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ROLES OF SERINE 101, HISTIDINE 310 AND VALINE 464 IN THE REACTION 

CATALYZED BY CHOLINE OXIDASE FROM ARTHROBACTER GLOBIFORMIS  

 

by 

STEFFAN FINNEGAN 

Under the Direction of Giovanni Gadda 

 

ABSTRACT 

The enzymatic oxidation of choline to glycine betaine is of interest because organisms 

accumulate glycine betaine intracellularly in response to stress conditions, as such it is of 

potential interest for the genetic engineering of crops that do not naturally possess efficient 

pathways for the synthesis of glycine betaine, and for the potential development of drugs that 

target the glycine betaine biosynthetic pathway in human pathogens. To date, one of the best 

characterized enzymes belonging to this pathway is the flavin-dependent choline oxidase from 

Arthrobacter globiformis. In this enzyme, choline oxidation proceeds through two reductive half-

reactions and two oxidative half-reactions. In each of the reductive half-reactions the FAD 

cofactor is reduced to the anionic hydroquinone form (2 e
-
 reduced) which is followed by an 

oxidative half-reaction where the reduced FAD cofactor is reoxidized by molecular oxygen with 

formation and release of hydrogen peroxide. 

In this dissertation the roles of selected residues, namely histidine at position 310, valine at 

position 464 and serine at position 101, that do not directly participate in catalysis in the reaction 

catalyzed by choline oxidase have been elucidated. The effects on the overall reaction kinetics of 

these residues in the protein matrix were investigated by a combination of steady state kinetics, 



rapid kinetics, pH, mutagenesis, substrate deuterium and solvent isotope effects, viscosity effects 

as well as X-ray crystallography. 

 

A comparison of the kinetic data obtained for the variant enzymes to previous data 

obtained for wild-type choline oxidase are consistent with the valine residue at position 464 being 

important for the oxidative half-reaction as well as the positioning of the catalytic groups in the 

active site of the enzyme. The kinetic data obtained for the serine at position 101 shows that serine 

101 is important for both the reductive and oxidative half-reactions. Finally, the kinetic data for 

histidine at position 310 suggest that this residue is essential for both the reductive and oxidative 

half-reactions. 

 

INDEX WORDS: Choline oxidase, Flavin oxidation, Oxygen reactivity, Proton-transfer 

network, Chemical mechanism, Flavoprotein.  
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CHAPTER I 

INTRODUCTION 

1.1 Flavin dependent enzymes 

Flavin dependent enzymes or flavoenzymes are enzymes that utilize the chemically versatile 

compound 7,8-dimethyl-10-alkylisoalloxazine or simply flavin (Figure 1.1) as a noncovalently 

or covalently bound cofactor for catalysis. The predominant form of flavin found in nature is 

flavin adenine dinucleotide (FAD), and to a lesser degree flavin mononucleotide (FMN). 
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Figure 1.1. Structures of Riboflavin (X=H), FMN (X = PO3
2-

), and FAD (X = ADP). 

 

Although synthesis of riboflavin, the precursor of all biological relevant flavins, only occurs 

in some lower organisms and plants, an estimated 1-3% of all prokaryotic and eukaryotic genes 

are thought to encode for flavin binding proteins. In humans, riboflavin is an essential nutrient 

R 
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required for FMN and FAD synthesis. FMN and FAD synthesis begin with flavokinase 

phosphorylating riboflavin to generate FMN, which then can be adenylated to form FAD by 

FAD synthetase (1-3). The abundance of flavin binding proteins in nature is likely due to the 

wide array of biochemical reactions that can be catalyzed by flavin dependent enzymes (Figure 

1.2).  

 

Figure 1.2. Sample of Biological Functions that Involve Flavoenzymes (4-10). (Modified from 

ref. (11)) 

 

 

The chemical versatility of flavoenzymes arises from the flavin cofactor having the ability to 

couple one- and two-electron transfer processes between substrates and various electron carriers 

as well as functioning as electrophile and nucleophile (12). Flavoenzymes generally achieve 

 

 

Detoxification 

 

Neural 

development 

 

Protein 

folding 

 

Energy 

production 

 

DNA 

repair 

 

Chromatin 

remodeling 

 

Light 

emission 

 

 

Apoptosis 



3 

 

catalysis through two half-reactions, a reductive half-reaction in which the flavin cofactor is 

either one- or two-electron reduced followed by an oxidative half-reaction in which the flavin is 

re-oxidized (Scheme 1.1). 

 

Scheme 1.1. Generalized Flavin Catalytic Cycle. SA and SB are Substrate A and B Respectively. 

 

Flavin can exist in three different redox states, the oxidized, the semiquinoid (1 e
-
 reduced), 

and the fully reduced (2 e
-
 reduced) species (Figure 1.3). Additionally, the semiquinoid and the 

fully reduced states exist in both a neutral and an anionic form. Each of these 5 flavin states is 

accompanied with unique spectral properties (Figure 1.4) (13). These large spectral differences 

between the various flavin oxidation states make it possible to monitor events occurring during 

catalysis using the flavin itself as a spectral probe. 

 

The semiquinoid species of the free flavin can either be in a neutral (blue) or anionic 

(red) form, with a pKa of ~8.5 in solution (14-15). However, upon association of the flavin with 

the apoprotein forming the holoenzyme, this pKa value is often shifted beyond the pH-range 

where the flavoenzymes are stable and therefore only one form of the semiquinone will be 

stabilized and detectable. Glucose oxidase was the first reported flavoenzyme where the pKa of 

the semiquinone remained in the pH-range where the enzyme was stable, thus allowing both 

forms of the semiquinone to be spectrally characterized (Figure 1.4) (13).  
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Figure 1.3. Redox and Ionization States of Flavins. (Modified from ref. (16)) 

 

 

Figure 1.4. Spectra of Glucose Oxidase in the Oxidized, Semiquinone (Anionic and Neutral), 

and Fully Reduced States (13).  
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The spectroscopic properties of flavins have allowed for a detailed kinetic 

characterization of many flavoenzymes, making them one of the best studied classes of enzymes. 

In addition, these kinetic studies have often been supplemented with structural studies. In recent 

years, structural studies of flavoenzymes have gained momentum as seen by the increase of 

entries in the Protein Databank that now contains ~1400 structures of proteins containing flavin 

as compared to ~200 in the year 2000.  

Generally, flavoenzymes can be grouped into a relatively small number of subclasses, 

where members within the same subclass share several common properties, including the type of 

reactions that they catalyze. The most common grouping of flavoenzymes is based on the 

reactivity of their reduced form with dioxygen (17). Using these criteria there are four well 

defined groups of flavoenzymes. 

 

1. Oxidases – react rapidly with oxygen to yield H2O2 and oxidized enzyme. 

2. Monooxygenases – react rapidly with oxygen to yield H2O, oxidized enzyme and 

a substrate with an inserted single oxygen atom. 

3. Electron transferases – react slowly with oxygen to yield an oxygen radical paired 

with the neutral flavoenzyme semiquinone
 
radical. 

4. Dehydrogenases – react poorly with oxygen to yield O2
-.
. 

 

Enzymes belonging to each of these classes of have been found to share several common 

properties. However, each class has been further sub-characterized based on these additional 

properties. 
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Oxidases. The flavin dependent oxidases react with oxygen in their reduced form by 

transferring a hydride equivalent to reform the oxidized flavin cofactor and hydrogen peroxide. 

A common feature of all the flavin dependent oxidases is that they stabilize the red anionic one-

electron reduced semiquinone (18-22) as well as having the ability to form a stable flavin N(5)-

sulfite adduct (19-20). These features both imply the presence of a positive charge proximal to 

the negative charge formed at the N(1)-C(2)=O locus of the flavin isoalloxazine ring as a result 

of flavin reduction. Indeed, the emergence of X-ray crystallographic structures of flavin 

dependent oxidases has shown the presence of a positively charged residue close to N(1)-C(2)=O 

region of the flavin cofactor, e.g. His466 in choline oxidase and Lys230 in glycolate oxidase (23-

25). Amongst the most intensively studied flavin dependent oxidases are: choline oxidase (24, 

26-38), cholesterol oxidase (39-61), glycolate oxidase (23-25), sarcosine oxidase, D-amino acid 

oxidase (62-69) and glucose oxidase (70-75).  

Monooxygenases. Contrary to the oxidases, the flavin dependent monooxygenases activate 

oxygen through a detectable flavin hydro-peroxide intermediate. Upon formation the flavin 

hydroperoxide intermediate transfers an oxygen atom to the substrate with the formation of a 

C(4a)-hydroxyflavin, which returns to its oxidized state upon dehydration. However, even in the 

absence of the substrate, the flavin hydroperoxide converts slowly to H2O2 and oxidized flavin 

(76).  

Electron transferases. The flavin-dependent electron transferases react slowly with oxygen 

to yield an oxygen radical
 
and the neutral flavoenzyme semiquinone

 
radical in the absence of a 

physiological electron acceptor (76). Additionally, in contrast to the flavoenzymes that react 

rapidly with oxygen, the flavin-dependent electron transferases do not readily form N(5)-sulfite 
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adducts. Amongst the best characterized flavoprotein electron transferases are flavodoxin (23-

25), NADPH-cytochrome P-450 reductase (77), and ferredoxin-NADP
+
 reductase (78-83).  

Dehydrogenases. The flavin-dependent dehydrogenases react poorly, if at all, with 

molecular oxygen. They utilize a specific electron acceptor such as NADP
+
 to oxidize the 

organic substrate. Amongst the best studied flavin-dependent dehydrogenases are the acyl-CoA 

dehydrogenases. These enzymes oxidize the organic substrate by transferring a hydride 

equivalent to the oxidized flavin, which subsequently transfers these electrons to the final 

electron acceptor, NAD(P)
+
 (84).  

 

1.2 Selected structural features of flavoenzymes with different oxygen reactivity 

Flavoenzymes are known to have a variety of folding topologies such as the (α/β)8-barrel and 

the PHBH-fold (24, 85-88). However, these folding features do not correlate with enzyme 

function (Table 1.1). Topologically similar flavoenzymes can catalyze significantly different 

reactions as exemplified by the similar overall folding observed in cholesterol oxidase (89), 

fumarate reductase (90) and p-hydroxybenzoate hydroxylase (91). Furthermore, flavoenzymes 

with dissimilar overall folding topologies can catalyze similar reactions. As such, the overall 

folding topology cannot be used to distinguish between oxidases and monooxygenases, a finer 

and more detailed analysis of the active site is required. This correlates well to the findings from 

sequence and structure analyses of FAD-containing enzymes performed by O. Dym and D. 

Eisenberg (92) that showed that the major determinant of the catalytic function is the flavin 

protein-microenvironment immediately surrounding the isoalloxazine ring of the flavin cofactor 

rather than the overall protein folding. 
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Table 1.1. Overall Fold of Selected Flavoenzymes 

Flavoenzyme 

(PDB file) 
Cofactor Folding topology Ref 

Choline Oxidase 

(2JBV) 

FAD PHBH (24)  

Glucose Oxidase 

(1CF3) 

FAD PHBH (85) 

Cholesterol Oxidase 

(1COY) 

FAD PHBH (93) 

 

Cellobiose Dehydrogenase 

(1NAA) 

FAD PHBH (94) 

Pyranose 2-Oxidase 

(1TT0) 

FAD PHBH (95) 

D-Amino Acid Oxidase 

(2E48) 

FAD PHBH (96) 

Polyamine Oxidase 

(1B37) 

FAD PHBH (97) 

Monomeric Sarcosine Oxidase 

(1L9F) 

FAD PHBH (98) 

p-Hydroxybenzoate 

Hydroxylase (1PHH) 

FAD PHBH (91) 

 

p-Hydroxyphenylacetate 

Hydroxylase (2JBR) 

FMN Tetrameric (99) 

Flavocytochrome b2 

(1FCB) 

FMN (/β)8 Barrel (100) 

Glycolate Oxidase 

(1GOX) 

FMN (/β)8 Barrel (101) 

Trimethylamine Dehydrogenase 

(2TMD) 

FMN (/β)8 Barrel (86) 

Dihydroorotate Dehydrogenase 

(2DOR) 

FMN (/β)8 Barrel (88) 

Old yellow Enzyme 

(1OYB) 

FMN (/β)8 Barrel (102) 

 

In the flavin-dependent monooxygenases, the reaction of reduced flavin with oxygen 

proceeds through a detectable reaction-intermediate such as C(4a)-(hydro)peroxides and C(4a)-

hydroxides (103). The stabilization of these reaction intermediates is key for monooxygenase 

reactivity and is generally achieved by desolvation of a highly defined hydrophobic cavity in 

front of the C(4a) atom of the flavin. A typical example of this desolvation is seen in the 

monooxygenase component (C2) of p-hydroxyphenylacetate hydroxylase (99), where nine 
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hydrophobic residues define a hydrophobic cavity in front of the C(4a) atom and in 

phenylacetone monooxygenase (104) where 5 residues create a similar cavity on the re side of 

the flavin. Other monooxygenases with similar cavities in front of the C(4a)-N5 locus of the 

flavin are p-hydroxybenzoate hydroxylase (91), 3-hydroxybenzoate hydroxylase (105) and 

tryptophan 7-halogenase (106). 

A structural comparison of the active sites of the flavin dependent oxidases revealed no such 

well defined hydrophobic cavities (103). However when surveying several well characterized 

flavin-dependent oxidases a recurring motif consisting of a non-polar site and a positive charge 

in close proximity to the C(4a)-N5 locus of the flavin cofactor (Figure 1.5) was observed (see 

Chapter IV for survey details) (24, 85, 107-108). In choline oxidase, the positive charge required 

for oxygen activation is provided by the positively charged trimethylammonium moiety of the 

substrate (32, 109) and the non-polar region is provided by the side chain of the hydrophobic 

residue Val464, which is ~5.5 Å away from the flavin C(4a) atom (See Chapter IV). A similar 

motif is seen in glucose oxidase and monomeric sarcosine oxidase. In glucose oxidase the side 

chain of the hydrophobic residue Val560 is ~4.7 Å away from the side chain of His516, which 

has been shown to provide the positive charge that is required to activate molecular oxygen for 

reaction with the reduced flavin cofactor (107, 110-111), and ~6.3 Å away from the C(4a) atom 

of the flavin cofactor. Similarly, in monomeric sarcosine oxidase the hydrophobic residue 

Phe256 is ~4 Å away from the positive charge provided by the side chain of Lys265, which is 

required for oxygen activation (49), and ~6 Å from the C(4a) atom of the flavin. The importance 

of the positive charge can also be seen in D-amino acid oxidase and in monoamine oxidase A, 

where it has been shown that the rate of the reaction of the reduced flavin with molecular oxygen 
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is increased almost an order of magnitude upon binding of the positively charged product or 

product analog (112-113). 

His466

FAD-C(4a)

Val464 3.2

3.8

5.5

choline oxidase glucose oxidase

His516

FAD-C(4a)

Val560 4.7

4.3

6.3

monomeric sarcosine oxidase

Lys265

FAD-C(4a)

Phe256 3.7

7.2

5.9
choline

 
Figure 1.5. Flavin Dependent Enzymes Displaying a Hydrophobic Residue Close to a Positive 

Charge that is Required for Oxygen Activation Close to the FAD-C(4a)-N5 Region. 

 

When expanding the structural analysis to encompass flavoenzymes that have not been as 

comprehensively characterized, several flavin-dependent oxidases are found with a similar motif 

consisting of a non-polar region close to a positive charge and the C(4a) atom of the flavin as 

exemplified by the flavoenzymes shown in Figure 1.6 (see Chapter IV for survey details) (24, 

85, 107-108). 

3.4

4.1

6.1

cholesterol oxidase

5.0

5.1

5.0

pyranose 2-oxidase

7.0

5.1

4.9

kynuramine

His447

Leu377

Lys296

Phe343

His548

Phe454

4.9

5.6

4.9

polyamine oxidase

4.4

4.3

6.9

Lysine-specific demethylase1

5.6

5.1

8.5

Lys305

Phe352

Lys296

Leu375

Lys661

Leu706

FAD-N5

MAO B

FAD-N5 FAD-N5

FAD-N5

MAO A

FAD-N5 FAD-N5  
Figure 1.6. Flavin Dependent Enzymes Displaying a Hydrophobic Residue Close to a Positive 

Charge Close to the FAD-N5 Atom (24, 101, 114-116). 
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A structural and kinetic comparison of glycolate oxidase and flavocytochrome b2 revealed 

that flavoenzymes with structurally homologous and highly conserved active sites can have 

vastly different reactivities with oxygen. The major differences between these two flavoenzymes 

are the presence of a leucine (Leu230) residue and the backbone nitrogen of Ala198 close to the 

C(4a) atom of the flavin cofactor in flavocytochrome b2 whereas in glycolate oxidase it is a 

tryptophan (Trp108) and the methyl side-chain of alanine79 that is close to the C(4a)-atom (87, 

100). Thus, the polarity and orientation of the sidechain of this region appears to be the 

predominant difference between these two flavoenzymes.  

Consistent with the importance of the cavity in front of the C(4a)-N5 locus of the FAD 

isoalloxazine ring for oxygen reactivity are findings from recent studies on the enzymes 

belonging to the L-2-hydroxy acid oxidase family, which are FMN dependent enzymes. The 

members of the L-2-hydroxy acid oxidase family that display poor oxygen reactivity have been 

shown to have a constrained environment around the N5 position of the FMN cofactor (117). To 

further elaborate on the importance of the residues lining the cavity in front of the C(4a)-N5 

locus of the flavin it is key to look at a study of L-galactono-γ-lactone dehydrogenase. The study 

showed that upon mutation of the alanine residue at position 113, which is positioned near the 

C(4a) locus of the isoalloxazine ring, to a glycine residue oxygen reactivity was increased 400-

fold and effectively changing a dehydrogenase to a catalytically competent oxidase (118). In L-

galactono-γ-lactone dehydrogenase, a bigger cavity is sufficient to allow for better oxygen 

reactivity likely due to improved oxygen accessibility. 

In summary, it appears that the monooxygenases have a highly defined hydrophobic cavity 

in front of the C(4a) atom of the flavin with optimum geometry for encapsulating and stabilizing 

the C4-hydroperoxyflavin, and thus allowing monooxygenation reactions to be catalyzed. 
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Conversely, in the oxidases no such highly defined cavity is observed, most likely due to the 

oxidases having less stringent requirements for optimum reaction of the reduced flavin with 

molecular oxygen. These structurally different oxidases do seem to have some commonly 

recurring structural features, such as a non-polar region or a positive charge close to the C(4a)-

atom of the flavin cofactor. A summary of common structural features of the surveyed 

flavoenzymes are shown in Table 1.2. 

 

Table 1.2. Structural Features of Selected Flavoenzymes Important for Oxygen Reactivity 

Flavoenzyme Positive charge Effect of positive 

charge on 

kcat/Koxygen 

Non-polar 

residue 

Ref 

Choline Oxidase Substrate ~80 fold increase Val464 (24, 108) 

Glucose Oxidase His516 ~100 fold increase Val560 (85, 107) 

Cholesterol Oxidase His447  Leu377 (93) 

Pyranose 2-Oxidase His548  Phe454 (95) 

D-Amino Acid Oxidase Product analog  Ile230 (96) 

Polyamine Oxidase Lys296  Leu375 (97) 

Monomeric Sarcosine 

Oxidase 

Lys265 ~8000 fold increase Phe256 (49, 98) 

Glycolate Oxidase Lys236  Trp110 (119) 

Monoamine oxidase A Product/Lys305 ~10 fold increase Phe352 (86) 

Monoamine oxidase B Product/Lys296 ~10 fold increase Phe343 (116) 

Old yellow Enzyme His196  Phe250 (102) 

 

1.3 Oxygen reactivity  

1.3.1. General oxygen chemistry 

Molecular oxygen, O2, can exist in both the singlet (
1
Δg) (i.e. no unpaired electrons) and 

the triplet (
3
∑g) (i.e. unpaired electrons) spin state. Triplet oxygen is the most stable form of the 

oxygen. The electron configuration of triplet oxygen has two unpaired electrons occupying two 

antibonding molecular orbitals. The unpaired electrons in these two degenerate orbitals can have 

the same spin, so the total spin of the molecule is 1. Due to this non-zero spin molecular oxygen 
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in its triplet state has a magnetic moment and as such liquid oxygen is paramagnetic. Molecular 

oxygen in its singlet ground spin state, there are no unpaired electrons and as such the total spin 

is zero. Singlet oxygen is many times more reactive than triplet oxygen and readily reacts with 

other singlet molecules, which comprise the majority of all compounds, and is therefore rapidly 

depleted. Contrary to this is molecular oxygen in its triplet
 
ground state, for which chemical 

reactions between reactants in their triplet and singlet spin states are forbidden by Wigner's spin 

selection rule (120). The conservation of spin allows triplet oxygen to readily react with 

molecules in a doublet state, such as radicals, to form a new radical.  

Thus, the triplet multiplicity is the actual reason why most reactions of oxygen with 

organic substances, although being exergonic, do not readily proceed at room temperature but 

only upon heating or in the presence of catalysts that activate O2 via a series of one-electron 

transfer reactions (121). Figure 1.7 shows the reduction potentials of O2 at pH 7.0. These 

reduction potentials indicate that the limiting step in O2 reduction is the first single electron 

transfer (122). Furthermore the negative standard reduction potential for the one electron transfer 

to O2 makes it a non-spontaneous process with electron donors of higher standard potentials.  

 

OHOHOHOHOO VVVV

2

31.2.

2

38.0

22

89.0.

2

33.0

2 2     
 

Figure 1.7. Standard Reduction Potentials for O2 (123). 

   

In order to overcome this restriction that contribute to the kinetically inertness of O2, 

enzymes have evolved to utilize cofactors such as transition metals, flavins or hemes to enhance 

their reactivity with oxygen. A survey of the different mechanisms by which enzymes reduce O2 
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does not yield a single principle by which this is achieved. However, broad generalizations can 

be made and some general principles can be deduced. 

One method employed by enzymes is to have a reduced metal-center, most frequently 

Fe
2+ 

or Cu
1+ 

(124). The triplet oxygen binds to the metal-center and upon binding the electron 

orbitals of the oxygen overlap with those of the metal-center and the unpaired electrons are no 

longer distinguishable, meaning that the unpaired electrons do not belong to neither the metal-

center nor oxygen, but rather to the metal-oxygen complex as a whole. It is spin allowed for such 

a complex to react with singlet reactants to yield singlet oxidized products as long as the number 

of unpaired electrons in the metal-oxygen complex remains constant. In this type of enzyme 

enhanced oxygen reactivity, the reaction with oxygen typically proceeds by an ionic mechanism 

(125). A second method by which enzymes can overcome the spin-forbidden reaction of 

molecular oxygen with singlet reactants is to have the initial reaction being a free radical 

mechanism in which a single electron is transferred from a reduced cofactor to oxygen resulting 

in the formation of two free radicals that can either recombine or react further. This type of 

reaction is exemplified by the reaction of a reduced flavin with molecular oxygen. In flavin 

dependent enzymes, the reduction of O2 is spin prohibited. A proposed mechanism by which 

oxygen, in its triplet state, reacts with reduced flavin, in its singlet state, proceeds via a single 

electron being transferred from the reduced flavin to O2 to form a caged radical pair consisting of 

a flavin semiquinone and a superoxide anion. This radical pair can then follow different routes 

resulting in the generation of deprotonated hydrogen peroxide, the insertion of an oxygen atom 

into a substrate via a peroxy-flavin intermediate or simply produce oxygen radicals (Figure 1.8). 

The flavin-dependent monooxygenases all proceed via a detectable peroxy-flavin intermediate. 

However, in the flavin-dependent oxidases the route by which the caged radical pair decays to 
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hydrogen peroxide and oxidized flavin is not as clear. It can either go directly to the end product 

or through an intermediate as in the monooxygenases. So far, only two flavin dependent oxidases 

have experimental evidence that this reaction proceeds through an intermediate. Both pyranose-

2-oxidase and choline oxidase have shown the presence of a C(4a)-oxygen-adduct (24, 126-127). 
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Figure 1.8. Flavin Dependent Oxygen Reduction Pathways. (modified from (103)) 

 

1.3.2. Enzymes and oxygen 

Generally, all the known enzymes that have molecular oxygen as one of their substrates can 

be divided in to two main categories: 

1. Oxygenases.  

2. Oxidases. 

Oxygenases catalyze reactions that result in the incorporation of one (monooxygenases) or 

both (dioxygenases) of the oxygen atoms into an organic substrate. In the oxidases molecular 
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oxygen functions as an electron acceptor and is reduced to a superoxide radical, hydrogen 

peroxide, or water. A common feature of all enzymes activating molecular oxygen for reaction is 

that they are conjugated proteins with a metal or flavin prosthetic group. Oxidases as well as 

oxygenases have either or both types of prosthetic groups.  

 

1.3.1.1.Metal-containing oxygenases 

Iron is by far the most frequently used metal cofactor in oxygenases (124, 128), either as 

part of a heme group as in tryptophan 2,3-dioxygenase and indolamine 2,3-dioxygenase (124). 

Alternatively, iron may be in a non-heme form as seen in protocatechuate 3,4-dioxygenase (129-

130) and lipoxygenase (124, 131-132). 

 

1.3.1.1.1. Heme-dependent oxygenases 

For the cofactor in heme-dependent proteins to interact directly with molecular oxygen 

the iron must be in its ferrous state and possess an available sixth coordination site.   

There are four known types of interactions of heme-proteins and molecular oxygen: 

1. Transport (hemoglobin) (133) 

2. Reduction (cytochrome oxidase) (134) 

3. Monooxygenation (cytochrome P-450) (135) 

4. Dioxygenation (tryptophan oxygenase) (136) 

 

Hemoglobin does not chemically activate molecular oxygen but reversibly binds it and 

transports it from the lungs to the rest of the tissues where it releases the oxygen for cellular use. 

Cytochrome oxidase is a membrane bound copper-heme protein (137) that acts as a terminal 
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electron acceptor catalyzing the electron flow from oxygen as it gets reduced to water. Contrary 

to these types of heme-containing proteins, are the heme-dependent monooxygenases and 

dioxygenases which activate oxygen and catalyze its insertion into organic substrates. 

 In the current hypothesis for how iron-dependent oxygenases, in which the iron cofactor 

is directly involved, activate molecular oxygen, the iron has to be reduced to the Fe
2+

 state prior 

to oxygen binding and involves an electron transfer from Fe
2+

 to the bound oxygen to form a 

oxyferrous intermediate, which is or will lead to the activated oxygen species. This type of 

mechanism has been established for most iron-dependent dioxygenases such as indoleamine 2,3-

dioxygenase (138), however, not all oxygenases proceed through this type of mechanism. 

Protocatechuate 3,4-dioxygenase is an example of an iron-dependent oxygenase that must 

proceed through a mechanism that does not directly involve an electron-transfer from iron to 

oxygen as evidenced by the absence of a valency change in the iron cofactor (139).  

As an example of the mechanism of oxygen activation that directly involves the iron 

cofactor, a closer look at indoleamine 2,3-dioxygenase is prudent, as it is one of the best 

characterized heme-dependent enzymes. Indoleamine 2,3-dioxygenase catalyzes the oxidative 

ring cleavage of indoleamine derivatives via an ordered sequential mechanism with the 

indoleamine derivative binding before oxygen in accordance to the mechanism shown in Scheme 

1.2 (140-141). 

(Fe
2+

)E + Substrate substrate-E(Fe
2+

)

substrate-E(Fe
3+

)O2
-.

O2Product

 

Scheme 1.2. Reaction Mechanism of Indoleamine 2,3-dioxygenase. 
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In vitro, indoleamine 2,3-dioxygenase requires methylene blue and a system to generate 



2O  for maximum activity (140). As seen in Scheme 1.2, the oxygenated intermediate contains a 

(Fe
3+ 

2O )-complex, and the resting enzyme has been shown to have its iron cofactor in the Fe
3+ 

state. As a consequence, the intermediate complex can be formed from the resting enzyme and 



2O  directly but not with molecular oxygen directly. Experimentally it has been shown that the 

product is released from the Fe
2+

 enzyme, which can then undergo a second turnover with O2 

(142-143). Upon binding of O2, an electron is transferred from Fe
2+

 to form the 

2

3 OFe  reaction 

intermediate bound in the active site of the enzyme. 

 Cytochrome P-450 is an example of an iron-dependent monooxygenase. The term 

cytochrome  P-450 (P450) refers to a group of heme-proteins that have a sulfur atom ligated to 

the iron (144). Cytochrome P-450 activates molecular oxygen to catalyze the monooxygenation 

of unactivated hydrocarbons (R-H). A generalized reaction scheme for the reaction catalyzed by 

cytochrome P-450 is shown in Scheme 1.3 (145).  

 

R-H + O2 + NAD(P)H R-OH + H2O + NAD(P)
+

 

Scheme 1.3. Generalized Reaction Catalyzed by Cytochrome P-450. 

 

P450’s catalyze the oxidation of a vast number of substrates with substantially different 

involvement of electron transfer from NAD(P)H to form the reaction products. However, all 

P450’s generally follow the simplified mechanism shown in Scheme 1.4. 
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Scheme 1.4. Simplified Catalytic Mechanism for Cytochrome P-450 (124, 144). 

 

The resting state of P450 has a hexacoordinated low spin heme (species (1) in Scheme 

1.4). The sixth axial ligand is a weakly bound H2O molecule. Upon substrate binding, the water 

molecule is displaced to yield a pentacoordinated high spin heme (species (2) in Scheme 1.4) 

(145). The pentacoordinated ferric P450 is then reduced by its redox partner to give Fe
2+

 (species 

(3) in Scheme 1.4) to which oxygen binds to generate an oxyferrous intermediate (species (4) in 

Scheme 1.4). A second electron is then transferred from the redox partner to the oxyferrous 

intermediate to form a peroxo (Fe-O-O
2-

) intermediate that is subsequently protonated to give a 

hydroperoxo (Fe-O-O-H
-
) intermediate. This is followed by heterolytic cleavage of oxygen to 

form the oxyferryl (Fe=O
+.

) intermediate, which is the activated form of oxygen able to react 

with the hydrocarbon to form the hydroxylated hydrocarbon and water (145).  

 

 

1.3.1.1.2. Iron non-heme oxygenases 

In protocatechuate 3,4-dioxygenase the iron does not seem to be directly involved in 

oxygen activation. EPR studies of the free enzyme, the enzyme-substrate complex and the 

enzyme-substrate-oxygen complex revealed that the iron remains in the high-spin, Fe
3+
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throughout the catalytic cycle. Molecular oxygen has not been found to complex with Fe
3+

, and 

as such the most likely role of the iron cofactor is to activate the substrate rather than oxygen 

(129). A proposed mechanism for the reaction catalyzed by protocatechuate 3,4-dioxygenase 

involves an initial keto-enol tautomerization of the substrate resulting from the interaction of one 

of the hydroxyl groups with the Fe
3+

. The activated keto form reacts with molecular oxygen to 

form  

2O  that can then continue to form the enzyme-product complex. Resonance-Raman 

spectroscopy show no signs of a charge-transfer complex, consistent with there being no 

interactions between Fe
3+

 and 

2O  (146). 

 

1.3.1.1.3. Copper oxygenases  

Enzymes utilizing copper as their metal cofactor achieve their catalytic power through the 

ability of copper to perform both oxidations and reductions as well as oxygen binding. Copper-

dependent enzymes are not restricted to a single biological role, but catalyze a wide range of 

chemical reactions spanning from oxidative cleavage of heterocyclic rings (Quercetinase) (147), 

monooxygenation (dopamine β-hydroxylase) (148) to hydroxylation reactions (3,4-

dihydroxyphenylethylsmine, ascorbate:oxygen oxidoreductase) (149). The diverse reactivity that 

copper-dependent enzymes have with oxygen is best exemplified by tyrosinase, which catalyzes 

two dissimilar reactions both involving molecular oxygen. Tyrosinase catalyzes the insertion of 

oxygen in the ortho position of monophenols (Scheme 1.5) and the dehydrogenation of o-

diphenols (Scheme 1.6). As such, tyrosinase, is both a monophenol monooxygenase and a 

diphenol oxidase (150). 
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Scheme 1.5. Monooxygenation of Monophenols Catalyzed by Tyrosinase. 
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Scheme 1.6. Dehydrogenation of o-diphenols Catalyzed by Tyrosinase. 

 

The active site of tyrosinase contains 2 Cu
2+

 metal ions (151) that during the catalytic 

cycle upon binding of either the mono- and di-phenol substrate are first reduced to Cu
+
. The 

reduced enzyme then temporarily contains two reducing equivalents that are used for activation 

of molecular oxygen. Upon reduction of the copper cofactors, molecular oxygen is reversibly 

bound and the release of the oxidated phenol substrate ensues. Upon binding and oxidation of a 

second phenol substrate, oxygen is reduced to water and released from the active site of the 

enzyme (Scheme 1.7) (150, 152).  
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Scheme 1.7. Catalytic Cycle of Tyrosinase Reaction with o-diphenols. 

 

It is assumed, that in the copper-dependent oxygenases oxygen activation proceeds via an 

electron transfer from reduced Cu
2+

 to oxygen to form a peroxo intermediate, which is the 

activated form of oxygen (150, 153).  

 

1.3.1.2.Flavin-containing oxygenases 

Currently, there are no known dioxygenases that only have flavin as a cofactor. The 

known flavin-containing dioxygenases, such as indoleamine 2,3-dioxygenase, utilize a metal 

cofactor to activate oxygen for reaction rather than flavin. Monooxygenases only containing 

flavin as a cofactor are a diverse group of enzymes that catalyze a wide range of oxygenation 

reactions while being highly regio- and enantioselective (154). To overcome the spin-forbidden 

reaction between molecular oxygen and carbon in the organic substrates, monooxygenases 

activate oxygen for reaction by creating an intermediate that can transfer oxygen. In order for the 

flavin to react in the flavin-dependent monooxygenases it must be in the electron rich reduced 

state (155). For most monooxygenases the flavin cofactor is reduced by NAD(P)H. However, in 

rare cases the flavin cofactor is reduced by the substrate itself. Such is the case for lactate 
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monoooxygenase, where the flavin is reduced as lactate is oxidized to pyruvate (156). Regardless 

of how the flavin is reduced, the first step in the reaction with oxygen is a single electron transfer 

from the reduced flavin to oxygen to form a caged radical pair consisting of superoxide and a 

flavin radical as shown in Figure 1.8. For most flavin-dependent monooxygenases, this is 

followed by the formation of a covalent adduct between oxygen and the C(4a) atom of the flavin 

radical. This leads to the formation of a C(4a)-hydroperoxyflavin intermediate, which is the 

reactive intermediate containing activated oxygen. In the flavin-dependent monooxygenases this 

highly unstable and reactive intermediate is stabilized long enough for it to transfer oxygen to the 

organic substrate rather than decaying to hydrogen peroxide and oxidized flavin as in the flavin-

dependent oxidases thought to proceed through the formation of a C(4a) oxygen adduct (157). 

Depending on the protonation state of the peroxyflavin intermediate, either an electrophilic or a 

nucleophilic attack on the substrate will result in the transfer of a single atom of molecular 

oxygen to the substrate, while the other oxygen atom is reduced to water. 

  

The range of reactions catalyzed by flavin-dependent monooxygenases span from 

hydroxylations, epoxidations, halogenations to organoboron oxidations (Figure 1.9) (154). 

oethane species, which then further decays to nitrite and acetaldehyde (158). 
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Figure 1.9. Reaction Types Catalyzed by Flavin-dependent Monooxygenases. (modified from 

(154)). 

 

The flavin-dependent monooxygenases have been divided into several subclasses based 

on sequence and structural homology. Each subclass seems to only catalyze a limited range of 

oxygenation reactions suggesting that the types of reactions catalyzed is at least partially 

dependent on the overall folding topology (154). 

 

Nitronate monooxygenase (NMO) distinguishes itself as a flavin dependent 

monooxygenase through its unusual kinetic mechanism involving a one electron reduced anionic 

semiquinone species. NMO proceeds through an oxidase-like mechanism in which the transfer of 

a single electron oxidizes the organic substrate and reduces the enzyme-bound flavin to an 
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anionic semiquinone species. While the substrate radical is still bound in the active site of the 

enzyme molecular oxygen reacts with the one electron reduced flavin to yield an enzyme-

associated superoxide species. The substrate radical and the superoxide is proposed to collapse in 

the active site of the enzyme and form an α-peroxynitrate. 

 

 

1.3.1.3.Metal-containing oxidases 

In contrast to the metal-containing oxygenases, the oxidases primarily use copper rather 

than iron as a cofactor. The copper-dependent oxidases generally use a free radical mechanism to 

activate oxygen for reaction. Galactose oxidase is one of the best characterized copper-dependent 

oxidases. It is a mononuclear copper-containing oxidase, belonging to the tyrosyl radical family 

(159). The overall reaction catalyzed by galactose oxidase shown in Scheme 1.8 is the oxidation 

of primary alcohols to the corresponding aldehydes (160), which in turn is oxidized to the 

corresponding carboxylates (161). 

 

RCH2OH + O2 RCHO + H2O2  

Scheme 1.8. The Overall Reaction Catalyzed by Galactose Oxidase. 

 

The mechanism by which oxygen is reduced is the least-well understood aspect of 

galactose oxidase turnover. However, synthetic chemistry has provided 2 models for the 

coordination of oxygen in the oxygenated mononuclear copper complexes. The two distinct 

coordination modes are side-on (Figure 1.10A) (162) and end-on (Figure 1.Error! Reference 

source not found.B) (163).  
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Figure 1.Error! Reference source not found.. The Two Proposed Copper Oxygen Coordination 

Modes (A = Side-on, B = End-on) 

 

The side-on coordination mode is what would be expected if there is strong metal-ligand 

covalent interactions and it will result in the formation of a Cu
3+

-peroxide intermediate (164). 

Whereas the end-on coordination mode results in an intermediate with a Cu
2+

-superoxide adduct 

(164). In a sterically congested active site, the end-on oxygen coordination mode is the most 

likely favored, due to the side-on mode requiring both metal coordination sites to be available in 

order to form. The active site in galactose oxidase has been shown to be highly coordinated and 

sterically restricted with His496, His581 and Tyr272 occupying three of four equatorial 

positions in the copper-protein complex (165). As such, oxygen activation is most likely 

accomplished by coordinating oxygen to copper in the end-on mode and the reaction proceeding 

through a Cu
2+

-hydroperoxide intermediate. Based on the distribution of the valence electrons it 

is expected  that the reaction in the end-on oxygen coordination mode will proceed through an 

outer sphere (oxygen centered) reaction mechanism (164). Upon formation, the Cu
2+

-

hydroperoxide adduct is protonated and subsequently hydrogen peroxide is displaced from the 

copper atom, which in turn is ready to undergo a second turnover. 
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1.3.1.4.Flavin-containing oxidases 

The chemical basis for flavin-dependent O2 reduction is not well understood. In 

summary, it is believed that the reaction proceeds by successive single electron transfers, the first 

of which is a single electron being transferred from the reduced flavin to O2 to form a caged 

radical pair consisting of a semi-reduced flavin and a superoxide anion. From here the oxygen 

can be further reduced through several different pathways as summarized in Figure 1.8.  

Free flavin by itself can reduce oxygen with a second order rate constant in the 10
2 

M
-1

s
-1

 

range, whereas the flavin-dependent enzymes display second order rate constants spanning from 

10
1 

M
-1

s
-1

 range
 
 (flavocytochrome b2 (17)) to 10

6 
M

-1
s

-1
 range (glucose oxidase (166)), indicative 

of the importance of the protein moiety in modulating the reactivity of the flavin cofactor with 

oxygen. However no clearly identifiable structural features seem to be recurring in the enzymes 

with high rate constants. For some of the fastest reacting flavin-dependent oxidases a 

preorganized electrostatic environment dominated by a positive charge close to the C(4a)-N5 

locus of the flavin cofactor has been shown to be crucial for the fast reaction with oxygen. In the 

case of glucose oxidase it is a protonated histidine that provides the positive charge (85, 110). In 

cholesterol oxidase type I and II the need for a positive charge has also been demonstrated (167-

168). In choline oxidase the positive charge in the active site required for efficient reaction with 

oxygen is provided by the positive charged head-group of choline and not by a residue in the 

active site (31, 109). Other examples of ligand binding enhancing oxygen reactivity are D-amino 

acid oxidase (112) and monoamine oxidase (113). In these two enzymes it is product binding that 

increases oxygen reactivity and in both cases the product or product analog is positively charged.  

Other factors such as active site solvation, flavin stereochemistry and oxygen 

accessibility have been implicated in oxygen reactivity, however so far systematic effects arising 



28 

 

from these factors have not been well established. In some cases they have a positive effect on 

oxygen reactivity, whereas in others they have a detrimental effect (103). 

Overall, it does not seem that there are general structural features that will always result 

in enhancement of oxygen reactivity in flavin-dependent oxidases, but rather several subtle 

factors with a combined effect that results in an enhanced oxygen reactivity being the main 

reason. Additionally it seems that there are multiple combinations possible to achieve enhanced 

oxygen reactivity, thereby making the identification of general principles elusive and 

problematic.  

 

1.4. Choline Oxidase from Arthrobacter globiformis 

For a recent comprehensive review on choline oxidase see “Hydride transfer made easy in 

the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases” by G. Gadda published 

in Biochemistry 47, 13745-13753 (169). Choline oxidase from Arthrobacter globiformis is a 

homodimer with each subunit having a covalently attached FAD to His99 (24). This enzyme 

catalyzes the oxidation of choline to glycine betaine with betaine aldehyde as intermediate (170). 

The reaction proceeds through two reductive half-reactions and two oxidative half-reactions as 

shown in Scheme 1.9.  

CH
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Scheme 1.9. Minimal Kinetic Mechanism of Choline Oxidase. (E-FADox = Oxidized Enzyme 

Bound Flavin, -FADred = Reduced Enzyme Bound Flavin CH = Choline, BA = Betaine Aldehyde 

and GB = Glycine Betaine) 

In the reductive half-reactions the FAD cofactor is reduced to the anionic hydroquinone 

form (2 e
-
 reduced) by choline and the aldehyde intermediate respectively. Each reductive half 

reaction is followed by an oxidative half-reaction where the reduced FAD cofactor is reoxidized 

by molecular oxygen with formation of hydrogen peroxide (170-171).  

The first reductive half-reaction is initiated by a kinetically fast abstraction of the 

hydroxyl proton of choline, which results in the formation of a transient alkoxide intermediate 

(37). This is followed by a rate-limiting hydride ion transfer to N(5) atom of the flavin cofactor 

from the α-carbon of the alkoxide resulting in the oxidation of choline to betaine aldehyde and 

reduction of the flavin (37). Prior to the second reductive half-reaction, betaine aldehyde is 

hydrated to form gem-diol choline in the active site (35). The subsequent oxidation of the 

reduced flavin occurs while the active site is still occupied with the gem-diol choline 

intermediate (38, 108-109). In the second reductive half-reaction, the gem-diol choline is 

oxidized to the product, glycine betaine. In both oxidative half-reactions the oxidized flavin 

cofactor is reformed upon a transfer of a hydride equivalent from the reduced flavin to molecular 

oxygen (32). Each of these half-reactions has specific requirements, that choline oxidase must 

balance in order to achieve maximum overall rate of catalysis. In the wild-type choline oxidase 

this yields the following kinetic parameters in the pH independent region, kcat = 60 s
-1

, kcat/Km = 

237,000 M
-1

 s
-1

and kcat/Koxygen = 86,000 M
-1

 s
-1 

(37). 

The alcohol oxidation catalyzed by choline oxidase from Arthrobacter globiformis has 

been intensively studied using structural (24, 126), biochemical (30, 32, 34), mutagenesis (24, 

26, 28, 30, 33, 108) and mechanistic (27, 35-38, 171-172)  techniques. Through these studies 

several residues have been identified to have specific roles in choline oxidase. The kinetic 
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parameters affected by substitution of His99, Glu312, His351, Val464 and His466 are 

summarized in Table 1.3. 

Even though the positively charged His466 does not affect oxygen activation, it is important 

for catalysis. The positive charge has been shown to be involved in the stabilization of a 

negatively charged reduced flavin as well as of the transient alkoxide species (30-31). 

Additionally, His466 is likely involved in choline activation as seen by the 60- and 1000-fold 

lowered kcat and kcat/Kcholine, respectively, in the pH independent region upon replacing the 

histidine with an alanine as compared to the wild-type enzyme (31). 

 

Table 1.3. Kinetic Parameters Influenced by Substitution of Various Residues in Choline 

Oxidase. 

Residue Kinetic parameter Ref 

(variant investigated)  Large effect
1
 Minor or no effect  

His466a 

(H466A and H466D) 

kcat, kcat/Kcholine, 
Koxygen, Kcholine 

 

kcat/Koxygen (31) 

His351a 

(H351A) 

kcat, kred, Kd  

kcat/Kcholine, 

Koxygen, Kcholine 

 

kcat/Koxygen 

 

(26) 

His99a 

(H99N) 

kcat, kred 

kcat/Kcholine, 

Koxygen, Kcholine 

 

kcat/Koxygen (28) 

Glu312a 

(E312D and E312Q) 

kcat, kred, Kd  

kcat/Kcholine, Koxygen, Kcholine 

 

kcat/Koxygen 

 

(24) 

Val464a 

(V464A and V464T) 

kcat, kcat/Koxygen, 

 

kred (33) (SF) 

Positive charge on 

substrate
b
 

kcat, kcat/Koxygen, 
Koxygen 

Kcholine (109) 

a 
The affected kinetic parameters were determined by investigating the variant enzymes where the residue of interest 

was replaced. 
b 
using 3,3-dimethyl-butanol instead of choline. 

 

                                                 
1
 A large effect on a kinetic parameter  is defined here as it being more than 3-fold different as compared to the wild-

type enzyme 
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His351 is also likely involved in choline activation as seen by the 60- and 350-fold lowered 

kcat and kcat/Kcholine, respectively, in the pH independent region upon replacing the histidine with 

an alanine as compared to the wild-type enzyme (26). Furthermore, His351 has a profound effect 

on the substrate binding affinity as well as the rate of flavin reduction in the first reductive half-

reaction with choline as the reductant as seen by the Kd value increasing 10 times and the kred 

value decreasing 75 times (26). 

Glu312 is involved in the preorganization of the enzyme-substrate complex as well as the 

initial binding and correct positioning of choline through interactions between its negatively 

charged side-chain and the positively charged trimethylammonium headgroup of choline (24). 

Other than merely being the site of covalent attachment of the flavin cofactor to the protein 

moiety the FAD-histidyl covalent linkage between His99 and FAD is important for the optimal 

positioning of the flavin cofactor in the enzyme-alkoxide complex that is required for the 

environmentally assisted tunneling of the hydride ion in the oxidation of choline (28). 

In summary, residues Glu312, His99, His351 and His466 do not contribute to oxygen 

activation, as indicated by site-directed mutagenesis studies where each of these four residues 

located in the active site of the enzyme were individually replaced. These studies revealed that 

the bimolecular rate constants for the reaction of the reduced flavin cofactor with oxygen 

(kcat/Koxygen) were not significantly altered in the mutant enzymes from the value of ~10
5
 M

-1
s

-1
 

of the wild-type (24, 26, 28, 30-32). 

Contrary to this, the substitution of the positively charged substrate through the use of the 

isosteric analogue of choline devoid of charge 3,3-dimethyl-butan-1-ol resulted in a two orders 

of magnitude decrease of the kcat/Koxygen value to ~10
3
 M

-1
s

-1
, consistent with oxygen activation 

for reaction with the reduced flavin being largely exerted by the positive charge on enzyme-
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bound ligand (108-109). Further evidence of the importance of this is seen in the pH studies of 

the His99Asn, His351Ala, His466Ala and wild-type forms of choline oxidase, which showed 

that the kcat/Koxygen values that are independent of pH, consistent with the fact that the 

trimethylammonium moiety of the choline cannot ionize (26, 28, 31-32, 108).  

Further studies on choline oxidase from Arthrobacter globiformis are pertinent as they can 

help elucidate one of the puzzling unanswered questions in flavin chemistry, which is the 

chemical basis for the diverse oxygen reactivity in flavin-dependent enzymes.  

 

1.5. Specific Goals 

Flavin-dependent enzymes are in general amongst the most chemically versatile naturally 

occurring enzymes, as exemplified by the diverse reactivity of the reduced flavin with molecular 

oxygen. Depending upon the ability to react with oxygen and the product of oxygen reduction, 

three general classes of flavin-dependent enzymes have been distinguished (103, 155). 

Dehydrogenases have very poor, or no reactivity with oxygen, and utilize other electron 

acceptors for catalytic turnover. Monooxygenases and oxidases show high reactivity with 

oxygen, typically with second-order rate constants ≥10
5
 M

-1
s

-1
 (155). Free reduced flavin in 

aqueous solution react with molecular oxygen with a bimolecular rate constant of 250 M
-1

s
-1 

(155). It is the interactions between the flavin cofactor and the protein moiety that modulate the 

reactivity of the flavin. (12, 103, 173). 

Based on the crystal structure of wild-type choline oxidase (24), three residues in the active 

site likely directly (or indirectly) affect the flavin microenvironment and as such potentially 

affect oxygen reactivity with the reduced flavin. These residues are Valine 464 (Val464), 

Histidine 310 (His310) and Serine 101 (Ser101). The overall goal of this dissertation is the 
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elucidation of the roles of these three residues on both the reductive and the oxidative half-

reactions of choline oxidase. 

Ser101 is located ~4 Å away from the N(5) atom of FAD cofactor and within hydrogen 

bonding distance to DMSO, a co-crystallized ligand found in the active site in the crystal 

structure of wild-type choline oxidase (24). The location of Ser101 allows me to propose that this 

residue affects the flavin microenvironment while being able to actively participate in the 

oxidation of choline. To elucidate the effect exerted by Ser101 on oxygen reactivity, kinetic 

characterization of a variant enzyme where the serine residue has been replaced with an alanine 

was carried out (Hongling, Y. submitted for publication, 2010). In order to attribute any 

determined kinetic differences between the variant enzyme and the wild-type enzyme to the 

removal of the hydroxyl group at position 101 rather than to structural differences, the crystal 

structure of the variant enzyme was also investigated. 

The X-ray crystal structure of wild-type choline oxidase further revealed the presence of 

His310 ~2.9 Å away from His466 (24). The latter has been shown to provide a positive charge 

needed for catalysis (30-31). The crystal structure also suggested that the position of the side-

chain of His310 is highly coordinated through hydrogen bonding to the side-chain of His466 

(His466
Nδ1

-His310
Nδ1

) and the peptidyl main chain oxygen atoms of Threonine 380 and Valine 

507 as shown in Figure 1.5. This high degree of coordination of His310 suggests the presence of 

a proton-transfer network between the protonated, conserved, active site residue His466 and 

His310 that enables efficient catalysis for both the oxidative and reductive half-reactions by 

optimizing the FAD micro-environment for each reaction type. This H-bonding pattern provides 

a possible proton relay system that enables efficient reduction and reoxidation of the covalently 

bound FAD cofactor by shuttling a proton to and from residue His466. This potential proton-
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transfer network was perturbed through site directed mutagenesis of His310 and subsequently the 

variant enzymes were subjected to kinetic analysis and characterization in order to establish the 

presence of a proton-transfer network and its effect on the reaction catalyzed by choline oxidase. 

 

 

Figure 1.11. The Coordination of the Side-chain of His310 in the Crystal Structure of Wild-type 

Choline Oxidase (2JBV). 

 

Finally, Val464 is seen to be the only hydrophobic residue in the active site in the X-ray 

crystal structure of choline oxidase (24, 126). Val464 is in the active site cavity close to the 

C(4a)-N(5) atoms of the flavin, with its hydrophobic side chain in van der Waals contact with the 

C(2) atom of the conserved His466. Findings from other flavin-dependent enzymes, such as 

glycolate oxidase and flavocytochrome b2, show that steric interactions as well as hydrophobicity 

can profoundly affect oxygen reactivity with reduced flavin. In the case of glycolate oxidase and 

flavocytochrome b2, two structurally homologous enzymes that share a highly conserved active 

site, the only obvious difference is a leucine in the FAD microenvironment in glycolate oxidase 

and a tryptophan in its place in flavocytochrome b2  (87, 100). The difference in the micro-
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environment of these two enzymes may be the cause for the rate constant for the reactivity of 

oxygen to drop from 8.5 x 10
4
 M

-1
s

-1
 in glycolate oxidase to 2 M

-1
s

-1 
in flavocytochrome b2 

(103). Through X-ray crystallography, site-directed mutagenesis of position Val464 in choline 

oxidase, steady state and rapid kinetics approaches the role of the hydrophobic residue Val464 in 

the active site of choline oxidase was investigated.  

Finally, the reaction of choline oxidation catalyzed by choline oxidase is very well 

characterized, making it ideally suited to investigate the chemical basis of how flavin-dependent 

enzymes react with molecular oxygen. As such, mechanistic data on Ser101, His310 and Val464 

will provide important information about the roles of these active site residues in the reaction 

catalayzed by choline oxidase that may be relevance for a large number of flavin-dependent 

enzymes. 
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CHAPTER II 

CRYSTALLOGRAPHIC, SPECTROSCOPIC, AND COMPUTATIONAL ANALYSIS OF 

A FLAVIN C4A-OXYGEN ADDUCT IN CHOLINE OXIDASE.  

(This chapter has been published verbatim in Orville, AM, Lountos, GT, Finnegan, S, Prabhakar, 

R, and Gadda, G., (2009), Biochemistry 48(4), 720-8.) 

 

 

2.1.Abstract 

Flavin C4a-OOH and C4a-OH adducts are critical intermediates proposed in many 

flavoenzyme reaction mechanisms, but they are rarely detected even by rapid transient kinetics 

methods. We observe a trapped flavin C4a-OH or C4a-OO(H) adduct by single crystal 

spectroscopic methods and in the 1.86 Å resolution x-ray crystal structure of choline oxidase. 

The microspectrophotometry results shows that the adduct forms rapidly in situ at 100 K upon 

exposure to x-rays. Density functional theory calculations establish the electronic structures for 

the flavin C4a-OH and the C4a-OO(H) adducts, and estimate the stabilization energy of several 

active site hydrogen bonds deduced from the crystal structure. We propose that the enzyme-

bound FAD is reduced in the x-ray beam. The aerobic crystals then form either a C4a-OH or a 

C4a-OO(H) adduct, but an insufficient proton inventory prevents their decay at cryogenic 

temperatures. 

2.2.Introduction 

Although flavins and flavoproteins were discovered in the 1930s, their remarkable 

functional diversity continues to be characterized. It is now estimated that up to 4% of microbial 

or eukarytotic proteins are flavoproteins, and more than 1100 flavoprotein structures are 

currently available from the Protein Data Bank. Flavin-dependent proteins catalyze a wide range 

of biochemical reactions including aerobic and anaerobic metabolism, light emission, 
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photosynthesis, DNA repair, plant phototropism, regulation of biological clocks, and the 

activation of oxygen for hydroxylation and oxidation reactions (1). This diversity derives from 

the flavin isoalloxazine ring system, which is ideally suited for oxidative or reductive reactions 

involving one or two electron transfer to and from other redox-active centers, as well as 

reactivity with molecular oxygen. Moreover, the isoalloxazine ring system can act as an 

electrophile or a nucleophile forming covalent adducts with either protein residues or reaction 

intermediates at the C4a, N5, C6, and C8M positions (see Figure 2.4 for nomenclature). The 

flavin is also influenced by the protein active site, which extends the reaction diversity and 

facilitates catalysis along a particular flavoenzyme reaction coordinate. Thus, the interactions 

between the flavin, active site residues, and substrate molecules yield almost limitless 

combinations, and consequently remarkable diversity in flavoprotein function. 

The reaction of molecular oxygen with reduced flavoenzymes is fundamental to all aerobic 

organisms and can be orders of magnitude faster or slower than the analogous reactions of 

flavins in solution (2).  The outcome of the reaction also varies greatly, which has been used to 

segregate flavoenzymes into different classes. For example, the NAD(P)H-dependent 

monooxygenases cleave the dioxygen O-O bond with incorporation of one oxygen atom into an 

organic product and the other oxygen atom is then released as water. In contrast, the ubiquitous 

flavin-dependent oxidases use O2 as a two-electron, two-proton acceptor to produce H2O2. A 

transient C4a-hydroperoxy-flavin species has been established by spectroscopic methods in p-

hydroxybenzoate 3-hydroxylase (3), p-hydroxyphenylacetate 3-hydroxylase (4), luciferase (5), 

and microsomal flavin-containing monooxygenase (6). A similar species has also been detected 

in three oxidases via rapid kinetic studies of pyranose 2-oxidase (7), on a mutant form of NADH 

oxidase (8), and pulse radiolysis experiments with glucose oxidase (9). Because a C4a-oxygen 
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adduct is so rarely observed in oxidases, some authors recently proposed that flavin reoxidation 

in these enzymes proceeds preferentially by an outer-sphere electron transfer process, rather than 

through formation of a C4a-hydroperoxide intermediate (10). Regardless of the mechanism or 

enzyme family classification, to date there is no structurally defined flavin C4a-oxygen adduct in 

the Protein Data Bank.  

Choline oxidase (E.C. 1.1.3.17) from Arthrobacter globiformis catalyzes the four-electron 

oxidation of choline to glycine betaine (N,N,N-trimethylglycine) via two sequential, FAD-

dependent reactions in which betaine aldehyde is formed as an obligatory enzyme-bound 

intermediate (11). In each of the oxidative half-reactions, a molecule of O2 is converted into 

H2O2. The midpoint reduction potentials for the FAD in choline oxidase are 2112 mV and -

652 mV for the FAD - FAD
sq

 and FAD
sq

 - FADH
-
, respectively (12). These values are the 

highest determined to date for any flavoprotein, and are thought to be influenced by several 

active site characteristics, including a covalent linkage between the C8M position and His99. We 

recently determined the crystal structure of choline oxidase at 1.86 Å resolution under cryogenic 

conditions (13).  A novel, but unexplained feature of the structure is the flavin cofactor, which 

exhibits a distorted isoalloxazine ring system and suggests the presence of a novel C4a-adduct. 

In this report, we show that a C4a-OH or C4a-OO(H) adduct forms in an x-ray dependent 

process under cryogenic conditions.  The essential insights derive from single crystal 

microspectrophotometry concurrent with x-ray diffraction collected recently at the new single 

crystal spectroscopy facility located at the National Synchrotron Light Source (see Figure 2. 1), 

which is now available on a full-time basis to the general user population.  The spectroscopic 

data also correlates very well with density functional theory (DFT) calculations and the high 

resolution x-ray crystal structure of the enzyme.  
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Figure 2.1. The Single Crystal Optical Absorption Spectroscopy Facility Installed at X26-C. (A) 

A Schematic Overview of the Facility. (B) A Photograph of the Current Installation at X26-C 

Approximately from the Perspective of the X-ray Detector Looking Toward the Crystal. 
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2.3.Materials and methods 

Enzyme Purification, Crystallization, Structure Determination, and Model Refinement:  

Oxidized choline oxidase from Arthrobacter globiformis strain ATCC 8010 was expressed from 

pET/codA in Escherichia coli and purified to homogeneity as described previously (13-15).  

Crystals of choline oxidase were grown aerobically by hanging drop vapor diffusion from 1.2 - 

1.8 M ammonium sulphate and 10% v/v dimethylsulfoxide (DMSO) in 0.1 M Bis-Tris propane, 

pH 8.5. Single crystals were transferred from the mother liquor into a cryoprotectant solution 

consisting of 3.4 M sodium malonate, pH 7.0 and allowed to soak for two minutes prior to flash 

freezing in liquid nitrogen (13). Several independent crystals were used for x-ray diffraction data 

sets and for single crystal microspectrophotometry. X-ray diffraction data was collected at either 

the SER-CAT facilities (22-ID and 22-BM) at the Advanced Photon Source at Argonne National 

Laboratory, or at beamlines X12-B, X25, X26-C or X29 of the National Synchrotron Light 

Source at Brookhaven National Laboratory. The crystal structure was determined by molecular 

replacement as previously described (13) using the coordinates of the crystal structure of glucose 

oxidase (1CF3, (16)) as a search model. Choline oxidase crystallizes with one homodimer in the 

asymmetric unit in space group P43212 with a = b = 84.4 Å, and c =  343.5 Å. The high 

resolution data set extends to 1.86 Å resolution.  Crystals of aerobic choline oxidase were also 

grown from 1.2 - 1.8 M ammonium sulfate and 10% v/v 1,4-dioxane in 0.1M Bis-Tris propane, 

pH 8.5. These conditions yield space group P21 with typical unit cell dimensions of a = 69.3 Å, b 

= 346.2 Å, c = 105.9 Å,  = 94.3° and four homodimer enzymes in the asymmetric unit. 

Refinements and model adjustments for the active site FAD were carried out as described 

(13). All library files with restraints were prepared using the PRODRG server 

(http://davapc1.bioch.dundee.ac.uk/programs/prodrg/). Initially, the FAD was refined using 
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restraints to confer planarity on the entire isoalloxazine ring. Electron density maps at this point 

clearly revealed significant bending of the pyrimidine ring and the mFo-DFc maps contoured at 

3 returned negative features on the flat pyrimidine ring and a lobe of positive difference density 

protruded from the C4a position and the pyrimidine ring. The isoalloxazine was then manually 

adjusted to properly fit the pyrimidine ring into the electron density and the restraints were 

adjusted to remove planar restraints from the pyrimidine ring and sp
3
 hybridization was 

conferred upon the C4a atom. Planar restraints were applied to the dimethylbenzene ring and the 

atoms of the piperazine ring.  Electron density maps from the refinement indicated a good fit of 

the pyrimidine ring at this point, but the mFo - DFc maps revealed > 4 positive difference 

features near the C4a atom. At this point, two series of refinements were performed. In one 

round, the sp
3
 C4a atom was bonded to a single oxygen atom (FAD-C4a-O

-
) and the model was 

refined.  An FAD-C4a-O2
-
 model was also refined. The resulting maps indicated that the O2 

moiety also fits the 2mFo - DFc maps quite well; however, the occupancy of the distal oxygen 

atom refined best with an occupancy value of 0.5. To check for model bias, 2mFo-DFc and mFo-

DFc simulated annealing omit maps were prepared in CNS. The FAD, DMSO, residues His99, 

and His466 as well as all atoms within a 3.5 Å radius were removed from the model. The 

simulated annealing and map calculation was carried out with a starting temperature of 1000 K 

with data from 50.0-1.86 Å resolution. 

Two additional models were also refined with REFMAC5. The first included a water 

molecule centered in the difference peak and unrestrained with respect to the FAD C4a atom. 

Upon convergence of the refinement of this model, the water molecule was only 1.6 Å from the 

C4a atom (Table 2.1) and there was continuous electron density between the two atoms.  

 



63 

 

 Table 2.1. Selected Bond Distances and Angles in the X-ray Structure and DFT Optimized 

Models 

Model Source X-ray X-ray X-ray DFT DFT DFT DFT 

Model C4a, H2O C4a-OH C4a-

OO(H) 

C4a-OH C4a-OOH FAD
sq

 FADH
-
 

Bond Distances 

(Å) 

       

Op-Od N.A. N.A. 1.40 N.A. 1.48 N.A. N.A. 

C4a-Op 1.63 1.45 1.42 1.43 1.42 N.A. N.A. 

C4a-C10a 1.47 1.47 1.46 1.52 1.51 1.44 1.43 

C4a-C4 1.55 1.59 1.59 1.56 1.59 1.49 1.49 

C4a-N5 1.51 1.47 1.48 1.43 1.43 1.32 1.33 

        

Bond Angle (°)        

C4a-Op-Od N.A. N.A. 116.3 N.A. 108.8 N.A. N.A. 

C4-C4a-Op 134.2 123.5 119.0 106.1 100.7 N.A. N.A. 

N5-C4a-Op 88.9 100.7 105.4 109.2 110.7 N.A. N.A. 

C10a-C4a-Op 104.1 107.4 110.9 110.3 110.9 N.A. N.A. 

C4-C4a-N5 123.5 120.8 122.9 111.8 113.3 122.3 121.3 

C4-C4a-C10a  108.6   94.6 85.5 104.7 106.0 116.7 117.7 

N5-C4a-C10a   97.8  110.7 111.3 114.3 114.5 120.5 117.7 

        

Dihedral Angle (°)        

Od-Op-C4a-C4 N.A. N.A. 169.7 N.A. -171.9 N.A. N.A. 

Od-Op-C4a-N5 N.A. N.A. 26.9 N.A. 68.1 N.A. N.A. 

Od-Op-C4a-C10 N.A. N.A. -93.6 N.A. -60.1 N.A. N.A. 

Op-C4a-N5-C5a N.A. -147.5 -156.0 -125.1 -134.0 N.A. N.A. 

Op-C4a-C4-N3 N.A.    44.1 43.5 70.3 69.3 N.A. N.A. 

        

N3-C4-C4a-N5  174.0  175.5 179.5 -170.8 -172.5 164.0 162.0 

C4-C4a-N5-C5a   69.0   71.8 63.1 117.8 113.8 164.1 164.1 

C4a-N5-C5a-C6 -164.4 -168.9 -163.0 -179.1 -172.2 178.9 177.3 

N5-C5a-C6-C7 -178.0 -177.9 -178.1 168.1 169.4 161.9 163.9 

        

C2-N1-C10a-N10   96.0   94.9 107.6 162.1 167.3 176.6 175.7 

N1-C10a-N10-C9a -173.4 -173.1 175.7 -167.0 -159.6 173.5 168.5 

C10a-N10-C9a-C9 -165.9 -164.4 -176.0 161.0 155.0 169.7 178.3 

N10-C9a-C9-C8 -179.1 -179.1 -177.3 -171.9 -173.8 -173.6 -171.5 

        

N3-C4-C4a-C10a  -68.4  -67.3 -68.0 -46.5 -46.2 -23.6 -27.2 

N1-C10a-C4a-C4   60.4   59.7 73.5 51.2 47.7 20.8 22.8 

        

C4-C4a-C10a-N10  -71.2  -72.9 -86.0 -128.9 -132.1 -155.7 -152.4 

N1-C10a-C4a-N5 -170.7 -175.6 -162.9 173.9 173.2 -166.7 -166.3 
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However, since there is no H2O-C4a bond, this model does not satisfy the observed sp
3
 

hybridization of the flavin C4a atom. The second alternative model consisted of a covalent FAD 

C4a-OH moiety, which refined to a 1.45 Å bond distance.  

Single Crystal Microspectrophotometry:  We built a Single Crystal μ-Spectroscopy Facility 

(SCμSF) at beamline X26-C at the National Synchrotron Light Source at Brookhaven National 

Laboratory for use by the general user population (see Figure 2.1). The microspectrophotometer 

components were from a 4DX-ray Systems AB (Sweden). We adapted it so that the microscopic 

optical axis and focal points were aligned with the crystal rotation axes of the diffractometer and 

x-ray beam at X26-C. The microscope objectives used parabolic mirrors to achieve 15x 

magnification and to minimize spherical or chromatic aberration in the wavelength range from 

approximately 150 – 10,000 nm. The objectives provide a 24mm working distance through a 0.4 

numerical aperture, which allows for cryocooling and access for other microspectroscopic 

components. When coupled with a 50-micron quartz optical fiber, the incident spot size is 

approximately 25 μm in diameter. The transmitted light is collected from approximately 75 μm 

spot size. The incident light (350 - 850 nm) was from a 75W Xe research arc lamp (Newport 

Corp.).  An Ocean Optics USB 4000 spectrophotometer (Dunedin, Florida) containing a 3648-

element Toshiba linear CCD detector was used to collect the optical absorption spectra. The data 

were processed initially with the SpectraSuit software on either a Windows XP or LINUX 

operating system. The spectrophotometer was calibrated and microspectroscopy aligned with a 

Hg-Ar calibration laser. Typically, optical absorption spectra were collected by averaging ten 

spectra, each of which was collected with an approximately 70 ms integration time and a 10-

pixle “box car” of the CCD detector array. Crystals were held at 100 K during x-ray diffraction 

and optical absorption spectroscopic data collection.    
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Computational Procedures:  All calculations were performed using the Gaussian 03 program 

(17). The geometries of all the structures are optimized without any symmetry constraint using 

Density Functional Theory (DFT) based B3LYP method with the 6-31G(d) basis set in gas phase 

(18-20). The final energies were calculated using a large 6-31+G(d,p) basis set including diffuse 

and polarization functions. Since it was computationally unfeasible to calculate unscaled zero-

point energy and thermal corrections on large models used in this study, they are not included. 

The dielectric effects (for ε = 4.3) from the surrounding protein were incorporated using the self-

consistent reaction field method (21) at the B3LYP/(6-31G(d)) level.  In order to retain the steric 

effect of the surrounding protein one hydrogen atom each in the backbones of His351 and 

His466 residues are kept frozen from the X-ray structure. This kind of approach is known to 

preserve some of the steric effect of the protein surroundings (22). The remaining degrees of 

freedom of all the structures are optimized. The initial models used in the DFT calculations were 

extracted from the crystal structure. Rather large models were used in the calculations (ca. 180 

atoms) and included the FAD and active site residues His99, Asn100, Ser101, DMSO, Ile103, 

His351, His466, Asn510, and Pro511.  The backbone atoms of residues His351 and His466 and 

the ribityl side chain of the FAD were omitted from the calculation.   

 

2.4.Results and discussion 

To investigate the single crystal spectroscopic properties of choline oxidase as a function 

of x-ray exposure, we harvested yellow crystals of oxidized enzyme from aerobic mother liquor.  

After transferring crystals to a cryoprotectant (3.5 M Na-Malonate), they were individually 

mounted in nylon loops and flash-cooled by plunging them into liquid N2.  The crystals were 

kept at 100 K during the optical absorption spectroscopic and x-ray diffraction and data 

collection. We performed several types of experiments with enzyme crystallized in space groups 
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P43212 or P21 from ammonium sulfate.  The exposure to 1 Å (12.398 KeV) x-ray photons (~4 x 

10
10

 photon/s through a 200 m diameter collimated beam) was performed on stationary crystals 

or with crystals rotated through 180° at beamline X26-C of the National Synchrotron Light 

Source. The results are very reproducible and typical spectra are illustrated in Figure 2.2.   
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Figure 2.2. Spectroscopic Changes Observed in Single Crystals of Choline Oxidase upon X-ray 

Irradiation at 100 K. (A) Optical spectra measured from a single crystal of choline oxidase before 

(blue) or after (red) an x-ray diffraction data set was collected with 180° of phi-axis rotation. The 

difference between the two is shown with the black line and with the scale on the right. Each 

spectrum was recorded with the phi axis at 0° by averaging ten spectra obtained with a 70 ms 

integration time and the “box-car” set to 10 pixel-CCD elements. (B) The time-dependent change 

of the optical absorption spectrum of another choline oxidase crystal held stationary in the x-ray 

beam. Spectra were recoded every ten seconds with the instrument parameters as in (A). Six 

reference spectra were recoded before the x-ray shutter was opened, averaged, and then 

subtracted from each spectrum obtained after the x-ray shutter was opened. The lower panel of 

the 3-D plot is a projection of the time-dependent difference spectra. (C) Difference features at 

400 and 485 nm from (B) were fit to the single exponential equation: y = a*e
(bt + c)

, where t = 

time in seconds and for the 400 nm data points a = -0.074012, b = 0.021617, and c = 0.070048; 

whereas the first two data points were excluded for the 485 nm and fit with a = 0.036755, b = 

0.0087557, and c = -0.0144. 

 

The absorption spectrum of choline oxidase crystals at 100 K prior to x-ray exposure 

reveals two maxima centered at 460 nm and 485 nm. We and others have observed that single 

crystal spectra at low temperature are anisotropic and depend critically on crystal orientation, 

especially when planar chromophores such as flavins are present within the crystal (23-24). For 

example, AMO has collected single crystal spectra from several oxidized flavoenzymes (data not 

shown) including nitroalkane oxidase, xenobiotic reductase A, cholesterol oxidase, and 

thioredoxin reductase, which all yield two resolved peaks near 450 nm. Thus, the single crystal 

spectra of choline oxidase are better resolved than for the enzyme in solution at 300 K (for a 

typical example, see Figure 2.3), which yields a peak at 450 nm and a shoulder at about 480 nm. 
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Figure 2.3. Optical Absorption Spectrum of 0.04 mM Choline Oxidase at Room Temperature 

and in a Solution of 0.05 M Bis-tris-propane pH 8.5, 0.6 M Ammonium Sulfate and 5% (v/v) 

Dimethylsulfoxide, which are Approximately the Crystallization Conditions. 

 

After x-ray diffraction data collection, the optical spectrum of choline oxidase crystals 

yields a single absorption peak at approximately 400 nm and a broad shoulder extending to 

longer wavelengths. The difference spectra (after - before) clearly shows an absorption band with 

max at 400 nm and features that extend from about 510 nm to longer wavelengths. The 400 nm 

feature represents the vast majority of the flavin species present in the region of the crystal 

exposed to x-rays and is remarkably similar to spectra obtained from transient flavin C4a-OO(H) 

or C4a-OH intermediates (3-8). The longer wavelength features indicate that a small fraction of 

the enzyme contains a FAD semiquinone species as previously observed for choline oxidase in 

solution (25).  

We next evaluated the time-dependent process of adduct formation in a single crystal at 

100 K.  Spectra were collected every ten seconds from a stationary crystal of choline oxidase 

during exposure to the monochromatic synchrotron x-ray beam at X26-C.  As illustrated in 
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Figure 2.2B-C, the difference feature at 400 nm increases in an exponential process with a t1/2 of 

approximately 40 seconds. Thus, the appearance of the spectral feature at 400 nm is nearly 

complete within the time required to collect only a small fraction of the unique x-ray diffraction 

data (equivalent to less than 10° of crystal rotation), even at the relatively modest x-ray intensity 

of beamline X26-C of the NSLS. This process is also approximately commensurate with the 

decrease of the 460 and 485 nm features attributed to oxidized FAD (t1/2 of approximately 100 

seconds, Figure 2.2C).  Optical spectra from enzyme in solution at room temperature show that 

the flavin semiquinone species (i.e. one electron reduced) has a spectrum that overlaps that of 

oxidized FAD (25).  In contrast, the hydroquinone FAD species (i.e. reduced by 2 electrons), or 

the C4a-adduct observed here, each have very little absorbance in the 450 - 500 nm region.  

Consequently, the exponential decay at 485 nm appears to be slower than the appearance of the 

more remote 400 nm feature assigned to the C4a adduct.  Together, the spectroscopic analyses of 

single crystals at low temperature show that the decrease in the concentration of oxidized FAD in 

the region of the crystal exposed x-rays is directly correlated to an increase of the concentration 

of the C4a-adduct.  

The atomic structure and 1.86 Å resolution simulated-annealing omit electron density 

maps for the FAD are shown in Figure 2.4. The flavin isoalloxazine ring is not planar, as 

anticipated for oxidized choline oxidase, or bent along the N5-N10 axis as is often observed in 

reduced flavoproteins (26). The electron density for the dimethylbenzene and piperizine rings 

indicates that each ring is flat and that they are coplanar. However, the plane of the pyrimidine 

ring is at an approximately 120° angle to the plane of the other two rings (Table 2.1). The 

electron density for the pyrimidine ring indicates that it adopts a “half-boat” configuration in 

which the C4a atom is approximately 0.5 Å above the pyrimidine ring plane.  Moreover, 
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throughout the refinement process a greater than 4 positive difference peak associated with the 

C4a atom persisted. This feature clearly indicates that the C4a atom is sp
3
 hybridized and, 

therefore, that a covalent flavin adduct is present in the crystal structure.  The electron density for 

the difference feature is large enough to accommodate only one, or possibly two atoms in a 

covalently linked FAD C4a-adduct.   

Figure 2.4. Comparison of the X-ray Structures with the DFT Optimized Modes for the FAD 

C4a-OH Adduct (A), or the C4a-OO(H) adduct (B). Orthogonal views of the simulated-

annealing omit electron density maps (50 - 1.86 Å resolution) for the FAD isoalloxazine ring in 

choline oxidase (lower central portions). The mFo – DFc difference map (+3 ) is shown with 

orange, translucent surface contours and the 2mFo – DFc  map (1 ) is displayed as a blue mesh. 

The FAD, C4a adduct, and DMSO were omitted from the model. For comparison, the refined 

C4a-OH and C4a-OO(H) atomic models are shown superimposed with C, N, and O atoms 

colored grey, blue and red, respectively. The arrows labeled X, Y and Z indicate the relative 

orientation of each image. An overlay of the x-ray structures with the DFT optimized modes for 

the FAD C4a-OH adduct and the C4a-OO(H) adduct (lower outer portions). The refined crystal 

structure is shown with flavin C atoms and bonds in orange superimposed with the DFT 
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optimized C4a-OH (C atoms rendered with cyan sticks), or the C4a-OOH model (C atoms 

rendered with green sticks). 

 

To our knowledge, the materials and aerobic crystallization conditions do not include any 

reagents that readily form a C4a adduct with oxidized FAD.  Moreover, none of the reagents 

used to crystallize the enzyme alter the optical spectrum of oxidized choline oxidase indicating 

that the reagents do not perturb significantly the FAD electronic environment (see Figure 2.3).  

In contrast, reduced flavins in the semiquinone or hydroquinone states do react with O2 and can 

form C4a-oxygen adducts (2, 9). Therefore, we followed a conservative approach and refined a 

FAD C4a-OH atomic model, which converged well with REFMAC5 to yield a 1.45 Å C4a-O 

bond distance (Figure 2.4A and Table 2.1).  Next we modeled an O2 molecule bound to the C4a 

atom of reduced FAD. After refinement with REFMAC5 the C4a-Op and Op-Od bond lengths are 

1.4 Å (Figure 2.4B and Table 2.1) with a C4a-Op-Od bond angle of 116°. Although the 

estimated coordinate error of the model is approximately 0.1 Å, these parameters agree well with 

those determined by quantum mechanical calculations for the model FAD-C4a-OOH 

intermediate in p-hydroxybenzoate 3-hydroxylase and phenol hydroxylase (27-28), as well as the 

DFT calculations discussed below.  Therefore, the C4a-OH and C4a-OO(H) models for the FAD 

adduct in choline oxidase have reasonable geometry for sp
3
 hybridization and the appropriate 

bond lengths and angles for a C4a-adduct.  However, the observed electron density for the distal 

oxygen atom (Od) is weaker than for the proximal atom oxygen (Op) and consequently, the 

former atom also has a higher B-factor. This suggests that either the Od atom may be partially 

disordered, possibly due to precession about the C4a-Op bond, or that only one oxygen atom is 

present in the adduct.   
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The simulated-annealing omit maps provide the most unbiased view of the FAD adduct.  

During this procedure, the FAD, DMSO, and the C4a-adduct were omitted from the model. The 

resulting mFo – DFc and 2mFo – DFc electron density maps (Figure 2.4A-B) calculated with 

reflections between 50 and 1.86 Å resolution were superimposed with refined models containing 

either the C4a-OH or the C4a-OO(H) adduct.  This analysis prompts us to conclude that the FAD 

in choline oxidase is most likely a C4a-OH (hydroxy) flavin adduct.  However, as discussed 

above, we can not unambiguously rule out the C4a-OO(H) (peroxy or hydroperoxy) adduct.  The 

resolution of the structure, quality of the refined atomic models, and the fits to the observed 

electron density for choline oxidase are comparable to those of the recently reported dioxygen 

complexes of cytochrome P450cam (29), naphthalene dioxygenase (30), superoxide reductase 

(31), homoprotocatechuate 2,3-dioxygenase (32), and amine oxidase (33). 

The x-ray crystal structure shows that the active sites are completely sequestered within 

each subunit of the dimeric enzyme such that there is no direct access of bulk solvent to the FAD 

isoalloxazine ring. Nevertheless, a DMSO molecule, an additive in the crystallization solution, is 

observed in the solvent excluded cavity within each active site (Figure 2.5). In addition to the 

covalent bond between the dimethylbenzene ring and His99, several deduced hydrogen bonds 

stabilize the isoalloxazine ring configuration and the C4a-OH (or C4a-OO(H)) adduct. For 

example, the FAD pyrimidine ring forms a network of hydrogen bonds with protein backbone 

atoms from Asn100, Cys102, Ile103, and Asn512.  In addition there are side chain interactions 

between the pyrimidine ring and Asn100 and Ser101.  Consequently, nearly every atom of the 

isoalloxazine ring with the potential to participate in hydrogen bonds, does so with either a 

protein residue or the DMSO. Furthermore, the structure indicates that the atoms of either C4a 

adduct are stabilized by hydrogen bonds with the side chains of His351 and Asn510. Finally, the 
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DMSO molecule is located adjacent to the C4a adduct and also hydrogen bonds with the side 

chain of Ser101 and the FAD N5 moiety. 

 

 
Figure 2.5. The Active Site Environment of Choline Oxidase Illustrating Potential Hydrogen 

Bonding Interactions (yellow dashes) that Stabilize the C4a-OH (A) or C4a-OO(H) (B) Adducts. 

Carbon atoms and bonds for the isoalloxazine ring and DMSO are shown in orange and green, 

respectively. For all the other atoms C, O, N and S atoms are colored grey, red, blue and yellow, 

respectively. The atom naming scheme for each adduct is shown at the bottom. 

 

To gain a better understanding of the electronic structure of the unique isoalloxazine ring 

configuration observed in the x-ray structure of choline oxidase, we performed a number of DFT 

calculations.  Each structure was optimized using Gaussian 03 program (17) at the B3LYP/6-
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31G(d) level in the gas phase. The final energies were calculated using a large 6-31+G(d,p) basis 

set, which included dielectric effects (for ε = 4.3) from the surrounding protein using the self-

consistent reaction field (IEFPCM) method at the B3LYP/6-31G(d) level. The largest 

calculations (ca. 180 atoms) included the FAD isoalloxazine ring and most of the first shell 

residues comprising the active site (see Figure 2.5; His99, Asn100, Ser101, Cys102, Ile103, 

His310, His351, His466, Asn510, Pro511, Asn512, and a DMSO molecule). Several flavin 

electronic states within the enzyme active site were computed including: a) one electron reduced 

flavin semiquinone (FAD
sq

), b) a reduced flavin C4a hydroperoxy complex (FAD-C4a-OOH) c) 

a flavin C4a-hydroxy complex (FAD-C4a-OH), and d) flavin C4a-peroxy complex (FAD-C4a-

OO
-
).  The metrics for observed x-ray structure and the DFT optimized structures for each flavin 

species are summarized in Table 2.1. 

The DFT calculations unequivocally indicate that formation of the FAD C4a adduct, and 

the first shell hydrogen bond interactions with the flavin moiety are necessary to reproduce the 

observed x-ray structure (Figures 2.4, 2.5 and 2.6). Unfortunately, the accuracy of the DFT 

calculations and the uncertainty of the crystal structure do not support a clear discrimination 

between the C4a-OH or C4a-OO(H) structures.  In contrast, gas-phase optimizations of protein-

free flavin adducts yield less distorted FAD-C4a-OOH and FAD-C4a-OH structures (Figure 2.6-

D).  By comparison to these structures, we estimate that the energies required to stabilize the x-

ray structure of the enzyme are approximately 29.1 kcal/mol for the FAD-C4a-OH adduct and 

21.8 kcal/mol for the FAD-C4a-OOH adduct.  Either of these total energetic contributions that 

stabilize the distorted flavin C4a adduct are consistent with the crystal structure and the 

numerous active site hydrogen bonds deduced between the distorted FAD and active site 

residues.  In this context, our computational analysis suggests that the hydrogen bonding 
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interactions of the flavin with the side chains His99, Asn100, Ser101, Cys102,  Ile103, Asn510, 

His466 and His351 (Figure 2.5) are essential for the stabilization of the distorted flavin C4a 

adduct.  This is underscored by our additional computations (not shown) suggesting that removal 

of any of these residues in silico yields a more planar flavin C4a-adduct. 

  

Figure 2.6. Overlay of Several DFT Optimized C4a Adducts and the Crystal Structure of 

Choline Oxidase. The three orthogonal views are shown in a similar orientation as that of Figure 

2.1. A) The overlay of all four structures with the C atoms and bonds colored orange, green, 

cyan, or magenta for the crystal structure, the DFT optimized C4a-OOH adduct, the DFT 

optimized C4a-OH adduct, or the gas-phase optimized C4a-OOH adduct, respectively. B) The 

overlay of the crystal structure and the DFT optimized C4a-OOH adduct. C) The overlay of the 

crystal structure and the DFT optimized C4a-OH adduct. D) The overlay of the crystal structure 

and the gas-phase optimized C4a-OOH adduct. 

 

Solvated electrons are generated in biological samples by synchrotron x-ray irradiation 

on the time scale of electronic transitions (see for example (34) and references therein).  Rapid 

electron transfer over significant distances can be facilitated by aromatic side chains, protein 

backbone atoms, and protein secondary structure (35).  Consequently, it is very likely that the 

FAD in choline oxidase is reduced in the x-ray beam.  We propose that the high reduction 
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potential for the enzyme bound FAD provides a strong thermodynamic driving force to capture 

the solvated electrons (Figure 2.7, path a).  This conclusion is consistent with the negative 

features observed in the difference spectra at 450 and 480 nm, as well as the 510 nm features 

ascribed to the FAD semiquinone as a minor, but persistent species.  Our DFT calculations 

indicate that the unpaired electron in an anionic FAD semiquinone radical like that stabilized in 

choline oxidase is delocalized between the C4a (0.19e), C9 (0.18e), C7 (0.08e), C8 (-0.13e) and 

C8M (0.58e) atoms of the isoalloxazine ring system. Thus the spectroscopic results show that 

exposure of the crystal to the x-ray beam at low temperature is commensurate with a decrease in 

concentration of oxidized FAD in the sample. 

 

Figure 2.7. The proposed reaction scheme for the C4a adduct formation in single crystals of 

choline oxidase at 100 K.  Radiolysis of solvent by x-rays yields solvated electrons and several 

types of reactive oxygen species (path a). An electron migrates to the high reduction potential 

FAD within the active site to yield the flavin semiquinone (path a). Either a hydroxyl radical 

(path b) or a superoxide radical (path c) then combines with the flavin semiquinone to form the 

C4a-OH or C4a-OO(H) species, respectively.  It is also possible to form the C4a-OO(H) species 

via two electron reduction of the flavin, followed by reaction with O2 (path d).  Reaction of the 

flavin C4a-OOH species with an appropriate nucleophile (Nu:), such as dimethylsulfide, can also 

yield the C4a-OH adduct.  
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Hydroxyl and superoxide radicals, as well as other reaction products, are also generated 

in biological samples by x-ray exposure, but on a time scale of microseconds to milliseconds 

(34).  However, the migration of hydroxyl and superoxide radicals, dioxygen, and protons within 

proteins at cryogenic temperatures are less well understood than electron transfer processes.  

Nevertheless, this raises the possibility that the adduct may form by one of several scenarios, 

which differ principally in the origin of the oxygen atom in the C4a-adduct (Figure 2.7).  For 

example, our DFT calculations show that a hydroxyl radical does react with the C4a position of a 

FAD semiquinone yielding a flavin C4a-OH species, but only if the two radicals are near each 

other (ca. 2.0 - 2.2 Ǻ), and only if the flavin N5 is unprotonated (Figure 2.7, path b).  Similarly, 

our calculations indicate that a reaction between superoxide radical and the FAD semiquinone 

yielding a flavin C4a-OO(H) species is also possible (Figure 2.7, path c).  Alternatively, the 

C4a-OO(H) adduct may derive from a reaction between a two-electron reduced flavin (FADH
-
) 

and a ground-state O2 (Figure 2.7, path d).  Previous experimental and theoretical studies have 

demonstrated that a flavin C4a-OOH species can transfer an oxygen atom to dimethylsulfide to 

yield  a flavin C4a-OH adduct and DMSO (36-37). Our crystallization conditions include 10% 

v/v DMSO, which likely has dimethylsulfide as a minor contaminant component. Consequently, 

a trace amount of dimethylsulfide could promote conversion of the C4a-OO(H) species into the 

C4a-OH adduct, but in this case the resulting oxygen atom in the observed adduct originates 

from O2 rather than solvent.  Each of the scenarios presented here requires that for an adduct to 

form, the appropriate reactants (with the exception of solvated electrons) must be either present 

or generated in the vicinity of the flavin isoalloxazine ring.  Indeed, diffusion of bulky species 

over long-distances or through the protein and/or crystal matrix to the interior FAD C4a position 

is very unlikely at 100 K. In contrast, the proposed short-range migration of radical species, or 
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ground-state O2 within the choline oxidase active site is analogous to the well documented 

results of carbon monoxide photodissociation of myoglobin-CO complexes (38-39).   

Irrespective of the mechanism of formation of the flavin C4a-OH or C4a-OO(H) adduct, 

it seems likely that once formed, neither breaks down to release water or H2O2 because the 

cryogenic conditions do not establish the correct proton inventory on the surrounding residues 

and the flavin to facilitate product dissociation. In contrast, during catalytic turnover with choline 

(11), the enzyme coordinates the extraction of two protons and two electrons from the substrate 

with their subsequent delivery to O2 to yield H2O2 (see Figure 2.8).   

 

Figure 2.8. Proposed Reaction Mechanism for Choline Oxidase. In this scheme the active site 

base is indicated by His351 for the wild-type reaction. However, ongoing mutational studies 

suggest that the active site as a whole may serve as the general base for the reaction in some 

mutant isoforms of the enzyme. 

 

Indeed, during the reductive half reaction, the net transfer and storage of two proton 

equivalents from the substrate to the active site base and the flavin N5 atom, is commensurate 

with the two-electron reduction of the flavin. In the subsequent oxidative half reaction, the two 



79 

 

electrons are transferred from the reduced flavin to O2 along with the delivery of the two stored 

protons.  Therefore, an incorrect proton inventory on the active site residues may stall the 

oxidative half-reaction.  Thus the x-ray exposure at low temperature creates an improper proton 

inventory scenario that consequently yields the structure of choline oxidase containing the C4a-

adduct.   

Flavoenzyme mechanistic schemes often invoke FAD C4a-OO(H) or C4a-O(H) intermediates, 

but they have heretofore eluded structural characterization and have only rarely been detected by 

transient kinetic and spectroscopic techniques (1-2, 9). However, the structural environment in 

the active site of choline oxidase active site appears to be ideally suited to stabilize a C4a adduct 

involving an oxygen species. This study is therefore, the first direct observation by x-ray 

crystallography of a hydroxy-flavin or peroxo-flavin intermediate in any flavoenzyme, despite 

decades of effort by many researchers in the field, and numerous mechanistic proposals that 

invoke such a species. Our multidisciplinary experimental approach and correlation with 

complementary theoretical analysis thus provides direct evidence for an important oxygen 

intermediate in the reaction cycle of flavin-dependent enzymes.   
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CHAPTER III 

SUBSTITUTION OF AN ACTIVE SITE VALINE UNCOVERS A KINETICALLY 

SLOW EQUILIBRIUM BETWEEN COMPETENT AND INCOMPETENT FORMS OF 

CHOLINE OXIDASE 

(This chapter has been published verbatim in Finnegan, S. and Gadda, G., (2008), Biochemistry 

47: 13850-13861) 

 

3.1. Abbreviations 

Val464Ala, choline oxidase variant with valine 464 replaced with alanine; Val464Thr, 

choline oxidase variant with valine 464 replaced with threonine; His466Ala, choline oxidase 

variant with histidine 466 replaced with alanine. 

 

3.2. Abstract 

The enzymatic oxidation of choline to glycine betaine is of interest because organisms 

accumulate glycine betaine intracellularly in response to stress conditions. This is relevant for the 

genetic engineering of crops with economic interest that do not naturally possess efficient 

pathways for the synthesis of glycine betaine, and for the potential development of drugs that 

target the glycine betaine biosynthetic pathway in human pathogens. To date, the best 

characterized choline-oxidizing enzyme is the flavin-dependent choline oxidase from 

Arthrobacter globiformis, for which structural, mechanistic, and biochemical data are available. 

Here, we have replaced a hydrophobic residue (Val464) lining the active site cavity close to the 

N(5) atom of the flavin with threonine or alanine to investigate its role in the reaction of choline 

oxidation catalyzed by choline oxidase. The reductive half-reactions of the enzyme variants 

containing Thr464 or Ala464 were investigated using substrate and solvent kinetic isotope 
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effects, solvent viscosity effects, and proton inventories. Replacement of Val464 with threonine 

or alanine uncovered a kinetically slow equilibrium between a catalytically incompetent form of 

enzyme and an active species that can efficiently oxidize choline. In both variants, the active 

form of enzyme shows a decreased rate of hydroxyl proton abstraction from the alcohol 

substrate, with minimal changes in the subsequent rate of hydride ion transfer to the flavin. This 

study therefore establishes that a hydrophobic residue not directly participating in catalysis plays 

important roles in the reaction of choline oxidation catalyzed by choline oxidase. 

 

3.3. Introduction 

The four-electron, enzymatic oxidation of choline to glycine betaine (N,N,N-

trimethylglycine) is of considerable interest because glycine betaine is a biocompatible solute 

that is accumulated in the cytoplasm of prokaryotic and eukaryotic organisms as a defensive 

mechanism to counteract deleterious stresses, such as extreme temperature changes or high 

osmotic pressures (1-5). This has significant relevance for the genetic engineering of specific 

stress tolerant crops of economic interest like tomato and rice that, by virtue of having inefficient 

biosynthetic pathways for the production of glycine betaine, are particularly vulnerable to stress 

conditions (6-13). Amassing large amounts of glycine betaine in the cytoplasm is particularly 

critical for bacteria, where adjustment of the cellular water content is attained by controlling the 

level of the intracellular solute pool due to lack of active water transport systems (3, 5). Failure 

to do so in hyperosmotic environments immediately triggers fluxes of water across the 

cytoplasmic membrane resulting in dehydration and plasmolysis. Choline and its precursors 

phosphatidyl choline, phosphocholine and acetylcholine are very abundant at infection sites (14-

16), where osmotic stress conditions are frequently observed (17). In a number of human 
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pathogens, including Pseudomonas aeruginosa, Listeria monocytogenes, Vibrio cholerae, 

Enterococcus faecalis, Klebsiella pneumoniae, or urophatogenic Escherichia coli, glycine 

betaine accumulates in the cytoplasm and allows growth in hyperosmotic minimal media of 

clinical isolates (18-22). Moreover, physiological responses to osmotic stress have recently 

gained attention with several studies showing that high osmolarity is one of the major 

environmental signals controlling the expression of genes associated with cellular invasion and 

virulence in a variety of human pathogenic microorganisms (23-29). In the model organism E. 

coli, the expression of a membrane-associated flavin-dependent, choline-oxidizing enzyme and a 

choline transporter for the production of glycine betaine are immediately up-regulated in media 

with high osmolality (30-31). Regulation of intracellular osmolality to hyperosmotic 

environments is also intimately connected to a number of physiological responses, such as 

increased heat and cold tolerance, regulation of the internal pH and ionic strength (6, 9, 32-35). 

Consequently, the study of the biophysical and mechanistic properties of flavin-dependent, 

choline-oxidizing enzymes has potential for the development of therapeutic agents that inhibit 

the biosynthesis of glycine betaine and render the bacteria either more susceptible to the immune 

system or to conventional treatments with antibiotics. 

Two types of flavin-containing choline-oxidizing enzymes have been identified to date: a 

cytosolic, soluble choline oxidase (36-38) and a membrane-associated choline dehydrogenase 

(21, 39-41).  
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Scheme 3.1: The Flavin-mediated, Four-electron Oxidation of Choline to Glycine Betaine 

Catalyzed by Choline Oxidase. 
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These enzymes catalyze the identical oxidation of choline to glycine betaine via betaine 

aldehyde as intermediate, but prefer different primary electron acceptors (see Scheme 3.1 for the 

reaction catalyzed by choline oxidase). 

Indeed, the classification of the two enzymes is based on initial reports showing that 

choline oxidase readily reacts with O2 (42) while choline dehydrogenase prefers electron 

acceptors other than O2 (43-44). Difficulties of keeping choline dehydrogenase stable and active 

after extraction from its cellular source have hindered an in depth biochemical characterization 

of the enzyme (43-44). In contrast, due to the obtainment of large amounts of soluble, stable and 

active choline oxidase, significant progress in the understanding of the mechanistic, biochemical 

and structural properties of the flavin-dependent choline-oxidizing enzymes has been achieved 

(42, 45-56). 

The reductive half-reaction in which choline is oxidized to betaine aldehyde in choline 

oxidase has been characterized in detail in the wild-type enzyme (42, 45-56). The reaction is 

initiated in the enzyme-substrate Michaelis complex by the removal of the hydroxyl proton of the 

alcohol substrate (Scheme 3.2), as suggested by kinetic isotope effects (42, 47).  
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Scheme 3.2: Hydride Transfer Mechanism for the Oxidation of Choline to Betaine Aldehyde 

Catalyzed by Choline Oxidase.  

 

Stabilization of the resulting choline alkoxide species is provided Stabilization of the 

resulting choline alkoxide species is provided by the side chains of His351, His466 and Glu312 

(49, 54-55). These electrostatic and hydrogen bonding interactions, along with the limited 

mobility of the flavin cofactor that is covalently linked through its C(8) methyl group to His99 

(54), are major contributors to the preorganization of the enzyme-substrate complex for an 
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efficient oxidation reaction (54). Once activation and stabilization of the alkoxide species are 

achieved, a hydride ion tunnels from the alkoxide α-carbon to the N(5) atom of the flavin as a 

result of environmental vibrations of the reaction coordinate that permit a tunneling distance 

between the hydride donor and acceptor (48). The hydride donor and acceptor are brought in a 

configuration compatible with environmentally assisted tunneling through a conformational 

change of the enzyme-substrate complex that is mechanistically and kinetically distinct from the 

hydride transfer reaction, as suggested by temperature-dependent studies on the reaction 

catalyzed by the wild-type enzyme under reversible and irreversible catalytic regimes (48, 53). 

Such a conformational change of the enzyme-substrate complex is also observed upon replacing 

the side chain of Glu312, which is important for the binding and positioning of the alcohol 

substrate in the active site of the enzyme, with an aspartate residue (54).  

 

In the three-dimensional structure of choline oxidase recently solved to a resolution of 

1.86 Å (54), the hydrophobic residue Val464 lines the active site cavity in proximity of the N(5) 

atom of the isoalloxazine ring of the flavin cofactor, with its side chain establishing a van der 

Waals contact with the C(2) atom of the conserved His466 (Figure 3.1). Such an arrangement 

suggests that, although Val464 does not directly participate in the reaction of choline oxidation 

catalyzed by the enzyme, it may play an important role in catalysis.  
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Figure 3.1. Close-up View of the Active Site of the Wild-type Form of Choline Oxidase 

Showing the Positioning of Val464 with Respect to the Isoalloxazine Ring of the Flavin and the 

Active Site Cavity (PDB entry 2jbv). Note the distortion of the flavin ring, which is due to the 

presence of a C(4a) flavin adduct (not shown here), whose identity is currently being 

investigated. 

 

 

In this study, the effects of replacing Val464 with a hydrophilic residue (Thr) or an amino 

acid with a shorter side chain (Ala) on the hydrophobic packing needed for proper organization 

of the active site in the reductive half-reaction catalyzed by choline oxidase have been 

investigated. The enzyme variants Val464Thr and Val464Ala were prepared using site-directed 

mutagenesis and purified to homogeneity using ion exchange chromatography. The reductive 

half-reactions with choline as anaerobic substrate for the enzyme variants were investigated 

using an array of mechanistic probes including substrate and solvent kinetic isotope effects, 

solvent viscosity effects, and proton inventories. The results presented uncovered a kinetically 

slow equilibrium involving a catalytically incompetent form of enzyme and an active species that 

oxidizes choline. The active form of both enzyme variants showed lower rates of hydroxyl 
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proton abstraction from the alcohol substrate as compared to the wild-type enzyme, with minimal 

effects on the rates of the subsequent hydride transfer reaction. 

 

3.4. Experimental procedures 

Materials. Strain Rosetta(DE3)pLysS of Escherichia coli was from Novagen (Madison, 

WI). DNase was from Roche (Indianapolis, IN). The QuikChange site-directed mutagenesis kit 

was from Stratagene (La Jolla, CA). The QIAprep Spin Miniprep kit was from Qiagen (Valencia, 

CA). Oligonucleotides used for sequencing of the mutant genes were custom synthesized by 

Sigma Genosys (Woodland, TX). Choline chloride was from ICN Pharmaceutical Inc (Irvine, 

CA); 1,2-[
2
H4]-choline bromide (98%) and sodium deuterium oxide (99%)  were from Isotec Inc. 

(Miamisburg, OH); glucose and glucose oxidase were from Sigma (St. Louis, MO); and 

Polyethylene glycol 6000 was from Fluka (St. Louis, MO). All other reagents were of the highest 

purity commercially available. 

 

Site-Directed Mutagenesis. The variant forms of choline oxidase Val464Ala and 

Val464Thr were prepared using the pET/codAmg plasmid harboring the wild-type gene for 

choline oxidase as template for site-directed mutagenesis, as previously described (45, 52, 54). 

The presence of the desired mutations was confirmed by sequencing the entire mutagenized 

genes. E. coli strain Rosetta(DE3)pLysS competent cells were transformed with the mutant 

plasmids by electroporation. Host cells not containing the mutant plasmid showed no enzymatic 

activity with choline as a substrate.  

 

Expression and Purification of the Val464Ala and Val464Thr Variants of Choline 

Oxidase. The mutant enzymes were expressed and purified to homogeneity using the same 
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procedure described previously for the purification of the wild-type enzyme (45-46). Typically, 

between 600 and 700 mg of purified enzymes were obtained from 5 L of cell culture. The 

enzymes maintained full enzymatic activity for at least six months upon storage in 20 mM Tris-

Cl, pH 8.0, at -20 
o
C. 

 

Spectroscopic Studies. The pH dependence of the UV-visible absorbance spectra for the 

Val464 variant enzymes were determined by titrating with sodium hydroxide as previously 

described for the His466Ala mutant enzyme (49). 

 

Enzyme Assays. Pre-steady-state kinetic measurements were carried out using an SF-

61DX2 HI-TECH KinetAsyst high performance stopped-flow spectrophotometer thermostated at 

25 °C, in 50 mM sodium pyrophosphate, pH 10.0. The rate of flavin reduction was measured by 

monitoring the decrease in absorbance at 455 nm that results from the anaerobic mixing of 

choline oxidase with the organic substrate as previously described for the wild-type enzyme (47), 

except that 5 mM glucose and 0.5 M glucose oxidase were present to scavenge possible trace 

amounts of oxygen. After anaerobic mixing in the stopped-flow spectrophotometer the final 

concentration of the enzymes was ~10 M, whereas those of the organic substrates were between 

0.05 to 10 mM, thereby maintaining pseudo-first order kinetic conditions. For the determination 

of the solvent kinetic isotope effects on the rate of flavin reduction, all of the reagents were 

prepared as described above except that D2O was used to dissolve both the enzymes and 

substrates, and the pH of the buffered solution containing the enzyme was adjusted to 9.6 to 

account for the isotope effect on the ionization of sodium pyrophosphate (57). Solvent viscosity 

effects were measured in the presence of 8% (v/v) glucose or 0.0211g/mL PEG-6000 as 
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viscosigens, in both the tonometer containing the enzyme and the syringes containing the organic 

substrates. The resulting relative viscosities at 25 °C were 1.25 and 1.26 for glucose and PEG-

6000 respectively, slightly above the value of 1.23 representing a 100% solution of D2O (58-59). 

For proton inventories in solvents containing varying mole fractions of D2O, the pD values were 

adjusted using DCl and NaOD based on the empirical relationship (equation 1) that exists 

between the pH-meter reading and the pD value at varying mole fractions of D2O (n) (57). For 

each concentration of substrate, the rates of flavin reduction were recorded in triplicate, with 

measurements differing by ≤5%. 

 

  nnpH
n

3314.0076.0 2         (1) 

 

Data Analysis. Kinetic data were fit with KaleidaGraph (Synergy Software, Reading, 

PA) and the Hi-Kinetic Studio Software Suite (Hi-Tech Scientific, Bradford on Avon, U.K.).  

Stopped-flow data traces were fit with equation 2, which describes a double-exponential process, 

in which kobs1 and kobs2 are the observed rate constants for the change in absorbance at 455 nm, A 

is the value of absorbance at time t, B and C are the amplitudes of the absorbance changes for the 

fast and slow observed phases, and D is an offset value that accounts for the non-zero absorbance 

value at infinite time. Pre-steady-state kinetic parameters were determined by using equations 3 

and 4, which apply to the kinetic mechanism of Scheme 3.3 (see Results). In equation 3, kobs1 is 

the observed first-order rate constant associated with the fast phase of flavin reduction at any 

given concentration of substrate, kred is the limiting first-order rate constant for flavin reduction 

at saturating substrate concentrations, S is substrate concentration and Kd is the macroscopic 

dissociation constant for binding of the substrate to the active enzyme. In equation 4, kobs2 is the 
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observed first-order rate constant associated with the slow phase of flavin reduction at any given 

concentration of substrate, k1 is the first-order rate constant for the conversion of the E
*
ox to Eox, 

k3 is the first-order rate constant for the conversion of E
*
oxS to EoxS, Kd* represents the 

macroscopic dissociation constant for binding of the substrate to the incompetent enzyme, and S 

is substrate concentration (see appendix for derivation of equation 4)(60-61). Data for the pH 

dependence of the UV-visible absorbance spectra were fit to equation 5, which describes a curve 

with two plateau regions at low (YL) and high (YH) pH connected by a decrease in absorbance 

with a slope of -1 followed by an increase with a slope of +1. 
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3.5. Results 

Purification of the Val464Ala and Val464Thr Enzymes. Two variant forms of choline 

oxidase were engineered using site-directed mutagenesis to replace a valine at position 464 with 

alanine or threonine. The enzymes were independently expressed in E. coli strain 

Rosetta(DE3)pLysS, and purified by following the same protocol established for the wild-type 

enzyme (45). Upon purification, the variant enzymes displayed a covalently bound flavin 

cofactor in the form of a non-reactive, air-stable, anionic flavosemiquinone (data not shown). 
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The fully oxidized forms of the enzymes were obtained via slow oxidation of the 

flavosemiquinone by extensive dialysis at pH 6.0 and 4 
o
C, as previously reported for the wild-

type and a number of active site mutant forms of choline oxidase (42, 54-55). The specific 

activities of the resulting fully oxidized forms of the Val464Ala and Val464Thr enzymes were 

0.3 µmol O2 min
-1

mg
-1 

with 10 mM choline as substrate at pH 7.0. This value corresponds to a 

25-fold decrease with respect to the specific activity of the wild-type enzyme (with a value of 8 

µmol O2 min
-1

mg
-1

) (54), suggesting that Val464 is an important residue for catalysis in choline 

oxidase. 

 

Reductive Half-Reaction with Choline. The reductive half-reaction in which the 

Val464Ala or Val464Thr enzymes are reduced anaerobically with the substrate was investigated 

using a stopped-flow spectrophotometer by measuring the rates of decrease in absorbance at 455 

nm as a function of the concentration of choline in 50 mM sodium pyrophosphate, pH 10.0 and 

25 
o
C, under pseudo-first order conditions (i.e., 10 M enzyme and ≥50 M substrate). pH 10.0 

has previously been shown to be in the pH independent region for the wild type as well as for 

various mutant forms of choline oxidase (42, 49, 54-55). As illustrated in the examples of 

Figures 3.2A-B, both investigated variant enzymes were reduced to the hydroquinone state in a 

biphasic pattern, with a fast phase accounting for approximately 60 to 70% of the total change in 

absorbance, contrary to the monophasic reduction observed for the wild type enzyme (47).  
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Figure 3.2. Anaerobic Reduction of the Val464Thr and Val464Ala Enzymes with Choline in 50 

mM Sodium Pyrophosphate, pH 10.0 and 25 °C, Monitored at 455 nm in a Stopped-flow 

Spectrophotometer. Panel A shows the reduction traces for Val464Thr with 10 mM (red), 1 mM 

(black) and 0.05 mM (green) choline. Inset, reduction traces for the Val464Thr enzyme with 10 

mM (red), 1 mM (black) and 0.05 mM (green) 1,2-[
2
H4]-choline. Panel B shows the reduction 

traces for Val464Ala with 10 mM (red), 1 mM (black) and 0.05 mM (green) choline. Inset, 

reduction traces for the Val464Ala enzyme with 10 mM (red), 1 mM (black) and 0.05 mM 

(green) 1,2-[
2
H4]-choline. All traces in panel A and B were fit with equation 2. Time indicated is 

after the end of flow, i.e., 2.2 ms. For clarity, one experimental point out of every ten is shown 

(vertical lines). Panel C shows the observed rates as a function of substrate concentration for the 

fast phase of flavin reduction with choline (●) and 1,2-[
2
H4]-choline (○) as substrates for 

Val464Thr. Panel D shows the observed rates as a function of substrate concentration for the fast 

phase of flavin reduction with choline (●) and 1,2-[
2
H4]-choline (○) as substrates for Val464Ala. 

The curves in panel C and D are fits of the data with equation 3. Panel E shows the observed 

rates for Val464Thr as a function of substrate concentration for the slow phase of flavin 

reduction with choline (▼) and 1,2-[
2
H4]-choline (△) as substrates. The curves for panel E and F 

are fits of the data with equation 4, eg.  9997.0R 
183.0][

072.0][009.0 2 





s

s
y  with choline as a 

substrate for Val464Thr. Panel F shows the observed rates for Val464Ala as a function of 

substrate concentration for the slow phase of flavin reduction with choline (▼) and 1,2-[
2
H4]-

choline (△) as substrates. Panel G shows the UV-visible absorbance spectra of the catalytically 

competent form (black) and of the incompetent form (red) of the Val464Thr enzyme in complex 

with choline at pH 10.0 and 25°C. Inset, UV-visible absorbance spectra determined with a PDA 

detector during the anaerobic reduction of the enzyme with 1 mM choline at 2.2 ms (black), 0.1 s 

(red), and 300 s (blue) after mixing the enzyme and the substrate in a stopped-flow 

spectrophotometer. Panel H shows the UV-visible absorbance spectra of the catalytically 

competent form (black) and of the incompetent form (red) of the Val464Ala enzyme in complex 

with choline at pH 10.0 and 25°C. Inset, UV-visible absorbance spectra determined with a PDA 

detector during the anaerobic reduction of the enzyme with 1 mM choline at 2.2 ms (black), 0.1 s 

(red), and 300 s (blue) after mixing the enzyme and the substrate in a stopped-flow 

spectrophotometer. 



101 

 

 101 

The relative amplitudes of the kinetic phases seen in the stopped-flow traces were 

independent of the concentration and the isotopic composition of the substrate, as similar results 

were obtained with 1,2-[
2
H4]-choline (Figures 3.2A-B insets), indicating that the kinetic 

behavior displayed by the Val464 variants is an intrinsic property of the enzymes that is 

unrelated to the substrate. The reductive half-reaction of the Val464Ala enzyme was also 

investigated at pH 6.0 where as illustrated in Figure 3.3 it was reduced to the hydroquinone state 

in a biphasic pattern, with a fast phase accounting for approximately 45-50% of the total change 

in absorbance, as compared to the 60-70% at pH 10.0. 
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Figure 3.3. Example of an Anaerobic Reduction Trace of the Val464Ala Enzyme with 75 mM 

Choline in 50 mM Sodium Pyrophosphate, pH 6.0 and 25 °C, Monitored at 455 nm in a Stopped-

flow. Data was fit with equation 2, y = 0.053e
-61.3[s]

 + 0.057 e
-1.0[s] 

+ 0.001 (R
2
 = 0.9998). 

 

With both the Val464Ala and Val464Thr enzymes, the observed rates for the fast phase 

of flavin reduction defined a rectangular hyperbola when plotted as a function of the 

concentration of choline (Figures 3.2C-D), as expected for an enzymatic kinetic process that 

reaches saturation. In contrast, a plot of the observed rates for the slow phase of flavin reduction 

as a function of the concentration of substrate yielded an inverse hyperbolic dependency, with 
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the observed rates decreasing to an asymptotic value with increasing concentration of choline 

(Figures 3.2E-F). These kinetic data are readily accounted for with the kinetic mechanism of 

Scheme 3.3, in which a catalytically competent and active form of the enzyme (Eox) is in slow 

equilibrium with a catalytically incompetent
2
 species of enzyme (E

*
ox). Upon forming a 

Michaelis complex with the substrate, the competent EoxS species will continue through catalysis 

yielding reduced flavin and betaine aldehyde. In contrast, the incompetent Eox
*
S species will 

either slowly re-equilibrate through its free form devoid of bound substrate with the Eox form or 

directly convert to the competent EoxS complex, which will subsequently proceed through 

catalysis.  

Eox + S EoxS Ered + P
Kd kred

E
*
ox + S E

*
oxS

k2k1

fast phase

slow phase

Kd
*

k4k3

 

Scheme 3.3. Proposed Kinetic Mechanism for Choline Oxidation Catalyzed by the Val464Thr 

and Val464Ala Enzymes. 

 

Since substrate binding to the enzyme is a rapid equilibrium process, the rate of re-

equilibration of the two forms of choline oxidase is limited by the conformational change 

                                                 
2
 One of the two conformations of choline oxidase in which Val464 is replaced with alanine or threonine is defined 

in this study as incompetent, rather than inactive. The choice of the term stems from the kinetic mechanism of 

Scheme 3, which is the minimal mechanism that explains the experimental observations. Here, one species of 

enzyme is capable of oxidizing choline with a rate of hydride transfer that is not significantly different from that 

determined previously for the wild-type enzyme (i.e., ≥50.5 s
-1

 for Val464 variants; 93 s
-1

 for wild-type 47. Fan, F., 

and Gadda, G. (2005) On the catalytic mechanism of choline oxidase, J. Am. Chem. Soc. 127, 2067-2074.). This 

form of enzyme is defined here as either competent or active. The other form of enzyme present in solution in the 

Val464 variants is either not capable of oxidizing the substrate or it oxidizes choline at a rate that is significantly 

lower than the rates governing the re-equilibration of the two forms of enzyme. Since the two possibilities cannot be 

discerned, we opted to define this form of enzyme as incompetent rather than inactive. 
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involving both the free and enzyme-substrate complexes of the competent and incompetent 

forms of enzyme (defined by k1, k2, k3 and k4 in Scheme 3.3). According to this kinetic 

mechanism, the fast phase of flavin reduction seen in the stopped-flow traces represents the 

reduction of the EoxS species (kred in Scheme 3.3), whereas the subsequent slow phase is due to 

the rate-limiting conformational change involving the two forms of enzyme. Fitting of the kinetic 

data
3
 associated to the fast phase of flavin reduction to equation 3 allows for the determination of 

the first-order rate constant for flavin reduction (kred), and the dissociation constant for the 

catalytically competent enzyme-substrate Michaelis complex (Kd) (62). Fitting of the kinetic data 

associated with the slow phase of flavin reduction to equation 4 allows for the determination of 

the first-order rate constants for the conversion of the incompetent form of enzyme to the 

competent form of enzyme (k1 and k3), and of the dissociation constant for the catalytically 

incompetent enzyme-substrate complex (Kd
*
). Unfortunately, the requirement for pseudo-first 

order conditions in the anaerobic reduction of the enzyme with choline did not allow for 

concentrations of choline below 50 M to be used, thereby preventing an accurate determination 

of the first-order rate constant for the conversion of the E
*
ox form of choline oxidase to the Eox 

species (k1). All the relevant kinetic parameters determined in the reductive half-reactions with 

choline as substrate for the choline oxidase variants containing alanine or threonine at position 

464 as well as the previously determined values for the wild-type enzyme (47) are summarized 

in Table 3.1. 

 

                                                 
3
 The rationale for fitting the two phases seen in the reductive half-reaction catalyzed by the Val464Ala and 

Val464Thr enzymes with equations 3 and 4 is that with both enzymes the fast phase is more than 5000-fold faster at 

saturating concentration of substrate than the slow phase of flavin reduction (Table 3.1). This implies an 

accumulation of an enzyme form (i.e., Eox
*
 and Eox

*
S) in the kinetic pathway at the end of the fast phase of 

reduction, allowing for the kinetic treatment of the two phases as being independent from one another (62). 
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Table 3.1. Reductive Half-reaction of the Val464Thr, Val464Ala and Wild-type Enzymes with 

Choline as Substrate
a
. 

enzyme kred Kd k1 k2 k3 k4 Kd
* 

 s
-1

 μM s
-1

 s
-1

 s
-1

 s
-1

 μM 

Val464Ala 50.5 ± 2.4 ≤50
b 

0.4 ± 0.01
b
 nd

c
 0.013 ± 0.001 nd

c
 ≤80

b 

Val464Thr 65.8 ± 0.4 ≤60
b 

0.4 ± 0.02
b 

nd
c 

0.009 ± 0.002 nd
c 

180 ± 10 

Wild type (47) 93.1 ± 0.8 290  ± 10 no
d
 no

d
 no

d
 no

d
 no

d
 

a 
Conditions: 50 mM sodium pyrophosphate, 25 °C, pH 10.0. 

b 
Better determinations could not be obtained due to 

the requirement of maintaining pseudo-first order conditions in which the [substrate] was ≥5-times the [enzyme]. 
c
 

nd, not determined.
 d 

no, not observed. 
 

The reductive half-reaction of the Val464Ala and Val464Thr enzymes with choline was 

also investigated with a PDA detector in order to gain insights on the UV-visible absorbance 

spectra of the enzyme-substrate complex species participating in the reaction. Relevant 

absorbance spectra of the species present right after anaerobic mixing of the enzyme and choline 

(2.2 ms), at the end of the fast phase of flavin reduction, and at the end of the slow phase of 

flavin reduction were collected. According to the mechanism of Scheme 3.3, only the fully 

reduced form of enzyme is present at the end of the reaction after both kinetic phases are 

completed. A mixture of fully reduced enzyme and incompetent enzyme-substrate complex 

populates the solution at the end of the fast phase of flavin reduction. Finally, a mixture of 

incompetent and competent enzyme-substrate complexes is present right after anaerobic mixing 

of the enzyme with choline. The relative amounts of competent and incompetent forms of the 

enzymes could be estimated from the amplitudes of the kinetic phases observed in the stopped-

flow traces, allowing the extraction of the UV-visible absorbance spectra for the competent and 

incompetent forms of the Val464 variants of choline oxidase in complex with the substrate (eg. 

The UV-visible absorbance spectrum for E
*

oxS can be extracted by taking the spectrum at the 

end of the fast phase (red traces in Figures 3.2G-H inset) and subtracting the quota of the fully 

reduced spectrum (blue traces in Figures 3.2G-H inset) corresponding to the relative amount of 
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Eox. Subtraction of the extracted spectrum for E
*
oxS from the initial spectrum (black traces in 

Figures 3.2G-H inset) will in turn yield the EoxS spectrum). As shown in Figures 3.2G-H, a 

significant hypsochromic shift of at least 20 nm is observed in the high energy absorbance band 

of the incompetent enzyme-substrate complexes as compared to their competent counterparts for 

both the Val464Ala and Val464Thr enzymes. 

 

Substrate Deuterium Kinetic Isotope Effects. Substrate kinetic isotope effects were 

employed with the dual goal of assessing the validity of the kinetic mechanism of Scheme 3.3 

and gaining insights into the status of the CH bond of choline in the transition state for the 

reactions catalyzed by the Val464Ala and Val464Thr enzymes. As shown in Figures 3.2C-D a 

significant decrease in the observed rates for the fast phase of flavin reduction was seen upon 

substituting choline with 1,2-[
2
H4]-choline in H2O, suggesting that the reaction of flavin 

reduction, which is concomitant to the cleavage of the CH bond of choline, is at least partially 

rate-limiting for the reductive half-reaction in H2O. However, when the flavin reduction was 

performed in D2O the 
D
(kred)D2O values for both investigated enzymes were not significantly 

different from unity as compared to 
D
(kred)H2O values ≥2.9, indicating that the cleavage of the 

substrate CH bond in deuterium oxide is not rate-limiting for the overall reductive half-reaction. 

In contrast, there was no difference in the observed rates for the slow phase of flavin reduction 

when choline was substituted with 1,2-[
2
H4]-choline for both enzymes (Figures 3.2E-F) 

irrespective of the isotopic composition of the solvent. These kinetic data further support the 

kinetic mechanism of Scheme 3.3, for which a significant substrate kinetic isotope effect is 

predicted for the fast phase of flavin reduction, whereas no substrate isotope effect is expected 

for the conformational change occurring between the competent and incompetent enzyme 
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species. Tables 3.2 and 3.3 summarize the kinetic parameters and the related kinetic isotope 

effects for the reductive half-reactions of the Val464Ala, Val464Thr and the wild-type (47) 

enzymes determined with choline and 1,2-[
2
H4]-choline as substrate. 

Table 3.2. Effect of Deuterated Substrate and Solvent on the Reductive Half-reaction of the 

Val464Ala, Val464Thr and wild-type Enzymes 
a
. 

Parameter Substrate solvent
 

Val464Ala Val464Thr Wild-type (47) 

kred, s
-1 

Choline H2O 50.5 ± 2.4 65.8 ± 0.4 93.1 ± 0.8 

kred, s
-1

 Choline D2O 12.0 ± 0.7 11.8 ± 0.3 94.0 ± 1.5 

kred, s
-1

 1,2-[
2
H4]-choline H2O 17.2 ± 0.7 18.2 ± 0.3 10.3 ± 0.3 

kred, s
-1

 1,2-[
2
H4]-choline D2O 13.2 ± 0.6 14.5 ± 0.1 10.9 ± 0.3 

k3, s
-1 

Choline H2O 0.013 ± 0.001 0.009 ± 0.002 no
b
 

k3, s
-1

 Choline D2O 0.004 ± 0.001 0.005 ± 0.001 no
b
 

k3, s
-1

 1,2-[
2
H4]-choline H2O 0.013 ± 0.001 0.010 ± 0.002 no

b
 

k3, s
-1

 1,2-[
2
H4]-choline D2O 0.006 ± 0.001 0.005 ± 0.001 no

b
 

a 
Conditions: 50 mM sodium pyrophosphate, 25 °C, pH 10.0. Pre-steady-state kinetic parameters were determined 

by fitting the kinetic data acquired upon mixing anaerobically the enzyme with the substrate to equations 3 and 4. 

All fits of the data yielded R
2 

≥0.99. 
b 
no, not observed. 

 

Table 3.3. Substrate and Solvent Deuterium Kinetic Isotope Effects on the Reductive Half-

reaction of the Val464Ala, Val464Thr and Wild type Enzymes. 

Parameter Val464Ala Val464Thr Wild-type (47) 
D
(kred)H2O 2.9 ± 0.1 3.6 ± 0.1 8.9 ± 0.2 

D
(kred)D2O 0.9 ± 0.1 0.8 ± 0.1 8.7 ± 0.2 

D2O
(kred)H 4.2 ± 0.4 5.6 ± 0.1 0.99 ± 0.1 

D2O
(kred)D 1.3 ± 0.1 1.3 ± 0.1 0.94 ± 0.1 

D
(k3)H2O 1.0 ± 0.1 0.9 ± 0.1 no

b
 

D
(k3)D2O 0.8 ± 0.2 1.1 ± 0.3 no

b
 

D2O
(k3)H 3.0 ± 0.4 1.7 ± 0.4 no

b
 

D2O
(k3)D 2.3 ± 0.4 2.1 ± 0.3 no

b
 

a 
Conditions: 50 mM sodium pyrophosphate, 25 °C, pL 10. 

b 
no, not observed. 

 

Solvent Deuterium Kinetic Isotope Effects. Solvent deuterium kinetic isotope effects 

were used to probe the status of the OH bond of choline in the transition state for the reaction of 

hydride transfer catalyzed by the variants of choline oxidase substituted at position 464. The 

anaerobic flavin reduction reaction was investigated in H2O and D2O, and the relevant 
D2O

(kred) 

and 
D2O

(k3) values were determined at pL 10 and 25 
o
C with either choline or 1,2-[

2
H4]-choline. 

As expected, both the Val464Ala and Val464Thr enzymes showed 
D2O

(kred)H values of at least 4 
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with choline as substrate, consistent with these effects directly reporting on the status of the OH 

bond in the transition state for the reaction catalyzed by the enzymes. When 1,2-[
2
H4]-choline 

was used instead of choline a significant decrease in the 
D2O

(kred)D to a value of 1.3 was observed 

with both enzymes (Table 3.3), suggesting that slowing down the cleavage of the CH bond of 

the substrate masks the solvent kinetic isotope effects. The 
D2O

(k3) values were significantly 

larger than unity irrespective of whether choline or 1,2-[
2
H4]-choline was used as substrate for 

the Val464 enzyme variants (Table 3.3), consistent with the re-equilibration of the competent 

and incompetent forms of enzyme being sensitive to the isotopic composition of the solvent. 

 

Solvent Viscosity Effects. The effect of solvent viscosity on the reductive half-reaction of 

the Val464Thr enzyme was investigated to establish whether the observed solvent kinetic isotope 

effects are associated with the cleavage of the OH bond of choline or simply due to the increased 

viscosity of D2O with respect to H2O. The reductive half-reaction of the Val464Thr enzyme with 

choline was consequently investigated at pH 10.0 and 25 
o
C in solutions containing 8% glucose 

or 0.0211 g/mL PEG-6000, which provide solvent viscosities equivalent to a 100% solution of 

D2O. As illustrated in the data of Table 3.4, similar kred values, which were smaller than those 

seen in a control experiment in the absence of viscosigens, were determined in the presence of 

glucose and PEG-6000, suggesting that no effect other than solvent viscosity was present on the 

kinetic step of flavin reduction. As summarized in Table 3.4, solvent viscosity effects on the kred 

values of 1.4 were observed with choline as substrate, which were significantly larger than unity 

and lower than the 
D2O

(kred)H values of ≥4, suggesting that solvent viscosity plays a significant, 

but not prominent, role in the kinetic step of cleavage of the substrate OH bond in the reaction 

catalyzed by the Val464Thr enzyme. In contrast, slightly inverse (i.e., ≤1) effects were seen on 
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the k3 values in the presence of glucose or PEG-6000 (Table 3.4). These data suggest that the 

normal (i.e., ≥1) effects observed on the 
D2O

(k3) values primarily originate from solvent sensitive 

steps that directly involve proton abstraction from OH group(s). 

Table 3.4. Effect of Glucose and PEG-6000 on the Reductive Half-reaction of the Val464Thr 

Enzyme with Choline as Substrate 
a
, 

parameter viscosigen 
b 

Val464Thr 

(kred)glucose, s
-1

 glucose
 

48.1 ± 0.3 

(kred)PEG, s
-1

 PEG
 

48.1 ± 1.6 

(k3)glucose, s
-1 

glucose
 

0.010 ± 0.003 

(k3)PEG, s
-1 

PEG 0.019 ± 0.003 

kred/(kred)glucose  1.36 ± 0.02 

kred/(kred)PEG  1.37 ± 0.05 

k3/( k3)glucose  0.9 ± 0.3 

k3/( k3)PEG  0.5 ± 0.3 
a 

Conditions: 50 mM sodium pyrophosphate, 25 °C, pH 10.0. 
b 

Solvent contained 8% glucose, equivalent to a 

relative viscosity of 1.25 (58), or 0.0211 g/mL of PEG-6000, equivalent to a relative viscosity of 1.26 (59).  

 

Proton Inventories. The reductive half-reaction of the Val464Ala and Val464Thr 

enzymes was investigated in solutions with varying mole fractions of deuterium oxide to gain 

insights into the number of exchangeable protons involved in the fast and slow phases of 

anaerobic flavin reduction. As shown in Figures 3.4A-B, linear relationships were seen upon 

plotting the kred values as a function of the mole fraction of deuterated solvent, suggesting that a 

single proton is in flight in the transition state for the reaction of flavin reduction catalyzed by 

the choline oxidase variants containing alanine or threonine at position 464.  
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Figure 3.4. The Rates of Anaerobic Flavin Reduction Measured in a Stopped-flow 

Spectrophotometer as a Function of the Mole Fraction (n) of Deuterium Oxide Associated with 

the Fast (kred) and Slow (k3) Phases of Reduction for Val464Thr and Val464Ala. Panel A is the 

proton inventory of the kred value for Val464Thr. Panel B is the proton inventory of the kred value 

for Val464Ala.Panel C is the proton inventory of the k3 value for Val464Thr. Panel D is the 

proton inventory of the k3 value for Val464Ala. The lines represent linear fits of the data. 

 

Similar linear relationships were observed with both enzymes in the proton inventories 

associated with the k3 value (Figures 3.4C-D), also consistent with a single proton being in flight 

in the kinetic step involving the conformational change of the incompetent enzyme to the 

competent form of the enzyme. 

 

Effect of pH on the UV-Visible Absorbance Spectra of Free Oxidized Variant Enzymes. 

The pH dependence of the UV-visible absorbance spectra of the variant enzymes was determined 

to establish whether the pKa values for the 8α-N(3)-histidyl-FAD of choline oxidase were 

affected by replacing the valine at position 464 with alanine or threonine.  
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Figure 3.5. pH Dependence of the UV-visible Absorbance Spectra of Val464 Variant Enzymes. 

Absorbance spectra at varying pH were recorded in 20 mM sodium phosphate, 20 mM sodium 

pyrophosphate, at 15 °C, starting at pH 6.0 and increasing the pH with addition of NaOH. Panel 

A shows selected difference absorbance spectra for Val 464Thrspectrum pH x – spectrum pH 

6.0) in the pH range from 6.0 to 10.4. Inset, shows selected difference absorbance spectra 

(spectrum pH x – spectrum pH 10.4) in the pH range from 10.4 to 12.1. Panel B shows selected 

difference absorbance spectrafor Val464Ala. Arrows in panel A and B indicate the direction of 

increasing pH. Panel C shows the dependence of the UV-visible absorbance values at 489 nm for 

the Val464Thr enzyme on pH. Panel D shows the dependence of the UV-visible absorbance 

values at 489 nm for the Val464Ala enzyme on pH The data in panel Cand D were fit with 

equation 5. 

 

As the pH is increased from 6.0 to ~10.4 a progressive decrease in the absorbance at 

~380 nm, ~460 nm, and ~490 nm was observed (Figures 3.5A-B). Further increase of the pH 

above 10.4 yielded an inversion of the spectral changes at the three wavelengths, as clearly 

shown in Figures 3.5C-D for the case of ~490 nm.  
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The observed spectral changes, along with the fitting of the data with equation 5, are 

consistent with the presence of two pKa values associated with the ionization of the histidyl 

residue linking the flavin to the polypeptide chain (i.e., His99), and the N(3) atom of the 

isoalloxazine ring of the flavin (63-66). The relevant pKa values for the Val464Ala and 

Val464Thr enzymes are summarized in Table 3.5, along with the previously determined value 

for the wild-type form of choline oxidase
4
.  

 

Table 3.5. Comparison of the pKa Values Associated with the Ionization of the Enzyme-bound 

Oxidized Form of 8α-N(3)-histidyl-FAD in the Val464Ala, Val464Thr, and His466Ala Enzymes 

with Wild-type Choline Oxidase 
a
. 

Enzyme His99 flavin N(3)
 

Val464Ala 9.1 ± 0.1 ≥11.7
 

Val464Thr 9.1 ± 0.1 ≥12 

His466Ala 
b 

9.3 ± 0.2 nd 
c 

wild-type 
b 

8.2 ± 0.1 nd 
c 

a 
Conditions: 20 mM sodium pyrophosphate, 20 mM sodium phosphate and 15 °C. 

b
 Data are from (49). 

c
 nd, not 

determined. 

 

3.6. Discussion 

In this study, the hydrophobic residue Val464 lining the top of the active site cavity in 

proximity of the N(5) atom of the flavin cofactor of choline oxidase was replaced with either 

threonine or alanine to establish its role in the reductive half-reaction in which a hydride ion is 

transferred from choline to the flavin. The resulting Val464Thr and Val464Ala enzyme variants 

are properly folded, stable and functional, as suggested by a number of biophysical and 

biochemical properties that are in common with the wild-type form of choline oxidase. The 

                                                 
4
 In the course of an independent study on a number of choline oxidase variants in which serine 101 and histidine 99 

is replaced with other amino acid residues (Hongling Yuan and Giovanni Gadda; manuscript in preparation), we 

realized that our initial assignments of the pKa values associated with the UV-visible absorbance spectra for the 

wild-type and the variant enzyme His466Ala of choline oxidase published in 49. Ghanem, M., and Gadda, G. (2005) 

On the catalytic role of the conserved active site residue His466 of choline oxidase, Biochemistry 44, 893-904. are 

incorrect. In that study we erroneously assigned the pKa values observed at 8.2 and 9.3 to the N(3) atom of the 

flavin, rather than the histidyl residue covalently linking the flavin to the polypeptide chain (His99).  
 



112 

 

 112 

Val464 variants contain FAD covalently linked to the protein moiety, stabilize an anionic 

flavosemiquinone at pH 8.0 in the presence of air, display UV-visible absorbance spectra with no 

sign of protein denaturation, have kred, Kd, and 
D
kred values that are within three-fold from the 

values shown for the wild-type enzyme. Consequently, the role of the Val464 residue in the 

reaction of hydride transfer catalyzed by choline oxidase can be established by comparing and 

contrasting the kinetic and mechanistic properties of the enzyme variants containing threonine or 

alanine at position 464 with those of the wild-type enzyme containing valine. 

The hydrophobic residue at position 464 is important for the proper assembly of the 

catalytic machinery required for the reaction of choline oxidation catalyzed by choline oxidase. 

Indeed, the most dramatic effect of replacing Val464 with either a threonine or alanine is the 

stabilization of a catalytically incompetent form of enzyme that reversibly, slowly equilibrates 

with a form of enzyme that can oxidize choline. The conformational change that inter-converts 

the two forms of enzyme occurs on both the free species of choline oxidase devoid of ligands in 

the active site as well as the enzyme substrate complexes (Scheme 3.3), is associated with 

changes in the ionization state of a group on the enzyme which is not readily available to the 

bulk solvent. This conclusion is supported by the results of proton inventory on the anaerobic 

reduction of the flavin with choline, showing a linear dependence on the mole fraction of 

deuterated solvent of the rate constant for the conversion of the incompetent form of choline 

oxidase to the active form (k3). The spectroscopic properties of the Val464 variant enzymes in 

their catalytically incompetent and active forms further suggest that the ionizable group 

associated with the loss of catalytic activity must be linked to the flavin cofactor via a covalent 

bond, one or more hydrogen bonds, or electrostatic interactions. In this regard, upon replacing 

Val464 with threonine or alanine there is a one unit increase of the pKa value for the ionization 
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of the side chain of His99, which is the site of covalent attachment of the polypeptide to the C(8) 

methyl group of the flavin (54). This raises the attractive possibility that His99 may be involved 

in the formation and stabilization of the incompetent form of choline oxidase (see below). In 

support of this hypothesis is the 20 nm hypsochromic shift of the high energy band of FAD seen 

in the UV-visible absorbance spectra of the catalytically incompetent form of the Val464Ala and 

Val464Thr enzymes with respect to the active form, which is expected for a change in the 

ionization of an 8α-N(3)-histidyl-flavin (64-66). Further evidence of a change in ionization being 

involved in the inactivation of the enzyme is observed in the difference in the relative amounts of 

active and inactive forms of the investigated Val464 variant enzymes at pH 6.0 and 10.0. 

Replacement of Val464 with threonine or alanine significantly slows down the cleavage 

of the OH bond of choline in the oxidation reaction catalyzed by choline oxidase. In this regard, 

in the wild-type enzyme it was previously shown that the cleavage of the OH bond is 

considerably faster than the cleavage of the CH bond of choline, as indicated by 
D2O

(kred)H values 

of 0.99 and 
D
(kred)H2O values of 8.9 (47). In contrast, in the reactions catalyzed by the Val464Ala 

and Val464Thr enzymes the abstraction of the hydroxyl proton and the cleavage of the CH bond 

are both associated with deuterium kinetic isotope effects significantly larger than unity, with 

D2O
(kred)H values ≥4.2 and 

D
(kred)H2O values between 2.9 and 3.6. Interestingly, both cleavages of 

the OH and CH bonds contribute to different extents to the overall rate of flavin reduction 

depending upon the isotopic composition of the solvent or the substrate, consistent with the two 

steps having rate constants of similar magnitude. The similar increases of the pKa values for the 

8-α-N(3)-histidyl-flavin seen upon replacing Val464 with threonine or alanine and His466 with 

alanine (49) suggest that the slower rate of hydroxyl proton abstraction in the valine substituted 

enzymes may be due to a different positioning of His466, the flavin N(5) atom, or both with 
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respect to the initial alcohol substrate, as His466 was previously shown to facilitate hydroxyl 

proton abstraction by stabilizing the alkoxide species in catalysis (49).  

Substitution of Val464 with alanine or threonine has a minimal effect on the rate of 

hydride ion transfer from the α-carbon of the alkoxide species formed in catalysis and the N(5) 

atom of the flavin cofactor. Evidence supporting this conclusion comes from the comparison of 

the kred values with 1,2-[
2
H4]-choline, which primarily reflect the cleavage of the substrate CH 

bond, for the Val464Ala or Val464Thr enzymes with earlier data obtained with the wild-type 

enzyme, showing comparable rate constants (i.e., ~17 s
-1

 for the Val464 variants, as compared to 

10.4 s
-1

 for the wild-type enzyme (47)). 

The abstraction of the hydroxyl proton of choline in the enzyme variants substituted on 

Val464 is associated with an isomerization of the enzyme-substrate complex, as suggested by the 

effects of solvent viscosity on the rate constant for flavin reduction decreasing by ~40% in the 

presence of viscosigens. Since a reaction of hydroxyl proton abstraction per se is not expected to 

depend on the viscosity of the solvent, the effect of solvent viscosity must arise from a solvent 

sensitive internal equilibrium between a choline-enzyme complex and a choline alkoxide-

protonated enzyme complex. An internal equilibrium of the enzyme-substrate complex was 

proposed earlier for the wild-type form of choline oxidase based on the enthalpy of activation 

(H
‡
) for the reaction of hydride ion transfer under reversible catalytic regime being 

significantly larger than the H
‡
 value for the reaction under irreversible catalytic regime (53). In 

that case, it was demonstrated that the environmental organization required in the enzyme-

substrate complex to bring the hydride donor and acceptor in a preorganized configuration 

suitable for environmentally assisted tunneling is linked to the conformational change associated 

with the hydroxyl proton abstraction (48, 53). Furthermore, both solvent viscosity and substrate 
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kinetic isotope effects on the steady state kinetic parameters for the reaction of a choline oxidase 

variant in which Glu312 is substituted with aspartate were also interpreted with the presence of 

an internal equilibrium of the enzyme-substrate complex preceding the hydride transfer reaction 

(54).  

The structural information on the wild-type form of choline oxidase provides a solid 

framework to substantiate the hypothesis of an involvement of His99 in the inactivation of the 

enzyme. Indeed, the N(1) atom of His99 is located in a small cavity that is completely secluded 

from the bulk solvent, in hydrogen bonding distance (2.9 Å) with a structural water molecule 

(W2110). This water molecule, in turn, is in hydrogen bonding distance with the peptidyl oxygen 

atoms of Leu64 (3.1 Å) and Tyr69 (3.0 Å) located on a long loop (residues 64-95) covering the 

active site of the enzyme (Figure 3.6) (54). A change in the ionization state of His99 is expected 

to affect the hydrogen bonding pattern around W2110, conceivably resulting in a change in the 

conformation of the enzyme. The link between Val464 and His99, which are spatially located 

10.6 Å away from one another, is likely provided by His466. Since the C(2) atom of His466 is in 

van der Waals contact with a methyl group of Val464 (3.2 Å) and its N(3) atom is in hydrogen 

bonding distance from the N(1) atom of the flavin (3.2 Å) (Figure 3.6), it is expected that 

substitution of the hydrophobic side chain at position 464 (Val) with a hydrophilic side chain 

(Thr) or with an amino acid with a shorter side chain (Ala) would affect the interaction of His466 

with the flavin isoalloxazine moiety. In support of this conclusion is the observation that both the 

replacements of Val464 with threonine or alanine and of His466 with alanine have the same 

effect of increasing the pKa value for the ionization of the N(1) atom of His99 from 8.2 to ~9.1 
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(49). 

 

Figure 3.6. Close-up View of the Active Site of the Wild-type Form of Choline Oxidase 

Showing the Hydrogen Bonding Interactions Involving the N(1) atom of His99, a Structural 

Water Molecule (W2110) Secluded from the Bulk Solvent, the Peptidyl Oxygen Atoms of Leu64 

and Tyr69, the van der Waals Interaction Between a Methyl Group of Val464 and the C(2) Atom 

of His466, and the Hydrogen Bonding Interaction of the N(3) Atom of His466 and the N(1) 

Atom of the Flavin Cofactor (PDB entry 2jbv). 

 

In conclusion, the results presented in this study on the enzyme variants of choline 

oxidase in which Val464 has been replaced with alanine or threonine allow to conclude that the 

hydrophobic residue Val464 lining the active site cavity close to the N(5) atom of the flavin, 

although not directly participating in catalysis, is important for the positioning of the catalytic 

groups in the active site of the enzyme. Replacement of Val464 with alanine or threonine has 

uncovered a kinetically slow equilibrium between a catalytically incompetent form of enzyme 

and a form of enzyme that maintains the ability to efficiently oxidize the alcohol substrate. From 

a mechanistic standpoint, a major effect of the presence of a hydrophilic residue at position 464 

is to considerably decrease the rate of hydroxyl proton abstraction from the substrate in the 

reaction of choline oxidation, with a minimal effect on the rate of hydride ion transfer from the 
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alkoxide species to the N(5) flavin atom. The replacement of Val464 with threonine or alanine is 

likely to affect the preorganization of the enzyme-substrate complex that undergoes the hydride 

transfer reaction. In this respect, it will be of interest to tailor future studies towards addressing to 

which extent a mutation of a residue not directly participating in catalysis, such as Val464, may 

affect the mode of hydride ion transfer.  

 

3.7. Appendix 

The proposed mechanism for the reaction catalyzed by the choline oxidase variants Val464Ala 

and Val464Thr in which both the free enzymes and enzyme-substrate complexes can 

interconvert (61). The derivation of the equation that describes the rate of the second phase of 

flavin reduction follows the logic described by Frederick and Palfey (61) and the method laid 

forth by Cha (60). 

Scheme A1. Pre-steady State Mechanism of Val464 variant Enzymes. 

 

 

 

 

 

 

 

Assumptions:  

Free Eox and Eox* binding with substrate is in rapid equilibrium. This allows for the 

simplification (60) of Scheme A1 to yield a partial equilibrium mechanism shown in Scheme 

A2.  
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Scheme A2. Simplified Mechanism for Derivation of Pre-steady State Equations for Val464 

Variant Enzymes. 

Z
kc

kbka

Y

X  

 

In Scheme A2, X represents the rapid equilibrium segment for Eox* binding to substrate, Y 

represents the rapid equilibrium segment for  Eox binding to substrate and Z is the reduced 

enzyme and product. The rate constants ka and kb are apparent rate constants that represent the 

rate of interconversion of the two rapid equilibrium segments and kc is the apparent rate of flavin 

reduction.  

** 13
oxox

ESEa fkfkk            (A1)  

oxox ESEb fkfkk 24            (A2) 

SEredc ox
fkk             (A3) 

Where 
oxox

oxox
ESEESE

ffff  and  , , ** are fractional concentration factors defining the fraction of the 
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The change of the relative amounts of enzyme in a given rapid equilibrium segment can be 

described by the following differential equations: 

YkXk
dt

dX
ba            (A8) 

 YkkXk
dt

dY
cba           (A9) 

Yk
dt

dZ
c            (A10) 

The fast reaction is ~5000 times faster when substrate is saturating   * and dd KKs   than the 

slow reaction, meaning that the initial amount of Y, Y0 has reacted completely before any 

significant fraction of incompetent enzyme is converted to the competent form. This means upon 

onset of the second phase the initial amount of X, X0 will either still be in the form of X or have 

converted to Y or Z. 

ZYXXZYXX  00         (A11) 

 

Assuming steady state for Y.  

0
dt

dY
           (A12) 

 

Insert the above expression for X (A11) into the differential equation for Y (A12). 

     YkkZYXk cba 00          
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kkk

ZXk
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 0           (A13) 
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Insert expression for Y (A13) into the differential equation for Z (A10) and solve for Z. 
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Insert the expressions for ka, kb and kc (A1-A3) into the term for the observed rate (A14): 
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The limiting values for the observed rate of flavin reduction: 
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CHAPTER IV 

ROLE OF VAL464 IN THE FLAVIN OXIDATION REACTION CATALYZED BY 

CHOLINE OXIDASE 

 

(This chapter has been submitted for publication verbatim in Finnegan, S, Agniswamy, J, Weber, 

I and Gadda, G., (2010), Biochemistry) 

 

4.1.Abbreviations  

DMB, 3,3-dimethyl-butan-1-ol. FAD, flavin adenine dinuclotide, TMA, trimethylamine 

 

4.1.Abstract 

The oxidation of reduced flavin cofactors by oxygen is a very important reaction that is central to 

the chemical versatility of hundreds of flavoproteins classified as monooxygenases and oxidases. 

These enzymes are characterized by bimolecular rate constants ≥10
5
 M

-1
s

-1
, and produce water 

and hydrogen peroxide, respectively. A hydrophobic cavity close to the reactive flavin C(4a) 

atom has been previously identified in the 3D structure of monooxygenases, but not in 

flavoprotein oxidases. In the present study, we have investigated by X-ray crystallography, 

mutagenesis, steady state and rapid reaction approaches the role of Val464, which is <6 Å from 

the flavin C(4a) atom in choline oxidase. The 3D structure of the Val464Ala enzyme was 

essentially identical to that of the wild-type enzyme as shown by X-ray crystallography. Time-

resolved anaerobic substrate reduction of the enzymes showed that replacement of Val464 with 

alanine or threonine did not affect the reductive half-reaction. Steady state and rapid kinetics as 

well as enzyme monitored turnovers indicated that the oxidative half-reaction in the Ala464 and 

Thr464 enzymes was decreased by ~50-fold with respect to the wild-type enzyme. We propose 

that the side chain of Val464 in choline oxidase provides a non-polar site that is required to guide 
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oxygen in proximity of the C(4a) atom of the flavin, where it will subsequently react via 

electrostatic catalysis. Visual analysis of available structures suggests that analogous non-polar 

sites are likely present in most flavoprotein oxidases. Mechanistic considerations provide 

rationalization for the differences between sites in monooxygenases and oxidases. 

 

4.2.Introduction 

The oxidation of reduced flavin cofactors by molecular oxygen, or the lack thereof, is a very 

important chemical reaction that is at the core of the chemical versatility displayed by 

flavoenzymes. Flavoenzymes comprise hundreds of enzymes catalyzing the most diverse 

biochemical reactions. Depending upon the ability to react with oxygen and the product of 

oxygen reduction, three general classes of flavoenzymes are distinguished (1-2). Flavoprotein 

dehydrogenases show very little or no reactivity with oxygen, thereby requiring other electron 

acceptors for catalytic turnover. On the other hand, monooxygenases and oxidases show high 

reactivity with oxygen, which is usually characterized by second-order rate constants ≥10
5
 M

-1
s

-

1
, with water and hydrogen peroxide being produced in the reactions, respectively (1). Reduced 

flavins existing free in solution, i.e., not associated with a protein, also reduce oxygen, but with 

much slower bimolecular rate constants of 2.5 x 10
2
 M

-1
s

-1
 (3). It is therefore the protein 

microenvironment surrounding the flavin in flavoprotein dehydrogenases, monooxygenases and 

oxidases that modulates the extent to which the reduced flavin reacts with oxygen in these 

different classes of enzymes (2, 4-5). 

Several studies on a number of enzymes have contributed to the current knowledge of the 

features in the active sites of flavoenzymes that contribute to the up- and down-modulation of 

oxygen reactivity. A classical example of a dehydrogenase, where oxygen reactivity is 

suppressed due to ligand binding, is mammalian medium-chain acyl-CoA dehydrogenase, where 
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the presence of the ligand has been shown to increase the redox potential of the flavin and to 

desolvate the active site (6-7). Lack of oxygen reactivity can also be due to steric effects arising 

from the presence of amino acid side chains that physically prevent oxygen from approaching the 

reactive C(4a) atom of the reduced flavin (see Scheme 4.1 for flavin numbering), as in the case 

of the alanine residues in the active sites of a mutant form of L-lactate monooxygenase (8) and 

L-galactono-γ-lactone dehydrogenase (9). 
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Scheme 4.1. Activation of Oxygen by a Positively Charged Group in Glucose Oxidase, 

monomeric Sarcosine Oxidase, and Choline Oxidase. 

 

On the other hand, studies on glucose oxidase using mechanistic and structural approaches 

have established that the presence of a positive charge on a histidine residue in proximity of the 

flavin C(4a) atom is required to stabilize the negatively charged superoxide species that is 

formed transiently in the reaction of the reduced flavin with oxygen (Scheme 4.1) (10-13). 

Similar activations of molecular oxygen have been proposed in monomeric sarcosine oxidase 

and choline oxidase, where the positive charge is provided by an active site lysine in the former 

and the trimethylammonium moiety of the enzyme-bound substrate in the latter (Scheme 4.1) 

(14-16). Based on a combination of site-directed mutagenesis with mechanistic and structural 

investigations, a hydrophobic tunnel has been proposed to guide oxygen to the C(4a) atom of the 

reduced flavin in cholesterol oxidase (17). More recently, an integrated approach based on X-ray 

crystallography, enhanced-statistics molecular dynamics simulations, kinetics and site-directed 
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mutagenesis, allowed the authors to propose the presence of multiple diffusion pathways that 

converge to the reactive center on the flavin in the monooxygenase component C2 of p-

hydroxyphenylacetate hydroxylase and alditol oxidase (18). In this respect, the three-dimensional 

structure of the monooxygenase component C2 of p-hydroxyphenylacetate hydroxylase also 

shows the presence of a hydrophobic cavity with proper geometry in proximity of the C(4a) atom 

of the flavin, a feature that is not structurally apparent in flavoprotein oxidases (19). These 

results collectively present general principles for the reaction with oxygen or lack thereof in 

flavoproteins. They do not, however, directly address whether the site in flavoprotein oxidases 

where oxygen reacts with the reduced flavin has some non-polar character in addition to the 

positively charged group that is required for the activation of oxygen (Scheme 4.1).  

Our group has investigated the reaction of alcohol oxidation catalyzed by the FAD-

containing choline oxidase from Arthrobacter globiformis using biochemical (20-23), structural 

(24-25), site-directed mutagenic (15, 21, 25-28), and mechanistic (29-35) approaches. The 

enzyme catalyzes the two-step, flavin-linked oxidation of choline to glycine betaine, with betaine 

aldehyde as intermediate and molecular oxygen as electron acceptor (Scheme 4.2).  

N
OH

N
H

O

N
O

O

H2O2 O2

FAD FADH-

H2O

FAD

H2O2 O2

FADH-

+ H+

alcohol oxidation aldehyde oxidation

 

Scheme 4.2. Two-step Oxidation of Choline Catalyzed by Choline Oxidase. 

 

A detailed mechanistic understanding of the reductive half-reaction where a hydride ion is 

transferred from choline to the enzyme-bound flavin has emerged from these studies (for a recent 

review see (36)). The subsequent oxidation of the enzyme-bound, reduced flavin with oxygen 
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occurs while the active site is still occupied with the aldehyde intermediate of the reaction, as 

suggested by steady state kinetic studies with choline and a number of substrate analogues (15-

16, 23, 31, 34). In this respect, site-directed mutagenesis studies where each of the three histidine 

residues located in the active site of the enzyme were individually replaced indicated that these 

residues do not contribute to oxygen activation, as the bimolecular rate constants for oxygen 

reaction (kcat/Koxygen) were not significantly altered in the mutant enzymes from the value of ~10
5
 

M
-1

s
-1

 of the wild-type enzyme (27, 37-38). In contrast, substitution of the positively charged 

substrate with the isosteric analogue devoid of charge 3,3-dimethyl-butan-1-ol yielded kcat/Koxygen 

values of ~10
3
 M

-1
s

-1
, consistent with activation of oxygen for reaction with the reduced flavin 

being exerted by the enzyme-bound ligand (15-16). In agreement with this conclusion, the 

His99Asn, His351Ala, His466Ala and wild-type forms of choline oxidase showed kcat/Koxygen 

values that are independent of pH, since the trimethylammonium moiety of the substrate cannot 

ionize (15, 23, 27, 32, 37-38). In the X -ray structure of choline oxidase previously solved to a 

resolution of 1.86 Å (24-25), Val464 lies in the active site cavity close to the C(4a)-N(5) atoms 

of the flavin, with its hydrophobic side chain in van der Waals contact with the C(2) atom of the 

conserved His466. 

Eox + S EoxS Ered + P
Kd kred

E*
ox + S E*

oxS

k2k1

first phase

second phase

Kd
*

k4k3

 

Scheme 4.3. Minimal Kinetic Mechanism for Reductive Half-reaction of the Val464Ala and 

Val464Thr Enzymes. Eox, catalytically competent oxidized enzyme; Eox*, catalytically 

incompetent enzyme; S, choline; Ered, reduced enzyme. 
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Replacement of Val464 with threonine or alanine results in the ensuing variant enzymes 

having a catalytically incompetent form of enzyme in equilibrium with a competent form 

(Scheme 4.3) that is able to efficiently oxidize choline with rates similar to  those determined for 

the wild-type enzyme (28). 

In the present study, we have used X-ray crystallography, site-directed mutagenesis, and both 

steady state and rapid kinetics approaches to investigate the role of the hydrophobic residue 

Val464 in the active site of choline oxidase. The three-dimensional structure of the Val464Ala 

enzyme was solved by X-ray crystallography to a resolution of 2.2 Å, and the oxidative half-

reactions, steady state kinetic mechanisms and enzyme monitored turnovers were investigated 

for the Val464Ala and Val464Thr variants along with the wild-type enzyme for comparison. 

Moreover, pH profiles of the kcat/Koxygen values with choline as substrate and the effect of 

substituting choline with 3,3-dimethyl-butan-1-ol on the kcat/Koxygen values were investigated in 

the Val464Ala enzyme. The results presented established the hydrophobic side chain of Val464 

as being important in the oxidative half-reaction of choline oxidase, with minimal effects on the 

reaction of choline oxidation and, most importantly, the three-dimensional structure of the 

enzyme. A role is proposed for Val464 in the flavin oxidation reaction catalyzed by choline 

oxidase. Analysis of the three-dimensional structures of several flavoprotein oxidases suggests 

that hydrophobic residues in the active site of these enzymes may have roles similar to that of 

Val464 in choline oxidase in the reaction of the reduced flavin with oxygen. 

 

4.3.Experimental procedures 

Materials. Escherichia coli strain Rosetta(DE3)pLysS was from Novagen (Madison, WI). 

DNase was from Roche (Indianapolis, IN). The QuikChange site-directed mutagenesis kit was 
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from Stratagene (La Jolla, CA). The QIAprep Spin Miniprep kit was from Qiagen (Valencia, 

CA). Oligonucleotides used for sequencing of the mutant genes were custom synthesized by 

Sigma Genosys (Woodland, TX). Choline chloride was from ICN Pharmaceutical Inc (Irvine, 

CA). 3,3-Dimethyl-butan-1-ol (DMB), glucose, glucose oxidase and betaine aldehyde were from 

Sigma (St. Louis, MO). All other reagents were of the highest purity commercially available.  

 

Site-Directed Mutagenesis. The Val464Ala, Val464Thr, and Val464Leu enzymes were 

prepared using the pET/codA plasmid harboring the wild-type gene for choline oxidase as 

template for site-directed mutagenesis as previously described, and the presence of the desired 

mutation was confirmed by sequencing as described (21-22, 25, 28). 

 

Enzyme Expression and Purification. The Val464Ala, Val464Thr and wild-type enzymes 

were expressed and purified to homogeneity using the procedure described previously for the 

purification of the wild-type enzyme (16, 22). Attempts to purify the Val464Leu enzyme were 

unsuccessful; stable and active enzyme could not be obtained due to protein instability during 

protein purification, thereby preventing the characterization of the ValLeu substitution at 

position 464. 

 

Crystallization, X-ray Data Collection and Refinement of the Val464Ala Enzyme. Crystals 

of theVal464Ala enzyme were grown aerobically at room temperature by hanging drop vapor 

diffusion from 10-15% (v/v) polyethylene glycol MW 6000, 50-200 mM magnesium acetate and 

200 mM trimethylamine in 0.08 M sodium cacodylate, pH 6.0. Single crystals were transferred 

from the mother liquor into a cryoprotectant consisting of mother liquor with 25% (v/v) glycerol 
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and allowed to soak for approximately 2 min prior to flash-freezing in liquid nitrogen. 

Diffraction data were collected at 100 K on beamline 22-ID of the Southeast Regional 

Collaborative Access Team (SER-CAT) at the Advanced Photon Source, Argonne National 

Laboratory. The data were integrated and scaled with HKL2000 (39). 

The crystal structure of the Val464Ala enzyme was solved by molecular replacement using 

PHASER (40) in the CCP4i suite of programs using as the starting model the structure of wild-

type choline oxidase (PDB code 2JBV) (25). The structure was subjected to several rounds of 

refinement in REFMAC (41) of CCP4. The molecular graphics programs O 9.0 (42) and Coot 

0.33 (43) were used in model rebuilding. The solvent molecules were inserted at 

stereochemically reasonable positions based on the peak height of the 2Fo-Fc and Fo-Fc electron 

density maps, hydrogen bond interactions and inter-atomic distances. The geometry of the 

refined structures was validated according to the Ramachandran plot criteria (44). Molecular 

figures were prepared with MOLSCRIPT, RASTER3D (45) and PyMol (http://www.pymol.org). 

 

Enzyme Monitored Turnover. Enzyme monitored turnover experiments were carried out by 

monitoring the absorbance at 455 nm as a function of time using an SF-61DX2 HI-TECH 

KinetAsyst high performance stopped-flow spectrophotometer thermostated at 25 °C. The 

aerobic enzyme solution was mixed with an aerobic solution of 20 mM choline, both prepared in 

50 mM sodium pyrophosphate, pH 10.0. The final [oxygen] was 0.25 mM; the final [choline] 

was 10 mM. 

 

Enzyme Kinetics. Steady state kinetic measurements were carried out by using the method of 

initial rates using a computer-interfaced Oxy-32 oxygen-monitoring system (Hansatech 

http://www.pymol.org/
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Instrument Ltd.) (46). The pH dependence of the bimolecular rate constants for reaction of the 

reduced flavin with oxygen (kcat/Koxygen) was determined by measuring enzymatic activity at 

varying concentrations of choline and oxygen in the pH range between 5.0 to 10.0 in 50 mM 

sodium pyrophosphate at 25 °C, with the exception of pH 7.0 where sodium phosphate was used. 

The assay reaction mixture was equilibrated at the desired oxygen concentration by bubbling 

with an O2/N2 gas mixture for at least 10 min before the reaction was started with the addition of 

the enzyme. 

Oxidative half-reaction measurements for the wild-type, Val464Ala and Val464Thr enzymes 

were carried out using an SF-61DX2 HI-TECH KinetAsyst high performance stopped-flow 

spectrophotometer thermostated at 25 °C, in 50 mM sodium pyrophosphate buffer, pH 10.0. The 

rate constants for flavin oxidation were measured by monitoring the increase in absorbance at 

455 nm that results from the mixing of anaerobic reduced enzyme in 50 mM buffer with 50 mM 

buffer which was equilibrated at varying oxygen concentrations by sparging with an O2/N2 gas 

mixture for at least 10 min prior to mixing. The enzymes were previously reduced by anaerobic 

mixing of the oxidized enzymes with a 1.1-molar excess of betaine aldehyde. 

 

Data Analysis. Kinetic data were fit with KaleidaGraph (Synergy Software, Reading, PA) or 

the Hi-Kinetic Studio Software Suite (Hi-Tech Scientific, Bradford on Avon, U.K.). A first 

attempt at the determination of the steady state kinetic parameters for the Val464Ala and 

Val464Thr enzymes at varying concentrations of both choline and oxygen was carried out by 

fitting the initial rates to eq 1, which describes a steady state kinetic mechanism with formation 

of a ternary complex. Kcholine and Koxygen are the Michaelis constants for choline and oxygen, 

respectively, and kcat is the true turnover number of the enzyme (e) at saturating concentrations of 
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both choline and oxygen. This approach yielded estimated Koxygen values in the 5-8 mM range, 

which were ≥5-fold higher than the highest concentration of oxygen that was used in the 

experiments, thereby preventing saturation of the enzyme with oxygen. Thus, the true value for 

kcat, as well as the derivative parameter kcat/Koxygen, could not be determined by using eq 1. Since 

the kcat/Koxygen value represents the bimolecular rate constant for the capture of oxygen onto the 

enzyme when [oxygen] <Koxygen, it could be determined graphically as described below (eq 2). 

Here, the kcat/Koxygen values were determined from the reciprocal of the y-intercept of a secondary 

plot of the slopes of the lines obtained from the primary double reciprocal plot of e/vo versus 

1/[oxygen] (i.e., slope1/[oxygen]) as a function of 1/[choline] (47): 

oxygeniaoxygencholine
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Stopped-flow traces for the oxidative half-reaction were fit with eq 3, which describes a 

single-exponential process in which kobs is the observed rate constant for the increase in 

absorbance at 455 nm, A is the absorbance at time t, B is the amplitude of the absorbance change, 

and C is an offset value that accounts for the non-zero absorbance value at infinite time. 

 

  CtkexpBA obs             (3) 

The pre-steady state bimolecular rate constant for flavin oxidation was determined with eq 4. 

Here, the kobs value is the observed rate constant associated with flavin oxidation at any given 

concentration of oxygen, kox is the second-order rate constant for flavin oxidation.  

]oxygen[oxobs kk            (4) 
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4.4.Results 

Determination of the Crystal Structure of the Val464Ala Enzyme
1
. The Val464Ala enzyme 

was crystallized in the tetragonal space group P43212 with a homodimer in the asymmetric unit. 

The structure was refined to the resolution of 2.2 Å and R-factor of 16.5 %. The X-ray 

diffraction data and refinement statistics are listed in Table 4.1.  

Table 4.1. Crystallographic Data Collection and Refinement Statistics 

 Choline Oxidase 

Val464Ala 

Space group P43212 

a = b (Å) 

c (Å) 

87.04 

353.07 

Resolution range 50-2.2 

Total observations 411,516 

Unique reflections 67,756 

Completeness 96.0 (99.5)
a
 

<I/(I)> 12.3 (5.5) 

Rsym (%)
b
 13.4 (37.6) 

Resolution range 50-2.2 

Rcryst (%)
c 

16.5 

Rfree (%)
d
 22.7 

Mean B-factor (Å
2
) 19.4 

Number of atoms  

    Protein 8302 

    FAD 106 

    Water 472 

r.m.s. deviations   

    Bond length (Å) 0.025 

    Angles () 2.08 
a
Values in parentheses are given for the highest resolution shell 

b
Rsym = hkl|Ihkl - Ihkl|/hklIhkl. 

c
R = |Fobs-Fcal|/Fobs. 

d
Rfree = test(|Fobs|-|Fcal|)

2
/test|Fobs|

2
. 

 

Although the replacement of the side chain on residue 464 from valine to alanine results in 

loss of van der Waals interactions between Ala464 and His310, Glu312, His351 and Asn378, 

                                                 
1
 The atomic coordinates and structure factors have been deposited in the Protein Data Bank as entry 3LJP 
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these residues are located in the same position in the mutant and wild-type enzymes (2JBV) 

(Figure 4.1).  

 

Figure 4.1. Crystal Structure of Val464Ala Mutant. Panel A shows the 2Fo-Fc electron density 

map of FAD contoured at a level of 1 . The FAD is covalently bound to His99. Panel B 

illustrates the superposition of the FAD isoalloxazine ring from the wild-type (cyan) and the 

Val464Ala enzymes (colored by element type) of choline oxidase. The C(4a) oxygen adduct of 

wild-type FAD is shown in magenta. Note that the isoalloxazine ring of the Val464Ala enzyme 

is more planar than that of the wild-type structure. Panel C shows the Val464Ala mutation site. 

The van der Waals interactions between the side chains of Val464 (green) and residues His310, 

Glu312, His351 and Asn378, indicated by broken lines, are lost in the structure of the Val464Ala 

enzyme. Despite the loss of these interactions, these residues in the Val464Ala enzyme maintain 

virtually identical conformations and positions to those in the wild-type enzyme. 
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The homodimers of the Val464Ala enzyme could be superimposed with those of the wild-

type enzyme with an rmsd value of 0.67 Å for 1056 topologically equivalent C atoms, 

consistent with the overall structure of the Val464Ala enzyme being essentially identical to that 

of the wild-type choline oxidase (2JBV) previously reported. The individual monomers of the 

Val464Ala enzyme are even more similar to those of the wild-type choline oxidase with rmsd 

values of 0.29 Å and 0.25 Å for the A and B chain, respectively. Furthermore, the two monomers 

within the structure of the Val464Ala enzyme are very similar to one another, as evident from 

the rmsd values of 0.22 for 528 common C atoms. 

The FAD in the Val464Ala enzyme is covalently bound to the N2 atom of His 99 as in the 

case of wild-type (25). The 2Fo- Fc electron density map of FAD contoured at 1 is shown in 

Figure 4.1. A striking difference between the structures of the Val464Ala and wild-type 

enzymes is the absence of the C(4a) oxygen adduct on the re-face of the FAD cofactor, observed 

in the wild-type enzyme, on the FAD cofactor in the Val464Ala variant enzyme, resulting in the 

isoalloxazine moiety of the FAD cofactor in the variant enzyme being more planar than that in 

the wild-type (Figure 4.1B). This difference is consistent with the C(4a) atom of the of the FAD 

cofactor being sp
3
 hybridized in the wild-type enzyme due to the presence of the C(4a) adduct as 

compared to sp
2
 hybridized in the Val464Ala enzyme. For the wild-type choline oxidase the 

enzyme-bound FAD is likely reduced in the X-ray beam during data collection and the reduced 

FAD then forms either a C(4a)-OH or C(4a)-OO(H) adduct but an insufficient proton inventory 

prevents the FAD reoxidation to proceed (24). The absence of the FAD C(4a) adduct in the 

crystal structure of the Val464Ala enzyme is most likely due to the lowered apparent affinity for 

oxygen in the Val464Ala variant enzyme as compared to the wild-type enzyme as observed by 

the inability to saturate the Val464Ala enzyme with oxygen in the steady state kinetic studies. 
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Alternatively, it may simply be due to the FAD not being reduced during the data collection and 

thus making the formation of the C(4a) adduct impossible in the synchotron. The crystallization 

conditions for both the wild-type and the variant enzyme do not contain any reagents known to 

form C(4a) adducts with FAD.  

 Overall, with the exception of the point mutation that replaces Val464 with alanine, the 

orientation and position of all the amino acid residues in the active site and in the vicinity of the 

Ala464 position in the Val464Ala enzyme are closely identical to those of the wild-type form of 

choline oxidase, as illustrated in Figure 4.1. The point mutation at position 464 results in an 

important difference observable in the structures of the Val464Ala variant and the wild-type 

enzyme, which is a significant increase in the size of the pocket on the re-face directly above the 

C(4a)-N(5) atoms of the flavin. This pocket is defined by His351, Ala464, and His466, and is the 

location where the C(4a) oxygen adduct is observed in the crystal structure of the wild-type 

enzyme, consistent with this being the site of oxygen reduction. In this regard, a 2 Å increase is 

seen in the distance between the C(4a)-N(5) atoms of FAD and the nearest side chain atom CB 

of Ala464 with respect to the distance to side chain atom CG1 of Val464 in the wild-type 

enzyme. 

 Interestingly, only one form of the Val464Ala variant enzyme is observable in the crystal 

structure solved even though the enzyme has previously been shown to exist in an equilibrium 

between an incompetent and a competent form (28).  The crystallization conditions for 

Val464Ala  included 200 mM trimethylamine, which is a substrate analog known to be a 

competitive inhibitor of the wild-type choline oxidase (16). Although trimethylamine is not 

observed in the 3D X-ray crystal structure of the enzyme, it may have contributed to the selective 

crystallization of only one form of the Val464Ala variant enzyme. Alternatively, the ΔHfusion for 
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the phase change associated with the crystallization may be sufficient to shift the equilibrium 

during this process to a point where the crystal only contains one form of enzyme. 

 

 Steady State Kinetic Mechanism of Val464Ala and Val464Thr Enzymes. The steady state 

kinetic mechanisms of the Val464Ala and Val464Thr enzymes were investigated with the 

method of the initial rates by monitoring the rates of oxygen consumption in a Clark oxygen 

electrode, in the pH-range from pH 5.0 till pH 10.0, at varying concentrations of both choline 

and oxygen. The analysis of the collected data is shown here exemplified by the data collected at 

pH 8.0 and 25 
o
C .With both enzymes, a double reciprocal plot of the initial rates of reaction as a 

function of [choline] yielded intersecting lines, as previously reported for the wild-type and 

several mutants of choline oxidase (25, 27, 37-38, 48-50). Therefore, the kcat/Koxygen value is not 

independent of the concentration of choline, unless oxygen is saturating (47). The data with the 

Val464Ala enzyme were fit well with eq 1, yielding, however, computer-estimated Koxygen values 

in the 5-8 mM range, which was at least 5-fold larger than the highest [oxygen] used (i.e., 1 

mM). Lack of enzyme saturation with oxygen thereby prevented the use of eq 1 for the 

determination of the steady state kinetic parameters of the enzyme. The kcat/Koxygen values were 

therefore determined graphically with the data at hand by using eq 2, as described in the 

Experimental Procedures. This yielded a kcat/Koxygen value of 1,500 ± 150 M
-1

s
-1

 at pH 8.0. 

With the Val464Thr enzyme, the dependences of the initial rates of reaction on [oxygen] at 

different concentrations of choline showed sigmoidal rather than hyperbolic patterns (Figure 

4.2) and were fit best to a Hill equation. As for the case of the Val464Ala enzyme, the estimated 

Koxygen values were well above the maximal [oxygen] of ~1 mM that was used, thereby 

precluding the determination of meaningful kinetic parameters. Moreover, the sigmoidal kinetic 
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patterns prevented the determination of the kcat/Koxygen values for the Val464Thr enzyme by using 

the graphical methods employed for the Val464Ala enzyme.  
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Figure 4.2. Dependence of the Initial Rates of Reaction with Choline as Substrate for the 

Val464Thr Enzyme as a Function of [Oxygen] in 50 mM Sodium Pyrophosphate, pH 10.0 and 

25 °C. Choline concentrations were:  5 mM (●), 1 mM (○), 0.1 mM (■), and 0.05 mM (□). The 

curves are independent fits of the data to the Hill equation 

(v/e=kcat[oxygen]
h
/(Koxygen

h
+[oxygen]

h
).  

 

A kinetic behavior similar to that shown by the Val464Thr enzyme was recently reported for 

selected active site variants of cholesterol oxidase, where the observations were explained with a 

rate-limiting interconversion of multiple forms of enzyme reacting differently with oxygen (17). 

Although this interpretation could satisfactorily explain the steady state kinetic pattern of the 

Val464Thr enzyme, lack of saturation of the enzyme with oxygen did not allow us to further 

investigate the steady state kinetic mechanism and draw conclusions on the steady state behavior 

of the Val464Thr enzyme. 

 

pH Dependence of the kcat/Koxygen Values of Val464Ala Enzyme. The effect of pH on the 

kcat/Koxygen values of the Val464Ala enzyme is shown in Figure 4.3. As for the case of the wild-

type enzyme (32), the Val464Ala enzyme had kcat/Koxygen values that were independent of the pH 
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between 5.0 and 10.0, however with an average value of 1,700 ± 150 M
-1

s
-1

. This value is ~50-

fold lower than the pH independent kcat/Koxygen value of 90,000 M
-1

s
-1

 that was previously 

reported for the wild-type enzyme (32), indicating that the oxidative half-reaction in choline 

oxidase is affected substantially by the replacement of Val464 with alanine. 
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Figure 4.3. Effect of pH on the kcat/Koxygen Values with Choline as Substrate for the Val464Ala 

Enzyme (●) Compared to Wild-type Enzyme (○). The lines that fit the kcat/Koxygen values 

represent the average of the values. Data for wild-type enzyme are from (32). 

 

Oxidative Half-reactions of Wild-type, Val464Ala and Val464Thr Enzymes at pH 10.0. 

The oxidative half-reactions where the reduced Val464Ala, Val464Thr and the wild-type 

enzymes were oxidized with oxygen were investigated using a stopped-flow spectrophotometer. 

The rate constants for flavin oxidation were measured from the increase in absorbance at 455 nm 

of the flavin cofactor at various concentrations of oxygen at pH 10.0 and 25 
o
C. As shown in 

Figure 4.4, for all three investigated enzymes the oxidation of the flavin from the hydroquinone 

to the fully oxidized state was monophasic, without formation of any detectable transient species. 

The monophasic behavior of FAD oxidation is consistent with the mechanism shown in Scheme 

4.3, showing that upon complete reduction of the FAD cofactor by the substrate only one form of 

reduced enzyme is present.  
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Figure 4.4. Time-resolved, Flavin Oxidation of the Val464Ala, Val464Thr and Wild-type 

Enzymes with Oxygen in 50 mM Sodium Pyrophosphate, pH 10.0 and 25 °C, Monitored at 455 

nm in a Stopped-flow Spectrophotometer. Panel A shows the oxidation traces of the wild-type 

enzyme with 460 µM oxygen (black), Val464Thr with 475 µM oxygen (red) and Val464Ala 

with 460 µM oxygen (blue). All traces were fit to eq 3, yielding R
2
-values > 0.999. For clarity, 

only one experimental point out of every two points is shown for the wild-type enzyme (vertical 

lines) and one out of ten points are shown for both Val464Ala and Val464Thr. The time 

indicated is after the end of flow, i.e., 2.2 ms. Panel B shows the dependence of the observed rate 

constants for flavin oxidation as a function of the concentration of oxygen for the wild-type (), 

Val464Ala () and Val464Thr () enzymes. For each enzyme the observed rate constants were 

fit to eq 4. 

 

With all investigated enzymes, the observed rate constants for flavin oxidation (kobs) when 

plotted as a function of the concentration of oxygen defined second order processes (Figure 4.4). 

For the wild-type enzyme the kox was 1900 ± 40 M
-1

s
-1

, whereas for the Val464Ala and 

Val464Thr enzymes it was 100 ± 2 M
-1

s
-1

 and 125 ± 4 M
-1

s
-1

,
 
respectively. These kox values refer 

to the free enzymes and therefore do not reflect the values that would be measured in enzymatic 

turnover where oxygen reacts with the reduced flavin when the active site is occupied with the 

product of the oxidation reaction; however, they demonstrate that the Val464Ala and Val464Thr 

enzymes are impaired to similar extents in their ability to react with oxygen with respect to the 

wild-type enzyme, with a significant decrease in the kox values. Attempts to determine the kox 

values for the three enzymes with the substrate bound were unsuccessful, due to inability to 

obtain a stable reduced enzyme-substrate complex. 
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Enzyme Monitored Turnover of Val464Ala, Val464Thr, and Wild-type Enzymes. Enzyme 

monitored turnovers were carried out on the Val464Ala and Val464Thr enzymes under 

atmospheric oxygen conditions (i.e., 0.25 mM oxygen) with 10 mM choline at pH 10.0 in a 

stopped-flow spectrophotometer. As shown in Figure 4.5, the enzymes reached steady state 

conditions of turnover with choline and oxygen when the absorbance at 455 nm was about 2/3 

that of the fully oxidized, resting enzymes.  
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Figure 4.5. Enzyme Monitored Turnovers with Choline and Oxygen as Substrates for the 

Val464Ala (panel A), Val464Thr (panel B), and Wild-type (panel C) Enzymes. In all cases, 

[choline] = 10 mM, [oxygen] = 0.25 mM, pH 10.0 and 25 
o
C. The top arrow corresponds to the 

extinction coefficient at 455 nm of the fully oxidized enzyme (both the catalytically competent 

and incompetent forms for the Val464 substituted enzymes), while the bottom arrow corresponds 

to the fully reduced enzyme after oxygen depletion in the reaction mixture (and also full 

conversion of the incompetent to catalytically competent forms for the Val464 substituted 

enzymes). The horizontal lines in panels A and B define the expected absorbance during 

turnover of the Val464Ala and Val464Thr enzyme when all of the catalytically competent form 

of the enzyme is in the reduced state and the incompetent form of the enzyme, which does not 

undergo turnover, is still present in the oxidized form before slowly converting to the 
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catalytically competent form. The ratios Eox/Etot are estimations of the fraction of oxidized 

(catalytically competent) enzyme with respect to the total enzyme that is catalytically competent 

for turnover. 

 

This value corresponded well with the fraction of enzyme that is present in the catalytically 

competent form (i.e., 65%), which was previously determined for both the Val464Ala and 

Val464Thr enzymes (28). Since complete conversion of the incompetent to competent forms of 

the Val464 variant enzymes occurs over several seconds (28), during the steady state catalytic 

turnover of Figure 4.5 the majority of the enzyme-bound flavin was in the reduced form in the 

Val464Ala and Val464Thr enzymes that are competent for catalysis. The reductive half-reaction 

in both the Val464 substituted enzymes is minimally affected with respect to the wild-type 

enzyme  (28), and the two enzymes also show similar behavior in the enzyme monitored 

turnover. Hence, it can be concluded that the oxidative half-reactions are affected to similar 

extents in the Val464Ala and Val464Thr enzymes with respect to the wild-type choline oxidase. 

In this respect, a control experiment with the wild-type enzyme showed that ~20% of the 

enzyme-bound flavin is in the oxidized state under catalytic turnover of the enzyme in the same 

conditions (Figure 4.5), consistent with the much higher bimolecular rate constant kcat/Koxygen for 

the oxidative half-reaction of the wild-type enzyme (32). 

 

kcat/Koxygen Values of Val464Ala Enzyme with 3,3-Dimethyl-butan-1-ol as Substrate. The 

kcat/Koxygen values of the Val464Ala enzyme were also determined with 3,3-dimethyl-butan-1-ol, 

an isosteric analogue of choline that contains a tert-butyl headgroup devoid of charge. The effect 

of the substrate analog on kcat/Koxygen for the Val464Ala enzyme was determined at pH 8.0 in 

order for it to be directly compared to a previous study performed on the wild-type enzyme (16). 

As for the case of choline as substrate, the Val464Ala enzyme could not be saturated with 
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oxygen due to Koxygen being significantly larger than the highest [oxygen] of ~1 mM that was 

attainable in the experiment (data not shown). Consequently, the apparent kcat/Koxygen values were 

determined by measuring initial rates of reaction as a function of [oxygen] at fixed saturating 

concentrations of 3,3-dimethyl-butan-1-ol. As shown in Table 4.2, similar 
app

(kcat/Koxygen) values 

were determined with 10 mM, 30 mM and 40 mM 3,3-dimethyl-butan-1-ol, establishing a true 

kcat/Koxygen value of 31 ± 2 M
-1

s
-1

 at pH 8.0 for the reaction of the Val464Ala enzyme with 3,3-

dimethyl-butan-1-ol as substrate.  

Table 4.2. 
app

(kcat/Koxygen) for the Val464Ala Enzyme at Fixed Saturating Concentrations of 3,3-

dimethyl-butan-1-ol as Substrate 
a
. 

[3,3-dimethyl-butan-1-ol], mM 
app

(kcat/Koxygen), M
-1

s
-1

 

10 33 ± 1 

30 30 ± 1 

40
 

31 ± 1 
a 

Conditions: 50 mM sodium pyrophosphate, 25 °C, pH 8.0. 

 

Thus, the lack of positive charge on the organic substrate bound at the active site of the 

enzyme results in a further decrease of ~55-fold in the kcat/Koxygen value of the Val464Ala 

enzyme (i.e., 1,700 M
-1

s
-1

 with choline as substrate). For comparison, a similar decrease of ~55-

fold was previously reported for the wild-type enzyme with the substrate devoid of positive 

charge (i.e., 90,000 M
-1

s
-1

 and 1,600 M
-1

s
-1

 with choline and 3,3-dimethyl-butan-1-ol, 

respectively) (15-16). In contrast, the kcat/Koxygen values for a number of active site variants of 

choline oxidase with point mutations of residues shown to be important for catalysis either in 

direct contact with or further removed from Val464 (i.e., His99Asn, Gly312Asp, His351Ala, and 

His466Ala) were shown previously not to be significantly different from the wild-type, as 

summarized in Figure 4.6 (1, 15, 25-27, 38).  
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Figure 4.6. kcat/Koxygen Values for the Wild-type Enzyme as well as Variant Forms of Choline 

Oxidase with Mutations in the Active Site at pH 10.0 and 25°C with the Exception of WT + 

DMB and V464A + DMB which are at pH 8.0 and 25°C. As a reference the rate of oxidation of 

free flavin by oxygen at pH 6.5 is added.  Data are from this study and ref. 1, 15, 25-27, 38 (16). 

 

4.5.Discussion 

In this study, the role of Val464 in the reaction of flavin oxidation catalyzed by choline 

oxidase was investigated with site-directed mutagenesis, steady state and rapid kinetics, and X-

ray crystallography. Val464, which sits in the active site of the enzyme on the re-face at ~5.0 Å 

from the C(4a) and the N(5) atoms of the flavin, was replaced with alanine or threonine and the 

effects of the mutations on the properties of the enzyme were investigated. The overall three-

dimensional structure, as well as the location and conformation of all the active site residues in 

the Val464Ala enzyme, were shown by X-ray crystallography to be essentially identical to those 

of the wild-type enzyme (25). Consistent with an unaltered enzyme structure, a number of 

functional properties were shared by the mutant and wild-type enzymes, as demonstrated in this 

and a previous study (28). The Val464Ala and the wild-type enzymes catalyze the oxidation of 
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choline through a sequential steady-state kinetic mechanism, consistent with a similar order of 

substrate binding and product release during turnover. In addition, the Val464Ala enzyme shows 

a pH-independent kcat/Koxygen value with choline and a significantly lower kcat/Koxygen value with 

3,3-dimethyl-butan-1-ol with respect to choline as substrate, as does the wild-type enzyme. 

Finally, a recent study showed that the competent forms of Ala464 and Thr464 variants of 

choline oxidase contain covalently bound FAD, stabilize an anionic flavosemiquinone in the 

presence of air, have UV-visible absorbance spectra with no sign of protein denaturation, and 

kinetic isotope effects on the kred values at pH 10.0 that are within 3-fold from the values of the 

wild-type enzyme (28). These structural and functional observations unequivocally establish that 

the role of Val464 in the reaction of flavin oxidation catalyzed by choline oxidase can be 

elucidated by comparing and contrasting the mechanistic properties of the Val464Ala and 

Val464Thr enzymes with those of the wild-type enzyme. 

The active site residue Val464 is important for the oxidation of the reduced flavin by 

molecular oxygen, but not for substrate binding or the hydride ion transfer reaction that occurs 

between the choline substrate and the flavin cofactor. Evidence in support of this conclusion 

comes from the comparison of the kinetic data of the Val464Ala and Val464Thr enzymes with 

those for the wild-type form of choline oxidase. In summary, replacement of Val464 with alanine 

or threonine results in a 2-fold decrease in the limiting rate constant for flavin reduction (kred) 

and less than 5-fold decrease in the equilibrium constant for formation of the enzyme-substrate 

complex (Kd) (28). In the Val464Ala variant enzyme the substitution of the valine with an 

alanine results in a 50-fold decrease in the bimolecular rate constant for reaction with oxygen, 

kcat/Koxygen. In the Val464Thr variant enzyme a direct measurement of the kcat/Koxygen values could 

not be carried out due to the inability to saturate the enzyme with oxygen and the sigmoidal 
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kinetic patterns of the initial rates of reaction as a function of oxygen concentration. However, 

the similar kinetic behavior of the Val464Thr and Val464Ala enzymes in enzyme monitored 

turnover experiments, along with the rate oxidation of the free form of enzyme and reduction 

also being similar for the two enzymes, is consistent with them having similar overall rates for 

flavin oxidation. At pH 10.0, an in-depth mechanistic investigation of the reductive half-reaction 

of the mutant enzymes using solvent and substrate kinetic isotope effects previously established 

that the replacement of Val464 with alanine or threonine significantly slows down the cleavage 

of the OH bond of choline, but has a minimal effect on the rate of hydride ion transfer that is 

associated with the cleavage of the CH bond of choline (28). 

We propose that the role of Val464 in the oxidation reaction where the reduced flavin reacts 

with oxygen is to provide a non-polar site that is proximal to the C(4a) atom of the flavin in 

order to guide oxygen at the site where the presence of the nearby positively charged catalyst 

will subsequently activate it to the superoxide species. Evidence for this conclusion comes from 

the effect on the bimolecular rate constant for reaction of the reduced flavin with oxygen upon 

replacing Val464 with alanine, which results in a 50-fold decrease in the kcat/Koxygen value. As 

shown by the comparison of the crystallographic structures of the mutant and the wild-type 

enzyme, such an amino acid substitution increases the size of the cavity on the re-face of the 

flavin that is proximal to the C(4a)-N(5) atoms, where the C(4a) oxygen adduct is observed in 

the wild-type enzyme, but produces no other observable changes in the structure of the active 

site. Evidence for the importance of a non-polar site in proximity of the C(4a) atom of the flavin 

comes from the similar effect on the oxidative half-reaction that is seen in the enzymes 

containing alanine or threonine at residue 464. Additionally, no significant effects on kcat/Koxygen 

are observed upon mutating the remaining residues (His351 and His466) that define the cavity on 
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the re-face directly above the C(4a)-N(5) atoms of the flavin or any of the other active site 

residues that have been shown to participate in catalysis (27, 38). 

The requirement in choline oxidase for a non-polar site in proximity of the C(4a) atom of the 

flavin is not associated with the presence of the electrostatic catalyst that will subsequently 

activate oxygen for the reaction with the flavin. In this regard, previous studies established that 

the positive charge that is required to activate oxygen in choline oxidase is provided by the 

trimethylammonium group of the enzyme-bound substrate and not by a side chain of an amino 

acid in the active site of the enzyme (15, 27, 37-38). Evidence for the effect of the non-polar site 

being independent of the charge that activates oxygen comes from the comparison of the 

kcat/Koxygen values of the wild-type and Val464Ala enzymes determined with choline and 3,3-

dimethyl-butan-1-ol as substrate. Replacement of Val464 with alanine results in a ΔΔG of 2.3 ± 

0.2 kcal mol
-1

 as calculated from the ratio of the kcat/Koxygen values determined with choline as 

substrate for the wild-type and Val464Ala enzymes. Analogously, a ΔΔG of 2.4 ± 0.2 kcal mol
-1

 

can be estimated for the wild-type enzyme upon taking the ratio of the kcat/Koxygen values 

determined with 3,3-dimethyl-butan-1-ol and choline. These values define the individual 

energetic contributions of the residue at position 464 and the charge harbored on the substrate 

towards the reaction of the reduced flavin with oxygen. When both contributions are taking into 

account, by taking the ratio of the kcat/Koxygen values determined with choline as substrate for the 

wild-type enzyme and 3,3-dimethyl-butan-1-ol as substrate for the Val464Ala enzyme, a ΔΔG of 

4.7 ± 0.5 kcal mol
-1

 can be estimated. This experimental value agrees well with the sum of the 

individual contributions (i.e., 4.7 ± 0.6 kcal mol
-1

), consistent with the two effects being additive 

and independent of one another (51). 
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Analysis of a number of flavoprotein oxidases whose three-dimensional structure is known 

suggests that a non-polar site of the type identified in this study in choline oxidase is likely a 

general feature in the class of enzymes. Here, we will limit our discussion to the cases of glucose 

oxidase and monomeric sarcosine oxidase, for which experimental evidence for activation of 

oxygen by a positive charge has been previously provided (11-14). In the three-dimensional 

structure of glucose oxidase, Val560 is ~4.7 Å away from the side chain of His516, which 

provides the positive charge for oxygen activation (11-13), and less than 6.5 Å from the C(4a) 

atom of the flavin. Similarly, in the active site of monomeric sarcosine oxidase Phe256 is less 

than 4 Å away from the side chain of Lys265, which has been shown to activate oxygen for 

reaction with the reduced flavin with its positive charge (14), and less than 6 Å from the C(4a) 

atom of the flavin. A possible rationale for why these sites in oxidases are not as immediately 

evident from the structure as in the case of the monooxygenase component C2 of p-

hydroxyphenylacetate hydroxylase (19), but require a mechanistic investigation of the enzymes, 

is likely that in oxidases the requirement of a non-polar cavity that encapsulates and stabilizes 

crucial reaction intermediates is not as stringent as in monooxygenases. Monooxygenases are 

required to completely desolvate the cavity surrounding the C(4a) atom of the flavin to allow 

longer life-times for reaction intermediates such as C(4a)-(hydro)peroxides and C(4a)-

hydroxides (19). Most likely oxidases do not share this requirement, either because oxygen 

reduction occurs through outer-sphere electron transfers with no formation of any C(4a)-flavin 

adduct with the flavin (10), or simply because once oxygen is activated for reaction there is no 

need to prolong the life-time of C(4a)-flavin adduct intermediates that will decay to hydrogen 

peroxide without being used to hydroxylate organic substrates. 
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 In conclusion the results of the mechanistic and structural investigation of active site 

mutant enzymes where the hydrophobic side chain on Val464 is replaced with either alanine or 

threonine are consistent with the presence of a non-polar site in proximity of the C(4a)-N(5) 

atoms of the flavin in choline oxidase. The presence of such a non-polar site is important for the 

oxidative half-reaction in which the enzyme-bound reduced flavin reacts with molecular oxygen 

to produce hydrogen peroxide and complete the catalytic cycle. It is proposed that the function of 

the non-polar, amino acyl side-chain is to guide oxygen at the site where it subsequently will be 

activated to a superoxide species through electrostatic catalysis exerted by a positive charge. The 

results also suggest that these two events in the reaction with oxygen catalyzed by choline 

oxidase are independent of one another. It is expected that non-polar sites of the kind identified 

in this study in choline oxidase will be identified through mechanistic investigation in a number 

of flavoprotein oxidases with various overall folding topologies including PHBH-folds and 

(α/β)8-barrels, as suggested from visual surveys of available crystal structures of flavin 

dependent oxidases, such as old yellow enzyme, glycolate oxidase, cholesterol oxidase and 

vanillyl-alcohol oxidase. 
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CHAPTER V 

ON THE IMPORTANCE OF SER101 FOR OVERALL TURNOVER IN CHOLINE 

OXIDASE 
 

(Publication in preparation 2010 verbatim by Finnegan, S., Yuan, H., Wang, Y., Orville, A.M., 

Weber, I. and Gadda, G.) 

 

5.1.Abstract 

Choline oxidase is a homodimer of 120 kDa, with each subunit containing covalently bound 

FAD in an 8R-N(1)-histidyl linkage. This oxidase catalyzes the oxidation of choline to glycine 

betaine through two sequential flavin-linked hydride transfers from choline and the ensuing 

betaine aldehyde intermediate to the flavin cofactor. The chemical factors affecting how flavin 

dependent enzymes achieve bimolular rate constants ≥ 10
5
 M

-1
s

-1
 for the reaction of the reduced 

flavin with oxygen are not fully understood and as such represent one of the challenging 

questions in modern flavoenzymology. In the X-ray structure of choline oxidase previously 

reported, Ser101 is located in proximity of the C(4a) flavin atom, suggesting it may participate in 

flavin oxidation. Kinetic data show that mutation of Ser101 to alanine in choline oxidase results 

in an increase in oxygen reactivity, as seen in the second order rate constant for oxygen capture, 

kcat/Koxygen. Here, we report the three dimensional structure of the Ser101Ala enzyme to a 

resolution of 2.5 Å. A comparison of the structures of the Se101Ala and wild-type enzymes is 

also presented. 

 

5.2.Introduction 

The reaction of choline oxidation catalyzed by choline oxidase (E.C. 1.1.3.17; choline-

oxygen oxidoreductase) has been extensively characterized (1). In brief, the reaction includes 
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two reductive half-reactions where the FAD cofactor is reduced in subsequent steps by the 

alcohol substrate and the aldehyde intermediate (Scheme 5.1) (2).  

Scheme 5.1: The Steady-state Kinetic Mechanism of Choline Oxidation Catalyzed by Choline 

Oxidase. 

 

Each reductive half reaction is followed by an oxidative half-reaction where the reduced 

FAD cofactor is oxidized by molecular oxygen with formation of hydrogen peroxide (2). In the 

wild-type enzyme, the first reductive half-reaction is initiated by a kinetically fast abstraction of 

the hydroxyl proton of choline, which results in the formation of a transient alkoxide 

intermediate (2). This is followed by a rate-limiting hydride ion transfer from the α-carbon of the 

alkoxide intermediate to the N(5) atom of the flavin resulting in the oxidation of choline to 

betaine aldehyde and reduction of the flavin (2). Betaine aldehyde is subsequently hydrated in 

the active site to form gem-diol choline (3). In the second reductive half-reaction, the gem-diol 

choline is oxidized to the product, glycine betaine. In the oxidative half-reactions the reduced 

flavin reacts with oxygen by transferring a hydride equivalent to form oxidized flavin and 
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hydrogen peroxide (4). The enzyme must therefore balance the requirements that each of these 

half-reactions have in order to achieve maximum overall rate of catalysis.  

In the crystal structure of wild-type choline oxidase the side chain of Ser101 is less than 4 Å 

from the N(5) atom of FAD and within hydrogen bonding distance (i.e., <3 Å) of the oxygen 

atom of DMSO, a ligand that was used in the crystallization of the enzyme (5). This suggests that 

Ser101 may be actively involved in the oxidation of choline catalyzed by the enzyme. Here, we 

report the overexpression, purification, crystal structure and kinetic characterization of the 

Ser101Ala variant of the enzyme with choline and betaine aldehyde as substrate. The results are 

consistent with replacement of the active site serine with alanine yielding a tenfold decrease in 

both the reductive half-reactions and a threefold to fourfold increase in both the oxidative half-

reactions catalyzed by the enzyme. This, in turn, results in a tenfold decrease in the overall 

turnover of the enzyme, consistent with Ser101 being important to balance and optimize the 

overall turnover rather than any of the half-reactions that are catalyzed by chorine oxidase.  

 

5.3.Experimental Procedures 

The mutant gene for the choline Ser101Ala enzyme was prepared using the QuikChange
TM

 

Site-Directed Mutagenesis kit following the manufacturer’s instructions in the presence of 2% 

DMSO, as previously described (6-7). The pET/codAmg plasmid harboring the wild-type gene 

was used as template (6). Upon mutagenesis, the entire mutant gene (pET/codAmg-Ser101Ala) 

was sequenced at the DNA Core Facility of Georgia State University to confirm the presence of 

the desired mutation. As an expression host, competent Escherichia coli strain 

Rosetta(DE3)pLysS cells were transformed with the mutant plasmid by electroporation. The 
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mutant enzyme was expressed and purified to homogeneity as previously described for wild-type 

choline oxidase (6-8).  

Crystals of the Ser101Ala enzyme were grown by the hanging-drop vapor-diffusion method 

at room temperature. Purified Ser101Ala (2 μL) at a concentration of 5 mg mL
-1

 was mixed with 

2 μL from the 500 μL reservoir solution which consisted of 80 mM sodium cacodylate, 20% v/v 

PEG6000, 20% v/v glycerol, 150 mM Mg-Acetate at pH 6.0.Single crystals were transferred into 

a cryoprotectant consisting of reservoir solution containing 25% (v/v) glycerol and allowed to 

soak for approximately 2 min prior to flash-freezing in liquid nitrogen for data collection at 

Beamline 12B of the National Synchrotron Light Source at Brookhaven National Laboratory, 

NY. The data were integrated, scaled, and merged using the HKL2000 package (9). The 

structures were solved by molecular replacement with PHASER (10) using the structure of wild-

type choline oxidase (2JBV from the Protein Data Bank) as the starting model (11). Refinement 

was carried out using Refmac5 (12) in CCP4 (13-14) and manual adjustment used the molecular 

graphics program COOT (15). Structural figures were made by PyMol (16). 

Steady state kinetic parameters were measured with the method of the initial rates (17) at 

varying concentrations of both choline, or betaine aldehyde, and oxygen in 50 mM sodium 

pyrophosphate, pH 10.0, at 25 
o
C. Kinetic assays were performed at pH 10.0 because at this pH 

value the kinetic parameters kcat and kcat/Km of choline oxidase are maximal and independent of 

pH (4). Initial rates were determined by monitoring the rate of oxygen consumption with a 

computer-interfaced Oxy-32 oxygen monitoring system (Hansatech Instrument Ltd.) 

thermostated at 25 °C. The assay reaction mixture was equilibrated at the desired concentration 

of oxygen by sparging the appropriate O2/N2 gas mixture for 10 min before the reaction was 

started by the addition of the enzyme. The initial rates measured with choline were fit to eq 1, 
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which describes a sequential steady state kinetic mechanism in which Kcholine and Koxygen are the 

Michaelis constants and kcat is the overall turnover number of the enzyme when saturated with 

both substrates (e). The initial rates measured with betaine aldehyde were fit to eq 2, which 

describes a sequential steady state kinetic mechanism where Kaldehyde « KoxygenKiA. 

 

oxygeniAoxygencholine

cat

KKoxygencholinecholineKoxygenK

oxygencholinek

e

v




]][[][][

]][[
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e

v

oxygenaldehyde

cat


   (2) 

 

Reductive half-reactions with betaine aldehyde as substrate were carried out by using a Hi-

Tech SF-61 stopped-flow spectrophotometer thermostated at 25 °C and pH 10.0. The rate of 

flavin reduction was measured by monitoring the decrease in absorbance at 454 nm that results 

from the anaerobic mixing of the enzyme and betaine aldehyde, as previously described for the 

wild-type enzyme (2). Glucose (5 mM) and glucose oxidase (0.5 µM) were added to the 

substrate and enzyme solutions to scavenge possible trace amounts of oxygen. The mutant 

enzyme Ser101Ala was mixed anaerobically with an equal volume of betaine aldehyde, 

obtaining reaction mixtures with 10 µM enzyme and 0.2-5 mM betaine aldehyde. For each 

concentration of the substrates, the rate constants for flavin reduction were recorded in triplicate, 

with measurements usually differing by ≤5 %. Stopped-flow traces were fit to eq 3, which 

describes a single exponential process where kobs is the observed first-order rate constant for 

flavin reduction, A is the value of absorbance at the specific wavelength of interest at time t, B is 

the amplitude of the absorbance change, and C is an offset value that accounts for the non-zero 
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absorbance value at infinite time. Kinetic parameters for the reductive half-reactions were 

determined by using eq 4, where kobs is the observed first-order rate constant for the reduction of 

the enzyme-bound flavin at any given concentration of substrate, kred is the limiting first-order 

rate constant for flavin reduction at saturated substrate concentration, and Kd is the macroscopic 

dissociation constant for binding of the substrate to the enzyme.  

 

  CtkBA obs  exp          (3) 

][

][

aldehyde betaineK

aldehyde betainek
k

d

red

obs


         (4) 

 

5.4.Results 

 The Ser101Ala enzyme crystallized in the primitive monoclinic space group P21 with eight 

subunits in the asymmetric unit. Data to 2.5 Å were used to refine the structure of the Ser101Ala 

enzyme to a final R-factor of 22.8% (Table 5.1). The final model consisted of residues 1-530
6
, 

the FAD, and ligand acetate in the active site of the enzyme. When the homodimers of the 

Ser101Ala enzyme were superimposed with those of the wild-type enzyme the average rmsd 

values were 0.41 Å for 527 equivalent Cα atoms in each chain, showing no significant structural 

differences between the two enzymes. The active sites of the two structures are compared in 

Figure 5.1, showing no differences in the relative location of the flavin and the active site 

residues in the two enzymes. Interestingly, although the replacement of the side chain on residue 

101 from serine to alanine resulted in loss of hydrogen bonds with His351 and DMSO, a 

                                                 
6
 It is quite common having some disorder at the terminals in crystal structures and as such it is not concerning that 

only 530 residues are distinguishable in the structure of Ser101Ala, even though the amino acid sequence of choline 

oxidase contains 546 residues. In fact the wild-type enzyme only has reported coordinates for 528 residues. For the 

the structures of Ser101Ala and wild-type it is the last 16 or 18 C-terminal residues that are missing, respectively. 
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cryoprotectant used in the crystallization of the wild-type enzyme, all of the active site residues 

locate in the same position in the mutant and wild-type enzymes. Moreover, the electron density 

maps clearly indicate that FAD in the Ser101Ala enzyme is covalently linked to the His99 Nє2 

atom as seen in the wild-type (5). 

Table 5.1. Crystallographic Data Collection and Refinement Statistics for Ser101Ala 

Space group P21 

Unit cell dimensions: (Å)  

     A 69.26 

     B 346.03 

     C 105.92 

     β 94.33 

Unique reflections 150,964 

Rmerge (%) overall (final shell) 11.1(25.8)
a
 

I/ζ(I) overall (final shell) 14 (3.2) 

Completeness (%) overall (final shell) 90.4 (50.3) 

Data range for refinement (Å) 10-2.47 

Rcryst (%)
b
  22.8 

Rfree (%)
c
 29.2 

No. of solvent atoms 

(total occupancies) 

333 

(207.3) 

RMS deviation from ideality  

Bonds (Å) 0.014 

Angle distance (Å) 0.021 

Average B-factors (Å
2
)  

Main-chain atoms 26.4 

Side-chain atoms 27.2 

FAD 18.5 

Solvent 20.3 
a
 Values in parentheses are given for the highest resolution shell 

b 
Rcryst = |Fobs-Fcal|/Fobs. 

c 
Rfree = test(|Fobs|-|Fcal|)

2
/test|Fobs|

2
. 

 

A notable difference between the wild-type and the Ser101Ala enzymes is that the 

isoalloxazine moiety of the FAD cofactor in the variant enzyme is more planar than that of the 

wild-type. In the latter enzyme, the C(4a) atom was shown to be in an sp
3
 hybridization due to 

the presence of an oxygen adduct that is not observed in the Ser101Ala variant enzyme resulting 

in the C(4a) atom being sp
2
 hybridized (5, 18). In the Ser101Ala enzyme the isoalloxazine ring 
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system showed a slight bend between the two planes containing the benzene and pyrimidine 

moieties defining an 8
o
 angle along the N(5)-N(10) axis (Figure 5.1). A similar bend was 

previously observed in the structure of another active site mutant form of choline oxidase, where 

Val464 is replaced with alanine, for which the C(4a) atom of FAD was also shown to be sp
2
 

hybridized (19). All taken together, the major  differences observable in the structures of the 

Ser101Ala and wild-type enzymes are the hybridization of the flavin C(4a) atom and the loss of 

the hydroxyl group of Ser101. 

 
Figure 5.1. Comparison of Crystal Structures of the Ser101Ala and Wild-type Enzymes of 
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Choline Oxidase. The residues with carbons in green represent the Ser101Ala structure, whereas 

the carbon atoms for the wild-type enzyme are in gray. Panel A shows the interactions at the 

Ser101Ala mutation site. Proposed hydrogen bonds in the wild-type enzyme only are colored 

red, those in the Ser101Ala enzyme are colored green, and those proposed in both enzymes are 

colored cyan. Panel B illustrates the superposition of the FAD isoalloxazine ring from the wild-

type (grey) and the Ser101Ala enzymes (colored by element type) of choline oxidase. Note that 

the isoalloxazine ring of the Ser101Ala enzyme is more planar than that of the wild-type 

structure. Panel C shows a comparison of the active sites of wild-type and Ser101Ala choline 

oxidase. The wild-type enzyme structure is from pdb file 2jbv (5). 

 

The steady state kinetic parameters with choline and betaine aldehyde as substrate for the 

Ser101Ala enzyme were determined (by a colleague graduate student, Ms. Hongling Yuan) at 

varying concentrations of oxygen, by measuring the initial rates of oxygen consumption with a 

Clark-type oxygen electrode at pH 10.0 and 25 
o
C. As for the case previously reported for the 

wild-type enzyme (4, 20), the best fits of the data were obtained with eq 1 for choline and eq 2 

for betaine aldehyde (Figure 5.2). 
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Figure 5.2. Double Reciprocal Plots of CHO-Ser101Ala Catalyzed Oxidation of Choline and 

Betaine Aldehyde. Choline oxidase activity was measured at varying concentration of both 

choline and oxygen or betaine aldehyde and oxygen in 100 Mm sodium pyrophosphate, pH 10.0, 

at 25 
o
C, respectively. Panel A, e/vo as a function of the inverse choline concentration determined 

at several fixed concentrations oxygen:  (●) 0.033 mM; (○) 0.068 mM; (■) 0.172 mM; (□) 0.344 

mM. Panel B, e/vo as a function of the inverse oxygen concentration determined at several fixed 

concentrations choline: (●) 0.1 mM; (○) 0.2 mM; (■) 0.5 mM; (□) 2 mM; (▲) 5 mM. Panel C, 

e/vo as a function of the inverse betaine aldehyde concentration determined at several fixed 

concentrations oxygen:  (●) 0.16 mM; (○) 0.23 mM; (■) 0.36 mM; (□) 0.47 mM. Panel D, e/vo as 

a function of the inverse oxygen concentration determined at several fixed concentrations betaine 

aldehyde: (●) 0.5 mM; (○) 2 mM; (■) 5 mM; (□) 10 mM; (▲) 40 mM. 

 

As summarized in Table 5.2, the Ser101Ala enzyme showed between threefold and fourfold 

increases in the kcat/Koxygen values with choline and betaine aldehyde, and tenfold decrease in 

both the kcat/Kcholine and kcat values with choline as substrate.  
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Table 5.2. Comparison of the Kinetic Parameters of Ser101Ala
a
 and Wild-type

b
 Choline Oxidase 

at pH 10.0. 

Substrate kinetic parameters Ser101Ala wild-type 

Choline kcat, s
-1

 6.7 ± 0.1 60 ± 1 

 kcat/Km, M
-1

s
-1

 25,600 ± 2000 237,000 ± 9000 

 kcat/Koxygen, M
-1

s
-1

 261,000 ± 6500 86,400 ± 3600 

 Km, mM 0.26 ± 0.02 0.25 ± 0.01 

 Koxygen, mM 0.026 ± 0.001 0.69 ± 0.03 

betaine aldehyde kcat, s
-1

 43 ± 3 133 ± 4 

 kcat/Koxygen, M
-1

s
-1

 203,400 ± 33,400 53,400 ± 1600 

 Koxygen, mM 0.2 ± 0.03 2.5 ± 0.01 

 kred 47 ± 2 135 ± 4 

 Kd 0.9 ± 0.1 0.45 ± 0.1 

a
 Conditions: 50 mM sodium pyrophosphate, pH 10.0, at 25 

o
C. 

b
 From ref (2)   

 

Since the kcat/Kbetaine aldehyde value could not be determined by using a steady state kinetic 

approach due to Kaldehyde « KoxygenKia, the reductive half-reaction with betaine aldehyde was 

investigated by mixing anaerobically the enzyme and the substrate in a stopped-flow 

spectrophotometer at pH 10.0 and 25 
o
C. As for the case previously reported for the wild-type 

enzyme (2), the absorbance at 454 nm of the Ser101Ala enzyme decreased in a single 

exponential manner upon mixing with betaine aldehyde (Figure 5.3). A plot of the kobs for flavin 

reduction as a function of the concentration of betaine aldehyde followed saturation kinetics, 

allowing the determination of the limiting rate constant for flavin reduction at saturated substrate 

(kred) and the apparent thermodynamic equilibrium constant for the formation of the enzyme-

betaine aldehyde complex (Kd). As summarized in Table 5.2, the kred and Kd values with betaine 

aldehyde as substrate for the Ser101Ala enzyme differed by less than threefold from the values 
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previously determined for the wild-type form of choline oxidase. 

  

Figure 5.3. Reductive Half-reaction of the Ser101Ala Enzyme with Betaine Aldehyde. Panel a 

shows the reduction traces with 0.1 mM (black), 0.2 mM (blue), 0.3 mM (red), 2.5 mM (green) 

and 5 mM (fuscia) betaine aldehyde. All traces were fit to eq 3. Time indicated is after the end of 

flow, i.e., 2.2 mm. For clarity, one experimental point every 5 is shown (vertical lines). Panel B 

shows the observed rate constants for flavin reduction as a function of the concentration of 

betaine aldehyde. Data were fit to eq 4. Buffer used was 50 mM sodium pyrophosphate, pH 10.0. 

 

5.5.Discussion  

In choline oxidase, the requirements that each half-reaction have are balanced not to maximize 

each half-reaction individually but rather to achieve the most efficient overall catalysis. The 

results presented here indicate that the lack of a hydroxyl group on residue 101 does not result in 

any overall structural changes to the protein with respect to the wild-type enzyme. In the X-ray 

crystallographic data of the Ser101Ala enzyme it is seen from the inter atom distance and the 

orientation of the ligand, acetate, in the active site that, it is likely hydrogen bonded to the N(5) 

atom of the flavin cofactor as well as the N(3) atoms of the side-chains of Histidine 351 and 

histidine 466, similar to the DMSO in the active site of the crystal structure of the wild-type 

choline oxidase. 

One observable difference in the structures for the wild-type and the Ser101Ala variant 

enzymes is the absence of a the C(4a) oxygen adduct, observed in the wild-type enzyme (5), on 
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the FAD cofactor in the Ser101Ala variant enzyme. For the wild-type choline oxidase the 

enzyme-bound FAD is likely reduced in the X-ray beam during data collection and the reduced 

FAD then forms either a C(4a)-OH or C(4a)-OO(H) adduct but an insufficient proton inventory 

prevents the FAD reoxidation to proceed (18). The absence of the FAD C(4a) adduct in the 

Ser101Ala variant enzyme is due to the FAD either not being reduced during the data collection 

or simply to the presence of a proper proton inventory for a C(4a) oxygen adduct to decay. 

Alternatively, the C(4a) oxygen adduct may not be as stabilized in the Ser101Ala variant enzyme 

due to the loss of possible hydrogen bond to the hydroxyl group of the serine 101 in the variant 

enzyme. Regardless of the reason for the absence of the C(4a) oxygen adduct in the Ser101Ala 

variant enzyme, the point mutation does not affect the overall structure of the protein moiety of 

choline oxidase and as such any kinetic differences between the Ser101Ala and the wild-type 

enzymes can be attributed to the removal of a hydroxyl group at position 101. 

Kinetically, there are no significant changes in the Km value for choline between the 

Ser101Ala and wild-type enzymes. In contrast, the overall rate of catalysis (kcat) in the Ser101Ala 

enzyme is significantly slower, whilst having a faster oxidative half-reaction (kcat/Koxygen). Thus, 

in the Ser101Ala enzyme the requirements for each half-reaction are no longer optimized to yield 

the highest overall rate of catalysis, but instead the oxidative half-reaction is favored, at the 

expense of a lowered overall rate of catalysis, meaning the reductive half-reaction must be 

impaired as compared to the wild-type enzyme. The kinetic favoring of the oxidative half-

reaction in the Ser101Ala variant enzyme is likely due to a change in the FAD micro-

environment caused by the mutation of serine 101 to an alanine resulting in a change of the 

redox potential of FAD to make it a stronger reducing agent. Alternatively the increased 

kcat/Koxygen value in Ser101Ala could be due to increased oxygen accessibility to the C(4a)-N5 
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region of the flavin or the presence of a water molecule in place of the hydroxyl group of serine 

101 being able to stabilize the reaction intermediates of the flavin reoxidation more effectively.  

Choline oxidase and numerous choline oxidase variants with mutations in the active site have 

been investigated thus far and the mutation of Ser101 to an alanine is the only variant that has 

resulted in a shift of the balance to favor the oxidative half-reaction, thus making the Ser101Ala 

variant enzyme a very interesting enzyme for further studies on the role of serine in the reaction 

catalyzed by choline oxidase (5, 21-23). 
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CHAPTER VI 

ON THE ROLE OF THE ACTIVE SITE RESIDUE HIS310 OF CHOLINE OXIDASE 

 

(This chapter contains data (Figures 6.6 and 6.7) from experiments conducted by Dr M. 

Ghanem, which have been added for completeness. The data presented in Figures 6.6 and 6.7 

were also acquired subsequently by Steffan Finnegan)  

 

6.1.Abstract 

The presence of a protein positive charge close to the N(1)-C(2) locus of the flavin cofactor 

is a common characteristic feature of many flavoprotein oxidases. In choline oxidase (E.C. 

1.1.3.17) from Arthrobacter globiformis studies have revealed that the positive charge in the 

active site is provided by His466, which is located at a distance of ~3.3 Å from the N(1)-C(2) 

locus of the enzyme-bound flavin (His466
Nε2

-N(1)-FAD). From the X-ray crystal structure of 

choline oxidase a second histidine residue, His310, is located ~2.9 Å from His466. The 

orientation of the side-chains of both histidine residues suggests the presence of a His466
Nδ1

- 

His310
Nδ1

 hydrogen bond. To assess the contribution made by His310 to catalysis, mutant forms 

of the enzyme were prepared in which the active site residue His310 was substituted with 

alanine, asparagine or aspartate. Upon purification of the Ala310, Asn310 and Asp310 variant 

enzymes polarographic measurements showed no catalytic activity with choline as substrate, 

suggesting His310 being essential for catalysis. However, spectrophotometrically, the FAD 

cofactor in the variant enzymes were still able to be reduced with rate constants ~ 10
5
 time 

slower than the wild-type enzyme under anaerobic conditions upon mixing with choline. Choline 

being able to reduce the FAD cofactor is consistent with the variant enzymes retaining the ability 

to bind choline upon mutation of His310.  The results obtained herein also indicated the 

involvement of His310 in the flavinylation process in choline oxidase, as the mutation of His310 

resulted in a significant alteration of the stoichiometric amount of the flavin. Therefore, these 
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results together with the structural information suggest an important role of His310 in catalysis 

and the modulation of the microenvironment of the enzyme-bound flavin. The existence of a 

proton transfer network consisting of the side-chains of His466, His310 and the backbone 

carbonyl oxygen atoms of Thr380 and Val507 is proposed as the basis for the mechanism by 

which His310 affects catalysis in choline oxidase. 

 

6.2.Introduction 

Choline oxidase (E.C. 1.1.3.17) from Arthrobacter globiformis is a flavin-dependent 

cytosolic enzyme that catalyzes the oxidation of choline to glycine betaine via an enzyme-bound 

aldehyde intermediate (Scheme 6.1). Choline oxidase has been characterized in its biophysical, 

structural, and mechanistic properties. The enzyme is a homodimer with a mass of 120 kDa (1), 

containing a covalently linked FAD in a 1:1 stoichiometry (1), that during turnover cycles 

between its fully oxidized and reduced states (2-3). A detailed picture of the mechanism of the 

reaction catalyzed by choline oxidase was obtained from the biophysical, kinetic, structural and 

mechanistic studies of the wild-type choline oxidase as well as selected mutant forms of the 

enzyme (2-9). In summary, during the reductive half-reaction, the alcohol substrate, choline, is 

activated through proton abstraction from its hydroxyl group by an unidentified active site base 

with pKa of 7.4 with the subsequent formation of an alkoxide species (2). This choline alkoxide 

intermediate species is transiently stabilized in the active site through electrostatic interaction 

with the protonated imidazole side-chain of His466 (Figure 6.1) (8). A hydride transfer from the 

-carbon of the substrate to the N(5) atom of the isoalloxazine nucleus of the enzyme-bound 

FAD occurs quantum mechanically from the activated choline alkoxide species (4). The 
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positively charged trimethylammonium headgroup of the substrate is the major determinant for 

substrate binding and specificity, with little participation of the ethyl moiety (7).  

The presence of a protein positive charge close to the N(1) atom of the bound flavin is a 

common feature of many flavoprotein oxidases. Studies have shown that this positive charge is 

provided by His466 in choline oxidase (10, 11), which is located at a distance of ~3.3 Å from the 

N(1) locus of the enzyme-bound flavin (His466
Nε2

-N(1)-FAD) (10). The X-ray crystal structure 

of choline oxidase also showed that another histidine residue, His310, is at a distance of ~2.9 Å 

from His466 (Figure 6.2). In addition, the X-ray crystallographic data of the wild-type enzyme 

also showed that the N(3) atom of His310 is located at a distance of ~2.8 Å from the carbonyl 

main chain oxygen atoms of Thr380 and Val507 (Figure 6.2). These structural data suggest that 

His466 is hydrogen bonded to both N(1)-FAD and His310
Nδ1

 through its N(3) and N(1) atoms, 

respectively. Moreover, these data also suggest that His310 is hydrogen bonded to the peptidyl 

oxygen atoms of Thr380 and Val507 through its N(3) atom (Figure 6.2).  

In the present study, to assess the contribution made by His310 in catalysis, mutant forms 

of choline oxidase were prepared in which His310 was substituted with alanine, asparagine or 

aspartate. 
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Scheme 6.1. Reaction Catalyzed by Choline Oxidase. 

 

 



182 

 

 182 

H

C

HO

N
+

N
N

N

N
O

O

N

N

H466
H

+

H

R

H

-

-

 
 

Figure 6.1. Line Drawing Showing the Interaction of His466 with the N(1)−C(2)═O Locus of 

FAD and the Intermediate Alkoxide Species in the Transition State for the Oxidation of Choline 

Catalyzed by Choline Oxidase. The positioning of His466 relative to the flavin is from the X-ray 

crystallographic structure of the enzyme (10), the positioning of choline is arbitrary. 

 

 

Figure 6.2. Crystal Structure of Choline Oxidase. X-ray Crystallographic Structure of the Active 

Site of Choline Oxidase Determined at 1.86 Å Resolution (10). 

 

6.3.Experimental Procedures 

Materials. Escherichia coli strain Rosetta(DE3)pLysS was from Novagen (Madison, WI). 

DNase was from Roche (Indianapolis, IN). The QuikChange site-directed mutagenesis kit was 

from Stratagene (La Jolla, CA). The QIAprep Spin Miniprep kit was from Qiagen (Valencia, 

CA). Oligonucleotides used for sequencing of the mutant genes were custom synthesized by 
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Sigma Genosys (Woodland, TX). Choline chloride was from ICN Pharmaceutical Inc (Irvine, 

CA).  All other reagents were of the highest purity commercially available. 

 

Site-Directed Mutagenesis. The His310Ala, His310Asp, and His310Asn variant enzymes 

were prepared using the pET/codAmg plasmid harboring the wild-type gene for choline oxidase 

as template for site-directed mutagenesis as previously described (8). The presence of the desired 

mutations were confirmed by sequencing the entire mutagenized genes. Escherichia coli strain 

Rosetta(DE3)pLysS competent cells were transformed with the mutant plasmids by 

electroporation (1, 10-12). 

 

Enzyme Expression and Purification. The His310Ala, His310Asp, and His310Asn variant 

enzymes were expressed and purified to homogeneity using the procedure described previously 

for the purification of the wild-type enzyme with the modification of adding 10% glycerol to all 

solutions (1, 3, 8). The protein concentrations of the variant enzymes were determined with the 

method of Bradford (13). Expression levels and purity were determined using SDS-PAGE (14). 

Spectrophotometric Studies. The UV-visible absorbance spectra of the His310Ala, His310Asp, 

and His310Asn variant enzymes were acquired in 20 mM Tris-Cl and 10% glycerol, pH 8.0, at 

15 °C. The extinction coefficient of the three variant and the wild-type enzymes were determined 

in 20 mM sodium pyrophosphate and 10% glycerol, pH 8.0 after denaturation of the enzymes by 

incubation at 40 C for 1 h in the presence of 4M urea, based upon the 450 value of 11.3 mM
-1

 

cm
-1

 for free FAD (15). For the quantification of the ratio of the covalently bound flavin to the 

enzyme, enzymes were incubated on ice for 30 min after the addition of 10 % trichloroacetate, 
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followed by removal of precipitated protein by centrifugation, and the determination of the 

concentration of FAD in the ensuing supernatant solution.  

The oxidized flavin content per enzyme active site was determined spectrophotometrically as 

previously described for the wild-type enzyme (3). 

 

Enzyme Assays. The enzymatic activities of the His310Ala, His310Asp, and His310Asn 

variant enzymes were measured by the method of initial rates as described for the wild-type 

enzyme (3, 16) using a computer-interfaced Oxy-32 oxygen-monitoring system (Hansatech 

Instrument Ltd.). The effect of incubation with exogenous imidazole on this catalytic activity of 

the His310Ala enzyme was determined by measuring the enzymatic activity with 10 mM choline 

as substrate for the enzyme in the presence of 100 mM of imidazole in air-saturated 50 mM 

sodium pyrophosphate, pH 6.0 or 10.0.    

The anaerobic reductions of the His310Ala, His310Asp, and His310Asn variant enzymes 

with choline as a reductant were measured in 20 mM Tris-Cl and 10% glycerol, pH 8.0 and 15 

⁰C. The reaction mixtures were made anaerobic by a 25-cycle treatment of alternating evacuation 

and re-equilibration with oxygen-free argon (pre-treated with an oxygen scrubbing cartridge, 

Agilent, Palo Alto, Ca) in an anaerobic cell equipped with two side arms. The organic substrate, 

choline, was loaded into one side arm and the enzyme was loaded into the main chamber. Upon 

completion of the 25-cycle anaerobic treatment, the enzyme and substrate were mixed and 

incubated anaerobically for 16-40 h. The progress of the FAD reduction was monitored using an 

Agilent Technologies diode-array spectrophotometer Model HP 8453. Upon complete reduction, 

the reduced enzyme mixture was exposed to atmospheric oxygen and was monitored for 12-24 h 

in an Agilent Technologies diode-array spectrophotometer Model HP 8453.   
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Data Analysis. Reduction data traces were fit with equation 1, which describes a double-

exponential process, in which kobs1 and kobs2 are the observed rate constants for the change in 

absorbance of the flavin peak centered around 455 nm, A is the value of absorbance at the 

specific wavelength of interest at time t, B and C are the amplitudes of the absorbance changes 

for the fast and slow observed phases, and D is an offset value that accounts for the non-zero 

absorbance value at infinite time. 

 

    DtkCtkBA obsobs  21 expexp        (1)            

 

Data points obtained for the observed rate of flavin reduction were fit to eq 2, where kobs is 

the observed rate for the reduction of enzyme bound flavin, kred is the limiting first-order rate 

constant for flavin reduction at saturating substrate concentrations, and Kd is the macroscopic 

dissociation constant for binding of choline to the active enzyme.  
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6.4.Results 

Expression and Purification. The His310Ala, His310Asp, and His310Asn variant enzymes 

were expressed and purified to high degree and quantity, as established by SDS-page, Bradford 

assay and spectrophotometrically, using the same protocol established for the wild-type choline 

oxidase (1, 3, 8). Polarographically, neither of the variant enzymes, at final concentrations as 

high as 20 μM of purified enzyme, with and without exogenous imidazole incubation, showed 

any catalytic activity toward its organic substrate choline at final concentrations of 20-30 mM at 

pH 7.0, at 25 C.  In comparison, the wild-type enzyme, at a final concentration of 0.1 μM 

purified enzyme, typically shows a catalytic activity of ~15 s
-1

 with 10 mM choline (16).  
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Flavin Properties. The UV-visible absorbance spectra of the oxidized and fully reduced 

forms of the variant enzymes at pH 8.0 are shown in Figure 6.3. The spectra for the oxidized 

form of the variant enzymes are consistent with the typical spectrum of the oxidized flavin with 

absorbance peaks centered at 365 nm and 455 nm, suggesting that the enzyme-bound flavin 

cofactor in the variant enzymes is purified in the oxidized redox state (17-18).  

0

3500

7000

10500

14000

300 400 500 600 700 800


, 
M

-1
c
m

-1

Wavelength, nm

A

0

3500

7000

10500

14000

300 400 500 600 700 800

, 
M

-1
c
m

-1

Wavelength, nm

B

 

0

4000

8000

12000

16000

300 400 500 600 700 800


, 
M

-1
c
m

-1

Wavelength, nm

C

 

Figure 6.3. Spectral Properties of the His310 Variant Enzymes. Panel A shows the spectra for 

the oxidized and the reduced forms of His310Ala, Panel B shows the same spectra for 

His310Asp, and Panel C shows the spectra for His310Asn. Solid curves, UV-visible absorbance 

spectrum of oxidized form of variant enzymes in 20 mM Tris-Cl and 10% glycerol, pH 8.0; 

dashed curves, reduced form of variant enzymes in 20 mM Tris-Cl and 10% glycerol, pH 8.0. 

 

The spectra for the reduced form of the variant enzymes show that the variant enzymes 

stabilize the neutral form of the hydroquinone (characterized by no peak at ~340 nm and the 
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presence of a shoulder at ~450 nm) as compared to the anionic hydroquinone (characterized by a 

peak at ~340 nm and no shoulder at ~450 nm) in the wild-type enzyme (17-18). 

Small changes in the extinction coefficients for the flavin peak around 455 nm were 

determined for the variant enzymes as compared to the wild-type enzyme. Additionally, the FAD 

cofactor was determined to be covalently bound in the variant enzymes, however, with a 

significantly lower stoichiometry of the FAD/active site as compared to the wild-type enzyme as 

summarized in Table 6.1. A stoichiometry of ~0.3 FAD per monomer of protein was previously 

determined for two choline oxidase variant enzymes with point mutations of histidine 466 (8-9).  

 

 

 

The folding topology of the histidine 310 variant enzymes was probed with near and far UV 

circular dichroism as well as FAD and tryptophan flouresence (Figure 6.4). However, the 

collected spectra were all inconclusive (spectra contained similar peaks, but with a significant 

variation in the peak heights) regarding the similarity of the folding between the wild-type and 

variant enzymes. As a consequence, the crystal structure of the variant enzymes is required for 

comparison and establishing the degree of similarity of the structures of the wild-type and the 

variant enzyme. 

 

Table 6.1. Flavin Properties of the His310Ala, His310Asp, and His310Asn Variant Enzymes   

Enzyme 
Stoichiometry 

(FAD/monomer) 
ε 

M
-1

cm
-1

 
Reduced form 

His310Ala 0.1 11,600 (457 nm) Neutral hydroquinone 

His310Asp 0.1 12,400 (454 nm) Neutral hydroquinone 

His310Asn 0.1 13,900(452 nm) Neutral hydroquinone 

Wild-type (1) 0.9 11,400 (452 nm) Anionic hydroquinone 
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Figure 6.4. Circular Dichroism and Fluorescence of the His310Ala, His310Asp and His310Asn 

Variant Enzymes as well as the Wild-type Enzyme. Panel A shows the near UV circular 

dichroism spectra at pH 6.0, panel B shows the far UV circular dichroism spectra at pH 6.0, 

panel C shows the tryptophan fluorescence at pH 6.0 and panel D shows the FAD fluorescence at 

pH 6.0. Solid curves, wild-type choline oxidase; dashed curves, histidine 310 variant enzymes. 

 

 

Reaction of Variant Enzymes with Choline. Purified His310Ala, His310Asp, and 

His310Asn variant enzymes at final concentrations as high as 20 μM showed no oxygen 

consumption when assayed with 20-30 mM choline as a substrate at pH 7.0 and 25 C.  

However, anaerobic mixing of the variant enzymes with choline at a final concentration of 10 

mM resulted in a biphasic reduction (Figure 6.5) of the oxidized enzyme-bound flavin. The fast 

phase started right after mixing the enzyme with its organic substrate and lasted for ~30 min and 

the second phase lasted in excess of 16 h resulting in the full reduction of the bound flavin.  
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Figure 6.5. Time Resolved, Anaerobic Reduction of the His310Ala, His310Asp and His310Asn 

Variant Enzymes with Choline in 20 mM Tris-Cl, pH 7.0 and at 15 °C Monitored at 456 nm in a 

Spectrophotometer. The reduction traces for the His310Ala enzyme with 10 mM choline (black), 

the His310Asp enzyme with 10 mM choline (red) and the His310Asn enzyme with 10 mM 

choline (blue). All traces were fit with eq. 1. 

 

 

The reductive half-reactions in which the His310Ala and His310Asn variant enzymes are 

reduced anaerobically with choline were investigated using a stopped-flow spectrophotometer by 

measuring the rates of decrease in absorbance at 456 nm as a function of the concentration of 

choline in 20 mM Tris-Cl, pH 8.0 and 25 
o
C, under pseudo-first order conditions (i.e., 20 μM 

enzyme and ≥100 μM substrate). For both variant enzymes anaerobic mixing with choline at 

final concentrations ranging from 0.75 to 20 mM displayed a biphasic reduction lasting for ~16-

40 h resulting in the bound flavin being reduced to the neutral hydroquinone. The spectra of the 

oxidized and the reduced forms a His310Ala, for each of the choline concentrations tested, are 

shown in Figure 6.6 and the corresponding reduction traces are shown in Figure 6.7. 

Interestingly, for all histidine 310 variant enzymes investigated, no flavin reoxidation was 

detectable upon exposing the fully reduced enzymes to atmospheric oxygen for more than 12 

hours.  
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Figure 6.6. Anaerobic Spectra of the Oxidized and Reduced Form of the His310Ala Variant 

Enzyme, pH 8.0, at 15 C. Solid curves, UV-visible absorbance spectra of the oxidized form of 

His310Ala prior to mixing with choline; dashed curves, UV-visible absorbance spectra of the 

reduced form of His310Ala post anaerobic mixing with 0.75 mM of choline for 40 h (panel A), 1 

mM choline for 16 h (panel B), 1.5 mM choline for 16 h (panel C), 2 mM choline for 16 h (panel 

D), 5 mM choline for 16 h (panel E), and 10 mM choline for 5.5 h (panel F). (Modified from 

(19)) 
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Figure 6.7. Anaerobic Reduction Traces of the His310Ala Variant Enzyme with Choline, pH 

8.0, at 15 C. UV-visible absorbance values () at 456 nm as a function of time after the 

anaerobic mixing of the variant enzyme with 0.75 mM of choline for 40 h (panel A), 1 mM 

choline for 16 h (panel B), 1.5 mM choline for 16 h (panel C), 2 mM choline for 16 h (panel D), 

5 mM choline for 16 h (panel E), and 10 mM choline for 5.5 h (panel F). The reduction traces 

were all fit with eq 1. (Modified from (19)) 
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The results of the FAD reduction in the His310Asn and His310Ala variant enzymes with 

choline are summarized in Table 6.2. 

The ability of the His310Asn and His310Ala variant enzymes to be reduced upon mixing 

with the organic substrate choline suggests that although they do not show any catalytic activity 

toward choline as measured polarographically, they are still capable of binding and oxidizing 

choline. 

 

Table 6.2. Anaerobic Reduction of His310Ala and His310Asn with Choline 
a
   

 Wild-type
c
 His310Ala His310Asn 

[Choline], 

mM 

kred 

s
-1

 
Fast phase 

kobs1, min
-1

 

Slow phase 

kobs2 × 10
3
, min

-1
 

Fast phase 

kobs1, min
-1

 

Slow phase 

kobs2 × 10
3
, min

-1
 

0.75  0.06  0.001 1.0  0.1 Nd.
b
 Nd.

 b
 

1  0.06  0.001 2.0  0.3 0.10  0.002 12  0.5 

1.5  0.19  0.002 4.0  0.1 0.16  0.010 27  2.0 

2  0.35  0.005 7.0  0.2 0.12  0.006 34  0.1 

5  0.23  0.005 10  0.3 1.08  0.06 66  1.1 

10  0.26  0.01 11  0.2 2.64  0.30 48  1.4 

20 93 0.13  0.005 6.0  0.5 0.48  0.005 74  3.5 

a
 Enzyme concentrations were ~20 μM in 20 mM Tri-Cl and 10 % glycerol, pH 8.0, at 15 C. 

b
Not determined. 

c
Limiting rate of reduction, kred at pH 10.0 (20). 

 

 

The data points obtained for the observed rate of the fast phase of anaerobic flavin reduction, 

kobs1, for His310Ala and His310Asn as a function of choline concentration were scattered and did 

not allow the determination of the kred and the Kd by fitting with equation 2 (Figure 6.8A and 

C). Even though the data points obtained for the slow phase of flavin reduction for both 

His310Ala and His310Asn variant enzymes are scattered, the overall trend is consistent with 

what is expected for a first-order rate constant and as such, it is reasonable to fit the data with 
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equation 2. The value obtained for kred for His310Ala was ~550,000-fold lower than that for 

wild-type enzyme at pH 10.0 and 25 ⁰C (2 ×10
-4

 s
-1

 vs. 93 s
-1

), and the value determined for Kd 

was at ~5-fold higher than that of wild-type enzyme (1.8 mM vs. 0.3 mM) (2). For the 

His310Asn variant enzyme kred was ~70,000-fold lower than that for wild-type enzyme at pH 

10.0 and 25 ⁰C (1 ×10
-3

 s
-1

 vs. 93 s
-1

), and the value determined for Kd was approximately one 

order of magnitude larger than that of wild-type enzyme (2.9 mM vs. 0.3 mM). 
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Figure 6.8. Anaerobic Flavin Reduction of His310Ala and His310Asn. Observed Rate () of the 

Decrease of Absorbance at 456 nm as a Function of Choline Concentration for the Fast Phase of 

His310Ala (panel A), for the slow phase of His310Ala (panel B), for the fast phase of His310Asn 

(panel C) and for the slow phase of His310Asn (panel D). 

 

The scattering of the data points pertaining to the fast phase of flavin reduction could be 

attributed either to the rate of reduction of being substrate independent, or to the variant enzymes 

undergoing a conformational change prior to flavin reduction as a result of the substitution of 

residue His310.   
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6.5.Discussion 

Even though the choline oxidase variant enzymes with the histidine residue at position 310 

replaced with alanine, asparagine or aspartate show no catalytic activity toward its organic 

substrate choline as measured polarographically, the anaerobic reduction results clearly suggest 

that they are still capable of binding and oxidizing choline. The mutation of residue 310 resulted 

in changes to the flavin microenvironment that caused the flavin cofactor to be reduced to the 

neutral hydroquinone in the variant enzymes rather than the anionic hydroquinone as in the wild-

type enzyme. Additionally, a significantly lowered ratio of holoenzyme/apoenzyme suggests that 

histidine 310 significantly affects the flavinylation and the cofactor binding in choline oxidase.  

The location of His310 ~2.9 Å behind His466 observed in the X-ray crystal structure of the 

wild-type choline oxidase, effectively prevents His310 from directly affecting the flavin 

microenvironment (Figure 6.2) and as such it must exert its effect through histidine 466. Studies 

in which His466 was replaced with alanine or aspartate showed that His466 needs to be 

protonated and that, in addition to stabilizing the transient alkoxide species that is formed during 

enzyme turnover, it also modulates the electrophilicity of the enzyme-bound flavin and the 

polarity of the active site (8). Furthermore, His466 was shown to be responsible for stabilizing 

the negative charge that develops on the flavin during enzyme turnover (9). The X-ray crystal 

structure of the wild-type enzyme along with the studies on the role of the active site His466 

residue suggest the existence of a proton-transfer network between the protonated active site 

residue His466 and His310; the latter residue being hydrogen bonded to the peptidyl oxygen 

atoms of Thr380 and Val507 through its N(3) atom (Figure 6.2). The main role of the proton-

transfer network between the side-chains of His466, His310 and the backbone peptidyl oxygen 

atoms of Thr380 and Val507 is proposed to ensure the correct orientation and protonation state 
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of His466 for efficient catalysis.  This highly coordinated hydrogen bonding network ensures 

that His466 is in the correct orientation to abstract a proton from the hydroxyl group of choline. 

Upon proton abstraction the proposed proton transfer network functions by facilitating a proton 

being transferred from the protonated His466 to His310 during the reductive half-reaction, and 

transferring the proton back again during the oxidative half-reaction. Thereby, preventing the 

premature deprotonation of His466 through a proton transferring to the anionic reduced flavin.   

The anaerobic reduction results obtained herein showed a significantly impaired reductive 

half-reaction in the variant enzymes, as seen by the rate of reduction being ~10
5
 times slower as 

compared to that for the wild-type enzyme. This finding is consistent with a proton transfer 

network being disrupted upon substituting the active site residue His310 of choline oxidase 

resulting in His466 not being positioned properly to abstract the proton from choline and 

stabilize the transient alkoxide intermediate or the developing negative charge on the N(1)-

C(2)=O locus of the flavin. Additionally, a disruption of the proposed proton network would 

likely result in the reduced flavin being the neutral hydroquinone, and thus having a significant 

impact on the oxidative half-reaction, as is the case in the data presented.  

The proposed model of the reaction mechanism for the oxidation of choline catalyzed by 

choline oxidase that includes the proton-transfer network between His466 and His310 is shown 

in Scheme 6.2. In summary, during the reductive half-reaction, an active site base (His466) 

activates the alcohol substrate with the formation of an alkoxide species, which subsequently 

transfers a hydride ion from the -carbon to the N(5) atom of the bound flavin (species 1 and 2 

in Scheme 6.2) (2-3). The alkoxide intermediate is transiently stabilized in the active site through 

electrostatic interaction with the Nε2 atom of the protonated side chain of His466 (8). The 

protonated His466 also electrostatically stabilizes the negative charge developing at the N(1)-
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C(2)=O locus of the flavin (species 3 in Scheme 6.2) (9). Concomitant with the hydride transfer 

a proton is transferred from His466 to His310, triggered by the conformational change of Glu312 

relayed to His310 via Pro311. This conformational change results in a minor change of the 

microenvironment of His310 causing its pKa to shift, thereby favoring a proton being transferred 

from His466 to His310. The negative charge at the N(1)-C(2)=O locus of the anionic 

hydroquinone can still be stabilized through hydrogen bonding with Nε2 atom of the imidazole 

side-chain of His466  (species 4 in Scheme 6.2), however not as effectively as the protonated 

His466. In the oxidative half-reaction, electron delocalization from the N(1) locus of the anionic 

hydroquinone along with a proton transfer from the catalytic base results in the formation of the 

C(4a)-hydroperoxo-flavin. Concomitantly a proton is transferred back from His310 to His466 

(species 5 in Scheme 6.2). Finally the highly unstable C(4a)-hydroperoxo-flavin abstracts a 

second proton from the N(5) locus of the flavin with the subsequent release of H2O2 and the 

formation of oxidized flavin (species 6 and 7 in Scheme 6.2). 

 

In conclusion, the kinetic and spectral data collected for the practically inactive variant 

enzymes are consistent with the presence of the proposed proton transfer network between 

His466, His310, Thr380 and Val507 that has been disrupted due to the mutation of histidine 310. 

The disruption of the proposed proton transfer network would likely result in an incorrect 

positioning of His466, thereby explaining the lowered rate of flavin reduction. Further, a 

disruption of the proposed proton transfer network would also likely result in the premature 

deprotonation of His466 by the reduced anionic flavin effectively cutting off the oxidative half-

reaction, as observed for the His310 variant enzymes. 
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Scheme 6.2. Proposed Reaction Mechanism for the Reaction Catalyzed by Choline Oxidase 

(modified from (19)). 
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CHAPTER VII 

THE NATURE OF THE KINETICALLY SLOW EQUILIBRIUM BETWEEN TWO 

CONFORMERS OF THE VAL464ALA VARIANT CHOLINE OXIDASE 

 

7.1.Abstract 

The importance of residues in the active site that do not directly participate in catalysis is 

often overlooked in terms of studies trying to pinpoint key residues for enzymatic turnover, as 

they would likely only exert a minimal effect on the overall catalysis. However, studies in which 

valine 464 in the active site of choline oxidase has been replaced with either alanine or threonine 

have revealed that this hydrophobic residue lining the active site cavity close to the N(5) atom of 

the flavin plays several important roles. The replacement of Val464 with threonine or alanine in 

choline oxidase resulted in a significantly lowered oxygen reactivity and establishment of a 

kinetically slow equilibrium between a catalytically competent and incompetent form of enzyme. 

It is the nature of this equilibrium that is the subject of investigation in the present study. Rapid 

kinetic approaches revealed that the interconversion of the two forms of enzyme is independent 

of the isotopic composition of the substrate and that a protonated group is needed for maximum 

rate of interconversion. 

 

7.2.Introduction 

Choline oxidase (CHO; E.C. 1.1.3.17) from Athrobacter globiformis is a homodimer with 

molecular weight of 120 kDa that contains a covalently linked FAD in a 1:1 stoichiometry (1). 
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The enzyme catalyzes the reaction shown in Scheme 7.1 that converts choline to glycine betaine 

through four-electron oxidation with betaine aldehyde as a reaction intermediate (2-3).  

 

Scheme 7.1. The Two-step Reaction for the Oxidation of Choline to Glycine Betaine Catalyzed 

by Choline Oxidase. 

 

The reaction catalyzed by choline oxidase is of interest as glycine betaine has been found in 

bacteria and plants in response to water deficit or salt stress (4-8). Additionally, based on the 

amino acid sequence of choline oxidase, similarities can be seen with other enzymes belonging 

to the GMC oxidoreductase enzyme superfamily, such as glucose oxidase, cholesterol oxidase, 

and cellobiose dehydrogenase. Another common aspect for these enzymes is that they all have 

FAD as a cofactor for catalysis and have non-activated primary alcohols substrates (2, 9-11). As 

such, a detailed elucidation of the catalytic mechanism of choline oxidase may provide insights 

into the kinetic mechanisms of a large family of enzymes.  

Studies based on steady state kinetics, rapid kinetics, pH, mutagenesis, substrate deuterium 

and solvent isotope effects as well as viscosity effects have through the years provided a much 

more detailed understanding of the reaction shown in Scheme 7.1 (1, 12-22), which have been 

summarized in a recent review by G. Gadda published in Biochemistry (2009) 47, 13745-13753 

(23).  

A recent study on the role of the hydrophobic residue at position 464 revealed that it is 

important for the proper assembly of the catalytic machinery required for the reaction catalyzed 

by choline oxidase (19). Evidence for this was that upon replacing Val464 with either a threonine 
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or alanine (Val464Ala andVal464Thr) a catalytically incompetent form of enzyme that 

reversibly equilibrated with a form of enzyme that could efficiently oxidize choline was 

stabilized. It was shown that, both in the free variant enzyme devoid of ligands in the active site 

as well as the enzyme-substrate complex a conformational change was involved in the 

interconversion of the catalytically competent and incompetent forms of enzyme (Scheme 7.2).  

Eox + S EoxS Ered + P
Kd kred

E
*
ox + S E

*
oxS

k2k1

fast phase

slow phase

Kd
*

k4k3

 

Scheme 7.2. Proposed Kinetic Mechanism for Choline Oxidation Catalyzed by the Val464Thr 

and Val464Ala Enzymes. Eox, catalytically competent enzyme; E
*

ox, catalytically incompetent 

enzyme; S, substrate; kred, first-order rate constant for flavin reduction; Kd, macroscopic 

dissociation constant for substrate binding to the competent enzyme; Kd
*
, macroscopic 

dissociation constant for substrate binding to the incompetent enzyme; k1 and k3, first-order rate 

constants for the conversion of catalytically inert to competent enzyme; k2 and k4, first-order rate 

constants for the conversion of catalytically competent to inert enzyme (19).  

 

From proton inventory and spectroscopic studies on the Val464Ala and Val464Thr variant 

enzymes it was shown that this conformational change is associated with changes in the 

ionization state of a group, linked to the flavin cofactor of the variant enzyme, that is not readily 

available to the bulk solvent. His99, which is the site of covalent attachment of the polypeptide 

to the C(8) methyl group of the flavin (13), was proposed to be involved in the formation and 

stabilization of the incompetent form of choline oxidase (19).  

The structural information on the Val464Ala variant of choline oxidase (Protein Data Bank 

as entry 3LJP) provides a solid framework to substantiate the hypothesis of an involvement of 
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His99 in the inactivation of the enzyme. Indeed, the N(1) atom of His99 is located in a small 

cavity that is completely secluded from the bulk solvent, in hydrogen bonding distance (2.8 Å) 

with a structural water molecule (W780). This water molecule, in turn, is in hydrogen bonding 

distance with the peptidyl oxygen atoms of Leu64 (3.4 Å) and Tyr69 (3.1 Å) located on a long 

loop (residues 64-95) covering the active site of the enzyme (Figure 7.1) (24).  

 

Figure 7.1. Close-up View of the Active Site of the Val464Ala Variant Form of Choline 

Oxidase Showing the Hydrogen Bonding Interactions Involving the N(1) Atom of His99, a 

Structural Water Molecule (W780) Secluded from the Bulk Solvent, the Peptidyl Oxygen Atoms 

of Leu64 and Tyr69 (PDB entry 3LJP). 

 

A change in the ionization state of His99 is expected to affect the hydrogen bonding pattern 

around W780, conceivably resulting in a change in the conformation of the enzyme. The link 

between Ala464 and His99, which are spatially removed from each other, is likely provided by 

His466, which is in van der Waals contact with Ala464 and in hydrogen bonding distance of the 

flavin cofactor. The presence of such a link is supported by the observation that both the 

replacements of Val464 with threonine or alanine and of His466 with alanine have the same 

effect of increasing the pKa value for the ionization of the N(1) atom of His99 from 8.2 to ~9.1 

(18-19).  
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In summary, the replacement of Val464 with alanine or threonine showed that the 

hydrophobic residue Val464 lining the active site cavity close to the N(5) atom of the flavin is 

important for the correct positioning of the catalytic groups in the active site of choline oxidase. 

Replacement of Val464 with alanine or threonine also resulted in the reductive half-reaction 

showing a significantly decreased rate of hydroxyl proton abstraction, while minimally affecting 

the rate of hydride ion transfer from choline to the flavin (19). It was further determined, that the 

replacement of Val464 with alanine or threonine resulted in establishment of a kinetically slow 

equilibrium between a catalytically competent and an incompetent form of enzyme (19).   

In the present study, the kinetic behavior of the competent and incompetent form of the 

Val464Ala variant enzyme is investigated by means of rapid kinetics and substrate deuterium 

isotope effects in the pH range from pH 5.5 to 10.0.  

 

7.3.Experimental Procedures 

Materials. Escherichia coli strain Rosetta(DE3)pLysS was from Novagen (Madison, WI). 

DNase was from Roche (Indianapolis, IN). The QuikChange site-directed mutagenesis kit was 

from Stratagene (La Jolla, CA). The QIAprep Spin Miniprep kit was from Qiagen (Valencia, 

CA). Oligonucleotides used for sequencing of the mutant genes were custom synthesized by 

Sigma Genosys (Woodland, TX). Choline chloride was from ICN Pharmaceutical Inc (Irvine, 

CA).  1,2-[
2
H4]-choline bromide (98%) was from Isotec Inc. (Miamisburg, OH). All other 

reagents were of the highest purity commercially available. 

 

Site-Directed Mutagenesis. Val464Ala variant form of choline oxidase was prepared using 

the pET/codAmg plasmid harboring the wild-type gene for choline oxidase as template, as 

previously described (13, 17, 25). The presence of the desired mutation was confirmed by 
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sequencing the entire mutagenized gene. Escherichia coli strain Rosetta(DE3)pLysS competent 

cells were transformed with the mutant plasmid by electroporation. 

 

Enzyme Expression and Purification. The Val464Ala enzyme was expressed and purified to 

homogeneity as previously described (19, 25-26). The protein concentration of the variant 

enzyme was determined using the Bradford assay (27). Expression levels and purity were 

determined using SDS-PAGE (28) and the oxidized flavin content per enzyme active site was 

determined spectrophotometrically as previously described for the wild-type enzyme (29). 

  

Enzyme Assays. Reductive half-reaction measurements were carried out using an SF-61DX2 

HI-TECH KinetAsyst high performance stopped-flow spectrophotometer thermostated at 25 °C, 

in 50 mM buffer, at pH 5.5 to pH 10.0. The rate of flavin reduction was measured by monitoring 

the decrease in absorbance at 455 nm that results from the anaerobic mixing of enzyme with the 

organic substrate as previously described for the wild-type enzyme (30). After anaerobic mixing 

in the stopped-flow spectrophotometer the final concentration of the enzyme was ~10 M, 

whereas those of the organic substrates were between 0.05 to 10 mM, thereby maintaining 

pseudo-first order kinetic conditions.   

 

Data Analysis. Kinetic data were fit with KaleidaGraph (Synergy Software, Reading, PA) 

and the Hi-Kinetic Studio Software Suite (Hi-Tech Scientific, Bradford on Avon, U.K.).  

Stopped-flow data traces were fit with equation 1, which describes a double-exponential process, 

in which kobs1 and kobs2 are the observed rate constants for the change in absorbance at 455 nm, A 

is the value of absorbance at time t, B and C are the amplitudes of the absorbance changes for the 

fast and slow observed phases, and D is an offset value that accounts for the non-zero absorbance 
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value at infinite time. The kinetic parameters of the reductive half-reaction were determined by 

using equations 2 and 3, which apply to the kinetic mechanism of Scheme 7.2. In equation 2, 

kobs1 is the observed first-order rate associated with the fast phase of flavin reduction at any given 

concentration of substrate, kred is the limiting first-order rate constant for flavin reduction at 

saturating substrate concentrations, S is substrate concentration and Kd is the macroscopic 

dissociation constant for binding of the substrate to the active enzyme. In equation 3, kobs2 is the 

observed first-order rate associated with the slow phase of flavin reduction at any given 

concentration of substrate, k1 is the first-order rate constant for the conversion of the E
*
ox to Eox, 

k3 is the first-order rate constant for the reverse conversion, Kd* represents the macroscopic 

dissociation constant for binding of the substrate to the inactive enzyme, and S is substrate 

concentration (19).  
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The pH profiles of the Kd, Kd*, k1 and k3 values were determined by fitting the data to 

Equation 4, where YL and YH are the limiting values at low and high pH, respectively, and Ka is 

the dissociation constant for the ionization of groups that are relevant to the kinetic parameter 

analyzed.  
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The pH profiles for the kred, 
D
kred, 

D
Kd*, 

D
k1 and 

D
k3 values were determined by fitting the 

data to the average value for all their respective data values. 

Finally the pH profile for 
D
Kd values was determined by fitting the data to equation 5, which 

describes a 3
rd

 order polynomial. 

d cxbxaxY 23          (5) 

 

7.4.Results 

Expression and Purification. A variant form of choline oxidase was engineered using site-

directed mutagenesis to replace a valine at position 464 with alanine. The enzyme was expressed 

in Escherichia coli strain Rosetta(DE3)pLysS, and purified by salting out with ammonium 

sulfate followed by ion exchange chromatography using a DEAE-sepharose column as 

previously described for the wild-type enzyme (25). As previously reported, the Val464Ala 

variant enzyme has its flavin cofactor covalently bound and has a 25-fold decrease of the specific 

activity at pH 7.0 as compared to the wild-type enzyme (19).  

 

pH-dependence of the Reductive Half-reaction. The reductive half-reaction in which the 

Val464Ala enzyme is reduced anaerobically with both choline and 1,2-[
2
H4]-choline as 

substrates was investigated using a stopped-flow spectrophotometer by measuring the rates of 

decrease in absorbance at 455 nm as a function of the substrate concentration of choline at 25 
o
C 

in the pH range 5.5 to 10.0, under pseudo-first order conditions (i.e., 10 M enzyme and ≥50 M 

substrate). For all investigated pH values, the Val464Ala enzyme was reduced to the 

hydroquinone state in a biphasic pattern, with the observed rates for the fast phase of flavin 

reduction defining a rectangular hyperbola when plotted as a function of the concentration of 
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organic substrate. In contrast the observed rates for the slow phase of flavin reduction yielded an 

inverse hyperbolic dependency of substrate concentration, with the observed rates decreasing to 

an asymptotic value with increasing concentration of organic substrate. These kinetic data can be 

accounted for with the kinetic mechanism of Scheme 7.2 (19), which is the proposed mechanism 

for the reductive half-reaction of Val464Ala at pH 10.0. The data collected are consistent with 

the Val464Ala enzyme utilizing the same mechanism for choline oxidation throughout the pH 

range investigated.  

The kinetic data associated to the fast phase of flavin reduction were fitted with equation 2 

allowing for the determination of the first-order rate constant for flavin reduction (kred), and the 

dissociation constant for the catalytically competent enzyme-substrate Michaelis complex (Kd) 

for all investigated pH values. The determined kinetic parameters for the fast phase with both 

choline and 1,2-[
2
H4]-choline are plotted as a function of pH in Figure 7.2A and B.  

The kinetic data associated with the slow phase of flavin reduction were fitted with equation 

3 allowing for the determination of the first-order rate constants for the conversion of the 

incompetent form of enzyme to the competent form of enzyme (k1 and k3), and of the dissociation 

constant for the catalytically incompetent enzyme-substrate complex (Kd
*
). The requirement for 

pseudo-first order conditions in the anaerobic reduction of the enzyme with the organic substrate 

dictated that the concentration of substrate ≥ 50 μM (5-times [enzyme]) and the computer 

estimated Kd
*
-value was ≤ 80 μM,  thereby preventing an accurate determination of the first-

order rate constant for the conversion of the E
*

ox form of choline oxidase to the Eox species (k1) at 

pH 10.0. As a result, the data shown for k1 at this one pH is the estimated value from equation 2. 

At all other pH-values investigated the Kd
*
-value ≥ 120 μM and an accurate determination of k1 
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was possible. The kinetic parameters for the slow phase with both choline and 1,2-[
2
H4]-choline 

are plotted as a function of pH in Figure 7.2C-E. 
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Figure 7.2. pH Dependence of the kred (panel A), Kd (panel B), k1 (panel C), k3 (panel D) and Kd
*
 

(panel E) Values with Choline (●) and 1,2-[
2
H4]-choline (○) as Substrate for Choline Oxidase. 

pKa = 7.6 ± 0.1 

pKa = 7.8 ± 0.1 

pKa = 7.4 ± 0.2 pKa = 7.8 ± 0.2 

pKa = 7.7 ± 0.2 

pKa = 7.4 ± 0.1 

pKa = 7.5 ± 0.1 
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Activity assays were performed in a stopped-flow spectrophotometer in 50 mM buffer, at 25 ºC. 

Data for Kd, k1, k3 and Kd
*
 were fit with eq. 4. 

 

 

From the pH profiles of the kinetic parameters for the biphasic reduction of the Val464Ala 

enzyme with both choline and 1,2-[
2
H4]-choline it is seen that kred is pH independent between pH 

5.5 and 10.0, whereas both k1 and k3 show the need for a group to be protonated with pKa values 

of 7.4 and 7.8  with choline as a substrate and 7.4 and 7.7 with 1,2-[
2
H4]-choline as a substrate 

respectively. The pH profiles for the macroscopic dissociation constants, Kd
 
and Kd

*
, show an 

unprotonated group with pKa values of 7.8 and 7.5 with choline and 7.6 and 7.4 with 1,2-[
2
H4]-

choline as a substrate, respectively, needed for organic substrate binding. 

 

pH-dependence of the Substrate Deuterium Kinetic Isotope Effects. The pH-dependence of 

the substrate kinetic isotope effects were employed with the goal of gaining insights into whether 

there is a change in the rate-limiting steps for the reductive half-reaction of the Val464Ala 

enzyme as pH changes. As shown in Figure 7.3A-E one observable substrate deuterium isotope 

effect is for the rate of flavin reduction of the fast phase, kred between pH 5.5 and 10.0 with an 

average magnitude for 
D
kred of 3.2 ± 0.3 between pH 5.5 and 10.0 (Figure 7.3A)

7
. This substrate 

deuterium isotope effect is consistent with the cleavage of the CH bond of choline being at least 

partially rate-limiting in the reductive half-reaction for the investigated pH-range. A second 

observeable substrate deuterium isotope effect is seen at the extremes of the pH range 

investigated for the macroscopic dissociation constant for the fast phase of flavin reduction (Kd) 

(Figure 7.3B).  In contrast, no substrate deuterium isotope effect is observed between pH 5.5 and 

                                                 
7
 
D
kred is pH independent in the pH range investigated, as seen from kred being pH independent with both choline and 

1,2-[
2
H4]-choline as substrates. The representation of the pH dependence of 

D
kred in Figure 7.3A gives the impression 

that there is a pH dependence at low pH, but this is merely an artifact arising from the scattering of the datapoints for 

kred with choline and 1,2-[
2
H4]-choline as substrates. 
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10.0 for the rates of the slow phase of flavin reduction (k1 and k3) or for the macroscopic 

dissociation constant (Kd
*
) Figure 7.3C-E.  
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Figure 7.3. pH Dependence of Substrate Deuterium Isotope Effects of the 
D
kred (panel A), 

D
Kd 

(panel B) (here fitted with y = -0.2x
3
 + 5.3x

2
 – 43.2x + 116.5), 

D
k1 (panel C),

 D
k3 (panel D) and 
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D
Kd

*
 (panel E) Values. Activity assays were performed in a stopped-flow spectrophotometer in 

50 mM buffer, at 25 ºC.  

 

pH-dependence of the Equilibrium between the two Enzyme Forms.  The biphasic flavin 

reduction in the Val464Ala enzyme has been attributed to the enzyme existing in an equilibrium 

between a competent (Eox) and an incompetent form (E
*
ox) (19). The relative amplitudes of the 

kinetic phases seen in the stopped-flow traces can be used to quantitate the relative amounts of 

each form of enzyme. As shown in Table 7.1 the relative amount of Eox is independent of pH 

between pH 6.5 and 10.0 with an average value of 86 ± 8 % and then dropping to an average 

value of 47 ± 1 % at pH 5.5 and 6.0. 

 

Table 7.1. Effect pH Dependence of the Ratio of Competent Enzyme to Total Enzyme. 
 

pH Eox/Etotal, % 

10.0 76 ± 5 

9.0 80 ± 6 

8.0 94 ± 7 

7.5 94 ± 7 

7.0 83 ± 6 

6.5 90 ± 6 

6.0 48 ± 10 

5.5 46 ± 9 
a 

Conditions: 50 mM buffer, 25 °C, pH 10.0. Pre-steady-state kinetic parameters were determined by fitting the 

kinetic data acquired upon mixing anaerobically the enzyme with the choline to equations 1. 

 

7.5.Discussion 

In a recent study, the replacement of Val464 with alanine resulted in the establishment of a 

kinetically slow equilibrium between a catalytically competent and an incompetent form of 

enzyme (19), with each form having a separate conformation, with only one being congruent 

with efficient choline oxidation. It was proposed that the conformational change associated with 

the conversion of the incompetent form to the competent conformation involves the change of 

ionization state of a group linked to the flavin cofactor. The pH profiles presented here for the 
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rate of interconversion for both the free enzyme as well as the enzyme-substrate complex (k1 and 

k3 in Scheme 7.2) show that a protonated group is indeed needed for maximum rate of 

interconversion, which is consistent with previous findings at pH 10.0 that the interconversion 

involves a single proton changing position (19). The pKa value for the group that needs to be 

protonated of around 7.6 would predict that the relative amount of the competent form of the 

enzyme, Eox would increase as pH is lowered; however this is not the case as seen in Table 7.1. 

This could be a result of the group that needs to be protonated not being accessible to the bulk 

solvent, and as such not affected by the pH. However, this seems unlikely in the light of the 

interconversion of the enzyme-substrate complex (k3) being sensitive to the isotopic composition 

of the solvent at pH 10.0, as seen by a solvent deuterium isotope effect with choline as a 

substrate of 3 (19). A more likely explanation is based on the principle of thermodynamic cycles, 

which in the case of the Val464Ala enzyme where the two forms of enzyme are linked by an 

ionizable group can be shown as Scheme 7.3 (31). 

Eox + H
+

EoxH
+

Kd

E
*
ox + H

+
E

*
oxH

+

K

Kd
*

K*

 

Scheme 7.3. The Thermodynamic Cycle Linking Ionization and Equillibria for the Competent 

and Incompetent form of Val464Ala. 

 

The thermodynamic cycle for the equilibrium of the two forms of the Val464Ala enzyme 

predicts that at low pH: 

*

d

d
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And at high pH: 
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KKapp   

Meaning that the ratio of Eox/Etotal should be pH independent at high pH. Whereas at low pH only 

if Kd = Kd
* 

would the ratio of Eox/Etotal be pH independent. In order for the ratio of Eox/Etotal to be 

pH independent throughout the pH range investigated the equilibrium constant for the free form 

of enzyme, K must also be pH independent. If the before mentioned conditions are not met, then 

the ratio of Eox/Etotal will be pH dependent. Kd, Kd
* 

and the rate of free enzyme interconversion 

(k1) have been shown to be dependent on pH with different pKa values, as such a pH dependence 

of the ratio of Eox/Etotal is expected, which is consistent with the data summarized in Table 7.1. 

Based on a previous study (19) that determined that an ionizable group interacting with the 

flavin cofactor is involved in the interconversion of the two forms of the Val464Ala enzyme and 

the crystal structure of the wild-type enzyme, His99 and His466 are identified as likely 

candidates for being the ionizable group involved. One experiment that could potentially help 

determine which residue is involved in the interconversion of the two forms of enzyme in the 

Val464Ala enzyme would be the determination of the pH-dependence of the UV-spectra of the 

Val464Ala with glycine betaine in the active site. This experiment would be expected to yield a 

pKa value for the N(1) atom of His99 similar to the one determined for the ionizable group 

needed for efficient interconversion of the enzyme forms in the Val464Ala enzyme determined 

in the pH-profiles for k1 and k3. Based on another previous study which showed no effect on kcat 

by adding exogenous imidazole to the reaction mixture for the His466Ala variant enzyme, but 

saw a rescuing effect upon adding imidazolium (18), a second set of experiments can be devised. 

These experiments would entail the investigation of the reductive half-reaction for His466Ala at 

high pH with exogenous imidazole. At high pH, only a fraction of the added imidazole would be 

protonated and as such, if His466 is the ionizable group involved in the interconversion of the 
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two enzyme forms of Val464Ala, a biphasic flavin reduction of His466Ala under anaerobic 

conditions upon mixing with choline would be expected. This reasoning is based on, only the 

enzyme interacting with imidazolium would be in a competent conformation and the enzyme 

interacting with imidazole would have to undergo a conformational change similar to the one 

observed for the Val464Ala enzyme.   

The rate of flavin reduction in the fast phase (kred) is seen to be pH independent for both 

choline and 1,2-[
2
H4]-choline and as such the substrate deuterium isotope effect is also pH 

independent. The pH independence and magnitude of the substrate deuterium isotope effect is 

consistent with the rate of hydride transfer being partially rate-limiting throughout the pH range 

investigated. It is also seen that the dissociation constants for the two phases of flavin reduction 

with both choline and 1,2-[
2
H4]-choline require an unprotonated group for the substrate binding.  

In conclusion, the presented pH studies on the Val464Ala variant enzyme showed that the 

flavin reduction is biphasic as a result of the enzyme existing as a pH-independent kinetically 

slow equilibrium between a catalytically competent and incompetent form. The biphasic 

behavior displayed throughout the pH range investigated can be explained by the mechanism 

determined for the Val464Ala enzyme at pH 10.0. The fast phase, being the reduction of the 

flavin cofactor in the competent form was seen to be dependent on the isotopic composition of 

the substrate but independent of pH. Contrary to this, the reduction of the flavin for the 

incompetent form (slow phase) was pH-dependent, but independent of the isotopic composition 

of the substrate. The pH dependence of the slow phase showed that a protonated group is needed 

for maximum rate of conversion to the competent form. These findings coincide well with 

findings for Val464Ala at pH 10.0, that a single proton in flight is involved in the conformational 
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change associated with the interconversion of the incompetent and competent form of the 

enzyme.  
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CHAPTER VIII 

GENERAL DISCUSSION AND CONCLUSIONS. 

As the understanding of enzymes and how they achieve large rate enhancements of 

reactions has evolved, the complexity of enzyme catalysis has become very apparent, as 

exemplified by the studies on choline oxidase, where several residues have been shown to affect 

catalysis, and often multiple aspects of it (1-16). The need for an in-depth understanding of the 

kinetic mechanism as well as the mechanistic properties of enzymes become necessary, as the 

net rate enhancement achieved during catalysis as compared to the uncatalyzed reaction is the 

result of the combination of multiple effects exerted by a great number of residues in the protein 

matrix. This dissertation utilized the well characterized and extensively studied choline oxidase 

as a model enzyme to contribute to the understanding of enzyme catalysis by investigating the 

effects on the overall reaction kinetics of residues in the protein matrix that do not directly 

participate in catalysis. A combination of steady state kinetics, rapid kinetics, pH, mutagenesis, 

substrate deuterium and solvent isotope effects, viscosity effects as well as X-ray crystallography 

were used to investigate the roles of histidine at position 310, valine at position 464 and serine at 

position 101. 

From the crystal structure of the wild-type choline oxidase solved to 1.86 Å resolution (2) 

a histidine residue, His310, not in direct contact with neither the active site nor the flavin 

cofactor, is seen to be located ~2.9 Å from His466. His466 has been shown to provide a positive 

charge in the active site needed for catalysis. The orientation of the side-chains of both histidine 

residues indicate the presence of a His466
Nδ1

-His310
Nδ1

 hydrogen bond. To assess the 

contribution made by this hydrogen bond to catalysis, mutant forms of the enzyme were prepared 

in which His310 was substituted with alanine, asparagine or aspartate.  
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Similarly from the crystal structure of the wild-type choline oxidase a pocket, defined by 

His351, Val464, and His466, on the re-face directly above the C(4a) atom of the flavin, where 

the C(4a) oxygen adduct is observed, can be identified (2, 5). Previous studies have established 

the important roles of His466 and His351 (1, 6-7) in the reaction catalyzed by choline oxidase, 

thus leaving the role of hydrophobic Val464 to be explored. This was done by replacing the 

valine residue with an alanine or a threonine. 

Finally, the role of serine 101, seen to be less than 4 Å from the N(5) atom of FAD and 

within hydrogen bonding distance of the active site, was done by replacing the serine with an 

alanine.  

The ensuing variant enzymes were investigated kinetically as well as structurally. The 

crystal structures for the Ser101Ala and Val464Ala variant enzymes were successfully attained, 

while the one for any of the His310 variant enzymes remains elusive. 

The Val464Ala enzyme crystallized as a homodimer, with each monomer being 

superimposable with its corresponding complement in the wild-type enzyme with an rmsd value 

of 0.67 Å for 1056 topologically equivalent C atoms, consistent with the overall structures of 

the Val464Ala and the wild-type enzymes being essentially identical. The FAD cofactor in the 

Val464Ala enzyme is covalently bound to the N2 atom of His99 as in the case of wild-type (2, 

17).  

The homodimers seen in the crystal structure for the Ser101Ala enzyme were also 

superimposable with those of the wild-type enzyme with an average rmsd value of 0.41 Å for 

527 equivalent Cα atoms in each monomer, showing no significant structural differences 

between the two enzymes. Additionally, the electron density maps clearly indicated that FAD in 

the Ser101Ala enzyme is also covalently linked to the His99 Nє2 atom (17). 
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For both variant enzymes, the overall structures determined were identical to the one for 

the wild-type enzyme. Further it was seen that the orientations of the residues in and around the 

active site were also similar to those in the wild-type enzyme. The major difference observed for 

both variant enzymes was that the isoalloxazine moiety of the FAD cofactor was more planar 

than that of the wild-type. In the latter enzyme, the C(4a) atom has been shown to be sp
3
 

hybridized due to the presence of an oxygen adduct that is not observed in neither of the variant 

enzymes resulting in the C(4a) atom being sp
2
 hybridized (2, 5).  

Kinetically, the His310 (His310Ala, His310Asn and His310Asp), Ser101 (Ser101Ala) 

and Val464 (Val464Ala and Val464Thr) variant enzymes were distinct, each with kinetic 

parameters differing significantly from those of the wild-type enzyme.  

Of the presented variant enzymes, the variant enzymes where Val464 was replaced with 

either alanine or threonine were the most extensively investigated. The substitution of valine to 

alanine or threonine resulted in the reductive half-reaction showing a significantly decreased rate 

of the initial hydroxyl proton abstraction, while minimally affecting the rate of the subsequent 

hydride ion transfer and the overall net rate of the reductive half-reaction. However, where the 

hydroxyl proton abstraction and the hydride transfer proceeds via stepwise mechanism in the 

wild-type enzyme (18), the mechanism is not unequivocal in the Val454Ala variant enzyme as 

seen by the presence of both substrate and solvent deuterium isotope effects (12). The isotope 

effect results are ambiguous in that they are consistent with both a stepwise mechanism and a 

mechanism where the synchronicity of the hydroxyl proton abstraction and the hydride transfer 

display some degree of temporal overlap. As such, the hydride ion transfer in the Val464Ala 

variant enzyme is at least partially rate limiting as compared to fully rate limiting in the wild-

type enzyme. It was further determined that the replacement of Val464 resulted in the 
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establishment of a kinetically slow equilibrium between a catalytically competent and an 

incompetent form of enzyme, where the incompetent form is converted to the competent one 

through a conformational change involving a proton transfer during anaerobic oxidation of the 

organic substrate.  

For the oxidative half-reaction, steady state, rapid kinetics and enzyme monitored 

turnovers indicated that the reactivity of the reduced form of the Val464 variant enzymes with 

oxygen is decreased ~50-fold with respect to that of the wild-type enzyme.  

In summary, the Val464 variant enzymes exist as an equilibrium of two interconvertible 

forms of enzyme with the reductive half-reaction proceeding at similar rates for the competent 

form. Contrary to this, the oxidative half-reaction is significantly impaired upon substitution of 

Val464. Overall, these results are consistent with valine at position 464 being important for the 

preorganization of the active site for efficient catalysis, and providing a non-polar site in 

proximity of the C(4a) atom of the flavin, that is required to guide oxygen to the site of 

reduction.  

 

In the variant enzyme where His310 was replaced with either an alanine, asparagine or 

aspartate no catalytic activity with choline as substrate could be detected polarographically. 

Nevertheless, spectrophotometrically, the variant enzymes were able to be reduced under 

anaerobic conditions upon mixing with choline, indicating that the they retained the ability to 

bind choline upon mutation of His310. However, the rates of reduction were estimated to be 

70,000 to 550,000 times slower than in the wild-type enzyme. The substitution of His310 also 

resulted in a significant increased ratio of apoenzyme/holoenzyme thereby implicating His310 in 

the flavinylation process in choline oxidase. Finally, the reduced form of the variant enzymes 
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was seen to be the neutral hydroquinone as compared to the anionic form in the wild-type 

enzyme, and when exposed to atmospheric oxygen no reoxidation of the reduced variant 

enzymes occurred. Therefore, these results together with the structural information of the wild-

type enzyme suggest an important role of His310 in catalysis and the modulation of the micro-

environment of the enzyme-bound flavin. The existence of a proton transfer network consisting 

of the side-chains of His466, His310 and the backbone carbonyl oxygen atoms of Thr380 and 

Val507 is proposed as the basis for the mechanism by which His310 affects catalysis in choline 

oxidase. 

Overall the His310 variant enzymes are able to bind and be reduced anaerobically by the 

organic substrate, but show no activity towards the second substrate oxygen. These results are 

consistent with histidine at position 310 being part of a proton-transfer network, between the 

side-chains of His466, His310 and the backbone carbonyl oxygen atoms of Thr380 and Val507, 

whose main purpose is to ensure correct positioning and protonation state of His466. In order to 

substantiate this hypothesis, the X-ray crystal structure of one of the His310 variant enzymes is 

required, in order to attribute the kinetic differences of the His310 variant enzymes and the wild-

type enzyme to the role exerted by His310 rather than being the result of structural differences 

between the two enzymes.  

 

For the variant enzyme where Ser101 was replaced with an alanine, preliminary kinetic 

characterization showed no significant changes in the Km value for choline between the 

Ser101Ala and wild-type enzymes. In contrast, the overall rate of catalysis (kcat) in the Ser101Ala 

enzyme is an order of magnitude slower, whilst having the rate of the reductive half-reaction 

with betaine aldehyde as a substrate lowered only 3-fold as compared to the rate determined for 
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the wild-type enzyme. Finally, the oxidative half-reaction showed a 3-4 fold rate increase as 

compared to the wild-type enzyme. 

In summary, preliminary kinetic data suggests that the Ser101 variant enzyme has an 

improved oxidative half-reaction at the expense of a lowered reductive half-reaction. This kinetic 

favoring of the oxidative half-reaction is likely due to a change in the FAD micro-environment 

resulting in an elevation of the reduction potential of FAD cofactor. 

 

Overall, the results presented in this dissertation have provided insight into the role of 

several residues in close proximity to the flavin cofactor in choline oxidase. One being His310, 

which is a not in direct contact with the flavin, but can affect the flavin micro-environment 

through His466. His310 is likely involved in maintaining the correct protonation state of His466, 

which has been shown to be important for electrostatic stabilization of the reaction intermediate 

as well as the developing negative charge on the N(1) atom of the flavin during catalysis (7). A 

second residue being Val464, that along with His351 and His466 defines the cavity on the re-

face directly above the C(4a)-N(5) atoms of the flavin, where the C(4a)-oxygen adduct is 

observed in the crystal structure of the wild-type enzyme (2). Val464 is seen to be important for 

the oxidation of the reduced flavin by molecular oxygen, but not for substrate binding or the 

hydride ion transfer reaction that occurs between the choline substrate and the flavin cofactor 

(12). Finally Ser101, which is less than 4 Å from the N(5) atom of FAD and within hydrogen 

bonding distance of the ligand in the active site of wild-type choline oxidase (2), is seen to 

promote the oxidative half-reaction while demoting the hydride ion transfer reaction in the 

reaction catalyzed by choline oxidase.  
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With the elucidation of the large effects on catalysis exerted by the residues presented in 

this dissertation, it is apparent that efficient catalysis in enzymes, at least in choline oxidase, is 

achieved through the combination of a large number of effects exerted by multiple residues.  

This dissertation clearly illustrates the complexity of how enzymes achieve large rate 

enhancements of reactions and that the residues having prominent roles during catalysis is not 

limited to active site residues. 
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