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ELECTROKINETIC MODELING OF FREE SOLUTION

ELECTROPHORESIS

by
YAO XIN

Under the Direction of Stuart Allison

ABSTRACT

Modeling electrophoresis of peptides, proteins, DNéodlcells and colloids is based
on classical electrokinetic theory. The coupled field equatfmisson, Navier-Stokes or
Brinkman, and ion transport equations are solved numerically tolatdhe electrophoretic
mobilities.

First, free solution electrophoretic mobility expressions argvel for weakly
charged rigid bead arrays. Variables include the numbéeadls (N), their size (radius),
charge, distribution (configuration), salt type, and salt camagon. We apply these
mobility expressions to rings, rigid rods, and wormlike chain rsodad then apply the
approach to the electrophoretic mobilities and translatiorfalstin constants of weakly
charged peptides. It is shown that our bead model can predielettieophoretic mobilities
accurately. In order to make the method applicable at higgieiconcentrations and/or to

models consisting of larger sized subunits, account is takémedfinite size of the beads



making up the model structure. For highly charged partidlés,also necessary to account
for ion relaxation. This ion relaxation effect is accounted by correcting “unrelaxed”
mobilities on the basis of model size and average eleatiosurface, or “zeta” potential.
With these corrections our model can be applied to themsysith absolute electrophoretic
mobilities exceeding approximately 0.20 %V sec and also models involving larger
subunits. This includes bead models of duplex DNA.

Along somewhat different lines, we have investigahe electrophoresis of colloidal
particles with an inner hard core and an outer diffusiyerlg“hairy” particles). An
electrokinetic gel layer model of a spherical, highly gbkdr colloid particle developed
previously, is extended in several ways. The charge gbdhtcle is assumed to arise from
the deprotonation of acidic groups that are uniformly distributed aportion (or all) of the
gel layer. Free energy considerations coupled with PoissonriBoitz theory is used to
calculate the change of the local pKa of the acidic groupsndemeon the local electrostatic
environment. Based on the modeling of electrophoresis and wsowsi predict that the
thickness of the gel layer decreases as the salt cortaemtiacreases. And only the

outermost portion of the gel layer is charged.

INDEX WORDS: Free solution electrophoresis, Peptides, Beadkel, Gel layer,

Electrokinetic modeling
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Chapter 1

Introduction

1.1 Brief Description of Electrophoresis

Charged particles placed in an applied electric field matvedifferent velocities
depending on their size and charge. This phenomenon is called@hecesis. Theoretical
studies focus on the ratio of the velocity of the chargadigle, u, over the strength of the
electric field, E, which is defined as the electrophoretipbilities,n . For the simplest case, a
spherical particle of charge Q, radius a immersed in &ralesplvent with viscosityy in the

presence of electric field E, is shown in Figure 1-1.

Fryd = - &naumlzele = QE
< |
‘ w

v

Figure 1-1) A Charged Spherical Particle Moving in an Ele€teld in Neutral Solvent.



Under steady state conditions, the determination of the modilitye particle is straightforward

From force balance on the particle,

67m7aU = QE (1-1)
SO
_U_ Q -
H=Z 6mra (1-2)

However, in real applications, the solvent contains charged lenaims, which are

influenced by the electric field and affect the mobilifytlee particle. In addition, the particle
may be irregular in shape.

Hence, the hydrodynamic force isimptys-67z7al . These

factors make the modeling of electrophoresis complicatecersafnd has described the

electrophoresis of spheres in detail in his dissertation.
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Figure 1-2) A Charged Spherical Particle Moving in an Eleé&teld in Salt Containing Mobile
lons.



As shown in Figure 1-2, a spherical charged particle is mgowi a salt solution in the presence
of E. Assuming the particle is positively charged, there vl counter-ion cloud consisting of
negative charged ions from the salt around the particle. Thisezeontcloud, together with the
positive charge on the particle is called double layer (twtatge = 0). There are four forces
acting on the particle. First, the electrical force exetig the electric field, & equals to the
product of the total charge of the particle, Q, and theraldatld, E. Next, the Stokes friction
force exerted by the fluid,qFjon= - 6rnay.

The remaining two forces arise from the ion atmosphere surroundipgrticle. When
the particle is moving toward the cathode, the ion atmosph#moeve in the opposite direction,
exerting a drag on the nearby fluid. This resulting back flalvcause a hydrodynamic drag on
the particle, which will decrease the speed of théighar This effect is called electrophoretic
retardation. The other effect on elecrtrophoretic mobilitgassed by distortion of the ion
atmosphere and is called the ion relaxation effect. Utigepresence of an electric field, the
counter-ion cloud surrounding the particle becomes asymmetric giekety state conditions
and this causes an additional electrostatic drag on thelpariihis effect will also decrease the
speed of the particle. The relaxation effect is not Baanit for weakly charged particles, but

becomes important for highly charged ones.

1.2 Application of Electrophoresis

Capillary electrophoresis (CE) has proven to be powerfuldrséparation and
characterization of charged particles, such as peptides,n@mateicleic acids and colloidal

particles. There are a very large number of CE optionsxémple, capillary micellar



electrochromatography (CMCE), capillary gel electrophoresi€{Cféee solution capillary
electrophoresis (FSCE) and capillary isotacophoretic (CiT/®nong these, free solution
capillary electrophoresis, without a support medium, provides the sihwdg of examining the
relation between mobility and chemico-physical properties, ssisiza and charge. Within the
past few years, substantial progress has been made in batkakarement and interpretation of
free solution electrophoretic mobilities. A number of investigatitng studied electrophoresis
of peptides and proteins. These topic include: effect of diffeesatndary structures of
peptides’ ® *such asi-helix andp-sheet on electrophoretic mobilities; charge dependence of

4-6, 9

mobiblities; 7,12,

peptides electrophoresis maps with potential use as fingerpirimtsteins,
* mobilities studies of peptides with post-translational modificat such as phosphorylation,
methylation, and citrullinatio determination of dissociation constants and limiting mobilities
of amino acids by free solution electrophoréisxploring information on hydrodynamic size

and shape of peptides and proteins from electrophdfetis.

Besides peptides and proteins, nucleic acids are anotheedhsgtem studied
extensively by electrophoresis. DNA condensation by multivalent cafipnetein-DNA
binding affinities in free solutioff, abnormalities of bent DNA mobilit€&,*length dependence
of free solution electrophoretic mobilities of duplex DIf¥#fave been examined. Over the past
few years, interests in the field of nanoparticles and dalgarticles have been increasing. The
structural properties, such as charge distribution and thicknessgsltlager, of polystyrene
sulfonate, a typical model for particles with a uncharged hardisice and a charged “hairy”
gel layer outside, have been studitd® Gold nanoparticles, with different sizes and surface
charge properties are synthesized to be drug carriers. Electsphmroves a good tool to

characterize and control their size and charge, and hence a@nsipart propertie¥: 3’



Additionally, several researchers have investigated the@boresis behavior of biological

cells?*?®

1.3 Existing Method of Modeling Electrophoresis

There have been two different approaches followed in rmagdefree solution
electrophoresis of peptides and other charged particles. Mgdiemly grounded in continuum
electro-hydrodynamic theory and semi-empirical method basextensive experimental data
under specific operating conditions. Development of electrophores@yt of finite rigid
particles started in the 1920s, when Hutkdkrived an expression for the electrophoretic

mobility of a small, weakly charged sphere

2.4

1-3

,U Huckel

whereg, is the relative dielectric constant of the solutignis the surface or “zeta” potential

(=9

= m), n is the solvent viscosity, and C \tfin CGS units) or k) wheregy is the
permittivity of free space (in MKSA units). Previouslyn8luchowski’ obtained a slightly
different expression for the mobility of a large sphere. sbence, the factor of 2/3 in Eq. (1) had
to be replaced by 1. Subsequently, Henry investigatedl¢otrophoresis of a conducting

sphere. For a very large sphere, Henry’s results reduced ® dh&@moluchowski. For small

particles, however, Henry obtairféd

2

1+ L% - 2 k%% + j 1-4)
3Cn 48

:uHenry 16

where K is the Debye-Huckel screening parameter. The fluid coniaims modeled as a



continuum and the ionic strength, 1,
_ 1 2
| = =) c,Z (1-5)
27
where the sum extends over the different ionic speciesniregeis the ambient concentration

of speciest, and z is its valence. The Debye-Huckel screening paraméter is

20°C |
& KT

1-6)

where q is the protonic charge, ik Boltzmann’s constant, and T is absolute temperature. Thus,
Henry’'s mobility expression reduced to that of Debye for smalligkest and to that of
Smoluchowski for large particles. Heffhyalso gave mobility expressions of a cylinder with a

symmetric charge distribution:

_fueg

1-7

Mo 87 1-7)
&¢C

= 1-8

Hy am ( )

where - / i, is the mobilities perpendicular/parallel to the elecietf f, =1if xa - 0, and
fo=2if kK@ - .

Starting in the 1960’s, numerical strategies reqgicomputers have been successful in
modeling the electrophoresis of charged particleslate 28" century, Wiersem&,*® O’Brien
and Whité* determined the mobility of highly charged spheremerically. Later on, Yoon and
Kim3? investigated the electrophoresis of weakly charghipsoids and Stigtét studied the
highly charged long rod. Alliséf* applied the boundary element method to solve tbeem
general case of electrophoresis of irregularly sdapighly charged particles with an arbitrary

charge distribution.



Independent of the fundamental strategies descréiexe, considerable work has
been carried out in developing semi-empirical medelpredict the mobility of a peptide using
peptide molecular weight, hydrodynamic radius, ghaand the number of amino acids in the
peptide. Amongst the simplest models, the Offortlet (1 = Z/M”®)*° has been shown to give
good correlation for a lot of experimental d&tayherep is the free solution electrophoretic
mobility, Z is the net charge, and M is the moleculveight. In the last few years, more
sophisticated semi-empirical computer models hasenbdeveloped that take more detailed
account of peptide charge, composition, and nunabeamino acids:****4* Under specific
experimental conditions (pH, temperature, solvantl buffer composition), these models can be

Very accurate.

1.4 Outline of this Dissertation

In this dissertation, modeling the free solutioectiophoresis of peptides, proteins, DNA
and colloidal particles that are based on cladsictr®kinetic theory is carried out. How factors
such as composition, size, charge distribution salts influence the mobility are examined.
Chapter 2 describes the development of the eldotregis of a bead array model of weakly
charged macroions. In Chapter 3, this bead madapplied to the electrophoretic mobility and
diffusion of a large number of weakly charged pagsi where experimental data is available.
Chapter 4 is an extension of Chapter 3, which fesw the improvements in the bead model to
include the ion relaxation and finite size effect€hapter Sinvestigates the electrokinetic
transport of rigid macroions in the thin doubledayimit. Chapter 6 studies the electrokinetic

transport of a spherical gel-layer model partiglelystyrene sulfonate), developing an approach



of charge regulation. Chapter 7 summarizes tlsisedtation.



Chapter 2

Bead Array Model for Electrophoresis of Weakly Chaiged Macroions

2.1 Theory of Bead Array Model

A bead array model is developed to determine tketmphoretic mobility of charged
macroions numericall{ The advantage of the present bead model over uhebdundary
element calculation of electrophoretic mobilityagremendous reduction in computation time.
This advantage makes the bead model more suitabieotel the electrophoresis of a flexible
molecule, when numerous conformations need to inplsal.

Before deriving a simple expression for determineigctrophoretic mobilities of a bead
array, several assumptions will have to be made fiiist assumption we shall make is the
neglect of ion relaxation. According to a numberimfestigations;*****3*4eglect of ion
relaxation is a fairly accurate approximation whiea absolute surface or “zeta” potential is less
than approximately 25 mV, that is equivalent to abifity of 0.20 cni/kV sec’ Under this
approximation the bead array model is appropriateveakly charged macroions. In Chapter 4,
the ion relaxation effect will be included in ordermodel more highly charged macroions.

A second assumption is that when modellagtephoresis in solution, the reaction field or
in the other words, the internal field effect, gnhored. For a sphere with internal dielectric
constang, and radius, a, placed in a constant externalreddetld, E, the actual field at position

x in the fluid where the origin is chosen at theteeof the sphere is given 8y
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Ern(x) = Eu(@ L-3X]E  (2-1)

wherel = (& - €)/(2¢; + &), x = k|, andX = xx/x? is the unit position dyadic. From Eq. (2-1) is
clear that the actual field of some point in thedlis affected by the charged particle placed.in i
However, in the present work this affect has begred, corresponding to sét=0 in Eq. (2-
1).

Additional assumptions include: first, th@usion is dilute so that the interaction between
different bead arrays can be neglected. Secondrraftfields are weak so that the bead array
does not orient in the direction of the externeldi Third, it is possible that the bead array wioul
rotate as it translaté5*® In the modeling of electrophoreéfs this “translation-rotation”

coupling has been demonstrated to be small andwitfleglected in this work.
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Figure 2-1) Schematic of the Bead Array ModelheTigid macroion array consists of N beads
of radii (a, &, .... &) that are not necessarily equal, and carry negelsa(z, z, .... ). In the
figure, n2 is the distance between the beads 1 and 2.

A macroion array consisting of N beads of variabldii (a, &,...ay) and net charge {zz, ...z\)

in the units of protonic charge, q, is depictedrigure 1. In the figure = [ —X«| denotes the
center-to-center distance between beads j and&kafiay is placed in a Newtonian fluid in the
presence of an electric field E. The fluid is assdrno obey the linear Navier-Stokes and solvent

incompressibility equations

no%v(x) -Op(x) = -s(x) (2-2)

y(x) = 0 2-3)

wherev(x), p(x), ands(x) are the local fluid velocity, pressure, and exa¢iforce/volume on the
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fluid. Also, OOin Eq. (2-2) represents divergence. In the presemk, s(x) arises from the

interaction of local ion densities with the extdrelactric field

s(x) = —p(OA(X) = p(XE  (2-4)
wherep(x) is the local charge densityy(X) is the local equilibrium charge density(x) is the
local electric potential, an& is the external electric field (assumed uniforidgglecting ion
relaxation allows us to replapéx) by po(x).
It is convenient to rewrite Eq. (2-2) and (2-4Yemsor form.

Ul = OUg, +g.) = 0 (2-9

—Total
where

g, = -pL+n@Qv+1v) (2-6)

gy
0w, = s = pE (-7
The “T” superscript in Eq. (2-6) reprensents trarsgpof a second rank dyadic tensor.
Begin with the differential form of the LoterReciprocal Theoreif{;*

su+0viz, ") = s¥+00QviE,) (2-8)
where_y s and g, represent the velocity field, external force, drydirodynamic stress of the

bead array and the primed fields represent somer sthlution we are free to choose. In most
Boundary Element applications, a singular solubased on the Oseen tensor is chg&éh?>*8
In the present work, the singular (Green’s Fungtewiution of a small, weakly charged particle
is chosen® This velocity/pressure field satisfies
no*v(n)-0p'(r) = -qE(r) +ak°F(kNE  (2-9)
o) =0 (2-10)

wherer =x —y, r = [|, the differential operators act on variabledxs the delta function, and
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F(k,r) = Z—n 2-11

The solutions ard

Vi(r)

p'(r)

U(r)E (2-12
qP()E  (2-13

where

U = oo W)+ )= ()DL

L0 -w) WO+ IR} (@-19

—KI

P(r) = jﬂ (L+ar)r (2-15)

3

| is the 3 by 3 identity tensdR =rr /r2 is the position dyadic, and

v,(r) ri (2-16

— KT

w, (1) er (2-17)

In the limit of x -> 0, Eq. (2-14) reduces to the Oseen tensor.
Next, focus on the problem at hand, etgxttoresis of a bead array. Integrate Eq. (2-5) over

S,, where b is the radius of a large spherical volem&osing the bead array and surrounding

fluid.
N
0 = ZSjEj + gH DDde-l'E podvx (2-17)
=1 su_ %
where
E, = —ng hdS, /S,  (2-18
SJ

Because there is no net force exerted by the breag an fluid at the surface,S
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N
Y az;E = ) S/F, (2-19
: =

Before using Eq. (2-8) and the singular solution, consider an unchbeged (call it bead )

moving with the fluid at the same velocity. Under these candif s = 0, an(zl=7H = 0. Integrate

Eq. (2-8) over a large sphere inclosing the bead, apply thegdives therem to the ' term,

and assumeab >>1 to obtain

ng'dsX = qE ®(y,V,) -« jF(K,r)dvx (2-20)

Gl

where $represents the surface of beadis the local outward normal from, ¥; is the volume

exterior to bead jp(y,Vy) equals 1 if Mlies within Vg;, O if y lies outside of \{, 1/2 if ylies on

the boundary surface;.S
Now, going back to the problem of the bead array, integraig2=8) over the entire
fluid inside the sphere of radius b, making use of the singulai@olfta small, weakly charged

sphere, and apply the divergence theorem. It is straightforwattt
N
VND(Y.V) = [lU) B0+ (k,)v]aV, + Y U () OF (x)dS,
Y i=ls,

N N
VDY V) — K7 Y [Flenadv,  (2-21)
j=1 j=1 V.

where
fx = -g, ()X (2-22
The last two terms on the right hand side, rh&mf(2-21) can be written

DBy, -k [FndV] O YvoloyV,) -1 (2-29

Cl

f(x) in the second term of Eq. (2-21) can be replacgd F (Eq. (2-18)), assuming fixis
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uniform over individual bead. Ignoring ion relaxatiand the internal field effect,_$(xan be
approximated with Eq. (2-4). For the local equiliibon charge density in the vicinity of the

macroion array,

e A £ K?
Po(X) = QY. 7,C e F oW ] e (2-29

only linear terms of the equilibrium potentidl, (x), are retained. The equilibrium potential of a

bead array of radius flaand charge {g is approximated by the solution of the linear §los-

Boltzman equation.

AW = EXzFwr) -2

where = |x - | and xis the center of bead j.

From Eq. (2-4), (2-24), and (2-25),

s 0 -~aCEXzZF(kr)  (2-29

e
The most difficult term to deal with in Eq. (2-2d9ncerns the volume intergral over y&ince

we do not know what v{xis. However, an approximate solution of v(x) da@ obtained
compared with the solution of 9(¥or the singular solution we choose, it is dieahown in Eq.
(2-9) that

s'(x) =-qEJd(r) + gk *F(,r)E 2-27)

Ignoring the delta function, which only contributaisthe single source point in any event, and
comparing with Eq. (2-26), we see that our singslalution corresponds to a point charge of
charge +1 in external field, E, translating undieady state conditions. Thus an approximate

velocity field to use in the first term on the fsEq. (2-21) is
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W9 O AYZUC)E (-2

where Ais a constant to be discussed. Chooseah doigin to be at the center of any particular
bead, call it bead k, and average Eq. (2-28) oyewnlkere @is a point on the surface of bead k.

Retaining terms to first terms to first ordersa, , Eq. (2-28) becomes

<V(X)>s = qA{Zke_Kak +zzj c(ry) | LE (2-29

k jzk
where <>y indicates averaging over the surface of bead k apd= 6rmay is the friction
coefficient of bead k. For a bead array undergaitegdy state translation in a constant electric
field, we should have

<v(¥)>s = uE  (2-30
whereg denotes the electrophoretic mobility tensor of twead array. If stick boundary

conditions are assumed, the particle velocity dmid fvelocity should match ongSIn practice,
Eq. (2-29) and (2-30) cannot be satisfied on adldsesimultaneously and further approximations
have to be made. A common approximation in polytremsport theories that originated with
Kirkwood®! involves orientational preaveraging of the hydmatyic interaction tensor. In past
work, this has been applied to the Oseen tensor ianthe present case, orientational
preaveraging is applied td . This is accomplished by replacity given by Eq. (2-14) with 1/3
of its trace

<Li(£)>opa = ML

(2-3D

Also, the mobility tensory in EQ. (2-30) is replaced with a scalar mobility Although Eq. (2-

29) and (2-30) cannot be satisfied simultaneoustyall beads, A can be chosen so that, on
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average, they are satisfied. Mutiply Eq. (2-29) by

= S< 2—-32
s, ¥

where S is the total surface area of all the beads. Naxt this over all beads and set it equal

tou E. Solving for A then yields

A= STH h_3y
KP,

1

N

2 = Sl ten sy

k=1 K 7k KT

z.e "k
]

} (2-34)

where [ = Xj — Xk Choosey = X, the center of bead KT'he first term on the right hand side of

Eq. (2-26) can then be approximated
JlU(r) () + &*F (k, 1)1V,
J=
2 N
0 Zq—K(A—l)EZZj [Fier)F®k.r)av,
3’7 j=1 \Vi
gk (A-1) Ju
O 22 ZphE 2-3
lom 2 (2-39
where

PY = ze®*+>e™  (2-36)

jzk
After straightforward substitution, Eq. (2-26) can be written

p N 1
He-—5) = 6";7{21&,-9]—5%(”} (2-37)
1 1=

where X = exp(ka)/(ka) if k = j and exp(kri)/(krj) if kK # . Also, g is defined by the identity
SE; = qg9;E (2-39

Also introduce the identities
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N
P, = >mP¥ (2-39
k=1
. N
PY = >mzx, (2-40
j=1

z, = sz (2-41)

N
P = >mR® (2-42
k=1

Multiply Eqg. (2-37) by m sum over Kk, use the above identities, and solvg for

-1 -1
_ K P, KgP, P,
= Hi1-—2 mx.d. |- 1-—= 2-43
“ 6m( ZPJ [Z “Jg’] 12777( om)

What is unknown in Eq. (2-43) ig'g Eq. (2-37) and (2-43) gives a series of N eiguatin N

unknowns

N
Zijgj = ¢, (2-44)
j=1

) (k)
Dy, = h 1—PZ - 1—i Xs (2-49
Z; 2P, 2P,

& = S(-PY) @49

gj's cannot be obtained by simply constructing a NNdy’s matrix, inverting it, and then solving
for the component,jgBecause the N equations represented by Eq. (2ré4)ot independent. If
Dy’ is multiplied by m  and summed over k, the net sum is zero. Thusripsssible to inverbD.

However, From Eq. (2-19), (2-38) and (2-41),
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If we simply replace Eq. (2-44) with Eqg. (2-47) for= 1 (or any k for that matter), then the
system of equations becomes invertible. In othedgadefine

Dly = & (2-49
where Q; = Dy, and& = & for k > 1, and [ = 1 and&y = z for k=1. Also,D in Eq. (2-48) is
an N by N matrix andy and& are N by 1 column vectors. It is now possiblenert D and
obtain the N components gffrom

g = D'IZF  (2-49

Once the gare known, they can be substituted into Eq. (2td3)etermineu.

2.2 Average Force Approximation

The mobility expression summarized by Eq. (2-43) e solution of the
components,;ggiven by Eq. (2-49) represent one of the prinaipaults of the present work.
However, numerical inversion of a potentially largatrix is still required. It is possible to
simplify the results further by making one addiabapproximation. For an array of N beads of
equal radius, a, the Kirkwood Approximation leadlshte following expression (see, for

example, p. 25 of reference 51) for the translatiaiffusion constant, £

N N
Dy = ol [1.1y5 @ (2-50)
67773N N k=1 jzk rjk

Although Kirkwood himseff' as well as a number of early investigatoisitially believed this
approximation was exact, it is now recognized thistis not tru€>>® The origins of
Kirkwood’s error were first described by Ikédabut a subsequent stidys useful in the present

context since it identifies a constraint on therogynamic forcest;, that must be satisfied in
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order for the Kirkwood Approximation to be exaétor the special case of an array of beads of
equal size, the Kirkwood Approximation is exadtjif= Fro/N whereF+ is the total
hydrodynamic force exerted by the bead array offitid In the present work, we shall also
consider an “average force approximation” wherenyagrodynamic force/area exerted by bead |
on the fluid,F;, is replaced with an average force/unit afege. From Egs. (2-19), (2-32), (2-
38), (2-47) and the above “average force approxongt

g, = mz (2-5))

Substituting Eq. (2-51) into Eq. (2-43) and makirsg of Eq. (2-40),

. -1
— KqRI. P2 P2
= 1-—|1-—= 2-52

where the “AFA” subscript emphasizes that the “average fapproximation” has been made.
In the special case that all beads are of equal sizehange; then P= P’ and Eq. (2-52)

simplifies to

Haen = o l:_Ka %zzae Jk:l (2—-53

67ma g Tk
where a and z are subunit radius and charge, respectively. EqQ.ig€2s88ilar to the Kirkwood
Approximation for the translational diffusion constant of a beeayaf identical subunits given
by Eqg. (2-50). Note, however, that inter-subunit “screening” falla®#xp(kr)/r in the case of

electrophoresis, but as 1/r in the case of diffusion.
2.3 Testing the Accuracy of Bead Array Model

Because of the approximations discussed in the beginning of tlpgechizae mobility
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expressions derived are limited to subunits that are wehidsged | < 25 mV or [u| < 0.20

cm/kV sec) and smallkg < 1.0). For ka = 1.0, for example, neglecting the internal field
(distortion of the external electric field by a conductingoov Hielectric sphere) causeg {o be
underestimated by 6 %. Next, assess the effect of “praging’ the hydrodynamic interaction,
or U tensor. In modeling the transport of (uncharged) freely rotatiagns, Garcia de la Torre
and coworkers found that orientational preaveraging introducesran ierthe translational
diffusion constant of between 0 % and 3 % depending on the numfeowiits present and the
ratio of bead radius to virtual bond lengfhin all of the cases investigated, error caused by
orientational preaveraging was 1/3 or less than the erroredaly the Kirkwood
Approximation® In the case of electrophoresis, where hydrodynamic interacientcutoff”
over shorter distances than in diffusion, we would expect treev@raging approximation to be
even less important. On this basis, we conclude that the oioeriatpreaveraging
approximation can introduce an error of several percent, but thabduces less error than the
AFA we shall turn our attention to next. Consider rods or rmgde up of a discrete number, N,
of beads of equal radius, a, near neighbor bead separation, bulandt charge, z. For the
results summarized in Table 2-1, we seta =1 nm, T =2 = 1.0 cp, and z = +1.0. For this
subunit radiuska = .01 and .10 correspond to ionic strengths of 9%at@ 9 x 1G moles/liter,
respectively. For the rings, all subunits are indistinguishabl@ the AFA introduces no
additional error. For the rods, however, this is not the casdanalegd the ¢ for the end
subunits are quite different from the remaining values. @ft@re computed using Eq. (2-49).)
In the table, we have included averages of the two end sspdgit,g and the average over the
remaining subunits, <gz, for the case of rods. Mobilities are given in’4d sec and are

computed using Eq. (2-43) far or Eq. (2-52) fopara. The “error” ispaga/p - 1.
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Table 2-1

Mobility of Rings and Rods

Geometry] N b(nm) Ka <O0>nt | <OZ%nd M MAFA Error
ring 3 2.0 .01 1.000 .1464 --- -
rod ! : “ 612 1.194 .1298 1327 .022
ring ‘ ‘ 10 1.000 0427
rod “ : : .851 1.075 .0387 .0392 .013
ring . 4.0 “ 1.000 .0320 -
rod “ : : 992 1.004 .0318 .0318 .000
ring 10 2.0 .01 1.000 == 2179 ---
rod “ : : .862 1.552 1791 1851 .034
ring . . .10 1.000 .0440 -
rod “ : : .960 1.158 .0419 .0422 .007
ring “ 4.0 ¢ 1.000 .0320
rod “ “ “ 997 1.010 | .0319| .0319 .000
ring 50 2.0 .01 1.000 .2266
rod ! : “ .958 1.819 2114 2142 .013
ring : . .10 1.000 .0436
rod ! : “ 994 1.192 .0432 0433 .002
ring . 4.0 “ 1.000 .0320 -
rod “ : : 999 1.012 .0320 0320 .000
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From the results of Table 2-1, it is clear that althoughakcubunit forces vary along
the rod, particularly at the rod ends, the AFA leads to anestimation ofi by several percent,
at most. This error is greatest for smadl intermediate rod lengths, and small b. It should be
emphasized that for b = 2 nm, which are the cases whererrihreis greatest, near neighbor

beads are actually touching. Increasing b to 4 nm substanallces error associated with the

AFA.

Next, we consider discrete wormlike chain models wherneutider of identical subunits
is N, the subunit radius is a, the virtual bond length (distaneeebatnearest neighbors) is b, the
persistence length is P, and the charge per subunit is zartikutar chain conformation is
selected, at random, from an equilibrium distribuffdfror each chain, both and paea are
computed. For a particular set of model parameters, tbeegure is repeated for 1000 chains
and averages are determined for ho#mduara. Standard deviations for single chain mobilities
are also computed. Since a likely application of this modédinplypeptides, we shall choose
model parameters that are anticipated to be approptigt&’ *’Summarized in Table 2-2 are
results fora = 0.3 nm, b = 0.6 nm, P = 2.0 nm, z = 0.£510° M, T = 20°C, andn = 1.0 cp.
Standard deviations are in parentheses and the “errquarigt - 1. Consistent with earlier
results on rigid rods, the AFA overestimates the mobilityseyeral percent. Although some
variation is seen in mobilities between different wormldtein conformations, it amounts to

from 2 to 2.5 % in this particular example.
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Table 2-2
Mobility Results for Discrete Wormlike Chain Models

(@=0.3nm,b=0.6nnm, P=2.0nm, z=0.15, | £ W)

N bara(sd) u(sd) Error

5 .093(.002) .091(.002) 025
10 .121(.005) .118(.005) .029
15 .139(.008) .135(.008) 030
20 .153(.012) .148(.010) 031
25 .164(.014) .159(.012) 033
30 .175(.018) .169(.015) .036
35 .184(.019) .177(.016) .039
40 1192(.022) .185(.018) 038
45 .199(.022) .190(.018) 047
50 :206(.025) .197(.020) 046

(1) mobilities are in criikV sec at 20C withn = 1cp

In experimental studies on proteins and polypeptid&s*®? is typically fit to an

empirical equation of the form

where A is a constant; 1s the total charge (in protonic units), and M is the molecula

weight. The value ofi that best fits experiment depends to some extent on the g pidihg

U

AZT
M a

(2-54)
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investigated and other experimental conditions, but an optinigltypically around 0.66° To
see if the results in Table 2-2 are consistent with timergé form of Eq. (2-54) and, if so, give
physically reasonabl@’s, linear least squares fits to equations of the followiagnf are

considered,
_ M| _ _
In(—j = c+aln(N) (2-5H

The results of Table 2-2 are plotted in Figure ®2llustrate the fit to Eq. (2-55).
Diamonds and squares correspond to mobility resutts and without the AFA, respectively. It
is clear that the model results are entirely caestswith the functional dependence of Eq. (2-55)
and consequently Eq. (2-54). Furthermore, lingartb the curves in Fig. 2-2 give = .657
(AFA), .667 (no AFA) both of which are entirely costent with independent experiment.
However, the parameters ¢ anddo depend on the wormlike chain model parametsrs a
summarized by Table 2-3. These come from studiesogous to Table 2-2 and Figure 2-2.
Other parameters being equalincreases as P or | increases. In addition tavitrenlike chain
models considered above, we also examined a feasa@lsere the charge distribution was not

uniform. This, however, was found to have littlluence on the results.
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Figure 2-2) Dependence pfon N for a Discrete Wormlike Chain Model. Modelg@aeters are:
a=0.3nm,b=0.6nm,P=2.0nm,z=0.15 D2 M, T = 20°C, andn = 1.0 cp. Diamonds
and squares correspond to mobility results withaitikdout the AFA, respectively
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Table 2-3

Parameters and c for Wormlike Chain Models

b(nm) P(nm) z (M) AFA C a
0.6 1.0 15 .001 yes 1.127 .569
¢ . ¢ “ no 1.107 .596
“ 2.0 . “ yes 1.015 .657
“ : “ ¢ no 1.018 .667
“ “ .25 .010 yes 976 .758
“ : “ ¢ no .987 167
1.2 “ .30 .001 yes 1.290 .705
“ : “ “ no 1.259 124
0.6 10.0 15 : yes .824 71
¢ : “ “ no .861 167
2.4 Summary

In this chapter, two expressions for the fre@itsmh electrophoretic mobility, Egs. (2-
43) and (2-52), are derived that are applicablaacroions that are modeled as rigid bead arrays.
It is assumed that internal field effects are sifwallid forkg < 1), ion relaxation is negligible
(valid for weakly charged macroions),
interparticle interactions are negligible (valid tblute solutions), and no orientation of the

macroion occurs in the presence of external etefigid, E (valid if [E| is small). In order to
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obtain tractable mobility expressions, it is algacessary to “orientationally preaverage” the
hydrodynamic interaction tensay, What results is Eq. (2-43) and its supplemeqt,(E-49).

In is concluded that this preaveraging approxinmaksads to an overestimatéu by several
percent. To simplify the mobility expression fuetland avoid the necessity of matrix inversion,
an additional “average force approximation,” or Ak®made. What results is Eq. (2-52). Itis
concluded that the AFA also leads to an additionakestimation of mobility by a few percent.
Specific values for rods and discrete wormlike nbaire given in the Results section. It should
be emphasized that the AFA and “orientational peeaging” approximations are deeply rooted
in polymer transport theonr}. These approximations are applied to the problem of
electrophoretic transport in the present work. aflditional point that needs to be made is that

that assumption of ignoring the internal field le&d an underestimatiasf mobililty, whereas

the AFA and “orientational preaveraging” approximoas lead to an overestimatiof mobility.

Hence, the approximations tend to be self canceling
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Chapter 3

Modeling the Electrophoretic Mobility and Diffusion of Weakly Charged
Peptides

3.1 Introduction

In Chapter 2, a bead array model forrdeitgng the electrophoretic mobility is developed
and tested. In this chapter this model is builttloa structural and charge properties of weakly
charged peptides. Shown in Figure 3-1 is a schem@otypeptide secondary structure

determined by two torsion angleg:(rotation about the N- £bond) andg (rotation about the

Co-C bond). It has long been recognized that freatsol electrophoretic mobilities of peptides
depend on size and charge, and it is physicalrdifiges between peptides such as these that is
responsible for their ease of separation in th&t fdace. In order to better understand why
peptides separate the way they do, considerablk as been done using simiempirical models
which usually are writte**°9%%as Eq. (2-54) defined in the previous chapter. iEiogly, a is
found to vary from 1/3 to 2/3 although a value elo® the latter appears more appropriate under

most conditions (see, for example reference 12).
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Figure 3-1) Scheme of Polypeptide Secondary Streftu

The motivation of the present study is the develepimand evaluation of a theoretical

methodology specific to weakly charged peptides filiéils four conditions. First, it is grounded
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firmly in classical electrohydrodynamic theory. c8ed, it accounts in an approximate way for
the irregular shape, charge distribution, and Hdixy of a peptide of variable size and
composition.  Third, it is capable of yielding acate mobilities. Finally, it is sufficiently
simple and also computationally fast to be usetulat wide audience. Specifically, we
demonstrate that classical electrokinetic theorghle to accurately predict the electrophoretic
mobilities of a large number of peptides containingm 2 to over 40 amino acids. The
methodology described in the present work fulfliese four conditions and because of this,
should be of considerable value in predicting mEptmobilities, in understanding specific
peptide mappings, and in using mobilities to extsawictural information about peptides.

By “weakly charged”, we mean the absolute sugfar “zeta” potential does not exceed
25 mV?°® or equivalently, the absolute electrophoretic rfitybiloes not exceed approximately
0.20 cnf/kV sec®* For more highly charged peptides, the “relaxatiffect” discussed

previously needs to be taken into account. Thadl &fe discussed in the following chapter.
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3.2 Modeling

A peptide made up of X amino acids is modeled afring of N = 2X beads. This
“two bead per amino acid” model allows us to ac¢pumthe simplest manner possible, for the
overall composition, conformation, and transport eoflinear peptide chain consisting of a
particular sequence of amino acids. Odd numbedpadKbone” beads (1,3,5,...) are centered on
the a-carbons and represent the peptide backbone unike ahain. It is assumed that nearest
neighbor backbone beads touch each other. Ewvetbened beads (2,4,6,...) represent the R-
groups of the particular amino acids. This is smasehematically in Figure 3-2. All odd
numbered beads are assigned a bead radius of thh1f order to reproduce the known near
neighbor G to G, distance in peptides of 0.38 ifiThe radii of the even numbered beads are
assigned on the basis of the translational diffusionstants of the free amino acidsaD®’

The hydrodynamic radius,;Rof a free amino acid, is given by the Stokes-teins

relation

kgT
677D,

3-1)

where kg is Boltzmann’s constant, T is absolute temperatmen is the solvent viscosity.
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Figure 3-2) Bead model of a peptide. A peptide enaypl of X amino acids is modeled as N = 2X

beads. Odd numbered (touching) beads represer@,thatoms of the amino acids and even

numbered beads represent the R groups. The ffatie @dd numbered beads is .19 nm and the
radii of the even numbered beads depends on theoaaaid and is defined on the basis of the
amino acid diffusion constant.

Summarized in Table 3-1 arg'sRfor the amino acids. Entries that are not irep¢hesis
are taken directly from the literature and entireparenthesis are estimated using the “van der
Waals increment method” of EdwaftiFor small molecules withRn the range of 0.2 to 0.6 nm,
which is the size range of the amino acids, Edves shown that R0 (3u,/4m)*> where v, is
the van der Waals volume of the molecule. Furtloeeny, can be estimated from volume
increments tabulated in Table 1 of reference 6&ist@ier two similar molecules, 1 and 2, where
the diffusion constant of 1 is known but not 2.s@letdv = w,(2) — w(1) denote the difference

in van der Waals volume between the two. Thend® be estimated by

1/3
30V
4R}

R, = R{H (3-2)

Eq. (3-2) is used to estimate thgsRof amino acids whose diffusion constants arenomkn.
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When free amino acids polymerize to form peptidesingle water molecule is lost for each
amino acid that is added onto a growing peptidench@n the basis of volume incremertg,=
-.0186 nmi. To account for the loss of water, the effectiyelrodynamic radius of amino acids
incorporated into a peptide chain,, BRre estimated using Eq. (3-2) with the loss of ¥ water

for interior or end amino acids, respectively. 3deadii are also included in Table 3-1. (It
should be noted that these radii have recently bemdified as a result of NMR measurements of
the diffusion constants of amino acids.The results reported in this chapter were caroied
with the older radii and consequently those arentep here. These changes do not significantly

alter the model mobilities.)
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Table 3-1

Hydrodynamic radii (in nm) for the amino acids

Interior End

Amino Reference R Rs & Rs &

acid
Ala (A) 29 .260 .236 162 .248 .182
Arg (R) 29 373 .362 .328 .367 .334
Asn (N) 30 .296 278 224 .287 .237
Asp (D) (.296) .278 224 .287 .237
Cys (C) (.285) 276 222 .265 .208
GIn (Q) 30 .323 .308 .264 316 273
Glu (E) (.323) .308 .264 .316 273
Gly (G) 29 .233 .202 .0885 .218 129
His (H) (.310) .302 .256 .294 .246

lle (1) (.339) .326 .285 .333 294
Leu (L) 29 .339 .326 .285 .333 .294
Lys (K) (.343) .337 .298 .330 .290
Met (M) (.308) .300 .253 291 .243
Phe (F) 31 347 334 .296 341 .303
Pro (P) 29 .268 .246 178 257 .196
Ser (S) 30 279 .258 197 .269 212
Thr (T) 30 .307 .290 241 .299 .252
Trp (W) 29 .350 337 .299 344 .306
Tyr (Y) 31 .357 .345 .308 .351 .316
Val (V) 29 .292 274 .219 .283 .232
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As is well known, polypeptides possessmbination of structural characteristics that
make them unique in the realm of polymers. Becafisiee rigidity of the peptide bond unit, the
conformation of a polypeptide chain is essentidéfined by a succession of torsion anglgs, {
Pi}. %9 In this work, the “transformation matrix” approagéscribed in detail by FlofYis used to
generate possible conformations of peptides. Ome@ ) angles are specified, all bead
positions can be specified as well. Of the variotsractions affecting chain conformation, steric
encounters between nonbonded atoms are of pririciairtance’ In the present work, a
particular peptide conformation is produced by gshe following procedure.

A chain of 2X beads is built up sequentidfiyst, bead 1 (centered on thecarbon of the
first (N-terminal) amino acid) is placed at thegimi Bead 2 (along the first,C R bond) is
placed along the +z axis of a molecule fixed rafeesframe at a distance equal to the sum of the
first two bead radii. Next, a pair of possilge Y angles is generated using a uniform random
number generator. Using transformation matri¢éso new beads are placed on the growing
chain at possible positions. Before being acceptedgever, a check is carried out to see if either
of the two new beads overlap any of the previowlbelf any overlap occurs, the positions are
rejected and a new pair of possilplel) angles is generated. This is repeated, if necgssatil
no overlap occurs. The above procedure is repestican entire chain of N = 2X non-
overlapping beads is generated. In order to samplead range of peptide conformations, an
“ensemble” consisting of 100 or more chains areegeted. This approach of analyzing transport
properties of flexible macromolecules has been lyidsed in polymer science and biophysics
for the past 25 year$. Mobilities and diffusion constants are computedefach conformation
and the results averaged. In addition, it is pdsddocorrelate mean square end-to-end distance

and mobility as discussed in the results sectiahisfpaper.
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It should be emphasized that the procedeaseribed above to generate peptide
consformations is approximate and ignores the foalvle subtleties associated with
protein/peptide tertiary structuf2On the other hand, one of the significant obséraatof the
present study is that the electrophoretic mobdagpends only weakly on peptide conformation.
On that basis, it is argued that the simple prosedsed in this work to generate peptide
conformation is adequate for the problem undenystud

A final element essential in the design of eleds the assignment of charge to the ionizable
residues making up the peptide. It has long beeognized that p& of the charge residues in
a peptide or protein can be very different fromsthof the free amino acids due to
environmental differenceé. A simple but effective procedure widely used éyaarchers has
been the use of “standard” g&that represent average values in a protein piige">">"°
Although this procedure works well under many ctinds, substantial error in the net peptide
charge can result for certain peptides at certdlia.p On the other hand, atomically detailed
models based on the continuum dielectric/lineas$tmi-Boltzmann equation have been
developed to compute charge states of proféiffsA clear advantage of these methods is that
they account, in an approximate way at least, éotigqular environmental effects on particular
charge groups of a peptide once the conformatigpesified. Although they represent a definite
improvement over the use of “standard”;sKtheir accuracy is also limitéd2* In the present
work, we employ the approach of Lee e¥’ahd tested by Sharma et&lthat effectively
describes environmental influences in the staggadicular charge residues. Consider charge
residue site j in a solvent with dielectric constgrand Debye-Huckel screening parameter,
Suppose we insert chargaz (q = 4.803 x 18° esu) at site & j. Then the change in pK

ApK4 i, due to this particular charge perturbatid is
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ApK ., = - q°0z,  CXPEAT,)
ak 2303k, T 1,

B-3)

where | is the distance between residues j and k.

Initially, we set pk; = pKy where pk represents the “high salt” acid dissociation
constant. For these, the values of Nozaki &t ahd Antosiewicz et ¥l are employed: 3.8 (C-
terminal), 7.5 (N-terminal), 12.0 (R), 10.4 (K)p4T), 8.3 (C), 6.3 (H), 4.4 (E), 4.0 (D). With
these initial prg,-o’s, an initial estimate of the charge on each miq(l), is made using the
Henderson-Hasselbach equation at a particular@ivarge 2% is then used fohz, in Eq.(3-3)
and summed over allkj for each charge residue to obtain revised e%ismzplgj(l). These
revised pK,j's are then used to re-estimate the charge orethéues, j?). The new charge
perturbation is theAz, = z?- z® and the whole procedure is repeated until thegeisanf all
residues converge. This procedure is carriedarugery peptide conformation generated.

Once we have the conformations and chaage sf the peptides, mobilities are computed

by using equations derived in Chapter 2 for weakigrged bead arrays.

3.3 Results and Discussion

To illustrate the potential usefulness aocligacy of the bead model, we have applied it to
the 58 peptides examined previously by Janini andiarkers*? We have chosen this particular
data set because it is quite large and coversdespiin the size range of 2 to 39 amino acids,
careful account is taken of the electroosmotic flamd the experiments are carried out under
conditions that minimize it. The experiments weaeried out at 22C in a buffer system

consisting of 50 mM phosphoric acid that was addiso pH 2.5 with triethylamine. Using a
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pKa = 2.12 for the first acid dissociation constanpbbsphoric acid, the ionic strength, I, is

estimated to be 35.3 mM which also equals the aurasion of HPO,>. The solvent dielectric

constantg;, and solvent viscosity, are taken to be 80 and .955 centipoise, respéctivaee

Debye-Huckel screening parameterequals 0.622 nihunder the conditions of the experiment.

Table 3-2 summarizes the modeling mobilifigsg and experimental mobilitigsx,) of 58

peptides studied. Also summarized in this tabletlaee sequence (Sequence), and molecular

weight (M) from literature, total chargerfzand translation diffusion constant (D) from our

modeling.
Table 3-2
Transport Properties of 58 Peptides
Peptid Sequence W pas Hexp Hmod ™ D

e

1 DD 248.2 .68 .103 .120(.008 .570(.032)
2 FD 280.2 77 .130 .120(.008 .519(.028)
3 EE 276.3 g7 125 .119(.009 .518(.030)
4 GG 132.1 .82 217 .216(.009) .795(.028)
5 AA 160.2 .82 .193 .174(.011 .662(.035)
6 PG 172.0 .82 .184 .188(.007) .708(.023)
7 VvV 216.3 .82 154 .146(.010 .577(.031)
8 FG 222.1 .82 152 .148(.005) .586(.017)
9 FA 236.2 .82 .149 .138(.009 .552(.026)
10 LL 244.3 .82 145 .118(.010 .485(.029)
11 FV 264.2 .82 .139 .129(.010 .523(.032)
12 FL 278.2 .82 .133 .116(.010 .483(.009)
13 MM 280.4 .82 .139 .142(.012 .562(.034)
14 FF 312.1 .82 .128 .114(.010) A77(.030)
15 YY 344.4 .82 121 .111(.010 .465(.031)
16 WwW 390.4 .82 110 .114(.010 .475(.030)
17 AAA 231.3 .89 154 .154(.010 .557(.033)
18 SSS 279.3 .89 132 .138(.012) .513(.033
19 FFF 459.2 .89 .104 .099(.01Q) .401(.023)
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20 AAAA 302.3 | .01 139 | .135(.011 .490(.032)
21 AAAAA 3734 | .93 123 | .119(.009) 441(.028)
22 YGGFL 555.5 | .93 097 | .091(.010) :364(.028)
23 YGGEM 5735 | .93 095 | .096(.011 :376(.027)
24 RPPGF 572.6| 1.90  .184] .194(.019) :369(.028
25 AAGIGILTV 8139 | .94 065 | .073(.006 :292(.016)
26 YMDGTMSQV | 1030.4| .89 060 | .061(.006) .275(.021)
27 VLQELNVTV | 1014.2 | .92 066 | .064(.007 :275(.020)
28 RPPGFSPFR 1042.1 293  .19] .201(.018) .270(.02]
29 AFLPWHRLF 1186.4| 2.85  .166| .183(.016) 262(.017
30 VISNDVCAQV | 1046.5| .90 058 | .062(.007 273(.022)
31 | KLVWWGADGV | 956.2 | 1.90| .131 | .135(.012 .279(.022)
32 | KLVWVGAAGV | 912.0 | 1.94| .141 | .139(.013) 281(.022)
33 | NSFCMGGMNRR| 12725 2.89  .183]  .176(.01f) 247(.021
34 | RPKPQQFFGLM| 13484 292  .170|  .171(.01B) 242002
35 | ACLGRDRRTEE | 1305.4] 3.75  .210] .217(.018) 24%)01
36 | DAEKSDICTDEY | 1387.5| 1.700 .099| .097(.010) 239pP
37 | TTIHYNYICNSS | 1414.6] 1.94 .106| .109(.011) 2386P
38 | PHRERCSDSDGL 1371.7 | 3.83| .195 | .219(.021 :240(.019)
-ace
39 | ACPGTDRRTGGG 1261.4 | 2.88] .151 | .161(.020 :234(.023)
N
40 | ACPGKDRRTGG| 1288.4 | 3.84| .191 | .227(.022) .245(.020)
GN
41 | MGGMNWRPILTI| 1603.0 | 1.93| .102 | .098(.012 :219(.020)
T
42 | SPALNKMFGELA| 1552.7 | 2.86| .157 | .150(.014 :224(.018)
KT
43 | HMTEVVRHCPH | 1768.0 | 6.72| .264 | .333(.035 216(.021)
HER
44 | LAKTCPVRLWV | 1783.2 | 2.88] .151 | .138(.015 :211(.020)
DSTPP
45 | VWRRCPHQRCSD 1828.1 | 4.79| .215| .212(.039 :202(.030)
SGl
46 | LGRNSFEVCVCA| 1826.0 | 2.83| .137 | .132(.015 :203(.020)
CPGRD
47 | KLVWWGAGDVG | 1626.9 | 2.89| .137 | .139(.020 :209(.023)
KSALTI
48 | TPPPGTRVQQSQ 1893.0 | 2.90| .142 | .135(.016 :206(.019)
HMTEV
49 | YKLVWVGAAGV | 1632.0 | 2.92| .142 | .136(.017 :205(.021)
GKSALT
50 | YGLVWWGACGV | 1665.0 | 2.93| .143 | .135(.018 :204(.022)
GKSALT

)
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51 | YNYMCNSSGMG| 19385 | 2.84] .143 | .130(.014 202(.019)
GMNRRP
52 | YKLVWWVGAVGV | 1661.0 | 2.93| .151 | .135(.018 204(.022)
GKSALT
53 | YKLVVWWGARGV | 1718.0 | 3.92| .178 | .175(.022 :200(.021)
GKSALT
54 | PPPGTRVRVMAI| 19283 | 3.90| .182 | .178(.020 204(.019)
YKQSQ
55 | DGLAPPQHRIRV| 19282 | 4.79| .195 | .196(.047 .190(.035)
EGNLR
56 | VPYEPPEVGSVY| 2297.6 | 3.82| .153 | .142(.019 .176(.020)
HHPLQLHV
57 | FLTPKKLQCVDL | 3390.1 | 6.80| .187 | .196(.032 .149(.021)
HVISNDVCAQVH
PQKVTK
58 | HQINMWQEVG | 4481.2 | 7.87| .175| .149(.046 .117(.025)
KAMYAPPISGQI
RRIHIGPGRAFYT
TKN

(a) Molecular Weight in gm/mole
(b) in cnf/kV sec, (c) in 10 cnf/sec

For model mobilities and diffusion constanite number in parenthesis represents the
standard deviation between the different conforomatiof peptides. To quantify the difference

between experimental and model mobilities, defireedrror

E = oo Hmu (3-4)

Hexp
For the data set studied, E goes from -0.2@éptide no. 43 to +0.19 for peptide no. 10.
Peptide no. 43 (HMTEVVRHCPHHER) is one of the maghty charged peptidd&3ecause of
high charge, distortion of the ion atmosphere ecinity of the macroion form equilibrium
(ion relaxation) has a significant influence on thebility, hence can not be

&0,31,33,34,

neglecte “4Neglecting the ion relaxation is only valid whée imobilities is below

0.20cnf/kV sec Peptide no. 43 has an experimental mobilitie8.264 cri/kV sec, which
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exceed this bound. lon relaxation effect will regltice mobilities, so it is not surprising that in
this modeling the mobility is higher than the expemtal data by 26%.

The discrepancy seen for peptide # 10, LL,asedifficult to understand. The possibility that
inaccuracies in generating realistic peptide canédrons is responsible for the discrepancy (E
= .19) shall be considered first. Figure 3-3 showw the model mobility (in cAkV sec) of

pentapeptide AAAAA varies with conformation.

L (nm)

Figure 3-3) Variation of p with Conformation forRentapeptide. Model mobility (in éflV
sec) of the pentapeptide, AAAAA, is plotted verthus end-to-end distance, L.

A total of 5000 chain conformations were generated averaged over narrow ranges of end-to-
end distance. (The end-to-end distance, L, is ddfas the distance between the R group of the
first and last amino acids in the peptide, whichr&gponds to the distance between bead

positions 2 and N.). Going from the most comphet (37 nm) to most extended §€.2.04 nm)
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conformations, pog varies from .125 to .111 &V sec. The average overall mobility is .119
cn?/kV sec and so the compact and extended confornsatiepart from the average by + 6
percent, respectively. For the dipeptide, LL, fuege in phogis from .131 (most compact)
to .109 (most extended), with an average valug@is cnf/kV sec. If all LL dipeptides were in
the most compact form, which seems unlikely onbhsis of conformational energy surfaces of
small peptides (70), E would be reduced from +dl9.10. Although a change in the right
direction, conformational considerations cannobaod for the entire difference. The examples
of LL and AAAAA illustrate the relatively weak depéence of mobility on conformation.
Inaccuracies in the diffusion constants of therenaicids themselves could be
responsible for some of the discrepancy as wallthé case of VV (peptide # 7), E = +.05 which
shows much better agreement between experimerdahadel mobilities than LL, despite the
fact that L and V amino acids differ by a single Gjfoup in their side chains. If we use the
volume increment method of Edward (68) with= .017 nni (for CH,) and R = .292 nm (for V)
in Eq. (3-2), then R(for L) is estimated to be .307 nm which is lowlean the experimental
value listed in Table 3-1 by about 10 %. If thédue is used for L,sdfor L) in Table 3-1
becomes .241 (interior), and .252 nm (end), respagt If these bead size parameters are used
for L instead of those listed in Table 3gl,0q=.134 and E = +.076. We are not claiming that th
diffusion constant of L reported in the literatisevrong, but instead are discussing possible
sources of error that could account, in part at|€ar discrepancies between model and
experimental mobilities. Another possible sourteroor is the charge of the peptide which, in
turn, is related to inaccuracies in the,uf the charge groups. From the above discusdionta
peptides nos. 10 and 43, it is shown that modelirte atomic or residue level that is firmly

grounded in theory can be used, in conjunction wxperimental mobilities, to directly address
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guestions related to peptide conformation, trartspod charge.

Although substantial error is seen in a few indiisl peptide cases as discussed in the
previous paragraphs, the overall agreement betexggerimental and model mobilities is very
good. If Eq. (3-4) is averaged over all 58 pejdeE> = .010 and (<B)Y?=.077. In order to
display all of the experimental and model mobitigta in a reduced form, consider the empirical

equation (Eq. (2-54)§13°°%3ritten in the form

—|n(ﬁj = -InA + alnM  (3-5)
Z;

This is plotted in Figure 3-4 for both experimer{@ihmonds) and model (squares) mobilites.
Triangles represent differences between the twath Bata sets follow Eg. (3-5) to a reasonable
approximation with linear least squares fits giving .673 and .661 for experimental and model
mobilities. Also, if M is in gm/mole ang is in cnf/kV sec, A= 7.135 and 6.495 for experiment
and model, respectively. From the data given bl&8-2, <(jx,— ui)>>"? = .088 cr/kV sec,
and <(ihod— pi)>"? = .097 in crifkV sec, where brackets denote averaging overgall 5
peptides andgis computed using Eq. (2-54) with the A's arslgiven above. The “scatter”
seen in Fig. 3-4 for both experimental and moddbitiies, as well as the rms deviations given
above both demonstrate that Egs. (2-54) give, stt ba approximate relation between mobility,
peptide net charge, and molecular weight. On therdiand, <(pkp— pimod)>>"" = .014 crA/kV

sec, which shows that the model mobilities trackmibetter with experimental mobilities than

Eq. (2-54).
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Figure 3-4) Correlation of Experimental and Model bMities with Charge and Molecular
Weight. Experimental and model data points aretdhby diamonds and squares, respectively.
All 58 peptides summarized in Table 3-2 are inctude this figure. Triangles represent
difference between experiment and model.

Janini and coworkers have formulated a semi-englinwltivariable model that accounts for the
number of amino acids, X, average molecular weighihe amino acids side groups making up a
particular peptide, W, and net peptide chargé,Basically the mobility is written as a product

of functions of X, W, and Z and the functions ofaWd Z are written as polynomials whose
coefficients are extracted from fits to particidaperimental mobility data sets. The resulting
multivariable model fits are quite accurate givit{@exp— limod)>" = .009 cri/kV sec for the

data given in Table V of reference 7. In termsalo$olute accuracy, the present model is
competitive with the multivariable model provided< 0.20 cni/kV sec. It should also be

emphasized that the input parameters of the presedel! are totally independent of
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experimental mobilities and are based on a reakstuctural model of peptides, a continuum
electrostatic model for the pgK of charge residues, and the diffusion constahteee amino
acids. Because of that, questions related to haioamation, size of side chains, and charge
influence mobility can be addressed directly wite present model.

Next, we would like to discuss how the comgintary measurements of diffusion and
mobility could be combined to estimate the net gbaf a peptide. This could be useful, for
example, in determining how the charge state asdiply the pK of particular charge residues
change as pH is variédYoon and Kim (16) have developed a rigorous thebtthe free
solution electrophoretic mobility of a weakly chadgprolate or oblate ellipsoid of minor axis c,

major axis a, and net charge Q. Their expressiothe mobility can be writtéh

s e O
sT L 67R* ) (L+ ARY)

where gkc) is a slowly varying function afc, and R* is the hydrodynamic radius of the
ellipsoid. The translational diffusion constantloé ellipsoid, D, is related to R* by the Stokes
Einstein relation (Eq. (3-1)). For small ellipssisuch thatc < 1.0, gc)~ 1.0. With minor
rearrangement and the use of the Stokes Einsteiorg Eq. (3-6) can be written

f (L+C, /D)

Q C,D

B-7)

where G = g/ksT = 1.160 x 10T 1/(kV cm), and

Kk T
2 67

3-8

Eq. (3-7) is strictly valid only for a small, weglktharged ellipsoid. Nonetheless, it does show
in a rigorous way how mobility, charge, and diffusiof a_non sphericalarticle of arbitrary

axial ratio are related to each other. Specific&l. (3-7) is valid whether our particle is a
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sphere, needle, or pancake. How well Eq. (3-7)atsidks for peptides can be examined by

comparing Q computed using Eq. (3-7) with modeland D’s, with Z. Since the model

peptides can be large, are not ellipsoids, andnibdel peptide charge is distributed in complex

ways, we do not expect Z and Q to be rigorouslhyakqulihe results are shown in Figure 3-5 for

all 58 peptides.
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Figure 3-5)Comparison of Q andrZor Model Peptides.Q is computed using Eq. (3-7) angd z
is the actual average net charge of a particulateingeptide. All 58 peptides are included.

With the exception of the largest peptide58% which contains 39 amino acids~Zr to a

relative accuracy of about 3 %. Specifically, £exds Q by about 1 to 5 %, but the discrepancy
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appears to be relatively insensitive with resped#ltif we choose to ignore peptide # 58. Finally,
Figure 3-6 shows how Q varies with In(M) for bothdeb(squares) and experimental (diamonds)

mobility/diffusion data.
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Figure 3-6) Plot of Q versus In(M) for the 58 Pdp8. Experimental and model data points are
denoted by diamonds and squares, respectively.

For the “experimental” data in this case, matifflision constants were used in Eq. (3-7)
since experimental diffusion constants are notlalbkd. Note the step like nature of the data
with the most prominent step occurring at@1. This corresponds to those peptides which
have a net charge of 1. Other “steps” can alsdefieed, but become more diffuse as the net
peptide charge increases. It should be emphasia¢the net peptide charges do not have to be
integers in general since the average charge aftecplar residue at a particular pH is non

integer.
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3.4 Summary

Mobilities of peptides can be estimated from thaisenpirical approaches of past
studies 12133962 Although net peptide charge, molecular weightumber of amino acids, and
(in the case of Ref. 7)) the actual peptide sequane variables in these approaches, their
parameterization depended strongly on actual myloieasurements. Under conditions similar
to those used in the model parameterizations, ugsmaches could be used to predict
mobilities that are potentially as accurate ansdme examples more accurate than could be
achieved using the complex methodology developdldempresent work. In that case, what is
the advantage of the present study?

In the present study, a bead model apprepfatweakly charged peptides is developed and
tested against experimental measurements of tbg@ddoretic mobility. This model should be
applicable to weakly charged peptides with an altealectrophoretic mobility not exceeding
approximately 0.20 cfkV sec®
Eq. (2-54), or equivalently, Eqg. (3-5) can be usedstimate the constraint this places on the
upper bound of the absolute total peptide chargé, in protonic units. For a pentapeptide with
a molecular weight of about 500 gm/mole, for exampk < 1.90. What distinguishes the
present work from the semiempirical approachesast ptudies summarized in the previous
paragraph is that it is structure based, is foyrgbunded in electrokinetic theory, and its
parameterization is totally independent of mobifitgasurements. With this model, we have
shown that overall agreement with experim&istvery good on the basis of 58 peptides
covering the size range of from 2 to 39 amino aciésrthermore, this work demonstrates that

starting from fundamental considerations of contmuhydrodynamics and electrostatics,
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“3electrophoretic mobilities can be predicted withsiderable accuracy when realistic peptide
models are employed.

The “structure based” nature of our methogplmakes it potentially useful in a number of
possible applications. Future studies could itkelmore detailed accounting of peptide
conformation. This could be achieved, for exampleselecting conformations from actual
structural data bases or molecular dynamics ti@jiest In addition, it would be straightforward
to predict the mobilities of post-translationallypdified peptides® For example, the
phosphorylation of serine, an -OH group is replaségd an —OPGH, group which will affect
both the size and charge of the peptide. Usiagthsent model, it would be straightforward to
account for these structural modifications and jotdtieir effect on peptide mobility. The same
approach could be used for other modificationsuidicig citrullination or methylation of
arginine, deamidation of glutamine, oxidation ofthienine, or acetylation of the N-termir4l.
Also given the strong theoretical foundations @f finesent work, it can be applied over a wide
range of salt, temperature, and pH conditionsthénwork of Janini et al., the experiments were
carried out at pH = 2.5 where the peptides areelgrg their unfolded state. Nonetheless, there
is no formal difficulty in applying the present rhetlology to other salt or pH conditions
although folding of the peptides may require maeedn modeling peptide conformations prior
to the calculation of mobility than employed in fhresent study. The current methodology
could also be used to examine the dependence dfitpoln pH for specific peptide$.In doing
so, it should be possible to examine specific pléasharge groups of peptides using
experimental mobilities and comparing them with elqatedictions. At the end of the previous
section, we also discussed how complementary measunts of diffusion and mobility could be

combined to estimate the net charge of a pep#aeadditional and fundamental study involves
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a more careful analysis of single amino acid trartspnd this has been carried out As discussed
previously, diffusion constants of some of the araeids were unknown at the time this work
was done and were estimated using the volume irmtemethod of Edwartf.

The “stand alone” computer program we radexeloped computes the electrophoretic
mobility and translational diffusion constants.islivritten in Fortran and requires no auxiliary
libraries. As an example of the computation timezgiired, simulations of 100 conformations of
dipeptides and a peptide consisting of 39 amindsa@quired 0.3 sec and 15 minutes,
respectively, of single processor time on a SiliGaphics 4D-380-SX computer. All of 58

peptides summarized in Table 3-2 were done inglesiafternoon.



52

Chapter 4

Improvements in the “Bead Method” to Include lon Rdaxation and

“Finite Size Effects”

4.1 Introduction

In the previous chapter, a purely-structureebdamethodology grounded on fundamental
electrohydrodynamic theory is developed. Each aramd is represented by two beads, one for
the backbone of the peptide and one for the sidepgof the amino acid. The size and charge of
each bead are fixed in a way that is entirely iletelent of electrophoretic mobility
measurements, and this greatly limits the numbedpfstable parameters available in modeling.
However, this methodology is strictly valid for ikhacharged peptides in which the beads are
small compared to &/ wherek is the Debye-Huckel screening parameter. Spadlifjonly
terms to first order ima were retained, where a is a typical subunit sadged in modeling. By
“weakly charged”, we mean the absolute surfac& drpotential does not exceed 25rbr
equivalently, the absolute electrophoretic mobilibes not exceed approximately 0.20 £k
s)® For more highly charged macro-ions, ion relaxatieeds to be taken into account. In past
work, generally good agreement was obtained betwestel mobilities and experimental
results? of 58 peptides ranging in size from 2 to 39 andnims. For the most part, this

particular set of peptides is weakly charged umigeiconditions of the experiment (pH = 2.5),
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and the salt concentration was low enough (35.3 nmiviowalent salt) to ensure that is small.
In this Chapter where ion relaxation and the retsbm thatka << 1 is relaxed are taken in
account, all of the peptides studied previouslyrarexamined. A set of 24 peptidédvhich ,
as a group, tend to be more highly charged thaB8hgeptides examined previoushBecause
of this greater charge, this set is more pronib@ substantial ion relaxation effects. In
addition, the “charge ladder” of human carbonicyainase is examined in which the charge of
the protein, which remains in its native conforroafiis varied over a wide ran§eThis
example clearly shows how ion relaxation influencexbility as charge is varied. It also
demonstrates that our procedure of correcting areel mobilities to account for ion relaxation
is effective.

Including ion relaxation complicates thelgem substantially because of the coupling of
the fluid flow, ion densities, and external electind /or flow field3"*'*?#*|n next section, the

procedure used to account for the ion relaxatiéecefs described in detail. Briefly, we assume

A - &, Wherei is the ratio of peptide mobility to that withowdaxation, and'ui
Iunr Iunrs lunr lunrs

represents a similar ratio for a sphere with thmeshydrodynamic radius, average electrostatic
surface potential and under the same solvent/gffi¢foconditions as our model peptide. The
ratio of the spherical model particles is readigyetmined using the method of O’Brien and

White 2!

4.2 Crystal Structure Approach

Previously, we have developed a bewdlel to determine the mobility of peptide
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assuming the peptide has random coil conformatitmwever, peptide and protein mobility can
also be determined regarding their crystal strecti@vailable at Protein Data Bank). In the
crystal structure approach, the backbone beadplated at the crystallographic coordinates of
the a carbons. Let; denote the virtual bond vector extending from ¢hearbon of the jth
amino acid to thex carbon of the j + 1 amino acid. Also letextend from the N of the N-
terminus to the firstt carbon, and laty extend from the Ntlt carbon to the C of the C-terminus.
The side beads are initially placed along the weextending from the& carbon to thgd carbon

of the side group. The distance of the center efdide bead from the center of the backbone
bead is set to the sum of the radii of the two be#&u the event the jth amino acid is glycine,
which has nd3 carbon, the side bead is initially placed along Wlector — 1.1 + r;). These
positions may have to be modified to avoid beadlape If the backbone beads overlap, which
occurs if the distance between successaiwarbon falls below 0.38 nm, then the radii of tive
backbone beads are shrunk by an equal amount tweetigat the beads are just touching. The
corresponding distances of side beads from thewcated backbone beads are also adjusted to
ensure that the side beads and their associat&tdree beads just touch. No further adjustment
is made regarding the positions or radii of thekbaoe beads. For the side beads, every
interbead distance is checked for possible overlapverlap occurs, a new possible position is
chosen completely at random, subject to the canstthat the side bead just touches its
corresponding backbone bead. If the new posititinoserlaps another bead, then the position
is rejected and the procedure is repeated. Ifilalda position can not be found within 100
attempts, then the radius of this side bead isnéhioy 10% and the above procedure is repeated.
When a suitable position for a side bead is fouhd,same procedure is applied to successive

side beads until a complete peptide/protein stredgigenerated.
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With regard to macro-ion itself, past wbiks shown that depends primarily on net charge
and global structurg'”® ocal structural features or subtle variationshie tharge distribution
have little effect ou. At the same time, it is important that the beadsking up the model
structure do not overlap. The procedure desciibéidle previous paragraph yields structure that
both preserve overall conformation and ensure bgadap does not occur.

Once the structure of the peptide is tesbathe determination of its charge state of the
peptide is next need to be done. The procedutbeofaissignment of charge to the ionizable

residues is the same with that of weakly chargeigep

4.3 Inclusion of Finite Size Effects and lon Relaxation

To include the effect of ion relaxation effewhich is important in electrophoresis of highly
charged particle, we started from the electroplmrabbilities without ion relaxation and then

made corrections. The relaxation correction, Cgiined

c=4 (4-1)

r
wherep, andp, are the mobilities of a particular model partitiehe absence and presence of
ion relaxation,respectively. Also let R denote thalrodynamic radius of the model particle,
which is defined in terms of its translational dgfon constant P

KeT
671171 D;

(4-2)

where k is Boltzmann’s constant, T is absolute temperatmdn is solvent viscosity. For a
model structure, Pis computed using long established proced(ifés|t is shown by previous

study”® that C for a prolate ellipsoid is near identieathat of a sphere with the same R under
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conditions of the same solvent temperature, salkte&atration and composition, and average zeta
potential. It should be emphasized that this @ependent of the axial ratio of the ellipsoid.
Based on this study, we shall simply assume that @n arbitrary irregular structure is equal to

that of an equivalent sphere.

cots  (4-3)

nrs

The advantage of Eq. (4-3) is that relaxed andlaxee mobilities of spheres are relatively easy

to determine using available proceduteShe reduced potential, y, is defined

q¢
ke T

y= (4-4)

where ¢ represents the electrostatic potential averaged the surface of the model particle.
On the physical grounds, C varies continuously @ares and has its maximum value of 1.0 aty
= 0. This is because ion relaxation always actsethice the absolute electrophoretic mobility
and vanishes in the limit of zekp potential. Also, dC/dy = 0.0 aty = 0. At smigl, C can be
related toy

C=1+ay’+a,y’ +ay" (4-5)
The acoefficients in Eq. (4-5) will depend on salt contation, ion type, and R. All of peptide
mobility measurements (but not the protein chaegilér result§) reported in this work were
carried out in 35.3 mMNa"HPO,” buffer system apH = 25 and 22°C.”**> We examined
model spheres of variable y in the size range th=rR < 2.0 nm and obtained the following
coefficients in this particular salt/buffer systéiis in nanometers).

a, =—-0.005-0.021R (4 - 6a)

a, = -0.0021+ 0.0024R (4 — 6D)
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a, = 0.00013+ 0.0000&R (4 — 6¢)
Once the hydrodynamic radius of a peptide and yatermined, Egs. (4-6a, b, c) can be used to
estimate C. Once the unrelaxed mobility, is determined, the relaxed mobility is simply=
CHnr.
For the charge ladder of human carbonic ar#sgf? the temperature was 28, pH = 8.4,
and the salt consisted of 7.9 mM Tglycine. Under these conditions
a, = -.0152-.0066R (4-74)
a, = -.0006+.0003R  (4-7b)
a, = +.00011+.0001R  (4-7c)

It is important to emphasize that these coeffidal@pend strongly on ionic strength as well as
the specific ion composition of the buffer.

Since peptides are irregularly shaped,ntlmargued that the relaxation correction may be
more complicated than for axisymmetric prolatepsliids. As a preliminary consideration of
this issue, we shall first consider the case ofdggwhite lysozyme that was studied by a
Boundary Element (BE) procedure using an atomiaigtgiled surface model derived from the
crystal structure of the proteff. This protein has a hydrodynamic radius of 2.02 andl at O°C
in 0.15 M NacCl at pH = 3, the average reduced serfeotential, y, is approximately 1.35. From
BE modeling, the ratig,/p, under these conditions is 0.952 (see Figure éfefence (35)).

The corresponding ratio using spheres is 0.95Gs€quently, the simple procedure used to
account for the relaxation effect is quite acculatenot exact in this particular case.
Nonetheless, the correction does succeed in pyogecbunting for much of the effect. A more
complete analysis of the accuracy of the relaxatmmnection is given at the end of the next

section by the example of the charge ladder of mucaabonic anhydrase.
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4.4 Results and Discussion

To check the accuracy of the procedure discusseddtion 4.2 and 4.3 which included the
ion relaxation and finite size effect, we have eixad two sets of peptides where experimental
data is available. The first set of 50 consistpaptides ranging in size from 2 to 39 amino acids
that, for the most part, are weakly charge@onsequently, neglect of ion relaxation shouldibe
good approximation for many of the peptides in #at The second set of 24 peptides ranges in
size from 2 to 42 residues, and these tend to be mighly charged than the first SetThe
second set serves as a more stringent test ofroocegure to account for ion relaxation that the
first set. In addition, other investigatbtdave analyzed this second set in terms of several
different semi empirical models that shall be dismd. The experimeft$were carried out at
22 °C in a buffer system consisting of 50 mM phosphag that was adjusted to pH 2.5 with
triethylamine. Using a pK= 2.12 for the first acid dissociation constanpbbsphoric acid, the
ion strength, |, is estimated to be 35.3mM, whitdoaquals the concentration oR0,. The
solvent dielectric constant and solvent viscosjfyare taken to be 80 and 0.955 cp, respectively.
The Debye-Huckel screening parameter,equals 0.622 nih under the conditions of the

experiment.



Table 4-1

Transport Properties of Set 1 (50 Peptides)

Pepti| Sequence Zr Hexp U@ | p® ©

de

1 DD 0.694 | .103 0.121| .122 0.120
2 FD 0.773 | .130 0.119, .121 0.119
3 EE 0.769 | .125 0.118] .120 0.118
4 GG 0.818 | .217 0.204, .205 0.19¢
5 AA 0.818 | .193 0.172| .174 0.168
6 PG 0.818 | .184 0.181 .182 0.176
7 \AY 0.817 | .154 0.122| .124 0.122
8 FG 0.818 | .152 0.143 .145 0.14p
9 FA 0.817 | .149 0.136| .138 0.13%
10 FV 0.817 | .139 0.118| .120 0.118
11 MM 0.817 | .139 0.140| .142 0.139
12 YY 0.817 | .121 0.108| .111 0.109
13 AAA 0.888 | .154 0.152| .154 0.150
14 SSS 0.884| .132 0.146  .148 0.144
15 AAAA 0.913 | .139 0.133| .135 0.132
16 AAAAA 0.921 | .123 0.120| .122 0.120Q
17 YGGFM 0.921 | .095 0.094| .096 0.09b
18 RPPGF 1.888| .184 0.199 .203 0.193
19 AAGIGILTV 0.936 | .065 0.073| .076 0.075
20 YMDGTMSQV 0.882 | .060 0.062| .064 0.063
21 VLQELNVTV 0.918 | .066 0.061| .063 0.063
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22 RPPGFSPFR 27771 .197 0.207 .213 0.200
23 AFLPWHRLF 2.831| .166 0.191 .196 0.184
24 VISNDVCAQV 0.895 | .058 0.059, .061 0.061
25 KLVVVGADGV 1.882 | .131 0.128 | .132 0.128
26 KLVVVGAAGV 1.923 | .141 0.133 | .137 0.133
27 NSFCMGGMNRR 2.718| .183 0.182 .184 0.178
28 RPKPQQFFGLM 2.904| .170 0.182 .189 0.178
29 ACLGRDRRTEE 3.602| .210 0.230 .235 0.213
30 DAEKSDICTDEY 1.644 | .099 0.099 .101 0.100
31 TTIHYNYICNSS 1.926 | .106 0.115] .118 0.115
32 PHRERCSDSDGL-ace 2739 .195 0.173 .17p6 0.167
33 ACPGTDRRTGGGN 2.796| .151 0.182 .186 0.175
34 ACPGKDRRTGGGN 3.717| .191 0.239 .243 0.219
35 MGGMNWRPILTHT 1.926 | .102 0.109, .112 0.110
36 SPALNKMFCELAKT 2.838 | .157 0.161] .166 0.159
37 HMTEVVRHCPHHER 6.323 | .264 0.33§ .344 0.279
38 LAKTCPVRLWVDSTPP 2.857 | .151 0.14 .15 0.144
39 LGRNSFEVCVCACPGRD 2.81 137 0.142  .148 0.143
40 KLVVVGAGDVGKSALTI 2.855 | .137 0.139| .144 0.139
41 TPPPGTRVQQSQHMTEV 2.878 .142 0.1390 .143 0.187
42 YKLVVVGAAGVGKSALT 2.903 | .142 0.142 | .147 0.141
43 YGLVVVGACGVGKSALT 2.907 | .143 0.140| .146 0.140
44 YNYMCNSSGMGGMNRRP 2.824| .143 0.143  .148 0.143
45 YKLVVVGAVGVGKSALT 2903 |.151 0.139 | .144 0.138
46 YKLVVVGARGVGKSALT 3.883 | .178 0.185| .191 0.178




61

a7 PPPGTRVRVMAIYKQSQ 3.887| .182 0.18% .191 0.177

48 DGLAPPQHRIRVEGNLR 4.496| .195 0.222 .227 0.205

49 VPYEPPEVGSVYHHPLQLHV 3.753| .153 0.157 .161 0.152

50 HQIINMWQEVGKAMYAPPISGQ | 7.762 | .175 0.206| .213 0.189
IRRIHIGPGRAFYTTKN

(a) finite bead size effects not included and no relaracorrection
(b) finite bead size effects included, but no relaxatiorrection
(c) finite bead size effects included plus ion releoati
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Table 4-2

Transport Properties of Set 2 (24 Peptides)

Peptide| Sequence T2 Hexp T Ue® | ©
1 FF 0.817 0.128 0.113 0.11%5 0.118
2 FL 0.817 0.133 0.12 0.123 0.120
3 LL 0.817 0.146 0.128 0.131 0.128
4 WW 0.817 0.110 0.111 0.114 0.112
5 FFF 0.886 0.104 0.097 0.0998 0.0982
6 KKKK 4.380 0.330 0.43 0.439| 0.341
7 KKKKK 5.315 0.330 0.461 0.472| 0.344
8 YGGFL 0.918 0.0975 0.091 0.0934 0.0921
9 ACHGRDRRT 4.467 0.265 0.33 0.336 0.285
10 VVRRYPHHE 4.628 0.274 0.307 0.315 0.265
11 CRHRRRHRRGC 8.480 0.297 0.532 0.546  0.317
12 CRHHRRRHRRGC 9.456 0.297 0.559 0.573 0.309
13 HMTEVRRYPHHER 6.290 0.264 0.342 0.3501 0.282
14 HMTEVRHCPHHER 6.287 0.264 0.355 0.3683 0.290
15 HRSCRRRKRRSCRHR 11.20 0.303 0.562 0.5Y9 0.310
16 RTHCQSHYRRRHCSR 8.423 0.290 0.427 0.440 0.306
17 YAEDGVHATSKPARR 4.441 0.214 0.241 0.247 0.224
18 VVRRCPHQRCSDSGL 4,734 0.208 0.236 0.241 0.212
19 DGLAPPQHRIRVFGNLR 4,532 0.190 0.223 0.228 0.206
20 NHQLLSPAKTGWRIFHP 4.772 0.194 0.231 0.239 0.216
21 RTHGQSHYRRRHCSRRRLHRIH 15.29 0.290 0.532 0.543 0.262
22 EEIQPKKLQCVDLHVISNDVCAQ 6.478 | 0.187 | 0202 | 0.209 0.189
VHPQKVTK
23 KQINMWQEVGKAMYAPPISG | 7.775 0.178 0.204 0.209 0.186
QIRRIHIGPGRAFYTTKN
24 DRVIEVVQGAYRAIRHIPRRIRG | 12.17 0.208 0.295 0.292 0.218
QLERRIHIGPGRAFYTTKN

(a) finite bead size effects not included and no relaxation ctoore
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(b) finite bead size effects included, but no relaxation camect

(c) finite bead size effects included plus ion relaxation

Shown in Tables 4-1 and 4-2 are the sequences, expeimuetiilities, ey, and three
different model mobilities for these two sets of peptiddee Tirst model mobilities listed,
U, ignore ion relaxation and assure << 1 (where a is a typical bead size). The second
set of model mobilitiesp, ™, relax this approximation. It is clear from both Tablest th
taking more accurate account of the finite size of the madelinits produces a change in
model mobility of approximately 1 %. Under the conditions of the mxgat and taking a
typical bead radius of 0.25 nma = 0.16. Under the conditions of the experiments, the
“small bead approximation” is a reasonable assumption. We now duthet effect of
including ion relaxation in the model calculations and the ovexauracy of the model
mobilities. The error E defined in previous chapter is tieexValuate the difference between
experimental and model mobilitiesncluding the finite size correction, for set 1,.&E= -
041, <E>Y? = 110, <6 = .0039, and <B>"2 = .080. Brackets indicate an average over
all peptides in the data set. The more negative valueEgf is due to the fact that ion
relaxation, present in an actual experiment, produces absodbliities that are lower than
they would be in its absence. On average, including ion atex brings model and
experimental mobilities into better agreement. For the Sepfides, model (with relaxation)
and experimental mobilities, on average, agree to betterlfd. The low value of <&
indicates there are no significant systematic errorsunmodeling. This, in turn, suggests

that our modeling captures the essential physics of the phenomiegleatrophoresis.

Also from some highly charged peptides of set 2, itlemr that inclusion the ion
relaxation improved the modeling a lot. For example, Peptidd3ias one of most highly

charged peptides in this data set with model mobility ede@®.2 crfi(kV s). Including the
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ion relaxation improved the modeling a lot and E goes from 0.26®250. No. 55 with net
charge of 4.52 and E goes from 0.138 to 0.0256. No. 58 witbhaege of 7.79 and E goes

from 0.175 to 0.0468.

Nonetheless, substantial discrepancies do persisafticysar peptides, as evidenced by
the fairly large <B>'? values. As discussed previoif)ythis is probably due to errors in
estimating the charge of the peptides in specific casa®r iBrestimating charge in specific
cases, which could be due to underestimating or overestgrthe pk, of specific residues,
could very well be responsible for the “scatter” seen oom@parison oflex,: andy,. The
importance of including ion relaxation is made even more evidgn®et 2, where the
peptides tend to be more highly charged than Set 1. For 8Et2,= -.294, <g>>? = 430,
<E> = -.013, and <B>Y2 = .069. Not surprisingly, neglect of ion relaxation producesev
greater error for this set of peptides. Including ion re¢laraesults in overall accuracy that
is comparable to that of Set 1. Plotted in Figure 4-1 arartd E for all 74 peptides versus

the net charge to size ratio, Z/N.
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Figure 4-1) E versus Z/N for Model Mobilities. Result&¥dfpeptides (Sets 1 and 2) are
included. Unfilled and filled diamonds correspond to model ntaslivithout and with the
ion relaxation correction, respectively.

As Z/IN increases and the effects of ion relaxabonmobility increase, ftends to
deviate more strongly from O as expected. It is worth natiagfor E, the greatest “scatter”
occurs at low Z/N. This can be explained as follows. Whemet absolute charge, |Z|, of
the peptide is low, a small absolute error in estimatinguZ produce a large relative error in
Z and hence E. Thus, inaccuracy in estimating peptide elmtdely to be a principal cause
of error in predicting peptide mobilities. On the basisighife 4-1, this error is about 12 %
in the worst cases. The random scatter seen argues agyaiteshatic error in our modeling
procedure. Another possible source of error involves inaccwatepling of peptide
conformations. In previous wdtk mobility was shown to depend on conformation, but that
dependence is fairly weak. The mobility of the pentapepAdedAA, was shown to vary

from .111 (fully extended) to .125 (compact) in a study of 50@@pendent conformations.
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If a peptide was trapped in a single conformation (fully compacexample, withu = .125
cn?/kV sec), it is conceivable that a predicted mobility, bamedonformations selected at
random (giving f> = .119 cri’kV sec in the above example) would produce error (5% in

the above example).

Other investigators have developed sophisticsg¢ea-empirical models that can be
quite accurate under specific conditions. These include the-vaultible (MV) model by
Janini and co-workers,multiple linear regressions (MLR) model and artificial néura
network (ANN) by Jalali-Heravi® Listed in Table 3, along with experimental mobilities ar
the corresponding “bead method” mobilities of the present work dsasgredicted MV,

MLR, and ANN mobilities.
Table 4-3

Comparison of Different Models with Experiment (Pepfd¢e 2)

No. [ Y wexptfy  [u@BM) ¢ [puBM) [pMV)°® | W(MLR)" | u(ANN)®

1 | 1.072 | 0.128 0.115 0.113 0.1318]  0.1399 0.1306
2 | 1.13f |0.13¢ 0.127 0.12C | 0.139. | 0.14¢ 0.135:

3 | 1.19¢ |0.14¢ 0.131 0.12¢ | 0.145¢ | 0.147: 0.146:

4 |1.064 | 011 0.114 0.112 0.1091| 0.1323 0.128
5 |0.967 | 0.104 0.0998 | 0.0982| 0.1076| 0.1248 0.1192
6 |3.509 | 0.33 0.439 0.341 0.3353| 0.3517 0.3188
7 | 3.784 | 0.33 0.472 0.346 0.3318| 0.3645 0.3176
8 |0.867 | 0.0975 | 0.0934 | 0.0921]| 0.097 0.1176 0.1058
9 | 2717 | 0.265 0.336 0.285 0.2854|  0.2439 0.269
1C | 271 |0.27¢ 0.31° 0.26] | 0.2546 | 0.232 0.255¢

11 | 4.697 |0.297 0.54¢ 0.317 | 0297t |0.332 0.307:

12 | 4.960 | 0.297 0.573 0.309 0.2961|  0.3454 0.3089
13 | 2.918 | 0.264 0.351 0.282 0.2711|  0.2492 0.2654
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14 2.98¢ | 0.26¢ 0.36: 0.29( 0.250" 0.253¢ 0.263¢

15 4.826 | 0.303 0.579 0.310 0.3141 0.3557 0.3068
16 3.684 | 0.29 0.440 0.306 0.2639 0.2872 0.2764
17 1.946 | 0.214 0.247 0.224 0.2194 0.2004 0.2215
18 2.188 | 0.208 0.241 0.212 0.1922 0.1844 0.2092
19 1.959 | 0.19 0.228 0.206 0.2049 0.181 0.204
2C 1.94¢ | 0.19¢ 0.23¢ 0.21¢ 0.188t¢ 0.18¢ 0.202¢

21 487z |0.2¢€ 0.54: 0.26¢2 0.283: 0.342¢ 0.285:

22 1.73¢ | 0.18% 0.20¢ 0.18¢ 0.198: 0.163¢ 0.186¢

23 1.796 | 0.178 0.209 0.186 0.1771 0.1691 0.1839
24 2.782 | 0.208 0.292 0.218 0.2179 0.2213 0.218

@ data comes from Ref. Bdata comes from Ref. 33.

¢ bead model without ion relaxation

4 bead model with ion relaxation
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Plotted in Figure 4-2 are the corresponding E values for therfodels. (Values for the bead
model in the absence of the ion relaxation correction arénolided.) The corresponding
<E%'2 values are: .069 (bead model with relaxation correctiodf (MV), .118 (MLR),
and .058 (ANN). Although the bead model is not better tharsémiempirical models, it is
competitive with all of them. Furthermore, there is cdesible advantage to a structure

based model grounded in fundamental electrokinetic theory as didcinsthe Conclusions
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Figure 4-2) Comparison of Several Models with Experimerdusy. Results are for
Peptide set 2. Bead Model with ion relaxation (diamonds),(8Mares), MLR (triangles),
and ANN (crosses).
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Figure 4-3) Correlation of Experimental and Model Mobilitieshwiet Charge, Z, and
molecular weight, M. Results of 74 peptides (Sets 1 amide2included. Experimental data
points are represented by filled squares. Model results witmiitwith the ion relaxation
correction are indicated by unfilled diamonds and squares ctesgg

Plotted in Figure 4-3 are the ) versus In(M) for all 74 peptides (sets 1 and 2)
listed in Tables 4-1 and 4-2. In this way, the bead modeangbe compared with the simple
Offord model indicated in Eq. (2-54) and (2-55). Experimental pairgsndicated by filled
squares. Model results without and with the ion relaxationecton are indicated by
unfilled diamonds and squares, respectively. As can be ge#a is considerable scatter in
the results. Plotted in this way, model results with idaxedgion always lie below those

without ion relaxation. More highly charged peptides tendet@bove their more weakly
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charged counterparts.

Next, we shall consider the case of a protein cHadger’® The reason for presenting
this analysis is to address two issues. First, it shbatsthe ralxation correction works well
for globular proteins. Second, the simple bead models used in éeenprwork yield
electrophoretic mobilities that are comparable to those using@eling that accounts more
accurately for the actual surface of hydrodynamic sheBrotein charge ladders are
collections of protein derivatives where the number of gdagroup is varied by partial
acylation of lysine residues or by amidation of glutamic aspartic acid residug$>
Modified proteins which have the same number of acylated Bége approximately the
same charge and migrate with approximately the same tyobifi this work, we consider
the example of human carbonic anhydrasg IIThe charge ladder was formed by partial
acylation of a variable number of the 23 lysines preseritdarptotein. For modeling, bead
coordinates were genetated from the crystal structure alatlatough Protein Data Bank

(PDB code 1CA2).

It was assumed that the conformation of the protemaires unchanged as it is acylated.
To examine, in a systematic manner, the importance ofelexation, mobilities are plotted
versus the number of lysine residue modified (n). The unmodfretein is negatively
charged and as n increases, the net charge of proteeases. Figure 4-5 summarizes the
principal results. Experimental results are indicated wasterisks and bead model results
without and with the relaxation correction are indicated weak heavy solid lines,
respectively. As n increases, the absolute chargleegpitotein increases and ion relaxation
becomes progressively more important. From this exampis,diear that ion relaxation
becomes important whep||exceeds approximately 0.2 ¥RV sec. The good agreement
between modeling (with ion relaxation) and experiment confitmsaccuracy of the bead

methodology in a situation quite different from the peptides cersidpreviously. Also
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included in Figure 4-5 are results from an earlier Boundary &nBE, modeling stuﬁy
indicated by the thick, shaded line. In BE modeling, the oiaeris modeled as an
irregularly shaped rigid body with charges distributed withih. Also, ion relaxation is
included in this case and its inclusion is determined by dimaoterical solution of the
coupled electrokinetic field equatiofis*** Although the BE results are expected to be
accurate, they also require much more computation time thaettte model results of the

present study.

human carbonic anhydrase |l
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Figure 4-4) Mobilities vs n for human carbonic anhydrase Il. Sthdies are carried out in
25 mM Tris base plus 192 mM glycine at 25 C and pH = 8.4.

4.5 Summary

The bead methodology, described in Chapter 2 and 3, diftersdemi-empirical

approachesin three significant ways. First, it is structuredzhsSecond, it is formally
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grounded in electrokinetic theory. Third, its parameterizativotadly independent of
mobility measurements. Consequently, it can be applied toeal bange of flexible
biomolecules under a wide range of experimental conditions andpibtantially be used to
extract charge and structural information. The principal abgof the present study
involve the analysis of two assumptions of our earlier work ame@glizing the
methodology to deal with them. These two assumptions and hgwripact present and

future work are summarized below.

First, the restriction thata << 1 (wherex is the Debye Huckel screening parameter and
“a” is a typical subunit radius in our model) has been remof#ed.the peptides under the
conditions examined in this papes J0.16, and the assumption of smadlis shown to
yield accurate mobilities. It should be emphasized, howthadrthis is specific to the
system of interest. For peptides, for example, the assunimmmes progressively worse as
the salt concentration increases. For another example, suppegsh to model duplex
DNA as a semi-flexible string of touching beads of radius® hm?® In this casega [
0.58 in a monovalent salt solution of 20 mM at room temperaduackfinite bead effects can
be expected to be much more significant than they are pejbtdde systems examined in the

present work. This is a subject under investigation in our dawyr at the present time.

Second, the effect of ion relaxation is accounted for in tesgmt study. lon relaxation
becomes important when the local charge density, beconges IBrovided the absolute
elctrophoretic mobility of a peptide does not exceed approxiyn@2lcn?/(kV s), ion
relaxation can be ignoréd® The direct inclusion of ion relaxation in electrophoreséty
is challenging due to the coupling of the electrodynamic, floid,fand ion transport field
equations?3133:344244.9The anproach used here is much simpler and is based on the
observation that the relaxation effect is similar for inlagy shaped particles and spheres

under similar condition¥® Thus, mobilities that do not account for ion relaxation are
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corrected using a correction factor derived from mobility studfespheres under similar
conditions. It should be emphasized that this approach is apprexaméimay not work well
for highly asymmetrical particles. Also, the equilibriumeputal is calculated at the level of
the linearized Poisson-Boltzmann equation in this work. Whealthegye on the macroion is
high, the non-linear Poisson-Boltzmann equation should really bedsahd this will
influence the relaxation correction. We have testedltparithm by it applying it to two sets
of peptides (74 total) from the work of Janini and co-workéfsSome of the peptides in this
data set are highly charged and ion relaxation is predicteave an effect on their mobilities.
The model mobilities are in good agreement with experiment wiweacted for ion
relaxation. It is also shown that the accuracy of the beadel methodology is competitive
with the semiempirical methods developed by a number of igatsts. As a final
application, the bead model methodology is applied to the “cliadger” of human carbonic
anhydrase I® In this example, the charge on the protein is variedspstematic way and
also protein conformation does not change significantly asiduge is varied. When the
charge of the protein is low, it is demonstrated thatetaxation has little effect on mobility.
When the charge is large, however, ion relaxation is impanaetducing the absolute
mobility relative to the “no relaxation” value. When coreetfor ion relaxation, model and
experimental mobilities are found to be in excellent agreéme

In the future, we plan to extend this work in several dwast First of all, we are
now in a position to study other biomolecules such as singledsitlcDNA, RNA, and
duplex DNA. These tend to be more highly charged than pspiiu thus the relaxation
effect is expected to be significant. Also, the mdballding blocks” for these systerifs
will be larger than for peptides making it more importantcioant for the finite size of the

model subunits
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Chapter 5

Electrokinetic Transport of a Spherical Gel-layer Model Particle

5.1 Introduction

The combined and complementary techniques of electrophoamsi viscosity are
potentially useful in the quantitative characterization lofirge, size, and other structural
features of highly charged colloidal particles in solufforiThe colloidal particle which we
were interested is polystyrene sulfonate coated with sodiumtp@yge sulfonate. The
structure of sodium polystyrene sulfonate is shown in Figure 5hkis cblloidal particle is a
typical model for the ‘soft’ particle with a hard inner e@urrounded by a porous gel layer

which has an unusual behavior of mobility and viscosity comparétird’ surface particle.

n
a
e
|
SO5 Na”*

Figure 5-1) Structure of sodium polystyrene sulfonate.

In past works, a number of investigators have notedrfalies” in the electrophoresis

and viscosity results of polystyrene latex particleBesk include electroviscous effects (lon
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relaxation also causes the viscosity of a suspension of tHauteparticles to be higher that
that of a corresponding suspension of equivalent, but unchargedeggaatid this is called
the primary electroviscous effétd).that are difficult to reconcile with “hard sphere”

modeling?***and a significant dependence of mobility onB#.

Ohshima has developed a detailed theory of the gbbciresis of spherical colloid
particles containing a gel lay&™°* This work is of considerable value in enabling scientists
to understand the essential physics of colloid electrophoresisavipelinayer is present. On
the other hand, this theory is only applicable when the collpat#cle is weakly charged,
since the ion relaxation effect is not accounted for. Hll & accounted for the relaxation
effect in modeling the electrophoresis of spherical partmesaining a gel layer. Recently,
we developed a spherical gel layer model that numericatriohines both the
electrophoretic mobilities and viscosity of highly charged plasiof arbitrary siz&"

Basically, this model extends the “hard sphere” model of @iBand
White*}(electrophoresis) and Watterson and Whiieiscosity) to include the presence of a

gel layer of uniform composition.

In the present work, we shall apply this model to thespgigne sulfonate latex studied
by Garcia-Salinas and de las Nie%&% Another factor that is dealt with in the present work
is accounting how environmental considerations influence th@p&harged groups in the
gel layer. This effect is examined using free energy aegiisrand solution of the Poisson-

Boltzmann equation.

5.2 Method

5.2.1 Model System

The colloidal particle considered in the present work igeneralization of the model
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considered previousf. The model consists of an unhydrated core particle of radiede
up of “segments” of volumec\per segment. The gel layer, which lies outside of the and
may be hydrated, is made up of potentially different matetiat \ denote the volume of an
individual (unhydrated) segment in the gel layer. It is asduthat the segment density
within the gel layerps, is uniform and that it drops abruptly to O at a distancé&om the
center of the colloidal sphere. If the gel layer werly fubllapsed, then b = b*. The number

of segments making up the core, Bind gel layer, B are then

3
N, = TR 5oy
3,
_ 4n(b* -a)
Ngl = T 6-2

o]
Also let f denote the fraction of segments in tie¢ Ilgyer, which equals d(Nc+Ng). It is

straightforward to show

_ b*@-f)¥"
T e 079
where
A= YTl 5oy

If V¥ and \; denote the total volumes of the unhydrated anddigd particle, respectively,
the degree of hydrationy Sis

V, -V, *
S = 5-5
v, ( )

and it then follows,
b = b*@+s)"” (5-6)
Due to hydration, there is partial fluid flow withthe gel layef>?*1%+1% |n a

reference frame stationary with respect to the aafréhe particle, the solution of the
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Brinkman and solvent incompressibility equations is
n,0%v-0P = -s+n v (5-7)

v = 0 (5-9
wheren is the solvent viscosity, is the local fluid velocity, P is the pressusgis the local
external electric force/volume on the fluid, axds the Brinkman screening parameter with
units of lengtH that is related to the segment density withingeklayer’®941941% | et7 and
ps denote the friction factor/segment and the segrdensity in the gel layer, respectively,
then

p.{ = A4 (6-9)
Setting{ = 6rm 0 wherea is an effective hydrodynamic radius in the geklaylf we simply

1/3

takeo = vy, it then follows that

a2 = O 54
g

2

whereA* is the Brinkman parameter of a unhydrated ggtida For styrene, for example, the
partial molar volume is 99 citmole'® and hence y = 1.645 x 1G° cn?, ¢ = .548 nm, and
A* = 7.92 nm*. For the hydrated particle, the previous relatican be combined to yield

@+4)

Az = ) (5-11)

(S]Y+1+A(1+sv)j

This is a generalization of Eq. (6) of referenceatere it was assumed, & Vv and hencé
=0.

We now come to the charge characteristics of #negte. It shall be assumed that the
total charge resides in a potentially charged “htilat comprises at least part of the gel layer.
This is shown schematically in Figure 5-2 where tharge halo lies within the spherical

shell, a’<r < b’. Also shown is the core radiasand the outer radius of the gel layer, b. It
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should be emphasized thas (segment density) within the entire gel layer (a < b) is
assumed uniform. The density of monovalent agdixips within this halo is assumed to be
uniform and lety denote the average number of acidic groups penseqg If every segment
within the halo carried a single acidic group, émmple,y = 1. If Q° denotes the total

titration charge (in protonic units) of a singlellom particle and Ny is the number of

segments in the charge halo,

N, = -9 (65-12)
y

cgl

Since the entire gel layer has a uniform segmemditie

bl3 _ al3
NCgI = (W} Ngl (5 - 13)

It will prove convenient to define a new parametgrpy

SRS [”Z‘a’jj[l-[iﬂ (5-14)
4ryb* b® -a b*

The second equality on the rhs of Eq. (5-14) follows from Eq. (5F)t the polystyrene

sulfonates of interest in this work, Q= -3.6 x 16, b* = 144.5 nm, and  has been
previously given. If we also make a reasonable assumpgandiagy, then® is determined.
Assuming all segments in the gel layer carry a singlticagroup,y = 1 and® = 4.69 x 10.
We shall also assume b’ = b (the outermost portion of thiager contains potential charge
sites),A = 0 (segment volumes of core and gel layer are equal), arad 8< b (the thickness

of the gel layer is small relative to the overalkstf the particle), then Eq. (5-14) reduces to

a = b*[1—[b_aj¢j (5-15)
b-a'

From Eqg. (5-3),
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f o= [b'a}cp (5-16)

b-a'
The degree of hydrationySand hence b, can be deduced from viscosity Sudier

a dilute suspension of spheres, the coefficienisplefined' %’

D-1 = 2a+p)er 6-17

wheren is the viscosity of the suspensiam, is the solvent viscosity, angr is the volume
fraction of the colloid particles in the solutiohhydration is ignored. In modeling, it is
convenient to define shape factofsandéy, for the hydrated charged and uncharged model

particles respectively,
T -1 = ¢p = &a+pe (5-189)

where@ is the volume fraction of the hydrated particlal anis the primary electroviscous
coefficient. The shape factors and p are detemhinemerically using electrokinetic

modeling®** It is straightforward to show that

po= Zoaepaes)-1 = 8 +pars)  6-19

The second equality on the rhs of Eqg. (5-19) h@dd<olloidal particles with thin gel layers
since&, = 5/2. Also, p is only significant at low st and hence p= S, under these
conditions?>*°” At high salt, p’ is dominated by solvation anisthives §.

We can now outline a procedure to make reasonabi@neter assignments for the
model. If we have b* and can estimatefft®m viscosity data, Eq. (5-6) yields b. From Eq.
(5-14),® is known provided ¢ Vg, andy are specified. A value for the ratio, (b — a){(&’),
can be assumed and then a and f follow from Eg$5f&and (5-16). Also, Eq. (5-11) yields

A.
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T,

Figure 5-2) Schematic of the Spherical Gel-Layeydel. The solid core of the spherical
particle has radius a. The gel layer, assumedat@ fa uniform segment density, extends
from a <r <b, where ris the radius. The pogdiytcharged portion of the gel layer extends
froma'<r<b.

5.2.2 Using Free Energy Cycle and Poisson-Boltzmann Theory to teemine Charge

and Electrostatic Potential

For the spherical colloid model described in thed®losection, the electrostatic
potential, Ao, is a function of the radial variable, r. Alsd Mr) = q\o(r)/ksT denote a
reduced (dimensionless) potential,ik Boltzmann’s constant, and T is absolute tentpeza
The charge of the colloidal particle is assumedrtse from deprotonation of acidic groups
that are present at uniform concentratipgy, in the gel layer for a’ <r < b’. Let pKa(r) = -
logio(Ka(r)) where Ka(r) is the local acid dissociatioonstant at position r in the gel layer.
At r, the fraction of acidic groups that are deprattedx(r), is

_ 1
)((I’) - 1 + 1.0PKa(r) = PHiec(r) (5 - 20)

where pHh(r) is the local pH of the solution. It is impantato distinguish this from the
ambient pH of the solution which shall simply beoed “pH” in this work. Because of the
unusual electrostatic environment of a highly cedrgel layer, local concentrations of &b

well as other ions can be very different from theilk values’’ It is straightforward to show
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PHi () = pH +0434y(r)  (5-21)
Because of “charge regulation”, (Ox€) < 1), the actual charge of the colloidal pdeicQ

(in protonic units), will be different from the éttion charge, & The actual charge of the

model particle can be written

o = B [vaxn 62

b3 -a?

From Eg. (5-20), we need to know the local pKaobefve can computg(r) and this,
in turn, can be very different from the dissociaticonstant of the free acid, p‘?,(adue to
environmental conditions at a particular charge.4itIn the field of Biophysics, atomically
detailed models based on the continuum dieledtredl Poisson-Boltzmann equation have
been developed to compute pKa’s of charge groupsonfiolecules, particularly proteii§®:
For highly charged gel layers, it is necessary dobgyond the lineaPoisson-Boltzmann
equation upon which these methodologies are b&tading from a general expression for
the electrostatic free energy at the level of thetiouum primitive model® we derive an
approximate expression for pKa(r) in Appendix AgskE (A13-Al4). These simple
expressions relate the local pKa to the charatitesisf the gel layer as well as y(r) ax@).

The Poisson-Boltzmann equation for the spheriolbid particle beyond the surface

of the core, r > a, can be written

%%(rd/\d—m i ‘%%(r)x(r) —§$cmzjw>e-qw (6-23
where X = 4t (in CGS units) or kb wheregy is the permittivity of free space (in MKSA
units), € is the dielectric constant of the solution (asstins@iform), @ is the ambient
concentration of mobile ion j of valencg @xr) is the ion exclusion parameter (assumed

uniform for all ions), and the sum extends over ralbbile ion species present. The

concentration of gel fragmenis(r), is equal to zero for r > b and equal tog&m(bS-a3) for
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a <r < b where hlis given by Eq. (5-2). The ion exclusion parametgiven by
a(r) = 1-p(r)v, 5-249
Let x = 1kr wherek is the Debye-Huckel screening parameter of thetisol (see Eqg. (B9)).

Eqgn. (5-23) can then be written

Ld2y(q) _y _ Ci -2;y(X) _
X— 7 = T3 Ps(X) X (X) Zj:[ZI }zjw(x)e (5-29)

where | is the ionic strength of the solution.thie applications of interest in the present work,

the core of the particle is uncharged and exclutdedpenetration by mobile ions.

Consequently, we have the following boundary coouljt

(—d y(r)j = 0 (5-26)
d ),

=a

For small x or large r (r > b +/for example), y approaches the linear PoissorizBann
form
y(x) = Axe™* (5-27)

where A is an undetermined constant. If our pkertweas a weakly charged solid sphere of
radius a and total charge @ protonic units), then A = kg?Qie™?/(4me(1+ka)). This value
might serve as a reasonable initial estimate obu, in general, it must be chosen in an
iterative approach to simultaneously satisfy EeR%pand the boundary condition, Eq. (5-26).

An outline of the procedure used to calculate ¢ yacan now be given. One begins
with and initial estimate gf. For example, if the colloid is assumed to béyfaharged (all
acidic groups deprotonated), then= 1 for a’ < r < b’ and equal to 0 otherwise. Athen
estimated and Eq. (5-25) solved by"aotder Runge-Kutta algorithty starting from small x
(large r). If y begins to diverge or Eq. (5-26nist satisfied, A is adjusted. This procedure is

repeated until y converges and Eq. (5-26) is satisfo within a specified tolerance level.
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When converged, we only have an approximegduced potential since it is based on
approximatex’s. By specifying the pH and pRaf the charge group, Egs. (A13-Al4) are
used to estimate pKa(r) using approximateand y’s. Then, Egs. (5-20 and 5-21) are used
to re-estimate thg’s over the gel layer domain. At this point, th&iee cycle is repeated

until the y’s and(’s converge.

5.3 Results

Past theoretical/modeling work has extensivelydisd the electrophoresis of weakRIy™*
and highly°®? charged spherical colloid particles containingehlgyer. In the present work,
we shall focus on a particular polystyrene sulferfateX>*'%since both electrophoresis and
viscosity studies have been carried out on thaticoderr system. The viscosity studies
provide valuable information about the presence aofgel layer that compliments
measurements of electrophoredi®’ These latex particles have a diameter of 289 mihaa
surface charge density of -3&/cnf.*'° This surface charge density,, determined by
conductometric titration, can be related to theatiion charge of the particle,Qin protonic
units), by

QY = 0.78440_b*? (5-29)
wherea is in uC/cnf and b* is in nm. Assuming b* = 144.5 nm?@ -3.6 x 16. The
experiments were carried out at 26 (o = 0.89 cP) at pH = 5.5 in monovalent NaCl
solutions with concentrations varying from™®® 10* moles/liter. We shall set.« Vg, O =
0.548 nmA* = 7.92 nn', y = 1.0, andb = 4.69 x 10 (see the Model section of this chapter).
Since the relaxation effect is included in this kyoit is necessary to account for the

mobilities of co- and counterions preséhtt As discussed previous!y; the hydrodynamic
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radius, j, of a mobile ion is estimated from limiting mokswnductivities\;”, and the Nernst-

Einstein relation. If;zis the ion valence, then
72
r. = 9.201/]—:o (65-29
i

where 1 is in nm and\;” is reported at 23C in 10° S nf/mole. From tables ok, r;
=.0263, .1837, and .1206 nm fof,HNa’, and CI, respectively*

In order to illustrate the importance of ion redi®n in the present application, we
shall first consider the example of a uniformly el gel layer model (Egs. (5-15) and (5-16)
yield a = 144.27 nm and f& = 4.69 x 10)), with S, =0.30 (Eq. (5-6) yields b = 157.71 nm
and Eq. (5-11) yield$\ = 0.982 nrit). In order to insure that Eq. (5-12) on p. 253 of

Ohshima®is applicable, we shall also choose a NaCl conagatr of 10° moleslliter.
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Figure 5-3) Mobility, 1, versus Net Charge, Qfor a Particular Uniformly Charged Gel-
Layer Model. In this example, T = 28C, no = 0.89 cP, [NaCl] = 0.01 moles/lites, = .548
nm, a = a' = 144.27 nm, b = b’ = 157.71 nk= .982 nn, andy’s are in crYkV sec. The
solid line represents mobilities that include the relaxatdiect (calculated using the
numerical procedure of ref. 21 and the present work), and thedllsé represents mobilites
that do not include the relaxation effect (calculated usindE).of ref. 100).

Plotted in Figure 5-3 is the electrophoretic mobility,in cnf/kV sec, over a wide range of
different Q°. The solid line represents the numerical mobilities ef phesent work that
include the relaxation effect, and the dashed line is fBdrshima'®® which does not account
for the relaxation effect. If the absolute charge efdblloidal particle is low, the two results
are in excellent agreement with each other. If the alesaoérge is high, however, the
absolute mobility predicted by Ohshima exceeds the numerical halaeignificant amount.
Since the actual polystyrene sulfonate latex particles coatditmation charge that occurs
near the high (absolute) charge end of Figure 5-3, it is tapoto include the relaxation
effect in this case. Shown in Figure 5-4 is the absolutecesdpotential at r = a (dashed line),

and r = b (solid line). Comparing Figures. 5-3 and 5-4, itaarcthat the relaxation effect

becomes significant when the reduced absolute potential gethiayer exceeds 1-2.
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log 10[-Q:]

Figure 5-4) Reduced Potential, y, versus Net Chardefd@a Particular Uniformly Charged
Gel-Layer Model. Parameters are the same as in Figi2e The solid line represents y
evaluated at r = b, and the dashed line representdyats@ at r = a.

Under the conditions of the above example, the primary eleatomsscoefficient, p in
Eq. (5-18) is small (< 0.003) even at the highest absolute eltamsidered. The primary
electroviscous effect is only significant when there ignificant distortion of the ion
atmosphere by a shear fiéfd:'? Conditions of a thin gel layer (b — a << b*), low’Qand
high salt all act to reduce p. However, p’ (Egs. (5-17)(&nt)), may be significant due to
solvation of the particlél. In the example considered in the previous paragraphQ28 and

is nearly independent ofQ
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Figure 5-5) p’ versus lagc] for Models with a Uniform Concentration of Acidic Residues
in the Gel-Layer. Solid, dashed, and dotted lines correspond\te- $.03, 0.10, and 0.30,
respectively. Bold lines correspond to the inclusion @frgh regulation (variable JQ and
non-bold lines correspond to leaving charge regulation aut (@°). See the text for more
details about model parameters.

Shown in Figure 5-5 are experimental'Psersus logjc] where c is the ambient NaCl
concentration irumoles/liter. Experimental points are squares with error bAtso shown
are model studies of uniformly charged gel layers witl 8.03 (solid line, a = 144.27 nm, b
=145.93 nmA = 2.91 nrﬁl), S/ = 0.10 (dashed line, a = 144.27 nm, b = 149.16Xm1.68
nm?), and § = 0.30 (dotted line, a = 144.27 nm, b = 157.71 Aam= 0.982 nrif).
Parameters are otherwise the same as before. In thé shadies, the concentration of lis
taken to be 3 x I®appropriate for a solution at pH = 5.5. Although tHddrs have little
effect on results at high salt, they can have a signifiediect at low sat'® For each of the

three model studies shown with differeqt Separate studies are presented with and without
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charge regulation. Studies without charge regulation (thid,stdished, and dotted lines) all
have @ = Q° = -3.6 x 16.  For studies with charge regulation (thick solid, dasked,
dotted lines, @ = -3.6 x 16, but Q can be substantially different from°@s discussed in the
section entitled Charge and Electrostatic Potential. tRer model studies with charge
regulation, we assume p?(a 0.7, consistent with the acid dissociation constant ofdrenz
sulfonic acid*™* Comparing these particular model results with the exyarial p’ in Figure
5-5, it is concluded that,S= 0.10 at 0.001 mole/liter NaCl (the highest salt measureid) bu
that § = 0.30 around 18 mole/liter NaCl. The behaviour at the very lowest &lnore
complicated and shall be considered near the end of thex&ym For now, we shall focus
on the data above approximately>Ifioles/liter NaCl. For the uniformly charged gel layer
models considered, charge regulation has only a modest effecand fhien only at low salt

concentration.
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Figure 5-6) u versus logyc] for Models with a Uniform Concentration of Acidic Residues in
the Gel-Layer. Solid, dashed, and dotted lines correspond \to=9.03, 0.10, and 0.30,
respectively. Bold lines correspond to the inclusion @frgd regulation (variable JQ and
non-bold lines correspond to leaving charge regulation out (@°). See the text for more
details about model parameters.

Similar to Figure 5-5, shown in Figure 5-6 are experiaieglectrophoretic mobilities
(squares) versus lggic]. Mobilities are in crffkV sec and as in the case of p’, experimental
mobilities come from reference 13. Also shown are matigdies for the same three
uniformly charged gel layer models considered in the previous naatagvith and without
charge regulation. For a NaCl concentration below 0.01 hteiethe model with $= 0.03
and charge regulation included is in best agreement with exgdrimAt higher salt
concentration, a model withy®etween .03 and .10 is most consistent with experimental
mobility. An obvious problem with this interpretation is that ¥iszosity and mobility data

lead to different model interpretations when the gel le&syassumed to be uniformly charged

with the viscosity data consistent with a thicker geéfathan the mobility data.
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Consider next a “halo” model in which only the outermost portioth@fgel layer is
charged. Itis assumed that (b — a)/(b — a’) = 4 E15) yields a = 143.59 nm and Eq. (5-
16) yields f = .01875. For a particulay,d is given by Eq. (5-6)\ by Eqg. (5-11), and &
from the assumed ratio of (b — a)/(b — a’). The sameaBies considered previously using a
uniformly charged gel layer are used in the “halo” model resutsented in Figures 6 and 7.
The specific parameters arey, $0.03 (solid line, a’ = 145.34 nm, b = 145.93 iamz 4.91
nm?), S, = 0.10 (dashed line, a' = 147.77 nm, b = 149.16 xm,3.15 nrit), and § = 0.30
(dotted line, @’ = 154.18 nm, b = 157.71 mkns 1.92 nrit). Otherwise, parameters are the

same as before.
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Figure 5-7) p’ versus lagc] for Charged “Halo” Gel-Layer Models.Solid, dashed, and
dotted lines correspond ta; $ 0.03, 0.10, and 0.30, respectively. Bold lines correspond t
the inclusion of charge regulation (variablg,@nd non-bold lines correspond to leaving
charge regulation out (& Q°). See the text for more details about model parameters
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Figure 5-8) u versus logyc] for Charged “Halo” Gel-Layer Models.Solid, dashed, and
dotted lines correspond ta; $ 0.03, 0.10, and 0.30, respectively. Bold lines correspond t
the inclusion of charge regulation (variablg,@nd non-bold lines correspond to leaving
charge regulation out (@ Q@"). See the text for more details about model parameters.
Comparing Figs. 5-5 and 5-7, the detailed structur¢ghefgel layer (whether it is
uniformly charged or not) appears to have little effect on pepixat the lowest salt where
charge regulation effects can be significantly diffeiarthe two cases. The mobility data of
the halo model is especially interesting. The halo modal 8y = 0.03 and 0.10 are in good
agreement with experiment at intermediate salt concanirat Also, including charge
regulation improves quantitative agreement between modelxqediment. Without charge
regulation, it is simply not possible to find a gel layer mabdek enough to give \5= 0.10
(consistent with the viscosity data). For thick gel laygith Q = -3.6 x 10°, model studies

invariably yield jif < 0.36 cn¥/kV sec at intermediate salt concentrations. ReduciddjQ

the mechanism of charge regulation yields mobilities itebegreement with experiment.
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Table 5-1

Charge regulation in the halo model with50.10

logsolc]® -<y>g"™ -<y>y" QY
0 12.49 7.17 .0326
.30 12.26 7.12 .0355
A€ 12.0¢ 7.0¢ .0397
.7C 11.7¢ 7.01 .045¢
1.C 11.3¢ 6.8¢ .054¢
1.48 10.41 6.75 .0719
2.0 9.25 6.35 147
2.48 8.16 6.03 231
3.0 6.98 5.63 .400
3.48 5.89 5.16 .615
4.C 4.6¢ 4.44 .857
4.4¢ 3.5¢ 3.5¢ 972
5.C 2.44 2.41 .994

a — c is the NaCl concentrationgmoles/liter

In Table 5-1, the effects of charge regulati@nilfustrated in detail for the halo model
considered in the previous paragraph with=50.10 as a function of salt concentration.
Along with the ratio, @Q?, are listed the averaged reduced potential in the chapaidn
of the gel layer in the absence, g% and presence, <y' of charge regulation. At low
salt in the absence of charge regulation, the absolutee@guatential is very large and this
causes the local pKa's to be much larger than the freésokalue (taken to 0.7). This, in
turn, causes the charged gel layers to become largely uadh@rg protonating the acidic

sites) at low salt. Even with charge regulation, howether,reduced absolute potentials in
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the charged portion of the gel layer exceed 7 at low safiove a NaCl concentration of
about 1 moles/liter, charge regulation is insignificant.

Under high salt conditions of 0.10 mole/liter NaCl, model studmelcate the
presence of a gel layer. A solid sphere model pregicts-0.80 cn¥kV sec under these
conditions. A gel layer of at least 1 nm thickness is s&ag in modeling to account for the
experimental mobility of -0.47 cfikV sec.

On the basis of the experimental data coupled with modeligg.conclude the
polystyrene sulfonate latex particles contain a gel layerstiatks from roughly $= 0.3 to
0.10 as the NaCl concentration is raised fror? 1@ 10° moles/liter on the basis of the
viscosity data. The mobility data is consistent with thel provided charge regulation is
included and only the outer portion of the gel layer is charddus could occur, for example
if the sulfonated polystyrenes were largely relegateth¢ooutside of the particle, and there
was a uncharged, but hydrated layer between the core sarfddbe charged portion of the
gel layer. In order to account for the experimental moddlitit is concluded that a gel layer

of at least 1 nm thickness persists even at high salt.

5.4 Summary

In this chapter, an electrokinetic model of a sphericabwblparticle containing a gel
layer introduced previousiy is developed further. The gel layer may be solvabed,is
assumed to be of uniform segment density. It is alsonaesd that a portion of the gel layer
bears acidic groups and that the charge of the particle sdsuth deprotonation of these
acidic groups. The actual charge state of the partapents on the local pKa's of the charge
groups and the local pH of the solution. In Appendices A arfdeB,energy considerations

and Poisson-Boltzmann electrostatics are used to estimathdinge state of the colloidal
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particle. This modulation of colloidal charge, which depemdshe geometry of the charged
gel layer, the intrinsic pKa of the acidic groups, the saitcentration, salt type, and pH is
called charge regulation. This methodology is then applied to vikeosity and
electrophoretic mobility of a particular polystyrene sulfoniatiex over a broad range of
monovalent salt concentration. Using realistic model parasjeteis straightforward to
identify models which are consistent with experiment. Tkeosity data strongly supports a
model with a fairly thick gel layer at low salt in whick 8rops from approximately 0.30 to
0.10 as the concentration of NaCl is raised frort & 10° moles/liter. Even at high salt
(0.10 moleslliter), the mobility data indicate the preserfca gel layer at least 1nm in
thickness. The electrophoresis data in general can be aatdonts/ a halo model in which
only the outer portion of the gel layer is charged. Itl$® aecessary to include charge
regulation in modeling. Modeling with charge regulation indgdteat the colloidal particle
becomes more highly protonated (lower absolute net charge) asaltheoncentration is
reduced. This may at first seem surprising since thansitrpKa of the benzene sulfonic
acid groups are around 8'7and the pH of the solution is 55° Nonetheless, due to the
large absolute electrostatic potential present in the athagge layer at low ambient salt,
significant protonation of even strong acid groups is predictedduor.

The model considered here could be generalized in sewasa. First of all, the
concentration of segments in the gel layer probably is not umifand this could be modified
by replacing a gel layer of uniform density with a variabémgity model. Second, it is
possible that the charge of the colloidal particle could be furdthiced by specific binding
of counterions to the deprotonated acidic groups. Generalizimgdtiel to account for these
two factors as well as a number of others would be straigrafdiwbut would have the
disadvantage of introducing additional parameters into the mddelse generalizations can

be included as more experimental data becomes availalBlimally, the viscosity data at
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extremely low salt< 10° moles/liter) deserves comment. As pointed out by G&almas
and le las Nieves' the low values for p’ seen in Figures. (5-5) and (5-7) belosala
concentration of about POmoles/liter can be attributed to the presence of low, itefi
concentrations of H This is accounted for in the present work using an ion mobility
estimated from limiting molar conductivities as discussediposly. This may overestimate
the mobility of H at the lowest salt concentrations considéréf However, this
phenomenon appears to be limited tb & very low salt and does not alter our primary

conclusions.

Appendix A — The approximate pKa(r) of an acidic group in a gklayer surrounding a
large colloidal particle.

Assume we have a gel layer of uniform segment density surrouadarge colloidal
particle as discussed in the Model section. The colloidalgehis assumed to arise from
deprotonation of acidic groups that are present in uniform concenthbattoreen a’ < r < b’,
where r is the distance from the center of the colloidaligar The acidic groups are
considered to be monovalent and of a single type. (With minor iatitihs, this analysis
could be modified to treat multiple acid types or deprotonation o lgasups. For the sake
of brevity and clarity, this shall not be done in the presenkvdret pK& denote the pKa of
the free acid in dilute agueous solution. This pKa is rlédethe single molecule free
energy changG(HX — X)), by

1 }
Ka® = —— AG°(HX = X AL
P 2.303k, T ( ) (AL

where I is Boltzmann's constant and T is absolute temperature. nerge pKa will

depend on concentration of acid and concentration of added sadalirtgpe. In practice,
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however, these variations are small relative to the aaotist charge-charge interactions
present in a highly charged gel layer. Consequently, the depemdof pK& on
concentration and the characteristics of added salt Iskagnored. It shall also be assumed
that electrostatic interactions between neighboring chargéuessiwithin the gel layer are

responsible for the departure of pKa from fKa

bl

s

aI

b ‘ GF (HX) b Ge (X))
s O ACY (HX=X) Oy

g @

Figure 5-9) Free Energy Diagram of the Deprotonation aréidalar Acidic Residue in the
Gel-Layer. The (potentially) charged portion of the gel layer lies betw& < r < b’ and the
residue site of interest, represented as a small spheasidty, is at r =s. The surroundings
are represented as a charged (shaded) or uncharged (unshaded)uront Reduced
electrostatic potentials for the various states are rapexbeby, y’' + 9y, y', and y’,
respectively. G’s represent free energies.
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Consider a single residue atr = s. In theahenvironment of this residue in the gel
layer, it is surrounded by neighboring charge sites that #ilée electrostatic potential and
ionic atmosphere relative to the environment of a “freeldues In the present work, we
shall approximate the discrete neighborhood of the residue with a ralyifaharged
continuum that reflects the average environment at that ylartiposition in the gel layer.
The residue of interest is modeled as a cavity of raaithat is uncharged in the protonated
state and carries a single -1 charge (in protonic unitéeimlischarged state. The free energy
of dissociationAG(HX — X)), may be substantially different froAG°(HX - X). With the
help of Figure 8, we can write
AG(HX - X7) = AG°(HX - X7)+[GY(HX) -G, (HX)+G, (X )-G(X)] (A2
where the @& represent molecular free energies of formatidhe quantities y’, y’dy, and
y” in Fig. 8 denote dimensionless electrostaticembials which vary with distance from the
center of the cavity which is located at r = s. shiall be assumed that the free energy
differences appearing in brackets in Eq. (A2) avenithated by charge-charge interactions.

The electrostatic free energy of a particular chdrsystem, & can be writtetf®

G = [av[pA- kBsz:cjoa;(e‘zi“kﬁT -1 —%g D] (A3

where the volume integration is carried out ovéspace px is the fixed charge densit, is
the electrostatic potential, the sum over j is aaiémobile ion species present of valenge z
and ambient concentratiofp,cw is the ion exclusion parameter (assumed the samallf
mobile ions),E (= -0 A) is the electric fieldD ( =&€E) is the electric displacemergt;s the
(local) dielectric constant, and X Ft4in CGS units), or £ wheregy is the permittivity of
free space (in MKSA units). Making use of the BoisBoltzmann equation and the

divergence theorem in dealing with tBeD term, it is straightforward to show that Eq. (A3)

can be written
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G = fof jdV{ﬁca—h(co)} (A0
q

where q is the protonic charge, and

g/
Ko T

p = (A5)

hg = @ le™ 2+z9-2] (Af)

The term in brackets in Eq. (A2) can be written

AAG® = [G?(HX) -G, (HX)+G, (X )=G{(X")]

= kBZT{-[y'(g)-y"(§)]+ [av —%5y+h(y”)+h(y'+5y)-h(y')} (A7)

where y’'6) and y”(s) represent the reduced potentials at the surfatte@avity containing a
single — charge in the presence of a charged acttauyed gel layer backgroungg ( = psyx)
is the charge density due to fixed charges embenfd#dte gel layer, and ) represents the
fluid domain.

In Eq. (A7), we can replace g)(— y’(s) with y(s), where y§) represents the reduced
mean field potential at r s||of our charged gel layer. Next consider thermtein Eq. (A7).
At low @, the exponential in Eq. (A6) can be expanded aaddading terms in Eq. (A6) are
of order® in the case of polyvalent salt, and of orgif only monovalent mobile ions are
present. For smalp| it is clear that the h-terms in Eq. (A7) canigpgored. On this basis,
we can ignore h(y”) appearing in Eqg. (A7) to a dapproximation. For the remaining terms,

we make the reasonable approximation valid at Ipfige

oh@)

h(y+d)-h(y) = & 20

} = —wd ) cz,L+zy)e
o=y I

= _w@Cjo* Z * @+ Z; * y)e_Zj*y (A3)
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where “*” denotes the principal counterion(s) pras@ solution. Nowpy appearing in Eq.
(A8) represents the reduced “perturbed” potentiadcane point in space, due to a cavity
centered as. This potential is derived in Appendix B and igem by Egs. (B12-14). It then
follows from Egs. (B8-B14) and Eq. (A8), that

1

*
Zi

[avin(y")+h(y+&)-h(y)] = -y(s)- (A9)

To a good approximation then, Eqg. (A7) can be amitt

ko T

AGT = =5 {—Zy@) -

1 Py (X)
f Tq

. *
J Vsol

. oy(x,9) dvx} (AL0)

From Egs. (Al, A2, A10),

Py (X)

*
Z;

pKa(s) = pKa°-0-217{2y(§) . I 5y(z<,§)dvx} (ALY

The potentiaby falls off rapidly with distance from the cavity and hettoe integrand on the

lhs of Eqg. (A9) will be dominated by terms near the cavi@pnsequently

P 2O L QL
g q chl

where @ is the titration charge of the colloidcg/is the volume of the potentially charged
portion of the gel layer, ang(s) is the fraction of acidic sites at= s that are deprotonated.
From the defininition of the charged gel layefy am(b3-a®)/3. Integrating over the

charged gel layer domain,

Q’ x(s)

_ 0_ 1
e = e -217{2y(3)+2‘*+ (4”8(3))[a(s)2vog|

J

}h(a, S, a',b')} (AL3)

where s is the distance of the cavity from the eeat the colloidal particley(s) is given by

Eq. (B8), B(s) is given by Eq. (B14), and
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h(a,s,a',b) = 1- L[e‘”‘s)‘b"s) (a(s)b'+1) + e (g(s)a'-1)
2a(s)s

_ e_a(s)(b'+s) (O’(S)b'+l) + e—a(s)(a'+S) (O’(S) a‘+]_)] (A14)

It is straightforward to generalize Eq. (A13) to imi¢ a surface charge on the core of the
particle. Since a surface charge is not includedhe present study, however, this
generalization shall not be given here.

As an illustration of charge regulation discussédve that is also relevant to the
polystyrene sulfonate sample studied in the presenk, consider a model with a = 143.59
nm, @ = 147.77 nm, b = b’ = 149.16 nm, akd= 3.15 nm. For the most part, this
corresponds to the “halo” model discussed in theuRe section with $= 0.10. It is also
assumed that pa= 0.7 (appropriate for benzene sulfonic &)d the ambient pH of the
sample is 5.58° and the ambient concentration of'Nans is 10" moles/liter. At this salt
concentration, substantial charge regulation islipted to occur when &= -3.6 x 16,
which corresponds to the experimental titrationrgbaf the colloidal particle. In the present

example, however, Bis varied holding other parameters constant.

Table 5-2

Charge regulation versus[Jor a particular gel layer model

'10thU '<y>gel <pKa>gel <pH0c>gel Qt/ QtU
0.049 2.58 1.82 4.38 0.997
0.090 3.53 2.24 3.97 0.982
0.164 4.36 2.63 3.61 0.906
0.299 4.98 291 3.39 0.732
0.544 5.42 3.11 3.15 0.530
0.942 5.74 3.25 3.01 0.357
1.81 6.02 3.38 2.89 0.233
3.29 6.32 3.50 2.77 0.153
6.00 6.55 3.62 2.66 0.098
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For a particular ¢ y, X, and pKa are calculated over a range of diffesentlues
within the gel layer following the iterative procedudiscussed in the “Charge and
Electrostatic Potential” section of this paper. u&ipns (A13-A14) play a prominent role in
this procedure. Summarized in Table 5-2 are relegaantities averaged over the charged
portion of the gel layer (& s< b’) for different Q's. The ratio of the actual charge, @

QL is given in the final column. For a fully deprotied or protonated particle, this ratio
should equal 1 or 0, respectively. Since pkamuch lower than the ambient pH of 5.5, we
might expect @ Q° = 1.0 and that is indeed true when ] Qs low as shown in Table 5-2.
As | QO | is raised, however, -<ygzincreases and also <pKgpincreases due to a buildup of
charge-charge repulsion in the gel layer. Furtloeenas -<yg. increases, <pkt>gel
decreases following Eq. (5-21). (The local conaitn of H in the gel layer increases due
to the negative charges on the deprotonated asitéis.) Provided <pKagz is substantially
smaller than <pld>ge, the degree of charge regulation remains smallgQ= 1.0).
However, as |@ increases, <pKaaz increases, <pkt>qe decreases, and at some point, the
two approach each other and eventually become edonahe present example, this occurs
around @ = -60,000. About 50% of the charge groups in theagelprotonated at this point
(Q/Q° = 0.5). Increasing |€) further leads to still greater charge regulatidinis particular
case illustrates the charge regulation phenomenanway that is clear and straightforward to

understand

Appendix B — Cavity potential, dy.

The purpose of this appendix is to outline theivdéion of an expression for the

reduced “cavity” potentialdy(x,s), for a field point,x, of a cavity of radiuss centered at
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positions. From Figure 8 and the Poisson-Boltzmann equation
D2y(x,9) = D*((Y'(%9)+¥(x9) -y (x9)

x 2 -Z:y'(X,S —-Z. X,S
= -Equ[J(x—g)—chozjwje VS (g BVEIN (Bl
B j

where[1? is the Laplacian operator which acts on the figldable x, X = 41t (in CGS units)
or 1k, wheregy is the permittivity of free space (in MKS unitg)js the protonic charge,is
the relative dielectric constant of the solutioskén to be 78.3 for water at 26™Y), kg is
Boltzmann’s constant, T is absolute tempera®pes) is the delta-function, the sum over j is
over all mobile ion species present of valenceyis the (spatially dependent) ion exclusion
parameter, and W( s) is the reduced potential at due to a negatively charged cavity
centered ask. Integrating Eq. (B1) over a sphere of radushat just encloses the cavity
centered ax = s gives the normal derivative on the surface, S*thefcavity

&(s%s) = OOy(xs)le M(s) = —M;# (B2)

wheres* is a point on S* anah(s*) is a local outward normal to S*. In general, need to

consider the effect ofpgcolloid surface) oy as depicted in Figure 5-10.



104

8*

Figure 5-10) Cavity Near the Surface of the Caaei€le. The acidic residue of interest is
represented as a spherical cavity of radiuand surface S*. The surface of the core patrticle
is §. The origin of the local frame of reference isaked by an X.

This effect shall be ignored for the présand reconsidered near the end of this
Appendix. Applying Green’s Theorem to the fluid ddm V4, and ignoring the contribution

of S, (see, for example, reference 105)
Sy(x,s) = - [F,(x0)[0°0y(x8)-a’dy(xs)]dv,
Vi

- IR (xx)3y'(x.8) - F,' (xX)dy(x,9)]dS, (B3

where
r 1 -ar
F,(x,x) = —e (B4)
47r
Fxx) = —S9Dpgea (gy)
47Ty
r = x-x (B6)

r = r|, nis the local outward unit normal to the boundingfate, anda is an arbitrary
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constant we are free to choose provided it isardlpositive. In practice, we want to choose
a so thatd?dy - a? dy vanishes throughout as much of the fluid volureepassible. We
anticipate thady falls off with distance moving away from the cavénd that y'k,s) - y(s)
where yg) is the mean field reduced potential @t (This is the reduced potential
corresponding to the same charge distribution asbyt the negatively charged cavity
replaced with a continuum charge distribution.)e Talculation of y is discussed in the main
body of this work. Assume the ion exclusion paramistéhe same for all atoms) = w, and
that the mean field potential depends only on ikadce, s =s|. Expanding the exponential
of zdy in Eq. (B1) and retaining the leading terndin

Xwg?
ek, T

0°0y-a®dy = 3yY c,z’e ™" —a’dy  (B7)
j

Consequently, we want to choose

wK? —2y(s
a’(s) = TZcmzfe Yo (B8)
J

where

2
K = 2X gl
ek T

(B9)
is the square of the Debye-Huckel parameter, and
= %Zj:cm z®  (BLO)
is the ionic strength. Eq. (B3) can be reducetthédform

2 00
oy(x,s) = Jy(o)(s,r')-—a(sglwk Ycoze ™ [Xdx f(a,0xr)  (BLY
j

g

where

SyO(sr) = —Bfls)e-”“”' (B12)
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rr=|x-s|l, and r = [x-x| (B3
B(s) = Xq° e’®7  (Bl4)
4riek, T L+a(s)o)
faoxr) = %ko(ar)ko(ax)+i0(ar<)k0(ar>)[1—e'ﬂ““‘“)—zaay(x,g)] (B15)

r< and ¢ are the lesser and greater of x and r, respectivelythenis and k's are modified
spherical Bessel functions. In Eq. (B15), f dependsiaitlp on s through the dependence of
a on s andg(x) = sinh(X)/x, i(X) = cosh(x)(1/x + 1/, ko(x) = €/x, and k(x) = e*(1/x +
113).

The difficulty with Eq. (B11) is that the integral gme Ihs of the equation contains the
reduced potential that we are trying to determine. Famlypaunder the conditions of
interest in the present work, the integral term in B41j turns out to be small compared to
the leading termdy®(r’). To illustrate this, consider the example of a maient salt with
Cao = 10° moles/liter,c = .548 nm, T = 25C, y() = -5, and\ = 1.0. These are typical
parameters for the polystyrene sufonate latex particlesdemed in the present work. Under
these conditiong = 0.10 nnt (the Debye-Huckel parameter of the ambient salt solytion
anda = 1.22 nnt (an effective screening parameter characteristic of thel*lsak solution
in the vicinity of the cavity). Approximatindy(x,s) with 3y®(|x-g) in the integral on the |hs
of Eq. (B11), it is straightforward to show that theegral term amounts to 1.1 %&O(r").
Thus, to a good approximation

Sy(x,s) = oy?(sr)  (Bl6)
Where 8y© is given by Egs. (B12-B14). In other words, the oedli“cavity” potential
decays, to a good approximation, exponentially with &y@eHuckel screening parameter
that reflects the local ion concentration rather than theiearhsalt concentration. Although

the ambient salt concentration may be very low, the locadartiration can be quite large due
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to the high |y| values that are possible.

As discussed at the beginning of this appendix, thedaoyrelement derivation given
above has ignored the effect of the boundary surface of theideb particle itself, &
Including this effect, surface integrals ovgre®tirely analogous to the surface integrals over
S* should be included in Eqg. (B3). Generalizing Eq.)(BB8include these new terms and

also approximating the solution of Eq. (B3) with EB16)

Sy(x,9 = oy (sr) - [IF,(xx)0y'(xs) - F,'(xX)dy(x9)]dS,  (BL7)

Sp

It is straightforward to estimate the relative sizeéhaf new terms by approximatidy and

3y’ appearing in the surface integral on the lhs of(B4.7) withdy® anddy’ ©. For the case

y =-5,a = 1.22, and approximating, &ith an infinite flat plane, numerical integrationseov

a large number of possiblec{s} configurations has shown that the surface integral germ
make a contribution that is at most 2 %dgf"(s, r’) even whers lies very close togs On
this basis, it can be concluded tha® given by Egs. (B12-B14) constitutes a good

approximation of the reduced “cavity” potential.
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Chapter 6

Electrokinetic Transport of Large Rigid Macroions in the Thin Double
Layer Limit

6.1 Introduction

The objective of this chapter is to develop a simplifieacharical BE procedure that
utilizes ideas of O’Brien and his coworkers applicablepioesical and spheroidal particles
and apply them to large model particles of arbitrary shapehiBd® and later O’Brien and

§L1181173nd others®*have explored this “thin double layer”, or TDL, regiime

coworker
depth. Dukhifi*®, and O’Brien and Hunt&r derived simple analytical formulas for a
spherical macroion of uniform surface, or “zeta” potntihat are accurate feaa greater
than approximately 30 whereis the Debye-Huckel screening parameter and a is tleresp
radius. O’Brien and Watl’ subsequently derived an approximate analytical formula (Eq
(5.16) in reference 117) applicable to prolate and obldtersps of arbitrary axial ratio.
The O’Brien and Ward formula appears to be quite acctwatea as small as 20 where a, in
this case, denotes the minor axis of the spheroid. , Touspherical or spheroidal particles
of uniform zeta potential, accurate analytical formulasaaeelable forka greater than about
20. For smaller, highly charged particles whether they @ineres or particles of arbitrary
shape, it is necessary to resort to numerical results summaritedprevious paragraph.

The motivation for the development of such a procedsrprimarily practical in

nature. By reducing the computation time of BE calculatemd reducing the complexity of
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the code, it will hopefully become more accessible to a lamgdience. As developed, the
procedure is applicable to large particles of uniform “zeta@miml!, but no assumption needs
to be made about its actual shape. The principal advaotdage new approach is that the
time consuming volume integrations that must be carried io the general BE
procedurd*1%12% gre eliminated.  Numerical surface integrations remain, their
computation is rapid relative to the volume intergrations.

The outline of this chapter is as follows. Thikethods section first discusses the
continuum primitive model and introduces the fundamefitddl equations that must be
solved in order to compute an electrophoretic mobility.efiltwe restrict the treatment to
“thin double layer” particles (particles that are large relativéh#o thickness of the ionic
double layer that surrounds them). The main featurebeoBE procedure as applied to
computing the electrophoretic mobility of a model patyia the thin double layer limit are
then summarized. In the Results section, the proceduresisapplied to spheres and
compared with independent theory. Subsequently the prozed applied to the
electrophoretic transport of high molecular weight dupl&®@zomplexed with the trication,
spermidine. We end with a Summary of our major findingée technical aspects of this
manuscript are largely relegated to four appendices sircetierial will undoubtedly be of
interest to a limited audience. For the sake of compésts as well as those investigators
who may be interested in applying the procedures to thgirgsoblems, however, we feel it
is essential to include this material. The appendicet t{@d the BE approach as applied to
scalar fields; (B) the BE approach as applied to the vgldigitd of a thin double layer
particle; (C) thin double layer approach to the calculatioiom relaxation (distortion of the
ion atmosphere from its equilibrium distribution); &) computing the net forces on model

particles.
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6.2 Modeling

6.2.1 Continuum Primitive Model and Overview of the Field Equatiors

Consider a suspension of monodisperse particles (masrar colloids) widely
dispersed in a fluid at temperature T. The suspensiassigmed to be sufficiently dilute that
interparticle direct and hydrodynamic interactions are, \@rage, negligible. In modeling
the individual macroion particle and surrounding flulte continuum primitive model, CPM,
is employed® In the CPM, the macroion is represented as low didedgid body of
arbitrary shape. Within the macroion or on its surfaceell defined, but arbitrary charged
distribution is place@3* Alternatively, one can define the electrostatic potentiat'zeta”
potential over the entire macroion surface, or to be p@ese, the surface of hydrodynamic
shear, & This shear surfacep,Separates the rigid macroion from the continuum Neato
fluid that is incompressible, has a viscosity coeffitief n, and a dielectric constant &f In
the present work, the “gel” layer®'®shall be ignored. In addition, mobile ions in the
solvent are modeled as a continuum, and local ion condensare assumed to obey the
Poisson equation,

Hie()OAX) = -Xp(X) 6-1

for the general non-equilibrium case or the Poisson-Baltemequation,

ODUe() DA () = -XaY,c,2, expt-az, (X)) 6-2

for systems at equilibrium. In Egs. (6-1 and 632); 4mt (in CGS units), or 5 wheregy is
the permittivity of free space (in MKSA units)/\ and/\, denote the nonequilibrium and
equilibrium electric potentials, respectively, at poirit a local frame of reference,is the
local dielectric constant is the local charge density, q is the protonic chatcges the
ambient concentration of tleeth mobile ion present in solution angig its valence, the sum

extends over all ionic species present, @dl/ks T where kg is Boltzmann’s constant, and T
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is absolute temperature.

In order to determine a transport property such asetéctrophoretic mobility of a
model particle, it is necessary to know the forces or &seasting on it. This, in turn,
requires knowledge of various field quantities such asldkal fluid velocity, vy, ion
concentrations, and electric potentials. In the preserk, w@ shall be interested in a model
particle that is stationary, but placed in a constantr@dield, e, or translating with velocity
u, without an electric field, through a fluid that is etWise at rest. It is convenient to define
a perturbation potential, through

AX) = Ag(X) +@(X) —elx 6-3)
where A and /\, are the local nonequilibrium and equilibrium electric poéds) in the
presence and absence of an electric or flow field, respecti¥y.from the particle)\ = -
el X, \o = 0, and thereforg) = 0.

Following O'Brien and White' additional potentials,, are also introduced to
represent the departure of local ion concentratiopsfraom their equilibrium value, 4.

Retaining terms to first order in the perturbing eleatrifiow field,
(0 = noXi-Bazlp+e,]  ©6-4

no(x) = c,expl-Baz,A,(X]  (6-5)
where the various quantities have been defined previolisigeneral the potential®,, are
obtained by solving a steady state ion transport equdioeach ion species present. The
equation of continuity requires (in a frame of referenag@tary with respect to the particle)

0 (x = 0 (6-6)

wherej, is the local current density of i@n To first order in the perturbing electric orvilo
field>

i, = neMv: (x) + Baz,D,[00, (x) + ¢ (6-7)
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where vt is the local fluid velocity, B is the diffusion constant of ionic species
Substituting (6-7) into (6-6) and assuming the sotvs incompressibldJvr = 0), yields
0*e,(x) = f,(0 (6-9

where f, represents the “source” term®f, and is given by

fo(¥) = DLV_TQ()+/30IZH e, () +¢ |MA(x)  (6-9)

Since/\ falls off rapidly moving away from the particle surfatgeis only significant near S
This feature shall be useful in the present analydiss dssumed that,$s impermeable to
the passage of ions which requijgsA n = 0 wheren represents the local outward unit
normal to §. In addition, “stick” hydrodynamic boundary conditions are asslito hold
that requiresyr =0on §. From Eq. (6-7), we then can identify the boundary conditon f

the outward normal derivative dfy on §

[G% (X

n ]sp = -elm(x) (6-10

In order to obtairvy, it is necessary to solve the linear steady state N&wukes

equation, which can be written (6-2-6-6, 6-22)
n0%v; (0-0p(¥) = -wX)  (6-1)
v, =0 6-12
where p is a local pressure andepresents an effective local external force/v@wn the
fluid,
W) = Yz [no(-c [0, +d  (6-13
Moving away from the particle surface, the locah iconcentration, 4a, approaches its

ambient value, £ For a large particley vanihes except for a thin layer of fluid negt S

This is called the electric “double layer”.
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In summary, it is necessary to solve Egs. (6-1¢h8 11) in order to determine a
transport property such as the electrophoretic htpbi In general, these equations are
coupled to each other and must be solved simultetgo Different investigators and
investigations may have followed somewhat differpathways to achieve this and have
employed different computational strategies, bet uhderlying problem has basically been
the samé™31**1% For a general model particle, it has been necgssaemploy BE

procedures*!%2%hich is outlined in the next subsection.

6.2.2 BE procedure for calculating the electrophoretic mobility ofa rigid model

polyion in the thin double layer limit

In order to calculate an electrophoretic mobilitys necessary to determine the total
force exerted by the particle on the fluig, for two transport casés>* which shall be called
Case 1 and 2, respectively. In the present wdw,analysis shall be restricted to model
particles that are large compared to the thickméshe ion atmosphere, b, that surrounds
them. The quantity b will be comparablekd (Eq. (A15)). If L represents the smallest
linear dimension of the model particle, the preseaatment is restricted taL >> 1.
Appendix D explains how the total force is relatedhe fundamental fieldg\o, ®4, andvy
defined previously. (A surfaceqSs defined which is displaced outward from I8/ the
distance b. The forcey can be computed oneg on S is known. Howevelyr depends in
a rather complex way ofy, and®, as discussed in Appendices B and C.)

In Case 1, the particle is translated with veloaitin the absence of an electric field

andz;™ is related tai by Ref. 92

z) = S0 (6-14

where=; is the translational friction tensor. The compusef=; are obtained by translating
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the particle along three orthogonal directions, poting z;\* (as discussed in Appendix D)
and then simply identifying the components=f For axisymmetric particles, only two
orthogonal directions need to be considered and &phere, only a single direction needs to
be considered. In Case 2, the particle is heldosty, but it is subjected to a constant

external electric fielde. In this case,
¥ = -Qe (6-19

whereQ is the effective charge, or “tether force” terfSorin general, 3 calculations with
oriented along three orthogonal directions areiredun order to determine the components
of Q. For symmetric particles, however, this numbeeduced.

Once =; and Q are known, the electrophoretic mobility, is readily obtained.
Consider our model particle oriented in a particway and subjected to a constant external
electric field,e. The particle migrates with steady state velocity Under steady state
conditions, the net force on the particle must slarand we can view the transport as a
superposition of Cases 1 and 2,

0 = Z,lu-Qle (6-16)

Solving foru,

u ="'k = Me (6-17)

where “-1” denotes inverse aMl is the electrophoretic mobility tensor. Under ditions of
weak applied fields where all particle orientati@me equally probablg, can be equated to

the isotropic average ™,
1
po= STMI (6-19)

where Tr denotes the trace of the mobility tenséittention shall now be turned to the

calculation of the fieldé\o, @4, andvt needed in order to calculgie
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In addition to the TDL assumption that >> 1, it shall be assumed that the
electrostatic potential onpS¢, is uniform. For a simple two component salt bEalute

valence z, the electrostatic potential at distanftem S, is given by??

AyX) = ZZBZTlnFJ’Ae } 6-19)

1- Ae™

where

A = tan}‘{ azg } (6-20)
4k, T

The other special case of interest is that of &lpigharged large particle with a surface
charge density of in the presence of a more complex salt solutidear $, the ion density

in solution is dominated by the contribution of nterions with maximum absolute valency,
|z*|. This shall be called the “principal coumei (or “principal counterions” to be more
precise, since several species of the same absohleéace may be present) and let the
ambient concentration be denoted by c*. The @haensity is related to the reduced zeta
potential, y = oqZ/ksT, by the relatiof?

oo = 2T
X

D, (e -1  (6-21)

The right hand side (rhs) of Eq. (6-21) is domidabg the principal counterion. In this case

it is convenient to write

2
o7V = Xo

—_ | C_a “ZgYo _ —_
T o +1 ; C*(e ) (6-22

where the sum on the rhs of Eq. (6-22) is overoak excluding the principal counterion. In
practice, this term is small. Given the chargesdgno, and salt conditions, Eq. (6-22) can
be used to determing.y As a first approximation, the summation on the of Eq. (6-22) is

ignored and yestimated. This estimate is then used in the sattomon the rhs of Eq. (6-22)
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to obtain a better estimate. This procedure carepeated until ¢y converges. Beginning
with the Poisson-Boltzmann equation, Eq. (6-1),sitpossible to derive a first order

differential equation for reduced potential, y AotksT,?

L iK\/ZCI—”(e_”y—l) (6-23

a

where the + root is taken ity 0 and the — root is taken if % 0. Standard procedures are
available to solve first order differential equaio such as the Euler MetHdtand this is
done in the present work for large particles iromplex salt solution. Far from the particle,
y(x) = ¢ €* where c is a constant. This behavior coupled thighboundary condition y(0) =
Yo is used to solve Eq. (6-23) numerically. For ish$ not large compared 6" or large
particles of nonuniform surface potential, numdrialkernatives such as the BE approach
outlined in Appendix A could be used.

A major feature of the BE procedure is the diszatibn of § into a series of N
interconnected platelets where N is typically ia thnge of 100 to Ny given by Eq. (B23).
A representative example of a toroidal particledid later in the present work is shown in
Figure 6-1. The approximation is made that fielchrfities such a®,, andvr (and, in
general, /\p) are uniform over individual platelets. It is aghtforward to test this
approximation by varying N and extrapolating to the- o limit. In the present work on
thin double layer particles, discritization in ttieection normal to Sis avoided as explained

in Appendices B and C.
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Figure 6-1) Toroid Consisting of 480 PlatelefBhe “inner” toroidal radius, r, equals 100 nm
and the outer toroidal radius, R, equals 200 nrhe Jolid surface represents Displaced
slightly outward from §lies the surfaceqs which is indicated by the transparent (wireframe)
structure. In this exampleg 3es at a distance of 8from S,

The calculation ofvr is carried out following the procedures of Append
culminating in Eqg. (B32). This, in turn, requirdise scalar potentialsp,, which are
determined following the procedures of Appendix Since the transport equations fbg
and vr are coupled together, it is necessary to adopiteaative procedure in order to

determine them’ We begin by ignoring ion relaxation and approxinzhe local ion
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densities in the fluid near the model particle wilteir equilibrium ion densities. This
requires settingp, = -y wherey is the correction potential of a low dielectricvitg in a
constant external electric field. (See discussmAppendix A following Eq. (A16).) The
flow field vt is computed as described in Appendix B, and theis determined. At this
point, we now have estimates wf and can obtain better estimatesdaf and OP, by
employing the procedures of Appendix C. This wehmlocess is repeated urilconverges

to within a predefined tolerance level (typicallyl G6).

6.3 Results and Discussion:
6.3.1 Spheres in KCI

The BE-TDL methodology described in the previougisa and the appendices is
first applied to a spheres of radius a. The sdlvertaken to be water at 2C (N = 1
centipoisegs = 80.36) and the salt is taken to be KCI at ancistrength equal to 0.3725 M.
The Debye-Huckel screening paramekeequals 2 nm under these conditions (Eq. (A15))
and a is set to 10, 25, or 50 nm to gike = 20, 50, or 100, respectively. The small ion
diffusion constants, § or the hydrodynamic ion radius, fro = kgT/61 Dy), is estimated
from limiting molar ionic conductivities\q”, and the Nernst-Einstein relation. The’s (in

10* S nf /mole at 25C) are related ta,r(in nm) by*

ZZ
= 9201 6-24)

a

r

a

where g is the valence of tha-ion. Since\,” is similar for K and Cl ions, an average

radius of .1229 nm is used for both. The reduedd potential,  defined by

_ q¢ B
Yo = KT (6-25)
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(C is the actual zeta potential) is varied from +*6and/\q(X) is estimated using Eq. (6-20).

The plated sphere models are generated using aedure described in detall
elsewheré&*** For each case examined, several different mquheres are considered with
the number of platelets, N, varied. A dimensioslekectrophoretic mobility, E, is computed

for each cas@®!

= gt 62
where X = 4t1(in CGS units) or Ef (g0 = permittivity of free space, in MKSA units), qtise
protonic chargep is the electrophoretic mobility, and other quaetithave been defined
previously in this section. The resulting E’s apdrapolated versus 1/N and the 1/NO
limit is estimated. This “extrapolated shell” pesturé? is carried out to correct, at least
approximately, for the discretization error thaguks from replacing a “smooth”, continuous
model with a discrete one. In general, b (the toldyer thickness) needs to be set large
enough that y(b)fy << 1 which insures that equilibrium charge deasitre negligible for r
> b. This result is satisfied if b is set in tleege of 44 to 8k. As the surface zeta potential
increases, the value of b can actually be redu&mhwn in Table 6-1 are (extrapolated shell)
E’s for a wide range of cases. In addition to sedbmobilities that include ion relaxation, E
results are also included that leave ion relaxaiaty E,. The E, and E BE-TDL results are
compared with the independent theory of H&h(for E,) and O’'Brien and Whit& (for E).
It is evident from the results of Table 6-1 that thethodology works best whea is large.
This, however, is expected on the basis of theaqmations involved. Foka > 50, the BE-
TDL yields mobilities that are within a few percatindependent theory. It is appropriate at
this point to discuss the similarities and diffeves of the BE-TDL approach used here with
the related approaches of O'Brien and coworRet§’and Dukhin and Shild¢* applied to

spheres, prolate, and oblate ellipsoids.
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Table 6-1

Unrelaxed (&) and Relaxed (fEfor Spheres in KCI at 2TC

Ka Yo En(BE) | Ex(H)® | Erro® | E(BE) | E(OW)® | Erro®
20 1 1.34 1.387 3.5 1.32 1.447 9.6
2 2.68 2.77 3.4 2.50 2.738 9.5
3 4.02 4.148 3.2 3.40 3.720 9.4
4 5.36 5.517 2.9 3.92 4.260 8.7
5 6.70 6.872 2.6 4.04 4.360 7.9
6 8.04 8.203 2.0 3.88 4171 7.5
50 1 1.42 1.431 0.8 1.48 1.429 -3.4
2 2.84 2.860 0.7 2.75 2.776 -0.9
3 4.27 4.283 0.3 3.89 3.945 1.4
4 5.69 5.700 0.2 4.77 4.822 1.1
5 7.11 7.106 -0.1 5.19 5.271 1.6
6 8.53 8.490 -0.5 5.20 5.324 2.4
100 1 1.46 1.446 1.0 1.48 1.426 -3.6
2 2.92 2.892 -1.0 2.86 2.808 -1.8
3 4.39 4.332 -1.3 4.23 4.085 -3.4
“ 4 5.85 5.767 -1.4 5.30 5.172 2.4
5 7.31 7.191 -1.6 5.98 5.933 -0.8
6 8.78 8.591 2.2 6.36 6.305 -0.9

(a) from Henry®, (b) Error = 100*(E(BE)/E(H or OW) — 1)

(c) from O'Brien and Whit&



121

Outside the double lay@r, satisfies Laplace’s equation (Eq. (6-8) wittsét to 0). For
simple geometries, the general solutiondgf can be written as an infinite, but convergent
sum of “product functions” which are, individuallgplutions of Eq. (6-8). The individual
“product functions”, in turn, are products of knowumnctions of the individual orthogonal
coordinates. (For a spherical particle, for examntie orthogonal coordinates are the radial
variable, r, and two angular variabl@sande, respectively. The “product functions” involve
simple polynomials in r, times spherical harmoniicgolving the angular variables. For
prolate and oblate ellipsoids as well as a few otje®metries?® the same approach can be
used.) Although the individual “product functionsatisfy Laplace’s equation, they do not
satisfy the boundary condition o &opropriate in the special case of interest heye(ES),
but an infinite series can be constructed whichsdogee discussion centered around Eq.
(3.9) of reference 117). Dukhin and Shifand O'Brien and Ward’ have shown that
approximating this infinite series with the leaditegm yields accurate conductivities and
electrophoretic mobilitids’ as well as induced electric dipole mométftsunder most
conditions. By truncating the series in this manaealytical expressions for electrophortic

mobilities as well as other transport propertiegeHaeen derived-"?*

For simple geometries such as spheres, prolateglalate ellipsoids, these alternative
approached®™"24re simpler and more efficient that the BE-TDL aygmh used here. The
advantage of the BE-TDL approach is that it caaygied to models of arbitrary shape. Itis
applied to spheres in the present work in ordeetdy the method as well as assess its range
of validity.  Another difference between the prdsemethod and the alternative

approachgg®117:124

is the inclusion of finite size effects on the @iy field, vr, as
summarized by Eqg. (B32). Including finite sizeeets invy also introduces a small velocity
component normal to the local surfacg, &1d this also contributes @, (theh; term in Eq.

(C9)). Although size effects iny can be ignored foka greater several hundred, our
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observation has been that they should be incluodieshhaller particles.

6.3.2 DNA-Spermidine Complexes

As an application of the BE-TDL procedure, we kbahsider high molecular weight
duplex DNA in the presence of the trication, speiimgé (NH (CH)sN"(CH,)sNH"). There
has been considerable interest in the DNA-spermidyrstem over the past 25 years since it
is ubiquitous in nature and mimics, in vitro, thempaction of DNA in living system$®1%’
Under most salt conditions, purified high molecwiaight duplex DNA exists in solution in
an unfolded, random coil configuration. Under Isa#t conditions and in the presence of
spermidine or other polycations, however, DNA ugdes a collapse to a compact, possibly
toroidal shaped particfé®281% |t is now believed that spermidine (a counteribimds to
DNA and is capable of forming crosslinks betweearsls of duplex DNA. When, for
example, the butyl moiety of spermidine is replaaétth propyl through octyl moieties, the
interhelical strand separation varies in a systemay that is readily explained in terms of a
crosslinking modet®* By examining, directly, the free solution eleginoretic mobility of
compact DNA-spermidine complexes, we shall be ahtiraw some firm conclusions about
the nature of spermidine — DNA interaction. Yamasdlal>*? have examined the complex
of viral T4 DNA (166,000 base pairs) with spermelin a buffer solution of 50 mM sodium
maleate at pH = 6.0 and 2G. (At this pH, spermidine exists in solution ag3acation.) In
the absence of spermidine, DNA exists in solutisam extended random coil and the free
solution electrophoretic mobility is measured to be -.328 8V sec™*? Although the
random coil or wormlike chain structure of DNA istramenable to the BE-TDL modeling
developed in this work, it is worthwhile to considdéosely related modeling grounded on the

same principles of the CPM model before considettiegDNA-sperimidine complex.
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StigteP® has written a program which solves the coupleaspart equations for an infinitely
long rod in monovalent salt and computesModeling DNA as a infinitely long rod of
diameter 2 nm and line charge density —2q per pasgwhich yields an equivalent surface
charge densityg, of -.150 coul/assuming a rise per base pair of .34 nm), Stigter’
program predictgl = -.449 cnYkV sec. A detailed BE study of the length depewmeeof
DNA has shown that curvature of DNA can redygéglow its “straight long rod” value by
approximately 2098° This brings the experimental and model mobilityigood agreement.
Thus, for DNA in the unfolded, random coil-wormi&eain state, the CPM-electrokinetic
model yields free solution electrophoretic mol®ktin good agreement with experiment.
Moving on to the DNA-spermidine complex , we slwalhsider a solution containing
12 mM of spermidine in addition to 50 mM sodium e@é buffer. At this spermidine
concentration, T4 DNA is present in the form of @awt structures that are approximately
600 nm in diametel*? On the basis of the work of Yamasaki et al., aenot say anything
about the shape of the particles, but independedy suggests a toroidal shap&**® For
purposes of modeling, we shall consider two difiéshaped structures to illustrate the
dependence of mobility on particle shape. The €omsidered is a sphere (radius =a). For
a sphere of with a = 300 nm in aqueous solven® 4C2 the translational diffusion constant,
Dy, should be equal to .717 x 1@nf/sec. The second and physically more realisticehisd
a toroid with “inner” toroidal radius, r, equal 300 nm, and “outer” toroidal radius, R, equal
to 200 nm. (One can imagine generating a toroidtasting with a circle of radius, r, the
center of which is at distance R from some converoeigin. The symmetry axis lies
perpendicular to the line connecting the origithé® center of the circle. The toroid is
generated by rotating the circle about the symmeetiy by 2tradians.) For this toroid,>
.874 x 10° cnf/sec'®13 Plated structures with N varying between 12852l are

generated for both the sphere and toroid moddiswS in Figure 6-1 is an example of a
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toroid with R/r =2 consisting of 480 platelets.| Af the plated structures are designed to
reproduce the 3 mentioned previously. As a charge model, fisgumeo is simply that of
duplex DNA @ = -.150 coul/rf). The DNA phosphate charges inside the surfateeo
complex are presumed to be neutralized by entrappeaterions. The net charge of the
complex arises from the surface charge densitylwisitaken to be the same as that of
duplex DNA. It is also assumed that the chargtibigion of mobile ions is described by
the Poisson-Boltzmann equation, Eq. (6-1). Witk gharge distribution with 12 mM

spermidine —trichloride plus 50 mM sodium male&®, (6-22) gives y= -2.10.

Table 6-2

Mobilities® of Model DNA-Spermidine Complexes

Model ©) Yo U © @
Sphere 0 2.10 .369 .335
Toroid 0 ! .354 .309
Sphere 0.92 0.505 .089 .087
Toroid 0.92 ! .086 .087
Sphere 0.95 0.335 .059 .057
Toroid 0.95 “ .057 .056
Sphere 0.97 0.208 .037 .036
Toroid 0.97 “ .036 .035

(a) mobilities are reported in itV sec
(b) fraction of DNA phosphates neutralized by countesio
(c) ion relaxation not included

(d) ion relaxation included
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Shown in Table 6-2 are the mobilities, computedh®/ TDL-BE procedure, for both models
in the presence and absence of ion relaxationdigesissed previously, the mobilities are
extrapolated to the 1/N. O limit. It is evident from these results thag timobilities are
similar for the two model structures and yield aarage mobility of about -.32 &V sec if
ion relaxation is included. The experimental miohilon the other hand, is -.050 &V seg
which, in absolute terms, is less than 1/6 the ridébility. The actual complex is behaving
as though its absolute charge was much smallerekp@cted on the basis of the strict CPM
model. A simple way of reconciling model and expental mobilities is to reduce the
(absolute) surface charge density used in mod&itige point that model and experimental
mobilities are in agreement. Physically, this esponds to a certain fraction of the DNA
phosphates “specifically bound”, by spermidine detons. In the present interpretation,
one can define “specifically bound” counterionghasse trapped within the surface of
hydrodynamic shear,,S There is no significant exchange of “specifigddbund”

counterions (insidegpand counterions in the fluid domain (outside gftBat are assumed to
obey the Poisson-Boltzmann equation, Eq. (6-1blél&-2 gives mobilities in which the
fraction of “specifically bound” DNA phosphatesjd,taken to be 0.92, 0.95, and 0.97,
respectively. In order to bring experimental armtel mobilities into agreement,
approximately 95 % of the DNA phosphates must pecgically bound” by spermidine.
How do the findings of the present work comparéwither studies?

There exists an extensive literafifreon salt-linear polyelectrolyte interactions in
general, and the compact form of DNA induced byypalent cations in particulaf’
Counterion “binding” can be defined in thermodynanmérms through the preferential
interaction coefficient[".**>** In particular, 1 + B can be interpreted as the average degree

of “thermodynamic counterion association” per dimwal charge on the polymer. The
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preferential interaction coefficient has been exediin terms of counterion condensation
theory'®’ PB theory:*® and Monte Carlo simulatioi® Counterion condensation thetfy™*°
offers a particularly simple view of polyion-couritn interactions. According to this
theory!3"13° a certain fraction, f*, of counterions “condenseri a linear polyelectrolyte
provided the absolute linear charge density excaetrtain threshold, as it does for duplex

DNA. Also,

1427 = 1+2f 6-27)

For DNA in the presence of single monovalent, aiwél or trivalent counterions, f* = 0.76,
0.88, 0.92, respectively. Extensive past worklendompact form of DNA in the presence of
spermidine as well as other polycationg(@alence charge) has convincingly shown that the
compact structure of DNA is formed when f* excealisut 0.90 when interpreted in terms of
counterion condensation thedfy. It is inappropriate to equate our f = .95 with (br
possibly 1 + P) as defined above. First of all, since we arenmfig f from a transport
property, it will depend, in principle at least, non-equilibrium variables such as the relative
counterion mobilities. In the strictest sense, beannot be related to a true equilibrium
binding constant. Second, for unfolded DNA in fitesence of monovalent salt, the model
mobility with f = 0 (not 0.76 as one might expexct the basis of counterion condensation

theory) agrees with experiment.

6.4 Summary

The Boundary Element methodology, BE-TDL, developetthe present work yields
accurate electrophoretic mobilities of spheres idexka exceeds approximately 50. For

particles with a smallest linear dimension equdl,tthe BE-TDL is limited to those with L
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greater than 5@/ In addition, alternative methods are availalvlé preferable for large
spherical or spheroidal (prolate or oblate ellipyonodel particle$:®*'"*?* The BE-TDL
method should be useful in modeling large partiokesrbitrary shape. In the present work,
the example of compact, high molecular weight DNb&+snidine complexes has been
examined.

For native, unfolded DNA in the presence of monewasalt, the CPM model of
electrophoresis is able to account for the obsemedility without the need of “specific
binding” of a certain fraction of DNA phosphates g counterions. For DNA-spermidine
complex, on the other hand, it is necessary tormassthat 95% of the spermidine as
“specifically bound” to DNA in order to reconcilexgerimental and model mobilities. It
should be emphasized, however, that this is base¢deoassumed validity of the CPM model.
As discussed in Section Il.A, one component of @M model is the assumption that the
Poisson-Boltzmann, PB, equation accurately deseribe ion distribution within the double
layer of the model macroion. For monovalent gak, PB equation does indeed accurately
describes the ion distribution around the DNA pded the counterion is not very larj8.
For more complex systems, such as the one involtiagrication spermidine, on the other
hand, the PB approximation suffers severe defidéasi¢! Consequently, the inability of the
CPM model to account for the experimental mobilitfy the DNA-spermidine complex
without invoking “specific binding” may be due, part at least, to a breakdown of the CPM
model. In this case, alternatives exist such mdetdayer modelind’? or more formal
theoretical approaches such as functional expansigimique¥™ and dressed ion theof}

This, however, is beyond the scope of the preser.w
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Appendix A: Boundary Element Method for Scalar Fields

The Boundary Element (BE) approach for the sdaéds of interest in this work are
described in detail elsewhete"**'*" The main features of the method as applied tasca
fields are summarized below. This is followed wéhveral illustrative examples that are
relevant to the present work. Consider a scaddd,fiy, associated with a particle enclosed
by shear surface,&nd letn denote the local outward unit normal o & is assumed thaji
goes to zero far frompSand satisfies

Dp(0) = h(¥ (AL)
where h’ represents the source terms for the séialdrandx represents any point in space.

It is also convenient to define the outward nordeivative at a poirnt on §

p(x) = Dy(¥inx) (A2

It is important to distinguish whether the normatidative indicated by Eq. (A2) is taken just
inside, P, or just outside, S. In the BE approach, the solution @fis written as an
integral equation over the surfacg, &8s well as a bounding volume that can be chasen t
correspond to the particle interior, or the voluexterior to the particle. The assumption is
made that the scalar field varies sufficiently dioawver S, thaty and its normal derivative is
constant, to a good approximation, over a smallioregof §, Consequently, Sis
approximated as a series of N interconnected tuiangplates, or platelets, and and its
normal derivative are assumed constant over aesipigelet. Lek, denote the centroid of
platelet k and also lafi, p!, and p° denotep(xy), P(x), and §(x), respectively. For an

arbitrary “field” point,s, in the fluid domain exterior to,Sthe potential can be writtgh
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@) = VO -D Lh@ky - D Lwk)p (A3

where the sum over k extends over all N plateteis,an arbitrary constant,

V() = - [Fx9h(X)-@’g®ldv,  (Ad)
L@k = - [Fwx9ds, (A
S

Lwks) = [F@x9dS, (A6)
&

-]
Flwxs) = — (A7)

47x

F'a,xs) = 0,F(a,x9)n(x) (A8)

In Eqg. (A4), the integration is over the entireidldlomain and in Egs. (A5-A6), the domain
of integration is the surface of platelet k, She unknowns in Eq. (A3) are thg's and p’s,
and possibly the “h’ & |” terms appearing in Eq. (A4) fof(g). The latter terms, if present,
can be approximated with initial estimates or rissfrbm previous iteration:**’ The 2N
Wy's and p’'s can be determined by considering field poistgp correspond to the centroids

of the individual plates. In general, the 2N unkne can be obtained by simultaneous

solution of*
1 —_— e e
Ewi = V- Z Dyp — z Byt (A9)
X X
1 i i
El//j = vt zcjk P * zAjkl//k (ALO)
X X
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where

A =10k X)), By =hi(a.kx;), Cyu =10k x;), Dy =l(akx;) (AL

and

v = - [FOxx)hav, (A2

In Eq. (A12), the domain of integratiofy;, is the volume interior to,S Once a model has
been defined, the 4Nsurface integrals represented by Eqg. (All) candéermined
numerically. The source terms,i, and \f, are also known or can be approximated. In the
general case, thi’s and p’s are solved by numerical solution of the 2N eouret given by

(A9) and (A10) above. Several specific examplescaresidered below.

As a first example, consider the equilibrium elestatic potential in the vicinity of a
model macroion that obeys Egs. (6-1,2) in the tdikis assumed that the dielectric constant
is equal tog; inside of the macroiomyixed(X), andes outside of the macroion. If we also
specify the charge distribution inside the macropittren for h’k) in Eq. (Al12), Eq. (6-1)
gives h'K) = -X prixed(X)/€ whereX = 4t (in CGS units), or k) whereg, is the permittivity
of free space (in MKSA units), amxl is a point in the macroion interior. The normal

derivatives are related to each other by the alstztic boundary condition
EPk = &P (ALY

Thus, Eg. (A12) can be solved once the chargeildigion inside of the macroion is defined.

For the exterior source terms given by Eq. (A4),haee from Eq. (6-2)
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N = -29%c,z, e (ALY
& 7

For w appearing in Eqg. (A4) and (Al1l) forBnd O, it is convenient to choose the Debye

screening lengtlk, defined by

2
k2 = ‘gxquch,za2 (AL5)
B a

S

The reason for this choice becomes clear when E4)(is substituted in Eq. (A4).
Provided the potential\o(x) is small in the fluid domain. The exponentialdg. (A14) can
be expanded and only the linear term\igfx) retained. This truncation yields the “linear”
Poisson-Boltzmann, PB, equation. For the chaicek, h’ - kK*Aq = 0 everywhere, and’()
vanishes. In this case, Eqgs. (A9) and (A10) casdabeed for thap’s and p’'s. Then Eq. (A3)
can be used to solve fg(s) for arbitrary field points. When the macroiorhighly charged,
however, the linear PB equation is no longer vahd one is forced to return to the full form
given by Eq. (A14). The difficulty this creategviever, is that the potential, which we wish
to obtain, appears in the source terfis)v This can be dealt with by first assumirfsy= 0,
which is equivalent to assuminfgy(x) obeys the linear PB equation, solving for thiéah
W's and R’s, and then using Eq. (A3) to determifvg(s) for a large number of field points in
the fluid domain near the model macroion. Therosirs = x; in Eq. (A4), revised source
terms can be computed using either the full expaaleform, or expanding the exponential
an truncating the sum after a finite number of grnThen the whole procedure is repeated
until the potentials converge to a finite valuehisTis basically the procedure proposed by

Zhou**” and which we have employed in our lab for the éaght yearg**06120

As a variation of the approach considered in thevipus problem, consider the
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equilibrium electrostatic potential again but imsteof specifying the charge distribution of
the macroion, specifying the surface potentigl, This case is simpler than the previous one

since we now only need to consider Eqg. (A9). EXP)(can be written in more compact

“supermatrix” form
1 —_— e e
E|=+B N\, = v-DIp (AL6)

where/o, V%, andp® denote N by 1 column vectors; aBdandD represent N by N matricies
where the j-k element areyBand Dk, respectively. Also| denotes the N by N identity
matrix with diagonal components equal to 1 anddigonal components equal to O.
Provided we have estimates of the source tevi&g. (A16) can be inverted to obtain the N
unknown components gb°. For problems in which the surface potentl contains

components that are large in absolute magnitudss, iitecessary to carry out an iterative

solution as described in the previous paragraph.

Next consider the correction potentidgl, defined by Eq. (6-3), for the special case of
a low dielectric cavity in a high dielectric mediwguabject to a constant external electric field,
e. In this case, the surface of the cavity is tateie §. This potential is useful in the
present work in defining the initial estimate oéth, defined by Egs. (6-8)-(6-10). In order
to calculate the components @f (k is the correction potential at the centroid offace
platelet k), it is convenient to set= 0 in Eq. (A1l) which yields B - Ay and O« - Ci.
Also, the dielectric boundary condition correspomdito Eq. (A13) appropriate for the

correction potential becomes

&P - a) = &(p - a) (A9

where the “s” and “i” subscripts anindicate external (solvent) and internal dielectri
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constants, respectively, and=aln; (n; is the outward unit normal to surface plateletWith
this boundary condition, making use of the supefimaand column vector notation
introduced in the previous paragraph, and assumging< &, Egs. (A8-A9) can be

manipulated to yield

p° = a (AL9)

vz v A mm (A

Once the components gf are determined, the correction potential at anyitpoints in the

fluid is given by

wie = -D[.0k9y +1,0ksa] (A2])

For the potentialsP,, it is again convenient to choose= 0 in Eq. (A11). In this
example, it is only necessary to solve the “extenqmoblem (Eq. (A9)) with the boundary

condition from Eq. (6-10)
p, = -a (A22)

Eq. (A9) reduces to

dercal (a2

S
1
1
N[~
+
>
N

where {4k = Vo (Xx), and

Vi(9 = - [FOx9f,()adv, (A9
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whereQ denotes the fluid external tg,Sand § is given by Eq. (6-9). Once the surface
potential components are computed from Eq. (A28),(B3) can be used to computg(s)

for arbitrary points in the fluid. Since the soaiterms, § contain the potentials that we are
attempting to determine, it is necessary to follaw iterative approach analogous to that
employed for\q. Initially, ion distributions are approximated their equilibrium values and
from Eq. (6-4), this requires settidy, = - with a similar relationship for the gradierithis

is iterated until®d, converges?

A disadvantage of this approach is the necessigomputing the volume integrals
throughout the fluid domain as defined by Eq. (A24Jolume integrations of this kind are
straightforward, but computationally time consumingn alternative discussed in Appendix
C circumvents this computational bottleneck andultssin a substantial speedup in

computation time.
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Figure 6-2) Volume Element and Associated VariablesvVolume V is the wedge-shaped
structure at the center of the figure. Shown &ep| and neighboring plates j1, j2, and j3.
The unit vectors); andt;; denote outward normals to plate j and side 1 atepl, respectively.
Thec;, vector is the first side vector of plate j anddmdtes the thickness of.V

Appendix B: Fluid Velocity in the TDL Regime, a Bounday Element Analysis

The Boundary Element representation of the vejotigld, vy, is well described

elsewher&1%12%Gnd we begin by writing down the integral equation
Vi(s) = V.(9)- J-Q(Zé)[h(l) ds, - Il;(yé)@(y) v, (BY)
S Q

wherev.,(s) denotes the fluid velocity atif the particle were absent, 8enotes the surface
of hydrodynamic shearQ) is the fluid domain exterior to ,Sfr(x) is the (effective)

hydrodynamic stress ony & pointx, w(y) is the (effective) external force per unit voluite

pointy in the fluid defined by Eq. (6-12),
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U9 = —B—]HI;% (82)

wheren is the solvent viscosity, =x —s, r = ||, | is the 3 by 3 identity matrix, ard is the

3 by 3 position dyadic with components )gm = ()n(r)m. In Eq. (B1)x denotes the domain
of integration over surface points gf &dy denotes the domain of integration over the fluid
volume external to S The reason for this subtle distinction is totidguish between
“surface” and “volume” points. Stick hydrodynanfioundary conditions are assumed which
means the fluid and patrticle velocities match gnBor a particular poing = x; on § and in

a reference frame stationary with respect to tieghs, Eqg. (B1) can be written

0 = v.(x)~ [Uxx)d:(0dS, - [U(y.x))Imy)dv, (B

In the applications of interest in this work, we either know oelestimates ofv. Thus, it is
possible to invert Eq. (B3) and obtdin

It is convenient to break ug into two parts,

Vi (8) = Vo(8) +U(9) (B4)

where vy is the fluid velocity of the corresponding uncledgmodel particle in the same
external flow fieldv., as the actual particle, amdepresents the “disturbance flow” (around
a stationary particle) due te. Consider, for the moment, the simpler flow field In the

absence of external forces, Eq. (B3) reduces to

0 = v.(x)~ JUxx)H()dS,  (BS)

Now fo varies gradually over the particle surface. Cquosetly, $ is approximated as a
series of N interconnected flat plates and therapion is made thab(x) Ofo(xk) = fok for

points,X, on surface $ andxy is the centroid of platelet k. Also define

Uy = [u(xx)ds, (B6)
Se
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which is computed numerically forjk. For j = k, the integral is given analyticably'*®4°

O, = g afan] e

where $is the area of surface plateletrk,is the outward normal to the platelet, aqad is
the dyadic formed from the outward normal. Witls tiliscretization approximation, Eq. (B5)

can be written
Voj = ZU jk Eh (B8)
= —_ K

wherevyj = Vo(Xj). Itis convenient to introduce supervector/suparix notation at this time.
Let v., denote the 3N by 1 column vector formed by stagkite N 3x1 column vectors,,;,

on top of each other. The supervedtofand others introduced later in this appendix)ehav

similar meaning. Also, define the 3N by 3N supdnraU, by

Yu Y Ui
Ya Uz YUan

u = (89)
Y Ynz o Y

Then Eg. (B8) can be inverted to yield

f. =

o
<

T, (B10)

Once a particular model is defined, it is straightfard to compute thg — matrix and invert
it to obtainU™. Hydrodynamic boundary conditions determineand Eq. (B10) is used to
determinefo. Then Eq. (B1) can be used to solvevig(s) at points in the fluid. I5is near
S, Vo(s) varies linearly moving outward from the particlerface. Les =x; + X’ nj wherex;

is the centroid of surface platelenj,is the outward unit normal, and x’ is the normiatahce

of sfromx;. To a good approximation, we can write



138
W(S) = Vo(x;+xn;) = djx  (Bl])

whered; is a constant vector. Eq. (B11) is valid for X &, where L is the smallest linear
dimension of the model particle. In the presentkwave shall only be interested in points
near the surface of “large” particles. The advgataf Eq. (B11) is the determination\e(s)
at N points directly above the N surface plateddlisws us to completely defing(s) at all
points of interest in the fluid.

Two particular cases serve to illustrate the piatdireakdown ofi+(s) defined by Eq.
(B4). In Case One, a highly charged model partigaslates with velocity through a fluid
that is at rest except for the disturbance prodimethe particle itself. In a reference frame
stationary with respect to the particle, the flatdconsiderable distance frong &pears to
flow past with velocity & and hence.,(s) = -u. Solution of Eqs. (B10-B11) gives(s), but
this is not the total fluid velocity. As the (highcharged) particle translates, there is a
tendency of the ion atmosphere to lag behind théicfg and this distortion of the ion
atmosphere generates external forces that resultdditional drag, or “electrolyte
friction”.?%%2 Thus,v # 0. In Case Two, a stationary, highly charged piartis placed in a
stationary fluid, but it is subjected to a constamternal electric fielde. Under these
conditions,vg(s) = 0, but because of the interactioneoivith local fluid charge densities that
are large nearpssubstantial convective flows develop, and 0. (The only instance where
v =0in Case Two is for a charged macroion in the at¥seh counterions or added salt. This
unphysical special case can be ignored.) Attergiw@il now be turned t(s).

Start with Eq. (B1) setting,(s) = 0 and discretizing the surface and volume elements

around the model particle as discussed following(B&)

I, + U(y.9my)dv,  (BL)

v(s) = -ZH [uxs)ds,
kKlls

where \ is the fluid volume external to surface plateletBecausev(y) varies as g(y) — G
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(see Eq. (6-12), it falls off rapidly with distaneeoving away from $ To a good
approximation, Y can be truncated, to a good approximation, atstamiée of severat™
from S,. Call this distance b. Furthermore, ¥an be viewed as a triangular disk of basal
area & and thickness b. The volume element, dsin be written d@ix’ wherey is replaced
with x + x'ng. This approximation will be accurate providedsbmuch less than the local
radius of curvature of the macroion, which will\@did for large particles in the thin double
layer, TDL, limit. Also defines = x; + An; whereA represents the distance of closest
approach of the field poirg from S. Previous investigator$'*have also shown tha,
varies slowly near S (The subscripty, indicates the mobile ion species present in syt

Thus, we can approximatgly) in Eq. (B12) with

wy) = Yo,(x)¢, (B3

where
O, (X) = qza[nao()_(k"'xlﬂk) - Ca] (B14)

(&, = Oo,(x)+e  (BLY

Also definev;(A) = v(x; + An;) and

Hu(x.8) = [U(x+xn,x+An)dS,  (BL6)
= Sk

Eq. (B12) can then be written
b
Y@ =-3 H 0T+ 3 ;dx'aw(x')sjd%g (x+xn,x, +An)E_| (BL7)

Because the present work is restricted to the TPhr@imation, this can be simplified

further. ExpandindJ in Eq. (B16-17) to first order terms in x’ afq
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ﬂ(x',A) = ij[lﬁﬂ X'—A |D} + (1—é'jk)[lﬂ+x'E—AV&} (B19)
where theUJ’s have been defined previousdy is the Kroneker delta,

'i = %[L—njnj} (B19)

_ 1 s, ] |

o= gy JRM M o10D] G2 (@20
W; = T (B2])

A [njr+rnj—|(nj @} (i#k) (B22

K smg L L -

andr = x —x;. Egs. (B19-B22) along with thd’s defined previously are computed at the
start of the calculation and saved for later ulseorder for Eq. (B18) to be strictly valid, we
should have |xix - Anj| << k;j —X«| or b< [x; —xk|. (The less restrictive latter condition
comes from the fact that the most significant teimthe volume integrals occur whenrjx*-
An;| is substantially less than b). Although thisditan is readily satisfied when platelets j
and k are far apart, when applied to nearest neighlit places a restriction on how large N
can be set. If § represents the total surface area HfitSstraightforward that the maximum

N is given by

N, = S/b’ (B23

max

Provided b is chosen sufficiently large that edpuilim ion densities are negligible for
X' > b, the upper limit on the dx’ integrationsiy. (B17) can be extended to infinity. With

the additional definition
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M ™ = & [dXXTo, (x) (B24)
0
Eq. (B17) can be written

V@) = -Z[ujk—ijk}mi—zh@jdx'am(x')|A—x'|

“TUL T - BT T -aw, T, (829
K —
Being particularly careful with regards to the ggi k) terms, this can be rearranged to give

@) = 23X 0O, - E{Q-A&}D&

-3 U T T T -, 1,0 | (826
a.k = =
where
A 0
05(8) = [dxo,(x)x + Afdo,(x) (B27)
0 A

The first term on the rhs of Eq. (B25) represenésvalue in the limit of an infinite flat plane.

For this reason, it is convenient to define
viP@) = 239,07, &,  (B29

Employing the same supervector-supermatrix notatiomployed with regard tog(s), EQ.

(B26) can be written

W) = v @)-U-aw i -3 u -awlm, @ +1m, O (829
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On $, v(0) = 0. Alsoyv™(0) = 0 since g(0) = 0. Solving Eq. (B29) fdr

fo= -Y,9+uraom® (830
Substituting this into Eq. (B29) yields a relativsimple expression forA)
va) = v®(a) -aw mjtgtﬁzr_a ‘”} (B31)

The second term on the rhs of Eq. (B32) representsrection in the perturbed velocity field
that accounts, to first order, for the finite dim@ms of the model particle. Other
investigator§® employing entirely different means have obtairtee first term ¢™(A)) of

Eq. (B32). Itis straightforward, but tedious generalized Eq. (B32) to include second order
terms inA and/or z’, but the resulting fluid velocities a#her indistinguishable from those
using Eq. (B32) (for b << L) or yield unphysicalifli velocities as the TDL approximation
breaks down. On physical grounds, one would expeetcond order algorithm to extend the
accuracy of the numerical method to smaller paiclbut a whole array of other
approximations evidently lead to significant errofhese possibly include the manner the
volume integrations are handled, the approximatiatO®, is constant in the double layer,
discretization errors imposed by the limitationExf. (B23), and others. Since dealing with
of all these approximations substantially compésathe algorithm and serves to defeat the
objective of the TDL approximation in the first p&g extending the algorithm beyond first

order inA and x’ was not pursued.
In summary, the total fluid velocity above platglean be written

v (8) = V((a)+ah (B3
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where

n o= o -jwurzorn| e

In Eq. (B32),v;"™(A) exhibits a complex and nonlinear variatiominvhereas the latter term

varies linearly withA (h; is a constant vector).

Appendix C: Treatment of @4 in the TDL Regime

The procedure of O'Brien and coworkEfs'” shall be followed in which the
boundary condition orP, on § is replaced with revised boundary conditions oneav
surface, @, which lies outside the double layer of the mquieticle. In the present workgS
is defined to enclose,$lus a layer of fluid of thickness b. For largarticles of smallest
linear dimension L, it is assumed b << L. Thisgaure is possible sinc@, varies
gradually over distances of order*®. By moving the boundary outward, the volume
integrations (Eq. (A24)) can be neglected and thec8lculation ofd, andO®d, simplifies to
involve only surface integrations. However, corsable care must be exercised in defining

revised boundary conditions 0g.S

Consider a roughly disc shaped triangular volutement, \, of inner surface areg,S
outer surface area;"Sand thickness b as shown in Figure 2. The iandrouter surfaces lie
on § and §, respectively. (Sepresents the area of (inner) surface platgleBpme useful
identities aren; andny are the outward unit normals to platelet j andite neighbor (k=1,2,
or 3); ¢u(x’) through ciz(x’) define the three side vectors of platelet jnatmal distance X’
from §; andtj; throughtjs represent the outward unit normals to the thrde fces of V¥
(The ty vectors are approximated as the cross product;of () andcj(0) followed by

normalization.) For large model particles, ionreat fluxes,, for iona defined by Eq. (6-
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7), vary gradually tangent tq,Sut rapidly in the normal direction. Because plagticle is
impermeable to the passage of fluid and ipgsn vanishes across,Sout not G or the side
faces of \. Letjq(x;, b) denote the current density of theion across & at platelet j
(assumed uniform), and(ci,x’) the current density across the k-th side ¢favheight x’

(assumed uniform). Integrating Eq. (6-7) oveaWd applying the divergence theorem,

b
S?' j_”()—(i ’b)J = - tjk E_“j_a(gjkyxl) Cjk(xl) dx' (Cl)
0

3
k=1
where (X’) = |ck(x")]. Since the fluid is incompressiblEAv+ is also zero. \ is total fluid

velocity defined by Eq. (B4)). Analagous to EgljCwe can write

b
S've (x;.0)D; = =Dty v (cp. X) (X)X (C2)

3
k=1 0

It is useful at this time to define the “tangentalergence”[JtA, of an arbitrary vector field,

13, , N
Ot = <52t Halex)e,(x)ax (€3
0

i k=l

The vector fieldw, is assumed to vary slowly tangent to Iut may vary rapidly normal to
S. Also, it shall be assumed we have valuesdoabove the individual platelets, and

approximate

wc, X) = %[c_o(xj,x')w(xjk,x')] (C4)

wherexj is the centroid of the k-th neighbor of plateletThe quantitycy(x’) varies only

slightly with x’. Also, the most significant ovdrecontributions for the vector fields of
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interest in the present work are those ngar SConsequentlyg(x’) is approximated with

cik(0) in Eqg. (C3). With this approximation and EG4{, Eq. (C3) becomes

Ot = 75 kZ;cjk(on,kE[[@(x,,x)+w(xjk,x)]o|x (C5)

From Eqg. (7) and the previous development, Eq. (C1) can bemwri

(0P,)" m, = —emj—@tﬂ KT {n”O(X')—l}vTj(X')}mo—mfm} (C6)
9z, D, — c, —

C a

a

where (:I(Da),—d'Anj is the normal derivative @b, for platelet j on §, and§; is defined by Eq.

(B15). From Egs. (B19), (B27), and (B32),
v, (x) = zgy,(x>[ - |@, +xh, €

where g(x’) is defined by Eq. (B26). Substituting these into Eq. (@& obtain a usable
expression for expressing the boundary conditiongn S

(O0®,)!m, = -e -OtF,  (C8

where

_ (ngo(X)); keT | (Noo(X)); 11 N :
B i o

a a

~N
2

The second term on the rhs of Eq. (C8) reflectdrtfieence of nonequilibrium fluxes within
the double layer on the boundary conditiondaf. Making use of the definition of the
“tangential divergence” given by Eq. (C5), it cae bomputed numerically prior to the
calculation of revised estimates of the surfacemments®,;. From Eq. (A23), (employing

the same supermatrix notation of Appendix A), thidae components are given by

©, = -|ji+a Tm (0

where A andC involve surface integrals (Eq. (A1l)) over surfgtatelets of §, and the

components op,° are given by Eq. (C8). Once these are determiwedneed to know
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Od,(s) for field points,s, within the double layer. Sinc®, and OdP, vary slowly over
length scales of magnitude BJ®,(s) within the double layer can be determined by
straightforward interpolation dildq(s) for field points,s, just outside the double layer. They

can be written (6-14)

0o,(s) = -> H,0k9P, - > H,0ks)ps  (C1)
where
H,0ks) = - [OF'(©Oxs)ds, (C12)
Sk
H,0ks = [0FOx9dS, (C13)

Os is the gradient operator that acts on “field” aaie,s, F and F’ are defined by Eqgs. (A7)
and (A8). Sinces lies close to & special “mirror image” methods need to be empdotge
computed,(s) with accuracy. Since these are straightforwardl laave been discussed in

detail in Appendix A of reference 14, they shalt he discussed further here.

Appendix D: Total force exerted by a TDL particle on thefluid

Consider a large model particle with surface adrogynamic shear,,S External to
S lies surface & that completely encloses, lus the ionic double layer that surrounds it.
Since the total charge due to the particle, cotoriey and coions withingSis zero to a good

approximation, the total force exerted by the piaton the fluid can be writtéh

z = - [o,mds = [f dS (DI

o s S
wherear is the hydrodynamic stress tensois the local outward unit normal tgiSandfr =
-or0n. The m, n component af; can be written

(UT)mn = - pT émn +’7(DmVTn + |:|nVTm) (D2)

where g is the local pressuré,, is the Kronecker delta, amd is the local fluid velocity.
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The disadvantage of Eq. (D1) is we need to knowdbal pressure in addition to the fluid
velocity on §. Although this can be computed by a BE procedumglar to that employed

in the determination ofy,**°

it can be avoided by following a slightly diffetgerocedure
based on the work of Teubré?. Consider the differential form of the Lorentz Reocal
Theoremt®*®applied to the domain of an incompressible fluicevehexternal fluid forcesy

in Eq. (6-11)) can be ignored.

Oivlo,) = Oi(ylo) (D3

wherevt andor denote the actual fluid velocity and stress fi@fl®ur model particle, and
v' and ¢’ denote some corresponding “trial” fields thatcakatisfy Egs. (6-11) and (6-12)
with w = 0. Assume we are in a frame of reference wherandv’ vanish far from the
model particle. Integrate Eq. (D3) over the flmolume exterior to  and employ the

divergence theorem.

[virds = [wdds (D4

Su S
For the trial field, choose an uncharged rigid mqueticle with a surface of hydrodynamic

shear corresponding tQ,and translating with speed im direction k. We have
Vs, = Uo & (D5)

fr = f% (D)

whereg is the unit vector in direction k. Because of H2b), v’ can be taken outside of the

integral on the left hand side of Eq. (D4). Frdra definition ofzr given by Eq. (D1)

z B = uij\itf“’”ds (D7)
0 sy

In order to calculate the total forze vr on S, and alsd® must be known. Procedures
leading up to and including Eq. (B10) are usedampute the components B9 (k = 1, 2, 3)

at the beginning of the calculation. To calculat®n S, Eq. (B32) is used. In turn, this
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requiresdd, and/A\.
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Chapter 7

Summary

A bead model of a weakly charged pkptis developed to determine its
electrophoretic mobility. Each amino acid is reserted by two beads: the backbone bead
radius is set to one half of the nearest neighhperGgdistance, and the radius of the side
chain bead is chosen on the basis of the diffusion constére ffee amino acid. Expressions
to calculate the mobility of a peptide are derived. Thaedbmodel works as well as semi
empirical and boundary element models in explaining experimeatailities.

For highly charged peptides, the ion reélemaeffect that reduces the absolute
mobility must be considered. The ion relaxation effect ¢gsoanted by correcting
“unrelaxed” mobility on the basis of model size and its awesegctrostatic surface potential,
or ¢ potential. Correction factors are estimated using thosepluéres and are readily
determined. In addition, a more accurate account is takeheofirite size of the beads
making up the structure. This improvement makes the bead rapgidable at higher salt
concentrations and/or model macromolecules made up of larger subunits.

In addition to the development of a peptekdomodel, a spherical gel-layer model
of a “hairy” surface colloid particle is extended to includerge regulation and applied to
polystyrene sulfonate. The actual charge state of theclgad@pends on the intrinsic plf
the acidic group on the surface, its nearby charged resithgesalt concentration, salt type,
and pH. Free energy considerations coupled with Poisson-Boltzrhaory tare used to
estimate how the local electrostatic environment of ageltagel layer alters the local pkf

the acidic groups. Based on this modulation of the charge 8iatenobility and viscosity
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modeling give a reasonable prediction of the structural hathe properties of the gel layer
of polystyrene sulfonate.

Finally, a boundary element approach is appliedh& dlectrophoresis of rigid
macroions in the thin double layer limit. This BE-TDL method stidad useful in modeling
large particles of arbitrary shape. In the present worlgnapect, high molecular weight
DNA-spermidine complex is examined. To reconcile experinheartd model mobilities,
95% of the spermidine is predicted to the “specifically bound” DNA. Further
consideration of the validity of PB equation in the presenamwiplex salt, such as trication

spermidine, will make this approach more accurate.
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