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AND EXAMINE MECHANISMS 

 

by 

 

CATHARINE JANE COLLAR 

 

Under the Direction of Dr. W. David Wilson 

 

ABSTRACT 

 

Over a billion individuals worldwide suffer from neglected diseases. This equates to 

approximately one-sixth of the human population. These infections are often endemic in remote 

tropical regions of impoverished populations where vectors can flourish and infected individuals 

cannot be effectively treated due to a lack of hospitals, medical equipment, drugs, and trained 

personnel. The few drugs that have been approved for the treatments of such illnesses are not 

widely used because they are riddled with inadequate implications of cost, safety, drug 

availability, administration, and resistance. Hence, there exists an eminent need for the design 

and development of improved new therapeutics. Influential world-renowned scientists in the 

Consortium for Parasitic Drug Development (CPDD) have preformed extensive biological 

testing for compounds active against parasites that cause neglected diseases. These data were 

acquired through several collaborations and found applicable to computational studies that 

examine quantitative structure-activity relationships through the development of predictive 



models and explore structural relationships through docking. Both of these in silico tools can 

contribute to an understanding of compound structural importance for specific targets. The 

compilation of manuscripts presented in this dissertation focus on three neglected diseases: 

trypanosomiasis, Chagas disease, and leishmaniasis. These diseases are caused by kinetoplastid 

parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp., respectively. 

Statistically significant predictive devices were developed for the inhibition of the: (1) T. brucei 

P2 nucleoside transporter, (2) T. cruzi parasite at two temperatures, and (3) two species of 

Leishmania. From these studies compound structural importance was assessed for the targeting 

of each parasitic system. Since these three parasites are all from the Order Kinetoplastida and the 

kinetoplast DNA has been determined a viable target, compound interactions with DNA were 

explored to gain insight into binding modes of known and novel compounds. 

 

INDEX WORDS: Trypanosomiasis, Leishmaniasis, Chagas Disease, Nucleoside transporter, 

DNA, Molecular Modeling, 3D-QSAR, CoMFA, CoMSIA, Docking 
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NEGLECTED DISEASES 

Worldwide, more than a billion individuals suffer from neglected diseases; yet very few 

drugs have been approved as therapeutics for these illnesses.
1-3

 The lack of therapeutic agents 

and the adverse effects of those available necessitates drug discovery efforts. Studies addressed 

in this compilation of manuscripts are for neglected diseases caused by parasites of the Order 

Kinetoplastida: (1) trypanosomiasis, caused by Trypanosoma brucei, (2) Chagas disease, caused 

by Trypanosoma cruzi, and (3) leishmaniasis, caused by species of Leishmania.  

Therapeutics  

Trypanosomiasis. The type of treatment for trypanosomiasis depends on the stage of 

infection, first or second, and subspecies of parasite.
4-7

 Suramin is used to treat T. brucei 

rhodesiense infections, while pentamidine is employed for T. brucei gambiense. Side effects of 

suramin treatment include nausea, vomiting, urticarial rash and lack of consciousness, whereas 

pentamidine’s side effects include hypotension, abdominal pain, hypersalivation, vertigo, nausea, 

and chest pain. The second stage treatments for both subspecies calls for melarsoprol, a drug that 

is highly toxic and consists of the following side effects: convulsions, fever, loss of 

consciousness, rashes, bloody stool, nausea, and vomiting, as well as myocardial damage, 

albuminuria, and hypertension. Eflornithine can also be employed to specifically treat T. brucei 

gambiense. The side effects associated with this compound include diarrhea, suppression of bone 

marrow, anaemia, and leukopenia. 
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Chagas Disease. Accepted clinical treatments for Chagas disease are Nifurtimox (Nfx) 

and Benznidazole (Bz); these compounds are not FDA approved.
7-9

 The most common side 

effects of Nfx are abdominal pain, dizziness, headache, loss of appetite, nausea, vomiting, and 

weight loss, whereas the most common side effects of Bz include gastrointestinal symptoms such 

as nausea and peripheral neuropathy. 

Leishmaniasis. Infections of Leishmania spp. result in three forms of the leishmaniasis 

disease: cutaneous, mucosal, and visceral.
3, 4, 7, 10, 11

 The preferred treatments are sodium 

stibogluconate for cutaneous and mucosal leishmaniasis and liposomal amphotericin B for 

visceral leishmaniasis. However, due primarily to the high cost of liposomal amphotericin B, 

sodium stibogluconate is commonly used to treat all three leishmaniasis disease forms. The most 

common side effect of sodium stibogluconate includes thrombophlebitis, abdominal pain, 

nausea, vomiting, anorexia, myalgia, arthralgia, and headache. The most predominant side effect 

of amphotericin B is nephrotoxicity. 

Research Approach 

Biological testing data were acquired through collaborations with world-renowned 

scientists in the Consortium for Parasitic Drug Development (CPDD). The compounds and their 

respective activities were employed for computational studies that examine: (1) quantitative 

structure-activity relationships (QSAR) through the development of predictive models and (2) 

explore structural relationships through docking.  
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Predictive Models. The QSAR of the structural and biological data acquired was assessed 

through partial least squares (PLS) regression modeling employing the biologically obtained 

activities and computationally calculated comparative molecular field analysis (CoMFA) and 

comparative molecular similarity indices analysis (CoMSIA) molecular descriptors. In general, 

QSAR-PLS studies follow these steps of progression: (1) compound input, (2) compound 

minimization, (3) compound alignment, (4) molecular descriptor calculation, and (5) regression 

model formation. 

Before QSAR-PLS predictive models can be formed, an extensive dataset of compound 

structures with biological activities must be acquired; it is important that biological activities are 

gained by the same biological assay for each compound of the dataset. Compounds employed for 

QSAR-PLS predictive modeling can consist of several diverse backbones. More diversity in a 

molecular modeling system leads to a greater range of structures applicable for prediction. 

When employing the SYBYL
12

 software environment to a dataset of compounds with 

biological activities, the Sketch Molecule menu can be opened and compounds may be drawn. 

Upon completion of a compound the Sketch Molecule menu needs to be exited and the 

compound ought to be named via the Name Molecule menu. The molecules should then undergo 

an initial minimization which can be done using the Minimize Molecule option. Examples of 

constructed and minimized structures may be viewed in Figure 1. Each named structure can then 

be placed into a constructed database through the Database Put Molecule option. 
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Subsequently to the input of all compounds into the database, possible conformations of 

structures should be assessed. This can be done through several methods including but not 

limited to: Systematic Conformational Search, Grid Search, Random Conformational Search, 

MultiSearch, and GA Conformational Search. The lowest energy conformations of compounds 

obtained ought to be further studied. To insure that compounds are in their lowest energy 

conformations these compounds may be re-minimized and moved to new databases. Figure 2 

displays three low energy structures of an arylimidamide compound. 

Compounds of similar low energy structural conformations ought to then be aligned; each 

alignment should consist of only one structural representation for each compound of the dataset. 

Alignment can be acquired in several ways including but not limited to: Fit Atoms, Match 

Atoms, Superimpose Atoms, Multifit, GALAHAD, and GASP. Examples are displayed in Figure 

3. Optimal compound alignment is essential to the construction of employable QSAR-PLS 

models.
13

  

A molecular spreadsheet ought to be constructed following alignment; this can be done 

by opening the database through the Open menu. Biological activities can then be input into the 

spreadsheet and molecular descriptors may be calculated by using the AutoFill menu of the 

spreadsheet. CoMFA and CoMSIA molecular descriptors can be calculated for QSAR-PLS 

modeling.
14

 CoMFA has become a model system for QSAR modeling methods and CoMSIA 

was developed to overcome limitations of CoMFA.
14, 15

 For CoMFA, each compound of a 

dataset is assigned interaction energies with respect to a probe atom and steric and electrostatic 
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molecular descriptors are calculated with a particular potential function; Lennard-Jones and 

Coulomb potentials, respectively.
16

 To keep the calculation energies in reasonable boundaries 

cut-off values are fixed: 5 kcal/mol for the Lennard-Jones potential and ±30 kcal/mol for the 

Coulomb potential. For CoMSIA, similarity indices are compiled for the compounds of a dataset 

at the intersections of a regularly spaced lattice.
13, 16, 17

 This is conducted with a grid and probe 

method, similar to CoMFA. In CoMSIA, a common probe is employed in a distance dependent 

approach that scans the entirety of the lattice and embeds each compound; the lattice points 

inside and outside the molecule are employed and cut-offs are not needed. Steric, electrostatic, 

hydrophobic, donor, and acceptor molecular descriptors are calculated using positive and 

negative fields acquired through similarity indices. The CoMSIA method indirectly evaluates the 

similarities of each molecule in the dataset, whereas the CoMFA method evaluates the 

compounds of the dataset through relative interaction energies dependant on molecular positions.  

PLS can then be employed to compare the biological activities of compounds to their 

respective calculated molecular descriptors; the PLS regression technique solves the linear model 

in a stepwise approach that includes every predictor variable in the model.
12

 A separate QSAR 

equation is prepared for each target property when multiple dependent variables are employed. 

The resulting coefficients are interrelated and usually differ from those that would be obtained by 

examining biological properties individually. An illustration of this regression technique can be 

viewed in Figure 4. With high-quality biological data and compound alignments as described 

above, predictive QSAR-PLS models can be acquired.  
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Docking. When receptor structures are available, useful information can be obtained 

through the docking of compounds into a binding site. Figure 5 displays the general scheme of 

FlexiDock, a genetic algorithm-based flexible docking method. Geometry optimization produces 

an initial population of compounds in complex with a receptor. Each complex consists of 

parameters that will be optimized: torsional angles, translation, and rotational angles. 

Reproduction takes place when complex populations swap coordinates, crossover, and/or exhibit 

random changes within the complex, mutation. Duplicate checking ensures that each complex is 

unique; this increases the complex population diversity. Conformational modifications are then 

made to the reproduced compounds and an evaluation function for scoring the resulting 

interaction is applied to the complex. The FlexiDock scoring function is based on the Tripos 

force field and estimates the energy of the compound, the receptor, and the complex energy. The 

score is evaluated with van der Waals and the user-selected energy terms, including electrostatic, 

torsional, constraint, and hydrogen bonding energies; lower energy in the complex state suggests 

better binding.  The crossover options that can be implemented when using Flexidock include: 

(1) successive generations, (2) the creation of new members, created via crossover and mutation, 

and (3) parents that can be selected for crossover. Fitness scores can be scaled to aid in selection. 

Manuscripts  

The published and unpublished manuscripts presented in this dissertation are a result of a 

series of studies examining neglected diseases through the employment of biological data and 

computational tools to examine respective parasites and relevant druggable targets.
18-21

 Chapters 
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two through five represent four independent studies. Chapter two examines a highly diverse 

dataset of inhibitors for T. brucei P2 transporters. A QSAR-PLS model was acquired through this 

study and the compounds of the model were examined to gain an understanding of inhibitory 

compound structural importance for P2 transporter inhibition. Chapter three examines 

arylimidamides and their inhibitory activity against two species of Leishmania. This research 

endeavor resulted in a conservative predictive method acquired via predictive models employing 

both rigid and flexible compound alignments. Compound structural importance to activity was 

then assessed. Chapter four examines a dataset of diamidines and arylimidamides with respect to 

inhibitory activity against T. cruzi at two different temperatures. A pharmacophore was obtained 

and used to construct a predictive model. Inhibitory compound importance was then extrapolated 

from the model and assessed with respect to the pharmacophore at each temperature. Chapter 

five examines dimer polyamide compounds bound by DNA with respect to their cognate DNA 

sequences. Structural importance and mechanisms of binding were evaluated through docking 

analyses. This study provides insight into DNA-compound interactions that may be applicable 

for targeting parasites of the Order Kinetoplastida, since the DNA of these parasites has been 

identified as druggable targets.
22-24
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Figures 

 

Figure 1. Examples of compounds constructed and minimized within the molecular modeling 

software. Minimization should include an assigned Force Field, such as Tripos, and Charges, 

such as Gasteiger-Huckel. 

 

  

Construction of Compounds

Scaffold Structure 1. 

Backbone of   46 

training and all 12 

testing compounds.

Scaffold Structure 3. 

Backbone of DB1911 

and DB1945.

Scaffold Structure 2. 

Backbone of DB1881, 

DB1882 and 1910. 

1. Compounds were input into SYBYL 8.1.
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Figure 2. Possible conformations of structures can be explored through various methods.  

  

Minimized Conformation
2. Subsequent to a short molecular dynamics simulation of 1ns, each low 

energy compound was minimized to convergence employing the Tripos force 

field and Gaseiger-Huckel charges.
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Figure 3. The three-dimensional molecular structures aligned within Cartesian space. (A) The 

QSAR module of SYBYL can be employed to overlay rigid low energy structures via individual 

molecule translations and/or rotations. (B) The GALAHAD module of SYBYL can be used to 

overlay flexible or rigid molecular structures in torsional space. The identified features are color 

coded: cyan for hydrophobes, magenta for donor atoms, green for acceptor atoms and red for 

positive nitrogens. 

 

 

 

Alignment by Algorithms
3. Three-dimensional molecular structures were overlaid in Cartesian space. 

(A) The QSAR module was employed to overlay rigid low energy structures 

via individual molecule translations and/or rotations. (B) The GALAHAD 

module was used to overlay flexible molecular structures in torsional space. 

Resulting rigid conformations were then overlaid within the Cartesian space. 

(A)

(B)
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Figure 4. Partial least squares (PLS) is a regression technique that is employed to compare 

experimentally obtained activity values to compound molecular descriptors acquired from 

respective compounds. PLS results in a linear model.  

 

 

Partial Least Squares (PLS)
4. A regression technique was used 

to compare biological activity values 

to compound molecular descriptors; 

this resulted in linear models.

Molecular Descriptor 3

Molecular Descriptor 1

Molecular Descriptor 2

t1

t2
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Figure 5. FlexiDock employs genetic algorithms as global optimizers to apply methods of 

biological evolution.  
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Transporters play a vital role in both the resistance mechanisms of existing drugs and 

effective targeting of their replacements. Melarsoprol and diamidine compounds similar to 

pentamidine and furamidine are primarily taken up by trypanosomes of the genus Trypanosoma 

brucei through the P2 aminopurine transporter. In standardized competition experiments with 

[
3
H]adenosine, P2 transporter inhibition constants (Ki) have been determined for a diverse 

dataset of adenosine analogs, diamidines, Food and Drug Administration-approved compounds 

and analogs thereof, and custom-designed trypanocidal compounds. Computational biology has 

been employed to investigate compound structure diversity in relation to P2 transporter 

interaction. These explorations have led to models for inhibition predictions of known and novel 

compounds to obtain information about the molecular basis for P2 transporter inhibition. A 

common pharmacophore for P2 transporter inhibition has been identified along with other key 

structural charisteristics. Our model provides insight into P2 transporter interactions with known 

compounds and contributes to strategies for the design of novel antiparasitic compounds. This 

approach offers a quantitative and predictive tool for molecular recognition by specific 

transporters without the need for structural or even primary sequence information of the transport 

protein. 
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Introduction 

Trypanosoma brucei are unicellular trypanosomal parasites that cause African sleeping
 

sickness in humans and nagana in livestock. These trypanosomes are auxotrophic for purines and 

thus rely entirely on purine supplies salvaged from the host environment. As such, T. brucei 

brucei expresses a multitude of purine nucleoside and nucleobase transporters.
1
 One of these, the 

T. brucei aminopurine P2 transporter, is unusual as a genuine nucleoside-nucleobase transporter 

in that it equally transports the nucleoside adenosine and the nucleobase adenine but has virtually 

no affinity for any other natural purines or pyrimidines.
1-3

 Yet, despite this apparent high level of 

selectivity, it has been shown that P2 also mediates cellular uptake of the Food and Drug 

Administration-approved drugs melarsoprol and pentamidine,
2, 4, 5

 the main veterinary 

trypanocides diminazene aceturate
6
 and possibly isometamidium,

7
 and various nucleoside drugs.

8
  

The unusual nature of this transporter has led to efforts to exploit it as an efficient conduit 

for novel trypanocides,
9, 10

 but this requires the identification of the exact pharmacophore as well 

as the physical limitations on size and charge distribution of the extracellular binding site of the 

transporter. From the structural similarities between known P2 substrates, it could be concluded 

early on that the so-called amidine motif of adenine, i.e. N(1)=C(6)−NH2 (see Figure 1), was 

very likely to play a major role in the high affinity interaction with the transporter.
3, 11

 However, 

quantitative information or three-dimensional models explaining the high affinity binding, by 

one transporter, of such diverse molecules as adenosine (Figure 1A),
2, 3

 stilbamidine (Figure 
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1C),
12

 melarsoprol (Figure 1F),
2, 3

 and even isometamidium (Figure 1G),
7
 have not been 

available. The apparent broad selectivity has been all the more intriguing for the highly similar 

transport efficiencies of P2 for adenosine and adenine, a most unusual feature for nucleoside 

transporters.
1
 

To construct a predictive and quantitative model of P2-substrate interactions, we 

determined the Ki values of a large number of highly diverse potential inhibitors, with affinities 

ranging over several orders of magnitude, through competition experiments with radiolabeled 

adenosine. These values and structures were then employed for a computational modeling 

approach to gain more information about the molecular basis for P2 transporter inhibition. The 

resulting model can be used to evaluate the affinity of the P2 transporter for existing and novel 

compounds in silico, potentially aiding in the development of novel and selectively targeted 

trypanocides. More important yet, this strategy allows robust three-dimensional insights into 

transporter-ligand binding while not requiring knowledge of the structure, or indeed the 

sequence, of a transporter and can be applied to any solute transport mechanism for which uptake 

or binding experiments can be routinely performed.  

Experimental Procedures 

Transport of [
3
H]Adenosine by Bloodstream Forms of T. brucei. Bloodstream forms of T. 

brucei brucei strain 427 were taken from stocks in liquid nitrogen and injected in adult female 

Wistar rats, from which they were harvested by exsanguination by cardiac puncture at peak 
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parasitaemia. Parasites were isolated from the blood by elution over a DE52 column 

(Whatman)
13

 and washed twice in assay buffer (AB: 33 mM HEPES, 98 mM NaCl, 4.6 mM 

KCl, 0.3 mM CaCl2, 0.07 mM MgSO4, 5.8 mM NaH2PO4, and 14 mM glucose, pH 7.3). Cells 

were resuspended in this buffer at approximately 10
8
 cells/ml prior to use in transport 

experiments. Cell counts were performed using a haemocytometer. Transport of [
3
H]adenosine 

(20-40 Ci/mmol; Amersham Biosciences) was performed exactly as described previously,
14

 in 

the presence of 250 M inosine to block the P1 adenosine uptake system. Briefly, 100 l of 50 

nM [
3
H]adenosine, mixed with various concentrations of nonradiolabeled test compounds, was 

added to 100 l AB containing 10
7
 trypanosomes and incubated at room temperature for 30 s, 

within the linear phase of uptake.
3
 Uptake was terminated by the addition of 1 ml of ice-cold 

assay buffer containing 1 mM adenosine followed by immediate centrifugation through an oil 

layer to separate cells from external radiolabel. The amount of radiolabeled adenosine inside the 

cell was then determined using a scintillation counter and corrected for externally associated 

label as described previously.
14

 A plot of inhibitor concentration versus adenosine uptake rate 

(expressed as pmol(10
7
 cells

-1
s

-1
)) yielded sigmoidal curves with Hill coefficients of 

approximately −1, consistent with monophasic competitive inhibition (Prism 4.0; GraphPad). 

Inhibition constants were calculated from the EC50 values, using the Cheng-Prusoff equation as 

described previously.
12

 

Inhibitor Dataset. Compounds were acquired from several academic laboratories as well 

as purchased from various commercial sources. Their respective in vitro transport activities 
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along with the compound names and sources are shown in Supplemental Table 1 (Appendix A). 

Employing the formula pKi = −log(Ki), the Ki µM values for the 112 compounds were converted 

to corresponding pKi values. The pKi values for this training set span more than 4 log units.  

Software. All 112 compounds were constructed in silico with the SYBYL 8.1
15

 software 

package on a Fedora Core 5 Linux workstation. Compound structures were minimized to 

convergence using a conjugate gradient of 0.01 kcal/(mol Å) and a maximum of 10
4
 iterations 

employing the Tripos force field with Gasteiger-Hückel charges. A three-dimensional cubic 

lattice with 2 Å grid spacing in all directions was created to analyze compounds that were 

aligned as described below. No improvement was seen in the models when the grid spacing was 

reduced to 1 Å.
16

  

Initial Alignment. Through the implementation of the SYBYL software alignment 

modules, the compounds were three-dimensionally arranged by an initial analysis of structurally 

and chemically related atoms. Algorithm generated alignment was performed using the align 

database command, whereas the atom-to-atom alignment implemented the match feature of the 

alignment tools. The algorithm alignment took place first by employing similar backbone 

structures so that the majority of similar compounds were overlaid in the same molecular space. 

Structurally related compounds were then moved into separate databases. The compounds that 

belonged to the same structural classes, but which varied in atom types or had slight structural 

differences, were placed into respective databases and aligned to the most structurally related 
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compound using atom-to-atom alignment. Seven optimum databases of compounds resulted 

from initial alignment.  

When more rigid compound structures, consisting of a larger number of atoms, were 

selected as scaffolds for alignments a greater number of databases were created. These databases 

lacked the variation necessary to form Comparative Molecular Field Analysis (CoMFA) and 

Comparative Molecular Similarity Indices Analysis (CoMSIA) models for predictability. Also, 

when the databases were aligned by less rigid scaffolds, consisting of a smaller number of atoms, 

fewer models resulted, and the models produced were not statistically significant in terms of q
2

cv. 

The best models were obtained when compounds were aligned by the carbons of common 

compound backbones. These scaffolds for alignment were obtained from the compounds 

displayed in Figure 1: dataset A, adenine; dataset B, furamidine; dataset C, stilbamidine; dataset 

D, pentamidine; dataset E, 1,1’-(nonane-1,9-diyl)diguanidine; dataset F, melarsoprol; and dataset 

G, isometamidium. Datasets E-G are comprised of four, seven and four compounds, respectively. 

The alignment for these last three datasets can be viewed in Supplemental Figure 1 (Appendix 

A). These databases together consist of less than 8% of the total compounds. Because the 

purpose of the initial alignment was to determine the pharmacophore for the final alignment, 

only initial datasets A-D were evaluated through statistics and contour maps. All 112 compounds 

were included in the final pharmacophore models. 

Multiple Regression Analysis. CoMFA and CoMSIA Quantitative Structure-Activity 

Relationship (QSAR) models were generated for molecular databases through a Partial Least 
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Squares (PLS) multiple regression analysis with molecular descriptors as independent variables 

and the pKi values as dependent variables. Statistical significance in the form of q
2

cv was 

assessed through the leave-one-out cross-validation method. The number of components (n) was 

determined by the smallest predicted error sum of squares, a value that does not always 

correspond to the highest correlation coefficient (q
2
) value. Further statistical significance 

assessment was preformed for the final model using 10-fold cross-validation. The values 

obtained from the 10-fold cross-validation assessment are averages of ten trials implementing 

random compound selection. Column filtering did not improve the signal to noise ratio.
15

 

Molecular Descriptors. There are two CoMFA molecular descriptors. The steric van der 

Waals interaction and the electrostatic Coulombic interaction descriptors were calculated at each 

lattice intersection using a probe, an sp
3
 carbon atom with a formal +1 charge. Standard scaling 

and default energy cutoffs were employed. There are five CoMSIA molecular descriptors. Steric, 

electrostatic, hydrophobic, hydrogen bond donor and hydrogen bond acceptor descriptors were 

calculated using a standard probe: 1 Å radius, +1 charge, +1 hydrophobicity, +1 hydrogen bond 

donor, and +1 hydrogen bond acceptor. Steric descriptors are related to the third power of the 

atomic radii. Electrostatic descriptors are derived from partial atomic charges. Hydrophobic 

descriptors are derived from atom-based parameters. Hydrogen bond donor and acceptor atoms 

are derived from experimental values.  

Three-Dimensional Contour Analysis. The interactions of CoMFA and CoMSIA 

descriptors were visualized through the mapping of the product standard deviation with respect 
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to molecular descriptor values and coefficients (StDev*Coeff) at each lattice point. For the initial 

models, the default levels of contour by contribution were employed as follows: 80% for a 

favored region and 20% for a disfavored region. Data were analyzed, and a common 

pharmacophore was identified. The compounds of the final pharmacophore model were further 

analyzed through a contour by actual analysis, where the software output assisted in the 

determination of proper ranges for assigned values of favored and disfavored contour regions. 

Pharmacophore Model. Common contours for the initial QSAR models were identified 

through the analysis of favored and disfavored contour regions. The alignment of such contours 

aided in the identification of a final pharmacophore. All compounds were realigned, and the final 

models were constructed. 

Results 

As seen in Supplemental Table 1 (Appendix A), this study employs 112 compounds 

acquired from several academic and industry locations. These compounds all exhibit some level 

of inhibitory activity for the T .brucei brucei P2 transporter. For large datasets of compounds 

with known activity values, it is possible to employ computational biology to investigate the 

molecular basis of their activity in terms of structural contributions to Ki values. Predictive 

models can then be constructed, and important interactions can be identified. Because a large 

number of diverse compounds are in our database, a two-step procedure was used to establish a 

final model.  



 

27 

 

Initial QSAR Models. As a first step, compounds were obtained in their minimal energy 

conformation by using standard molecular mechanics energy minimization methods with the 

Tripos force field. Compound alignment by similar atoms of backbone structures initially 

separated the 112 compounds into seven databases, although the majority of the compounds 

resided in four of the sets. The datasets with the majority of compounds were used for initial PLS 

modeling. Table 1 displays the total number of compounds in each dataset, the n used in PLS, 

and the statistics for each model as follows: cross-validated q
2
 (q

2
cv), the standard error of 

estimate (SEE), the coefficient of determination (r
2
) and the F statistic. When q

2
 is greater than 

0.5, a model is said to have predictability better than chance; however, it is also important that 

the r
2
 value is near one, the SEE is small, and the F statistic is large.

15
 The r

2
 is a positive value 

between zero and one; with one being the best correlation and zero being no correlation. The 

SEE is a measure of the accuracy of the predictions. The F statistic is used in comparing the 

variance between the experimental and predicted values; a larger value indicates a more 

statistically significant model.  

The average statistics for the initial four models with CoMFA molecular descriptors are 

as follows: q
2

cv equal to 0.64; SEE equal to 0.23; r
2
 equal to 0.95; and F statistic equal to 123. 

Similarly, the average statistics for the four models with CoMSIA molecular descriptors were as 

follows: q
2
cv equal to 0.58; SEE equal to 0.26; r

2
 equal to 0.92; and F statistic equal to 130. 

Although the models with CoMFA and CoMSIA molecular descriptors were comparable, the 

ones with CoMFA molecular descriptors display better overall potential for analysis of molecular 
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descriptor contribution by contour maps. This is primarily due to the simplicity of two versus 

five molecular descriptors. 

Contour maps of CoMFA molecular descriptor contribution were generated for each 

model (Figure 2). The electrostatic interactions are shown as red and blue contours, and the steric 

interactions are displayed as green and yellow contours. Increasing partial positive charge is 

favored in blue regions, and increasing partial negative charge is favored in red regions, whereas 

increasing bulk in substituents is favored in green regions and disfavored in yellow regions. 

The red, blue, yellow, and green regions were then analyzed to find common alignment 

features of structures that are of importance for the final, combined pharmacophore alignment. 

Red regions of dataset A are in the areas above C6, below N9, and beside the imidazole ring of 

adenine, while those of datasets B-D were localized to a single location most often than not on 

the backbone structure. The red contours of datasets A-D can be aligned in several ways to one 

another; thus, this descriptor alone is not enough to find the final pharmacophore for alignment. 

The blue regions were most commonly found in areas of N(R1)=C(R2)−NH(R3), where R3 is 

usually H. The alignment was much improved with the inclusion of both the red and blue regions 

and further enhanced by the addition of the yellow and green regions. Yellow contour regions 

can be reduced by realignment of compounds into green regions. The yellow regions for dataset 

A are small in relation to all other contours, and reside near the 2’- and 3’- hydroxy groups of the 

ribose moiety. Dataset B exhibited yellow contours on both ends of the furamidine backbone, 

whereas dataset C displayed a yellow contour only at one end of the stilbamidine backbone. The 
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areas of yellow contour appear most at regions that consist of several compounds with 

substituents that are not precisely aligned, either because they differ largely in structure or 

because the backbone allows for deviations in the alignment. Dataset D consisted of yellow 

regions in the areas consisting of compounds that were longer than pentamidine and/or that did 

not align fully to the pentamidine backbone. Green regions of dataset A were shown above C6 

and next to bond C8/N9 of the adenine backbone, whereas the green contours of dataset B appear 

near and encompassing the phenyl with the most precise alignment. Datasets C consists of green 

contour near the most precise alignment of the compounds. For dataset D, green contours were 

located in areas that were not precisely aligned to the pentamidine structure. The green and 

yellow contours of dataset D both reside in areas of structural deviation; however, the green 

appears nearest the aromatic linking oxygen and the unaligned amidines.  

The identification of important structural features, described above, made it possible to 

realign all 112 compounds, primarily by the common N(R1)=C(R2)−NH(R3) structure found in 

the blue contour regions and secondarily by the other contour regions. The red regions of the 

four main datasets overlapped strongly, whereas the yellow regions of datasets B-D can be 

aligned to green regions of dataset A. The large compounds of dataset A also had to be realigned. 

Figure 3A displays the alignment of all 112 compounds with adenine displayed in purple and 

Figure 3B zooms in on the location of the adenine now with the purple displayed as transparent, 

and this clearly shows the pharmacophore alignment. 
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Final Pharmacophore Model. Aligned by the N(R1)=C(R2)−NH(R3) structure with 

respect to contour regions, as described above, compounds were then employed for PLS 

modeling. As before, CoMFA and CoMSIA models were generated and examined for statistical 

significance. The two models each consisted of 112 compounds but use different molecular 

descriptors and a different n. Although the q
2

cv values are similar, the remaining statistics are not; 

the model with CoMFA molecular descriptors achieved a higher level of confidence than the 

model with CoMSIA molecular descriptors (Table 2). To further validate these models, 10-fold 

cross-validation was performed. The q
2

10-Fold values for the models with CoMFA and CoMSIA 

molecular descriptors were 0.56 and 0.54, respectively. These values, along with the rest of the 

statistics, indicate statistical significance within each model.  

The calculated predictions of the models formed from the dataset with 112 compounds 

exhibit linear relationships with the experimental Ki values (Figure 4). Predictions from the 

model with CoMSIA molecular descriptors are somewhat scattered, especially at high affinity, 

whereas the model with CoMFA molecular descriptors produces more linear pKi predictions, 

especially for compounds with high affinity for the P2 adenosine transporter (Figure 4). The r
2
 

values for the linear relationships are 0.95 for the model with CoMFA molecular descriptors and 

0.86 for the model with CoMSIA molecular descriptors. 

These models can be further evaluated through examination of the final contour maps.  

Although it is useful to analyze models as a whole to gain information about a possible 

pharmacophore, once a pharmacophore model is obtained, much more information can be 
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gathered by evaluating the contour regions of individual compounds within the model. Because 

the model with CoMFA molecular descriptors is outperforming the model with CoMSIA 

molecular descriptors, the focus of this analysis will remain on the contours of the model with 

CoMFA molecular descriptors. As before, the steric contributions are displayed in yellow and 

green while the electrostatic contributions are shown in red and blue.  

The overall contour regions from the initial model have changed significantly with 

realignment and incorporation of all 112 compounds. These changes appear most dramatic when 

looking at individual compounds. In the initial models, each compound contributed roughly 2.8-

6.3 percent. This was due to similar compounds being aligned by a common backbone scaffold 

and their being only 16-36 compounds in each dataset; 1 in 36 is approximately 2.8 percent and 1 

in 16 is about 6.3 percent. This percent of contribution is much larger than the final model, where 

1 in 112 compounds is roughly 0.89 percent. It is also important to note that a larger quantity of 

compounds with similar backbones will have a significant effect on the contribution. Hence, 

based on initial models, the compounds with the adenosine scaffold structure should contribute 

the most. There are 36 of these compounds. Those with the pentamidine and stilbamidine 

scaffolds are similar and align to one another well within the final model. There are 32 of these 

compounds, whereas there are 29 compounds related to furamidine.  

From close observations of compound structure relationships in the form of contour 

maps, it is possible to determine where partial charge addition or subtraction to substituents 

could improve compound interactions with the P2 adenosine transporter. The evolutionary 
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process by which this model calculates predictions can be viewed through the evaluation of 

contour regions and experimentally determined Ki values (Figure 5). The Ki of 2-aminopyridine 

is 14 µM. When an amino group is added into the favorable steric and positive electrostatic 

contour regions to form 4,6-diaminopyrimidine the Ki becomes 3.2 µM. Note that the amino 

group has a partial positive charge. This amino group addition thus results in improved affinity. 

When the additional groups, which reside in even more favorable contour regions, are added to 

the compound structure, the Ki value becomes even smaller. Adenine is an example of a 

compound with groups residing in favorable contour regions. This compound has a Ki of 0.30 

µM. When a compound interacts with both positive and negative contour regions, the Ki 

increases; the Ki value for adenosine, for example, increases three-fold relative to adenine as a 

result of the bulky ribose group. The evolutional process taken when using these potentials to 

design compounds for synthesis is quite similar to the progression shown in Figure 5. It is 

important to make small changes and evaluate how the designed compound will fit within the 

steric and electrostatic potentials assigned by the model.  

Other important compounds to evaluate with this model are the pentamidine-, 

furamidine-, and melarsoprol-like compounds (Figure 6). Pentamidine, furamidine, and 

melarsoprol all have good affinity for the P2 transporter with respective Ki values of 0.37, 1.19 

and 0.54 µM. Contour regions of pentamidine, furamidine, and melarsoprol are displayed in 

Figure 6. These regions display several areas where some steric bulk and partial positive charge 

can be added to improve affinity for the P2 adenosine transporter. A loss of affinity will occur if 
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bulky substituents interact with the unfavorable yellow contour regions and/or if positive charge 

interacts with the red contour regions.  

With pentamidine, which is a very flexible compound, the final pharmacophore model 

yellow contours display most central atoms to be suitable for substituent addition; however, the 

area nearest the pharmacophore should not be modified. Melarsoprol is a more rigid structure, 

though rotation can occur throughout the compound. There can be rotation between the 

melamine ring and the phenyl and between the phenyl and the dithiarsolan ring. For this 

compound, the yellow contours reside near the melamine and the phenyl. This suggests that a 

loss of affinity may result from substituent addition to the atoms in these regions. Furamidine is a 

much more rigid and curved structure. For this structure, the yellow contours are much more 

abundant near the phenyls and yet away from the furan and the amidines. This is even clearer 

when the compound and its contour are viewed in three-dimensional space. The areas where 

yellow contours do not exist are optimum for substituent modification.  

The red contours encompass both pentamidine and furamidine, whereas blue contours 

surround melarsoprol. The blue contours appear to be based on the partial charge distribution. 

For the diamidine compounds the partial charge distribution is strongly localized at the amidines. 

This appears beneficial for binding to the transporter; however, it is evident that more charge to 

an amidine location will not improve binding. Instead a partial charge distribution that is shared 

within a ring structure appears to be more advantageous. This is seen in the melamine-like 
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structure of melarsoprol. Findings suggest that additional charge, which is less localized, may be 

able to improve binding of diamidine compounds.  

Discussion 

The efficacy of many drugs is determined to a large extent by the processes that govern 

their uptake into the cell or into the cellular compartment that is the site of action.
7, 17-19

 These 

processes obviously include transporters for water-soluble drugs but even rates of diffusion for 

lipophilic drugs. An example of the latter is chloroquin, which as a weak base diffuses across 

several membranes before it reaches the Plasmodium falciparum food vacuole where it is 

trapped by protonation and fatally inhibits heme polymerization.
20, 21

 Equally, efflux systems 

such as ATP-binding cassette transporters and the P. falciparum CRT1 channel-like protein have 

been implicated in resistance to drugs ranging from antibiotics and antiparasitics to 

antineoplastic drugs.
22, 23

 As such, detailed insights into the processes that determine drug flux 

across the (plasma) membranes of target cells are vital for the rational optimization of drug 

activity and both the prevention and bypassing of drug resistance.  

It is of pivotal importance that we gain insight into the molecular mechanisms by which 

transporters bind and thus select their substrates as this would allow us to construct models with 

predictive value, which would allow us to optimize substrate design. Although in silico screening 

of virtual libraries and predictions of substrate affinity are now possible for proteins with known 

or computable structure,
24-26

 this is not ordinarily possible for transporters as very few structures 
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have been obtained, and the protein structures, with usually 10–12 transmembrane domains, are 

highly complex and extremely difficult to crystallize, although there have recently been some 

notable successes, mostly with prokaryotic membrane proteins.
27-29

 One approach is to use the 

few known transporter structures as scaffolds for other transporters, by a computational process 

called fold recognition or threading. We recently obtained a model for the T. brucei brucei 

nucleobase transporter NBT1 by this process and validated it by site-directed and random 

mutagenesis.
30

 The creation of a structural model of the closely related Leishmania donovani 

LdNT1.1 nucleoside transporter by ab initio calculation was also very recently reported.
31

 

Although these approaches did produce approximate models for the overall structure of the 

transporters and identified key amino acid residues, they allow at best limited prediction of 

substrate selection, and only if the amino acids involved in binding have been separately 

identified. Thus, with the current technologies, it is exceedingly difficult to obtain the required 

functional insights with the protein structure as a starting point. 

A radically different approach was pioneered some time ago to study purine transport in 

T. brucei brucei by systematically altering the substrate and calculating inhibition constants, Ki, 

and from there binding energy G
0
.
1, 18

 This method was used to explain substrate preferences of 

purine and pyrimidine transporters in T. brucei brucei,
32

 Leishmania major,
33, 34

 Toxoplasma 

gondii,
35

 Leishmania mexicana,
36

 as well as the human NBT1 nucleobase transporter,
14

 human 

concentrative nucleoside transporters,
37

 and human equilibrative nucleoside transporters
38

 with 

semi-quantitative models of substrate binding that did not require any structural or genetic 
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information about the transport protein. However, this method still did not allow genuinely 

quantitative or three-dimensional predictions nor was it suitable for screening virtual libraries.  

In this study, we have adapted the method to address the above issues; energy-minimized 

three-dimensional structures of 112 compounds with experimentally obtained binding affinities 

for the TbAT1/P2 transporter were employed through the use of CoMFA and CoMSIA 

molecular descriptors for PLS model regression construction and analysis. The various 

molecules were preliminarily aligned by their common structural and chemical features, resulting 

in four datasets of compounds, Figure 2, A-D, large enough for individual model formation and 

analysis. This was followed by optimized alignment of all 112 compounds using four molecular 

descriptor contour potentials, negative and positive steric and electrostatic, as a guide. This has 

generated an in silico computational model into which new molecules can be entered to arrive at 

a reliable estimate of binding energy. This constitutes a first computational approach to the 

design of novel ligands for the TbAT1/P2 transporter and allows for in silico evaluation of large 

numbers of known and novel compounds as substrates. The computational analysis was 

validated to be statistically significant using leave-one-out cross-validation and 10-fold cross-

validation, as well as by other statistics and the internal predictability of this model, as displayed 

in Figure 4.  

The contour profiles of steric and electrostatic factors also allow fundamental insights 

into how various ligands interact with the transporter binding pocket. The P2 transporter, with its 

highly unusual substrate profile and involvement in drug transport and resistance,
2-5, 11, 39

 was 



 

37 

 

chosen for this study to gain insight into how a transporter that is on the one hand completely 

selective for adenine and adenosine only (out of all nucleosides and nucleobases) can also bind 

molecules as diverse as isometamidium, melarsoprol, and furamidine with similar affinity. 

Previous studies already identified the “amidine” motif formed by R1−N1=C6(R2)−NH2 of 

adenine as the main motif responsible for P2 binding,
3, 11

 and it was further argued that the 

positive charge on N9 of adenine and adenosine, as well as the aromaticity of the purine, also 

makes important contributions to the high substrate affinity.
3, 18

  

The calculated substrate-transporter interaction contours for adenine and adenosine in 

Figure 5 now allow us to evaluate these earlier conclusions against the advanced modeling 

approach employed in this study. Figure 5 identifies four substrates that have a partial positive 

charge on the position of the amino group of 2-aminopyridine/adenine/adenosine as essential for 

optimal binding. Similarly, a partial negative charge is strongly favored at position 1, along with 

a positive charge at positions 8 and 9, whereas there is no clear electrostatic preference at 

positions 3 and 7 or most of the ribose moiety, except perhaps a preference for a positive charge 

at the 2’-position. Large substitutions are indicated as unfavorable in positions 1, 2, 8 and 2’, and 

at the 6-amino group of adenosine (Figure 5, yellow indicators), but the position of the ribose 

group does not appear to be restricted with respect to further expansion/elongation, in line with 

the positioning and high affinity of the long diamidines.  

The above interpretation of the CoMFA and CoMSIA models is entirely consistent with 

the experimentally obtained G
0
 values listed in Supplemental Table 1 (Appendix A). For 
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instance the importance of the partial negative charge on position 1, presumably as hydrogen 

bond acceptor, is demonstrated by the reduced affinity of 1-deazaadenosine versus adenosine 

((G
0
) = 9.7 kJ/mol) and of 1-deazapurine versus purine ((G

0
) = 4.9 kJ/mol). Similarly, the 

positive charge provided by the 6-position amine is quantified by comparison of purine riboside 

with adenosine ((G
0
) = 7.3 kJ/mol), purine with adenine ((G

0
) = 10.2 kJ/mol) and 6-

chloropurine riboside with adenosine ((G
0
) = 7.0 kJ/mol). As shown in Figure 7, this gives 

estimates of contributions of 9.7 and 8.2 kJ/mol for the N1 and 6-amino groups, respectively. 

The loss of both these groups should thus result in a loss of binding energy of approximately 16 

kJ/mol and this was demonstrated by comparing 2’-deoxyinosine with 2’-deoxyadenosine 

((G
0
) = 16.3 kJ/mol) and 1-deazapurine with adenine ((G

0
) = 15.1 kJ/mol). The strong 

contribution from N9 likewise follows from comparing 9-deazaadenosine with adenosine and 

4,6-diaminopyrimindine with 2-aminopyridine ((G
0
) = 6.4 and 5.7 kJ/mol, respectively). The 

relative unimportance of positions N3 and N7 was demonstrated using 3-deazaadenosine and 7-

deazaadenosine, respectively, as catalogued in Supplemental Table 2 (Appendix A), which also 

lists relative affinities for compounds with substitutions at positions 2 and 8.  

Finally, a substantial contribution to binding is made through interactions between the 

aromatic purine or benzamidine moieties and amino acids in the transporter binding pocket, 

through π-π stacking with aromatic residues, cation-π bonding or amino-aromatic interactions.
40

 

Although this cannot be directly demonstrated by the use of “nonaromatic purines”, which would 

have a completely different three-dimensional structure, uniquely for P2 this can be shown and 
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quantified by comparing aromatic and nonaromatic diamidines (Supplemental Table 2, Appendix 

A). The diagram in Figure 7 summarizes these data in the form of an interaction diagram 

between P2 transporter and adenosine. This figure, gained from experimental data and using a 

previously validated approach,
1, 18

 is in close agreement with data presented in Figure 5 based on 

the predictive PLS regression model. It is important however to be clear that both modeling 

approaches (Figures 5 and 7) are predictive with respect to substrate binding rather than 

translocation, i.e. it does not predict transport efficiency for any individual substrate. This 

limitation is not inherent to the computational approach, rather it is the result of using Ki values 

(transport inhibition through extracellular binding) instead of Michaelis-Menten constants (Km 

and Vmax values, determined from measurement of transport) as input for the models. A similar 

approach as followed here could predict transport, but it would have required radiolabeled 

analogues of all the compounds used in the study, and this was not feasible. We also would not 

wish to suggest that efficient uptake by a pathogen is sufficient to ensure efficacy of a potential 

therapeutic agent, as this requires optimal interaction with the intended intracellular target as 

well. In summary, we have developed and validated a novel computational approach to analyze, 

explain, and predict the interactions between transporters and their substrates that does not 

require prior knowledge of transporter structure or indeed primary sequence. 
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Tables and Figures 

Table 1. CoMFA and CoMSIA model statistics for the datasets A-D of Figure 2. 

     

CoMFA     

 A B C D 

Total  Compounds 36 29 16 16 

n 7 4 5 2 

q
2

cv 0.65 0.55 0.57 0.79 

SEE 0.29 0.32 0.17 0.12 

r
2
 0.93 0.89 0.98 0.99 

F 55.9 50.5 74.4 311 

     

CoMSIA     

 A B C D 

Total  Compounds 36 29 16 16 

n 5 3 3 2 

q
2

cv 0.50 0.55 0.65 0.61 

SEE 0.32 0.34 0.26 0.11 

r
2
 0.91 0.86 0.93 0.99 

F 62.5 51.5 47.4 358 
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Table 2. CoMFA and CoMSIA model statistics for the 112 compound database. 

 CoMFA CoMSIA 

Total  Compounds 112 112 

n 11 6 

q
2

cv 0.55 0.54 

q
2

10-Fold  0.56 0.54 

SEE 0.22 0.37 

r
2
 0.95 0.86 

F 190 109 
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Figure 1. Scaffolds for initial alignment: A, adenine; B, furamidine; C, stilbamidine; D, 

pentamidine; E, 1,1’-(nonane-1,9-diyl)diguanidine; F, melarsoprol; G, isometamidium. All 112 

compounds could be aligned to one of these scaffolds. Most compounds were in A-D. 
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Figure 2. First alignment processes produced seven different databases for the 112 compounds. 

The compounds of the larger datasets, A-D, were employed for QSAR CoMFA and CoMSIA 

studies. Resulting three-dimensional CoMFA molecular surfaces are shown for datasets A-D, 

which are labeled A-D, respectively. Steric contributions are shown in green (favors bulky 

substituents) and yellow (bulky substituents impact negatively on binding), and the electrostatic 

contributions are displayed in blue (favoring a positive charge) and red (favoring a negative 

charge).  
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Figure 3. Final alignment of 112 compounds, with adenine displayed in purple. 

A B



 

52 

 

 

Figure 4. Actual versus predicted results from PLS models employing CoMFA (left) and 

CoMSIA (right) molecular descriptors. 
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Figure 5. Calculated three-dimensional molecular surfaces for analyses of compound structural 

relationships with P2 transporter inhibition. From left to right, the compounds shown above are 

2-aminopyridine, 4,6-diaminopyrimidine, adenine, and adenosine. Colors are as in Figure 2. 
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Figure 6. Three-dimensional molecular surfaces for pentamidine (top), furamidine (middle), and 

melarsoprol (bottom). Colors are as in Figure 2. 
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Figure 7. Model of adenosine, giving estimates of the contributions to the total binding energy of 

34 kJ/mol in the black numbers, with the red numbers indicating the position on the purine or 

ribose rings. The half-circles indicate positions where substitutions reduced the adenosine 

binding affinity. The aromatic rings are estimated to contribute approximately 12 kJ/mol to the 

binding energy, although this could not be verified directly, as a nonaromatic adenosine analog 

would have a completely different three-dimensional structure. However, comparisons between 

aromatic diamidines and nonaromatic diamidines (Supplemental Table 2, Appendix A) are 

consistent with this estimate. 
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A dataset of 55 compounds with inhibitory activity against L. donovani axenic 

amastigotes and L. amazonensis intracellular parasites was examined through three-dimensional 

quantitative structure-activity relationship modeling employing molecular descriptors from both 

rigid and flexible compounds. For training and testing purposes, the compounds were divided 

into two datasets of 45 and 10 compounds, respectively. Statistically significant models were 

constructed and validated via the internal and external predictions. For all models employing 

steric, electrostatic, hydrophobic, H-donor and H-acceptor molecular descriptors, the R
2
 values 

were greater than 0.90 and the SEE values were less than 0.22. The models obtained from rigid 

and flexible compounds were employed together to obtain a conservative method for predictions. 

This method minimized under predictions. Molecular descriptors from the models were then 

extrapolated, for the overall predictive devices and the individual compounds, and examined 

with regard to inhibitory activity. Information gained from the molecular descriptors is useful to 

the design of novel compounds. The models obtained can be employed to predict activities of the 

compounds designed and/or form predictions for compounds that exist and have not yet been 

examined with biological inhibitory assays. 
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Introduction 

Leishmania species cause leishmaniasis, which is an endemic disease found in tropic and 

subtropic regions riddled with poverty and neglect.
1-3

 This infection is most often in the form of 

cutaneous leishmaniasis, visible skin sores, or visceral leishaniasis, affected internal organs. 

Primarily transported through the bite of a female phlebotomine sandfly, millions of new cases 

are reported annually.
1, 4

 When untreated, tens of thousands of these parasitic infections result in 

death. 

Primary treatments for leishmaniasis include sodium stibogluconate and N-

methylglucamine, while secondary therapies, which are often toxic, include pentamidine 

isethionate, amphotericin B and paromomycin sulfate.
1, 5

 These classic treatments are costly and 

embedded with implications of high toxicity, resistance, pain, nausea, and diarrhea. Possible new 

therapies for the treatment of leishmaniasis have been examined and these include the 

implementation of liposomes, natural products, synthetic compounds and vaccines.
1, 6

 Most 

methods employing liposomes are costly and hence not feasible, while other methods of therapy 

improvement have showed promice.
1, 7

 Several natural products and synthetic compounds 

possess better therapeutic profiles with regard to activity and toxicity than the compounds 

currently used in treatment, while vaccine development has been too specific to Leishmania 

species and thus unsuccessful.
1
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Through several research endeavors activities and toxicities of series of compounds have 

been gathered and such data have been implemented in rational drug design.
8-11

 These studies 

employ biological data of natural and/or synthetic compounds and computational tools to 

examine compounds with activity against Leishmania species. Examination of such compounds 

has led to the formation of predictive devices and from these devices the importance of some 

molecular structures has been ascertained. Although specific receptor interaction studies are 

important, especially when studying mechanisms, intact parasite studies of inhibition and 

toxicity are crucial for identifying compounds that will eradicate the parasite from hosts.
1
 Such 

studies of synthetic chalcones and phospholipids display effective antileishmanial activity for 

compounds with: (1) a long alkyl chain, (2) bulky group’s terminal the alkyl chain, and (3) an 

electron deficient group.
9, 12

  

Our studies examine a biological dataset of synthetic arylimidamides which possess 

activities against L. donovani axenic amastigotes and L. amazonensis intracellular parasites. 

Inhibitory data, in the form of IC50 values, and Comparative Molecular Field Analysis (CoMFA) 

and Comparative Molecular Similarity Indices Analysis (CoMSIA) molecular descriptors were 

employed for partial least squares (PLS) regression. Predictive models and resulting molecular 

descriptor potentials contribute to the identification and understanding of important molecular 

features that govern the inhibitory actives of arylimidamides against species of Leishmania. 
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Experimental Procedures 

Inhibitory Data. Briefly, IC50 (µM) values were gathered for compounds of interest using 

two assays. The first assay screened against axenic amastigote-like L. donovani, while the second 

screened against L. amazonensis intracellular parasites. Screening against L. donovani was 

conducted by:  (1) culturing Ld1s parasites in potassium-based medium at pH 5.5, 37 °C, (2) 

incubating for three days with compounds in a 96-well plate, and (3) adding tetrazolium dye and 

quantifying the assay spectrophotometrically. While screening against L. amazonensis 

intracellular parasites was conducted by: (1) plating macrophages and allowing adhering 

overnight, (2) adding  L. amazonensis promastigotes transfected with β-Lactamase gene (MOI: 

5:1) and incubating overnight, (3) adding compounds of interest and incubating for 72 hours at 

the temperature of interest, (4) adding nitrocefin in lysis buffer and incubating an additional 3 to 

5 hours, and (5) reading the plate at 490 nm.
13

 Experimental IC50 values for L. donovani axenic 

amastigotes and L. amazonensis intracellular parasites were obtained for 55 compounds.  

 Preparation of Compounds for Computational Studies. SYBYL 8.1
14

 software was 

employed to construct all compounds in three-dimensional space. Compounds were then divided 

into training and testing datasets. These datasets consisted of 45 and 10 compounds, respectively. 

The compounds of the training dataset then underwent a short molecular dynamics simulation of 

1 ns. This system employed SYBYL 8.1 default settings at a constant temperature and volume 

(NTV). Briefly, (1) the system temperature was 300K with a coupling constant of 100 fs, (2) 
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Maxwell-Boltzmann distribution was employed for initial atom velocities, (3) the non-bonded 

pair list was updated every 25 fs, (4) and the duration of the molecular dynamics simulations in 

vacuo was 1ns with a time step of 100 fs and a snapshot every 1000 fs.  This displayed several 

low energy structures. Torsional angles of all training dataset compounds were modified to 

explore the low energy conformations and modified compounds were minimized to convergence 

using the Tripos force field, conjugate gradient algorithm, and Gaseiger-Huckel charges. The 

termination gradient was 0.01 kcal/(mol Å) and the maximum iterations were 10
4
. 

Rigid Alignment of Compounds and Resulting Models. Each training dataset of 

compounds with modified torsional angles was aligned using the “Align Database” option of the 

QSAR module in SYBYL. Aligned structures were then analyzed through the use of molecular 

descriptors.  CoMFA (steric and electrostatic) and CoMSIA (steric, electrostatic, hydrophobic, 

H-donors and H-acceptors) molecular descriptors were calculated and PLS regression was 

employed to compare the molecular descriptors of compounds to obtained average IC50 values. 

The number of components was determined by the smallest predicted error sum of squares. 

Optimum models employing CoMFA molecular descriptors consisted of three components, 

whereas the ones with CoMSIA molecular descriptors employed six. 

Flexible Alignment of Compounds and Resulting Models. Five compounds with low IC50 

values for the L. amazonensis intracellular parasite assay were employed for flexible compound 

alignment using the “Align Pharmacophore” option of the GALAHAD module. Parameters were 

acquired through the “Suggest from Data” option and the best 20 models were gained. The 
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highest scoring model with respect to maximized pharmacophore consensus, maximized steric 

consensus, and minimized energy was employed as a template for individual compound 

alignment of the entire training dataset. The “Align Molecules to Template Individually” option 

was selected and parameters were acquired once more through the “Suggest from Data” option; 

the “Keep Best N Models” option was reset to 20. Molecular descriptors were calculated for the 

highest scoring model and PLS regression was implemented in the same manner as for the rigid 

compounds. The optimum numbers of components were determined as previously described; 

models with CoMFA molecular descriptors consisted of three components, whereas models with 

CoMSIA molecular descriptors employed six.  

Statistical Analyses. The statistics calculated from PLS regression included: a cross-

validated correlation coefficient (Q
2
), the coefficient of determination (R

2
), the standard error of 

estimate (SEE), the F statistic, a bootstrap R
2
 (R

2
bs), and a bootstrap SEE (SEEbs). The bootstrap 

analysis was used to check the stability of the models through cross-validation into two, five, and 

ten groups. The average values of the bootstrap analysis are displayed with the rest of the 

statistics.  

Testing Datasets and the Conservative Model Method. The models constructed from the 

rigid and flexible alignments were employed to examine testing datasets that were aligned via 

rigid and flexible methods. Of the pIC50 values predicted, for both training and testing datasets, 

the more negative pIC50 prediction was considered the most viable. This method favors over 

prediction rather than under prediction. 
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Molecular Descriptor Potentials. Molecular descriptor potentials acquired through the 

mapping of the product standard deviation with respect to molecular descriptor values and 

coefficients at each lattice point were extrapolated from the models. Default levels of contour by 

contribution were employed to gather favored and disfavored potentials for overall models. The 

individual compounds of the models were analyzed via the contour by actual analysis method. 

Software output was used to determine the proper ranges of assigned favored and disfavored 

contour regions for individual compounds.  

Results 

The entirety of the dataset, 45 training and 10 testing compounds, can be represented via 

the scaffold structure displayed in Figure 1. At each of the five positions labeled in this figure 

there are differing atoms or groups: positions one and four display single atom changes in the 

form of carbon, oxygen, sulfur, and nitrogen, whereas positions two, three and five display larger 

group substituent modifications.  

Biological IC50 values were acquired for each compound of the training and testing 

datasets through two assays targeting L. donovani axenic amastigotes and L. amazonensis 

intracellular parasites. These inhibitory values were averaged and standard deviations were 

acquired (Supplemental Table 3, Appendix B and Table 3). For modeling purposes, the IC50 

values were log transformed into pIC50 values (pIC50 = −log(IC50)). Figure 2 displays the pIC50 

data; experimental values against the L. donovani axenic amastigotes are shown in green, 
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whereas the values against the L. amazonensis intracellular parasites are displayed in blue. The 

standard deviations of the data are represented in general by trend lines and the averaged values 

are shown as triangles and squares, respectively. Notice that the slopes are very similar with 

values between 0.96 and 1.0, and R
2
 values are 0.95 or higher. This displays the relative range of 

inhibitory activity and respective deviations from the average inhibitory values associated with 

each synthetic compound in the training and testing datasets. The pIC50 distribution of data are 

also shown in this figure; the inhibitory activity of arylimidamides against L. donovani axenic 

amastigotes ranges between approximately -2.5 and 0.5, whereas those active against L. 

amazonensis intracellular parasites range between about -1.5 and 1.5.  

Compounds examined through biological assays were aligned in silico in three-

dimensional conformations using two methods: (1) rigid alignments of compounds were 

obtained through the implementation of the SYBYL “Align Database” option of the QSAR 

module, and (2) flexible alignments of compounds were acquired through the use of the 

“Pharmacophore Alignment” option of the GALAHAD module. Rigid alignments were 

preformed on low energy conformations of compounds. Molecular descriptors were then 

calculated and PLS regression was employed to construct predictive models implementing the 

descriptors and respective biological inhibitory data. The best computational models formed 

consisted of compounds in their most linear conformation with an overall plus one charge. 

Flexible alignment of compounds was also implemented. This process employed the five 

most active compounds against the L. amazonensis intracellular parasites from the training 
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dataset (Figure 3). Figure 4 displays the outcome of pharmacophore simulations that lead to PLS 

regression models employing flexible compounds. The rotation of the compounds allows for 

visualization of alignment and positioning of identified feature potentials. The observed features 

governing structure alignment are: (1) four aromatic rings (cyan); (2) N=C−N groups, two 

positive nitrogen (red) and a H-donor (magenta); (3) atoms at the one and a two position of 

Figure 1, two H-acceptor (green); (4) atoms at a five position, a H-donor or H-acceptor (overlaid 

magenta and green equates to dark green). Then, all of the training and testing compounds were 

flexibly aligned to the pharmacophore. These alignments can be viewed in relation to rigid 

alignments (Figure 5). Rigid compounds were aligned by N=C−N groups. Notice that there is a 

difference in the spatial relationships of the compounds. 

Inhibitory and compound structural data were employed to construct predictive models 

through PLS regression methods. The statistics for these models indicate that models employing 

CoMSIA molecular descriptors should outperform those constructed with CoMFA molecular 

descriptors (Table 1). This is shown in higher Q
2
, R

2
, and F statistics and lower SEE statistics for 

the models constructed with rigid compounds. Similarly, the models of flexible compounds 

displayed higher R
2
 and F statistics and lower SEE statistics. The low Q

2
 values for models of 

flexible compounds were attributed to: (1) torsional variability, (2) differences in optimal low 

energy structural conformations, and (3) contributions of compound inhibitory activities. Based 

on statistics, models with CoMSIA molecular descriptors were examined further with regard to 

molecular descriptors (Table 2). The factors governing these models were dominated by 
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hydrophobic potentials followed by H-donor potentials. Smaller contributions were made by H-

acceptor, steric, and electrostatic potentials, respectively.   

The internal (training dataset) and external (testing dataset) predictions of these models 

are displayed in Figure 6 through the plotting of predicted pIC50 values in relation to 

experimental pIC50 values. The training dataset of this figure is colored in accordance to Figure 

2, whereas all testing dataset predictions are in red. Although internal predictions were linear, 

some testing dataset compounds were more difficult to predict for than others. The variance in 

compound prediction differed between the models for compounds of rigid and flexible 

alignments; hence, by taking the most negative prediction of each compound regardless of rigid 

or flexible alignment and plotting these values against respective experimental data a 

conservative method for prediction can be obtained. The combination of the models reduces 

under prediction. Table 3 displays the testing dataset along with experimental average IC50 

values, plus or minus respective standard deviations, along with the conservative model IC50 

prediction; note that model error for each compound is not shown.  

From the models employing CoMSIA molecular descriptors, potentials were extrapolated 

and viewed in relation to the overall models (Figure 7) and individual compounds thereof (Figure 

8). Figure 7 displays the overall CoMSIA molecular descriptors for the rigid and flexible models. 

It is evident that each overall model displays different molecular descriptor potential 

contributions, for all molecular descriptors (steric, electrostatic, hydrophobic, H-donor and H-

acceptor). This indicates that each model is constructed somewhat differently; although, there are 
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similarities between the potentials obtained. Using the positions of Figure 1 as a reference: (1) 

steric bulk is favored (green) at positions three and five and perhaps not symmetrically, whereas 

disfavored steric bulk (yellow) regions are just outside those favored, (2) positive electrostatic 

charge is favored (blue) at one, if not both, of the N=C−N groups near position five, whereas 

negative charge is favored (red) predominantly at or near position one and outside one of the 

N=C−N groups, (3) hydrophobic interactions are favored (yellow) at positions two and five, 

whereas disfavored hydrophobic interactions (gray) are near three positions and outside five 

positions, (4) H-donor atoms are favored (cyan) predominantly at or below the five position and 

disfavored (purple) in regions beyond favored regions and on three positions, and (5) H-

acceptors are favored (magenta) near the terminal N=C−N groups, and disfavored (red) below 

the four position(s) and outside favored N=C−N groups of the comparison molecule DB766. 

With regard to the scaffold structure of Figure 1, Figure 8 displays the molecular 

descriptor potentials of individual compounds extrapolated from respective models employing 

CoMSIA molecular descriptors. The molecular descriptor potential regions of individual 

molecules appear to be more consistent within their respective rigid and flexible models than 

they were in the overall models of Figure 7. However, the molecular potentials that resulted were 

also fewer. These included favored and disfavored hydrophobic, favored H-donor and favored H-

acceptor potentials. With X of Figure 8 representing positions one through five of the Figure 1 

scaffold structure and biological inhibitory data in Supplemental Table 3 (Appendix B), it is 

possible to examine not only the molecular descriptor potentials with regard to model 
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contribution but also the contribution of substructures to biological inhibitory activity. To most 

effectively describe these findings, it is important that comparisons are made to a compound that 

is active in both datasets. DB766 was selected for analyses.  

With respect to Figure 1, the molecular descriptor potentials for DB766 include: (1) 

favored hydrophobic potentials near the aromatic rings consisting of the four position, opposite 

position three, and on the flanking five position aromatic rings, (2) favored H-donor potentials 

are displayed below the left five position N=C−N group, and (3) favored H-acceptor potentials 

are on the N=C−N group opposite the side of the favored H-donor and extended to the outer 

aromatic ring. The IC50 values for this compound against L. amazonensis intracellular parasites 

and L. donovani axenic amastigotes are 0.09 and 0.50 µM, respectively. The general structure of 

DB1867, compared to DB766, differs only by a sulfur atom at position one and with this change 

the compound becomes more linear and favored hydrophobic interactions are spread to positions 

one and two. Potentials for favored H-acceptors are near N=C−N groups and the IC50 values are 

0.05 and 0.68 µM, respectively. DB946 is the only compound in the training dataset to differ 

from DB766 at position two; this compound also differs at position three. The methyl groups at 

position two fill similar special areas as substituents in position three. Favored hydrophobic 

potentials reside in position two, three, and five locations. This compound’s IC50 values are 0.11 

and 0.37 µM, respectively. DB667 and DB1876 differ from DB766 at position three. DB667 

consists of hydrogen atoms at position three and molecular descriptor potentials similar to those 

of DB946 (hydrophobic) and DB766 (H-donor and H-acceptor); although, the favored 
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hydrophobic potentials span a greater length for DB667. The IC50 values for this compound are 

0.53 and 1.6 µM, respectively. DB1876 displays large disfavored hydrophobic molecular 

descriptor potentials at the three positions. The remaining potentials are favored hydrophobic 

potentials near the aromatic rings and favored H-donor and H-acceptor potentials near the 

N=C−N group(s). This compound has IC50 values of 2.1 and 28 µM, respectively. DB1851 

differed from DB766 at position four. This resulted in favored hydrophobic interactions that span 

more of the molecule than previous compounds discussed and H-donor and H-acceptor potentials 

similar to those of DB1876. The IC50 values for these compounds are poor, greater than 10 and 

50 µM, respectively. DB1921, DB1942, and DB1906 all differ from DB766 at the five positions. 

DB1921 is flanked at the five positions and has different substituents at the three positions. This 

compound consists of potentials similar to DB1876; however, it is also missing most of the 

favored hydrophobic and H-acceptor potentials. The IC50 values for this compound are 4.7 and 

41 µM, respectively. DB1942 consists of a longer more flexible ring structure than DB766 and 

consists of disfavored hydrophobic molecular descriptor potentials primarily at the five positions. 

Positive hydrophobic potentials are on the inner aromatic rings or the outer rings near the five 

position, whereas H-donors are favored on one side of a N=C−N group and H-acceptors are 

favored at both N=C−N group(s). This compound has IC50 values of 0.81 and 3.6 µM, 

respectively. The five positions of DB1906 consist of more rings than DB766. The molecular 

descriptor potentials for this compound were similar to those of DB766 (hydrophobic and H-

donor) and DB946 (H-acceptor), IC50 values are 0.27 and 1.9 µM, respectively.  
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Discussion 

Studies examined chalcones and phospholipids and found that high inhibitory activity 

occurred when compounds possessed a long alkyl chain, bulky groups terminal the alkyl chain, 

and an electron deficient group.
9, 12

 The structures of chalcones and phospholipids are quite 

different from each other, and these compounds differ substantially from the arylimidamides 

examined in this study (Figure 1 and Supplemental Table 3, Appendix B).   

The numbered locations of Figure 1 aid in the explanation of inhibitory data displayed in 

Figure 2 through the interpretation of pharmacophore consensus potentials (Figure 4) and 

molecular descriptor contribution potentials (Figures 7 and 8). The pharmacophore alignment of 

Figure 4 is calculated using the compounds of Figure 3. By only employing the most active 

compounds, the pharmacophore is strictly for compounds of similar structure and inhibitory 

activity. The pharmacophore results suggest importance of aromatic and positively charged 

N=C−N groups. These can be related to the bulky groups flanking the alkyl chain and the 

electron deficient group, respectively. The long alkyl chain may be related to the long carbon 

backbone that is in part aromatic groups and/or the carbons of the furan that link the rings. 

PLS regression of calculated molecular descriptor potentials and respective biological 

inhibitory values, for both the rigid and flexible alignments of compounds presented in Figure 5, 

produced statistically significant models; yet, those employing the CoMSIA molecular 

descriptors from rigid structure alignment were the only ones with Q
2
 values greater than 0.5 
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(Table 1). It has been stated for years that if Q
2
 values are greater than 0.5 then the model has 

predictability better than chance.
14

 What we realize from our models, especially those aligned by 

flexible conformations, is that each compound contributes to the entirety of the model and that 

the models constructed from molecular descriptors of flexible compounds may be predicting just 

as well, if not better, than those constructed from molecular descriptors of rigid compounds 

(Figure 6). The rigid models of Figure 6 produce a greater amount of under prediction than the 

flexible models. For example, for the rigid model, one of the compounds active against L. 

donovani has an experimentally determined pIC50 value of -1.7 and a predicted value of 0, these 

IC50 values are 50 and 1, respectively, whereas for the flexible model the same compound has a 

predicted pIC50 value of -1.7, the same as the experimental value.  

Under prediction is a problem that needs to be addressed since predictive models such as 

the ones constructed in this study can be employed to scan potential candidates for synthetic drug 

design. Often synthetic measures are costly and timely; hence, it is better to synthesize only 

compounds expected to have the best inhibitory activity and disregard those expected to have the 

worse. To minimize under prediction, the minimum pIC50 predictions from the rigid or flexible 

models were plotted against the average experimental values. These data are shown as the 

conservative predictions of Figure 6. In this column we see that under predictions are no longer 

occurring for these models; yet, there are still over predictions. Over predictions, as long as they 

are few, are not as problematic since these values are larger and synthetic measures will most 

likely result in biologically obtained inhibitory activity better than calculated. 
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From models, such as the ones constructed during this study, molecular descriptor 

contributions can be obtained and observed. A previous study that employed CoMSIA molecular 

descriptors found that steric and hydrophobic interactions governed the model.
9
 This study was 

for synthetic phospholipids. Similarly, our model was governed by hydrophobic interactions; yet, 

this contribution of molecular descriptor interactions was followed by H-donor, H-acceptor, 

steric and then electrostatic (Table 2). When the overall CoMSIA potentials for each molecular 

descriptor are visualized, compound structures appear applicable for modifications. Figure 7 

allows for comparison between the models and overall analyses. It is important to realize that 

molecular descriptor potentials are unique to each model; hence, no two models are the same. As 

was found important previously, positive blue electrostatic potentials display the importance of 

the N=C−N groups, whereas the steric and hydrophobic potentials show the importance of the 

rings and substituents. To fully understand molecular descriptor contribution in relation to 

biological inhibitory data, it is important to analyze the potentials of individual compounds; a 

select set of which are shown in Figure 8. These potentials display much more consistency than 

those for the overall models of Figure 7.  

New compounds can be designed by employing the data acquired from the 

pharmacophore (Figure 4) and extrapolated molecular descriptor potentials (Figures 7 and 8). To 

do this, the basic pharmacophore must remain intact and the potentials of the overall models and 

those of individual compounds should be used for guidance. Since the importance of 

hydrophobic, H-donor and H-acceptor atoms are clearly displayed as essential potentials for the 
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individual compounds in Figure 8; this is a good place to begin. The favored hydrophobic 

potentials of the four aromatic rings exhibit significance (Figures 7 and 8); these are also seen as 

important in the pharmacophore (Figure 4). Hence, it appears imperative that the four rings 

remain a constant in our initial modeling efforts. H-donors appear to be important to regions near 

the N=C−N groups (Figures 7 and 8). One of the N=C−N groups is shown as essential in the 

pharmacophore (Figure 4). Likewise, H-acceptors appear to be significant to the region including 

and between the N=C−N groups and the N of the outer most aromatic rings (Figures 7 and 8). 

One such region was identified in the pharmacophore (Figure 4). Based on these observations, 

new compounds have been designed and predictions have been obtained (Figure 9). The ranges 

include the smallest and largest prediction obtained via the models constructed of rigid and 

flexible compound structures. 

In summary, by employing such findings it is possible to scan for potentially active 

compounds both efficiently and conservatively through the use of predictive models. The 

governing of inhibition results as models are employed and new compounds are designed, 

activities are predicted, compounds are synthesized, and biological assays provide experimental 

data for analyses. 
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Tables and Figures 

Table 1. Statistics of partial least squares predictive models for a biological dataset of synthetic 

arylimidamides with activities against L. donovani axenic amastigotes (LD) and L. amazonensis 

intracellular parasites (LA).  

  Rigid Alignment Flexible Alignment 

  CoMFA CoMSIA CoMFA CoMSIA 

  LA LD LA LD LA LD LA LD 

Q
2 
 0.23 0.25 0.47 0.59 0.16 0.60 0.07 0.22 

SEE  0.45 0.41 0.25 0.18 0.24 0.33 0.16 0.14 

R
2 
 0.68 0.77 0.91 0.96 0.91 0.85 0.96 0.97 

F  29.1 44.5 61.4 137 131 78.0 159 229 

SEEbs  0.35 0.37 0.21 0.16 0.21 0.26 0.12 0.12 

R
2
bs  0.80 0.82 0.94 0.97 0.93 0.90 0.98 0.98 
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Table 2. Contribution of CoMSIA molecular descriptors for rigid and flexible models employing 

structures of training dataset compounds and respective biological activities.  

   Rigid Alignment Flexible Alignment 

  L. amazonensis L. donovani L. amazonensis L. donovani 

Steric 0.15 0.14 0.13 0.13 

Electrostatic 0.11 0.08 0.14 0.15 

Hydrophobic 0.47 0.43 0.33 0.34 

H-Donor 0.15 0.21 0.20 0.21 

H-Acceptor 0.12 0.14 0.20 0.17 
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Table 3. Predictions in terms of IC50. Experimental values for compound inhibitory activity 

against L. donovani axenic amastigotes (LD) and L. amazonensis intracellular parasites (LA) are 

displayed in columns LD Calc and LA Calc. The predicted values are those from the 

conservative predictions of Figure 6.  

Name Structure LA Exp LA Calc LD Exp LD Calc 

DB710 

 

0.16 ± 0.04 1.4 0.84 ± 0.2 4.0 

DB712 

 

0.56 ± 0.08 0.65 2.0 ± 0.6 4.6 

DB749 

 

3.1 ± 0.7 1.4 >50 50 

DB874 

 

1.4 ± 0.3 0.66 4.2 ± 1.3 3.2 

DB889 

 

0.11 ± 0.02 2.3 1.7 ± 0.5 10 

DB1856 

 

0.74 ± 0.3 3.2 5.8 ± 0.7 10 

DB1857 

 

0.37 ± 0.2 0.69 1.0 ± 0.2 10 

DB1864 

 

>10 9.3 5.6 ± 1.8 16 
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Table 3 (continued) 

Name Structure LA Exp LA Calc LD Exp LD Calc 

DB1908 

 

>10 4.7 14 ± 1 16 

DB1930 

 

5.5 ± 0.2 9.3 >100 63 
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Figure 1. Scaffold structure for compounds being employed to examine biological inhibitory data 

through quantitative structure-activity relationships of L. donovani axenic amastigotes and L. 

amazonensis intracellular parasites. All training dataset structures and respective inhibitory data 

can be viewed in Supplemental Table 3 (Appendix B). 

Scaffold Structure 1. Backbone of   

47 training and all 10 testing 

compounds.

Scaffold Structure 3. Backbone 

of DB1911 and DB1945.

Scaffold Structure 3. Backbone of 

DB1881, DB1882, and 1910. 
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Figure 2. Biological pIC50 data of synthetic arylimidamides active against L. donovani axenic 

amastigotes (green) and L. amazonensis intracellular parasites (blue). The negative log values of 

average experimentally obtained IC50 data, displayed in Supplemental Table 3 (Appendix B) and 

Table 3, and these values plus and minus respective standard deviations are all plotted against the 

negative log value of average experimentally obtained IC50 data. 
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Figure 3. Five of the most active compounds against L. amazonensis intracellular parasites and L. 

donovani axenic amastigotes.   

DB745

DB946

DB766

DB1862

DB1867
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Figure 4. GALAHAD potentials as identified by simulations employing the compounds of 

Figure 3. The identified features are color coded: cyan, hydrophobes; magenta, donor atoms; 

green, acceptor atoms; red, positive nitrogens. 
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Figure 5. Final training (top) and testing (bottom) datasets: flexible alignments (left) and rigid 

alignments (right).  

Flexible Alignment Rigid Alignment
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Figure 6. Internal (blue and green) and external (red) predictions. The internal predictions are 

those for the training dataset compounds implementing the model constructed, whereas external 

predictions are those for the testing dataset compounds. The models have never seen the testing 

datasets. The L. amazonensis experimental versus predicted results are shown in blue above 

those for L. donovani in green. The experimental versus predicted results from left to right are 

predictions from implementing rigid (left) and flexible (center) compounds. The conservative 

predictions (right) are essentially the more negative of the two pIC50 predictions resulting from 

the models with rigid and flexible compounds. Since the scale observed is the negative log of the 

IC50, this method reduces under prediction. 
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Figure 7. Overall models with CoMSIA molecular descriptors for both rigid and flexible 

compound alignments. DB766 is displayed as a reference compound for each molecular 

descriptor potential. Favored potentials from steric to H-acceptor molecular descriptors are 

green, blue, yellow, cyan, and magenta, whereas disfavored potentials from steric to H-acceptor 

molecular descriptors are yellow, red, gray, purple, and red. 
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Figure 8. CoMSIA findings with respect to Figure 1 and molecular descriptor potentials of 

Figure 7. The favored hydrophobic potentials have been changed to orange to improve 

visualization and insure that steric potentials were not displayed. The left most column consists 

of numbers correlated to positions of Figure 1. The column to the right consists of the 

compounds name. This is followed by the compounds and their respective molecular descriptor 

potentials for each the final models.  

X Compound 

L. amazonensis L. donovani 

Rigid Flexible Rigid Flexible 

0 DB766 

   
 

1 DB1867 

  
  

2 DB946 

    

3a DB667 

    

3b DB1876 

 
   

4 DB1851 

    

5a DB1921 

    

5b DB1942 

 
 

  

5c DB1906 
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Figure 9. Compounds designed using the pharmacophore data of Figure 4 and the CoMSIA 

molecular descriptor fields of Figures 7 and 8. The structures of the compounds are to the left of 

the predicted IC50 ranges. Ranges of predicted IC50 values were acquired through the use of both 

models constructed of rigid and flexible compounds.  
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Trypanosoma cruzi, which affects millions of people in endemic areas of Latin America, 

is the etiological agent of Chagas disease. The available therapy is not ideal since it presents 

limited efficacy, especially in chronic patients, and displays considerable side effects; thus the 

need for new trypanocidal compounds is indisputable. In vitro assays have been used to 

determine the biological activities of diamidines and arylimidamides against T. cruzi at two 

tempertures relating to that of blood stored at blood banks (4°C) and that of the human body 

(37°C). Our studies employ the corresponding biological IC50 values acquired to examine 

compound structural importance through computational biology. Hence, a pharmacophore was 

identified and implemented to assess quantitative structure-activity relationships (QSAR) 

through partial least squares (PLS) regression modeling employing the biologically obtained IC50 

values and computationally calculated comparative molecular field analysis (CoMFA) and 

comparative molecular similarity indices analysis (CoMSIA) molecular descriptors. Statistically 

significant models were acquired; these models have Q
2
 values greater than 0.51 and R

2
 values 

greater than 0.94.
 
Models were internally and externally validated and the molecular descriptor 

potentials were extrapolated for overall models. The computational data acquired can be used to 

screen for compounds with inhibitory activities against T. cruzi and design novel therapeutic 

agents.   
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Introduction 

Trypanosoma cruzi is the protozoan parasite that causes Chagas disease (CD), a tropical 

illness that affects 12-14 million people in many developing countries of Latin America and puts 

about 50 million at risk of infection.
1
 The occurrence of CD in nonendemic regions such as the 

United States and Europe is mainly due to the migration of infected people but also represents an 

important concern in these areas.
2-4

 

CD has two successive phases: a short acute phase characterized by patent parasitemia 

followed by a long, progressive chronic phase. The acute phase starts shortly after the infection 

and is often nonsymptomatic but may manifest as flu-like symptoms with a self-limited febrile 

illness that lasts a few weeks. If untreated, the symptomatic chronic disease develops in about 

20-40% of the infected individuals after a long latent period (several months and even decades), 

while the majority of the patients remain in the indeterminate state.
5, 6

 Due to the long, 

asymptomatic state, CD is considered a “silent killer,” impairing early specific diagnosis and 

treatment.
7
 The main clinical chronic manifestations of CD include cardiac and/or digestive 

alterations.
8
 CD is responsible for considerable rates of mortality and morbidity, however, in the 

centennial of its discovery by Carlos Chagas (1909), no prophylactic or efficacious treatment is 

available.
9
 

Although they provide limited efficacy and activity upon different parasite stocks, 

especially for the chronic sufferers, and cause deleterious side effects, the currently accepted 
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clinical treatments for Chagas are Nifurtimox (Nfx) and Benznidazole (Bz); these two nitrogen-

based compounds were introduced more than four decades ago.
10, 11

 Thus, the limitation of the 

current treatment for CD justifies the search and screening of other drugs that could replace Nfx 

and Bz and/or could be used in cases of therapeutic failure.
12

 

Aromatic synthetic diamidine (DA) and arylimidamide (AIA) compounds have been 

identified as potential therapeutics for CD.
9, 12-22

 Our biological assays for DA and AIA 

compounds have resulted in inhibitory activity assessment for 47 compounds at temperatures of 

4°C, the temperature of blood stored in blood banks, and 37°C, the temperature of the human 

body. In this study, the data from our biological assays were employed to develop predictive 

models and examine the structural importance of these compounds at the two temperatures. A 

pharmacophore for active compounds was acquired and implemented in quantitative structure-

activity relationship (QSAR) examination through partial least squares (PLS) regression 

modeling employing biologically obtained inhibitory values, in the form of IC50 data, and 

computationally calculated comparative molecular field analysis (CoMFA) and comparative 

molecular similarity indices analysis (CoMSIA) molecular descriptors. Subsequent to acquiring 

statistically significant and validated predictive models, molecular descriptor potentials were 

extrapolated from final models and employed along with the pharmacophore and predictive 

models to gain insight into compound structural importance for the inhibition of T. cruzi.  
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Experimental Procedures 

Compounds. DA and AIA compounds were synthesized, and stock solutions were 

prepared in dimethyl sulfoxide (DMSO) with the final concentration not exceeding 0.6%, which 

did not exert any toxicity towards the parasite or mammalian host cells (data not shown). 

Parasites. At peak parasitaemia, bloodstream trypomastigotes (BT; Y strain) were 

harvested by heart puncture from T. cruzi infected Swiss mice as previously reported. All 

procedures were carried out in accordance with the guidelines established by the FIOCRUZ 

Committee of Ethics for the Use of Animals (approved protocol number: CEUA L-028/09). 

Trypanocidal Analysis. IC50 values of 47 compounds were previously published.
13-16, 18-21

 

These data were acquired through bloodstream trypomastigotes (BT) assays. Treatment entailed 

different protocols as follows: BT (5 X 10
6
 per mL) were incubated for 24 h at 37ºC in RPMI 

1640 medium (Roswell Park Memorial Institute, Sigma Aldrich, USA) supplemented with 5% 

FBS, in the presence or absence of serial dilutions of each compound (0 to 32 µM). Alternately, 

experiments were performed at 4ºC with BT maintained in freshly isolated mouse blood (96%) 

in the presence or absence of serial dilutions of the compound (0 to 200 μM). After drug 

incubation, the parasite death rates were determined by light microscopy through the direct 

quantification of the number of live parasites using a Neubauer chamber, and the IC50 values 

were then calculated. The IC50 values were averaged for at least three determinations done in 

duplicate.  
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Computational Biology. All 47 compounds (41 training compounds and 6 testing 

compounds) with IC50 values were constructed in SYBYL 8.1
23

 on a Fedora Core 5 Linux 

workstation. Structures for each compound were energy minimized to convergence using the 

conjugate gradient method, Tripos force field, and Gasteiger-Hückel charges. The termination 

gradient was 0.01 kcal/(mol Å) and the maximum iterations were 10
4
. Compounds were then 

semi-randomly separated into training and testing datasets of 41 and 6 compounds, respectively. 

Compounds selected for the testing dataset represented the entirety of the dataset; they had 

diverse backbones and biological activities.  

The GALAHAD module in SYBYL was employed to gain a pharmacophore for 

inhibitory compounds of the training dataset; four compounds (DB1831, DB1853, DB1868 and 

DB766) with low IC50 values (Supplemental Table 4, Appendix C) were employed and the 

parameters were acquired through the “Suggest from Data” option. The best model resulted in 

maximized pharmacophore consensus, maximized steric consensus, and minimized energy. Due 

to the structural diversity of compounds in the training and testing datasets, compounds were 

aligned by the atoms of key features using the “Align Database” option of the QSAR module in 

SYBYL. Identified important structural atoms were used as a template; DB766 was employed 

for Cartesian coordinates. Compounds without the common structure were aligned by central 

atoms that were similar. 

PLS analyses employed the training datasets. Computationally calculated CoMFA and 

CoMSIA molecular descriptors were calculated and mathematically modeled with respect to log 
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transformed biologically acquired IC50 values; pIC50 = −log(IC50). Predictive models were 

gained and implemented to predict pIC50 values for compounds of the training and testing 

datasets. These models were then used to examine molecular descriptor contributions through 

model extrapolated molecular potentials; visualization was attained by contribution through the 

mapping of the product standard deviation with respect to molecular descriptor values and 

coefficients (S.D.*Coeff.) at each lattice point. The default levels of the contour by contribution 

were employed as follows: 80% for a favored region and 20% for a disfavored region.  

Results 

Inhibitory experimental assays against T. cruzi at 4°C and 37°C provided IC50 values for 

47 compounds (Supplemental Table 4, Appendix C). All compounds with inhibitory data were 

constructed in SYBYL and four compounds with low IC50 values, for both assays, were 

employed for pharmacophore identification. It is important to note that the best inhibitory 

compounds of this dataset are all AIAs. Given the structural variation of this dataset, only a 

select set of features are applicable for the alignment of all compounds.   

Figure 1 displays the pharmacophore potentials; structural importance appears to be 

attributed to the central furan and its flanking aromatic rings. These rings are identified by 

hydrophobe potentials. Using DB766 as a reference compound (Figure 2), Figure 1 also displays: 

(1) a fourth hydrophobe potential residing on one of the isopropyl substituents, (2) donor 

potentials at the N=C−N groups, (3) an acceptor potential on the furan O, as well as on both 
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isopropyl O, and (4) a positive N potential at one N=C−N group. Perhaps the importance of the 

one identified positive N comes from the net compound +1 charge of most AIAs. The 

pharmacophore identification appeared to highlight the rigid central structure of the compounds; 

the central structure is similar for AIAs and DAs. 

Atoms representing the hydrophobe and acceptor potentials were identified and 

implemented for training and testing dataset alignment; the atoms used in alignment are those 

identified in Figure 2. An effective overlay of the 41 training and 6 testing compounds allowed 

for three-dimensional compound comparison. The identified pharmacophore regions that were 

not used for alignment were still maintained by AIAs (Figure 3). With compounds aligned, 

CoMFA and CoMSIA molecular descriptors were calculated and these were employed along 

with the experimentally obtained inhibitory values for QSAR studies with PLS modeling. The 

models constructed have correlation coefficients (Q
2
)
 
values greater than 0.51, standard error of 

estimate (SEE) values lower than 0.29, coefficient of determination (R
2
) values greater than 0.94, 

and large F statistics (Table 1).  

Both CoMFA models consisted of approximately 70% steric and 30% electrostatic 

molecular descriptor contributions, while the CoMSIA models exhibited more variation. The 

model employing experimental inhibitory data at 4°C consisted of roughly 13% steric, 13% 

electrostatic, 23% hydrophobic, 26% H-donor, and 25% H-acceptor contributions, whereas the 

model with experimental inhibitory data at 37°C consisted of roughly 14% steric, 13% 

electrostatic, 26% hydrophobic, 24% H-donor, and 23% H-acceptor contributions. The molecular 
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descriptor contributions for both CoMSIA models were within 3% of each other; this difference 

is not statistically significant. However, molecular descriptor contributions are related to the 

weights that are employed by PLS to relate structural importance to inhibitory activity. This 

relationship results in predictions. These molecular descriptor contributions suggest that 

predictions from models employing CoMFA molecular descriptors will be more similar than 

those from models employing CoMSIA molecular descriptors. 

Figure 4 displays the training and testing dataset predictions for the PLS models; 

trendlines are displayed for the training dataset predictions. Training data are displayed in blue 

and green for the assays at 4°C and 37°C, respectively. Notice that the slopes of the trendlines 

are all near one as expected for a valid model. Also, there are very few noticeable outliers. 

Hence, the models should all be able to provide useful predictions for the compounds of the 

testing dataset. This holds true according to the testing dataset predictions, the CoMFA model at 

4°C and the CoMSIA model at 37°C are outperforming the other two models. The compounds of 

the testing dataset can be viewed along with their experimental and predicted data in Table 2. 

Notice that each of the testing compounds is quite different; they vary in size, shape, and 

conformation. This allows for a full predictability range inspection based on compound structure.  

The phenyl-pyridine DA DB1627 consists of accurate predictions, especially since the 

inhibitory values for this compound are at an experimental cut-off. 10SAB031 is a DA that 

consists of a triazole center ring and flanking aromatic rings, the amidines are in the m-position. 

The models constructed of CoMFA molecular descriptors predicted better than those with 
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CoMSIA molecular descriptors. DB1362  consists of a 3-bromo-4-methylthiophene central ring 

and flanking aromatic rings. The amidines for this DA compound are in the p-position. The 

model constructed of experimental data at 4°C and CoMFA molecular descriptors predicted best, 

as did the model with experimental data at 37°C and CoMSIA molecular descriptors. 14SMB013 

is a diamidine compound that has an aliphatic linker instead of a central ring. Again, the model 

constructed of experimental data at 4°C and CoMFA molecular descriptors predicted best, as did 

the model with experimental data at 37°C and CoMSIA molecular descriptors. AIA 613A, has a 

scaffold structure similar to DB766; yet, this compound lacks isopropyl substituents and N in the 

outer aromatic rings. As before, the model constructed of experimental data at 4°C and CoMFA 

molecular descriptors predicted best, as did the model with experimental data at 37°C and 

CoMSIA molecular descriptors. DB1868 is the most active compound of the testing dataset. This 

compound is similar in structure to DB766; it has additional O-Me at the p-positions of the outer 

aromatic rings. Both models constructed from experimental inhibitory data at 4°C predict well, 

while those for data at 37°C are over predicting significantly. It is also important to note that the 

largest deviations in predictions occurred when the experimental values between the two assays 

were the greatest. These deviations are seen in the predictions for 10SAB031, 14SMB013, and 

DB1868. The residuals between the two biological assays are 0.32, 0.53, and 0.65, respectively. 

Molecular descriptor potentials were extrapolated from all four models (Figures 5 and 6). 

Figure 5 displays the steric and electrostatic potentials for the models constructed with CoMFA 

molecular descriptors and inhibitory data at 4°C and 37°C, respectively. The model with CoMFA 
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molecular descriptors and inhibitory data at 4°C show that steric bulk is favored (green) on both 

ends of reference compound DB766, as well as above the furan and an isopropyl group. Yet, 

disfavored steric potentials (yellow) suggest a size limit to regions near isopropyl substituents. 

The electrostatic potentials display the N=C−N groups to exhibit favored (blue) positive charge. 

There are very few areas which call for negative charge (red). The model with CoMFA 

molecular descriptors and inhibitory data at 37°C display steric potentials similar to those of the 

model constructed from the data collected at 4°C. The electrostatic potentials again show 

importance of an N=C−N group and suggests more regions where negative charge is favored.  

Figure 6 displays the molecular descriptor potentials for the models employing CoMSIA 

molecular descriptors. These models displayed smaller more defined regions of importance than 

those previously discussed. The model constructed of CoMSIA molecular descriptors and 

inhibitory data at 4°C, show similar steric findings to those from the CoMFA models. Steric bulk 

is favored at both ends of the compound and there is a size limit to regions of isopropyl 

substituents. Electrostatic potentials identify important positive charge regions as those 

consisting of isopropyl substituents. Hydrophobic regions are favored (yellow) near the outer 

aromatic rings and disfavored (white) by the central furan ring. H-donors are favored (cyan) near 

the N=C−N groups, as are H-acceptors (magenta). The model constructed of CoMSIA molecular 

descriptors and inhibitory data at 37°C displays similar results to the model with CoMSIA 

molecular descriptors and inhibitory data at 4°C. Slight differences in steric potentials were seen 

in a shift of positive steric bulk potential from one isopropyl substituent region to the other 
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isopropyl substituent. Favored positive electrostatic potentials were reduced and favored 

negative electrostatic potentials were increased. A greater amount of favored hydrophobic 

potential resulted along the backbone of the reference structure, whereas the amount of 

disfavored hydrophobic potential expanded into regions that were previously favored. Favored 

H-donor potentials shifted toward the outer aromatic rings, while disfavored potentials were 

increased near one of these rings. The favored potentials for H-acceptors surround the N=C−N 

groups, whereas disfavored H-acceptor areas are located below the interior aromatic and furan 

rings, as well as near one of the isopropyl substituents. 

Discussion 

Found historically in rural areas of Latin America among those living in close proximity 

with vectors and in poor housing conditions, Chagas disease is spread through vectors, 

transfusion, organ transplant, and from mother to infant.
4, 12

 This disease has spread with 

migration to the United States and Europe. An estimated 100,000 people in the United States 

have this disease which is often unrecognized until the chronic phase is reached. The only 

accepted clinical treatments are Nfx and Bz, both of which are not approved for treatment in the 

United States. The only way to obtain these compounds is from the CDC, due to their adverse 

side effects that can be as devastating as the disease. Hence, the spread of Chagas disease and the 

limitations of current therapies necessitate the screening and development of therapeutics that 

could replace Nfx and Bz or be used in cases of therapeutic failure. Since several studies have 

examined the inhibitory activities of compounds that show inhibitory affinity for targeting T. 
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cruzi,
13-16, 18-21

 this data is readily available and can be employed to develop effective screening 

devices and gain insight into the inhibition mechanisms of the compounds.  

A pharmacophore was deduced from AIAs with high inhibitory affinities (Figure 1). The 

pharmacophore displays the importance of the rigid three ring system through the identification 

by hydrophobes. Three acceptor positions of these compounds also appear important; hence, the 

atoms surrounding the identified hydrophobes and acceptors of Figure 2 were used for the 

alignment of all compounds (Figure 3). PLS was then employed to construct predictive models 

that implemented experimental inhibitory data and respective three-dimensional compound 

conformations that were defined by the molecular descriptors used, CoMFA or CoMSIA. The 

four models developed were all statistically significant and validated accordingly (Tables 1 and 2 

and Figure 4). Although all models were shown to be useful predictive devices the models that 

are most optimal for predicting inhibitory activity accurately are: (1) the model employing 

CoMFA molecular descriptors and experimental inhibitory data acquired at 4°C, and (2) the 

model employing CoMSIA molecular descriptors and experimental inhibitory data acquired at 

37°C. This appeared to be counterintuitive until models were further examined; the other two 

models were much more rigid and this was reflected in predictions. Through the analysis of 

model predictions it was found that large deviations in predictions were acquired most often 

when the experimental values between the two assays were large. 

Molecular descriptor potentials were extrapolated from the models and used to gain 

insight about important structural contributions that may be employed to improve compound 
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design (Figures 5 and 6). The most useful data appears to be that which comes from the most 

optimal models that were previously identified. Steric and electrostatic molecular descriptors for 

the model employing CoMFA molecular descriptors and experimental inhibitory data acquired at 

4°C displayed that: (1) compounds can be elongated; (2) there is some room for modification of 

the isopropyl substituent region of reference compound DB766, although there appear to be 

some size limitations; and (3) positive charge is shown to be important to regions of N=C−N 

groups (Figure 5). This suggests that the pharmacophore identification of the positive nitrogen 

potential, and two donor potentials at the N=C−N groups, have some relevance to important 

inhibitory structure for treating blood stored at 4°C (Figure 1). Steric, electrostatic, hydrophobic, 

H-donor and H-acceptor molecular descriptors for the model employing CoMSIA molecular 

descriptors and experimental inhibitory data acquired at 37°C displayed that: (1) compounds can 

be elongated; (2) there is some room for modification of the isopropyl substituent region of 

reference compound DB766, although there appear to be some size limitations; (3) the outer 

hydrophobic rings appear to be of importance; (4) the addition of H-donors to p-position of the 

outer aromatic rings may lead to improved inhibitory compounds; and (5) H-acceptors are 

favored  at the N=C−N groups of reference structure DB766 (Figure 6).  

In summary, a pharmacophore for highly inhibitory compounds was identified, predictive 

devices for the screening of inhibitory activity at 4°C and 37°C were constructed for DA and 

AIA compounds, and molecular descriptor potentials have been extracted to determine structural 

importance as related to the design for novel therapeutics. Structural importance for inhibiting T. 
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cruzi was found to be an overall rigid conformation, similar to that of current AIAs, that has 

N=C−N groups. Areas for modifications have been identified as the p-position of the outer 

aromatic rings, isopropyl substituent regions of reference compound DB766, and central atoms 

of the AIAs. 
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Tables and Figures 

Table 1. Statistics of partial least squares predictive models for a biological dataset of synthetic 

diamidines and arylimidamides with activities against Trypanosoma cruzi at 4°C and 37°C. 

Models employ either CoMFA or CoMSIA molecular descriptors. The optimal N components 

were determined by the smallest predicted error sum of squares; N was determined to be optimal 

at 3, 4, 4, and 3 for models displayed from left to right, respectively. 

     CoMFA CoMSIA 

 4°C 37°C 4°C 37°C 

Q
2
 0.58 0.56 0.51 0.54 

SEE 0.27 0.28 0.16 0.26 

R
2
 0.94 0.95 0.98 0.95 

F 180 160 420 260 
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Table 2. Experimental and predicted pIC50 values for test set compounds. The name of the 

structure is displayed to the far left; this is followed by the structure, the experimental pIC50 

values at both 4°C and 37°C, and the predictions from the respective models employing CoMFA 

or CoMSIA molecular descriptors at the two temperatures. Diamidines have an overall +2 charge 

and arylimidamides have an overall +1 charge. 

DB613A

DB1627

14SMB013

10SAB031

DB1868

DB1362

Experimental CoMFA CoMSIA

4°C 37°C 4°C 37°C 4°C 37°C

-1.5 -1.5 -1.6 -1.7 -1.6 -1.7

-0.29 -0.61 -0.13 -0.36 0.48 -0.28

-0.85 -0.82 -0.66 -1.3 -0.05 -1.1

-1.5 -0.97 -1.3 -1.5 -1.0 -1.3

-1.5 -1.5 -1.1 -2.1 -0.33 -1.4

0.55 1.2 1.2 -1.2 1.3 -1.4

Name Structure



 

113 

 

 

Figure 1. GALAHAD potentials as identified by simulations employing four arylimidamide 

compounds (DB1831, DB1853, DB1868 and DB766, Supplemental Table 4, Appendix C) with 

high inhibitory affinity. The identified features are color coded: cyan, hydrophobes; magenta, 

donor atoms; green, acceptor atoms; red, positive nitrogens. 
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Figure 2. Alignment atoms identified on the arylimidamide DB766; these are color coded as in 

Figure 1. The atoms representative of the hydrophobes are in cyan and those of the acceptor 

atoms are in green. 
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Figure 3. The training dataset of 41 compounds (top) was employed to construct partial least 

squares regression models, whereas the testing dataset of 6 compounds (bottom) was employed 

to assess the models constructed.  
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Figure 4. Predictions for the training (blue and green) and testing (red) datasets are displayed 

with respect to experimental data. The data from models employing CoMFA molecular 

descriptors are on the left, whereas those using CoMSIA molecular descriptors are on the right. 

Experimental data for assays and respective predictions at 4°C are displayed above those at 

37°C. The trendlines for the training dataset predictions are displayed along with their respective 

equations and R
2 

values. 
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Figure 5. Potentials for models employing CoMFA molecular descriptors and biological pIC50 

values. Favored steric and positive electrostatic potentials are shown in green and blue, whereas 

disfavored potentials are displayed in yellow and red, respectively. DB766 is used as a reference 

compound; the data displayed are for the overall models. The models for inhibition at 4°C are 

displayed to the left of the models for inhibition at 37°C and the steric molecular descriptor 

potentials are shown above respective electrostatic potentials. 

4°C 37°C

Steric

Electrostatic
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Figure 6. Potentials for models employing CoMSIA molecular descriptors and biological pIC50 

values. Favored steric, positive electrostatic, hydrophobic, H-donor, and H-acceptor potentials 

are shown in green, blue, yellow, cyan, and magenta; negative potentials are displayed in yellow, 

red, white, purple, and red, respectively. As in Figure 5, DB766 is used as a reference compound 

and the data are displayed for the overall models. 

4°C 37°C

Steric

Electrostatic

Hydrophobic

H-Donor

H-Acceptor



 

119 

 

 

 

 

CHAPTER 5: SETTING ANCHOR IN THE MINOR GROOVE: IN SILICO 

INVESTIGATION INTO FORMAMIDO N-METHYLPYRROLE AND N-

METHYLIMIDAZOLE POLYAMIDES BOUND BY COGNATE DNA SEQUENCES 



 

120 

 

SETTING ANCHOR IN THE MINOR GROOVE: IN SILICO INVESTIGATION INTO 

FORMAMIDO N-METHYLPYRROLE AND N-METHYLIMIDAZOLE POLYAMIDES 

BOUND BY COGNATE DNA SEQUENCES 

Catharine J. Collar
1
, Moses Lee

2
, and W. David Wilson

1 

From Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
1 

and  

Department of Chemistry and the Division of Natural and Applied Sciences, Hope College, 

Holland, Michigan 49423
2
. 

Running head: Base pair recognition by f Py Im polyamides 

Address correspondence to W. David Wilson. Telephone: +1-404-413-5503. Fax: +1-404-413-

5551. E-mail: wdw@gsu.edu. 

The abbreviations used are: Py, N-methylpyrrole; Im, N-methylimidazole; f, formamido; DNA, 

Deoxyribonucleic Acid; A, Adenine; T, Thymine; G, Guanine; C, Cytosine; NMR, Nuclear 

Magnetic Resonance; ASA, Accessible Solvent Area; NSF, National Science Foundation.  

 



 

121 

 

Tricyclic N-Methylpyrrole (Py) and N-methylimidazole (Im) containing polyamide 

monocations are known to bind as stacked dimers within the minor groove of DNA and those 

with N-terminal formamido (f) substituents bind in a staggered configuration with high 

specificity over a range of affinities. Although binding constants have been reported, there is not 

a clear understanding of why such constants vary significantly for polyamide dimers and their 

respective cognate DNA sequences. By employing computational tools, the following homo-

dimer complexes have been addressed in this study: f-PyPyIm in complex with 5’-

d(GAACTAGTTC)-3’, f-ImPyPy in complex with 5’-d(GAATGCATTC)-3’ and f-ImPyIm in 

complex with 5’-d(GAACGCGTTC)-3’. These complexes were selected based on their 10 to 

100-fold differences in binding constants. From this study, it was possible to determine how 

polyamides anchor themselves within the minor groove of specific DNA sequences. This is done 

through several interactions that provide stability for specific recognition: (1) Py groups secure 

themselves between DNA base pairs, (2) lone-pair-Π interactions are formed between DNA 

deoxyribose O4’ and Im groups nearest f, (3) minor groove bases hydrogen bond to Im groups 

and amides of the polyamide backbone, (4) the f substituents rotate without leaving the minor 

groove of DNA and with this rotation form specific hydrogen bonds with electron rich sites on 

the floor of the minor groove, and (5) flexible charged N,N-dimethylaminoalkyl substituents 

reside favorably in the minor groove of DNA. Results displayed the greatest amount of 

interactions and stability for dimer f-ImPyIm in complex with 5’-d(GAACGCGTTC)-3’ and the 

least amount in dimer f-PyPyIm in complex with 5’-d(GAACTAGTTC)-3’. Hence, for cognate 
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DNA sequences, the relative binding strength of compounds was determined as f-ImPyIm > f-

ImPyPy > f-PyPyIm. This force-field-based computational study is in agreement with 

experimental results and provides a molecular rational for the binding constant values.  
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Introduction 

 The antibiotics netropsin and distamycin A, along with synthetic, tricyclic N-

methylpyrrole (Py) and N-methylimidazole (Im) polyamides, bind within the minor groove of 

cognate DNA sequences with high specificity but with a surprisingly wide range of affinities 

(10
5 

M
-1

 to 10
8
 M

-1
).

1, 2
 The binding sequence specificity of these compounds follows a well-

defined set of rules that have been established and confirmed via experimental techniques.
1, 3-5

 

Polyamide compounds align anti-parallel within the minor groove, tail-to-head and head-to-tail, 

to form stacked dimers able to recognize specific base pairs: Py overlapped with Py (Py-Py) 

recognizes adenine (A) thymine (T) base pairs or TA base pairs, Im overlapped with Im (Im-Im) 

recognizes guanine (G) cytosine (C) base pairs or CG base pairs, Im overlapped with Py (Im-Py) 

recognizes GC, and Py overlapped with Im (Py-Im) recognizes CG. These relationships are 

displayed visually through experimental findings, including X-ray diffraction
5-7

 and NMR,
7, 8

 for 

complexes of Im- and Py-containing polyamides with duplex oligodeoxyribonucleotides. As a 

result of their ability to recognize specific DNA sequences, polyamides are being developed as 

potential gene control agents with applications in cancer treatment as well as biotechnology.
9-14

  

 Experimental studies have uncovered two structural components of polyamide dimers 

that significantly affect DNA binding affinity: the N-terminal formamido group (f) and the 

combination and order of the pyrrole and imidazole moieties.
1, 2, 6, 8, 15-22

 Compared to non-

modified polyamides, those with an N-terminal f substituent displayed increased affinity for 

sequence specific binding within the minor groove.
1, 2

 This general trend can be illustrated with 
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results for ImPyPy and f-ImPyPy. The binding affinity of f-ImPyPy (Figure 1) with cognate 

DNA increased by approximately 10
2
 M

-1
 compared to ImPyPy with cognate DNA when a 

terminal f was present. The association and dissociation rates were slower for the f derivative and 

the polyamide stacking mode for the complex with f compounds were staggered while the others 

were overlapped.
2
 Similar results have also been observed for other non-modified and f modified 

polyamides with their respective cognate DNA sequences.
1, 2

  

 In silico docking and molecular dynamics studies have also provided valuable insight into 

DNA-polyamide, and other compound, interactions.
23-27

 For example, the flexible β-Dp tails of 

the ImHpPyPy-β-Dp polyamides contributed to binding through water mediated contact with 

phosphate oxygen.
28

 Docking studies have also aided in the construction of DNA-polyamide 

complexes to examine the movements and interactions of individual bases, such as the roll of 

base pairs when computationally constructed polyamides were examined in complex with 

DNA.
24, 29

 Experimental thermodynamic data have been examined through limited docking of f-

ImPyIm (Figure 1) polyamides.
17

 

 The unanswered fundamental question in the experimental studies is why the 

combination and arrangement of Py and Im moieties have such a significantly different effect on 

binding affinity with cognate DNAs.
1, 18

 Given these observed differences, analyzing 

experimental binding constants with regard to molecular structure interactions of DNA-

polyamide complexes can provide valuable insight. The goal of this study is to use in-depth 

docking methods to compare and examine how polyamides interact with DNA structure and 
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groups in the minor groove. Through the use of computational tools, several complexes were 

examined: f-PyPyIm in complex with cognate sequence 5’-d(GAACTAGTTC)-3’, f-ImPyPy in 

complex with cognate sequence 5’-d(GAATGCATTC)-3’, and f-ImPyIm in complex with 

cognate sequence 5’-d(GAACGCGTTC)-3’. These complexes have experimentally determined 

binding constants of 1 × 10
6
, 1 × 10

7
, and 2 × 10

8 
M

-1
, respectively.

1, 18
 This study represents the 

first in-depth docking approach to examine these polyamides and their cognate sequences to 

address the experimental affinity variations. Significant differences were found between the 

strongest and weakest binding polyamide dimers. 

Experimental Procedures 

 Polyamides f-PyPyIm, f-ImPyPy, and f-ImPyIm were previously synthesized and 

examined in complex with 5’-d(GAACTAGTTC)-3’, 5’-d(GAATGCATTC)-3’, and 5’-

d(GAACGCGTTC)-3’, respectively. Surface plasmon resonance (SPR) was employed to 

determine binding constants.
1, 18

  

 Docking Preparation. The three polyamide-DNA complexes were evaluated by 

employing SYBYL 8.1
30

 software on a Fedora Core 5 Linux Workstation. Solution nuclear 

magnetic resonance (NMR) structure 1B0S
31

 was obtained from the protein data bank; this 

structure was used as a template and as a reference complex. 1B0S, an f-ImImIm dimer in 

complex with 5’-d(GAACCGGTTC)-3’, was mutated using the Biopolymer and Building and 

Editing modules in SYBYL to form: the f-PyPyIm dimer in complex with 5’-
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d(GAACTAGTTC)-3’, the f-ImPyPy dimer in complex with 5’-d(GAATGCATTC)-3’, and the 

f-ImPyIm dimer in complex with 5’-d(GAACGCGTTC)-3’. These modified complexes were 

then minimized for 100 iterations using the Tripos force field; thus, allowing the somewhat rigid 

DNA to accommodate the mutated bases and polyamides through slight changes to the width of 

the minor groove. Polyamide dimers were then moved to second memory locations, separate 

molecular areas within the SYBYL graphical user interface. The ability to move, or rather 

extract, the compounds into a separate molecular area allowed the compounds to explore 

torsional angles, translation, and rotational angles independent of the DNA when the FlexiDock 

genetic algorithm was employed. The two compounds of the dimer were given torsional, 

translational, and rotational freedom independent of each other; yet, they were docked 

simultaneously into the DNA. The structures of the polyamides are displayed in Figure 1.  

 The FlexiDock module of the SYBYL software suite was then implemented. Ten 

different random starting locations were assigned and employed by the genetic algorithm one at a 

time for a total of ten docking trials. Calculated and assigned as in previous studies, the large 

amount of generations ensured that lowest energy conformations were obtained.
32, 33

 Each 

docking trial consisted of 516 000 generations. The dimers and the DNA were permitted 

torsional, rotational, and translational flexibility throughout the docking process. Atomic charges 

for the DNA were calculated using the Kollman All-Atom protocol, while the dimer was 

assigned Gasteiger-Huckel charges. All possible hydrogen bonding sites on the dimer and 

cognate DNA were targeted for function where possible. From each docking the 20 lowest 
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energy structures were selected. Hence, 200 structures were produced for each complex 

examined; 10 random starting locations × 20 low energy structures from each docking. The 

energy values (EMM) for the overall lowest energy complexes are displayed in Table 1.  

 Docked Structure Analyses. Interactions were calculated and viewed using modules and 

tools of the SYBYL software package. The FlexiDock module optimizes torsional angles, 

translation, and rotational angles to minimize the energy function. Compounds were examined 

using the FlexiDock scoring function, which is based on the Tripos force field and estimates the 

energy for the dimer, the receptor, and the complex. The score is evaluated with van der Waals, 

electrostatic, torsional, and hydrogen bonding energies; lower energy in the complex state 

suggests better binding. Hydrogen bond distances were analyzed using the “Display H-Bonds” 

and “Measure” options. Values obtained were averaged for the 20 lowest energy conformations 

of each complex. All measurements were from heavy atom to heavy atom. The 40 lowest energy 

complex conformations displayed variations of the f group. The Advanced Computation and 

Dock modules, of the SYBYL software suite, were employed to gain further explanation into the 

Im and Py similarities and differences with respect to electrostatics and dipoles.  

 Grid Search, an application of the Advanced Computation module, was used to examine 

the f groups, of the lowest energy conformation of each complex, in Cartesian space through 

systematic rotation about bonds using defined increments of 20ᴼ for a total of 360ᴼ. At each 

increment the torsional bond angle was constrained and the conformation was minimized. The 

minimization of complexes employed default parameters.
30

 This allowed for a systematic 
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exploration of torsional freedoms with regard to respective energies. These complexes were then 

arranged by f group rotation in increments of 20ᴼ and then averaged so that the general trend of 

the energies could be viewed, analyzed, and compared effectively.  

 The Dock module of SYBYL 7.3
34 

was then employed to re-examine structures and 

calculate energy values for low energy complexes obtained via FlexiDock and Grid Search. This 

software was ideal since structures could be observed and energy values could be calculated 

without changes to DNA-polyamide complex conformations.  

 Accessible solvent area (ASA) was examined for each lowest energy complex with 

Chimera software.
35

 The module employed was the Area/Volume from Web (StrucTools server) 

with calculation options Gerstein ASA, surface probe 1.4 and all atoms except water. ASA was 

acquired for each complex, DNA, and individual polyamide. The ASA was summed for each 

atom of each residue and polyamide.  

 The Spartan ’04
36 

software package was employed to examine geometry optimized Py 

and Im groups using a single point ab initio calculation employing the Hartree-Fock 6-31G** 

level. This allowed for comparisons of ab initio calculated electrostatic potential maps and 

dipoles. 
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Results 

 The modification of NMR solution structure 1B0S resulted in the construction of the f-

PyPyIm dimer in complex with 5’-d(GAACTAGTTC)-3’, the f-ImPyPy dimer in complex with 

5’-d(GAATGCATTC)-3’, and the f-ImPyIm dimer in complex with 5’-d(GAACGCGTTC)-3’. 

Each of the polyamides underwent extensive docking, as did reference polyamides from 1B0S, 

within their respective DNAs to yield optimized structures. 

 Reference complex, 1B0S, displayed only slight deviations from the refined average 

structure obtained via solution NMR. The calculated root mean squared error between the NMR 

structure and the lowest energy docked structure was approximately 0.60. Figure 2 displays the 

alignment of the 10 lowest energy 1B0S-docked reference structures.  

 f-PyPyIm in complex with 5’-d(GAACTAGTTC)-3’. The low energy structures of f-

PyPyIm are hydrogen bonded as a staggered dimer to 5’-d(GAACTAGTTC)-3’ (Figure 3). The 

base pairs involved in hydrogen bonding include those within the center of the DNA, 5’-

d(ACTAGT)-3’, the AT base pair followed by CG, TA, AT, GC, and TA, respectively. Each 

image of Figure 2 (Right) was taken as the DNA was rotated to the right, so that the bases would 

take on a view that was as linear as possible. 

 The hydrogen bond displayed in the top AT base pair is between the upper dimer 

compound amide NH of the charged polyamide tail and the C2 O of the T base. Both of the 

hydrogen bonds displayed in the following image of CG also exist between the upper compound 
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of the dimer and the G base subsequent to the T on the same DNA chain. The hydrogen bonds 

are between the Im N and the G C2 NH2 and between the following amide NH and the G N3. 

Because of the staggered stacking, the TA base pair represents the first image in which 

heterocycles from both compounds of the dimer are present and both are hydrogen bonding. In 

this image the upper dimer compound amide NH following the Py is forming a hydrogen bond 

with the A N3, while the lower compound of the dimer is forming a hydrogen bond between the 

amide NH above the Py and the T C2 O. The image of AT and the dimer compounds also 

displays both compounds forming hydrogen bonds to respective DNA bases. The upper 

compound amide NH is hydrogen bonded to the T C2 O, while the lower compound amide NH is 

hydrogen bonded to the A N3. The following image displays base pair GC which hydrogen 

bonds with the lower dimer compound. The amide NH prior to the Im is hydrogen bonded to G 

N3 and the Im N is hydrogen bonded to the G C2 NH2. The TA base pair, of the last image, is 

similar to the first base pair AT. In this region the NH following the Im of the lower dimer 

compound hydrogen bonds to the T C2 O. 

 f-ImPyPy in complex with 5’-d(GAATGCATTC)-3’. Docking results display f-ImPyPy to 

be hydrogen bonded more favorably to 5’-d(GAATGCATTC)-3’ (Figure 4) than the f-PyPyIm 

dimer described above. Further stabilization is obtained from lone-pair-Π interactions between 

DNA deoxyribose O4’ and the Im groups of the dimer polyamides. Similar to the compounds 

observed in Figure 3, f-ImPyPy is bound in a staggered dimer conformation and the base pairs 

involved in hydrogen bonding include those within the center of the DNA, in this case 5’-
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d(ATGCAT)-3’. The images of Figure 4 (Right) show the AT base pair followed by TA, GC, 

CG, AT, and TA. 

 The hydrogen bonds displayed in the top AT base pair region are between the upper 

compound amide NH of the charged polyamide tail and the C2 O of the T base and between the 

upper compound amide NH and the lower compound f O. The hydrogen bond displayed in the 

following image of TA exists between the upper compound amide NH subsequent to the Py and 

the A N3. The GC base pair represents the first image in which both compounds of the dimer are 

visible and both are partaking in hydrogen bonding. In this image the upper dimer compound 

amide NH following the Py is forming a hydrogen bond with the C C2 O, while the lower 

compound of the dimer is forming hydrogen bonds between the f amide NH and the G N3 and 

the Im N and the G C2 NH2. The image of CG and the dimer compounds also displays both 

compounds forming hydrogen bonds to respective DNA bases. The upper compound Im N is 

hydrogen bonded to the G C2 NH2 and the following amide NH is hydrogen bonded to the G N3. 

The lower compound amide NH is hydrogen bonded to the C C2 O. The following image 

displays base pair AT. Hydrogen bonds displayed in this base pair region exist between the 

compounds of the dimer and between the lower compound amide NH, above the Py, and the A 

N3. The last image, of the TA base pair, displays a single hydrogen bond between an amide NH 

and the T C2 O. 

 f-ImPyIm in complex with 5’-d(GAACGCGTTC)-3’. Docking results display the f-

ImPyIm dimer to be hydrogen bonded to 5’-d(GAACGCGTTC)-3’ (Figure 5) even more 
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favorably than either of the previous dimers to their cognate sequences. Similar to what was seen 

in Figure 4, Figure 5 shows stabilization in lone-pair-Π interactions between DNA deoxyribose 

O4’ and the Im group nearest the f of the polyamides. As seen in Figures 3 and 4, these 

compounds take on a staggered dimer conformation and the base pairs involved in hydrogen 

bonding include those within the center of the DNA, in this case 5’-d(ATGCAT)-3’. As 

displayed in Figure 3 and 4, the images of Figure 5 (Right) show the AT base pair followed by 

TA, CG, GC, CG, GC, and TA.  

 The hydrogen bond displayed in the top AT base pair region is between the upper 

compound polyamide charged tail amide NH and the C2 O of the T base. Four hydrogen bonds 

exist in the following image of CG. These hydrogen bonds are between the upper compound 

amide NH and lower compound f O, between the upper compound Im and the G C2 NH2, 

between the amide NH subsequent to the Im of the upper compound to the G N3 and between the 

f O of the lower compound and the G C2 NH2. The GC base pair represents the first image in 

which both compounds of the dimer are present and both are partaking in hydrogen bonding to 

both strands of the DNA. In this image the upper dimer compound amide NH following the Py is 

forming a hydrogen bond with the C C2 O, while the lower compound of the dimer is forming 

hydrogen bonds between the amide NH and the G N3 and the Im N and the G C2 NH2. The 

image of CG and the dimer compounds also displays both compounds forming hydrogen bonds 

to respective DNA bases. The upper compound Im N is hydrogen bonded to the G C2 NH2 and 

the following amide NH is hydrogen bonded to the G N3. The lower compound amide NH is 
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hydrogen bonded to the C C2 O. The following image displays base pair GC. Similar to the first 

CG region, four hydrogen bonds are displayed in this base pair region. These hydrogen bonds are 

between the upper compound f O and lower compound amide NH, between the lower compound 

Im N and the G C2 NH2, between the amide NH prior to the Im of the upper compound to the G 

N3 and between the f O of the upper compound and the G C2 NH2. The last image, of the TA 

base pair, displays a single hydrogen bond between an amide NH and the T C2 O. 

 Terminal Interactions. Overall docking results for all three complexes display significant 

flexibility in the polyamide charged tails, as expected, and significant rotation of the f 

substituent, which provides unexpected extra insights, while the heterocycles and amide groups 

exhibit less flexibility. As noted above, the charged tail amide NH forms hydrogen bonds to T 

C2 O base pairs (Figures 3, 4, and 5). The remainder of each polyamide charged tail resides 

favorably within respective cognate DNA minor grooves. Rotation of the f group allows for 

different hydrogen bonds to form and stabilize the complex. Figure 6 displays such changes 

within overlaid lowest energy structures of f-ImPyIm in complex with 5’-d(GAACGCGTTC)-3’. 

The lowest energy structure, previously addressed in Figure 5, is shown as caped sticks, while a 

second low energy conformation is displayed as ball and stick structures. The f NH of the most 

common lowest energy structures obtained from docking displays hydrogen bonds to G N3 of 

the first GC base pair of the recognition sequence (Figures 5 and 6, Upper Right); however, upon 

rotation of f this interaction is lost and new hydrogen bonds are formed between the f O and the 

G C2 NH2 of the first CG base pair and the G C2 NH2 of the first GC base pair (Figure 6, Lower 



 

134 

 

Right). When this rotation occurs the hydrogen bond between the dimer polyamides, f O and 

charged tail NH, can no longer form. The rotation of f can occur at either end of the dimer 

formation. These formations, obtained via FlexiDock, were analyzed further through Grid 

Search. Figure 7 displays the energy fluctuations as rotation occurs in the f group. In the plot, the 

lowest energy complex conformations, with respect to f torsional angles, are for the two 

hydrogen bonded conformations in Figure 6. 

 Complex Energies. Relative total energies for lowest energy complexes subsequent to 

FlexiDock and Grid Search, calculated via Dock, are reported in Table 2. Total energies are the 

sum of steric and electrostatic energies. For complexes from FlexiDock, the steric and 

electrostatic energies are respectively, -23.5 and -56.6 kcal/mol for the complex with dimer f-

PyPyIm; -73.9 and -44.9 kcal/mol for the complex with f-ImPyPy; and -77.9 and -52.4 kcal/mol 

for the complex with dimer f-ImPyIm. For each complex acquired via Grid Search the steric and 

electrostatic energies are respectively, -75.3 and -28.0 kcal/mol for the complex with dimer f-

PyPyIm, -75.3 and -42.6 kcal/mol for the complex with f-ImPyPy, and -72.7 and -53.3 kcal/mol 

for the complex with dimer f-ImPyIm. Since the 180° rotation of f occurred in the top twenty 

percent of lowest energy complexes, as viewed in Figure 6, energies for these complexes were 

also calculated subsequent to Grid Search (Table 2). For each complex acquired steric and 

electrostatic energies are respectively, -72.6 and -26.8 kcal/mol for the complex with dimer f-

PyPyIm, -72.4 and -44.8 kcal/mol for the complex with f-ImPyPy, and -73.6 and -52.6 kcal/mol 

for the complex with dimer f-ImPyIm. 
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 Accessible Surface Area (ASA). Buried surface on complex formation was addressed 

through ASA calculations. Figure 8 displays the surfaces for the complexes, DNA and 

polyamides; blue surfaces encompass positively charged regions, while red cover those that are 

negatively charged. Positive and negative regions of the polyamides can align with those of the 

DNA minor groove to maximize electrostatic interactions. This was further supported with the 

ASA values for the complexes, DNA and polyamide (Figure 9). The red area represents the 

DNA. Notice that the DNA ASA is fairly similar for all three complexes, as are the three 

polyamide areas displayed in green. The blue areas show differences related to the respective 

DNAs binding their specific polyamides for complex formation: (1) the complex with f-PyPyIm 

displays more ASA at the T bases of the recognition sequence than the other two complexes, (2) 

the complex with f-ImPyPy displays a decreased ASA near the A bases of the recognition 

sequence, and (3) the complex with f-ImPyIm is the most uniform and consists of the most 

buried ASA. 

 Ab Initio Electrostatic Potential Maps. To understand the energy contributions from 

polyamide structures, it is informative to compare the ab initio calculated electrostatic potential 

maps for the Py, Im, and amide units of the polyamide dimers (Figure 10) with each other as well 

as with the low energy stacked complexes shown in Figure 11. Although the dipole moments of 

the Py and Im heterocycles point in the same direction, the magnitude of the dipole is larger for 

the Im and the electrostatic potential maps clearly show a significantly different distribution of 

molecular electrostatic potential.  With both the Py and Im the positive potential is distributed on 



 

136 

 

the N-Me group and close vicinity. With the Py the highest negative potential is on the Py Π-

system while in the Im, it is on the unprotonated Im-N (Figure 10). As expected, the negative 

potential on the amide is highest on the carbonyl O while the positive potential is on the -NH. 

With this distribution, the dipole moment of the amide points in the opposite direction to the 

heterocycles (Figure 10) in the orientation of DNA binding (Figure 11). 

 Each of the stacked polyamides has six heterocycles that can be evaluated in terms of the 

maps in Figure 10.  Starting with the weakest binder, f-PyPyIm (Figure 11), the heterocycles 

interact as follows: At top of the Figure, (1) the first Im is relatively unstacked; (2) the next 

heterocycle (lower molecule of the dimer) is stacked favorably with a positive amide -NH over 

the negative area of the pyrrole; (3) the next two pyrroles are stacked such that their positive 

regions are near negative carbonyl O atoms, a fairly favorable orientation; (4) The next Py has its 

most positive region closely stacked with a positive -NH, an unfavorable interaction; and (5) the 

last Im is not well stacked. In the strongest binding f-ImPyIm complex (Figure 11), (1) the first 

Im is not strongly stacked; (2) the next Im (lower molecule) is favorably stacked with an amide 

with the negative carbonyl O of the amide near the most positive region of the Im (Figure 10) 

and the amide positive H of the -NH stacked near the negative Im-N; (3) the next two Py groups 

are also favorable stacked with amide negative O atoms near their positive N-Me groups; (4) the 

next Im is in a similar favorable orientation with an amide O near the positive N-Me of the 

imidazole while the positive H of the amide -NH is near the Im negative N; and (5) the last Im is 

not as strongly stacked as the internal heterocycles. It should be noted, however, that the terminal 
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two Im groups are stacked with their most negative regions near the most positive regions of the 

adjacent Ims and, given the larger dipole moment of the Im versus Py groups (Figure 10), this 

should be a favorable contribution. In summary, the electrostatic interactions between the 

stacked heterocycles appear to make favorable contributions to dimer binding of both f-PyPyIm 

and f-ImPyIm but there are more and stronger favorable interactions in the f-ImPyIm dimer. 

Discussion 

 Experimental results for simple tricyclic polyamides, such as those in Figure 1, have a 

puzzling, large variation in energies when bound by their cognate DNA sequences.
1, 2

 We have 

conducted a docking study for the polyamides of Figure 1 and respective cognate DNA to 

provide some initial molecular level information on the different complexes. Three components 

that contribute to polyamide dimer-DNA interactions were investigated in the docked structures: 

(1) hydrogen bonding, (2) buried surface on complex formation, and (3) electrostatic interactions 

of the polyamide units in the stacked dimer. All of these interactions have been evaluated and 

these results provide insight into the large variations in binding constants. 

 When analyzing the dimer of f-PyPyIm in complex with 5’-d(GAACTAGTTC)-3’ and its 

resulting position due to interactions with the minor groove, it is important that the dimer overlap 

is a staggered conformation of central Py-Py/Py-Py (Figures 3 and 11). The stacked Py groups 

form a stable motif with the ability to anchor these polyamides into stable dimer conformations 

in the minor groove (Figures 2). Figure 12 illustrates the models from Figure 3 in two-
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dimensions and shows the interactions of the Py-Py stacked motif with the central base pairs of 

the cognate binding sequence. The Py groups fit between the bases and aid in position indexing 

so that amide NH groups and the Im N can form favorable hydrogen bonds with base functional 

groups. The electrostatic potentials also play a significant role in both the specific interactions 

and complex stabilization (Figures 8 and 9).   

 The f-ImPyPy dimer polyamides also overlap in a staggered conformation of Py-Im/Im-

Py (Figures 4 and 11). As in Figure 3, steric interactions of the stacked Py groups appear to play 

an important role in anchoring these polyamides within their recognition sequence. Py groups 

index themselves with steric complementary between the base pairs. The Im groups form 

favorable hydrogen bonds, due in part to the added stability provided by the steric positioning 

interactions of the Py groups. The optimum positioning of the Py and Im groups allows the dimer 

to form hydrogen bonds between the ends of the upper and lower stacked compounds in Figures 

4 and 13. Polyamide f-ImPyPy, in complex with 5’-d(GAATGCATTC)-3’, displays stacking 

differences that vary from those of f-PyPyIm in complex with 5’-d(GAACTAGTTC)-3’ and 

these appear to be due to electrostatic interactions between the polyamides and the DNA (Figures 

8, 10, and 11). DNA and polyamides were mobile throughout the docking process; the f-ImPyPy 

polyamides moved into minor groove regions that are more optimal than those of the f-PyPyIm 

complex (Figures 4 and 13). This allows for more favorable interactions and a larger negative 

calculated energy, EMM (Table 2).  
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 Similar to f-PyPyIm and f-ImPyPy dimers, f-ImPyIm polyamide dimers overlap in their 

minor groove location in a staggered conformation of Py-Im/Im-Py (Figures 5 and 14). As seen 

in Figures 3 and 4, the Py groups index themselves between base pairs with steric 

complementary and play an important role in anchoring the compound into stable low energy 

docked conformations with the best possible positioning. The Im groups contribute to the GC 

base pair recognition and general affinity. The optimum positioning of the Py and Im groups also 

allows the dimer to form hydrogen bonds between the charged N,N-dimethylaminoalkyl tail NH  

of the upper compound and the f O of the lower compounds. The Im groups on the ends also 

contribute significantly to the amount of hydrogen bonding. This is by far the most stable of the 

three structures evaluated, as shown by the wealth of hydrogen bonding and the positioning of 

the compounds. The terminal Im, not involved in the Py-Im/Im-Py stacking, forms tight 

hydrogen bonds and the compounds are pulled in close to the DNA. These interactions are 

enhanced by favorable electrostatic interactions that reduce the ASA (Figures 8 and 9). The 

DNA and compounds form tight favorable interactions and the EMM value for the complex with 

f-ImPyIm is more negative than the values obtained for complexes with compounds f-PyPyIm or 

f-ImPyPy. 

 Given that the compounds of the dimer are binding to the same sequences on opposite 

DNA strands one may expect the hydrogen bonds to be quite similar. The small differences in 

observations of individual structures are as expected for flexible docking. The complex with f-

PyPyIm does not exhibit hydrogen bonding between the two compounds of the dimer and these 
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compounds exhibit more mobility within the DNA minor groove (Figures 3 and 12). The 

hydrogen bond length similarities in compound binding to respective DNA strand are only found 

in two locations, at the terminal T and the center A of recognition sequence 5’-d(ACTAGT)-3’. 

The complex with f-ImPyPy exhibits hydrogen bonding within the dimer, at both ends of the 

compounds, and this results in a greater amount of consistent hydrogen bond length similarities 

between compounds and their respective DNA strands (Figures 4 and 12). The hydrogen bond 

length similarities in compound binding to respective DNA strand are found in three locations 

central the recognition site, at the G, C, and A of recognition sequence 5’-d(ATGCAT)-3’. The 

complex with f-ImPyIm exhibits hydrogen bonding within the dimer and to the bases of the 

parallel DNA strand (Figures 5 and 14). The hydrogen bond length similarities in compound 

binding to respective DNA strands are found throughout the recognition site, at the G, C, G, and 

T of recognition sequence 5’-d(ACGCGT)-3’. 

 The terminal groups of the polyamides are flanked by a flexible charged tail and a small f 

substituent. The movements of the charged N,N-dimethylaminoalkyl tail were minor in 

comparison to a previous molecular dynamics study examining polyamides with longer tails.
28

 

The charged N resided toward the center of the minor groove between the phosphates of the 

DNA backbone. Perhaps, possible interactions with phosphates are limited by the size of the tail 

and the stable hydrogen bonding of the tail NH with T C2 O.  

 The rotation of the f group in the stacked complexes is a significant observation in these 

experiments. The terminal f substituents are small enough to rotate in the dimer widened minor 
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groove without the polyamide leaving the minor groove and energies obtained suggest that the 

two orientations shown in Figure 6 contribute to binding (Figures 6, 7, and Table 2). The steric 

contributions to energy are similar, most likely due to the similar size of all three polyamides and 

the areas occupied; electrostatics differ much more. It is also important to note that stability of 

structures resulted in consistency of EMM values, even when f rotated 180ᴼ. These results suggest 

that when a single polyamide begins to deviate from its recognition site, a rotation of f occurs 

and new bonds are formed; thus, keeping the complex longer than if the f substituent was absent. 

This discovery explains our recent observations that modifications of the f group with other acyl 

groups results in diminished binding affinity.
22

 Specifically, the order of binding constants was f-

ImPyIm >> Acetyl-ImPyIm > N-methylureidoacetyl-ImPyIm > trifluoroacetyl-ImPyIm. This is 

consistent with the suggestion that small and planar N-terminus subsitituents promote favorable 

binding with DNA. Furthermore, consistent with the role of the f or acyl group, ImPyIm analogs 

bearing an NH2 at the N-terminus and non-formamido-ImPyIm gave the weakest binding 

indicating the importance of having an f group to form favorable hydrogen bonds with sites on 

the floor in the minor groove. 

 Previously, experimental studies employing surface plasmon resonance (SPR) acquired 

binding constants for f-PyPyIm in complex with 5’-d(GAACTAGTTC)-3’, f-ImPyPy in complex 

with 5’-d(GAATGCATTC)-3’, and f-ImPyIm in complex with 5’-d(GAACGCGTTC)-3’; these 

constants are approximately 1 × 10
6
, 1 × 10

7
, and 2 × 10

8 
M

-1
, respectively.

1, 18
 In our studies, 

EMM values were calculated for the lowest energy complexes obtained via FlexiDock and Grid 
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Search (Table 2); the more negative the value, the stronger the binding. Both the experimental 

and the in silico data are in agreement. The ranked binding from strongest to weakest is: f-

ImPyIm in complex with 5’-d(GAACGCGTTC)-3’ > f-ImPyPy in complex with 5’-

d(GAATGCATTC)-3’ > f-PyPyIm in complex with 5’-d(GAACTAGTTC)-3’. 

 This in-depth docking approach provides useful new molecular information about 

polyamide complexes and how they are anchored within the minor groove. Hydrogen bonding, 

steric and electrostatic interactions all play a role, along with compound conformation, to 

determine how a compound will recognize specific DNA sequences. Specifically, f-ImPyIm 

binds better than the other dimers as a result of the greater amount of intra-dimer and intra-

complex hydrogen bonds, lone-pair-Π interactions, optimum dipole interactions, as well as 

excellent steric fit and electrostatic interactions. We are currently employing these findings to 

improve compound design. Findings suggest that dimer spacing provided by Py groups and 

hydrogen bonding interactions of Im groups can be employed to recognize even longer DNA 

sequences. This of course is given that recognition compounds: (1) keep a curvature that 

parallels that of DNA, (2) stack efficiently maintaining electrostatic interactions, and (3) have the 

ability to form hydrogen bonds on both ends. Insights from this study suggest that compounds 

such as f-ImPyImPyIm should bind and recognize 5’-d(-ACGCGCGT-)-3 with similar affinity 

and greater specificity than f-ImPyIm binds and recognizes 5’-d(GAACGCGTTC)-3’. These 

studies are in progress and the results will be reported in due course. 
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Tables and Figures  

Table 1. Energies (EMM) gained from FlexiDock docking studies. These values are in kcal/mol. 

  EMM 

f-PyPyIm with 5’-d(ACTAGT)-3’ -594 

f-ImPyPy with 5’-d(ATGCAT)-3’ -670 

f-ImPyIm with 5’-d(ACGCGT)-3' -765 
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Table 2. Total energies, reported as EMM values, gained from Dock for the lowest energy 

complexes obtained via FlexiDock and Grid Search. The EMM values for both low-energy 

structures acquired via Grid Search are labeled 1 and 2, respectively. Grid Search 1 relates to the 

structures with the f positioned as in the top right image of Figure 6, while Grid Search 2 relates 

to the structures with the f positioned as in the bottom right image of Figure 6.  All EMM values 

are in kcal/mol.  

  FlexiDock Grid Search 1 Grid Search 2 

f-PyPyIm with 5’-d(ACTAGT)-3’ -80.1 -103 -99.4 

f-ImPyPy with 5’-d(ATGCAT)-3’ -119 -118 -117 

f-ImPyIm with 5’-d(ACGCGT)-3' -130 -126 -126 
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Figure 1. Two-dimensional illustration of polyamide structures (Left) with abbreviations (Right): 

formamido (f), N-methylpyrrole (Py) and N-methylimidazole (Im). Dimer complexes of these 

compounds are shown docked into cognate DNA sequences in Figures 3-5. 

f-PyPyIm

f-ImPyPy

f-ImPyIm
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Figure 2. Overlay of the 10 lowest energy structures for the docking of reference structure, 1B0S, 

polyamides into cognate DNA. The refined average structure obtained from the protein data bank 

is displayed in green, while all other low energy complexes are displayed by atom type. 
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Figure 3. f-PyPyIm in complex with 5’-d(GAACTAGTTC)-3’. For clarity, the terminal bases are 

not displayed in the images and the images are of only the lowest energy conformation. The 

image on the left displays the complex as a whole, while the segmented images on the right show 

the individual bases as the polyamide-DNA complex is rotated to the right. Magenta arrows are 

displayed on the left image; these point to the Py groups. On the right, the bases are labeled in 

green, the hydrogen bonds are in white and the average respective hydrogen bond lengths are in 

yellow. Notice that the Py groups index themselves with steric complementary between base 

pairs, this is pointed out on the left and more clearly viewed in the central TA and AT images on 

the right. 
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Figure 4. f-ImPyPy in complex with 5’-d(GAATGCATTC)-3’. For clarity, the terminal bases are 

not displayed in the images and the images are of only the lowest energy conformation. The 

image on the left displays the complex as a whole and identified lone-pair-Π interactions 

(orange), while the segmented images on the right show the individual bases as the polyamide-

DNA complex is rotated to the right (labeled as in Figure 3).  
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Figure 5. f-ImPyIm in complex with 5’-d(GAACGCGTTC)-3’. For clarity, the terminal bases 

are not displayed in the images and the images are of only the lowest energy conformation. The 

image on the left displays the complex as a whole, while the segmented images on the right show 

the individual bases as the polyamide-DNA complex is rotated to the right (labeled as in Figures 

3 and 4).  
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Figure 6. f-ImPyIm in complex with cognate sequence 5’-d(GAACGCGTTC)-3’. The image on 

the left displays the overlap of the two low energy dimer conformations in the minor groove of 

the lowest energy DNA base pairs affected by f rotation. In an enlarged view for clarity, the 

images on the right display the two low energy conformations individually. These conformations 

consist of different hydrogen bonding interactions, which are shown in green. The upper right 

image displays the f N hydrogen bonding to the G N3 of the first GC base pair of the recognition 

sequence; whereas the lower right image displays the hydrogen bonding of f O to the G C2 NH2 

of the first CG base pair, as well as the G C2 NH2 of the first GC base pair. 
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Figure 7. Polyamide structure (Left) with an arrow pointing to the bond rotated via Grid Search. 

X represents N-methylpyrrole (Py) and/or N-methylimidazole (Im) depending on the complex 

employed for formamido (f) bond rotation. The graph (Right) displays the averaged, normalized 

energy values for each structure obtained after a 20ᴼ rotation of one or both f bonds within the 

dimer. Data for complexes with f-PyPyIm, f-ImPyPy, and f-ImPyIm, are displayed in blue, red 

and green, respectively. The lowest energy conformations are at 0ᴼ and 180ᴼ. At 0ᴼ the f is 

positioned as in Figure 6, Upper Right, and position 180ᴼ is shown in Figure 6, Lower Right. 
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Figure 8. Surfaces displaying electrostatic potentials with respect to coulombic coloring for the 

complexes (Left), DNA (Center) and polyamides (Right); blue surfaces encompass positively 

charged regions, while red cover those that are negatively charged. 
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Figure 9. Accessible Surface Area (ASA) calculated for each base pair and polyamide in 

complex (blue) and alone (red for DNA and green for single polyamide). The ASA is reported in 

Å
2
 and the DNA bases are denoted as dA, dT, dG and dC for adenine, thymine, guanine and 

cytosine, respectively. Orange and purple lines spanning the three ASA graphs separate the two 

DNA strands and the polyamides. Both DNA strands are shown from 5’ to 3’, displaying the 

differences in each strand with (blue) and without (red) compound interaction. Yellow boxes 

highlight the specific recognition sites for each complex. The polyamides are displayed as L1 

and L2. When analyzing only a single polyamide (green), this compound is L1. 
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Figure 10. Ab initio calculated electrostatic potential maps for the Py, Im and amide units of the 

polyamide dimers, respectively these units are shown on the left with their dipole moments. The 

electrostatic potentials are shown in the center, blue is positive and red is negative, and the 

magnitudes of the dipoles are displayed on the right. 
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Figure 11. Top view of dimers formed during docking (Left) and schematic representation 

(Right) with Py in gray and Im in white. The DNA has been removed so that preferred staggered 

conformations can be viewed. From top to bottom, the dimers come from f-PyPyIm in complex 

with 5’-d(GAACTAGTTC)-3’, f-ImPyPy in complex with 5’-d(GAATGCATTC)-3’ and f-

ImPyIm in complex with 5’-d(GAACGCGTTC)-3’. Notice the spacing of the dimers.  
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Figure 12. Two-dimensional illustration of f-PyPyIm in complex with cognate sequence 5’-

d(GAACTAGTTC)-3’. Hydrogen bonds are displayed by dashed lined with respective distances. 
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Figure 13. Two-dimensional illustration of f-ImPyPy in complex with cognate sequence 5’-

d(GAATGCATTC)-3’. Hydrogen bonds are displayed by dashed lined with respective distances. 
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Figure 14. Two-dimensional illustration of f-ImPyIm in complex with cognate sequence 5’-

d(GAACGCGTTC)-3’. Hydrogen bonds are displayed by dashed lined with respective distances. 

3.0 Å

3.0 Å

2.9 Å

2.6 Å
3.0 Å

2.5 Å
2.6 Å

3.6 Å

2.4 Å

3.7 Å

3.0 Å

2.5 Å

3.0 Å
2.5 Å

2.8 Å2.8 Å

f-ImPyIm/5’-d(GAACGCGTTC)-3’ 

+

+



 

165 

 

 

 

 

APPENDICES 

  



 

166 

 

Appendix A 

Supplemental Table 1. Compounds employed for training and testing. 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

A 1-deazaadenosine  45.4 -24.8 (1) 

A 1-deazapurine  131 -22.2 Aldrich 

A 2,6-diaminopurine-2'-d-riboside  4.44 -30.6 
MP 

Biomedicals 

A 2-chloro-adenosine  9.65 -28.6 
TriLink 
Biotech 

A 

 

7.5 -29.3 (10) 

A 2'-deoxyadenosine  0.23 -37.9 Sigma 

A 2'-deoxyinosine  165 -21.6 Sigma 

A 2-hydroxy-6-aminopurine  9.7 -28.6 Acros 

A 2-nitoradenosine  81 -23.4 (1) 

A 3-deaza-adenosine  0.29 -37.3 Sigma 

A 6-chloropurine riboside  15.4 -27.5 
TriLink 
Biotech 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

A 8-azidoadenosine  331 -19.9 (8) 

A 8-bromoadenosine  37.8 -25.2 Acros 

A 9-deazaadenosine  12.2 -28 (7) 

A adenine  0.3 -37.2 Sigma 

A adenosine  0.92 -34.5 Sigma 

A allopurinol  255 -20.5 Sigma 

A DAPI 0.47 -36.1 Fluka 

A DB1208 

 

0.37 -36.7 (5) 

A DB1464 

 

0.15 -39 (5) 

A Dilazep 150 -21.8 Sigma 

A Dipyridamole 51.6 -24.5 Sigma 

A formycin A 36.5 -25.3 (8) 

A Hypoxanthine 500 -18.8 Sigma 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

A 

 

9 -28.8 (1) 

A 

 

19.9 -26.8 (1) 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

A 

 

74.5 -23.6 Sigma 

A Nebularine (purine riboside) 17.1 -27.2 Sigma 

A Oxypurinol 303 -20.1 Sigma 

A Purine 18.1 -27.1 Sigma 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

A 

 

16.2 -27.3 (3) 

A 

 

9.7 -28.6 (3) 

A Tubercidin (7-deazaadenosine) 3.81 -30.9 Fluka 

A 

 

8.2 -29 (6) 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

A 

 

125 -22.3 (6) 

A Xanthine 106 -22.7 Sigma 

B 2-hydroxybenzamidine 2030 -15.4 Acros 

B 3-aminobenzamidine 722 -17.9 Acros 

B 4-aminobenzamidine 22.9 -26.5 Acros 

B Benzamidine 111 -22.6 Sigma 

B furamidine    

 

1.19 -33.8 (5) 

B DB103 

 

31.4 -25.7 (5) 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

B DB1061 

 

7.07 -29.4 (5) 

B DB1064 

 

33.2 -25.6 (5) 

B DB1111 

 

5.5 -30 (5) 

B DB1138 

 

8.1 -29.1 (5) 

B DB1213 

 

1.09 -34 (5) 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

B DB1339 

 

25 -26.3 (5) 

B DB1680 

 

0.95 -34.4 (5) 

B DB244 

 

3.23 -31.3 (5) 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

B DB249 

 

4.49 -30.5 (5) 

B DB320 

 

0.39 -36.6 (5) 

B DB544 

 

3.02 -31.5 (5) 

B DB60 

 

13.8 -27.7 (5) 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) (G
0
) (kJ/mol) Source Scaffold 

B DB607 

 

4.1 -30.8 (5) 

B DB629 

 

0.88 -34.6 (5) 

B DB686 

 

5.4 -30.1 (5) 

B DB820 

 

1.95 -32.6 (5) 

B DB829 

 

1.4 -33.4 (5) 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) (G
0
) (kJ/mol) Source Scaffold 

B DB867 

 

4 -30.8 (5) 

B DB931 

 

1.23 -33.7 (5) 

B Distamycin A 10.6 -28.4 Sigma  

B 

 

1.36 -33.5 (9) 

B 

 

0.92 -34.5 (9) 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

B 

 

3.92 -30.9 (9) 

C 

 

8.05 -29.1  (12) 

C 

 

0.38 -36.6  (12) 

C 

 

0.81 -34.8  (12) 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

C 

 

0.21 -38.1 (12)  

C 

 

1.01 -34.2 (12)  

C 

 

1.57 -33.1  (12) 

C 

 

11.9 -28.1 (13)  
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

C 

 

59.3 -24.1  (13)  

C 

 

5.8 -29.9 (10) 

C 2-aminopyridine 14.3 -27.7 Aldrich 

C 4,6-diaminopyrimidine 3.22 -31.3 Aldrich 

C 4-aminopyridine 145 -21.9 Aldrich 

C 4-aminopyrimidine 137 -22.1 Acros 

C 4-hydroxybenzamidine 235 -20.7 Aldrich 

C butamidine 1.04 -34.2 (2) 

C stilbamidine 2.42 -32.1 
Sanofi-
Aventis 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

D 

 

0.33 -37 (14)  

D 

 

129 -22.2  (14)  

D 

 

53.4 -24.4  (14)  

D 

 

4.6 -30.5 (14)   
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

D 

 

404 -19.4 (14)   

D 

 

13.1 -27.9  (14)  

D 

 

3.65 -31  (14)  

D 

 

1.58 -33.1 (14)   
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

D 

 

2.88 -31.6 (14)   

D Heptamidine 0.28 -37.4 (2) 

D Hexamidine 0.43 -36.3 (2) 

D iodo-pentamidine 0.27 -37.5 (4) 

D Megazol 192 -21.2  (15)  

D Octamidine 0.48 -36.1 (2) 

D Pentamidine 0.37 -36.7 Sigma 

D Propamidine 1.92 -32.6 (11) 

E 1,1'-(nonane-1,9-diyl)diguanidine 

 

45.4 -24.8 Biomol 

E 

 

200 -21.1 (9) 
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

E 

 

3.25 -31.3 (9) 

E 

 

8.75 -28.9 (9) 

F 

 

9.3 -28.7  (12)  

F 

 

0.38 -36.6  (13)  

F 

 

0.38 -36.6  (12)  
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Supplemental Table 1 (continued) 

Scaffold Compound Ki   of P2 (µM) 
(G

0
) 

(kJ/mol)
Source 

F 

 

37.7 -25.3 (3) 

F melarsen oxide 9.7 -28.6 
Sanofi-
Aventis 

F Melarsoprol 0.54 -35.8 
Sanofi-
Aventis 

F Thiamine 364 -19.6 Sigma 

G Aminopterin 78.4 -23.4 Sigma 

G diminazene aceturate (berenil) 2.36 -32.1 Sigma 

G Ethidium 5.96 -29.8 Sigma 

G Isometamidium 0.21 -38.1 May & 
Baker 

(1) Gift of Professor Gerrit-Jan Koomen, University of Amsterdam; Amsterdam, The Netherlands.  
(2) Gift of Professor Alan Fairlamb, University of Dundee; Dundee, UK.  
(3) Gift of Professor Katherine Radtke-Seley, University of Maryland, Baltimore Co; Baltimore, MA, USA.  
(4) Gift of Dr Philip Blower, University of Kent at Canterbury; Canterbury, UK.  
(5) Gift of Professor David Boykin, Georgia State University; Atlanta, GE, USA.  
(6) Gift of Professor Achiel Haemers, University of Antwerp; Antwerp, Belgium.  
(7) Gift of Professor Mahmoud H. el Kouni, University of Alabama at Birmingham; Birmingham, AL, USA.  
(8) Gift of Professor Simon Jarvis, University of Westminster; London, UK.  
(9) Gift of Dr Paul O’Neil, University of Liverpool; Liverpool, UK.  
(10) Gift of Professor Richard Tidwell, University of North Carolina, Chapel Hill; NC, USA.  
(11) Gift from Dr Christophe Dardonville, Instituto de Química Médica; Madrid, Spain.  
(12) Gift from Professor Ian Gilbert, University of Dundee, UK; see Stewart et al. (2005) Antimicrob. Ag. Chemother. 49, 5169-5171.  
(13) Gift from Professor Ian Gilbert, University of Dundee, UK; see Tye et al (1998) Bioorg Med Chem Lett 8, 811-816 and Klenke et al. (2001) J. Med. Chem. 44, 3440-3352.  
(14) Gift from Professor Ian Gilbert, University of Dundee, UK; see Stewart et al (2004) Antimicrob. Ag. Chemother. 48, 1733-1738 and Baliani et al (2005) J. Med. Chem. 48, 5570-5579.  
(15) Gift from Professor Bernard Bouteille, Institut d’Epidémiologie Neurologique et de Neurologie Tropicale, Limoges, France.  
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Supplemental Table 2. Listing of K
i 
values, Gibbs free energy ΔG

0 

and energy gain/loss relative to a control compound for some of the 

compounds utilised in this study and listed in Supplemental Table 1. Conclusions drawn from the data with respect to substrate 

binding of the P2 transporter are listed in the final column. 

Compound Ki value (μM) Δ(G0) 
(KJ/mol) 

δ(Δ(G0)) 
(KJ/mol) 

Relative to Conclusion 

Adenosine 0.92 ± 0.06 34.5 
 

N/A 
 

      

Position 1 
    

Average contribution of 7.7 kJ/mol to 
binding the purine ring. 

1-Deazaadenosine 45.4 ± 8.7 24.8 9.7 Adenosine 
N1 contributes of 9.7 kJ/mol to binding 
of adenosine. 

1-Deazapurine 181 ± 33 21.4 5.7 Purine 
N1 contributes of 5.7 kJ/mol to binding 
of adenine. 
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Supplemental Table 2 (continued) 

Compound Ki value (μM) Δ(G0) 
(KJ/mol) 

δ(Δ(G0)) 
(KJ/mol) 

Relative to Conclusion 

Position 2 
    

Depending on the group, substitutions 
on position reduce binding energy of 
adenosine analogs with 5 – 11 kJ/mol. 

2-Nitroadenosine 81 ± 22 23.4 11.1 Adenosine 
 

2-Hydroxy-6-aminopurine 9.7 ± 2.3 28.6 8.7 Adenine 
 

2,6-Diamino, 2’deoxypurine 
riboside 

4.4 ± 1.3 30.5 7.4 2’-Deoxyadenosine 
 

2-Chloroadenosine 9.7 ± 3.4 28.6 5.9 Adenosine 
 

      

Position 3 
    

N3 does not contribute to binding. Its 
removal re-distributes charge around 
the molecule, resulting in a slightly 
higher affinity. 

3-deazaadenosine 0.29 ± 0.06 37.3 -2.8 Adenosine 
 

      

Position 6 
    

The 6-NH2 group contributes an 
average of 8.2 kJ/mol to binding of 
aminopurines. 

6-chloropurine riboside 15.4 ± 0.8 27.5 7.0 Adenosine 
 

Purine 18.1 ± 3.2 27.1 10.2 Adenine 
 

Purine riboside 17.1 ± 2.1 27.2 7.3 Adenosine 
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Supplemental Table 2 (continued) 

Compound Ki value (μM) Δ(G0) 
(KJ/mol) 

δ(Δ(G0)) 
(KJ/mol) 

Relative to Conclusion 

Positions 6 and 1 
    

The binding energies of positions 1 and 
6 are additive, resulting in very low 
affinity for inosine and guanosine, and 
is estimated at 15.7 kJ/mol. 

Guanosine >500 
    

Inosine >500 
    

2’-deoxyinosine 165 ± 23 21.6 16.3 2’-Deoxyadenosine 
 

1-deazapurine 131 ± 34 22.2 15.1 Adenine 
 

      

Positions 6 and 2 
    

Loss of affinity can be attributed solely 
to the substitution on position 2 (see 
above). The single substitution at the 6-
amine position is therefore not (greatly) 
detrimental to binding, especially when 
the substitution is small or flexible. 

 

21 ± 9.2 
 

8.6 Adenosine 
 

 



 

188 

 

Supplemental Table 2 (continued) 

Compound Ki value (μM) Δ(G0) 
(KJ/mol) 

δ(Δ(G0)) 
(KJ/mol) 

Relative to Conclusion 

 

9.0 ± 1.7 
 

5.7 Adenosine 
 

      

Position 7 
    

Small apparent contribution to binding 
from N7, though too small to represent 
a full hydrogen bond. The absence of 
N7, however, decreases the positive 
charge on N9. 

7-deazaadenosine (tubercidin) 3.8 ± 0.7 30.9 3.6 Adenosine 
 

Formycin A 36.5 ± 6.6 25.3 9.2 Adenosine 
 

 
     

 



 

189 

 

Supplemental Table 2 (continued) 

Compound Ki value (μM) Δ(G0) 
(KJ/mol) 

δ(Δ(G0)) 
(KJ/mol) 

Relative to Conclusion 

Position 8 
    

Substitutions at position 8 are 
detrimental to binding. 

8-azidoadenosine 331 ± 142 19.9 14.6 Adenosine 
 

8-bromoadenosine 37.8 ± 8.2 25.2 9.2 Adenosine 
 

      

Position 9 
    

Significant contribution of N9 to 
adenosine binding. 

9-deazaadenosine 12.1 ± 3.2 28.1 6.4 Adenosine 
 

      

Ribose 
    

Absence of the ribose or of just the 2’-
hydroxyl group increases affinity by 
approximately 3 kJ/mol. 

Adenine 0.30 ± 0.02 37.3 -2.8 Adenosine 
 

2’-deoxyadenosine 0.23 ± 0.04 37.9 -3.4 Adenosine 
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Supplemental Table 2 (continued) 

Compound Ki value (μM) Δ(G0) 
(KJ/mol) 

δ(Δ(G0)) 
(KJ/mol) 

Relative to Conclusion 

Aromaticity 
    

The aromaticity of the purines and 
diamidines contributes importantly to 
their high affinity binding of P2, as non-
aromatic diamidines or diguanidines of 
similar length and flexibility as the 
aromatic diamidines display ~100-fold 
less affinity, corresponding to 10-11 
kJ/mol in binding energy. Presumably 
π−π-bonds with aromatic amino acid 
residues are involved in substrate-
transporter interactions. 

 

>200 
    

 

45 ± 15 24.7 11.9 Pentamidine 
 

Pentamidine 0.37 ± 0.04 36.7 
   

Propamidine 1.9 ± 0.8 32.6 
   

Stilbamidine 2.4 ± 0.3 32.0 
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Supplemental Figure 1. Initial alignments for datasets E, F and G. 

        

Dataset E

Dataset F

Dataset G
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Appendix B 

Supplemental Table 3. Training dataset of compounds with experimentally determined inhibition (IC50) values against L. donovani 

(LD) and L. amazonensis (LA). 

Name Structure LD LA 

DB667 

 

1.6 ± 0.4 0.53 ± 0.19 

DB702 

 

0.67 ± 0.14 0.29 ± 0.13 

DB709 

 

0.53 ± 0.19 0.37 ± 0.15 

DB745 

 

0.50 ± 0.15 0.12 ± 0.02 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB750 

 

1.50 ± 0.13 0.96 ± 0.33 

DB766 

 

0.50 ± 0.10 0.087 ± .015 

DB780 

 

4.5 ± 0.9 0.51 ± 0.09 

DB894 

 

1.2 ± 0.1 0.62 ± 0.20 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB946 

 

0.37 ± 0.04 0.11 ± 0.03 

DB1831 

 

0.55 ± 0.17 0.70 ± 0.16 

DB1848 

 

31 ± 7 5.0 ± 1.5 

DB1850 

 

1.4 ± 0.4 0.17 ± 0.06 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB1851 

 

>50 >10 

DB1852 

 

1.4 ± 0.2 0.17 ± 0.06 

DB1853 

 

1.5 ± 0.3 0.21 ± 0.07 

DB1855 

 

20 ± 6 3.7 ± 3.2 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB1858 

 

16 ± 4 0.90 ± 0.07 

DB1859 

 

>100 >10 

DB1860 

 

>100 >10 

DB1861 

 

>100 >10 

DB1862 

 

1.1 ± 0.4 0.25 ± 0.04 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB1863 

 

2.5 ± 0.2 0.59 ± 0.08 

DB1867 

 

0.68 ± 1.8 0.045 ± 0.011 

DB1868 

 

1.0 ± 0.1 0.13 ± 0.07 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB1875 

 

28 ± 4 >10 

DB1876 

 

28 ± 4 2.1 ± 0.9 

DB1880 

 

59 ± 9 > 10 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB1888 

 

>100 >10 

DB1889 

 

>100 >10 

DB1890 

 

1.1 ± 0.2 0.095 ± 0.018 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB1906 

 

1.9 ± 0.5 0.27 ± 0.04 

DB1907 

 

4.5 ± 0.2 2.7 ± 0.7 

DB1909 

 

23 ± 4 >10 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB1913 

 

>50 >10 

DB1920 

 

2.4 ± 0.6 0.49 ± 0.08 

DB1921 

 

41 ± 3 4.7 ± 0.7 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB1937 

 

1.1 ± 0.2 1.1 ± 0.1 

DB1938 

 

21 ± 2 1.7 ± 0.4 

DB1939 

 

>100 0.22 ± 0.02 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB1940 

 

0.82 ± 0.10 0.64 ± 0.19 

DB1942 

 

3.6 ± 1.1 0.81 ± 0.20 

DB1943 

 

1.3 ± 0.3 0.30 ± 0.10 
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Supplemental Table 3 (continued) 

Name Structure LD LA 

DB1950 

 

5.1 ± 1.2 >10 

DB1951 

 

28 ± 2 >10 

DB1952 

 

7.9 ± 1.5 0.32 ± 0.07 
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Appendix C 

Supplemental Table 4. Compounds with experimentally determined inhibition (IC50) values against Trypanosoma cruzi. 

No. ID Compound 4°C 37°C 

1 1MAA119 

 

32 2.3 

2 6SMB038 

 

400 19 

3 9SMB070 

 

229.3 20.9 

4 10SAB031 

 

32 32 

5 10SAB055 

 

91.6 32 

6 10SAB092 

 

32 32 

7 11SAB003 

 

400 2.7 
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Supplemental Table 4 (continued) 

No. ID Compound 4°C 37°C 

8 12SMB032 

 

32 32 

9 14SMB013 

 

32 9.3 

10 16SAB065 

 

400 32 

11 18SMB092 

 

32 32 

12 18SMB096 

 

32 32 

13 21DAP023 

 

128.6 0.7 

14 21DAP027 

 

400 32 

15 24SMB001 

 

128.6 1 
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Supplemental Table 4 (continued) 

No. ID Compound 4°C 37°C 

16 25DAP009 

 

400 1.9 

17 25DAP013 

 

32 6.1 

18 27DAP060 

 

135.8 16.3 

19 27DAP080 

 

400 32 

20 150OXD049 

 

32 32 

21 DB613A 

 

1.96 4.05 

22 DB702 

 

1.18 0.45 
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Supplemental Table 4 (continued) 

No. ID Compound 4°C 37°C 

23 DB711 

 

32 19.4 

24 DB766 

 

0.11 0.06 

25 DB786 

 

32 0.015 

26 DB824 

 

15.54 4.43 

27 DB889 

 

0.97 0.09 

28 DB1080 

 

1.77 0.24 

29 DB1195 

 

1.21 0.26 
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Supplemental Table 4 (continued) 

No. ID Compound 4°C 37°C 

30 DB1196 

 

0.81 1.19 

31 DB1201 

 

6.6 1.77 

32 DB1345 

 

3.72 0.91 

33 DB1362 

 

7 6.6 

34 DB1582 

 

32 6 

35 DB1627 

 

32 32 

36 DB1645 

 

32 0.15 

37 DB1646 

 

32 31 

38 DB1651 

 

32 6.9 
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Supplemental Table 4 (continued) 

No. ID Compound 4°C 37°C 

39 DB1670 

 

32 32 

40 DB1831 

 

0.08 0.02 

41 DB1850 

 

2.35 0.19 

42 DB1852 

 

32 0.06 

43 DB1853 

 

0.14 0.07 

44 DB1862 

 

0.79 0.06 
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Supplemental Table 4 (continued) 

No. ID Compound 4°C 37°C 

45 DB1867 

 

0.7 0.02 

46 DB1868 

 

0.28 0.06 

47 DB1890 

 

32 0.01 
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