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ELECTROKINETIC MODELING OF FREE SOLUTION 

ELECTROPHORESIS 

 

by 

YAO XIN 

 

 

Under the Direction of Stuart Allison 

 

ABSTRACT 

 

         Modeling electrophoresis of peptides, proteins, DNA, blood cells and colloids is based 

on classical electrokinetic theory.  The coupled field equations-Poisson, Navier-Stokes or 

Brinkman, and ion transport equations are solved numerically to calculate the electrophoretic 

mobilities.  

First, free solution electrophoretic mobility expressions are derived for weakly 

charged rigid bead arrays.  Variables include the number of beads (N), their size (radius), 

charge, distribution (configuration), salt type, and salt concentration.  We apply these 

mobility expressions to rings, rigid rods, and wormlike chain models and then apply the 

approach to the electrophoretic mobilities and translational diffusion constants of weakly 

charged peptides.  It is shown that our bead model can predict the electrophoretic mobilities 

accurately.  In order to make the method applicable at higher salt concentrations and/or to 

models consisting of larger sized subunits, account is taken of the finite size of the beads 



 

making up the model structure.  For highly charged particles, it is also necessary to account 

for ion relaxation.  This ion relaxation effect is accounted for by correcting “unrelaxed” 

mobilities on the basis of model size and average electrostatic surface, or “zeta” potential.  

With these corrections our model can be applied to the system with absolute electrophoretic 

mobilities exceeding approximately 0.20 cm2/kV sec and also models involving larger 

subunits. This includes bead models of duplex DNA. 

        Along somewhat different lines, we have investigated the electrophoresis of colloidal 

particles with an inner hard core and an outer diffusive layer (“hairy” particles).  An 

electrokinetic gel layer model of a spherical, highly charged colloid particle developed 

previously, is extended in several ways.  The charge of the particle is assumed to arise from 

the deprotonation of acidic groups that are uniformly distributed over a portion (or all) of the 

gel layer.  Free energy considerations coupled with Poisson-Boltzmann theory is used to 

calculate the change of the local pKa of the acidic groups depending on the local electrostatic 

environment.  Based on the modeling of electrophoresis and viscosity, we predict that the 

thickness of the gel layer decreases as the salt concentration increases.  And only the 

outermost portion of the gel layer is charged.  

 

INDEX WORDS:  Free solution electrophoresis, Peptides, Bead model, Gel layer, 

                                Electrokinetic modeling 
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Chapter 1 

 

Introduction 

 

1.1    Brief  Description of Electrophoresis 

 

Charged particles placed in an applied electric field move at different velocities 

depending on their size and charge.  This phenomenon is called electrophoresis.   Theoretical 

studies focus on the ratio of the velocity of the charged particle, u, over the strength of the 

electric field, E, which is defined as the electrophoretic mobilities,μ.  For the simplest case, a 

spherical particle of charge Q, radius a immersed in a neutral solvent with viscosity η in the 

presence of electric field E, is shown in Figure 1-1. 

 

 

Figure 1-1)  A Charged Spherical Particle Moving in an Electric Field in Neutral Solvent.   

 

U E

Fhyd = - 6πηaU Fele = QE 
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Under steady state conditions, the determination of the mobility of the particle is straightforward.  

From force balance on the particle,  

QEaU =πη6                                     (1-1) 

so 

a

Q

E

U

πη
µ

6
==                                    (1-2) 

However, in real applications, the solvent contains charged mobile ions, which are 

influenced by the electric field and affect the mobility of the particle.  In addition, the particle 

may be irregular in shape.  Hence, the hydrodynamic force is not simply aUπη6− .  These 

factors make the modeling of electrophoresis complicated. Wiersema1 has described the 

electrophoresis of spheres in detail in his dissertation.  

 

 

Figure 1-2) A Charged Spherical Particle Moving in an Electric Eield in Salt Containing Mobile 
Ions. 

 

 

Fele= QE 

Fretardation  

Ffriction= - 6πηaU 

Frelaxation  

U E 
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As shown in Figure 1-2, a spherical charged particle is moving in a salt solution in the presence 

of E.  Assuming the particle is positively charged, there will be a counter-ion cloud consisting of 

negative charged ions from the salt around the particle. This counter-ion cloud, together with the 

positive charge on the particle is called double layer (total charge = 0).  There are four forces 

acting on the particle. First, the electrical force exerted by the electric field, Fele, equals to the 

product of the total charge of the particle, Q, and the electric field, E.  Next, the Stokes friction 

force exerted by the fluid, Ffriction= - 6πηaU. 

            The remaining two forces arise from the ion atmosphere surrounding the particle.  When 

the particle is moving toward the cathode, the ion atmosphere will move in the opposite direction, 

exerting a drag on the nearby fluid.  This resulting back flow will cause a hydrodynamic drag on 

the particle, which will decrease the speed of the particle.  This effect is called electrophoretic 

retardation.  The other effect on elecrtrophoretic mobility is caused by distortion of the ion 

atmosphere and is called the ion relaxation effect.  Under the presence of an electric field, the 

counter-ion cloud surrounding the particle becomes asymmetric under steady state conditions 

and this causes an additional electrostatic drag on the particle.  This effect will also decrease the 

speed of the particle.  The relaxation effect is not significant for weakly charged particles, but 

becomes important for highly charged ones. 

 

1.2   Application of Electrophoresis 

 

Capillary electrophoresis (CE) has proven to be powerful in the separation and 

characterization of charged particles, such as peptides, proteins, nucleic acids and colloidal 

particles.  There are a very large number of CE options, for example, capillary micellar 
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electrochromatography (CMCE), capillary gel electrophoresis (CGE), free solution capillary 

electrophoresis (FSCE) and capillary isotacophoretic (CITP).2  Among these, free solution 

capillary electrophoresis, without a support medium, provides the simplest way of examining the 

relation between mobility and chemico-physical properties, such as size and charge.  Within the 

past few years, substantial progress has been made in both the measurement and interpretation of 

free solution electrophoretic mobilities.  A number of investigations have studied electrophoresis 

of peptides and proteins.  These topic include: effect of different secondary structures of 

peptides,3, 8, 13 such as α-helix and β-sheet,3 on electrophoretic mobilities; charge dependence of 

mobiblities;4-6, 9 peptides electrophoresis maps with potential use as fingerprints of proteins;7, 12, 

14 mobilities studies of peptides with post-translational modifications, such as phosphorylation, 

methylation, and citrullination;10 determination of dissociation constants and limiting mobilities 

of amino acids by free solution electrophoresis;11 exploring information on hydrodynamic size 

and shape of peptides and proteins from electrophoresis.16, 17 

Besides peptides and proteins, nucleic acids are another charged system studied 

extensively by electrophoresis.  DNA condensation by multivalent cations,18 protein-DNA 

binding affinities in free solution,19 abnormalities of bent DNA mobilites,38, 39 length dependence 

of free solution electrophoretic mobilities of duplex DNA20have been examined.  Over the past 

few years, interests in the field of nanoparticles and colloidal particles have been increasing.  The 

structural properties, such as charge distribution and thickness of the gel layer, of polystyrene 

sulfonate, a typical model for particles with a uncharged hard core inside and a charged “hairy” 

gel layer outside, have been studied.21, 22  Gold nanoparticles, with different sizes and surface 

charge properties are synthesized to be drug carriers.  Electrophoresis proves a good tool to 

characterize and control their size and charge, and hence their transport properties.36, 37   
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Additionally, several researchers have investigated the electrophoresis behavior of biological 

cells.23-25  

 

1.3    Existing Method of Modeling Electrophoresis 

 

There have been two different approaches followed in modeling free solution 

electrophoresis of peptides and other charged particles.  Modeling firmly grounded in continuum 

electro-hydrodynamic theory and semi-empirical method bases on extensive experimental data 

under specific operating conditions.  Development of electrophoresis theory of finite rigid 

particles started in the 1920s, when Huckel26 derived an expression for the electrophoretic 

mobility of a small, weakly charged sphere 

)31(
3

2 −=
η
ζεµ

C
r

Huckel    

where εr is the relative dielectric constant of the solution, ζ is the surface or “zeta” potential 

(
)1(4 aa

Q

r κπε
ζ

+
= ), η is the solvent  viscosity, and C = 4π (in CGS units) or 1/ε0 where ε0 is the 

permittivity of free space (in MKSA units).  Previously, Smoluchowski27 obtained a slightly 

different expression for the mobility of a large sphere.  In essence, the factor of 2/3 in Eq. (1) had 

to be replaced by 1.     Subsequently, Henry investigated the electrophoresis of a conducting 

sphere.  For a very large sphere, Henry’s results reduced to those of Smoluchowski. For small 

particles, however, Henry obtained28 

  )41(...
48

5

16

1
1

3

2 3322 −


 +−+= aa
C

r
Henry κκ

η
ζεµ   

where κ is the Debye-Huckel screening parameter.  The fluid contains ions modeled as a 
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continuum and the ionic strength, I, 

      )51(
2

1 2
0 −= ∑

α
αα zcI  

where the sum extends over the different ionic species present, cα0 is the ambient concentration 

of species α, and zα  is its valence.  The Debye-Huckel screening parameter is29 

    )61(
2 2

−=
Tk

ICq

Brε
κ  

where q is the protonic charge, kB is Boltzmann’s constant, and T is absolute temperature.  Thus, 

Henry’s mobility expression reduced to that of Debye for small particles and to that of 

Smoluchowski for large particles.  Henry28 also gave mobility expressions of a cylinder with a 

symmetric charge distribution: 

πη
ςεµ

8
rf⊥

⊥ =            (1 - 7) 

                               
πη
ςεµ

4//
r=              (1 - 8) 

where /// µµ⊥  is the mobilities perpendicular/parallel to the electric field, 1=⊥f  if 0→aκ , and 

2=⊥f  if ∞→aκ . 

Starting in the 1960’s, numerical strategies requiring computers have been successful in 

modeling the electrophoresis of charged particles.  In late 20th century, Wiersema,1, 30 O’Brien 

and White31 determined the mobility of highly charged spheres numerically.  Later on, Yoon and 

Kim32 investigated the electrophoresis of weakly charged ellipsoids and Stigter33 studied the 

highly charged long rod.  Allison34,35 applied the boundary element method to solve the more 

general case of electrophoresis of irregularly shaped, highly charged particles with an arbitrary 

charge distribution. 



7 

Independent of the fundamental strategies described above, considerable work has 

been carried out in developing semi-empirical models to predict the mobility of a peptide using 

peptide molecular weight, hydrodynamic radius, charge and the number of amino acids in the 

peptide.  Amongst the simplest models, the Offord model (µ = Z/M2/3)40 has been shown to give 

good correlation for a lot of experimental data,12 where µ is the free solution electrophoretic 

mobility, Z is the net charge, and M is the molecular weight.  In the last few years, more 

sophisticated semi-empirical computer models have been developed that take more detailed 

account of peptide charge, composition, and number of amino acids.7,12,43,44  Under specific 

experimental conditions (pH, temperature, solvent, and buffer composition), these models can be 

very accurate. 

 

1.4   Outline of this Dissertation 

 

In this dissertation, modeling the free solution electrophoresis of peptides, proteins, DNA 

and colloidal particles that are based on classic electrokinetic theory is carried out.  How factors 

such as composition, size, charge distribution and salts influence the mobility are examined.  

Chapter 2 describes the development of the electrophoresis of a bead array model of weakly 

charged macroions.  In Chapter 3, this bead model is applied to the electrophoretic mobility and 

diffusion of a large number of weakly charged peptides where experimental data is available.  

Chapter 4 is an extension of Chapter 3, which focuses on the improvements in the bead model to 

include the ion relaxation and finite size effects.  Chapter 5 investigates the electrokinetic 

transport of rigid macroions in the thin double layer limit.  Chapter 6 studies the electrokinetic 

transport of a spherical gel-layer model particle (polystyrene sulfonate), developing an approach 
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of charge regulation.  Chapter 7 summarizes this dissertation.     
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Chapter 2 

 

Bead Array Model for Electrophoresis of Weakly Charged Macroions 

 

2.1  Theory of Bead Array Model 

 

A bead array model is developed to determine the electrophoretic mobility of charged 

macroions numerically.43 The advantage of the present bead model over the full boundary 

element calculation of electrophoretic mobility is a tremendous reduction in computation time. 

This advantage makes the bead model more suitable to model the electrophoresis of a flexible 

molecule, when numerous conformations need to be sampled.  

       Before deriving a simple expression for determining electrophoretic mobilities of a bead 

array, several assumptions will have to be made. The first assumption we shall make is the 

neglect of ion relaxation. According to a number of investigations,6,30,31,33,34,44neglect of ion 

relaxation is a fairly accurate approximation when the absolute surface or “zeta” potential is less 

than approximately 25 mV, that is equivalent to a mobility of 0.20 cm2/kV sec.7 Under this 

approximation the bead array model is appropriate for weakly charged macroions. In Chapter 4, 

the ion relaxation effect will be included in order to model more highly charged macroions.  

        A second assumption is that when modeling electrophoresis in solution, the reaction field or 

in the other words, the internal field effect, is ignored. For a sphere with internal dielectric 

constant εI and radius, a, placed in a constant external electric field, E, the actual field at position 

x in the fluid where the origin is chosen at the center of the sphere is given by46 
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   )12(]3[)(
3

−⋅−


+= EXI
x

a
ExE actual λ  

where λ = (εr - εI)/(2εr + εI), x = |x|,  and X = xx/x2 is the unit position dyadic. From Eq. (2-1) is 

clear that the actual field of some point in the fluid is affected by the charged particle placed in it. 

However, in the present work this affect has been ignored, corresponding to set 0=λ  in Eq. (2-

1). 

       Additional assumptions include: first, the solution is dilute so that the interaction between 

different bead arrays can be neglected. Second, external fields are weak so that the bead array 

does not orient in the direction of the external field. Third, it is possible that the bead array would 

rotate as it translates.47-49 In the modeling of electrophoresis,49 this “translation-rotation” 

coupling has been demonstrated to be small and will be neglected in this work. 
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Figure 2-1)  Schematic of the Bead Array Model.   The rigid macroion array consists of N beads 
of radii (a1, a2, …. aN) that are not necessarily equal, and carry net charges, (z1, z2, …. zN). In the 
figure, r12 is the distance between the beads 1 and 2. 
 

 

A macroion array consisting of N beads of variable radii (a1, a2,…aN) and net charge (z1, z2, …zN) 

in the units of protonic charge, q, is depicted in Figure 1. In the figure, rjk = |xj – xk| denotes the 

center-to-center distance between beads j and k. The array is placed in a Newtonian fluid in the 

presence of an electric field E. The fluid is assumed to obey the linear Navier-Stokes and solvent 

incompressibility equations  

 

 

                                )32(0)( −=⋅∇ xv  

where v(x), p(x), and s(x) are the local fluid velocity, pressure, and external force/volume on the 

)22()()()(2 −−=∇−∇ xsxpxvηηηη
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fluid.  Also, ∇∇∇∇⋅⋅⋅⋅ in Eq. (2-2) represents divergence. In the present work, s(x) arises from the 

interaction of local ion densities with the external electric field 

   )42()()()()( 0 −=Λ∇−= Exxxxs ρρ  

where ρ(x) is the local charge density, ρ0(x) is the local equilibrium charge density, Λ(x) is the 

local electric potential, and E is the external electric field (assumed uniform). Neglecting ion 

relaxation allows us to replace ρ(x) by ρ0(x). 

It is convenient to rewrite Eq. (2-2) and (2-4) in tensor form. 

 

)52(0)( −=+⋅∇=⋅∇
EHTotal

σσσ  

where 
)62()( −∇+∇+−= T

H
vvIp ησ  

)72(0 −==⋅∇ Es
E

ρσ   

The “T” superscript in Eq. (2-6) reprensents transpose of a second rank dyadic tensor.  

      Begin with the differential form of the Lorentz Reciprocal Theorem,47-49 

)82()'(')'(' −⋅⋅∇+⋅=⋅⋅∇+⋅
HH

vvsvvs σσ  

where v, s and 
H

σ  represent the velocity field, external force, and hydrodynamic stress of the 

bead array and the primed fields represent some other solution we are free to choose. In most 

Boundary Element applications, a singular solution based on the Oseen tensor is chosen.20,34,45,48 

In the present work, the singular (Green’s Function) solution of a small, weakly charged particle 

is chosen.50 This velocity/pressure field satisfies 

)92(),()()(')(' 22 −+−=∇−∇ ErFqrEqrprv κκδη  

)102(0)(' −=⋅∇ rv  

where r = x – y, r = |r | , the differential operators act on variable x, δ is the delta function, and  
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The solutions are50 
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I is the 3 by 3 identity tensor, R = rr /r2 is the position dyadic, and  

)162(
1

)( −= nn r
rv  
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−
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r
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e
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In the limit of κ -> 0, Eq. (2-14) reduces to the Oseen tensor.  

         Next, focus on the problem at hand, electrophoresis of a bead array. Integrate Eq. (2-5) over 

Sb, where b is the radius of a large spherical volume enclosing the bead array and surrounding 

fluid.   

)172(0 0
1

−+⋅+= ∫∫∑
= V

xx

S
Hj

N

j
j dVEdSnFS

b

ρσ  

where  

)182(/ −⋅−= ∫ j

S

xHj SdSnF
j

σ  

Because there is no net force exerted by the bead array on fluid at the surface Sb, 
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Before using Eq. (2-8) and the singular solution, consider an uncharged bead (call it bead j) 

moving with the fluid at the same velocity. Under these conditions, s = 0, and 
H

σ = 0. Integrate 

Eq. (2-8) over a large sphere inclosing the bead, apply the divergence therem to the σ ’H term, 

and assume 1>>bκ  to obtain 

)202(),(),(' 2 −
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ejj V

xej

S

xH
dVrFVyEqdSn κκσ  

where Sj represents the surface of bead j, n is the local outward normal from Sj, Vej is the volume 

exterior to bead j, ),( ejVyΦ  equals 1 if y lies within Vej, 0 if y lies outside of Vej , 1/2 if y lies on 

the boundary surface, Sj. 

Now, going back to the problem of the bead array, integrate Eq. (2-8) over the entire 

fluid inside the sphere of radius b, making use of the singular solution of a small, weakly charged 

sphere, and apply the divergence theorem. It is straightforward to show  

)212(),(),(

)()()](),()()([),()(

1
0

2

1
0

1

2

−−Φ+

⋅++⋅=Φ

∫∑∑
∑ ∫∫

==

=

ej

j

V

x

N

j
jej

N

j
j

N

j S

x

V

x

dVrFvVyv

dSxfrUdVxvrFxsrUVyyv

κκ

κκ

 

where 

)222()()()( −⋅−= xnxxf
H

σ  

The last two terms on the right hand side, rhs, of Eq. (2-21) can be written 

∑ ∫ ∑
= =
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j V
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ej

VyvdVrFVyv
1 1

0
2

0 )232(]1),([]),(),([ κκ  

f(x) in the second term of Eq. (2-21) can be replaced with Fj (Eq. (2-18)), assuming f(x) is 
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uniform over individual bead. Ignoring ion relaxation and the internal field effect, s(x) can be 

approximated with Eq. (2-4). For the local equilibrium charge density in the vicinity of the 

macroion array,  

)242()()( 0

2
/)(

00
0 −Λ≅= ∑ Λ− x

C
eczqx rTkxqz B

κερ
α

αα
α  

only linear terms of the equilibrium potential, )(0 xΛ , are retained. The equilibrium potential of a 

bead array of radius {aj} and charge {zj} is approximated by the solution of the linear Possion-

Boltzman equation.  

( ) )252(),(
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x κ
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where rj = |x - xj| and xj is the center of bead j.  

From Eq. (2-4), (2-24), and (2-25), 

∑
=

−−≅
N

j
jj rFzEqxs

1

2 )262(),()( κκ  

The most difficult term to deal with in Eq. (2-21) concerns the volume intergral over v(x) since 

we do not know what v(x) is. However, an approximate solution of v(x) can be obtained 

compared with the solution of s(x). For the singular solution we choose, it is clearly shown in Eq. 

(2-9) that  

)272(),()()(' 2 −+−= ErFqrEqxs κκδ  

Ignoring the delta function, which only contributes at the single source point in any event, and 

comparing with Eq. (2-26), we see that our singular solution corresponds to a point charge of 

charge +1 in external field, E, translating under steady state conditions. Thus an approximate 

velocity field to use in the first term on the rhs of Eq. (2-21) is    
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where A is a constant to be discussed. Choose a local origin to be at the center of any particular 

bead, call it bead k, and average Eq. (2-28) over ak, where ak is a point on the surface of bead k. 

Retaining terms to first terms to first order in κκa , Eq. (2-28) becomes 
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where <>Sk indicates averaging over the surface of bead k and  ςk = 6πηak is the friction 

coefficient of bead k. For a bead array undergoing steady state translation in a constant electric 

field, we should have 

)302()( −⋅=>< Exv
kS µ  

where µ  denotes the electrophoretic mobility tensor of our bead array. If stick boundary 

conditions are assumed, the particle velocity and fluid velocity should match on Sk. In practice, 

Eq. (2-29) and (2-30) cannot be satisfied on all beads simultaneously and further approximations 

have to be made. A common approximation in polymer transport theories that originated with 

Kirkwood51 involves orientational preaveraging of the hydrodynamic interaction tensor. In past 

work, this has been applied to the Oseen tensor and in the present case, orientational 

preaveraging is applied to U . This is accomplished by replacing U  given by Eq. (2-14) with 1/3 

of its trace  

)312(
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Also, the mobility tensor, µ  in Eq. (2-30) is replaced with a scalar mobility µ . Although Eq. (2-

29) and (2-30) cannot be satisfied simultaneously for all beads, A can be chosen so that, on 
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average, they are satisfied. Mutiply Eq. (2-29) by 

)322( −=
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where STot is the total surface area of all the beads. Next, sum this over all beads and set it equal 

to E µ . Solving for A then yields  
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where rjk = |xj – xk|.  Choose y =  xk, the center of bead k.  The first term on the right hand side of 

Eq. (2-26) can then be approximated 
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where 
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After straightforward substitution, Eq. (2-26) can be written 
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where xkj = exp(-κak)/(κak) if k = j and exp(-κrjk)/(κrjk) if k ≠ j.  Also, gj is defined by the identity 

)382( −= EgqFS jjj  

Also introduce the identities 
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Multiply Eq. (2-37) by mk, sum over k, use the above identities, and solve for µ 
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What is unknown in Eq. (2-43) is gj’s. Eq. (2-37) and (2-43) gives a series of N equations in N 

unknowns 
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gj’s cannot be obtained by simply constructing a N by N D’s matrix, inverting it, and then solving 

for the component, gj. Because the N equations represented by Eq. (2-44) are not independent. If 

Dkj’ is multiplied by mk and summed over k, the net sum is zero. Thus it is impossible to invert D. 

However, From Eq. (2-19), (2-38) and (2-41), 
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If we simply replace Eq. (2-44) with Eq. (2-47) for k = 1 (or any k for that matter), then the 

system of equations becomes invertible. In other words, define 

)482( −=⋅ ξgD  

where Dkj = Dkj
’, and ξk = ξk

’ for k > 1, and Dkj = 1 and ξk = zT for k=1.  Also, D in Eq. (2-48) is 

an N by N matrix and g and ξξξξ are N by 1 column vectors.  It is now possible to invert D and 

obtain the N components of g from 

)492(1 −⋅= − ξDg  

Once the gj are known, they can be substituted into Eq. (2-43) to determine µ.   

 

2.2 Average Force Approximation 

 

The mobility expression summarized by Eq. (2-43) and the solution of the 

components, gj, given by Eq. (2-49) represent one of the principal results of the present work.  

However, numerical inversion of a potentially large matrix is still required.  It is possible to 

simplify the results further by making one additional approximation. For an array of N beads of 

equal radius, a, the Kirkwood Approximation leads to the following expression (see, for 

example, p. 25 of reference 51) for the translational diffusion constant, DTK 
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  Although Kirkwood himself51 as well as a number of early investigators52 initially believed this 

approximation was exact, it is now recognized that this is not true.53-56  The origins of 

Kirkwood’s error were first described by Ikeda53, but a subsequent study55 is useful in the present 

context since it identifies a constraint on the hydrodynamic forces, Fj, that must be satisfied in 
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order for the Kirkwood Approximation to be exact.  For the special case of an array of beads of 

equal size, the Kirkwood Approximation is exact if Fj = FTot/N where FTot is the total 

hydrodynamic force exerted by the bead array on the fluid.  In the present work, we shall also 

consider an “average force approximation” where the hydrodynamic force/area exerted by bead j 

on the fluid, Fj, is replaced with an average force/unit area, FAve. From Eqs. (2-19), (2-32), (2-

38), (2-47) and the above “average force approximation,” 

    )512( −= Tjj zmg  

Substituting Eq. (2-51) into Eq. (2-43) and making use of Eq. (2-40), 
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where the “AFA” subscript emphasizes that the “average force approximation” has been made.  

In the special case that all beads are of equal size and charge, then P1 = P1’ and Eq. (2-52) 

simplifies to 
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where a and z are subunit radius and charge, respectively. Eq. (2-53) is similar to the Kirkwood 

Approximation for the translational diffusion constant of a bead array of identical subunits given 

by Eq. (2-50). Note, however, that inter-subunit “screening” falls off as exp(-κr)/r in the case of 

electrophoresis, but as 1/r in the case of diffusion. 

 

2.3 Testing the Accuracy of Bead Array Model 

 

Because of the approximations discussed in the beginning of this chapter, the mobility 
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expressions derived are limited to subunits that are weakly charged (|ζ| ≤  25 mV or |µ | ≤  0.20 

cm2/kV sec) and small (κaj ≤  1.0). For  κa = 1.0, for example, neglecting the internal field 

(distortion of the external electric field by a conducting or low dielectric sphere) causes |µ| to be 

underestimated by 6 %. Next, assess the effect of “preaveraging” the hydrodynamic interaction, 

or U tensor.  In modeling the transport of (uncharged) freely rotating chains, Garcia de la Torre 

and coworkers found that orientational preaveraging introduces an error in the translational 

diffusion constant of between 0 % and 3 % depending on the number of subunits present and the 

ratio of bead radius to virtual bond length.57 In all of the cases investigated, error caused by 

orientational preaveraging was 1/3 or less than the error caused by the Kirkwood 

Approximation.57 In the case of electrophoresis, where hydrodynamic interactions are “cutoff” 

over shorter distances than in diffusion, we would expect the preaveraging approximation to be 

even less important. On this basis, we conclude that the orientational preaveraging 

approximation can introduce an error of several percent, but that it introduces less error than the 

AFA we shall turn our attention to next.  Consider rods or rings made up of a discrete number, N, 

of beads of equal radius, a, near neighbor bead separation, b, and subunit charge, z.  For the 

results summarized in Table 2-1, we set a = 1 nm, T = 20 °C, η = 1.0 cp, and z = +1.0.  For this 

subunit radius, κa = .01 and .10 correspond to ionic strengths of 9 x 10-4 and 9 x 10-2 moles/liter, 

respectively.  For the rings, all subunits are indistinguishable and the AFA introduces no 

additional error.  For the rods, however, this is not the case and indeed the gj’s for the end 

subunits are quite different from the remaining values.  (The gj’s are computed using Eq. (2-49).)  

In the table, we have included averages of the two end subunits, <g>end, and the average over the 

remaining subunits, <g>int, for the case of rods.  Mobilities are given in cm2/kV sec and are 

computed using Eq. (2-43) for µ, or Eq. (2-52) for µAFA.  The “error” is µAFA/µ - 1.  
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Table 2-1 

Mobility of Rings and Rods 

Geometry N b(nm) κa <g>int <g>end µ µAFA Error 

ring 3 2.0 .01 1.000 --- .1464 --- --- 

rod “ “ “ .612 1.194 .1298 .1327 .022 

ring “ “ .10 1.000 --- .0427 --- --- 

rod “ “ “ .851 1.075 .0387 .0392 .013 

ring “ 4.0 “ 1.000 --- .0320 --- --- 

rod “ “ “ .992 1.004 .0318 .0318 .000 

ring 10 2.0 .01 1.000 --- .2179 --- --- 

rod “ “ “ .862 1.552 .1791 .1851 .034 

ring “ “ .10 1.000 --- .0440 --- --- 

rod “ “ “ .960 1.158 .0419 .0422 .007 

ring “ 4.0 “ 1.000 --- .0320 --- --- 

rod “ “ “ .997 1.010 .0319 .0319 .000 

ring 50 2.0 .01 1.000 --- .2266 --- --- 

rod “ “ “ .958 1.819 .2114 .2142 .013 

ring “ “ .10 1.000 --- .0436 --- --- 

rod “ “ “ .994 1.192 .0432 .0433 .002 

ring “ 4.0 “ 1.000 --- .0320 --- --- 

rod “ “ “ .999 1.012 .0320 .0320 .000 

  

 



23 

From the results of Table 2-1, it is clear that although actual subunit forces vary along 

the rod, particularly at the rod ends, the AFA leads to an overestimation of µ by several percent, 

at most.  This error is greatest for small κa, intermediate rod lengths, and small b. It should be 

emphasized that for b = 2 nm, which are the cases where the error is greatest, near neighbor 

beads are actually touching. Increasing b to 4 nm substantially reduces error associated with the 

AFA. 

           Next, we consider discrete wormlike chain models where the number of identical subunits 

is N, the subunit radius is a, the virtual bond length (distance between nearest neighbors) is b, the 

persistence length is P, and the charge per subunit is z.  A particular chain conformation is 

selected, at random, from an equilibrium distribution.58 For each chain, both µ and µAFA are 

computed.  For a particular set of model parameters, this procedure is repeated for 1000 chains 

and averages are determined for both µ and µAFA.  Standard deviations for single chain mobilities 

are also computed.  Since a likely application of this modeling is polypeptides, we shall choose 

model parameters that are anticipated to be appropriate.10,13,59-62 Summarized in Table 2-2 are 

results for a = 0.3 nm, b = 0.6 nm, P = 2.0 nm, z = 0.15, I = 10-3 M, T = 20 °C, and η = 1.0 cp.  

Standard deviations are in parentheses and the “error” is µAFA/µ - 1.  Consistent with earlier 

results on rigid rods, the AFA overestimates the mobility by several percent.  Although some 

variation is seen in mobilities between different wormlike chain conformations, it amounts to 

from 2 to 2.5 % in this particular example.   
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Table 2-2 

Mobility Results for Discrete Wormlike Chain Models 

(a = 0.3 nm, b = 0.6 nm, P = 2.0 nm, z = 0.15, I = 10-3 M) 

N µAFA
(1)(sd) µ(sd) Error 

5 .093(.002) .091(.002) .025 

10 .121(.005) .118(.005) .029 

15 .139(.008) .135(.008) .030 

20 .153(.012) .148(.010) .031 

25 .164(.014) .159(.012) .033 

30 .175(.018) .169(.015) .036 

35 .184(.019) .177(.016) .039 

40 .192(.022) .185(.018) .038 

45 .199(.022) .190(.018) .047 

50 .206(.025) .197(.020) .046 

 

(1) mobilities are in cm2/kV sec at 20 °C with η = 1cp 

 

In experimental studies on proteins and polypeptides,10,13,59-62 µ is typically fit to an 

empirical equation of the form 

    )542( −= αµ
M

AzT  

where A is a constant, zT is the total charge (in protonic units), and M is the molecular 

weight.  The value of α that best fits experiment depends to some extent on the peptides being 
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investigated and other experimental conditions, but an optimal α is typically around 0.66.13 To 

see if the results in Table 2-2 are consistent with the general form of Eq. (2-54) and, if so, give 

physically reasonable α’s, linear least squares fits to equations of the following form are 

considered, 

    )552()ln(ln −+=





− Nc
zT

αµ
 

The results of Table 2-2 are plotted in Figure 2-2 to illustrate the fit to Eq. (2-55).  

Diamonds and squares correspond to mobility results with and without the AFA, respectively.  It 

is clear that the model results are entirely consistent with the functional dependence of Eq. (2-55) 

and consequently Eq. (2-54).  Furthermore, linear fits to the curves in Fig. 2-2 give α = .657 

(AFA), .667 (no AFA) both of which are entirely consistent with independent experiment.  

However, the parameters c and α do depend on the wormlike chain model parameters as 

summarized by Table 2-3.  These come from studies analogous to Table 2-2 and Figure 2-2.  

Other parameters being equal, α increases as P or I increases.  In addition to the wormlike chain 

models considered above, we also examined a few cases where the charge distribution was not 

uniform. This, however, was found to have little influence on the results. 
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Figure 2-2)  Dependence of µ on N for a Discrete Wormlike Chain Model. Model parameters are:  
a = 0.3 nm, b = 0.6 nm, P = 2.0 nm, z = 0.15, I = 10-3 M, T = 20 °C, and η = 1.0 cp.  Diamonds 
and squares correspond to mobility results with and without the AFA, respectively 
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Table 2-3 

Parameters α and c for Wormlike Chain Models 

b(nm) P(nm) z I(M) AFA c α 

0.6 1.0 .15 .001 yes 1.127 .569 

“ “ “ “ no 1.107 .596 

“ 2.0 “ “ yes 1.015 .657 

“ “ “ “ no 1.018 .667 

“ “ .25 .010 yes .976 .758 

“ “ “ “ no .987 .767 

1.2 “ .30 .001       yes 1.290 .705 

“ “ “ “ no 1.259 .724 

0.6 10.0 .15 “ yes .824 .771 

“ “ “ “ no .861 .767 

 

 

2.4 Summary 

 

  In this chapter, two expressions for the free solution electrophoretic mobility, Eqs. (2-

43) and (2-52), are derived that are applicable to macroions that are modeled as rigid bead arrays.  

It is assumed that internal field effects are small (valid for κaj ≤ 1), ion relaxation is negligible 

(valid for weakly charged macroions), 

interparticle interactions are negligible (valid for dilute solutions), and no orientation of the 

macroion occurs in the presence of external electric field, E (valid if |E| is small).  In order to 
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obtain tractable mobility expressions, it is also necessary to “orientationally preaverage” the 

hydrodynamic interaction tensor, U.  What results is Eq. (2-43) and its supplement, Eq. (2-49).  

In is concluded that this preaveraging approximation leads to an overestimate of µ by several 

percent.  To simplify the mobility expression further and avoid the necessity of matrix inversion, 

an additional “average force approximation,” or AFA, is made.  What results is Eq. (2-52).  It is 

concluded that the AFA also leads to an additional overestimation of mobility by a few percent.  

Specific values for rods and discrete wormlike chains are given in the Results section.  It should 

be emphasized that the AFA and “orientational preaveraging” approximations are deeply rooted 

in polymer transport theory.51 These approximations are applied to the problem of 

electrophoretic transport in the present work.  An additional point that needs to be made is that 

that assumption of ignoring the internal field leads to an underestimation of mobililty, whereas 

the AFA and “orientational preaveraging” approximations lead to an overestimation of mobility.  

Hence, the approximations tend to be self canceling. 
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Chapter 3 

Modeling the Electrophoretic Mobility and Diffusion of Weakly Charged 
Peptides 

 

3.1  Introduction 

 

          In Chapter 2, a bead array model for determining the electrophoretic mobility is developed 

and tested. In this chapter this model is built on the structural and charge properties of weakly 

charged peptides. Shown in Figure 3-1 is a scheme of polypeptide secondary structure 

determined by two torsion angles: φ  (rotation about the N- Cα bond) and ϕ  (rotation about the 

Cα-C bond). It has long been recognized that free solution electrophoretic mobilities of peptides 

depend on size and charge, and it is physical differences between peptides such as these that is 

responsible for their ease of separation in the first place. In order to better understand why 

peptides separate the way they do, considerable work has been done using simiempirical models 

which usually are written 10,13,59-62 as Eq. (2-54) defined in the previous chapter. Empirically, α is 

found to vary from 1/3 to 2/3 although a value closer to the latter appears more appropriate under 

most conditions (see, for example reference 12).  
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Figure 3-1) Scheme of Polypeptide Secondary Structure.63 

 

 

The motivation of the present study is the development and evaluation of a theoretical 

methodology specific to weakly charged peptides that fulfils four conditions. First, it is grounded 
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firmly in classical electrohydrodynamic theory.  Second, it accounts in an approximate way for 

the irregular shape, charge distribution, and flexibility of a peptide of variable size and 

composition.   Third, it is capable of yielding accurate mobilities.  Finally, it is sufficiently 

simple and also computationally fast to be useful to a wide audience.  Specifically, we 

demonstrate that classical electrokinetic theory is able to accurately predict the electrophoretic 

mobilities of a large number of peptides containing from 2 to over 40 amino acids.  The 

methodology described in the present work fulfils these four conditions and because of this, 

should be of considerable value in predicting peptide mobilities, in understanding specific 

peptide mappings, and in using mobilities to extract structural information about peptides.  

    By “weakly charged”, we mean the absolute surface or “zeta” potential does not exceed 

25 mV,29 or equivalently, the absolute electrophoretic mobility does not exceed approximately 

0.20 cm2/kV sec.45  For more highly charged peptides, the “relaxation effect” discussed 

previously needs to be taken into account.  This shall be discussed in the following chapter. 
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3.2 Modeling 

 
A peptide made up of X amino acids is modeled as a string of N = 2X beads.  This 

“two bead per amino acid” model allows us to account, in the simplest manner possible, for the 

overall composition, conformation, and transport of a linear peptide chain consisting of a 

particular sequence of amino acids.  Odd numbered “backbone” beads (1,3,5,…) are centered on 

the α-carbons and represent the peptide backbone units of the chain.  It is assumed that nearest 

neighbor backbone beads touch each other.   Even numbered beads (2,4,6,…) represent the R-

groups of the particular amino acids.  This is shown schematically in Figure 3-2.  All odd 

numbered beads are assigned a bead radius of 0.19 nm in order to reproduce the known near 

neighbor Cα to Cα distance in peptides of 0.38 nm.64 The radii of the even numbered beads are 

assigned on the basis of the translational diffusion constants of the free amino acids, Daa.
65-67   

The hydrodynamic radius, Rf, of a free amino acid, is given by the Stokes-Einstein 

relation 

)13(
6
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where kB is Boltzmann’s constant, T is absolute temperature, and η is the solvent viscosity. 
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Figure 3-2)  Bead model of a peptide. A peptide made up of X amino acids is modeled as N = 2X 
beads.  Odd numbered (touching) beads represent the Cα   atoms of the amino acids and even 
numbered beads represent the R groups.  The radii of the odd numbered beads is .19 nm and the 
radii of the even numbered beads depends on the amino acid and is defined on the basis of the 
amino acid diffusion constant. 
 

 

 Summarized in Table 3-1 are Rf’s for the amino acids.  Entries that are not in parenthesis 

are taken directly from the literature and entries in parenthesis are estimated using the “van der 

Waals increment method” of Edward.68 For small molecules with Rf in the range of 0.2 to 0.6 nm, 

which is the size range of the amino acids, Edward has shown that Rf ≅ (3vw/4π)1/3 where vw is 

the van der Waals volume of the molecule.  Furthermore, vw can be estimated from volume 

increments tabulated in Table 1 of reference 68. Consider two similar molecules, 1 and 2, where 

the diffusion constant of 1 is known but not 2.  Also let δv = vw(2) – vw(1)  denote the difference 

in van der Waals volume between the two.  Then R2 can be estimated by 
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Eq. (3-2) is used to estimate the Rf’s of amino acids whose diffusion constants are unknown.  
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When free amino acids polymerize to form peptides, a single water molecule is lost for each 

amino acid that is added onto a growing peptide chain.  On the basis of volume increments, δv = 

-.0186 nm3.  To account for the loss of water, the effective hydrodynamic radius of amino acids 

incorporated into a peptide chain, Rs, are estimated using Eq. (3-2) with the loss of 1 or ½ water 

for interior or end amino acids, respectively.  These radii are also included in Table 3-1.  (It 

should be noted that these radii have recently been modified as a result of NMR measurements of 

the diffusion constants of amino acids.76  The results reported in this chapter were carried out 

with the older radii and consequently those are reported here.  These changes do not significantly 

alter the model mobilities.)   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 

Table 3-1 

Hydrodynamic radii (in nm) for the amino acids 
 

   Interior  End  
Amino 
acid 

Reference Rf Rs as Rs as 

Ala (A) 29 .260 .236 .162 .248 .182 
Arg (R) 29 .373 .362 .328 .367 .334 
Asn (N) 30 .296 .278 .224 .287 .237 
Asp (D)  (.296) .278 .224 .287 .237 
Cys (C)  (.285) .276 .222 .265 .208 
Gln (Q) 30 .323 .308 .264 .316 .273 
Glu (E)  (.323) .308 .264 .316 .273 
Gly (G) 29 .233 .202 .0885 .218 .129 
His (H)  (.310) .302 .256 .294 .246 
Ile (I)  (.339) .326 .285 .333 .294 

Leu (L) 29 .339 .326 .285 .333 .294 
Lys (K)  (.343) .337 .298 .330 .290 
Met (M)  (.308) .300 .253 .291 .243 
Phe (F) 31 .347 .334 .296 .341 .303 
Pro (P) 29 .268 .246 .178 .257 .196 
Ser (S) 30 .279 .258 .197 .269 .212 
Thr (T) 30 .307 .290 .241 .299 .252 
Trp (W) 29 .350 .337 .299 .344 .306 
Tyr (Y) 31 .357 .345 .308 .351 .316 
Val (V) 29 .292 .274 .219 .283 .232 
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          As is well known, polypeptides possess a combination of structural characteristics that 

make them unique in the realm of polymers. Because of the rigidity of the peptide bond unit, the 

conformation of a polypeptide chain is essentially defined by a succession of torsion angles, {φi, 

ψi}.
69 In this work, the “transformation matrix” approach described in detail by Flory70 is used to 

generate possible conformations of peptides. Once the φ - ψ angles are specified, all bead 

positions can be specified as well. Of the various interactions affecting chain conformation, steric 

encounters between nonbonded atoms are of principal importance.71 In the present work, a 

particular peptide conformation is produced by using the following procedure. 

     A chain of 2X beads is built up sequentially. First, bead 1 (centered on the α-carbon of the 

first (N-terminal) amino acid) is placed at the origin. Bead 2 (along the first Cα - R bond) is 

placed along the +z axis of a molecule fixed reference frame at a distance equal to the sum of the 

first two bead radii.  Next, a pair of possible φ - ψ angles is generated using a uniform random 

number generator.  Using transformation matrices,71 two new beads are placed on the growing 

chain at possible positions. Before being accepted, however, a check is carried out to see if either 

of the two new beads overlap any of the previous beads. If any overlap occurs, the positions are 

rejected and a new pair of possible φ - ψ angles is generated. This is repeated, if necessary, until 

no overlap occurs. The above procedure is repeated until an entire chain of N = 2X non-

overlapping beads is generated.  In order to sample a broad range of peptide conformations, an 

“ensemble” consisting of 100 or more chains are generated. This approach of analyzing transport 

properties of flexible macromolecules has been widely used in polymer science and biophysics 

for the past 25 years.72  Mobilities and diffusion constants are computed for each conformation 

and the results averaged. In addition, it is possible to correlate mean square end-to-end distance 

and mobility as discussed in the results section of this paper. 



37 

        It should be emphasized that the procedure described above to generate peptide 

consformations is approximate and ignores the formidable subtleties associated with 

protein/peptide tertiary structure.73 On the other hand, one of the significant observations of the 

present study is that the electrophoretic mobility depends only weakly on peptide conformation. 

On that basis, it is argued that the simple procedure used in this work to generate peptide 

conformation is adequate for the problem under study. 

     A final element essential in the design of models is the assignment of charge to the ionizable 

residues making up the peptide.  It has long been recognized that pKa’s of the charge residues in 

a peptide or protein can be very different from those of the free amino acids due to 

environmental differences.74  A simple but effective procedure widely used by researchers has 

been the use of “standard” pKa’s that represent average values in a protein or peptide.12,75,76  

Although this procedure works well under many conditions, substantial error in the net peptide 

charge can result for certain peptides at certain pH’s.2  On the other hand, atomically detailed 

models based on the continuum dielectric/linear Poisson-Boltzmann equation have been 

developed to compute charge states of proteins.77-81  A clear advantage of these methods is that 

they account, in an approximate way at least, for particular environmental effects on particular 

charge groups of a peptide once the conformation is specified.  Although they represent a definite 

improvement over the use of “standard” pKa’s, their accuracy is also limited.80,81  In the present 

work, we employ the approach of Lee et al.82and tested by Sharma et al.,83 that effectively 

describes environmental influences in the state of particular charge residues.  Consider charge 

residue site j in a solvent with dielectric constant εr and Debye-Huckel screening parameter, κ.  

Suppose we insert charge q∆zk (q = 4.803 x 10-10 esu) at site k ≠ j.  Then the change in pKaj, 

∆pKaj,k, due to this particular charge perturbation is45 
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where rjk is the distance between residues j and k.   

 Initially, we set pKaj = pKaj
0 where pKaj

0 represents the “high salt” acid dissociation 

constant.  For these, the values of Nozaki et al.84 and Antosiewicz et al80 are employed:  3.8 (C-

terminal), 7.5 (N-terminal), 12.0 (R), 10.4 (K), 9.6 (T), 8.3 (C), 6.3 (H), 4.4 (E), 4.0 (D).  With 

these initial pKaj
0’s, an initial estimate of the charge on each residue, zj

(1), is made using the 

Henderson-Hasselbach equation at a particular pH.  Charge zk
(1) is then used for ∆zk in Eq.(3-3) 

and summed over all k ≠ j for each charge residue to obtain revised estimates, pKaj
(1).  These 

revised pKaj’s are then used to re-estimate the charge on the residues, zj
(2).  The new charge 

perturbation is then ∆zk = zk
(2)- zk

(1) and the whole procedure is repeated until the charges of all 

residues converge.  This procedure is carried out for every peptide conformation generated. 

        Once we have the conformations and charge state of the peptides, mobilities are computed 

by using equations derived in Chapter 2 for weakly charged bead arrays. 

 

  3.3  Results and Discussion 

 

       To illustrate the potential usefulness and accuracy of the bead model, we have applied it to 

the 58 peptides examined previously by Janini and co-workers.12 We have chosen this particular 

data set because it is quite large and covers peptides in the size range of 2 to 39 amino acids, 

careful account is taken of the electroosmotic flow, and the experiments are carried out under 

conditions that minimize it. The experiments were carried out at 22 ◦C in a buffer system 

consisting of 50 mM phosphoric acid that was adjusted to pH 2.5 with triethylamine. Using a 
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pKa = 2.12 for the first acid dissociation constant of phosphoric acid, the ionic strength, I, is 

estimated to be 35.3 mM which also equals the concentration of H2PO4
-1.  The solvent dielectric 

constant, εr, and solvent viscosity, η are taken to be 80 and .955 centipoise, respectively. The 

Debye-Huckel screening parameter, κ, equals 0.622 nm-1 under the conditions of the experiment. 

     Table 3-2 summarizes the modeling mobilities(µmod) and experimental mobilities(µexp) of 58 

peptides studied. Also summarized in this table are their sequence (Sequence), and molecular 

weight (M) from literature, total charge (zT), and translation diffusion constant (D) from our 

modeling.   

 

 

Table 3-2 
 

Transport Properties of 58 Peptides 
 

Peptid
e 

Sequence M(a) zT µexp
(b) µmod

(b) D(c) 

1 DD 248.2 .68 .103 .120(.008) .570(.032) 
2 FD 280.2 .77 .130 .120(.008) .519(.028) 
3 EE 276.3 .77 .125 .119(.009) .518(.030) 
4 GG 132.1 .82 .217 .216(.009) .795(.028) 
5 AA 160.2 .82 .193 .174(.011) .662(.035) 
6 PG 172.0 .82 .184 .188(.007) .708(.023) 
7 VV 216.3 .82 .154 .146(.010) .577(.031) 
8 FG 222.1 .82 .152 .148(.005) .586(.017) 
9 FA 236.2 .82 .149 .138(.009) .552(.026) 
10 LL 244.3 .82 .145 .118(.010) .485(.029) 
11 FV 264.2 .82 .139 .129(.010) .523(.032) 
12 FL 278.2 .82 .133 .116(.010) .483(.009) 
13 MM 280.4 .82 .139 .142(.012) .562(.034) 
14 FF 312.1 .82 .128 .114(.010) .477(.030) 
15 YY 344.4 .82 .121 .111(.010) .465(.031) 
16 WW 390.4 .82 .110 .114(.010) .475(.030) 
17 AAA 231.3 .89 .154 .154(.010) .557(.033) 
18 SSS 279.3 .89 .132 .138(.012) .513(.033) 
19 FFF 459.2 .89 .104 .099(.010) .401(.023) 
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20 AAAA 302.3 .91 .139 .135(.011) .490(.032) 
21 AAAAA 373.4 .93 .123 .119(.009) .441(.028) 
22 YGGFL 555.5 .93 .097 .091(.010) .364(.028) 
23 YGGFM 573.5 .93 .095 .096(.011) .376(.027) 
24 RPPGF 572.6 1.90 .184 .194(.019) .369(.028) 
25 AAGIGILTV 813.9 .94 .065 .073(.006) .292(.016) 
26 YMDGTMSQV 1030.4 .89 .060 .061(.006) .275(.021) 
27 VLQELNVTV 1014.2 .92 .066 .064(.007) .275(.020) 
28 RPPGFSPFR 1042.1 2.93 .197 .201(.018) .270(.022) 
29 AFLPWHRLF 1186.4 2.85 .166 .183(.016) .262(.017) 
30 VISNDVCAQV 1046.5 .90 .058 .062(.007) .273(.022) 
31 KLVVVGADGV 956.2 1.90 .131 .135(.012) .279(.022) 
32 KLVVVGAAGV 912.0 1.94 .141 .139(.013) .281(.022) 
33 NSFCMGGMNRR 1272.5 2.89 .183 .176(.017) .247(.021) 
34 RPKPQQFFGLM 1348.4 2.92 .170 .171(.013) .242(.020) 
35 ACLGRDRRTEE 1305.4 3.75 .210 .217(.018) .243(.016) 
36 DAEKSDICTDEY 1387.5 1.70 .099 .097(.010) .239(.022) 
37 TTIHYNYICNSS 1414.6 1.94 .106 .109(.011) .238(.018) 
38 PHRERCSDSDGL

-ace 
1371.7 3.83 .195 .219(.021) .240(.019) 

39 ACPGTDRRTGGG
N 

1261.4 2.88 .151 .161(.020) .234(.023) 

40 ACPGKDRRTGG
GN 

1288.4 3.84 .191 .227(.022) .245(.020) 

41 MGGMNWRPILTI
IT 

1603.0 1.93 .102 .098(.012) .219(.020) 

42 SPALNKMFGELA
KT 

1552.7 2.86 .157 .150(.014) .224(.018) 

43 HMTEVVRHCPH
HER 

1768.0 6.72 .264 .333(.035) .216(.021) 

44 LAKTCPVRLWV
DSTPP 

1783.2 2.88 .151 .138(.015) .211(.020) 

45 VVRRCPHQRCSD
SGI 

1828.1 4.79 .215 .212(.039) .202(.030) 

46 LGRNSFEVCVCA
CPGRD 

1826.0 2.83 .137 .132(.015) .203(.020) 

47 KLVVVGAGDVG
KSALTI 

1626.9 2.89 .137 .139(.020) .209(.023) 

48 TPPPGTRVQQSQ
HMTEV 

1893.0 2.90 .142 .135(.016) .206(.019) 

49 YKLVVVGAAGV
GKSALT 

1632.0 2.92 .142 .136(.017) .205(.021) 

50 YGLVVVGACGV
GKSALT 

1665.0 2.93 .143 .135(.018) .204(.022) 
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51 YNYMCNSSGMG
GMNRRP 

1938.5 2.84 .143 .130(.014) .202(.019) 

52 YKLVVVGAVGV
GKSALT 

1661.0 2.93 .151 .135(.018) .204(.022) 

53 YKLVVVGARGV
GKSALT 

1718.0 3.92 .178 .175(.022) .200(.021) 

54 PPPGTRVRVMAI
YKQSQ 

1928.3 3.90 .182 .178(.020) .204(.019) 

55 DGLAPPQHRIRV
EGNLR 

1928.2 4.79 .195 .196(.047) .190(.035) 

56 VPYEPPEVGSVY
HHPLQLHV 

2297.6 3.82 .153 .142(.019) .176(.020) 

57 FLTPKKLQCVDL
HVISNDVCAQVH

PQKVTK 

3390.1 6.80 .187 .196(.032) .149(.021) 

58 HQIINMWQEVG
KAMYAPPISGQI
RRIHIGPGRAFYT

TKN 

4481.2 7.87 .175 .149(.046) .117(.025) 

 
(a) Molecular Weight in gm/mole 
(b) in cm2/kV sec,  (c) in 10-5 cm2/sec 
 
 

      For model mobilities and diffusion constants, the number in parenthesis represents the 

standard deviation between the different conformations of peptides. To quantify the difference 

between experimental and model mobilities, define the error 
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   For the data set studied, E goes from -0.26 for peptide no. 43 to +0.19 for peptide no. 10. 

Peptide no. 43 (HMTEVVRHCPHHER) is one of the most highly charged peptide. Because of 

high charge, distortion of the ion atmosphere in the vicinity of the macroion form equilibrium 

(ion relaxation) has a significant influence on the mobility, hence can not be 

neglected.30,31,33,34,44,45 Neglecting the ion relaxation is only valid when the mobilities is below 

0.20 cm2/kV sec. Peptide no. 43 has an experimental mobilities of 0.264 cm2/kV sec, which 
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exceed this bound. Ion relaxation effect will reduce the mobilities, so it is not surprising that in 

this modeling the mobility is higher than the experimental data by 26%.  

    The discrepancy seen for peptide # 10, LL, is more difficult to understand.  The possibility that 

inaccuracies in generating realistic peptide conformations is responsible for the discrepancy (E 

= .19) shall be considered first.  Figure 3-3 shows how the model mobility (in cm2/kV sec) of 

pentapeptide AAAAA varies with conformation.   
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Figure 3-3)  Variation of µ with Conformation for a Pentapeptide.  Model mobility (in cm2/kV 
sec) of the pentapeptide, AAAAA, is plotted versus the end-to-end distance, L.   
 
 

A total of 5000 chain conformations were generated and averaged over narrow ranges of end-to-

end distance. (The end-to-end distance, L, is defined as the distance between the R group of the 

first and last amino acids in the peptide, which corresponds to the distance between bead 

positions 2 and N.).  Going from the most compact (L ≈ .37 nm) to most extended (L ≈ 2.04 nm) 
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conformations, µmod varies from .125 to .111 cm2/kV sec.  The average overall mobility is .119 

cm2/kV sec and so the compact and extended conformations depart from the average by ± 6 

percent, respectively.   For the dipeptide, LL, the range in µmod is from .131 (most compact) 

to .109 (most extended), with an average value of .118 cm2/kV sec.  If all LL dipeptides were in 

the most compact form, which seems unlikely on the basis of conformational energy surfaces of 

small peptides (70), E would be reduced from +.19 to +.10.  Although a change in the right 

direction, conformational considerations cannot account for the entire difference.   The examples 

of LL and AAAAA illustrate the relatively weak dependence of mobility on conformation. 

 Inaccuracies in the diffusion constants of the amino acids themselves could be 

responsible for some of the discrepancy as well.  In the case of VV (peptide # 7), E = +.05 which 

shows much better agreement between experimental and model mobilities than LL, despite the 

fact that L and V amino acids differ by a single CH2 group in their side chains.  If we use the 

volume increment method of Edward (68) with δv = .017 nm3 (for CH2) and R1 = .292 nm (for V) 

in Eq. (3-2), then R2 (for L) is estimated to be .307 nm which is lower than the experimental 

value listed in Table 3-1 by about 10 %.  If this value is used for L, as (for L) in Table 3-1 

becomes .241 (interior), and .252 nm (end), respectively.   If these bead size parameters are used 

for L instead of those listed in Table 3-1, µmod = .134 and E = +.076.  We are not claiming that the 

diffusion constant of L reported in the literature is wrong, but instead are discussing possible 

sources of error that could account, in part at least, for discrepancies between model and 

experimental mobilities.  Another possible source of error is the charge of the peptide which, in 

turn, is related to inaccuracies in the pKa of the charge groups.  From the above discussion about 

peptides nos. 10 and 43, it is shown that modeling at the atomic or residue level that is firmly 

grounded in theory can be used, in conjunction with experimental mobilities, to directly address 
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questions related to peptide conformation, transport, and charge.   

 Although substantial error is seen in a few individual peptide cases as discussed in the 

previous paragraphs, the overall agreement between experimental and model mobilities is very 

good.  If Eq. (3-4) is averaged over all 58 peptides, <E> = .010 and (<E2>)1/2 = .077.  In order to 

display all of the experimental and model mobility data in a reduced form, consider the empirical 

equation (Eq. (2-54))10,13,59-62 written in the form 
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This is plotted in Figure 3-4 for both experimental (diamonds) and model (squares) mobilites.  

Triangles represent differences between the two.  Both data sets follow Eq. (3-5) to a reasonable 

approximation with linear least squares fits giving α = .673 and .661 for experimental and model 

mobilities.  Also, if M is in gm/mole and µ is in cm2/kV sec, A = 7.135 and 6.495 for experiment 

and model, respectively.  From the data given in Table 3-2, <(µexp – µfit)
2>1/2 = .088 cm2/kV sec, 

and  <(µmod – µfit)
2>1/2 = .097  in cm2/kV sec, where brackets denote averaging over all 58 

peptides and µfit is computed using Eq. (2-54) with the A’s and α’s given above. The “scatter” 

seen in Fig. 3-4 for both experimental and model mobilities, as well as the rms deviations given 

above both demonstrate that Eqs. (2-54) give, at best, an approximate relation between mobility, 

peptide net charge, and molecular weight. On the other hand,  <(µexp – µmod)
2>1/2 = .014 cm2/kV 

sec, which shows that the model mobilities track much better with experimental mobilities than 

Eq. (2-54).   
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Figure 3-4)  Correlation of Experimental and Model Mobilities with Charge and Molecular 
Weight.  Experimental and model data points are denoted by diamonds and squares, respectively.  
All 58 peptides summarized in Table 3-2 are included in this figure.  Triangles represent 
difference between experiment and model. 
 

 

Janini and coworkers have formulated a semi-empirical multivariable model that accounts for the 

number of amino acids, X, average molecular weight of the amino acids side groups making up a 

particular peptide, W, and net peptide charge, Z.7  Basically the mobility is written as a product 

of functions of X, W, and Z and the functions of W and Z are written as polynomials whose 

coefficients are extracted from fits to particular experimental mobility data sets.  The resulting 

multivariable model fits are quite accurate giving <(µexp – µmod)
2>1/2 = .009 cm2/kV sec for the 

data given in Table V of reference 7.  In terms of absolute accuracy, the present model is 

competitive with the multivariable model provided |µ| ≤ 0.20 cm2/kV sec.  It should also be 

emphasized that the input parameters of the present model are totally independent of 
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experimental mobilities and are based on a realistic structural model of peptides, a continuum 

electrostatic model for the pKa’s of charge residues, and the diffusion constants of free amino 

acids. Because of that, questions related to how conformation, size of side chains, and charge 

influence mobility can be addressed directly with the present model.  

       Next, we would like to discuss how the complimentary measurements of diffusion and 

mobility could be combined to estimate the net charge of a peptide.  This could be useful, for 

example, in determining how the charge state and possibly the pKa of particular charge residues 

change as pH is varied.2  Yoon and Kim (16) have developed a rigorous theory of the free 

solution electrophoretic mobility of a weakly charged prolate or oblate ellipsoid of minor axis c, 

major axis a, and net charge Q.  Their expression for the mobility can be written32 
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where g(κc) is a slowly varying function of κc, and R* is the hydrodynamic radius of the 

ellipsoid.  The translational diffusion constant of the ellipsoid, D, is related to R* by the Stokes 

Einstein relation (Eq. (3-1)).  For small ellipsoids such that κc ≤ 1.0,  g(κc) ≈ 1.0.  With minor 

rearrangement and the use of the Stokes Einstein relation, Eq. (3-6) can be written 
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where C1 = q/kBT = 1.160 x 107/T 1/(kV cm), and 
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Eq. (3-7) is strictly valid only for a small, weakly charged ellipsoid.  Nonetheless, it does show 

in a rigorous way how mobility, charge, and diffusion of a non spherical particle of arbitrary 

axial ratio are related to each other.  Specifically, Eq. (3-7) is valid whether our particle is a 
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sphere, needle, or pancake. How well Eq. (3-7) also works for peptides can be examined by 

comparing Q computed using Eq. (3-7) with model µ’s and D’s, with Z.  Since the model 

peptides can be large, are not ellipsoids, and the model peptide charge is distributed in complex 

ways, we do not expect Z and Q to be rigorously equal.  The results are shown in Figure 3-5 for 

all 58 peptides.   
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Figure 3-5) Comparison of Q and zT for Model Peptides.  Q is computed using Eq. (3-7) and zT 
is the actual average net charge of a particular model peptide.  All 58 peptides are included. 
 

 

     With the exception of the largest peptide ( # 58) which contains 39 amino acids, Q ≈ zT to a 

relative accuracy of about 3 %.  Specifically, Z exceeds Q by about 1 to 5 %, but the discrepancy 
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appears to be relatively insensitive with respect to M if we choose to ignore peptide # 58.  Finally, 

Figure 3-6 shows how Q varies with ln(M) for both model (squares) and experimental (diamonds) 

mobility/diffusion data.   
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Figure 3-6)  Plot of Q versus ln(M) for the 58 Peptides.  Experimental and model data points are 
denoted by diamonds and squares, respectively.   
 

 

    For the “experimental” data in this case, model diffusion constants were used in Eq. (3-7) 

since experimental diffusion constants are not available.  Note the step like nature of the data 

with the most prominent step occurring at Q ≈ +1.  This corresponds to those peptides which 

have a net charge of 1.  Other “steps” can also be defined, but become more diffuse as the net 

peptide charge increases.  It should be emphasized that the net peptide charges do not have to be 

integers in general since the average charge of a particular residue at a particular pH is non 

integer.    
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3.4   Summary 

 

 Mobilities of peptides can be estimated from the semiempirical approaches of past 

studies.7,10,13,59-62  Although net peptide charge, molecular weight or number of amino acids, and 

(in the case of Ref. 7 ) the actual peptide sequence are variables in these approaches, their 

parameterization depended strongly on actual mobility measurements.  Under conditions similar 

to those used in the model parameterizations, these approaches could be used to predict 

mobilities that are potentially as accurate and in some examples more accurate than could be 

achieved using the complex methodology developed in the present work.  In that case, what is 

the advantage of the present study?   

      In the present study, a bead model appropriate for weakly charged peptides is developed and 

tested against experimental measurements of the electrophoretic mobility.  This model should be 

applicable to weakly charged peptides with an absolute electrophoretic mobility not exceeding 

approximately 0.20 cm2/kV sec.6   

Eq. (2-54), or equivalently, Eq. (3-5) can be used to estimate the constraint this places on the 

upper bound of the absolute total peptide charge, | Z |, in protonic units.  For a pentapeptide with 

a molecular weight of about 500 gm/mole, for example, | Z | ≤ 1.90.     What distinguishes the 

present work from the semiempirical approaches of past studies summarized in the previous 

paragraph is that it is structure based, is formally grounded in electrokinetic theory, and its 

parameterization is totally independent of mobility measurements.  With this model, we have 

shown that overall agreement with experiment12 is very good on the basis of 58 peptides 

covering the size range of from 2 to 39 amino acids.  Furthermore, this work demonstrates that 

starting from fundamental considerations of continuum hydrodynamics and electrostatics, 
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43electrophoretic mobilities can be predicted with considerable accuracy when realistic peptide 

models are employed.   

      The “structure based” nature of our methodology makes it potentially useful in a number of 

possible applications.   Future studies could include more detailed accounting of peptide 

conformation.  This could be achieved, for example, by selecting conformations from actual 

structural data bases or molecular dynamics trajectories.  In addition, it would be straightforward 

to predict the mobilities of post-translationally modified peptides.10  For example, the 

phosphorylation of serine, an -OH group is replaced with an –OPO3H2 group which will affect 

both the size and charge of the peptide.   Using the present model, it would be straightforward to 

account for these structural modifications and predict their effect on peptide mobility.  The same 

approach could be used for other modifications including citrullination or methylation of 

arginine, deamidation of glutamine, oxidation of methionine, or acetylation of the N-terminal.10   

Also given the strong theoretical foundations of the present work, it can be applied over a wide 

range of salt, temperature, and pH conditions.   In the work of Janini et al., the experiments were 

carried out at pH = 2.5 where the peptides are largely in their unfolded state.  Nonetheless, there 

is no formal difficulty in applying the present methodology to other salt or pH conditions 

although folding of the peptides may require more care in modeling peptide conformations prior 

to the calculation of mobility than employed in the present study.  The current methodology 

could also be used to examine the dependence of mobility on pH for specific peptides.2  In doing 

so, it should be possible to examine specific pKa’s of charge groups of peptides using 

experimental mobilities and comparing them with model predictions.   At the end of the previous 

section, we also discussed how complementary measurements of diffusion and mobility could be 

combined to estimate the net charge of a peptide.  An additional and fundamental study involves 
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a more careful analysis of single amino acid transport and this has been carried out  As discussed 

previously, diffusion constants of some of the amino acids were unknown at the time this work 

was done and were estimated using the volume increment method of Edward.68   

        The “stand alone” computer program we have developed computes the electrophoretic 

mobility and translational diffusion constants.  It is written in Fortran and requires no auxiliary 

libraries.  As an example of the computation times required, simulations of 100 conformations of 

dipeptides and a peptide consisting of 39 amino acids required 0.3 sec and 15 minutes, 

respectively, of single processor time on a Silicon Graphics 4D-380-SX computer.  All of 58 

peptides summarized in Table 3-2 were done in a single afternoon.   
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Chapter 4 

 

Improvements in the “Bead Method” to Include Ion Relaxation and 

“Finite Size Effects” 

 

4.1  Introduction 

 

     In the previous chapter, a purely-structure based methodology grounded on fundamental 

electrohydrodynamic theory is developed.  Each amino acid is represented by two beads, one for 

the backbone of the peptide and one for the side group of the amino acid.  The size and charge of 

each bead are fixed in a way that is entirely independent of electrophoretic mobility 

measurements, and this greatly limits the number of adjustable parameters available in modeling.  

However, this methodology is strictly valid for weakly charged peptides in which the beads are 

small compared to 1/κ, where κ is the Debye-Huckel screening parameter.  Specifically, only 

terms to first order in κa were retained, where a is a typical subunit radius used in modeling.  By 

“weakly charged”, we mean the absolute surface or”ζ ” potential does not exceed 25mV,29 or 

equivalently, the absolute electrophoretic mobility does not exceed approximately 0.20 cm2 / (kV 

s).6  For more highly charged macro-ions, ion relaxation needs to be taken into account.  In past 

work, generally good agreement was obtained between model mobilities and experimental 

results12 of 58 peptides ranging in size from 2 to 39 amino acids.  For the most part, this 

particular set of peptides is weakly charged under the conditions of the experiment (pH = 2.5), 
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and the salt concentration was low enough (35.3 mM monovalent salt) to ensure that κa is small.  

In this Chapter where ion relaxation and the restriction that κa << 1 is relaxed are taken in 

account, all of the peptides studied previously are re-examined.  A set of 24 peptides7,13 which , 

as a group, tend to be more highly charged than the 58 peptides examined previously.12  Because 

of this greater charge, this set is more prone to exhibit substantial ion relaxation effects.  In 

addition, the “charge ladder” of human carbonic anhydrase is examined in which the charge of 

the protein, which remains in its native conformation, is varied over a wide range.76  This 

example clearly shows how ion relaxation influences mobility as charge is varied.  It also 

demonstrates that our procedure of correcting unrelaxed mobilities to account for ion relaxation 

is effective.   

        Including ion relaxation complicates the problem substantially because of the coupling of 

the fluid flow, ion densities, and external electric and /or flow fields31,41,42,44. In next section, the 

procedure used to account for the ion relaxation effect is described in detail. Briefly, we assume 
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represents a similar ratio for a sphere with the same hydrodynamic radius, average electrostatic 

surface potential and under the same solvent/salt/buffer conditions as our model peptide.  The 

ratio of the spherical model particles is readily determined using the method of O’Brien and 

White.31  

 

4.2 Crystal Structure Approach  

 

               Previously, we have developed a bead model to determine the mobility of peptide 
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assuming the peptide has random coil conformation. However, peptide and protein mobility can 

also be determined regarding their crystal structure (available at Protein Data Bank).  In the 

crystal structure approach, the backbone beads are placed at the crystallographic coordinates of 

the α carbons.   Let r j denote the virtual bond vector extending from the α carbon of the jth 

amino acid to the α carbon of the j + 1 amino acid. Also let r0 extend from the N of the N-

terminus to the first α carbon, and let r N extend from the Nth α carbon to the C of the C-terminus.  

The side beads are initially placed along the vector extending from the α carbon to the β carbon 

of the side group. The distance of the center of the side bead from the center of the backbone 

bead is set to the sum of the radii of the two beads. In the event the jth amino acid is glycine, 

which has no β carbon, the side bead is initially placed along the vector – (r j-1 + r j).  These 

positions may have to be modified to avoid bead overlap.  If the backbone beads overlap, which 

occurs if the distance between successive α carbon falls below 0.38 nm, then the radii of the two 

backbone beads are shrunk by an equal amount to ensure that the beads are just touching.  The 

corresponding distances of side beads from their associated backbone beads are also adjusted to 

ensure that the side beads and their associated backbone beads just touch.  No further adjustment 

is made regarding the positions or radii of the backbone beads. For the side beads, every 

interbead distance is checked for possible overlap.  If overlap occurs, a new possible position is 

chosen completely at random, subject to the constraint that the side bead just touches its 

corresponding backbone bead.  If the new position still overlaps another bead, then the position 

is rejected and the procedure is repeated.  If a suitable position can not be found within 100 

attempts, then the radius of this side bead is shrunk by 10% and the above procedure is repeated. 

When a suitable position for a side bead is found, the same procedure is applied to successive 

side beads until a complete peptide/protein structure is generated.  
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        With regard to macro-ion itself, past work has shown that µ depends primarily on net charge 

and global structure.6,17,88  Local structural features or subtle variations in the charge distribution 

have little effect on µ.  At the same time, it is important that the beads making up the model 

structure do not overlap.  The procedure described in the previous paragraph yields structure that 

both preserve overall conformation and ensure bead overlap does not occur.     

          Once the structure of the peptide is created, the determination of its charge state of the 

peptide is next need to be done.  The procedure of the assignment of charge to the ionizable 

residues is the same with that of weakly charge peptide. 

 

4.3 Inclusion of Finite Size Effects and Ion Relaxation 

  

     To include the effect of ion relaxation effect, which is important in electrophoresis of highly 

charged particle, we started from the electrophoretic mobilities without ion relaxation and then 

made corrections. The relaxation correction, C, is defined 

nr

rC
µ
µ=              (4-1) 

where µnr and µr are the mobilities of a particular model particle in the absence and presence of 

ion relaxation,respectively.  Also let R denote the hydrodynamic radius of the model particle, 

which is defined in terms of its translational diffusion constant DT,  
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where kB is Boltzmann’s constant, T is absolute temperature, and η is solvent viscosity.  For a 

model structure, DT is computed using long established procedures87,89.  It is shown by previous 

study90 that C for a prolate ellipsoid is near identical to that of a sphere with the same R under 
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conditions of the same solvent temperature, salt concentration and composition, and average zeta 

potential.  It should be emphasized that this is independent of the axial ratio of the ellipsoid.  

Based on this study, we shall simply assume that C for an arbitrary irregular structure is equal to 

that of an equivalent sphere.  

                              
nrs

rsC
µ
µ≅      (4 - 3)           

The advantage of Eq. (4-3) is that relaxed and unrelaxed mobilities of spheres are relatively easy 

to determine using available procedures.31 The reduced potential, y, is defined   

                                 
Tk

q
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B
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where ς  represents the electrostatic potential averaged over the surface of the model particle.   

On the physical grounds, C varies continuously as y varies and has its maximum value of 1.0 at y 

= 0. This is because ion relaxation always acts to reduce the absolute electrophoretic mobility 

and vanishes in the limit of zero ς  potential.  Also, dC/dy = 0.0 at y = 0.  At small |y|, C can be 

related to y         

4
3

3
2

2
11 yayayaC +++=             (4 - 5) 

The aj coefficients in Eq. (4-5) will depend on salt concentration, ion type, and R.  All of peptide 

mobility measurements (but not the protein charge ladder results76) reported in this work were 

carried out in 35.3 mM −+
4HPONa  buffer system at 5.2=pH  and 22 °C.7,12  We examined 

model spheres of variable y in the size range 0.5 nm ≤ R ≤ 2.0 nm and obtained the following 

coefficients in this particular salt/buffer system (R is in nanometers). 

                 Ra 021.0005.01 −−=              (4 – 6a) 

                 Ra 0024.00021.02 +−=            (4 – 6b) 
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                 Ra 00008.000013.03 +=           (4 – 6c)   

Once the hydrodynamic radius of a peptide and y are determined, Eqs. (4-6a, b, c) can be used to 

estimate C.  Once the unrelaxed mobility, µnr is determined, the relaxed mobility is simply µr = 

Cµnr.   

     For the charge ladder of human carbonic anhydrase,76  the temperature was 25 °C, pH = 8.4, 

and the salt consisted of 7.9 mM Tris+glycine-.  Under these conditions 

)74(0066.0152.1 aRa −−−=  

        )74(0003.0006.2 bRa −+−=  

        )74(0001.00011.3 cRa −++=  

It is important to emphasize that these coefficients depend strongly on ionic strength as well as 

the specific ion composition of the buffer. 

       Since peptides are irregularly shaped, it can be argued that the relaxation correction may be 

more complicated than for axisymmetric prolate ellipsoids.  As a preliminary consideration of 

this issue, we shall first consider the case of hen eggwhite lysozyme that was studied by a 

Boundary Element (BE) procedure using an atomically detailed surface model derived from the 

crystal structure of the protein.35  This protein has a hydrodynamic radius of 2.02 nm, and at 0 °C 

in 0.15 M NaCl at pH = 3, the average reduced surface potential, y, is approximately 1.35.  From 

BE modeling, the ratio µr/µnr under these conditions is 0.952 (see Figure 6 of reference (35)).  

The corresponding ratio using spheres is 0.956.  Consequently, the simple procedure used to 

account for the relaxation effect is quite accurate but not exact in this particular case.  

Nonetheless, the correction does succeed in properly accounting for much of the effect.  A more 

complete analysis of the accuracy of the relaxation correction is given at the end of the next 

section by the example of the charge ladder of human carbonic anhydrase.   
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4.4 Results and Discussion 

 

       To check the accuracy of the procedure discussed in section 4.2 and 4.3 which included the 

ion relaxation and finite size effect, we have examined two sets of peptides where experimental 

data is available.  The first set of 50 consists of peptides ranging in size from 2 to 39 amino acids 

that, for the most part, are weakly charged.12 Consequently, neglect of ion relaxation should be a 

good approximation for many of the peptides in this set.  The second set of 24 peptides ranges in 

size from 2 to 42 residues, and these tend to be more highly charged than the first set.7  The 

second set serves as a more stringent test of our procedure to account for ion relaxation that the 

first set.  In addition, other investigators13 have analyzed this second set in terms of several 

different semi empirical models that shall be discussed.  The experiments7,12 were carried out at 

22 °C in a buffer system consisting of 50 mM phosphoric acid that was adjusted to pH 2.5 with 

triethylamine. Using a pKa = 2.12 for the first acid dissociation constant of phosphoric acid, the 

ion strength, I, is estimated to be 35.3mM, which also equals the concentration of H2PO4
-. The 

solvent dielectric constant and solvent viscosity, η, are taken to be 80 and 0.955 cp, respectively.  

The Debye-Huckel screening parameter, κ, equals 0.622 nm-1 under the conditions of the 

experiment.  

 

 

 

 

 



59 

Table 4-1 
 

Transport Properties of Set 1 (50 Peptides) 
 

Pepti
de 
 

Sequence 
 

zT 

 
µexp 
 

µnr
(a) 

 
µnr

(b) 

 
µr

(c) 

 

1 DD 0.694 .103 0.121 .122 0.120 

2 FD 0.773 .130 0.119 .121 0.119 

3 EE 0.769 .125 0.118 .120 0.118 

4 GG 0.818 .217 0.204 .205 0.197 

5 AA 0.818 .193 0.172 .174 0.168 

6 PG 0.818 .184 0.181 .182 0.176 

7 VV 0.817 .154 0.122 .124 0.122 

8 FG 0.818 .152 0.143 .145 0.142 

9 FA 0.817 .149 0.136 .138 0.135 

10 FV 0.817 .139 0.118 .120 0.118 

11 MM 0.817 .139 0.140 .142 0.139 

12 YY 0.817 .121 0.108 .111 0.109 

13 AAA 0.888 .154 0.152 .154 0.150 

14 SSS 0.884 .132 0.146 .148 0.144 

15 AAAA 0.913 .139 0.133 .135 0.132 

16 AAAAA 0.921 .123 0.120 .122 0.120 

17 YGGFM 0.921 .095 0.094 .096 0.095 

18 RPPGF 1.888 .184 0.199 .203 0.193 

19 AAGIGILTV 0.936 .065 0.073 .076 0.075 

20 YMDGTMSQV 0.882 .060 0.062 .064 0.063 

21 VLQELNVTV 0.918 .066 0.061 .063 0.063 
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22 RPPGFSPFR 2.777 .197 0.207 .213 0.200 

23 AFLPWHRLF 2.831 .166 0.191 .196 0.184 

24 VISNDVCAQV 0.895 .058 0.059 .061 0.061 

25 KLVVVGADGV 1.882 .131 0.128 .132 0.128 

26 KLVVVGAAGV 1.923 .141 0.133 .137 0.133 

27 NSFCMGGMNRR 2.718 .183 0.182 .184 0.178 

28 RPKPQQFFGLM 2.904 .170 0.182 .189 0.178 

29 ACLGRDRRTEE 3.602 .210 0.230 .235 0.213 

30 DAEKSDICTDEY 1.644 .099 0.099 .101 0.100 

31 TTIHYNYICNSS 1.926 .106 0.115 .118 0.115 

32 PHRERCSDSDGL-ace 2.739 .195 0.173 .176 0.167 

33 ACPGTDRRTGGGN 2.796 .151 0.182 .186 0.175 

34 ACPGKDRRTGGGN 3.717 .191 0.239 .243 0.219 

35 MGGMNWRPILTIIT 1.926 .102 0.109 .112 0.110 

36 SPALNKMFCELAKT 2.838 .157 0.161 .166 0.159 

37 HMTEVVRHCPHHER 6.323 .264 0.335 .344 0.279 

38 LAKTCPVRLWVDSTPP 2.857 .151 0.146 .15 0.144 

39 LGRNSFEVCVCACPGRD 2.81 .137 0.142 .148 0.143 

40 KLVVVGAGDVGKSALTI 2.855 .137 0.139 .144 0.139 

41 TPPPGTRVQQSQHMTEV 2.878 .142 0.139 .143 0.137 

42 YKLVVVGAAGVGKSALT 2.903 .142 0.142 .147 0.141 

43 YGLVVVGACGVGKSALT 2.907 .143 0.140 .146 0.140 

44 YNYMCNSSGMGGMNRRP 2.824 .143 0.143 .148 0.143 

45 YKLVVVGAVGVGKSALT 2.903 .151 0.139 .144 0.138 

46 YKLVVVGARGVGKSALT 3.883 .178 0.185 .191 0.178 
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47 PPPGTRVRVMAIYKQSQ 3.887 .182 0.185 .191 0.177 

48 DGLAPPQHRIRVEGNLR 4.496 .195 0.222 .227 0.205 

49 VPYEPPEVGSVYHHPLQLHV 3.753 .153 0.157 .161 0.152 

50 HQIINMWQEVGKAMYAPPISGQ
IRRIHIGPGRAFYTTKN 

7.762 .175 0.206 .213 0.189 

 
(a) finite bead size effects not included and no relaxation correction 
(b) finite bead size effects included, but no relaxation correction 
(c) finite bead size effects included plus ion relaxation 
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Table 4-2 
 

Transport Properties of Set 2 (24 Peptides) 
 
Peptide Sequence zT µexp

 µnr
(a) µnr

(b) µr
(c) 

1 FF 0.817 0.128 0.113 0.115 0.113 

2 FL 0.817 0.133 0.12 0.123 0.120 

3 LL 0.817 0.146 0.128 0.131 0.128 

4 WW 0.817 0.110 0.111 0.114 0.112 

5 FFF 0.886 0.104 0.097 0.0998 0.0982 

6 KKKK 4.380 0.330 0.43 0.439 0.341 

7 KKKKK 5.315 0.330 0.461 0.472 0.346 

8 YGGFL 0.918 0.0975 0.091 0.0934 0.0921 

9 ACHGRDRRT 4.467 0.265 0.33 0.336 0.285 

10 VVRRYPHHE 4.628 0.274 0.307 0.315 0.265 

11 CRHRRRHRRGC 8.480 0.297 0.532 0.546 0.317 

12 CRHHRRRHRRGC 9.456 0.297 0.559 0.573 0.309 

13 HMTEVRRYPHHER 6.290 0.264 0.342 0.351 0.282 

14 HMTEVRHCPHHER 6.287 0.264 0.355 0.363 0.290 

15 HRSCRRRKRRSCRHR 11.20 0.303 0.562 0.579 0.310 

16 RTHCQSHYRRRHCSR 8.423 0.290 0.427 0.440 0.306 

17 YAEDGVHATSKPARR 4.441 0.214 0.241 0.247 0.224 

18 VVRRCPHQRCSDSGL 4.734 0.208 0.236 0.241 0.212 

19 DGLAPPQHRIRVFGNLR 4.532 0.190 0.223 0.228 0.206 

20 NHQLLSPAKTGWRIFHP 4.772 0.194 0.231 0.239 0.216 

21 RTHGQSHYRRRHCSRRRLHRIH
RRQ 

15.29 0.290 0.532 0.543 0.262 

22 FLTPKKLQCVDLHVISNDVCAQ
VHPQKVTK 

6.478 0.187 0.202 0.209 0.189 

23 KQIINMWQEVGKAMYAPPISG
QIRRIHIGPGRAFYTTKN 

7.775 0.178 0.204 0.209 0.186 

24 DRVIEVVQGAYRAIRHIPRRIRG
QLERRIHIGPGRAFYTTKN 

12.17 0.208 0.295 0.292 0.218 

(a) finite bead size effects not included and no relaxation correction 
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(b) finite bead size effects included, but no relaxation correction 
(c) finite bead size effects included plus ion relaxation 
 

 
     Shown in Tables 4-1 and 4-2 are the sequences, experimental mobilities, µexp, and three 

different model mobilities for these two sets of peptides. The first model mobilities listed, 

µnr
(a), ignore ion relaxation and assume κa << 1 (where a is a typical bead size).   The second 

set of model mobilities, µnr
(b), relax this approximation.  It is clear from both Tables that 

taking more accurate account of the finite size of the model subunits produces a change in 

model mobility of approximately 1 %.  Under the conditions of the experiment and taking a 

typical bead radius of 0.25 nm, κa = 0.16. Under the conditions of the experiments, the 

“small bead approximation” is a reasonable assumption.  We now turn to the effect of 

including ion relaxation in the model calculations and the overall accuracy of the model 

mobilities.  The error E defined in previous chapter is used to evaluate the difference between 

experimental and model mobilities.  Including the finite size correction, for set 1, <Enr> = -

.041, <Enr
2>1/2 = .110, <Er> = .0039, and <Er

2>1/2 = .080.  Brackets indicate an average over 

all peptides in the data set.  The more negative value of <Enr> is due to the fact that ion 

relaxation, present in an actual experiment, produces absolute mobilities that are lower than 

they would be in its absence.  On average, including ion relaxation brings model and 

experimental mobilities into better agreement.  For the Set 1 peptides, model (with relaxation) 

and experimental mobilities, on average, agree to better than 1 %.  The low value of <Er> 

indicates there are no significant systematic errors in our modeling. This, in turn, suggests 

that our modeling captures the essential physics of the phenomenon of electrophoresis.  

  

      Also from some highly charged peptides of set 2, it is clear that inclusion the ion 

relaxation improved the modeling a lot.  For example, Peptide no. 43 is one of most highly 

charged peptides in this data set with model mobility exceeded 0.2 cm2/(kV s). Including the 
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ion relaxation improved the modeling a lot and E goes from 0.268 to 0.0250.  No. 55 with net 

charge of 4.52 and E goes from 0.138 to 0.0256.  No. 58 with net charge of 7.79 and E goes 

from 0.175 to 0.0468. 

      Nonetheless, substantial discrepancies do persist for particular peptides, as evidenced by 

the fairly large <E2>1/2 values.  As discussed previously88, this is probably due to errors in 

estimating the charge of the peptides in specific cases.  Error in estimating charge in specific 

cases, which could be due to underestimating or overestimating the pKa of specific residues, 

could very well be responsible for the “scatter” seen in a comparison of µexpt and µr.  The 

importance of including ion relaxation is made even more evident by Set 2, where the 

peptides tend to be more highly charged than Set 1. For Set 2, <Enr> = -.294, <Enr
2>1/2 = .430, 

<Er> = -.013, and <Er
2>1/2 = .069.  Not surprisingly, neglect of ion relaxation produces even 

greater error for this set of peptides.  Including ion relaxation results in overall accuracy that 

is comparable to that of Set 1.  Plotted in Figure 4-1 are Enr and Er for all 74 peptides versus 

the net charge to size ratio, Z/N.    
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Figure 4-1)  E versus Z/N for Model Mobilities.  Results of 74 peptides (Sets 1 and 2) are 
included.  Unfilled and filled diamonds correspond to model mobilities without and with the 
ion relaxation correction, respectively.   

 

      As Z/N increases and the effects of ion relaxation on mobility increase, Enr
 tends to 

deviate more strongly from 0 as expected.  It is worth noting that for Er, the greatest “scatter” 

occurs at low Z/N.  This can be explained as follows.  When the net absolute charge, |Z|, of 

the peptide is low, a small absolute error in estimating Z can produce a large relative error in 

Z and hence E.  Thus, inaccuracy in estimating peptide charge is likely to be a principal cause 

of error in predicting peptide mobilities.  On the basis of Figure 4-1, this error is about 12 % 

in the worst cases.  The random scatter seen argues against systematic error in our modeling 

procedure.  Another possible source of error involves inaccurate sampling of peptide 

conformations.  In previous work88, mobility was shown to depend on conformation, but that 

dependence is fairly weak. The mobility of the pentapeptide, AAAAA, was shown to vary 

from .111 (fully extended) to .125 (compact) in a study of 5000 independent conformations. 
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If a peptide was trapped in a single conformation (fully compact, for example, with µ = .125 

cm2/kV sec), it is conceivable that a predicted mobility, based on conformations selected at 

random (giving <µ> = .119 cm2/kV sec in the above example) would produce error (5% in 

the above example).   

         Other investigators have developed sophisticated semi-empirical models that can be 

quite accurate under specific conditions.  These include the multi-variable (MV) model by 

Janini and co-workers,7 multiple linear regressions (MLR) model and artificial neural 

network (ANN) by Jalali-Heravi.13  Listed in Table 3, along with experimental mobilities, are 

the corresponding “bead method” mobilities of the present work as well as predicted MV, 

MLR, and ANN mobilities.   

Table 4-3 

   Comparison of Different Models with Experiment (Peptide Set 2) 

No.  Y µ(expt)a µ(BM) c µ(BM)d µ(MV)  a µ(MLR) b µ(ANN) b 

1 1.072 0.128 0.115 0.113 0.1318 0.1399 0.1306 

2 1.135 0.133 0.123 0.120 0.1391 0.143 0.1351 

3 1.194 0.146 0.131 0.128 0.1458 0.1473 0.1461 

4 1.064 0.11 0.114 0.112 0.1091 0.1323 0.128 

5 0.967 0.104 0.0998 0.0982 0.1076 0.1248 0.1192 

6 3.509 0.33 0.439 0.341 0.3353 0.3517 0.3188 

7 3.784 0.33 0.472 0.346 0.3318 0.3645 0.3176 

8 0.867 0.0975 0.0934 0.0921 0.097 0.1176 0.1058 

9 2.717 0.265 0.336 0.285 0.2854 0.2439 0.269 

10 2.712 0.274 0.315 0.265 0.2546 0.2324 0.2555 

11 4.693 0.297 0.546 0.317 0.2975 0.3325 0.3072 

12 4.960 0.297 0.573 0.309 0.2961 0.3454 0.3089 

13 2.918 0.264 0.351 0.282 0.2711 0.2492 0.2654 
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14 2.984 0.264 0.363 0.290 0.2507 0.2535 0.2636 

15 4.826 0.303 0.579 0.310 0.3141 0.3557 0.3068 

16 3.684 0.29 0.440 0.306 0.2639 0.2872 0.2764 

17 1.946 0.214 0.247 0.224 0.2194 0.2004 0.2215 

18 2.188 0.208 0.241 0.212 0.1922 0.1844 0.2092 

19 1.959 0.19 0.228 0.206 0.2049 0.181 0.204 

20 1.949 0.194 0.239 0.216 0.1885 0.184 0.2028 

21 4.872 0.29 0.543 0.262 0.2832 0.3429 0.2857 

22 1.736 0.187 0.209 0.189 0.1983 0.1635 0.1865 

23 1.796 0.178 0.209 0.186 0.1771 0.1691 0.1839 

24 2.782 0.208 0.292 0.218 0.2179 0.2213 0.218 

a data comes from Ref. 5. b data comes from Ref. 33.  
c bead model without ion relaxation 
d bead model with ion relaxation 
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Plotted in Figure 4-2 are the corresponding E values for the four models.  (Values for the bead 

model in the absence of the ion relaxation correction are not included.)  The corresponding 

<E2>1/2 values are:  .069 (bead model with relaxation correction), .045 (MV), .118 (MLR), 

and .058 (ANN).  Although the bead model is not better than the semiempirical models, it is 

competitive with all of them.  Furthermore, there is considerable advantage to a structure 

based model grounded in fundamental electrokinetic theory as discussed in the Conclusions 

section. 
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Figure 4-2)  Comparison of Several Models with Experiment versus y.  Results are for 
Peptide set 2.  Bead Model with ion relaxation (diamonds), MV (squares), MLR (triangles), 
and ANN (crosses). 
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Figure 4-3)  Correlation of Experimental and Model Mobilities with Net Charge, Z, and 
molecular weight, M.  Results of 74 peptides (Sets 1 and 2) are included.  Experimental data 
points are represented by filled squares.  Model results without and with the ion relaxation 
correction are indicated by unfilled diamonds and squares, respectively.  

 

        Plotted in Figure 4-3 are the –ln(µ/Z) versus ln(M) for all 74 peptides (sets 1 and 2) 

listed in Tables 4-1 and 4-2.  In this way, the bead modeling can be compared with the simple 

Offord model indicated in Eq. (2-54) and (2-55).  Experimental points are indicated by filled 

squares.  Model results without and with the ion relaxation correction are indicated by 

unfilled diamonds and squares, respectively.  As can be seen, there is considerable scatter in 

the results.  Plotted in this way, model results with ion relaxation always lie below those 

without ion relaxation.  More highly charged peptides tend to lie above their more weakly 
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charged counterparts.     

       Next, we shall consider the case of a protein charge ladder.76  The reason for presenting 

this analysis is to address two issues.  First, it shows that the ralxation correction works well 

for globular proteins.  Second, the simple bead models used in the present work yield 

electrophoretic mobilities that are comparable to those using BE modeling that accounts more 

accurately for the actual surface of hydrodynamic shear.  Protein charge ladders are 

collections of protein derivatives where the number of charge group is varied by partial 

acylation of lysine residues or by amidation of glutamic and aspartic acid residues.6,45,76  

Modified proteins which have the same number of acylated sites have approximately the 

same charge and migrate with approximately the same mobility.  In this work, we consider 

the example of human carbonic anhydrase II.76  The charge ladder was formed by partial 

acylation of a variable number of the 23 lysines present in the protein.  For modeling, bead 

coordinates were genetated from the crystal structure available through Protein Data Bank 

(PDB code 1CA2).  

      It was assumed that the conformation of the protein remains unchanged as it is acylated. 

To examine, in a systematic manner, the importance of ion relaxation, mobilities are plotted 

versus the number of lysine residue modified (n). The unmodified protein is negatively 

charged and as n increases, the net charge of protein increases. Figure 4-5 summarizes the 

principal results.  Experimental results are indicated with asterisks and bead model results 

without and with the relaxation correction are indicated weak and heavy solid lines, 

respectively.  As n increases, the absolute charge of the protein increases and ion relaxation 

becomes progressively more important.  From this example, it is clear that ion relaxation 

becomes important when |µ| exceeds approximately 0.2 cm2/kV sec. The good agreement 

between modeling (with ion relaxation) and experiment confirms the accuracy of the bead 

methodology in a situation quite different from the peptides considered previously.  Also 
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included in Figure 4-5 are results from an earlier Boundary Element, BE, modeling study6 

indicated by the thick, shaded line.  In BE modeling, the macroion is modeled as an 

irregularly shaped rigid body with charges distributed within.6,91  Also, ion relaxation is 

included in this case and its inclusion is determined by direct numerical solution of the 

coupled electrokinetic field equations.33,34,91  Although the BE results are expected to be 

accurate, they also require much more computation time than the bead model results of the 

present study. 
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Figure 4-4)  Mobilities vs n for human carbonic anhydrase II. The studies are carried out in 
25 mM Tris base plus 192 mM glycine at 25 C and pH = 8.4.  
 
 
4.5 Summary 

 

The bead methodology, described in Chapter 2 and 3, differs from semi-empirical 

approaches7,13 in three significant ways.  First, it is structure based. Second, it is formally 
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grounded in electrokinetic theory. Third, its parameterization is totally independent of 

mobility measurements. Consequently, it can be applied to a broad range of flexible 

biomolecules under a wide range of experimental conditions and it can potentially be used to 

extract charge and structural information.  The principal objectives of the present study 

involve the analysis of two assumptions of our earlier work and generalizing the 

methodology to deal with them.  These two assumptions and how they impact present and 

future work are summarized below. 

First, the restriction that κa << 1 (where κ is the Debye Huckel screening parameter and 

“a” is a typical subunit radius in our model) has been removed.  For the peptides under the 

conditions examined in this paper, κa ≅ 0.16, and the assumption of small κa is shown to 

yield accurate mobilities.  It should be emphasized, however, that this is specific to the 

system of interest. For peptides, for example, the assumption becomes progressively worse as 

the salt concentration increases.  For another example, suppose we wish to model duplex 

DNA as a semi-flexible string of touching beads of radius of 1.59 nm.92  In this case, κa ≅ 

0.58 in a monovalent salt solution of 20 mM at room temperature, and finite bead effects can 

be expected to be much more significant than they are in the peptide systems examined in the 

present work.  This is a subject under investigation in our laboratory at the present time.   

Second, the effect of ion relaxation is accounted for in the present study.  Ion relaxation 

becomes important when the local charge density, becomes large.  Provided the absolute 

elctrophoretic mobility of a peptide does not exceed approximately 0.2 cm2/(kV s), ion 

relaxation can be ignored.6,29  The direct inclusion of ion relaxation in electrophoresis theory 

is challenging due to the coupling of the electrodynamic, fluid flow, and ion transport field 

equations.30,31,33,34,42,44,91  The approach used here is much simpler and is based on the 

observation that the relaxation effect is similar for irregularly shaped particles and spheres 

under similar conditions.90  Thus, mobilities that do not account for ion relaxation are 
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corrected using a correction factor derived from mobility studies of spheres under similar 

conditions.  It should be emphasized that this approach is approximate and may not work well 

for highly asymmetrical particles.  Also, the equilibrium potential is calculated at the level of 

the linearized Poisson-Boltzmann equation in this work.  When the charge on the macroion is 

high, the non-linear Poisson-Boltzmann equation should really be solved and this will 

influence the relaxation correction.  We have tested the algorithm by it applying it to two sets 

of peptides (74 total) from the work of Janini and co-workers.7,12  Some of the peptides in this 

data set are highly charged and ion relaxation is predicted to have an effect on their mobilities. 

The model mobilities are in good agreement with experiment when corrected for ion 

relaxation. It is also shown that the accuracy of the bead model methodology is competitive 

with the semiempirical methods developed by a number of investigators.  As a final 

application, the bead model methodology is applied to the “charge ladder” of human carbonic 

anhydrase II.76  In this example, the charge on the protein is varied in a systematic way and 

also protein conformation does not change significantly as the charge is varied. When the 

charge of the protein is low, it is demonstrated that ion relaxation has little effect on mobility.  

When the charge is large, however, ion relaxation is important in reducing the absolute 

mobility relative to the “no relaxation” value.  When corrected for ion relaxation, model and 

experimental mobilities are found to be in excellent agreement. 

 In the future, we plan to extend this work in several directions.  First of all, we are 

now in a position to study other biomolecules such as single stranded DNA, RNA, and 

duplex DNA.  These tend to be more highly charged than peptides and thus the relaxation 

effect is expected to be significant.  Also, the model “building blocks” for these systems92 

will be larger than for peptides making it more important to account for the finite size of the 

model subunits 
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Chapter 5 

 

Electrokinetic Transport of a Spherical Gel-layer Model Particle 

 

5.1   Introduction 

 

     The combined and complementary techniques of electrophoresis and viscosity are 

potentially useful in the quantitative characterization of charge, size, and other structural 

features of highly charged colloidal particles in solution.21  The colloidal particle which we 

were interested is polystyrene sulfonate coated with sodium polystyrene sulfonate.  The 

structure of sodium polystyrene sulfonate is shown in Figure 5-1.  This colloidal particle is a 

typical model for the ‘soft’ particle with a hard inner core surrounded by a porous gel layer 

which has an unusual behavior of mobility and viscosity compared to ‘hard’ surface particle.   

 

Figure 5-1) Structure of sodium polystyrene sulfonate. 

     In past works, a number of investigators have noted “anomalies” in the electrophoresis 

and viscosity results of polystyrene latex particles.  These include electroviscous effects (Ion 
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relaxation also causes the viscosity of a suspension of dilute hard particles to be higher that 

that of a corresponding suspension of equivalent, but uncharged particles and this is called 

the primary electroviscous effect.44) that are difficult to reconcile with “hard sphere” 

modeling,22,95 and a significant dependence of mobility on pH.96,97  

      Ohshima has developed a detailed theory of the electrophoresis of spherical colloid 

particles containing a gel layer.98-101  This work is of considerable value in enabling scientists 

to understand the essential physics of colloid electrophoresis when a gel layer is present. On 

the other hand, this theory is only applicable when the colloidal particle is weakly charged, 

since the ion relaxation effect is not accounted for.  Hill et al.102 accounted for the relaxation 

effect in modeling the electrophoresis of spherical particles containing a gel layer. Recently, 

we developed a spherical gel layer model that numerically determines both the 

electrophoretic mobilities and viscosity of highly charged particles of arbitrary size.21  

Basically, this model extends the “hard sphere” model of O’Brien and 

White31(electrophoresis) and Watterson and White103(viscosity) to include the presence of a 

gel layer of uniform composition. 

     In the present work, we shall apply this model to the polystyrene sulfonate latex studied 

by Garcia-Salinas and de las Nieves.22,95  Another factor that is dealt with in the present work 

is accounting how environmental considerations influence the pKa of charged groups in the 

gel layer. This effect is examined using free energy arguments and solution of the Poisson-

Boltzmann equation.       

5.2    Method 

5.2.1   Model System 

 

     The colloidal particle considered in the present work is a generalization of the model 
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considered previously.21  The model consists of an unhydrated core particle of radius a made 

up of “segments” of volume vc per segment.  The gel layer, which lies outside of the core and 

may be hydrated, is made up of potentially different material.  Let vgl denote the volume of an 

individual (unhydrated) segment in the gel layer.  It is assumed that the segment density 

within the gel layer, ρs, is uniform and that it drops abruptly to 0 at a distance, b, from the 

center of the colloidal sphere.  If the gel layer were fully collapsed, then b = b*.  The number 

of segments making up the core, Nc, and gel layer, Ngl, are then 

   )15(
3

4 3

−=
c

c v

a
N

π
  

   )25(
3

)*(4 33

−−=
gl

gl v

ab
N

π
 

Also let f denote the fraction of segments in the gel layer, which equals Ngl/(Nc+Ngl).  It is 

straightforward to show 
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If V t* and Vt denote the total volumes of the unhydrated and hydrated particle, respectively, 

the degree of hydration, SV, is 
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and it then follows, 
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 Due to hydration, there is partial fluid flow within the gel layer.93,94,104,105  In a 

reference frame stationary with respect to the core of the particle, the solution of the 



77 

Brinkman and solvent incompressibility equations is 
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where η0 is the solvent viscosity, v is the local fluid velocity, P is the pressure, se is the local 

external electric force/volume on the fluid, and λ is the Brinkman screening parameter with 

units of length-1 that is related to the segment density within the gel layer.93,94,104,105  Let ζ and 

ρs denote the friction factor/segment and the segment density in the gel layer, respectively, 

then 
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Setting ζ = 6πη0σ where σ is an effective hydrodynamic radius in the gel layer.  If we simply 

take σ = vgl
1/3, it then follows that 
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where λ*  is the Brinkman parameter of a unhydrated gel layer.  For styrene, for example, the 

partial molar volume is 99 cm3/mole106 and hence vgl = 1.645 x 10-22 cm3, σ = .548 nm, and 

λ* = 7.92 nm-1.  For the hydrated particle, the previous relations can be combined to yield 
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This is a generalization of Eq. (6) of reference 21 where it was assumed vgl = vc and hence ∆ 

= 0.   

 We now come to the charge characteristics of the particle.  It shall be assumed that the 

total charge resides in a potentially charged “halo” that comprises at least part of the gel layer.  

This is shown schematically in Figure 5-2 where the charge halo lies within the spherical 

shell, a’ < r < b’.  Also shown is the core radius, a, and the outer radius of the gel layer, b.  It 
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should be emphasized that ρs (segment density) within the entire gel layer (a < r < b) is 

assumed uniform.  The density of monovalent acidic groups within this halo is assumed to be 

uniform and let γ denote the average number of acidic groups per segment.  If every segment 

within the halo carried a single acidic group, for example, γ = 1.  If Qt
0 denotes the total 

titration charge (in protonic units) of a single colloid particle and Ncgl is the number of 

segments in the charge halo, 
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Since the entire gel layer has a uniform segment density 
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It will prove convenient to define a new parameter, Φ, by 
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The second equality on the rhs of Eq. (5-14) follows from Eq. (5-2).  For the polystyrene 

sulfonates of interest in this work, Qt
0 = -3.6 x 105, b* = 144.5 nm, and vgl has been 

previously given.  If we also make a reasonable assumption regarding γ, then Φ is determined.  

Assuming all segments in the gel layer carry a single acidic group, γ = 1 and Φ = 4.69 x 10-3.  

We shall also assume b’ = b (the outermost portion of the gel layer contains potential charge 

sites), ∆ = 0 (segment volumes of core and gel layer are equal), and b – a  << b (the thickness 

of the gel layer is small relative to the overall size of the particle), then Eq. (5-14) reduces to 
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From Eq. (5-3), 
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The degree of hydration, SV, and hence b, can be deduced from viscosity studies.  For 

a dilute suspension of spheres, the coefficient, p’, is defined21,107 
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where η is the viscosity of the suspension, η0 is the solvent viscosity, and φ* is the volume 

fraction of the colloid particles in the solution if hydration is ignored.  In modeling, it is 

convenient to define shape factors, ξ and ξ0, for the hydrated charged and uncharged model 

particles respectively, 
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where φ is the volume fraction of the hydrated particle and p is the primary electroviscous 

coefficient.  The shape factors and p are determined numerically using electrokinetic 

modeling.21,103  It is straightforward to show that 
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The second equality on the rhs of Eq. (5-19) holds for colloidal particles with thin gel layers 

since ξ0 ≈ 5/2.  Also, p is only significant at low salt103 and hence p’ ≈ SV under these 

conditions.21,107  At high salt, p’ is dominated by solvation and this gives SV.   

We can now outline a procedure to make reasonable parameter assignments for the 

model.  If we have b* and can estimate SV from viscosity data, Eq. (5-6) yields b.  From Eq. 

(5-14), Φ is known provided Qt
0, vgl, and γ are specified.  A value for the ratio, (b – a)/(b – a’), 

can be assumed and then a and f follow from Eqs. (5-15) and (5-16).  Also, Eq. (5-11) yields 

λ. 
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Figure 5-2)  Schematic of the Spherical Gel-Layer Model.  The solid core of the spherical 
particle has radius a.  The gel layer, assumed to have a uniform segment density, extends 
from a < r  < b, where r is the radius.  The potentially charged portion of the gel layer extends 
from a’ < r < b’. 
 

5.2.2 Using Free Energy Cycle and Poisson-Boltzmann Theory to Determine Charge 

and Electrostatic Potential 

 

For the spherical colloid model described in the Model section, the electrostatic 

potential, Λ0, is a function of the radial variable, r.  Also let y(r) = qΛ0(r)/kBT denote a 

reduced (dimensionless) potential, kB is Boltzmann’s constant, and T is absolute temperature.   

The charge of the colloidal particle is assumed to arise from deprotonation of acidic groups 

that are present at uniform concentration, ρsγ, in the gel layer for a’ < r < b’.  Let pKa(r) = -

log10(Ka(r)) where Ka(r) is the local acid dissociation constant at position r in the gel layer.  

At r, the fraction of acidic groups that are deprotonated, χ(r), is 
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where pHloc(r) is the local pH of the solution.  It is important to distinguish this from the 

ambient pH of the solution which shall simply be denoted “pH” in this work.  Because of the 

unusual electrostatic environment of a highly charged gel layer, local concentrations of H+ as 

well as other ions can be very different from their bulk values.97  It is straightforward to show 
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Because of “charge regulation”, (0 < χ(r) < 1), the actual charge of the colloidal particle, Qt 

(in protonic units), will be different from the titration charge, Qt
0.  The actual charge of the 

model particle can be written 
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 From Eq. (5-20), we need to know the local pKa before we can compute χ(r) and this, 

in turn, can be very different from the dissociation constant of the free acid, pKa0, due to 

environmental conditions at a particular charge site.74  In the field of Biophysics, atomically 

detailed models based on the continuum dielectric/linear Poisson-Boltzmann equation have 

been developed to compute pKa’s of charge groups of biomolecules, particularly proteins.77-81  

For highly charged gel layers, it is necessary to go beyond the linear Poisson-Boltzmann 

equation upon which these methodologies are based. Starting from a general expression for 

the electrostatic free energy at the level of the continuum primitive model,108  we derive an 

approximate expression for pKa(r)  in Appendix A, Eqs. (A13-A14).  These simple 

expressions relate the local pKa to the characteristics of the gel layer as well as y(r) and χ(r). 

 The Poisson-Boltzmann equation for the spherical colloid particle beyond the surface 

of the core, r > a, can be written 
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where X = 4π (in CGS units) or 1/ε0 where ε0 is the permittivity of free space (in MKSA 

units), ε is the dielectric constant of the solution (assumed uniform), cj0 is the ambient 

concentration of mobile ion j of valence zj, ω(r) is the ion exclusion parameter (assumed 

uniform for all ions), and the sum extends over all mobile ion species present.  The 

concentration of gel fragments, ρs(r), is equal to zero for r > b and equal to 3Ngl/4π(b3-a3) for 
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a < r < b where Ngl is given by Eq. (5-2).  The ion exclusion parameter is given by 
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Let x = 1/κr where κ is the Debye-Huckel screening parameter of the solution (see Eq. (B9)).  

Eqn. (5-23) can then be written 
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where I is the ionic strength of the solution.  In the applications of interest in the present work, 

the core of the particle is uncharged and excluded to penetration by mobile ions.  

Consequently, we have the following boundary condition, 
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For small x or large r (r > b + 6/κ, for example), y approaches the linear Poisson-Boltzmann 

form 

   )275()( /1 −= − xAxexy  

where A is an undetermined constant.  If our particle was a weakly charged solid sphere of 

radius a and total charge Qt (in protonic units), then A = Xκq2Qte
+κa/(4πε(1+κa)).  This value 

might serve as a reasonable initial estimate of A, but in general, it must be chosen in an 

iterative approach to simultaneously satisfy Eq. (5-25) and the boundary condition, Eq. (5-26).   

 An outline of the procedure used to calculate y and χ can now be given.  One begins 

with and initial estimate of χ.  For example, if the colloid is assumed to be fully charged (all 

acidic groups deprotonated), then χ = 1 for a’ < r < b’ and equal to 0 otherwise.  A is then 

estimated and Eq. (5-25) solved by a 4th order Runge-Kutta algorithm109 starting from small x 

(large r).  If y begins to diverge or Eq. (5-26) is not satisfied, A is adjusted.  This procedure is 

repeated until y converges and Eq. (5-26) is satisfied to within a specified tolerance level.  
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When converged, we only have an approximate reduced potential since it is based on 

approximate χ’s.  By specifying the pH and pKa0 of the charge group, Eqs. (A13-A14) are 

used to estimate pKa(r) using approximate χ’s and y’s.  Then, Eqs. (5-20 and 5-21) are used 

to re-estimate the χ’s over the gel layer domain.  At this point, the entire cycle is repeated 

until the y’s and χ’s converge. 

 

 

5.3 Results 

 

  Past theoretical/modeling work has extensively studied the electrophoresis of weakly98-101 

and highly102 charged spherical colloid particles containing a gel layer.  In the present work, 

we shall focus on a particular polystyrene sulfonate latex95,110 since both electrophoresis and 

viscosity studies have been carried out on that particular system.  The viscosity studies 

provide valuable information about the presence of a gel layer that compliments 

measurements of electrophoresis.21,107  These latex particles have a diameter of 289 nm and a 

surface charge density of -22 µC/cm2.110 This surface charge density, σc, determined by 

conductometric titration, can be related to the titration charge of the particle, Qt
0 (in protonic 

units), by 

   )285(*7844.0 20 −= bQ ct σ  

where σc is in µC/cm2 and b* is in nm.  Assuming b* = 144.5 nm, Qt
0 = -3.6 x 105.  The 

experiments were carried out at 25 °C (η0 = 0.89 cP) at pH = 5.5 in monovalent NaCl 

solutions with concentrations varying from 10-6 to 10-1 moles/liter.  We shall set vc = vgl, σ = 

0.548 nm, λ* = 7.92 nm-1, γ = 1.0, and Φ = 4.69 x 10-3 (see the Model section of this chapter).  

Since the relaxation effect is included in this work, it is necessary to account for the 

mobilities of co- and counterions present.30,31  As discussed previously,105 the hydrodynamic 
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radius, rj, of a mobile ion is estimated from limiting molar conductivities, λj
∞, and the Nernst-

Einstein relation.  If zj is the ion valence, then 

   )295(201.9
2

−= ∞
j

j
j

z
r

λ
 

where rj  is in nm and λj
∞ is reported at 25 °C in 10-4 S m2/mole.  From tables of λj

∞, rj 

= .0263, .1837, and .1206 nm for H+, Na+, and Cl-, respectively.111   

 In order to illustrate the importance of ion relaxation in the present application, we 

shall first consider the example of a uniformly charged gel layer model (Eqs. (5-15) and (5-16) 

yield a = 144.27 nm and f = Φ = 4.69 x 10-3), with SV =0.30 (Eq. (5-6) yields b = 157.71 nm 

and Eq. (5-11) yields λ = 0.982 nm-1).  In order to insure that Eq. (5-12) on p. 253 of 

Ohshima100 is applicable, we shall also choose a NaCl concentration of 10-2 moles/liter.   
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Figure 5-3)  Mobility, µ, versus Net Charge, Qt
0, for a Particular Uniformly Charged Gel-

Layer Model.  In this example, T = 25 °C, η0 = 0.89 cP, [NaCl] = 0.01 moles/liter, σ = .548 
nm, a = a’ = 144.27 nm, b = b’ = 157.71 nm, λ = .982 nm-1, and µ’s are in cm2/kV sec.  The 
solid line represents mobilities that include the relaxation effect (calculated using the 
numerical procedure of ref. 21 and the present work), and the dashed line represents mobilites 
that do not include the relaxation effect (calculated using Eq. (12) of ref. 100). 
 

Plotted in Figure 5-3 is the electrophoretic mobility, µ, in cm2/kV sec, over a wide range of 

different Qt
0.  The solid line represents the numerical mobilities of the present work that 

include the relaxation effect, and the dashed line is from Ohshima,100 which does not account 

for the relaxation effect.  If the absolute charge of the colloidal particle is low, the two results 

are in excellent agreement with each other.  If the absolute charge is high, however, the 

absolute mobility predicted by Ohshima exceeds the numerical value by a significant amount.  

Since the actual polystyrene sulfonate latex particles contain a titration charge that occurs 

near the high (absolute) charge end of Figure 5-3, it is important to include the relaxation 

effect in this case.  Shown in Figure 5-4 is the absolute reduced potential at r = a (dashed line), 

and r = b (solid line).  Comparing Figures. 5-3 and 5-4, it is clear that the relaxation effect 

becomes significant when the reduced absolute potential in the gel layer exceeds 1-2.   
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Figure 5-4)  Reduced Potential, y, versus Net Charge, Qt
0, for a Particular Uniformly Charged 

Gel-Layer Model.  Parameters are the same as in Figure 5-2.  The solid line represents y 
evaluated at r = b, and the dashed line represents y evaluated at r = a. 
 
 

Under the conditions of the above example, the primary electroviscous coefficient, p in 

Eq. (5-18) is small (< 0.003) even at the highest absolute charge considered.  The primary 

electroviscous effect is only significant when there is significant distortion of the ion 

atmosphere by a shear field.103,112  Conditions of a thin gel layer (b – a << b*), low |Qt
0|, and 

high salt all act to reduce p.  However, p’ (Eqs. (5-17) and (5-19)), may be significant due to 

solvation of the particle.21  In the example considered in the previous paragraph, p’ ≈ 0.28 and 

is nearly independent of Qt
0.  
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Figure 5-5)  p’ versus log10[c] for Models with a Uniform Concentration of Acidic Residues 
in the Gel-Layer.  Solid, dashed, and dotted lines correspond to SV = 0.03, 0.10, and 0.30, 
respectively.  Bold lines correspond to the inclusion of charge regulation (variable Qt), and 
non-bold lines correspond to leaving charge regulation out (Qt = Qt

0).  See the text for more 
details about model parameters. 

 

 

 Shown in Figure 5-5 are experimental p’s110 versus log10[c] where c is the ambient NaCl 

concentration in µmoles/liter.  Experimental points are squares with error bars.  Also shown 

are model studies of uniformly charged gel layers with SV = 0.03 (solid line, a = 144.27 nm, b 

= 145.93 nm, λ = 2.91 nm-1), SV = 0.10 (dashed line, a = 144.27 nm, b = 149.16 nm, λ = 1.68 

nm-1), and SV = 0.30 (dotted line, a = 144.27 nm, b = 157.71 nm, λ = 0.982 nm-1).  

Parameters are otherwise the same as before.  In the model studies, the concentration of H+ is 

taken to be 3 x 10-6 appropriate for a solution at pH = 5.5.  Although the H+ ions have little 

effect on results at high salt, they can have a significant effect at low salt.110  For each of the 

three model studies shown with different SV, separate studies are presented with and without 



88 

charge regulation.  Studies without charge regulation (thin solid, dashed, and dotted lines) all 

have Qt = Qt
0 = -3.6 x 105.   For studies with charge regulation (thick solid, dashed, and 

dotted lines, Qt
0 = -3.6 x 105, but Qt can be substantially different from Qt

0 as discussed in the 

section entitled Charge and Electrostatic Potential.  For the model studies with charge 

regulation, we assume pKa0 = 0.7, consistent with the acid dissociation constant of benzene 

sulfonic acid.111   Comparing these particular model results with the experimental p’ in Figure 

5-5, it is concluded that SV ≈ 0.10 at 0.001 mole/liter NaCl (the highest salt measured) but 

that SV ≈ 0.30 around 10-5 mole/liter NaCl.  The behaviour at the very lowest salt is more 

complicated and shall be considered near the end of the Summary.   For now, we shall focus 

on the data above approximately 10-5 moles/liter NaCl.  For the uniformly charged gel layer 

models considered, charge regulation has only a modest effect on p’ and then only at low salt 

concentration.   
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Figure 5-6)  µ versus log10[c] for Models with a Uniform Concentration of Acidic Residues in 
the Gel-Layer.  Solid, dashed, and dotted lines correspond to SV = 0.03, 0.10, and 0.30, 
respectively.  Bold lines correspond to the inclusion of charge regulation (variable Qt), and 
non-bold lines correspond to leaving charge regulation out (Qt = Qt

0). See the text for more 
details about model parameters. 
 

     Similar to Figure 5-5, shown in Figure 5-6 are experimental electrophoretic mobilities 

(squares) versus log10[c].  Mobilities are in cm2/kV sec and as in the case of p’, experimental 

mobilities come from reference 13.   Also shown are model studies for the same three 

uniformly charged gel layer models considered in the previous paragraph with and without 

charge regulation.  For a NaCl concentration below 0.01 mole/liter, the model with SV = 0.03 

and charge regulation included is in best agreement with experiment.  At higher salt 

concentration, a model with SV between .03 and .10 is most consistent with experimental 

mobility.  An obvious problem with this interpretation is that the viscosity and mobility data 

lead to different model interpretations when the gel layer is assumed to be uniformly charged 

with the viscosity data consistent with a thicker gel layer than the mobility data.   
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 Consider next a “halo” model in which only the outermost portion of the gel layer is 

charged.  It is assumed that (b – a)/(b – a’) = 4 so Eq. (5-15) yields a = 143.59 nm and Eq. (5-

16) yields f = .01875.  For a particular SV, b is given by Eq. (5-6), λ by Eq. (5-11), and a’ 

from the assumed ratio of (b – a)/(b – a’).  The same SV values considered previously using a 

uniformly charged gel layer are used in the “halo” model results presented in Figures 6 and 7.   

The specific parameters are:  SV = 0.03 (solid line, a’ = 145.34 nm, b = 145.93 nm, λ  =  4.91 

nm-1), SV = 0.10 (dashed line, a’ = 147.77 nm, b = 149.16 nm, λ = 3.15 nm-1), and SV = 0.30 

(dotted line, a’ = 154.18 nm, b = 157.71 nm, λ = 1.92 nm-1).  Otherwise, parameters are the 

same as before.   
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Figure 5-7)  p’ versus log10[c]  for Charged “Halo” Gel-Layer Models.  Solid, dashed, and 
dotted lines correspond to SV = 0.03, 0.10, and 0.30, respectively.  Bold lines correspond to 
the inclusion of charge regulation (variable Qt), and non-bold lines correspond to leaving 
charge regulation out (Qt = Qt

0). See the text for more details about model parameters 
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Figure 5-8)  µ versus log10[c]  for Charged “Halo” Gel-Layer Models.  Solid, dashed, and 
dotted lines correspond to SV = 0.03, 0.10, and 0.30, respectively.  Bold lines correspond to 
the inclusion of charge regulation (variable Qt), and non-bold lines correspond to leaving 
charge regulation out (Qt = Qt

0). See the text for more details about model parameters. 
 
      Comparing Figs. 5-5 and 5-7, the detailed structure of the gel layer (whether it is 

uniformly charged or not) appears to have little effect on p’ except at the lowest salt where 

charge regulation effects can be significantly different in the two cases.  The mobility data of 

the halo model is especially interesting.  The halo model with SV = 0.03 and 0.10 are in good 

agreement with experiment at intermediate salt concentration.  Also, including charge 

regulation improves quantitative agreement between model and experiment.  Without charge 

regulation, it is simply not possible to find a gel layer model thick enough to give SV ≥ 0.10 

(consistent with the viscosity data).  For thick gel layers with Qt ≈ -3.6 x 10-5, model studies 

invariably yield |µ| ≤ 0.36 cm2/kV sec at intermediate salt concentrations.  Reducing |Qt| by 

the mechanism of charge regulation yields mobilities in better agreement with experiment.     
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Table 5-1 

Charge regulation in the halo model with SV = 0.10 

log10[c]a -<y>gl
ncr -<y>gl

cr Qt/Qt
0 

0 12.49 7.17 .0326 

.30 12.26 7.12 .0355 

.48 12.06 7.08 .0397 

.70 11.78 7.01 .0454 

1.0 11.33 6.88 .0548 

1.48 10.41 6.75 .0719 

2.0 9.25 6.35 .147 

2.48 8.16 6.03 .231 

3.0 6.98 5.63 .400 

3.48 5.89 5.16 .615 

4.0 4.68 4.44 .857 

4.48 3.59 3.53 .972 

5.0 2.44 2.41 .994 

 

a – c is the NaCl concentration in µmoles/liter 

 

        In Table 5-1, the effects of charge regulation are illustrated in detail for the halo model 

considered in the previous paragraph with SV = 0.10 as a function of salt concentration.  

Along with the ratio, Qt/Qt
0, are listed the averaged reduced potential in the charged portion 

of the gel layer in the absence, <y>gl
ncr, and presence, <y>gh

cr of charge regulation.  At low 

salt in the absence of charge regulation, the absolute reduced potential is very large and this 

causes the local pKa’s to be much larger than the free solution value (taken to 0.7).  This, in 

turn, causes the charged gel layers to become largely uncharged (by protonating the acidic 

sites) at low salt.  Even with charge regulation, however, the reduced absolute potentials in 
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the charged portion of the gel layer exceed 7 at low salt.  Above a NaCl concentration of 

about 10-2 moles/liter, charge regulation is insignificant.   

 Under high salt conditions of 0.10 mole/liter NaCl, model studies indicate the 

presence of a gel layer.  A solid sphere model predicts µ = -0.80 cm2/kV sec under these 

conditions.  A gel layer of at least 1 nm thickness is necessary in modeling to account for the 

experimental mobility of -0.47 cm2/kV sec.   

On the basis of the experimental data coupled with modeling, we conclude the 

polystyrene sulfonate latex particles contain a gel layer that shrinks from roughly SV = 0.3 to 

0.10 as the NaCl concentration is raised from 10-5 to 10-3 moles/liter on the basis of the 

viscosity data.  The mobility data is consistent with this model provided charge regulation is 

included and only the outer portion of the gel layer is charged.  This could occur, for example 

if the sulfonated polystyrenes were largely relegated to the outside of the particle, and there 

was a uncharged, but hydrated layer between the core surface and the charged portion of the 

gel layer.  In order to account for the experimental mobilities, it is concluded that a gel layer 

of at least 1 nm thickness persists even at high salt. 

 

5.4 Summary 

 

In this chapter, an electrokinetic model of a spherical colloid particle containing a gel 

layer introduced previously21 is developed further.  The gel layer may be solvated, but is 

assumed to be of uniform segment density.  It is also assumed that a portion of the gel layer 

bears acidic groups and that the charge of the particle results from deprotonation of these 

acidic groups.  The actual charge state of the particle depends on the local pKa’s of the charge 

groups and the local pH of the solution.  In Appendices A and B, free energy considerations 

and Poisson-Boltzmann electrostatics are used to estimate the charge state of the colloidal 
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particle.  This modulation of colloidal charge, which depends on the geometry of the charged 

gel layer, the intrinsic pKa of the acidic groups, the salt concentration, salt type, and pH is 

called charge regulation.  This methodology is then applied to the viscosity and 

electrophoretic mobility of a particular polystyrene sulfonate latex over a broad range of 

monovalent salt concentration.  Using realistic model parameters, it is straightforward to 

identify models which are consistent with experiment.  The viscosity data strongly supports a 

model with a fairly thick gel layer at low salt in which SV drops from approximately 0.30 to 

0.10 as the concentration of NaCl is raised from 10-5 to 10-3 moles/liter.  Even at high salt 

(0.10 moles/liter), the mobility data indicate the presence of a gel layer at least 1nm in 

thickness.  The electrophoresis data in general can be accounted for by a halo model in which 

only the outer portion of the gel layer is charged.  It is also necessary to include charge 

regulation in modeling.  Modeling with charge regulation indicates that the colloidal particle 

becomes more highly protonated (lower absolute net charge) as the salt concentration is 

reduced.  This may at first seem surprising since the intrinsic pKa of the benzene sulfonic 

acid groups are around 0.781 and the pH of the solution is 5.5.11 0  Nonetheless, due to the 

large absolute electrostatic potential present in the charged gel layer at low ambient salt, 

significant protonation of even strong acid groups is predicted to occur.  

The model considered here could be generalized in several ways.  First of all, the 

concentration of segments in the gel layer probably is not uniform, and this could be modified 

by replacing a gel layer of uniform density with a variable density model.  Second, it is 

possible that the charge of the colloidal particle could be further reduced by specific binding 

of counterions to the deprotonated acidic groups.  Generalizing the model to account for these 

two factors as well as a number of others would be straightforward, but would have the 

disadvantage of introducing additional parameters into the model.  These generalizations can 

be included as more experimental data becomes available.   Finally, the viscosity data at 
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extremely low salt (≤ 10-5 moles/liter) deserves comment.  As pointed out by Garcia-Salinas 

and le las Nieves ,110 the low values for p’ seen in Figures. (5-5) and (5-7) below a salt 

concentration of about 10-5 moles/liter can be attributed to the presence of low, but finite 

concentrations of H+.  This is accounted for in the present work using an ion mobility 

estimated from limiting molar conductivities as discussed previously.  This may overestimate 

the mobility of H+ at the lowest salt concentrations considered.95,113  However, this 

phenomenon appears to be limited to H+ at very low salt and does not alter our primary 

conclusions.   

 

 

    Appendix A – The approximate pKa(r) of an acidic group in a gel layer surrounding a 

large colloidal particle.   

Assume we have a gel layer of uniform segment density surrounding a large colloidal 

particle as discussed in the Model section.  The colloidal charge is assumed to arise from 

deprotonation of acidic groups that are present in uniform concentration between a’ < r < b’, 

where r is the distance from the center of the colloidal particle.  The acidic groups are 

considered to be monovalent and of a single type.  (With minor modifications, this analysis 

could be modified to treat multiple acid types or deprotonation of basic groups.  For the sake 

of brevity and clarity, this shall not be done in the present work.)  Let pKa0 denote the pKa of 

the free acid in dilute aqueous solution.  This pKa is related to the single molecule free 

energy change, ∆G0(HX → X-), by 

)1()(
303.2

1 00 AXHXG
Tk

pKa
B

−→∆=   

where kB is Boltzmann’s constant and T is absolute temperature.  In general, pKa0 will 

depend on concentration of acid and concentration of added salt and salt type.  In practice, 
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however, these variations are small relative to the substantial charge-charge interactions 

present in a highly charged gel layer.  Consequently, the dependence of pKa0 on 

concentration and the characteristics of added salt shall be ignored.  It shall also be assumed 

that electrostatic interactions between neighboring charge residues within the gel layer are 

responsible for the departure of pKa from pKa0.   

 

 

 

 

 

       

 

 

Figure 5-9)  Free Energy Diagram of the Deprotonation of a Particular Acidic Residue in the 
Gel-Layer.  The (potentially) charged portion of the gel layer lies between a’ < r < b’ and the 
residue site of interest, represented as a small spherical cavity, is at r = s.   The surroundings 
are represented as a charged (shaded) or uncharged (unshaded) continuum.  Reduced 
electrostatic potentials for the various states are represented by, y’ + δy, y’, and y’’, 
respectively.  G’s represent free energies.   
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           Consider a single residue at r = s.   In the actual environment of this residue in the gel 

layer, it is surrounded by neighboring charge sites that alter the electrostatic potential and 

ionic atmosphere relative to the environment of a “free” residue.  In the present work, we 

shall approximate the discrete neighborhood of the residue with a uniformly charged 

continuum that reflects the average environment at that particular position in the gel layer.  

The residue of interest is modeled as a cavity of radius σ that is uncharged in the protonated 

state and carries a single -1 charge (in protonic units) in the discharged state.  The free energy 

of dissociation, ∆G(HX → X-), may be substantially different from ∆G0(HX → X-).  With the 

help of Figure 8, we can write 

)2()]()()()([)()( 000 AXGXGHXGHXGXHXGXHXG ffff
−−−− −+−+→∆=→∆  

where the Gf’s represent molecular free energies of formation.  The quantities y’, y’+δy, and 

y’’ in Fig. 8 denote dimensionless electrostatic potentials which vary with distance from the 

center of the cavity which is located at r = s.  It shall be assumed that the free energy 

differences appearing in brackets in Eq. (A2) are dominated by charge-charge interactions.  

The electrostatic free energy of a particular charged system, Gel, can be written108 

∫ ∑ ⋅−−−Λ= Λ−
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2

1
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0ωρ  

where the volume integration is carried out over all space, ρf is the fixed charge density, Λ is 

the electrostatic potential, the sum over j is over all mobile ion species present of valence zj  

and ambient concentration cj0, ω is the ion exclusion parameter (assumed the same for all 

mobile ions), E ( = - ∇∇∇∇ Λ) is the electric field, D ( = εE) is the electric displacement, ε is the 

(local) dielectric constant, and X = 4π (in CGS units), or 1/ε0 where ε0 is the permittivity of 

free space (in MKSA units).  Making use of the Poisson-Boltzmann equation and the 

divergence theorem in dealing with the E⋅ D term, it is straightforward to show that Eq. (A3) 

can be written 
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where q is the protonic charge, and 
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The term in brackets in Eq. (A2) can be written 
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where y’(s) and y’’(s) represent the reduced potentials at the surface of the cavity containing a 

single – charge in the presence of a charged and uncharged gel layer background,  ρg ( = ρsγχ) 

is the charge density due to fixed charges embedded in the gel layer, and Vsol represents the 

fluid domain. 

In Eq. (A7), we can replace y’(s) – y’’(s) with y(s), where y(s) represents the reduced 

mean field potential at r = |s| of our charged gel layer.  Next consider the h-terms in Eq. (A7).  

At low φ, the exponential in Eq. (A6) can be expanded and the leading terms in Eq. (A6) are 

of order φ3 in the case of polyvalent salt, and of order φ4 if only monovalent mobile ions are 

present.  For small |φ|, it is clear that the h-terms in Eq. (A7) can be ignored.  On this basis, 

we can ignore h(y’’) appearing in Eq. (A7) to a good approximation.  For the remaining terms, 

we make the reasonable approximation valid at large |y|, 
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where “*” denotes the principal counterion(s) present in solution.  Now, δy appearing in Eq. 

(A8) represents the reduced “perturbed” potential at some point in space, x, due to a cavity 

centered at s.  This potential is derived in Appendix B and is given by Eqs. (B12-14).  It then 

follows from Eqs. (B8-B14) and Eq. (A8), that 
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To a good approximation then, Eq. (A7) can be written 
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From Eqs. (A1, A2, A10), 
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The potential δy falls off rapidly with distance from the cavity and hence the integrand on the 

lhs of Eq. (A9) will be dominated by terms near the cavity.  Consequently 
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where Qt
0 is the titration charge of the colloid, Vcgl is the volume of the potentially charged 

portion of the gel layer, and χ(s) is the fraction of acidic sites at x = s that are deprotonated.   

From the defininition of the charged gel layer, Vcgl = 4π(b’3-a’3)/3.  Integrating over the 

charged gel layer domain, 
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where s is the distance of the cavity from the center of the colloidal particle, α(s) is given by 

Eq. (B8), B(s) is given by Eq. (B14), and 
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It is straightforward to generalize Eq. (A13) to include a surface charge on the core of the 

particle.   Since a surface charge is not included in the present study, however, this 

generalization shall not be given here.   

 As an illustration of charge regulation discussed above that is also relevant to the 

polystyrene sulfonate sample studied in the present work, consider a model with a = 143.59 

nm, a’ = 147.77 nm, b = b’ = 149.16 nm, and λ = 3.15 nm-1.  For the most part, this 

corresponds to the “halo” model discussed in the Results section with SV = 0.10.  It is also 

assumed that pKa0 = 0.7 (appropriate for benzene sulfonic acid111), the ambient pH of the 

sample is 5.5110, and the ambient concentration of Na+ ions is 10-4 moles/liter.  At this salt 

concentration, substantial charge regulation is predicted to occur when Qt
0 = -3.6 x 105, 

which corresponds to the experimental titration charge of the colloidal particle.  In the present 

example, however, Qt
0 is varied holding other parameters constant.   

 

Table 5-2 
 

Charge regulation versus |Qt
0| for a particular gel layer model 

 
-10-5Qt

0 -<y>gel <pKa>gel <pHloc>gel Qt/Qt
0 

0.049 2.58 1.82 4.38 0.997 
0.090 3.53 2.24 3.97 0.982 
0.164 4.36 2.63 3.61 0.906 
0.299 4.98 2.91 3.39 0.732 
0.544 5.42 3.11 3.15 0.530 
0.942 5.74 3.25 3.01 0.357 
1.81 6.02 3.38 2.89 0.233 
3.29 6.32 3.50 2.77 0.153 
6.00 6.55 3.62 2.66 0.098 
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 For a particular Qt
0; y, χ, and pKa are calculated over a range of different s-values 

within the gel layer following the iterative procedure discussed in the “Charge and 

Electrostatic Potential” section of this paper.  Equations (A13-A14) play a prominent role in 

this procedure.  Summarized in Table 5-2 are relevant quantities averaged over the charged 

portion of the gel layer (a’ ≤ s ≤ b’) for different Qt
0’s.   The ratio of the actual charge, Qt, to 

Qt
0 is given in the final column.  For a fully deprotonated or protonated particle, this ratio 

should equal 1 or 0, respectively.  Since pKa0 is much lower than the ambient pH of 5.5, we 

might expect Qt/ Qt
0 ≈ 1.0 and that is indeed true when | Qt

0 | is low as shown in Table 5-2.  

As | Qt
0 | is raised, however, -<y>gel increases and also <pKa>gel increases due to a buildup of 

charge-charge repulsion in the gel layer.  Furthermore, as -<y>gel increases, <pHloc>gel 

decreases following Eq. (5-21).  (The local concentration of H+ in the gel layer increases due 

to the negative charges on the deprotonated acidic sites.)   Provided <pKa>gel is substantially 

smaller than <pHloc>gel, the degree of charge regulation remains small (Qt/Qt
0 ≈ 1.0).  

However, as |Qt
0| increases, <pKa>gel increases, <pHloc>gel decreases, and at some point, the 

two approach each other and eventually become equal.  In the present example, this occurs 

around Qt
0 ≈ -60,000. About 50% of the charge groups in the gel are protonated at this point 

(Qt/Qt
0 ≈ 0.5).  Increasing |Qt

0| further leads to still greater charge regulation.  This particular 

case illustrates the charge regulation phenomenon in a way that is clear and straightforward to 

understand.  

 

Appendix B – Cavity potential, δδδδy. 

 

 The purpose of this appendix is to outline the derivation of an expression for the 

reduced “cavity” potential, δy(x,s), for a field point, x, of a cavity of radius σ centered at 



103 

position s.  From Figure 8 and the Poisson-Boltzmann equation 
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where ∇2 is the Laplacian operator which acts on the field variable, x, X = 4π ( in CGS units) 

or 1/ε0 where ε0 is the permittivity of free space (in MKS units), q is the protonic charge, ε is 

the relative dielectric constant of the solution (taken to be 78.3 for water at 25 °C111), kB is 

Boltzmann’s constant, T is absolute temperature, δ(x-s) is the delta-function, the sum over j is 

over all mobile ion species present of valence zj, ωj is the (spatially dependent) ion exclusion 

parameter, and y’(x, s) is the reduced potential at x due to a negatively charged cavity 

centered at s.  Integrating Eq. (B1) over a sphere of radius σ that just encloses the cavity 

centered at x = s gives the normal derivative on the surface, S*, of the cavity 
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where s* is a point on S* and n(s*) is a local outward normal to S*.  In general, we need to 

consider the effect of Sp (colloid surface) on δy as depicted in Figure 5-10.   
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Figure 5-10)  Cavity Near the Surface of the Core Particle.   The acidic residue of interest is 
represented as a spherical cavity of radius σ  and surface S*.  The surface of the core particle 
is Sp.  The origin of the local frame of reference is denoted by an X.  
 

 

        This effect shall be ignored for the present and reconsidered near the end of this 

Appendix.  Applying Green’s Theorem to the fluid domain, Vf, and ignoring the contribution 

of Sp (see, for example, reference 105) 
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r = |r |, n is the local outward unit normal to the bounding surface, and α is an arbitrary 



105 

constant we are free to choose provided it is real and positive.  In practice, we want to choose 

α so that ∇2δy - α2 δy vanishes throughout as much of the fluid volume as possible.  We 

anticipate that δy falls off with distance moving away from the cavity and that y’(x,s) → y(s) 

where y(s) is the mean field reduced potential at s.  (This is the reduced potential 

corresponding to the same charge distribution as y’, but the negatively charged cavity 

replaced with a continuum charge distribution.)  The calculation of y is discussed in the main 

body of this work.  Assume the ion exclusion parameter is the same for all atoms, ωj = ω, and 

that the mean field potential depends only on the distance, s = |s|.  Expanding the exponential 

of zjδy in Eq. (B1) and retaining the leading term in δy, 
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Consequently, we want to choose 

  )8(
2

)( )(2
0

2
2 Bezc

I
s

syz

j
jj

j−∑= κωα  

where 

   )9(
2 2

2 B
Tk

IqX

Bε
κ =  

is the square of the Debye-Huckel parameter, and 
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is the ionic strength.  Eq. (B3) can be reduced to the form 

 )11(),,,(
2
)(

)',(),'( 2)(
0

2
)0( Brxfdxxezc

I

s
rsysxy

j

syz
jj

j σακωαδδ
σ

∑ ∫∞−−=  

where 

   )12(
'

)(
)',( ')()0( Be

r

sB
rsy rsαδ −=  



106 

  )13(|'|,|'|' Bxxrandsxr −=−=  

   )14(
))(1(4

)( )(
2

Be
sTk

Xq
sB s

B

σα

σαεπ +
=  

)15()],'(1)[()()()(
)(

)(
),,,( ),'(

0000
1

1 Bsxyzerkrixkrk
k

i
rxf sxyz δαααα

ασ
ασσα α

δα −−+= −
><  

r< and r> are the lesser and greater of x and r, respectively, and the i’s and k’s are modified 

spherical Bessel functions.  In Eq. (B15), f depends implicitly on s through the dependence of 

α on s and i0(x) = sinh(x)/x, i1(x) = cosh(x)(1/x + 1/x2), k0(x) = e-x/x, and k1(x) = e-x(1/x + 

1/x2).   

 The difficulty with Eq. (B11) is that the integral on the lhs of the equation contains the 

reduced potential that we are trying to determine.  Fortunately, under the conditions of 

interest in the present work, the integral term in Eq. (B11) turns out to be small compared to 

the leading term, δy(0)(r’).  To illustrate this, consider the example of a monovalent salt with 

cα0 = 10-3 moles/liter, σ = .548 nm, T = 25 °C, y(s) = -5, and λ = 1.0.  These are typical 

parameters for the polystyrene sufonate latex particles considered in the present work.  Under 

these conditions κ = 0.10 nm-1 (the Debye-Huckel parameter of the ambient salt solution), 

and α = 1.22 nm-1 (an effective screening parameter characteristic of the “local” salt solution 

in the vicinity of the cavity).  Approximating δy(x,s) with δy(0)(|x-s|) in the integral on the lhs 

of Eq. (B11), it is straightforward to show that the integral term amounts to 1.1 % of δy(0)(r’).  

Thus, to a good approximation 

   )16()',(),'( )0( Brsysxy δδ =  

Where δy(0) is given by Eqs. (B12-B14).  In other words, the reduced “cavity” potential 

decays, to a good approximation, exponentially with a Debye-Huckel screening parameter 

that reflects the local ion concentration rather than the ambient salt concentration.  Although 

the ambient salt concentration may be very low, the local concentration can be quite large due 



107 

to the high |y| values that are possible.   

 As discussed at the beginning of this appendix, the boundary element derivation given 

above has ignored the effect of the boundary surface of the colloidal particle itself, Sp.  

Including this effect, surface integrals over Sp entirely analogous to the surface integrals over 

S* should be included in Eq. (B3).  Generalizing Eq. (B3) to include these new terms and 

also approximating the solution of Eq. (B3) with Eq. (B16) 

)17()],()',('),(')',([)',(),'( )0( BdSsxyxxFsxyxxFrsysxy
pS

x∫ −−≈ δδδδ αα  

It is straightforward to estimate the relative size of the new terms by approximating δy and 

δy’ appearing in the surface integral on the lhs of Eq. (B17) with δy(0) and δy’ (0).  For the case 

y = -5, α = 1.22, and approximating Sp with an infinite flat plane, numerical integrations over 

a large number of possible {x’,s} configurations has shown that the surface integral terms 

make a contribution that is at most 2 % of δy(0)(s, r’) even when s lies very close to Sp.  On 

this basis, it can be concluded that δy(0) given by Eqs. (B12-B14) constitutes a good 

approximation of the reduced “cavity” potential. 
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Chapter 6 

 

Electrokinetic Transport of Large Rigid Macroions in the Thin Double 
Layer Limit 

 

 

6.1 Introduction 

 

The objective of this chapter is to develop a simplified numerical BE procedure that 

utilizes ideas of O’Brien and his coworkers applicable to spherical and spheroidal particles 

and apply them to large model particles of arbitrary shape.  Dukhin115 and later O’Brien and 

coworkers31,116,117 and others118,119 have explored this “thin double layer”, or TDL, regime in 

depth.  Dukhin115, and O’Brien and Hunter31 derived simple analytical formulas for a 

spherical macroion of uniform surface, or “zeta” potential, that are accurate for κa greater 

than approximately 30 where κ is the Debye-Huckel screening parameter and a is the sphere 

radius.   O’Brien and Ward117 subsequently derived an approximate analytical formula (Eq. 

(5.16) in reference 117) applicable to prolate and oblate spheroids of arbitrary axial ratio.  

The O’Brien and Ward formula appears to be quite accurate for κa as small as 20 where a, in 

this case, denotes the minor axis of the spheroid.  Thus, for spherical or spheroidal particles 

of uniform zeta potential, accurate analytical formulas are available for κa greater than about 

20.  For smaller, highly charged particles whether they are spheres or particles of arbitrary 

shape, it is necessary to resort to numerical results summarized in the previous paragraph.    

The motivation for the development of such a procedure is primarily practical in 

nature.  By reducing the computation time of BE calculations and reducing the complexity of 
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the code, it will hopefully become more accessible to a larger audience.  As developed, the 

procedure is applicable to large particles of uniform “zeta” potential, but no assumption needs 

to be made about its actual shape.   The principal advantage of the new approach is that the 

time consuming volume integrations that must be carried out in the general BE 

procedure34,106,120 are eliminated.  Numerical surface integrations remain, but their 

computation is rapid relative to the volume intergrations.    

    The outline of this chapter is as follows.   The Methods section first discusses the 

continuum primitive model and introduces the fundamental field equations that must be 

solved in order to compute an electrophoretic mobility.  Then, we restrict the treatment to 

“thin double layer” particles (particles that are large relative to the thickness of the ionic 

double layer that surrounds them).  The main features of the BE procedure as applied to 

computing the electrophoretic mobility of a model polyion in the thin double layer limit are 

then summarized.  In the Results section, the procedure is first applied to spheres and 

compared with independent theory.  Subsequently the procedure is applied to the 

electrophoretic transport of high molecular weight duplex DNA complexed with the trication, 

spermidine.  We end with a Summary of our major findings.  The technical aspects of this 

manuscript are largely relegated to four appendices since this material will undoubtedly be of 

interest to a limited audience.  For the sake of completeness as well as those investigators 

who may be interested in applying the procedures to their own problems, however, we feel it 

is essential to include this material.  The appendices treat:  (A) the BE approach as applied to 

scalar fields; (B) the BE approach as applied to the velocity field of a thin double layer 

particle; (C) thin double layer approach to the calculation of ion relaxation (distortion of the 

ion atmosphere from its equilibrium distribution); and (D) computing the net forces on model 

particles. 
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6.2 Modeling 

6.2.1 Continuum Primitive Model and Overview of the Field Equations 

 
Consider a suspension of monodisperse particles (macroions or colloids) widely 

dispersed in a fluid at temperature T.  The suspension is assumed to be sufficiently dilute that 

interparticle direct and hydrodynamic interactions are, on average, negligible. In modeling 

the individual macroion particle and surrounding fluid, the continuum primitive model, CPM, 

is employed.121  In the CPM, the macroion is represented as low dielectric rigid body of 

arbitrary shape.  Within the macroion or on its surface, a well defined, but arbitrary charged 

distribution is placed.6,34  Alternatively, one can define the electrostatic potential, or “zeta” 

potential over the entire macroion surface, or to be more precise, the surface of hydrodynamic 

shear, Sp.  This shear surface, Sp, separates the rigid macroion from the continuum Newtonian 

fluid that is incompressible, has a viscosity coefficient of η, and a dielectric constant of εs.  In 

the present work, the “gel” layer21,103,106 shall be ignored.  In addition, mobile ions in the 

solvent are modeled as a continuum, and local ion concentrations are assumed to obey the 

Poisson equation, 

   )16()())()(( −Χ−=Λ∇⋅∇ xxx ρε  

for the general non-equilibrium case or the Poisson-Boltzmann  equation, 

  )26())(exp())()(( 00 −Λ−Χ−=Λ∇⋅∇ ∑
α

ααα βε xqzzcqxx  

for systems at equilibrium.  In Eqs. (6-1 and 6-2), Χ = 4π (in CGS units), or 1/ε0 where ε0 is 

the permittivity of free space (in MKSA units),  Λ and Λ0 denote the nonequilibrium and 

equilibrium electric potentials, respectively, at point x in a local frame of reference, ε is the 

local dielectric constant, ρ is the local charge density, q is the protonic charge, cα is the 

ambient concentration of the α-th mobile ion present in solution and zα is its valence, the sum 

extends over all ionic species present, and β = 1/kBT where kB  is Boltzmann’s constant, and T 
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is absolute temperature.   

 In order to determine a transport property such as the electrophoretic mobility of a 

model particle, it is necessary to know the forces or stresses acting on it.  This, in turn, 

requires knowledge of various field quantities such as the local fluid velocity, vT, ion 

concentrations, and electric potentials.  In the present work, we shall be interested in a model 

particle that is stationary, but placed in a constant electric field, e, or translating with velocity 

u, without an electric field, through a fluid that is otherwise at rest.  It is convenient to define 

a perturbation potential, ψ, through  

)36()()()( 0 −⋅−+Λ=Λ xexxx ψ  

where Λ and Λ0 are the local nonequilibrium and equilibrium electric potentials, in the 

presence and absence of an electric or flow field, respectively.  Far from the particle, Λ ≈ -

e≅x, Λ0 ≈ 0, and therefore ψ ≈ 0.   

Following O’Brien and White, 31 additional potentials, Φα, are also introduced to 

represent the departure of local ion concentrations, nα, from their equilibrium value, nα0.   

Retaining terms to first order in the perturbing electric or flow field, 

  [ ][ ] )46()()(1)()( 0 −Φ+−= xxzqxnxn αααα ψβ  

   [ ] )56()(exp)( 00 −Λ−= xzqcxn ααα β  

where the various quantities have been defined previously.  In general the potentials, Φα, are 

obtained by solving a steady state ion transport equation for each ion species present.  The 

equation of continuity requires (in a frame of reference stationary with respect to the particle) 

    )66(0)( −=⋅∇ xj
α

 

where jα is the local current density of ion α.  To first order in the perturbing electric or flow 

field34 

  [ ][ ] )76()()()()( 0 −+Φ∇+= exDzqxvxnxj T ααααα
β    
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where vT is the local fluid velocity, Dα is the diffusion constant of ionic species α.  

Substituting (6-7) into (6-6) and assuming the solvent is incompressible (∇∇∇∇≅≅≅≅ vT = 0), yields 

   )86()()(2 −=Φ∇ xfx αα  

where fα represents the “source” term of Φα and is given by 
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Since Λ0 falls off rapidly moving away from the particle surface, fα is only significant near Sp.  

This feature shall be useful in the present analysis.  It is assumed that Sp is impermeable to 

the passage of ions which requires jα Α n = 0 where n represents the local outward unit 

normal to Sp.  In addition, “stick” hydrodynamic boundary conditions are assumed to hold 

that requires vT = 0 on Sp.   From Eq. (6-7), we then can identify the boundary condition for 

the outward normal derivative of Φα on Sp 
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In order to obtain vT, it is necessary to solve the linear steady state Navier-Stokes 

equation, which can be written (6-2-6-6, 6-22) 

   )116()()()(2 −−=∇−∇ xwxpxvTη  

    )126(0 −=⋅∇ Tv  

where p is a local pressure and w represents an effective  local external force/volume on the 

fluid, 

  [ ] )136(])([)()( 0 −+Φ∇−= ∑ excxnzqxw α
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Moving away from the particle surface, the local ion concentration, nα0, approaches its 

ambient value, cα.  For a large particle, w vanihes except for a thin layer of fluid near Sp.  

This is called the electric “double layer”.   
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 In summary, it is necessary to solve Eqs. (6-1,2,8 and 11) in order to determine a 

transport property such as the electrophoretic mobility.  In general, these equations are 

coupled to each other and must be solved simultaneously.  Different investigators and 

investigations may have followed somewhat different pathways to achieve this and have 

employed different computational strategies, but the underlying problem has basically been 

the same.21,31,34,103  For a general model particle, it has been necessary to employ BE 

procedures,34,106,120 which is outlined in the next subsection. 

 

6.2.2 BE procedure for calculating the electrophoretic mobility of a rigid model 

polyion in the thin double layer limit 

 

In order to calculate an electrophoretic mobility, it is necessary to determine the total 

force exerted by the particle on the fluid, zT, for two transport cases,31,34 which shall be called 

Case 1 and 2, respectively.  In the present work, the analysis shall be restricted to model 

particles that are large compared to the thickness of the ion atmosphere, b, that surrounds 

them.  The quantity b will be comparable to κ-1 (Eq. (A15)).  If L represents the smallest 

linear dimension of the model particle, the present treatment is restricted to κL >> 1.   

Appendix D explains how the total force is related to the fundamental fields, Λ0, Φα, and vT 

defined previously.  (A surface, Sdl is defined which is displaced outward from Sp by the 

distance b.  The force, zT can be computed once vT on Sdl is known.  However, vT depends in 

a rather complex way on Λ0 and Φα as discussed in Appendices B and C.) 

 In Case 1, the particle is translated with velocity u in the absence of an electric field 

and zT
(1) is related to u by Ref. 92 

   )146()1( −⋅Ξ= uz tT  

where ΞΞΞΞt is the translational friction tensor.  The components of ΞΞΞΞt are obtained by translating 
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the particle along three orthogonal directions, computing zT
(1) (as discussed in Appendix D) 

and then simply identifying the components of ΞΞΞΞt.  For axisymmetric particles, only two 

orthogonal directions need to be considered and for a sphere, only a single direction needs to 

be considered.  In Case 2, the particle is held stationary, but it is subjected to a constant 

external electric field, e.  In this case, 

   )156()2( −⋅−= eQzT  

where Q is the effective charge, or “tether force” tensor.20  In general, 3 calculations with e 

oriented along three orthogonal directions are required in order to determine the components 

of Q.  For symmetric particles, however, this number is reduced. 

 Once ΞΞΞΞt and Q are known, the electrophoretic mobility, µ is readily obtained.  

Consider our model particle oriented in a particular way and subjected to a constant external 

electric field, e.  The particle migrates with steady state velocity u.  Under steady state 

conditions, the net force on the particle must vanish and we can view the transport as a 

superposition of Cases 1 and 2, 

   )166(0 −⋅−⋅Ξ= eQut  

Solving for u, 

   )176(1 −⋅=⋅⋅Ξ= − eMeQu t  

where “-1” denotes inverse and M  is the electrophoretic mobility tensor.  Under conditions of 

weak applied fields where all particle orientations are equally probable, µ can be equated to 

the isotropic average of M , 

   )186(][
3

1 −= MTrµ  

where Tr denotes the trace of the mobility tensor.  Attention shall now be turned to the 

calculation of the fields Λ0, Φα, and vT needed in order to calculate µ.   
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 In addition to the TDL assumption that κL >> 1, it shall be assumed that the 

electrostatic potential on Sp, ζ, is uniform.  For a simple two component salt of absolute 

valence z, the electrostatic potential at distance x from Sp is given by122 
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The other special case of interest is that of a highly charged large particle with a surface 

charge density of σ in the presence of a more complex salt solution.  Near Sp, the ion density 

in solution is dominated by the contribution of counterions with maximum absolute valency, 

|z*|.  This shall be called the  “principal counterion” (or “principal counterions” to be more 

precise, since several species of the same absolute valence may be present) and let the 

ambient concentration be denoted by  c*.  The charge density is related to the reduced zeta 

potential, y0 = qζ/kBT, by the relation29 
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The right hand side (rhs) of Eq. (6-21) is dominated by the principal counterion.  In this case 

it is convenient to write  

 )226()1(
*

1
*2

00

'2
* −−−+= −− ∑ yz

B

yz e
c

c

cTk

X
e α

α

ασ
 

where the sum on the rhs of Eq. (6-22) is over all ions excluding the principal counterion.  In 

practice, this term is small.  Given the charge density, σ, and salt conditions, Eq. (6-22) can 

be used to determine y0.  As a first approximation, the summation on the rhs of Eq. (6-22) is 

ignored and y0 estimated.  This estimate is then used in the summation on the rhs of Eq. (6-22) 
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to obtain a better estimate.  This procedure can be repeated until y0 converges.  Beginning 

with the Poisson-Boltzmann equation, Eq. (6-1), it is possible to derive a first order 

differential equation for reduced potential, y = qΛ0/kBT,29 
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where the + root is taken if y0 < 0 and the – root is taken if y0 > 0.  Standard procedures are 

available to solve first order differential equations, such as the Euler Method123 and this is 

done in the present work for large particles in a complex salt solution.  Far from the particle, 

y(x) = c e-κx where c is a constant.  This behavior coupled with the boundary condition y(0) = 

y0 is used to solve Eq. (6-23) numerically.  For particles not large compared to κ-1 or large 

particles of nonuniform surface potential, numerical alternatives such as the BE approach 

outlined in Appendix A could be used.   

 A major feature of the BE procedure is the discretization of Sp into a series of N 

interconnected platelets where N is typically in the range of 100 to Nmax given by Eq. (B23).  

A representative example of a toroidal particle studied later in the present work is shown in 

Figure 6-1.  The approximation is made that field quantities such as Φα, and vT (and, in 

general, Λ0) are uniform over individual platelets.  It is straightforward to test this 

approximation by varying N and extrapolating to the N → ∞ limit.  In the present work on 

thin double layer particles, discritization in the direction normal to Sp is avoided as explained 

in Appendices B and C. 
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Figure 6-1)  Toroid Consisting of 480 Platelets.   The “inner” toroidal radius, r, equals 100 nm 
and the outer toroidal radius, R, equals 200 nm.  The solid surface represents Sp.  Displaced 
slightly outward from Sp lies the surface Sdl, which is indicated by the transparent (wireframe) 
structure.   In this example, Sdl lies at a distance of 8/κ from Sp. 
 

 

 

The calculation of vT is carried out following the procedures of Appendix B 

culminating in Eq. (B32).  This, in turn, requires the scalar potentials, Φα, which are 

determined following the procedures of Appendix C.  Since the transport equations for Φα 

and vT are coupled together, it is necessary to adopt an iterative procedure in order to 

determine them.34  We begin by ignoring ion relaxation and approximate the local ion 
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densities in the fluid near the model particle with their equilibrium ion densities.  This 

requires setting Φα = -ψ where ψ is the correction potential of a low dielectric cavity in a 

constant external electric field.  (See discussion in Appendix A following Eq. (A16).)  The 

flow field vT is computed as described in Appendix B, and then zT is determined.  At this 

point, we now have estimates of vT and can obtain better estimates of Φα and ∇∇∇∇ΦΦΦΦαααα  by 

employing  the procedures of Appendix C.  This whole process is repeated until zT converges 

to within a predefined tolerance level (typically 0.1 %).  

 
 
 

6.3  Results and Discussion: 
6.3.1   Spheres in KCl 

  

 The BE-TDL methodology described in the previous section and the appendices is  

first applied to a spheres of radius a.  The solvent is taken to be water at 20 °C (η = 1 

centipoise, εs = 80.36) and the salt is taken to be KCl at an ionic strength equal to 0.3725 M.  

The Debye-Huckel screening parameter, κ equals 2 nm-1 under these conditions (Eq. (A15)) 

and a is set to 10, 25, or 50 nm to give κa = 20, 50, or 100, respectively.  The small ion 

diffusion constants, Dα, or the hydrodynamic ion radius, rα (rα = kBT/6πη Dα), is estimated 

from limiting molar ionic conductivities, λα
∞, and the Nernst-Einstein relation.  The λα

∞’s (in 

10-4 S m2 /mole at 25 °C) are related to rα (in nm) by49 
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where zα is the valence of the α-ion.  Since λα
∞ is similar for K+ and Cl- ions, an average 

radius of .1229 nm is used for both.  The reduced zeta potential, y0, defined by 
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(ζ is the actual zeta potential) is varied from +1 to +6 and Λ0(x) is estimated using Eq. (6-20).   

The plated sphere models are generated using a procedure described in detail 

elsewhere.6,34,49  For each case examined, several different model spheres are considered with 

the number of platelets, N, varied.  A dimensionless electrophoretic mobility, E, is computed 

for each case30,31 
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where X = 4π (in CGS units) or 1/ε0 (ε0 = permittivity of free space, in MKSA units), q is the 

protonic charge, µ is the electrophoretic mobility, and other quantities have been defined 

previously in this section.  The resulting E’s are extrapolated versus 1/N and the 1/N → 0 

limit is estimated.  This “extrapolated shell” procedure92 is carried out to correct, at least 

approximately, for the discretization error that results from replacing a “smooth”, continuous 

model with a discrete one.  In general, b (the double layer thickness) needs to be set large 

enough that y(b)/y0  << 1 which insures that equilibrium charge densities are negligible for r 

> b.  This result is satisfied if b is set in the range of 4/κ to 8/κ.  As the surface zeta potential 

increases, the value of b can actually be reduced.  Shown in Table 6-1 are (extrapolated shell) 

E’s for a wide range of cases.  In addition to reduced mobilities that include ion relaxation, Er, 

results are also included that leave ion relaxation out, Enr.  The Enr and Er BE-TDL results are 

compared with the independent theory of Henry28 (for Enr) and O’Brien and White31 (for Er).   

It is evident from the results of Table 6-1 that the methodology works best when κa is large.  

This, however, is expected on the basis of the approximations involved.  For κa > 50, the BE-

TDL yields mobilities that are within a few percent of independent theory.  It is appropriate at 

this point to discuss the similarities and differences of the BE-TDL approach used here with 

the related approaches of O’Brien and coworkers116,117 and Dukhin and Shilov124 applied to 

spheres, prolate, and oblate ellipsoids. 
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Table 6-1 

Unrelaxed (Enr) and Relaxed (Er) for Spheres in KCl at 20 °C 

 

κa yo Enr(BE) Enr(H)(a) Error(b) Er(BE) Er(OW)(c) Error(b) 

20 1 1.34 1.387 3.5 1.32 1.447 9.6 

“ 2 2.68 2.77 3.4 2.50 2.738 9.5 

“ 3 4.02 4.148 3.2 3.40 3.720 9.4 

“ 4 5.36 5.517 2.9 3.92 4.260 8.7 

“ 5 6.70 6.872 2.6 4.04 4.360 7.9 

“ 6 8.04 8.203 2.0 3.88 4.171 7.5 

50 1 1.42 1.431 0.8 1.48 1.429 -3.4 

“ 2 2.84 2.860 0.7 2.75 2.776 -0.9 

“ 3 4.27 4.283 0.3 3.89 3.945 1.4 

“ 4 5.69 5.700 0.2 4.77 4.822 1.1 

“ 5 7.11 7.106 -0.1 5.19 5.271 1.6 

“ 6 8.53 8.490 -0.5 5.20 5.324 2.4 

100 1 1.46 1.446 1.0 1.48 1.426 -3.6 

“ 2 2.92 2.892 -1.0 2.86 2.808 -1.8 

“ 3 4.39 4.332 -1.3 4.23 4.085 -3.4 

“ 4 5.85 5.767 -1.4 5.30 5.172 -2.4 

“ 5 7.31 7.191 -1.6 5.98 5.933 -0.8 

“ 6 8.78 8.591 -2.2 6.36 6.305 -0.9 

(a)  from Henry28,  (b)  Error = 100*(E(BE)/E(H or OW) – 1)   

(c)  from O’Brien and White31 
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        Outside the double layer, Φα satisfies Laplace’s equation (Eq. (6-8) with fα set to 0).  For 

simple geometries, the general solution of Φα can be written as an infinite, but convergent 

sum of “product functions” which are, individually, solutions of Eq. (6-8).  The individual 

“product functions”, in turn, are products of known functions of the individual orthogonal 

coordinates.  (For a spherical particle, for example, the orthogonal coordinates are the radial 

variable, r, and two angular variables, θ and φ, respectively.  The “product functions” involve 

simple polynomials in r, times spherical harmonics involving the angular variables.  For 

prolate and oblate ellipsoids as well as a few other geometries,125  the same approach can be 

used.)  Although the individual “product functions”  satisfy Laplace’s equation, they do not 

satisfy the boundary condition on Sdl appropriate in the special case of interest here, Eq. (C8), 

but an infinite series can be constructed which does.  (See discussion centered around Eq. 

(3.9) of reference 117).  Dukhin and Shilov124and O’Brien and Ward117 have shown that 

approximating this infinite series with the leading term yields accurate conductivities and 

electrophoretic mobilities117 as well as induced electric dipole moments124 under most 

conditions.  By truncating the series in this manner, analytical expressions for electrophortic 

mobilities as well as other transport properties have been derived.117,124 

 For simple geometries such as spheres, prolate, and oblate ellipsoids, these alternative 

approaches116,117,124 are simpler and more efficient that the BE-TDL approach used here.  The 

advantage of the BE-TDL approach is that it can be applied to models of arbitrary shape.  It is 

applied to spheres in the present work in order to verify the method as well as assess its range 

of validity.  Another difference between the present method and the alternative 

approaches116,117,124 is the inclusion of finite size effects on the velocity field, vT, as 

summarized by Eq. (B32).  Including finite size effects in vT also introduces a small velocity 

component normal to the local surface, Sp, and this also contributes to Φα (the hj term in Eq. 

(C9)).  Although size effects in vT can be ignored for κa greater several hundred, our 
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observation has been that they should be included for smaller particles. 

 

6.3.2 DNA-Spermidine Complexes 
 
 As an application of the BE-TDL procedure, we shall consider high molecular weight 

duplex DNA in the presence of the trication, spermidine (NH+(CH2)4N
+(CH2)3NH+).  There 

has been considerable interest in the DNA-spermidine system over the past 25 years since it 

is ubiquitous in nature and mimics, in vitro, the compaction of DNA in living systems.126,127  

Under most salt conditions, purified high molecular weight duplex DNA exists in solution in 

an unfolded, random coil configuration.  Under low salt conditions and in the presence of 

spermidine or other polycations, however, DNA undergoes a collapse to a compact, possibly 

toroidal shaped particle.126,128-130  It is now believed that spermidine (a counterion) binds to 

DNA and is capable of forming crosslinks between strands of duplex DNA.  When, for 

example, the butyl moiety of spermidine is replaced with propyl through octyl moieties, the 

interhelical strand separation varies in a systematic way that is readily explained in terms of a 

crosslinking model.131  By examining, directly, the free solution electrophoretic mobility of  

compact DNA-spermidine complexes, we shall be able to draw some firm conclusions about 

the nature of spermidine – DNA interaction. Yamasaki et al.132 have examined the complex 

of viral T4 DNA (166,000 base pairs) with spermidine in a buffer solution of 50 mM sodium 

maleate at pH = 6.0 and 20 °C.  (At this pH, spermidine exists in solution as a +3 cation.)  In 

the absence of spermidine, DNA exists in solution as an extended random coil and the free 

solution electrophoretic mobility, µ is measured to be -.328 cm2/kV sec.132  Although the 

random coil or wormlike chain structure of DNA is not amenable to the BE-TDL modeling 

developed in this work, it is worthwhile to consider closely related modeling grounded on the 

same principles of the CPM model before considering the DNA-sperimidine complex.  
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Stigter33 has written a program which solves the coupled transport equations for an infinitely 

long rod in monovalent salt and computes µ.  Modeling DNA as a infinitely long rod of 

diameter 2 nm and line charge density –2q per base pair (which yields an equivalent surface 

charge density, σ, of -.150 coul/m2 assuming a rise per base pair of .34 nm), Stigter’s 

program predicts µ = -.449 cm2/kV sec.  A detailed BE study of the length dependence of 

DNA has shown that curvature of DNA can reduce |µ| below its “straight long rod” value by 

approximately 20%.20  This brings the experimental and model mobility into good agreement.  

Thus, for DNA in the unfolded, random coil-wormike chain state, the CPM-electrokinetic 

model yields free solution electrophoretic mobilities in good agreement with experiment.    

 Moving on to the DNA-spermidine complex , we shall consider a solution containing 

12 mM of spermidine in addition to 50 mM sodium maleate buffer.  At this spermidine 

concentration, T4 DNA is present in the form of compact structures that are approximately 

600 nm in diameter.132  On the basis of the work of Yamasaki et al., we cannot say anything 

about the shape of the particles, but independent study suggests a toroidal shape.126-130   For 

purposes of modeling, we shall consider two different shaped structures to illustrate the 

dependence of mobility on particle shape.  The first considered is a sphere  (radius = a).   For 

a sphere of with a = 300 nm in aqueous solvent at 20 °C, the translational diffusion constant, 

Dt, should be equal to .717 x 10-8 cm2/sec.  The second and physically more realistic model is 

a toroid with “inner” toroidal radius, r, equal to 100 nm, and “outer” toroidal radius, R, equal 

to 200 nm.  (One can imagine generating a toroid by starting with a circle of radius, r, the 

center of which is at distance R from some convenient origin.  The symmetry axis lies 

perpendicular to the line connecting the origin to the center of the circle.  The toroid is 

generated by rotating the circle about the symmetry axis by 2π radians.)  For this toroid, Dt = 

.874 x 10-8 cm2/sec.133,134  Plated structures with N varying between 128 and 512 are 

generated for both the sphere and toroid models.  Shown in Figure 6-1 is an example of a 
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toroid with R/r =2 consisting of 480 platelets.  All of the plated structures are designed to 

reproduce the Dt’s mentioned previously.  As a charge model, first assume σ is simply that of 

duplex DNA (σ = -.150 coul/m2).   The DNA phosphate charges inside the surface of the 

complex are presumed to be neutralized by entrapped counterions.  The net charge of the 

complex arises from the surface charge density which is taken to be the same as that of 

duplex DNA.  It is also assumed that the charge distribution of mobile ions is described by 

the Poisson-Boltzmann equation, Eq. (6-1).  With this charge distribution with 12 mM 

spermidine –trichloride plus 50 mM sodium maleate, Eq. (6-22) gives y0 = -2.10.    

 

Table 6-2 

Mobilities(a) of Model DNA-Spermidine Complexes 

 

Model f(b) -y0 -µnr
(c) -µr

(d) 

Sphere 0 2.10 .369 .335 

Toroid 0 “ .354 .309 

Sphere 0.92 0.505 .089 .087 

Toroid 0.92 “ .086 .087 

Sphere 0.95 0.335 .059 .057 

Toroid 0.95 “ .057 .056 

Sphere 0.97 0.208 .037 .036 

Toroid 0.97 “ .036 .035 

(a) mobilities are reported in cm2/kV sec 

(b) fraction of DNA phosphates neutralized by counterions 

(c) ion relaxation not included 

(d) ion relaxation included 
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Shown in Table 6-2 are the mobilities, computed by the TDL-BE procedure, for both models 

in the presence and absence of ion relaxation.  As discussed previously, the mobilities are 

extrapolated to the 1/N → 0 limit.  It is evident from these results that the mobilities are 

similar for the two model structures and yield an average mobility of about -.32 cm2/kV sec if 

ion relaxation is included.  The experimental mobility, on the other hand, is -.050 cm2/kV sec, 

which, in absolute terms, is less than 1/6 the model mobility.  The actual complex is behaving 

as though its absolute charge was much smaller than expected on the basis of the strict CPM 

model.  A simple way of reconciling model and experimental mobilities is to reduce the 

(absolute) surface charge density used in modeling to the point that model and experimental 

mobilities are in agreement.  Physically, this corresponds to a certain fraction of the DNA 

phosphates “specifically bound”, by spermidine counterions.  In the present interpretation, 

one can define “specifically bound” counterions as those trapped within the surface of 

hydrodynamic shear, Sp.  There is no significant exchange of “specifically bound” 

counterions (inside Sp) and counterions in the fluid domain (outside of Sp) that are assumed to 

obey the Poisson-Boltzmann equation, Eq. (6-1).  Table 6-2 gives mobilities in which the 

fraction of “specifically bound” DNA phosphates, f, is taken to be 0.92, 0.95, and 0.97, 

respectively.  In order to bring experimental and model mobilities into agreement, 

approximately 95 % of the DNA phosphates must be “specifically bound” by spermidine.  

How do the findings of the present work compare with other studies? 

 There exists an extensive literature135 on salt-linear polyelectrolyte interactions in 

general, and the compact form of DNA induced by polyvalent cations in particular.125  

Counterion “binding” can be defined in thermodynamic terms through the preferential 

interaction coefficient, Γ.135,136  In particular, 1 + 2Γ can be interpreted as the average degree 

of “thermodynamic counterion association” per structural charge on the polymer.  The 



126 

preferential interaction coefficient has been examined in terms of counterion condensation 

theory,137 PB theory,138 and Monte Carlo simulation.136  Counterion condensation theory137,139 

offers a particularly simple view of polyion-counterion interactions.  According to this 

theory,137,139 a certain fraction, f*, of counterions “condense” on a linear polyelectrolyte 

provided the absolute linear charge density exceeds a certain threshold, as it does for duplex 

DNA.  Also,  
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For DNA in the presence of single monovalent, divalent, or trivalent counterions, f* = 0.76, 

0.88, 0.92, respectively.  Extensive past work on the compact form of DNA in the presence of 

spermidine as well as other polycations (3 ≤ valence charge) has convincingly shown that the 

compact structure of DNA is formed when f* exceeds about 0.90 when interpreted in terms of 

counterion condensation theory.125   It is inappropriate to equate our f = .95 with f* (or 

possibly 1 + 2Γ) as defined above.  First of all, since we are inferring f from a transport 

property, it will depend, in principle at least, on non-equilibrium variables such as the relative 

counterion mobilities.  In the strictest sense, our f cannot be related to a true equilibrium 

binding constant.  Second, for unfolded DNA in the presence of monovalent salt, the model 

mobility with f  = 0 (not 0.76 as one might expect on the basis of counterion condensation 

theory) agrees with experiment.   

 
 
 

6.4 Summary 

 

     The Boundary Element methodology, BE-TDL, developed in the present work yields 

accurate electrophoretic mobilities of spheres provided κa exceeds approximately 50.  For 

particles with a smallest linear dimension equal to L, the BE-TDL is limited to those with L 
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greater than 50/κ.  In addition, alternative methods are available and preferable for large 

spherical or spheroidal (prolate or oblate ellipsoid) model particles.116,117,124  The BE-TDL 

method should be useful in modeling large particles of arbitrary shape.  In the present work, 

the example of compact, high molecular weight DNA-spermidine complexes has been 

examined. 

 For native, unfolded DNA in the presence of monovalent salt, the CPM model of 

electrophoresis is able to account for the observed mobility without the need of “specific 

binding” of a certain fraction of DNA phosphates by Na+ counterions.  For DNA-spermidine 

complex, on the other hand, it is necessary to assume that 95% of the spermidine as 

“specifically bound” to DNA in order to reconcile experimental and model mobilities.  It 

should be emphasized, however, that this is based on the assumed validity of the CPM model.  

As discussed in Section II.A, one component of the CPM model is the assumption that the 

Poisson-Boltzmann, PB, equation accurately describes the ion distribution within the double 

layer of the model macroion.  For monovalent salt, the PB equation does indeed accurately 

describes the ion distribution around the DNA provided the counterion is not very large.140  

For more complex systems, such as the one involving the trication spermidine, on the other 

hand, the PB approximation suffers severe deficiencies.141  Consequently, the inability of the 

CPM model to account for the experimental mobility of the DNA-spermidine complex 

without invoking “specific binding” may be due, in part at least, to a breakdown of the CPM 

model.  In this case, alternatives exist such as triple layer modeling,142 or more formal 

theoretical approaches such as functional expansion techniques143 and dressed ion theory.141  

This, however, is beyond the scope of the present work. 

 

 
 
 



128 

 

Appendix A:  Boundary Element Method for Scalar Fields 

 
 The Boundary Element (BE) approach for the scalar fields of interest in this work are 

described in detail elsewhere.34,144,147  The main features of the method as applied to scalar 

fields are summarized below.  This is followed with several illustrative examples that are 

relevant to the present work.  Consider a scalar field, ψ, associated with a particle enclosed 

by shear surface Sp and let n denote the local outward unit normal to Sp.  It is assumed that ψ 

goes to zero far from Sp, and satisfies 

   )1()(')(2 Axhx =∇ ψ  

where h’ represents the source terms for the scalar field and x represents any point in space.  

It is also convenient to define the outward normal derivative at a point x on Sp 

   )2()()()( Axnxxp ⋅∇= ψ  

It is important to distinguish whether the normal derivative indicated by Eq. (A2) is taken just 

inside, pi, or just outside, pe, Sp.  In the BE approach, the solution of ψ is written as an 

integral equation over the surface, Sp, as well as a bounding volume that can be chosen to 

correspond to the particle interior, or the volume exterior to the particle.  The assumption is 

made that the scalar field varies sufficiently slowly over Sp that ψ and its normal derivative is 

constant, to a good approximation, over a small region of Sp.  Consequently, Sp is 

approximated as a series of N interconnected triangular plates, or platelets, and ψ and its 

normal derivative are assumed constant over a single platelet.  Let xk denote the centroid of 

platelet k and also let ψk, pk
i,  and pk

e denote ψ(xk), p
i(xk), and pe(xk), respectively. For an 

arbitrary “field” point, s, in the fluid domain exterior to Sp, the potential can be written34 
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where the sum over k extends over all N platelets, ω is an arbitrary constant, 
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In Eq. (A4), the integration is over the entire fluid domain and in Eqs. (A5-A6), the domain 

of integration is the surface of platelet k, Sk.  The unknowns in Eq. (A3) are the ψk’s and pk’s, 

and possibly the “h’ - ω2 ψ” terms appearing in Eq. (A4) for ve(s).  The latter terms, if present, 

can be approximated with initial estimates or results from previous iterations.34,147   The 2N 

ψk’s and pk’s can be determined by considering field points, s, to correspond to the centroids 

of the individual plates.  In general, the 2N unknowns can be obtained by simultaneous 

solution of34 

 )9(
2

1
ABpDv k

k
jk

e
k

k
jk

e
jj ψψ ∑∑ −−=  

 )10(
2

1
AApCv k

k
jk

i
k

k
jk

i
jj ψψ ∑∑ ++=  



130 

where 
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and  
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In Eq. (A12), the domain of integration, Ωi, is the volume interior to Sp.  Once a model has 

been defined, the 4N2 surface integrals represented by Eq. (A11) can be determined 

numerically.  The source terms, vj
i and vj

e, are also known or can be approximated.    In the 

general case, the ψk’s and pk’s are solved by numerical solution of the 2N equations given by 

(A9) and (A10) above. Several specific examples are considered below. 

 As a first example, consider the equilibrium electrostatic potential in the vicinity of a 

model macroion that obeys Eqs. (6-1,2) in the text.  It is assumed that the dielectric constant 

is equal to εi inside of the macroion, ρfixed(x), and εs outside of the macroion.  If we also 

specify the charge distribution inside the macroion, then for h’(x) in Eq. (A12), Eq. (6-1) 

gives h’(x) = -X ρfixed(x)/εi where Χ = 4π (in CGS units), or 1/ε0 where ε0 is the permittivity 

of free space (in MKSA units), and x is a point in the macroion interior.  The normal 

derivatives are related to each other by the electrostatic boundary condition 

   )13(App i
ki

e
ks εε =  

Thus, Eq. (A12) can be solved once the charge distribution inside of the macroion is defined.  

For the exterior source terms given by Eq. (A4), we have from Eq. (6-2) 
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For ω appearing in Eq. (A4) and (A11) for Bjk and Djk, it is convenient to choose the Debye 

screening length, κ, defined by 
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The reason for this choice becomes clear when Eq. (A14) is substituted in Eq. (A4).  

Provided the potential, Λ0(x) is small in the fluid domain.  The exponential in Eq. (A14) can 

be expanded and only the linear term in Λ0(x) retained.  This truncation yields the “linear” 

Poisson-Boltzmann, PB, equation.  For the choice ω = κ, h’ - κ2Λ0 = 0 everywhere, and ve(s) 

vanishes.  In this case, Eqs. (A9) and (A10) can be solved for the ψk’s and pk’s.  Then Eq. (A3) 

can be used to solve for Λ0(s) for arbitrary field points.  When the macroion is highly charged, 

however, the linear PB equation is no longer valid and one is forced to return to the full form 

given by Eq. (A14).  The difficulty this creates, however, is that the potential, which we wish 

to obtain, appears in the source term, ve(s).  This can be dealt with by first assuming ve(s) = 0, 

which is equivalent to assuming Λ0(x) obeys the linear PB equation,  solving for the initial 

ψk’s and pk’s, and then using Eq. (A3) to determine Λ0(s) for a large number of field points in 

the fluid domain near the model macroion.  Then choosing s = xj in Eq. (A4), revised source 

terms can be computed using either the full exponential form, or expanding the exponential 

an truncating the sum after a finite number of terms.  Then the whole procedure is repeated 

until the potentials converge to a finite value.  This is basically the procedure proposed by 

Zhou147 and which we have employed in our lab for the last eight years.34,106,120 

 As a variation of the approach considered in the previous problem, consider the 
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equilibrium electrostatic potential again but instead of specifying the charge distribution of 

the macroion, specifying the surface potential, Λ0k.  This case is simpler than the previous one 

since we now only need to consider Eq. (A9).  Eq. (A9) can be written in more compact 

“supermatrix” form 

  )16(
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1
0 ApDvBI ee ⋅−=Λ⋅ +  

where ΛΛΛΛ0, v
e, and pe denote N by 1 column vectors; and B and D represent N by N matricies 

where the j-k element are Bjk and Djk, respectively.  Also, I  denotes the N by N identity 

matrix with diagonal components equal to 1 and off-diagonal components equal to 0.  

Provided we have estimates of the source terms, ve, Eq. (A16) can be inverted to obtain the N 

unknown components of pe.  For problems in which the surface potential ΛΛΛΛ0 contains 

components that are large in absolute magnitude, it is necessary to carry out an iterative 

solution as described in the previous paragraph.  

Next consider the correction potential, ψ, defined by Eq. (6-3), for the special case of 

a low dielectric cavity in a high dielectric medium subject to a constant external electric field, 

e.  In this case, the surface of the cavity is taken to be Sp.  This potential is useful in the 

present work in defining the initial estimate of the Φα defined by Eqs. (6-8)-(6-10).  In order 

to calculate the components of ψψψψ, (ψk is the correction potential at the centroid of surface 

platelet k), it is convenient to set ω = 0 in Eq. (A11) which yields Bjk → Ajk and Djk → Cjk.  

Also, the dielectric boundary condition corresponding to Eq. (A13) appropriate for the 

correction potential becomes    
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where the “s” and “i” subscripts on ε indicate external (solvent) and internal dielectric 
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constants, respectively, and ai = e⋅ni (ni is the outward unit normal to surface platelet i).  With 

this boundary condition, making use of the supermatrix and column vector notation 

introduced in the previous paragraph, and assuming εi << εs,  Eqs. (A8-A9) can be 

manipulated to yield 
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Once the components of ψψψψ are determined, the correction potential at arbitrary point s in the 

fluid is given by 

  [ ] )21(),,0(),,0()( 21 AaskIskIs
k

kk∑ +−= ψψ  

 For the potentials, Φα, it is again convenient to choose ω = 0 in Eq. (A11).  In this 

example, it is only necessary to solve the “exterior” problem (Eq. (A9)) with the boundary 

condition from Eq. (6-10) 
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Eq. (A9) reduces to 
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where (vα
e)k = vα

e(xk), and 

   ∫
Ω

−= )24()(),,0()( AdVxfsxFsv x
e

αα  



134 

where Ω denotes the fluid external to Sp, and fα is given by Eq. (6-9).  Once the surface 

potential components are computed from Eq. (A23), Eq. (A3) can be used to compute Φα(s) 

for arbitrary points in the fluid.  Since the source terms, fα, contain the potentials that we are 

attempting to determine, it is necessary to follow an iterative approach analogous to that 

employed for Λ0.  Initially, ion distributions are approximated by their equilibrium values and 

from Eq. (6-4), this requires setting Φα = -ψ with a similar relationship for the gradient.  This 

is iterated until  Φα converges.34 

 A disadvantage of this approach is the necessity of computing the volume integrals 

throughout the fluid domain as defined by Eq. (A24).  Volume integrations of this kind are 

straightforward, but computationally time consuming.  An alternative discussed in Appendix 

C circumvents this computational bottleneck and results in a substantial speedup in 

computation time.  
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Figure 6-2)  Volume Element and Associated Variables. Volume Vj is the wedge-shaped 
structure at the center of the figure.  Shown is plate j and neighboring plates j1, j2, and j3.  
The unit vectors nj and t j1 denote outward normals to plate j and side 1 of plate j, respectively. 
The cj1 vector is the first side vector of plate j and b denotes the thickness of Vj.  

 

Appendix B: Fluid Velocity in the TDL Regime, a Boundary Element Analysis 

 The Boundary Element representation of the velocity field, vT, is well described 

elsewhere92,106,120 and we begin by writing down the integral equation 

∫∫
Ω

∞ ⋅−⋅−= )1()(),()(),()()( BdVywsyUdSxfsxUsvsv yxT

S

T

p

 

where v∞(s) denotes the fluid velocity at s if the particle were absent, Sp denotes the surface 

of hydrodynamic shear, Ω is the fluid domain exterior to Sp, fT(x) is the (effective) 

hydrodynamic stress on Sg at point x, w(y) is the (effective) external force per unit volume at 

point y in the fluid defined by Eq. (6-12), 
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where η is the solvent viscosity, r  = x – s, r = |r |, I  is the 3 by 3 identity matrix, and rr  is the 

3 by 3 position dyadic with components (rr )nm = (r )n(r )m.  In Eq. (B1), x denotes the domain 

of integration over surface points of Sp and y denotes the domain of integration over the fluid 

volume external to Sp.  The reason for this subtle distinction is to distinguish between 

“surface” and “volume” points.  Stick hydrodynamic boundary conditions are assumed which 

means the fluid and particle velocities match on Sp.  For a particular point, s = xj on Sp and in 

a reference frame stationary with respect to the particle, Eq. (B1) can be written 

 )3()(),()(),()(0 BdVywxyUdSxfxxUxv yjx

S

Tjj

p

∫∫
Ω

∞ ⋅−⋅−=  

In the applications of interest in this work, we either know or have estimates of w.  Thus, it is 

possible to invert Eq. (B3) and obtain fT.   

 It is convenient to break up vT into two parts, 

  )4()()()( 0 BsvsvsvT +=  

where v0 is the fluid velocity of the corresponding uncharged model particle in the same 

external flow field, v∞,  as the actual particle, and v represents the “disturbance flow” (around 

a stationary particle) due to w.  Consider, for the moment, the simpler flow field, v0. In the 

absence of external forces, Eq. (B3) reduces to 

  )5()(),()(0 0 BdSxfxxUxv xj

S

j

p

⋅−= ∫∞  

Now f0 varies gradually over the particle surface.  Consequently, Sp is approximated as a 

series of N interconnected flat plates and the assumption is made that f0(x) ≅ f0(xk) = fok for 

points, x, on surface Sk, and xk is the centroid of platelet k.  Also define 
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which is computed numerically for j ≠ k.  For j = k, the integral is given analytically by148,149 
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where Sj is the area of surface platelet k, nj is the outward normal to the platelet, and nj nj is 

the dyadic formed from the outward normal.  With this discretization approximation, Eq. (B5) 

can be written 

   )8(0 BfUv
k

kjkj ∑ ⋅=∞  

where v∞j = v∞(xj).  It is convenient to introduce supervector/supermatrix notation at this time.  

Let v∞ denote the 3N by 1 column vector formed by stacking the N 3x1 column vectors, v∞j, 

on top of each other.  The supervector f0 (and others introduced later in this appendix) have a 

similar meaning.  Also, define the 3N by 3N supermatrix, U, by 
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Then Eq. (B8) can be inverted to yield 

   )10(1
0 BvUf ∞

− ⋅=  

Once a particular model is defined, it is straightforward to compute the U – matrix and invert 

it to obtain U-1.  Hydrodynamic boundary conditions determine v∞ and Eq. (B10) is used to 

determine f0.  Then Eq. (B1) can be used to solve for v0(s) at points in the fluid.  If s is near 

Sp, v0(s) varies linearly moving outward from the particle surface.  Let s = xj + x’ nj where xj 

is the centroid of surface platelet j, nj is the outward unit normal, and x’ is the normal distance 

of s from xj.  To a good approximation, we can write 
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)11(')'()( 00 Bxdnxxvsv jjj =+=  

where dj is a constant vector.  Eq. (B11) is valid for x’ << L, where L is the smallest linear 

dimension of the model particle.  In the present work, we shall only be interested in points 

near the surface of “large” particles.  The advantage of Eq. (B11) is the determination of v0(s) 

at N points directly above the N surface platelets allows us to completely define v0(s) at all 

points of interest in the fluid.   

 Two particular cases serve to illustrate the physical breakdown of vT(s) defined by Eq. 

(B4).  In Case One, a highly charged model particle translates with velocity u through a fluid 

that is at rest except for the disturbance produced by the particle itself.  In a reference frame 

stationary with respect to the particle, the fluid at considerable distance from Sp appears to 

flow past with velocity –u and hence v∞(s) = -u. Solution of Eqs. (B10-B11) gives v0(s), but 

this is not the total fluid velocity.  As the (highly charged) particle translates, there is a 

tendency of the ion atmosphere to lag behind the particle, and this distortion of the ion 

atmosphere generates external forces that result in additional drag, or “electrolyte 

friction”.20,92  Thus, v ≠ 0.  In Case Two, a stationary, highly charged particle is placed in a 

stationary fluid, but it is subjected to a constant external electric field, e.  Under these 

conditions, v0(s) = 0, but because of the interaction of e with local fluid charge densities that 

are large near Sp, substantial convective flows develop, and v ≠ 0.  (The only instance where 

v = 0 in Case Two is for a charged macroion in the absence of counterions or added salt.  This 

unphysical special case can be ignored.)  Attention shall now be turned to v(s). 

 Start with Eq. (B1) setting v∞(s) = 0 and discretizing the surface and volume elements 

around the model particle as discussed following Eq. (B5) 

 ∑ ∫∫  ⋅+⋅−=
k V

yk
S

x BdVywsyUfdSsxUsv
kk

)12()(),(),()(  

where Vk is the fluid volume external to surface platelet k.  Because w(y) varies as nα0(y) – cα 
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(see Eq. (6-12), it falls off rapidly with distance moving away from Sp.  To a good 

approximation, Vk can be truncated, to a good approximation, at a distance of several κ-1 

from Sp.  Call this distance b.  Furthermore, Vk can be viewed as a triangular disk of basal 

area Sk and thickness b.  The volume element dVy can be written dSxdx’ where y is replaced 

with x + x’nk.  This approximation will be accurate provided b is much less than the local 

radius of curvature of the macroion, which will be valid for large particles in the thin double 

layer, TDL, limit.  Also define s = xj  + ∆nj where ∆ represents the distance of closest 

approach of the field point s, from Sp.  Previous investigators116,122 have also shown that Φα 

varies slowly near Sp.  (The subscript, α, indicates the mobile ion species present in solution.)  

Thus, we can approximate w(y) in Eq. (B12) with 

  ∑=
α

αα ξσ )13()'()( Bxyw
kk  

where 
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  )15()( Bex kk
+Φ∇= αα

ξ  

Also define vj(∆) = v(xj + ∆nj) and  
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kS
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Eq. (B12) can then be written 
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Because the present work is restricted to the TDL approximation, this can be simplified 

further.  Expanding U in Eq. (B16-17) to first order terms in x’ and ∆, 
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where the U’s have been defined previously, δjk is the Kroneker delta, 
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and r  = x – xj.  Eqs. (B19-B22) along with the U’s defined previously are computed at the 

start of the calculation and saved for later use.  In order for Eq. (B18) to be strictly valid, we 

should have |x’nk - ∆nj| << |xj – xk| or b ≤ |xj – xk|.   (The less restrictive latter condition 

comes from the fact that the most significant terms in the volume integrals occur when |x’nk - 

∆nj| is substantially less than b).  Although this condition is readily satisfied when platelets j 

and k are far apart, when applied to nearest neighbors, it places a restriction on how large N 

can be set.  If Stot represents the total surface area of Sp, it straightforward that the maximum 

N is given by 

)23(/ 2
max BbSN tot≈  

Provided b is chosen sufficiently large that equilibrium ion densities are negligible for 

x’ > b, the upper limit on the dx’ integrations in Eq. (B17) can be extended to infinity.  With 

the additional definition 
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Eq. (B17) can be written 
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Being particularly careful with regards to the self (j = k) terms, this can be rearranged to give 
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The first term on the rhs of Eq. (B25) represents the value in the limit of an infinite flat plane.  

For this reason, it is convenient to define 

  )28()(2)()( BTgv jjjj
fp

j ∑ ⋅∆=∆
α

αα ξ  

Employing the same supervector-supermatrix notation employed with regard to v0(s), Eq. 

(B26) can be written 
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On Sp, v(0) = 0.  Also, v(fp)(0) = 0 since gαj(0) = 0.  Solving Eq. (B29) for f  

  [ ] )30()1(1)0( BTUf ∑ Γ⋅⋅+Γ−= −

α
αα  

Substituting this into Eq. (B29) yields a relatively simple expression for v(∆) 

  )31()()( )1(1)( BTUWvv fp  Γ⋅⋅⋅∆−∆=∆ ∑−

α
α  

The second term on the rhs of Eq. (B32) represents a correction in the perturbed velocity field 

that accounts, to first order, for the finite dimensions of the model particle.  Other 

investigators116 employing entirely different means have obtained the first term (v(fp)(∆)) of 

Eq. (B32).  It is straightforward, but tedious, to generalized Eq. (B32) to include second order 

terms in ∆ and/or z’, but the resulting fluid velocities are either indistinguishable from those 

using Eq. (B32) (for b << L) or yield unphysical fluid velocities as the TDL approximation 

breaks down.  On physical grounds, one would expect a second order algorithm to extend the 

accuracy of the numerical method to smaller particles, but a whole array of other 

approximations evidently lead to significant error.  These possibly include the manner the 

volume integrations are handled, the approximation that ∇∇∇∇Φα is constant in the double layer, 

discretization errors imposed by the limitation of Eq. (B23), and others.  Since dealing with 

of all these approximations substantially complicates the algorithm and serves to defeat the 

objective of the TDL approximation in the first place, extending the algorithm beyond first 

order in ∆ and x’ was not pursued. 

 In summary, the total fluid velocity above platelet j can be written 

   )32()()( )( Bhvv j
fp

jjT ∆+∆=∆  
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where 

  )33()1(1 BTUWdh
j

jj   Γ⋅⋅⋅−= ∑−

α
α  

In Eq. (B32), vj
(fp)(∆) exhibits a complex and nonlinear variation in ∆ whereas the latter term 

varies linearly with ∆ (hj is a constant vector).  

Appendix C:  Treatment of ΦΦΦΦαααα in the TDL Regime 

 The procedure of O’Brien and coworkers116,117 shall be followed in which the 

boundary condition on Φα on Sp is replaced with revised boundary conditions on a new 

surface, Sdl, which lies outside the double layer of the model particle.  In the present work, Sdl 

is defined to enclose Sp plus a layer of fluid of thickness b.  For large particles of smallest 

linear dimension L, it is assumed b << L.  This procedure is possible since Φα varies 

gradually over distances of order b.122  By moving the boundary outward, the volume 

integrations (Eq. (A24)) can be neglected and the BE calculation of Φα and ∇∇∇∇ΦΦΦΦαααα simplifies to 

involve only surface integrations.  However, considerable care must be exercised in defining 

revised boundary conditions on Sdl.   

 Consider a roughly disc shaped triangular volume element, Vj, of inner surface area Sj, 

outer surface area, Sj
dl, and thickness b as shown in Figure 2.  The inner and outer surfaces lie 

on Sp and Sdl, respectively.  (Sj represents the area of (inner) surface platelet j.)  Some useful 

identities are: nj and njk are the outward unit normals to platelet j and its k-th neighbor (k=1,2, 

or 3); cj1(x’) through cj3(x’) define the three side vectors of platelet j at normal distance x’ 

from Sj; and t j1 through t j3 represent the outward unit normals to the three side faces of Vj.  

(The t jk vectors are approximated as the cross product of (nj + njk) and cjk(0) followed by 

normalization.)  For large model particles, ion current fluxes, jα, for ion α defined by Eq. (6-
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7), vary gradually tangent to Sp, but rapidly in the normal direction.  Because the particle is 

impermeable to the passage of fluid and ions, j αΑn vanishes across Sp, but not Sdl or the side 

faces of Vj.  Let jα(xj, b) denote the current density of the α ion across Sdl at platelet j 

(assumed uniform), and jα(cjk,x’) the current density across the k-th side of Vj at height x’ 

(assumed uniform).  Integrating Eq. (6-7) over Vj and applying the divergence theorem, 

  ∑ ∫
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where cjk(x’) = |cjk(x’)|.  Since the fluid is incompressible, ∇∇∇∇ΑvT is also zero.  (vT is total fluid 

velocity defined by Eq. (B4)).  Analagous to Eq. (C1), we can write 
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It is useful at this time to define the “tangential divergence”, ∇∇∇∇tΑΑΑΑ, of an arbitrary vector field, 

ωωωω, 
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The vector field, ωωωω, is assumed to vary slowly tangent to Sp, but may vary rapidly normal to 

Sp.  Also, it shall be assumed we have values for ωωωω above the individual platelets, and 

approximate 

   [ ] )4()',()',(
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1
)',( Cxxxxxc jkjjk ωωω +=  

where xjk is the centroid of the k-th neighbor of platelet j.  The quantity cjk(x’) varies only 

slightly with x’.  Also, the most significant overall contributions for the vector fields of 
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interest in the present work are those near Sp.    Consequently, cjk(x’) is approximated with 

cjk(0) in Eq. (C3).  With this approximation and Eq. (C4), Eq. (C3) becomes 

 [ ]∫∑ +⋅=⋅∇
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 From Eq. (7) and the previous development, Eq. (C1) can be written 
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where (∇∇∇∇ΦΦΦΦα)j
dlΑnj is the normal derivative of Φα for platelet j on Sdl, and ξξξξαj is defined by Eq. 

(B15).  From Eqs. (B19), (B27), and (B32), 
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where gγj(x’) is defined by Eq. (B26).  Substituting these into Eq. (C6), we obtain a usable 

expression for expressing the boundary condition on Sdl. 
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The second term on the rhs of Eq. (C8) reflects the influence of nonequilibrium fluxes within 

the double layer on the boundary condition of Φαj.  Making use of the definition of the 

“tangential divergence” given by Eq. (C5), it can be computed numerically prior to the 

calculation of revised estimates of the surface components, Φαj.  From Eq. (A23), (employing 

the same supermatrix notation of Appendix A), the surface components are given by 
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CpCAI e
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where A and C involve surface integrals (Eq. (A11)) over surface platelets of Sdl, and the 

components of pα
e are given by Eq. (C8).  Once these are determined, we need to know 
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∇∇∇∇ΦΦΦΦα(s) for field points, s, within the double layer.  Since Φα and ∇∇∇∇ΦΦΦΦα vary slowly over 

length scales of magnitude b, ∇∇∇∇ΦΦΦΦα(s) within the double layer can be determined by 

straightforward interpolation of ∇∇∇∇ΦΦΦΦα(s) for field points, s, just outside the double layer.  They 

can be written (6-14) 
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where 
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∇∇∇∇s is the gradient operator that acts on “field” variable, s, F and F’ are defined by Eqs. (A7) 

and (A8).  Since s lies close to Sdl, special “mirror image” methods need to be employed to 

compute ∇∇∇∇ΦΦΦΦα(s) with accuracy.  Since these are straightforward and have been discussed in 

detail in Appendix A of reference 14, they shall not be discussed further here. 

Appendix D: Total force exerted by a TDL particle on the fluid 
 
 Consider a large model particle with surface of hydrodynamic shear, Sp.  External to 

Sp lies surface Sdl that completely encloses Sp plus the ionic double layer that surrounds it.  

Since the total charge due to the particle, counterions, and coions within Sdl is zero to a good 

approximation, the total force exerted by the particle on the fluid can be written31 

  )1(DdSfdSnz
dldl S

T

S

TT ∫∫ =⋅−= σ  

where σσσσT is the hydrodynamic stress tensor, n is the local outward unit normal to Sdl, and fT = 

-σσσσT≅ n.  The m, n component of σσσσT can be written 

   )2()()( Dvvp mTnnTmmnTmnT ∇+∇+−= ηδσ  

where pT is the local pressure, δmn is the Kronecker delta, and vT is the local fluid velocity.  
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The disadvantage of Eq. (D1) is we need to know the local pressure in addition to the fluid 

velocity on Sdl.  Although this can be computed by a BE procedure similar to that employed 

in the determination of vT,149 it can be avoided by following a slightly different procedure 

based on the work of Teubner.150  Consider the differential form of the Lorentz Reciprocal 

Theorem48,58 applied to the domain of an incompressible fluid where external fluid forces (w 

in Eq. (6-11)) can be ignored. 

   )3()'()'( Dvv TT σσ ⋅⋅∇=⋅⋅∇  

where vT and σσσσT denote the actual fluid velocity and stress fields of our model particle, and  

v’ and σσσσ’ denote some corresponding “trial” fields that also satisfy Eqs. (6-11) and (6-12) 

with w = 0.  Assume we are in a frame of reference where vT and v’ vanish far from the 

model particle.  Integrate Eq. (D3) over the fluid volume exterior to Sdl and employ the 

divergence theorem. 
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For the trial field, choose an uncharged rigid model particle with a surface of hydrodynamic 

shear corresponding to Sdl and translating with speed u0 in direction k.  We have 

    )5(|' 0 Deuv kSdl
=  

    )6(' )0( Dff k=  

where ek is the unit vector in direction k.  Because of Eq. (D5), v’ can be taken outside of the 

integral on the left hand side of Eq. (D4).  From the definition of zT given by Eq. (D1) 

   )7(
1 )0(

0

DdSfv
u

ez k

S

TkT

dl

⋅=⋅ ∫  

In order to calculate the total force zT; vT on Sdl, and also f(0k) must be known.  Procedures 

leading up to and including Eq. (B10) are used to compute the components of f(0k) (k = 1, 2, 3) 

at the beginning of the calculation.  To calculate vT on Sdl, Eq. (B32) is used.  In turn, this 
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requires ∇∇∇∇ΦΦΦΦα and Λ0. 
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Chapter 7 

 

Summary 

 

             A bead model of a weakly charged peptide is developed to determine its 

electrophoretic mobility.  Each amino acid is represented by two beads: the backbone bead 

radius is set to one half of the nearest neighbor Cα- Cα distance, and the radius of the side 

chain bead is chosen on the basis of the diffusion constant of the free amino acid. Expressions 

to calculate the mobility of a peptide are derived.  The bead model works as well as semi 

empirical and boundary element models in explaining experimental mobilities.  

                For highly charged peptides, the ion relaxation effect that reduces the absolute 

mobility must be considered.  The ion relaxation effect is accounted by correcting 

“unrelaxed” mobility on the basis of model size and its average electrostatic surface potential, 

or ς potential.  Correction factors are estimated using those of spheres and are readily 

determined.  In addition, a more accurate account is taken of the finite size of the beads 

making up the structure.  This improvement makes the bead model applicable at higher salt 

concentrations and/or model macromolecules made up of larger subunits. 

               In addition to the development of a peptide bead model, a spherical gel-layer model 

of a “hairy” surface colloid particle is extended to include charge regulation and applied to 

polystyrene sulfonate. The actual charge state of the particle depends on the intrinsic pKa of 

the acidic group on the surface, its nearby charged residues, the salt concentration, salt type, 

and pH. Free energy considerations coupled with Poisson-Boltzmann theory are used to 

estimate how the local electrostatic environment of a charged gel layer alters the local pKa of 

the acidic groups. Based on this modulation of the charge state, the mobility and viscosity 
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modeling give a reasonable prediction of the structural and charge properties of the gel layer 

of polystyrene sulfonate.  

          Finally, a boundary element approach is applied to the electrophoresis of rigid 

macroions in the thin double layer limit. This BE-TDL method should be useful in modeling 

large particles of arbitrary shape.  In the present work, a compact, high molecular weight 

DNA-spermidine complex is examined.  To reconcile experimental and model mobilities, 

95% of the spermidine is predicted to the “specifically bound” to DNA.  Further 

consideration of the validity of PB equation in the presence of complex salt, such as trication 

spermidine, will make this approach more accurate.  
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