize the capsid. Each 

Ca2+ ion is coordinated by Oδ1 of residues Asp136 and Asp139 from one subunit 

and the main chain carbonyl oxygen of Leu196, Oδ1 of Asn252, and the C-terminal 

carboxyl oxygen from the other interacting subunit (Fig. 4.2A). Such Ca2+-binding 

sites seem to adopt an octahedral geometry with only five ligands and an 

average Ca-O distance of 2.4 Å (142,254,255).  

The incorporation of Ca2+ ions into the capsid is also observed in the animal 

viruses with either RNA or DNA genomes. In human rhinovirus 1A (HRV1A), 

HRV3 and HRV14, Ca2+ ions are located at the five-fold axes of the icosahedral 

capsids (Fig. 4.2B). The metal ions are coordinated with the oxygen atoms from 

the main chain carbonyl group of Asn1141 and S1141 in five copies of the 

symmetry-related VP1 of HRV14 (241) and HRV3 (242), respectively. In HRV1A, 

the Ca2+ coordinates with the Oδ1 of Asp1137 of fivefold-related VP1 (300). With 

two additional oxygen atoms from water molecules above or below the metal ion 
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as coordinating ligands, the Ca2+-binding pocket forms a pentagonal bipyramidal 

geometry with Ca-O distance ranging from 2.3 Å to 3.1 Å. In HRV14, another 

Ca2+ ion with similar property coordinates with the Oε1 of Glu3200 and situates 

itself on the threefold axis of the capsid. Similar to HRV14, each asymmetric unit 

of the icosahedral capsid of Coxsachievirus B3, which belongs to the genus 

enterovirus in the picornaviridae family, contains two Ca2+ ions, with one interacts 

with Oδ1 of Asp3203 from VP3 on the threefold axes and the other involves water-

mediated interaction with the fivefold-related residues Asp1133 on VP1 (244). 

Three Ca2+ ions are incorporated in the ssDNA virus bacteriophage φ174. Site 1 

is located approximately 10 Å from the threefold axis and is coordinated with six 

ligands from the main chain of Glu1321, Asp1421, Met1424, S1426 and the side chain 

of Gln1004 and Asp1421 in the F protein. Site 2 in the F protein and Site 3 in the G 

spike protein situate on the threefold of and fivefold axes, respectively. The Ca2+ 

ion at Site 1 is functionally important for the injection of viral DNA into the host 

cells, whereas the binding of Ca2+ ions to Site 2 and Site 3 on the axes stabilize 

the capsid (294,295).  

The ssDNA parvoviruses, feline panleukopenia virus (FPV) and canine 

parvovirus (CPV), bind three and two Ca2+ ions, respectively (287). CPV was 

discovered in 1978 as a host range variant of FPV. Both FPV and CPV contain a 

pH-dependent dual Ca2+-binding site that is separated by 4.6 Å. The largest 

structural difference between these two viruses is confined to a flexible surface 

loop (aa 359-375) in the capsid protein VP2 that could possibly interact with host 

cellular surface molecules. This loop forms a third Ca2+-binding site in FPV, but 
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not in CPV. The binding of Ca2+ to this particular site causes conformational 

changes in VP2 and seems to influence the host range of different parvoviruses 

(287).  

The binding of Ca2+ to the capsid of dsDNA viruses is best exemplified in 

simian virus 40, a small DNA virus that belongs to the polyomaviridae family. 

Mutations at the Ca2+ binding ligands lead to defects in capsid assembly at 

nonpermissive temperature (301). Even after the formation of virus-like particles 

(VLPs), the Ca2+ mutants are much less infectious than the wild type virus. More 

interestingly, some of the mutants fail to enter the cell (e.g., E330K in Site 1) or 

enter the nucleus (e.g., E157A-E160A and E216K in Site 2) due to its incapability 

to bind Ca2+ and subsequent premature VLP dissociation. Thus, the binding of 

two Ca2+ ions to the dual Ca2+ binding site on VP1 are essential for the assembly 

of the icosahedral capsid, as well as the cellular and nuclear entry (34,292). 

 

NSP4 of rotavirus 

The NSP4 of rotavirus, a transmembarne glycoprotein primarily embedded in 

the membrane of endoplasmic reticulum (ER) of rotavirus-infected cells, is 

required for the budding of immature viral particle into the ER lumen and thus 

plays a central role in the morphogenesis of rotaviruses (229). The NSP4 also 

functions as an enterotoxin and triggers the ER Ca2+ release, eventually resulting 

in gastrointestinal symptoms (36,231). The NSP4 itself has been revealed to 

contain a core Ca2+-binding site when it oligomerizes into a functional homo-

tetramer (286). The Ca2+ ion is coordinated by the side chains of four Gln123 and 
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two Glu120 residues from four neighboring identical polypeptides (Fig. 4.2C). This 

Ca2+-binding site appears to stabilize the tetrameric state of NSP4 in the 

extracellular space and the cytoplasm, where the Ca2+ concentration could be 

increased by 5 folds after rotavirus infection (206).  

.    

Neuraminidase of Influenza viruses 

The neuraminidase of influenza viruses catalyses the cleavage of the 

glycosidic linkages between the terminal silica acid residues and the adjacent 

carbohydrate moieties on the surface of infected cells. This activity is required for 

the release of virus from the cell surface. Two distinct Ca2+-binding sites are 

found in the neuraminidase (237,264). One high-affinity site (Fig. 4.2D) is close 

to the active site and adopts an octahedral geometry with six coordinating ligands 

from the carboxyl group of the side chains of Asp323, the carbonyl groups of the 

main chains of Gly343, Gly345, Thr296, Asp292 and one molecule of water. This 

Ca2+-binding site is conserved among influenza A virus (262,264), influenza B 

viruses (237) and the parainfluenza virus (268). The other relative low-affinity site 

is located on the fourfold axis of the tetrameric neuraminidase. The high-affinity 

Ca2+-binding site is needed for the thermostability of the enzyme and optimal 

enzymatic activity; whereas the low-affinity site has been postulated to hold the 

tetramer together (46).  
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Continuous viral Ca2+-binding sites 

Continuous Ca2+ binding sites are best characterized by the 29-residue 

the EF-hand motifs, where the Ca2+ ions are coordinated by seven oxygen atoms 

from the sidechain carboxyl or hydroxyl groups (loop sequence positions 1, 3, 5, 

12), the main chain carbonyls (position 7), and a bridged water (position 9) by 

adopting a pentagonal bipyramidal geometry (302). The helix-loop-helix EF-hand 

moiety is one of the most widely used motifs in proteins and is ubiquitously 

distributed across bacteria, archaea, and eukaryotes (6,138). Upon binding to 

Ca2+, this motif may undergo conformational changes that enable Ca2+-regulated 

functions, as seen in Ca2+ effectors such as calmodulin (CaM) and troponin C 

(TnC) or Ca2+ buffers such as calreticulin and calbindin D9k. While the majority of 

the known EF-hand CaBPs contain paired EF-hand motifs, single nuclear EF 

hands have also been discovered in bacteria and eukaryotes (5,6). The recently 

reported ER Ca2+ sensor, stromal interaction molecule 1, has been confirmed to 

function as a monomer in the presence of Ca2+ (303). 

Though EF-hands have been found abundantly in eukaryotes and 

bacteria, literatures on EF-hand or EF-hand like Ca2+-binding motifs in virus 

proteins are, nevertheless, scarce, possibly due to lack of accurate prediction 

methods and robust validating methodologies. A thorough search in PubMed with 

the key words “EF-hand and virus” only results in 4 examples of viral EF-hand or 

EF-hand like motifs: the NSP protease domain (DASPDGTGDPLD) of rubella 

virus (250), the VP1 (DENGVGPLCKGE) of polyomavirus (31), the VP7 outer 

capsid protein (DITADPTTAPQTE) of rotavirus (39), and the transmembrane 
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protein gp 41 of HIV-1 (44). The binding of Ca2+ to these sequences either 

enhances the protein stability or promotes the enzyme activity.  

Our laboratory has developed a pattern search method to predict 

continuous Ca2+-binding sites from genomic information 

(http://www.chemistry.gsu.edu/faculty/Yang/Calciomics.htm). This bioinformatic 

tool has been successfully applied to predict and analyze potential bacterial EF-

hand and EF-hand like Ca2+-binding motifs at genome-wide level (Chapter 3) (6). 

Given the diversity of viral genomes and its close association with host cells that 

are abundant with the EF hand motif, it would be surprising to find only 4 cases. 

Driven by that, we initiated a comprehensive search for potential viral EF-hand 

motifs by screening all viral genomic information that is available on the protein 

database Swiss-Prot/TrEMBL. With our developed method, along with the pattern 

PS00018 (http://ca.expasy.org/prosite/PDOC00018) from Expert Protein Analysis 

System (ExPASy) proteomic server, we have detected a number of additional 

potential EF-hand motifs (summarized in Table 4.3), though the Ca2+-binding 

capability of these sequences remain to be experimentally verified. The 93 

putative EF-hand or EF-hand-like motifs are found in the genomes of almost 80 

different viruses, spreading throughout the majority of virus families. Almost all of 

these matches are found to be single EF-hand motifs except for two EF-hand or 

EF-hand-like motifs detected simultaneously in the envelope protein of HIV-1 and 

the immediate-early protein RSP40 of pseudorabies virus. These putative viral 

EF-hand-containing proteins are involved in a wide range of viral or cellular 

events, such as viral adsorption and fusion (neuraminidase of Influenza A virus, 

http://www.chemistry.gsu.edu/faculty/Yang/Calciomics.htm
http://ca.expasy.org/prosite/PDOC00018
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Sendai virus and human parainfluenza virus 1; envelope glycoprotein of HIV-1; 

spike protein of rat coronavirus, murine hepatitis virus and bovine ephemeral 

fever virus; glycoprotein B of feline herpesvirus 1), virion assembly and 

disassembly (coat protein of beet yellow stunt virus, papaya ringspot virus and 

African horse sickness virus), viral precursor protein processing (nonstructural 

protease of rubella virus), viral nucleic acid modification and replication (mRNA-

capping enzyme of alphavirus; RNA-directed RNA polymerase of tobamovirus, 

respiratory syncytial virus, and influenza A virus; DNA methylase of sulfolobus 

virus; DNA polymerase of nucleopolyherosis virus and human herpesvirus 2) and 

transcriptional regulation of viral genes (ICP0 of bovine herpesvirus 1; IE63 of 

human herpesvirus 3; ICP4 of equine herpesvirus 1). In addition, the functions of 

almost 20% of these matched proteins remain uncharacterized. We hope that our 

prediction would serve as a prelude to more extensive searching for additional 

viral Ca2+-binding proteins that are closely associated with virus-host interacting 

events.  
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Table 4.3. Putative EF-hand and EF-hand-like Ca2+-binding motifs predicted in virus genomes. 
 

Virus Accession ID Protein name 
Match 

Ranges 
Sequences 

EF-hand motifs  1 2 3 4 5 6 7 8 9 10 11 12 

(+) ssRNA viruses 

MHV Q5ICX2/Q83331 Spike protein 727-738 D N S T E Q S V D A  C  D 
Rat coronavirus Q9IKD1 Spike protein 726-737 D N S T E Q S V D A  C  D 

Rubella virus P13889 NSP (Protease) 1206-1217 D A S P D G T G D P  L  D 

VEEV P36327 NSP (mRNA-capping 
enzyme nsP1) 

401-412 D Q E D E R P L G L  R  D 

WEEV P13896 NSP (mRNA-capping 
enzyme nsP1) 

399-410 D L D D E K E L G V  R  E 

Sindbis virus P27283 NSP (mRNA-capping 
enzyme nsP1) 

402-413 D L D N E K M L G T  R  E 

SFV P08411 NSP (mRNA-capping 
enzyme nsP1) 

402-413 D L D D E K P L G V  R  E 

RRV P13887 NSP (mRNA-capping 
enzyme nsP1) 

402-413 D L D N E K M L G T  R  E 

SqMV P36341 Movement protein 218-229 N N S G D N E V E F  S  E 

SBLV Q8JW06 3a protein 52-63 N L S S D N R L N F  I  D 

Nora virus Q27YG9 Replication 
polyprotein 

462-473 N K S P D K S V T I  E  D  

Tobamovirus               
(RMV/TMV/TVCV/YoMV) 

Q1L1D7/Q88604/ 
Q88920/Q66220 

RNA polymerase 1358-1369/ 
1362-1373 

D L D S T Q A M E I  L  E 

TTV A1XIP9/A6NA62 Polyportein/ 
RNA polymerase 

1535-1546/ 
196-207 

D V S S S K M L D L  S  E 

BSBMV Q9IF43 29K protein 222-233 D D D G D G V V G D  D  D 

BYSV Q65858 Coat protein 11-22 D S S A S Q T M T A  K  D 

PRV Q98WK3 Coat protein 50-61 D K D N D G A C D G  N  D 

SMoV Q8UYV9 Polyprotein 1388-1399 D K D G D R W V A K  D  E 

(-) ssRNA viruses 
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Virus Accession ID Protein name 
Match 

Ranges 
Sequences 

HRSV-A P28887/O36635/ 
Q82021/Q82027 

RNA Polymerase 
(subunit L) 

1557-1568 D M N T S D L L C V  L  E 

HRSV-B P24567/O42062 Phosphoprotein 229-240 D N D S D N D L S L  D  D 

BRSV P33454/Q77KZ1 Phosphoprotein 229-240 D E S S D N D L S L  E  D   

PPRV Q4PIR9/Q91QS4 Phosphoprotein 74-85 D M S P E D N L G F  R  E 

BEFV P32595/Q56I18 Spike protein 400-411 D K N E D G Y I D I  Q  E 

Puumala virus Q6QTA9 RNA polymerase 1975-1986 D S D E D D D V S Q  L  D 

NDV A0SZV5 RNA polymerase  1529-1540 N H D G S H Q L A D  T  D 

Influenza A virus Q1I0S8 Neuraminidase 68-79 N I S N T K I V N V  Q  D 

 Q0P290 Neuraminidase 68-79 N I N N T N V V A G  K  D 

(+) ssRNA viruses require DNA intermediates 

HIV-1 Q2PNG6 Envelope protein 29-41 D N S T E G T V G G  G  E 

 Q2PN97  29-41 N T S T G G T V G G  G  E 

 Q2PN98  29-41 N N S T G G T V G G  G  E 

 A1Z0A9  132-143 D L N T T N T I N S  S  D 

 Q6EJM9  28-39 N T N N S R I M E G  G  E 

 Q8AF19  139-150 N S S S E N K M E I  G  E 

 P19549/Q03807  141-152 N N S S G G T V E K  E  E 

 Q1G4R9  151-162 N N S S G Q I M E K  G  E 

 Q1HSZ5  137-148 N S S S G K M M E E  G  E  

 Q2NN71  137-148 N S S S E R T M E K  G  E 

 Q1HSY3  143-154 N S S R G K M M E K  G  E 

 Q1HT34  155-166 N N S G G G T V E E  R  E 

 Q1HT21  149-160 N N S S G R T M E E  R  E 

 QIHT20  147-158 N N S S G R T I E E  R  E 

 Q2PN97  147-158 N T S S T G G T V G  G  E 

 Q6QBL0  32-43 N N N S E G R I E R  G  E 

 Q6QUE1  34-45 N T S S E G M V E K  G  E 

 Q71129  24-35 N N S S G K L I E L  G  E 

 Q71313  17-28 N S S D E G K I E K  G  E 
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Virus Accession ID Protein name 
Match 

Ranges 
Sequences 

CYMV Q91B26 Putative protein 129-140 N R D H E Q L C E V  V  E 

dsRNA viruses 

PsV-F Q4G3H1 Capsid protein 294-305 D E D R S D L L T T  L  D 

AHSV-6 Q64913 VP6 protein 144-155 N D D A T R N V G S  S  E 

ssDNA viruses 

FPV P04864/P24840 Coat protein VP1 658-669 S A N M S R I V T Y  S  D 

MEV P27437 Coat protein VP1 653-664 S A N M S R I V T Y  S  D 

dsDNA viruses 

Megalocytivirus 
(RBIV/DGIV/ISKNV/OSGIV/R
SIV) 

Q8B4N1/Q65858/ 
Q8QUT8/Q1X6P8/
Q71G61 

Putative Phosphatase 80-91 D M S Q D G F V N Y  Q  D 

Ranavirus (ATSV/FV-3) Q6YH54/Q6GZT5 Orf2-like protein 327-338 D P D A S H V M Q T  D  E 

LCDV Q677V5 Purative protein 31-42 D I N N S Q I I T V  S  D 

EHV-1 P28925 ICP4 733-744 D S D P T H R L G S  D  E  

FeHV-1 Q86665/Q90050 Glycoprotein B 871-
882/ 
876-887 

D F D E E K L M Q A  R  E 

WSSV Q8JNB7/ 
Q8JNC2 

ORF2735/ 
ORF4162 

312-
323/ 
281-292 

D D D D D D D C E G  M  D 

CPV Q80DU9/Q8QMS8 A27L 383-
394/ 
57-68 

D D D D D D V I D D  D  D 

Squirrelpox virus Q1HTR0 C3R 22-33 D D D T D G E L E S  K  D 

Ectromelia virus Q9PXN5 C11R 32-43 N R N S T H K I Q E  N  E 

MOCV-1 Q98173 MC002L 251-262 N T N E N G A M S S  A  E 

Nucleopolyhedrovirus 
(AgMNPV/Cfdef/CfNMPV) 

Q06KP7/Q6VTX1/
Q7TLX0 

Putative protein 63-
74/61-
72/ 
61-72 

  D D N N G R C C N V  V  D / 
D D S A N R C C S V  V  D 
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Virus Accession ID Protein name 
Match 

Ranges 
Sequences 

Granulovirus  Alk-exo 350-361 N L N E S Q T L S L  S  E 

PBCV-1 Q84528 A208R 214-225 D D D S D D D I N D  N  D 

ESV Q9J3U5 EsV-1-56 333-344 D V S G N D L L N V  S  D 

Sulfolobus virus  Q684G2 Adenine-specific DNA 
methylase 

151-162 D D D A E G Y I G T  W  E 

Archaeal BJ1 virus A0ZYT1 Putative protein 18-29 D I S D T N V L A A  A  E 

AFV-2 Q573C5 Putative protein 85-96 D S S S S Q E V T I  P  D 

     

HZV-1 Q8JKJ1 Microtubule-
associated-like protein 

423-434 D T D G S N D L A K  L  D 

Others     

ABV A4ZUC5 ORF188 169-180 D P N Q N Q T I S E  S  E 

     

EF-hand-like motifs 
 
(+) ssRNA viruses     

EEEV Q306W6 NSP 2401-
2414 

D D D Q D G D R R R A L Y D 

CSFV P19712 Genome polyprotein 929-942 D C N R D G V V I S T E G E 

(-) ssRNA viruses     

Influenza A virus Q6XV43 Neuraminidase 385-398 D K D S N G V Q D I I D N D 

 P21427/Q0A2K9/ 
O89750/Q0A2Q7 

RNA polymerase 
subunit P2 

294-306 D P S H E G E G I P L Y D 

HPIV-1 P16017 Hemagglutinin-
neuraminidase 

281-293 D Y S S E G I E D L V F D 

Sendai virus Q783Y1/P19758/ 
P03425/Q88261 

Hemagglutinin-
neuraminidase 

281-293 D Y S S D G I E D L V L D 

VHSV     

dsRNA viruses     

AHSV-4 Q64929 VP4 core protein 263-276 D V S A D G L K G T I E W E 
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Virus Accession ID Protein name 
Match 

Ranges 
Sequences 

(+) ssRNA viruses require DNA intermediates 

HIV-2 P24103 Negative factor Nef 181-194 D T S Q E G E D T E T D T E 

MPMV P07567 Gag polyprotein 133-146 D S D D E G A K S S S L Q D 

dsDNA viruses     

BoHV-1 P29128 Trans-acting 
transcriptional protein 
ICP0 

287-300 D S D S E G S E D D S W S E 

HHV-1 P10211/P06347 Glycoprotein B 
precursor 

824-837 D A S G E G E E G G D F D E 

HHV-2 P07918 DNA polymerase 675-688 D D D E D G D E D G D E R E 

     

HHV-3 P09255 Transcriptional 
transactivator IE63 

164-177 D S D D D G S T P S D V I E 

HHV-6 Q01350 Protein U3 284-297 D N D E D G R P R F V A E  

HHV-7 P52520 Protein U3 299-311 D N D P D G N L T F I A E  

CeHV-9 Q04548 Glycoprotein E 
precursor 

40-53 D M D E D G V Y G D D I Q D  

PRV P24827 Immediate-early 
protein RSP40 

224-237 D E D E E G E E E E D E E E  

   335-348 D E D E D G E G E E G G K D  

 P24381 Serine/threonine-
protein kinase  

77-90 D G D G D G D S S G D E D D 

EBV P12977 Nuclear antigen 3 711-724 D E S G E G S D T S E P C E 

 P03210 Putative protein 
BRRF2 

492-505 D E D E D G S E D G E F S D 

BmNPV P41712 DNA polymerase 955-967 D D D D D G C D S S D S E 

SlNPV O57030 DNA-directed RNA 
polymerase beta chain 

422-435 D E D E N G S G G D D D D D 
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Abbreviations: MHV, murine hepatitis virus; VEEV, Venezuelan equine encephalitis virus; WEEV, western equine encephalitis virus; SFV, Semliki 
forest virus; RRV, Ross river virus; SqMV, squash mosaic virus; SBLV, spring beauty latent virus; RMV, ribgrass mosaic virus; TMV, tobacco 
mosaic virus; TVCV, turnip vein-clearing virus; YoMV, youcai mosaic virus; TTV, tomato torrado virus; BSBMV, beet soil-borne mosaic virus; BYSV, 
beet yellow stunt virus: PYV, papaya ringspot virus; SMoV, strawberry mottle virus; HRSV, human respiratory syncytial virus; BRSV, bovine 
respiratory syncytial virus; PPRV, peste-des-petits-ruminants virus; BEFV, bovine ephemeral fever virus; NDV, Newcastle disease virus; HIV, 
human immunodeficiency virus; BSV, banana streak virus; DBV, dioscorea bacilliform virus; CYMV, citrus yellow mosaic virus; GVBV, gooseberry 
vein banding virus; KTSV, kalanchoe top-spotting virus; PsV-F, penicillium stoloniferum virus; AHSV, African horse sickness virus; FPV, feline 
panleukopenia virus; MEV, mink enteritis virus; RBIV, rock bream iridovirus; DGIV, dwarf gourami iridovirus; ISKNV, infectious spleen and kidney 
necrosis virus; OSGIV, orange-spotted grouper iridovirus; RSIV, red sea bream iridovirus; ATSV, ambystoma tigrinum stebbensi virus; FV, frog 
virus; LCDV, lymphocystis disease virus; FeHV, feline herpesvirus; EHV, equine herpesvirus; WSSV, white spot syndrome virus; CPV, cowpox 
virus; MOCV, mollucum ontagiosum virus; AgMNPV, anticarsia gemmatalis nuclear polyhedrosis virus; Cfdef, choristoneura fumiferana defective 
polyhedrosis virus; CfNMPV, choristoneura fumiferana nuclear polyhedrosis virus; PBCV, paramecium bursaria chlorella virus; ESV, ectocarpus 
siliculosus virus; AFV, acidianus filamentous virus; HZV, heliothis zea virus; ABV, acidianus bottle-shaped virus; EEEV, Eastern equine 
encephalomyelitis virus; CSFV, classical swine fever virus; HPIV, human parainfluenza 1 virus; VHSV, viral hemorrhagic septicemia virus; MPMV, 
Mason-Pfizer monkey virus; BoHV, bovine herpesvirus; HHV, human herpesvirus; CeHV, Cercopithecine herpesvirus; PRV, pseudorabies virus; 
EBV, Epstein-Barr virus ; BmNPV, Bombyx mori nuclear polyherosis virus; SlNPV, spodoptera littoralis nuclear polyherosis virus. 
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4.3. Ca2+ dependent virus-host interactions 

 Compared to the scarcity of reported viral Ca2+-binding proteins, the host 

cells are abundant with cellular Ca2+-binding proteins. Accordingly, viral proteins 

might utilize a number of important cellular Ca2+-binding proteins as alternative 

strategies in its response to the versatile and universal Ca2+ signals (listed in 

Table 4.4). These proteins are widely distributed in the extracellular matrix 

(fibulin-1), cytoplasm (annexin, calmodulin, and S100) and endoplasmic 

reticulum (ERC-55, calreticulin and calnexin).  

 Rubella virus. Rubella virus (RUB), a positive-sense single-stranded RNA 

virus of the Togaviridae family, is the causative agent of German measles. The 

RUB genome consists of two open reading frames: one for nonstructural proteins 

and the other for structural proteins (capsid, glycoprotein E1 and E2). Both 

glycoproteins E1 and E2 have been demonstrated to interact with two Ca2+-

binding ER chaperones, e.g., calreticulin and celnexin (304). The 46-KDa 

calreticulin consists of three domains, a globular N domain, a P domain rich in 

proline residues, and an acidic C-terminal tail domain. The N and P domains are 

responsible for the chaperone function and the highly acidic C-terminal tail is 

involved in buffering Ca2+ storage with high capacity (20-30 mol Ca2+ /mol protein) 

(305). Calreticulin mainly functions as a molecular chaperone to facilitate the 

folding of a number of proteins. Its activity is influenced by changes in the ER, 

such as the concentration of Ca2+ and ATP. Calnexin is a membrane-bound Ca2+-

binding ER chaperone that retains incorrectly or incompletely folded proteins 

(306). During posttranslational modification, virtually all glycoproteins associate 
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with these two chaperones. Both proteins can promote folding, oligomerization 

and suppress degradation. They work in concert as the “quality control” for the 

secretory proteins. By differentially interacting with E1 and E2, calreticulin and 

calnexin have been established to control the transport of these two 

glycoproteins. Since glycoproteins associate with calreticulin and calnexin with a 

prolonged duration (>60 min), the maturation of RUB glycoproteins has been 

proposed to be the rate limiting step of the transport of glycoproteins from ER to 

Golgi complex (304). 

  In addition, the 3’ end of the RUB genomic RNA stem-loop (SL) structure, 

which is essential for the initiation of negative-strand RNA synthesis, has also 

been found to interact with the N domain of the autophosphorylated calreticulin 

(307). Several possibilities have been postulated to interpret the necessity of 

such interaction: 1) the interaction might promote viral RNA replication or 

translation, thus ensuring a productive infection of RUB, and 2) calreticulin-bound 

viral RNA might be compartmentalized to escape the surveillance of the host 

immune system. However, the exact biological consequence of the RNA SL-

calreticulin interaction is not clear (308).  

 

HIV-1. HIV-1 and several HIV-1 encoded gene products have been 

demonstrated to interact with cellular Ca2+-binding proteins including annexin II, 

calmodulin, calreticulin and calnexin.  

Annexin II, traditionally thought of as a Ca2+-dependent phospholipid-

binding protein expressed in monocytes, microglia and macrophages, is 
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implicated in membrane trafficking, endosomal formation and vesicles 

aggregation (309). It has been shown that the HIV polyprotein precursor p55GAG 

interacts with annexin II in macrophages. However, the Gag-annexin II interaction 

is only seen in productively infected macrophages but not in quiescently infected 

cells. Such interaction localizes at the limiting membranes of late endosomes, the 

site where HIV assembly and budding takes place. Depletion of annexin II is 

further shown to be responsible for the destabilization of lipid rafts and 

subsequent abortion of HIV assembly. In addition, annexin II is reported to 

promote HIV entry into macrophage through its interaction with 

phosphatidylserine in the viral particles (82).  

CaM is a small (148 amino acids; MW: 16.7 KDa) and acidic (pI: ~4.0) EF-

hand Ca2+-binding protein that is ubiquitously expressed in eukaryotic cells. It 

consists of two globular and autonomous domains, each of which contains two 

helix-loop-helix EF-hand motifs. Through its binding to Ca2+ and the concomitant 

conformational changes, CaM is capable of transducing the intracellular Ca2+ 

signal changes into divergent cellular events by targeting to an array of cellular 

proteins (14,310). Two HIV proteins, Nef and gp160 have been demonstrated to 

interact with calmodulin in a Ca2+-dependent fashion. Nef is a myristoylated 

protein expressed in early infection of HIV. Nef has been shown to downregulate 

the cell surface receptors CD4 and MHCI, and alter T lymphocyte signaling 

pathways. The latter effect is partially associated with its ability to strongly 

interact with CaM with an apparent dissociation constant of 13.7 nM (311). The 

CaM-targeting sequence in Nef is further narrowed down to a 20-amino-acid N-
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terminal basic domain that shares high similarity with the myristoyl group of a 

neuron-specific protein kinase C substrate, NAP-22 (311,312). Besides Nef, the 

viral envelope protein gp160/gp41 has been shown to interact with CaM 

(313,314). Two C-terminal CaM-targeting sequences in gp41 are shown to bind 

to CaM with dissociation constants of 31-41 nM (315). Such interaction is 

speculated to disrupt the anti-apoptotic CaM signaling pathway by either 

reducing the amount of free cytosolic CaM or changing its subcellular localization 

(315). The similar CaM-targeting sequence is also detected in simian 

immunodeficiency virus gp41 (316).  Adding more complexity to the scenario, the 

Gag gene products of HIV have been shown to interact with CaM (317). The N 

terminus of p17 contains two contiguous CaM-binding sites, each of which binds 

CaM with affinities of ~10-9 M. In view of the diverse roles of Ca2+/CaM-

dependent signaling pathways, the interaction between all these HIV proteins 

with CaM are expected to play multiple roles to fit the HIV life cycle in response 

to altered Ca2+ signals.  

The newly synthesized HIV envelope glycoprotein gp160 has been shown 

to interact with both calreticulin and calnexin to form a transient ternary structure, 

and thereby facilitates the folding and maturation of HIV glycoproteins (318).  

 

HTLV-1. The Tax protein of HTLV-1 is primarily located in the nucleus and 

functions as a transcriptional transactivator. Nevertheless, the Tax protein can be 

also exported to cytoplasm to interact with a number of host transcription factors 

including NF-κB. This nuclear transport process possibly involves the interaction 
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of Tax with the Ca2+-binding protein calreticulin (319). Interestingly, the 

calreticulin-mediated nuclear transport is dependent on Ca2+ (320). It has been 

reported that Ca2+-loaded calreticulin does not support nuclear export of leucine-

rich NES-containing proteins. However, calreticulin restores the nuclear export 

capability after treatment with EGTA. It still remains to be tested whether this 

property has effects on the subcellular distribution of Tax. In addition to Tax, the 

viral protein P12I has been shown to interact with the ER-resident Ca2+-binding 

chaperones, calreticulin and calnexin (321). This interaction is expected to 

facilitate the folding of p12I and to modulate the level of Ca2+ storage. Another 

possible role of such interaction is to retain calreticulin-MHCI complexes in the 

ER or cis-Golgi, thereby blocking its association with β2-microglobulin and the 

trafficking of this protein complex (322).  

 

HPV. The HPV E6 protein, a small polypeptide of approximately 150 

amino acids, plays multiple roles in HPV infection. E6 has been found to possess 

oncogenic activity by stimulating immortalization of human keratinocytes and 

transforming established fibroblasts (323).  By targeting p53, Bak and Myc for 

degradation, E6 protein is capable of inhibiting apoptosis of infected cells. 

Moreover, yeast two-hybrid screening studies reveal that the oncogenic HPV E6 

protein interacts with two cellular Ca2+-binding proteins, fibulin-1 and ERC-55.  

Fibulin-1 is a Ca2+-binding extracellular matrix protein that has been 

implicated in cellular motility modulation, cellular transformation and tumor 

genesis. The E6 protein has been demonstrated to interact with fibulin-1 in COS-
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7 cells transiently transfected with E6 from cancer-related HPV 16 or the 

transforming bovine papillomavirus type 1 (BPV-1) (324). Interestingly, 

overexpression of fibulin-1 inhibits E6-mediated cellular transformation, 

suggesting that the fibulin-1 serves as a tumor suppressor. The two-hybrid assay 

further localizes the interacting region in fibulin-1 to amino acids 343-483, which 

covers an important region (amino acids 356 to 440) that is involved in the self-

association, Ca2+-binding and fibronectin-binding events. Given that, it has been 

postulated that the interaction between the oncogenic E6 protein and fibulin-1 

disrupts theses functions and further inactivate the inhibitory effect of fibulin-1 on 

cell migration and invasion.  

The caner-related HPV and BPV-1 E6 proteins also bind a hexa-EF-hand 

Ca2+-binding protein, ERC-55, that resides in the endoplasmic reticulum (325). 

Biochemical and biophysical studies further map the interacting region in ERC-55 

to a stretch of 25 amino acids in the fourth EF-hand motif that is capable of 

binding Ca2+ and folds into the typical helix-loop-helix conformation  (326). The 

exiting helix of the EF-hand motif (residues L21, F24, L25 and D27), but not the 

Ca2+-binding loop and the entering helix, is further found to be fully responsible 

for this interaction. The biological role of this interaction still remains uncertain.  

 

HBV. The HBV Pol protein plays multiple roles in virus replication by 

signaling the encapsidation and degradation of pgRNA, priming reverse 

transcription and catalyzing both RNA- and DNA-dependent DNA synthesis (327). 

Besides its association with host cellular factors such as Hsp60, Hsp70, Hsp90 



128 

  

and p23, Pol interacts with a Ca2+-modulated protein, p11 or S100A10 (328). The 

p11 protein is capable of recruiting HBV Pol to PML nuclear bodies, a region that 

is of vital importance for cell proliferation, differentiation and antiviral responses. 

This interaction is affected by intracellular Ca2+ concentration. Treatment of cells 

with valinomycin, a drug that promotes Ca2+ influx, leads to a decrease of these 

proteins in the nuclear bodies; whereas the blocking of Ca2+ influx by EGTA 

results in a marked increase of Pol-p11 complex in the nuclear bodies. Thus, it is 

expected that the virus would favor a higher cytosolic Ca2+ environment to avoid 

host antiviral activities. Indeed, as mentioned above, the HBx protein induces an 

increase in the cytosolic Ca2+ concentration by reducing mitochondrial Ca2+ 

uptake and impairs the activity of PMCA (223) . 

The small hepatitis B surface antigen (HBsAg) has been demonstrated to 

specifically bind to human liver annexin V, a Ca2+-dependent phospholipid 

binding protein present on the plasma membrane of human hepatocytes (329). 

The binding process, with a dissociation constant of 1.7 nM, has proven to be 

dependent on Ca2+.  

 

Other viruses. Tobacco mosaic virus (TMV) is a positive-sense, single-

stranded RNA virus that infects plants, especially tobacco and other members of 

the plant family Solanaceae. The TMV cell-to-cell spread is mediated by the 

movement protein (MP), which is responsible for the transport of the viral 

genomic RNA through plasmodesmata. The Ca2+-sequestering protein 

calreticulin has been implicated in this process through its interaction with MP 
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(330). Overexpression of calreticulin interferes with the normal targeting of MP 

and further delays the cell-to-cell viral movement.  

Sendai virus is a negative-stranded RNA virus that belongs to the 

paramyxoviridae family. Two envelope glycoproteins, the fusion protein (F) and 

the hemagglutinin-neuraminidase (HN), mediate the virus entry into host cells. 

Both proteins undergo maturation by interacting with different chaperones during 

their transport through the ER and the Golgi complex (331). These two proteins 

have been reported to interact with ER chaperones with different kinetics due to 

difference in their oligomeric state and posttranslational processing. The F 

precursor protein, which is a type I integral membrane protein that can be 

cleaved into two active subunits linked by disulfide-bonds, only shows transient 

interaction with calnexin (t1/2 = 8 min). The HN protein, a type II integral 

membrane protein that functions as a tetramer, exhibits a slower kinetics by 

sequentially interacting with Bip, calnexin and calreticulin to ensure the folding 

and assembly quality (331).  

Bluetongue virus, a double-stranded RNA arbovirus of the genus Orbivirus 

in the reoviridae family, causes catarrhal fever in ruminants that are of 

economical importance. The nonstructural protein NS3 has been shown to 

interact with a host cellular protein S100A10 or p11, which harbors an N-terminal 

pseudo EF-hand and a C-terminal canonical EF-hand Ca2+-binding motif. Two 

p11 as the light chain components, along with two heavy chains composed of 

annexin II, form the tetrameric calpactin complex. The calpactin complex is 

closely associated with Ca2+-dependent exocytosis and secretory pathways (332). 
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Since NS3 also interacts with outermost protein (VP2) of assembled virions, the 

BTV NS3 is proposed to bring the virions together with the calpactin complex via 

p11, and further directs the virus to the cellular exocytic machinery. Such 

interaction provides a new mechanism for the virus to make use of this cellular 

exocytosis pathway for nonlytic release of progeny virions assembled within the 

cell.   

Direct interaction between annexin II and viral glycoprotein is also 

observed in CMV. The binding of annexin II to the CMV glycoprotein B protein 

(gpUL55) appears to be a Ca2+-dependent process (333).  Similar to its 

interaction with HIV, annexin II also enhances the binding and fusion of CMV to 

phospholipid membranes, thereby maximizing its infectivity (334).    

 

4.4. Summary 

 We have summarized here the majority of the known mechanisms 

underlying virus- or viral proteins-mediated alterations in intracellular Ca2+ 

signaling events. The remodeled Ca2+ signaling network postinfection is closely 

associated with virus fusion and entry, viral gene replication and expression, 

virus maturation and release, and cellular transformation. Our predictions also 

result in a number of EF-hand-containing viral proteins that are worthy of further 

studies with respect to their Ca2+ binding capability and physiological relevance. 

The intensive association of viral proteins with cellular Ca2+-binding proteins adds 

even more complexity to the Ca2+-dependent virus-host interaction. A major 



131 

  

challenge in the future will be to integrate all aspects of the Ca2+-virus interplay 

and capture the entire picture of viral calciomics. 

Table 4.4. Interactions between cellular Ca2+-binding proteins and viruses. 
 

Abbreviations: HIV, human immunodeficiency virus;  CMV, cytomegalovirus; HBV, hepatitis B 
virus; SIV, simian immunodeficiency virus; RUB, rubella virus;  SeV, Sendai virus; TMV, tobacco 
mosaic virus; HTLV, human T-cell lymphotropic virus; HPV, human papillomavirus; EBV, Epstein-
Barr virus; BTV, bluetongue virus. 

Cellular 
CaBP 

Viral molecular 
identity 

Virus 
Consequences of interaction Reference 

Annexin II p55GAG  HIV-1 Facilitates virus entry and 
fusion in macrophages 

(335) 

 glycoprotein B  CMV Enhances binding and fusion 
to membranes 

(333,336)  

Annexin V Small HBsAg HBV Participates in initial steps of 
HBV  infection 

(336) 

Calmodulin  Nef  HIV-1 Alters T lymphocyte signaling 
pathway 

(311,312) 

 gp 160/gp41  HIV-1 Disrupts CaM signaling 
pathway 

(315) 

 gp 41 SIV  (316,337) 

 p17GAG  HIV-1  (317) 

Calreticulin/ 
calnexin 

E1 and E2  RUB Regulates viral glycoprotein 
maturation 

(304) 

 Viral RNA  RUB  (307) 

 MP  TMV Regulates cell-to-cell virus 
movement 

(330) 

 F, HN  SeV Mediates maturation of 
glycoproteins 

(331) 

 gp160 HIV-1 Facilitates protein maturation (318) 

 P12I  HTLV-1  (198) 

 Tax  HTLV-1 Facilitates viral protein 
folding; possibly mediates the 
interaction with MHCI 

(319) 

ERC-55 E6  HPV  (325) 

Fibulin-1 E6  HPV Regulates cell migration and 
invasion 

(324) 

S100A10 
(p11) 

pol  HBV Inhibits viral replication (328) 

 NS3  BTV Mediates nonlytic virus 
release 

(338) 
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5. Probing the metal-binding properties of rubella virus 

nonstructural protease 

 

5.1. Molecular biology of rubella virus (RUB) 

  Rubella virus (RUB), the only member of the genus rubivirus in the 

Togaviridae family, is the causative agent of a disease called as rubella or 

German measles. RUB is an enveloped, single-stranded positive-polarity RNA 

virus with a genome size of 9,762 nucleotides (Fig.5.1). The RUB genome 

contains two long open reading frames (ORFs): a 5’-proximal ORF or NSP-ORF 

(41 to 6,389 nt; 2,116 amino acids; MW: 240 kDa) that encodes the nonstructural 

protein (NSP) involved in viral RNA replication, and a 3’-proximal ORF or SP-

ORF (6,512 to 9,700 nt; 1,063 aa; MW: 110 kDa) that encodes for one capsid 

protein (C) and two envelope glycoproteins (E1 and E2) (339,340). Multiple 

sequence alignments of the RUB NSP ORF against other positive-stranded RNA 

virus genomes revealed a number of conserved domains, namely, 

methyltransferase (M), protease (P), helicase (H), replicase (R), and a proline-

rich region (G) as well as an X domain (X) showing high homology to the Appr-1-

p processing enzyme (339,341). Upon uncoating and release of viral mRNA after 

entry into host cells, the NSP-ORF is immediately translated into a polypeptide 

precursor (P200), which is subsequently self-cleaved by its protease domain 

(termed the nonstructural or NS protease) at a cleavage site mapped between 

residues G1301 and G1302 into two products (P150 and P90) involved in viral 
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Figure 5.1. Genomic organization of RUB and viral protein processing. The 
RUB genome consists of two ORFs, one encoding nonstructural proteins 
(NSP) and the other encoding structural proteins (SP). Upon uncoating and 
release of viral mRNA after entry into host cells, the NSP-ORF is immediately 
translated into a polypeptide precursor (P200), which is subsequently self-
cleaved by its protease domain (termed the nonstructural or NS protease) at 
a cleavage site mapped between residues G1301 and G1302 into two mature 
products (P150 and P90) involved in viral RNA replication. The SP-ORF 
polypeptide translated from the 24S subgenomic mRNA is eventually cleaved 
into three proteins, a capsid phosphoprotein and two envelope glycoproteins 
that form the spike complexes on the surface of the virion. 
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RNA replication in association with late endosomal or lysosomal membranes. 

The NS protease has been reported to be a Zn2+-dependent papain-like cysteine 

protease with C1152 and H1273 constituting the catalytic dyad (342-346). 

Metalloproteins constitute almost one third of all known proteins and viral 

metalloproteins are both common and the target of antiviral drug development 

(347-349). In the present study, we report our prediction of a single EF-hand 

Ca2+-binding motif within the NS protease domain of RUB (section 5.2).  To 

confirm this prediction, the binding loop was grafted into a scaffolding protein, 

CD2 domain 1, and the minimal metal binding domain of the NS protease was 

bacterially expressed and both were found to bind Ca2+ or its trivalent analogs 

Tb3+ and La3+.  We also found that mutagenesis of critical Ca2+ binding residues 

negatively impacted virus infectivity and rendered the activity of the NS protease 

temperature sensitive. This is the first demonstration of an EF-hand Ca2+-binding 

motif in a virus-encoded protein. Moreover, with the minimal metal binding 

domain that also contains a putative Zn2+-binding cysteine-rich motif, we have 

further carried out conformational and functional studies of this polypeptide and 

its cysteine mutants (section 5.3).    

 

5.2. Identification of a Ca2+-binding domain in RUB NS protease 

5.2.1. Prediction of the EF-hand Ca2+-binding motif and homology modeling 

of the RUB NS protease 

 By taking advantage of the sequence alignment of currently available EF-

hand proteins and considering the structural context of the Ca2+-binding loop, we 
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generated a series of patterns for the prediction of EF-hand proteins (6). Using 

this prediction method 

(http://www.chemistry.gsu.edu/faculty/Yang/Calciomics.htm), we detected one 

putative EF-hand Ca2+-binding motif (aa 1197-1225) within RUB NS protease, 

interwined with the partially characterized cysteine-rich Zn2+-binding motif (Fig. 

5.2A) (346). This putative Ca2+-binding motif shared high homology with well-

known EF-hand proteins such as calmodulin and calcyphosine (Fig. 5.2B). In 

canonical EF-hand Ca2+-binding motifs, the bidendate ligand residue at the loop 

position 12 is either a Glu (95%) or an Asp (5%). Considering its longer side 

chain and closer distance to the metal ion, Glu at this position (as seen in 

calmodulin) ensured a stronger binding affinity for Ca2+ than Asp. This predicted 

motif contained an Asp at loop position 12, similar to the first EF-hand in 

calcyphosine, regulatory light chain of myosin (350,351), and sarcoplasmic Ca2+-

binding protein (352) that exhibited relatively weaker Ca2+-binding affinities. 

Prediction of the secondary structure elements revealed that the Ca2+-binding 

loop was flanked by two helices, as observed in most EF-hand CaBPs (16). The 

predicted Ca2+-binding motif is highly conserved among the eight genotypes of 

RUB for which sequence of this region is available, including all of the Ca2+-

binding coordination ligands (Fig. 5.2B).  

 Since the three dimensional structure of a viral papain-like cysteine 

protease, the leader protease of foot-and-mouth-disease virus (FMDV), has been 

determined (353,354), it provides an excellent template for homology modeling of 

the NS protease of RUB. Pairwise sequence alignment of the leader protease of 
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Figure 5.2. A putative EF-hand Ca2+-binding motif in RUB NS protease. (A) 
Schematic representation of the RUB genome organization and domain 
locations. The protease contains at least one Zn2+-binding site as well as a 
putative EF-hand Ca2+-binding motif. It has been proposed that the residues 
C1152 and H1273 constitute the catalytic dyad (stars). The minimal metal-
binding domain RUBCa (aa 1143 to 1252) is bacterially expressed and used in 
this study. (B) Sequence alignment results of putative EF-hand Ca2+-binding 
motif RUBCa in the protease domain with calmodulin and calcyphosine. The 
motif remained conserved in both clades I and II of RUB. Boldface residues 
represent the potential Ca2+-coordinating residues. NCBI or GenBank 
accession numbers are: CaM_EF1 and CaM_EF2 (calmodulin, P62158); 
CAYP_hum and CAYP_rab (calcyphosine from human, Q13938; rabbit, 
P41150). (C) Homology modeling of RUB NS protease. The leader protease of 
FMDV (pdb code 1qmy, chain A), a papain-like cysteine protease with a high-
resolution structure available, is chosen as the template for homology 
modeling. The active site consists of C1152 and H1273 (shown as sticks). The 
predicted EF-hand Ca2+-binding motif, located on the opposite side, is 
highlighted in blue with the calcium ion shown as a cyan sphere. The cysteine 
(green) and tryptophan (magenta) residues in the protease domain are shown 
as sticks.  

Minimal metal binding domain1143 1252
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FMDV (pdb code: 1qmy) with the RUB NS protease revealed 12.1% sequence 

identity and highly similar secondary structure arrangement. Based on the 

sequence alignment results, a homology model of the RUB NS protease has 

been generated using the program SWISS-MODEL (Fig. 5.2C). With the program 

GG (85), we further detected a potential Ca2+-binding pocket around the 

predicted EF-hand Ca2+-binding motif in this model structure, indicating the 

perfect agreement of the prediction made on the basis of both primary sequence 

and the predicted 3D structure of RUB NS protease. 

 

5.2.2. Probing the metal binding properties of RUB NS protease by grafting 

 To dissect the Ca2+ binding capability of the putative Ca2+-binding motif 

and meanwhile, to circumvent the difficulty encountered in purifying the cysteine-

rich protease domain and the interference from Zn2+ binding, we grafted the 

predicted 12-residue Ca2+-binding loop (aa 1206-1217) into a non-Ca2+-binding 

scaffold protein CD2.D1. As seen in Fig.5.3A, CD2 is a cellular adhesion 

molecule composed of nine β-strands with Ig-like fold. We inserted the Ca2+-

binding loop from the RUB NS protease into CD2.D1 (named as CD2.RUBCa) 

between S52 and G53 within the loop of strands C’’ and D. Three glycines at each 

side of the loop serve as linkers to provide sufficient conformational freedom for 

the grafted Ca2+-binding loop and to minimize perturbation on the host protein 

while allowing the inserted loop to retain its capability of chelating Ca2+ (60,68-

70).  
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Figure 5.3. Grafting the predicted EF-hand Ca2+-binding loop into 
CD2.D1 and formation of metal-protein complex. (A), Model structure of 
the engineered protein CD2.RUBCa. The Ca2+-binding loop (black) from 
the RUB NS protease (a.a. 1206-1217), with two glycines on the left and 
three glycines on the right rendering flexibility, is grafted to the loop 
which connects strands C’’ and D. The model structure is built using the 
automated comparative protein modeling server SWISS-MODEL. 
Aromatic residues Trp (black) are shown as sticks. The Ca2+ ion is shown 
as a sphere. Intrinsic Trp fluorescence emission spectra (B) and far UV 
CD spectra (C) spectra of CD2 (open circle) and engineered protein 
CD2.RUBCa (closed circle) are compared to examine the perturbation of 
insertion on the scaffold protein CD2.D1. Buffers consists of 10 mM Tris, 
10 mM KCl, pH 7.4. (D), Electrospray mass spectra of CD2 with grafted 
EF-loop from RUB NS protease (P) in the presence of a 5-fold molar 
excess of TbCl3 (+156). 
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 A variety of spectroscopic methods confirmed that the structure of the 

CD2.D1 had not been perturbed by the inserted loop either in the absence or 

presence of metal ions. The Trp intrinsic fluorescence spectrum of CD2 

overlapped with that of CD2.RUBCa, both of which exhibited the emission 

maximum at 325 nm and a shoulder peak at 313 nm (Fig. 5.3B). The far-UV CD 

spectra of CD2.RUBCa remained similar to that of CD2.D1 alone with a deep 

trough at 216 nm, characteristic of typical β-sheet elements (Fig. 5.3C). The 

differences observed could be primarily from the inserted 12-residue loop and 

flanking triple-glycine linkers. The two dimensional 1H NMR further showed that 

the majority of the dispersed signals in the fingerprint regions of the TOCSY and 

NOESY spectra of CD2.RUBCa were located at the same positions as that of 

CD2, suggesting that the integrity and packing of the host protein frame are 

maintained after the insertion of the Ca2+-binding loop from RUB NS protease. In 

general, the insertion of the foreign acidic sequence did not cause major 

conformational changes of the host protein, and the overall fold of CD2.RUBCa 

remained similar to that of CD2.D1. The ability of the grafted protein (calculated 

MW: 12712.9 Da) to form 1:1 metal/protein complexes was revealed by ESI-MS. 

As shown in Fig. 5.3, the molecular mass of the engineered protein CD2.RUBCa 

agreed well with theoretical mass. The presence of 5-fold excess of Tb3+ led to 

the emergence of a new peak with additional masses of 156. Similar results were 

also obtained for La3+. This provides the foundation for measuring the intrinsic 

metal-binding affinity with a minimized contribution from protein conformational 
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change and minimal influence of the host protein environment on the grafted EF-

hand loop (69). 

 

5.2.3. Obtaining the metal binding affinities of grafted Ca2+-binding loop by 

FRET and NMR 

 The spectroscopic silence of Ca2+ makes it extremely challenging to 

investigate the Ca2+ binding properties directly. Therefore, lanthanides are 

frequently used to probe Ca2+-binding sites due to their similar ionic radii (Ca2+: 

1.00 Å; Tb3+: 0.92 Å; La3+: 1.03 Å) and metal coordination chemistry. In 

CD2.RUBCa, the four aromatic residues in the host protein and their distances 

(<20 Å) to the inserted binding pocket made it possible to monitor the binding of 

Tb3+ using FRET (Fig. 5.3A). As shown in Fig. 5.4A, the addition of increasing 

amounts of CD2.RUBCa to 10 µM Tb3+ resulted in an increase of Tb3+ emission 

fluorescence intensity at 545 nm when excited at 282 nm, suggesting the 

formation of a metal:protein complex. However, the addition of both CD2.D1 and 

the engineered protein with two mutated ligands (D5A/D12A) had substantially 

weaker enhancement than that of CD2.RUBCa, suggesting that the mutant lost 

its specific Tb3+ binding capability. This study further confirmed that Tb3+ bound 

to the inserted binding loop involving ligands D5 and D12. By monitoring the 

changes of Tb3+ emission enhancement of fixed amount of proteins as a function 

of Tb3+ concentrations (Fig. 5.4A) and by assuming a 1:1 (Tb3+ to protein) binding 

model, a dissociation constant (Kd) of 47 ± 4 µM was obtained for CD2.RUBCa. 

In addition, the dissociation constant of Ca2+ was indirectly estimated by metal 
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Figure 5.4. Obtaining metal-binding affinity using aromatic residue sensitized 
Tb3+-FRET and 1D 1H NMR. (A), Tb3+ fluorescence enhancement at 545 nm 
due to resonance energy transfer (excited at 282 nm) as a function of protein 
concentrations of CD2 (open diamond), CD2.RUBCa (closed circle) and its 
mutant D5A/D12A (open circle). (B), Tb3+ titration of CD2.RUBCa. Normalized 
fluorescence intensity was plotted as a function of the Tb3+ concentration. The 
inset showed the Ca2+ competition titration curve of CD2.RUBCa (1.5 μM) 
preincubated with 40 μM Tb3+ in 20 mM PIPES, 10 mM KCl, pH 6.8. (C), La3+ 
titration of CD2.RUBCa monitored by 1D 1H NMR. Some resonances (arrows) 
at amide regions of 1D 1H NMR spectra of CD2.RUBCa (0.2 mM) shifts with 
the increased concentrations of La3+ (from bottom to top: 0, 39.2, 113.2, 214.3, 
442.2, 360.7, 605.1, 929.1, and 1411.2 μM, respectively) in 20 mM PIPES, 10 
mM KCl at pH 7.4. (D), the chemical shift change at different resonant regions 
as a function of the concentration of La3+.  
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ion competition assay, in which 1.5 µM of CD2.RUBCa with 40 µM Tb3+ were 

titrated with increasing amounts of Ca2+ in excess. As shown in the inset of 

Figure 3B, the Tb3+ fluorescence emission maximum at 545 nm decreased due to 

the competition between Tb3+ and Ca2+ for the grafted metal binding site, which 

gave an apparent dissociation constant of 395 ± 135 µM and a real dissociation 

constant of 214 ± 73 µM according to Eq. 3.  

 1D 1H NMR was conducted to monitor the La3+-induced chemical shift 

changes of CD2.RUBCa as a function of La3+ concentration. Several resonances 

such as those at 7.97, 6.98, 6.79, and 2.67 ppm (Fig. 5.4C) gradually shifted or 

sharpened as the La3+ concentration increases, indicating a single binding 

process. The La3+-binding affinity, with an average of 14 ± 7 µM, was obtained by 

plotting the chemical shift of these peaks as a function of La3+ concentration (Fig. 

5.4D).  

 

5.2.4. Metal selectivity of the isolated EF-hand Ca2+-binding motifs from 

RUB NS protease 

 Competition assays based on Tb3+-FRET have been used as a convenient 

method to probe the binding capacity of physiologically competing metal ions 

(e.g. 100 mM K+ and 10 mM Mg2+) to EF-hand Ca2+-binding proteins, such as 

calmodulin (355) and galactose-binding protein (356). As seen in Fig. 5.5A, a 

significant decrease in Tb3+-FRET elicited from Tb3+-loaded CD2.RUBca was 

only observed with following the addition of 1 mM Ca2+ or 0.1 mM La3+ (another 

Ca2+ analog, as discussed above). However, the addition of 100 mM K+ or 10 
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Figure 5.5. Metal selectivity of the engineered protein CD2.RUBCa. (A), 
Metal competition assay. The addition of 1.5 µM CD2.RUBCa to free Tb3+ (40 
µM) solution resulted in the increase of fluorescence intensity at 545 nm by 
over 20 folds due to the binding of Tb3+ to the protein and the resultant FRET. 
100 mM K+, 10 mM Mg2+, 1 mM Ca2+, and 0.1 mM La3+, were subsequently 
added to individually prepared solutions containing 40 µM Tb3+ and 1.5 µM 
CD2.RUBCa. (B), Amide region of 1D 1H NMR spectrum of CD2.RUBCa with 
sequential addition of 100 mM K+, 10 mM Mg2+, and 1 mM Ca2+. Resonances 
that exhibited changes are indicated by arrows. 
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mM Mg2+ led to only a slight decrease (<10%) in the intensity of Tb3+ 

fluorescence. To further clarify whether the engineered protein CD2.RUBCa 

exhibited selectivity for Ca2+, we monitored the 1D 1H NMR spectrum with 

sequential additions of K+, Mg2+ and Ca2+.  As shown in Fig. 5.5B, while excess 

K+ and Mg2+ did not result in any changes in the chemical shifts, Ca2+ was able to 

specifically induce changes of chemical shifts in the main chain amide proton 

region even in the presence of 100 mM K+ and 10 mM Mg2+. These results 

clearly demonstrate that CD2.RUBCa is capable of binding Ca2+ with selectivity 

over Mg2+ or K+, similar to other known EF-hand proteins such as calmodulin 

(357,358).  

 

5.2.5. Oligomeric states of the grafted EF-hand motif 

The EF-hand motifs tend to occur in pairs in most well-characterized EF-

hand-containing Ca2+-binding proteins (359). To clarify whether the predicted EF-

hand motif is capable of undergoing dimerization in solution, we further grafted 

the 29-residue helix-loop-helix EF-hand motif to CD2.D1 (denoted as 

CD2.RUBCa.EF). Pulsed-field gradient NMR (PFG-NMR), a valuable technique 

for the study of molecular motions and measurement of the dimensions of 

molecules in solution (360), was then applied to determine the oligomeric state of 

the grafted EF-hand motif from the RUB NS protease. As shown in Fig 5.6, the 

1D 1H NMR signals corresponding to internal standards (dioxane and PIPES) 

and proteins decayed as the field strength increased. Small molecules (dioxane 

[88 Da] and PIPES [335 Da]) had a significantly faster decay than the protein 
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samples (12 KDa). The integrated areas of resonances corresponding to 

dioxane, PIPES and the Ca2+-free or Ca2+-loaded engineered protein 

CD2.RUBCa.EF were fitted using equation 6 with R2 > 0.999. The obtained 

diffusion constants for dioxane, PIPES, apo-CD2.RUBCa.EF and Ca2+-

CD2.RUBCa.EF were 98.9 x 107 cm2/s, 61.9 x 107 cm2/s, 13.5 x 107 cm2/s and 

13.4 x 107 cm2/s respectively. Using the reported hydrodynamic radius of dioxane 

(2.12 Ǻ) as a reference of size, the effective hydrodynamic radii of 

CD2.RBUCa.EF in the absence and presence of Ca2+ are 15.53 and 15.41 Ǻ, 

respectively. Similar to our previous finding that the 12-residue EF-hand loop 

from EF hand site III of calmodulin remain as a monomer (70), this piece of data 

suggests that the isolated EF-hand motif remains as a monomer even after metal 

binding in solution. However, we still cannot rule out the possibility that other 

motifs in the protease might lead to oligomerization. These findings are 

reminiscent of the ER-residing protein stromal interaction molecule 1 (STIM1) 

that contains a single EF-hand. STIM1 is a 90-KDa type 1 single-pass 

transmembrane protein that is believed to be one of the key components of store 

operated Ca2+ entry (SOCE). The ER-luminal portion of STIM1 protein has a single EF-

hand motif and a sterile-alpha motif (SAM),. Biophysical studies on the luminal EF-SAM 

domain of STIM1 reveal that ER Ca2+-depletion results in the oligomerization of EF-SAM 

domain mediated by the SAM motif. In contradiction to the EF-hand pairing paradigm, 

the protein remains as a monomer at high Ca2+ concentration (303).  
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Figure 5.6. Determination of oligomeric states of the grafted EF-hand motif by 
PFG NMR. (A), 1D 1H NMR signal decay (integrated area) as a function of 
pulsed field gradient strength. (B), Diffusion constants and hydrodynamic radii 

of samples in 20 mM PIPES-10 mM KCl, pH 6.8 at 25 ⁰C.  
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 5.2.6. Using the Minimal Metal Binding Domain RUBCa for Metal-Binding 

and Conformational Studies.  

While our attempts to express the entire NS protease (aa 1000-1300 of 

P150 were fruitless, we successfully expressed as a GST-fusion protein and 

purified the minimal metal binding domain (RUBCa, aa 1143-1252, see Fig. 

5.2A), which contains the Ca2+ binding loop, both catalytic residues, and the 

ligands proposed to be involved in Zn2+ binding.  Purified RUBCa was used to 

characterize the predicted EF-hand Ca2+-binding motif in its native protein 

environment.  When purified RUBCa was reconstituted in the presence of Ca2+ 

and subjected to ICP-MS to measure its metal content, it was found to bind Ca2+ 

with a molar ratio (Ca2+/protein) of 0.7 ± 0.2 to 1 (n=2).  

  RUBCa contains three Trp residues and according to the model of the 

structure of the RUB NS protease (Figure. 5.2C), one of these aromatic residues, 

W1153, is in close proximity to the predicted Ca2+-binding loop (3.5 Å). This 

feature enabled us to probe the metal-binding properties of RUBCa using Tb3+-

FRET. As shown in Figure 5A, a significant enhancement of Tb3+ fluorescence 

intensity was observed when Tb3+ was added to RUBCa, indicating Tb3+ binding 

to the predicted loop. A Kd for Tb3+ of 3±1 μM was obtained (inset, Fig. 5.7A). 

  In comparison with the 355 nm for free Trp, the emission maximum of the 

purified RUBCa blue-shifted to 339 nm, suggesting that at least some Trp in 

RUBCa was partly shielded from the solvent though not fully buried inside the 

hydrophobic core (Fig. 5.7B). The shoulder at 355 nm suggests that some Trp 

residues were exposed to the solvent. No Ca2+-induced emission peak position 
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Figure 5.7. Metal ions titration of the minimal metal-binding domain RUBCa 
monitored by aromatic residue sensitized Tb3+ fluorescence (A) and intrinsic 
Trp fluorescence (B). (A), Normalized Tb3+ fluorescence spectra of RUBCa 
with increasing concentration of Tb3+ (from bottom to top: 0, 1.0, 4.0, 9.9, 14.8, 
19.6, 14.4 μM, respectively). The inset showed the Tb3+ fluorescence 
enhancement at 545 nm due to energy transfer as a function of the 
concentration of Tb3+. (B), Intrinsic Trp fluorescence emission spectra of 
RUBCa (2.5 μM) with increasing concentration of Ca2+ (From top to bottom: 0, 
49.8, 291.3, 566.0, 740.7 and 909.1 μM, respectively). Inset: the intrinsic Trp 
fluorescence intensity plotted as a function of the concentration of Ca2+. An 
average dissociation constant of 316 μM was obtained by assuming a 1:1 
binding model. The excitation wavelength was set at 282 nm. All the buffers 
used in metal titration consist of 20 mM PIPES, 10 mM KCl, pH 6.8.  
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change was observed. However, the addition of Ca2+ led to a decrease in the 

emission intensity, indicating the local changes of the chemical environment 

around the aromatic residues (Fig. 5.7B). By monitoring this intensity change, a 

dissociation constant of 316 ± 4 µM for Ca2+ was obtained (Fig. 5.7B, inset), 

which was in agreement with the Ca2+-binding affinity obtained using the grafted 

protein CD2.RUBCa (Table 5.1).  

Far UV CD was performed to reveal any possible changes of secondary 

structure of RUBCa induced by Ca2+. As seen in Fig. 5.8A, the spectra of both 

EGTA-treated and Ca2+-loaded RUBCa had two troughs at 222 and 206 nm, 

indicating the existence of α-helical secondary structure. Using the program 

DICHROWEB (66), the best fit of the CD spectrum of RUBCa indicated that 

17.8% was α-helix and 19.5% was β-sheet, whereas the remainder was random 

coil. In excess Ca2+, the CD signal of RUBCa at 208 nm and 222 nm was 5% 

more negative than that of RUBCa in 1 mM EGTA and the DICHROWEB-

predicted α-helix and β-sheet contents were 23.8% and 14.9%, respectively. 

Thus, the observed gain in negative ellipticity could be attributed to the formation 

of a higher degree of α-helical content induced by Ca2+ binding. The anionic 

amphiphile ANS was further used as a hydrophobic probe to examine the 

conformational properties of RUBCa. As shown in Fig. 5.8B, upon the addition of 

RUBCa, the emission peak of ANS fluorescence blue-shifted from 510 nm to 500 

nm and the maximal emission intensity increased by 30%, suggesting that part of 

the hydrophobic regions of the purified RUBCa were exposed to the solvent and 

thus accessible to ANS. The addition of excess Ca2+ did not cause significant 
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Figure 5.8. Ca2+-induced conformational changes and thermal unfolding of the 
putative Ca2+-binding domain RUBCa. (A), Far UV CD spectra of RUBCa with 1 
mM EGTA (open circle) or 1 mM Ca2+ (closed circle) in 10 mM Tris-HCl, 10 mM 
KCl. Inset: Normalized CD signal at 222 nm plotted as a function of increasing 
temperature (5-90 ºC) in the presence of 1 mM EGTA (open circle) or 1 mM 
Ca2+ (closed circle). (B), Fluorescence emission spectra of 40 μM ANS (open 
square) and ANS:RUBCa complex with 1 mM EGTA (open circle) or 1 mM Ca2+ 
(closed circle). The excitation wavelength was set at 390 nm. The buffer 
consists of 10 mM Tris-HCl, 10 mM KCl (pH 7.4). 
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conformational changes in these hydrophobic regions considering the 

overlapping emission fluorescence spectra of RUBCa in the presence of 1 mM 

EGTA or 1 mM Ca2+. Taken together, these data indicated that the binding of 

Ca2+ induced a local conformational change, whereas the secondary structure 

and hydrophobic surface were not significantly altered.  

In order to gain more insight into the possible role of Ca2+ binding, thermal 

unfolding was carried out by monitoring the CD signal change at 222 nm as a 

function of  temperature under Ca2+-depleted or Ca2+-loaded conditions. With 

increasing temperature from 5 to 90 °C, RUBCa gradually underwent thermal 

denaturation, leading to the decrease of CD signals. Compared with 1 mM 

EGTA, the melting temperature (Tm) of RUBCa with Ca2+ increased from 37.7 ± 

0.8 to 41.8 ± 0.4 °C (Fig. 5.8B). The observed increase of melting temperature 

suggested that the binding of Ca2+ stabilized the overall structure of RUBCa 

under physiological conditions (100 mM KCl). 

 

5.2.7. Mutating the Potential Ca2+-Binding Ligands in Infectious cDNA 

Clones and Replicons.  

To determine if the binding of Ca2+ by the RUB NS protease is of 

physiological significance, the D5A/D12A double mutant shown to abrogate 

binding in CD2.RUBCa was introduced into the Robo502 infectious cDNA clone 

of RUB (the mutant was termed Robo502 AA).  Following transfection, the virus 

titer obtained from Robo502AA was ~20-fold lower than from the Robo502 parent 

(Fig. 5.9A), indicating that these residues with their potential Ca2+ binding were 
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Figure 5.9. Effects of mutations of the potential Ca2+-coordination ligands on 
RUB replication. Transcripts from the WT infectious cDNA clone, Robo502, or 
Robo502 AA containing the D1210A and D1217A mutations in the Ca2+-binding 
loop, were used to transfect Vero cells. Culture fluid from the transfection 
plate (P0) was harvested on day 7 post-transfection and passaged twice in 
Vero cells (P1 and P2). The virus titer in the P0, P1, and P2 culture fluids was 
determined by plaque assay in triplicate (A). Open bar: Robo502; Black bar: 
Robo502AA. Representative plaques at each passage are shown in B. To 
check for the generation of revertants in the Robo502AA population, four 
plaques were picked from terminal plaque assay dilution plates from P1 (left, 
C) culture fluid and after one round of amplification in Vero cells, the 
sequence of the metal binding domain in the NSP was determined, as shown 
in Panel C in comparison to the wt sequence.  
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necessary for optimal RUB replication. Following two subsequent passages of 

the transfected culture fluids, the Robo502AA titer rose to within threefold of 

Robo502 (Fig. 5.9A and B). When four individual plaques from the first passage 

of Robo502AA were amplified and the sequence of the NS protease determined, 

three were found to have reverted to the wt sequence at both sites while the 

fourth had reverted to the wt sequence at one site (Fig. 5.9C). Thus, the increase 

in titer was due to reversion of the mutant sequences.  

To prevent the accumulation of revertants, the AA mutation was also 

introduced into the replicon, RUBrep/GFP, in which the SP-ORF is replaced with 

the GFP reporter gene.  Following transfection, RUBrep/GFP replicates and 

expresses GFP but does not spread from cell to cell.  As shown in Fig. 5.10A, 

RNA synthesis by RUBrep-AA/GFP was delayed by ~1 day post-infection in 

comparison with the wt replicon.  Concomitantly, GFP expression was similarly 

delayed (data not shown).  We also assayed P200 NSP precursor cleavage in 

cells transfected with RUBrep-HA/GFP derivative, replicons expressing a P150 

tagged with the HA epitope (71).  These experiments were done at 6 hrs post-

transfection, when translation from the input transcripts is detectable but 

replication has not yet started.  As shown in Fig. 5.10B, at 35 oC P200 to P150 

cleavage was efficient in wt RUBrep-HA transfected cells, but only ~50% efficient 

in RUBrepAA-HA/GFP-transfected cells. RUBrep-NS*-HA/GFP, a construct with 

a C1152S substitution at the catalytic site unable to undertake cleavage, served as 

an uncleaved control.  Given our biophysical measurements on RUBCa that 

indicate that Ca2+ binding increased the Tm of RUBCa from 37.7 ⁰C to 41.8 ⁰C 
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Figure 5.10. Replicon RNA synthesis and P200 cleavage in transfected Vero 
cells. Vero cells were transfected with transcripts from RUBrep/GFP or 
RUBrepAA/GFP containing mutations D5A and D12A (A) or from RUBrep-
HA/GFP or RUBrepAA-HA/GFP, which express an HA-epitope-tagged P150 
(B). (A), Total cell RNA was extracted 1 to 4 days posttransfection, and 
replicon plus-strand RNA species (G, genomic; SG, subgenomic) were 
resolved by Northern blotting following agarose gel electrophoresis. (B), 
Transfections were performed at 35°C or 39°C. Six hours posttransfection, 
cells were lysed and the P200 precursor and P150 product were resolved by 
Western blotting probed with anti-HA antibodies following SDS-PAGE (the 
other product, P90, does not appear because it does not contain the HA 
epitope). Cells transfected with a replicon containing a C1152S catalytic site 
mutation (RUBrep-NS*-HA/GFP) that cannot mediate P200 cleavage served 
as an uncleaved control. 
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(Fig. 5.10B), we also did the experiment in cells transfected at 39 ⁰C. As shown in 

Fig. 5.10B, wt replicon cleavage of the P200 precursor was more efficient than at 

35 ⁰C, however, cleavage in AA mutant replicon-transfected cells could not be 

detected, indicating that the mutant protease is temperature sensitive.  Thus, not 

only is Ca2+ binding important for NS protease activity, in the absence of the Ca2+ 

binding the protease is rendered temperature sensitive.   

 

5.2.8. Summary 

 Identification of an EF-Hand Ca2+-Binding Motif in a Viral 

Nonstructural Protein.  In this report, we have presented one of the few 

predictions and confirmations of a Ca2+-binding motif in a virus nonstructural 

protein. Most other viral Ca2+-binding motifs occur in virion structural proteins and 

of these, only the rotavirus VP7 outer capsid protein (DITADPTTAPQTE) (39), 

the HIV-1 transmembrane protein gp 41 (44), and the polyomavirus VP1 

(DENGVGPLCKGE) (31) contain EF-hand Ca2+-binding motifs. In a canonical 

EF-hand Ca2+-binding motif, the coordination geometry in the loop is formed by 

oxygen atoms from the sidechain carboxyl or hydroxyl groups (loop positions 1, 

3, 5, 12), the main chain carbonyls (position 7), and a bridged water (position 9) 

and the flanking sequences around the loop preferentially form a helical 

secondary structure. The negatively-charged residue pairs at Z axis (loop 

positions 5 and 12) are essential for the binding of cations (358).  Examination of 

the primary sequence of the motifs in the above-mentioned virion structural 

proteins reveals that none of these are genuine canonical EF-hand Ca2+-binding 
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moieties due to deviations in flanking sequence structural requirements (HIV gp 

41), the length of the loop (13 residues instead of 12 in rotavirus VP7), and the 

coordinating residues (V instead of D/E/N/Q/T/S at loop position 5 in 

polyomavirus VP1).  Thus, the Ca2+-binding motif in the RUB NS protease is the 

first to be identified with a canonical EF-hand structure.  

Interestingly, the same bioinformatics algorithm that successfully predicted 

the Ca2+-binding loop in the RUB NS protease also predicted an EF-hand Ca2+-

binding motif in nsP1 of alphaviruses (Fig. 5.11A). nsP1 is one of the four 

nonstructural proteins produced by alphaviruses and is involved in membrane 

binding and has methyl/guanylyl transferase activity.  We have grafted this loop 

from Sindbis virus (SINV) into the CD2 scaffold and determined its Kd for Tb3+ as 

16.4 M (Fig. 5.11B).  We are in the process of creating the corresponding 

mutation from the RUBV loop in the SINV loop (E5I/E12I).  If we find that this 

mutation abrogates Ca2+ binding by the grafted SINV loop, it will be of great 

interest to determine if infectivity is affected after we introduce mutations into a 

SINV infectious cDNA clone.   

Because of difficulty in expressing the entire NS protease, the metal-

binding properties of this Ca2+-binding motif were probed by grafting the loop into 

the scaffold protein CD2.D1 and by expressing the entire motif within the native 

minimal metal-binding domain of the NS protease. Table 1 provides a summary 

of the metal-binding affinities of the Ca2+-binding motif in both the engineered 

CD2.RUBCa and the minimal metal binding domain, RUBCa. It is worth noting 

that numerous studies of EF-hand calcium binding motifs have been made at the 
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Figure 5.11. Prediction of a putative EF-hand Ca2+-binding motif in the nsP1 of 
alphaviruses. (A), Location of predicted EF-hand Ca2+-binding motifs in rubella 
virus and alphaviruses, both of which belong to the Togaviridae family. The EF-
hand Ca2+-binding motif in alphaviruses  is immediately next to the 
methyltransferase domain of nsP1. VEEV, Venezuelan equine encephalitis 
virus; WEEV, Western equine encephalitis virus; RRV, Ross River virus; SINV, 
Sindbis virus ; SFV, Semliki Forest virus. (B), Grafting the 29-residue helix-
loop-helix EF-hand motif (red box, inset) from sindbis virus (SINV) to CD2.D1. 
The engineered protein binds to Tb3+ with a dissociation constant of 16 μM. 
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peptide or subdomain level (361-363). The Ca2+-binding affinity of the RUBCa 

loop grafted into CD2 (214 μM) is weaker than the grafted EF loop I from 

calmodulin (34 μM) (69),  likely due to the presence of an Asp at the bidentate 

position 12 of the loop rather than a Glu, which ensures a high Ca2+-binding 

affinity due to its larger side chain and stronger interaction with Ca2+.  

Substitution of Glu at position 12 in CaM with Lys or Gln reduces Ca2+-binding 

affinity by 10-100 fold (361,364-366) while the substitution of Asp with Glu at 

position 12 in the regulatory light chain of myosin leads to a 15-fold increase in 

binding affinity (350). The Ca2+-binding motif  in the RUB NS protease also 

exhibits selectivity for Ca2+ and La3+ in the presence of excess Mg2+ and K+, 

similar to paired EF-hand Ca2+-motifs in Ca2+-binding proteins such as 

calmodulin and troponin C (367).  

 

Table 5.1. The metal-binding affinities of the engineered protein CD2.RUBCa and the 
minimal metal-binding domain RUBCa. 

Results obtained from Tb3+-FRET assay a, Ca2+ competition assayb, 1D 1H NMR with 
La3+ titrationc, metal titration monitored by intrinsic Trp fluorescenced and ANS 
fluorescencee. 

 

Protein  Metal ions Dissociation constants (Kd, µM) 

CD2.RUBCa aTb3+ 47 ± 4 

 bCa2+ 214 ± 73 

 cLa3+ 14 ± 7 

RUBCa aTb3+ 3 ± 1 

 dCa2+ 316 ± 4 

 
Zn2+ d 0.2 ± 0.1 

e 0.8 ± 0.2 
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 Ca2+-Induced Local Conformational Change in the RUB NS Protease 

and Its Potential Stabilizing Role. Since the expression and purification of the 

entire NS protease was not achieved, conformational studies were done using 

the RUBCa subdomain which contained both catalytic residues, the putative Zn2+ 

binding ligands and the EF-hand Ca2+-binding motif.  Boundaries of the RUBCa 

subdomain were chosen near unstructured or loop regions according to our 

model (Fig. 5.2C) and within this model, the RUBCa subdomain had a well-

folded, globular structure.  We found that the RUBCa subdomain bound 

stoichiometric amounts of Ca2+ and underwent metal induced local changes in 

conformation. Ca2+ binding to RUBCa resulted in a modest decrease in its 

intrinsic Trp fluorescence intensity without emission peak position shift. However, 

the addition of Ca2+ did not significantly alter the secondary structure of RUBCa 

as revealed by far UV CD. In addition, ANS binding suggested that no 

hydrophobic surface was perturbed upon Ca2+ binding. These results indicate 

that Ca2+ binding does not lead to a global conformational change of RUBCa. In 

the RUB NS protease model structure, the predicted helix-loop-helix EF-hand 

Ca2+-binding site is located at the exposed surface on the opposite side of the 

active site C1152 and H1273 (Fig. 5.2C), consistent with our finding that Ca2+ 

binding to RUBCa did not induce global conformational changes. In the model, 

the W1153 residue is 3.5 Å, on average, away from the predicted EF-hand motif. 

This proximity could lead to perturbation in the chemical environment around 

W1153 upon metal-binding and thus the model is also consistent with our 

observation of significant enhancement of Tb3+ fluorescence intensity in RUBCa 
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due to Tb3+-FRET (Fig. 5.4A).  Finally, we found that the binding of Ca2+ 

increased the Tm of RUBCA from 37.7 to 41.8 °C indicating that Ca2+ binding 

serves to stabilize the NS protease. Significantly, we found that a replicon with 

two mutations in the EF-hand Ca2+ binding loop that abrogate metal binding by 

the CD2.RUBCa chimera expressed a protease that was temperature sensitive 

at 39oC, confirming this prediction. Such a stabilizing role for Ca2+ has been 

observed in non-viral protease, such as subtilisin (368) and thermolysin (369).  It 

will be of interest to determine if the putative EF hand Ca2+-binding motif in the 

MT domain of the alphaviruses plays a similar stabilizing role. 

 Role of Ca2+ in the Replication Cycle of Rubella Virus. When the 

double Ca2+ binding mutant was introduced into the Robo502 RUB infectious 

cDNA clone, titers produced were ~20-fold lower than those produced by wt 

Robo502, however during subsequent passaging, the mutant virus titer rose by 

over 10-fold and sequencing of isolated virus plaques indicated that this was due 

to reversion of the mutants to the wt sequence.  In a replicon incapable of cell-to-

cell spread, the double Ca2+ binding mutant exhibited delayed RNA synthesis. 

We finally showed that cleavage of the P200 nonstructural precursor was 

impaired at 35 ⁰C and temperature sensitive at 39 ⁰C.  While minus strand RNA 

synthesis is catalyzed by the uncleaved precursor, the precursor must be 

cleaved before plus strand RNA synthesis can occur (370). Thus, an impaired 

cleavage is consistent with delayed plus strand RNA synthesis as observed with 

the replicon and lower titers as observed with the infectious cDNA clone.  
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However, ongoing (though delayed) RNA synthesis would lead to the generation 

of revertants as observed with the infectious cDNA clone.  

A submillimolar Kd for Ca2+ binding (~200-300 μM) was derived from both 

CD2.RUBCa and RUBCa.  In the cell, cytosolic Ca2+ concentrations range from 

0.1-10 µM while  the Ca2+ concentration in endosomes or lysosomes is as high 

as 400-600 µM and is maintained in part by the proton gradient across lysosomal 

membranes (371,372).  Presumably, in the replication complex the protease 

resides on the cytosolic side of the lysosomal membrane, however release of 

Ca2+ from the lysosome could result in local Ca2+ concentrations high enough for 

binding.  For example, in acidifying endosomes the uptake of extracellular Ca2+ 

(mM) is immediately accompanied by rapid release of Ca2+ to the cytoplasm and 

with an external [Ca2+] of 2 mM, the endocytosed Ca2+ may be sufficient to 

increase the total cellular Ca2+ concentration by 2 μM per min (372).  It is also 

possible that association of the viral replicase proteins with late endosomal or 

lysosomal membranes alters the Ca2+ gradient leading to a localized increase in 

Ca2+ concentration.  Nevertheless, given the weak Ca2+ binding affinity of the 

Ca2+ binding loop, the protease is possibly inactive in the cytosol and must be 

associated with the late endosomal or lysosomal membrane before encountering 

Ca2+ concentration sufficient for binding.  Thus, Ca2+ may play a role in regulating 

the virus replication cycle by delaying the nonstructural precursor cleavage until it 

is associated with late endosomal or lysosomal membranes and thus modulating 

the synthesis of plus strand RNA.  A similar situation has been shown to be the 

case with rotaviruses whose NSP4 glycoprotein mediates an increase in 
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intracellular Ca2+ concentration which modulates transcriptase activity 

(37,229,286,373).   

 

5.3. Conformational and functional studies on a Zn2+-binding cysteine-rich 

domain of RUB NS protease 

Viral Zn2+-binding proteins include proteins that interact with nucleic acids 

and are important in transcription and/or replication, such as UL52 of HSV-1, a 

member of a helicase-primase complex (374), the nucleocapsid of retroviruses 

(HIV-1 and murine leukemia virus) (375,376), the V protein of Sendai virus 

involved in RNA editing (377), helicases of nidoviruses such as SARS 

coronavirus and equine arteritis virus (378,379),and the NS5A replicase 

component of hepatitis C virus(HCV) (380-382), and viral proteases, such as the 

papain-like cysteine protease 2 of SARS coronavirus (383), nsp1 papain-like 

cysteine protease of equine arteritis virus (a nidovirus)(384), the leader protease 

of encephalomyocarditis virus (385), and the NS3 protease of HCV (386). Zn2+ 

has also been to be required in the RUB NS protease (345,346); however, the 

binding ligands have yet to be identified.   

Structural Zn2+ binding sites are generally coordinated by four cysteines 

and histidines as ligands and based on our model structure of the RUB NS 

protease, a cluster of cysteine residues (C1167, C1175, C1178, C1225, and C1227) 

could potentially form a Zn2+ binding pocket, in which there is no histidine residue 

nearby (Fig. 5.12).  We have expressed a subdomain of the NS protease, 

RUBCa (aa 1143-1252 of P150), which contains all of the putative cysteine 
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Figure 5.12. Cartoon representation of a cysteine-rich domain in RUB NS 
protease. (A), Domain assignment of the RUB genome. The protease domain 
contains at least one Zn

2+
-binding site as well as a putative EF-hand Ca

2+
-binding 

motif (blue box). It has been proposed that the residues C1152 and H1273 
constitute the catalytic dyad. The minimal metal-binding domain RUBCa (aa 
1143 to 1252), encompassing both the Zn2+- and Ca2+-binding motifs, is 
bacterially expressed and used in this study.  (B) Secondary structure prediction 

of RUBCa and the location of Zn2+- and Ca2+-binding motifs. (C), Model structure 

of RUBCa. A cluster of cysteine residues (shown as ball-and-stick) forms a 
potential Zn

2+
-binding pocket. The EF-hand Ca

2+
-binding motif is shown in blue. 

The aromatic residue W
1231

 (magenta) situates close to the cysteine-rich region 
and serves as a probe for Zn

2+
-induced conformational changes.  
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residues involved in Zn2+ binding plus the EF-hand Ca2+ binding motif (Section 

5.2), as a GST fusion protein and found that it could be cleaved and purified, 

remained soluble after purification (Fig. 2.1), bound stoichiometric amounts of 

Ca2+ and Zn2+, had a relatively well-folded structure, and underwent metal 

induced changes in conformation.  Unfortunately, limited solubility of this 

subdomain precludes structural analysis by NMR to identify the Zn2+ binding 

ligands.  Therefore, the residues involved in Zn2+ binding will be identified  by 

mutating each cysteine in RUBCa individually to S (C1152, the catalytic site 

residue, will be mutated to S as a negative control) and measuring Zn2+ content 

by a modified PAR (4-(2-pyridylazo)resorcinol) colorimetric assay (387). The 

P200 precursor cleavage in cells transfected with RUBrep-HA/GFP derivative, 

replicons expressing a P150 tagged with the HA epitope and its cysteine mutants 

will be similarly assayed as described in section 5.2.7.  

 

5.3.1. Determination of Zn2+ contents in RUBCa and its cysteine mutants 

In previous studies, C1175, C1178, C1227, H1204 and H1273 have been 

assigned as candidate ligands involved in zinc binding on the basis of site-

directed mutagenesis and in vitro 65Zn binding assay (345,346). However, in the 

model structure, we found that no histidine was present in close proximity to the 

proposed cysteine-rich Zn2+-binding pocket. Hence, we solely focused on the 

cysteine residues. 

After purifying minidomain RUBCa and its mutants and removing 

background metal ions  by Chelex 100 resin, we determined the zinc content with 
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a colorimetric assay by using the dye  4-(2-Pyridylazo)resorcinol (PAR). The 

protein-bound Zn2+ is released by protease K digestion. The released Zn2+ will 

then form a Zn-(PAR)2 complex accompanied by a large increase in extinction 

coefficient at 500 nm (Δε = 6.6×104 M-1 cm-1 at pH 7.0) (Fig. 5.13A) . The affinity 

of PAR for Zn2+ is high with K1’=4.0×106  M-1 and K2’=5.5×105 M-1 at neutral pH 

(387).  In the presence of 100 μM PAR, 1-15 μM Zn2+ released from a protein is 

converted rapidly (<3ms) and quantitatively to Zn-PAR complex (of which over 98% 

of the zinc is in the 1:2 complex) with a ratio of [Zn-(PAR)2] to [Zn2+]free of ~2×104. 

Shown in Fig. 5.13B is the zinc to protein molar ratio determined by this method, 

with carbonic anhydrase as positive control ([Zn2+]/[P] = 0.88). Except for the WT 

RUBCa ([Zn2+]/[P] = 0.69) and the mutant C1167S ([Zn2+]/[P] = 0.67), all the other 

cysteine mutants (C1175S, C1178S, C1225S, C1227S, C1167S/C1175S, C1175S/C1178S, 

C1167S/C1175S/C1178S, and C1225S/C1227S) showed significantly lower metal to 

protein ratio ([Zn2+]/[P] = 0.08~0.29). With all of the five cysteine residues 

substituted with serines (C5 mutant), the protein fails to bind zinc ions. Thus, it 

seems that C1167 is not directly involved in the coordination of zinc ions in the 

binding pocket.  

 

5.3.2. Zn2+-induced conformational changes 

RUBCa contains three Trp residues and according to the model of the 

structure of the RUB NS protease (Fig. 5.12C), one of these aromatic residues, 

W1231, is in close proximity to the proposed Zn2+-binding pocket. Aromatic residue 

is highly sensitive to local or global conformational changes and this feature has 
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Figure 5.13. Determination of protein-bound Zn2+ content by PAR assay. (A), 
A PAR colorimetric assay is used to determine the Zn2+ content in proteins. 
The binding of zinc released from protein to PAR results in an increase of 
signal at 500 nm (inset). The linear range of this method lies within 0-15 μM 
Zn2+. (B), Zinc to protein ratio in wt RUBCa and its cysteine to serine mutants. 
The C5 mutant substitutes all of the five cysteines with serines. Carbonic 
anhydrase, which contains one high-affinity zinc binding site, is used as 
positive control (marked as CA*).       
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been utilized to probe Zn2+-induced structural changes. As shown in Fig. 5.14A, 

the emission maximum of RUBCa blue-shifted from 339 nm to 336 nm with 

concomitant increase of fluorescence intensity by at least 15%, indicating that the 

aromatic residue W1231 is surrounded by a more hydrophobic environment. By 

monitoring this intensity change, a dissociation constant of 0.2 ± 0.1 μM for Zn2+ 

was obtained by assuming 1:1 binding (inset, Fig. 5.14A).   

  Zn2+-induced conformational change was further confirmed by ANS 

fluorescence. The anionic amphiphilic ANS is often used as a hydrophobic probe 

to examine the conformational properties of proteins. As shown in Fig. 5.13B, 

upon the addition of RUBCa, the emission peak of ANS fluorescence blue-shifted 

from 510 nm to 500 nm and the intensity increased by ~30%, suggesting that 

some of the hydrophobic regions of the purified RUBCa were exposed to the 

solvent and thus accessible to ANS. The addition of excessive amounts of Zn2+ 

caused redshift (by 2 nm) and ~10% decrease of the fluorescence intensity (Fig. 

5.13B). This result suggests that the binding of Zn2+ leads to conformational 

changes and the subsequent shielding of some hydrophobic regions from the 

solvent in RUBCa. A dissociation constant of 0.8 ± 0.2 μM was obtained by 

monitoring the ANS fluorescence intensity change as a function of Zn2+ 

concentration (Inset, Fig. 5.14B). Taken together, these data implied that the 

binding of Zn2+ induced significant conformational changes by rearrangement of 

some hydrophobic regions.  

 

 



168 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.14. Zn2+-induced conformational changes. (A), Intrinsic Trp 
fluorescence emission spectra of RUBCa (2.5 μM) in the presence of 1 mM 
EGTA (dashed line) or 20 μM Zn2+(solid line). Inset: the relative intrinsic Trp 
fluorescence intensity plotted as a function of the concentration of Zn2+. An 
average dissociation constant of 0.2 μM was obtained by assuming a 1:1 
binding model. The excitation wavelength was set at 282 nm. (B), 
Fluorescence emission spectra of 40 μM ANS (gray line) and ANS:RUBCa 
complex with 1 mM EGTA (dashed line) or 20 μM Zn2+ (solid line). The 
excitation wavelength was set at 390 nm. All the buffers used in metal titration 
consist of 10 mM Tris-HCl, 100 mM KCl, pH 7.4. 
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5.3.3. Effects of Cys-to-Ser mutations on protease cleavage 

 We further introduced the individual or combined cysteine to serine 

mutation(s) into a RUBrep-HA/GFP replicon expressing HA-tagged P150 to 

assay the P200 cleavage in Vero cells. These experiments were done at 6 hrs 

post-transfection, when translation from the input transcripts is detectable but 

replication has not yet started.  As shown in Fig. 5.15, at 35 ⁰C P200 to P150 

cleavage was efficient in wt RUBrep-HA transfected cells, as well as in RUBrep-

HA/GFP-C1167S transfected cells. Vero cells transfected with RUBrep-HA/GFP 

constructs with single cysteine to serine mutations at residue 1175, 1178, 1225, 

1227, similar to the construct with a C1152S substitution at the catalytic site that 

served as an uncleaved control, were unable to undertake cleavage. In addition, 

cleavage in Vero cells transfected RUBrep-HA/GFP constructs of multiple 

cysteine to serine mutations (C1167S/C1178S, C1175S/C1178S, C1167S/C1175S/C1178S, 

C1225S/C1227S, and the mutant C5S with all five cysteines mutated to serines) was 

abolished (Fig. 5.15). This finding is largely consistent with our previous in vitro 

co-transcription-translation assay, which demonstrated that single mutations of 

C1175, C1178, C1227 could result in the loss of protease activity. However, in the in 

vivo assay, C1167 was able to cleave the P200 precursor and C1225 was unable to 

undertake the P200 precursor cleavage, which is exactly opposite to the 

observations in the in vitro assay. This discrepancy would likely arise from the 

difference in reaction conditions. Specifically, in vitro assay is carried out under 

aerobic, non-reducing conditions that may not truly reflect the reducing 

environment of cell-based assays. Given the high number of cysteines, a 
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Figure 5.15. Effect of mutations of cysteines on P200 precursor cleavage. Vero 
cells were transfected with transcripts from WT RUBrep/GFP or RUBrep/GFP 
mutants containing single or multiple cysteine-to-serine substitutions. Six hours 
posttransfection, cells were lysed and the P200 precursor and P150 product 
were resolved by Western blotting probed with anti-HA antibodies following 
SDS-PAGE (the other product, P90, does not appear because it does not 
contain the HA epitope). Cells transfected with a replicon containing a C1152S* 
catalytic site mutation that cannot mediate P200 cleavage served as uncleaved 
control. C3S: C1167/1175/1178S; C5S: C1167/1175/1178/1225/1227S.  
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reducing environment is more favorable for Zn2+-binding and protein folding by 

preventing formation of mismatched disulfide bonds.  Given those, the in vivo 

assay carried out in Vero cells would be more reliable and closer to the true 

situation occurring in the cells.   

 

5.3.4. Secondary and tertiary structure of RUBCa and its mutants 

For site-directed mutagenesis studies, caution has to be taken for the 

interpretation of the observed results, since there are always concerns regarding 

whether single or multiple cysteine-to-serine mutations would disrupt the integrity 

of the protein structure, and thus leading to loss of its function. To clarify this 

point, we compared the secondary and tertiary structure of the minidomain 

RUBCa and its cysteine mutants. As shown in Fig. 5.16, no significant difference 

were detected among the far UV CD spectra and intrinsic Trp fluorescence 

spectra of RUBCa and its mutants, C3S and C1225S/C1227S, suggesting the 

structural integrity was retained after mutagenesis. Thus, it can be concluded that 

the loss of proteolytic activity in the cysteine-to-serine mutants is due to its 

compromised Zn2+ binding capability.  

 

5.3.5. A possible iron-containing domain in RUBCa 

 During the expression and purification of the minidomain RUBCa, we 

observed a striking brown color for the protein solution. A typical UV/Vis 

spectrum of the purified RUBCa is shown in Fig. 5.16A. In addition to the main 
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Figure 5.16. Far UV CD (A) and Trp fluorescence (B) spectra of 2 μM RUBCa 

(○)and its mutants containing triple (C1167S/C1175S/C1178S, □) and double 

(C1225/C1227S, ◊) cysteine mutations. 
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peak at 280 nm, two additional peaks that are typical of iron-sulfur clusters, one 

at 325 nm and the other at 420 nm, were recorded. In addition, the Fe to protein 

ratios for GST-RUBCa (n=1) and RUBCa (n=1) determined by ICP emission 

spectrometer were 0.05:1 and 0.18:1, respectively (Fig. 5.17). It is evident that 

the bacteria-expressed minidomain contains Fe. The iron is so tightly bound to 

the protein that it could not be chelated by EGTA, EDTA or citrate (Fig. 5.17A). 

However, the addition of a strong reducing agent, sodium dithionite (Eo': ~−420 

mV at pH 7), resulted in the decrease of absorbance at 420 nm (Fig. 5.17B), 

suggesting the degradation of the iron-sulfur cluster. To narrow down the 

cysteines that are involved in the formation of the FeS cluster, we further 

examined the absorbance spectra of RUBCa Cys-to-Ser mutants. As shown in 

Fig. 5.17C, the absorbance peak at 420 nm disappeared after substituting all of 

the five cysteines with serines (C5S mutant). However, both the triple mutant 

C1167/1175/1178S and the double mutant C1225/1227S retained a peak at 420 nm. 

Given our findings at Sections 5.3.1-5.3.3, it seems that both Zn2+ and Fe2+ (or 

Fe3+) ions are sharing or competing some of the cysteine ligands. In the future, 

we will further map the exact ligands and further characterize the FeS cluster by 

using Mössbauer spectroscopy and/or electron paramagnetic resonance 

spectroscopy.  
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Figure 5.17. Absorbance spectra and metal content of RUBCa. (A) UV/vis 
spectrum of RUBCa (20 μM) with different chelators in 10 mM Tris-HCl at pH 
7.5. (B) Gradual addition of 0.1 mg dithionite to the protein sample leads to 
decrease of absorbance signals. (C) UV/Vis spectrum of RUBCa Cys-to-Ser 
mutations. C3S, C1167/1175/1178S; C5S, C1167/1175/1178/1225/1227S. (D) Metal content 
of  GST, GST-RUBCa, and RUBCa determined by ICP emission spectrometry. 
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5.3.6. Summary 

 In conclusion, site-directed mutagenesis studies carried out on the 

bacterially-expressed minidomain RUBCa and the RUB replicon constructs have 

defined an atypical CxxC(x)48CxC type of Zn2+ binding motif. The coordination of 

Zn2+ by C1175, C1178, C1225, and C1227, with an affinity comparable to intracellular 

Zn2+ level, is required for the proteolytic activity of the protease domain in P150. 

The presence of Fe ions in the bacteria-expressed minidomain raises the 

possibility that the protease domain could also be involved in the redox reactions.  
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6. Prediction and identification of calmodulin binding sites 

in gap junction protein connexins 

 

6.1. Calmodulin as intracellular Ca2+ sensor 

Ca2+, an important second messenger in eukaryotic cells, is regarded as a 

“signal for life and death” (3,388). Temporal and spatial changes of the Ca2+ 

concentration in different compartments of cells affect the regulation of cellular 

signaling, by modulating the activity of numerous Ca2+-binding proteins. Among 

them, CaM is one of the most crucial players and is extensively studied due to its 

ubiquitous expression in eukaryotes and its versatile ability to activate or inhibit 

more than 100 functional enzymes, cellular receptors and ion channels 

(14,53,56,389-394).  

CaM is a small (148 amino acids; MW: 16.7 KDa) and acidic (pI: ~4.0) EF-

hand Ca2+-binding protein first identified in the brain and heart as cyclic 

nucleotide phosphodiesterase activator protein (PAF) in the early 1960’s (48). 

CaM consists of two globular and autonomous domains, each of which contains 

two helix-loop-helix EF-hand motifs. Through its reversible or irreversible binding 

to Ca2+, the resultant conformational changes and the interaction with target 

proteins, CaM is capable of transducing the intracellular Ca2+ signal changes into 

a myriad of divergent cellular events, such as cell proliferation, cell differentiation 

and apoptosis (3). 
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6.1.1 Binding of metal ions to CaM: affinity, cooperativity and specificity 
 

Calcium binding affinities and cooperativity 

     The coordination of Ca2+ in EF-hand motifs is achieved by adopting a 

pentagonal bipyramidal geometry with seven oxygen atoms from the sidechain 

carboxyl or hydroxyl groups (loop sequence positions 1, 3, 5, 12), the main chain 

carbonyls (position 7), and a bridged water (position 9). The Glu at position 12 

serves as a bidentate ligand for the Ca2+ ion (Fig. 2A). In the coordination sphere, 

liagnds at position 1 and 9 (bridged water) constitute the X axis; liagnds at 

position 3 and 7 form the Y axis, whereas ligands at position 5 and 12 are located 

along the Z axis (Fig. 1.3). Position 6 of the 12-residue EF-loop is always 

occupied by a glycine and position 8 is highly reserved as a hydrophobic residue. 

Residues at position 7-9 form an antiparallel β-sheet that is involved in the paring 

of two adjacent EF-hands. The exiting helix begins at position 10.  

More than 50 mutations within the EF-hand loops have been made to 

study the key determinants of metal-binding affinities (361). The bidentate ligand 

at position 12 is least tolerant of mutations. An X-ray crystallographic structure 

that captures the conformational intermediate of CaM has been determined by 

locking the N-terminal domain in a “closed” state with a disulfide bond between 

residues 41 and 75. In this structure, the bidendate Glu residue within the C-

terminal domains are about 6-7 Å farther away from its normal position to 

coordinate Ca2+. The movement of Glu to a position 2.5 Å from the Ca2+ is 

required to couple the chelation of Ca2+ and the conformational change by 

moving the exiting helix (395). Mutations of coordinating ligands, in general, lead 
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to significant decreases in Ca2+-binding affinity or less selectivity towards other 

metal ions with similar ionic radii.  Based on studies of a series of mutants on site 

III of CaM where additional acidic residues are introduced on either the X or Z 

axis, Reid et al has proposed an “acid-pair” hypothesis to correlate the type of 

chelating residues with calcium affinity (396,397). According to this hypothesis, a 

higher Ca2+-binding affinity could be expected if the chelating ligands at X or Z 

axis were paired by acidic residues. This simplified model could be used as a 

guideline to predict Ca2+-binding affinity, while excluding the contribution of 

nonchelating residues and cooperativity. The nonchelating residue at position 8 

has been reported to play an important role in the maintenance of stability of 

CaM. Browne et al reported that the substitution of the highly-conserved 

hydrophobic residue at position 8 by Gly results in the destabilization of CaM 

under both Ca2+-free and Ca2+-loaded states (398). These findings underscore 

the importance of the antiparallel β-sheet that structurally links the neighboring 

paired EF-hand Ca2+-binding sites. The conserved hydrophobic residue at 

position 8 has been regarded as part of the “EF-hand β-scaffold” (395). In paired 

Ca2+-binding sites, the bonding network forms a stable resonance structure that 

involves the hydrogen bonding between residues at position 8, and the 

interaction of the bound Ca2+ with the oxygen atoms from the main-chain 

carbonyl at position 7 (Figs. 6.1A and B).  Based on this particular structural 

feature, an “EF-hand β-scaffold” model has been proposed by Grabarek to 

explicitly explain the Ca2+-binding process in the EF-loop with two steps 

(395,399). First, the position of Ca2+ is defined by the EF β-scaffold and the N-
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Figure 6.1. The EF-hand β-scaffold structure formed by paired adjacent EF-
hand Ca2+ binding sites, the N-terminal domain of CaM. (A) 3-D representation 
of the N-terminal domain of CaM (pdb code: 3cln). The residues involved in the 
formation of the β-scaffold structure are labeled and shown as ball-and-stick. 
Ca2+ ions are shown as cyan spheres. (B) The formation of a resonance 
structure by the paired adjacent EF-hand Ca2+ binding sites.  
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terminal part of the Ca2+-coordinating ligands. Subsequently, the C-terminal 

bidentate ligand Glu in the EF-loop approaches the immobilized Ca2+ with 

concomitant movement of the exiting F helix to complete the Ca2+ coordination 

(399).   

The binding of Ca2+ to CaM exhibits a positive cooperativity with a Hill 

coefficient of 1.8-2.5.  Ca2+ binds to CaM in a sequential order: the C-terminal 

domain (sites III and IV) is firstly occupied by two Ca2+  ions with an affinity about 

10-7 M, followed by the binding of two additional Ca2+  ions to the “low-affinity” N-

terminal domain (sites I and II) with the affinity around 10-6. The rates of Ca2+ 

association to these Ca2+ binding sites range from 106 to 108 M-1S-1, whereas the 

rates of Ca2+ dissociation is on the order of 10 to 103 S-1. The 10-fold difference 

in the Ca2+-binding affinities between two domains, as well as the cooperative 

binding of Ca2+ to each pair of sites, enables CaM to efficiently sense the narrow 

range of cellular calcium concentration at rest and excited conditions, and thus 

switching on/off Ca2+ signaling cascades by reversible interaction with target 

proteins. The interaction of CaM with target proteins has been reported to 

enhance Ca2+-binding affinities by 10-1000 fold (400,401) due to slower off-rates. 

The free energy change (G) of Ca2+ binding to two coupled EF-hand motifs and 

the accompanying Ca2+-induced conformational changes are governed by the 

following equations: 



GG1G2GcoopGcon f              



Gcoop  Gconf  RT ln
Kmacro 1Kmacro 2

Kmicro1Kmicro 2

          

where G1 and G2 are the intrinsic energy changes of each 1:1 metal-ligand 
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binding process, Gcoop and Gconf are the energy contribution from cooperativity 

between the two metal binding sites and the metal-induce conformational 

changes, respectively. Four site specific binding constants (microscopic), KI, KII, 

KI,II and KII,I, are used to describe the corresponding binding steps (Fig. 6.2). To 

determine the cooperativity of two-coupled sites, either the ratio of KII/ KI plus two 

macroscopic association constants K1 and K2, or three of the four microscopic 

binding constants are required to be determined. Tremendous efforts have been 

made to estimate the cooperativity of Ca2+ binding to CaM by using peptide 

models (362,367), enzymatic fragmentation (363,402,403) and a novel grafting 

approach (1,2,57,361). According to calculations on the basis of the grafting 

system, we are able to conclude that the energy contribution of cooperativity and 

conformational change from the C-terminal domain is 40% greater than that from 

the N-terminal domain, which could be one of the mechanisms underlying the 

observed high-affinity Ca2+-binding sites at C-terminal domain (1).  

        Taken together, these studies reveal that the number and type (main chain 

or side chain) of ligands, the total ligand charge, the nonchelating residues and 

the Ca2+-induced conformational changes are closely related to the Ca2+ binding 

affinity (367). No clear-cut and conclusive rules can thus far be derived, 

suggesting additional complexity to Ca2+ binding affinity beyond currently 

evaluated empirical determinants. Therefore, a comprehensive charge-ligand-

balanced model emphasizing the accumulative effects of all these factors is more 

scientifically valid to explain the variation in Ca2+ binding affinities.  
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Figure 6.2. Schematic diagram of Ca2+ binding to two coupled EF-hand motifs 

and binding energetics. G is the free energy change of calcium binding to 

two coupled EF-hand motifs. G1 and G2 are the intrinsic energy changes of 

each 1:1 metal-ligand binding process, Gcoop and Gconf are the energy 
contribution from cooperativity between the two metal binding sites and the 
metal-induce conformational changes, respectively. Four site specific binding 
constants (microscopic), KI, KII, KI,II and KII,I, are used to describe the 
corresponding binding steps. 
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Metal binding selectivity 

In addition to Ca2+, other metal ions, particularly those sharing similar 

coordination chemistry or having similar ionic radii as Ca2+ (0.99 Å), are capable 

of binding to CaM with varying binding affinities. Lanthanides (Ln3+), such as Tb3+, 

La3+ and Eu3+, have similar ionic radii and coordination geometry as Ca2+.  

However, they first bind to the N-terminal domain with stronger affinities (Kd: 6-12 

nM) and then to the C-terminal domain with lower affinities (Kd: 2-3 M), 

contradictory to the order of Ca2+ binding dissociation constants. However, this 

discrepancy is not observed in the binding constants obtained using the grafting 

approach (1). The site-specific binding affinities for both Ca2+ and Ln3+ decrease 

in the same order: I>III~II>IV. Since the grafting approach eliminates the energy 

contribution from conformational changes and cooperativity, it is highly possible 

that the eliminated factors could account for the different stepwise binding modes 

between Ca2+ and Ln3+. 

To specifically respond to the altered [Ca2+]c, it is crucial for CaM to 

discriminate Ca2+ from the overwhelmingly abundant Mg2+ (10-3 M) and 

monovalent ions (10-1 M) within the cytoplasm. With excessive concentrations of 

monovalent ions, the Ca2+-binding affinities of CaM decrease over 50 fold due to 

the screening of electrostatic interactions. To achieve metal selectivity, the Ca2+-

binding sites in CaM evolved to adopt a pentagonal bipyramidal geometry that is 

optimized to favor the size and charge of Ca2+ over other metals, such as Mg2+ 

(0.66 Å) and K+ (1.33 Å) (367,404). Mg2+, a group IIA metal ion above the Ca2+ in 

the periodic table, binds to CaM at the same sites as Ca2+ with the dissociation 
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constants ranging from 10-2 to 10-4 M, which is ~1,000-10,000-fold weaker than 

the binding constants of Ca2+. Although the intracellular Mg2+ concentration is in 

the mM range, previous studies have shown that such weak binding will not 

cause significant effects on the cooperative binding of Ca2+ to CaM. However, the 

interaction of CaM with some of its target peptides or proteins will be affected. 

For example, with the concentration of Mg2+ increased from 0 to 100 mM, the 

binding affinity of Ca2+-CaM to its target peptide derived from MLCK is lowered 

by almost 40 folds (405). In view of this, the binding affinities of CaM-target 

complex obtained under low salt conditions need to be reevaluated with the 

presence of physiological amounts of Mg2+ (406). Furthermore, studies on the 

Ca2+-binding affinity of the low-affinity N-terminal domain (TR1C) reveals that 

Mg2+ can occupy almost half of the binding sites under physiological condition 

without triggering a major structural rearrangement (407,408). 

 

6.1.2. Structure of CaM: conformational plasticity and structural malleability 

The first structure of CaM was determined in 1985 by Babu et al. Since 

then, at least 90 structures of CaM and CaM-target complexes under Ca2+-free or 

Ca2+ loaded conditions have been determined by using X-ray crystallography or 

NMR, which makes a thorough discussion of these structures beyond our scope. 

However, scrutinization of some of the landmark works conducted by Bax’s, 

Ikura’s, Brunger’s and Forsen’s groups are sufficient enough to reveal the key 

features of CaM and illustrate the striking difference between apo-CaM and Ca2+-

CaM (363,409-411).   
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Attempts to grow crystals of apo-CaM suitable for X-ray crystallography 

have proven to be fruitless. The available structures were determined by 

multidimensional NMR techniques in 1995. In the absence of Ca2+, CaM consists 

of two sets of compactly packed, twisted, four-helix bundles, one at the N-

terminus (helices I-IV) and the other at the C-terminus (helices V-VIII), which are 

capped by a short anti-parallel β-sheet. The central helical region connecting the 

two domains is interrupted by S81 and is slightly bent. The C-terminal domain 

turns out to be less stable than the N-terminal domain as indicated by the much 

faster backbone amide hydrogen exchange rate (410). It has been shown that 

the helices in apo-CaM are more mobile and less stable, which could explain the 

observed reduction in helical content, compared Ca2+-CaM, as revealed by 

circular dichroism studies. Upon binding of Ca2+, CaM undergoes drastic 

conformational changes and adopts a “dumbbell” shape: two autonomous 

globular domains are tethered by a flexible linker (residues 77-80). The most 

striking structural change is the rearrangement of helices in each domain and the 

increased solvent exposure of hydrophobic surface. The original anti-paralleled 

helices in each EF-hand motifs become nearly perpendicular to each other by 

undergoing remarkable reorientation (Fig. 6.3). The exposed area of hydrophobic 

patches to the solvent is estimated to be 10 X 12.5 Å in both the N- and C-

terminal domains (409). Therefore, CaM transits from a compact “closed” state to 

a more relaxed “open” state, poising itself to interact with numerous target 

proteins (Fig. 6.3A). Comparison of the X-ray crystal structure and NMR structure 

of Ca2+-CaM indicates that the N-terminal domain in solution is much less 
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opened than in crystalline, where a fifth Ca2+ has been reported to bridge the 

electrostatic interaction between Glu47 and Asp58 (411). According to the energy 

balance mechanism proposed by Chazin et al, a Ca2+-induced open 

conformation is more favored because more energy is required to accommodate 

Ca2+ ions in the close conformation (412). A more quantitative expression of 

these changes is reflected by the alteration in the interhelical angles and 

distances (Table 6.1). The interhelical angles within each EF-hand decrease by 

40° and the interhelical distances increases by 4 Å, on average, by addition of 

Ca2+ to apo-CaM.  

Another unique feature of CaM is the unusual abundance of methionines 

(9/148, 6%) in the primary sequence. Methionine has flexible and relatively polar 

side chain that results in strong van der Waals interactions. Both domains contain 

four methionines (M36, M51, M71, M72 for the N-terminal domain and M109, M124, 

M144 and M145 for the C-terminal domain) that are situated at the gate of the 

hydrophobic cores and contribute as much as ~50% of the total hydrophobic 

surface area (Fig. 6.3B). The binding of Ca2+ to apo-CaM increases the solvent 

accessible areas of methionines by 30 fold at the N-terminal domain. The solvent 

accessible areas of M109 and M45 at the C-terminal undergo 45-fold and 5-fold 

increases, respectively. The importance of the methionine in the broad spectrum 

of target recognition has long been realized. Substitution of M by L or Q within 

the hydrophobic core significantly impairs CaM’s capability to activate or 

deactivate its target proteins, such as phosphodiesterase (413) and the RyR1 

(414). Nevertheless, substitution of 8 methionines with unnatural sulfur-free 
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homolog of methionine, norleucine, neither significantly changes the structure of 

CaM, nor leads to considerable loss of its ability to activate MLCK (415). The role 

of methionines in stabilizing the open conformation is further corroborated by 

Nelson and Chazin’s less biased, interaction-based studies on the Ca2+-induced 

conformational change in CaM by using distance difference matrices and by 

analyzing the interresidue contacts (416). 

 

Table 6.1. The interhelical angle and distance in apo-CaM and Ca2+-CaM. 

PDB codes: a. 1cfc (410); b. 1dmo (409); c.1cll (417); d: 3cln (418). 

 

6.1.3. Target recognition of CaM: diversity and recurrence 

     Although it has been known from almost four decades that numerous 

proteins can interact with CaM, it was not until 1992 that the first structure of 

CaM with a 26-residue target peptide derived from the skeletal myosin light chain 

kinase (MLCK) was solved (419,420). This landmark work has unveiled several 

key features responsible for the interaction of CaM with its target proteins and 

has enabled the prediction of the CaM target sequences. This pioneering work 

helix pair 
Interhelical angle (°) Interhelical distanceb (Å) 

Apo-CaM Ca2+-CaM Apo-CaM Ca2+-CaM 

I/II 138a/128b 90c/86d 12.3 18.5 

III/IV 130/130 86/86 12.3 16.2 

II/III 126/130 111/113 11.2 11.3 

I/IV 127/121 110/108 10.7 10.7 

V/VI 131/137 102/101 11.9 15.1 

VII/VIII 133/132 89/94 12.3 14.4 

VI/VII 141/144 110/112 11.8 11.0 

V/VIII 142/144 119/116 11.2 10.3 
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A 

 
 

B 

 
Figure 6.3. The Ca2+-induced conformational change and binding of a target 
peptide from chicken smooth muscle myosin light chain kinase to Ca2+-CaM. 
(A), The apo-CaM is comprised of two four-helix bundles linked by an 
interrupted central helical region. The binding of Ca2+ induces considerable 
changes in the interhelical angles and results in the exposure of a number of 
hydrophobic residues to the solvent. This exposed hydrophobic area is 
responsible for the interaction of CaM with its target proteins or peptides, such 
as the chicken smooth muscle light chain kinase (smMLCK). (B), Space-filling 
representation of distribution of hydrophobic residues (green) and methionine 
(orange) residue in Ca2+-free and Ca2+-ligated CaM. The binding of Ca2+ 
induced a conformational change to expose the hydrophobic residues toward 
the solvent, enabling its broad interaction with targets. 
 
 
 

 

 

Apo-CaM (1cfc) Ca2+-CaM (3cln)

Ca

Ca2+-CaM-sMLCK (1cdl)
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has thus far spurred the determination of more than 30 structures of CaM-target 

complexes and new modes of interaction have been discovered in recent years 

(see Table 6.2). At least three modes of CaM-target interaction have thus far 

been characterized. 

 

The embracing mode 

     The embracing mode or “wrap-around” mode is well characterized as 

exemplified by the Ca2+-CaM-sMLCK complex  (419,420). Upon binding to CaM, 

the peptide with 1-8-14 spacing pattern of bulky hydrophobic residues and 

interspersed basic residues adopts an -helical structure and is engulfed into the 

hydrophobic cleft of Ca2+-CaM. The hydrophobic interaction is the main force 

driving the interaction of Ca2+-CaM with its targets, whereas the electrostatic 

interactions between the positively charged residues of the peptide and the 

negatively charged clusters in both N- and C-terminal domains of CaM also 

contribute considerably to the interaction. The hydrophobic interaction is 

maximized by the unwinding of the central helix, which subsequently bends by 

~100 and undergoes a ~120 rotation (Fig. 6.3A). As opposed to the dumbbell 

shape of Ca2+-CaM, the CaM-target complex is globular with the N- and C-

terminal domains coming close. The originally unstructured peptide binds to CaM 

in an antiparallel orientation such that the C-terminal domain of CaM contacts 

with the hydrophobic residue at position 1 of the peptide, whereas the N-terminal 

domain interacts with residues at positions 14. A similar binding mode has also 

been seen in Ca2+-CaM-CaMKII complex with 1-5-10 anchoring spacing and 
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Table 6.2. List of CaM-target complexes deposited in protein data bank. 

Pdb code 
(resolution, Å) 

Target         
(length, aa) 

Mode 
Anchor 
spacing 

CaM:Target 
ratio and No. of 

bound Ca
2+

 
Technique Year 

1A29 (2.7) Trifluoperazine 1 others 1:2, 4Ca
2+

 X-ray 
  
1998 

1LIN (2.0)    1:4, 4Ca
2+

  1996 

1CTR (2.5)    1:2, 4Ca
2+

  1998 

1CDL (2.4) smMLCK (20) 1 1-8-14 1:1, 4Ca
2+

 X-ray 1992 

2BBM skMLCK(26)    NMR 1992 

1CDM (2.0) CaMKIIalpha (18) 1 1-5-10 1:1, 4Ca
2+

 X-ray 1994 

2BDW (1.8) AID of CaMKII  1 1-5-10 1:1, 4Ca
2+

 X-ray 2005 

1CFF Ca
2+

-pump (20) 2 1-8 1:1, 4Ca
2+

 NMR 1999 

1CKK CaMKK (26) 1 1-16 1:1, 4Ca
2+

 NMR 1999 

1IQ5 (1.8)            (24)    X-ray  

1G4Y (1.6) SK2 channel (81) 3 1-8-14 2:2, 2Ca
2+

(N) X-ray 2001 

1QX5    apo-CaM  2004 

1IWQ (2.0) MARCKS (18) 1 1-5-10 1:1, 4Ca
2+

 X-ray 2003 

1K90 (2.8) anthrax edema 
factor (485) 

2 1-8-14 1:1, 2Ca
2+

(C) X-ray 2002 

1K93 (3.0)         (485)     2002 

1LVC (3.6)         (485)     2002 

1XFZ (3.3)         (735)     2005 

1L7Z (2.3) myristolylated 
CAP-23/NAP-22 
(6) 

1 others 1:1, 4Ca
2+

 X-ray 2003 

1MUX W7  1 others 1:1, 4Ca
2+

 NMR 1998 

1MXE (1.7) CaMKI (25) 1 1-5-10 1:1, 4Ca
2+

 X-ray 1998 

1NIW (2.1) NOS (19) 1 1-5-8-14 1:1, 4Ca
2+

 X-ray 2003 

1NWD GAD (28) 1 others 1:2, 4Ca
2+

 NMR 2003 

1QIV (2.6) DPD  1 others 1:2, 4Ca
2+

 X-ray 2000 

1QIW (2.3)      2000 

1QS7 (1.8) rs20 (19) 1 1-8-14 1:1, 4Ca
2+

 X-ray 2003 

1QTX (1.7)       (21)     2003 

1VRK (1.9)       (21)     1999 

1SY9 olfactory CNG 
channel (19) 

1 1-8-14 1:1, 4Ca
2+

 NMR 2005 

1WRZ (2.0) DAP kinase (19) 1 1-8-14 1:1, 4Ca
2+

 X-ray 2006 

1YR5 (1.7)                 (19)     2006 

1XA5 KAR-2 (bis-indol 
alkaloid) 

1 others 1:1, 4Ca
2+

 X-ray 2004 

2F2O (2.2) calcineurin (25) 1 1-5-8-14 2:2, 4Ca
2+

 X-ray 2006 

2F2P (2.6)                (25)     2006 

2F3Y (1.5) CaV1.2 channel 
(18) 

1 IQ 1:1, 4Ca
2+

 X-ray 2005 

2F3Z (1.6) (18)     2005 

2FOT (2.5) alphaII-spectrin 
(23) 

1 others 1:1, 4Ca
2+

 X-ray 2006 
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Ca2+-CaM-CaMKK complex (421)  with 1-16 spacing pattern (Table 6.2). Due to 

the spacing variation of anchoring residues, more unwinding of the central linker 

region in Ca2+-CaM-CaMKII is observed, further demonstrating the structural 

malleability of CaM. From the perspective of function, this mode of interaction 

enables CaM to displace the targeted “autoinhibitory domain” from the active site 

and activate the enzyme.  

 

The tethering mode 

     The second mode of interaction has been seen in the CaM-Ca2+ pump 

complex (422). Instead of the normal spacing of 1-8-14, certain isoforms of Ca2+-

pump lack the bulky hydrophobic residue at position 14 (Table 6.2). As a result, 

the fragment (C20W) corresponding to the CaM binding site at the N-terminal of 

Ca2+ pump binds solely to the C-terminus of CaM and no contact between the 

two domains is observed. Here we use the term “tethering” to describe the 

binding mode since the peptide physically adheres loosely to one of the two 

lobes and is more exposed to the solvent than the MLCK embraced by CaM. In 

contrast to the collapsed globular shape of CaM-MLCK complex, CaM-Ca2+ 

pump complex remains a unique relatively extended form.  

     A more close-to-reality CaM-target complex structure is determined with 

the full sequence of anthrax edema factor (EF) (423). Though the anchoring of 

the CaM-binding site of EF follows the 1-8-14 spacing pattern, the extended 

structure of this complex does not resemble the collapsed structure typically 

observed in the binding mode 1. The N- and C-terminal domains of CaM in the 
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complex represent strikingly distinct states. The N-terminal domain remains in a 

close conformation without the binding of Ca2+ and interacts with the EF catalytic 

domain. In contrast, the C-terminal domain is open and binds two Ca2+. The 

constitutive binding of CaM to the “low affinity” N-terminal domain is speculated 

to stabilize EF, making it more resistant to enzymatic cleavage. Meanwhile, the 

sole binding of two Ca2+ to the C-terminal domain suggests that EF may sense 

the changes of cellular [Ca2+] ahead of host CaM-activated enzymes. Overall, the 

enzymatic activity of EF has been enhanced by over 100 folds with the binding of 

CaM through remodeling of the active site.  

Extensive biochemical and biophysical studies have revealed that CaM 

under Ca2+-free condition can interact with a number of targets, such as myosin 

and neuromodulin that possess characteristic “IQ” motifs (424). Given the well-

hidden hydrophobic core in apo-CaM, it is less likely for the interaction of apo-

CaM with its targets to adopt an embracing mode that requires a large area of 

hydrophobic interaction. From the observation of the interaction between apo-

CaM and the neuromodulin peptide, it has been suggested that the binding of 

peptide causes significantly fewer chemical shift changes in the N-terminal 

domain than in the C-terminal domain, which could be indicative of binding of the 

peptide to the C-lobe of CaM. In view of this, it is highly possible that the apo-

CaM-target interaction will follow a similar binding mode as that of the CaM-Ca2+ 

pump complex. High-resolution structures featuring the interaction of apo-CaM 

with IQ motifs are needed to elucidate the true binding mode. 
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The oligomerizing mode 

     CaM-induced oligmerization has been best exemplified by the interaction 

of CaM with the small conductance K+ (SK) channel (425) and the glutamate 

decarboxylase (GAD) fragment (426). CaM is constitutively associated with SK 

channel through its Ca2+-free C-terminal domain. The binding of Ca2+ to its “low 

affinity” N-terminus initiates the dimerization of SK channel and ends up forming 

a 2:2 complex. Given the fact that the half-maximal activation of SK channel 

requires a [Ca2+]i if ~5X10-7, it is intriguing to ask why the sensing of Ca2+ is 

carried out by CaM’s low affinity (10-6 M) domain instead of its C-terminal high 

affinity Ca2+-binding sites (10-7 M). CaM-induced dimerization is also observed in 

its interaction with glutamate decarboxylase with the formation of 1:2 ([CaM]/[GA]) 

complex. The dimerized peptide, in this structure, is still embraced by Ca2+-CaM. 

 

6.1.4. Prediction and screening of potential CaM target sequences 

     With the vast amount of genomic information available, new CaM-binding 

sequences are reported each year. This raises the question as to whether the 

current known CaM-binding motifs are just the “tip of the iceberg”, or if we are 

closer to a final appreciation of the CaM-target interaction network. Development 

of fast and reliable strategies to predict and validate potential CaM-binding site 

would undoubtedly be of great help to visualize the macroscopic picture.  

     Though low sequence identity has been observed among different target 

sequences, all the target peptides (18mer to 26mer) share some key features: 

the hydrophobic residues with bulky sidechains that anchor the target sequence 

to the hydrophobic cleft of CaM are arranged in particular spacing patterns with 
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2-6 positively charged residues interspersed in between. According to the 

distribution of anchoring residues in the continuous polypeptide sequence, the 

binding motifs can be divided into five classes: 1-5-10 class, 1-8-14 class, 1-16 

class, IQ class and others . Among them, the first three classes have been found 

to interact with CaM in a Ca2+-dependent way in most cases. The IQ class motifs, 

however, are activated or inhibited by CaM in a Ca2+-independent fashion and 

CaM seems to be a constitutive part of its functional unit. In addition, there are 

several unclassified CaM binding motifs that interact with CaM when the four 

Ca2+-binding sites are only half occupied. All of these common features enable 

scientists to gain more confidence when confronted by the following two 

questions: 1) Are the proteins under investigation capable of interacting with CaM, 

and if so, 2) is it Ca2+-dependent or independent? An online server that is 

conveniently accessible for scientists to predict calmodulin binding sites has 

been generated by Ikura et al (90). Nevertheless, pure in silico work could only 

serves as guidance for the research direction and always brings about 

researchers’ concerns on its accuracy and accountability. Therefore, several 

groups have worked to develop robust methods to screen CaM-binding proteins 

(CaMBPs) on the proteome-wide scale.  

     A CaM binding overlay (CAMBOT) technique that requires labeling of 

CaM with 35S and the use of SDS-PAGE was established by O’Day et al (427). In 

this technique, the bacteria-expressed 35S-CaM was used as the probe to detect 

CaMBPs and compare the CaMBPs expression level under different conditions. 

Under Ca2+-saturated and Ca2+-free conditions, it is possible, in theory, to detect 
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both Ca2+-dependent and Ca2+-independent CaMBPs. This method can be 

potentially applied to verify and profile the CaMBPs, to assess the effects of 

drugs on CaM-CaMBP networks, and to evaluate the effects of heavy metal ion 

present in the environment on the CaM-CaMBP network. However, this method 

requires the handling of radioactive products and involves relatively labor-

intensive and time-consuming procedures. In addition, the amount of proteins 

encoded by rare genes is far from sufficient to be detected by SDS-PAGE. An 

alternate way to screen CaMBP is explored by Shen et al (428-430). This large-

scale screening method utilizes the mRNA display technique. mRNA-displayed 

enriched proteome library can be selected by biotinylated CaM, which will be 

further captured by streptavidin-agarose beads. Another round of selection 

involving six steps (PCR, in vitro transcription, crosslinking, cell-free translation 

and fusion, reverse transcription and affinity chromatography) can be repeated to 

diminish unspecific interactions. Screening of CaMBPs in the human proteome 

with this method reveals a large body of previous undetected proteins, such as 

ribosomal proteins, proteasome 26S subunits, deubiquitinating enzymes, and 

leucine zipper proteins.  

The above-mentioned recurring binding modes underlying the interaction 

of CaM can surely be applied to some of the newly detected CaMBPs. However, 

with such diversity in CaM’s target recognition conferred by its conformational 

plasticity and structural malleability, we could highly expect the emergence of 

new and surprising modes. 
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6.2. Gap junction and calmodulin 

Gap junctions comprise the intercellular channels that mediate the cell-to-

cell transfer of small molecules including metabolites, second messengers and 

ions in mammalian cells (431). Gap junctions are composed of two hemichannels 

(termed connexons) each comprised of six connexin (Cx) subunits. The 

connexon from one cell joins in mirror symmetry with another connexon of the 

apposing cell. To date, at least 20 connexin genes have been identified in the 

human genome with connexin43 (Cx43) and the most ubiquitous connexin (432).  

Gap junctions have been shown to be regulated by intracellular Ca2+ 

concentration ([Ca2+]i) (433) that Peracchia and others have shown to be likely 

mediated by CaM interacting directly with the connexin proteins (434,435). We 

have shown previously that cell-to-cell communication in lens epithelial cell 

cultures is inhibited by elevated [Ca2+]i. Specifically, cell-to-cell transfer of the 

fluorescent dye AlexaFluor594 was half-maximally inhibited at ~300 nM [Ca2+]i in 

lens cell cultures and this inhibition was prevented by preincubation of these 

cultures with CaM antagonists (75,436), consistent with earlier reports that 

elevated [Ca2+]i increased internal electrical resistance in the lens that was 

prevented by preincubation with CaM antagonists (436). Indeed, this action of 

Ca2+ in lens cell cultures is due in part to the inhibition of Cx43, the major 

connexin in these cell cultures. It has been demonstrated that Cx43-transfected 

HeLa cells exhibiting a similar Ca2+ -dependent inhibition appears to be CaM-

mediated (68). The rapid onset of this Ca2+-dependent inhibition of cell-to-cell 

communication (within seconds) suggests that this is mediated by a direct 
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interaction of CaM with the connexin protein rather than being mediated via the 

action of a CaM-dependent protein kinase. Indeed, the Ca2+-dependent binding 

of CaM to rat Cx32 (435), fish Cx35, mouse Cx36 (69) and Cx50 (437) have 

been reported. Two cytoplasmic CaM binding domains, with one site (Kd = 27 nM) 

in the N-terminus and the other site (Kd = 1.2 µM) in the C-terminal region have 

been identified in Cx32 (435), whereas a single CaM binding site (Kd: 11-72 nM ) 

was identified in the C-terminus of Cx35 and Cx36 (69). 

Each Cx43 or Cx44 monomer consists of four highly-conserved 

transmembrane segments, a short N-terminal cytoplasmic region, one 

intracellular and two extracellular loops, as well as a C-terminal tail. (Fig. 6.4). 

Variability in sequence homology across different connexin types is greatest in 

the intracellular loop and C-terminus. Efforts to map the potential CaM binding 

sites in Cx43 have led to conflicting results. Torok et al reported the binding of the 

fluorescent CaM derivative (TA-CaM) to the N-terminal (aa 1-16) region of Cx43 

with a dissociation constant of 1.2 µM (435). However, Duffy et al were unable to 

detect any interaction of CaM with a peptide spanning the first 21 amino acids of 

the N-terminus (438). Both groups, nevertheless, failed to detect the binding of 

CaM to the peptides derived from the C-terminal tail (aa 314-325; aa 336-350; aa 

346-360) or the intracellular loop (aa 95-114; aa 123-136; aa 119-144). They 

suggest that the interaction of CaM with Cx43 might occur via other regions of 

the intracellular loop. Interestingly, by using the CaM binding database server 

(90), we predicted a potential CaM binding site with high predictive score in the 

second half of the intracellular loop of Cx43 (aa 136-158) or Cx44 (aa 129-150) 
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that has not been tested before. In the present study, we have applied a variety 

of biophysical approaches to examine the binding of CaM to this sequence. Our 

findings strongly suggest a Ca2+-dependent interaction between the CaM and the 

intracellular loop region of Cx43 or Cx44.  

 

6.2.1. Prediction of calmodulin binding sties in connexins 

Using a search program for CaM-binding sites (90), a putative CaM 

binding region with high predictive score was identified in the intracellular loop of 

Cx43 (Ac-136KYGIEEHGKVKMRGGLLRTYIIS158-NH2)  or Cx44                                                               

(Ac-129 VRDDRGKVRIAGALLRTYVFNI150-NH2)  (Fig. 6.4). In addition, two other 

stretches of sequences with lower predictive scores, one in the N-terminal part of 

the intracellular loop region (Ac-86SVPTLLYLAHVFYVMRKEEKLN107-NH2) and 

the other in the C terminus region (Ac-224NIIELFYVFFKGVKDRVKGRSDPY247-

NH2), were detected in Cx43 but not in Cx44. A common feature of the CaM 

binding regions is a number of hydrophobic residues interspersed with positively 

charged residues (≥+3), typically forming a 1-5-10, 1-8-14 or 1-16 pattern of 

hydrophobic residues (90,439). These regions are normally comprised of 12-30 

continuous amino acids with a strong propensity to form an amphipathic helical 

structure (90,439). The putative CaM binding region of Cx43 exhibits a 1-5-10 

hydrophobic residue motif as reported in other well-characterized CaM targeting 

proteins such as CaM Kinase I (440), CaM Kinase II (441), MARCKS (442) and 

synapsin (443). The randomized control peptide (Ac-

LGGEYLVTMESKIHIKGKRIGYR-NH2) with the same composition of amino acids 
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Figure 6.4. Membrane topology and predicted CaM binding sequences in 
Cx43 and Cx44. Primary sequence and transmembrane (TM) topology of 
Cx43. The integral membrane protein Cx is composed of four TM regions, two 
extracellular loops, one cytoplasmic loop, a short N-terminus, and a longer C-
terminal tail. The predicted high-affinity CaM binding site (aa 136-158 in Cx43 
and aa 129-150 in Cx44) of highest predicted score is located in the second 
half of the intracellular loop between TM2 and TM3. Two other regions (boxes 
I and III) with lower predictive scores are also identified. The numeric score 
ranges from 1-9, representing the probability of an accurate prediction of a 
high affinity CaM binding site. #, hydrophobic residues. :, highly conserved 
residues. 
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as the Cx43 peptide but arranged in a different order with no predicted CaM 

binding capacity is used in the study as control. 

The ability of the peptides Cx43136-158 or Cx44129-150 to form an α-helical 

structure was evaluated by monitoring its secondary structure using far UV CD in 

the presence of varying concentrations of trifluoroethanol (TFE) (Fig.6.5). In 

aqueous solution, the free peptides were largely unstructured with a negative 

maximum at 197 nm. However, when the TFE concentration was increased to 20% 

it started to form α-helical structure (12%), with two major troughs at 208 nm and 

222 nm observed in the CD spectra. The helical contents increased up to 50% in 

the presence of 40% TFE (Fig. 6.5).  TFE, with a dielectric constant one third that 

of water, is capable of strengthening intramolecular hydrogen bonding (444), and 

is known to induce and stabilize the intrinsic secondary structures in peptides, 

possibly by mimicking the hydrophobic environment of the peptide in the intact 

proteins (445-447). Several CaM binding peptides have been reported to adopt 

similar α-helical structures in TFE solvent as in the CaM-peptide complexes 

(448,449). These results support our prediction that this Cx43136-158 peptide 

possesses a strong α-helical-forming propensity.  

 

6.2.2. Secondary and tertiary structure change induced by peptide binding 

As described above, the binding of CaM to CaM-binding peptides typically 

induces the formation of α-helical structure in these peptides (420). As seen in 

Fig. 6.6A and Fig. 6.7A, the addition of a 1:1 molar equivalent of peptides to 

Ca2+-CaM results in an approximately 10% more negative signal in the spectrum. 
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A 

 

B 

 
Figure 6.5. Far UV CD spectra of the peptides Cx43136-158 (A) and Cx44129-150 
(B) with different concentrations of TFE. The inset shows the changes of 
molar ellipticity at 222 nm and 208 nm as a function of TFE concentration. 
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Since the α-helical content of CaM typically does not increase upon peptide 

binding (420), the observed net increase in the CD signal could be reasonably 

attributed to CaM-bound Cx peptides. The difference spectrum, obtained by 

subtracting the Ca2+-CaM spectrum from the Ca2+-CaM-peptide spectrum, 

showed two major troughs at 208 nm and 222 nm, which is strikingly different 

from the random coiled structure of the peptide alone (Fig. 6.6B and Fig. 6.7B). 

Deconvolution of this difference spectra revealed that the CaM-bound peptides 

had ~30-40% helical structure, which is comparable to the helical content of this 

peptide in 20%-40% TFE (Fig. 6.5). The Cx43136-158 binding-induced CD signal 

change enabled us to measure the peptide binding affinity of CaM. As shown in 

the inset of Fig. 6.6A, the signal changes reach the maxima when the Cx43136-158-

:CaM ratio was approximately 1:1 and the fitting curves provided an apparent Kd 

of 100 ± 20 nM (n = 3) in 10 mM KCl and 750 ± 120 (n = 3) nM in 100 mM KCl 

(Table 6.3) in the presence of 1 mM Ca2+. The decrease in Kd at the higher salt 

concentration suggests that electrostatic interactions might play an important role 

in the interaction of Cx43136-158 with CaM.  In the presence of 1 mM EGTA, no 

significant difference in the far UV CD spectra was detected after the addition of 

a 1:1 molar equivalent of Cx43136-158 (Fig. 6.6A) or Cx44129-150 (Fig. 6.7A)  to CaM 

suggesting that the peptide is unable to interact with CaM or the binding is much 

weaker in the absence of Ca2+.  

Near UV CD spectroscopy was conducted to examine the tertiary packing 

around aromatic residues of CaM, Cx peptides and the CaM-Cx peptide 

complexes (Fig. 6.6C and Fig. 6.7C).Both Cx43136-158 and Cx44129-150 exhibited 
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Figure 6.6. Circular Dichroism studies of the interaction between Cx43136-158 
and CaM. (A), Far UV Circular Dichroism spectrum of CaM in the presence of 
1 mM EGTA (○) or 1 mM CaCl2 (□), and a 1:1 CaM-synthetic peptide mixture 
with 1 mM EGTA (●) or 1mM CaCl2 (■) after subtracting the contribution from 
buffer and added peptides. (B), The far UV circular dichroism spectra of 
Cx43136-158 (dashed line) and the calculated difference spectrum (solid line) by 
subtracting the spectrum of Ca2+-CaM from that of the Ca2+-CaM-Cx43136-158 
mixture with 1 mM Ca2+ in a buffer consisting of 100 mM KCl, 10 mM Tris-HCl, 
pH 7.4. The inset reports the relative change of the circular dichroism molar 
ellipticity at 222 nm as a function of synthetic peptide concentration. (C), Near 
UV circular dichroism spectra of CaM in the presence of 1 mM EGTA (○) or 1 
mM CaCl2 (□), and 1:1 CaM- Cx43136-158 mixture with 1 mM EGTA (●) or 1mM 
CaCl2 (■) after subtracting the contribution from buffer and added peptides. 
(D), The near UV circular dichroism spectra of Cx43136-158 (dashed line) and 
the calculated difference spectrum by subtracting the Ca2+-CaM spectrum 
from the Ca2+-CaM- Cx43136-158 spectrum (solid line) in a buffer consisting of 1 
mM Ca2+, 100 mM KCl, 10 mM Tris-HCl, pH 7.4.  
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Figure 6.7. Circular Dichroism studies of the interaction between Cx44129-150 

and CaM. (A), Far UV Circular Dichroism spectrum of CaM in the presence of 
1 mM EGTA (○) or 1 mM CaCl2 (□), and a 1:1 CaM-synthetic peptide mixture 
with 1 mM EGTA (●) or 1mM CaCl2 (■) after subtracting the contribution from 
buffer and added peptides. (B), The far UV circular dichroism spectra of 
Cx44129-150 (dashed line) and the calculated difference spectrum (solid line) by 
subtracting the spectrum of Ca2+-CaM from that of the Ca2+-CaM-Cx44129-150 
mixture with 1 mM Ca2+ in a buffer consisting of 100 mM KCl, 10 mM Tris-
HCl, pH 7.4. (C), Near UV circular dichroism spectra of CaM in the presence 
of 1 mM EGTA (○) or 1 mM CaCl2 (□), and 1:1 CaM- Cx44129-150 mixture with 
1 mM EGTA (●) or 1mM CaCl2 (■) after subtracting the contribution from 
buffer and added peptides. (D), The near UV circular dichroism spectra of 
Cx44129-150 (dashed line) and the calculated difference spectrum by 
subtracting the Ca2+-CaM spectrum from the Ca2+-CaM- Cx44129-150 spectrum 
(solid line) in a buffer consisting of 1 mM Ca2+, 100 mM KCl, 10 mM Tris-HCl, 
pH 7.4.  
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negligible signal in aqueous solution by itself, but the addition of Ca2+-CaM to Cx 

peptides resulted in the appearance of more negative (Cx43136-158) or more 

positive (Cx44129-150) ellipticity. Both CaM and the synthetic peptides do not 

contain any tryptophan but each contains two tyrosines. The prominent band 

above 275 nm is likely due to the tyrosine residues in the C-terminus region of 

CaM (Y99 and Y138), while the two peaks at 262 nm and 268 nm are likely due to 

the nine phenylalanine residues in CaM (450). The difference spectrum obtained 

by subtracting the Ca2+-CaM spectrum from that of Ca2+-CaM-Cx43136-158 (Fig. 

6.6D) or Ca2+-CaM-Cx44129-150 (Fig. 6.7D) showed a prominent band between 

275 and 279 nm, which is most likely due to the immobilization of tyrosine 

residues in the Cx peptides (which contains no tryptophan) following its binding 

to CaM. The different near UV difference spectra (Figs. 6.6D and 6.7D) could 

arise from the difference in the local environment around the Try residue(s) in 

these two peptides. The contribution of signals from the CaM tyrosine residue is 

less likely to be dominant although both CaM and Cx peptides contain two 

tyrosine residues making it difficult to unambiguously differentiate the contribution 

from each macromolecule in the spectra. The Y99 and Y138 in CaM are located in 

the C-terminus EF-loops where the local structures of the Ca2+-bound EF-loops 

have not been reported to be altered upon peptide binding in the currently known 

CaM-peptide complex despite the rearrangement of tertiary structures. Thus, the 

local environment of the CaM tyrosine is less likely to be significantly altered 

upon Cx peptides binding. No significant differences were observed between the 

spectra of apo-CaM and the 1:1 mixture of apo-CaM:Cx peptide (Fig. 6.6C and 
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Fig. 6.7C), further supporting the Ca2+-dependent binding of Cx peptide to Ca2+-

CaM and the resulting conformational changes in Cx peptides revealed by the far 

UV CD studies. 

 

6.2.3. Monitoring the CaM-Cx interaction by SPR 

The binding of Cx43136-158 to CaM was further confirmed using surface 

plasmon resonance spectroscopy with CaM immobilized on the CM5 sensor chip. 

Fig. 6.8 shows the sensorgrams of successive peptide binding experiments. The 

peptide Cx43136-158 rapidly associated with CaM in the presence of Ca2+. At the 

end of peptide injection, dissociation of the complex was observed during 

flushing of the chip with peptide-free running buffer. Analysis of the kinetic data 

inferred that the apparent Kd for the binding of Cx43136-158 to CaM is 

approximately 1 µM with a koff rate of 5 x 10-4 s-1 in the presence of saturating 

amount of Ca2+ and 100 mM KCl. In contrast, no significant binding of Cx43136-158 

to CaM was detected in the presence of EGTA. Furthermore, the control 

randomized Cx43136-158 peptide that contained the same composition of amino 

acids as Cx43136-158 did not exhibit specific binding in the presence of either Ca2+ 

or EGTA; the response units of these injections were not significantly higher than 

that of injection of the peptide through the underivatized CM5 chip surface. 

These results further confirm the Ca2+-dependent binding and specificity of 

Cx43136-158 binding to CaM.  
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Figure 6.8. Monitoring the interaction of CaM with Cx43136-158 by surface 
plasmon resonance spectroscopy. The sensorgrams represent the binding of 
0.1, 1, 5 and 10 µM Cx43136-158 (A) or 10 µM of the randomized Cx43 peptide 
(B) to the CaM-immobilized chip in the presence of 5 mM Ca2+ (solid line) or 
EGTA (dashed line). CaM was immobilized to the sensor chip CM with a 
response unit of approximately 3500. The flow rate was set at 5 µl/min. During 
recording, running buffer contained 5 mM CaCl2 or 5 mM EGTA in 100 mM 
KCl, 50 mM Tris-HCl at pH 7.4 or the same buffer plus the peptides (solid bar). 
Subsequently, peptide-free buffer was injected to monitor the dissociation 
process.  
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6.2.4. Structural changes induced by Cx binding   

Next, it was important to demonstrate that there is in fact a direct 

interaction between the Cx peptides and CaM. This was confirmed using high 

resolution NMR. As shown in Fig. 6.9A-B, in the presence of Ca2+, a number of 

dispersed peaks of CaM underwent chemical shifts of greater than 0.05 ppm 

following the addition of Cx43136-158 or Cx44129-150. In contrast, only insignificant 

changes in several residues were observed upon the addition of Cx43136-158 to 

CaM in the presence of 10 mM EGTA (Fig. 6.9C), again supporting the absence 

of any of interaction at physiological concentrations of K+ in the absence of Ca2+. 

In addition, the addition of the control randomized Cx43136-158 peptide resulted in 

only very minor changes in the CaM 15N-1H HSQC spectra even in the presence 

of Ca2+ (Fig. 6.9A, blue). This latter result would appear to exclude the possibility 

of non-specific binding between the randomized peptide and CaM arising from 

the charge or hydrophobic interactions of certain residues, indicating the 

necessity of the specific arrangement of the Cx43 or Cx44 peptide sequences. 

The NMR chemical shift resonances of Ca2+-CaM have been assigned by 

several groups (420,451,452). By following their movements during titration of 

CaM with Cx43136-158 peptide, the dispersed peaks of the peptide-CaM complex 

have been unambiguously assigned. CaM has been known to activate 

downstream proteins by displacing autoinhibitory domains, remodeling the active 

sites, or inducing oligomerization in these proteins (310). The binding of CaM to 

target proteins and peptides has been reported to involve the N- and/or C-

terminal domains of CaM (14,310,420,422). Analysis of the effects of peptide 
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Figure 6.9. Interaction between CaM and Cx peptides revealed by NMR. 
(A), Overlaid HSQC spectra of Ca2+-CaM (green) with Ca2+-CaM-Cx43136-158 
(red) or Ca2+-CaM:control randomized Cx43136-158 peptide (blue). A subset of 
assigned peaks displaying significant movement upon peptide binding were 
framed in boxes. (B), Overlaid HSQC spectra of Ca2+-CaM (cyan) with Ca2+-
CaM-Cx43136-158 (green) or Ca2+-CaM-Cx44129-150 (red). (C), Overlay of 
HSQC spectrum of apo-CaM (green) with apo-CaM-Cx43136-158 (red). (D), 
Changes in chemical shift of selected well-dispersed resonances as a 
function of the Cx136-158:Ca2+-CaM ratio in the presence of saturating Ca2+ at 
physiological K+ condition.  
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binding on the backbone amide chemical shifts of CaM could shed light on the 

underlying mode of interaction of the Cx peptides with CaM. The resonances that 

underwent chemical shifts of greater than 0.05 ppm in the peptide titration were 

present in both the N- to C-termini of CaM, including residues G25, T29, G33, G40, 

A57, G61, D64, K77, K94, G98, G113, T117, G134, N137, A147 and K148 and possibly 

others since the assignment of the overlapped regions is still in progress. The 

movements of the residues that we were able to assign during the titration 

followed a similar chemical shift trend (Fig. 6.9D), suggesting a single binding 

process. Furthermore, the chemical shifts saturated when the Cx43136-158 or 

Cx44129-150 to CaM ratio exceeded 1.0. These results demonstrated that the 1:1 

Ca2+-dependent binding of Cx43136-158 or Cx44129-150 to CaM induces 

conformational changes in both the N- and C-terminal domains of CaM.  

 

6.2.5. Peptide binding affinities and thermodynamics of the CaM-Cx 

interaction  

The dansyl fluorescence emission maxima, at ~510 nm, are well-

separated from any intrinsic fluorescence arising from aromatic amino acid 

residues. Because of this, as well as dansyl’s great sensitivity to environmental 

changes, dansylated proteins including dansylated CaM have been widely used 

in studying the effect of protein-target interaction of ions, peptides, or drugs (65).  

 

Binding of Cx43136-158 to dansyl-CaM 

As shown in Fig. 6.10A-B, Ca2+ binding to dansyl-CaM resulted in an 

increase of the fluorescence intensity and an emission blue-shift from 510 to 497 
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nm indicating that the dansyl group moved to a more hydrophobic environment. 

The addition of Cx43136-158 to Ca2+-dansyl-CaM resulted in a further 80% 

increase in dansyl fluorescence intensity and a further emission blue-shift to 477 

nm, suggesting that the dansyl groups are located in an even more hydrophobic 

environment in the complex. In the absence of Ca2+, the dansyl fluorescence 

remained nearly unaltered when Cx43136-158 was added to dansyl-CaM, indicating 

a Ca2+-dependent interaction of Cx43136-158 with dansyl-CaM, Titration data with 

Cx43136-158 resulted in apparent dissociation constants of 240 ± 10 nM in 10 mM 

KCl and 860 ± 20 nM in 100 mM KCl (Table 6.3) assuming a 1:1 binding mode 

(Fig. 6.10A). In addition, the titration of dansyl-CaM with two other Cx43 peptides 

(Cx4386-107 corresponding to residues 86-107 in Cx43 in the N-terminal region of 

the intracellular loop, and Cx43224-247 corresponding to residues 224-247 in Cx43 

in the C-terminus region) that have significantly lower predictive scores for CaM 

binding (Fig. 6.4) resulted in no significant fluorescence signal changes (Figs. 

6.10C and D) indicating these peptides did not bind CaM. 

 

Binding of Cx44129-150 to dansyl-CaM 

As shown in Figs. 6.10E and F, in the presence of EGTA or Ca2+, 

dansylated CaM exhibits its fluorescence maxima at 510 nm and 500 nm 

respectively. The addition of Cx44129-150 to Ca2+-loaded dansyl-CaM resulted in 

~50% increase in the dansyl fluorescence intensity and brought about 17 nm 

blue-shift of the fluorescence maximal peak (Inset, Fig. 6.10E), strongly 

suggesting that the dansyl groups are located in more hydrophobic environment 
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Figure 6.10. Interaction of Cx peptides with dansyl-CaM. (A) Dansyl 
fluorescence spectra of apo-dansyl-CaM in the absence (○) and presence (●) 
of the Cx43138-158 peptide, and Ca2+-dansyl-CaM in the absence (□) and 
presence (■) of the Cx43138-158 peptide (2.5 µM). (B), The dansyl fluorescence 
intensity plotted as a function of Cx43138-158 peptide. (C), Dansyl fluorescence 
spectra of Ca2+-dansyl-CaM (1.25 µM) in the absence (□) and presence (■) of 
the Cx4388-107 peptide (2.5 µM) in 1 mM CaCl2. (D), Dansyl fluorescence 
spectra of Ca2+-dansyl-CaM (1.25 µM) in the absence (□) and presence (■) of 
the Cx43222-247 peptide (2.5 µM) in 1 mM CaCl2. (E-F),The dansyl 
fluorescence intensity plotted as a function of Cx44129-150 peptide in the 
presence of Ca2+ or EGTA. The inset showed the dansyl fluorescence spectra 
of dansyl-CaM with (solid line) and without (dashed line) the addition of the 
Cx44129-150 peptide with 1 mM CaCl2 (E) or EGTA (F). The buffer consists of 
50 mM Tris, 100 mM KCl, pH 7.4. 
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in the complex. During titration, the fluorescence intensity reached saturation 

when the peptide to CaM ratio was around 1:1. In the absence of Ca2+, the 

dansyl fluorescence intensity also increased by ~50%, but the fluorescence 

maxima was only blue-shifted by 5 nm after addition of Cx44129-150 (Inset, Fig. 

6.10F), strikingly different from the behavior of Ca2+-loaded dansyl-CaM. Under 

salt-free conditions, the Cx44129-150 titration of dansyl-CaM provided a peptide 

binding apparent dissociation constants of 43 ± 8 nM with Ca2+ and 414 ± 20 nM 

in the presence of EGTA, respectively. However, under physiological salt 

condition (100 mM KCl), the peptide binding affinity of EGTA treated dansyl-CaM 

(>5 µM) was at least 100-fold weaker than Ca2+-dansyl-CaM (Table 6.3). 

Moreover, with even higher concentration of salt (200 mM KCl), the weaker 

interaction in the presence of EGTA can be hardly detected by this method. 

Given the fact that the intracellular CaM concentration was about 9 µM (453) and 

CaM interacted with over 300 target proteins in vivo (3), such weak or unspecific 

interaction between the peptide and Ca2+-depleted CaM would be of little 

physiological relevance. These results support a model in which the interaction of 

Cx peptides with CaM is Ca2+-dependent. 

 

Thermodynamics of the CaM-Cx interaction 

The stoichiometry, binding affinity and thermodynamics of the interaction 

between CaM and Cx44129-150 were further characterized by ITC.  Representative 

calorimetric traces of titration are shown in Fig. 6.11. For the peptide Cx44129-150, 

the binding event was found to be exothermic (H = -1.15 kcal mol-1) and 
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Figure 6.11. ITC microcalorimetric traces and the derived isotherms of CaM 
titrated with Cx peptide. Samples are prepared and dialyzed in a buffer 
consisting of 20 mM PIPES, 100 mM KCl, 2 mM CaCl2, pH 6.8. All the 
solutions were degassed for ate least 15 min prior to experiments. 4-6 µL 
aliquots of peptides (400-600 µM) were injected from the syringe into the 
reaction cell containing 25 µM CaM in the same buffer at 5 min intervals at 
25 °C.   
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entropically favorable ((S = 23.97 J mol-1 K-1) with an association constant of Ka 

= 1.2  0.2  10 6 M-1 (Kd = 8.3  1.4  10-7 M). Thus, the interaction seems to be 

both enthalpically and entropically driven with a G of -8.3 kJ mol-1. Since the 

enthalpic terms represent the forces of hydrogen bonds, van der Waals and 

electrostatic interaction, whereas entropy mainly reflects the hydrophobic 

interaction, it is evident that all these forces are contributing in concert to promote 

the interaction between CaM and Cx44129-150. In consistent with our peptide 

titration data with dansyl-CaM (Fig. 6.10E), the peptide specifically bound to 

Ca2+-CaM with a ratio near 1:1 (n = 1.3  0.1). The binding affinity obtained with 

ITC was, nonetheless, notably different from the values derived from titration data 

with dansyl-CaM. The discrepancy in the binding affinities using two separate 

methods could mainly arise from the modification to CaM by the dansyl moiety 

and the difference in buffering and pH conditions (6.8 in ITC vs 7.4 in dansyl-

CaM titration).  

 

6.2.6. Effect of ionic strength and pH on the CaM-Cx interaction 

CaM (pI = 4.2) and the synthetic peptide CaM-Cx44129-150 (pI = 10.8) were 

oppositely charged with a net charge of about -15 (82) and +3, respectively, at 

neutral pH. Such high opposite charges makes it reasonable to anticipate that 

electrostatic interaction could be an important determinant in the formation of 

CaM and Cx44129-150 complex. To gain an insight into the effects of electrostatic 

interaction in the CaM-Cx44129-150 interaction, we further analyzed the effects of 

varying salt and pH on the binding affinity. During the complex formation between 
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Figure 6.12. Effects of salt and pH on the binding affinity of Cx44129-150. (A), 
Plot of -logKd as a function of varying amount of KCl in 5 mM CaCl2, 50 mM 
Tris, pH 7.4. (B), pH dependence of the binding affinity of Cx44129-150. The 
binding affinities were derived from the peptide titration curve of dansyl-CaM. 
(n=2-4) 
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two oppositely charged macromolecules, an increase in the ionic strength is 

expected to decrease the binding affinity mainly due to screening of electrostatic 

interactions. As shown in Fig. 6.12A, the CaM-binding affinity of Cx129-150 

decreased by almost one magnitude of order as the salt concentration varied 

from 0 to 800 mM with a notable plateau stage between 10 to 100 mM. In 

addition, the CaM-binding affinity of the peptide exhibited a pH-dependent 

increase between pH 5.0 to 9.0 (Fig. 6.12B). As expected, the binding affinity at 

pH values near the isoelectric points of CaM (4.2) or the peptide (10.8) was 

drastically weakened and the difference in the affinity was ~2 orders of 

magnitude. Taken together, both the salt- and pH-dependence of the interaction 

between CaM and Cx129-150 indicate that electrostatic interaction is one of the 

main forces governing the complex formation, which is in agreement with the 

observed negative (favorable) enthalpic change in ITC studies.  

 

6.2.7. Effects of Cx binding on the metal binding properties of CaM  

To examine the effect of Cx peptides on the Ca2+ binding properties of 

CaM, Ca2+ titrations were performed in the presence of the Ca2+ indicator Oregon 

Green 488 BAPTA-5N. Monitored by the intrinsic tyrosine fluorescence, the 

fluorescence change in the presence of Cx peptides was significantly left-shifted 

when compared to CaM alone (Fig. 6.13).The binding affinity of the peptide-

bound CaM for Ca2+ was 1.5-3.5 fold stronger than that of CaM alone (Table 

6.4). Furthermore, the Ca2+-dependent change in the tyrosine fluorescence of the 

CaM:Cx peptide mixtures exhibited stronger positive co-operativity than that of 
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Figure 6.13. Ca2+ titration of CaM and CaM-Cx peptides complexes. Ca2+ 
titration of CaM (○),the 1:1 CaM:Cx43 randomized peptide mixture (▲), the 1:1 
CaM:Cx43136-158 mixture (●), and the 1:1 CaM: Cx44129-150 mixture (■)  in 100 
mM KCl, 50 mM Tris-HCl, pH 7.4. The intrinsic tryrosine fluorescence emission 
intensity of CaM or CaM-peptide mixture (8µM) was monitored at 307 nm with 
fluorescence excitation at 277 nm. The Ca2+ indicator dye Oregon Green 488 
BAPTA-5N was used to calibrate the ionized Ca2+ concentration.  Each titration 
point is indicated as an open diamond at the bottom of the figure. Data from a 
single experiment is representative of at least triplicate experiments.  
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Table 6.3. The binding affinities of Cx peptides to CaM or dansyl-CaM  
 

sample KCl (mM) 
dissociation constants (Kd, nM) 

Ca2+ EGTA 

Cx43 10 100 ± 20a 

240 ± 10b 

NDc 

 
100 750 ± 120a 

860 ± 20b 

NDc 

Cx44 10 43 ± 8b 414 ± 20b 

 100 49 ± 3b >5,000 b 

Data obtained from afar UV CD data or bDansyl-CaM fluorescence (n=3-6). cND: not 
detectable. 
 
 
 
 
 
 

Table 6.4. Effect of Cx peptides binding on the Ca2+ binding affinity of CaM. 
 

sample 

fold 

enhancement of 

tyrosine 

fluorescence  

Kd (10-6 M) nHill 

CaM 2.3 ± 0.2 2.9 ± 0.1 2.1 ± 0.1 

CaM-randomized control peptide 1.9± 0.1 2.7 ± 0.1 1.9 ± 0.2 

CaM-Cx43136-158 1.7± 0.1 1.6 ± 0.1 3.3 ± 0.5 

CaM-Cx44 1.8± 0.1 0.8 ± 0.1 5.8 ± 0.4 

Data obtained from Ca2+ titration curve (n=3). 
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CaM alone (Hill coefficients: 3.3 and 5.8 versus 2.1) for Ca2+ binding. It is well 

recognized that the Ca2+ affinity of CaM is significantly enhanced on binding to its 

receptor protein as a result of a slower dissociation rate of Ca2+ from CaM-

receptor complex than from CaM alone (454-456). The dissociation of Ca2+ from 

CaM typically leads to the inactivation or inhibition of its bound protein (14) so 

slowing this dissociation would ensure that the CaM:Cx complex remains 

associated even during periods of frequent oscillation of [Ca2+]i.  

To further confirm that, we measured the rapid kinetics of EGTA-induced 

Ca2+ dissociation from CaM-Cx44129-150 complex by monitoring the CD signals 

change at 222 nm on a Jasco-810 CD spectropolarimeter with a BioLogic 

stopped-flow apparatus. A kobs of 5.3  0.2 s-1 was obtained by fitting the 

stopped-flow traces with a single-component exponential decay function (Fig. 

6.14A). The observed rate constant for the EGTA-induced dissociation of Ca2+ 

from CaM could not be measured by this instrument (a minimal sampling interval 

of 15 ms) since the release of Ca2+ is too fast to be sampled (Fig. 6.14B). 

Bayley’s group had reported an observed rate constant of >800 s-1 for EGTA-

induced Ca2+-dissociation from the CaM mutant T26W with fluorescence 

stopped-flow techniques (456). Conceivably, the dissociation of Ca2+ from CaM is 

drastically slowed when bound with the synthetic peptide Cx44129-150. The 

dissociation of Ca2+ from CaM typically leads to the inactivation or inhibition of its 

bound protein (14) so slowing this dissociation would ensure that the complex 

remains unaltered and that the CaM-Cx44 gap junction intracellular loop 

maintains its functional form even during periods of frequent oscillation of [Ca2+]i. 
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Figure 6.14. Stopped-flow trace for the EGTA-induced dissociation of Ca2+ 
from the CaM-Cx44129-150 complex (A) and CaM (B). Syringe 1 contained 2 μM 
CaM-peptide (1:2) mixture with 0.1 mM Ca and syringe 2 consisted of an equal 
volume of 10 mM EGTA. 
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Furthermore, higher positive cooperativity enables the complex to respond to a 

narrower window of [Ca2+]i with higher sensitivity.  

 

6.2.8. Physiological effects of knocking out the putative CaM-binding site in 

Cx43.  (contribution from Dr. Monica Lurtz) 

Physiological experiments were conducted to confirm the results obtained 

using various biophysical approaches.  Cell-to-cell dye transfer under resting and 

elevated intracellular Ca2+ concentration ([Ca2+]i) in communication-deficient 

HeLa cells transiently transfected individually with either wtCx43-EYFP or one of 

two Cx43-EYFP intracellular loop mutants (CaM binding site knockouts) was 

used to demonstrate that CaM mediates the Ca2+-dependent inhibition of Cx43 

by directly associating with the aa 136-158 region in Cx43. 

 HeLa cells transiently transfected with wtCx43-EYFP expressed large gap 

junction plaques at the cell-cell interface (Figs. 6.15A & E, left panels) as has 

been previously described; there was no significant intracellular expression of 

wtCx43-EYFP making it relatively straightforward to identify cells making gap 

junctions with adjacent cells (Fig. 6.15A).  In contrast both the Cx43K146E, R148E-

EYFP and Cx43M147Q, L151E, I156E –EYFP CaM binding-deficient mutants expressed 

an abundance of protein when transfected in HeLa cells, most of which was in 

non-plasma membrane locations (Figs. 6.15B&F, C&G left panels, respectively) 

making it harder to identify cells making gap junctions with adjacent HeLa cells.  

Under resting [Ca2+]i conditions (1.8 mM extracellular Ca2+ concentration and no 

ionomycin), cell-to-cell communication (i.e., AlexaFluor 594 cell-to-cell dye 
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transfer) was measured between each pair of cells expressing the wtCx43-EYFP; 

every cell that contained EYFP fluorescence exhibited cell-to-cell transfer of 

injected dye indicating that Cx43-EYFP formed functional gap junctions (Fig. 

6.15I).  In contrast, only 31% of the double mutant Cx43K146E, R148E-EYFP 

transfected HeLa cells and 32% of the triple mutant Cx43M147Q,L151E,I156E–EYFP 

transfected HeLa cells exhibited cell-to-cell dye transfer (Fig. 6.15I). These 

results indicated that a significant fraction of the mutant Cx43-EYFP transfected 

cells that exhibited EYFP fluorescence did not express functional gap junctions. 

This fits with the EYFP fluorescence data (Figs. 6.15B&C) suggesting a 

significant fraction of the mutant Cx43-EYFP protein accumulates in non-plasma 

membrane locations in the transfected HeLa cells.  Furthermore, mock-

transfected HeLa cells did not exhibit cell-to-cell transfer of injected AlexaFluor 

594 dye confirming that the cell-to-cell transfer exhibited by the wt Cx43-EYFP 

and mutant Cx43-EYFP transfected HeLa cells is gap junction mediated (Fig. 

6.15D). Addition of the membrane permeant polyether antibiotic ionomycin (1 μM) 

and subsequent elevation of extracellular Ca2+ from 1.8 mM to 21.8 mM resulted 

in a significant (p<0.001) increase of the [Ca2+]i to concentrations known to inhibit 

Cx43-mediated cell-to-cell dye transfer in a CaM-dependent manner.  As shown 

in Fig. 6.15I, elevation of [Ca2+]i in wtCx43-EYFP transiently transfected HeLa 

cells results in the inhibition of cell-to-cell dye transfer in all cells tested indicating 

that the addition of EYFP on the C-terminus of Cx43 did not affect the ability of 

elevated [Ca2+]i to inhibit Cx43 gap junctions.  In contrast, elevation of [Ca2+]i in 

HeLa cells expressing the Cx43K146E, R148E-EYFP double 
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Figure 6.15. Functional effect of a sustained elevation in intracellular [Ca2+] on 
CaM binding-deficient Cx43-EYFP mutants.  Cell-to-cell transfer of injected 
AlexaFluor 594 dye between HeLa cells transiently transfected with wtCx43-
EYFP or the CaM-binding Cx43 mutants (Cx43K146E, R148E-EYFP or Cx43M147Q, 

L151E, I156E –EYFP) was measured in confluent monolayers of cells.  Panels A-H 
show images of transiently transfected wt or mutant Cx43-EYFP or mock-
transfected HeLa cells.  The left image shows the EYFP fluorescence of the 
injected and adjacent cells, the middle image is the fluorescence of EYFP plus 
brightfield, and the images on the right are of AlexaFluor 594 dye transfer.  
Panels A&E: wtCx43-EYFP transiently transfected HeLa cells; Panels B&F: 
Cx43K146E,R148E-EYFP transiently transfected HeLa cells; Panels C&G:  
Cx43M147Q,L151E,I156E –EYFP transiently transfected HeLa cells; Panels D&H: 
mock-transfected HeLa cells.  Panel I: Summary data for cell-to-cell dye 
transfer (solid bars) and [Ca2+]i (hatched bars) in the absence or presence of 
elevated [Ca2+]i.  * indicates cell-to-cell dye transfer was significantly lower 
than cell-to-cell dye transfer determined in low [Ca2+]i; ** indicates [Ca2+]i was 
significantly higher than the low [Ca2+]i value. (contribution from Dr.Monica Lurtz)       
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mutant or the Cx43M147Q, L151E, I156E -EYFP triple mutant did not result in the 

inhibition of cell-to-cell dye transfer (57% and 67% [respectively] of attempts 

resulted in dye transfer).  The apparent increase in the percentage of injected 

cells inhibiting cell-to-cell dye transfer in elevated [Ca2+]i versus resting [Ca2+]i 

was not statistically significant (p>0.1). There was no cell-to-cell transfer of dye 

when AlexaFluor 594 dye was injected into mock HeLa transfected cells under 

either resting or elevated [Ca2+]i conditions (Fig. 6.15H). 

 

6.2.9. Indication of in vivo interaction 

 In this study we provide evidence that a peptide derived from the 

intracellular loop of the major gap junction protein Cx43 and Cx44, which has the 

highest predictive score of any region of Cx to bind CaM (Fig. 6.4), binds CaM 

with high affinity in a Ca2+-dependent manner (Table 6.3). Given that intracellular 

CaM concentration is approximately 9 µM (453), such an affinity would imply that 

this CaM-binding region of Cx43 would be saturated with CaM when intracellular 

Ca2+ concentration is elevated and that this association accounts for the well 

described ability of Ca2+ to inhibit gap junctions (75). As indicated by our circular 

dichroism, fluorescence and NMR data, the stoichiometry of Cx peptides:CaM 

binding is close to 1:1 . To our knowledge, this report presents the first 

demonstration of a direct CaM-Cx43 or CaM-Cx44 interaction in vitro, which 

would explain our previous in vivo observation that preincubation of lens cell 

cultures or Cx43-transfected HeLa cells with CaM antagonists counteracts the 

intracellular Ca2+-dependent inhibition of Cx43-containing gap junctions (75,436). 
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The results clearly demonstrate that the Ca2+-dependent inhibition of Cx43 gap 

junctions is mediated via the association of Ca2+-CaM with the intracellular 

portion of Cx43. In addition, our results support a mechanism of Cx43 or Cx44 

regulation by CaM in which CaM first binds to Ca2+, and then the Ca2+-CaM 

complex associates with Cx43 or Cx44 to inhibit the gap junction, rather than a 

stable CaM-Cx complex in which Ca2+ binds to the complex which then results in 

gap junction inhibition. 

A different model for the gating of Cx43 has been proposed by Delmar’s 

laboratory (438) in which an intracellular gating element within the C-terminal 

domain of Cx43 interacts with a region of the Cx43 cytoplasmic loop.  In that 

report Duffy et al used surface plasmon resonance, ELISA and NMR approaches 

to demonstrate that a portion of the C-terminal of Cx43 comprising amino acids 

255-382 associated with a peptide corresponding to the second half of the Cx43 

intracellular loop comprising amino acids 119-144, which was significantly 

enhanced by low pH.  The results reported here for the inhibition of Cx43 by 

Ca2+-CaM has an interesting corollary to this pH-dependent inhibition described 

by Duffy et al (438) in that binding of a portion of Cx43 C-terminus region or CaM 

to the cytoplasmic region of Cx43 inhibits this gap junction protein.  However, 

while Sorgen et al (457) reported that dimerization of the Cx43 C-terminal region 

may be one of the structural changes involved in the pH regulation of Cx43, our 

data reported here indicate that Ca2+-CaM and the intracellular loop peptide 

associate as a 1:1 complex; i.e. that a single Ca2+-CaM binds to Cx43 (i.e. 6 

Ca2+-CaM per connexon hemichannel) to effect gap junction closure. Indeed 
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while there is partial overlap of the C-terminal binding domain on the intracellular 

loop (residues 119-144) and the CaM binding domain (residues 136-158), it is 

clear that CaM will associate with a portion of Cx43 that is very close to the third 

transmembrane loop of this connexins so it is well positioned to physically 

obstruct the gap junction pore. 

As in any molecular study conducted in vitro, direct extrapolation between 

the data presented in this report using a peptide, and the mechanisms of Ca2+-

CaM gating of Cx43 in intact cells needs to be made with caution. However, it is 

worth noting that there are several examples in the literature demonstrating that 

two molecular domains that associate in living cells also associate as separate 

domains in vitro (60,458).  In the studies of CaM-target interaction, synthetic 

peptides have been widely used due to their excellent ability to mimic specific 

domains of native proteins (401,419,459-462) . Indeed Peracchia et al (391,434) 

have shown that calmodulin is associated with gap junctions and plays a direct 

role in the chemical gating of Cx32-containing gap junctions.  This was supported 

by data for CaM binding to Cx32 in which Török et al (435) identified two distinct 

CaM binding amino acid sequences.  The sequence of one of these sites in the 

N-terminal domain of Cx32 contains a CaM binding motif common to a large 

class of CaM-dependent proteins (439); notably this N-terminal CaM binding 

sequence is absent in Cx43 and Cx44. 

 

6.2.10. Indication of potential CaM-Cx43136-158 binding mode 

Through its reversible binding of Ca2+ and the resultant conformational 

changes, CaM is capable of interacting with over 300 target proteins to regulate a 
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range of cellular events (3). Although the sequence identity among the CaM 

targeted sequences is low, all the consensus peptides for such sequences (18 to 

26-mer peptides) possess common features including their ability to form 

amphipathic α-helices, containing 2-6 positively charged residues, and their 

pattern of bulky hydrophobic residues that anchor the peptides to the 

hydrophobic cleft of CaM. Our results demonstrate that the Cx43136-158 sequence 

forms an α-helical structure  in TFE as well as in the CaM-peptide complex, 

similar to other CaM-bound peptides (442,447,449,463,464). Two lysine and two 

arginine residues are contained in the Cx43136-148 sequence which has a high 

predictive score for CaM binding. The basic residues in the N-terminus of CaM-

binding sequences have been proposed to ensure an antiparallel orientation of 

the peptide with respect to CaM (421), which is believed to optimize the 

electrostatic attraction between the basic residues of the peptide with negatively 

charged residues in CaM. In addition, the hydrophobic residues M147-L151-I156 of 

the Cx43 peptide (I139-L143-V148) in the Cx44 peptide) reflect the 1-5-10 type of 

CaM-binding pattern (Fig. 6.4), which is similar to the CaM-binding regions of 

CaMKI and CaMKII (90,439,463).  

In addition to the formation of α-helical structure by the Cx peptides, the 

hydrophobicity of the peptide environment as well as the tertiary arrangement of 

CaM are also changed following the formation of CaM:Cx complexes. As 

indicated by the near UV CD studies, the chemical environment around the 

tyrosine residues is significantly perturbed following the binding of Cx43136-158 to 

CaM. Furthermore, the significant blue shift and concomitant enhancement of 
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fluorescence intensity induced by Cx peptides binding to dansyl-CaM (Fig. 6.10) 

suggests that the dansyl group in dansyl-CaM is shielded from the solvent and 

moves into a highly hydrophobic environment on binding to Cx peptides; similar 

changes have been observed for the binding of dansyl-CaM to other receptors 

(465-467). A number of the currently-assigned CaM resonances in the NMR 1H-

15N HSQC spectra exhibited chemical shift movements ≥0.05 ppm. These 

residues were spread in both the N- and C-terminal domains of CaM as well as in 

the linker region, indicating that a global conformational change occurred upon 

binding of the Cx43136-158 peptide to CaM. Such global changes of amide 

chemical shifts have also been reported in other CaM complexes such as Ca2+-

CaM-skeletal muscle myosin light chain kinase and Ca2+-CaM-CaMKI (420,468). 

Together these observations suggest that the Ca2+-CaM-Cx interaction might 

adopt the commonly seen wrapping-around mode of action (469).  

 

6.2.11. In vivo functional analysis of the putative Cx43 CaM-binding site  

Transient expression of a Cx43-EYFP construct without and with 

mutations in communication-deficient HeLa cells provided a system by which to 

test our biophysical data in a physiological manner.  Because CaM interaction 

with a protein requires both an electrostatic interaction and a hydrophobic 

interaction, we generated two Cx43 mutants - Cx43K146E, R148E-EYFP that knocks 

out the Cx43 electrostatic interaction with CaM, and Cx43M147Q, L151E, I156E –EYFP 

that knocks out the hydrophobic interaction of Cx43 with CaM.  Transient 

expression of these EYFP-tagged Cx43 constructs was consistent with the 
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anticipated results.  The wtCx43-EYFP formed very large gap junction plaques 

and dye transfer was restricted to those cells expressing EYFP fluorescence (see 

Fig. 6.15A&E).  With elevated [Ca2+]i, these junctions were no longer dye coupled 

as reported by us previously with wt Cx43 that lacked the EYFP label.   

As CaM has been implicated in Cx32 assembly at two stages of 

oligomerization, it was anticipated that the Cx43K146E, R148E-EYFP and Cx43M147Q, 

L151E, I156E –EYFP mutants would probably encounter problems reaching the 

plasma membrane, and perhaps fail to form functional gap junctions.  Indeed, 

although both of the mutant Cx43 proteins did express, the majority of the 

expressed protein was trapped inside the cell, very little of this protein appeared 

to reside in the plasma membrane, and no obvious gap junction plaques were 

observed.  Thus it was not anticipated that either of the mutants would exhibit 

cell-to-cell transfer of injected dye as reproducibly as we observed with the Cx43-

EYFP.  This proved to be the case because while in low (~1 μM) [Ca2+]i  100% of 

the wt Cx43-EYFP transfected HeLa cells exhibited cell-to-cell transfer of injected 

dye, only approximately 30% of each of the mutant-transfected HeLa cells 

appeared to be functional and exhibited cell-to-cell transfer of injected dye (Fig. 

6.15I). However, while elevated [Ca2+]i  completely prevented cell-to-cell dye 

transfer between wt Cx43-EYFP transfected HeLa cells, elevated [Ca2+]i was now 

unable to inhibit cell-to-cell dye transfer between HeLa cells transfected with 

these Cx43 mutants. Thus, knocking out the CaM binding capability of the 

residue 136-158 region of Cx43 abolished the Ca2+-dependent inhibition of Cx43 

gap junctions supporting our biophysical data that demonstrates that CaM 
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mediates the Ca2+-dependent inhibition of Cx43 via its interaction with residues 

136-158 in this connexin.  

 

6.3. Summary 

 In summary, we have identified a CaM binding sequence in the ubiquitous 

gap junction protein Cx43 and Cx44. This sequence resides in a juxtamembrane 

region of the only intracellular loop of Cx43 and Cx44. Our results demonstrate a 

1:1 Ca2+-dependent CaM-Cx peptides interaction with an affinity in the 

submicromolar range. The binding of this peptide to CaM enhances the Ca2+ 

affinity of CaM 2-4 fold. These results explain the molecular basis of our 

previously reported Ca2+-CaM-dependent regulation of both lens and Cx43-

containing gap junctions via a direct interaction of CaM with this connexin protein 

(75,436). The data reported here confirms that this regulation is effected via the 

Ca2+-dependent association of CaM with residues 136-158 of Cx43 (129-150 of 

Cx44) that in turn affects a change in the structural organization of Cx43 or Cx44 

such that gap junction permeability is significantly inhibited. Further elucidation of 

the structural changes within both CaM and Cx43 is the subject of ongoing 

investigations in this laboratory.  
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7. Conclusions and major discoveries 

 

We have developed a computational tool for the accurate prediction of EF-

hand or EF-hand-like Ca2+-binding proteins from primary sequences that will 

benefit the whole metalloprotein field. To our knowledge, our server 

(http://www.chemistry.gsu.edu/faculty/Yang/Calciomics.htm) is the first of its kind 

to provide such service for scientists. More importantly, the comprehensive 

prediction and detailed analysis on putative prokaryotic and viral EF-hand and 

EF-hand like Ca2+-binding proteins will contribute to improved understanding of 

versatile roles Ca2+ ions play in various biological systems, and should 

encourage more intensive studies toward this direction.  

 The studies on the rubella virus (RUB) nonstructural (NS) protease have 

established a model in which both Ca2+ and Zn2+ are required for the optimal 

protease activity and efficient virus replication.    

The studies on the interaction between CaM and connexins 43 and 44 

have confirmed a Ca2+-dependent CaM-Cx interaction model and advanced the 

understanding of the structural basis underlying Ca2+-dependent gating of gap 

junction.  

All of the completed work discussed in this dissertation combined 

computational prediction methods, followed by extensive experimentation to 

validate predictions through protein engineering and peptide approaches. More 

importantly, as demonstrated by results from cell-based assays, the predicted 
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motifs have been tightly linked to biological functions. Such three-pronged 

“prediction to protein engineering to function” approaches could be extended to 

the study of many other subjects.  
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Appendices 

 

This section includes: 1) analyzing key factors governing the metal binding 

events by inserting well-characterized Ca2+-binding sequences from cellular 

proteins into CD2.D1 with the grafting approach; 2) predicting and identifying a 

putative CaM binding site in rubella virus nonstructural protease; 3) list of CD2 

variants I made and their primary sequences and physiochemical properties. 

 

A1. Analysis of factors affecting the metal-binding affinities of isolated 

Ca2+-binding motifs 

The established grafting approach enables us to study factors governing 

the metal binding properties of isolated EF-hand motifs without the complexity 

encountered in multiple cooperative Ca2+-binding processes. Specifically, we 

have generated a series of engineered CD2 proteins grafted with i) the 12-

residue EF-loop and modified loops from the Ca2+-binding site III of calmodulin to 

study the effects of charge distribution on metal binding affinities. ii) the pseudo 

(denoted as CD2.Cal1) and canonical EF-hand loops (denoted as CD2.Cal2) 

from calbindin D9k to examine the effects of coordinating residues on metal 

binding affinities. At present, these constructs have been made and some 

preliminary studies have been carried out. However, this project is still in its early 

stage and will be further explored. 
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A 

 

B 

 

Figure A1. The charge-ligand-balanced model. Both the number of negatively 
charged ligand residues and the balanced electrostatic dentate-dentate 
repulsion by the adjacent charged residues (positions 2 and 11) are two 
determinants for the relative affinities of the EF-loops (1,2). Experimental 
design to test the “charge-ligand-balanced model”. Substitutions of position 2 
(residue Ile) and 11 (residue Glu) with Lys residues in the EF-loop IV of 
calmodulin is expected to mimic the EF-loop I of calmodulin and has similar 
affinity. 
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Effects of charge distribution    

Previous studies carried out by Dr. Yiming Ye and Dr. Hsiau-Wei Lee have 

characterized the metal binding affinities of 4 EF-loops from calmodulin (1,2). It 

has been found that the Tb3+binding constants follow the order of: I > II ~ III > IV, 

which is correlated to the overall charge of the isolated EF-loops (-2, -2, -4, -5, 

respectively) (Fig. A1A). Based on this observation, a “Charge-ligand-balanced 

model” has been hypothesized, in which both the number of negatively charged 

ligand residues and the balanced electrostatic dentate-dentate repulsion by the 

adjacent charged residues are two determinants for the relative affinities of the 

EF-loops (1,2). To further test this hypothesis, we further engineered the “lowest-

affinity” site IV of EF-loop (denoted as CD2.IV5G) by mutating residues at 

position 2 and 11 individually or in combination to positively-charged residue K 

(denoted as I2K, E11K and KK, respectively) (Fig. A1B). These proteins have 

been expressed and purified to homogeneity (Fig. A2A). The grafting of these 

sequences will not disrupt the host protein structure (Fig. A2B & C). We will carry 

out metal titration experiments to obtain metal binding affinities for each variant in 

the future.  

 

Effects of coordinating residues    

EF-hand motifs are divided into two major types: the canonical EF-hands 

and the pseudo EF-hands. The S100 protein Calbindin D9k contains a pseudo 

EF-hand Ca2+-binding sites at its N terminus and a canonical EF-hand Ca2+-

binding sites at its C terminus (Fig. A3A). The major difference between these 
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Figure A2. The grafting of EF-loop does not disrupt the host protein structure. 
(A) SDS-PAGE of proteins under study. Far UV CD (B) and Trp fluorescence 
(C) spectra of engineered proteins are also shown.  
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Figure A3. The pseudo and canonical EF-hands in calbindin D9k. (A) 3D 
cartoon representation of Ca2+-binding sites (highlighted as yellow) in 
Calbindin D9k (PDB code: 1b1g). (left) Pseudo EF-hand loop coordinates 
Ca2+ by mainchain carbonyls (position 1,4,6,9) and sidechain carboxylates at 
position 14. (right) Canonical EF-hand loop chelates Ca2+ by sidechain 
carboxylates (position1,3,5,12) and one mainchain carbonyl (position 7). The 
water ligand is not shown here. (B) Grafting the EF-loops to CD2.D1. After the 
insertion of 12- or 14-residue EF-loops, the host protein retains it native 
structure, providing the foundation to study the effects of coordinating 
residues on metal binding properties. (left) SDS-PAGE of engineered proteins 
CD2.Cal1 and CD2.Cal2. (middle) Far UV CD spectrum of engineered 
proteins. The observed difference below 210 nm arises from the insertion of 
12 residues that increases the random coil structure by ~10%. (right) 
Tryptophan fluorescence spectra of engineered proteins.  
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two groups lies in the Ca2+-binding loop: the 12-residue canonical EF-hand loop 

binds Ca2+ mainly via sidechain carboxylates (loop sequence positions 1, 3, 5, 

12), whereas the 14-residue pseudo EF-hand loop chelates Ca2+ primarily via 

backbone carbonyls  (positions 1, 4, 6, 9). The residue at the position 9 (11 in 

pseudo EF-hand) coordinates the Ca2+ ion through a bridged water molecule. 

The pseudo and canonical EF-hand loops have a bidentate ligand (Glu) at 

position 14 and 12, respectively. It is worth asking how the coordination of metal 

ion by main chain carbonyls or side chain carboxylates will affect metal binding 

properties. The grafting approach, which obviates the metal binding cooperativity 

encountered in natural proteins containing multiple EF-hand Ca2+-binding sites, 

would provide a solution to this question. Given that, we inserted the 14-residue 

pseudo EF-loop (denoted as CD2.Cal1) and the 12-residue canonical EF-loop 

(denoted as CD2.Cal2) into CD2.D1 between Ser52 and Gly53 with –GGG- linkers. 

Now we have successfully designed and purified the proteins (Fig. A3B-D) and 

will soon address this interesting question.   

 

A2. Prediction of a putative CaM binding site in the RUB NS protease 

Using the search program for CaM-binding sites (90) as described in 

Section 6.2.1, a putative “IQ-like” CaM binding region with high predictive score 

was identified in the rubella virus nonstructural protease. The location of the CaM 

binding site is immediately prior to the entering helix of the helix-loop-helix EF-

hand Ca2+-binding motif (Fig A4). To test whether the predicted sequence is 
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Figure A4. Prediction of a CaM binding site in RUB NS protease. (A) The 
location of the predicted CaM binding site (CaMB). The CaMB is situated 
prior to the entering helix of the EF-hand motif (black box). (B) Titration of 
CaM into a synthetic peptide (red box) encompassing the putative CaMB in 
the presence of Ca2+ (left upper) or EGTA (left lower). Right panel showed 
the Trp intensity as a function of the [CaM]/[Peptide] ratio.   
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capable of interacting with CaM in vitro, we synthesized a 32-mer peptide 

encompassing the CaM binding region 

(1152CWLRAAANVAQAARACGAYTSAGCPKCAYGRA1183).  Since the peptide 

contains a Trp residue and CaM contains zero Trp and two Tyr residues, the Trp 

fluorescence signal from the peptide can be used to monitor the interaction 

between the peptide and CaM. As shown in Fig. A4B, the Trp fluorescence 

emission spectrum of the free peptide exhibited a major peak at 354 nm, 

indicating that the peptide is largely unstructured and the only Trp residue is fully 

exposed to the solvent. Following the addition of CaM in the presence of 1 mM 

Ca2+, the fluorescence intensity increased by nearly 2 fold and the emission peak 

underwent a 16-nm blueshift, strongly suggesting that the Trp residue is now 

buried within a highly hydrophobic environment due to the peptide-CaM 

interaction. An apparent dissociation constant of 260 ± 6 nM is obtained by fitting 

the curve with a 1:1 binding process. In the absence of Ca2+, however, neither 

fluorescence intensity enhancement nor emission peak shift is observed. Thus, 

the interaction between the CaM binding site in RUB NS protease and CaM 

seems to be a Ca2+-dependent event, which is commonly seen in many other 

CaM-target interactions (90). Since the putative CaM binding site is within the NS 

protease, it is expected that its effect would be on protease activity, either 

through its interaction with the neighboring EF-hand Ca2+-binding motif or by a 

mechanism independent of the EF-hand motif.  It is also possible that the CaM 

binding event has an effect on other unknown aspects of P150 function. The 

physiological relevance of this CaM binding domain will be further characterized.  
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A3. Primary sequences and physiochemical properties of engineered CD2 

variants 

Primary sequences of engineered CD2 variants:  

>CD2 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGAFEI

LANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRILE 

 

>CD2.RUBCA 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGDA

SPDGTGDPLDGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRILE 

 

>CD2.RUBCA.AA 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGDA

SPAGTGDPLAGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRILE 

  

>CD2.RUBCA.EF 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGSQ

RWSASHADASPDGTGDPLDPLMETVGAGGGAFEILANGDLKIKNLTRDDSGTYNVTVYS

TNGTRILNKALDLRILE 

 

>CD2.SIN 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGDL

DNEKMLGTREGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRILE 

 

>CD2.POX 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGDY

DGNGTETRGEGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRILE 

 

>CD2.SHR 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLXAEFKRKMKPFLKSGGGDL

DGDGKLSKTEGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRILE 

 

>CD2.CAL1 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGAA

KEGDPNQLSKEEGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRI

LE 

 

>CD2.CAL2 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGDK

NGDGEVSFEEGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRILE 
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>CD2.III5G.F 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGDK

DGNGYISAAELRHVMTNLGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNK

ALDLRILE 

 

>CD2.III5G.EF 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGEE

EIREAFRVFDKDGNGYISAAELRHVMTNLGGGAFEILANGDLKIKNLTRDDSGTYNVTV

YSTNGTRILNKALDLRILE 

 

>CD2.III5G.SKEAA 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGSE

EEKREAERVFDKDGNGYISAAELRHAATNLGGGAFEILANGDLKIKNLTRDDSGTYNVT

VYSTNGTRILNKALDLRILE 

 

 

>CD2.IV5G 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGDI

DGDGQVNYEEGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRILE 

 

>CD2.IV5G.I2K 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGDK

DGDGQVNYEEGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRILE 

 

>CD2.IV5G.E11K 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGDI

DGDGQVNYKEGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRILE 

 

>CD2.IV5G.KK 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGDK

DGDGQVNYKEGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRILNKALDLRILE 

 

>CD2.STIM1 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGSF

EAVRNIHKLMDDDANGDVDVEESDEFLREDLGGGAFEILANGDLKIKNLTRDDSGTYNV

TVYSTNGTRILNKALDLRILE 

 

>CD2.PMR1 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGSV

DEALEKLDTDKNGGLRSSNEANNRRSLYGGGAFEILANGDLKIKNLTRDDSGTYNVTVY

STNGTRILNKALDLRILE 

 

>CD2.CX43 

GSRDSGTVWGALGHGINLNIPNFQMTDDIDEVRWERGSTLVAEFKRKMKPFLKSGGGKY

GIEEHGKVKMRGGLLRTYIISGGGAFEILANGDLKIKNLTRDDSGTYNVTVYSTNGTRI

LNKALDLRILE 
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Table A1. The physiochemical properties of engineered CD2 variants. 
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