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BEAD MODELING OF TRANSPORT PROPERTIES OF MACROMOLECULES IN FREE 

SOLUTION AND IN A GEL 

by 

HONGXIA PEI 

Under the Direction of Dr. Stuart Allison 

ABSTRACT 

On the bead modeling methodology, or BMM, a macromolecule is modeled as a rigid, non-

overlapping bead array with arbitrary radii. The BMM approach was pioneered by Kirkwood and 

coworkers (Kirkwood, J.G., Macromolecules, E.P. Auer (Ed.), Gordon and Breach, New York, 

1967; Kirkwood, J.G., Riseman, J., J. Chem. Phys., 1948, 16, 565) and applied to such transport 

properties as diffusion, sedimentation, and viscosity. With the availability of computers, a 

number of investigators extended the work to account for the detailed shape of biomolecules in 

the 1970s.  

A principle objective of my research has been to apply the BMM approach to more complex 

transport phenomena such as transport in a gel, electrophoresis (free solution and in a gel), and 

also transport in more complex media (such as the viscosity of alkanes and benzene). Variables 

considered by the BMM include the number of beads (N), the radii of the beads, net charge and 

charge distribution, conformations, salt type, and salt concentration. The BMM has been 

extended to: (1) account for the existence of a gel; (2) characterize the charge and secondary 

structure of macromolecules; (3) account more accurately for hydrodynamic interaction (remove 

the orientationnal preaveraging approximation of hydrodynamic interaction); (4) study the effect 



 
 

of ion relaxation for particles in arbitrary size, shape, and charge; (5) consider the salt 

dependence of electrokinetic properties; (6) account for the formation of possible complex 

between guest ions and BGE ions. We also did diffusion constant measurement by NMR for 

amino acids and short peptides in 10%D2O-90% H2O at room temperature and applied to our 

modeling study by BMM.   

 

INDEX WORDS: Agarose gel, Bead model, Complex formation, DNA, Effective  medium,  

      Hydrodynamic interaction, NMR, Peptide, Relaxation, Salt dependence. 
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Chapter 1 

Introduction 

1.1 Introduction of Electrophoresis 

The technique of electrophoresis is of considerable value in chemistry, molecular biology, 

and colloid science because it is both simple to implement (application of a voltage across a gel 

or capillary) and powerful in its ability to separate a mixture of molecules or colloidal particles 

(1).  This separation occurs because of differences in charge, charge distribution, size, and/or 

shape of the constituents that are present.  When a charged particle is placed in a constant 

external electric field, e, its electrophoretic mobility, μ (average drift velocity/|e|), will depend on 

the balance of electrical and hydrodynamic forces that act on it.  The central problem of 

electrophoresis theory is to determine these forces for particular model systems.  This theory as 

applied to a single particle is made difficult because of the “electrophoretic effect” 

(hydrodynamic backflow on the particle produced by the motion of its ion atmosphere) and the 

“relaxation effect” (distortion of the ion atmosphere of the particle from equilibrium due to the 

presence of a (non-equilibrium) external electric and flow field] (2).  To illustrate this, it is 

helpful to review the one system that has been thoroughly investigated, the electrophoretic 

mobility of a uniformly charged sphere. 
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Figure 1-1) A charged particle of arbitrary shape moving in an electric field in salt 
containing mobile ions.  

 

1.2 Other Modeling Methodologies of Free Solution Electrophoresis 

For free solution electrophoresis (no gel support medium present), Henry developed the 

theory for a sphere of arbitrary size that accounted for the electrophoretic effect, but not the 

relaxation effect (3).  Neglecting the relaxation effect is valid for weakly charged particles where 

the absolute surface, or “ζ potential”, does not exceed 25 mV (4), or the absolute electrophoretic 

mobility does not exceed approximately 0.20 cm2/kV sec (5).   Overbeek (6) and Booth (7) 

derived analytical expressions for the free solution electrophoretic mobility of spheres that 

accounted, to lowest order, for the relaxation effect.  A complete treatment of the “free solution” 

problem was not achieved until numerical algorithms were developed first by Wiersema and 

coworkers (2) and later by O’Brien and White (8).   A third complication involves accounting for 

the influence of a gel (if present) on mobility. The extension of the theory of electrophoresis to 

spheres of arbitrary charge in a gel was carried out recently by our group (9).   
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Other simple model geometries have also been considered.  The free solution 

electrophoresis of long cylinders (10-11), weakly (12-13) and highly (14) charged ellipsoids, and 

spheres containing a “hairy” layer on their outer surface (15-17) have also been treated.  

However, more realistic models are needed in biochemistry and molecular biology since 

biomolecules are typically complex in shape and have complex distributions of charge on their 

surface or interior.  In the late 1970’s, detailed modeling of diffusion and sedimentation of 

biomolecules in solution was carried out (18-23).  The solvent is modeled as an incompressible 

Newtonian fluid continuum and the solvent-particle velocities are set equal at their interface 

(“stick” hydrodynamic boundary conditions).  A short time later, a number of groups 

investigating ionic distributions around high molecular weight DNA showed that continuum 

electrostatic theory (in this case, solutions of the nonlinear Poisson-Boltzmann equation) gives 

reasonable electrostatic potentials and mobile ion distributions around DNA provided the mobile 

ions are univalent and small compared to the diameter of DNA (about 2 nm) (24-26).  This 

success has stimulated the use of continuum electrostatic modeling around biomolecules in 

general (27-31).   Detailed modeling of electrophoresis and related electrokinetic transport 

phenomena based on the same continuum representation of solvent and mobile ions requires 

simultaneous numerical solution of the hydrodynamic (18-23) and electrostatic (27-31) problems.  

When the relaxation effect is also included, an ion transport equation must also be solved for 

each mobile ion species present (6-11,14).   Based on the Boundary Element, BE, approach for 

both hydrodynamics (23) and electrostatics (28), a numerical algorithm has been developed (32) 

and applied to the free solution electrophoresis of a number of systems including proteins 

(5,33,34), nucleic acids (35), and irregular silica sols containing a “hairy” layer on their outer 
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surface (36).  In this approach, a closed molecular surface, or more precisely the surface of 

hydrodynamic shear, is represented as a series of flat, interconnected triangular plates.  Arbitrary 

fixed charge distributions can be placed within this closed surface.  The BE approach discussed 

above yields mobilities in quantitative agreement with experiment when realistic models are used 

that account for the detailed size, shape, and charge distribution of the actual biopolymer.  These 

include a number of proteins (5, 33, 34) and short duplex DNA in alkali halide salt solutions (35).    

The BE method as applied to electrokinetic transport has been reviewed previously (37).   

A disadvantage of the BE approach is that it is time consuming from a computational 

standpoint (35).  This has made it impractical to apply this approach to duplex DNA longer than 

about 100 bp or to flexible structures that require sampling of multiple conformations.  In order 

to deal with this problem, a faster and more efficient method has been developed where the basic 

structural unit is a spherical bead of arbitrary radius and charge (38-40).  The model structure 

consists of an arbitrary, non-overlapping array of beads.  In this approach, the electrophoretic 

effect is accounted for explicitly, but not the relaxation effect.  For globular biomolecules, 

however, it is possible to correct for the relaxation effect using the corresponding correction for 

spheres (40).  A second approximation involves “orientational preaveraging” of hydrodynamic 

interaction.  The consequences of this approximation were discussed previously (38) and it was 

concluded that it results in an overestimation of μ by at most several percent. 

1.3  Objectives of My PhD Study 

The objectives of my PhD study are threefold.  First, further develop the bead method 

applied to free solution electrophoresis discussed above.  This will represent a generalization of 
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previous work (38-42) where (1) account is made of the possible presence of a gel; (2) 

characterize the charge and secondary structure of macromolecules; (3) account more accurately 

for hydrodynamic interaction; (4) study the effect of ion relaxation for particles of arbitrary size, 

shape, and charge; (5) consider the salt dependence of electrokinetic properties; (6) account for 

the formation of possible complex between guest ions and BGE ions. The technical details of the 

bead modeling methodology, BMM, of free solution electrophoresis are placed in the next 

section of this chapter. The improvements of the BMM carried out by our group are discussed in 

detail in subsequent chapters. The particles in interest are peptides, DNA fragments, 

nanoparticles, alkanes, etc. Second, apply the BMM to the diffusion constant of a set of amino 

acid, peptides, and DNA fragments (43-45) in free solution and in a gel.  We believe that this 

serves as a convincing demonstration of the accuracy and efficacy of the method.  Third, it shall 

be applied to simulate the free solution viscosity for macromolecules (46-47).  

1.4 Bead Modeling Methodology, BMM 

Bead modeling methodology, BMM, is a numerical method further developed by our group 

to model the electrophoresis of irregularly shaped model particles with an arbitrary charge 

distribution inside. In the bead modeling methodology, BMM, the solute is represented as a rigid, 

possibly irregularly shaped particle, or rigid bead array, immersed in a continuum incompressible 

Newtonian fluid (the solvent) of viscosity η0.  Solute-solvent interactions are assumed to arise 

strictly from short range excluded volume repulsions present at the solute-solvent interface.  It is 

also assumed that the solvent obeys the low Reynolds Number Navier-Stokes equation (49,50).  

In most applications of the BMM, solute and solvent velocities are assumed to match at their 
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interface (“stick” hydrodynamic boundary conditions).  In the case of “slip” boundary conditions, 

only the velocity components normal to the interface match and the hydrodynamic stress forces 

at the interface are also assumed to be normal (51). The applications of the BMM model 

discussed in the present work employ “stick” boundary conditions.   

4A) Micromolecules Modeled by BMM 

 

Figure 1-2)  Schematic of the general bead model.  The model is represented as N beads 
of variable radius, aj, with variable charge, zj, (in protonic units) place at their center.  The 
backbone beads may have side beads.  The beads may touch, but cannot overlap. 

 

The solute is represented as an N bead array and is depicted in Figure 1-2.  Bead J (1 ≤ J ≤ 

N) consists of an inner solid core of radius aJ and an outer fluid surface of radius bJ.  In general, 

these radii can vary from bead to bead.  The outer bead radii do not overlap.  Stick hydrodynamic 

boundary conditions are assumed to prevail on the inner core bead surfaces, but an external 

force/volume, )(xs , may be present in the fluid domain exterior to aJ, but interior to bJ, VeJ.  In 

the present work, it is useful to view )(xs as arising from the short range solute-solvent 

interactions that may represent “solvent breaking” or “solvent stabilizing” influences that arise 
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when the solute is placed in the solvent.  In the present work, it shall be assumed that the solute 

is present in dilute concentration and that solute-solute interactions (interactions between 

different bead arrays) can be neglected.  Outside of the VeJ’s, it is assumed that )(xs can be set 

zero.  The bead array is immersed in a simple shear field with shear gradient γ (in sec-1) and it is 

assumed that 1/γ is long on the timescale of the array’s Brownian translational and rotational 

motions.  It is also assumed that γ is sufficiently small so that deformation of the bead array can 

be ignored and that its average orientation remains isotropic.  Let the bead array translate with 

instantaneous overall velocity, 0u , relative to a center of rotation, d .  Also let the instantaneous 

angular velocity of the entire bead array about d  be denoted by ω , and let Kx denote the 

instantaneous position of the center of bead K. By “instantaneous”, we mean a timescale short 

compared to average translational and rotational displacements of the beads, but long compared 

to the impulsive collision time between beads and solvent.  If point y lies on the fluid/inner core 

surface of bead K and stick boundary conditions hold, then the rigid body particle velocity and 

fluid velocities match at y . 

)11()()()( 0 −−+−+= KKRBM xyxdxxuyv ωω  

In Eq. (1-1) above, “x” denotes the vector cross product.   

4B) Continuum Modeling 

Generally, it is assumed the model peptide is immersed in an incompressible Newtonian 

fluid of viscosity η0 and that this fluid obeys the low Reynolds Number Navier-Stokes and 

solvent incompressibility equations defined by (49,50) 
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)21()()()(2
0 −−=∇−∇ xsxpxv eη  

)31(0)( −=⋅∇ xv  

Above, η0 is the solvent viscosity, v(x) is the local fluid velocity at point x in the fluid, p is the 

local pressure, and se(x) is the electrical force/volume on the fluid. It is also assumed that fluid 

and particle velocities match at the fluid-bead interface (“stick” hydrodynamic boundary 

conditions) and that the peptides were present in the limit of high dilution (inter-peptide 

interactions were ignored).  The hydrodynamic stress tensor at any point in the fluid is given by 

(49,50) 

  )41())()(()()( 0 −∇+∇+−= TxvxvIxpx ησ  

where I  is the 3 by 3 identity tensor and the “T” superscript denotes transpose.  Before 

proceeding with the model development, it will be helpful to review the viscosity theory of a 

Newtonian fluid containing dilute solute particles represented as irregularly shaped (rigid) 

objects. 

The solution, which contains background electrolyte, BGE, in addition to (dilute) peptides, 

is subjected to a constant electric field strength, e.  For a weakly charged array of beads, the 

external force/volume can be approximated (52) 

∑
=

−−=
cN

J
JJe rFheqxs

1

'2 )51(),()( κκ  
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where q is the protonic charge, rJ
’ = |x-xJ| where xJ is the position of the center of bead J, Nc is 

the number of charged beads in the model peptide, F(κ, r) = e-κr/(4πr), hJ is given by Eq. (A28) of 

reference 52, and 

)61(2'
0

2
2 −= ∑ j

j
j

Bw

zc
Tk

qC
ε

κ  

In Eq. (1-6), κ is the Debye-Huckel screening parameter, C = 4π (in CGS units) or 1/ε0 where ε0 

is the permittivity of free space (in MKSA units), εw is the relative permittivity of the solvent, kB 

is Boltzmann’s constant, T is absolute temperature, the sum over j extends over all ionic species 

of concentration cj0 and valence zj’ that make up the BGE.  In the limit of small beads (κaJ → 0 

where aJ is the radius of bead J), hJ appearing in Eq. (3) can be approximated with zJ where zJ is 

the charge (in protonic units) of bead J. For a weakly charged bead array, the equilibrium 

electrostatic potential of bead j, ζj, in the absence of an external electric field is given by (52) 

∑ −= −
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rjk is the distance between the centers of beads j and k, k0(x) = e-x/x, and io(x) = sinh(x)/x.  Also, 

Ajk in Eq. (1-8) represents a single component of an N by N matrix, A.  In Eq. (1-7), Ajk
-1 

represents the jk-th component of the inverse matrix of A, A-1.  Eq. (1-7) is the solution of the 

linear Poisson-Boltzmann equation and for that reason is strictly valid only at low |ζj|.  However, 

finite ion effects are included and Eq. (1-7) can be viewed as a first order approximation of the 

potential for more highly charged systems.   

The charge of a peptide results from the protonation of basic and deprotonation of acidic 

residues and these, in turn, depend on the pKa’s of these groups.  As discussed in the Peptide 

Model section of this chapter, the pKa of a particular bead (bead j), pKaj is divided into an 

intrinsic (high salt) term, pKaj
0, and a term that depends on charge-charge interactions between 

neighboring charge groups in the peptide.  At the level of the linear Poisson-Boltzmann equation, 

the electrical free energy, Gel, of a charge system can be written (29, 31, 53, 54) 

)111(
2 ,

−== ∑ ∑
j kj

jkkjjj
el CzzzqG ζ  

)121(
8
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2
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m
mkjm

w
jk BAXqC
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Suppose bead j is an acidic group.  (A very similar analysis follows for deprotonation of a basic 

group, but is omitted here for the sake of brevity.)  The single molecule free energy change, 

ΔG(HXj -> Xj
-), is related to pKaj by (29, 31, 53, 54) 

)131()(
303.2

1
−→Δ= −
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B

aj XHXG
Tk

pK  



11 

 

 
 

Let the corresponding quantities in the absence of net charge-net charge interactions between 

neighboring groups be written ΔG0(HXj → Xj
-) and  pKaj

0.  Using thermodynamic cycle 

arguments (55), it is straightforward to show 

∑
≠

−+−=
kj

kjjkk
B

ajaj CCz
Tk

pKpK )141()(
303.2

10  

In Eq. (1-14), equate zk to the average charge state of site k at a particular pH. From Eqs. (1-8) to 

(1-11), we can compute Cjk once a conformation is specified.   

      Initially, we do not know what the zk’s are since the pKaj’s are unknown.  As an initial 

estimate, approximate pKak with pKak
0 and then use either Eqs. (1-15) or (1-16) to obtain a first 

order estimate, zk
(1).  If the charge group associated with bead j is acidic, its average charge state 

is taken to be 

)151(
101

10
−

+
−= −

−

aj

aj

pKpH

pKpH

jz  

If the charge group is basic, 

)161(
101

1
−

+
+= − ajpKpHjz  

These are then used on the right hand side of Eq. (1-14) to obtain revised estimates, pKaj
(1), 

for all sites that could potentially bear a net charge.  New charges, zk
(2), are then estimated using 

the pKak
(1)’s and the procedure is repeated until the charges and pKaj’s converge.   
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The following relation was previously derived (52) for the electrophoretic mobility of a 

single (peptide) conformation, μ, 
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Expressions for P1
(j), P2, P3, χ, and other related quantities are given in Appendix B of reference 

52 and shall not be reproduced here.  Suffice it to say that they involve terms similar to Ajk and 

Bjk defined by Eqs. (1-7, 1-8) and are straightforward to compute once a conformation is known. 

What the unknowns in Eq. (1-17) are the dimensionless hydrodynamic forces, gj.  From Eq. (B48) 

of reference 52 (see the same reference for Djk
-1 and ξk), 

)181(
1

1 −= ∑
=

−
k

N

k
jkj Dg ξ  

Once a conformation is generated and its charge state estimated, Eqs. (1-17, 1-18) are used to 

compute μ for a single conformation.  The translational diffusion constant, Dt, is also computed 

using well established methods (22, 56). 

1.5  Outline of the Dissertation 

 In Chapter 2, we are discussing the application of BMM of free solution electrophoresis 

of peptides to characterize the charge and secondary structure. Next, in Chapter 3, we extended 

the BMM to model the free solution electrophoretic mobility of peptides to account for the effect 

of orientationally preaveraged hydrodynamic interaction, OPHI. In Chapter 4, we first developed 

the bead array-effective medium, BAEM, model for the electrophoresis of macromolecules and 
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nanoparticle arrays. Chapter 5 is the brownian dynamics application to DNA diffusion in an 

agarose gel. The DNA fragments are modeled as rods and wormlike chains, and the gel fluid is 

modeled as a cubic lattice. In Chapter 6, we are studying the measurement of translational 

diffusion constants of short peptides by pulse field NMR and their use in structure study of 

peptides. In the last chapter, Chapter 7, we extended the BMM to simulate the viscosity of dilute 

model bead arrays at low shear. 
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Chapter 2 

Bead Modeling Mehodology of Electrophoresis of Peptides to Characterize the Charge 

and Secondary Structure 

2.1   Introduction of Electrophoresis in Free Solution 

In this chapter, we are focused on applying the bead modeling method discussed in previous 

chapter to simulate the free solution electrophoretic mobility of peptides. Capillary 

electrophoresis, CE, has been a powerful and widely used tool in the separation and 

characterization of biomolecules in general (57) and peptides in particular (58-72) over the last 

20 years.  The method is sensitive (requires little sample) and is also powerful in its ability to 

separate biomolecules on the basis of size and conformation.  Most of the peptide studies cited 

previously (58-72) involved free solution capillary electrophoresis, FSCE, under dilute 

conditions.  Under the conditions of FSCE, theoretical modeling at a fundamental level (2,3,6-

8,12) is possible, and that has enabled the investigator to relate experimental electrophoretic 

mobility, μ, to chemico-physical properties such as charge, overall size, and conformation.  

Realistic modeling of peptides pose a particular challenge since the structures are irregular in 

shape and charge distribution whereas much of the fundamental theory is restricted to spherical 

particles with a centrosymmetric charge distribution (2,3,6-8).   

Modeling has been approached differently by different investigators.  Perhaps the most 

widely used are semi-empirical in nature and based on the Offord model (73), and have their 

basis in the mobility relation of spheres (3).  The mobility is usually written in the form μ = A Z/ 

Mα  or A log(Z+B)/Mα, where A, B, and α are constants, Z is the total peptide charge, and M is 
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the molecular weight (58-65,67-69). Related but more complex and sophisticated semi-empirical 

models have been developed which account in more detail for the charge distribution, peptide 

composition, and number of amino acids in the peptide being modeled (67, 69,72).  For small 

peptides, modeling in terms of an “effective sphere” can be very useful in elucidating the 

variation in charge/conformation with pH (66).  The “effective sphere” approach, coupled with 

attention to the detailed charge state of the model particle, has also been applied to globular 

proteins (74).  Without much additional difficulty, this can be generalized to an “effective 

ellipsoid” approach (12) and applied to globular proteins (5,13).   In order to deal in a more 

realistic way with the irregular topography and charge distribution of a peptide or protein at the 

atomic or at least primary structure level,  boundary element, BE, (5, 35) and “bead model” (52, 

75,76) approaches are available.  The latter “bead model” approach is particularly useful when 

multiple conformations need to be sampled as is the case of particular peptides under a variety of 

solvent-buffer-pH conditions. 

In this chapter, we apply the “bead model” method (52, 75,76) in modeling the free solution 

electrophoresis of a number of specific peptides (66,68) in order to illustrate how this approach 

can be used to estimate the pKa’s of specific side groups and also what the influence of 

conformation has on mobility.  This structure based methodology is grounded on fundamental 

electrohydrodynamic theory.  It has previously been applied to 73 peptides ranging in size from 2 

to 42 amino acids and, on average, yields model mobilities in good agreement with experiment 

(52,76).   In these studies, however, few restrictions were placed on the dihedral angles that 

determine the overall conformation of model peptides.  As discussed in the next section, detailed 

accounting of the peptide conformation is taken at the level of both its primary and secondary 
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structure.  In the present work, more attention is given to possible secondary structural 

characteristics of the model peptides.   In principle, the pKa’s of specific charge groups in 

peptides depend on a variety of factors including their local environments within the peptide (29-

31,53,77,78).  In this chapter, we follow a straightforward extension of the approach of Lee et al. 

(78) of separating the environmental effects of charge-charge interactions from other interactions 

in estimating the pKa’s of charge groups.  The electrostatics is solved at the level of the linear 

Poisson-Boltzmann equation in which the finite size of the subunits is accounted for.  In addition, 

the effect of ion relaxation (distortion of the charge distribution from equilibrium) on mobility is 

accounted for to lowest order (52). 

2.2 Peptide Modeling 

 

Figure 2-1) Peptide Bead Model.  Shown in this example is the 4 amino acid peptide, Gly-Gly-
Arg-Ala.  Each amino acid is represented by 2 beads, a backbone and a side bead.  The coloring 
scheme of the beads is: N-terminal, green; C-terminal, yellow; interior backbone, dark grey; 
uncharged side, light grey, basic side, red; acidic side, blue.    The commercial program, 
Mathematica 6.0, is used to construct this Figure. (Particular use is made of the graphics 
command, “Sphere”.) 

 

As shown in Figure 2-1, a peptide made up of N’ amino acids is modeled as N = 2N’ 

beads with each amino acid represented by two touching beads.  One of these is a “backbone” 
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bead of radius 0.19 nm and the other bead, representing the “side” bead, is of variable radius.  

This gives a distance between neighboring touching backbone beads of 3.8 nm that reproduces 

the Cα to Cα distance in peptides (79).  The initial radius of a side bead depends on the amino 

acid being represented and whether it is interior or at one of the ends of the chain.  The 

hydrodynamic radius, Rh, of a free amino acid is defined in terms of its translational diffusion 

constant, Dt 

)12(
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where kB is Boltzmann’s constant, T is absolute temperature, and η is the solvent viscosity.  

These have been measured for all amino acids and have been reviewed previously (80).  When 

free amino acids condense to form peptides, a single water molecule is released for each amino 

acid that is added to the peptide chain, and a van der Waals volume, δv = 0.0186 nm3, is lost 

(76,81).  If a small molecule with hydrodynamic radius Rh loses volume δv, the resultant 

hydrodynamic radius, Rs, can be approximated (76) 
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For an “interior” amino acid, we set δv = 0.0186 nm3 and for an end amino acid, half this 

amount.  Resulting Rh and Rs’s for all amino acids are given in Table 2-1.  Since each amino acid 

is modeled as a dimer of two touching beads with one (the backbone bead) having a radius of 

0.19 nm, it is also necessary to know what the radius of the side bead, as, has to be to give a 



18 

 

 
 

hydrodynamic radius of Rs.  These radii are given in Table 2-1 and are computed using well 

established methodologies in bead hydrodynamics (22,56).   

Table 2-1. Radii (in nm) for the Amino Acids 
 

Amino acid Rh Rs (int) Rs 
(end) as (int) as (end)  
Ala(A) 0.266 0.243 0.255 0.174 0.192 
Arg(R) 0.360 0.348 0.354 0.312 0.319 
Asn(N) 0.298 0.280 0.289 0.228 0.239 
Asp(D) 0.302 0.285 0.294 0.234 0.246 
Cys(C) 0.286 0.267 0.277 0.210 0.224 
Gln(Q) 0.323 0.308 0.316 0.264 0.273 
Glu(E) 0.314 0.298 0.306 0.251 0.261 
Gly(G) 0.232 0.200 0.217 0.0818 0.127 
His(H) 0.349 0.336 0.343 0.298 0.306 
Ile(I) 0.324 0.309 0.317 0.265 0.275 
Leu(L) 0.339 0.326 0.332 0.285 0.294 
Lys(K) 0.369 0.358 0.363 0.323 0.329 
Met(M) 0.308 0.292 0.300 0.243 0.254 
Phe(F) 0.335 0.321 0.328 0.280 0.288 
Pro(P) 0.268 0.246 0.257 0.178 0.196 
Ser(S) 0.276 0.255 0.265 0.192 0.207 
Thr(T) 0.304 0.287 0.296 0.237 0.248 
Trp(W) 0.350 0.337 0.344 0.299 0.306 
Tyr(Y) 0.357 0.345 0.351 0.308 0.316 
Val(V) 0.332 0.318 0.325 0.276 0.284 

 

2.3 Determine the φ, ψ Angels and Conformations 

Due to the rigidity of the peptide bond unit, the conformation of a peptide chain can be 

accurately defined by a succession of dihedral angles, {φk, ψk} (82-84).  For a given amino acid 

in a peptide that is in a particular secondary structural motif, which shall be referred to as the 

SSM, specific (φ, ψ)’s, or ranges thereof, can be identified. In a right handed α helix, for 

example, (φ, ψ) = (-57°, -47°) or (-1.00, -0.82) where the latter set is in radians.  (In the present 
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work, we follow the post 1969 convention of defining the “all trans” conformation of (φ, ψ) = (-

180°, -180°).  In much of the pre 1969 literature, one needs to add 180° to all φ, ψ angles.  For 

more general cases, Ramachandran and coworkers (85) constructed diagrams to represent the 

permitted ranges of (φ, ψ) over which there is little steric overlap.  Similar diagrams that 

accounted more accurately for the actual conformational energies of peptides were constructed 

by Flory and coworkers (86).  For polyalanine in a disordered, or “random” conformation, two 

rather broad regions of (φ, ψ)-space can be identified that represent stable conformationals states 

(see Fig. 3 (p. 253) and Fig. 6 (p. 262) of reference 86).  To a good approximation, one region 

(region 1) consisting of 18.7 % of the allowed (φ, ψ)-space has φ and  ψ falling in the range -2.62 

to -1.05 and -1.05 to -0.70, respectively.  The remaining region (region 2) has φ and ψ falling in 

the range -2.62 to -1.05 and 1.57 to 3.14, respectively.  To mimic this distribution in the 

generation of a specific peptide conformation, a random number, u, uniformly distributed on the 

interval (0, 1) is generated.  If u < w1 where w1 is the weighting probability of region 1 (0.187 in 

the above example), then region 1 is selected for subsequent generation of (φ, ψ).  Otherwise 

region 2 is selected.  Then, two new independent random numbers, v1, v2, are generated and we 

set 

)32(1 −Δ+= nn v φφφ  

)42(2 −Δ+= nn v ψψψ  

where n denotes the region (1 or 2), (φn, ψn) denote the lower bounds on (φ, ψ) for this region, 

and (Δφn, Δψn) the corresponding ranges.  These quantities are summarized in Table 2-2 for a 
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variety of different secondary structural motifs, SSMs.  These are discussed in a number of texts.  

We would like to mention Schulz and Schirmer (82) of the I-turn and Flory (86) for the others.  

For most of these, a single region is sufficient.  It would be straightforward to elaborate on this 

procedure in future study.   

Table 2-2. Secondary Structural Motif (SSM) Parameters 

Type SSM w1 φ1 Δφ1 ψ1 Δψ1 φ2 Δφ2 ψ2 Δψ2 

random R 0.187 -2.62 1.57 -1.05 0.35 -2.62 1.57 1.57 1.57 
glycine G 1.00 -3.14 6.28 -3.14 6.28     
α-helix H 1.00 -1.00 0.00 -0.82 0.00     
β-sheet B 1.00 -2.08 0.00 1.97 0.00     

proline-II J 1.00 -3.14 2.44 1.75 0.69     
I-turn 
(i 1)

T 1.00 -1.13 0.31 -1.01 0.76     
I-turn 
(i 2)

U 1.00 -1.44 0.31 -0.25 0.88     
trans X 1.00 -3.14 0.00 -3.14 0.00     

 

Once the (φ, ψ) angles are specified, a unique conformation can be generated using the 

rotation matrix approach of Flory (86) and employed in previous work (52,76).  Consider the 

generation of a particular conformation and suppose 2k beads (representing k amino acids) have 

been generated.  To add the next amino acid, tentative (φk+1, ψk+1) are generated following the 

procedure described in the previous paragraph.  Rotation matrices are then used to tentatively 

place beads 2k+1 (backbone) and 2k+2 (side) at possible positions in the growing chain.  If the 

new backbone bead overlaps any other backbone bead, (φk+1, ψk+1) is rejected and a new set of 

dihedral angles is generated.  In our work, this strict approach was applied to all beads.  To 

account for the possibility that side groups are frequently flexible and can possibly adopt a more 

compact conformation in a peptide relative to a single amino acid free in solution, some degree 
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of “shrinkage” of the side beads is allowed in the present work.  In the event of side bead overlap, 

the side bead (or beads) is (are) tentatively shrunk to the point overlap is eliminated keeping it 

(them) just touching its (their) associated backbone bead(s).  If a tentative side bead radius 

exceeds the lesser of the current bead radius or a*, the conformation and bead radius is accepted.  

Otherwise the (φk+1, ψk+1) set is rejected and a new set of dihedral angles is generated.  Setting a* 

to a large value leads to our earlier approach of not allowing any shrinkage.  In the present work, 

a* is usually set to 0.1 nm.  This procedure is continued until the entire peptide is generated.  It 

should be emphasized that not shrinking the backbone beads leads to preservation of the overall 

conformation of the model peptide. 

 

Figure 2-2) Peptide bead model for the 15 amino acid peptide, DDALYDDKNWDRAPQ.  
The 6th through 12th amino acids are in a α-helical conformation and the end groups are in 
random conformations.  Each amino acid is represented by 2 beads, a backbone and a side 
bead.  The coloring scheme of the beads can be seen in Figure 2-1. 

 

Shown in Figure 2-2 is a sample conformation of the 15 subunit peptide, 

DDALYDDKNWDRAPQ which shall be called #4 following the convention of reference 68.  In 

generating this particular conformation, the SSM parameters were set to 

RRRRRHHHHHHHJRR, or R5H7JR2 for short.  As discussed elsewhere (68), the central 7 
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residues, DDKNWDR, are likely to be in a helical conformation and the helix breaking proline 

forces the (φ, ψ) angles of the preceding amino acid into the SSM we call J (86).  It is not being 

asserted that the solution conformation of #4 is that shown in Figure 2-2, but only that this 

represents a plausible structure.  One of the objectives of the present study is to combine 

modeling with electrophoretic mobilities to identify possible solution structures.   

2.4   Characterizing the Charge and Secondary Structure of Peptides  

We applied the “bead model” method (52,75,76) in modeling the free solution electrophoresis 

of a number of specific peptides (66, 68) in order to illustrate how this approach can be used to 

estimate the pKa’s of specific side groups and also what the influence of conformation has on 

mobility. This structure based methodology is grounded on fundamental electrohydrodynamic 

theory.  Once a conformation is generated, it is necessary to determine the charge state of the 

peptide at a particular pH under specific solvent/buffer conditions.  Let pKaj correspond to the 

proton disassociation constant of bead j in the peptide.  This includes the N- and C- terminals 

which are backbone beads, as well as the side beads of acidic or basic amino acids. Its average 

charge state zj can be calculated by Eqs. (1-15) if the charge group associated with bead j is 

acidic (Y, C, D, E, C-terminal) or Eqs. (1-16) if the charge group is basic (H, K, R, N-terminal). 

A number of factors determine pKaj (29-31, 53, 77).  In the present work, net charge-net 

charge interactions between the group/amino acid of interest and neighboring groups are 

separated from other factors where the contribution to pKaj from these “other factors” are lumped 

in the term pKaj
0

.  Since net charge-net charge interactions are effectively eliminated by solvent 

screening in the limit of high salt, it is useful to view the pKaj
0’s as corresponding to the “high 
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salt” acid disassociation constants.  It should be emphasized that they are not the pKa’s of the 

free amino acids.   In principle, pKaj
0 depends not only on the amino acid, solvent, and buffer; 

but on the details of the primary and secondary structure in the vicinity of the group/amino acid 

of interest (29-31,53,77).  Following Nozaki et al. (87), and Antosciewicz et al. (30), they shall 

be approximated with average values of charged amino groups in peptides:  3.8 (C-terminal), 7.5 

(N-terminal), 12.0 (R), 10.4 (K), 9.6 (Y), 8.3 (C), 6.3 (H), 4.4 (E), and 4.0 (D).  These values 

represent averages and may lead to inaccurate pKaj’s in particular cases.  Eq. (1-14) summarizes 

how charge-charge interactions contribute to alter pKaj.   

Since the majority of the peptides reported in this work are semi-flexible, many 

conformations are generated (typically 300 to 1000) and the average mobility, μ, is computed.  

In addition, the correlation of μ with Dt and net charge, Z, with Dt is also examined.   

2.5  Test the Accuracy of Bead Modeling Methodology  

The BMM discussed in chapter 1 has firstly been applied to characterize the charge and 

secondary structure of peptides. In order to test the accuracy of the methodology, 73 peptides 

ranging in size from 2 to 42 amino acids are studied by BMM in the first step. On average, it 

yields model mobilities in good agreement with experiment (52,76).   The result is shown in 

Table 2-3 and Figure 2-3. In these studies, however, few restrictions were placed on the dihedral 

angles that determine the overall conformation of model peptides.  In discussion below, detailed 

accounting of the peptide conformation is taken at the level of both its primary and secondary 

structure.  More attention is given to possible secondary structural characteristics of the model 

peptides.   In principle, the pKa’s of specific charge groups in peptides depend on a variety of 
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factors including their local environments within the peptide (29-31,53,77).  In this section, we 

follow a straightforward extension of the approach of Lee et al. (78) of separating the 

environmental effects of charge-charge interactions from other interactions in estimating the 

pKa’s of charge groups.  The electrostatics is solved at the level of the linear Poisson-Boltzmann 

equation in which the finite size of the subunits is accounted for.  In addition, the effect of ion 

relaxation (distortion of the charge distribution from equilibrium) on mobility is accounted for to 

lowest order (52). 

Table 2-3. Mobilities of 73 Peptides 

# aa Sequence zT μexp μnr
 μr

 

2 DD 0.694 .103 .122 0.120 
2 FD 0.773 .130 .121 0.119 
2 EE 0.769 .125 .120 0.118 
2 GG 0.818 .217 .205 0.197 
2 AA 0.818 .193 .174 0.168 
2 PG 0.818 .184 .182 0.176 
2 VV 0.817 .154 .124 0.122 
2 FG 0.818 .152 .145 0.142 
2 FA 0.817 .149 .138 0.135 
2 FV 0.817 .139 .120 0.118 
2 FF 0.817 .128 .115 0.113 
2 FL 0.817 .133 .123 0.120 
2 LL 0.817 .146 .131 0.128 
2 WW 0.817 .110 .114 0.112 
2 YY 0.817 .121 .111 0.109 
2 MM 0.817 .139 .142 0.139 
3 AAA 0.888 .154 .154 0.150 
3 SSS 0.884 .132 .148 0.144 
3 FFF 0.886 .104 .0998 0.0982 
4 AAAA 0.913 .139 .135 0.132 
4 KKKK 4.380 .330 .439 0.341 
5 AAAAA 0.921 .123 .122 0.120 
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5 KKKKK 5.315 .330 .472 0.346 
5 YGGFL 0.918 .0975 .0934 0.0921 
5 YGGFM 0.921 .095 .096 0.095 
5 RPPGF 1.888 .184 .203 0.193 
9 AAGIGILTV 0.936 .065 .076 0.075 
9 YMDGTMSQV 0.882 .060 .064 0.063 
9 VLQELNVTV 0.918 .066 .063 0.063 
9 RPPGFSPFR 2.777 .197 .213 0.200 
9 AFLPWHRLF 2.831 .166 .196 0.184 
9 ACHGRDRRT 4.467 .265 .336 0.285 
9 VVRRYPHHE 4.628 .274 .315 0.265 
9 ACHGRDRRT 4.467 .99 .336 0.285 
10 VISNDVCAQV 0.895 .058 .061 0.061 
10 KLVVVGADGV 1.882 .131 .132 0.128 
10 KLVVVGAAGV 1.923 .141 .137 0.133 
11 NSFCMGGMNRR 2.718 .183 .184 0.178 
11 RPKPQQFFGLM 2.904 .170 .189 0.178 
11 ACLGRDRRTEE 3.602 .210 .235 0.213 
11 CRHRRRHRRGC 8.480 .297 .546 0.317 
12 DAEKSDICTDEY 1.644 .099 .101 0.100 
12 TTIHYNYICNSS 1.926 .106 .118 0.115 
12 PHRERCSDSDGL-ace 2.739 .195 .176 0.167 
13 ACPGTDRRTGGGN 2.796 .151 .186 0.175 
13 ACPGKDRRTGGGN 3.717 .191 .243 0.219 
13 HMTEVRRYPHHER 6.290 .264 .351 0.282 
13 HMTEVRHCPHHER 6.287 .264 .363 0.290 
14 MGGMNWRPILTIIT 1.926 .102 .112 0.110 
14 SPALNKMFCELAKT 2.838 .157 .166 0.159 
14 HMTEVVRHCPHHER 6.323 .264 .344 0.279 
15 HRSCRRRKRRSCRHR 11.20 .303 .579 0.310 
15 RTHCQSHYRRRHCSR 8.423 .290 .440 0.306 
15 YAEDGVHATSKPARR 4.441 .214 .247 0.224 
16 LAKTCPVRLWVDSTPP 2.857 .151 .150 0.144 
16 VVRRCPHQRCSDSGL 4.734 .208 .241 0.212 
17 LGRNSFEVCVCACPGRD 2.81 .137 .148 0.143 
17 KLVVVGAGDVGKSALTI 2.855 .137 .144 0.139 
17 TPPPGTRVQQSQHMTEV 2.878 .142 .143 0.137 
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17 YKLVVVGAAGVGKSALT 2.903 .142 .147 0.141 
17 YKLVVVGACGVGKSALT 2.907 .143 .146 0.140 
17 YNYMCNSSGMGGMNRRP 2.824 .143 .148 0.143 
17 YKLVVVGAVGVGKSALT 2.903 .151 .144 0.138 
17 YKLVVVGARGVGKSALT 3.883 .178 .191 0.178 
17 PPPGTRVRVMAIYKQSQ 3.887 .182 .191 0.177 
17 DGLAPPQHRIRVEGNLR 4.496 .195 .227 0.205 
17 DGLAPPQHRIRVFGNLR 4.532 .190 .228 0.206 
17 NHQLLSPAKTGWRIFHP 4.772 .194 .239 0.216 
20 VPYEPPEVGSVYHHPLQLHV 3.753 .153 .161 0.152 
25 RTHGQSHYRRRHCSRRRLHRIH

RRQ 
15.29 .290 .543 0.262 

30 FLTPKKLQCVDLHVISNDVCAQ
VHPQKVTK 

6.478 .187 .209 0.189 

39 HQIINMWQEVGKAMYAPPISGQI
RRIHIGPGRAFYTTKN 

7.762 .175 .213 0.189 

39 KQIINMWQEVGKAMYAPPISGQI
RRIHIGPGRAFYTTKN 

7.775 .178 .209 0.186 

42 DRVIEVVQGAYRAIRHIPRRIRG
QLERRIHIGPGRAFYTTKN 

12.17 .208 .292 0.218 

 

 

Figure 2-3)  E versus Z/N for model mobilities. E is a reduced mobility defined by (μexp-μ-
m)/μexp where μexp and μmod are the experimental and model mobilities, respectively. Results of 73 
peptides are included. Unfilled square and filled diamonds correspond to model mobilities with 
and without the ion relaxation correction, respectively. 
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2.6   Results 

Initially, we shall consider the free solution mobility of the simple peptides GGQA, GGNA, 

GGRA, and RPPGF studied by Messana and coworkers (66) over the pH range 2 to 4.  Given 

this pH range, the only variable with respect to charge is the pKa of the C-terminal, pKa(C-term), 

since the N-terminal and arginine side chain (in the cases of GGRA and RPPGF) are expected to 

be fully protonated.  By fitting the mobility data versus pH using an effective sphere model, 

Messana et al. (66) were able to estimate pKa(C-term) as well as an effective hydrodynamic 

radius, Rh, of a given peptide.  For some peptides (GGQA and GGNA, for example) they found a 

single Rh was able to fit the data over the entire pH range studied.  For others (GGRA and 

RPPGF, for example), this was not the case.  The latter two cases demonstrate that conformation 

does influence the mobility of these peptides.  With the bead model methodology, we are able to 

investigate the role of conformation in a more specific manner than was previously possible.   

The experiments were carried out at 25 °C in 80 mM Na+H2PO4
- (η = 0.0089 poise and εw = 

78.3).  Shown in Figure 2-4 to Figure 2-7 are experimental mobilities (diamonds) of GGNA 

along with the results of three different bead models.  In modeling, the “standard” pKa0’s were 

used (pKa(C-term) = 3.80) and 300 different conformations were sampled for the random (solid 

line, SSM = R4) and I-turn (dashed line, SSM = GTUR) secondary structure models.  Due to the 

very narrow allowed (φ,ψ) of the α-helix, only 10 conformations were carried out for this case 

(dotted line, SSM = H4).  Due to different average charge-charge interactions in these models, 

the effective pKa(C-term) are expected to be different for these three models and that is the case.  

The pKa(C-term)’s equal 3.64 (random), 3.37 (I-turn), and 3.40 (helix).   
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Figure 2-4)  Mobility versus pH for GGNA.  Experiments (filled diamonds) were carried 
out in 80 mM aqueous Na+H2PO4

- buffer at 25 °C (66).  Model results are:  random (solid 
line), helix (dotted line), I-turn (dashed line).  In these cases, pKa0(C-term) = 3.80. 

 

From Figure 2-4, the “random” bead model is in good agreement with experiment and the 

pKa(C-term) of 3.64 agrees very well with the value of 3.60 cited by Messana et al. (10).  If, 

however, we examine the α-helix model setting pKa0(C-term) = 4.0 (pKa(C-term) = 3.60), the 

dotted line in Figure 2-4 is shifted to the right and coincides closely with the “random” model 

(pKa0(C-term) = 3.8) in the figure.  Thus, by minor adjustment of the input parameters, it is 

straightforward to identify different models that are consistent with the experimental data in this 

case.  For GGQA, the conclusions are similar.  In order to say anything more specific about the 

solution conformation, additional independent experimental data and modeling would be 

necessary.  If, for example, translational diffusion constants, Dt, of the peptides were measured 

and compared to experiment, it might be possible to further distinguish the solution structure.  

For the above three bead models, for example, we find Dt = 5.31, 5.54, and 6.08 x 10-6 cm2/sec 

for the random, α-helix, and I-turn models, respectively.   
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Figure 2-5)  Mobility versus pH for GGRA.  Experiments (filled diamonds) were carried 
out in 80 mM aqueous Na+H2PO4

- buffer at 25 °C (66).  Model results are:  random, pKa0(C-
term) = 3.80 (solid line); I-turn, pKa0(C-term) = 3.80 (dashed line); I-turn, pKa0(C-term) = 
4.10 (dotted line). 

 

For GGRA, the “random” as well as many other SSM models (H4 for example) yield 

mobilities that lie well below experimental values.   Compact conformations (which have large 

Dt’s) tend to have high |μ|’s.  Thus, models that yield large Dt’s appear to be most consistent with 

experiment in this case.  One such model is the I-turn (SSM = GTUR).  Shown in Figure 2-5 are 

experimental mobilities (diamonds) along with random (solid line, SSM = R4, pKa0(C-term) = 

3.80, pKa(C-term) = 3.34) and two I-turn models with different pKa0(C-term).  The dashed line 

corresponds to pKa0(C-term) = 3.80 (pKa(C-term) = 3.00) and the dotted line to pKa0(C-term) = 

4.10 (pKa(C-term) = 3.29).  In this example, a compact model (containing an I-turn, for example) 

with pKa(C-term) ≅ 3.10 appears to be most consistent with experiment.  Shown in Figure 2-6 

are typical I-turn (left) and random (right) model conformations.  Compared to the typical 

random conformation, a typical I-turn conformation is more compact.  Since steric clashes are 
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more common in the latter case, there is a greater probability of a side bead such as that of 

arginine, R, being shrunk to eliminate overlap.  Physically, this might correspond to a folding of 

the R side group in towards the backbone of the peptide (perhaps to form an internal hydrogen 

bond) relative to a single amino acid in solution.   We are not asserting that the solution structure 

of GGRA necessarily contains an I-turn.  However, in order to obtain model mobilities that 

match experimental ones, the solution conformation must be quite compact and the I-turn model 

discussed above represents a possible structure. 

 

Figure 2-6)  Representative conformations for GGRA.  Shown at left is an I-turn and at 
right a “random” model conformation.  Note the shrinkage of the arginine, R, side group of 
the I-turn model.  See the caption of Figure 2-1 for an explanation of the color scheme.  

 

  To investigate further the relationship between conformation and mobility, the bradykinin 

fragment 1-5, RPPGF, shall be considered (66).  This fragment results from the cleavage of the 

potent vasodilator bradykinin, RPPGFSPFR, that adopts a compact conformation in solution 

stabilized by head-to-tail ionic interactions and intramolecular hydrogen bonds (88).  Less is 

known about the solution structure of RPPGF, but there is evidence that a compact conformation 

adopted in organic solvents gives way to a more unfolded structure in the presence of water (89).  

Shown in Figure 2-7 is the μ versus pH behavior for RPPGF under the same conditions as the 
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peptides considered earlier in this section.  The filled squares represent experimental mobilities 

(66), the open diamonds a random model (SSM = R4), and the x’s an I-turn model (SSM = 

J2RTU).  For the I-turn model, an amino acid preceding a proline is forced into the J secondary 

structure motif (86) and the “TU” at the end forces the chain into a more compact conformation 

(82). As in the case of the peptides considered previously, the only adjustable parameter related 

to charge is pKa0(C-term).  In order to obtain the best agreement between model and experiment, 

pKa0(C-term) = 3.30 for this peptide.  This, in turn, gives pKa(C-term) = 3.11 for the random and 

3.12 for the I-turn model.  The I-turn model is clearly in better agreement with experiment and 

supports a compact average comformation of this peptide in solution.  The corresponding 

average model Dt’s for the random and I-turn models are 4.16 and 4.56 x 10-6 cm2/sec, 

respectively.   

 

Figure 2-7)  Mobility versus pH for RPPGF.  Experiments (filled squares) were carried out 
in 80 mM aqueous Na+H2PO4

- buffer at 25 °C (66).  Model results are:  random (open 
diamonds); I-turn (x’s).  Vertical bars on the model studies represent ranges in μ seen over a 
large number of different conformations.  The parameter, pKa0(C-term), is set to 3.30 for this 
peptide. 
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Figure 2-8)  Mobility versus Dt  for random (diamonds) and I-turn (x’s) models. The 
peptide is RPPGF in 80 mM aqueous Na+H2PO4

- buffer, T = 25 °C, pH = 2. 

 

 It should be emphasized that the model mobilities denoted by the diamonds and x’s in Figure 

2-7 represent the average over many independent conformations (2000 for both random and I-

turn models at each pH in the case of this particular peptide), and that there can be considerable 

variation in μ from one conformation to the next.  The vertical bars in Figure 2-7 denote the 

range of μ seen for each model at each pH.  To demonstrate that compact (high Dt) 

conformations tend to have large |μ|’s and vice versa, it is straightforward to construct a 

correlation diagram between μ and Dt for a large number of different conformations.  The results 

are plotted in Figure 2-8 for the random (diamonds) and I-turn (x’s) models at pH = 2.0.  

Although, on average, the random model has a lower |μ| and Dt than the I-turn model, this is not 

true for specific cases.  Figure 2-8 clearly shows a direct correlation between μ and compactness 
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(Dt), and that specific conformations with the same Dt are expected to have nearly identical μ’s 

regardless of their SSM.   

 As a final illustrative example of how our modeling methodology can be applied to 

electrophoretic mobility data in an attempt to extract information about group pKa’s and 

conformation, several peptides studied by Sitaram an coworkers (68) shall be examined.  The set 

of peptides in this study were chosen on the basis of their propensity to adopt specific secondary 

structures in solution.  The mobility measurements were carried out in aqueous media at 25 °C, 

pH = 3.0, 50 mM Na+H2PO4
-.  Using the numbering scheme of reference 68, we shall consider,  

#4     DDALYDDKNWDRAPQ 

 #14     DDALYDDKNWDRAPQRCYYQ 

and #15 which is identical to #14 except that the C-terminal is amidated (and can bear no charge).  

The experimental mobility  ies of these three peptides is 0.72, 1.17, and 1.52 x 10-8 m2/(V sec) 

for #4, #14, and #15, respectively.  Making the reasonable assumption that #14 and #15 have 

similar average conformations, the difference in μ between them is most likely due to the 

protonation state of the C-terminal in #14.  In order to account for the difference in μ between 

#14 and #15, it is necessary to set pKa0(C-term) quite low.  By setting pKa0(C-term) = 2.8, 

modeling is able to account for the mobility difference between the two peptides and that holds 

for a variety of SSM models.  Also note that the three peptides each contain three aspartic acid 

groups, D, and model mobilities are expected to be sensitive to pKa0(D).  If pKa0
 (D) is set to 

4.10 (which is very close to the “average” value of 4.0 mentioned previously), we obtain the 
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average model μ’s summarized in Table 2-4.  For #4, the second entry (SSM = R5H7JR2) was 

chosen since it represents what is probably the most plausible conformation for this peptide (68) 

with the central residues in a helical form and the proline forcing the preceding amino acid into a 

J secondary motif.   The other two entries (SSM = R15 (all random), and H15 (all helix)) are 

included for comparison.  The limited secondary structure present in R5H7JR2 yields a mobility 

that is not much different from the “all random” model.  The “all helix” model, which is an 

unlikely solution structure and is simply included for the sake of comparison, gives a μ that is 

substantially larger than the other two.  Models R15 and R5H7JR2 give μ’s in good agreement 

with experiment.  A similar strategy is used for #14 and results for three models are shown in 

Table 2-4.  In addition to an “all random” (SSM = R20) and a “partial helix” model with random 

ends (SSM = R5H7JR7), a third “partial helix plus turn” model (SSM = R5H7JTUR5) is included 

as well.  In the case of this peptide as observed previously for GGRA and RPPGF, it appears 

necessary to introduce a turn into the secondary structure in order to account for the large |μ| 

observed experimentally.  The mobility of this last model for #15 is also included in the table.   

Model mobilities for #14 and #15 in the “partial helix plus turn” model are in fairly good 

agreement with experiment.  We are not claiming that this SSM corresponds to the actual 

solution secondary structure of these peptides.  However, we do assert that in order to account 

for the large |μ|’s seen experimentally for #14 and #15, a fairly “compact” average conformation 

is required.  The “partial helix plus turn” model is an entirely plausible one that can account for 

the experimental mobilities. 
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Table 2-4．Model Results for Three Peptides from Reference 68. 

Peptide SSM μ 
#4 R15 0.70 
“ R5H7JR2 0.72 
“ H15 0.93 

#14 R20 0.88 
“ R5H7JR7 0.88 
“ R5H7JTUR5 1.12 

#15 “ 1.42 
 

2.7  Summary 

The principal objective of this study has been to determine, using a fairly detailed modeling 

procedure, what free solution electrophoretic mobilities of peptides can tell us about:  (a) the 

pKa’s of specific side groups, and (b) possible secondary structure.  This structure based 

modeling procedure is firmly grounded in electrohydrodynamic theory.  A peptide consisting of 

N’ amino acids is represented by N = 2N’ beads of variable radii and charge state.  For flexible 

peptides, multiple conformations are generated.  Conformations are obtained by randomly 

generating appropriate sets of (φ,ψ) angles and then using rotation matrices to place the beads 

following the long established approach of Flory (46).  Secondary structure is incorporated into 

modeling by specifying secondary structural motifs, SSMs, associated with each amino acid.  An 

SSM, in turn, limits the allowed range of (φ,ψ) associated with a particular amino acid (82-86).  

In order to estimate the pKa’s of specific charge groups, the approach is taken of separating 

effects of charge-charge interactions from other factors, which are contained in an intrinsic pKa0 

that is left as input parameters for specific charge groups (30, 87).  The mobility of a flexible 
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peptide is estimated by determining the average mobility of a large number (100-5000) of 

independent conformations. 

Modeling is first applied to mobility versus pH data of several small peptides (66) where the 

only adjustable parameter associated with the charge state of the peptide is the pKa of the C-

terminal.  In addition to examining this parameter, the question of possible secondary structure is 

addressed.  For two of the peptides considered, GGNA and GGQA, it is possible to account for 

the observed mobilities using “random” models.  For GGRA and RPPGF, “compact” models 

(possibly involving an I-turn) must be used to match modeling mobilities with experiment.  

Finally, three more complicated peptides ranging in size from 15 to 20 amino acids are also 

examined and characterized (68).   Here also, we find evidence of I-turns or some other 

“compact” structure in 2 of the 3 peptides examined.   

Hopefully, the examples examined in this work will stimulate renewed interest in extracting 

physico-chemical data from mobility experiments. Measurements of electrophoretic mobility 

coupled with measurement of other transport properties such as translational diffusion constants 

would be of particular value.  Our FORTRAN modeling program is still in the developmental 

stage and could be generalized in a number of ways.  Several possibilities could include a more 

refined approach of shrinking overlapping side beads or estimating the pKa’s of side groups.  The 

program, upon request to the authors, will be made available free of charge.  The program is 

“stand alone” and does not require access to particular subroutine libraries, but a FORTRAN 

compiler is necessary.  Computing time varies roughly as (# conformations)*N2.  For 5000 

conformations of the 5 amino acid peptide RPPGF, overall computation time on a single 

processor of a Silicon Graphics 4D-380-SX computer was approximately 1 minute. 
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Chapter 3 

Modeling the Free Solution Electrophoretic Mobility of Peptides: Effect of Orientationally 

Preaveraged Hydrodynamic Interaction 

3.1   Introduction 

Over the past few years, a principal research effort of our lab has been the development of a 

modeling methodology that, on the one hand, is firmly grounded in continuum electro 

hydrodynamic theory at a fundamental level, and on the other hand, can handle models that are 

complex enough to account for the actual charge distribution and conformation of the actual 

peptide (38-50, 42,52,75,76). This methodology continues to evolve and a principle objective of 

the present work is to remove the approximation of orientationally preaveraged hydrodynamic 

interaction, OPHI, (42, 75) in modeling peptide mobilities. The effect of the OPHI 

approximation on peptides is studied by examining 73 peptides ranging in size from 2 to 42 

amino acids.  Experimental (67-69) and model mobilities were compared subject to the OPHI 

approximation (52,76).  In the cases studied here, the OPHI approximation tends to 

underestimate mobilities by about 2 %.  A secondary objective shall be modeling the free 

solution electrophoretic mobility of several insect oostatic, IO, peptides, in different buffer 

systems ranging in pH from 2.25 to 8.1 reported by Solinova and coworkers (90).  This study 

illustrates just how well our modeling methodology can reproduce experimental mobilities with 

little if any adjustment of input parameters. 

The outline of this chapter is as follows.  In Section 2, the details of the improvements of the 

methodology are reviewed first in addition to continuum modeling and then the model peptide.  



38 

 

 
 

In Section 3, we first examine the effect of the OPHI approximation on the mobility of 73 

peptides, and then model and experimental mobilities of IO peptides in several buffer systems 

are compared.   In Section 4, the principal conclusions are stated. 

3.2 Theory of BMM to Remove the Approximation of Orientationally Preaveraging 

Hydrodynamic Interaction, OPHI 

The fluid and the peptides studied in this work are also modeled in the BMM discussed in 

chapter 1 and 2. Starting from the Lorentz reciprocal theorem (49,50) and the singular solution of 

a point charge in a BGE (91), the fluid velocity, v(y) at position y in the vicinity of a N bead 

array translating with velocity u can be written 
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In Eq. (3-1), Φ(y, V) equals 0 if y lies outside of the fluid domain, V, equals 1 if y lies 

inside V, and ½ if y lies on the surface(s) that just enclose(s) V, r = x – y, r = |r|, SJ denotes the 

surface enclosing bead J, VeJ denotes the volume exterior to bead J, and κ is the Debye Huckel 

screening parameter defined by Eq. (1-6).  F is given by 
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U appearing in Eq. (3-1) is the singular solution (91).  It is convenient to break U up into 

“isotropic”, U0, and “anisotropic”, Z, terms since this decomposition makes the preaveraging 
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approximation easier to understand.  In the preaveraging approximation, all terms involving Z 

are simply set to zero.  These terms can be written (91) 
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The quantity, I, that appears in Eqs. (3-3) and (3-5) is the 3 by 3 identity tensor, and κ  is the 

Debye-Huckel screening parameter.  Finally, f(x) represents the hydrodynamic force/area exerted 

by a particular bead on the fluid, and se(x) represents the electrical force/volume on the fluid and 

is given by Eq. (1-5).   
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In the present work as in most, but not all (92, 45) theoretical transport studies of bead 

arrays in an incompressible fluid, it shall be assumed that f(x) is constant over the surface of any 

given bead, J, 

)103()( −=
J

J

S
Fxf  

where FJ is the average hydrodynamic force exerted by bead J on the fluid and SJ is the surface 

area of bead J.  The fluid velocities appearing on the right hand side of Eq. (3-1) are 

approximated with a sum of singular terms (42), 
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where rJ’ = x – xJ, q is the protonic charge, and the cJ’s are constant tensors to be determined 

from the boundary conditions as discussed later.    

In Eq. (3-1), we are free to choose y.  Choose y = xK (center of bead K).  It was shown 

previously (52), 
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xJK = xJ – xK, xJK = | xJK|, and k0(z) = e-z/z.  Also define the following dimensionless integrals 
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     A convenient expansion for F(κ,r) appearing in Eqs. (3-1)and (3-4) is (52) 
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where Yn,m is  a spherical harmonic, * denotes complex conjugation, and r< (r>) is the lesser 

(greater) of x and y, Ωx and Ωy denote the angular coordinates of x and y in some convenient 

frame of reference, and in and kn are modified spherical Bessel functions (93).  The lowest order 

terms are: i0(z) = sinh(z)/z, i1(z) = cosh(z)/z-sinh(z)/z2, i2(z) = sinh(z)/z-3cosh(z)/z2+3sinh(z)/z3, 

k0(z)= e-z/z, k1(z) = e-z(1/z+1/z2), k2(z) = e-z(1/z+3/z2+3/z3).  Eq. (3-16) makes it possible to 

perform the necessary averages over the “isotropic” portion of U exactly. 

     In evaluating Eq. (3-14), consider the J = K terms first where it is straightforward to show 
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For J ≠ K, Eq. (3-16) is used in the isotropic term and the averages can be evaluated 

exactly.  For the anisotropic term, consider a Taylor expansion of Z about xJK = xJ – xK.  

Choosing the origin to be the center of bead J, then x denotes a position relative to xJ.  Below, let 

lower case j, k, m, and n denote Cartesian components 
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In what follows, Z shall be approximated with the first three terms on the right hand side 

of Eq. (3-18).  It can be shown (J ≠ K) 
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where nJK = xJK/xJK, and 
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In Eqs. (3-20,3--21) above, the argument of wn and vn (given by Eqs. (3-8,3--9)) is xJK. For the 

volume average defined by Eq. (3-15), separate the “isotropic” and “anisotropic” terms, 
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Analytical expressions for IJK are given by Eqs. (B16) through (B22) of reference (52) and shall 

not be repeated here.  These terms can be solved to high order in (κaJ)n.  For the second term on 

the right hand side of Eq. (3-22), we shall only consider solutions to order (κaJ)2  which limits 

our results to models with κaJ less than about 0.2.  Define 
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For the final terms on the right hand side of Eq. (3-24), the domain of integration, V, is replaced 

with “all space” for ZJK
as and VP (volume of bead P) for ZJK

P.  It is straightforward to show that 

ZKK
as = ZKK

K = 0.  For the remaining terms, Z(rK’) is expanded following Eq. (3-18) and the 

integrals solved.  However, if only terms to order (κaJ)2 are retained, the only remaining terms 

are ZJK
as

 and ZJK
K.  Eq. (3-22) can be written 
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This completes the evaluation of WJK
(1) and WJK

(2) defined by Eqs. (3-14,3-A15). 

   To determine the cJ appearing in Eq. (3-11), average Eq. (3-11) over SK and set <v(x)>K = μ ⋅ e 

where μ is the electrophoretic mobility tensor.  Since this is true for arbitrary e, 
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We can view the 9 components of WKJ
(1) to be, in turn, particular components of a 3N by 3N 

supermatrix, W(1).  Once a structure is defined W(1) is readily determined.  Furthermore, W(1) is 

invertible and let Y-1 denote the inverse of W(1).  Multiplying Eq. (3-29) by YLK
-1 (a 3 by 3 

matrix made up of elements: (row, column) (3L+1,3K+1) to (3L+3,3K+3) of Y-1) and summing 

over K, 
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Setting y = xK and using Eqs. (3-10) to Eqs. (3-15), Eqs. (3-29) to Eqs. (3-32), Eq. (3-1) becomes 
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Multiplying Eq. (3-34) by mK, summing over K, and solving for μ, 
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Using Eq. (3-42) in (3-34) to eliminate μ, the reduced forces, gJ, must satisfy the series of 

equations 
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The 3N by 3N matrix, D’, formed from the 3 by 3 DKJ’ matrices, is not invertible.  We have, 

however, an additional relation resulting from overall force balance on the bead array (75).   
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where zT is the total charge of the bead array, 
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Multiply both sides of Eq. (3-46) by DKK’ = Tr(DKK’)/3, and then subtract right and left hand 

sides from the right and left hand sides of Eq. (3-43), and defining 
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The resulting set of equations can be written in the form of a 3N by 3N matrix, D, and 3N 

by 3 matrices, ξ and g, 

)503( −=⋅ ξgD  

The matrix, D, is invertible and let D-1 denote its inverse.  Inverting Eq. (3-50), 

    )513(1 −⋅= − ξDg  

yields the reduced hydrodynamic force tensors, gJ.  

  We shall conclude by summarizing our approach for the determination of μ.   Once a 

structure and solution conditions are defined, all terms appearing in Eqs. (3-48) and (3-49) are 

computed using equations given in this section or in previous work (38,52).  D (from Eqs. (3-44) 

and (3-48)) and its inverse are then determined.  Eq. (3-51) is then used to determine the gJ’s.  

Finally, these and other known quantities are used in Eq. (3-42) to determineμ. 

In this chapter, four background electrolytes, BGEs, shall be considered.  In the peptide 

studies of Janini and coworkers (67, 69) the experiments were carried out at 22 °C in 50 mM 

phosphoric acid, H3PO4,  that was adjusted to pH = 2.5 (relative permittivity of the solvent and 

solvent viscosity are taken to be 80.00 and 0.955 cp (= 0.00095 kg/(m s)), respectively).  Using a 

pKa of 2.12 for the first acid dissociation constant of phosphoric acid, the ionic strength, I, is 

estimated to be 35.3 mM.  (The ionic species present are:  3.2 mM H+, 32.1 mM Na+, and 35.3 

mM H2PO4
-.)  In the IO peptide study of Solinova and coworkers (90), three BGEs covering a 

range of different pHs are modeled at 25 °C (relative permittivity of solvent and solvent viscosity 
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are taken to be 78.30 and 0.89 cp, respectively).  What shall be called BGE 1 (to use the 

terminology of reference 90) consists of 50 mM Tris plus 100 mM H3PO4 at pH = 2.25.  This is 

modeled as 55.6 mM H2PO4
-, 5.6 mM H+, and 50 mM Tris-H+ (NH3

+-C(CH2OH)3), which has an 

ionic strength, I, of 55.6 mM.  BGE 3 consists of 50 mM iminodiacetic acid (NH2
+-(CH2CO2H)2) 

at pH = 2.40.  This is modeled as 8.08 mM NH2
+-(CH2CO2H)2, 4.00 mM H+, 11.16 mM NH2

+-

(CH2CO2
-)2, plus 0.92 mM Cl- (I = 12.08 mM).  The purpose of the Cl- is to maintain charge 

neutrality of the solution at this pH.  Finally, BGE 4 consists of 40 mM Tris plus 40 mM Tricine 

(C(CH2OH)3-NH2
+-CH2CO2

- = Tricine- -H+) at pH = 8.1.  This is modeled as 20 mM Tris-H+ 

plus 20 mM Tricine- (I = 20 mM).   Solinova and coworkers also study an additional buffer, 

BGE 2, that shall not be considered here since it is similar to BGE 3.  There is a relaxation 

correction procedure included for these buffer conditions that has been explained in detail 

previously (52).  Due to the low charge of the peptides of interest, however, the relaxation 

correction is small and amounts to less than a 5 % correction. 

3.3   Results 

3A) Test of the Preaveraging Approximation as Applied to Peptides 

 

Figure 3-1) Sample Peptide Model. The 
peptide is YDPAP6 (10 amino acids 
represented by 20 beads) in a “random” 
conformation.  Interior backbone beads and 
side beads are denoted by dark grey and 
white beads, respectively. The terminal 
backbone beads (at the extreme left and right 
of the figure) are denoted by an intermediate 
grey color.  
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We applied the peptide model and the methodology described in the chapter 1 and 2 to 

the electrophoretic mobility of 73 peptides (67,69).  These have been modeled previously, 

subject to the approximation of orientationally preaveraged hydrodynamic interaction, OPHI, 

and model mobilities have been compared with experiment without (76) and with (52) the 

relaxation correction.  A total of 73 peptides are considered ranging in size from 2 to 42 amino 

acids.  Model mobilities without, μmodel, and with, μopa, the OPHI approximation are compared 

with each other and with experimental mobilities, μexp, from references 76 and 52.  Under the 

conditions of the experiment (T = 22 °C and 50 mM phosphoric acid at pH = 2.5), the peptides 

are expected to be largely unfolded.  Consequently, peptides are generated using a “random” 

secondary structural motif (38).  Basically, phi-psi angles are chosen at random and possible 

conformations are accepted or rejected on the basis of steric overlap conditions described 

previously (38).  Typically, mobilities are computed for 100 randomly generated conformations 

and these are then averaged.  Shown in Table 3-1 are the sequences, net charges, zT, 

experimental and model mobilities (in cm2/kV s). (Note that 1 cm2/kV s = 10-7 m2/kV s).  Details 

regarding the estimation of zT  that includes the “charge regulation”  effect can be found 

elsewhere (38, 52).  To see more clearly the accuracy of modeling, consider the reduced mobility, 

E, defined by 

)523(
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exp −
−

=
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μμ mE  

where μm equals μmodel (model without preaveraging) or μopa (model with orientational 

preaveraging of hydrodynamic interaction, OPHI). This is plotted in Figure 3-2 versus the net 

charge to number of amino acids, n, ratio, zT/n.  From Table 3-1 and Figure3-2, the 



50 

 

 
 

approximation of orientationally preaveraged hydrodynamic interaction has only a minor effect 

on model mobilities for the peptides studied.  The average E for all 73 peptides equals 0.025 (no 

preaveraging) and -.002 (with preaveraging).  Absolute values of model mobilities without 

preaveraging are, on average about 2 percent smaller than those with preaveraging.  Given the 

scatter in the data of Figure 3-2, we do not believe that the 2 percent discrepancy between μexp 

and μmodel is significant.  As discussed previously, we believe the main source of discrepancy 

between modeling and experiment lies in inaccurate estimation of zT (52), or the assumed form 

of the peptide conformation (38).   

Table 3-1. Mobilities of 73 Peptides 

n Sequence zT μexp
 μmodel

 μopa
2 DD 0.690 .103 .124 0.127 
2 FD 0.766 .130 .129 0.132 
2 EE 0.765 .125 .132 0.135 
2 GG 0.818 .217 .198 0.203 
2 AA 0.818 .193 .169 0.172 
2 PG 0.818 .184 .179 0.184 
2 VV 0.817 .154 .133 0.136 
2 FG 0.817 .152 .150 0.156 
2 FA 0.817 .149 .145 0.148 
2 FV 0.817 .139 .133 0.135 
2 FF 0.817 .128 .132 0.134 
2 FL 0.817 .133 .131 0.134 
2 LL 0.817 .146 .130 0.133 
2 WW 0.817 .110 .127 0.129 
2 YY 0.817 .121 .124 0.126 
2 MM 0.817 .139 .144 0.146 
3 AAA 0.905 .154 .149 0.155 
3 SSS 0.905 .132 .143 0.149 
3 FFF 0.905 .104 .116 0.122 
4 AAAA 0.926 .139 .131 0.136 
4 KKKK 4.416 .330 .329 0.356 
5 AAAAA 0.936 .123 .116 0.121 
5 KKKKK 5.386 .330 .331 0.355 
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5 YGGFL 0.936 .098 .097 0.102 
5 YGGFM 0.936 .095 .099 0.104 
5 RPPGF 1.916 .184 .195 0.205 
9 AAGIGILTV 0.947 .065 .073 0.078 
9 YMDGTMSQV 0.887 .060 .063 0.069 
9 VLQELNVTV 0.928 .066 .064 0.070 
9 RPPGFSPFR 2.832 .197 .191 0.207 
9 AFLPWHRLF 2.871 .166 .185 0.200 
9 ACHGRDRRT 4.508 .265 .270 0.290 
9 VVRRYPHHE 4.697 .274 .262 0.288 
10 VISNDVCAQV 0.906 .058 .061 0.065 
10 KLVVVGADGV 1.902 .131 .123 0.133 
10 KLVVVGAAGV 1.940 .141 .126 0.137 
11 NSFCMGGMNRR 2.709 .183 .164 0.179 
11 RPKPQQFFGLM 2.935 .170 .170 0.185 
11 ACLGRDRRTEE 3.626 .210 .205 0.220 
11 CRHRRRHRRGC 8.697 .297 .295 0.321 
12 DAEKSDICTDEY 1.642 .099 .095 0.103 
12 TTIHYNYICNSS 1.942 .106 .112 0.121 
12 PHRERCSDSDGL-ace 2.750 .195 .152 0.164 
13 ACPGTDRRTGGGN 2.806 .151 .161 0.172 
13 ACPGKDRRTGGGN 3.704 .191 .201 0.214 
13 HMTEVRRYPHHER 6.427 .264 .268 0.294 
13 HMTEVRHCPHHER 6.433 .264 .270 0.297 
14 MGGMNWRPILTIIT 1.942 .102 .102 0.110 
14 SPALNKMFCELAKT 2.853 .157 .146 0.162 
14 HMTEVVRHCPHHER 6.469 .264 .261 0.287 
15 HRSCRRRKRRSCRHR 11.37 .303 .292 0.320 
15 RTHCQSHYRRRHCSR 8.604 .290 .284 0.312 
15 YAEGDVHATSKPARR 4.499 .214 .200 0.218 
16 LAKTCPVRLWVDSTPP 2.891 .151 .132 0.144 
16 VVRRCPHQRCSDSGL 4.840 .208 .198 0.215 
17 LGRNSFEVCVCACPGRD 2.816 .137 .127 0.138 
17 KLVVVGAGDVGKSALTI 2.881 .137 .126 0.136 
17 TPPPGTRVQQSQHMTEV 2.909 .142 .128 0.139 
17 YKLVVVGAAGVGKSALT 2.933 .142 .127 0.139 
17 YKLVVVGACGVGKSALT 2.933 .143 .127 0.139 
17 YNYMCNSSGMGGMNRRP 2.828 .143 .127 0.138 
17 YKLVVVGAVGVGKSALT 2.932 .151 .127 0.138 
17 YKLVVVGARGVGKSALT 3.923 .178 .162 0.178 
17 PPPGTRVRVMAIYKQSQ 3.916 .182 .165 0.183 
17 DGLAPPQHRIRVEGNLR 4.604 .195 .188 0.205 
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17 DGLAPPQHRIRVFGNLR 4.648 .190 .188 0.206 
17 NHQLLSPAKTGWRIFHP 4.836 .194 .197 0.214 
20 VPYEPPEVGSVYHHPLQLHV 3.808 .153 .141 0.154 
25 RTHGQSHYRRRHCSRRRLHRIHRRQ 15.55 .290 .257 0.283 
30 FLTPKKLQCVDLHVISNDVCAQVHPQKVTK 6.615 .187 .166 0.184 
39 HQIINMWQEVGKAMYAPPISGQIRRIHIGPG

RAFYTTKN 
7.820 .175 .162 0.181 

39 KQIINMWQEVGKAMYAPPISGQIRRIHIGPG
RAFYTTKN 

7.820 .178 .162 0.180 

42 DRVIEVVQGAYRAIRHIPRRIRGQLERRIHIG
PGRAFYTTKN 

12.41 .208 .204 0.228 

 

 

Figure 3-2)  E versus zT/n.  E is a reduced mobility defined by (μexp-μm)/μexp where μexp and μm 
are the experimental and model mobilities, respectively. All 73 peptides described in Table 3-1 
are included in this figure.  Filled squares compare experiment with model mobilities without 
preaveraging, μmodel.  Unfilled squares compare experiment with model mobilities with 
preaveraging, μopa.    

 

3B) Application to Insect Oostatic, IO, Peptides 

The sequence of IO peptides: YD, YDP, YDPA, YDPAP, YDPAP2, YDPAP3,     YDPAP4, 

YDPAP5, and YDPAP6 serves as a convenient set to study models and modeling trends as a 

function of peptide length holding net charge approximately constant.  Experimental mobilities 
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were reported in reference 90.  As an initial modeling set, we shall consider “all random” models 

and use the standard input pKa
0s given in the previous section.  The resulting experimental 

(asterisks) and model (squares) mobilities in BGE 1, 3, and 4 buffers are summarized in Figures 

3-3, 3-4 respectively.  Except for the high pH BGE 4 buffer system, agreement between 

modeling and experiment is quite good.  In BGE 4, modeling underestimates the absolute 

mobility seen experimentally and that could be due to an underestimation of the net absolute 

charge of the model peptides.   At a pH of 8.1, the charge of this particular set of model peptides 

is particularly sensitive to the pKa of the N-terminal group, and the pKa
0(N-term) is set to 7.50 

for the squares in Figure 3-4.  If this value is reduced from 7.50 to 7.20 (denoted by the triangles 

in Figure 3-4, much better agreement is obtained.  

 

Figure 3-3)  Mobilities of IO Peptides in BGE 1 & 3 Buffer, pH = 2.25 & 2.40.  Peptides are:  
YD, YDP, YDPA, YDPAP, YDPAP2, YDPAP3, YDPAP4, YDPAP5, and YDPAP6 for the 
number of amino acids, n, equal 2 through 10, respectively.  Asterisks are experimental 
mobilities from reference 90 and squares are model mobilities (all random configurations).   

 

Charge regulation can influence the pKas of individual groups.  In BGE 1 or 3 buffer, the net 

charge of the peptide is sensitive to the pKa of the C-terminal and also the CO2H group of 
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aspartic acid.  The pKas of these two groups are sensitive to the charge state of each other and 

also the proximity of the N-terminal which is in the protonated (+1) charge state under these 

buffer conditions.  Summarized in the first part of Table 3-2 is pKa(C-term) as well as net 

peptide charge, zT, in protonic units.  All pKa
0 values are set to their standard values.  Note that 

the C-terminal is most acidic for the shortest peptide, YD.  This is due to the strong charge-

charge interation between C and N-terminals that stabilizes the deprotonated state of the C-

terminal.  The larger the peptide, the greater the average distance between C and N-terminals and 

the closer pKa(C-term) approaches pKa
0(C-term).  In the BGE 4 buffer at pH = 8.1, the C-

terminal and aspartic acid side groups are in the deprotonated state.  In this case, the peptide 

charge is particularly sensitive to pKa(N-term).  The pKa(N-term) as well as zT for the peptides in 

BGE 4 are summarized at the end of Table 3-2.  In this case, pKa
0(N-term) is set equal to 7.20.  

As before, charge regulation is greatest for the shortest peptide where charge-charge interation 

between C and N-terminals is strongest.   

 

Figure 3-4) Mobilities of IO 
Peptides in BGE 4 Buffer, 
pH = 8.10.  Peptides are 
same as in Figure 3-3. 
Asterisks are experimental 
mobilities from reference 90, 
squares are model mobilities 
with pKa

0(N-term) = 7.50 (all 
random configuration), and 
triangles are model mobilities 
with pKa

0(N-term) = 7.20  
(all random configurations).  
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Table 3-2.  Charge State and pKas of Important Groups 

Peptide Buffer pKa(C-term) pKa(D) pKa(N-term) zT 

YD BGE 1 3.20 3.66 --- .859 
YDP BGE 1 3.52 3.63 --- .907 

YDPA BGE 1 3.63 3.61 --- .915 
YDPAP BGE 1 3.69 3.64 --- .924 
YDPAP2  BGE 1 3.72 3.62 --- .924 
YDPAP3 BGE 1 3.74 3.62 --- .925 
YDPAP4 BGE 1 3.75 3.61 --- .925 
YDPAP5 BGE 1 3.76 3.59 --- .924 
YDPAP6 BGE 1 3.76 3.63 --- .928 

YD BGE 4 --- --- 8.25 -1.429 
YDP BGE 4 --- --- 7.91 -1.621 

YDPA BGE 4 --- --- 7.80 -1.676 
YDPAP BGE 4 --- --- 7.70 -1.730 
YDPAP2  BGE 4 --- --- 7.67 -1.742 
YDPAP3 BGE 4 --- --- 7.65 -1.751 
YDPAP4 BGE 4 --- --- 7.64 -1.754 
YDPAP5 BGE 4 --- --- 7.65 -1.753 
YDPAP6 BGE 4 --- --- 7.61 -1.771 

      

     One additional point we would like to address is the sensitivity of μ on the assumed 

secondary structure of the peptides.  In certain cases at least, secondary structure can have a 

substantial influence on μ (38, 66).  The IO peptides considered here, with the exception of YD, 

tend to have an abundance of prolines.  Prolines, in turn, tend to force the dihedral angles of the 

preceding amino acid into a restricted range of values (86).  In reference 38, we characterize this 

restricted range with the secondary structural motif, SSM, called J.  Thus, we shall also consider 

YDP, YDPA, YDPAP, …. YDPAP6 in SSMs RJR, RJRR, RJRJR, …RJRJ6R, respectively.  (R 
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denotes the SSM for “random” secondary structure.  In previous cases, the SSM of all the amino 

acids was R.)  In Figure 3-5, we compare experiment (asterisks) with random model (triangles) 

and “proline restricted” models (diamonds) in BGE 4 buffer.  In the model studies pKa
0(N-term) 

is set equal to 7.20.  In this case, μ is insensitive to the assumed secondary structural model of 

the peptides. 

Figure 3-5) Mobilities of IO 
Peptides in BGE 4 Buffer, pH = 
8.10.  Peptides are same as in Figure 
3-3 and 3-4. Asterisks are 
experimental mobilities from 
reference 90, triangles are model 
mobilities with pKa

0(N-term) = 7.20 
(all random configurations), and 
diamonds are model mobilities with 
pKa

0(N-term) = 7.20  (amino acids 
preceding prolines in “J 
configuration”). 

 

 

3.4  Summary 

      The approximation of orientationally preaveraged hydrodynamic interaction, OPHI, results in 

an overestimate of mobility by about 2 % for most of the model peptides studied.  This value is 

comparable to the effect seen in the translational diffusion constants of a variety of bead model 

structures (94).  It is likely that other factors such as uncertainties in charge or conformation are 

responsible for much of the discrepancy between experimental and model mobilities seen in past 

(52, 76) as well as the present study.  We conclude that the OPHI approximation has little effect 

on the mobilities of model peptides. 
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       Turning next to the study of IO peptides, we have shown that for entirely reasonable model 

input parameters, it is possible to reproduce quite accurately the free solution electrophoretic 

mobilities measured previously (90).  This is achieved with model peptides in “all random” 

configurations as well as models in which the prolines force preceding amino acids into more 

restricted secondary structural motifs.  For this set of peptides, we concluded pKa
0(C-term) ≅ 

3.80 and pKa
0(N-term) ≅ 7.2.  The actual pKas could be quite different from these due to charge 

regulation.   

     In further application of this improved bead modeling method, we were able to account for 

the “internal field” effect.  This effect is related to the distortion of an externally applied electric 

field by the presence of a low dielectric or conducting model structure (75).  Preliminary work 

indicated that this modification altered model mobilities by several percent at most, which is 

comparable to the OPHI effects seen in the present study. Another area of this study involves 

carrying out measurements of the translational diffusion constants of peptides by NMR (80) 

which is discussed in Chapter 6 of this dissertation.  It gives the investigator additional 

information about peptide size and conformation and, coupled with mobility measurements by 

capillary electrophoresis, a better way of disentangling the influence that both charge and 

conformation have on mobility. 
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Chapter 4 

The Bead Array-Effective Medium Model for the Electrophoresis of Macromolecules and 

Nanoparticle Arrays 

4.1 Introduction of the Bead Array-Effective Medium Methodology, BAEM 

     Although several specific areas of application in which electrophoresis is having or has had a 

profound impact include gel electrophoresis of DNA (95), capillary electrophoresis of peptides 

(96), and electrophoresis of discrete nanostructure arrays (97), the use of electrophoresis as a tool 

of structure elucidation of biomolecules and nanoparticles has met with more limited success.   

The reason for this is that the interactions of a particle in solution subjected to a constant external 

electric field are quite complex and it is a challenge, from a fundamental theoretical standpoint, 

to account for all of the interactions in sufficient detail to ultimately yield accurate 

electrophoretic mobilities.  A wide variety of different approaches have been used to model 

variations on the electrophoretic method for different systems.  Here, we shall discuss two quite 

different approaches followed by a discussion of how these two general approaches can be 

bridged.  

Due to the complex shape and charge distribution of many biomolecules and nanoparticle 

arrays, the simple models discussed in the previous paragraph are approximate at best.  

Nonetheless, the same fundamental interactions are still present.  For complex systems, more 

approximate approaches have been followed.  In the field of peptide separations by free solution 

capillary electrophoresis, semi-empirical methods based on the Offord model (73) and having 

their basis in the mobility relation of spheres (3) have been widely used (58, 59, 63, 65, 96).  
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Related but more complex semi-empirical models have also been developed that account in more 

detail for charge distribution, peptide composition, and number of amino acids (67, 69, 72).  For 

small peptides and proteins, modeling in terms of an “effective sphere” has proven to be both 

simple and very useful in structure/charge studies (66, 74, 98).  In the field of gel electrophoresis 

of duplex DNA, the mechanism of DNA migration under constant field conditions depends, to a 

large extent, on the length of DNA relative to the pore spacing of the gel (95).  For long DNAs, 

reptation theories have been successful in explaining many, but not all of the features of gel 

electrophoresis (99).   For shorter duplex DNAs in a gel, it is possible to make contact with 

Ogston (100) and related models (101, 102) in which the gel is accounted for as an explicit 

network of fibers.  Brownian dynamics simulation of model DNAs in explicit gels have been 

carried out (103, 104).    

     Bead –Array, Effective Medium Methodology, BAEM, is a numerical method further 

developed by our group to model the electrophoresis of irregularly shaped model particles with 

an arbitrary charge distribution inside based on the Boundary Element methodology, BEM, 

which was developed over 10 years ago (32).   Like the fundamental approaches considered 

previously (2, 6-11), the BEM methodology solves the same electro hydrodynamic equations and 

can be applied to much more realistic model macromolecules such as the free solution 

electrophoresis of proteins (5, 33, 34), duplex DNA up to 100 base pairs in length (35), and 

irregular silica sols with a “hairy” outer surface (36).  A disadvantage of the BEM approach is 

that it is time consuming from a computational standpoint (35).  This has made it impractical to 

apply the BEM approach to duplex DNA longer than about 100 bp.  It is also impractical to 

apply it to flexible structures that require sampling of many independent conformations.  In order 
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to deal with this problem, a faster and more efficient method has been developed where the basic 

structural unit is a spherical bead of arbitrary radius and charge (41, 52, 75, 76).  The model 

structure consists of an arbitrary, non-overlapping array of beads.  In this approach, the 

electrophoretic effect is accounted for explicitly, but not the relaxation effect.  For globular 

biomolecules, however, it is possible to correct for the relaxation effect using the corresponding 

correction for spheres (52).  Recently, this bead method approach was generalized to account for 

the presence of a gel (41).  Long range hydrodynamic interaction is accounted for using the 

Effective Medium model (105-108).   In this chapter, this Bead –Array, Effective Medium, or 

BAEM methodology is discussed in detail. 

The BAEM methodology has several advantages that make it effective and useful in 

modeling the electrophoresis of biomolecules and nanoparticle arrays both in free solution and in 

a gel.  First, it is grounded firmly in classical electro hydrodynamic theory.  Second, it accounts 

in an approximate way for the irregular shape, charge distribution, and flexibility of a structure 

of variable size and composition.   Third, is capable of yielding accurate electrophoretic 

mobilities (41, 52, 76).  Finally, is sufficiently simple and also computationally fast to be useful 

to a wide audience.  The principle objective of the present work is to generalize the BAEM 

methodology to remove the approximation of orientational preaveraging of hydrodynamic 

interaction.  This approximation was first introduced by Kirkwood and pervades much of 

classical polymer theory (109).  The error this approximation produces has been studied fairly 

extensively for the case of the average translational diffusion constant, DT.  For a large thin ring 

or torus, the preaveraging approximation overestimates DT by 8.3 % (110).  For freely jointed 

chains of beads, the approximation results in an overestimate of DT that is usually in the 2 to 3 % 
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range (111).   Although it can be anticipated that the corresponding error the preaveraging 

approximation produces in the electrophoretic mobility of bead arrays is comparable to those 

seen in DT (75), it is a problem that needs to be investigated.  In doing so, the BAEM 

methodology is placed on a firmer foundation.  In addition, it now becomes possible to model the 

individual components of the mobility tensor, μ, and explore how mobility depends on the 

orientation of the model particle relative to an applied electric field.   

4.2 Theory/Methodology 

 In this section, an outline of the derivation of the electrophoretic mobility of a bead array 

made up of N particles in an Effective Medium, EM, is presented.  The fluid is assumed to obey 

the Brinkman (105) and solvent incompressibility equations defined by  

)14()()()()( 22 −+−=∇−∇ xvxsxpxv e ληη  

     )24(0)( −=⋅∇ xv  

where η is the solvent viscosity, v(x) is the local fluid velocity at point x in the fluid, p is the 

local pressure, se(x) is the electrical force/volume on the fluid, and λ (units of 1/length) is a gel 

screening parameter. In addition to assuming the fluid obeys Eqs. (4-1) and (4-2), the other 

principal assumptions of the present work are: (a) the perturbation of the electric field in the fluid 

by the dielectric interior of the bead array (internal field effect) is ignored (75), (b) finite bead 

size effects are included at least to order (λaJ)2 or (κaJ)2 (where aJ is the radius of bead J and κ 

(units of 1/length) is the Debye-Huckel screening length of the salt), (c) the hydrodynamic 

force/area exerted by any bead on the surrounding fluid is approximated with its average value, 
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(d) electrostatics are treated at the level of the linear Poisson-Boltzmann Equation, (e) the ion 

relaxation effect is ignored.  In past work, detailed derivations of the electrophoretic mobility of 

bead arrays in free solution (52, 75, 76), and in a EM gel (41) were presented subject to the 

approximation of preaveraged hydrodynamic interaction (75, 109-111).  The principal 

contribution of the present work is eliminating the approximation of preaveraged hydrodynamic 

interaction.  The interested reader is referred to these earlier works (41, 52, 75, 76) to fill in the 

gaps in the present treatment.   

 We begin with the differential form of the Lorentz reciprocal theorem (49, 50), 

  )34()'()(' '' −⋅⋅∇+⋅=⋅⋅∇+⋅
HH

vvsvvs σσ  

where both primed and unprimed fields satisfy Eqs. (4-1) and (4-2), v, σH, and s represent the 

actual fluid velocity, hydrodynamic stress tensor, and external force/volume of our bead model; 

and v’, σH’, and s’ represent some other field.  For the primed field, we choose the singular 

solution of the Brinkman and solvent incompressibility equations of a point charge located at 

position y of magnitude q z (where q is the protonic charge and z is the valence), in a constant 

external electric field, e (41), 

)44()()(' −⋅= erUzqxv  

where r = x – y,      
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Above, C =  4π (CGS units), or 1/ε0 where ε0 is the permittivity of free space (MKS units), εw is 

the solvent dielectric constant, kB is Boltzmann’s constant, T is absolute temperature, cα0 is the 

ambient concentration of mobile ion species α and zα is its valence, and the sum in Eq. (4-10) 

extends over all mobile ion species present.  Integration of Eq. (4-3) over the fluid domain, V, 

exterior to the bead array yields (41) 
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In Eq. (4-11), u denotes the velocity of the bead array, xJ denotes to position of the center of bead 

J, Φ(y, V) equals 0 if y lies outside V, equals 1 if y lies inside V, and ½ if y lies on the surface(s) 

that just enclose(s) V, SJ denotes the surface enclosing bead J, and VeJ denotes the volume 

exterior to bead J.  Also, the local unit surface normal, n(x), points outward from a particular 

bead into the fluid at point x, and F is given by 

)124(
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),( −=
−

r
erF

r

π
α

α

 

Finally, f (x) represents the hydrodynamic force/area exerted by a particular bead on the fluid.  It 

is related to the hydrodynamic stress tensor and outward normal by 

)134()()()( −⋅−= xnxxf
H

σ  

In the present work as in almost all theoretical transport studies of bead arrays in an 

incompressible fluid (18-22, 112-114), it shall be assumed that f (x) is constant over the surface 

of any given bead, J, 

)144()( −=
J

J

S
Fxf  

where FJ is the average hydrodynamic force exerted by bead J on the fluid and SJ is the surface 

area of bead J.  The fluid velocities appearing on the right hand side of Eq. (4-11) are 

approximated with a sum of singular terms (41, 52, 75, 76), 
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where rJ’ = x – xJ and the cJ’s are constant tensors to be determined from the boundary conditions 

as discussed later.  The external electrical forces, se(x), are given by (52) 

∑
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rJ’ = | J’|, and hJ is given by Eq. (A28) of reference (52).   

 To proceed, choose our field point, y, to be located at the center of bead K, xK.  At this 

stage, it becomes necessary to deal with a number of averages that we turn our attention to. On 

the basis of previous work (52) 
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xJK = xJ – xK, xJK = | xJK|, and k0(z) = e-z/z.  Define the following dimensionless integrals 
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In the second equality on the right hand side of Eq. (4-21), the integration, dΩ, is over the 

angular variables of the outward unit normal, n, to the surface of bead J.  (Also, nn is given by 

Eq. (4-6).)   Shortly, we shall return to the problem of explicitly evaluating Eqs. (4-17) to (4-19).  

For the moment, we will proceed on the assumption that they are readily determined once a 

structure has been defined.  

To evaluate cJ, average Eq. (4-15) over SK and set <v(x)>K = μ ⋅ e where μ is the 

electrophoretic mobility tensor.  Since this is true for arbitrary e, 

)224(
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κμ  

We can view the 9 components of WKJ
(1) to be, in turn, particular components of a 3N by 3N 

supermatrix, W(1).  Once a structure is defined W(1) is readily determined.  Furthermore, W(1) is 

invertible and let Y-1 denote the inverse of W(1).  Multiplying Eq. (4-22) by YLK
-1 (a 3 by 3 

matrix made up of elements: (row, column) (3L+1,3K+1) to (3L+3,3K+3) of Y-1) and summing 

over K, 
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With the aid of these identities, Eq. (4-25) becomes 
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Multiplying Eq. (4-29) by mK, summing over K, and solving for μ, 
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Using Eq. (4-37) in (4-29) to eliminate μ, the reduced forces, gJ, must satisfy the series of 

equations 
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The 3N by 3N matrix, D’, formed from the 3 by 3 DKJ’ matrices, is not invertible (75).  We have, 

however, an additional relation resulting from overall force balance on the bead array (see Eq. 

(B18) of reference (41)).   
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where zT and VT are the total charge and volume of the bead array, 
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Using Eq. (4-37) for μ in Eq. (4-41)
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Multiplying both sides of Eq. (4-44) by DKK’ = Tr(DKK’)/3, subtracting right and left hand sides 

from the right and left hand sides of Eq. (4-38), and defining 
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The resulting set of equations can be written in the form of a 3N by 3N matrix, D, and 3N 

by 3 matrices, ξ and g, 
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The matrix, D, is invertible and let D-1 denote its inverse.  Inverting Eq. (4-47), 

)484(1 −⋅= − ξDg  

yields the reduced hydrodynamic force tensors, gJ.  

 It is worthwhile at this point to summarize our approach to predicting the electrophoretic 

mobility tensor, μ, of a model structure.  Once a structure and solution conditions are defined, all 

terms appearing in Eqs. (4-39), (4-40), (4-45), and 4-(46) can be readily determined.  Explicit 

equations for many of the needed terms are given in the Appendix.  Then D (from Eq. (4-45)) 

and its inverse are determined.  Eq. (4-48) is then used to determine the gJ’s.  Finally, these and 

other known quantities are used in Eq. (4-37) to determine μ. 

4.3 Results 

3A) Electrophoretic Mobility of Weakly Charged Bead Arrays in an Effective 

Medium 

 In this section, we shall first apply the BAEM methodology to rigid rods, rings, and 

discrete wormlike chain models of various lengths and, in the case of wormlike chains, flexibility.  

We shall choose bead parameters appropriate for duplex DNA where the hydrodynamic radius, R, 

equals 1.0 ± 0.1 nm (115, 116) (viewing duplex DNA on a local scale as a right circular cylinder), 

and the contour length, L (in nm), equals 0.34 nbp where nbp is the number of base pairs.  In order 
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to relate this to a bead model of N identical touching beads of radius a, we use the Hagerman 

model of a discrete wormlike chain (117, 118).  We set L = 2Na and also set the volume of a 

right circular cylinder, πR2L, equal to that of N identical non-overlapping beads, 4πNa3/3.  This 

gives a = (3/2)1/2R = 1.225 nm and nbp = 7.2 N.  For the studies reported in this work, the 

ambient salt is NaCl at a concentration of 0.02 M, the temperature-, T, equals 293.15 K, the 

solvent viscosity, η, equals 1.002 cp (appropriate for water at 293.15 K), and the solvent 

dielectric constant, εw, equals 80.36.  Rather than report directly the effective medium mobility, 

μEM, we shall report reduced dimensionless mobilities, EEM and H, defined by 
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where C = 4π (in CGS units),  or 1/ε0 where ε0 is the permittivity of free space (in MKS units), q 

is the protonic charge, and y = q<Λ0>/kBT where kB is Boltzmann’s constant and <Λ0> is the 

electrostatic potential averaged over the surface of all beads in the model.  Electrostatic 

potentials for long (119) and finite (120) rods in the framework of the non linear Poisson-

Boltzmann equation have been available for some time.  Boundary Element procedures are also 

available to compute <Λ0> for arbitrary model particles (28, 32).    

The primary objective of the present work is to investigate the effect of orientational 

preaveraging hydrodynamic interaction on the electrophoretic mobility of nonspherical particles 

such as rods, rings, and wormlike chains.  With that goal in mind, we shall follow the procedure 

of determining the mobility of a weakly charged bead array in an Effective Medium.  This 

simplifies the calculation of <Λ0> (47), allows us to ignore the relaxation effect (2, 6-8), as well 
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as the “steric effect” of a gel (if present) (9, 108).  With these simplifications, the procedure 

outlined in the previous section yields H. This, in turn, is related to the actual reduced mobility, 

E, by 

)504( −= SXyHE  

where H is the reduced mobility of a weakly charged bead array given by Eq. (4-49), y is the 

reduced potential appropriate for the actual particle under the conditions of the experiment, X 

(which lies between 0 and 1) is the correction for the relaxation effect, and S represents the 

“steric effect” due to the presence of a gel.  We shall return to X in Part B of the Results section.  

The steric term, S, has been described previously for spherical particles (9, 108), but the form it 

assumes for nonspherical particles remains largely unexplored.  In the present study, it shall not 

be considered further. 

 

Figure 4-1)  Reduced mobility versus bead number for straight rods (no gel).  Diamonds and 
squares correspond to H|| and H⊥, respectively.  Triangles represent the average over all 
orientations (Have = (H|| + 2H⊥)/3).  The rods consist of touching beads of radius a = 1.225 nm in 
a salt solution of ionic strength 0.02M (κa = 0.5675).   
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 Shown in Figure 4-1 is H versus ln(N) for rods (linear strings of N touching beads) 

oriented parallel, H|| (diamonds), and perpendicular, H⊥ (squares), to the applied field direction in 

the absence of a gel.  Triangles represent the average over all orientations, Have = (H|| + 2H⊥)/3.  

A similar plot is shown in Figure 4-2 for plane polygonal rings of touching beads.  In this case, 

diamonds correspond to the axis of symmetry of the ring being parallel to the field direction, H||, 

and squares to the axis of the ring being perpendicular to the field direction.  Triangles 

correspond to Have as in the case of rods.   

 

Figure 4-2)  Reduced mobility versus bead number for circular rings (no gel).  Diamonds 
correspond to H|| (axis of the ring parallel to the direction of the flow or electric field) and 
squares to H⊥ (axis of the ring perpendicular to direction of electric or flow field).  Triangles 
represent the average over all orientations (Have = (H|| + 2H⊥)/3).  The rings consist of touching 
beads of radius a = 1.225 nm in a salt solution of ionic strength 0.02M (κa = 0.5675).   

 

In Figure 4-3, Have/Have(opa) is plotted versus ln(N) for rods (diamonds) and rings 

(squares).  Have(opa) is the reduced mobility when inter subunit hydrodynamic interaction is 
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orientationally preaveraged.  What Figure 4-3 tells us is that orientational preaveraging works 

well for rods, but not so well for large rings.  For the largest rings studied (N = 100), 

orientational preaveraging overestimates Have by about 12 %.  Qualitatively, this is similar to 

what is seen in the translational diffusion of rods and rings. Orientational preaveraging is very 

accurate for rods, but less so for large rings (110).   

 

Figure 4-3) Effect of the “orientational preaveraging” approximation on the 
electrophoretic mobility of rods and rings (no gel).  Diamonds and squares correspond to rods 
and rings, respectively.  Conditions are the same as in Figures 4-1 and 4-2. 

 

Although short duplex DNA can be accurately modeled as a rigid rod, a more accurate 

model for longer DNAs is a wormlike chain with persistence length P.  As discussed earlier, we 

shall next consider the mobility of discrete wormlike chains using the Hagerman model (117, 

118).  A single chain conformation is generated using random numbers and this procedure is 

equivalent to selecting a single chain conformation from an equilibrium distribution.  The 

eigenvalues of the electrophoretic mobility tensor as well as an orientationally averaged mobility 
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are then computed for this particular chain.  Mean mobilities are then obtained by simple 

averaging over an “ensemble” of independent chains.  An “ensemble” of 100 chains is usually 

sufficient to determine the average mobility of wormlike chain to within 1 %.  For the 

persistence length, P, of DNA, a value of about 50 nm is appropriate (121).  

At this stage, we would also like to introduce the possible presence of a gel through λ 

(units of 1/length) starting with Eq. (4-1) and appearing throughout the Methods section of this 

paper.  The gel consists of uniform “segments” of friction coefficient, ζs, and number density ns.  

These parameters are related to λ by the relation (107) 

)514(2 −= ληζ ssn  

Eq. (4-51) makes it possible to relate λ to the characteristics of a particular gel.  The gel is 

typically characterized by its chemical composition (agarose or polyacrylamide, for example), its 

mass concentration, M, (typically in gm of dry gel material/total volume), dry density of gel 

material, ρg, (which equals 1.64 gm/ml for agarose (122)), the ratio of dry gel volume to 

hydrated gel volume, ωs (which equals 0.625 for agarose (123)), and hydrated segment radius, σ, 

(which might be equated to the fiber radius of 1.9 nm which comes from low angle X-ray 

scattering (124)).   Accounting for the hydrodynamic interaction between the gel segments and 

making use of the friction coefficient of a bead of radius σ in an EM of screening parameter λ 

(125) 

)524()
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In terms of parameters defined above, we can write 

)534(
3
4 3 −= σωρπ ssg nM  

Substituting Eqs. (4-52) and (4-53) into Eq. (4-51) and solving for λ yields 
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where A = 9M/(2ρgωs) and is dimensionless.  

 

Figure 4-4)  Reduced mobility versus stiffness for wormlike chains at different gel 
concentrations.  All chains are made up of 50 beads (corresponding to 360 base pairs of duplex 
DNA) and the persistence length, P, is set to 50 nm.  The gel concentration, M (in gm/ml) equals 
0.000 (squares), 0.005 (diamonds), 0.010 (triangles), 0.015 (crosses), 0.020 (asterisks). 
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     Shown in Figure 4-4 is Have versus 100/P (P in nm) for a 50 bead discrete wormlike chain 

(360 base pairs) in agarose gels of different concentration.  The top to bottom curves correspond 

to M = 0.000, 0.005, 0.010, 0.015, and 0.020 gm/ml, respectively.  Not surprisingly, the presence 

of a gel causes Have to decrease.  As a charged particle subjected to an external electric field 

migrates through a gel, stationary gel segments generate hydrodynamic backflow that reduce the 

mobility.  However, at constant gel concentration, Have decreases with decreasing P (increasing 

flexibility).  Although counterintuitive, this behavior is consistent with Boundary Element 

studies of curved rods where it was observed mobility decreases as rod curvature (flexibility) 

increases (35).  This behavior can be understood as follows.  As P decreases, the largest absolute 

eigenvalue of the mobility tensor (corresponding to mobility in the direction of least resistance) 

decreases much more rapidly than the remaining two eigenvalues increase in absolute value.  

The net result is Have decreases with increasing flexibility.  Figure 4-5 shows how flexibility and 

a gel influence the effect of orientational preaveraging on the same 50 bead discrete wormlike 

chain.  At constant P, orientational preaveraging works best at low gel concentration and results 

in and the overestimate in Have increases gradually as M is raised from 0.000 to 0.020 gm 

agarose/ml.  This is true regardless of P.  As P is reduced from ∞ (rigid rod) to 40 nm at constant 

gel concentration, orientational preaveraging causes an overestimate of Have by 8 to 10 %.  Thus, 

the error caused by orientational preaveraging is comparable for a ring and flexible wormlike 

chain. 
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Figure 4-5) Effect of the “orientational preaveraging” approximation on the 
electrophoretic mobility of wormlike chains at different gel concentrations.  All chains are 
made up of 50 beads (corresponding to 360 base pairs of duplex DNA) and the persistence length, 
P, is set to 50 nm.  The gel concentration, M (in gm/ml) equals 0.000 (squares), 0.005 
(diamonds), 0.010 (triangles), 0.015 (crosses), 0.020 (asterisks). 

 

 

Figure 4-6)   Dependence of reduced mobility (no gel) on length for wormlike chains 
(appropriate for DNA with P = 50 nm) and effect of orientational preaveraging.  Filled 
squares correspond to Have, unfilled squares to Have(opa), and the solid line to the ratio, 
Have/Have(opa).  Discrete bead models contain nbp/7.2 touching beads of radius 1.225 nm in a salt 
solution of ionic strength I = 0.02 M (κa = 0.5675).   
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     The reduced mobility of wormlike chains of variable length and P = 50 nm (appropriate for 

DNA (121)) in the absence of a gel are shown in Figure 4-6.  Filled squares correspond to Have 

and open squares to Have(opa).  The solid line represents Have/ Have(opa) or the effect of 

orientational preaveraging.  Orientational preaveraging works well for short wormlike chains 

near the rigid rod limit, but not so well for long wormlike chains.  When P = L (about 147 base 

pairs) orientational preaveraging overestimates Have by 5 %.  Figure 4-7 is similar to Figure 4-6, 

except for the presence of agarose gel with M = 0.020 gm/ml.  Compared to the “no gel” 

situation depicted in Figure 4-6, there is an overall reduction in mobility due to presence of a gel.  

Qualitatively, the behavior seen here is similar to that seen in Figure 4-6.  Finally it should also 

be noted that the preaveraging effect depends on a number of factors in addition to flexibility and 

overall particle size.  Shown in Figure 4-8 is the ratio, Have/Have(opa) for 50 bead wormlike 

chains (P = 50 nm, a = 1.225 nm) as a function of ionic strength.  The preaveraging 

approximation works better low ionic strength or small κa. 

Figure 4-7)   Dependence of 
reduced mobility (in M = 0.02 
gm/ml agarose gel) on length 
for wormlike chains 
(appropriate for DNA with P = 
50 nm) and effect of 
orientational preaveraging.  
Filled squares correspond to Have, 
unfilled squares to Have(opa), and 
the solid line to the ratio, 
Have/Have(opa).  Discrete bead 
models contain nbp/7.2 touching 
beads of radius 1.225 nm in a salt 
solution of ionic strength I = 0.02 
M (κa = 0.5675).   
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Figure 4-8)  Effect of ionic strength on orientational preaveraging of 360 bp DNA wormlike 
chain models (P = 50 nm).   Squares correspond to no gel and asterisks to M =0 .02 gm/ml 
agarose. 

 

3 B) Application to Free Solution Electrophoresis of DNA 

 A problem of longstanding interest has been the free solution electrophoresis of DNA as 

a function of length.  This problem has been studied theoretically by Boundary Element, BE, 

methods in which the DNA is modeled as a finite circular cylinder (43, 78) or in terms of a more 

realistic surface model (79).  In free solution (no gel present), the absolute electrophoretic 

mobility of duplex DNA rises with increasing length and reaches a “plateau” value above several 

hundred base pairs, nbp (128).  The plateau mobility in aqueous solution depends on salt type, 

ionic strength, and temperature (129).  BE modeling of straight rod models also exhibit plateau 

behavior at large nbp, but the plateau value of the absolute mobility is substantially larger than 

observed experimentally.  In addition, the rise to plateau behavior in modeling with nbp is more 

gradual in modeling (of straight rods) than in experiment (35).  By carrying out BE studies of 

curved DNA rod models in the 60 to 100 bp range, the discrepancy was attributed to curvature of 
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the DNA (35).  The methodology developed in the present work gives us an opportunity to 

reexamine this problem and extend the analysis to longer DNA models as well as studies 

ensembles of wormlike chains instead of single curved species.  Such studies are simply not 

feasible using the BE approach due to the considerable computation time involved (35).  From 

Eq. (4-49) and (4-50), the free solution electrophoretic mobility, μ, can be written 

)554(
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−= XHy
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TkBw

η
ε

μ  

where y is the reduced zeta potential averaged over the surface of the DNA, H is the reduced 

Effective Medium mobility (calculated using discrete bead model wormlike chains and the 

procedures developed in this work), and X is the correction for the relaxation effect.  The 

reduced zeta potential, y, can be computed by a BE procedure (35). 

 For globular particles such as peptides and proteins, the relaxation correction can be 

estimated using the relaxation correction of a sphere of hydrodynamic radius equal to that of the 

particle of interest (14, 52).  For finite straight rods (right circular cylinders of length L and 

diameter d), we have determined X by a BE study of rods of different y, salt, and ξ = d/L.  The 

relaxation correction for finite straight rods can be written 
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Table 4-1 gives the bji coefficients in aqueous NaCl salt solutions at 20 °C.  For other salt 

solutions, the relaxation correction coefficients will be different due to differences in the 

mobilities of mobile salt ions (14). 

Table 4-1. Relaxation Coefficients for Finite Rods in NaCl Aqueous Solution at 20 °C 

(NaCl) (mM) i b0i b1i b2i 
2 0 +1.436 -1.386 -1.197 
“ 1 -0.0015 -0.0035 -0.0079 
“ 2 -0.0106 +0.0106 +0.0307 

20 0 +1.678 +4.098 -11.202 
“ 1 -0.0027 -0.0522 +0.1219 
“ 2 -0.0204 -0.0394 +0.1316 

100 0 +2.211 +2.413 -4.921 
“ 1 -0.0098 -0.0670 +0.1465 
“ 2 -0.0387 +0.0771 -0.1316 

  

     On the basis of BE model studies, the relaxation correction for curved rods is greater than for 

straight rods under otherwise identical conditions.  For curved rods or wormlike chains of 

persistence length P, the relaxation correction can be approximated by Eqs. (4-56) to (4-57) 

provided ξ is set equal to d/Leff where 

)584()1( / −−= − PL
eff ePL  

Figure 4-9 summarizes absolute model mobilities for rigid rods (unfilled squares) and 

wormlike chains with P = 50 nm (filled squares) in aqueous 20 mM NaCl solution at 20 °C.  The 

rigid rod mobilities exhibit the gradual rise to plateau behavior mentioned previously and at the 

longest rod studied (nbp = 720), |μ(rod)| ≈ 0.43 cm2/kV sec.  The wormlike chain model 

mobilities reach a plateau value of 0.375 cm2/kV sec around 150 base pairs and then decrease, 
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but only slightly, for longer chains.  Under these conditions, the experimental mobility, 

|μ|experiment, equals approximately 0.38 cm2/kV sec for high molecular weight DNA (129).   Thus, 

agreement between experiment and modeling is good provided account is made for the finite 

flexibility of the DNA.   

 

Figure 4-9)  Absolute mobility versus length for model duplex DNA in 20 mM NaCl at 20 
°C.  Unfilled and filled squares correspond to rigid rods and flexible wormlike chains (P = 50 
nm), respectively.  No gel is present. 

 

4.4  Summary 

 Electrophoresis remains an invaluable tool in the separation of biomolecules and 

nanoparticles on the basis of size and charge.  It remains, however, a difficult problem to treat 

theoretically due to the complex interactions between the external electric field, solvent, mobile 

ions, and the particle/molecule on interest.  The approach employed in the present study is 

formally grounded in continuum electro-hydrodynamic theory (41, 52, 75, 76). The 
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particle/molecule of interest is modeled as a flexible bead array and the fluid/gel surrounding it is 

modeled as an Effective Medium (105-107).  The Bead Array-Effective Medium, BAEM, model 

developed previously (41) is generalized in the present study to remove the approximation of 

orientationally preaveraging, opa, hydrodynamic interaction (109-111).   

 In the Results section, the BAEM procedure is initially applied to rigid rods and rings 

made up of touching beads varying in number from 3 to 100.  In order to reduce the number of 

variables considered, the bead size is set to 1.225 nm appropriate for duplex DNA. In addition to 

the components of the reduced mobilities, H|| and H⊥, and the average reduced mobility, Have, we 

also studied the effects of the OPA approximation on these structures.  For straight rods, the 

OPA approximation makes little difference, but for large rings with κa = 0.57, it results in an 

overestimate of Have by about 12 %.  Similar behavior is also seen for discrete wormlike chain 

models (P = 50 nm) of comparable bead number.  It should be emphasized, however, that this 

preaveraging effect depends on a number of factors including the ionic strength.  At low ionic 

strength, the error caused by the opa approximation is reduced.  In addition, a smaller bead size 

reduces this error and that is relevant to peptide studies (41, 52, 76) where we estimate the error 

is closer to 5 %.  In addition to free solution mobilities, the effect of a dilute gel (up to 0.02 gm 

dry agarose/ml) on mobility was also examined.  

It should be mentioned that two model approximations have not been discussed in this 

chapter. The first is the neglect of the perturbation of the external electric field by the (low 

dielectric) interior of the bead array. As discussed in previous chapters, this approximation is 

expected to cause an underestimation of electrophoretic mobility by a few percent (75). A second 
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approximation is that the hydrodynamic force exerted by a bead on the surrounding fluid is 

uniform over the bead surface. In modeling studies of the translational diffusion constant of the 

bead arrays, this approximation causes an overestimation in the overall translational diffusion 

constant of the bead array by a few percent (93). Although these two approximations tend to 

cancel each other, the limitations of model will limit the accuracy of the predicted 

electrophoretic mobilities to a few percent at best. 

The Results Section is ended by estimating the free solution electrophoretic mobility of 

duplex DNA versus length in 20 mM NaCl solution at 20 °C.  Due to the high electrostatic 

potential of DNA, it is essential to account for the relaxation effect and this is estimated on the 

basis of Boundary Element modeling of finite straight and curved rods.  When account is taken 

of the effect of flexibility on model mobility, agreement between modeling and experiment for 

long DNA is found to be very good. 

Two future applications of the BAEM procedure include gel electrophoresis of DNA (95, 

99) and bead arrays consisting of Au and Quantum Dot nanoparticles (97).  More work is needed 

to study the steric term, S, appearing in Eq. (4-50) when the migrating particle is highly 

nonspherical.  For spherical particles that do not interact with the gel matrix, the problem is well 

understood (108).  Work is currently underway in our laboratory on the problem of rodlike 

particles migrating in a cubic gel lattice.  With regard to the nanoparticle arrays, there is need for 

quantitative mobility data that is currently unavailable. 
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Chapter 5 

Brownian Dynamics Simulation of the Diffusion of Rods and Wormlike Chains in a Gel 

Modeled as a Cubic Lattice:  Application to DNA 

5.1    Introduction 

The present work represents a sequel to an earlier study of the translational diffusion constant 

of irregularly shaped particles in a gel modeled as a rigid array (45).  The general problem of 

diffusion in a congested medium such as the cytoplasm of cells (130), concentrated suspensions 

(131), gels (108, 132-138) and mucus (139) is particularly relevant to the transport of drugs and 

biomolecules in living tissue and also in the broad field of separation science.  The gel or 

congested medium retards the diffusion of a model particle relative to its value in free solution 

and this retardation is due to both long range hydrodynamic interaction and short range steric 

interactions.  These two effects can be considered separately (108) and the translational diffusion 

constant, D, written 

    )15( −= SDD EM  

where DEM is the “Effective Medium” diffusion constant (which accounts for long range 

hydrodynamic interaction) and S represents the correction for direct interactions between the 

diffusing particle and the gel. Eq. (5-1) was developed initially for the diffusion of spherical 

particles in a gel and S is a simple function of the volume of fluid excluded to penetration by the 

model particle (108, 132).  In previous work (45), we focused on DEM, and in the present study, S 

for rodlike and wormlike chain model particles shall be examined.  Here, we shall focus on short 
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range repulsive, or “steric” direct interactions.  Past investigations of S have been devoted to 

spherical particles with steric interactions (108, 123, 132, 140, 141). 

In order to model the diffusion of irregularly shaped particles through an explicit gel model, 

we shall use the method of Brownian dynamics simulation (103, 142, 143).  Various aspects of 

the modeling strategy are discussed in Model Section.  In Result Section, they are applied first to 

rodlike and then wormlike chain model particles with parameters chosen that are appropriate for 

duplex DNA.  This methodology is then applied to the translational diffusion of duplex DNA in 

the size range of 100 to up to several thousand base pairs in two different “congested” media.  

The first is dilute (up to 2 % by weight) agarose gel and the second is cell cytoplasm.  The 

Summary Section summarizes the principle conclusions of this work. 

5.2  Model 

2A)  Cubic Lattice Gel Model 

A gel can be characterized by its chemical composition (agarose, for example), weight 

density of “dry” gel material, ρg (which equals 1.64 gm/ml for agarose (144)), ratio of dry gel 

volume to hydrated gel volume, ωs (which equals 0.625 for agarose (123)), the weight 

concentration of gel, M (typically in gm/ml), and possibly the concentration and composition of 

crosslinker if present.  Once specified, however, these parameters do not lead directly to a unique 

gel microstructure since gel homogeneity, gel fibre thickness and shape as well as long range 

connectivity remain to be defined.  In the present work, we shall be primarily interested in 

agarose gels where X-ray scattering shows evidence of a substantial population of fibres of 

radius 1.5 nm and a smaller population with substantially larger radius (124).  Consequently, a 
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reasonable starting model of agarose is one in which the fibres have uniform axial radius, rg, in 

the size range of 1.5 nm or higher.  For sufficiently small M, previous investigation has also 

shown that particle migration in a gel is independent of the detailed geometry of the gel model 

(145).  We shall model a gel as a simple cubic lattice with fibres oriented along the x, y, and z 

axes and separated by a near neighbor distance of A.  To a good approximation, we can write 

(103) 
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where the second term on the right hand side of Eq. (5-2) represents the correction for the 

junction (overlap of three orthogonal fibres).  This correction is small unless the gel is 

concentrated.  It is straightforward to solve for A iteratively in Eq. (5-2) once the other 

parameters are specified.  Let A(n) denote the n-th estimate of A and  

  )35(2)3(

2/13

)1(

2/1
2/1)( −

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

−

−n
g

sg
g

n

A
rMrA

π
ωρ

π  

Initially, one sets A(0)  = ∞ and solves Eq. (5-3) for A(1).  This procedure is repeated until A(n) 

converges. 

2B)  Diffusion in a Gel:  Effective Medium and Steric Interactions 

Two factors act to reduce the translational diffusion constant, D, of a particle in a gel over its 

value in the absence of a gel, Dng.  One of these is long range in nature and arises from the 
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perturbation of the hydrodynamic flow of solvent by the rigid gel matrix.  As discussed 

previously (45, 108, 132), the Effective Medium, EM, model can be used to treat this part of the 

problem.  In the EM model, the “fluid” consists of solvent and also the gel matrix modeled as a 

continuum.  This fluid is assumed to obey the Brinkman (105) and solvent incompressibility 

equations defined by 

         )45()()()( 22 −=∇−∇ xvxpxv ηλη  

                  )55(0)( −=⋅∇ xv  

where η is the solvent viscosity, v(x) is the local fluid velocity at point x, p is the local pressure, 

and λ (units of 1/length) is the reciprocal of the gel screening length.  The concentration 

dependence of λ can be written (45, 146) 
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The other factor, S, is steric in nature and represents the reduction in diffusion due to short 

range repulsions of direct particle-gel fibre interactions.  Direct interactions other than short 

range repulsions could also be included in general (103).  This, however, shall not be done in the 

present study.  Writing Eq. (5-1) more explicitly 
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Previous work focused on the relative diffusion within the framework of the EM model, 

(D/Dng)EM.  In the present work,we shall focus on the steric term, S.  Although this term has 

received considerable attention for spherical particles (45, 100, 102, 123, 140, 141),  it has not 

been investigated for nonspherical particles.  For short rods, however, the form valid for 

spherical particles works reasonably well (103).  The primary objective of the present work is to 

examine S for rods and wormlike chains.  This is done by the technique of Brownian Dynamics 

simulation that shall be discussed next. 

2C)  Brownian Dynamics 

 We shall discuss two fundamentally different models used in the present work to represent 

linear semi-flexible chain molecules, a straight rigid rod and wormlike chain.  The rigid rod 

(right circular cylinder) shall be discussed first.  Let r denote the center of mass (center of 

diffusion) of the rod, L the rod length, R the axial rod radius, and u a unit vector collinear with 

the rod axis.  Also let v and w denote unit vectors that are perpendicular to each other as well as 

u.  During Brownian dynamics, the u, v, and w vectors are updated after each dynamics step.   

Consider a Brownian dynamics step of duration δt.  The change in r during the time step can be 

written (103) 

   )85( 21|| −++= ⊥⊥ wrvrrr δδμδδ  

The scalar quantities δr||, δr⊥1, and δr⊥2 denote translational displacements along u, v, and w, 

respectively.  Displacements arise from free diffusion as well as external forces, F, or torques, T, 
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acting on the rod relative to its center of mass/diffusion.  The scalar displacements can be written 

(103) 

  )95()2()( ||
2/1

|||||| −+⋅= XtDtFDr TT δδμβδ  

  )105()2()( 1
2/1

1 −+⋅= ⊥⊥⊥⊥ XtDtvFDr TT δδβδ  

An expression similar to Eq. (5-10) can be written for δr⊥2.  In Eqs. (5-9) to (5-10), β = 1/kBT (kB 

is Boltzmann’s constant and T is absolute temperature), DT|| and DT⊥ are the free translational 

diffusion constants parallel and perpendicular to the rod axis (147), respectively, and X||, X⊥1, 

and X⊥2 are independent Gaussian random numbers of zero mean and variance 1. 

It is also necessary to consider the rotational motion of the rod, let δθv and δθw denote 

angular rotations of u about directions v and w, respectively.  Also let DR⊥ denote the end-over-

end rotational diffusion constant of the rod (147), and XRv and XRw independent Gaussian 

random numbers of zero mean and variance 1.  The angular displacements are given by 

  )115()2()( 2/1 −+⋅= ⊥⊥ RvRRv XtDtvTD δδβδθ  

with a similar expression for δθw.  Provided the angular displacements are small, 

   )125( −−≅ vw wv δθδθμδ  

To summarize, a random number generator generates the X’s.  These along with u, v, w, F, 

and T (which are updated as the dynamics proceeds) are used in Eqs. (5-8) to (5-12) to displace 

the rod during a dynamics step. 
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Figure 5-1)  Wormlike chain in a cubic gel.  The small dots represent gel fibres coming out of 
the plane of the figure.  In this example, the wormlike chain consists of 5 beads and 4 virtual 
bonds,or “rodlets”, and the contour length of the chain is not small compared to the fibre spacing.  
Also, there is a contact with a gel fibre denoted by X and this results in repulsive forces on beads 
3 and 4 that are depicted by the arrows. 

 

In the discrete wormlike chain model, the chain is modeled as N identical rigid beads of 

radius a connected by N-1 virtual bonds of radius R*.  A schematic of a 5 bead (4 virtual bond) 

model chain diffusing in a cubic gel array is depicted in Figure 5-1.  Let ri denote the position of 

bead i and bi  = |ri+1-ri| denote the virtual bond or “rodlet” length.  Direct forces due to stretching 

and bending are derived from stretching, Us, and bending, Ub, pontentials, 
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where b0 is the separation distance at which Us is a minimum for all virtual bond terms,  
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In Eq. (5-14), θj is the angle between virtual bond vectors j and j+1.  Explicit expressions for 

bending and stretching forces have been given previously (143).  The Ermak-McCammon 

algorithm is used to displace the beads (142).  In a dynamics time step of duration δt, 

  ∑
=

−+⋅=
N

j
ijiji tRFDtr

1
)155()(δβδδ  

where Fj is the total force on bead j (arising from stretching, bending, and direct (steric) forces 

due to the interaction of the bead array with the gel), Ri is a vector of Gaussian random numbers 

of zero mean and variance-covariance 

   )165(2 −=><
ijji DtRR δ  

The construction of the Ri vectors is described elsewhere (142), and Dij is the configuration 

dependent hydrodynamic interaction tensor between subunits i and j.  In this work, the Rotne-

Prager tensor (148) with stick boundary conditions is employed.  The self terms are given by 
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where η is the solvent viscosity, I is the 3 by 3 identity tensor, and D0 is the “free” diffusion 

constant of a spherical bead of radius a.  For different and non-overlapping beads (see ref. (22, 

148) for the case of overlapping beads) 
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where rij = ri – rj and rij = | ri – rj|.  In many of the simulations carried out in this work, Dij was 

approximated by “preaveraging” (22, 143).  In this case, Dij is replaced with 

   [ ] )195(
3
1

−><=
ijopaij

DTrID  

where Tr denotes the trace of the tensor and < > denotes the average over many (typically 500 to 

2000) randomly generated chain conformations.  The computational advantage of preaveraging 

is that the Dij tensors only have to be computed once at the beginning of the simulation.  This 

results in substantially shorter simulation times. 

2D)  Gel-Rod and Gel-Rodlet Interaction 

Direct interactions between gel and rod (or gel and rodlets in the case of a discrete wormlike 

chain model) are handled as simple steric repulsion interactions.  For a cubic gel lattice, fibres 

run in three orthogonal directions.  In addition, the rod (or rodlet) length is not necessarily small 

compared to the fibre spacing, A, for the cases of interest in this work.  This is illustrated in Fig. 

5-1 where the model chain extends over several fibre spacings.  For this reason, it is necessary to 

carefully check for multiple gel-rod(let) contacts during each step of dynamics.  In the following 

analysis, it shall be assumed we have a single rod.  The more complex case of a discrete 

wormlike chain made up of multiple rodlets involves a straightforward extension of the simpler 

case of a single rod.  Suppose we have a fibre oriented along k (k could be x, y, or z) and 

centered at (0, xk1, xk2) where the first coordinate (0) is along k and the latter two coordinates (xk1 

and xk2) are in orthogonal directions, k1 and k2, respectively.  Also let the rod of length L be 

centered at r = (rk, rk1, rk2) oriented along u = (uk, uk1, uk2).  Any point on the rod axis is given by 
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the coordinate (rk + γ L uk, rk1 + γ L uk1, rk2 + γ L uk2) where -1/2 ≤ γ ≤ +1/2.  The square of the 

distance of closest approach of a point at a particular γ on the rod and the gel fibre is 
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Minimizing with respect to γ 
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If  γ < -1/2, set γ = -1/2 and if γ > +1/2, set γ = +1/2.  This value of γ is substituted into Eq. (5-20) 

gives the distance of closest approach of the rod and this particular gel fibre.  If the distance of 

closest approach exceeds R + rg (rod radius plus gel fibre radius), no interaction force is included.  

If the distance of closest approach is less than this amount, a repulsive force, F’ at point γ on the 

rod and directed from the gel fibre to the rodlet at the contact point is applied.  When we have a 

discrete wormlike chain and multiple rodlets, the above procedure is repeated for each rodlet (bi 

replaces L and R* replaces R) that comprises the model chain.   

The repulsive displacement of a bead associated with a rodlet that “contacts” a gel fibre is 

approximately |δrj
rep| ≈ βδtminD0|F’| where D0 is the diffusion constant of a single bead and δtmin is 

the minimum time step.  As discussed later, we set δtmin = rg
2/200D0 in order to insure that the 

bead displacements during the shortest timesteps are small compared to the gel fibre radius, rg.   

The overall displacement in one direction of a single bead with this time step will be 

approximately |δrj| ≈ (2D0 δtmin)1/2 = rg/10.  If a dynamics time step introduces an overlap, the 



96 

 

 
 

bead displacements resulting from rodlet fibre repulsions should be comparable with rg/10 in 

order to relieve the overlap.  Since rg falls in the 1 to 3 nm size range for cases of interest in this 

work, |δrj
rep| ≈ 0.1 to 0.3 nm.  The magnitude of the repulsive force is set to |F’| ≈ 20/βrg.  The 

corresponding torque on the rodlet is 0.5 γ bj u x F’ (where x denotes vector cross product).  This 

procedure is applied to all possible fibres that could possibly overlap the rod. 

     It is convenient to replace the rodlet force and torque with corresponding forces on the two 

beads that comprise a particular rodlet.  Consider the situation where rodlet j overlaps a gel fibre 

at position γj and gives rise to a steric rodlet force and torque, F’ and γj bj uj x F’, respectively.  

This condition is satisfied if we write the subunit steric forces for beads j and j+1 that comprise 

rodlet j 

                                      )225()2/1(' −−= FF jj γ    
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γ  

Note that we must have F’ = Fj
’ + Fj+1

’ and T’ = bj uj x (Fj+1
’ - Fj

’).  In the case of a discrete 

wormlike chain, it is necessary to sum over all rodlets and and all fibres that could possibly 

overlap each other during each dynamics step.  In Fig. 5-1, the “x” on rodlet 3 denotes a contact.  

The arrows on beads 3 and 4 denote F3
’ and F4

’ determined according to Eqs. (5-22) and (5-23). 

     2E)  Rod and Wormlike Chain Models 

     The particle shall be modeled either as a right circular cylinder (rod) of length L and axial 

radius, R, or as a wormlike chain (121) of contour length, L, axial radius, R, and persistence 
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length, P.  Since we are primarily interested in duplex DNA in the present work, L is simply 

related to the number of base pairs, nbp by L (in nm) =0.34 nbp.  Also, current consensus places R 

at 1.0 ± 0.1 nm (115, 116).  The persistence length of DNA shows some variation with ionic 

strength, but a typical value is 50 nm or 147 bp (121).  That value shall be used throughout the 

present work.  For short DNA such that L << P, a rigid rod model should be a realistic one to 

represent the diffusion of duplex DNA in a gel or free solution.  For DNAs longer than about 50 

bp, however, a wormlike chain model is more appropriate.   

     Rather than a continuous wormlike chain model, we shall consider discrete wormlike chain 

models in which the chain is modeled as N beads of radius a, minimum separation of stretching 

potential, b0, (Eq. (5-13)), and stretching and bending force constants, h and g, respectively (Eqs. 

(5-13, 5-14)).   The most detailed is the “touching bead” model of Hagerman (117, 118) where b0 

= 2a and L = 2 a N.  Setting the volume of a right circular cylinder, π R2 L, equal to that of N 

touching beads, 4 π N a3/3,  gives a = (3/2)1/2 R = 1.225 nm.  For the touching bead model, nbp = 

7.2 N.  In addition, the persistence length, P, is related to the bending force constant, g, by the 

relation (149) (valid for g >> 1) 
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where <b> ≅ b0(1+2/h) is the average rodlet or virtual bond length.   The touching bead model is 

not suitable for Brownian dynamics simulation of the translational diffusion of long wormlike 

chains in a gel because of the long simulation times involved.  However, it is used to calculate 

DEM for wormliked chains in the present work (45).  Also, it is useful in the present work in 
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defining some “free solution” parameters of wormlike chains.  These include the translational 

diffusion constant of the wormlike chain in the absence of a gel, Dng, the root mean square end-

to-end distance, <R2>1/2, and the dimensionless asymmetry parameter 
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In Eq. (5-25), rj is the position of bead j, rCM is the position of the center of mass of the wormlike 

chain, and u is the end-to-end unit vector.  In the limit of a straight rod, χ → 0.   

     As an alternative to the touching bead wormlike chain for use in Brownian dynamics 

simulations, we design “equivalent” wormlike chains made up of fewer subunits that have the 

same Dng, <R2>1/2, and χ as a touching bead wormlike chain.  The parameter N is chosen to give 

us a chain with b0 comparable to a persistence length.  Also, the stretching force constant, h, is 

arbitrarily set to 100.  This value is small enough to allow relatively long dynamics steps and yet 

large enough to insure that bj does not deviate from b0 by more than a few percent.  With N fixed, 

initial estimates of a and b0 are made and then g is varied until χequivalent ≅  χtouching bead.  At this 

point, g is uniquely determined since χ is independent of the parameters a and b0.  Now with N, h, 

and g fixed and using the same estimate for a, b0 is varied until <R2>1/2
equivalent = <R2>1/2

touching bead.  

At this point, b0 is uniquely determined since both χ and <R2>1/2 are independent of the 

remaining parameter to be determined, a.  Next, a is adjusted until Dng
equivalent = Dng

touching bead 

using well established procedures of bead hydrodynamics (22,45,150).  By this procedure, it is 
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simple and straightforward to uniquely determine a discrete wormlike chain that captures some 

of the key features of a continuous wormlike chain model. 

    There does remain, however, one additional parameter of our equivalent wormlike chain 

model to specify and that is the effective rodlet axial radius, R*, which has a limiting value of 

1.0 nm appropriate for DNA for a continuous wormlike chain model.  This parameter is 

necessary in modeling the transport of a wormlike chain through a gel since we need some 

criteria to judge for overlap between the gel (of fibre radius rg) and the chain (of axial radius R*).  

To estimate R*, an equivalent wormlike chain is randomly placed in a dilute gel with fibres 

running randomly in the x, y, and z directions.  The average number of gel fibres intersecting the 

chain is 

          )265()]*(4)1(2)[*( −+++−><+><=>< gggstrs rRrNbrRnN π   

where <nstr> = M/(3πρgωsrg
2) is the average number of gel fibres that pass through a unit area.  A 

similar expression to Eq. (5-26) can be written down for a continuous wormlike chain of contour 

length L and axial radius R.  Setting the two equal and solving for R* gives 
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where a1 = 2LR+πR2, a2 = (4+2π)R+2L-2<b>(N-1), a3 = 2<b>(N-1), and a4=(4+2π). 

     Although R* appears on both the left and right hand side of Eq. (5-27), it is straightforward to 

solve for R* iteratively using previous estimates on the right hand side.  As an initial estimate, 

set R* = 1.0 nm on the right hand side of Eq. (5-27) and solve for R* to obtain an improved 
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estimate.  Then use this improved estimate on the right hand side of Eq. (5-27) to obtain a still 

better estimate.  This procedure is repeated until R* converges.  Summarized in Table 5-1 are the 

equivalent chain parameters of duplex DNA of different length with P = 50 nm.  A stretching 

force constant of h = 100 is used and rg = 2.0 nm.  (For other rg, the parameter R* will be 

different but the other parameters are the same.) 

     2F)  Timesteps, Averages, and Details of the Simulation Procedure 

     The general procedure used in Brownian dynamics simulation of rod and wormlike chains 

have been discussed previously in related applications (103,143).  Briefly, the simulation is 

broken down into NSUB subsimulations (typically 4 to 10) and each subsimulation consists of 

NTRJ trajectories (typically 25 to 100).  For each trajectory, a rod or wormlike chain 

conformation that does not overlap the gel matrix is initially generated at random from an 

equilibrium distribution of conformations.  Brownian dynamics is carried out for each trajectory 

for a length of time, T, chosen long enough so that the rms diffusional displacement of the center 

of mass of the rod or wormlike chain is at least several times larger than the fibre spacing in the 

gel, A.   

     As discussed previously with regard to the electrophoresis of short rods in a cubic gel (103), a 

variable time step algorithm is much more efficient than a constant time step algorithm.  A 

similar approach is used for the discrete wormlike chain models.  As in all molecular dynamics 

and Brownian dynamics simulations, the dynamics time step, δt, should always be chosen 

sufficiently short so that the forces on the subunits do not change significantly during the 

duration of a time step.  In the present application, this is determined either by the intersubunit 
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stretching forces or the gel fibre-virtual bond steric repulsive forces that are present when 

overlap occurs. It is straightforward to explore this problem by systematically raising the time 

step and seeing what effect this has on observables being measured.  If the time step is too large, 

the observable depends on time step and if it is short enough, the observable is independent of 

timestep (151).  For the migration of a rod or wormlike chain in a gel, too large a time step might 

lead to passage of the rod or wormlike chain through a gel fibre and hence a translational 

diffusion constant larger than it should be.  In the present work, the minimum time step is taken 

to be δtmin = rg
2/(200 D0) and the maximum time step δtmax = (<b2>-<b>2)/(200 D0) where D0 is 

the diffusion constant of a bead of radius a.  Let s denote the distance of closest approach 

between any point on any virtual bond and any gel fibre.  Then δt is set to δtmin if s ≤ (rg+R*) and 

the lesser of δtmax and δtmin+(s2-(rg+R*)2)/(200 D0) if s ≥ (rg+R*).  By following this procedure, 

relatively short timesteps are taken when overlap or near overlap occurs, but longer timesteps are 

allowed otherwise.  A reduced sampling time is defined 
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So that 0 < tred < 100.  During a trajectory, the following average is computed 
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In the absence of a gel, <D(tred)>traj → Dng for all tred and sufficiently long trajectories.  Eq. (5-29) 

is further averaged over NTRJ trajectories to obtain subsimulation averages.  These, in turn, are 

further averaged over NSUB subsimulations.  From the variation in <<D(tred)>traj>NTRJ over 
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different subsimulations, standard deviations can be estimated as well as <D(tred)> = 

<<<D(tred)>traj>NTRJ>NSUB.  Finally, 
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On physical grounds, we expect <D(tred)> → Dng for sufficiently short tred regardless of gel 

concentration, M.  This, however, is expected to drop with increasing tred and reach a plateau 

value at sufficiently long time or tred.   

5.3  Results 

     3A) “Steric” Effect Study for DNA 

 

Figure 5-2)  1/S-1 versus (Rh/A)2 for rigid rods, rg = 1.3 nm.  Rod axial radius = 1.0 nm and 
lengths (in units of base pairs of duplex DNA) are:  50 (diamonds), 100 (squares), 200 (triangles), 
400 (x’s), and 800 ( *’s). 
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Figure 5-3)  1/S-1 versus (Rh/A)2 for rigid rods, rg = 2.6 nm. .  Rod axial radius = 1.0 nm and 
lengths (in units of base pairs of duplex DNA) are:  50 (diamonds), 100 (squares), 200 (triangles), 
400 (x’s), and 800 ( *’s). 

     

     As an initial application, consider duplex DNA modeled as a right circular cylinder of radius 

R = 1 nm and length L = 0.34 nbp where nbp is the number of base pairs.  The diffusion constants 

of the rod in the absence of a gel come from reference (147).  Plotted in Figures 5-2 and 5-3 is S 

versus (Rh/A)2 for 50 to 800 bp models with rg  = 1.3 and 2.6 nm, respectively.  The 

hydrodynamic radius, Rh, is defined 

                                 )315(
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In both cases with different rg’s, the data appears to fall on a universal curve with respect to rod 

length.  In Figure 5-4, nbp =564 bp, but rg is varied from 1.3 to 2.6 nm.  When S is plotted versus 
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(Rh/A)2, the results appear to be independent of rg.  Thus, S for rods of variable length and rg 

appear to fall on a universal curve when plotted versus (Rh/A)2.   

 

Figure 5-4)  S versus (Rh/A) for rigid rod model of 564 bp DNA and variable rg.  Unfilled 
triangles, unfilled squares, and filled diamonds correspond to rg = 1.3, 2.0, and 2.6 nm, 
respectively. 

 

     One unusual feature of Figure 5-4 is that in the limit of large Rh/A (high gel concentration, M), 

S appears to approach a limiting value of about 0.40 in this particular example.  This can be 

understood as follows.  For a long straight rod diffusing in a dense periodic cubic gel, diffusion 

will be completely eliminated in a direction perpendicular to the rod axis, but diffusion parallel 

to the rod will remain free provided there are no attractive gel-rod interactions.  Hence, S (which 

equals <D>/Dng neglecting long range hydrodynamic interactions) should equal D||
ng/(3 Dng) in 

the limit of large M and this equals 0.40 in the above example.  In the case of an actual duplex 

DNA diffusing in a real gel, curvature of the diffusing molecule and/or irregularities in the gel 
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structure would be expected to cause S to drop below this limiting value.  This is one of the 

reasons for turning to wormlike chain models which is done next. 

 

Figure 5-5)  <D(tred)>/Dng versus tred for 500 bp DNA trumbell model.  Top to bottom curves 
correspond to M = 0.000, 0.002, 0.004, 0.008, 0.016, and 0.032 gm/ml of agarose, respectively.  
Error bars denote variance between different subsimulations.  See the text for details. 

 

    3B) Application to Duplex DNA Diffusion in Free Solution, in an Agarose Gels, and in 

Cell Cytoplasm 

     As discussed in Section 2F, diffusion of a rod or wormlike chain in a gel is expected to be 

time dependent, but reaching a constant value at times long compared to the time it takes for the 

particle to diffuse an rms distance equal to the gel spacing, A.  An example of this is shown in 

Figure 5-5 for 500 bp DNA with P = 50 nm modeled as a trumbell (N = 3) at 6 different M.  The 
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trumbell parameters are given in Table 5-1. The trajectory time, T, is set equal to 5 A2/Dng and 

this corresponds to tred = 100 (see Eq. (5-29).  From top to bottom in the Figure, M = 0.0, 0.002, 

0.004, 0.008, 0.016, and 0.032 gm/ml, respectively.  Error bars reflect the variation in 

<D(tred)>/Dng between different subsimulations (10 total) of 50 trajectories each.  The long time 

limiting value of <D(tred)>/Dng gives S. 

          Table 5-1. Parameters for Equivalent Wormlike Chain Models 

nbp N a (nm) b0 (nm) g R* (nm) 
100 3 2.23 15.0 3.50 1.215 
200 3 3.51 30.1 1.40 1.263 
400 3 5.00 57.2 0.61 1.443 
500 3 6.90 67.1 0.50 1.656 
1000 6 6.40 59.5 0.53 1.345 
2027 10 7.20 71.0 0.30 1.169 

      

     For trumbell models of wormlike chains representing 100 to 500 bp duplex DNA, simulations 

were carried out without and with the preaveraging approximation (Eq. (5-19)).  Although 

simulations without the preaveraging approximation required 5 times the computation time as the 

same simulations with the preaveraging approximation made, <D(tred)>/Dng were 

indistinguishable given the noise level. Shown in Figure 5-6 is a plot of –ln[S] versus x =  

(Rh/A)2 for wormlike chains of different length with P = 50 nm.  The parameters of the wormlike 

chains are summarized in Table 5-1 and discussed in Section 2E.  To a good approximation, this 

data is well fit by the following empirical formula. 
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true for any wormlike chain in a gel of variable rg.    

      

Figure 5-6) –ln[S]/x versus x for discrete wormlike chains of variable length.  Persistence 
length, P, equals 50 nm and x = (Rh/A)2.  Diamonds, squares, triangles, and x’s correspond to 
200, 500, 1000, and 2027 bp DNA, respectively.  The solid curve is an empirical fit defined by 
Eq. (5-32). 

 

    A number of investigations of the translational diffusion constants of duplex DNA in agarose 

gels have been reported (132, 133,136), but studies of short DNAs in the 100 to several thousand 

base pair range are very limited (132, 136).  A comparison of model and experimental diffusion 

constants (132) in free solution (M = 0.00) and in a 2 % agarose gel (M = 0.02 gm/ml) is 

presented in Figure 5-7.  The technique used in reference 5 was FRAP (fluorescence recovery 

after photobleaching (150)) and the experiments were carried out at 25 °C in a PBS buffer at an 
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ionic strength of 0.1 M.  The open triangles represent model studies of touching bead wormlike 

chains (P = 50 nm) in the absence of a gel.  The dashed line comes from reference 5 (M = 0.00) 

and the +’s from dynamic light scattering measurements of Sorlie and Pecora (152).  Diffusion 

constants from reference 37 have been modified slightly to correct them from T = 20 to 25 °C 

(T/η correction).  In the absence of a gel, modeling and experimental diffusion constants (from 2 

independent labs employing different methodologies) are in good agreement with each other.  

The asterisks (with error bars) are experimental D’s in 2 % agarose and the solid line represents a 

fit to experimental data extending out to a length of about 6000 bp (132).  The corresponding 

model studies that include both EM (long range hydrodynamic) and steric interactions are 

denoted by filled squares (rg = 2.0 nm) and filled triangles (rg = 4.0 nm) both at M = 0.02 gm/ml.  

In the case of a gel, agreement is only fair.  For 564 base pair DNA, a model with rg ≅ 2.5 nm 

matches experiment, but the same model substantially underestimates the diffusion constant of a 

longer (2000 bp) fragment.  In this example, the gel model predicts a stronger dependence on 

length than is observed experimentally.  It should be mentioned that a stronger dependence on 

length is also seen in experiment, but only for nbp > 6000 bp (132).  It is doubtful that 

electrostatic interactions between gel and DNA could be responsible for these differences.  

Agarose contains anionic pyruvate sites, buth these are effectively screened above an ionic 

strength of 0.02 moles/liter (138).    
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Figure 5-7)  Length dependence of D for duplex DNA in free solution and in a 2 % agarose 
gel.  Dashed and solid lines are fits to experimental data (reference (132)) in free solution and in 
2 % agarose gel, respectively.  Open triangles are for touching bead models in the absence of a 
gel (M = 0.0). +’s are from reference (151) with M = 0.0.  Asterisks are from reference (132) 
with M = 0.02 gm/ml.  Filled triangles and diamonds are touching bead model studies with M = 
0.02 gm/ml and rg = 2.0 and 4.0 nm, respectively.   

 

 

Figure 5-8)  Length dependence of D for duplex DNA in 0.2 % agarose gel.  Asterisks are 
experimental points (with error bars) from reference (136).  Filled triangles and diamonds are 
touching bead model studies with M = 0.002 gm/ml and rg = 2.0 and 4.0 nm, respectively.   
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     Figure 5-8 shows a similar comparison between modeling and experiment in M = 0.002 

gm/ml agarose gel and an ionic strength of about 0.01 moles/liter (136).  The FRAP technique is 

also used in this study.  In this case, modeling works better for longer fragments.  As in the case 

of the more concentrated gel, modeling predicts stronger length dependence than is observed 

experimentally.  It should be emphasized, however, that this observation is based on a small 

number of DNA lengths in the size range of interest in the present work (100 to 2000 bp). 

     As a final application of DNA diffusion, we shall consider the reduced diffusion of duplex 

DNA in cell cytoplasm (153).  Cytoplasm is the jellylike material that makes up much of a living 

cell inside the cell membrane (130).  It consists of water, salts, sugars, lipids, nucleotides, 

peptides and proteins.  Given its complexity and heterogeneity, the present analysis must be 

regarded as preliminary.  We shall model the cytoplasm purely as an Effective Medium (without 

steric interactions) and as an EM with the steric term included.  Arbitrarily, we shall set rg = 3.0 

nm.  For a 250 bp DNA fragment, Lukacs et al. report Dcyto/Dw = 0.06 ± 0.02 where Dcyto is the 

diffusion constant of DNA in cytoplasm and Dw is the corresponding diffusion constant in water 

(153).  For both EM and EM + steric models, M is determined which yields Dcyto/Dw to within 

the uncertainty of the experiment.  These turn out to be M ≅ 0.90 gm/ml for the EM and ≅ 0.20 

gm/ml for the EM + steric model.  These gel concentrations are then used to model Dcyto/Dw for 

fragments of other lengths.  The results are summarized in Figure 5-9 for experiment (153) 

(filled squares), EM model (dashed line), and EM + steric model (solid line).  Although neither 

model fits the experimental data perfectly, it is clear that the EM + steric model is superior to the 

EM model alone.  The EM model alone predicts a substantially weaker dependence of Dcyto/Dw 
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on length than is observed experimentally.  The EM + steric model captures, to a good extent the 

observed length dependence.   

 

Figure 5-9)  Dcyto/Dw versus length.  Experimental ratios are denoted by filled squares with 
error bars and come from reference (138).  EM model results (M = 0.90 gm/ml) are denoted by a 
dashed line and EM + steric model results (M =  0.20 gm/.ml) are denoted by a solid line. 

 

     3C) Application to Duplex DNA Mobility in an Agarose Gels 

     The EM model discussed in the Methodology section of this chapter is also applied to 

modeling the gel electrophoresis of duplex DNA in agarose gels from the experimental work of 

Calladine et al. (95).  The relevant model parameters pertaining to agarose are given following 

Eq. (4-51).  Since the EM model is expected to work best for dilute gels and for macromolecules 

that are small relative to the pore spacing in the gel, we shall concentrate on short duplex DNAs 

in dilute gels (9) with M in the range of 0.005 to 0.020 gm/ml.  The experiments were carried out 

at 20 °C in a Tris borate buffer, pH = 8.3, ionic strength = 25 mM. 
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     To model duplex DNA, the discrete wormlike chain model of Hagerman (117,118) is 

employed.  Mobilities are obtained by averaging over 100 or main independent chain 

conformations.  Current consensus places the hydrodynamic radius, R, (viewing duplex DNA on 

a local distance scale as a right circular cylinder) at 1.0 ± 0.1 nm (115, 116).  Following 

Hagerman, one sets the contour length, L, equal to 2Na where N is the number of touching 

contiguous beads and a is the bead radius.  Setting the volume of a model circular cylinder, πR2L, 

equal to that of N touching beads, 4πa3N/3, gives a = (3/2)1/2R = 1.225 nm.  The number of base 

pairs, nbp, equals 7.2N for this model.  For the persistence length, P, of DNA, a value of 50 nm is 

assumed (121).  However, μ of duplex DNA in free solution or in a dilute gel is fairly insensitive 

to this parameter.   

 In the model studies carried out in this work, we ignore the relaxation effect compute a 

reduced (dimensionless) mobility, μred, defined by 
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where μEM is the (Effective Medium) model mobility, y = qζ/kBT (ζ is the electrostatic potential 

averaged over the surface of all beads in the model structure), and other quantities are defined in 

the first paragraph of Appendix A of reference 41.  In the absence of a gel, μred exhibits only a 

very weak dependence on length as shown by the dashed line in Figure 5-10.    
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Figure 5-10)  μred versus log10(nbp) for duplex DNA in agarose gels.    Experimental reduced 
mobilities, denoted by filled symbols (M = 0.005 gm/ml (green), 0.010 (blue), 0.015 (red), and 
0.020 (black)), come from the work of Calladine et al. (95).  Lines (dashed line, M = 0.0:  solid 
lines; M = 0.005 (green), 0.010 (blue), 0.015 (red), and 0.020 (black)) are from model studies 
with σ = 2.0 nm.   

 

     This trend is also observed for the experimental mobility of DNA for nbp ≥ 50 (79).  Since |y| 

is nearly independent length for long DNA (120, 154) and since the relaxation correction versus 

y is comparable for spheres and (long) cylinders (155), we would expect μred to equal μexpt within 

a multiplicative constant to correct for the relaxation effect.   

     The ease and power of gel electrophoresis to separate DNA on the basis of length is 

responsible for the widespread use of the technique.  Can the EM model account for the length 

dependence of the mobility of DNA when a gel is present?  In Figure 5-10, μred
 is compared with 

experiment for DNAs shorter than 1000 bp.  In order to deal with the relaxation correction 

discussed in the previous paragraph, experimental mobilities have been scaled to match μred for a 

single measurement.  For this measurement, we choose a 72 bp DNA fragment with M = 0.01 
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gm/ml.   As Figure 5-10 shows, the EM model works quite well for short DNAs and/or low gel 

concentrations.  Given the inherent limitations of the model (9), these trends are expected.   

5.4 Summary 

     The translational diffusion constant, D, of a particle in a gel or congested medium can be 

written as the product of two terms (108).  In one of these, DEM, long range hydrodynamic 

interaction between the particle and the gel is accounted for using the Effective Medium model.  

For an irregularly shaped object modeled as an array of non-overlapping beads, this problem has 

been addressed previously (45).  The other term, S, accounts for direct interactions which in the 

present work is restricted to short range repulsive, or steric interactions.  Here, S is studied for 

straight rods and wormlike chains with parameters chosen that are appropriate for duplex DNA 

in the 100 to several thousand base pair range. Brownian dynamics simulation is used to 

determine S for a range of DNA length, gel fibre spacing, A, and gel fibre radius, rg.  For 

wormlike chains with a persistence length, P, of 50 nm (appropriate for duplex DNA), a simple 

expression for S is deduced (Eq. (5-32)) that is valid over a broad range of DNA length as well 

as gel parameters.   

     This approach is then applied to two important systems, diffusion of DNA in dilute agarose 

gels and the cytoplasm of cells.  For diffusion in agarose gels with M in the range of 0.002 to 

0.02 gm/ml, modeling is in fair agreement with experiment for rg = 2.0 to 4.0 nm.  However, 

modeling tends to overestimate the length dependence of D for DNA in the size range of 500 to 

over 2000 base pairs.  It is unlikely that direct electrosatatic interactions (138) are responsible 

given the relatively high ionic strengths used in the experiments (132,136).  At present, we do 
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not have a satisfactory explanation for the difference.  Given the limited amount of experimental 

data, particularly for short fragments (100 to 2000 base pairs), we do feel there is a great need for 

more measurements of D.  For diffusion of DNA in cytoplasm, Dcyto, relative to water, Dw, it was 

possible to identify conditions in which the length dependence of Dcyto/Dw observed 

experimentally could be reasonably well accounted for within the framework of the EM plus 

steric model. 

     Diffusion of macromolecules in gels or congested media is an extremely important problem in 

molecular biology, drug delivery, and separation science.  It is hoped that the methodology 

developed here will be of value in future studies of diffusion of irregularly shaped bodies in gels 

or congested media.  This work is also relevant to related transport phenomena such as gel 

electrophoresis (103).  
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Chapter 6 

Translational Diffusion Constants of Short Peptides: Measurement by NMR and Their Use 

in Structure Study of Peptides 

6.1  Introduction:  

The translational diffusion constant, DT, of macromolecules is a fundamental property 

that widely used in biology and chemistry study. Self-diffusion constants are sensitive to particle 

size and conformation. This sensitivity, coupled with a wide range of available techniques that 

make DT a comparatively simple quantity to measure, are responsible for its importance. For 

macromolecules with a molecular weight in excess of 20 kD, dynamic light scattering has long 

been the method of choice (156). For small molecules that do not scatter much light, methods 

related to boundary spreading due to a concentration gradient have long been used (157-160). In 

addition, pulse field NMR has become a useful method (161-165) and has the advantage of being 

applicable at very low concentrations. In this chapter, we are measuring the diffusion by NMR 

and use the result to characterize peptide conformation/aggregation in free solution. 

The focus of this chapter concerns the self-diffusion constants of peptides in aqueous 

solution in the limit of infinite dilution. The principal objective of this work is to report diffusion 

constants of 5 short peptides: Gly-Gly (GG), Gly-Arg (GR), Gly-Gly-Arg (GGR), Gly-Gly-Asp-

Ala (GGNA), and Gly-Gly-Arg-Ala (GGRA). The method employed is field gradient NMR and 

is described in detail elsewhere (161, 162). 

We are also studying the effect of secondary structure to the translational diffusion 

constant, Dt, for peptides. Our modeling results show that there is certain kind of affect even for 
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small peptides contains amino acids with flexible side group. The principal objective of this 

work is the determination of DT and DT
0, where the “0” superscript represents the zero 

concentration limit (80), for 5 short peptides: GG, GR, GGR, GGNA, GGRA, by field gradient 

NMR.  The diffusion constant of the amino acid glycine, G, is also reported.  For G and GG, we 

are able to compare our DT with earlier results measured by the concentration gradient methods 

(157-160).  The results for G and GG are also used to adjust one parameter, the “side bead” 

radius of glycine, in a “bead model” that we have found particularly useful in studies of the free 

solution electrophoretic mobility of peptides (76).  Also, when two G’s condense to form GG, a 

single water molecule is lost and we are able to estimate the change in solvation volume due to 

the loss of a water molecule.  We then use the peptide bead model along with the DT’s 

determined in this work to examine the solution conformation of the remaining peptides.  Two of 

these, GGNA and GGRA, have been the subject of detailed study by free solution 

electrophoresis (62, 66). 

6.2  Materials and Methods 

2A) Peptide Samples.  Peptide samples (GenScript) were prepared in D2O in a buffer 

consisting of 80 mM sodium phosphate. Unless otherwise noted the peptide concentration was 5 

mM.  For peptides GG and GGRA the concentration was varied from 5 to 20 mM and the 

diffusion constants at zero concentration were estimated by extrapolation. The pH* (uncorrected 

meter reading) is adjusted to 3.05-3.09 with DCl. This corresponds to a pD of approximately 

3.50 (166). 
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2B) NMR Spectroscopy.  NMR spectra were acquired on a Bruker Avance 500 MHz 

spectrometer equipped with a 10 A gradient amplifier using a 5 mm TBI probe head 1H{13C, X} 

with a shielded Z-gradient coil.  The gradient coil of the probe head was calibrated to 5.72 

Gauss/(cm A) using a 5 mm Shigemi NMR tube (Shigemi) with a 14 mm sample window using 

99.96% D2O.  All DT measurements were recorded at 298 K using a pseudo 2D stimulated echo 

pulse program with 1 spoil gradient (“stegp1s”) (Bruker pulse sequence “stegp1s, v.1.1.2.2”) 

(167, 168). In the diffusion experiments, gradient delays and lengths were adjusted to cover the 

range of 5 to 95% of the signal intensity in 16 increments.  Typically, 16-32 scans were collected 

for each experiment, using a relaxation delay of 8 s, and 1 to 2 Hz line broadening. The data 

were processed and analyzed using the T1/T2 package of XwinNMR 3.5. With the gradient 

calibration, a DT of HDO (99.96% D2O) of 2.24 × 10-9 m2/s at 298 K is obtained.  This agrees 

with previously reported DT of HDO, which range from 1.90 to 2.51 X 10-9 m2/s (169, 170). 

Table 6-1. Important Parameters for Each Experiment. 

Peptide or amino acid p1 (us) p30 (us) rg
Ala 11.3 1160 128
GlyGly 11.35 1700 128
GlyArg 11.1 1520 71.8
GlyGlyArg 11.3 1525 114
GlyGlyArgAla 11.4 1900 256
GlyGlyAsnAla 11.1 1520 101.6
 

     The gradient pulse was optimized to fit well to a SINE funtion. Parameters (Δ and δ) need to 

be optimized to detect the whole decay function. Typical ranges: 50 – 100 ms for (Δ, d20) amd 

1ms (δ, p30). The way to optimize the gradient is to record 1D spectrum with 2% and 95% 

gradient (gpz6) respectively. After phasing them and baseline correction, compare their signal 
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intensity. The resulting spectrum should be around 5% intensity difference. Both Δ and δ can be 

adjusted with δ having a greater effect. In our case, we mainly change the δ value. The  δ values 

for each case in our experiment can be seen in Table 6-1.  

6.3  Results 

All NMR experiments on amino acid and peptide samples were carried out in D2O at 298 

K in a buffer solution containing 80 mM sodium phosphate at pD ≅ 3.5.  The translational 

diffusion constant in the limit of zero amino acid or peptide concentration, DT
0, is related to the 

hydrodynamic radius, Rh, by the relation 
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where T is the temperature (in K), kB is Boltzmann’s constant, and η is the solvent viscosity.  For 

a low ionic strength D2O buffer at 298 K, η = 1.091 cp (.001091 kg/(m sec)) (171).  This 

compares to a viscosity of a low ionic strength H2O buffer at 298 K of 0.89 cp (8.9 x 10-4 kg/(m 

sec)).  Assuming Rh is unaffected by the substitution of H2O with D2O, we can correct “raw” 

diffusion constants measured in D2O to the corresponding diffusion constants in water at 298 K 

with 

2)-(6K)298O,(DD1.226298K)O,(HD 2
0
T2

0
T =  

In this chapter, all diffusion constants reported have been corrected to water at 298 K.  
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Figure 6-1) DT/DT
0 versus peptide concentration for GG and GGRA. The squares and 

diamonds correspond to experimental ratios for GG and GGRA, respectively. Measurements 
were carried out in D2O at 298 K in 80 mM monosodium phosphate buffer at pD ≅ 3.50. The 
lines correspond to linear fits of the data and the vertical bars represent the estimated error. 

 

NMR experiments for GG and GGRA were carried out at 5mM, 10mM, and 20mM 

peptide concentration, in order to examine the concentration dependence of DT. In the limit of 

zero concentration, DT extrapolates to 7.58 and 4.71 × 10-10 m2/s for GG and GGRA, 

respectively.  The ration DT/DT
0 is plotted in Figure 6-1 versus the peptide concentration for both 

GG and GGRA.  The error bars reflect the estimated 1% relative uncertainty in the measured 

diffusion constants.   The ratio DT(0 mM)/DT(20 mM) gives 1.015 and 1.047 for GG and GGRA 

respectively.  For the remaining samples, DT was only measured at 5 mM.  A 4% correction for a 

20 mM sample would translate into a 1% correction for a 5 mM sample, and this is comparable 

to the relative error in the NMR measurements themselves.  The DT
0 values are summarized in 

Table 6-2.  For GG and GGRA, these were estimated by extrapolation.  For the other samples, 

we simply equate DT
0 to the measured value at 5 mM peptide concentration.  Also listed in Table 
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6-2 are effective hydrodynamic radii using Eq. (6-1) and DT
0’s obtained from modeling.  The 

modeling values shall be discussed in the Discusstion Section.   

Table 6-2. DT
0 (in 10-10 m2/sec) and Rh for G and Peptides(a) 

Species DT
0(present work) Rh (nm)(b) DT

0(past work) DT
0(modeling) Error(c)

G 9.88 0.248 9.6-10.7 --- --- 
GG 7.58 0.324 7.9-8.0 7.58 --- 
GR 5.62 0.437 - 5.93 +.055 
GGR 5.56 0.441 - 5.31 -.045 
GGRA 4.71 0.521 - 4.77 +.013 
GGNA 5.19 0.473 - 5.13 -.012 

(a) in dilute aqueous buffer at 298 K 
(b) from Eq. (6-1) 
(c) defined as DT

0(model)/ DT
0(experiment)-1 

      

     In comparing the present results with past work, there have been a number of previous 

experimental studies on both G and GG.  For G, a detailed comparison of literature values for G 

were reported by Polson (157) and the range appearing in Table 6-3 comes from that reference 

corrected to 298 K.  Ma and coworkers recently reported values for G (concentration range from 

100 to 500 mM) and other amino acids and from their data, we estimate DT
0 ≅ 10.56 x 10-10 

m2/sec (160), which lies near the high end of the range reported in Table 6-3.  The present NMR 

value (5 mM glycine) of 9.88 x 10-10 m2/sec lies closer to the low end and is 6.7 % lower than the 

recent concentration gradient measurement of reference 160.  In a previous analysis of DT
0’s of 

amino acids reported by different groups, discrepancies of up to 8 % have been reported and the 

discrepancy observed for glycine in the present work falls within this range.   For GG, the 

present NMR DT
0 lies below previously reported values (158, 159) by about 4%, which is well 

within the 8% range mentioned above for the amino acids.    
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6.4  Discussion 

4A)  Analysis of G and GG 

In past work that has dealt primarily with the free solution electrophoretic mobility, μ, of 

peptides, we have developed and used a model in which each amino acid of a peptide chain is 

represented by two beads (52, 76).  One of these beads, the “backbone bead” has a fixed radius 

of 0.19 nm and is chosen to reproduce the known average distance of 0.38 nm between near 

neighbor α-carbons (79).  The remaining “side bead” is of variable radius, as, depending on the 

amino acid.  Its value is determined on the basis of the translational diffusion constant of the 

particular amino acid (76, 80).  Using well established methods of bead hydrodynamics (22) and 

modeling intersubunit hydrodynamic interaction at the level of the Rotne-Prager tensor (148), it 

is straightforward to estimate the side bead radius of an amino acid, modeled as a dimer of two 

touching beads of  unequal radius, provided Rh is known (Eq. (6-1)).  

     For the Rh of G reported in Table 6-2, we obtain an as of 0.182 nm.  However, when amino 

acids condense to form peptides, a single water molecule is lost for each amino acid added to a 

growing peptide chain.  This is illustrated in Figure 6-2 for the condensation of two G’s to form 

GG.  Due to the loss of water, the side bead radius of glycine in GG will be different from the 

side bead radius in “free” glycine.  Using the procedure described previously (38, 52, 76), 

several hundred peptide conformations are generated using random numbers to select the phi-psi 

angles between adjacent amino acids.  Rotation matrices (86) are used to properly position 

successive bead pairs in relation to other beads lower down the chain.  For each conformation, 

we compute DT
0 and also other transport properties such as the electrophoretic mobility (38, 52, 
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76).  Secondary structure can also be incorporated into this methodology (38).  Final transport 

properties are obtained by simple averaging the single conformation transport properties over all 

the different conformations generated.  When this procedure is applied to GG (random secondary 

structure) and the side bead radius of each G is left as a variable parameter, as equal to 0.164 nm 

is necessary to match model and experimental DT
0.    

 

     Figure 6-2. The illustration of the condensation of two G’s to form GG. 

 

We can view each G of GG as having lost one half of a water molecule each.  The 

hydrodynamic radius, Rs, of a touching dimer of radii 0.190 and 0.164 nm is estimated to be 

0.237 nm.  This can be compared to Rh = 0.248 nm for “free” glycine.   If a small molecule with 

hydrodynamic radius Rh loses volume δv, the resultant hydrodynamic radius, Rs, can be 

estimated to be (172) 
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Solving Eq. (6-2) for δv, we obtain 0.00813 nm3 for the loss of one half of a water molecule or 

0.0163 nm3 for the loss of one full water molecule.  This is slightly smaller than the value of 

0.0186 nm3 estimated previously (76).  For a G entirely within a peptide chain, it will have lost 

one full water molecule.  From Eq. (6-3), we estimate Rs = 0.225 nm (using Rh = .248 nm and δv 
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= 0.0163 nm3) and a side bead radius, as, equal to 0.143 nm.  In what follows, we shall use these 

adjusted side bead radii of G in modeling the other peptides.  The as values for the remaining 

amino acids are the same as before and are reported elsewhere (80). 

4B)  Comparison of DT
0 Between Experiment and Modeling for the Remaining 

Peptides. 

     By employing the bead model described in the previous section, we obtain model 

translational diffusion constants summarized in Table 6-3 along with the corresponding 

experimental diffusion constants and hydrodynamic radii.  In modeling, the temperature was 

taken to be 298 K and the “random” secondary structure was assumed (38).  The model diffusion 

constants represent the average over several hundred independently generated conformations and 

agreement between modeling and experiment lies within ± 5%. 

In an earlier modeling study of the electrophoretic mobility, μ, of GGRA and GGNA (38) 

based on experiments by Messana and coworkers (62, 66), it was concluded that the mobility 

data of GGNA was well explained by a random model of the peptide, but this was not the case 

for GGRA.  For GGRA, a more compact model, possibly containing an I-turn, was necessary to 

explain the large absolute mobility observed experimentally (38).  However, such a compact 

model structure yields DT
0 = 5.50 x 10-10 m2/sec which is higher than the experimental value by 

17%.  On the basis of the present NMR measurement of DT
0, we conclude that the solution 

conformation of GGRA, or more precisely, the sample examined in our NMR experiment, is a 

more open “random” structure rather than a compact structure.   
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6.5  Summary 

In this chapter, field gradient NMR has been used to measure the translational diffusion 

constants of glycine and several short peptides.  Where independent experimental data is 

available, the current NMR diffusion constants agree with previous values to within several 

percent.  An advantage of NMR over concentration gradient methods is the much lower sample 

concentrations required.  Furthermore, NMR can be used to determine translational diffusion 

constants of small molecules that are inaccessible to dynamic light scattering.  Diffusion 

constants can provide valuable information about the solution conformation of peptides.  When 

applied to short peptides such as GGNA and GGRA around a pH of 3.5 in a low salt buffer, it is 

concluded unequivocally that the solution conformation is random and open and not compact.   
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Chapter 7 

Viscosity of Dilute Model Bead Arrays at Low Shear 

7.1  Introduction 

Modeling the intrinsic viscosity of general solutes present in dilute solution remains a 

challenging problem to this day.  Much of this modeling is based on the “standard” model (S 

model for brevity) which works well when the solute is large in size relative to the solvent 

molecules in which it is immersed and solute/solvent interactions can be ignored, to a good 

approximation, beyond contact interactions at the solute-solvent interface.  This model always 

predicts a positive intrinsic viscosity, which is at variance with experiment for certain systems 

such as low molecular weight alkanes in benzene (173) as well as other low molecular weight 

polymers in certain solvents (174).  Although amino acids and short peptides in aqueous solvent 

have positive intrinsic viscosities (175), the S model is unable to account quantitatively for the 

experimental results (46).  One objective of the present work is to generalize the S model in a 

preliminary attempt to deal with this problem. 

In the S model, the solute is represented as a rigid, possibly irregularly shaped particle, or 

rigid bead array, immersed in a continuum incompressible Newtonian fluid (the solvent) of 

viscosity η0.  Solute-solvent interactions are assumed to arise strictly from short range excluded 

volume repulsions present at the solute-solvent interface.  It is also assumed that the solvent 

obeys the low Reynolds Number Navier-Stokes equation (49, 50).  In most applications of the S 

model, solute and solvent velocities are assumed to match at their interface (“stick” 

hydrodynamic boundary conditions).  In the case of “slip” boundary conditions, only the velocity 
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components normal to the interface match and the hydrodynamic stress forces at the interface are 

also assumed to be normal (51). The applications of the S model discussed in the present work 

employ “stick” boundary conditions.   

Using the S model, Einstein determined the intrinsic viscosity of dilute suspensions of 

spheres (176).  Extension of the model to axially symmetric ellipsoids proved problematic.  

Jeffrey correctly evaluated the energy dissipation of an ellipsoid in an arbitrary shear field (177), 

but he did not carry out a suitable ensemble average to relate this to intrinsic viscosity.  This was 

achieved by Simha in the limit of low shear (178) and by Scheraga under general shear 

conditions (179).  A key feature of the Simha-Scheraga treatment involved accounting for 

rotational Brownian motion.  Ignoring Brownian motion leads to an underestimation of the 

intrinsic viscosity (179).  The S model (with account of Brownian motion) was extended to 

flexible polymers modeled as strings of beads by Kirkwood and coworkers (180, 181).  This 

“bead method” has been refined and generalized (retaining the S model assumptions) by later 

investigators and applied to particles of arbitrary shape (114, 182-185).  These latter applications, 

in which the surface of an irregularly shaped particle is modeled as a shell of closely packed 

beads, is similar to Boundary Element procedures, where it is modeled as a closed surface of 

interconnected triangular plates (187, 188).  Current applications (185, 188) can handle several 

thousand beads or plates and the Boundary Element procedure can accommodate “stick” or 

“slip” hydrodynamic boundary conditions (17). 

In this chapter, the BAEM approach shall be extended to the problem of the viscosity of a 

dilute suspension of bead arrays.  By doing so, we shall show that it is possible to obtain accurate 

intrinsic viscosities, or viscosity shape factors, using comparatively few beads in modeling the 
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actual structure.  Our first objective is generating a “standard” (S model for brevity) model to 

account more accurately for solute-solvent interactions. The approach we shall follow is very 

similar to that of Fixman (189).  General, but short range solute-solvent interactions are 

accounted for using single bead translational friction, rotational friction, and viscosity shape 

factors for individual beads that may be different from those of beads that interact with the 

solvent under standard (S model) conditions.  Long range hydrodynamic interactions are treated 

in the same way as before.  

A second objective of this chapter involves taking approximate account of the variation 

in hydrodynamic stresses over individual beads.  The present work is an extension and 

improvement upon our earlier treatment of this problem (46).  Accounting for this variation 

results in a significant improvement in accuracy when the model consists of a limited number of 

beads.  In modeling, this makes it possible to sample many conformations of large extended 

structures, such as wormlike chains of duplex DNA consisting of 100 to over 600 base pairs in 

length, at low computational cost.    

The methodology is formulated in Section 2 and the S model is presented and developed 

for a bead array in a shear field within the BE formalism. In Section 3, the formal methodology 

for determining the viscosity shape factors is presented.  In Section 4, the S model is applied to 

determine the viscosity shape factors for simple models, and then to linear strings and rings of 

touching beads in order to test its accuracy. Later, it is applied first to duplex DNA in aqueous 

media, and then to alkanes in Bezene. In Section 5. The principal results of the paper are 

summarized.   
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7.2  Viscosity Model Theory 

2A) Model 

 

Figure 7-1)  Schematic of the Bead Array Model.    Inner bead radii are denoted by aI and 
external forces may be present out to a distance bI from the center of bead I.  These radii may 
vary from bead to bead.  VeI denotes the fluid volume between aI and bI.  There are a total of N 
beads in the array and xIJ denotes the distance between the centers of beads I and J. 

 

The solute is represented as an N bead array and is depicted in Figure 7-1.  Bead J (1 ≤ J 

≤ N) consists of an inner solid core of radius aJ and an outer fluid surface of radius bJ.  In general, 

these radii can vary from bead to bead.  The outer bead radii do not overlap.  Stick hydrodynamic 

boundary conditions are assumed to prevail on the inner core bead surfaces, but an external 

force/volume, )(xs , may be present in the fluid domain exterior to aJ, but interior to bJ, VeJ.  In 

the present work, it is useful to view )(xs as arising from the short range solute-solvent 

interactions that may represent “solvent breaking” or “solvent stabilizing” influences that arise 

when the solute is placed in the solvent.  In the present work, it shall be assumed that the solute 

is present in dilute concentration and that solute-solute interactions (interactions between 

different bead arrays) can be neglected.  Outside of the VeJ’s, it is assumed that )(xs can be set 
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zero.  The bead array is immersed in a simple shear field with shear gradient γ (in sec-1) and it is 

assumed that 1/γ is long on the timescale of the array’s Brownian translational and rotational 

motions.  It is also assumed that γ is sufficiently small so that deformation of the bead array can 

be ignored and that its average orientation remains isotropic.  Let the bead array translate with 

instantaneous overall velocity, 0u , relative to a center of rotation, d .  Also let the instantaneous 

angular velocity of the entire bead array about d  be denoted by ω , and let Kx denote the 

instantaneous position of the center of bead K. By “instantaneous”, we mean a timescale short 

compared to average translational and rotational displacements of the beads, but long compared 

to the impulsive collision time between beads and solvent.  If point y lies on the fluid/inner core 

surface of bead K and stick boundary conditions hold, then the rigid body particle velocity and 

fluid velocities match at y . 

          )17()()()( 0 −−+−+= KKRBM xyxdxxuyv ωω  

In Eq. (7-1) above, “x” denotes the vector cross product.   

 Suppose our bead array is placed in a simple shear field where at y , the fluid velocity in 

the absence of our bead array is given by 

            )27()()(0 −⋅= yeeyv BAγ  

where Ae  and Be  are arbitrary, but orthogonal unit vectors ( 0=⋅ BA ee ).  It is convenient to 

break up Eq. (7-2) into pure translational, rotational, and deformational flows, 
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)37()(
2
1)(

2
1)()(0 −−⋅+−+⋅= dyEexdyeedyv CAB γγ  

)47( −=
BAC exee  

)57()( −+= ABBA eeeeE γ  

The second term on the right hand side of Eq. (7-3) represents rotational motion of the fluid in 

the absence of the bead array about position d .   We denote this angular velocity 0ω and 

   )67(
20 −−= Ceγω  

When our bead array is placed in a flow field described by Eq. (7-2), it will translate with 

velocity AB eedu )(0 ⋅= γ .  In the limit of negligible Brownian motion, it will also rotate, but its 

instantaneous angular velocity, ω , may be different from 0ω .  For the cases of greatest interest 

in this work, Brownian motion is not negligible and indeed is quite significant.  For the moment, 

however, it shall be left unaccounted for until the methodology is developed further.  Under 

these conditions then, the total instantaneous force and torque exerted by the bead array on the 

fluid vanishes.  We shall return to this point later.  The first two terms in Eq. (7-3) represent the 

local translational and rotational motions of the fluid and the final term represents the 

deformational motion.  This last term is particularly important in determining how the bead array 

affects the overall viscosity of the fluid. 

Exterior to the inner core of the bead surfaces, the fluid is modeled as the continuum fluid 

discussed in chapter 1, Eqs. (1-1) to (1-4). 
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2B)  Viscosity of a Dilute Suspension of Irregularly Shaped Rigid Particles. 

 The viscosity of a Newtonian fluid in the absence of solute, η0, subjected to a simple 

shear field defined by Eq, (7-2) is related to 
0

σ (hydrodynamic stress in the absence of solute) by 

)87()(
00 −⋅⋅= BA exe σγη  

This is readily verified by substituting Eq. (7-3) into Eq. (1-4) on the right hand side of Eq. (7-8).  

The presence of dilute solute of number concentration c (in particles/dm3) alters the long range 

flow pattern (p, v , and σ ) in the fluid and this, in turn, alters the macroscopic viscosity, η, of 

the solution 

)97()( −⋅⋅= BA exe σγη  

The macroscopic excess stress, 
0

σσσ −=e , can be expressed in terms of single particle 

averages using an equation derived by Batchelor (190) (for fluids with 0)( =xs ) and extended 

by Russell (191) to include external forces 

)107()()]}()()()([)({ 0 −+++−= ∫∫ x
VS

x

e

dVxxsdSxvxnxnxvxxf
c

ep

η
σ

 

In Eq. (7-10), brackets, < >, denote averaging over all possible particle positions and orientations, 

the surface integration over Sp is over the surface of the particle, which in the present case is the 

inner core surfaces of all N beads, )(xn denotes the local outward unit surface normal (into the 

fluid), the volume integral is over the fluid external to our particle, and 
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)117()()()( −⋅−= xnxxf σ  

denotes the local hydrodynamic force/area exerted by the particle on the fluid.  For a particle 

with stick hydrodynamic boundary conditions, both terms containing v  on the right hand side of 

Eq. (7-10) vanish.  For our bead array model, the i-j component of Eq. (7-10) can be written 

)127()()(
1

−+−= ∑ ∫∫
=

N

K V
xji

S
xji

e
ji

eKK

dVxxsdSxxf
c

σ
 

It is useful to define a dimensionless “shape factor”, ξ, by the relation 

   )137(11lim
0

0 −⎟⎟
⎠

⎞
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⎝
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−= → η

ηξ
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Kp aVV π  

For the special case of a spherical particle with 0)( =xs , ξ = 5/2 as derived by Einstein (176).  

The shape factor is closely related to the viscosity “B-factor”, in dm3/mole, 

)157(1lim
0

0 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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η
c

N
B Av

c  

and intrinsic viscosity, (η), in dm3/gm 
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where NAv is Avogadro’s Number and c’ is the weight concentration of solute in gm/dm3.  Let M 

denote the solute molecular weight, in gm/mole, then ξ , B, and (η) are related to each other by 

)177(][ −== ηξ MVNB PAv  

Using Eqs. (7-10), (7-11), and (7-14) in Eq. (7-15) 

)187())(())((1
10

−⋅−+−⋅−= ∑ ∫∫
=

N

K
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V
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edVdxxsdSdxxfe
V

eKK
γη

ξ  

The inclusion of  d  in Eq. (7-18), or any other constant vector for that matter, is allowed because 

the total force, totalF , exerted by the bead array on the fluid vanishes for all conformations and/or 

orientations, 

)197(0)()(
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eKK

dVxsdSxfF  

In order to carry out the averages indicated in Eq. (7-18) for an arbitrary conformation of our 

bead array, it is necessary to examine the bead array in five different elementary shear fields 

(187, 192), which can be written     

)207()(
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)207()( 3311
)5( eeeeeE −+= γ  

In Eqs. (7-20), 321 ,, eandee  are orthogonal unit vectors in some convenient laboratory frame.  

Choosing 21 , eeee BA == , then orientational averaging, assuming an isotropic distribution, 

yields (187, 192) 
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where 
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In Eq. (7-22), p = x – d.  These “elementary shape factor tensors”, )(tξ , must be determined in 

order to evaluate ξ, B, or (η) for arbitrary rigid bead arrays.  For an uncharged spherical particle 

with stick boundary conditions in one of the five elementary shear fields, 

)237(
2
5 )()( −= tt E
γ

ξ  

 2C)  Single Bead Forces and Related Quantities 

 Consider a single bead, K, centered at Kx and translating through the solution with 

velocity Ku .  Also let '
Kv denote what the fluid velocity would be at Kx if bead K were absent.  

The total force exerted by bead K on the fluid can be written 



136 

 

 
 

  )247()()()( '* −−=+= ∫∫ KKtK
V

x
S

xK vudVxsdSxfF
eKK

ζ  

In Eq. (7-24) ζKt
* denotes the translational friction constant of bead K.  In the absence of external 

forces, it is simply given by Stokes law, 6πηaK.  It is also convenient to define 

  )257()()()()( −−+−= ∫∫
eKK V

xjiKi
S

xjiKiijK dVxsxxdSxfxxM  

)267()())(()())(( −−−+−−= ∫∫
eKK V

xjmKmiKi
S

xjmKmiKimijK dVxsxxxxdSxfxxxxN  

Now the dyadic tensor, 
K

M , is related to the torque and stress on bead K.  Let KT  denote the 

torque exerted by bead K on the fluid about its origin, Kx .  The angular velocity of the bead 

array about d is ω , and this is also the angular velocity of bead K about Kx . Also let Kc denote 

the corresponding angular velocity of the fluid about Kx if bead K were absent.  Then 

  )277()(*
3

1,
−−== ∑

=
iKirK

kj
jkKkjiiK cMT ωζε  

In Eq. (7-27), εijk is the Levi-Civita symbol (which equals 1 for (ijk) = (123), (231), (312);   -1 

for (ijk) = (132), (321), (213); and 0 otherwise), and ζKr
* is the rotational friction constant of 

bead K.  In the absence of external forces, ζKr
* = 8πηaK

3.    

Now return to Eq. (7-22) and write  

)287()( −+−= KK rxxp  
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)297( −−= dxr KK  

Using Eqs. (7-24), (7-25), (7-28), and (7-29) in Eq. (7-22) 
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Eq. (7-30) will be of considerable value in determining the elementary shape factor tensors of 

arbitrary rigid bodies.  In the special case of a single bead, K, placed in elementary shear 

field, )(tE , Eq. (7-30) reduces to 

( ) )317(
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V
E

γηγ
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ξ  

The “T” superscript in Eq. (7-31) denotes transpose.  ξK
* is the viscosity shape factor of a single 

isolated bead which equals 5/2 in the limit of an uncharged sphere.  In the present work, however, 

it shall be left as an adjustable parameter.  It could, in fact, be negative which corresponds to a 

negative solute intrinsic viscosity which occurs in certain systems (173, 189).   The local shear 

gradient in the vicinity of bead K is approximated with  

   )327('
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In Eqs. (7-32) to (7-34), the fluid velocity is evaluated at the centroid of bead K, Kx , with bead 

K removed.  (In the course of this study, we also tried the more complicated procedure of 

averaging the fluid velocities over the surface of (removed) bead K, but actually obtained more 

accurate results with the simpler approach described above.)  Eq. (7-31) can be written 

)357(2 *
0 −−=+ jiKKKijKjiK EVMM ξη  

Eqs. (7-27) and (7-35) can be combined to yield 
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Eq. (7-36) is useful since it gives the components of the tensor, 
K

M , in terms of single bead 

solute transport parameters (ζKr
* and ξK

*) and the relative velocity field of the fluid in the vicinity 

of bead K if bead K were absent ( ),,
KK Eandcω .  We can also write 

   )377(
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kj

kjiiK vc ε  

 The components of the triadic tensor, 
K

N , defined by Eq. (7-26), are more difficult to 

deal with since they cannot, in general, be directly related to single bead transport parameters as 

is possible for KF  (Eq. (7-24)) and 
K

M (Eq. (7-36)).  However, the special case of a single bead 

in the absence of external forces can be solved since the hydrodynamic forces, )(xf , are well 

known for a translating or rotating sphere, or for a sphere placed in a shear field.  In this case, it 

can be shown 
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Under these conditions, translation contributes, but not rotation or shear.  In the present work, we 

shall approximate NK j i m with Eq. (7-38).  It should be noted that external forces do enter in 

general through FK j.  As we show in the next section, the components of 
K

N  enter as higher 

order correction terms in any case. 

 2D)  Calculation of KF  and 
K

M  

Following a Boundary element procedure developed previously (193), the fluid velocity at point 

y anywhere in space can be written (46) 
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In Eq. (7-39), )(0 yv  denotes the fluid velocity at y in the absence of all beads, )(yv RBM denotes 

the rigid body motion of the bead array (Eq. (7-1)), VK denotes the inner core volume of bead K, 

Ve is the fluid volume exterior to the inner core volumes, )(xf  is the hydrodynamic force/area 

exerted by the bead on the fluid at x , and Φ(y,V) equals 1 if y lies within V, it equals 0 if y lies 

outside of V, and it equals ½ if y lies on the boundary surface enclosing V.  Also, yxr −=  and 

)(rU is the singular (Oseen) tensor defined by 
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Next, remove bead K and choose Kxy =  where Kx is the centroid of bead K.  Also, expand 

)(rU in Eq. (7-39) to second order about KJKJ xxx −= and use the definitions of Eqs. (7-24) to 

(7-26) 
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where vKi
’ is defined by Eq. (7-33), iKiK xvv ))(( 00 = , 
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Truncating the expansion of Uij at second order,(Eq. (7-42c)), is accurate to order xJK
-3.  In what 

follows, we shall be careful to retain terms to this order.   

Use Eqs. (7-24) and (7-38) in Eq. (7-41) 
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Using Eqs. (7-1) and (7-3) in Eq. (7-43), 
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where we have defined 
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     For the sake of convenience, all iK
mkjJ

iK
kjJ

iK
jJ UandUU ,, ,,  terms with J = K shall included, but 

set to zero.  This procedure shall simplify the notation in the remainder of this work.E0ij in Eq. 

(7-49) is the shear field using )(0 xv in Eq. (7-32).  Eq. (7-44) represents 3N equations in 12N+3 

unknowns.  The unknowns are the 3N components of { JF } and the 9N components of {
J

M }, 
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and the 3 components of ωδ .   Strictly speaking, the three components of the center of rotation, 

d , are also unknown.  However, for the applications of interest in this work, the center of mass 

and d  coincide to a good approximation.  For all of the applications in this work, d  is 

approximated with the center of mass. 

 This is a good point to account for the effects of Brownian motion.  This is a difficult 

problem that has been extensively addressed over many years and only some of this past work is 

cited here (178-180, 194, 195).  Perhaps the most authoritative treatment with regards to rigid 

structures is given by Brenner (194).  Relevant to the problem of significant Brownian motion, 

where γ/Dr
* << 1 (where Dr

* is the smallest eigenvalue of the rotational diffusion tensor of our 

bead array),  and its effect on a suspension of dilute particles placed in a shear field, we need to 

include an additional angular velocity in the vicinity of each (removed) bead.  (See Sections 7 

and 8 of reference 194).  Quite simply and remarkably, this added term is equivalent to setting 

δωj = 0 in Eq. (7-48).  This is also the procedure used long ago by Simha (178).  In the remainder 

of this work, we shall follow this procedure and this reduces the number of unknowns to 12N.  A 

closely related problem involves the effect of structural flexibility.  Zimm (195) pioneered the 

Monte Carlo procedure of approximating the transport of flexible structures with an equilibrium 

ensemble of rigid conformations.  Later investigators showed how this approximation provided 

bounds on the intrinsic viscosity (196, 197).  In the applications of duplex DNA and alkanes in 

benzene presented in this work, the Monte Carlo procedure of Zimm (195) shall be employed. 

 We also need the gradient of vKi
’ (Eq. (7-34)).  Following an analysis similar to that 

which led to Eq. (7-41), 
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Using Eq. (7-50) in Eqs. (7-32) and (7-37), substituting these into Eq. (7-36), we obtain an 

additional 9N equations, 
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0 −−= miKKmiK EVb ξη  

Eqs. (7-45) and (7-51) can be written in compact matrix form 

)557( −=⋅+⋅ aMBFQ  

)567( −=⋅+⋅ bMHFC  

 In Eqs. (7-55) and (7-56), F and a are 3N by 1 column vectors formed by stacking 1F , 

2F , … NF and 1a , 2a , … Na  on top of each other.  M and b  are 9N by 1 column vectors 

formed by first writing the N dyadic (3 by 3) tensors, 
J

M , and 
J

b  as 9 by 1 column vectors. For 

example, we write for '
JM : 
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These N column vectors are stacked on top of each other to form M .  A similar procedure is 

used to constructb .  Also Q , B ,C , and H  are 3N by 3N, 3N by 9N, 9N by 3N, and 9N by 9N 

matrices, respectively.  Consider, for example, the B matrix.  iK
pjJB  is that element of B  that 

occupies the 3*(K-1)+i row and 9*(J-1)+3*(j-1)+p column.  Similarly,  miK
pjJH  is that element of 

H that occupies the 9*(K-1)+3*(i-1)+m row and 9*(J-1)+3*(j-1)+p column.  Note that the 

superscript indices on the Q , B , C , and H  and matrices are row indices and the subscript 

indices are column indices.   

Next, Eqs. (7-55) and (7-56) can be combined into a single “supermatrix” representation 
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G  is a 12N by 12N matrix; *F  and *s  are 12N by 1 column vectors.  It should be emphasized 

that the sub-matricesQ , B ,C , and H  in Eq. (7-59) are not the same size.  Specifically, Q , B ,C , 

and H  are 3N by 3N, 3N by 9N, 9N by 3N, and 9N by 9N, respectively.  Once a structure is 

defined, all the components of G  can be determined.  Once an elementary shear field is defined, 

the components of *s can also be determined.  Inversion of the G  matrix yields 1−G  and Eq. (7-

58) can be written 

)617(*1* −⋅= − sGF  

Once *F is obtained, Eqs. (7-21) and (7-30) can be used to compute ξ.  From Eq. (7-17), this can 

then be used to determine B and (η) for a single bead array averaged over all possible 

orientations in a simple shear field.  The most time consuming step in this procedure is the 

inversion of the 12N by 12N G  matrix.   

7.3  Results  

 3A) Dumbbell Dimer of Two Identical Beads 

 A dimer of two identical beads provides an excellent model system to test the equations 

derived in Section 2.  Past studies of a touching dimer of two identical beads, ξ = 3.45 (35, 36) or 

3.58 (page 263 of reference (198)).  Recent “extrapolated shell” bead model calculations yield a 

value close to the lower value of 3.45 (186).  Also, recent BE calculations using the BEST 

program (188) yield ξ = 3.449 which is in excellent agreement with reference (199) (Sergio 
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Aragon, personal correspondence).  In test case of prolate and oblate ellipsoids, the BEST 

program yields ξs that are accurate to better than 0.01 % (188).  On that basis, it is safe to say 

with considerable confidence that the exact value of ξ for a touching dimer of two beads is 3.45.   
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Figure 7-2)  ξ versus R/a for Dimers of Two Identical Beads.  R is the center-to-center 
distance between the two beads and a is the bead radii.  Filled squares come from BE 
extrapolated shell calculations and unfilled diamonds come from the bead methodology 
developed in this work (Eqs. (39) and (41)of reference 46). 

 

     Shown in Figure 7-2 is a comparison of extrapolated shell (filled squares) and bead model 

results (Eqs. (39) and (41) of reference 46) for dimers composed of two identical beads or radius 

a and interbead separation R.  The worst agreement is seen for touching beads where the bead 

model shape factor falls below the exact value by 5.2 %.  For R/a between 3 and 4, the 

discrepancy is less than 2 %.  For the sake of comparison, the extended Kirkwood-Riseman 

shape factor, ξ, for a touching bead model reportedly exceeds the extrapolated shell model value 

(from a bead model calculation) by 19 % (see Table 2 of reference (200) and also reference 
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(186)).  Although Eqs. (39) and (41) of reference 46 yield approximate viscosities, they represent 

a significant improvement over past studies employing the same number of subunits.   

3B)  Rigid Rods and Simple Bead Arrays. 

  We shall next consider linear strings of N identical touching beads of radius a.  They 

shall be compared to viscosity shape factors of right circular cylinders of length L and axial 

radius R where BE results are available (187).  Structurally, bead and cylinder models are 

different from each other and this makes a direct comparison impossible.  Nonethelss, bead and 

cylinder (or wormlike chain) models have been used interchangeably to describe duplex DNA 

with considerable success (117, 118, 143, 149).  We start by setting the volumes of bead and 

right circular cylinder models equal 

)627(
3
4 32 −= NaLR ππ  

Introduce a dimensionless length variable, λ, by the definition 

)637()(2 −−= λNaL  

On physical grounds, we expect 0 < λ < 1.  Its exact value shall be determined by finding which 

value gives best agreement for shape factors for bead models using Eqs. (39) and (41) of 

reference 46 and BE calculations on right circular cylinders.  For the moment, however, λ shall 

be left as an adjustable parameter.  Using Eq. (7-63) in (7-62) 
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Provided λ/N <<1, a ≅ (3/2)1/2R.  For R = 1.0 nm, which is appropriate for duplex DNA (115, 

116), a ≅ 1.225 nm.  This is the appropriate bead radius for large N.  For small N, Eq. (7-64) can 

be used once λ is known.  Also define the dimensionless variable 
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Figure 7-3)  ξ versus p for Straight Rod Models.   See Eq. (7-65) for a definition of p.  Also, λ 
= 0.45 in Eq. (7-65).  Filled squares correspond to BE model studies of right circular cylinders 
(187).  Unfilled squares correspond to the bead methodology using Eqs. (39) and (41) of 
reference 46.  

 

Figure 7-3 displays shape factors for right circular cylinders (filled squares) and bead 

models (unfilled diamonds) versus p.  A value of λ = 0.45 yields best agreement between the two 

models.  The solid line represents a quadratic fit to the data (1.5 < p < 18) which can be written 

)667(0495.0702.0912.1 2 −++= ppξ  
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 The viscosity of a bead array is fairly sensitive to how the beads are arranged in space, or 

the conformation of the bead array.  This is illustrated in Figure 7-4 for different conformations 

of tetramers modeled as 4 identical beads.  In addition to the models, the viscosity shape factors 

are also given below the figures.  The most compact structure, the ring of 4 beads, has the 

smallest ξ, and the most extended, the straight rod, has the largest.  In this example, ξrod/ξring 

equals 1.58.   

3C)  Comparison with Experiment: Amino Acids and Simple Peptides. 

Systems involving few subunits where the present work would be useful include 

crosslinked macromolecules (201), duplex DNA (202-203), and peptides (46).   

To date, there appears to be very little data available with regards to the viscosity of peptides, but 

there have been a number of investigations of the viscosity of dilute amino acids in aqueous 

solution.  B-factors and also partial molar aqueous volumes in the limit of infinite dilution, V2 , 

of several amino acids as well as diglycine have been reported (175, 204-206).  Experimental 

values are summarized in Table 7-1.  B-factors for Gly, Ala, Leu, Val, and Gly-Gly come from 

reference (175) and the corresponding V2’s come from reference (206).  B and V2 for Phe come 

from reference (205), whereas B and V2 for Ser, Thr, and Pro come from reference (204).  The 

B-factors appear to be reproducible to within a relative error of about 5 %.  Also shown in Table 

7-1 are approximate shape factors, ξ*, defined by 
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By comparing Eqs. (7-67) and (7-17), it is seen that equals ξ if we set V2 = Vp.  The V2 values 

were estimated from dilute aqueous solution density measurements (204-206).  Since Vp reflects 

the particle volume (per mole) within the surface of hydrodynamic shear, and V2 corresponds to 

the excluded volume of the solvated particle, they may not, in fact, be equal. For the moment, 

however, we shall simply assume that V2 = Vp.   

Table 7-1)  B-factors, Partial Molar Volumes, V2, and Approximate Shape Factors, ξ* 

Species B (dm3/mole) V2 (dm3/mole) ξ* 
Ala .251 .0604 4.16 
Gly .143 .0432 3.31 
Leu .576 .1077 5.35 
Phe .599 .1236 4.85 
Pro ..279 .0829 3.36 
Ser ..225 .0607 3.71 
Thr ..335 .0769 4.36 
Val .423 .0907 4.66 

Gly-Gly .352 .0763 4.61 
 

Note that all of the ξ* values in Table 7-1 exceed the value of 2.5 appropriate for a sphere 

with stick hydrodynamic boundary conditions.  The most straightforward explanation for this is 

that the species are nonspherical and that shape is responsible for the departure of ξ* from 2.5.  

On the basis of our earlier analysis of dimers and simple bead arrays, the approximate shape 

factors for Gly, Pro, and Ser are well explained in terms of a touching dimer model of two 

equivalent beads.  To carry this argument further, next consider diglycine (Gly-Gly) and model it 

as a tetramer of 4 beads.  Basically, diglycine is formed when two glycines dimerize and lose 

water.  Figure 7-3 gives a range of possible conformations and the ξ* value of 4.61 from Table 7-

1 is compatible with structure (b) in the figure.  For the remaining amino acids (Ala, Leu, Phe, 
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Thr, and Val) appearing in Table 7-1, model structures more complex than dimers are necessary 

to account for the ξ* values observed.   

 

Figure 7-4)  Tetramers of four identical beads.  For structures A, B, C, and D; ξ = 5.57, 4.70, 
4.17, and 3.53, respectively. 

 

As Figure 7-4 demonstrates, however, even simple tetramer models are able to account 

for the range in ξ* values observed.  For more realistic surface models that account in detail for 

the actual solvent accessible surface of the amino acid or dipeptide, bead (113,114) or BE (188) 

methodologies would be more appropriate than the methodology developed in the present work.  

What the present analysis shows is that the intrinsic viscosity of amino acids and simple peptides 

can be explained reasonably well by nonspherical particles of an overall size compatible with 

their known partial molar volumes.   

We would like to carry the analysis of the viscosity of the amino acids (and Gly-Gly) 

further in a way that avoids setting Vp = V2 as done in the previous paragraph.  A more 

appropriate molecular volume would come from transport measurements of which viscosity is 

one example.  Translational diffusion constants, DT, of the amino acids have been reported by a 

number of investigators (81,157, 158, 160, 207).  The diffusive radius, RD, shall be defined  
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where kB is Boltzmann’s constant and T is absolute temperature. The physical significance of RD 

is that it corresponds to the radius of a suspension of spheres that diffuse at the same rate as the 

particles in the actual suspension.  It should be emphasized that we are not assuming our actual 

suspension is made up of spherical particles. Also introduce the “stick” diffusion constant of a 

sphere of volume Vp/Nav (Nav is Avogadro’s Number), D0, where Vp is the actual molar particle 

volume as defined following Eq. (7-14). 
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Also define the reduced translational diffusion constant, X. 

)707(
0

−=
D
DX T  

For nonspherical particles, X will deviate from 1. 

In analogy to the diffusive radius, we can define the viscous radius, Rη, which 

corresponds to the radius of a suspension of spheres that gives the same B as the actual 

suspension.  Setting ξ = 2.5 and Vp = 4πNAvRη
3/3 (appropriate for spheres) in Eq. (7-67), 
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We can now use Eqs. (7-67), (7-69) to (7--71) to eliminate Vp, 
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Eq. (7-72) is closely related to the Scheraga-Mandelkern parameter (208) and provides a way of 

eliminating Vp and isolating the shape dependence by combining the results from two 

independent transport measurements.  In the present case, these are viscosity and translational 

diffusion and in reference (208), it was viscosity and sedimentation.  An alternative, but closely 

related approach involves viscosity and rotational diffusion relaxation times (200, 209).   An 

advantage of the Harding approach is its greater sensitivity to particle shape, but this approach 

requires rotational relaxation times that are not available to us. 

Table 7-2.  Viscous and Diffusive Radii 

Species Rη(nm) RD(nm) Rη/RD 

Ala .341 .267 1.28 
Gly .283 .248 1.14 
Leu .450 .339 1.33 
Phe .456 .347 1.34 
Pro .354 .268 1.32 
Ser .329 .276 1.19 
Thr .376 .304 1.24 
Val .406 .332 1.22 

Gly-Gly .382 .324 1.19 
      

     Summarized in Table 7-2 are Rη, RD, and Rη/RD for the same species given in Table 7-1.  For 

the diffusive radii listed, values for Leu and Pro come from reference (157); the value for Phe 

comes from reference (207); values for Ala, Thr, and Val come from reference (160), and the 

value for Ser comes from reference (81).  Values for Gly and Gly-Gly have also been available 
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for many years (158), but for the present work, we use results from recent field gradient NMR 

measurements (H. Pei, M.W. Germann, S.A. Allison, manuscript in preparation). It should be 

emphasized that Rη and RD in Table 7-2 have been extracted from experiment and no 

assumptions beyond the operational definitions of Rη and RD have been used.  We shall next 

consider what modeling predicts for Rη/RD for some simple structures.  For prolate and oblate 

ellipsoids, right circular cylinders, and toroids, results from reference (187) are used.  For the 

tetramer bead arrays, Eqs. (39) and (40) of reference 46 are used for ξ.  For X, we employ a 

closely related procedure for the translation of bead arrays that accounts for the variation in 

hydrodynamic stresses over the bead surfaces (45).  For the touching dimer, exact values are 

used (186, 199, 210). The results are summarized in Table 7-3. 

     For compact structures listed in Table 7-3, Rη/RD lies close to 1.01 and lower. Even for needle 

like structures such as the a/b = 10 prolate ellipsoid and the p = 17 rod, Rη/RD lies in the range of 

1.14 to 1.21.  From Table 7-2 on the other hand, Rη/RD ranges from 1.14 (for Gly) to 1.345 (for 

Phe).  Even for Gly, this corresponds to a highly nonspherical particle and this seems unrealistic 

on structural grounds.  One possible explanation for the anomalously large Rη/RD values seen in 

Table 7-2 is related to the validity of continuum stick hydrodynamic boundary conditions in 

adequately describing the solvent-particle interface for a particle/molecule as small as an amino 

acid in an aqueous solvent.  Studies on the rotational reorientation time of small molecules such 

as methyl acetate in water indicate that a hydrodynamic boundary condition intermediate 

between stick and “slip” is more appropriate (190).  In the case of slip boundary conditions, only 

the normal velocity component of fluid and particle match at the interface.  In addition, however, 

there is no tangential component of normal stress at the interface (186, 51).  In addition to the 
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mostly “stick” models considered in Table 7-3, two “slip” models have also been included for a 

sphere and a prolate ellipsoid with a/b = 10.  In these cases, X and ξ come from reference (186).  

Since (Rη/RD)slip > (Rη/RD)stick for both geometries, particularly for the prolate ellipsoid, this 

interpretation is not unreasonable. 

Table 7-3.  X, ξ, and Rη/RD for some simple structures 

structure details(a) X ξ Rη/RD

Oblate ellipsoid a/b = 10 .689 7.92 1.012 
“ a/b = 2 .962 2.84 1.004 

Sphere (a/b = 1) 1.00 2.50 1.000 
Sphere(b) (a/b = 1) 1.50 1.00 1.105 

Prolate ellipsoid a/b = 2 .958 2.91 1.008 
“ a/b = 5 .801 5.78 1.059 
“ a/b = 10 .650 13.52 1.141 

Prolate ellipsoid(b) a/b = 10 5.48 7.06 7.74 
Cylinder p = 2.04 .904 3.43 1.004 

“ p = 17.0 .543 28.0 1.214 
Toroid P = 2.0 .868 3.87 1.004 

“ p = 10.0 .494 24.0 1.050 
Dimer Identical touching beads .906 3.45 1.009 

Tetramer D of Fig. 4 .898 3.53 1.007 
“ B of Fig. 4 .821 4.70 1.013 
“ A of Fig. 4 .797 5.57 1.041 

(a) for ellipsoids, a/b is the major axis/minor axis; for rods, p is given by Eq. (46) of reference 46; 
for toroids, p = R/r where R and r are the outer and inner toroidal radii (186). 
(b) slip boundary conditions 
  

3D)  Linear Strings and Rings of Beads 

 As discussed in previous work (46, 185), bead models made up of a small number of 

beads have historically not been very accurate unless account is taken of the variation of 
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hydrodynamic stresses over the individual beads. The methodology employed in this chapter is 

simpler than that used in reference 46 in the sense that bead-bead interactions are only accounted 

for out to order aJ
2/rIJ

3 (aJ is a bead radius and rIJ is an inter-bead distance).  Because of that, it is 

important to compare results using the methodology developed here with exact, or near exact 

results on certain systems.  In this subsection, all model structures of interest shall consist of 

arrays of identical beads of radius a, and near neighbor separation, t.  Define the three parameters; 

st, sr, and sv by the relations: 
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In the special case of no solute-solvent interactions beyond excluded volume interactions, st, sr, 

and sv can all be set to 1.00.  This selection is made for the model studies in this subsection and 

in the next. 

 The model system relevant to the present work where exact results are available is the 

touching dimer (t = 2a) of two identical beads, where ξexact = 3.45 (198, 199).  (This value has 

recently been confirmed by detailed Boundary Element calculations.  S. Aragon, personal 

correspondence, January, 2009).   Recently, Garcia de la Torre and coworkers have carried out 

extrapolated shell calculations of bead oligomers.   Each bead is modeled as a shell of many 

much smaller touching beads and the results extrapolated to the limit of an infinite number of 

smaller beads (185).  In Table 7-4, we summarize viscosity shape factors, ξ, for model results 

employing the procedure developed in the present work with these extrapolated shell values.  
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The main purpose of reference 185 was not the shell model calculations themselves, but rather 

using them as benchmarks to test a simpler, more computationally efficient bead methodology 

valid in the absence of external forces.  Those same shell model results are used here to test the 

present results. Agreement between the two lies within 5 percent of each other.  It should be 

emphasized that results using the present methodology are not exact, but are nonetheless quite 

accurate for the special cases considered in Table 7-4.  For additional tests/comparisons of other 

bead methodologies, the reader is referred to references 46, 182, and 185. 

Table 7-4. Viscosity Shape Factors of Linear Strings and Rings of Touching Beads 

Structure(a) ξshell
(b) ξ(c) 

L2 3.42 3.43 
L3 4.58 4.68 
L4 5.98 6.22 
R4 3.88 3.92 
L5 --- 7.56 
L6 9.18 9.37 
R6 4.80 4.90 
L7 --- 11.61 
L8 13.10 13.19 
L9 --- 15.49 
L10 --- 18.78 

(a) Linear, Ring arrays of N beads denoted LN, RN, respectively 
(b) from Shell Model results of reference (185) 
(c) from the present work 

 

3E)  Duplex DNA 

 In this subsection, the methodology shall be applied to the intrinsic viscosity of duplex 

DNA fragments of specific length.  The viscosity experiments were carried out at 25 ºC in a 
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buffer solution of ionic strength 0.1 M (or higher) and extrapolated to zero shear (211).  Under 

these comparatively high salt conditions, electroviscous effects are expected to be small (193) 

and are ignored in the present work.  Duplex DNA is modeled using the Hagerman discrete 

wormlike chain (117, 118) which is discussed in previous chapters.  Following Hagerman (117, 

118), we randomly generate an “ensemble” (typically 100) of independent wormlike chains, 

compute the intrinsic viscosity and shape factor of each one treating it as a rigid body, and then 

average over all conformations to obtain an ensemble average.  For the chains of interest in this 

work, an ensemble of 100 chains is sufficient to yield intrinsic viscosities that are accurate to 

within about 3%.  The number of beads employed ranged from 16 (115 bp) to 86 (619 bp).  This 

example illustrates the usefulness of the method in sampling a large number of conformations of 

a flexible chain.  A randomly generated 86 bead wormlike chain with a persistence length of 40 

nm, appropriate for 619 bp duplex DNA, is illustrated in Figure 7-5. 

 

Figure 7-5) Representative wormlike chain for 619 base pair duplex DNA.  The randomly 
generated chain consists of 86 beads with a persistence length of 40 nm.  See the text for 
details.   
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Shown in Figure 7-6 are experimental (η)’s along with model viscosities for rods (dashed 

line) and wormlike chains with P = 50 nm (dotted line) and 40 nm (solid line).  The solvent 

viscosity, η0, was set to 0.89 cp, appropriate for aqueous solutions at 25 ºC. The parameters st, sr, 

and sv, were all set to +1.0.  A wormlike chain model with P in the 40 to 50 nm range is entirely 

consistent with experiment.   

 

Figure 7-6)  Intrinsic viscosity of DNA versus length.   Experiments (filled squares) come 
from reference 117 were carried out at 25 ºC in aqueous media and intrinsic viscosities are in 
102 cm3/gm.  Model mobilities are:  rod (dashed line), P = 50 nm wormlike chain (dotted line), 
P = 40 nm wormlike chain (solid line).  In the wormlike chain modeling studies, 100 
conformations were averaged. 

 

3F) Alkanes in Benzene. 

A system which clearly deviates from the standard (S) model is alkanes in benzene where 

(η) is negative when the molecular weight of the solute (alkane) is low (173).  Since the model 

developed in this work treats the solvent as a continuum, it should only be accurate on a distance 

scale comparable to or greater than the size of a solvent molecule, benzene in this case, or 
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approximately 0.25 nm.  However, the carbon-carbon bond length is 0.154 nm (212), which 

means we have to choose our fundamental building block, or “monomer” to be larger than a 

single CH2 group.  On pragmatic grounds, we would like to choose our monomer to be small 

enough to capture the size dependence of (η) observed experimentally, yet large compared to a 

solvent molecule or atom.  In the analysis presented here, we choose our monomer unit as 

pentane, H-C5H10-H, which has a van der Waals excluded volume of 96.4 Ǻ3 = 0.0964 nm3 (81).  

Setting this volume equal to that of a sphere of radius a, gives a = 0.284 nm.  If we view C5H12, 

C10H22, C15H32, etc. as effectively one, two, three, etc. linear strings of touching beads, a logical 

choice for the inter-bead separation, t, is simply equal to 2a or 0.568 nm. 

A quantity related to the flexibility of polymers of degree of polymerization n, in a good 

(theta) solvent is the dimensionless characteristic ratio, which can be defined 
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where <r2>0 is the mean square end-to-end distance and h is the carbon-carbon bond length 

(0.154 nm).  For polymethylene under theta solvent conditions, Cn = 6.6 to 6.8 for large n (86).  

For a long wormlike chain of persistence length P made up of N = n/5 structural units of bead 

spacing t, <r2>0 = 2PNt = 0.4nPt (43), Eq. (7-74) can be rearranged to give 
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Since benzene at room temperature does not constitute a theta solvent for low molecular weight 

alkanes, the actual persistence length may be different from 0.68 nm.  Nonetheless, this value 
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along with our choices for a and t, provide reasonable model parameters for the system of 

interest.  Also, set T = 25 ºC and η0 = 0.652 cp (for benzene at 25 ºC). 

 An estimate for sv can now be made from the experimental value of (η) for pentane in 

benzene (173).  From Eqs. (7-17) and (7-73), 
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In Eq. (7-76), M, (η), and VP all refer to the monomer unit, which in this case is pentane.  With 

M = 72 gm/mole, (η) = -2.07 cm3/gm (1), and VP = 96.4 Ǻ3 (42), sv ≅ -1.00.  Since we don’t 

have values for st and sr, these are both set to +1.00.  If, for example, experimental values were 

available for the translational and rotational diffusion constants of pentane in benzene, st and sr 

could be defined more precisely.  

 Summarized in Figure 7-6 are experimental (filled squares from reference 1) and model 

intrinsic viscosities of alkanes in benzene.  The solid, dotted, and dashed lines come from model 

studies with sv = +1.0, 0.0, and -1.0, respectively.  The other parameters for the model studies 

have been defined previously.  For N = 3 to 5 (corresponding to C15H32 to C25H52), we followed a 

procedure similar to that described in Section 3F.  Intrinsic viscosities were calculated for 100 

independent wormlike chains and the results averaged.  As can be seen from Figure 7-7, the 

model studies with sv = -1.0 reproduce very well the experimental (η)’s. 



162 

 

 
 

 

Figure 7-7)  Intrinsic viscosity of alkanes in benzene versus length.  Experiments (filled 
squares) come from reference 173 and were carried out at 25 ºC.  Solid, dotted, and dashed 
curves come from model studies with sv = +1.0, 0.0, and -1.0, respectively. 

 

7.4  Summary 

The principle objectives of this chapter have been to model the viscosity of a dilute bead 

array at low shear, to study the shape factor for arbitrary shaped bead arrays, to generalize the S 

model for bead arrays, test this model’s accuracy, and then apply it to two very different systems: 

duplex DNA in aqueous media and alkanes in benzene.  In modeling the viscosity of a dilute 

bead array at low shear, substantial error arises when account is not taken of the variation in 

hydrodynamic stress forces over individual beads.  This problem can be addressed in two very 

different ways.  In the first, approach, one simply uses many beads or plates to model the particle 

surface.  Over the past 15 years, a number of thorough studies have been carried out on the 

viscosity of proteins.  Detailed models have been constructed from known crystal structures and 

model intrinsic viscosities have been compared with experiment.  This comparison can provide 
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valuable information about solution conformation and hydration.  Both bead (113, 114, 199, 200) 

and BE (188, 213) procedures have been used with considerable success.  Typically, 1000-3000 

beads (10) or 2000-4000 plates (188) have been employed in these studies.  In an alternative 

approach followed in the present work, the number of beads is kept comparatively small, but 

approximate account is taken of the variation in hydrodynamic stresses over the individual bead 

surfaces. For a dimer of two touching identical beads, the methodology developed here is off by 

5.2 %.  One area where the present methodology is expected to be useful is for flexible structures 

where many conformations have to be sampled.  This includes crosslinked macromolecules 

(201), duplex DNA (202, 203), and peptides (38).  In the present study, we have shown how a 

bead model in viscosity modeling can be used as a substitute for a right circular cylinder.  In 

future work, we hope to extend this to a flexible worklike chain (117, 118, 143, 149) which is an 

excellent model for duplex DNA.   

The model development was presented in Section 2 and the applications in Section 3.  

Within the framework of the S model, viscosity shape factors for dimers and linear strings and 

rings of touching beads are accurately reproduced with the methodology developed here.  The S 

model is also able to explain very well the intrinsic viscosity of duplex DNA (in aqueous media) 

in the size range of 100 to over 600 base pairs when modeled as wormlike chains with a 

persistence length of between 40 and 50 nm. 

 Past studies of solute-solvent interactions as they relate to intrinsic viscosity have been 

handled differently by different investigators.  A longstanding approach has been to simply add a 

constant term to the standard (S model) intrinsic viscosity to account for solute-solvent 

interactions (173, 94, 214).  Although this approach appears to work well, it is difficult to explain 
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why it works in the context of the coarse grained methodology developed in the present work.  In 

other words, we cannot explain how the short range solute-solvent interactions appear to 

“uncouple” from the long range hydrodynamic interactions.   Lodge and coworkers (174, 215, 

216) have advanced a model in which it is argued that solute can alter the “microviscosity” (216) 

of the solvent.  Evidence in support of this comes from measurements of solvent rotation times 

and how these rotation times are altered by solute. However, this interpretation has been 

criticized (217).  Fixman also raised specific criticisms of the concept of a “microviscosity” that 

varies on a molecular distance scale (189).  The present work has been strongly influenced by 

that of Fixman (189) and draws on many of the ideas advanced in this earlier work.   

 The example of alkanes in benzene serves to illustrate both the strengths and 

shortcomings of the methodology developed in this work.  On the positive side, we are able to 

account quite well for the length dependence of (η) observed experimentally for reasonable 

choices of model input parameters.  It is also able to sample many conformations of a flexible 

structure rapidly and efficiently.  On the other hand, modeling the solvent as a continuum limits 

one to distance scales comparable to or larger than the size of the solvent molecules themselves.  

Finally, we are not, at the present time, able to give a microscopic interpretation for sv.  It was 

chosen to reproduce the experimental (η) for pentane (our monomer) in benzene.  These 

shortcomings aside, it is our hope that the methodology developed here will be useful to other 

investigators in viscosity studies of relatively low molecular weight solutes.   
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