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ABSTRACT 

 

Carbohydrates are known to play important roles in a large number of physiological and 

pathological processes. Conceivably, “binders” of carbohydrates of biological importance could 

be used as diagnostic and therapeutic agents. Currently, lectins are the major available tools in 

research for carbohydrate recognition. However, the available lectins often have cross-reactivity 

issues, along with the high costs and stability issues. Therefore, there is a critical need to develop 

alternatives (lectin mimics). In this regard, there have been very active efforts in developing 

different “binders”, such as small molecule lectinmimics and aptamers. Among all the small 

molecule lectin mimics developments, boronic acid stands out as the most important building 

blocks of the sensors design for carbohydrates biomarkers due to its intrinsic binding affinities 



with diols. To address a fundamental question that whether boronic acid also binds to six-

membered ring sugars, with very limited precedents, we provided a concrete experimental 

evidence of the binding. Specifically, a series of isoquinolinylboronic acids were found to have 

remarkably high binding affinities with fluorescence change upon binding to representative 

sugars. Most importantly, these isoquinolinylboronic aicds showed weak but very encouraging 

bindings with six-membered sugar model. All these promising results paves the way of using 

boronic acids, especially isoquinolinylboronic acid as building blocks for chemosensors design 

for biological carbohydrates biomarkers, which universally contain six-membered ring and liner 

diols.  

Aptamer provides another alternative way for sensors development for carbohydrates 

biomarkers as lectin mimics. Compared to lectins, they are normally cheaper and more stable. 

However, there is much less options. Another challenging area for aptamer-based lectin mimics 

development is the difficulty to differentiate changes in glycosylation patterns of a glycoprotein, 

which affect the function of a glycoprotein and thus recognized as biomarkers. To address this 

major challenge, our group first demonstrated that the incorporation of a boronic acid into DNA 

would allow for the aptamer selection process to gravitate towards the glycosylation site. To 

examine the generality of boronic acid incorporation, increase the structural diversity, and 

broaden the application of boronic acid-modified DNA, a series of B-TTP analogues with 

simplified structures were designed, synthesized, and successfully incorporated into DNA. A 

simple route was also developed using 1,7-octadiyne as a linker for both Sonogashira coupling 

with thymidine and CuAAC tethering of a boronic acid moiety. This paves the way for the 

preparation of a large number of B-TTPs with different structural features for aptamer selection 



or array analysis.  

Finally, bacterial quorum sensing has received much attention in recent years because of 

its relevance to pathological events such as biofilm formation. As one of the very first groups 

that developed a series of antagonists for AI-2 mediated quorum sensing, we herein designed and 

synthesized a series of analogues based on the structures of two lead inhibitors identified through 

virtual screening. Besides, we also examined their inhibitory activities, twelve of which showed 

equal or better inhibitory activities compared with the lead inhibitors. The best compound 

showed an IC50 of about 6 mM in a whole cell assay using Vibrio harveyi as the model organism.  

This encouraging results and SAR discuss also paves the way for the finding of more potent 

compound through further structure optimization.  

 

INDEX WORDS: Chemosensor, Boronic acid, Fluorescent, Carbohydrate biomakers, Nucleic 

acid, Boronolectins, Quorum sensing, AI-2, Vibrio harveyi 

  



DEVELOPMENT OF BORONIC ACID FLUORESCENT REPORTERS, BORONIC ACID-

MODIFIED THYMIDINE TRIPHOSPHATES FOR SENSOR DESIGN AND ANTAGONISTS 

OF BACTERIAL QUORUM SENSING IN VIBRIO HARVEYI 

 

by 

 

YUNFENG CHENG 

 

 

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

in the College of Arts and Sciences 

Georgia State University 

2011 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Yunfeng Cheng 

2011 

  



DEVELOPMENT OF BORONIC ACID FLUORESCENT REPORTERS, BORONIC ACID-

MODIFIED THYMIDINE TRIPHOSPHATES FOR SENSOR DESIGN AND ANTAGNOISTS 

OF BACTERIAL QUORUM SENSING IN VIBRIO HARVEYI 

    

by 

    

YUNFENG CHENG 

    

    

  Committee Chair: Dr. Binghe Wang 

  Committee: Dr. Jenny J. Yang 
   Dr. Zhen Huang 
      

 

 

 

   

Electronic Version Approved:    

Office of Graduate Studies    
College of Arts and Sciences    
Georgia State University    
Dec 2011    

    



iv 

DEDICATION 

In endless gratitude to my family, who gave me spiritual as well as material support for my 

pursuit of knowledge and graduate studies. 



 v 

ACKNOWLEDGEMENTS 

First of all, I would like to express my deep gratitude towards my advisor Prof. Wang, for his advice 

and encouragement throughout the whole work, and also for his consistent help for my own career goal 

during the entire process. This dissertation would not have been possible without his help. He is not only 

a supervisor for my research work, but also a mentor for my personal life, who benefits me a lot through 

learning from him and thus get a high-level starting point in my career.  

Besides, I would also like to sincerely appreciate my committee members, Prof. Yang and Prof. 

Huang for their time, enthusiasm, and patience in helping me through out my PhD program.  

In addition, many other people at the department of chemistry have also offered their support and help 

during my PhD study. Among them, I would especially thank (1) Dr. Nanting Ni and Dr. Wenqian Yang 

for their help for the publication of isoquinolinylboronic acids binding study paper, (2) Dr. Chaofeng Dai, 

Mrs. Hanjing Peng, Dr. Shilong Zheng, Dr. Shan Jin for the help on the project of design, synthesis, and 

PCR incorporation study of B-TTP analogues, (3) Mrs. Hanjing Peng (co-first author on the quorum 

sensing paper, the contents of which are included in this dissertation), Dr. Nanting Ni, Dr. Minyong Li, 

Mr. Gaurav Choudhary, Dr. Hanting Chou, Dr. Chung-Dar Lu, and Dr. Phang C. Tai for their 

collaborations on the published paper on the development of antagonists of AI-2 mediated bacterial 

quorum sensing. Besides, I also really appreciate all my other labmates and colleagues, for their great 

supports and daily discussions during my years of graduate study. Technical support from Dr. Siming 

Wang, Yanyi (Johnny) Chen, and Dr. Sekar Chandrasekaran in Mass Spectrum and NMR data collection 

should also be acknowledged.  

Finally, financial support from the National Institutes of Health (CA123329, CA1113917, 

GM086925, and GM084933), University Doctoral Fellowship, Molecular Basis of Disease program at 

GSU, the Georgia Cancer Coalition, and the Georgia Research Alliance is gratefully acknowledged. 



 vi 

TABLE OF CONTENTS 
 

  
ACKNOWLEDGEMENTS  v 
  
LIST OF TABLES  viii 
  
LIST OF FIGURES ix 
  
LIST OF SCHEMES xiv 
  
CHAPTER  
  

1. INTRODUCTION 1 
  

Boronic acid-based Chemosensors 1 
  

2. A New Class of Fluorescent Boronic Acids that Have Extraordinarily High 
Affinities for Diols in Aqueous Solution at Physiological pH 

10 

  
Introduction 10 

  
Results and Discussion 12 
  
Conclusions 32 
  
Experimental Section 32 

  
3. Design, Synthesis, and Polymerase-Catalyzed Incorporation of Click-

Modified Boronic Acid-TTP Analogues  
34 

  
Introduction 34 

  
Results and Discussion 36 
  
Conclusions 43 
  
Experimental Section 43 

  
4. Synthesis and Evaluation of New Antagonists of Bacterial Quorum Sensing 

in Vibrio harveyi 
49 

  
Introduction 49 

  
Results and Discussion 51 
  
Conclusions 
 

69 
    



 vii 

Experimental Section  70 
 

  
5. CONCLUSIONS  88 

  
REFERENCES 90 
  
APPENDIX:     SUPPORTING INFORMATION 104 
  
 



 viii 

LIST OF TABLES 
 

Table 2.1.  Apparent association constants (Ka) of isoquinolinylboronic acids with 

representative sugars 

14 

 

Table 2.2.  Apparent association constants (Ka) of isoquinolinylboronic acids with 

representative carbohydrates 

19 

Table 2.3.  Apparent pKa values of the isoquinolinylboronic acids in the absence and 

presence of sugars 

25 

Table 2.4.  11B NMR of isoquinolinyl boronic acids alone and in the presence of fructose 26 

Table 2.5.  Fluorescence quantum yields of the isoquinolinylboronic acids alone and in 

presence of various sugars 

31 

Table 4.1. Structures and activities of amides and thioamides 58 

Table 4.2.  Structures and activities of esters and thioesters 59 

Table 4.3.  Structures and activities of biaryl compounds 61 

Table 4.4.  Structures and activities of other compounds 63 

Table 4.5.  Experimental pIC50, predicted pIC50 and residual values of molecules used for 

CoMFA computation 

65 

 

 

 



 ix 

LIST OF FIGURES 

Figure 1.1.  Structure of BTTP  7 

Figure 1.2.  Structures of a PBL library 8 

Figure 1.3.  Structure of p-boronophenylalanine 8 

Figure 2.1.  Structures of isoquinolinylboronic acids, 8-QBA and 6-MDDCQ 12 

Figure 2.2.  Fluorescent spectral changes of 8-IQBA upon addition of different 

diols in phosphate buffer (0.1 M) at pH 7.4: λex = 322 nm, λem= 361 nm 

(for D-glucose and D-sorbitol); 383 nm (for D-fructose). (A) D-

Glucose; (B) D-Sorbitol; (C) D-Fructose; (D) plots of fluorescent 

intensity changes of 8-IQBA as a function of sugar concentration, [8-

IQBA] = 1 × 10-5 M.  

15 

Figure 2.3.  Fluorescent spectral changes of 5-IQBA upon addition of different 

diols in phosphate buffer (0.1 M) at pH 7.4: λex = 272 nm, λem = 342 nm 

(for D-glucose); 344 nm (for D-sorbitol); 378 nm (for D-fructose). (A) 

D-Glucose; (B) D-Sorbitol; (C) D-Fructose; (D) plots of fluorescent 

intensity changes of 5-IQBA as a function of sugar concentration, [5-

IQBA] = 1 × 10-5 M. 

16 

Figure 2.4.  Fluorescent spectral changes of 4-IQBA upon addition of different 

diols in phosphate buffer (0.1 M) at pH 7.4: λex = 322 nm, λem = 361 nm 

(for D-glucose, D-sorbitol,); 370 nm (for D-fructose). (A) D-Glucose; 

(B) D-Sorbitol; (C) D-Fructose; (D) plots of fluorescent intensity 

changes of 4-IQBA as a function of sugar concentration, [4-IQBA] = 1 

× 10-5 M. 

17 



 x 

Figure 2.5.  Fluorescent spectral changes of 6-IQBA upon addition of different 

diols in phosphate buffer (0.1 M) at pH 7.4: λex = 272 nm,  λem = 356 

nm (A) D-Glucose; (B) D-Sorbitol; (C) D-Fructose; (D) plots of 

fluorescent intensity changes of 6-IQBA as a function of sugar 

concentration,  [6-IQBA] = 1 × 10-5 M. 

18 

Figure 2.6. Fluorescent spectral changes of isoquinolinylboronic acids upon 

addition of cis-1,2-cyclohexanediol in phosphate buffer (0.1 M) at pH 

7.4: (A) 8-IQBA, λex = 332 nm, λem = 442 nm; (B) 5-IQBA , λex = 272 

nm, λem = 341 nm; (C) 4-IQBA, λex = 322nm, λem = 440 nm; (D) 6-

IQBA, λex = 272 nm, λem = 355 nm; Insets: plots of fluorescent intensity 

changes of IQBAs as a function of sugar concentration [IQBAs] = 1 × 

10-5 M. 

20 



 xi 

Figure 2.7.  Fluorescent spectral changes of isoquinolinylboronic acids upon   

addition of methyl-α-D-glucopyranose and cyclohexanol in phosphate 

buffer (0.1 M) at pH 7.4: (A) 6-IQBA with methyl-α-D-

glucopyranose, λex = 272 nm, λem = 356 nm; (B) 4-IQBA with methyl-

α-D-glucopyranose, λex = 322 nm, λem = 361 nm; (C) plots of 

fluorescent intensity changes of 4-IQBA and 6-IQBA as a function of 

methyl-α-D-glucopyranose concentration, (D) 6-IQBA with 

cyclohexanol, λex = 272 nm, λem = 455 nm; [IQBAs] = 1 × 10-5 M 

Figure 2.8.  Fluorescent spectral changes of 8-QBA and 6-MDDCQ upon 

addition of cis- cylcohexanediol in phosphate buffer (0.1 M) at pH 

7.4: (A) 8-QBA: λex = 270 nm, λem = 314 nm, [8-QBA] = 1 × 10-5 M; 

(B) plot of fluorescent intensity change of 8-QBA as a function of 

sugar concentration, [8-QBA] = 1 × 10-5 M; (C) 6-MDDCQ: λex = 

270 nm, λem = 387 nm, [6-MDDCQ] = 2 × 10-5 M; (D) plot of 

fluorescent intensity change of 6-MDDCQ as a function of sugar 

concentration, [6-MDDCQ] = 2 × 10-5 M.                                                                                               
 

21 

 

 

 

 

 

 

        

 

23 

Figure 2.9.  Fluorescent intensity change-6-IQBA concentration relationships in the 

presence and absence of 0.75 M cis-cyclohexanediol in phosphate 

buffer (0.1 M) at pH 7.4: λex = 272 nm, λem = 354 nm. 

24 

Figure 2.10.  pH profiles of the fluorescence intensities of isoquinolinyl boronic  

                 acids in the absence and presence of sugars in 0.1 M aqueous phosphate  

                buffer (A) [8-IQBA] 1 × 10-5 M; (B) [5-IQBA] 1 × 10-5 M; (C) [4-IQBA]   

                1 × 10-5 M; (D) [6-IQBA] 1 × 10-5 M. 

25 

Figure 3.1.  Chemical structures of B-TTP and NB-TTP 36 



 xii 

Figure 3.2.  Structures of B-TTP analogues 18-21 38 

Figure 3.3.  Incorporation of B-TTP analogues by Klenow Fragment: 1) Primer 

only; 2) Primer + dNTPs, no Klenow fragment; 3) Primer + Klenow 

frgment, no dNTPs; 4) Primer + Klenow fragment + dNTPs; 5) using 

B-TTP analogue 18 instead of dTTP in 4); 6) using B-TTP analogue 

19 instead of dTTP in 4); 7) using B-TTP analogue 20 instead of 

dTTP in 4); 8) using B-TTP analogue 21 instead of dTTP in 4). 

41 

Figure 3.4.  Group A (analyzed with 15% PAGE) and B (15% denaturing PAGE): 

PCR incorporation using dTTP (Lane 1), B-TTP analogues 18-21 

(Lanes 3-6, respectively), or M-TTP (Lane 7). Lane 2 is negative 

control with no dTTP. Group C: (analyzed with 15% PAGE): PCR 

incorporation using B-TTP analogues 18-21 (Lane 1, 3, 5, 7, 

respectively), DNA being treated with H2O2 before analyzing (Lane 2, 

4, 6, and 8 for B-TTP analogues 2-5, respectively). All reactions were 

conducted using Taq polymerase. 

42 

Figure 4.1.  Hit compounds identified from virtual screening 52 

Figure 4.2.  Optimization of the lead structure 53 

Figure 4.3.  The molecular alignments of all compounds 65 

Figure 4.4.  Experimental versus predicted pIC50 for CoMFA 3D-QSAR model 68 



 xiii 

Figure 4.5.  3D contour maps around compound 37a as the result of a CoMFA 

analysis of the AI-2 inhibitory activities. Regions where substitution 

enhances (green) or reduces (yellow) the inhibitory affinity (left); the 

color coding indicates regions where electronegative substituents 

would enhance (blue) or reduce (red) the inhibitory activities (right). 

 

69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xiv 

LIST OF SCHEMES 

Scheme 1.1.  Overall binding equilibrium of phenylboronic acid with a diol 2 

Scheme 2.1.  Reagents and condition: i. n-butyllithium, trimethyl borate, THF, -78 ºC, 

39%. 

13 

Scheme 2.2.  Proposed ionization steps of IQBAs 29 

Scheme 2.3.  The proposed ionization steps of esters of IQBAs 29 

Scheme 3.1.  Synthesis of B-TTP analogues 18 to 21 39 

Scheme 4.1.  Different forms of AI-2        51 

Scheme 4.2.  Synthesis of Compounds 28-30        53 

Scheme 4.3.  Synthesis of Compounds 31-35     54 

Scheme 4.4.  Synthesis of Compounds 36 and 37     55 

Scheme 4.5.  Synthesis of compounds 39-43     55 

Scheme 4.6.  Synthesis of Compounds 17-21     56 



 1 

CHAPTER 1. 

INTRODUCTION 

Boronic acid-based chemosensors 

Among all the covalent functional group interactions, boronic acid stands out as the most 

commonly used in chemosensor construction because of its strong interactions with diols,[1-14] 

aminoalcohols,[15-17] α-aminoacids,[18] α-hydroxyl acids,[19-22] alcohols[12, 23-38] as well as 

cyanide[39, 40] and fluoride.[41-45] Among all these interactions, the most commonly used is the 

complexation between a boronic acid and a diol as described in Scheme 1.1. In early 1990’s, Czarnik[6] 

and Shinkai[46] first recognized the utility of boronic acids in sensor design as described in their seminal 

papers. This was followed by a decade of very active work in the design and synthesis of sensors for 

monosaccharides and oligosaccharides. Efforts in recent years have moved to a more biological direction 

with applications in glycan analysis,[43, 47-49] recognitions of cell-surface carbohydrate biomarkers[5, 

50] and glycoproteins[49] as well as array analyses.[51, 52] For biological applications, these boronic 

acid-based sensors and receptors function in a similar fashion as lectins (carbohydrate-binding proteins). 

Therefore, the term “boronolectin” was coined to refer to this class of sensors/binders.[12] Along this 

line, there have been extensive efforts in the design and synthesis of boronic acids that change 

spectroscopic properties upon binding[12] and the development of combinatorial methods for the rapid 

search of peptide/protein-based boronolectins (PBL)[43, 47, 53] and nucleic acid-based boronolectins 

(NBL).[54, 55] Another contribution came from the Schultz lab, who recently reported the successful 

incorporation of a boronic acid-modified amino acid (phenylalanine) into protein for the selection of 

lectins with enhanced affinities for carbohydrates.[56, 57] Besides, small molecule boronolectins (SBL) 

have also shown their tremendous potential in carbohydrate biomarker recognition and targeting.[5, 50] 
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Several recent reviews and research papers comprehensively summarize the use of boronic acids in sensor 

designs for carbohydrates,[12, 58] fluoride,[41-45] and cyanides,[39, 40] and have in-depth discussions 

of factors[12] that should be considered in designing such sensors. In addition, there have also been quite 

a few reviews[12, 58] and research papers [59-63] on boronic acids that change fluorescent properties 

upon binding to a nucleophilic analyte or pH changes. Instead of illustrating all the literature details, this 

section will mainly give a brief description of major factors and issues that need to be considered during 

boronic-acid based chemosensors design. Along this line, a few selected examples will also be illustrated 

to highlight the applications. 

 

 

Scheme 1.1. Overall binding equilibrium of phenylboronic acid with a diol 

The unique ability for boronic acids to interact with nucleophiles as described in Scheme 1.1 is 

due to its special electronic properties. First, the boron atom of a boronic acid has unique electronic 

properties because of its open shell structure with only 6 valence electrons in its trigonal neutral form, 

which renders boronic acid a Lewis acid and capable of strong interactions with Lewis bases/nucleophiles 

such as hydroxyl and amino groups as well as cyanide and fluoride. As a result, the boronic acid (1, 
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Scheme 1.1) group is able to react with a protic solvent and convert to its anionic tetrahedral form (2) 

with the concomitant release of a proton, which is the origin of its Br∅nsted acidity. The boronic acid 

group is also able to form tight and reversible complexes with 1,2- and 1,3-substituted Lewis base donors 

such as hydroxyl, amino, and carboxylate groups (Scheme 1.1). Several factors affect the complexation 

between the boronic acid unit and 1,2- and 1,3-substitued Lewis base donors such as diols, which is the 

most commonly used form of complexation involving a boronic acid in chemosensor design. It has been 

widely recognized that a small O-C-C-O dihedral angle, and low pKa values of the diol and the boronic 

acid all favor binding at neutral pH.[64, 65] However, the effect of pKa value is not unidirectional, i.e. this 

is a bell-shaped relationship with an optimal binding pH somewhere between the pKa values of the diol 

and the boronic acid.[12] If the pKa values of both the diol and boronic acid are low, it is possible that the 

optimal binding condition is below physiological pH. The combined effect of pKa and dihedral angle is 

that boronic acid binding strength normally follows the following order: catechol, cis-diols on five-

membered ring, linear diols, and then cis-diols on six-membered ring. Of course, there are other specific 

structural features and factors such as buffer, ionic strength, solvent that also affect the complexation.[64]   

  Because of its strong Lewis acidity, the boronic acid group can also complex with single Lewis 

bases/nucleophiles. Along this line, boronic acids have been used in the design and synthesis of sensors 

for fluoride and cyanide. One area that has not been widely recognized is the potential to take advantage 

of the interactions between a single hydroxyl group and hydroxyl groups on six-membered ring for 

boronolectin design. This point is especially important because carbohydrates found in glycoproteins, 

glycolipids, and lipopolysaccharides are almost universally six-membered ring sugars and linear diols. 

One has to recognize that boronic acids are strong Lewis acids. Depending on their apparent pKa, their 

interactions with simple Lewis bases/nucleophiles can be very strong. Furthermore B-O bond is 
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especially strong.[66] There are ample examples of boronic acid interactions with simple hydroxyl 

groups,[12, 23-38] which can be used for boronolectin design. This property has been extensively used 

for the design and synthesis of inhibitors of hydrolytic enzymes.[12, 23] There have also been extensive 

structural studies that clearly indicate covalent interactions between the boronic acid unit and enzyme 

active site nucleophiles (hydroxyl groups).[28, 31-37, 67-70] For boronic acid-based enzyme inhibitors, 

once inside the active site, the strong interactions of the boronic acid moiety with a nucleophile are almost 

always the guiding force in dictating the orientations of other functions groups in an inhibitor.[34-36] The 

situation of boronic acid-based inhibitor binding to an enzyme in many ways is similar to 

chemosensor/boronolectin binding to a target where there are many other factors/interactions that help to 

create synergy with the interactions between a boronic acid and a nucleophile. Therefore, the application 

of the boronic acid moiety for chemosensor/boronolectin design is not restricted to diols on aryl and five-

membered rings and linear structures. As a matter of fact, there are several examples of boronic acid 

binding to diols/hydroxyl groups on six-membered rings.[5, 50, 71, 72] Furthermore, immobilized 

boronic acids have been used to isolate glycans and glycoproteins;[73-81] free boronic acids have been 

used for carbohydrate derivatization for mass spectrometric analysis[73, 82-84] with much success; small 

molecule boronolectins have been used to recognize cell surface carbohydrate biomarkers which only 

contains diols on six-membered rings or linear structures;[5] and boronic acid-modified DNA aptamers 

have been selected to recognize glycoproteins with the ability to differentiate glycosylation variation[56] 

and carbohydrates with only hydroxyl groups on a six-membered ring. Such reports lend validity to using 

boronic acids for binding with biologically important carbohydrates that only have hydroxyl groups on 

six-membered rings. Therefore, literature precedents and a long list of successful studies provide 

assurance and encouragement to those interested in developing boronolectins for recognition of 
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carbohydrate-based mammalian biomarkers, which only have hydroxyl groups on linear and six-

membered ring structures.     

 Though the strong interactions between a boronic acid moiety and carbohydrates make it a good 

candidate for chemosensor design, as in any sensor/binder effort, another key issue is the proper design of 

the three dimensional scaffold, which allows the desired functional group arrangement and orientation for 

complementary interactions with the analyte. Generally speaking, there are three ways to achieve this: de 

novo design, template-directed synthesis, and combinatorial library approach. There are successful 

examples in all three areas in the development of boronolectin/chemosensor by using boronic acid as a 

key recognition moiety. Briefly, de novo design has been used for the successful construction of 

chemosensors for glucose[85] and dopamine;[86] template-directed synthesis has been used for the 

construction of sensors for fructose as a model;[87, 88] and combinatorial libraries have been constructed 

in search of PBLs[43, 47, 53, 56, 57] for carbohydrates and NBLs glycoproteins[54] and carbohydrates. 

Below are a few specific recent examples of boronic acid-based chemosensors/boronolectins, which 

demonstrate how such “binders” can be used for biological applications.  

In the first example, the Hall lab in 2006 reported an ortho-hydroxymethyl phenylboronic acid (5, 

Scheme 1.2), which was shown to be superior in carbohydrate binding to the well-established 

diaklyamino (Wulff-type) analogs with better binding affinity and solubility.[89, 90] The most significant 

finding of compound 5 is the weak but encouraging binding with model glycopyranosides. In neutral 

aqueous media, 5 could complex hexopyranosides primarily using their 4,6-diol, which is presented on 

most cell-surface glycoconjugates. The binding constants of 5 with glycopyranosides were obtained by 

using the alizarin red S-UV assay, developed by the Wang lab, at physiological pH (7.4) in water.[14] 

The Ka with methyl α-D-glucopyranoside was 22 M-1, which was slightly lower than the binding constant 
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with glucose (Ka = 36 M-1). In contrast, the binding constant of phenylboronic acid with glucose is about 

5 M-1 at physiological pH. Due to the specific property of this unique boronic acid, one can envision a 

wide variety of applications in the design of oligomeric receptors and sensors toward the selective 

recognition of glycoconjugates. 

 

 

 

Scheme 2. Binding between ortho-hydroxymethyl phenylboronic acid 5 and glycoconjugates 

One challenging area of carbohydrate recognition is the differentiation of glycosylation patterns of 

a glycoprotein. For example, prostate specific antigen (PSA) is a prostate cancer biomarker and a 

glycoprotein. The glycosylation pattern of PSA from cancer is known to be different from that of normal 

tissue.[47, 91-101] Tools that allow for detection and differentiation of the various glycoforms of a given 

glycoprotein will be very useful. The Wang lab is developing an aptamer selection platform for 

glycoproteins by incorporating boronic acid-modified thymidine into DNA.[54] A boronic acid-labeled 

thymidine triphosphate (BTTP, Figure 1.1) has been successfully synthesized. It has also been confirmed 

that DNA polymerase can recognize BTTP as a substrate and the boronic acid-labeled DNA as a 

template, which are prerequisites for further aptamer selection. Based on the intrinsic affinity of boronic 

acids for carbohydrates, and well-known aptamer selection method developing about 18 years by the labs 

of Szostak,[102] Joyce,[103] and Gold,[104] it is very reasonable to believe that incorporation of a 
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boronic acid into the DNA aptamer would allow the selection process to gravitate toward the “sweet pot” 

(glycosylation site).  

 

Figure 1.1. Structure of BTTP 

In addition to aptamer-based boronic acid libraries, there have been efforts in making peptide-

based boronic acid libraries for the same purpose. For examples, the Hall lab developed a general solid-

phase approach to the synthesis and isolation of functionalized boronic acids, which should be very useful 

in combinatorial library synthesis of boronic acid-based carbohydrate sensors.[105] Along a similar line, 

the Hall lab has established a prototypic bead-supported split-pool library of triamine-derived triboronic 

acid receptors;[47] the Lavigne lab reported their PBLs for carbohydrate recognition;[43] and Duggan 

and co-workers prepared solid-supported peptide boronic acids derived from 4-borono-l-phenylalanine 

and studied their affinity for alizarin.[53] As a specific example, herein we discuss in detail recent work 

done by the Anslyn lab. A chemosensor array of PBLs (7, Figure 1.2) has been developed for saccharides 

and saccharide derivatives. This array is fully operational in aqueous media at physiological pH. Binding 

studies were performed colorimetrically using an indicator (bromopyrogallol red (BPR)) uptake protocol 

in the taste-chip platform. The binding response signal was recorded and differential indicator uptake 

rates of these receptors in the presence of saccharides were analyzed to identify patterns within the data 

set using linear discriminant analysis. This LDA data set could be used for classifying disaccharides and 

monosaccharides as well as discriminating compounds within each saccharide group. Besides, it can also 
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identify sucralose in a real world beverage sample as well. This chemosensor assay system has the 

advantage of good water solubility and high sensitivity. This method was one of the first assays where 

supramolecular pattern-based sensors were used to identify a specific target in a complex beverage. 

 

 

Figure 1.2. Structures of a PBL library 

Finally, the Schultz lab recently reported the successful incorporation of the boronate functionality 

into the genetic code of E. coli in high yield and efficiency.[56, 57] Specifically, p-boronophenylalanine 

(9, Figure 1.3) was incorporated into proteins, which can lead to the development of protein-based 

boronolectins (PBLs) that specifically recognize various glycoproteins or carbohydrates. The ability to 

incorporate boronophenylalanine into proteins allows for selective chemistry on the boronoprotein based 

on the intrinsic properties of the boronic acid. Therefore, boronic acid incorporation can be used to purify 

native protein sequences in a one-step scarless affinity procedure and in vivo labeling of boronate 

containing proteins with polyhydroxylated reporter molecules.  

 

 

Figure 1.3. Structure of p-boronophenylalanine 
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 In summary, among all the covalent interactions, boronic acid stands out as the most powerful 

building blocks as a key recognition moiety for sensors design, due to its intrinsic binding affinity with 

diols, aminoalcohols, α-aminoacids, α-hydroxyl acids, alcohols as well as cyanide and fluoride. Among 

all these interactions, the boronic-acid based chemosensors for carbohydrates are mostly developed. This 

is due to the reasons that (1) carbohydrates are known to play important roles in a large number of 

biological and pathological processes, (2) high affinity and specificity boronic-acid based chemosensors 

for biologically important carbohydrates are potential medicinal and diagonostic agents due to their 

intrinsic properties. To date, a series of successful boronic acid-based chemosensors have been 

developed, which could be categorized into de novo design, especially for SBLs; template-directed 

synthesis such as the application in the construction of sensors for fructose as a model; and combinatorial 

libraries in search of PBLs, and NBLs. Along  a similar line, we will report our contributions to this area 

in following chapters 2 and 3. 
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CHAPTER 2 

A New Class of Fluorescent Boronic Acids that Have Extraordinarily High Affinities for Diols in 

Aqueous Solution at Physiological pH 

Abstract: This chapter is mainly based on one paper that has been published in Chemistry-A European 

Journal in 2010 from page 13528 to 13538. The fluorescent boronic acids that have high affinities for 

diols at physiological relevant condition play an important role as a key recognition moiety for 

carbohydrates sensor design. Herein we report a series of isoquinolinylboronic acids that have 

extraordinarily high affinities for diol-containing compounds at physiological pH. In addition, 5- and 8-

isoquinolinylboronic acids also showed fairly high binding affinity with D-glucose (Ka = 42 and 46 M-1, 

respectively). For the very first time, weak but encouraging binding with cis-cyclohexanediol was found 

for these boronic acids. Such binding was coupled with significant fluorescence changes. Furthermore, 4- 

and 6-isoquinolinylboronic acids also showed ability to complex methyl-α-D-glucopyranose (Ka = 3 and 2 

M-1, respectively). 

Introduction 

Boronic acids are commonly used in chemosensor design due to its intrinsic binding affinity with 

diols (Scheme 1.1), aminoalcohols, α-aminoacids, α-hydroxyl acids, alcohols as well as cyanide and 

fluoride.[12, 58, 106, 107] The general interaction pathways are shown in Scheme 1.1. Since the 

rejuvenation of the boronic acid-diol recognition field by Czarnik[6] and Shinkai[106] in the early 

1990s’, research in this area has undergone some transformations going from binding with simple 

monosaccharides to recognition of cell-surface carbohydrate biomarkers. Several recent reviews and 

research papers comprehensively summarized the use of boronic acids in sensor design for 
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carbohydrates,[12, 58, 108-110] with in-depth discussions of factors[12, 58, 65, 111] that should be 

considered in designing such sensors.  

One critical need in the carbohydrate sensing area is the availability of fluorescent boronic acid 

reporter compounds that (1) change fluorescent properties upon binding; (2) are water soluble; (3) have 

high intrinsic affinity for diols, and (4) are chemically and photochemically stable. There have also been 

quite a few reviews[8, 58] and recent research papers[57, 90, 112-124] on boronic acids that change 

fluorescent properties upon binding to a nucleophilic/Lewis base analyte.  

Despite the impressive progress made in the design and synthesis of fluorescent boronic acid 

reporter compounds, several key issues remain. First, most fluorescent boronic acid reporter compounds 

have low to modest intrinsic affinities for diol-containing compounds. Second, boronic acids are known 

to have high affinity for cis-diols on five-membered rings and in linear structures. Binding to six-

membered ring diols has commonly believed to be very hard unless the six-membered ring is constrained 

to give an abnormally small dihedral angle.[58] This point is very important because biologically 

important cell-surface carbohydrate biomarkers only contain six-membered pyranose, but not five-

membered furanose. Boronic acids that can bind diols on pyranose sugars are very important for the 

design of sensors for carbohydrate biomarkers. It is our working hypothesis that since boronic acids are 

Lewis acids, under the appropriate conditions they should interact with all nucleophiles/Lewis bases 

including diols on a six-membered-ring. Indeed, polystyrene-immobilized phenylboronic acid has been 

used for the separation of cis- and trans-cyclohexanediol,[125] indicating their interactions. Additional 

evidence comes from the binding studies with inositols.[71] Recently, the Hall lab reported a compound 

that can bind to a pyranose model (methyl-α-D-glucopyranose).[89, 90] The boronic acid binds to the 4,6-

positions of a pyranose sugar. So far, to our best knowledge there has been no report of monoboronic acid 
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that can bind methyl-α-D-glucopyranose with fluorescence intensity changes in an aqueous solution. 

Herein we describe the very unique binding and fluorescent properties of series of isoquinolinylboronic 

acids (Figure 2.1), which show extraordinarily high binding affinities for carbohydrates. 4- and 6-IQBA 

also showed detectable binding to methyl-α-D-glucopyranose, with fluorescence changes upon binding. In 

addition, we also report the unique binding affinity of these boronic acids with cis-cyclohexanediol. 

These boronic acids represent the very first that can bind 1,2-diols on an unconstrained six membered ring 

in aqueous solution at physiological pH with fluorescence intensity changes.  

 

 

Figure 2.1. Structures of isoquinolinylboronic acids, 8-QBA and 6-MDDCQ 

Results and Discussion   

8-Isoquinolinylboronic acid (8-IQBA) was synthesized through a one-step borylation reaction 

(Scheme 2.1) and all other isoquinolinylboronic acids were commercially available.  
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Scheme 2.1. Reagents and condition: i). n-butyllithium, trimethyl borate, THF, -78 ºC, 39%. 

Since a long-standing goal in our lab is the search for boronic acids that change fluorescent 

properties upon binding, we examined whether these isoquinolinylboronic acids (IQBAs) would have 

such properties. Three representative sugars were used for this study: D-fructose, D-glucose, and D-

sorbitol. It was found that all IQBAs changed fluorescent properties upon sugar addition, though the 

direction and magnitude of the changes were different for the various boronic acids. For example, 8-

IQBA showed a maximum of 35-fold increase in fluorescent intensity upon fructose addition at 

physiological pH in phosphate buffer (Figure 2.2 and Table 2.1). On the other hand, addition of sorbitol 

only induced a 1-fold fluorescent intensity increase and glucose addition induced a 60% decrease in 

fluorescent intensity. The opposite directions of fluorescent intensity changes when fructose and glucose 

were added were something that had not been observed before, indicating the idiosyncratic nature 8-

IQBA in its fluorescent response to binding. Interestingly, 5-IQBA showed similar properties in 

fluorescent responses upon sugar binding (Figure 2.3): fluorescent intensity increased with fructose or 

sorbitol addition and decreased with glucose addition. On the other hand, 4-IQBA only showed 

fluorescent intensity increases upon sugar additions (Figure 2.4); while 6-IQBA only showed fluorescent 

intensity decreases (Figure 2.5). The observed fluorescent changes upon sugar binding also allowed for 

the easy determination of the apparent binding constants of these boronic acids. Table 2.1 summarizes the 

results. The apparent association constants (Ka) with D-fructose, D-glucose, and D-sorbitol were 1493, 46, 

and 1588 M-1 for 8-IQBA; 1432, 42, and 2934 M-1 for 5-IQBA; 2170, 25, and 1001 M-1 for 4-IQBA; and 

N

Br

N

B
OHHO

i)

8-IQBA
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1353, 28, and 1620 M-1 for 6-IQBA; respectively. It needs to be note the Ka was determined due to the 

central hypothesis that the stoichiometry of the bindings of IQBAs with sugars are due to 1:1 binding, 

which is a well developed method in our previous binding studies.[12] In this case, the linear correlation 

of I0/ΔI with the reciprocal of concentration confirmed the stoichiometry 1:1 binding in the tested 

conditions (see appendix for a specific example of the binding equation development). Several things are 

worth mentioning regarding these binding results. The first thing that stands out among all these binding 

constants is the extraordinarily high affinity of these isoquinolinylboronic acids for the monosaccharides 

studied. For example, the binding constants with fructose for all isoquinolinylboronic acids studied were 

in the range of 1353-2170 M-1. In contrast, the binding constant between 8-quinolinylboronic acid and 

fructose was 108 M-1.[126] The difference is over 13-fold. Second, it is also interesting to note that these 

isoquinolinylboronic acids showed much higher affinity for glucose than phenylboronic acid. For 

example, the apparent binding constants of 8-IQBA and 5-IQBA with glucose were 46 and 42 M-1, 

respectively. In contrast, the binding constant between phenylboronic acid and glucose was about 5 M-1. 

Third, the apparent association constants trend with 4-IQBA followed the order of D-fructose > D-sorbitol 

> D-glucose. This is different from that for other arylboronic acids,[65, 127, 128] which has the order of 

D-sorbitol > D-fructose > D-glucose. Even in the case of 8-IQBA, its binding constants with sorbitol and 

fructose were essentially the same, which was unexpected. Fourth, the binding constants are not directly 

correlated with the intensity of fluorescent changes. This is also different from most of the fluorescent 

boronic acids that we have reported, which show higher magnitude changes for tight binders.  

Table 2.1. Apparent association constants (Ka) of isoquinolinylboronic acids with representative sugarsa 

Isoquinolinyl 
D-Fructose D-Glucose D-Sorbitol 
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boronic 

acids[a] 
Ka (M-1) ∆Imax/I0 Ka (M-1) ∆Imax/I0 Ka (M-1) ∆Imax/I0 

8-IQBA 1493 ± 25 35 46 ± 12 -60% 1588 ± 266 1 

5-IQBA 1432 ± 242 9 42 ± 6 -60% 2934 ± 61 1 

4-IQBA 2170 ± 184 16 25 ± 7 2 1001 ± 10 2 

6-IQBA 1353 ± 274 -60% 28 ± 4 -82% 1620 ± 247 -80% 

8-QBA 108[b] 47[b] 3 ± 2 11 616 ± 150 13 

[a] Binding studies were conducted in phosphate buffer (0.1 M) at pH 7.4 (All the experiments were 

duplicated). [b] reference number[126] 

 

Figure 2.2. Fluorescent spectral changes of 8-IQBA upon addition of different diols in phosphate buffer 

(0.1 M) at pH 7.4: λex = 322 nm, λem= 361 nm (for D-glucose and D-sorbitol); 383 nm (for D-fructose). 
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(A) D-Glucose; (B) D-Sorbitol; (C) D-Fructose; (D) plots of fluorescent intensity changes of 8-IQBA as a 

function of sugar concentration, [8-IQBA] = 1 × 10-5 M.  

 

Figure 2.3. Fluorescent spectral changes of 5-IQBA upon addition of different diols in phosphate buffer 

(0.1 M) at pH 7.4: λex = 272 nm, λem = 342 nm (for D-glucose); 344 nm (for D-sorbitol); 378 nm (for D-

fructose). (A) D-Glucose; (B) D-Sorbitol; (C) D-Fructose; (D) plots of fluorescent intensity changes of 5-

IQBA as a function of sugar concentration, [5-IQBA] = 1 × 10-5 M. 
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Figure 2.4. Fluorescent spectral changes of 4-IQBA upon addition of different diols in phosphate buffer 

(0.1 M) at pH 7.4: λex = 322 nm, λem = 361 nm (for D-glucose, D-sorbitol,); 370 nm (for D-fructose). (A) 

D-Glucose; (B) D-Sorbitol; (C) D-Fructose; (D) plots of fluorescent intensity changes of 4-IQBA as a 

function of sugar concentration, [4-IQBA] = 1 × 10-5 M.  
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.  

Figure 2.5. Fluorescent spectral changes of 6-IQBA upon addition of different diols in phosphate buffer 

(0.1 M) at pH 7.4: λex = 272 nm, λem = 356 nm (A) D-Glucose; (B) D-Sorbitol; (C) D-Fructose; (D) plots 

of fluorescent intensity changes of 6-IQBA as a function of sugar concentration,  [6-IQBA] = 1 × 10-5 M. 

Encouraged by the high affinity of these IQBAs, especially with glucose, we were interested in 

probing the ability for them to bind with the pyranose form of a sugar. This interest stems from the fact 

that cell surface carbohydrates only contain sugars in the pyranose form and one of the important goals in 

our carbohydrate sensor effort is the design and synthesis of probes for cell surface carbohydrate 

biomarkers. However, the “general consensus” seems to be that arylboronic acids do not bind to vicinal 

diols on six-membered ring, and thus application of boronic acids in recognizing glycans in mammalian 

systems would be difficult. To address this fundamental question, we also tested the binding affinities of 

isoquinolinylboronic acids with methyl-α-D-glucopyranose and cis-cyclohexanediol. The selection of 

methyl-α-D-glucopyranose is to ensure that the sugar is in its cyclic form. However, the disadvantage is 



 19 

that the 1-position hydroxyl group is no longer available for binding. cis-Cyclohexanediol was selected as 

a representative of cis-diols on a six-membered ring. The summary binding results are shown in Table 

2.2, and Figures 2.6 and 2.7. Several special binding properties were observed. First, weak but 

encouraging binding with cis-cyclohexanediol was observed for 8-IQBA, 5-IQBA and 4-IQBA, with the 

apparent association constants (Ka) being 0.1 (6-fold fluorescence intensity change), 2.4 (7-fold 

fluorescence intensity change), and 1.5 M-1 (2-fold fluorescence intensity change), respectively. In control 

experiments, cyclohexanol did not show appreciable binding or fluorescent changes when added to the 

same boronic acid solutions. Second, these isoquinolinylboronic acids showed binding with a model 

glycoside, methyl-α-D-glucopyranose, under physiologically relevant conditions. The apparent binding 

constants (Ka) for 4-IQBA and 6-IQBA were 3 and 2 M-1, respectively. It should be noted that the Hall 

lab has reported ortho-hydroxymethyl phenylboronic acid as binders for methyl-α-D-glucopyranose.[89, 

90] However, they do not change fluorescence upon binding. To our best knowledge, these are the very 

first examples of boronic acid derivatives that can bind to methyl-α-D-glucopyranose with fluorescence 

changes.  

Table 2.2. Apparent association constants (Ka) of isoquinolinylboronic acids with representative 

carbohydrates[a] 

Isoquinolinyl 

boronic 

acids[a] 

Methyl-α-D-glucopyranose Cis-cyclohexanediol cyclohexanol 

Ka (M-1) ∆Imax/I0 Ka (M-1) ∆Imax/I0 Ka (M-1) ∆Imax/I0 

8-IQBA Not observed × 0.4 ± 0.0 15 Not observed × 

5-IQBA Not observed × 1.1 ± 0.8 -66% Not observed × 
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4-IQBA 3.3 ± 0.9 1 0.8 ± 0.2 6 Not observed × 

6-IQBA 2.1 ± 1.4 -30% 1.0 ± 0.2 -71% 4 ± 1 3 

8-QBA Not observed × 1.2 ± 0.7 23 Not observed × 

6-MDDCQ Not observed × 2.0 ± 0.2 -75% Not observed × 

[a] Binding studies were conducted in phosphate buffer (0.1 M) at pH 7.4 (All the experiments were 

duplicated) 

 

Figure 2.6. Fluorescent spectral changes of isoquinolinylboronic acids upon addition of cis-1,2-

cyclohexanediol in phosphate buffer (0.1 M) at pH 7.4: (A) 8-IQBA, λex = 332 nm, λem = 442 nm; (B) 5-

IQBA , λex = 272 nm, λem = 341 nm; (C) 4-IQBA, λex = 322nm, λem = 440 nm; (D) 6-IQBA, λex = 272 

nm, λem = 355 nm; Insets: plots of fluorescent intensity changes of IQBAs as a function of sugar 

concentration [IQBAs] = 1 × 10-5 M. 
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Figure 2.7. Fluorescent spectral changes of isoquinolinylboronic acids upon addition of methyl-α-D-

glucopyranose and cyclohexanol in phosphate buffer (0.1 M) at pH 7.4: (A) 6-IQBA with methyl-α-D-

glucopyranose, λex = 272 nm, λem = 356 nm; (B) 4-IQBA with methyl-α-D-glucopyranose, λex = 322 nm, 

λem = 361 nm; (C) plots of fluorescent intensity changes of 4-IQBA and 6-IQBA as a function of methyl-

α-D-glucopyranose concentration, (D) 6-IQBA with cyclohexanol, λex = 272 nm, λem = 455 nm; [IQBAs] 

= 1 × 10-5 M. 

As a control, we also studied the binding of these isoquinolinylboronic acids with cyclohexanol in 

order to see whether their apparent binding was due to interactions with a single hydroxyl group (boronic 

acid interactions with single hydroxyl groups do have precedents).[58] As can be seen from Table 2.2, 6-

IQBA was found to bind both cis-cyclohexanediol (Ka = 1 M-1) and cyclohexanol (Ka = 4 M-1) and the 

others did not show any binding with cyclohexanol. Such results indicate that single hydroxyl group 

binding might play an important role in the binding of 6-IQBA with methyl-α-D-glucopyranose and 
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cyclohexanediol. At this time, it is not clear as to exactly which way 6-IQBA binds to these six-

membered ring diols.  

With the weak but encouraging binding with cis-cyclohexanediol for all the isoquinolinylboronic 

acids discussed above, it becomes important to address the questions of whether the ability to bind cis-

diols on a six-membered ring is unique to isoquinolinylboronic acids. As a control, phenylboronic acid 

should be considered first. Binding between phenylboronic acid with cyclohexanediol had been studied 

before and no binding was observed.[127] Such results indicate that the ability to bind to cis-diols on a 

six-membered ring is not universal to all boronic acids. Next we studied the binding of 8-QBA and 6-

MDDCQ (Figure 2.1) with cis-cyclohexanediol. 8-QBA was selected since it is a quinolinylboronic acid. 

6-MDDCQ was selected because the boronic acid was attached to phenyl ring but the compound also 

contains a quinoline moiety. Both boronic acids also showed binding with cis-cyclohexanediol (Figure 

2.8). For 8-QBA, a 23-fold fluorescence change was found upon the addition of 1.5 M cis-

cylcohexanediol at physiological pH in phosphate buffer. These results indicated that binding with cis-

cyclohexanediol is not a unique binding affinity of isoquinolinylboronic acids.  
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Figure 2.8. Fluorescent spectral changes of 8-QBA and 6-MDDCQ upon addition of cis- cylcohexanediol 

in phosphate buffer (0.1 M) at pH 7.4: (A) 8-QBA: λex = 270 nm, λem = 314 nm, [8-QBA] = 1 × 10-5 M; 

(B) plot of fluorescent intensity change of 8-QBA as a function of sugar concentration, [8-QBA] = 1 × 10-

5 M; (C) 6-MDDCQ: λex = 270 nm, λem = 387 nm, [6-MDDCQ] = 2 × 10-5 M; (D) plot of fluorescent 

intensity change of 6-MDDCQ as a function of sugar concentration, [6-MDDCQ] = 2 × 10-5 M. 

One cautionary note related to all the binding constants with six-membered diols is their small 

magnitude, which could severely affect the accuracy of determination. The other issue to consider is the 

change of solvent bulk properties due to diol addition at high concentrations, which could affect 

fluorescence. This aspect is especially important for 6-IQBA because it showed tighter “binding” with 

cyclohexanol than with cis-cyclohexanediol. To specifically differentiate the effect of bulk properties and 

binding on fluorescence and to probe whether the observed fluorescent changes were due to specific 

binding, we conducted additional experiments to study boronic acid-concentration (6-IQBA, 10-30 µM) 

dependent fluorescent changes in the presence and absence of 0.75 M cis-cyclohexanediol. From Figure 
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2.9, it can be seen clearly that the fluorescence intensity increases have a linear relationship with 6-IQBA 

concentrations in the absence of added cis-cyclohexanediol. On the other hand, significant curvature was 

observed in the presence of 0.75 M cis-cyclohexanediol. Such results cannot be explained by the bulk 

effect of the added sugar and are consistent with specific binding interactions, which are concentration 

dependent. Bulk effect of the added sugar on fluorescent properties should only result in two parallel lines 

with different intercepts.  

 

Figure 2.9. Fluorescent intensity change-6-IQBA concentration relationships in the presence and absence 

of 0.75 M cis-cyclohexanediol in phosphate buffer (0.1 M) at pH 7.4: λex = 272 nm, λem = 354 nm.   : 6-

IQBA only;   : 6-IQBA with 0.75 M cis-cyclohexanediol. 

pKa and quantum yields 

Aimed at understanding the basic mechanism through which fluorescent intensity changes occur, 

we also studied the pH profiles of the fluorescence intensity in the absence and presence of sugars. Figure 

2.10 and Table 2.3 summarized the results of apparent pKa values of the isoquinolinylboronic acids in the 
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absence and presence of sugars. As can be seen in Figure 2.10, fluorescent intensities change with pH for 

both the boronic acids and their presumed esters with various sugars. Numerous previous reports have 

demonstrated that such fluorescent changes are associated with the pKa of individual species. Since each 

boronic acid has two ionizable functional groups, the boronic acid group and the isoquinolinyl nitrogen, 

there is the question of which pKa each fluorescent change corresponds to.   

 

Figure 2.10. pH profiles of the fluorescence intensities of isoquinolinyl boronic acids in the absence and 

presence of sugars in 0.1 M aqueous phosphate buffer (A) [8-IQBA] 1 × 10-5 M; (B) [5-IQBA] 1 × 10-5 

M; (C) [4-IQBA] 1 × 10-5 M; (D) [6-IQBA] 1 × 10-5 M. 

Table 2.3. Apparent pKa values of the isoquinolinylboronic acids in the absence and presence of sugars[a] 
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pKa 
In the absence of a 

diol 

In the presence of 

D-fructose  

In the presence 

of D-glucose  

In the presence 

of D-sorbitol  

In the presence 

of methyl-α-D-

glucopyranose  

8-IQBA 5.7;  4.1; 7.2  4.8; 7.5  4.1; 7.3  ×  

5-IQBA 5.9; 8.5 6.9 4.9; 6.8  6.8 × 

4-IQBA 5.0 3.4; 7.6  4.4 6.0 5.7 

6-IQBA 5.4; 7.7  4.2; 6.8  4.8; 7.0  3.8; 6.6  5.1; 7.4  

8-QBA 4[b]; 10[b]  2.5[b]; 9[b]  ND  ND ND 

[a] All the results were duplicated. [b][126] 

As shown in Schemes 2.2 and 2.3, there are two possible routes for the ionization steps of IQBAs 

and their esters. For example, in route A, pKa1 was assigned to the deprotonation of isoquinolinium 

nitrogen and pKa2 was assigned to the hybridization state change of the boronic acid group. While in 

route B, pKa3 was assigned to the hybridization state change of the boronic acid group and pKa4 was 

assigned to the deprotonation of isoquinolinium nitrogen. In order to assign each pKa, we recorded the 

11B NMR spectra of IQBAs and their esters in a mixed deuterated methanol-water (1:1) solvent at 

different pH. Since it has been reported that 50% methanol of water solution resulted in minimal changes 

of the solution pH, methanol was used to increase the boronic acid solubility. The results are shown in 

Table 2.4.  

Table 2.4. 11B NMR of isoquinolinyl boronic acids alone and in the presence of fructose 
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Entry δppm/pH-1 δppm/pH-2 δppm/pH-2 

8-IQBA[a] 28.9/1.3 29.5/7.3 3.2/11.9 

8-IQBA and Fructose[b] 29.3/1.3 8.2/7.2 7.6/11.1 

5-IQBA[a] 30.1&20.3/1.6 29.3&19.3/7.3 4.6/12.8 

5-IQBA and Fructose[b] 29.7/2.1 7.3/7.6 10.2/11.7 

4-IQBA[a] 28.1&19.1/1.5 24.6&19.2/5.7 3.5&2.3/12.2 

4-IQBA and Fructose[b] 20.4/2.0 7.6&11.1/6.6 7.6/12.0 

6-IQBA[a] 27.8&18.9/1.6 28.3&18.9/7.6 2.6/12.6 

6-IQBA and Fructose[b] 28.8&18.8/1.5 20.7&9.0/5.7 8.0/12.1 

[a] [IQBAs] = 30 mM; [b] [fructose] = 50 mM 

In the case of 8-IQBA, the boron signal of 8-IQBA appeared at 28.5 ppm at pH 1.3 and 29.5 at pH 

7.3 respectively, consistent with the neutral trigonal boron (10 or 11). At pH 11.9, the boron signal of 3.2 

ppm was observed indicating the presence of the anionic tetrahedral state (13). These results indicated 

that the boron atom of the free acid changed hybridization from sp2 to sp3 between pH 7.3 and 11.9. So 

5.7 was assigned to pKa1 and pKa2 was assigned to be >7, which was consistent with route A (Scheme 

2.2). The esters of 8-IQBA all have two pKa values based on the fluorescent data. The only difference is 

that the fluorescence of the fructose ester increases first, followed by a decrease. On the other hand the 

fluorescence of glucose ester and sorbitol ester only decreases slightly, followed by an increase. So it is 
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reasonable to assign the pKa values for all the esters of 8-IQBA in the same way. 11B NMR spectra of the 

fructose ester of 8-IQBA were studied as a model case. Single peaks of 29.3 ppm at pH 1.3 and 8.2 ppm 

at pH 7.2 were observed respectively. These chemical shifts clearly indicated that the boron atom in the 

ester form changes hybridization state between pH 1.3 and 7.2. Based on this, 4.1 was assigned to pKa7 

and 7.2 was assigned to pKa8, consistent with route B′ (Scheme 2.3). Such results indicate that the pKa of 

the boronic acid group is higher in the absence of a sugar, but lower in the presence of a sugar than that of 

the protonated quinolinium group. Such a pKa-switch seems to correspond to the highest fluorescence 

intensity change at pH 6 (Figure 2.9A), and suggests that the zwitterionic specie 16 (Scheme 2.3) is the 

more fluorescent one. At pH 7.4, the 8-IQBA fructose ester exists predominantly in the boronate form 17 

and 8-IQBA itself exists as a mixture of the neutral trigonal boron form 11 and the boronate form 13. 

Both 11 and 13 are almost non-fluorescent, and yet the boronate ester form 17 is fluorescent. It seems that 

the fluorescence increase is due to diol binding as that of 8-QBA.[126] All the pKa values of other IQBAs 

in the absence and presence of a sugar were assigned by the same method. The results showed that they 

have similar pKa assignments as those of 8-IQBA, going through route A with IQBA only and route B′ in 

the presence of a sugar. It should be noted that these pKa assignments are opposite to that of 8-QBA[126] 

and consistent with that of 5-QBA[129] described previous reports.  
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Scheme 2.2. Proposed ionization steps of IQBAs. 

 

Scheme 2.3. The proposed ionization steps of esters of IQBAs. 
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13 of 5-IQBA itself is non-fluorescent, while the boronate form 17 of 5-IQBA fructose ester is the most 

fluorescent species. In the case of 4-IQBA at pH 7.4, its fructose ester exists predominantly in the 

zwitterionic quinolinium boronate form 16 and 4-IQBA itself exists in a mixture of neutral trigonal boron 

form 11 and boronate form 13. Both 11 and 13 are non-fluorescent, and yet the zwitterionic quinolinium 

boronate form 16 is fluorescent. So it also seems that the fluorescence increase is due to diol binding as 

that of 8-QBA. Finally, at pH 7.4, 6-IQBA fructose ester exits predominantly in the boronate form 17, 

while 6-IQBA itself exits in the neutral trigonal boron form 11. Although both 11 and 17 are fluorescent, 

the neutral trigonal boron form 11 seems to have higher fluorescence intensity than 13. This might 

explain the fluorescence intensity decrease after binding with fructose. One thing needs to be mentioned 

here is that in some cases two peaks were found for IQBA or its ester. For example, the 11B NMR spectra 

of 4-IQBA showed two peaks at 28 and 19 ppm. It is possible that the second peak might be the methyl 

ester of boronic acid. This is reasonable since a mixed deuterated methanol-water (1:1) solvent was used 

to increase the boronic acid solubility. Another possibility is the formation of a cyclic dimeric boronic 

anhydride -O-B-O-B-O- via a 2:1 boronic acid:diol binding mode. However, the likelihood of this cyclic 

structure is probably high only in organic solvent, but not in aqueous solution.  

The fluorescent quantum yields for these boronic acids and their sugar esters were determined 

with 4-indolylboronic acid as the reference compoundand[130] using Eq. 1,[131] where Q represents 

quantum yield, I is the integrated intensity, OD is the optical density, and subscript R denotes reference 

compound. The results are shown in Table 2.5.  

Q = QR (I/IR) (ODR/OD)                                                      (1) 
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The quantum yields trend of 8-IQBA and its esters followed the order of D-fructose ester > D-

sorbitol ester > 8-IQBA alone > D-glucose ester. For example, the quantum yield of the D-fructose ester 

of 8-IQBA is 24%, while that of 8-IQBA alone and its D-glucose ester is only about 2%, giving about a 

12-fold difference. In the case of other isoquinolinylboronic acids, the following orders were observed for 

the respective apparent quantum yield: D-fructose ester > D-sorbitol ester > D-glucose ester > 5-IQBA 

alone; D-fructose ester > methyl-α-D-glucopyranose ester > D-sorbitol ester > D-glucose ester > 4-IQBA 

alone, and 6-IQBA alone > D-fructose ester > D-sorbitol ester > D-glucose ester > methyl-α-D-

glucopyranose. All the isoquinolinylboronic acids have different trends and are not directly correlated 

with the apparent pKa of each compound. This is understandable since many other factors such as 

flexibility, solvation, and excited state electron density distribution are expected to affect the quantum 

yields of these compounds as well. 

Table 2.5. Fluorescence quantum yields of the isoquinolinylboronic acids alone and in the presence of 

various sugars[a] 

FQY (%) 
Isoquinolinyl 

boronic acids 

D-Fructose 

(M) 

D-Glucose 

(M) 

D-Sorbitol 

(M) 

Methyl-α-D- 

glucopyranose 

8-IQBA 2.2 ± 0.02 24 ± 0.8 2.1 ± 0.2 6.9 ± 0.6 × 

5-IQBA 2.5 ± 0.02 19 ± 0.01 3.7 ± 0.4 7.7 ± 2.0 × 

4-IQBA 1.0 ± 0.08 17 ± 0.01 1.7 ± 0.2 2.5 ± 0.7 3.4 ± 0.02 

6-IQBA 13.2 ± 3.2 12 ± 0.3 4.8 ± 0.9 10.1 ± 0.7 1.9 ± 0.2 
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8-QBA ND 28[b] ND ND ND 

[a] All the results were duplicated. [b][126] 

Conclusions 

In conclusion, we have described a series of water-soluble isoquinolinylboronic acids that change 

fluorescent properties significantly upon binding. These isoquinolinyl boronic acids bind to three 

representative sugars, D-fructose, D-glucose, and D-sorbitol, much more tightly than 8-QBA and most 

other simple arylboronic acids. Besides, all the isoquinolinylboronic acids, especially 5-IQBA and 8-

IQBA, showed modest binding affinity with D-glucose (Ka = 42 and 46 M-1, respectively). These numbers 

are much higher than that observed with phenylboronic acid. All isoquinolinylboronic acids also showed 

weak but encourage binding affinity with cis-cyclohexanediol with significant fluorescence changes. 

These are the very first examples of the binding of boronic acids with a six-membered vicinal diol with 

fluorescence intensity change. Also very significant are the findings that 4-IQBA and 6-IQBA can 

complex methyl-α-D-glucopyranose (Ka = 3 and 2 M-1, respectively) under physiologically relevant 

conditions. The above findings are especially important because carbohydrates found in glycoproteins, 

glycolipids, and lipopolysaccharides are almost universally six-membered ring sugars and linear diols, 

and one area that has not been widely recognized is the potential to take advantage of the interactions 

between hydroxyl groups on six-membered ring with a boronic acid for boronolectin design. 
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Synthesis of 8-isoquinolinylboronic acid (8-IQBA). To a flask charged with 8-bromoisoquinoline 

(20 mg, 0.096 mmol, 1 equiv) in a nitrogen atmosphere was added anhydrous THF (0.5 mL). The mixture 

was stirred at -78 ºC. n-Butyl-lithium (2.0 M solution in pentane, 0.2 mL, 0.4 mmole, 4 equiv) was 

added, then the solution was stirred at -78 ºC for 45 min. After adding trimethyl borate (0.05 mL, 0.45 

mmol, 4.7 equiv), the reaction mixture was stirred at -78 ºC for another 5 min. Then the reaction was 

allowed to room temperature and left to react for an additional hour. H2O (0.5 mL) and saturated NaHCO3 

(1.0 mL) was added to quench the reaction. The mixture was extracted with ethyl acetate (2 × 30 mL), 

washed with H2O (2 × 5 mL), brine (2 × 5 mL), and dried over anhydrous Na2SO4. The residue was 

purified by chromatography (MeOH/CH2Cl2 = 5/1) to yield a brown solid (6.5 mg, 39%). 1H NMR (400 

MHz, DMSO-d6) δ9.7 (1H, s), 8.6 (2H, s), 8.5 (1H, d, J = 5.6 Hz), 8.0 (1H, d, J = 8.0 Hz), 7.9 (1H, d, J = 

6.4 Hz), 7.8 (1H, d, J = 5.6 Hz), 7.7 (1H, dd, J = 6.4, 8.0 Hz); 13C NMR (100 Hz, DMSO-d6) δ153.0, 

142.2, 135.1, 133.7, 130.8, 129.6, 127.8, 120.8; ESI-MS, m/z 174, M+1; HRMS, 174.0735. 
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CHAPTER 3. 

Design, Synthesis, and Polymerase-Catalyzed Incorporation of Click-Modified Boronic Acid-TTP 

Analogues  

Abstract: This chapter is mainly based on one paper that has been published in Chemisry – An Asian 

Journal in 2011 from page 2747 to 2752. As discussed in the previous chapters, though the very active 

work in the design and synthesis of sensors for monosaccharides and oligosaccharides, efforts in recent 

years have moved to a more biological direction with applications in glycan analysis, recognition of cell-

surface carbohydrates biomarkers and glycoproteins as well as array analysis. DNA molecules are known 

to be important materials in sensing, aptamer selection, nanocomputing, and construction of unique 

architects. The incorporation of modified nucleobases affords DNA unique properties for applications in 

areas that are otherwise difficult or not possible. Earlier, we have demonstrated that the boronic acid 

moiety can be introduced into DNA through polymerase-catalyzed reactions. In order to study whether 

such incorporation by polymerase is a general phenomenon, we designed and synthesized four boronic 

acid-modified TTP analogues. The synthesis of analogues 20 and 21 was through the use of a single 

dialkyne tether for both the Sonogashira coupling with thymidine and later Cu-mediated [3+2] 

cycloaddition for linking the boronic acid moiety. This approach is much more efficient than the 

previously described method, and paves the way for the preparation of a large number of boronic acid-

modified TTPs with a diverse set of structural features. All analogues showed very good stability under 

PCR conditions and were recognized as a substrate by DNA polymerase, and thus incorporated into 

DNA. 

Introduction 
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The same properties that afford DNA the kind of unique features suitable as genomic materials 

also allow it to be used in a wide variety of applications such as nanosensing,[132] aptamer 

selection,[133-135] nanocomputing,[136] and reaction encoding.[137, 138] Along these lines, 

modifications of nucleobases often endow DNA with additional properties for enhanced applications. For 

example, 5-position modified thymidine analogues have been widely used in aptamer selections.[139, 

140] On the other hand, it is also well-known that boronic acid is one of the most commonly used 

building blocks for the design of chemosensors for carbohydrates, due to its intrinsic affinity with diols, 

single hydroxy groups, as well as other nucleophiles/Lewis bases.[6, 12, 46, 58, 141, 142] One of our 

long-standing interests is developing an aptamer selection platform specifically for biological important 

carbohydrates and glycoproteins through the incorporation of a boronic acid group into DNA.[58, 143, 

144] 

This is based on the central hypothesis that the incorporation of a boronic acid-modified 

nucleotide into DNA would allow for enhanced recognition of carbohydrate moieties, which contain 

many hydroxyl groups.[49] Along this line, we have previously reported the design and synthesis of a 

thymidine analogue (B-TTP, Figure 3.1) modified with 8-quinolinylboronic acid at the 5-position, which 

can be introduced into DNA through polymerase-catalyzed reactions, as well as the feasibility of boronic 

acid-modified DNA aptamer selection for biological important glycoproteins.[49, 143] In addition, there 

are boronic acids that change fluorescent properties upon binding.[58] Incorporation of such boronic 

acids allows DNA to be used in sensing applications without the need for an additional reporting unit. As 

a specific example, we have also demonstrated the synthesis and incorporation of a long wavelength 

boronic acid-modified TTP (NB-TTP, Figure 3.1), which shows fluorescence intensity change upon 

carbohydrate addition.[144] In order to examine the generality of boronic acid incorporation and to 
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broaden the application of boronic acid-modified DNA, we are interested in studying the incorporation of 

additional boronic acids with different structural features. At the same time, we are also interested in 

developing a synthetic approach, which is more efficient than the previous described method and would 

allow for easy analogue synthesis. The resulting increase in structural diversity of boronic acid-modified 

thymidine analogues will be very important in future applications such as aptamer selection for 

biologically important carbohydrate biomarkers as well as glycoproteins. 

 

 

 

Figure 3.1. Chemical structures of B-TTP and NB-TTP. 

Results and Discussion 
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phenylboronic acid, which are much easier to synthesize than the previously used boronic acids (B-TTP 
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procedures developed for the synthesis of B-TTP (Figure 3.1). Thus M-TTP (Scheme 3.1) was 

synthesized following a four-step procedures starting from 5-iodo-2'-deoxyuridine (22, Scheme 3.1) as 

published previously.[143] Substituted azidomethylphenylboronic acid (23 or 24, Scheme 3.1) were 

easily obtained from their bromomethylphenylboronic acid precursors (25 or 26, Scheme 3.1), 

respectively. Then coupling of the appropriately substituted azidomethylphenylboronic acid (23 or 24) via 

a copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC)[145-147] 18 and 19 in 31% yield after HPLC 

purification.  

The key design in linking the boronic acid moiety to the 5-position of thymidine is the availability 

of a terminal alkyne group after the initial coupling. In order to shorten the synthesis, we designed an 

approach by using a single dialkyne tether for both the Sonogashira coupling with thymidine and later 

CuAAC for linking the boronic acid moiety. Such a design shortens the synthesis by two steps and 

simplifies the structural features of the side chain. Specifically, M(C)-TTP (Scheme 3.1) was prepared 

through Sonogashira coupling of 5-iodo-2'-deoxyuridine (22, Scheme 3.1) with 1,7-octadiyne, and the 

subsequent triphosphorylation using a modified procedure.[148, 149] Then CuAAC led to the final 

products, 20 and 21, in 29% and 14% yield, respectively after HPLC purification.  
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Figure 3.2. Structures of B-TTP analogues 18-21. 
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Scheme 3.1. Synthesis of B-TTP analogues 18 to 21. 

Stability test of B-TTP analogues under PCR conditions 

After obtaining the B-TTP analogues, we first studied whether these analogues were stable under 
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Next, we studied whether these B-TTP analogues 18-21 could be incorporated into DNA in an 

enzyme-catalyzed reaction as we have done previously with B-TTP (Figure 3.1). Specifically, primer 

extension using 18-21 and the Klenow fragment was conducted using a short sequence of 21-nt 

oligonucleotide (5' -GGTTCCACCAGCAACCCGCTA-3') as the template and a 14-nt primer (5'-

TAGCGGGTTGCTGG-3') as shown in Figure 3.3. The primer and template were designed in such a way 

that the first incorporated base would be a T, so there are two possible scenarios in the extension, either 

fully extended product or no extension at all. The latter case could be due to either no incorporation of the 

modified nucleotide or the inability to extend of the sequence with the incorporation of this modified 

nucleotide. The obtained DNA products were studied using PAGE. The primer was radio-labeled with 32P 

at the 5'-end using γ-32P-ATP and T4 kinase (lane 1, Figure 3.3). Negative control without the Klenow 

fragment (lane 2, Figure 3.3) and without dNTPs (lane 3, Figure 3.3) showed no full length DNA 

sequence. The shorter DNA in Lane 3 without dNTPs could have resulted from the 3'-5' exonuclease 

activity of Klenow fragment.[144] The positive control with Klenow fragment and natural dNTPs showed 

full length DNA sequence (lane 4, Figure 3.3). Primer extension using B-TTP analogues 18-21 (lane 5-8, 

Figure 3.3) also gave a full length DNA sequence, which clearly indicated that these synthesized B-TTP 

analogues 18-21 were recognized as a substrate by the polymerase, and incorporated into DNA.  
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Figure 3.3. Incorporation of B-TTP analogues by Klenow Fragment: 1) Primer only; 2) Primer + dNTPs, 

no Klenow fragment; 3) Primer + Klenow frgment, no dNTPs; 4) Primer + Klenow fragment + dNTPs; 5) 

using B-TTP analogue 18 instead of dTTP in 4); 6) using B-TTP analogue 19 instead of dTTP in 4); 7) 

using B-TTP analogue 20 instead of dTTP in 4); 8) using B-TTP analogue 21 instead of dTTP in 4). 

To further confirm the results, besides PAGE analysis, we also conducted MALDI analyses of the 

primer extension product. B-TTP analogue 18 was chosen as an example. From the MALDI spectra 

(Figure S3.5-S3.6, supporting information), the following results were obtained. In the control reaction, 

full extension of the primer using natural dNTPs yielded a DNA with m/z of 6519 (calculated [M + H]+: 

6519) as the extended strand peak in MALDI. On the other hand, when B-TTP analogue 18 was used 

instead of TTP, primer extension yielded a DNA with m/z of 6772 and m/z of 6787 as new peaks for the 

corresponding extended strand. Each was assigned as the deborylated (calc. [M + H - HBO2]+: 6771) and 

oxidative deborylated sequence (calc. [M + H - HBO]+: 6787). Such behavior in MALDI is common in 

our past experience with boronic acid compounds.[143, 144] Results obtained further confirmed the full 

incorporation of the boronic acid-modified TTP analogues. 

PCR Investigation 

Encouraged by the successful incorporation of B-TTP analogues 18-21 into a short sequence by 

Klenow fragment-mediated primer extension, we further investigated the PCR amplification of a longer 

DNA with 90 bases template that we used previously.[143] As can be seen from Figure 3.4, all four 

analogues were successfully incorporated. Specifically, very similar bands were found with the PCR 

products of B-TTP analogues 18-21 (Lanes 3-6, respectively, group A) compared to those products using 

dTTP (Lane 1, group A) and M-TTP (Lane 7, group A). The slightly reduced mobility of DNA with 

boronic acid incorporation can be explained by the interaction of the boronic acid functional group (a 
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Lewis acid) with PAGE gel. This can be further confirmed by the results of Group C, which represents 

the gel results of the PCR products after treating with H2O2 (final concentration of 10 mM, 2 h). All PCR 

products of B-TTP analogues 18-21 after treating with H2O2 (Lane 2, 4, 6, and 8, respectively, group C) 

showed almost the same mobility. However, before treatment, different mobility was observed for PCR 

products of B-TTP analogues 18-21 (Lane 1, 3, 5, 7, respectively, Group C). As an example, PCR 

products obtained through incorporation of B-TTP analogue 20 shows the biggest difference in mobility 

(Lane 5: before H2O2 treatment, and Lane 6: after H2O2 treatment, Group C). The most significant 

evidence of the full incorporation of all the B-TTP analogues came from the denaturing PAGE gel results 

(15% denaturing PAGE containing 8M urea). A very clear single band was observed for all the PCR 

products of B-TTP analogues 18-21 (Lanes 3-6, Group B), compared to that of dTTP (Lane 1, group B). 

Besides, as shown in the image quant for the bands in Group B (see appendix for details), BTTP 

analogues showed the relative band intensity of 73%, 82%, 84%, 76%, and 79% for B-TTP analogues 2-

5, and MTTP, respectively. This also clearly indicated the high incorporation efficiency. 

 

 

Figure 3.4.  Left: Group A (analyzed with 15% PAGE) and B (15% denaturing PAGE): PCR 

incorporation using dTTP (Lane 1), B-TTP analogues 18-21 (Lanes 3-6, respectively), or M-TTP (Lane 

7). Lane 2 is negative control with no dTTP. Group C: (analyzed with 15% PAGE): PCR incorporation 
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using B-TTP analogues 18-21 (Lane 1, 3, 5, 7, respectively), DNA being treated with H2O2 before 

analyzing (Lane 2, 4, 6, and 8 for B-TTP analogues 18-21, respectively). All reactions were conducted 

using Taq polymerase (See Supporting information for full gel pictures). 

Conclusions 

Four boronic acid-modified TTP analogues have been successfully synthesized. Two of them 

were synthesized using an improved procedure, which uses 1,7-octadiyne as a linker for both the 

Sonogashira coupling with thymidine and CuAAC tethering of the boronic acid moiety. All four boronic 

acid-modified TTP analogues were characterized thorough 1H NMR, 31P NMR, and MS. The purities 

were confirmed by HPLC. Moreover, these analogues were successfully incorporated into DNA, 

suggesting that linker differences and the structural features of the boronic acid part do not have much 

bearing on polymerase-mediated incorporation. The newly developed synthetic method also paves the 

way for the preparation of a large number of boronic acid-modified TTP with a diverse set of structural 

features for future applications such as aptamer selection.  

 

Experimental Section 

General. Chemicals were obtained from Aldrich and Acros, unless indicated otherwise. For all 

reactions, analytical grade solvents were used. Anhydrous solvents were used for all moisture-sensitive 

reactions. NMR data were collected on a Bruker 400 MHz spectrophotometer. The chemical shifts are 

relative to TMS as an internal standard for 1H NMR, and 85% H3PO4 as an external reference for 31P 

NMR. Mass spectra were recorded on a Waters Micromass LC-Q-TOF micro spectrometer or an 

ABI4800 MALDI-TOF-TOF mass spectrometer at Georgia State University Mass Spectrometry 

Facilities. HPLC condition for the purification of B-TTP analogues 2-5 were as follows: column: Agilent, 
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semi-preparation column; flow rate: 2.0 mL/min; solvents: A: 0.1 M NH4HCO3, B: MeOH; program: 

0.02-15 min 25% (B%), 35-45 min, 100%, 55-65 min 25%, stop; temperature: 20 ºC, detection 

wavelength: 280 nm. 

 Synthesis of M (C)-TTP. The synthesis of M(C)-TTP was following Carell’s procedure with 

revision:[148, 149] M(C)-T[148, 149] (300 mg, 0.9 mmol, 1 eq) and proton sponge (232 mg, 1.08 mmole,  

1.2 eq) were dried in vaccuo over P2O5 overnight and then dissolved in anhydrous trimethylphosphate 

(2.5 mL) under nitrogen in an  ice-bath. Then fresh distilled POCl3 (0.10 mL, 1.2 eq) dissolved in 

anhydrous trimethylphosphate (0.5 mL) was added drop wise via a syringe with stirring. The reaction 

mixture was further stirred in an ice-bath for 2 h and then a solution of bis-tri-n-butylammonium 

pyrophosphate (2.5 g, 5.27 mmole, 3.5 eq) and tri-n-butylamine (2.14 mL) in 3.0 mL of anhydrous DMF 

was added in one portion. The mixture was stirred at room temperature for 10 min and then 

triethylammonium bicarbonate solution (0.1 M, pH 8, 70 mL) was added. The reaction mixture was 

stirred at room temperature for an additional hour and concentrated, then purified with a DEAE-Sephadex 

A-25 column using a linear gradient of ammonium bicarbonate (0-0.6 M) collected portions eluted out by 

0.12M-0.15M according the UV absorbance at 290 nM followed by freeze drying to give the final 

product as a white powder (93 mg, 18 %). 1H NMR (D2O): δ = 8.00 (s, 1H), 6.27 (t, J = 6.8 Hz, 1H), 4.60 

(s, 1H), 4.22 (d, J = 4.8 Hz, 3H), 2.46 (t, J = 6.8 Hz, 2 H), 2.41 (m, 2H), 2.36 (t, J = 2.8 Hz, 1H), 2.27 (m, 

2H), 1.68 ppm (m, 2H); 31P NMR (161 MHz, D2O): δ = -6.1, -11.1, -21.7 ppm; MS (-ESI) m/z: 571 ([M - 

H]-). 

Synthesis of B-TTP analogue 18. To a solution of M-TTP (5.0 mg, 0.0083 mmol, 1.0 eq) and 3-

(azidomethyl)-phenyl-boronic acid (8.0 mg, 0.045 mmol, 5.4 eq) in 120 µL of a mixed solvent 

(H2O/DMF/EtOH = 1/2/1) was added 50 µL of a solution of TBTA (2.8 mg, 0.0052 mmole, 0.60 eq) and 
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CuBr (0.2 mg, 0.0026 mmole, 0.30 eq) in 100 µL DMF. Then the mixture was stirred vigorously at room 

temperature for 3 h and centrifuged. Supernatant was removed, and the remaining was washed twice with 

100 mM NH4HCO3 buffer (0.7 mL). The combined washings and supernatant was purified by HPLC to 

give a white powder after lyophilization (1.9 mg, 31%). 1H NMR (D2O): δ = 7.68 (s, 1H), 7.66 (s, 1H), 

7.00 (t, J = 8.4 Hz, 1H), 6.53 (d, J = 8.4 Hz, 1H), 6.34 (s, 1H), 6.05 (t, J = 6.8 Hz, 1H), 5.33 (s, 2H), 4.34 

(m, 1H), 4.00 (m, 3H), 3.92 (s, 2H), 2.91 (t, J = 6.4 Hz, 2H), 2.45 (t, J = 6.4 Hz, 2H), 2.12 ppm (m, 2H); 

31P NMR (161 MHz, D2O): δ = -5.9, -10.8, -19.2 ppm; MS (-ESI) m/z: 733 ([M – BOH – H2O - H]-). 

Synthesis of B-TTP analogue 19. To a solution of M-TTP (5.0 mg, 0.0083 mmol, 1.0 equivalent) 

and 2-(azidomethyl)-phenyl-boronic acid (5.1 mg, 0.029 mmol, 3.4 eq) in 120 µL of a mixed solvent 

(H2O/DMF/EtOH = 1/2/1) was added 45 µL of a solution of TBTA (2.8 mg, 0.0052 mmole, 0.62 eq) and 

CuBr (0.4 mg, 0.0028 mmole, 0.34 eq) in 90 µL DMF. Then the mixture was stirred vigorously at room 

temperature for 3 h and centrifuged. Supernatant was removed, and the remaining was washed twice with 

100 mM NH4HCO3 buffer (0.7 mL). The combined washings and supernatant was purified by HPLC to 

give a white powder after lyophilization (2.0 mg, 31%). 1H NMR (D2O): δ = 7.69 (s, 1H), 7.65 (s, 1H), 

7.01 (m, 1H), 6.57 (m, 1H), 6.37 (m, 2H), 6.04 (t, J = 6.8 Hz, 1H), 5.61 (s, 2H), 4.35 (m, 1H), 4.04 (m, 

3H), 3.92 (s, 2H), 2.92 (t, J = 6.4 Hz, 2H), 2.46 (t, J = 6.4 Hz, 2H), 2.11 ppm (m, 2H); 31P NMR (161 

MHz, D2O): δ = -5.1, -10.0, -18.5 ppm; MS (-ESI) m/z: 669 ([M – BOH – PO3H - H]-).  

Synthesis of B-TTP analogue 20. To a solution of M(C)-TTP (5.0 mg, 0.0087 mmol, 1.0 eq) and 

3-(azidomethyl)-phenyl-boronic acid (8.0 mg, 0.045 mmol, 5.2 eq) in 120 µL of a mixed solvent 

(H2O/DMF/EtOH = 1/2/1) was added 50 µL of a solution of TBTA (2.8 mg, 0.0052 mmol, 0.60 eq) and 

CuBr (0.4 mg, 0.0026 mmol, 0.30 eq) in 100 µL DMF. The mixture was stirred vigorously at room 

temperature for 3 h and centrifuged. Supernatant was removed, and the remaining was washed twice with 
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100 mM NH4HCO3 buffer (0.7 mL). The combined washings and supernatant was purified by HPLC to 

give a white powder after lyophilization (1.9 mg, 29%) was obtained. 1H NMR (D2O): δ = 7.86 (s, 2H), 

7.63 (d, J = 7.2 Hz, 1H), 7.55 (s, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.24 (d, J = 7.6 Hz, 1H), 6.25 (t, 1H), 5.59 

(s, 1H), 4.58 (m, 2H), 4.22 (m, 3H), 2.76 (t, J = 6.8Hz, 2H), 2.41 (m, 4H), 1.79 (t, J = 6.4 Hz, 2H), 1.57 

ppm (t, J = 6.4 Hz, 2H); 31P NMR (161 MHz, D2O): δ = -5.4, -10.3, -18.7 ppm; MS (-ESI) m/z: 355.6 

([M – 2H2O – 2H]2-).  

Synthesis of B-TTP analogue 21. To a solution of M(C)-TTP (5.0 mg, 0.0087 mmole, 1.0 eq) and 

2-(azidomethyl)-phenyl-boronic acid (8.0 mg, 0.045 mmol, 5.2 eq) in 120 µL of a mixed solvent 

(H2O/DMF/EtOH = 1/2/1) was added 50 µL of a solution of TBTA (2.8 mg, 0.0052 mmole, 0.60 eq) and 

CuBr (0.4 mg, 0.0026 mmole, 0.30 eq) in 100 µL DMF. The mixture was stirred vigorously at room 

temperature for 3 h and centrifuged. Supernatant was removed, and then the remaining was washed twice 

with 100 mM NH4HCO3 buffer (0.7 mL). The combined washings and supernatant was purified by HPLC 

to give a white powder after lyophilization (0.9 mg, 14%). 1H NMR (D2O): δ = 7.70 (s, 1H), 7.60 (s, 1H), 

7.41 (d, J = 6.4 Hz, 1H), 7.24 (m, 1H), 7.09 (d, J = 6.4 Hz, 1H), 6.74 (m, 1H), 6.07 (t, J = 6.4 Hz, 1H), 

5.53 (s, 2H), 4.41 (m, 1H), 4.04 (m, 3H), 2.56 (t, J = 6.8 Hz, 2H), 2.20 (m, 4H), 1.59 (t, J = 7.6 Hz, 2H), 

1.37 ppm (t, J = 7.6 Hz, 2H);  31P NMR (161 MHz, D2O): δ = -5.1, -10.0, -18.5 ppm;  MS (-ESI) m/z: 

355.6 ([M – 2H2O – 2H]2-). 

PAGE analysis of Klenow fragment-catalyzed primer extension: The mixture of 14-nt primer 

DNA (50 µM), T4 polynucleotide kinase (0.5 units/µL, Biolabs, Inc.) and γ-32P-ATP (0.6 µL, from 

Perkin-Elmer Corp.) in 12 µL T4 kinase buffer solution was incubated at 37 °C for 1 h. The harvested 

32P-labeled DNA was then purified using Microcon YM-3 centrifugal filter (Millipore Corp.) to remove 

low molecular weight molecules. Using a similar primer extension protocol as previously described, the 
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32P-labeled primer alone, reaction mixture without enzyme, reaction mixture without dNTPs, reaction 

mixture with both enzyme and natural dNTPs, and reaction mixture with B-TTP analogues 18-21 together 

with the other 3 dNTPs as well as enzyme were incubated at 37 °C for 1 h. After reaction, the mixtures 

were quenched with 2× DNA loading dye. 3µL of samples from each reaction was taken and run on 15% 

PAGE at 300V for 3 h. After being isolated, fixed and dried, the gel was developed using 

autoradiography (overnight) to obtain the film.  

Primer extension using the Klenow fragment for MALDI-TOF-MS studies: 10 µL of 21-nt 

template (100 µM), 15 µL of 14-nt primer (100 µM), 1 µL of Klenow (5 units/µL), 4µL of dNTPs (0.2 

mM each), 5 µL of 10 × NEB buffer 2, 15 µL of deionized water in total volume of 50 µL of solution was 

prepared for the control experiment; 10 µL of 21-nt template (100 µM), 15 µL of 14-nt primer (100 µM), 

1 µL of Klenow (5 units/µL), 4 µL of B-TTP analogue 18 (2.5 mM), 4 µL of three other dNTPs (0.2 mM 

each), 5 µL of 10 × NEB buffer 2, and 11 µL of de-ionized water in total volume of 50 µL of solution was 

prepared for the reaction by using B-TTP analogue 18. The prepared solutions were then incubated at 37 

°C for 1 h. After further purification using Microcon YM-3 centrifugal filter (Millipore Corp.) to remove 

dNTPs and other low molecular weight molecules, the harvested DNA was directly sent for MALDI 

analysis.  

PCR incorporation using B-TTP analogues: PCR was performed on an Eppendorf Mastercycler 

thermal cycler with ethidium bromide fluorescent imaging. Taq. DNA polymerase was purchased from 

New England Biolabs. Reaction buffer was used as provided by the vendor. 50 µL reaction mixture 

contains template (90-mer single-strand DNA pool 5’-CCTTCGTTGTCTGCCTTCGT-50N-

ACCCTTCAGAATTCGCACCA-3’, with a final concentration 10 nM, where 50N stands for 50 

randomized positions), primer 1 (100 µM, 5’-TGGTGCGAATTCTGAAGGGT-3’), primer 2 (1 µM, 5’-
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CCTTCGTTGTCTGCCTTCGT-3’), dATP, dCTP, dGTP, dTTP or one of the B-TTP analogues or M-

TTP (each with a final concentration of 200 mM), 1 × reaction buffer, and Taq. polymerase (0.5 U). 

Reaction thermocycling is composed of initial denaturation (95 °C 2 min), 30 cycles of 95 °C 20 s, 48 °C 

20 s and 72 °C 30 s, and final extension (72 °C 10 min) then hold at 4 °C. Reaction product was purified 

by washing with H2O in a Millipore Amicon Ultra 10 kDa spin column. The product was then analyzed 

with 15% PAGE by loading with 1 × gel-loading dye (2.5% Ficoll 400, 11 mM EDTA, 3.3 mM Tris-HCl, 

0.017% SDS, 0.015% bromophenol blue at pH 8.0). Denaturing gel analysis was performed by 

denaturing the purified PCR product at 95 °C for 2 min, followed by addition of 1 × loading dye with 8 M 

urea at 70 °C and kept for 2 min. The sample was then loaded onto 15% denaturing PAGE containing 8 

M urea. One portion of purified PCR product was treated with H2O2 (final concentration 10 mM) at rt. for 

2 h before loading onto 15% PAGE. 
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CHAPTER 4. 

Synthesis and Evaluation of New Antagonists of Bacterial Quorum Sensing in Vibrio harveyi 

Abstract: This chapter is mainly based on one paper that has been published in ChemMedChem in 2009 

from page 1457 to 1468 with Mrs. Hangjing Peng from the same group as a co-first author. Specifically, I 

initiated this project through design and synthesis of 12 analouges. Dr. Nanting Ni from the same group 

performed the biological assays of these 12 compounds. Ms. Peng and I contributed to further analouges 

design based on the preliminary results. Ms. Peng completed the synthesis of further designed analogues, 

and the biological assays with the help from Dr. Ni. Dr. Mingyong Li from the same group conducted the 

computational study. Bacterial quorum sensing has received much attention in recent years because of its 

relevance to pathological events such as biofilm formation. Based on the structures of two lead inhibitors 

(IC50: 35-55 mM) against AI-2 mediated quorum sensing identified through virtual screening, we have 

synthesized 39 analogs and examined their inhibitory activities. Twelve of the new analogs showed equal 

or better inhibitory activities compared with the lead inhibitors. The best compound showed an IC50 of 

about 6 mM in a whole cell assay using Vibrio harveyi as the model organism. The structure-activity 

relationship is also discussed in this chapter. 

Introduction 

It is known that bacteria can coordinate community wide activities upon environmental 

stimulation, behave like multi-cellular organisms in some sense, and thus adapt themselves to the 

changing environmental conditions by taking advantage of an intercellular communication process 

known as quorum sensing. Quorum sensing can modulate gene expression and consequently control the 

behavior of bacterial processes such as bioluminescence, biofilm formation, virulence factor 
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expression,[150] conjugation, sporulation, and swarming mobility.[151] Quorum sensing is regulated by 

the production and detection of small signaling molecules called autoinducers (AIs).[86, 152] Several 

major types of small molecules are used as autoinducers in bacteria quorum sensing. For instance, acyl 

homoserine lactones (AHLs) are mostly used by Gram-negative bacteria[153] and autoinducing peptides 

(AIPs) are used in Gram-positive bacteria.[154] Autoinducer-2 (AI-2) seems to mediate quorum sensing 

in a remarkably wide range of bacteria including Gram-negative and Gram-positive bacteria.[155] As a 

result, it was proposed that AI-2 could serve as an “universal signal”, which affects interspecies 

communications among bacteria.[155] The causative agent of the disease cholera, human pathogen 

Vibrio cholerae, also posses the AI-2 mediated quorum sensing pathway.[156, 157] Related research has 

indicated that quorum sensing can control virulence factor expression and biofilm formation in V. 

cholerae.[156, 158]  

Because quorum sensing is involved in the regulation of pathologically relevant events, it is 

conceivable that inhibitors of quorum sensing could have therapeutic applications. Furthermore, quorum 

sensing inhibitors are important research tools in mechanistic studies. Recent years have seen an 

increasing interest in quorum sensing inhibitor/antagonist and agonist development.[152, 159-178] Our 

lab has also discovered several classes of inhibitors against AI-2 mediated quorum sensing.[151, 179, 

180] In this chapter, we describe our effort in developing and optimizing quorum sensing inhibitors 

against the AI-2 pathway using Vibrio harveyi as a model organism. 

AI-2 constitutes a group of compounds that can be inter-converted to each other upon hydration 

and binding with boric acid. Scheme 4.1 shows three examples of the AI-2 family of compounds. The 

key precursor, DPD (A), is synthesized by LuxS from S-ribosylhomocysteine.[181] Among the different 

forms of AI-2, compound B is the active species in regulating quorum sensing in V. harveyi through 
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binding to its receptor, LuxP.[181, 182] The crystal structure of the AI-2-receptor (LuxP) complex in V. 

harveyi has been solved.[181] Using this crystal structure and through virtual screening, we identified 

two hit inhibitors of AI-2 quorum sensing with IC50 values in the range of 35-55 mM (Figure 1).[86] In 

order to further improve potency and achieve an initial understanding of the structure-activity 

relationship, we have designed and synthesized 39 analogs of these two hit compounds. Several potent 

quorum sensing inhibitors with IC50 values in the single digit micromolar range have been found.  
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Scheme 4.1. Different forms of AI-2 

 

Results and Discussion 

Again, the optimization work is based on two inhibitors (KM-03009 and SPB-02229, Figure 4.1) 

identified previously through virtual screening.[86] Though these were not especially potent inhibitors, 

they represented the first AI-2 inhibitors at that time and the structural scaffold was novel and small, 

which allows for easy modification. In the crystal structure of V. harveyi LuxP-AI-2 complex, the 

positively charged side chains of Arg 215 and Arg 310 were known to interact with three of the four 
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borate oxygen atoms and thus stabilize the anionic tetrahedral boron. The two hydroxyl groups and the 

furanoyl oxygen are also involved in hydrogen bonding with Trp 82, Gln 77 and Asn 159.[183] 

 

S S
NH2

SO O
S

NH2

SO O
N

KM-03009 SPB-02229  

Figure 4.1. Hit compounds identified from virtual screening 

 

Compounds KM-03009 and SPB-02229 seem to interact with LuxP by using the sulfone group at 

the position of the borate portion of the natural ligand.[183] Specifically, the two oxygen atoms of the 

sulfone group can interact with Arg 215 and Arg 310, mimicking the borate oxygen atoms.[86] The aryl 

ring is involved in some hydrophobic interactions. Based on these findings and comparison of these two 

lead compounds with the other inactive hit compounds, it seems that the sulfone group should be 

directly attached to an aryl group and the thioamide group should be separated from the sulfone group 

by one atom.[86] With the above information in hand, we were interested in modifying the structure of 

the two lead compounds by changing both ends (R1 and R2, Figure 4.2), while retaining the middle 

skeleton of the structure. In addition, analogs were also prepared to examine the importance of the 

sulfone moiety (part B) and the thioamide/thioester structure (part C). 
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Figure 4.2. Optimization of the lead structure 

For part A of the structure (Figure 4.2), the following aryl groups were used: thiophenyl, 

pyridinyl, phenyl, or substituted phenyl groups including phenyl groups bearing a simple substituent or 

extended by connecting to an additional aryl group. The impact of the polarity and the size of the 

substitution on the phenyl group were studied. The effects of substituents at different positions (para- or 

meta-) of the phenyl ring were also explored. For Part B of the structure, the effect of changing the 

sulfone to a sulfoxide group was examined. For part C, the influence of replacing the thiocarbonyl by a 

carbonyl group was explored. In optimizing part D, the terminal functional group of the structure, 

different classes of compounds were synthesized and compared, including amides, alkylamides, esters, 

acids, isoxazole and hydroxylamine (Schemes 4.2-4.6).  

 

 

Scheme 4.2. Synthesis of compounds 28-30 

a) R1
S

N(R2)2

O

R1
S

N(R2)2

OO O

b) R1
S

N(R2)2

SO O

c)
R1 SH

Conditions: a). Bromoacetamide or N, N-diethylbromoacetamide, K2CO3, acetone, reflux, 7 h. 
b). Oxone, H2O/ MeOH/ THF, rt., overnight, 44-78% in two steps. c). Lawesson's reagent, anhydrous THF, reflux, 2 h, 25-61%.

29a R1 = Thiophen-2-yl, R2 = H
29b R1 = Phenyl, R2 = H
29c R1 = Thiophen-2-yl, R2 = CH2CH3
29d R1 = Phenyl, R2 = CH2CH3

KM-03009 R1 = Thiophen-2-yl, R2 = H
30b R1 = Phenyl, R2 = H
30c R1 = Thiophen-2-yl, R2 = CH2CH3
30d R1 = Phenyl, R2 = CH2CH3

27a R1 = Thiophen-2-yl
27b R1 = Phenyl

28a R1 = Thiophen-2-yl, R2 = H
28b R1 = Phenyl, R2 = H
28c R1 = Thiophen-2-yl, R2 = CH2CH3
28d R1 = Phenyl, R2 = CH2CH3

27 28 29 30
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Scheme 2 describes the synthesis of amide and thioamide compounds 28-30. Specifically, 

arylsulfonyl amides (29) were synthesized in two steps from aryl thiols (27) and the corresponding α-

haloacetamides through substitution in the presence of potassium carbonate under reflux, followed by 

oxidation with oxone at room temperature.[184] Thiation of arylsulfonyl amides (29) was accomplished 

by using Lawesson’s reagent in THF [185] with yields in the range of 25-60%. 

 

 

Scheme 4.3. Synthesis of compounds 31-35 

The ester, thioester and acid analogs were synthesized as described in Scheme 4.3. Specifically, 

the synthesis of arylsulfonyl esters (32) was very similar to that of arylsulfonyl amides (29) except for 

that o-xylene was used in the thiation reaction as the solvent instead of THF because esters are less 

reactive toward the Lawesson’s reagent and requires higher temperature.[185, 186] The sulfonyl acetic 

acids (34) were synthesized through hydrolysis of the corresponding methyl esters (32) at 50 ºC under 

basic conditions. Arylsulfinyl acetate (35) was synthesized in high yield through the oxidation of 

arylthioacetate (31) using m-CPBA in DCM at 0 ºC.[187] 

a) R1
S

OR2

O

R1
S

OR2

OO O

b) R1
S

OR2

SO O

c)

R1
S

OH

OO O

33a R1 = Thiophen-2-yl, R2 = CH2CH3
33b R1 = Phenyl, R2 = CH2CH3
33c R1 = Thiophen-2-yl, R2 = CH(CH3)2
33d R1 = Phenyl, R2 = CH(CH3)2
33e R1 = 4-Bromophenyl, R2 = CH2CH3
33f R1 = 4-Methoxyphenyl, R2 = CH2CH3
33g R1 = CH2CH2CH3, R2 = CH2CH3

32a R1 = Thiophen-2-yl, R2 = CH2CH3
32b R1 = Phenyl, R2 = CH2CH3
32c R1 = Thiophen-2-yl, R2 = CH(CH3)2
32d R1 = Phenyl, R2 = CH(CH3)2
32e R1 = Thiophen-2-yl, R2 = CH3
32f R1 = Phenyl, R2 = CH3
32g R1 = 4-Bromophenyl, R2 = CH2CH3
32h R1 = 4-Bromophenyl, R2 = CH3
32i R1 = 3-Bromophenyl, R2 = CH2CH3
32j R1 = 4-Methoxyphenyl, R2 = CH2CH3
32k R1 = CH2CH2CH3, R2 = CH2CH3

8a R1 = Thiophen-2-yl
8b R1 = Phenyl

Conditions: a). Alkyl bromoacetate, K2CO3, acetone, reflux, 7 h. b). Oxone, H2O/ MeOH/ THF, rt., overnight, 45-95% in two steps. 
c). Lawesson's reagent, anhydrous o-xylene, reflux, 5 h, 9-34%. d).  NaOH, MeOH/ H2O/ THF, 50 oC, 6 h, 72-86%.
e). m-CPBA, DCM, 0 oC, 25 min, 85%.

d)e)R1
S

OR2

OO

35a R1 = 4-Bromophenyl, R2 = CH2CH3

27a R1 = Thiophen-2-yl
27b R1 = Phenyl
27c R1 = 4-Bromophenyl
27d R1 = 3-Bromophenyl
27e R1 = 4-Methoxyphenyl
27f  R1 = CH2CH2CH3

27

31a R1 = Thiophen-2-yl, R2 = CH2CH3
31b R1 = Phenyl, R2 = CH2CH3
31c R1 = Thiophen-2-yl, R2 = CH(CH3)2
31d R1 = Phenyl, R2 = CH(CH3)2
31e R1 = Thiophen-2-yl, R2 = CH3
31f R1 = Phenyl, R2 = CH3
31g R1 = 4-Bromophenyl, R2 = CH2CH3
31h R1 = 4-Bromophenyl, R2 = CH3
31i R1 = 3-Bromophenyl, R2 = CH2CH3
31j R1 = 4-Methoxyphenyl, R2 = CH2CH3
31k R1 = CH2CH2CH3, R2 = CH2CH3

31 32 33

3435
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Scheme 4.4. Synthesis of compounds 36 and 37 

Compounds with extended phenyl rings were synthesized using the procedure shown in Scheme 

4.4. Specifically, Suzuki coupling reaction was used for the addition of an extra aryl ring to give 36.[188] 

Conversion of the ester group to a thioester (37) was accomplished using Lawsson’s reagent as 

described above. 

 

 

Scheme 4.5. Synthesis of compounds 39-41 
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Conditions: a). 4-Carbamoylphenylboronic acid or 2,3-dihydrobenzo[b][1,4]dioxin-6-yl-6-
boronic acid or isoquinolin-4-yl-4-boronic acid, Pd(OAc)2, PPh3, K2CO3,  MF, 90 oC, 8 h, 
30-88%. b). Lawesson's reagent, anhydrous o-xylene, reflux, 6 h, 17-21%.

36a Ar = Phenyl
36b Ar = 4-Methylphenyl

36c Ar = 

36d Ar = 

36e Ar =

37a Ar = Phenyl
37b Ar = 4-Methylphenyl
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a). AIBN, NBS, CCl4, reflux/ hν 4.5 h, 40%; b). Thiophene-2-thiol (27a) or thiophenol (27b), K2CO3, 
acetone, reflux, 6 h; c). MeOH/ THF, oxone/ H2O, rt, overnight, 54-69% in two steps.

41a R = Thiophen-2-yl
41b R = Phenyl

40a R = Thiophen-2-yl
40b R = Phenyl

40 4138 39
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Scheme 4.6. Synthesis of compounds 43-47 

Compounds 39-41 and 43-47 were synthesized using the procedures described in Schemes 4.5 

and 4.6. The sulfonylmethyl isoxazoles (41) were synthesized in two steps from the reaction between 

aryl thiols (27) and bromomethyl isoxazole (49) followed by oxidation using oxone. The synthesis of 

sulfonyl N-hydroxyethylamines (47) were completed in five steps. The substitution reaction between an 

aryl thiol (27) and bromoacetaldehyde acetal (42) was accomplished in the presence of sodium ethoxide 

(1 equivalent). Acidic hydrolysis of the dimethyl acetal (43) yielded the aldehyde (44),[189] which was 

then converted to oxime (45). Sulfone (46) was prepared through oxidation using oxone and then the 

oxime moiety was reduced to N-hydroxyethylamine (47) using NaCNBH3 at room temperature.[190]  

All compounds synthesized were evaluated for their ability to inhibit AI-2-mediated quorum sensing 

following literature procedures.[151, 183, 191-193] In doing so, the MM32 strain of V. harveyi was used. 

As discussed above, V. harveyi produces bioluminescence upon quorum sensing and the intensity of 

bioluminescence is controlled by the level of AI-2 stimulation.[152] The MM32 strain lacks the LuxN 

receptor, which is required to respond to AI-1[183], and LuxS, which catalyzes the biosynthesis of DPD. 
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NOHR
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Br
OMe

S
OMeR b) c)a)

a). Thiophene-2-thiol (27a) or thiophenol (27b), EtONa, reflux, 2 h, 48-59%; b). 1% HCl, acetone, 
1.5 h, 51-94%; c). NH2OH HCl, KHCO3, MeOH, rt, 1.5 h, 67-91%; d). MeOH/ THF, oxone/ H2O, rt, 
overnight, 84%; e). NaCNBH3, 4.0 M HCl in dioxane, MeOH, rt, 2.5 h, 30-38%.

e)

OMe

d)

O O
S

NHOHR
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47a R = Thiophen-2-yl
47b R = Phenyl

43a R = Thiophen-2-yl
43b R = Phenyl

44a R = Thiophen-2-yl
44b R = Phenyl

45a R = Thiophen-2-yl
45b R = Phenyl

42 43 44 45

46a R = Thiophen-2-yl
46b R = Phenyl

46 47
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Therefore, the bioluminescence can only be produced if a proper amount of DPD is added to the culture 

because there is no endogenous AI-2, and the level of AI-1 does not interfere with the AI-2 inhibition 

assay.  

Inhibition of luminescence production by the synthesized compounds was studied in the presence 

5 mM of DPD, which was chosen to ensure that luminescence production stays in a sensitive region as 

described previously.[151] DMSO, which is used to dissolve the compounds for making the stock 

solutions, was found to have significant influence on the bioluminescence.[151] Therefore, a constant 

concentration of DMSO (0.4% in volume) was maintained in the final test solutions so as to exclude its 

possible side effect on the results. A 96-well plate reader was used for the luminescence determination 

in an inhibitor concentration range from 400 to 0 mM. The IC50 values were then calculated according to 

the inhibition curves.  

Since the MM32 strain does not respond to AI-1, we also utilized the BB886 strain of V. harveyi, 

which lacks the AI-2 receptor, to test the AI-1 inhibition activities of the synthesized compounds and to 

check their selectivity toward AI-2-mediated quorum sensing. Before the inhibition test, the two strains 

were checked for their specificity for AI-2 and AI-1 by incubation in the presence of boric acid/DPD 

and cell-free medium from MM32 (Lacks luxS enzyme which produces AI-2), respectively. The results 

confirmed that the MM32 strain did not respond to AI-1 and the BB886 strain did not respond to AI-2. 

Among all the compounds tested, 12 compounds (Compounds 33a-f, 6g, 36a-c, and 37a-b) were 

observed to have significant inhibition activities against AI-2 mediated quorum sensing with IC50 at or 

below 40 mM and 4 compounds (36a-b, 37a-b) have IC50 in the single digit micromolar range. Among 

the 12 active compounds, five compounds (33c-d, 36a, 36c, and 37b) showed good selectivity towards 

AI-2 with the IC50 values for AI-1 inhibition above 200 mM. 
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In analyzing the AI-2 inhibition results, we were interested in achieving some basic 

understanding of the structural features, which are essential and/or beneficial for AI-2 inhibition. The 

first thing that we examined was whether the thioamide structure (part C, Figure 4.2) was important. 

From the compounds listed in Table 4.1, one can see that the “thio” structure feature was important for 

activity, but not essential. For example, the only difference between KM-03009 and 29a was that one 

was the thioamide (KM-03009) and the other one was a simple amide. However, their activities differ by 

over ten-fold with the thioamide compound being more active. The situations are similar when 

comparing 29b vs. 30b, 29c vs. 30c, and 29d vs. 30d.  

 

R1
S

N(R2)2

XO O  
Table 4.1. Structures and activities of amides and thioamides 

Compound R1 = R2 = X = 
IC50 for AI-2 

(mM) 

IC50 for AI-1 

(mM) 

KM-03009 Thiophen-2-yl H S 35±3 71±5 

29a Thiophen-2-yl H O >400 -- 

29b Phenyl H O >400 >400 

30b Phenyl H S 89±10 158±22 

29c Thiophen-2-yl Ethyl O >400 >400 

30c Thiophen-2-yl Ethyl S 138±25 143±18 

29d Phenyl Ethyl O >400 >400 

30d Phenyl Ethyl S 91±14 >400 
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Next we examined the comparison between thioesters and esters (Table 4.2). The same 

conclusions can be drawn, i.e., “thiation” is very important for AI-2 activities in this series with the 

thioesters having higher or equal activities compared with regular esters. For example, the only 

difference between 32a and 33a is that 32a is an ester and 33a is a thioester and yet their IC50 values 

differ by about 6-fold. The situations are similar when comparing between 32b and 33b, and 32c and 

33c. However, there are also other cases, such as 32d vs. 33d and 32g vs. 33e, where the thioesters and 

the esters have similar activities. 

 

R1
S

OR2

XO O  
Table 4.2. Structures and activities of esters and thioesters 

Compound R1 = R2 = X = IC50 for AI-2 

(mM) 

IC50 for AI-1 

(mM) 

32a Thiophen-2-yl Ethyl O 124±16 >400 

33a Thiophen-2-yl Ethyl S 22±2 54±6 

32b Phenyl Ethyl O 170±30 >400 

33b Phenyl Ethyl S 33±4 96±20 

32c Thiophen-2-yl Isopropyl O 127±21 >400 

33c Thiophen-2-yl Isopropyl S 34±2 >400 

32d Phenyl Isopropyl O 38±15 217±101 

33d Phenyl Isopropyl S 33±4 >400 

32e Thiophen-2-yl Methyl O >400 >400 

32f Phenyl Methyl O >400 >400 

32g 4-Bromophenyl Ethyl O 17±3 11±1 

33e 4-Bromophenyl Ethyl S 14±2 35±10 
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32h 4-Bromophenyl Methyl O 81±3 115±35 

32i 3-Bromophenyl Ethyl O 163±22 319±23 

32j 4-Methoxyphenyl Ethyl O 87±6 79±15 

33f 4-Methoxyphenyl Ethyl S 26±4 33±4 

32k Propyl Ethyl O >400 >400 

33g Propyl Ethyl S 122±36 51±6 

 

In comparing between esters and amides (Part D), higher inhibition activities of the ethyl and 

isopropyl esters were observed compared to their corresponding amides. For example, thioesters 33a-d 

(Table 4.2, between 22 and 34 mM) have lower IC50 values compared to their corresponding thioamides 

such as KM-03009 (35 mM) and 30b-d (around 100 mM), though it is hard to say whether some of these 

small differences are meaningful given the intrinsic fluctuation of whole cell assay results. For the 

substituents of part D of the ester series, there is essentially no difference between ethyl esters and 

isopropyl esters, but methyl esters are obviously weaker inhibitors. For example, compounds 32e and 

32f are inactive toward AI-2. However, the same trend was not observed with the amide compounds. 

One thing worth mentioning is that the isopropyl ester compounds (32c, d and 33c, d) seem to show the 

highest selectivity between AI-1 and AI-2 inhibition. 

As for Part A, the aryl ring of the structure seems to be an important component for activities 

because the replacement of the aryl ring by an alkyl group led to a significant decrease in the activity. 

This becomes very clear when the IC50 values of compounds with an alkyl chain at the Part A position 

such as 32k (Table 4.2, ester, >400 mM) and 33g (Table 4.2, thioester, 122 mM) are compared with 

most of the other ethyl esters (around 150 mM for esters and 30 mM for thioesters). A heterocycle, such 

as the thiophenyl group, is slightly better than a phenyl group. For example the IC50 values of 
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compounds 32a/33a (thiophenyl) are slightly lower than that of compounds 32b/33b (phenyl). 

Additional substituents on the aryl ring seem to favor inhibition activities. For example, adding a bromo 

or a methoxyl group at the para- position of the phenyl ring resulted in significantly improved activities 

from an IC50 of 170 mM (6b) to 17 mM (6g) and 87 mM (6j). However, if the substituent is on the meta- 

position, no improvement was observed. A case in point is compound 6i, which has an IC50 of 163 mM.

 

S
O

XO O

Ar

 
Table 4.3. Structures and activities of biaryl compounds 

Compound Ar = X = 
IC50 for AI-2 

(mM) 

IC50 for AI-1 

(mM) 

36a Phenyl O 8.7±2.9 293±108 

37a Phenyl S 5.7±0.8 32±2 

36b 4-Methylphenyl O 8.2±2.3 66±32 

37b 4-Methylphenyl S 5.6±1.3 >400 

36c H2N

O

 
O 31±2 >200 

36d 
O

O  O 158±43 >400 

36e 
N

 
O >400 >400 

 

Because of the promising results with para-substituted phenyl group in part A, we synthesized 

additional compounds with a bulky substituent at the para-position (Table 4.3). Several points are 

readily noticeable in this series of compounds. First, the “biaryl” compounds tend to be more active than 
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the single aryl compounds unless the second aryl group has ring heteroatom and/or a substitution. For 

example, biaryl compounds 36a, b (8.2-8.7 mM) and 37a, b (5.6-5.7 mM) all have IC50 values in the 

single digit micromolar range, while their corresponding “single aryl ring” analogs compounds 32b (170 

mM) and 33b (33 mM) have much lower activities. However, with an isoquinolinyl (36c) or 

dihydrobenzodioxinyl (36d) group as the second ring, the IC50 values are over 150 mM. Second, a 

methyl group on the additional phenyl ring does not seem to make much difference. However, when a 

bulky group is attached, the molecule starts to lose its activity. This point is demonstrated by the activity 

change from 36a to 36e, which has a quinoline as the second ring. Third, as for the selectivity in 

inhibition against AI-2 and AI-1, a phenyl group extended by a second phenyl ring seems to improve the 

selectivity in biaryl compound 36a (about 34 fold), whereas a polar substituent on the phenyl ring seems 

to decrease the selectivity for AI-2 (e.g., 32g-j and 33e-f). Fourth, the effect of “thiation” of the carbonyl 

group in the biaryl series seems to be less significant compared to those with only one aryl group. For 

example, the IC50 of biaryl compounds 36a-b (esters, 8.2-8.7 mM) are close to those of compounds 37a-

b (thioesters, about 5.6-5.7 mM). Overall, the introduction of a second aryl ring is advantageous for 

improved activity and selectivity. 

The results of inhibition evaluation also revealed that reducing the sulfone group to a sulfoxide 

seems to result in diminished activities. For example, compound 32g (sulfone) has an IC50 of 17 mM, 

while the corresponding sulfoxide (35a, Table 4.4) has an IC50 of 48 mM. The possible reason for the 

activity difference may be due to the better structure mimicry of the borate group in AI-2 by a sulfone 

group than a sulfoxide. Additionally, a charged or polar terminal group (part D) also results in 

significantly reduced activities (34a, b, 41a, b, 47a, b) 
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Table 4.4. Structures and activities of other compounds 

Compound Structure 
IC50 for AI-2 

(mM) 

IC50 for AI-1 

(mM) 

35a S
O

O

Br

O  
48±14 303±10 

34a S
OH

OO O
S

 
>400 >400 

34b S
OH

OO O  
>400 >400 

41a S N
OS

O O  
>400 >400 

41b S N
O

O O  
150±30 >400 

47a S
NHOHS

O O  
>400 Agonist 

47b S
NHOH

O O  
267±49 -- 

 

In order to exclude potentially misleading results caused by possible cytotoxicity, the effect of 

selected synthesized active inhibitors with IC50 values below 150 mM (30c, 30d, 32a, 33a, 33b, 32c, 33c, 

32d, 33d, 32g, 33e, 32h, 32j, 33f, 36a, 37a, 36b, 37b, 36c, and 35a,) on bacterial growth was tested on 

the MM32 strain of V. harveyi by following procedures published earlier.[86] The results showed that 

none of these compounds has cytotoxicity at concentrations, which are twice the IC50 value. That means 

the decrease of bioluminescence production observed was solely due to the inhibition of quorum sensing.  

To further explore the influence of the compounds on the growth of bacteria and to normalize the 

bioluminescence to cell density, especially during the same time point in which we assayed for the 

inhibition of fluorescence, a plate counting test was performed for the following compounds: KM-03009, 
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36a, 36b, 36c, 37a and 37b, using the MM32 strain of V. harveyi. The bacteria culture incubated for 5 

hours in the presence of a compound at a concentration, which was close to its IC50 was diluted to 1:100 

and 1:1000, and plated onto fresh LM plates and incubated at 30 ºC for 24-48 hr. The colonies appeared 

were counted and compared to the blank (bacteria incubated without any inhibitor). The number of CFU 

(colony forming unit) of the bacteria incubated in the presence of an inhibitor at about the IC50 

concentration was about the same as that of the blank. For example, the number of colonies appeared in 

the presence of the inhibitors ranged from 80-170% of that of the controls (without any inhibitors), 

while the bioluminescence intensity of these experiments with inhibitors at IC50 concentrations was only 

30-60% of the controls. Such results further suggested that the compounds indeed inhibited the 

luminescence production (quorum sensing), not bacteria growth.  

Aimed at achieving further understanding of the structure-activity relationship, we also 

conducted a Comparative Molecular Field Analysis (CoMFA). The CoMFA methodology is a 3D 

Quantitative Structure-Activity Relationship (3D-QSAR) technique by analyzing the steric and 

electrostatic fields.[194] In this case all compounds were optimized by the semi-empirical 

MOPAC/AM1 method[195] and then assigned with AM1BCC charges.[196-198] These conformations 

were then aligned with compound 37a (the most potent compound) for CoMFA computation as depicted 

in Figure 4.3. 
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Figure 4.3. Molecular alignments of all compounds 

 

CoMFA results suggest that the steric and electrostatic fields contribute 56% and 44% to AI-2 

inhibitory activities, respectively. Statistically, the resulting standard error (SE) of 0.207, noncross-

validated correlation coefficient (r2) of 0.931, cross-validated coefficient (q2) of 0.922 and F value of 

76.72 confirm the reliability of our CoMFA model. Table 4.5 shows that comparison of the calculated 

pIC50 and experimentally determined pIC50 values using the CoMSIA model developed and Figure 4 

shows the schematic correlation of such data. 

 

Table 4.5. Experimental pIC50, predicted pIC50 and residual values of molecules 

used for CoMFA computation 

Compound Experimental pIC50 Predicted pIC50 Residual 

KM-03009 4.46 3.87 0.59 

SPB-02229 4.26 4.44 -0.18 

29a 3.00 3.22 -0.22 
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29b 3.00 3.25 -0.25 

30b 4.05 3.87 0.18 

29c 3.00 3.13 -0.13 

30c 3.86 3.91 -0.05 

29d 3.00 3.30 -0.30 

30d 4.04 3.71 0.33 

32a 3.91 3.91 0.00 

33a 4.66 4.32 0.33 

32b 3.77 3.62 0.15 

33b 4.48 4.55 -0.07 

32c 3.90 4.11 -0.21 

33c 4.47 4.38 0.09 

32d 4.42 4.32 0.10 

33d 4.48 4.56 -0.08 

32e 3.00 3.01 -0.01 

32f 3.00 3.12 -0.12 

32g 4.77 4.51 0.26 

33e 4.85 4.94 -0.08 

32h 4.09 3.76 0.34 

32i 3.79 3.83 -0.04 

32j 4.06 4.13 -0.07 

33f 4.59 4.73 -0.14 

32k 3.00 3.04 -0.04 

33g 3.91 4.00 -0.09 

36a 5.05 4.89 0.15 
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37a 5.22 5.51 -0.28 

36b 5.10 4.95 0.15 

37b 5.22 5.48 -0.26 

36c 4.51 4.40 0.11 

36d 3.80 3.67 0.14 

36e 3.00 2.97 0.03 

35a 4.32 4.40 -0.08 

34a 3.00 3.10 -0.10 

34b 3.00 2.95 0.05 

41a 3.00 3.08 -0.08 

41b 3.82 3.85 -0.03 

47a 3.00 3.01 -0.01 

47b 3.57 3.69 -0.11 
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Figure 4.4. Experimental versus predicted pIC50 for CoMFA 3D-QSAR model 

For clarity in presentation, two 3D contour maps are shown in Figure 4.5. In the steric contour 

map, a high density of green and yellow colors around the R1 substituent (Figure 4.2) suggests that a 

moderate bulky aromatic ring, such as diphenyl ring, is favorable; in the meanwhile the yellow color 

around the R2 substituent also indicates a less bulky group here is desired. In the electrostatic contour 

map, a red color around the sulfonyl moiety and the R2 substituent suggests that the less electronegative 

substituents in these positions could enhance the biological activity. The CoMFA model may provide 

useful insight into the future design of novel AI-2 inhibitors. 
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Figure 4.5. 3D contour maps around compound 37a as the result of a CoMFA analysis of the AI-2 

inhibitory activities. Regions where substitution enhances (green) or reduces (yellow) the inhibitory 

affinity (left); the color coding indicates regions where electronegative substituents would enhance (blue) 

or reduce (red) the inhibitory activities (right). 

 

Though the studies presented give an initial understanding of the structure-activity relationship, 

it should be noted that whole cell bacterial assays have certain intrinsic experimental variations that may 

not allow us to draw firm conclusions related to structural variations that only resulted in small changes 

in activities. When the same compound was tested using an entirely new batch of bacteria from the same 

source, IC50 variations of up to 1-3 fold were observed in some extreme cases. Though such variations 

are common in whole cell bacterial assay, one does need to be careful in drawing quantitative 

conclusions. The results presented can be viewed as a qualitative trend. 

 

Conclusions 
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In this study, structure optimization was performed with two hit compounds obtained from 

virtual screening. Thirty nine new analogs were successfully synthesized and tested. Among all 

the synthesized analogs, 12 were found to show good inhibition activity with IC50 values below 

40 mM, 4 of which showed single digit micromolar IC50 values, while 6 out of the 12 possess 

good selectivity toward AI-2 mediated quorum sensing. Overall, the following structural features 

are beneficial to AI-2 inhibition activities: a sulfone group (part B), “thiation” of the carbonyl 

group of part C, a hydrophobic group of modest size in part D, and a biphenyl system in part A. 

 

Experimental Section 

General Chemistry 

All reagents were purchased from Acros and Aldrich. Boronic acids were provided by 

Frontier Scientific, Inc. DPD was synthesized following literature procedures.[169, 177] 1H-

NMR and 13C-NMR spectra were recorded at 400 and 100 MHz, respectively, on a Bruker 400 

NMR spectrometer. Mass spectral analyses were performed by the mass spectrometry facilities 

at Georgia State University. 

 

Synthesis 

General Experimental Procedure for Substitution Reaction of Thiol and Haloacetamides, 

Haloacetates or 5-(Bromomethyl)isoxazole. Representative Procedure for Substitution of 

Thiophene-2-thiol (27a) and 2-Iodoacetamide (Schemes 4.2 and 4.3, reaction a; Scheme 4.5, 

reaction b): A mixture of thiophene-2-thiol (27a, 690 mg, 5.94 mmol, 2.2 equiv.), 2-

iodoacetamide (499 mg, 2.7 mmol, 1.0 equiv.) and potassium carbonate (560 mg, 4.05 mmol, 1.5 

equiv.) in acetone (20 mL) was heated under reflux for 6 h (TLC). The solution was filtered and 
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solvent was evaporated. Dichloromethane (50 mL) was added to dissolve the residue. The 

solution was washed with saturated NaHCO3 (8 mL × 2), H2O (5 mL × 2) and brine (10 mL), 

and dried over Na2SO4. Evaporation of solvent afforded the crude product which was purified by 

column chromatography (Hex/EtOAc, 2:1) to give 2-(thiophen-2-ylthio)acetamide (28a, 229 mg, 

49%) as light yellow oil. The crude product can also be used in the next step without purification. 

Ethyl 2-(phenylthio)acetate (31b). Yellow oil; yield 64%; 1H NMR (CD3OD) δ 7.39-7.40 

(d, J = 7.2 Hz, 2H), 7.28-7.31 (t, J = 7.2 Hz, 7.68 Hz, 2H), 7.20-7.24 (t, J = 6.8 Hz, 7.6 Hz, 1H), 

4.08-4.13 (t, J = 7.2 Hz, 2H), 3.68 (s, 2H), 1.16-1.19 (t, J = 7.2 Hz, 3H); GC-MS, m/z 196 (M+). 

 Ethyl 2-(4-bromophenylthio)acetate (31g). Colorless oil; yield 87%; 1H NMR (CDCl3) δ 

7.41-7.43 (d, J = 8.4, 2H), 7.26-7.30 (d, J = 8.4 Hz, 2H) , 4.14-4.19 (q, J = 7.2 Hz, 2H), 3.61 (s, 

2H), 1.21-1.25 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3) δ 169.4, 134.2, 132.1, 131.5, 121.0, 61.7, 

36.6, 14.1; MS (ES+), m/z 275.0 (M+1) +. 

 Methyl 2-(4-bromophenylthio)acetate (31h). Colorless oil; yield 56%; 1H NMR (CDCl3) 

δ 7.42-7.44 (d, J = 8.4 Hz, 1H), 7.26-7.29 (d, J = 8.8 Hz, 1H), 3.72 (s, 3H), 3.63 (s, 2H), 13C 

NMR (CDCl3) δ 169.9, 134.1, 132.1, 131.5, 121.1, 52.6, 36.4; MS (ES+), m/z 282.9 (M+23) +. 

 Ethyl 2-(4-methoxyphenylthio)acetate (31j). Colorless oil; yield 99%; 1H NMR (CDCl3) 

δ 7.41-7.43 (d, J = 8.8 Hz, 2H), 6.83-6.86 (d, J = 8.8 Hz, 2H) , 4.11-4.17 (q, J = 7.2 Hz, 2H), 

3.79 (s, 3H), 3.51 (s, 2H), 1.20-1.23 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3) δ 169.9, 159.6, 134.2, 

124.9, 114.6, 61.3, 55.3, 38.6, 14.1; MS (ES+), m/z 227.1 (M+1) +. 

 Ethyl 2-(propylthio)acetate (31k). Colorless oil; yield 77%; 1H NMR (CDCl3) δ 4.17-4.22 

(q, J = 7.2 Hz, 2H), 3.21 (s, 2H), 2.60-2.64 (t, J = 14.8 Hz, 2H), 1.59-1.68 (m, J = 7.2 Hz, 2H), 

1.27-1.31 (t, J = 7.2 Hz, 3H), 0.98-1.01 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3) δ 170.6, 61.2, 

34.6, 33.6, 22.3, 14.1, 13.3; MS (ES+), m/z 163.1 (M+1) +. 
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 5-(Phenylthiomethyl)isoxazole (40b). Yellow oil; yield 87%; 1H NMR (CDCl3) δ 8.15 (s, 

1H), 7.25-7.38 (m, 5H), 6.07 (s, 1H), 4.19 (s, 2H); GC-MS, m/z, 191 (M+). 

 General Experimental Procedure for Oxone Oxidation Reaction. Representative 

Procedure for Oxidation of 2-(Thiophen-2-ylthio)acetamide (28a) (Schemes 4.2 and 4.3, reaction 

b; Scheme 4.5, reaction c, Scheme 4.6, reaction d): To a stirred solution of 2-(thiophen-2-

ylthio)acetamide (28a, 229 mg, 1.32 mmol, 1.0 equiv.) in MeOH (5.4 mL) and THF (5.4 mL) 

was added the solution of oxone (1.12 g, 1.82 mmol, 1.38 equiv.) in H2O (7.2 mL) dropwise. The 

mixture was stirred at room temperature overnight. The solution was filtered and solvent was 

removed. Then dichloromethane (50 mL) was added and the solution was washed with H2O (8 

mL), brine (8 mL × 2), and dried over Na2SO4. Evaporation of solvent afforded the crude product 

which was purified by column chromatography (Hex/EtOAc 2:1 – 1:1) to give 2-(thiophen-2-

ylsulfonyl)acetamide (29a, 241 mg, 89%) as white solid. 

 2-(Thiophen-2-ylsulfonyl)acetamide (29a). White solid; yield 44% for two steps; 1H 

NMR (CD3OD): δ 7.97 (s, 1H), 7.78 (s, 1H), 7.23-7.24 (d, 1H), 4.23 (s, 2H); 13C NMR (CD3OD): 

δ 164.4, 139.5, 135.0, 127.7, 62.4; MS (ES+), m/z 206 (M+1) +, 228 (M+Na)+. 

 2-(Phenylsulfonyl)acetamide (29b). White solid; yield 89% in two steps. 1H NMR 

((CD3)2CO) δ 7.95-7.97 (m, 2H), 7.73-7.77 (m, 1H), 7.63-7.67 (m, 2H), 6.71-7.18 (br, 2H), 4.17 

(s, 2H); 13C NMR ((CD3)2CO) δ 162.4, 139.9, 133.8, 129.1, 128.3, 61.4; MS (ES+), m/z 200 

(M+1) +, 222 (M+Na)+. 

 N,N-Diethyl-2-(thiophen-2-ylsulfonyl)acetamide (29c).Light yellow crystals; yield 78% 

in 2 steps; 1H NMR (CDCl3) δ 7.74-7.76 (m, J = 4.8 Hz, 2H), 7.15-7.18 (t, J = 4.8 Hz, 1H), 4.29 

(s, 2H), 3.45-3.50 (q, J = 7.2 Hz, 2H), 3.34-3.40 (q, J = 7.2 Hz, 2H), 1.20-1.24 (t, J = 7.2 Hz, 3H), 
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1.11-1.14 (t, J = 7.2 Hz, 3H), 13C NMR (CDCl3) δ 160.6, 139.6, 135.6, 135.0, 128.0, 61.0, 43.3, 

41.1,14.4, 13.0; MS (ES-), m/z 260.0 (M-1) -, m.p. = 89-90 ºC. 

 N,N-Diethyl-2-(phenylsulfonyl)acetamide (29d). White crystals 72% for 2 steps; 1H 

NMR (CDCl3) δ 7.92-7.94 (d, J = 7.2 Hz, 2H), 7.65-7.69 (t, J = 7.2 Hz, 1H), 7.55-7.59 (t, J = 7.6 

Hz, 2H), 4.21 (s, 2H), 3.45-3.51 (q, J = 7.2 Hz, 2H), 3.32-3.37 (q, J = 7.2 Hz, 2H), 1.20-1.24 (t, J 

= 7.2 Hz, 3H), 1.08-1.11 (t, J = 7.2 Hz, 3H), 13C NMR (CDCl3) δ 160.6, 139.0, 134.3, 129.2, 

128.8, 60.0, 43.3, 41.0,14.4, 12.9; MS (ES-), m/z 255.0 (M-1)-; m.p. = 84-85 ºC. 

 Ethyl 2-(thiophen-2-ylsulfonyl)acetate (32a). colorless oil; yield 71% in two steps; 1H 

NMR (CDCl3) δ 7.80-7.81 (dd, J = 1.2 Hz, 3.6 Hz, 4.8 Hz, 1H), 7.76-7.78 (dd, J = 1.2 Hz, 4.0 

Hz, 4.8 Hz, 1H), 7.18-7.20 (q, J = 1.2 Hz, 3.6 Hz, 4.0 Hz, 1H), 4.22 (s, 1H), 4.16-4.21 (q, J = 7.2 

Hz, 2 H), 1.21-1.25 (t, J = 7.2 Hz, 3 H); 13C NMR (CDCl3) δ 162.3, 139.3, 135.4, 135.1, 128.0, 

62. 5, 62.0, 13.9; MS (ES+), m/z, 235 (M+), 257 (M+Na)+. 

 Ethyl 2-(phenylsulfonyl)acetate (32b). White solid; yield 71%; 1H NMR (CDCl3) δ 7.95-

7.97 (d, J = 7.6 Hz, 2H), 7.68 – 7.72 (t, J = 7.2 Hz, 1H), 7.57-7.61 (t, J = 7.2 Hz, 7.6 Hz, 

2H),4.17 (s, 1H), 4.12-4.15 (q, J = 7.2 Hz, 2H), 1.17–1.26 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3) 

δ 162.3, 138.7, 134.3, 129.2, 128.6, 62.4, 61.0, 13.9; MS (ES+), m/z, 229 (M+1) +, 251 (M+Na)+; 

m.p. = 43-44 ºC. 

 Isopropyl 2-(thiophen-2-ylsulfonyl)acetate (32c). Colorless oil, yield 95% in two steps; 

1H NMR (CDCl3) δ 7.69-7.71 (m, 2H), 7.10 – 7.12 (t, J = 4.0 Hz, 1H), 4.94- 4.97 (m, J = 6.0 Hz, 

1H) 4.11 (s, 2H), 4.15 – 4.20 (d, J = 6.0 Hz, 6H). 13C NMR (CDCl3) δ 161.7, 139.4, 135.3, 134.8, 

127.8, 70.6, 62.3, 21.5; MS (ES-), m/z, 247 (M-1) - 

 Isopropyl 2-(phenylsulfonyl)acetate (32d). Colorless oil; yield 92% in two steps; 1H 

NMR (CDCl3) δ 7.92-7.94 (d, J = 8.0 Hz, 2H), 7.64 – 7.68 (m, 1H), 7.54-7.58 (m, 2H), 4.91- 
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4.97 (m, J = 6.0 Hz, 1H) 4.07 (s, 2H), 4.13, 4.14 (d, J = 6.0 Hz, 6H). 13C NMR (CDCl3) δ 161.8, 

138.8, 134.2, 129.1, 128.5, 70.4, 61.2, 21.4; MS (ES-), m/z 241 (M-1)-. 

 Methyl 2-(thiophen-2-ylsulfonyl)acetate (32e). Colorless oil; yield 73% in two steps; 1H 

NMR (CDCl3) δ 7.76-7.68 (m, 2H), 7.17-7.19 (t, J = 4.4 Hz, 1H), 4.21 (s, 1H), 3.75 (s, 3H); MS 

(ES+), m/z 221 (M+1)+, 243 (M+Na) +. 

 Methyl 2-(phenylsulfonyl)acetate (32f). Colorless oil; yield 80% in two steps; 1H NMR 

(CDCl3) δ 7.88-7.90 (d, J = 8.0 Hz, 2H), 7.62 – 7.66 (t, J = 7.2 Hz, 1H), 7.51-7.55 (m, J = 7.2 Hz, 

8.0 Hz, 2H), 4.07 (s, 1H), 3.64 (s, 3H); MS (ES-), m/z 213 (M-1)-. 

 Ethyl 2-(4-bromophenylsulfonyl)acetate (32g). Colorless crystal, yield 90%; 1H NMR 

(CDCl3) δ 7.81-7.83 (d, J = 8.8 Hz, 2H), 7.72-7.74 (d, J = 8.4 Hz, 2H) , 4.14-4.19 (q, J = 7.2 Hz, 

2H), 4.11 (s, 2H), 1.21-1.24 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3) δ 162.2, 137.6, 132.5, 130.2, 

129.8, 62.5, 60.9, 13.9; MS (ES+), m/z 328.9 (M+23) +; m.p. = 49-50 ºC. 

 Methyl 2-(4-bromophenylsulfonyl)acetate (32h). White crystals; yield 88%; 1H NMR 

(CDCl3) δ 7.81-7.83 (d, J = 8.8 Hz, 2H), 7.72-7.75 (d, J = 8.8 Hz, 2H) , 4.13 (s, 2H), 3.73 (s, 3H); 

13C NMR (CDCl3) δ 162.7, 137.6, 132.6, 130.1, 129.9, 60.6, 53.2; MS (ES+), m/z 314.9 (M+23) 

+; m.p. = 78-79 ºC. 

 Ethyl 2-(3-bromophenylsulfonyl)acetate (32i). Colorless crystals; yield 75% in two steps; 

1H NMR (CDCl3) δ 8.11 (s, 1H), 7.90-7.92 (d, J = 7.9 Hz, 1H), 7.82-7.84 (d, J = 7.9 Hz, 1H), 

7.47-7.51 (t, J = 7.9 Hz, 1H), 4.15-4.21 (q, J = 7.1 Hz, 2H), 4.15 (s, 2H); 13C NMR (CDCl3) δ 

162.0, 140.4, 137.3, 131.5, 130.7, 127.2, 123.1, 62.5, 60.9, 13.8; MS (ES+), m/z 329.1 (M+23) +; 

m.p. = 36-37 ºC. 

 Ethyl 2-(4-methoxyphenylsulfonyl)acetate (32j). Colorless oil; yield 71%; 1H NMR 

(CDCl3) δ 7.86-7.88 (d, J = 8.8 Hz, 2H), 7.02-7.04 (d, J = 9.2 Hz, 2H) , 4.13-4.18 (q, J = 6.8 Hz, 
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2H), 4.09 (s, 2H), 3.89 (s, 3H), 1.20-1.24 (t, J = 6.8 Hz, 3H); 13C NMR (CDCl3) δ 164.2, 162.6, 

130.8, 130.2, 114.3, 62.3, 61.2, 55.7, 13.9; MS (ES+), m/z 281.0 (M+23) +. 

 Ethyl 2-(propylsulfonyl)acetate (32k). Colorless oil; yield 84%; 1H NMR (CDCl3) δ 4.25-

4.31 (q, J = 7.2, 2H), 3.95 (s, 2H), 3.22-3.26 (m, J = 8.0 Hz, J = 2.4, 2H) , 1.90-1.95 (m, J = 7.6 

Hz, J = 2.4 Hz, 2H), 1.31-1.35 (t, J = 7.2 Hz, 3H), 1.10-1.13 (t, J = 7.2 Hz, 3H); 13C NMR 

(CDCl3) δ 163.1, 62.6, 57.4, 55.2, 15.7, 13.9, 13.0; MS (ES+), m/z 317.0 (M+23) +. 

 5-((Thiophen-2-ylsulfonyl)methyl)isoxazole (41a). Yellow solid, yield 69% in two steps; 

1H NMR (CDCl3) δ 8.25-8.26 (d, 1H), 7.53-7.77 (dd, J = 1.2 Hz, 1.6 Hz, 5.2 Hz, 1H), 7.57-7.58 

(dd, J = 1.6 Hz, 4.0 Hz), 7.13-7.16 (q, J = 4.0 Hz, 5.2 Hz, 1H), 7.45-7.46 (d, 1H), 4.69 (s, 2H); 

13C NMR (CDCl3) δ 159.7, 150.7, 137.9, 135.6, 135.4, 128.2, 105.6, 55.0; MS (ES+), m/z 230 

(M+1) +. 

 5-(Phenylsulfonylmethyl)isoxazole (41b). Yellow solid, yield 62%; 1H NMR (CDCl3) δ 

8.22 (s, 1H), 7.77-7.79 (d, J = 8.0 Hz, 2H), 7.66-7.70 (t, J = 7.2 Hz, 2H), 7.26-7.56 (t, J = 7.6 Hz, 

2H), 6.38 (s, 1H), 4.60 (s, 2H); 3C NMR (CDCl3) δ 159.7, 150.6, 137.6, 134.6, 129.4, 128.4, 

105.4, 53.8; MS (ES+), m/z 224 (M+1) +, 246(M+Na)+, m.p. = 87-88 ºC. 

 2-(Phenylsulfonyl)acetaldehyde oxime (46b). White solid; yield 84%; 1H NMR 

((CD3)2CO, mixture of isomers, ratio 1/1) δ 10.69 (s, 0.5H), 10.49 (s, 0.5 H), 7.66-7.98 (m, 5H), 

7.33 (t, 0.5H), 6.82 (t, 0.5H), 4.37 (d, 1H), 4.11(d, 1H); MS (ES+), m/z 200 (M+1) +, 

222(M+Na)+; m.p. = 91-94 ºC. 

 General Experimental Procedure for Thiation Reaction of Amides. Representative 

Procedure for Thiation of 2-(Phenylsulfonyl)acetamide (29a) (Scheme 2, reaction c): To a 

solution of 2-(thiophen-2-ylsulfonyl)acetamide (29a, 33 mg, 0.17 mmol, 1.0 equiv.) in anhydrous 

THF (5 mL) was added Lawesson’s reagent (67 mg, 0.17 mmol, 1.0 equiv.) at room temperature 
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under N2; then the reaction was heated at reflux for 2 h. After solvent was evaporated, the 

residue was dissolved in dichloromethane (50 mL). The solution was washed with H2O (5 mL), 

brine (5 mL), and dried over Na2SO4. Evaporation of solvent afforded the crude product which 

was purified by column chromatography (Hex/EtOAc/Acetone 1:1:0.01) to give 2-

(Phenylsulfonyl)ethanethioamide (KM-03009, 22 mg, 61%) as white solid. 

 2-(Thiophen-2-ylsulfonyl)ethanethioamide (KM-03009). White solid, yield 38%; 1H 

NMR ((CD3)2CO) δ 9.13 (br, 1H), 8.70 (br, 1H), 8.05-8.06 (dd, J = 1.2 Hz, 4.8 Hz, 1H), 7.77-

7.79 (dd, J = 1.2 Hz, 4.0 Hz), 7.26-7.28 (dd, J = 4.0 Hz, 4.8 Hz, 1H), 4.66 (s, 2H); 13C NMR 

((CD3)2CO) δ 192.7, 139.0, 135.5, 135.2, 127.9, 70.5; MS (ES+), m/z 222 (M+1) +, 244 (M+Na)+; 

m.p. = 154-155 ºC. 

 2-(Phenylsulfonyl)ethanethioamide (30b). White solid; yield 61%; 1H NMR ((CD3)2CO) 

δ 8.61-9.12 (br, 2H), 7.94-7.96 (m, 2H), 7.74-7.78 (m, 1H), 7.63-7.67 (m, 2H), 4.60 (s, 2H); 13C 

NMR ((CD3)2CO) δ 192.9, 138.6, 134.1, 129.0, 128.7, 69.1; MS (ES+), m/z 216 (M+1) +, 238 

(M+Na)+, m.p. = 165-166 ºC. 

 N,N-Diethyl-2-(thiophen-2-ylsulfonyl)ethanethioamide (30c). Light yellow solid; yield 

25%; 1H NMR (CDCl3) δ 7.76-7.77 (d, J = 5.0 Hz, 1H), 7.69-7.71 (d, J = 3.8 Hz, 1H), 7.16-7.18 

(m, J = 3.8 Hz, J = 5.0 Hz, 1H), 4.80 (s, 2H), 3.92-3.97 (q, J = 7.2 Hz, 2H), 3.84-3.89 (q, J = 7.2 

Hz, 2H), 1.29-1.32 (t, J = 7.2 Hz, 3H), 1.25-1.29 (t, J = 7.2 Hz, 3H), 13C NMR (CDCl3) δ 185.0, 

138.2, 136.1, 134.9, 127.7, 69.3, 48.2, 47.6, 13.3, 10.8; MS (ES+), m/z 278.2 (M+1) +, m.p. = 98-

99 ºC. 

 N,N-Diethyl-2-(phenylsulfonyl)ethanethioamide (30d). White solid, yield 30%,; 1H NMR 

(CDCl3) δ 7.88-7.90 (d, J = 7.2 Hz, 2H), 7.66-7.70 (t, J = 7.4 Hz, 1H), 7.54-7.58 (t, J = 8.0 Hz, 

2H), 4.73 (s, 2H), 3.91-3.96 (q, J = 7.2 Hz, 2H), 3.86-3.90 (q, J = 7.2 Hz, 2H), 1.31-1.33 (t, J = 
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7.2 Hz, 3H), 1.25-1.28 (t, J = 7.2 Hz, 3H), 13C NMR (CDCl3) δ 185.2, 137.8, 134.2, 129.2, 128.8, 

68.4, 48.1, 47.6, 13.3, 10.8; MS (ES+), m/z 272.2 (M+1) +, m.p. = 103-105 ºC. 

 General Experimental Procedure for Thiation Reaction of Esters. Representative 

Procedure for Thiation of Ethyl 2-(Thiophen-2-ylsulfonyl)acetate (32a) (Scheme 4.3, reaction c; 

Scheme 4.4, reaction b): To a solution of ethyl 2-(thiophen-2-ylsulfonyl)acetate (32a, 50 mg, 

0.22 mmol, 1.0 equiv.) in anhydrous o-xylene (2 mL) was added Lawesson’s reagent (174 mg, 

0.43 mmol, 2.0 equiv.) under N2. The reaction was heated under reflux for 6 h. After solvent was 

evaporated, the residue was dissolved in dichloromethane (50 mL) and the solution was washed 

with H2O (5 mL), brine (5 mL × 2), and dried over Na2SO4. Evaporation of solvent afforded the 

crude product, which was purified by column chromatography (Hex/EtOAc, 6:1) to give O-ethyl 

2-(thiophen-2-ylsulfonyl)ethanethioate (33a, 18 mg, 34%) as light yellow solid. 

 O-Ethyl 2-(thiophen-2-ylsulfonyl)ethanethioate (33a). Light yellow solid; yield 34%; 1H 

NMR ((CD3)2CO) δ 8.10 (s, 1H), 7.78 (s, 1H),  7.31 (d, 1H), 4.79 (s, 2H), 4.43-4.45 (d, J = 6.8 

Hz, 2H), 1.27-1.30 (t, J = 6.8 Hz, 3H); 13C NMR ((CD3)2CO) δ 206.1, 139.4, 135.5, 135.4, 128.1, 

72.3, 69.6, 12.7; MS (ES+), m/z 251 (M+1) +, 268 (M+H2O)+, 273 (M+Na)+; m.p. = 50-51 ºC. 

 O-Ethyl 2-(phenylsulfonyl)ethanethioate (33b). White solid; yield 31%; 1H NMR 

((CD3)2CO) δ 7.92-7.94 (m, 2H), 7.77-7.91 (m, 1H), 7.66-7.70 (m, 2H), 4.72 (s, 2H), 4.35-3.38 

(q, J = 7.2 Hz, 2H), 1.18-1.22 (t, J = 7.2 Hz, 3H); 13C NMR ((CD3)2CO) δ 206.4, 139.0, 134.1, 

129.1, 128.6, 71.1, 69.4, 12.5; MS (ES+), m/z, 245 (M+1) +, 267 (M+Na)+; m.p. = 33-34 ºC. 

 O-Isopropyl 2-(thiophen-2-ylsulfonyl)ethanethioate (33c). Yellow solid; yield 24%; 1H 

NMR ((CD3)2CO) δ 8.07 – 8.09 (m, 1H), 7.77-7.78 (m, 1H), 7.31 – 7.29 (m, 1H), 5.47- 5.50 (m, 

J = 6.0 Hz, 1H) 4.75 (s, 2H), 1.27,1.29 (d, J = 6.0 Hz, 6H); 13C NMR ((CD3)2CO) δ 206.7, 141.0, 

136.9, 136.7, 129.5, 78.5, 74.1, 21.4; MS (ES+), m/z 287 (M+Na) +; m.p. = 53-55 ºC. 
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O-Isopropyl 2-(phenylsulfonyl)ethanethioate (33d). Yellow solid; yield 27%; 1H NMR 

((CD3)2CO) δ 7.93, 7.95 (d, J = 7.6 Hz, 2H), 7.77-7.79 (d, J = 7.2 Hz, 1H), 7.66-7.70 (t, J = 7.6 

Hz, 8.0 Hz, 2H), 5.41- 5.43 (m, J = 6.4 Hz, 1H) 4.70 (s, 2H), 1.19-1.21 (d, J = 6.4 Hz, 6H); 13C 

NMR ((CD3)2CO) δ 206.9, 140.5, 135.4, 130.6, 130.0, 78.3, 72.8, 21.3; MS (ES-), m/z 257 (M-

1)- ; m.p. = 36-37 ºC. 

 O-Ethyl 2-(4-bromophenylsulfonyl)ethanethioate (33e). Light yellow solid; yield 20%; 

1H NMR (CDCl3) δ 7.74-7.76 (d, J = 8.8 Hz, 2H), 7.70-7.72 (d, J = 8.8 Hz, 2H) , 4.52 (s, 2H), 

4.40-4.45 (q, J = 7.2 Hz, 2H), 1.29-1.33 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3) δ 204.3, 137.0, 

132.4, 130.3, 129.6, 71.4, 69.7, 13.3; MS (ES+), m/z 344.9 (M+23) +; m.p. = 84-85 ºC. 

 O-Ethyl 2-(4-methoxyphenylsulfonyl)ethanethioate (33f). Light yellow solid; yield 18%; 

1H NMR (CDCl3) δ 7.80-7.82 (d, J = 9.2 Hz, 2H), 7.00-7.02 (d, J = 9.2 Hz, 2H) , 4.51 (s, 2H), 

4.40-4.45 (q, J = 7.2 Hz, 2H), 3.90 (s, 3H), 1.29-1.33 (t, J = 7.2 Hz, 3H); 13C NMR (CDCl3) δ 

205.1, 164.1, 131.0, 129.7, 114.2, 71.8, 69.5, 55.7, 13.3; MS (ES+), m/z 297.0 (M+23) +; m.p. = 

58-59 ºC. 

 O-Ethyl 2-(propylsulfonyl)ethanethioate (33g). Light yellow oil; yield 9.4%; 1H NMR 

(CDCl3) δ 4.56-4.62 (q, J = 7.2, 2H), 4.37 (s, 2H), 3.21-3.25 (m, J = 7.9 Hz, J = 2.4 Hz, 2H) , 

1.91-1.97 (m, J = 7.6 Hz, J = 2.0 Hz, 2H), 1.44-1.48 (t, J = 7.2 Hz, 3H), 1.09-1.12 (t, J = 7.2 Hz, 

3H); 13C NMR (CDCl3) δ 205.7, 69.9, 68.1, 54.4, 29.7, 16.0, 13.4, 13.0; MS (ES+), m/z 233.0 

(M+23) +. 

 Compound 37a. Light yellow solid; yield 17%; 1H NMR (CDCl3) δ 7.93-7.95 (d, J = 8.6 

Hz, 2H), 7.73-7.76 (d, J = 8.6 Hz, 2H), 7.59-7.61 (d, J = 6.9 Hz, 2H), 7.46-7.50 (t, J = 7.0 Hz, 

2H), 7.42-7.44 (t, J = 7.1 Hz, 1H), 4.55 (s, 2H), 4.41-4.47 (q, J = 7.1 Hz, 2H), 1.27-1.31 (t, J = 
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7.1 Hz, 3H); 13C NMR (CDCl3) δ 204.7, 147.1, 139.0, 136.6, 129.3, 129.1, 128.8, 127.6, 127.4, 

71.6, 69.6, 13.3; MS (ES-), m/z 319.0 (M-1) -; m.p. = 70-72 ºC. 

 Compound 37b. White solid; yield 21%; 1H NMR (CDCl3) δ 7.92-7.94 (d, J = 8.8 Hz, 

2H), 7.74-7.76 (d, J = 8.4 Hz, 2H), 7.52-7.54 (d, J = 8.0 Hz, 2H), 7.29-7.31 (d, J = 7.6 Hz, 2H), 

4.56 (s, 2H), 4.41-4.44 (q, J = 7.2 Hz, 2H), 2.42 (s, 1H), 1.26-1.29 (t, J = 7.2 Hz, 3H); 13C NMR 

(CDCl3) δ 162.4, 147.2, 138.9, 136.8, 136.0, 129.8, 129.1, 127.5, 127.2, 62.4, 61.1, 21.1, 13.9; 

MS (ES+), m/z 357.1 (M+23) +; m.p. = 98-100 ºC. 

 General Experimental Procedure for Cross Coupling Reaction. Representative Procedure 

for Cross Coupling of Ethyl 2-(4-Bromophenylsulfonyl)acetate (32g) and Phenylboronic Acid 

(Scheme 4.4, reaction a): A mixture of ethyl 2-(4-bromophenylsulfonyl)acetate (32g, 188.7 mg, 

0.61 mmol, 1 equiv.), phenylboronic acid (180 mg, 1.47 mmol, 2.4 equiv.), Pd(OAc)2 (11 mg, 

0.049 mmol, 0.08 equiv.), PPh3 (39 mg, 0.147 mmol, 0.24 equiv.) and K2CO3 (255 mg, 1.84 

mmol, 3.0 equiv.) in DMF (3.3 mL) was degassed using vacuum pump and backfilled with N2. 

Then the reaction mixture was heated and stirred at 90 ºC overnight. After cooling to room 

temperature, the resulting mixture was poured into 5.0 mL 1N HCl (in ice bath). Then the 

mixture was extracted with EtOAc (40 mL). The organic extract was washed with brine (8 mL) 

and dried over Na2SO4. Evaporation of solvents and purification of the residue by column 

chromatography (Hexanes:EtOAc 8:1 – 5:1) gave the pure compound (36) as white solid (79 mg, 

42%).  

 Compound 36a. White solid; 42%; 1H NMR (CDCl3) δ 8.00-8.02 (d, J = 8.8 Hz, 2H), 

7.76-7.79 (d, J = 8.4 Hz, 2H), 7.61-7.63 (d, J = 6.8 Hz, 2H), 7.47-7.51 (t, J = 6.8 Hz, 2H), 7.44-

7.46 (t, J = 7.2 Hz, 1H), 4.15-4.20 (q, J = 7.2 Hz, 2H), 4.15 (s, 2H), 1.20-1.23 (t, J = 7.2 Hz, 3H); 



 80 

13C NMR (CDCl3) δ 162.4, 147.2, 139.0, 137.2, 129.1, 128.8, 127.8, 127.4, 62.4, 61.1, 13.7; MS 

(ES+), m/z 327.2 (M+23) +, m.p. = 108-110 ºC. 

 Compound 36b. White solid; yield 49%; 1H NMR (CDCl3) δ 7.98-7.80 (d, J = 8.8 Hz, 

2H), 7.74-7.77 (d, J = 8.4 Hz, 2H), 7.50-7.53 (d, J = 8.0 Hz, 2H), 7.29-7.31 (d, J = 8.0 Hz, 2H), 

4.15-4.19 (q, J = 7.2 Hz, 2H), 4.15 (s, 2H), 2.42 (s, 1H), 1.19-1.23 (t, J = 7.2 Hz, 3H); 13C NMR 

(CDCl3) δ 162.4, 147.2, 138.9, 136.8, 136.0, 129.8, 129.1, 127.5, 127.2, 62.4, 61.1, 21.1, 13.9; 

MS (ES+), m/z 341.3 (M+23) +; m.p. = 83-85 ºC. 

 Compound 36c. White solid; yield 37%; 1H NMR ((CD3)2CO) δ 8.06-8.11 (m, J = 8.4 Hz, 

J = 8.8 Hz, 4H), 8.01-8.03 (d, J = 8.8 Hz, 2H), 7.86-7.89 (d, J = 8.8 Hz, 2H), 4.42 (s, 2H), 4.10-

4.12 (q, J = 7.2 Hz, 2H), 1.12-1.16 (t, J = 7.2 Hz, 3H); 13C NMR (Acetone-d6) δ 168.4, 163.5, 

146.5, 142.6, 139.8, 135.5, 130.2, 129.3, 128.7, 128.3, 62.6, 61.5, 14.2; MS (ES+), m/z 370.2 

(M+23) +; m.p. = 181-183 ºC. 

 Ethyl 2-(4-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)phenylsulfonyl)acetate (36d). White 

solid; yield 88%; 1H NMR (CDCl3) δ 7.95-7.97 (d, J = 8.8 Hz, 2H), 7.70-7.72 (d, J = 8.4 Hz, 

2H), 7.14-7.15 (t, J = 2.4 Hz, 1H), 7.11-7.13 (m, J = 8.4 Hz, J = 2.4 Hz, 1H), 6.96-6.98 (d, J = 

8.4 Hz, 1H) , 4.31 (s, 4H), 4.14 (s, 2H), 4.14-4.17 (q, J = 7.2 Hz, 2H), 1.19-1.23 (t, J = 7.2 Hz, 

3H); 13C NMR (CDCl3) δ 162.4, 146.6, 144.4, 143.9, 136.6, 132.3, 129.1, 127.2, 120.5, 117.9, 

116.2, 64.5, 64.4, 62.4, 61.1, 13.9; MS (ES+), m/z 385.3 (M+23) +; m.p. = 116-118 ºC. 

 Ethyl 2-(4-(isoquinolin-4-yl)phenylsulfonyl)acetate (36e). Light yellow solid; yield 30%; 

1H NMR (CDCl3) δ 9.33 (s, 1H), 8.50 (s, 1H), 8.11-8.14 (d, J = 8.4 Hz, 2H), 8.08-8.11 (d, J = 

7.6 Hz, 1H), 7.80-7.82 (d, J = 8.4 Hz, 1H), 7.73-7.77 (m, J = 8.4 Hz, 2H), 7.67-7.72 (t, J = 8.4 

Hz, 2H) , 4.20-4.25 (q, J = 7.2 Hz, 2H), 4.23 (s, 2H), 1.24-1.28 (t, J = 7.2 Hz, 3H); 13C NMR 
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(CDCl3) δ 162.4, 153.1, 143.5, 142.8, 138.3, 133.6, 131.2, 130.8, 128.9, 128.1, 127.7, 124.0, 

62.5, 61.0, 13.9; MS (ES+), m/z 356.0 (M+1)+; m.p. = 123-125 ºC. 

 Experimental Procedure for m-CPBA Oxidation of Ethyl 2-(4-Bromophenylthio)acetate 

(32g). (Scheme 4.3, reaction v): A solution of m-CPBA (110 mg, 75% pure, 0.48 mmol, 1 equiv.) 

in DCM (3.5 mL) was added dropwise to a stirred solution of ethyl 2-(4-

bromophenylthio)acetate (132 mg, 0.48 mmol, 1 equiv.) at 0 ºC. Then the reaction mixture was 

stirred at 0 ºC for 25 min. The reaction solution was filtered and diluted with DCM (10 mL) and 

was washed with saturated NaHCO3 (8 mL × 2), H2O (8 mL) and brine (10 mL). The organic 

layer was dried over Na2SO4. Then the solvent was removed under vacuum to give the crude 

product, which was purified by column chromatography (Hex/EtOAc 3:1) to give pure ethyl 2-

(4-bromophenylsulfinyl)acetate (35a, 119 mg, 85%) as colorless crystals. 

 Ethyl 2-(4-bromophenylsulfinyl)acetate (35a). Colorless crystals, yield 85%; 1H NMR 

(CDCl3) δ 7.68-7.70 (d, J = 8.4 Hz, 2H), 7.56-7.59 (d, J = 8.8 Hz, 2H) , 4.14-4.20 (q, J = 7.2 Hz, 

2H), 3.83-3.86 (d, J = 13.6 Hz, 1H), 3.65-3.69 (d, J = 13.6 Hz, 1H), 1.22-1.25 (t, J = 7.2 Hz, 3H); 

13C NMR (CDCl3) δ 164.4, 142.2, 132.6, 126.3, 125.8, 62.1, 61.5, 14.0; MS (ES+), m/z 290.9 

(M+1) +; m.p. = 62-63 ºC. 

 General Experimental Procedure for Hydrolysis of Esters. Representative Procedure for 

Hydrolysis of Methyl 2-(Thiophen-2-ylsulfonyl)acetate (31e) (Scheme 3, reaction d): To a stirred 

solution of methyl 2-(thiophen-2-ylsulfonyl)acetate (31e, 115 mg, 0.52 mmol, 1 equiv.) in 

MeOH (5 mL) and THF (1 mL) was added a solution of NaOH (209 mg, 5.22 mmol, 10 equiv.) 

in H2O (1 mL) dropwise. The reaction mixture was heated and stirred at 50 ºC for 5 h. Then the 

organic solvents were evaporated and the mixture was diluted with 10 mL H2O. The solution was 

adjusted to pH 10 with NaOH (5 M aqueous solution) and extracted with DCM (10 mL × 3). The 
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aqueous phase was acidified to pH 2, and further extracted with DCM (30 mL × 3). The organic 

phase was dried over Na2SO4, and the solvent was removed to get 2-(thiophen-2-

ylsulfonyl)acetic acid (34a) as white solid (78 mg, 72%).  

 2-(Thiophen-2-ylsulfonyl)acetic acid (34a). White solid; yield 72%; 1H NMR (CD3OD) δ 

7.97 – 7.98 (d, J = 4.8 Hz, 1H), 7.79-7.81 (d, J = 4.0 Hz, 1H), 7.22-7.24 (m, J = 4.0 Hz, J = 4.8 

Hz, 1H), 4.36 (s, 2H); 13C NMR (CD3OD) δ 165.7, 141.2, 136.6, 136.5, 129.2, 62.9; MS (ES-), 

m/z 205 (M-1)-; m.p. = 124-126 ºC. 

 2-(Phenylsulfonyl)acetic acid (34b). White solid; yield 86%; 1H NMR (CD3OD) δ 7.96-

7.98 (d, J = 7.6 Hz, 2H), 7.71-7.75 (t, J = 7.6 Hz, 1H), 7.61-7.65 (t, J = 8.0 Hz, 2H), 4.29 (s, 2H); 

13C NMR (CD3OD) δ 165.7, 140.7, 135.4, 130.4, 129.7, 61.6; MS (ES-), m/z 200 (M-1) -; m.p. = 

105-107 ºC. 

 Experimental Procedure for the Synthesis of 5-(Bromomethyl)isoxazole (39) (Scheme 4.5, 

reaction a): A mixture of 5-methylisoxazole (38, 622 mg, 0.6 mL, 7.48 mmol, 1.0 equiv.), NBS 

(1.33 g, 7.48 mmol, 1.0 equiv.) and 2,2'-azobis(2-methyl-propionitrile) (AIBN, 25 mg, 0.15 

mmol, 2% equiv.) in carbon tetrachloride (40 mL) was heated at reflux under irradiation with a 

tungsten light for 4.5 h. After the solvent was evaporated, ethyl acetate was added (40 mL) and 

the solution was washed with H2O (5 mL × 2), brine (10 mL), and dried over Na2SO4. 

Evaporation of solvent afforded the crude product, which was purified by column 

chromatography (Hex/EtOAc, 5:1) to give 5-(bromomethyl)-isoxazole (39, 480 mg, 40%) as 

colorless oil. 

 5-(Bromomethyl)isoxazole (39). Colorless oil; yield 40%; 1H NMR (CDCl3) δ 8.22 (s, 

1H), 6.33 (s, 1H), 4.50 (s, 2H).  
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General Experimental Procedure for Substitution Reaction Between Thiols and 2-Bromo-1,1-

dimethoxyethane (42). Representative Procedure for Substitution Between Thiophene-2-thiol 

(27a) and 2-Bromo-1,1-dimethoxyethane (42) (Scheme 4.6, reaction a): A mixture of absolute 

ethanol (3 mL) and sodium (152 mg, 6.6 mmol, 1.2 equiv.) in a dry flask was heated to reflux 

until the solution was clear and cooled in an ice bath (under nitrogen). Thiophene-2-thiol (27a, 

767 mg, 0.6 mL, 6.6 mmol, 1.2 equiv.) was added at 0 °C under N2 and the reaction was stirred 

for another 15 min at 0 °C. Then 2-bromo-1,1-dimethoxyethane (42 ,97%, 930 mg, 0.67 mL, 5.5 

mmol, 1.0 equiv.) was added and the reaction was heated at reflux for 2 h. The solution was 

filtered and solvent was evaporated. Ethyl acetate (50 mL) was added and the solution was 

washed with H2O (8 mL × 2), saturated NaCl (8 mL), and dried over Na2SO4. Evaporation of 

solvent gave the crude product which was purified by chromatography (Hex/EtOAc, 20:1) to 

give 2-(2,2-dimethoxyethylthio)-thiophene (43a, 538 mg, 48%) as colorless oil. 

 2-(2,2-Dimethoxyethylthio)thiophene (43a). Colorless oil; yield 48%; 1H NMR (CDCl3) 

δ 7.35-7.37 (dd, J = 1.2 Hz, J = 5.2 Hz), 7.17-7.19 (dd, J = 1.2 Hz, J = 3.6 Hz, 1H), 6.97-6.99 (t, 

J = 3.6 Hz, J = 5.2 Hz, 1H), 3.52-3.54 (t, J = 5.6 Hz, 1H), 3.37 (s, 6H), 2.99-3.00 (d, J = 5.6 Hz, 

2H); 13C NMR (CDCl3) δ 134.0, 134.0, 129.6, 127.5, 103.3, 53.5, 40.9. 

 (2,2-Dimethoxyethyl)(phenyl)sulfane (43b). Colorless oil; yield 59%; 1H NMR (CDCl3) 

δ 7.40-7.42 (m, 2H), 7.28-7.33 (m, 2H), 7.21-7.23(t, 1H), 4.54-4.57 (t, J = 5.6 Hz, 1H), 3.39 (s, 

1H), 3.14-3.15 (d, 5.6 Hz); 13C NMR (CDCl3) δ 136.1, 129.5, 129.1, 129.0, 126.3, 103.2, 53.6, 

36.5. 

 General Experimental Procedure for Hydrolysis of Aldehyde Dimethyl Acetals (43). 

Representative Procedure for Hydrolysis of 2-(2,2-dimethoxyethylthio)-thiophene (43a) (Scheme 

4.6, reaction b): To a solution of 43a (113 mg, 0.55 mmol) in acetone (0.6 mL) was added 1% 
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HCl (0.6 mL); then the reaction was heated under reflux for 1.5 h. Solvent was evaporated and 

ethyl acetate (50 mL) was added. The organic layer was washed with saturated NaHCO3 (8 mL), 

H2O (8 mL × 3), brine (8 mL), and dried over Na2SO4. The evaporation of solvent afforded the 

crude product, which was purified by column chromatography (Hex/EtOAc 6:1) to give 2-

(thiophen-2-ylthio)acet-aldehyde (44a, 44 mg, 51%) as light yellow oil. 

 2-(Thiophen-2-ylthio)acetaldehyde (44a). Light yellow oil; yield 51%; 1H NMR (CDCl3) 

δ 9.63-9.65 (t, J = 3.2 Hz, 1H), 7.40-7.43 (m, 1H), 7.19-7.20 (m, 1H), 7.99-7.04 (m, 1H), 3.46-

3.49 (m, J = 3.2 Hz, 2H); MS (ES+), m/z 159 (M+1) +. 

  2-(Phenylthio)acetaldehyde (44b). Colorless oil, yield 94%; 1H NMR (CDCl3) δ 9.54-

9.55 (t, J = 3.2 Hz, 1H), 7.25-7.38 (m, 5H), 3.60-3.61 (d, J = 3.2 Hz, 2H); MS (ES+), m/z 153 

(M+1) +. 

 General Experimental Procedure for Synthesis of Aldoximes from Aldehydes (45). 

Representative Procedure for Synthesis of 2-(thiophen-2-ylthio)acetaldehyde oxime (45a) 

(Scheme 4.6, reaction c): A mixture of 2-(thiophen-2-ylthio)acetaldehyde (44a, 144 mg, 0.91 

mmol, 1.0 equiv.), hydroxylamine hydrochloride (95 mg, 1.37 mmol, 1.5 equiv.) and potassium 

bicarbonate (137 mg, 1.37, 1.5 equiv.) in MeOH (14 mL) was stirred at room temperature 

overnight. The solution was filtered and solvent was evaporated. Then ethyl acetate (50 mL) was 

added and the solution was washed with H2O (10 mL × 2), saturated NaCl (8 mL), and dried 

over anhydrous Na2SO4. Evaporation of solvent afforded crude product which was purified by 

chromatography (Hex/EtOAc, 6:1) to give 2-(thiophen-2-ylthio)acetaldehyde oxime (45a, 106 

mg, 67%) as light yellow oil. 
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 2-(Thiophen-2-ylthio)acetaldehyde oxime (45a). Light yellow oil; yield 67%; 1H NMR 

((CD3)2CO, mixture of isomers, ratio 1/1.5) δ 9.94, 10.31(s, 1H), 6.81-7.59 (m, 4H), 3.53-3.55, 

3.72-3.74 (d, 2H); MS (ES+), m/z 174 (M+1)+. 

  2-(Phenylthio)acetaldehyde oxime (45b). Colorless oil; yield 91%; 1H NMR ((CD3)2CO, 

mixture of isomers, ratio 1/1) δ 10.49 (s, 0.5 H), 10.50 (s, 0.5H), 7.66-7.98 (m, 5H), 7.33 (t, 0.5 

H), 6.82 (t, 0.5 H), 4.36-4.37 (d, 1H), 4.12-4.13 (d, 1H); MS (ES+), m/z 168 (M+1)+. 

 General Experimental Procedure for the Reduction Reaction. Representative Procedure 

for Reduction of N-(2-(thiophen-2-ylsulfonyl)ethyl)-hydroxylamine (47a) (Scheme 6, reaction e): 

To a solution of 2-(thiophen-2-ylsulfonyl)acetaldehyde oxime (46a, 46 mg, 0.22 mmol, 1.0 

equiv.) in MeOH (2 mL) was added sodium cyanoborohydride (37 mg, 0.59 mmol, 2.68 equiv.); 

then the solution of 4.0 M HCl in 1.4-dioxane (0.2 mL) was added in three portions to maintain 

PH = 3.0 during the reaction time (3.5 h). Then the solution of 5 N NaOH was added to adjust 

the pH to 11.0 and then solvent was evaporated. Dichloromethane (50 mL) was added and the 

solution was washed with saturated NaCl (8 mL × 2), and dried over anhydrous Na2SO4. 

Evaporation of solvent afforded the crude product, which was purified by column 

chromatography (Hex/EtOAc, 2:3) to give N-(2-(thiophen-2-ylsulfonyl)ethyl)-hydroxylamine 

(47a, 14 mg, 30%) as white solid. 

 N-(2-(Thiophen-2-ylsulfonyl)ethyl)hydroxylamine (47a). White solid, 30% in two steps; 

1H NMR (CDCl3) δ 7.73-7.77 (m, 2H), 7.17-7.19 (m, 1H), 7.53-7.56 (t, J = 6.4 Hz, 2H), 3.37-

3.40 (t, J = 6.4 Hz, 2H); 13C NMR (CDCl3) δ 140.2, 134.3, 128.1, 54.7, 47.6; MS (ES+), m/z 208 

(M+1)+. 

N-(2-(phenylsulfonyl)ethyl)hydroxylamine (47b). White solid; yield 38%; 1H NMR 

(CDCl3) δ 7.93-7.95 (m, 2H), 7.67-7.71 (m ,1H), 7.57-7.61 (m, 2H), 5.50 (br, 1H), 3.42-3.45 (t, J 
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= 6.0 Hz, 2H), 3.33-3.36 (t, J = 6.0 Hz, 2H); 13C NMR (CDCl3) δ 139.3, 133.9, 129.4, 128.0, 

53.1, 47.3; 135.8, 129.1, 128.5, 126.0, 57.0, 30.0; MS (ES+), m/z 202 (M+1) +; m.p. = 67-68 ºC. 

Bacterial assay 

All compounds tested were of high purity (about 98% with impurities being mostly 

solvents) as judged by 1H-NMR. The NMR spectra of all final compounds are provided in the 

Supplemental Section. MM32 and BB886 strains of V. harveyi were purchased from ATCC 

(MM32 #BAA-1121, BB886 #BAA-1118). The quorum sensing assays were performed by 

following literature.[86, 151, 191] In the AI-1 bioassays, cell-free culture (5% of the test medium 

volume) from BB886 with OD600 of 0.8 -1.2 was added as the source of AI-1. Kanamycin (50 

mg/mL) was used as antibiotics in incubation and inoculation.  

Cell growth test (MM32) 

Cell growth test was performed according to literature protocol.[86] MM32 strain of V. 

harveyi (ATCC #BAA-1121) was grown for 16 h with aeration (175 rpm) at 30 ºC in 2 mL of 

AB medium with antibiotics (kanamycin 50 mg/mL and chloramphenicol 10 mg/mL). Then this 

bacterial culture was diluted 100-fold with 20 mL AB medium in a 250 mL flask, tested 

compounds were added and incubated at 30 ºC (175 rpm). The OD600 values were determined 

every 20 min. The doubling time was calculated based on the OD600 values.  

Plate counting test (MM32) 

Plate counting test was performed on the basis of the MM32 test.[191] MM32 bacteria 

were streak-seeded on fresh LM plates and then cultured in the presence of kanamycin 50 

mg/mL and chloramphenicol 10 mg/mL. Colonies appeared after overnight incubation at 30 ºC. 

Single colonies were picked from the LM plates and were grown for 16 h with aeration (175 

r.p.m.) at 30 ºC in 2 mL of Autoinducer Bioassay (AB) medium[192] with antibiotics 
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(kanamycin 50 mg/mL and chloramphenicol 10 mg/mL). Then the solution was diluted to OD600 

0.7 and the bacteria preinoculum was grown in AB-Fe medium with 1.2 mM of iron to a OD600 

of 1.0-1.1 with shaking at 30 ºC (175 r.p.m.) for 1-1.5 h.[101] The resulting inoculum culture 

was then diluted 5000-fold in fresh AB medium. Solutions of the test compounds in AB medium 

at concentrations ranging from 0 to 400 mM were prepared in 96-well plates. To these solutions, 

freshly synthesized DPD solution (pH 7) was added for a final concentration of 5 mM. Boric 

acid was added to give a final concentration of 1 mM. After addition of bacteria in AB medium, 

the micro plates were covered with a non-toxic plate sealer and incubated at 30 ºC with aeration 

for 3-5 h. Light production was measured every hour using a Perkin-Elmer luminescence 

microplate reader. The bacteria solution incubated for 5 h in the presence of a compound at a 

concentration, which was close to its IC50 was diluted to 1:100 and 1:1000, and plated onto fresh 

LM plates and incubated at 30 ºC for 24-48 h. The colonies appeared were counted. The 

concentration of bacteria, which yielded 30-300 colonies was considered valid and CFU was 

recorded. The CFU (colony forming unit) ratio (CFU1/2/CFUblank) and the luminescence ratio 

(Luminescence1/2/ Luminescenceblank) were compared. 
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CHAPTER 5. 

CONCLUSIONS 

In summary, carbohydrates are known to play important roles in a large number of 

biological and pathological processes, including cancer metastasis, cell signaling, cell adhesion, 

embryo development, protein function regulation, cellular communication, and so on. 

Conceivably, “binders” of carbohydrates of biological importance could be used as diagnostic 

and therapeutic agents. Currently, lectins are the major available tools in research for 

carbohydrate recognition. However, the available lectins often have cross-reactivity issues, along 

with the high costs and stability issues. Therefore, there is a critical need to develop alternatives 

(lectin mimics). In this regard, there have been very active efforts in developing different 

“binders”, such as small molecule lectin mimics and aptamers (short DNA or RNA sequence that 

can bind to the target specifically with high binding affinity). Among all the small molecule 

lectin mimics developments, boronic acid stands out as the most important building blocks of the 

sensors design for carbohydrates biomarkers due to its intrinsic binding affinities with diols. The 

boronic acid-based sensors for carbohydrates are termed “boronolectins”. However, there is 

always a paradox in boronic acid based sensors design area, that is on one hand, the 

carbohydrates are universally six-membered ring diols or linear diols. On the other hand, the 

general consensus always thinks that boronic acids do not bind to six-membered ring sugars. 

This hinders a lot in the field of boronic acid-based sensors design for biological carbohydrate 

biomarkers. However, it is always our working hypothesis, that since boronic acid is a lewis acid, 

under appropriate condition, it could bind to any lewis base/nucleophile, which also includes six-

membered ring diols. To address this fundamental question, along with very limited precedents, 

we provided a concrete experimental evidence of our long-term working hypothesis. Specifically, 
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a new class of boronic acid, isoquinolinylboronic acid, was found to have remarkably high 

binding affinities with fluorescence change upon binding to representative sugars. Most 

importantly, these isoquinolinylboronic aicds showed weak but very encouraging bindings with 

six-membered ring diols. All the tested isoquinolinyboronic acid showed bindings with cis-1,2-

cyclohexanediol. 4-IQBA and 6-IQBA also showed bindings with methyl-α-D-glucopyransose. 

All these promising results paves the way of using boronic acids, especially isoquinolinylboronic 

acid as building blocks for chemosensors design for biological carbohydrates biomarkers, which 

universally contain six-membered ring and liner diols. Aptamer provides another alternative way 

for sensors development for carbohydrates biomarkers as lectin mimics. Compared to lectins, 

they are normally cheaper and more stable. However, there is much less options. Another 

challenging area for aptamer-based lectin mimics development is the difficulty to differentiate 

changes in glycosylation patterns of a glycoprotein, which affect the function of a glycoprotein 

and thus recognized as biomarkers. To address this major challenge, our group first demonstrated 

that the incorporation of a boronic acid into DNA would allow for the aptamer selection process 

to gravitate towards the “sweet spot” (glycosylation site). To examine the generality of boronic 

acid incorporation, increase the structural diversity, and broaden the application of boronic acid-

modified DNA, a series of B-TTP analogues with simplified structures were designed, 

synthesized, and successfully incorporated into DNA. A simple route was also developed using 

1,7-octadiyne as a linker for both Sonogashira coupling with thymidine and CuAAC tethering of 

the boronic acid moiety. This paves the way for the preparation of a large number of B-TTPs 

with different structural features for aptamer selection or array analysis. Finally, bacterial 

quorum sensing has received much attention in recent years because of its relevance to 

pathological events such as biofilm formation. As one of the very first groups that developed a 
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series of antagonists for AI-2 mediated quorum sensing, we herein designed and synthesized a 

series of analogues based on the structures of two lead inhibitors identified through virtual 

screening. Besides, we also examined their inhibitory activities, twelve of which showed equal or 

better inhibitory activities compared with the lead inhibitors. The best compound showed an IC50 

of about 6 mM in a whole cell assay using Vibrio harveyi as the model organism.  This 

encouraging results and SAR discuss also paves the way for the finding of more potent 

compound through further structure optimization.  
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APPENDIX: SUPPORTING INFORMATION 

General Method for the Ka determination 

Ka equation development in spectroscopic methods 

  

This scheme can be simplified as , based on 1:1 

stoichiometry binding.  

Assumption: [B] = mI0  [BS] = nΔI 

Ka = [BS]/([B]-[BS])([S]-[BS]) 

Since [S] >> [B], so [S] >> [BS] 

Ka = [BS]/([B]-[BS])[S] 

     = nΔI/(mI0 –nΔI)[S] 

Ka[S] (mI0 –nΔI) = nΔI 

Ka[S]mI0 - Ka[S]nΔI = nΔI 

Ka[S]mI0 = nΔI + Ka[S]nΔI  

I0/ΔI = (1+Ka[S])n/mKa[S] 

           = n/mKa X 1/[S] + n/m 

B S BS
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So in a chart of fluorescence intensity change of IQBA as a function of the reciprocal of 

concentration, we can easily determine the Ka by following equation: Ka = intercept/slope = 

(n/m)/(n/mKa) = Ka, and the linearity further confirm the hypothesis of 1:1 binding. 

By using the binding of 8-IQBA with fructose as an example: 

 

1/conc. Δ I/Io Ιο /Δ I 
Ka = 

Intercept/slope  = 1475 M-1 
5129.976233 9.280140804 0.107756986 

  2273.212226 14.73041948 0.067886729 
  1142.156863 20.07949545 0.049802048 
  539.3657463 27.2851276 0.036650003 
  299.5936293 29.59714481 0.033787043 
  128.0209758 32.92412242 0.030372867 
  62.36232626 33.18822724 0.030131166 
  19.60784314 34.64280825 0.02886602 
   

General Calculation of the quantum yields: 

Q = QR (I/IR) (ODR/OD)    

Use 8-IQBA in the absence of analytes as a specific example. 

UV (272 nm) absorbance (1) Fluorescence intensity are (310-

500 nm) (1) 

UV (272 nm) absorbance (2) Fluorescence intensity are (310-

500 nm) (2) 

0.121 2968.285 0.121 3078.287 

0.106 2206.451 0.105 2105.18 

0.096 1636.396 0.096 1637.44 

0.085 1004.19 0.086 1273.51 



 106 

0.074 633.361 0.072 564.929 

 

A plot of fluorescence intensity against UV absorbace was drawn to obtain I/OD, 51092 and 

50369 in this specific case. IR/ODR was also obatined by the same method to be 

1000000.Then Q = QR (I/IR) (ODR/OD) = QR (I/OD)/(IR/ODR) = 0.44 *51092 (or 

50369)/1000000 = 2.2 ± 0.02 

 

 

 

 

Relative band intensity of B-TTP analogues 2-5, and M-TTP compared to dNTTP in Figure 3.4 

(Group B) 
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Stability test of B-TTP analogues 18-21 in PCR and denature condition 

HPLC condition: column: Agilent, 5µm, 4.6 x 250 mm LN PR045204; flow rate: 0.6 mL/min; 

Solvents: A: 0.1 M NH4HCO3, B: MeOH; program: 0-35 min 25% (B%); Temp 20 °C, 

monitor wavelength: 280 nm. 

PCR condition: Initially denaturing at 94 °C for 2 min, followed by three cycles of 94 °C for 1 

min, 46 °C for 1 min, and 72 °C for 1 min, then hold at 4 °C.  

Denature condition: 95 °C for 7 min. 

B-TTP analogue 18 (Figure S3.1): 

 Blank injection (Figure S3.1-a) 

 

B-TTP analogue 18 (Figure S3.1-b) 

 

B-TTP analogue 18 after subjecting to PCR conditions (Figure S3.1-c) 

 

B-TTP analogue 18 after subjecting to denaturing condition (Figure S3.1-d) 
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B-TTP analogue 19 (Figure S3.2): 

B-TTP analogue 19 (Figure S3.2-a) 

 

B-TTP analogue 19 after subjecting to PCR conditions (Figure S3.2-b) 

 

B-TTP analogue 19 after subjecting to denaturing condition (Figure S3.2-c) 

 

 

B-TTP analogue 20 (Figure S3.3): 

B-TTP analogue 20 (Figure S3.3-a) 

 

B-TTP analogue 20 after subjecting to PCR conditions (Figure S3.3-b) 
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B-TTP analogue 20 after subjecting to denaturing conditions (Figure S3.3-c) 

 

B-TTP analogue  (Figure S3.4): 

B-TTP analogue 21 (Figure S3.4-a) 

 

B-TTP analogue 21 after subjecting to PCR conditions (Figure S3.4-b) 

 

B-TTP analogue 21 after subjecting to denaturing conditions (Figure S3.4-c) 

 

 

MALDI-TOF-MS of primer extension product (90-mer) using natural NTPs (Figure S3.5) 
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MALDI-TOF-MS of primer extension product using B-TTP analogue 18 (Figure S3.6) 
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Full pictures of Figure 3.4. 

A                                                                                         B 

              

C 
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1H NMR of B-TTP analogue 18 (Figure S3.7-a) 

 
31P NMR of B-TTP analogue 18 (Figure S3.7-b) 
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ESI-MS of B-TTP analogue 18 (Figure S3.7-c) 

 

 

1H NMR of B-TTP analogue 19 (Figure S3.8-a) 
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31P NMR of B-TTP analogue 19 (Figure S3.8-b) 

 

ESI-MS of B-TTP analogue 19 (Figure S3.8-c) 
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1H NMR of B-TTP analogue 20 (Figure S3.9-a) 

 

 

31P NMR of B-TTP analogue 20 (Figure S3.9-b) 
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ESI-MS of B-TTP analogue 20 (Figure S3.9-c) 

 

 

1H NMR of B-TTP analogue 21 (Figure S3.10-a) 
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31P NMR of B-TTP analogue 21 (Figure S3.10-b) 

 

ESI-MS of B-TTP analogue 21 (Figure S3.10-c) 
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1H NMR of M(C)-TTP (Figure S3.11-a) 

 
31P NMR of M(C)-TTP (Figure S3.11-b) 
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ESI-MS of M(C)-TTP (Figure S3.11-c) 
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1HNMR and 13NMR spectra of tested compounds in chapter 4 
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