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ABSTRACT 

Essential metals like Ca2+ and Zn2+ play critical roles in biological processes through 

protein interactions. Conversely, non-essential metals (e.g., Gd3+ and Pb2+) also interact 

with proteins, often with toxic effects. Molecular metal toxicity is assumed to be due to 

ionic displacement, and studies have demonstrated that Pb2+ replaces Zn2+, Ca2+ and 

other essential metals in proteins. The focus of this work was to compare protein Ca2+ 

and Pb2+ -binding sites and to investigate a mechanism of Pb2+ toxicity in Ca2+-binding 

proteins, particularly the intracellular trigger protein calmodulin (CaM) which binds four 

Ca2+ ions and interacts with numerous molecular targets via Ca2+-induced 

conformational change. 

 A statistical analysis of PDB structural data for Pb2+ and Ca2+-binding (EF-hand 

and non-EF-hand) proteins revealed fewer binding ligands in Pb2+ sites (4 ± 2), than 

non-EF-Hand (6 ± 2) and EF-Hand (7 ± 1) Ca2+-binding sites. Pb2+ binds predominantly 

with sidechain Glu (38.4%), which is less prevalent in both non-EF-Hand (10.4%) and 

EF-Hand (26.6%) sites. Interestingly, analyses of proteins where Pb2+ replaces Ca2+ 

(calmodulin) or Zn2+ (5-aminolaevulinic acid dehydratase) revealed structural changes 

presumably unrelated to ionic displacement. These results suggested that Pb2+ adopts 



diverse binding geometries and that opportunistic binding outside of known Ca2+-binding 

sites may play a role in molecular metal toxicity. 

Ca2+-binding affinities (Kd) using phenylalanine and tyrosine fluorescence were 

found to be 1.15 ± 0.68 X 10-5 M and 2.04 ± 0.02 X 10-6 M for the N- and C-terminal 

domains, respectively. The Kd for Pb2+-binding in the N-terminal domain, 1.40 ± 0.30 X 

10-6 M, was 8-fold higher than Ca2+. Binding of Pb2+ in the C-terminal domain produced a 

biphasic response with Kd values 7.34 ± 0.95 X 10-7 M and 1.93 ± 0.32 X 10-6 M, 

suggesting a single higher affinity Pb2+-binding site in the C-terminal domain with nearly 

equivalent affinity for the remaining sites. Competitive effects of Pb2+ added to Ca2+-

loaded CaM were examined using multiple NMR techniques. Pb2+ was found to displace 

Ca2+ only in the N-terminal domain, however structural/dynamic changes were observed 

in the central helix apparently due to Pb2+-binding in secondary sites. These data 

supported our hypothesis that CaM structure and function is altered by opportunistic 

Pb2+-binding. 
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1. Introduction 

1.1 Metals and metal-binding in protein biochemistry 

In the complex chemistry of life, the versatile adaptations of evolution are no more 

clearly evident than at the interface between the organic and the inorganic. It is not 

coincidental that metals essential to biological functions are also those abundant in the 

earth‘s crust, including sodium, potassium, iron, zinc, magnesium, calcium and 

manganese. These metals confer or alter the functions of biological processes by 

binding with proteins and nucleic acids.  

 Metalloproteins play significant roles in numerous biological processes, and 

approximately 40% of all natural proteins are known to bind metals [1-7]. Proteins exhibit 

selectivity for different physiologically-relevant metals depending on their environment 

and the nature of their functions, which is how Ca2+-sensor proteins selectively bind 

intracellular Ca2+ in an environment with 4-fold higher levels of Mg2+. Properties of both 

the protein and the metal ion contribute to both affinity and selectivity. These properties 

include formal charge (FC) on the ion and in the microenvironment of the binding site; 

ligand atom type and sidechain preference; ionic radius, and; electronegativity and 

electron-donating capability.  

Metal-binding sites in proteins can be characterized by a central shell of 

hydrophilic ligands to chelate the ion, with a surrounding shell of hydrophobic residues 

(Figure 1.1) [8-9]. The most common biologically-important metals (e.g. – Mg2+, Zn2+, 

Ca2+, Mn2+) frequently bind proteins selectively in different geometric configurations, 

utilizing different electron-donating Lewis bases as ligand atoms, mainly oxygen, 

nitrogen and sulfur from sidechain groups, and oxygen from mainchain carbonyls [10-

19].  
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Figure 1.1 General model of metal binding site  
Ca2+ is surrounded by a 1st shell of hydrophilic ligands (oxygen), which is in turn 
surrounded by concentric 2nd and 3rd shells of hydrophobic atoms; in this example 
covalently-bound carbon from sidechains. 
 

Proteins that require metal cofactors become functionally active upon binding 

their target ions. This does not however, preclude occupancy of the binding site by other 

ions, which may initiate weak activity in the protein, or may be benign. Calcium-binding 

proteins may, for example, bind Mg2+ ions at low affinity in a resting state, which is then 

replaced by Ca2+ resulting in a fully-potentiated conformer. Additionally, competing 

metals may induce toxicity by effectively occupying the native site, which alters the 

microenvironment, and thus the overall conformation, sufficiently enough to inhibit 

protein function. 
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1.2 Non-essential metals: toxicity and potential applications 

The interactions between proteins and non-essential metals are not understood 

as well as those between proteins and essential metals. It can generally be assumed 

that the majority of these metals (e.g., Be2+, Cd2+, Pb2+, Hg3+, Cr6+, As3+, Tl3+, Gd3+, Lu3+, 

Ga3+, In3+, Y3+) fulfill no beneficial biochemical roles, and nature provides us with few 

examples of proteins designed to bind these metals. Two recent studies have reported 

bacterium capable of encoding sensor proteins for toxic metals [20-22], including 

Ralstonia metallidurans, which possesses the first identified bacterial resistance 

determinant found to be specific for Pb2+ [23].  

Understanding the behavior of these metals in biological systems is important for 

several reasons. First, many of these metals are toxic and represent serious global 

health threats. Examples of this include: As3+ in groundwater which affects ~40 million 

people in Bangladesh, India and China; Hg3+ (as methylmercury) which bioaccumulates 

in the aquatic food chain; and Pb2+, an anthropogenic toxicant whose bioavailability has 

increased as a result of human industry.  

Lead (Pb2+) toxicity remain a persistent threat in the United States primarily in the 

form of paint used in houses prior to the 1970‘s and residual lead absorbed in the soil 

from lead-based gasoline. According to the most recent CDC survey, data collected from 

1997-2006 indicated 250 000 children in the US exhibiting Blood Lead Levels (BLL‘s) 

exceeding the current, standard ‗acceptable‘ level of 10µg/dL [24]. Additionally, studies 

from other countries in the last decade have reported high percentages of children with 

BLL‘s >=10µg/dL, including China (33.8%) [25], India (51.4%) [26] and South Africa 

(78%) [27]. 

Second, many of these non-essential metals have known or potential diagnostic 

or therapeutic applications, including: Gd3+ in MRI contrast agents, Pt2+ in cisplatin used 
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in chemotherapy, and Lu3+ or Pb2+ which may eventually play important roles in 

radionuclide therapy (RNT). 

1.3 Physiological effects of lead (Pb2+) toxicity 

 

From a clinical perspective, the effects of exposure to toxic metals are well-

documented. General physiological and biochemical 

problems associated with exposure to Pb2+ include 

neurological disorders related to the central and 

peripheral nervous systems [28-32], interference 

with heme biosynthesis [33], anemia [34], 

nephrotoxicity [35], hypertension [36] and both male 

[37-38] and female [39] reproductive disorders. 

Potential carcinogenic and genetic effects 

associated with lead toxicity have been reviewed by 

Johnson [40]. These effects also vary by age: 

Children having BLL‘s less than 5 µg/dL may exhibit 

impaired neurological development including 

learning disabilities and behavioral problems [41-

42]. The extensive systemic nature of these effects (Figure 1.2), also observed with 

other toxic metals, suggests that toxic metals like Pb2+ likely affect multiple molecular 

targets. 

1.4 Mechanisms of metal toxicity and Pb2+-binding in proteins 

At a molecular level, two general mechanisms are believed to be responsible for 

metal toxicity: primary displacement of essential metals (e.g., ionic mimicry [43], Figure 

Reproduction

Skeletal/Bone

Circulatory/Heart

CNS/Brain

Liver, Kidneys

 
Figure 1.2 Physiological 
targets for Pb2+ toxicity 
 



 

5 
 

1.3), and a secondary effect of oxidative stress due to interference with enzymes that 

maintain reducing state in cells [44].  

 

Figure 1.3 Ionic displacement as mechanism of metal toxicity 
The Ca2+ ion (left) in site EF-II of calmodulin is displaced by Pb2+ (right). 
 

Ionic displacement is believed to be the mechanism associated with several 

types of Pb2+-induced anemia, first identified almost a century ago [34]. Pb2+ has been 

found to displace Mg2+ in pyrimidine 5'-nucleotidase type 1 (P5N-1) [45], inhibiting the 

activity of the enzyme. This decreased activity results in increased concentrations of 

pyrimidines with an increased rate of destruction of red blood cells leading to anemia 

[46]. Pb2+ has also been shown to replace Zn2+ in 5-aminolevulinic acid dehydratase 

(ALAD), an important enzyme in heme synthesis, resulting in iron-deficiency anemia. 

Interestingly, an important study related to this latter mechanism demonstrated that 

Mg2+-dependent ALAD activity in plants is not inhibited by Pb2+-binding with oxygen 

ligands in the Mg2+ site,  while activity associated with Zn2+-dependent ALAD in animals 

was significantly diminished as a result of Pb2+ interacting with cysteine residues in the 

Zn2+ site [47]. Iron is another important metal which may be a target for Pb2+ 

displacement. Iron plays important roles in heme biosynthesis, including the formation of 

the heme precursor protoporphyrin, and in the function of Ribonucleotide reductase 

(RNR) which catalyzes the formation of deoxyribonucleotides through a free radical 

mechanism. The extent to which Pb2+ may be able to directly interfere with the biological 

roles of iron is not known, but Pb2+ has been found to displace Fe2+ in divalent cation 
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transporter-1 (DCT1) [48] which may be involved in transport of Pb2+ and cellular uptake, 

and in the crystal structure of RNR (Appendix, Table A.1). 

1.5 Roles of calmodulin and other Ca2+-binding proteins in Pb2+-toxicity 

In addition to a strong relationship with proteins that bind Zn2+ [49-53], Pb2+ 

toxicity has also been closely-linked to calcium metabolism and calcium-binding proteins 

[54-57]. Pb2+, Sr2+, Hg2+ and Cd2+, and most lanthanides have been found to occupy 

Ca2+-binding sites in both natural and engineered CaBPs [58-62]. Pb2+ has been shown 

to enter cells through calcium channels [63-65], activate skeletal muscle troponin C 

(TnC) [66], inhibit CaM-related Ca2+-ATPase activity in rhesus monkey brain [67],  and 

displace  Ca2+ in synaptotagmin [30].  

Two Ca2+-binding proteins that have been strongly implicated as playing potential 

roles in molecular Pb2+ toxicity are protein kinase C (PKC), which is activated by Pb2+ at 

subnanomolar concentrations [68-69] and may be involved in neurological effects of Pb2+ 

toxicity, and the intracellular trigger protein calmodulin (CaM) [52, 70].  

Calmodulin (CaM) is one of the most well-known CaBPs. CaM is an α-helical 

protein comprised of ~148 residues (Figure 1.4a) that undergoes significant 

conformational changes from the apo-state (Figure 1.4b) after binding up to four calcium 

ions (Figure 1.4c) in EF-hand sites (Chapter 3). 

At a macromolecular level, CaM is divided into two structurally similar domains 

separated by a transdomain linker region comprising residues 74-82 (Figure 1.4a).  
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EF-I EF-II Linker EF-III EF-IV

10 155 20 25 30 35

40 45 50 55 60 65 70 75

80 85 90 95 100 105 110

115 120 125 130 135 140 145

ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRS

LGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMARK

MKDTDSEEEIREAFRVFDKDGNGYISAAELRHVMTN

LGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK

 

1n0y 2v01

1cfc 3cln 1prw

Ca

 
Figure 1.4 CaM sequence and structures 
(a) Sequence of rat CaM with secondary structure. Fluorescent residues tyrosine and 
phenylalanine are highlighted in bold. Residues in linker removed for CaM-Delete variant 
are highlighted in bold italics. This region has been characterized as random coil in (b) 
apo-CaM and as a continuous helix in (c) calcium-bound X-ray structures. A dotted line 
within a transparent grey helix (a) depicts the dual nature of this region (residues 75-82). 
(d) NMR studies indicate this region is flexible in solution, and Ca2+-bound CaM may 
adopt a more compact structure. (e) In Pb2+-bound paramecium CaM the two domains 
converge, presenting a channel between the helices where Pb2+ ions cluster in the 
crystal structure corresponding to (f) a region of dense electronegativity. This effect is 
not observed in a more recent PDB structure (g) which suggests an extended helix that 
may be stabilized by Ca2+. Additional binding sites for Pb2+ are observed in both (e) 1n0y 
and (g) 2v01 compared to the Ca2+-bound structures. 

 

a 

b 
c 

d 

e f g 
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This functionally-important region appears helical (Figure 1.4c) in X-ray 

structures [71-72] and as a flexible loop in NMR solution structures [73-74]. The intrinsic 

flexibility of this region appears to allow the two domains to adopt a closer conformation 

to one another in solution (Figure 1.4d) [75] and to find their most favorable binding 

orientation on the surface of bound peptide(s), enabling CaM to perform its myriad 

functions [74]. Several studies have reported positive intradomain cooperativity observed 

between EF-Hand binding site pairs in each of the CaM domains in the presence of Ca2+ 

[76-77]. Some level of positive interdomain cooperativity may also exist between the N- 

and C-terminal domains of CaM [74, 78-79]. This cooperativity may be dependent upon 

peptide binding [80-82] and would necessarily involve structural or dynamic changes in 

the transdomain linker region. 

A number of studies have investigated the manner in which Pb2+ interact with 

CaM, however, many of these published results and conclusions were frequently 

contradictory, either with each other or with an assumed mechanism of ionic 

displacement. A study by Kern [83] reported that Pb2+ and Ca2+ interact positively to 

activate CaM. These results suggested that Pb2+ occupied the Ca2+ sites, but that this 

occupation did not inhibit the activity of CaM, which argues against displacement as a 

mechanism of toxicity. Shirran and Barran reported that Pb2+ affinity for CaM increases 

relative to other divalent cations in the presence of Ca2+ [84]. These results suggested 

that Ca2+-induced conformational change either enhanced the binding of Pb2+ in some of 

the Ca2+ sites, or produced conformational changes that effectively created new binding 

sites unique for binding of Pb2+. Chao et al. reported that Pb2+ and other metals may 

allosterically bind and activate Ca2+-bound CaM, which suggested that binding of Pb2+ 

outside of the Ca2+-binding sites enhanced Ca2+ activation [85].  

Interestingly, a later study, also by Chao, reported that Pb2+ binding with CaM 

initially activates then inhibits myosin light-chain kinase (MLCK) [86] in a concentration-
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dependent manner. Similar results were reported for CaM-sensitive phosphodiesterase 

(PDE) [87-88]. These results suggested that Pb2+ initially occupied the Ca2+ sites to 

activate the protein, and then inhibited activity by either (a) binding outside of the Ca2+ 

sites, or (b) binding in the Ca2+ sites but altering the protein conformation. Assuming that 

Pb2+ can bind CaM outside of the known Ca2+ sites, it thus becomes important to 

determine where and how this occurs. 

The potential existence of secondary metal sites in CaM was reported by Milos et 

al. [89] who indicated that CaM has six auxiliary (secondary) metal binding sites capable 

of binding both Mg2+ and Zn2+, and that all six sites have approximately equivalent 

affinity for each type of metal ion. This study also indicated that binding of these metals 

in the secondary sites allosterically antagonized the binding of Ca2+ in the known Ca2+ 

sites and vice-versa. The location of these secondary sites was not identified, however, 

a later study by Bertini et al. [90] suggested the presence of a secondary binding site in 

the trans-domain linker region of CaM based on the reported disappearance of chemical 

shifts in the HSQC NMR spectrum for residues 78-81(Figure 1.4a) following addition of 

0.3 equivalents of Yb3+. The presence of an additional binding site in the linker region of 

CaM is also observed in the crystal structures of paramecium CaM (1n0y.pdb, Figure 

1.4e) corresponding to a region of dense electronegativity, and human CaM (2v01.pdb, 

Figure 1.4f). 

The significant impact of metal binding in the linker region of CaM is illustrated in 

Figure 1.4. Because intrinsic flexibility in this region (Figure 1.4c) is critical to CaM‘s 

ability to bind to target peptides and enzymes in a collapsed conformation (Figure 1.4d), 

loss of flexibility in this region accompanying binding of a metal ion such as Pb2+ would 

directly interfere with the proteins function. 

Ca2+-binding proteins may also play a role in hypertension and heart disease 

associated with Pb2+ toxicity. It is widely-acknowledged that disruption of Ca2+-induced 
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functions plays a major role in heart disease. Wu et al. reported that calpain and 

calcineurin, two CaBPs that are critical effectors of intracellular Ca2+, may be 

deregulated due to disruption of calcium homeostasis, resulting in the pathogenesis of 

several calcium-dependent diseases, including hypertension, heart disease and diabetes  

[91]. Mattiazzi et al  [92] demonstrated that activation of the Ca2+-calmodulin dependent 

protein kinase II is an essential step in contractile recovery of the heart following 

persistent acidosis.  

 
Figure 1.5 Cam:RyR1 complex and putative CaM:connexin interactions  
(a) Cam:RyR1 peptide complex. CaM is drawn in blue, the RYR1 peptide in white, and 
the four calcium atoms are shown in red. The sidechains of the RYR1 hydrophobic 
residues that anchor the two lobes of CaM are shown as sticks. Images were generated 
in PyMOL [93]. Reproduced from Maximciuc  [94]. (b) Membrane topology and putative 
CaM-binding sites predicted in Cx44 and Cx43.   
 

Additionally, Yamaguchi  [95] reported that CaM inhibition of cardiac muscle cell 

Ca2+-release channel ryanodine receptor 2 (RyR2), under certain conditions, can lead to 

cardiac hypertrophy and early death in mice. 

Previous work has demonstrated that CaM regulates the sarcoplasmic reticulum 

ryanodine receptor Ca2+ release channel in both cardiac and skeletal muscle  [96-98], 

and disturbances in both the ryanodine receptor and the voltage gated L-type Ca2+ 

channel that controls Ca2+ entry into the myocyte may result in cardiac arrhythmias  [99]. 

b a 
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Novel work by Maximciuc et al [94] revealed the Ca2+-CaM/RyR1 peptide complex 

(Figure 1.5a). 

Similar binding is observed in the case of gap junction connexin complexes with 

CaM. The gap junctions are comprised of six transmembrane proteins (connexins) 

embedded in the plasma membrane, forming an extracellular channel that allows for 

non-selective cell-to-cell transport of low molecular weight molecules. In mammals, gap 

junctions between cardiac myocytes assist in the coordinated electrical and metabolic 

coupling between myocytes [100-101].  Three different connexins, Cx43, Cx40 and 

Cx45, have been identified in cardiac myocyte gap junctions, where Cx43 is dominant in 

the ventricles and atria [102-103]. Cx40 appears to be limited to the atrial myocytes, 

Purkinje fibers and sinoatrial and atrioventricular nodes [104-105], while Cx45 is 

expressed at low levels in the atria and ventricles [102]. Previous studies have 

demonstrated that normal cardiac function is dependent on all three of these connexins 

[106-108]. 

Ryanodine Receptor RyR2, the myocardial muscle channel protein that regulates 

release of Ca2+ from the endo/sarcoplasmic reticulum, is believed to be regulated in turn, 

by CaM-binding [109-112]. In addition, binding of CaM with gap junction proteins 

regulates communication and intracellular cytosolic Ca2+ concentration which maintains 

electrical activation and metabolic coupling in the myocardium [113]. Recent work in our 

laboratory has identified CaM-binding motifs in the primary gap junction proteins in heart 

muscle connexin43 [114], and connexin44. Calcium binding and calcium dependent 

conformational change is essential for the regulation of gap junction activities (Figure 

1.5b). Various metals including Pb2+, Cd2+, Tb3+, Gd3+ and La3+ are able to bind with CaM 

and other CaBPs [58-62, 85, 115-118]. Different toxic metals have been implicated in 

heart diseases [119-128], therefore an additional future objective of this research is to 

investigate the mechanism of metal-mediated diseases. 
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1.6 Statistical and structural analyses of Pb2+-binding and molecular toxicity 

To further our understanding of Pb2+ toxicity at the molecular level, we conducted 

statistical analyses of structural parameters associated with the binding of both Ca2+ and 

Pb2+ in protein structures deposited in the Protein Data Bank (PDB). Comparative 

structural analyses were also conducted for two proteins: yeast 5-aminolaevulinic acid 

dehydratase (ALAD) bound with Zn2+ and Pb2+, and CaM from the species Paramecium 

tetraurelia (1exr.pdb and 1n0y.pdb) bound with Ca2+ and Pb2+.  

CaM was specifically analyzed in both our statistical and empirical studies for 

several reasons. First, it is an essential signaling protein involved in over 100 biological 

processes  [129-132] and several studies have previously suggested a link between 

formation of a Pb2+/CaM complex and lead toxicity [52, 70]. Second, two significant 

studies, using different spectroscopic methods, have reported high affinity binding of 

Pb2+ in the EF-Hand sites of CaM [57, 133]. Similarly, recent work in our lab has 

confirmed the displacement of Ca2+ by Pb2+ binding with higher affinity in isolated CaM 

EF-Hand loops (Chapter 5). This potential for high affinity binding in concert with the 

essential role of calmodulin involved in various biological processes and calcium 

signaling may represent an important link to Pb2+ toxicity at the molecular level which 

can be revealed through detailed structural analysis. Third, CaM contains four EF-hand 

motifs. The availability of two pairs of EF-Hand sites also provided us with an opportunity 

to study the effects of Pb2+-binding on cooperativity both within the individual domains 

and globally, and to compare any differences in binding between Ca2+ and Pb2+. 

Results of our preliminary statistical analysis led us to hypothesize that while 

ionic displacement of Ca2+ by a competing metal ion may represent one mechanism of 

metal toxicity, an additional opportunistic binding mechanism, resulting from metal-

protein interactions in regions lacking an established binding site and related to 
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electrostatic potential interactions, may contribute to protein misfolding or conformational 

changes resulting in diminished protein activity and/or metal toxicity. Binding of Pb2+ to 

CaM is illustrated in two crystal structures of the complex from the PDB: 1n0y.pdb and 

2v01.pdb (Figure 1.4e and Figure 1.4g). In these figures, Pb2+ is observed to bind in the 

four EF-Hand Ca2+-binding sites of CaM, as well as in regions outside of the known 

Ca2+-binding sites. Significant conformational changes are apparent in 1n0y 

(Paramecium CaM) [134] which may be related to binding of Pb2+ in the transdomain 

linker region, which appears folded in Figure 1.4e, forming a pocket of dense 

electronegative charge (Figure 1.4f). Binding of Pb2+ in the EF-Hand sites in solution was 

reported by Aramini [135] and by Ouyang and Vogel [133]. However, an RMSD analysis 

of the residues in the binding sites comparing the Ca2+-bound and Pb2+-bound X-ray 

crystal proteins revealed only minor conformational changes as a result of displacement 

by Pb2+ [136], suggesting that global conformational changes may be associated with 

some mechanism other than ionic mimicry. Both mechanisms may offer partial 

explanations for the activation/inhibition of CaM activity reported in related studies [83, 

85-86, 88, 137-138]. 

To test this hypothesis, CaM was used as a model system due to its potential 

role in toxicity and the extensive data available regarding its calcium-binding properties. 

Direct titrations of Pb2+ and competitive titrations between Pb2+ and Ca2+ with CaM were 

analyzed by proton NMR, HSQC-NMR and fluorescence experiments based on metal-

induced conformational changes altering the proteins intrinsic Phe and Tyr 

fluorescences for the N- and C-terminal domains, respectively.  

Fluorescence changes in phenylalanine and tyrosine indicate that Pb2+ binds 

CaM with 8-fold higher affinity than Ca2+ in the N-terminal domain. An unusual biphasic 

response was observed in Tyrosine fluorescence associated with C-terminal domain 

sites EF-III and EF-IV, indicating a single higher affinity Pb2+-binding site with a 3-fold 
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higher affinity than Ca2+, coupled with a second site exhibiting affinity equivalent to that 

of the N-terminal domain sites. Similarly, changes in HSQC chemical shifts associated 

with addition of Pb2+ to Ca2+-free CaM suggested binding of Pb2+ in site EF-IV first, 

followed by concurrent binding in the remaining three EF-Hand sites, which differs from 

the cooperative pairwise binding of Ca2+ in the C-terminal domain followed by the N-

terminal domain as observed in our results and previously reported by others [139-141]. 

HSQC spectra, dynamic NOE data and calculation of S2 order parameters for 

the titration of Pb2+ to Ca2+-loaded CaM all indicate that Pb2+ displaces Ca2+ only in sites 

EF-I and EF-II. Additionally, the most significant chemical shift changes were observed 

in the carboxyl-rich linker region (residues 76-84). This provides strong evidence for 

opportunistic binding of Pb2+ outside of the known Ca2+-binding sites and an alternative 

mechanism for structural changes in the protein. Moreover, this mechanism is consistent 

with the reported concentration-dependent, biphasic activation and inhibition associated 

with Pb2+-binding of CaM. 

Analyses of structure using NMR indicated dynamic binding of Pb2+ in CaM sites 

EF-I and EF-II, which may be due to changes in coordination ligands suggested in the 

crystal structures of CaM with Pb2+. These changes further suggest that displacement of 

Ca2+ by Pb2+ could effectively disrupt interdomain cooperativity. HSQC-NMR data and 

the fluorescence experiments both suggested that Pb2+ binds in alternate sites on the 

protein following presaturation with Ca2+.  Potential alternate binding sites for Pb2+ were 

investigated, where Pb2+ may allosterically induce conformational changes, with 

particular attention to the transdomain linker region. A second alternate binding site for 

Pb2+ was identified in the C-terminal domain based on a biphasic plot of Tyr 

fluorescence during the competitive titration of Ca2+ to Pb2+-saturated CaM. Pulsed Field 

Gradient (PFG) NMR was used to evaluate diffusion data for several Pb2+:CaM 

complexes and calculate hydrodynamic radii for comparison with Ca2+. T1, T2 and NOE 
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data for CaM bound with both Ca2+ and Pb2+ were acquired using 15N-labelled CaM. 

These data were further used as input for dynamic studies using ModelFree software 

[142-143] to evaluate changes in flexibility of the linker region between the two metal-

bound states. 

1.7 The significant roles of metals in diagnostics and radiotherapy 

Understanding the molecular interactions between non-essential metals and 

proteins is not only important due to their toxicity, but also because of their potential 

applications in diagnostics and radiotherapy. Current methods of radionuclide therapy 

utilze either small molecule chelators or murine monoclonal antibodies (mAbs) coupled 

with chelating moieties to deliver radioisotopes directly to the sites of tumors. The 

development of hybridoma/monoclonal antibody (mAb) technology by Kohler and 

Milstein  [144] in the mid-1970‘s quickly led to the development of modified antibodies 

designed to target tumor-associated antigens. Murine mAbs appeared to offer promising 

results in cancer therapy during the 1980‘s, but were limited in efficacy due to a variety 

of problems including: insufficient activation of effector function; slow blood compartment 

clearance; low mAb affinity and avidity; transport into normal tissues; heterogeneous 

antigen distribution on tumor cells and insufficient tumor penetration. Recent 

improvements have resolved many of these problems, although tumor heterogeneity and 

penetration remain active areas of research  [145].  

Antibody proteins may contribute to therapeutic activity by direct tumor-cell killing 

in two pathways: antibody-dependent cell cytotoxicity (ADCC) or complement-dependent 

cytotoxicity (CDC) [146]. ADCC occurs when the Fc region of antibody bound to tumor 

cell is engaged by Fcγ receptor on effector cells. CDC occurs when complement 

component Clq binds to Fc region of antibody bound to tumor cell surface [145]. Cell 

killing may then occur through a cell-independent (lysis) or –dependent (phagocytosis)  
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mechanism [145]. Research has shown favorable therapeutic results using mAbs to treat 

certain types of cancers, in particular non-Hodgkins lymphoma (NHL) and HER2-

receptor-positive breast cancer [145], and several antibody therapies for these cancers 

are currently available. Rituximab (Rituxan; Genentech/Biogen Idec), an anti-CD20 

antibody for non-Hodgkins lymphoma (NHL), was the first FDA approved antibody for 

cancer therapy (1997). Trastuzumab (Herceptin; Genentech/Roche), is an anti-HER2 

antibody for HER2-receptor-positive breast cancer [145].  

However, tumor heterogeneity and penetration problems remain a challenge for 

mAbs. Additionally, these treatments may not be universal. Clinical results have shown 

that for some patients receiving mAb therapy, the production of human anti-murine 

immunoglobulin antibodies (HAMA) after 1-3 treatments may counter the effects of 

mAbs [147]. As research into this area continued, the idea of utilizing the mAb as a 

targeting system to deliver a radionuclide to the abnormal cells evolved, and was 

supported by evidence suggesting that coupling the mAbs cell-killing ability with a 

radioactive metal may produce a synergistic therapeutic effect in the treatment of 

metastatic breast cancer [148]. However, related studies have suggested that 

therapeutic doses of radioactivity by mAb delivery require support from either bone-

marrow transplantation (BMT) or stem-cell transplantation (SCT) [149-150].  

 Two pathways for radionuclide linking (Figure 1.6a) are currently the focus of 

research into this subject: (1) Direct radionuclide linking to mAb, where halogenation 

reactions (e.g. – 131I) with Tyr residues on mAb covalently bond the radioisotope to the 

mAb, and (2) The use of bifunctional Chelating Agents (BCAs).  
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1 2
 

Figure 1.6 Current radionuclide binding methods  
Numbers 1-2 in circles indicate pathways for radionuclide association with antibody, 
either (1) direct iodinization, or (2) conjugation with a bifunctional chelating agent.  
 

These are small molecules that include functional groups to bind both the 

radionuclide and the protein antibody. Of the two, the latter method appears to offer the 

most versatility, allowing for the inclusion and application of different radionuclides with 

different decay pathways. Additionally, problems with the first method include rapid de-

iodination that may occur following internalization of the protein [145]. 

At present, the availability of these treatments is limited, but includes two anti-

CD20 mAbs for the treatment of NHL: Zevalin (Biogen Idec), based on radiolabelled 

mAb 90Y Ibritumomab, and Bexxar (Corixa/GlaxoSmithKline), based on radiolabelled 131I 

Tositumomab.  

The various BCAs currently being evaluated fall into two broad categories: 

Acyclic or Macrocyclic. Macrocyclic BCAs (Figure 1.7a) include DOTA (1,3,7,10-tetra-

azacyclododecane-N,N‘,N‘‘,N‘‘‘-tetraacetic acid).  DOTA has been found to form stable 

complexes with 212Bi and 213Bi, but complex formation requires 15-45 minutes, whereas 

the half-lives of the two isotopes are 60 and 46 minutes, respectively [151], which 

arguably limits its effectiveness. Conversely, acyclic BCAs form complexes at faster 

rates but are reportedly less stable than macrocyclic BCAs (Figure 1.7b). However, the 

acyclic compound CHX-A‘‘ (a cyclohexyl- DTPA (diethylenetriamine pentaacetic acid)) 

appears to be an improved alternative to DOTA for labeling mAbs with bismuth [152]. 

Complex formation with CHX-A‘‘ is nearly instantaneous, and is stable enough for 
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clinical trials [153]. Additionally, it has exhibited similar stability binding β--emitters 90Y 

and 177Lu, suggesting the potential for a broader range of clinical applications [154-156]. 
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Figure 1.7 Examples of (a) acyclic and (b) macrocyclic BCAs 
These small molecules are used in anti-body targeted radiation therapy clinical trials. 
Conjugation with the antibody occurs via the isothiocyanate functional groups, while 
radionuclides bind via carboxylate and amine groups. 

 

Thus far, discussion has focused on the therapeutic and targeting capabilities of 

mAbs, and means of conjugating the radionuclide, ignoring the properties and 

a 

b 
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importance of the radioisotopes themselves. In another bifurcation, relevant 

radioisotopes may be generally divided into (a) imaging and (b) therapeutic 

radionuclides. Imaging radionuclides are used in conjunction with diagnostic 

technologies, e.g. - γ-Scintigraphy or Single Photon Emission Computed Tomography 

Imaging (gamma ray imaging). These radionuclide may be introduced intravenously (e.g. 

- 99mTc, 123I, 131I, 201Tl, 67Ga, 18F Fluorodeoxyglucose, and 111In Labeled Leukocytes), or 

as gasses or aerosols (e.g. - 133Xe, 81mKr, 99mTc Technegas, 99mTc DTPA). Imaging 

radionuclides may be used simultaneously with therapeutic agents, as is the case with 

90Y, which lacks an imageable transmission, requiring dosimetry with 111In.  

Table 1.1 Properties of metals with known or potential radiotherapy applications 

Radionuclide 

a
Ionic  

Radius  
(Å) 

a
EN 

Decay 
Type Half-life 

Emax  
(MeV) 

Mean 
Range  
(mm) Imageable 

90
Y

3+
 0.9 1.22 β 2.7 d 2.30 2.76 No 

131
I
1+

 2.2 2.66 β, γ 8.0 d 0.81 0.40 Yes 
177

Lu
3+

 0.85 1.27 β, γ 6.7 d 0.50 0.28 Yes 
153

Sm
3+

 0.96 1.17 β, γ 2.0 d 0.80 0.53 Yes 
186

Re
6+

 0.56 1.9 β, γ 3.8 d 1.1 0.92 Yes 
188

Re
6+

 0.56 1.9 β, γ 17.0 h 2.1 2.43 Yes 
67

Cu
2+

 0.73 1.9 β, γ 2.6 d 0.57 0.6 Yes 
225

Ac
3+

 1.12 1.1 α, β 10 d 5.83 0.04-0.1 Yes 
213

Bi
3+

 1.03 2.02 α 45.7 min 5.87 0.04-0.1 Yes 
212

Bi
3+

 1.03 2.02 α 1.0 h 6.09 0.04-0.1 Yes 
211

At
1±

 
b
1.4 2.2 α 7.2 h 5.87 0.04-0.1 Yes 

212
Pb

2+
 1.19 2.33 β 10.6 h 0.57 0.6 Yes 

125
I
1+

 2.2 2.66 Auger 60.1 d 0.35 0.001-0.02 Yes 
123

I
1+

 2.2 2.66 Auger 13.2 h 0.16 0.001-0.02 No 

67
Ga

3+
 0.62 1.81 

Auger, β, 
γ 3.3 d 0.18 0.001-0.02 Yes 

195m
Pt

4+
 0.63 2.28 Auger 4.0 d 0.13 0.001-0.02 No 

a [157] Pauling electronegativity. batomic radius. 
 

At present, general consensus suggests that most relevant therapeutic 

radionuclides have been identified, and these are summarized in Table 1.1 [145]. In 

addition to obvious chemical requirements for stable complex formation, several 

properties related to the decay type are particularly relevant with respect to 
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radionuclides. Table 1.2 briefly summarizes the decay modes reported for different 

nuclides.  

 
Table 1.2 Radioactive decay 

Decay Description 

β- Conversion of neutron to proton due to loss of electron. 

Ε 
Also described as inverse β decay. Electron captured by proton to form 
neutron. Subsequent decay to ground state produces x-ray photon. 

Α 4He ( α-particle) ejected. 

Γ emission of high energy photon. 

Auger 

An incident electron ejects core electrons from a sample atom, releasing a 
photoelectron and producing a core hole. Electrons with lower binding 
energy fill the hole during relaxation, releasing energy either in the form of 
an Xray or by emitting an electron. 

 
 

Nuclides that exhibit β- emissions (131I, 90Y, 67Cu, 186Re, 177Lu) have, to date, 

received the most attention. Of these, 131I and 90Y are currently being used with FDA 

approved therapeutics, while 67Cu and 177Lu have been evaluated in clinical trials only 

[154, 158-159]. The β- emitters are characterized by low linear energy transfer (LET), or 

energy transferred to material as ionizing particle travels through it, and longer emission 

path lengths (275 µm mean, 500-600 µm for 90Y) than α emitters (Figure 1.8) [145]. 

Moreover, β- emitters are less constrained by tumor antigen heterogeneity, exhibit 

differential penetration of the mAb, and may target the lesion uniformly when the 

emission range exceeds the radius of the targeted lesion. Conversely, disadvantages 

are also apparent and warrant consideration, particularly as they are correlative with the 

advantages in many cases. The long linear path length means that energy deposition 

actually occurs more distant from the decay event, so that the therapeutic effect is 

experienced not only by the targeted cell, but those cells surrounding it. Although the 

targeted cell would still receive decay energy from decay of nuclides on adjacent cells, 



 

21 
 

this reduces the effectiveness of β- emitters for treatment of single-cell metastatic 

diseases, leukaemias and disseminated diseases [160]. Additionally, while 90Y delivers 

~4.5 more radiation per mCi to tumor than 131I, most of decay energy is deposited in 

tumors greater than 1 cm in diameter, and damage is likely to occur in surrounding 

tissues [145]. Other, nuclide-specific problems have also been reported. The potential 

for 67Cu may be limited as a result of trans-chelation with superoxide dismutase [161-

162]. 90Y lacks an imageable transmission, requiring dosimetry with 111In for γ-

Scintigraphy or Single Photon Emission Computed Tomography Imaging (gamma ray 

imaging). 

Conversely, α emitters are complementary to β- emitters in many respects. The α 

emitters have generally shorter half-lives, producing high-energy particles (4-9 MeV) that 

travel short distances (40-100 µm) (Table 1.1) with dense emission pathlengths of high 

LET, approximately 400X greater than β-emitters  [145]. Energy deposition for α emitters 

occurs at the decay site [160], exhibiting high cytotoxicity at a dose rate of 1 cGy*hr-1, or 

1 X 10-2 J*Kg-1*hr-1 [163]. Three α emitters, 212Bi, 213Bi, and 211At are the subjects of 

increasingly, active study [164-165] and decay by both α and β- emissions. However, 

213Bi may be better candidate than  212Bi as the latter has an abundant high-energy γ –

emission that is not shared by  213Bi [166]. Additionally, 225Ac may be a viable isotope, 

but may present clinical problems due to its longer half-life and may cause in vivo 

problems due to trafficking of decay products [167]. Nonetheless, these properties 

indicate that α emitters may be best suited for leukaemias, highly-vascularized tumors 

and metastatic disease. 
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Figure 1.8 α- and β-- particle emissions in antibody-targeted radiation therapy  
Decay from the β-- particle exhibits a longer path length with a narrower LET than the α- 
particle. Reproduced from Milenic [145]. 
 

Auger electrons (67Ga, 195mPt, 123I, 125I) have received the least attention, despite 

reported extreme cytotoxicity. This form of decay is described by the emission of an 

electron from an atom which causes the emission of a second electron. When an 

electron is removed from a core level of an atom, an electron from a higher energy level 

may fall into the vacancy. The resulting energy may either be released as a photon, or 

transferred to a second electron. The γ emitters are considered unsuitable due to 

extremely long decay paths, so our focus will remain with the β- and α emitters, despite 

the fact that many of the β- emitters exhibit multiple decay paths that include γ emission 

(Figure 1.8). 
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Figure 1.9 Proposed protein-based 
RNT agent 
(a) As an alternative to mAbs, a 
metal-binding site capable of 
selectively chelating a radionuclide is 
grafted or inserted into a scaffold 
protein, which is in turn fused with a 
biomarker targeting moiety. (b) RNT 
model using CD2 as scaffold protein 
with Ca2+-binding motif. 

Several major challenges remain to be 

overcome in this field, in order to deliver 

functional therapeutics capable of delivering 

the radionuclide to specific cells targeted for 

destruction. In addition to obvious 

considerations regarding the nature of the 

isotopes chemistry (i.e. – emission type, LET, 

half-life), complex stability between the 

radionuclide and the chelator is critical, yet 

complex formation with zero dissociation has 

proven to be a non-trivial problem  [145]. 

Additionally, rapid binding kinetics are 

required, and as noted, are not necessarily 

achieved with current small molecule 

chelators. Another major challenge in 

radionuclide-based therapies is improving the 

therapeutic index (i.e. – benefit vs. risk) by 

devising means to focus cytotoxicity on the abnormal cell nuclei, thereby efficiently 

destroying cancerous cells while reducing radiation-induced DNA damage in adjacent 

healthy cells. The development of radioimmunoconjugates, radionuclide-chelating 

molecules capable of covalently bonding to antibodies, has demonstrated significant 

progress in this area.To address these challenges, we hypothesize that improved 

complex formation can be achieved based on rational protein design. Specifically, that 

metal-binding motifs with high selectivity and affinity for the target radionuclides can be 

designed based on rigorous understanding of the characteristics and properties 

associated with these motifs, which may then be either grafted directly onto the antibody 
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in regions distant from the recognition site, or may be synthesized in an engineered 

protein structure which will subsequently bind to the antibody.  

Previous and continuing work in our laboratory has utilized site-directed 

mutagenesis and grafting methods to synthesize proteins with modified Ca2+ and Gd3+ 

binding sites in the development of sensors and MRI contrast agents [62, 168-175] 

similar to the model proposed in Figure 1.9. These existing constructs (CD2 and 

variants; N- and C-terminal calmodulin (CaM) domains; and several species of 

fluorescent proteins) will be utilized in preliminary testing to evaluate binding potential for 

the development of protein-based radioimmunotherapies. 

Based on our current understanding of metal-binding properties with various 

metals, a sublist of potential radionuclides was selected for analysis which included 4 β- -

emitters, 1 α-emitter and 1 γ-emitter (Table 1.1). These radionuclides were selected 

based on several criteria. First, their ionic radii are similar to either Ca2+ or Zn2+, which is 

important for binding in sites specific to those metals. Second, they generally exhibit high 

electronegativity (EN) values, which may contribute significantly to binding affinity. Third, 

they are all commonly the subject of current research, and have either demonstrated 

some therapeutic efficacy, or, in the case of In3+, are utilized in tandem with another 

radionuclide (Y3+) for imaging purposes.  

1.8 Cell adhesion molecule CD2 as scaffold protein for RNT agent 

Domain 1 of cell adhesion molecule CD2 (CD2-D1) has been utilized previously 

in our laboratory as a scaffold protein for the design of MRI contrast agents (Figure 1.9). 

CD2-D1 is a 99-residue, predominately β-sheet protein that exhibits remarkable stability 

over a wide pH range (1-10), and reversibly refolds after both chemical and thermal 

denaturing. Various efforts have been made in our lab to design a metal binding site in 

CD2-D1, as summarized in Table 1.3. 
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Table 1.3 CD2-D1 designed metal-binding sites 

Name Mutations Ca(II) Site Charge Ca Tb
aCD2-DEEEE I18D, F21E, G61E, V80E, I88E D18, E21, E61, E80, E88 -5 21 ± 3

bCD2.Ca1 F21E, V78N, V80E, L89D, K91D E21, N78,  E80, D89, D91 -4 40 ± 10 3 ± 2

cCD2.6D15 N15D, N17D D15, D17, N60, D62 -3 1400 ± 400 8 ± 2

dCD2.7E15 N15E, L58D, K64D E15, E56, D58, D62, D64 -5 100 ± 50 0.4 ± 0.2

K d (μM)

 
a[118] b[176] c[62] d[177]  
 

1.9 Objectives of this dissertation 

 The objectives of this research are to understand the structural parameters 

associated with Ca2+-binding proteins, determine the differences between binding of 

Ca2+ and toxic metals, particularly Pb2+, and investigate the use of Ca2+-binding sites to 

bind toxic metals with potential application in radiotherapy.  The research presented here 

will focus on the following key objectives: 

A. Analyzing Ca2+-binding structures, applying statistical analysis to identify key 

structural parameters associated with Ca2+-binding, and incorporating these 

parameters into prediction algorithms 

 To understand Ca2+-binding in proteins, we will first summarize known data 

related to different types of Ca2+-binding sites. Next, data for all Ca2+-binding proteins 

identified in the PDB will be downloaded into a local database and analyzed with respect 

to charge, ligand type, coordination number, general coordination geometry (e.g., hull 

parameter), and distance and angle parameters associated with the Ca2+ ion, the 

coordinating ligand atom, and the atom covalently bound to the coordinating ligand 

atom. Once all statistics are compiled, the resulting values will be used as variables in 

the development of structure-based prediction algorithms to identify Ca2+-binding sites. 

B. Analyzing Pb2+-binding structures comparatively with Ca2+-binding structures 

 Pb2+-toxicity is closely-linked with both Zn2+- and Ca2+-binding proteins. Our 

research focus is to analyze a potential route for Pb2+ toxicity in Ca2+-binding proteins. In 
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order to understand Pb2+ toxicity from a molecular perspective, we will first analyze all of 

the structural data in the PDB associated with binding of Pb2+, and then compare the 

results of this statistical analysis with those obtained from the analysis of Ca2+-binding. 

C. Investigating the potential molecular basis for Pb2+-induced toxicity in the Ca2+-

binding protein calmodulin  

 The intracellular trigger protein calmodulin has been identified as a potential 

molecular target for Pb2+-binding due to its four Ca2+-binding sites. It has been assumed 

that the function of calmodulin may be disrupted by displacement of Ca2+ by Pb2+ in the 

metal binding sites. To investigate this, we will apply several experimental approaches to 

understand the binding modes of Pb2+ with calmodulin including fluorescence 

spectroscopy and multiple NMR approaches (e.g., 1D, 2D, 3D, relaxation and diffusion 

NMR experiments). 

D. Potential applications of toxic metals in radiotherapy 

 Radionuclide therapy (RNT) is a growing field of study focusing on targeted 

delivery of radiation therapy to treat certain types of cancers. Many of the radioactive 

isotopes with known or potential applications in radiotherapy are toxic in their stable 

isotopes (e.g., Pb2+ and Lu3+). To develop a protein-based chelators for targeted RNT, 

we will investigate binding assays and the chelating properties of fluorescent dyes for 

important RNT target metals. We will further investigate binding of these metals with 

Ca2+-binding sites in scaffold proteins as a prelude to developing metal-specific protein-

based RNT agents. 

1.10 Significance of this dissertation 

 The research summarized in this work will first provide a comprehensive 

overview into the nature of Ca2+-binding proteins and the structural characteristics 

associated with Ca2+-binding. By analyzing these properties from a statistical 
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perspective, we can provide a set of structural parameters capable of more precisely 

defining a Ca2+-binding site for computational efforts to predict or design Ca2+-binding 

sites. Moreover, this approach can be extended to other metals, including Mg2+ and Zn2+. 

Identifying potential metal binding sites provides us not only with insights into the 

functions of these metals in proteins, but directs us to regions in the proteins where 

mutations may result in metal-mediated dysfunction leading to diseased states.   

Second, this work provides a first examination of the behavior of Pb2+ in proteins at a 

structural level. In the past, the behavior of Pb2+ with proteins was predicted based on 

interactions with small molecules. Our work reveals a more complicated level of 

interactions with different binding schemes from those previously assumed based on 

small molecule models.  

 Third, experimental work with Pb2+ and calmodulin reveals an opportunistic 

binding mode outside of well-defined Ca2+-binding sites, which suggests that toxic 

metals may influence the behavior of proteins that do not normally bind metals, thus 

increasing the potential number of molecular targets that may be affected by metal 

uptake. 

 Fourth, our preliminary efforts to develop assays and analytical methods for toxic 

metals demonstrate that many of these metals exhibit unusual behavior compared with 

physiologically-relevant metals, which often complicates experiments and interpretation 

of data. 

 Chapter 2 in this dissertation summarizes the materials and methods used in 

these studies, including protein expression and purification, spectroscopic techniques 

(UV-VIS, fluorescence, NMR), methods to control free metal concentrations in samples 

and buffers, and statistical bases for analyses. All equations used in this study are 

summarized in this chapter.   
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 Chapter 3 focuses on statistical analysis of EF-hand and non-EF-hand Ca2+-

binding sites in proteins for all structures in the PDB. The significance of water 

molecules in the coordination of non-EF-hand sites is discussed. 

Chapter 4 summarizes the results of a statistical analysis of Pb2+-binding sites in 

proteins, and compares the results against those obtained for Ca2+-binding sites 

summarized in Chapter 3. A direct structural comparison of calmodulin bound with Ca2+ 

vs. Pb2+ is discussed, along with a proposed mechanism of opportunistic binding for 

Pb2+. 

Chapter 5 details experimental results for analysis of calmodulin binding with 

Ca2+, Pb2+, and the competition between these two metals. The binding affinities for both 

Ca2+ and Pb2+ are calculated for the N- and C-terminal domains of calmodulin. Structural 

changes and chemical exchange associated with metal binding in calmodulin are 

revealed through NMR HSQC spectra. Dynamic changes associated with metal binding 

are investigated through relaxation properties including T1 (longitudinal), T2 (transverse) 

and NOE data. These properties are further used to model protein dynamics and 

establish order parameters for residues in the protein. A mechanism for binding of Pb2+ 

to calmodulin in the Ca2+-loaded state is proposed which includes opportunistic binding 

of Pb2+ outside of the known Ca2+-binding sites. 

Chapter 6 summarizes efforts to identify colorimetric and fluorescent dyes 

capable of binding of Pb2+, Lu3+ and other toxic metals over a range of different affinities. 

Chapter 7 presents a brief summary of the major conclusions presented in the 

dissertation. 
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Table 2.1 Summary of binding distance and angle 
values 

  
non-EF-

Hand 
EF-Hand 

Total Binding Sites 1468 137 

FC
a
 1 ± 1 3 ± 1 

Mean CN
b
 PLW

c
 6 ± 2 7 ± 1 

Mean CN PL
d
 4 ± 2 6 ± 1 

% In Hull 72 100 

 Bidentate Dihedral 
Angle 

168.1 ± 9.7 170.6 ± 7.1 

Mean Ca-O Distance (Å)   

 MC
e
 Carbonyl 2.4 ± 0.2 2.3 ± 0.1 

SC
f
 2.4 ± 0.2 2.4 ± 0.2 

Bidentate 2.6 ± 0.3 2.5 ± 0.2 

Ca-O Distance Range 
(Å) 

  

 MC Carbonyl 2.0-3.5 2.0-2.6 

SC 1.6-3.5 1.8-3.5 

Bidentate 1.8-3.5 2.2-3.5 

Mean Ca-C Distance (Å)   

MC Carbonyl 3.5 ± 0.2 3.5 ± 0.1 

SC 3.5 ± 0.2 3.4 ± 0.1 

Bidentate 2.9 ± 0.2 2.9 ± 0.1 

Ca-C Distance Range 
(Å) 

  

MC Carbonyl 3.0-4.6 3.1-3.9 

SC 2.8-4.6 2.9-3.9 

Bidentate 2.4-3.7 2.6-3.4 

Mean Ca-O-C Angle (°)   

MC Carbonyl 151.5 ± 15.8 159.8 ± 12.5 

SC 140.4 ± 15.2 136.7 ± 16.0 

Bidentate 93.6 ± 11.3 92.9 ± 6.8 

Ca-O-C Angle Range (°)   

Carbonyl 81-180 126-180 

SC 56-180 116-170 

Bidentate 61-140 66-120 
aNegative Formal Charge. bCoordination Number.  
cProtein and Water Ligands. dProtein Ligands.  
e Mainchain. fSidechain. 
 

2 Materials and methods 

2.1  Ca2+-binding protein statistics 

 

 All data files were 

downloaded from the PDB, 

and relevant data were 

extracted using Matlab 

(MathWorks, Natick, MA). The 

PDB file ID and sequence ID 

for the Ca2+ ion associated 

with each binding sites are 

summarized in Table A.2. All 

statistical results were divided 

into two datasets (Table 2.1): 

One each for non-EF-Hand 

and EF-Hand proteins, where 

the non-EF-Hand protein data 

set contains 1468 binding sites 

and the EF-Hand protein 

dataset contains 137 calcium 

binding sites, respectively. The 

preponderance of non-EF-

Hand proteins was attributable 

to the fact that more non-EF-

Hand protein structures were 

available at or below the resolution cutoff of 2.0 Å. A number of EF-Hand proteins were 
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not identified as such by their SCOP classification, but were later identified using pattern 

motifs and related software developed in our laboratory [178], and less than 10% of sites 

classified as EF-Hand sites for the statistical analysis were Pseudo-EF-Hand sites 

belonging to the S100 family. Summarized values presented in Table 2.1 are discussed 

in the appropriate sub-sections below. 

Ca
2+

O

O

O

OO

O

O

C

C

C

Monodentate

Bidentate

Ca-O-C

dist(Ca,C)

dist(Ca,O)a b

 

Figure 2.1 Illustration of key structural characteristics of Ca2+-binding  
(a) The physical relationships between the Ca2+ ion (Ca), the ligand oxygen (O), and the 
ligand oxygen atoms covalently-bound carbon (C) are defined by the angle Ca-O-C and 
distances dist(Ca,C) and dist(Ca,O). (b) Dihedral angle of bidentate ligands. 
 

Structural parameters analyzed in this study are illustrated in Figure 2.1a. The 

cutoff distance of 3.5 Å was selected for several reasons. First, various studies have 

evaluated first shell Ca-O binding up to 4.0 Å, and reported a limited number of Ca-O 

bonds within the range 3.4-3.8 Å, although the majority of bond lengths falls within the 

range 2.2 – 2.9 Å [10, 179-180]. Dudev et al evaluated first-second shell interactions for 

metal binding with a second shell cutoff distance of 3.5 Å [181]. Additionally,  Nayal et al 

reported statistical results using a cutoff distance of 3.5 Å [182], and previous work in our 

laboratory has demonstrated that this cutoff distance is valid for rapid and accurate 

prediction of Ca2+-binding sites [183]. 
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Parameter Analysis 

 The Mean Ca-O ( OCa ) and Ca-C ( CCa ) distance values were calculated 

as follows in Eq. 1 and Eq. 2, respectively.  

k

OCadist
k

OCa
1

),(
1

      (Eq. 1)  

 
m

CCadist
m

CCa
1

),(
1

       (Eq. 2) 

 
 In Eq. 1, k is the number of ligands in one site. In Eq. 2, m is the number of 

bonded carbon atoms, and k ≥ m. When k equals m in a single binding site, it indicates 

that only monodentate ligands appear in this site, otherwise k must be greater than m for 

polydentate ligands. 

Bidentate ligands commonly originate from residues Glu, and Asp, and to a 

lesser extent from Gln and Asn. The extent to which a sidechain residue is bidentate is 

dependent on the relative position of the metal ion to the ligand atoms. To our 

knowledge, previous statistical analyses identify bidentate ligands only on the basis of a 

cutoff distance, so to more accurately report coordination numbers for this analysis, 

bidentate ligands were identified based on a bidentate ligand propensity property Lβ, as 

defined by Eq. 3 which predicts bidentate property as a function of deviation from an 

idealized symmetry. 

Lβ =   (d1/d2)         (Eq. 3) 

  To evaluate this, we first considered a theoretically-ideal, symmetrical bidentate 

ligand (Figure 2.2a) where the Ca-O distances (d1, d2) and Ca-O-C angles (θ1, θ2) for 

each potential ligand are equivalent: therefore d1/d2 = 1, and θ1/θ2 = 1. 
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Figure 2.2 Bidentate ligands and calcium-binding 
(a) Symmetrical bidentate structure and (b) monodentate structure where ion is bound to 
only 1 ligand atom. The relationship between each potential ligand oxygen and the Ca2+ 
ion is defined by distances d1 and d2, and angles θ1 and θ2. (c) Tight holospheric binding 
and (d) loose holospheric binding where the Ca2+ ion is enclosed in a volume defined by 
binding ligands. (e) Hemispheric binding where the Ca2+ ion is exposed on one 
hemispheric surface and (f) planar binding where the Ca2+ ion is bound in a ring 
structure with exposure above and below the plane. 

 

 A geometric relationship (described in supplementary materials) exists between 

these ratios which allows us to use d1/d2 as a measure of deviation from ideal symmetry. 

As the position of the metal ion shifts relative to the ligands (Figure 2.2b), the binding 
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character becomes increasingly monodentate, and the ratio d1/d2 increases or 

decreases proportionally, describing a range of valid values to distinguish bidentate from 

monodentate ligands. To establish a valid range for Lβ to identify bidentate ligands, 61 

potential bidentate pairs obtained from the Pidcock [61] dataset were visually inspected 

using Pymol (http://pymol.sourceforge.net/). From this dataset, a valid range of Lβ for 

identified Ca2+-binding bidentate ligand pairs was calculated at 1.07 ± 0.34. This range 

was then used as a filter to identify bidentate ligands for the EF-Hand and non-EF-Hand 

sites.  

 Dihedral angles were also calculated for bidentate ligands, defined as the angle 

between the plane formed by the sidechain carboxyl group (-COO), and the plane 

formed by the two carboxyl oxygen atoms and the Ca2+ ion (Figure 2.1b). Finally, an 

additional property Hull was examined to describe the spatial relationship of the Ca2+ ion 

to the interior volume of the inner shell binding ligands. This property functioned as a 

Boolean operator, indicating only whether or not the ion was enclosed in the defined 

volume. 

Analysis of bimodal peak distribution for EF-hand ligands 
 

 An observed bimodal distribution of Ca-O-C angles for sidechain and mainchain 

EF-Hand ligands was further analyzed based on ligand distribution and protein family. 

Ligands comprising the Ca-O-C angle distribution were plotted for comparative analysis. 

The distribution of Ca-O-C angles was subdivided into two regions R1 and R2 

corresponding to angle ranges 116.00° – 138.49° and  138.50° – 170.00° for sidechain, 

and 116.00° – 163.49° and  163.50° – 180.00° for mainchain, respectively.  

 The ligand contribution to these regions from each protein structure was 

determined. A multiple sequence alignment was conducted with ClustalW, using a gap 

open penalty of 10 and a gap extension penalty of 0.5 [184] for all chains of all EF-Hand 

http://pymol.sourceforge.net/)
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PDB structures. The resulting output file was edited to remove redundant chains, so the 

final data file contained only multiple chains from a structure if the chains were unique. 

This file was then read using TreeView software  [185] to generate unrooted N-J 

phylogenic trees. Chains were further labeled on the phylogenic trees with their 

appropriate SCOP  [186] family classifications using data from the Protein Data Bank, 

except for the Calmodulin-like SCOP families where the label was excluded to improve 

readability. Further detailed analysis was then performed to determine potential 

correlation between the ligands within the Ca-O-C angle data and protein family 

evolution based on ligand distribution in regions R1 and R2. 

2.2 Pb2+-binding protein statistics 

 A preliminary search of the Protein Data Bank (http://www.rcsb.org/pdb/) 

identified 27 PDB files for proteins known to bind Pb2+. Six of these were discarded as 

they represented either duplicate structures or nucleic acid structures. From the 

remaining 21 PDB files, 20 of the 68 Pb2+ binding sites were eliminated due to 

redundancy associated with polymeric domains, or because the only binding ligands 

associated with the ion were water molecules, leaving 48 binding sites retained for the 

analysis (Appendix Table A.3).  

 Although possible Pb-O and Pb-N binding distances as long as 4.2 Å have been 

reported in the literature  [187], we chose a shorter ligand inclusion cutoff distance of 3.5 

Å from the Pb2+ ion for several reasons. First, 75% of the ligands identified by the 

analysis fell within the 3.5 Å cutoff distance, including all of the ligands where binding 

resulted from displacement of another ion. Second, work by Harding and others [180, 

187] has suggested a variable region approximately between 3.2 – 4.0 Å where the 

distribution of ligands for certain metal ions decreases significantly, and begins to 

increase again near 4.0 Å. This corresponds with second shell interaction ranges 

reported by Dudev [181], where first shell interactions are constrained to 3.5 Å. This 

http://www.rcsb.org/pdb/
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cutoff distance is also frequently cited as the upper limit for Ca2+ binding; however, 

nearly all studies of Ca2+, including a recent study completed in our laboratory, have 

demonstrated that Ca2+-binding ligands are generally within 2.9 Å distance from the ion  

[5, 10, 180, 188]. In the case of Pb2+ which has a slightly larger radius than Ca2+, we 

allowed for the possibility that the larger radius would result in minor increases in binding 

distance values, which is accommodated by the 3.5 Å cutoff.  

 Of the 177 ligand atoms retained for the analysis, only five have occupancy 

values less than 1 (i.e. - more than one stable set of coordinates was observed for the 

atom in the crystalline structure), and these atoms were not removed as their inclusion 

would not significantly alter the analysis. Two datasets were then constructed for 

evaluation: a final dataset (DS Final) comprised of all retained binding sites, and a 

subset comprised of higher resolution (DS HR) structural data (R less than 1.76 Å), to 

limit error inherent in structures with lower resolution  [189].  

 Data from the Ligand Protein Contact Data Server (LPC) 

(http://bioportal.weizmann.ac.il/oca-bin/lpccsu) were obtained to verify binding ligands. 

Data from the PDB were selectively filtered using a custom, Visual Basic (Microsoft 

Corporation, Redmond, WA) program, then loaded into an Access relational database. 

Statistical data on binding ligands were extracted from the database using Structured 

Query Language (SQL) queries to identify all potential oxygen, nitrogen or sulfur ligand 

atoms within 3.5 Å of the target Pb2+ ions. Distance was calculated based on Eq. 4, 

where (XLigand – XPb) indicates the spatial difference between each component‘s 

numerical coordinate along the X-axis. The differences for each component along the Y 

and Z axis are calculated in the same manner.  

Distance =   ((XLigand  - XPb)
2 + (YLigand  - YPb)

2 + (ZLigand  - ZPb)
2)1/2    (Eq. 4) 

 Additionally, 54 potential bidentate ligand pairs in the PDB files were inspected 

using Pymol  [93], and 36 were visually-identified as bidentate pairs based on Eq. 3 

http://bioportal.weizmann.ac.il/oca-bin/lpccsu
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where the bidentate ligand propensity property Lβ was defined based on the ratio (d1/d2) 

where d1 represents the distance between Pb2+ and either Asp OD1 or Glu OE1, and d2 

represents the distance between Pb2+ and either Asp OD2 or Glu OE2.  

 The Lβ range determined for Pb2+-binding was found to be 1.04 ± 0.29, which 

differs insignificantly from that calculated for Ca2+ (1.07 ± 0.34). The significance of this 

property is that it can be utilized in related analyses to predict bidentate ligands from 

structural data, without the necessity of viewing each individual model.  

 Comparative data for Ca2+-binding was also obtained from the Protein Data 

Bank, where a total of 1605 binding sites from 558 PDB files with resolution R ≤ 2.0 Å 

were retained for the analysis, based on a cutoff distance of 3.5 Å as the maximum 

ligand distance for oxygen and nitrogen, and following removal of structures with greater 

than 90% sequence homology.  

2.3 Expression and purification of CaM 

 Two variants of CaM were used in our research: wt-CaM and a mutant variant 

(CaM-Del) modified by the removal of residues 76-80 (MKDTD). Both were expressed 

and purified according to the same protocol, which will be described here for wt-CaM 

only.  

Briefly, 1.0 µL pet20b/wt-CaM plasmid DNA was first added into 50 µL of BL21 

(DE3) plysS competent cells. After mixing with the pipet tip, samples were placed on ice 

for 30 min following by immersion in 42 °C water bath for 45 s to heat shock the cell 

membrane and allow for entry of DNA plasmid. After the heat shock, samples were iced 

for 2 min, following which they were mixed with 1 mL LB media and placed in the 

incubator/shaker for 60 min at 37 °C. Samples were then plated on LB plates with 100 

µg/mL ampicillin and incubated overnight at 37 °C. The transformed cells were then 

refrigerated at 4 °C the following day. 
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Figure 2.3 Expression and purification of CaM  
(a) Growth curve for wt-CaM expression. OD-F2 appears to have died following addition 
of IPTG at 300 min. (b) Fraction concentration of wt-CaM and calculated yield in mg 
from 1 L cell cultures. 
 

 Single cell colonies were inoculated into 10 mL LB broth with 10 µL of 100 µg/mL 

ampicillin and placed in the incubator/shaker overnight at 37 °C. The incubated cells 

were then spun down in a centrifuge for 15 min at 8000 rpm (T=4 °C) and resuspended 

in 1 mL LB. Each 1 mL sample was then inoculated into 1 L LB with 100 µg/mL 

ampicillin. LB media was prepared by autoclaving three 1 L flasks of LB using cycle 4, 

45 min, 121 °C. Cells were then incubated and shaken at 37 °C until OD600 = 0.6-0.7, 

a 

b 
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when cells were induced with 0.2 mM (200 µL of 1 M) Isopropyl-beta-D-

thiogalactopyranoside (IPTG), and allowed to grow for 3-4 hours. An example of the 

associated growth curve can be seen in Figure 2.3a. Cells were collected after 525 min, 

centrifuged at 7500 rpm for 20 min, and the cell pellets stored at -20 °C for further 

purification. 

 Next, cell pellets were resuspended in 30 mL homogenization buffer (2 mM 

EDTA (Acros Organics, Geel, Belgium), 1 mM Dithiothreitol (DTT), 1 mM 

phenylmethylsulphonyl fluoride (PMSF), 50 mM Tris, pH 7.5). EMD Omnipur tris 

(hydroxymethyl)aminoethane (EMD Chemicals, Inc., Gibbstown, NJ) with a pKa of 8.06 

at 25 °C was used as a buffering solution due to its working range from pH 5.0-8.6. 

PMSF (98.5%, Sigma), a serine protease inhibitor, was added to prevent protein 

degradation. Cells were broken using the French Press method at 16 k psi, passing the 

solution through twice. Cells were heated at 80 – 85 °C in a water bath for ~5 min then 

centrifuged at 17000 rpm for 40 min. 5 mM CaCl2 was then added to the retained 

supernatant, which was filtered through a 0.45 μm pore size filter (Whatman, Florham 

Park, NJ). The sample was loaded onto a phenylsepharose column pre-equilibrated with 

Wash Buffer 1 (1 M CaCl2, 1 M Tris, pH 7.5). Column was run at 1 mL/min at 4 °C, and 

then recycled overnight to ensure optimal binding to the column. 

 The following day, the column was washed with 5-10 column volumes of Wash 

Buffer 1. This was repeated with Wash Buffer 2 (Wash Buffer 1 with 5 M NaCl) at 2 

mL/min. Protein was then eluted with Elution Buffer (0.5 M EDTA, 1 M Tris, pH 7.5) at 2 

mL/min. Previous work with wt-CaM has demonstrated that all of the protein is eluted in 

the first 60 mL. 

 Collected fractions were then evaluated for absorbance at 278 nm (Trp) using a 

Shimadzu UV-1601 PharmaSpec UV-Vis spectrophotometer with UV Probe software 

(Shimadzu North America, Columbia, MD). Fractions with the highest absorbance were 
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then pooled and dialyzed 3-4 hours in 2 L of 50 mM Tris, pH 7.5, 4 °C. The dialysis 

buffer was then replaced and a 10 g Chelex 100 resin bag added for overnight dialysis to 

remove free Ca2+.  

An example of the final yield of purified wt-CaM can be seen in Figure 2.3b. Yield 

was calculated based on three collected fractions from a single 1 L flask of expressed 

and purified protein. Similarly, a yield of 134 mg of obtained for the CaM-Del variant (2L, 

data not shown). However, the yield for 2L wt-CaM expressed in SV media was only 82 

mg. Despite later instances of slow cell growth or cell death following the same protocol, 

comparable yields were achieved (data not shown). 

2.4 Expression and purification of isotopically-labeled CaM 

 For multidimensional NMR experiments, it was necessary to label our proteins 

with 15N, or both 15N and 13C. The protocol for either double or single labeling is 

summarized below. For the transformation, add 1µl (~50ng/µl) of pET20b/Cam plasmid 

DNA into competent cells in 1.5 mL microcentrifuge tube, mix well and incubate on ice 

for 30 min. Next, heat  shock the cells at 42 oC for 45-90 s, then add 1mL LB into the 

microcentrifuge tube and incubate at 37oC for 1 hour with shake. Evenly spread ~ 50 μL 

of cells onto LB plate treated with 100µg/mL Ampicillin and incubate plate at 37oC 

overnight. The next day, inoculate a single colony into a 50 mL disposable centrifuge 

tube containing 10ml LB broth with 100mg/mL (10 µL) Ampicillin. Incubate/shake at 37oC 

for 6 hours. During this time period, prepare 30-35 mL of 20% Glucose for each 1 L of 

media. Glucose dissolves slowly, so for best results, mix in individual 50 mL tubes which 

leaves some headspace in the top. At this step, if the protein requires 13C-labeling in 

addition to 15N-labeling, prepare two solutions of Glucose:  unlabeled (7.5 mL 20% 

Glucose/200 mL media) and 13C-labeled (30-35 mL 20% Glucose/1 L media). 
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 To maintain the isotopic enrichment, expression is done using SV (minimal) 

media, prepared as follows for 1 L: Add7.9 g K2HPO4 and 4.4 g KH2PO4 in 2.5 L flask, fill 

to 1 L with ddH2O. Premix a concentrated solution of MgSO4·7H2O in ddH2O, then add 

volume necessary for 0.05 g/L to media. Also, premix a concentrated solution of 

(NH4)2Fe(SO4)2·6H2O in ddH2O, then add volume necessary for 0.007 g/L to media. 

Autoclave 20 min 

 For expression, begin by spinning down the cells for 15 min, 8000 rpm at 20 oC.  

Resuspend cells in 1ml LB then inoculate into 200 mL SV media with 100mg/ml Amp 

(200 µL). To the 200 mL SV media, add the following: 7.5 mL 20% Glucose; 750 µL 

NH4Cl (0.1g/5mL). Incubate/shake the cells overnight at 37oC. Solubilize 15NH4Cl in 

ddH2O at 0.5g/L. Filter dissolved 15NH4Cl with 0.45 µM membrane filter by syringe. 

1g/4mL ddH2O is adequate for solubilization. Following overnight incubation, add the 

following to each 1 L of media: 30-35 mL 20% Glucose/1 L media (Note: substitute 13C-

labeled Glucose at this step for double-labeling); 1 mL of 100mg/mL Ampicillin; 0.5 g/L 

15NH4Cl; 50 mL cell culture from original 200 mL sample. Record OD600 of sample in 1 L 

SV media. 

 Incubate/shake cells at 37oC for 4 hours then record OD600 of sample in 1 L SV 

media. Continue to incubate/shake until OD600=0.8,Cell growth can then be Induced with 

0.2mM IPTG (200µl of 1M IPTG) and the cells allowed to grow for 3-4 hours. Cells are 

then collected by centrifugation at 7500 rpm for 20 min. Store the cells pellet at -20oC or 

-80oC. 

 Purifcation of the protein followed the same steps outlined in the previous section 

for unlabeled wt-CaM. The cell pellets were resuspended in 30 mL homogenization 

buffer (2 mM EDTA (Acros Organics, Geel, Belgium), 1 mM Dithiothreitol (DTT), 1 mM 

phenylmethylsulphonyl fluoride (PMSF), 50 mM Tris, pH 7.5). EMD Omnipur tris 

(hydroxymethyl)aminoethane (EMD Chemicals, Inc., Gibbstown, NJ) with a pKa of 8.06 
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at 25 °C was used as a buffering solution due to its working range from pH 5.0-8.6. 

PMSF (98.5%, Sigma), a serine protease inhibitor, was added to prevent protein 

degradation. Cells were broken using the French Press method at 16 k psi, passing the 

solution through twice. Cells were heated at 80 – 85 °C in a water bath for ~5 min then 

centrifuged at 17000 rpm for 40 min. 5 mM CaCl2 was then added to the retained 

supernatant, which was filtered through a 0.45 μm pore size filter (Whatman, Florham 

Park, NJ). The sample was loaded onto a phenylsepharose column pre-equilibrated with 

Wash Buffer 1 (1 M CaCl2, 1 M Tris, pH 7.5). Column was run at 1 mL/min at 4 °C, and 

then recycled overnight to ensure optimal binding to the column. 

 The following day, the column was washed with 5-10 column volumes of Wash 

Buffer 1. This was repeated with Wash Buffer 2 (Wash Buffer 1 with 5 M NaCl) at 2 

mL/min. Protein was then eluted with Elution Buffer (0.5 M EDTA, 1 M Tris, pH 7.5) at 2 

mL/min. Previous work with wt-CaM has demonstrated that all of the protein is eluted in 

the first 60 mL. 
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Figure 2.4 Expression of 15N-labeled CaM 
 (a) Extremely slow cell growth observed following specified protocol. (b) Cell death 
observed 2H after induction with IPTG following modified protocol. 
 

 Collected fractions were then evaluated for absorbance at 278 nm (Trp) using a 

Shimadzu UV-1601 PharmaSpec UV-Vis spectrophotometer with UV Probe software 

(Shimadzu North America, Columbia, MD). Fractions with the highest absorbance were 

a b 
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then pooled and dialyzed 3-4 hours in 2 L of 50 mM Tris, pH 7.5, 4 °C. The dialysis 

buffer was then replaced and a 10 g Chelex 100 resin bag added for overnight dialysis to 

remove free Ca2+. 

Results using this method were inconsistent, however, producing variable yields 

and, in many cases, extremely slow cell growth (Figure 2.4) or cell death. Despite the 

slow growth observed in later expressions (Figure 2.4a), purification produced 47mg 

protein per 1 L expression. In an alternative approach, the original protocol was modified 

by inoculating multiple cell colonies into 10 mL LB media. After 6H growth, 4 colonies 

were transferred into 200 mL SV media. Cell death was observed 2H following induction 

with IPTG (Figure 2.4b). The resulting yield was less than 50% of that obtained from the 

original protocol, even in cases of slow growth.  

2.5 Determination of CaM concentration 

 Following purification, proteins were concentrated using a Stirred Ultrafiltration 

Cell with a 3000 MWCO Ultrafiltration Membrane, under N2 gas. Final concentration of 

the proteins were determined by measuring absorbance at 277 nm, and calculation 

based on the Beer-Lambert Law (Eq. 5): 

A = εbc        (Eq. 5) 

Where b = path length (1 cm), A is the measured absorbance, and ε is the molar 

absorptivity of 3030 cm-1 * M-1. 

2.6 Methods for controlling free Ca2+ in buffers and protein samples 

 

 Tris-Cl was treated with Analytical Grade Chelex 100 resin, 100-200 mesh 

Sodium Form (Bio-Rad Laboratories, Hercule, CA), hereafter referred to as Chelex. Two 

different methods were evaluated to determine optimal calcium removal. First, a 10 mM 

TRIS-Cl buffer was treated by dialysis on a stir plate at 4 °C with 10 g Chelex for three 
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days. Alternatively, 40 g of Chelex were packed into a 47 mL glass column. The TRIS-Cl 

buffer was pumped through the column and collected at 4 °C. For both methods, pH 

following treatment dropped from 7.4 to approximately 3.3 and had to be readjusted up 

to 7.4 with NaOH. For comparative purposes, the remaining background Ca2+ 

determined from the two Chelex treated buffers was evaluated in comparison with 

untreated ddH2O, treated ddH2O, and untreated TRIS-Cl. The background calcium 

present after treatment with Chelex was determined using 5,5‘,6,6‘-tetrafluoro BAPTA 

dye (Molecular Probes, Eugene, OR). The remaining free calcium was calculated using 

Eq. 6. 

[Ca2+]free = [Dye] * ((FEGTA – FBAPTA)/(FEGTA – FCa
2+))    (Eq. 6) 

 A calcium sponge column was also constructed comprised of 2g polystyrene 

BAPTA (Invitrogen). Protein samples are allowed to drip through the column via gravity 

flow. 
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Figure 2.5 Calculating free calcium 
Determination of [Ca2+]free following treatment with (a) chelex-packed column and (b) 
chelex in dialysis.  
 

Treatment with a Chelex 100 packed column method resulted in a [Ca2+]free 

concentration of 1.51 µM (Figure 2.5a), while the dialysis method resulted in a 

concentration of 1.33 µM (Figure 2.5b). Based on data presented in Table 2.2 it can be 

seen that both methods reduce the available [Ca2+]free in solution, but this reduction, 

compared to the [Ca2+]free in the original buffer, is negligible. However, the Chelex 100 

b a 
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also removes other trace metals present, and ensures a quantifiable [Ca2+]free value if 

variations of [Ca2+]free should occur in either the Tris buffer or the ddH2O.  

Table 2.2 Free Ca2+ concentrations 

  

HOH  
Untreated 

HOH 
Chelex  
Column 

10 mM 
TRIS-Cl 

Untreated 

10 mM 
TRIS-Cl 
Chelex 
Column 

10 mM 
TRIS-Cl 
Chelex 
Dialysis 

[Ca]free  (µM) 2.68 1.08 2.52 1.51 1.33 

 

Results from several early experiments had indicated that Ca2+ or other metals 

were still present in samples treated with Chelex100. Protein samples were 

subsequently treated by passing through 

a calcium sponge column. Although a 

quantitative assessment of the free 

metal in these treated samples has not 

yet been conducted, the qualitative 

difference between calmodulin treated 

with Chelex100 and with the calcium 

sponge methods can be seen in Figure 

2.6 which shows the phenylalanine 

fluorescence for wt-CaM N-terminal 

before and after the addition of 200 μM 

EGTA. In this experiment, the addition of 

Ca2+ to CaM results in a decrease in Phe 

fluorescence. Following addition of 

EGTA to the Chelex100 treated sample, the fluorescence increases indicating that Ca2+ 

was still present in the sample. Conversely, the fluorescence decreased following 

addition of EGTA to the calcium sponge-treated protein sample. 
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Figure 2.6 Removal of free calcium 
from protein samples 
Phenylalanine fluorescence increases 
following addition of 200 μM EGTA in 
CaM treated with Chelex100, indicating 
the presence of residual Ca2+ in the 
sample. The converse is observed for the 
sample treated by passage through a 
calcium sponge column. 
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2.7 Fluorescence studies 

 
Fluorometric spectral analyses of metals interacting with dyes and proteins were 

conducted using a PTI (Photon Technology International, Birmingham, NJ) 

Spectrofluorometer equipped with a 75 W xenon arc lamp and a model 814 

Photomultiplier Tube (PMT) detector. Samples (0.8-1.0 mL) were evaluated in 1 cm 

pathway cuvettes. All analyses were conducted at 25 °C. 

Table 2.3 Summary of buffers for fluorescence experiments 

Buffer ID Buffer pH Description Purpose 

HEPES EqT 
B1 

50 mM HEPES 
100 mM KCl 
5 mM NTA 

0.5 mM EGTA 
5 μM protein 

7.4-7.6 
Equilibrium  

Titration 

Very high affinity 
metal binding 

Tyr fluorescence 

HEPES EqT 
B2 

50 mM HEPES 
100 mM KCl 
5 mM NTA 
15 mM Mn+ 

7.4-7.6 
Equilibrium  

Titration 

Very high affinity 
metal binding 

Tyr fluorescence 

TRIS EqT B1 

50 mM TRIS 
100 mM KCl 
5 mM NTA 

0.5 mM EGTA 
5 μM protein 

7.4-7.6 
Equilibrium  

Titration 

Very high affinity 
metal binding 

Tyr fluorescence 

TRIS EqT B2 

50 mM TRIS 
100 mM KCl 
5 mM NTA 
15 mM Mn+ 

7.4-7.6 
Equilibrium  

Titration 

Very high affinity 
metal binding 

Tyr fluorescence 

TRIS BEX B1 
10 mM TRIS 
1 µM Fura-2 
1 mM EDTA 

7.4 
Buffer  

Exchange  
Titration 

Lower affinity 
metal binding 

TRIS BEX B2 

10 mM TRIS 
1 µM Fura-2 
1 mM EDTA 
1 mM Mn+ 

7.4 
Buffer  

Exchange  
Titration 

Lower affinity 
metal binding 

TRIS-DYE-M 

10 mM TRIS 
100 mM KCl 
10 μM dye 
10 µM Mn+ 

7.4 
Competitive 

Titration 
Metal binding 

affinity 
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To obtain Ca2+-free conditions, all buffers were treated by overnight dialysis with 

10g Chelex100. Buffer systems, including pH values, for the different experiments are 

summarized in Table 2.3. All metal standards were obtained from at least 99% pure 

sources. Protein samples in their respective buffer matrices were also treated by 

overnight dialysis with 10g Chelex100 followed by passing the sample through a 

Calcium Sponge (Invitrogen) column to remove all background metals. 

Response of EGFP variants with grafted CaM EF-III motif to Pb2+ 

The EGFPwtF protein and designed variants utilized for metal-binding and 

protease studies were developed via sub-cloning through polymerase chain reaction 

(PCR). Proteins were prepared for subsequent purification on a Ni2+ chelating sepharose 

column by addition of a 6x His-tag. These variants provide the scaffold for mutagenesis 

studies aimed towards designing proteins with high metal selectivity, and for 

development of a protease sensor. EMD Omnipur tris (hydroxymethyl)aminoethane 

(EMD Chemicals, Inc., Gibbstown, NJ), or TRIS, was utilized extensively as a buffering 

agent to maintain pH for the expressed proteins. LB media was prepared in a 2.8 L 

Erlenmeyer flask by combining 10 g Bacto-Tryptone (Becton, Dickinson and Co., 

Sparks, MD) with 5 g Bactone-yeast extract (EMD Chemicals, Inc., Gibbstown, NJ), 10 g 

NaCl, and then filling the flask to 1 L with ddH2O. The pH was adjusted to 7.0 with 5 M 

NaOH (J.T. Baker, Phillipsburg, NJ). 

Transformation 

The Pet28A vector used for coding EGFPwtF and all variants was transformed 

into E. Coli cell line DE3. Cell colonies were grown on Agarose plates with Kanamycin. 

During preparation, 50 μL of the appropriate cell line were added to an autoclaved 

microcentrifuge tube, followed by 0.5 μL of DNA. Samples were incubated on ice for 30 

min. Subsequent to incubation, the sample was subjected to heat shock for 90 s at 42 °C 

to allow DNA into the cell. The sample was replaced in ice for 2 min. After cooling the 
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sample, 50 μL of LB Media was added, and the sample was placed in an incubator for 

30 min at 37 °C. Cell plates were labeled and dated. Steel coils were heated in an open 

flame and immersed in EtOH several times for sterilization. The cell culture was then 

added in drops onto the agarose plate, and spread across the surface with the sterilized 

coil. The plate was then covered and placed in an incubator overnight at 37 °C. 

Inoculation 

20 mL of LB media, pH 7.0, were pipeted into a 50 mL disposable centrifuge 

tube, followed by 12 μL of 50 mg/mL kanamycin, for a final concentration of 0.03 mg/mL 

kanamycin. Using an inoculation loop, a single cell colony was scraped from the agarose 

plate. The inoculation loop was swirled in the LB media in the centrifuge tube. The 

sealed tube was then placed in a large beaker and packed with paper towels to prevent 

movement of the tube. The beaker was then placed in an incubator-shaker overnight at 

37 °C. 

Expression 

In 1 L of autoclaved LB media, 600 μL of 50 mg/mL kanamycin was added for a 

final concentration of 0.03 mg/mL.  Optical density of the cell cultures was monitored 

using a Shimadzu UV-1601 PharmaSpec UV-Vis spectrophotometer with UV Probe 

software (Shimadzu North America, Columbia, MD). 

Samples for the spectrophotometer were prepared in 1.0 mL plastic, disposable 

cuvettes. Two reference cuvettes were prepared for the baseline using 1.0 mL of the LB 

media/kanamycin. Using the Bunsen burner, the neck of the 2.8 L Erlenmeyer flask was 

rotated in the flame to prevent bacterial growth. Next, the cell culture in the 50 mL 

disposable centrifuge tube was poured into the 2.8 L flask. The flask was covered with 

Aluminum foil, and secured in the incubator-shaker set at 200 rpm, 37 °C. The optical 

density of the sample was checked in the UV-Vis spectrophotometer until the 

absorbance reached 0.6 ± 0.1, at 600 nm. This range was previously determined for 
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optimal induction. At the appropriate absorbance, 200 μL of Isopropyl-beta-D-

thiogalactopyranoside (IPTG) were added to induce expression of the protein, and the 

temperature reduced to 20-25 °C, for optimal expression.  Following induction, 1.0 mL 

samples were removed every hour for three hours, followed by a final sample on the 

following day, to evaluate protein expression using SDS-PAGE gels. Cell pellets were 

harvested the following day by centrifugation, and stored in a freezer at 4 °C until they 

could be purified. 

Sample preparation 

To the collected cell pellet, ~20 mL of extraction buffer (20 mM TRIS, 100 mM 

NaCl, 0.1% Triton x-100) was added, and the sample vortexed to dissolve. The 

dissolved cell pellet was poured into a 50 mL plastic beaker, and the beaker placed on 

ice. The sample was then sonicated six times to break the cell membranes, for 30 s 

periods, with ~5 min intervals between sonications. Following sonication, the cell pellet 

solution was centrifuged for 20 min at 17 x 103 rpm to separate the protein into the 

supernatant. The extracted supernatant was filtered with 0.45 μm pore size filter 

(Whatman, Florham Park, NJ) into a 50 mL plastic centrifuge tube. Concentrated 

solutions were diluted with the appropriate binding buffer prior to injection into the FPLC 

system. 

Purification 

Purification of EGFPwtF and variants was completed using an Aktaprime FPLC 

(Amersham Biosciences, Piscataway, NJ) equipped with a UV detector and a 280 nm 

optical filter. Preparation of the FPLC required rinsing of both pumps A and B with 

ddH2O. Pumps were rinsed twice each. 

Two different columns were utilized. For most purifications, a Hitrap 5 mL HP 

Chelating sepharose column was used. The binding Buffer A was comprised of 1 M 
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K2HPO4, 1 M KH2PO4, 250 mM NaCl, pH 7.4. The elution Buffer B was comprised of 

Buffer A and 0.5 M imidazole.  

The column was first rinsed with EDTA (Acros Organics, Geel, Belgium) solution 

(100 mM EDTA, 1 M NaCl) to remove any metals, followed by ddH2O. Following the 

EDTA rinsing step, the column was washed with 0.1 M NiSO4, to bind Ni2+ onto the 

column, and rinsed again with ddH2O to remove any unbound NiSO4. 

For additional purification, a Hitrap Q Ion Exchange column (GE Healthcare, 

Piscataway, NJ) was used. For the Q column, the binding Buffer A was comprised of 20 

mM TRIS, pH 8.0. The elution Buffer B was comprised of 20 mM TRIS, 1 M NaCl, and 

pH 8.0.  

Protein injections to load the binding column were limited to 5-8 mL. Once all of 

the protein was loaded onto the column, an elution method was run to elute the bound 

protein in 8 mL fractions. The collected fractions were further purified by dialysis in 2.0 L 

of 10 mM TRIS, 1 mM Dithiothreitol (DTT), (Inalco, Milano, Italy). The dialysis solution 

was changed every 24 hours for 72 hours to remove imidazole and other impurities. 

Protein fractions were sealed in dialysis bags (Spectrum, Rancho Dominguez, CA) with 

a molecular weigh cutoff value of 3,500 Da, and stirred on a stir plate. Following dialysis, 

samples were extracted from the collected fractions and the purity evaluated using SDS-

PAGE gels. Protein concentration was determined using UV-Vis Spectrophotometry, 

based on the Beer-Lambert Law. 

Fluorescence of aromatic residues 

 Three amino acid residues (tryptophan, tyrosine and phenylalanine) all include 

aromatic rings in their sidechains, and exhibit some level of intrinsic fluorescence. 

Standard wavelength values for light absorption, absorptivity, fluorescence emission and 

quantum yield of these residues are summarized in Table 2.4. The intensity of these 
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signals may increase, or decrease due to quenching, in the presence of a metal ion 

within ~ 15Å of the chromophore.  

Previous work [190-191] has demonstrated that fluorescence associated with 

phenylalanine and tyrosine in calmodulin can be used to monitor binding of calcium ions 

in the N- and C-terminal domains, respectively. While this method cannot provide 

micromolecular binding constants for individual binding sites, it can provide both relative 

macromolecular constants for the individual domains as well as upper and lower limits. 

These published methods were modified for the analysis of Pb2+ binding using both wt-

CaM and the CaM-Del variant, described in Figure 2.7. 

Table 2.4 Fluorescent characteristics of aromatic amino acid residues 

   

Absorption Fluorescence 

λ (nm) Absorptivity  λ (nm) Quantum  yield 

Tryptophan 280 5,600 348 0.2 

Tyrosine 274 1,400 303 0.14 

Phenylalanine 257 200 282 0.04 

 
 
 Changes in tyrosine fluorescence associated with wt-CaM were initially evaluated 

with Ca2+, Pb2+ and Gd3+ by equilibrium titration using buffers HEPES EqT B1 and 

HEPES EqT B2 (Table 2.3). In these experiments, aliquots of the B2 buffer were added 

directly to the B1 solution with 5 min equilibrium time between additions. The chelators 

EGTA and NTA (Figure 2.8) were present in the matrix to buffer the metal concentration. 

For emission scans, emission range was set at 290-350 nm. Integration was set over 0.2 

s, with stepsize and averages values set at 1 nm and 1, respectively. Excitation 

passbands were both set at 0.8 nm, and emission passbands at 1.0 nm. Using this 

method, the concentration of metal ion was gradually increased over the course of the 

titration. Aliquot volumes were selected to obtain at least 20 points prior to saturation of 

protein by metal. Results of this initial set of titrations suggested some unusual 
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interaction between HEPES and Gd3+, so TRIS was substituted for HEPES in 

subsequent buffers, as indicated in Table 2.3. However, both buffering systems 

produced erratic results, particularly with binding of Pb2+ to CaM. 

Wt-CaM

CaMDel

-(76-80, MKDTD)

EF-I EF-II Linker EF-III EF-IV

ADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVM

RSLGQNPTEAELQDMINEVDADGNGTIDFPEFLTMMA

RKMKDTDSEEEIREAFRVFDKDGNGYISAAELRHVM

TNLGEKLTDEEVDEMIREADIDGDGQVNYEEFVQMMTAK

EF-IV

EF-III

EF-I

EF-II

Linker

Phe fluorescence
λex 250 nm

λem max 275 nm Tyr fluorescence
λex 277 nm

λem max 306 nm
 

Figure 2.7 Aromatic fluorescence in CaM  
Calmodulin sequence (top). Tyrosine and phenylaline residues highlighted in bold. 
Residues MKDTD, removed from the CaM-Del variant, are highlighted in italics. EF-hand 
sites I-IV and residues in the trans-domain linker region are color-coded. The crystal 
structure of Pb2+-bound calmodulin (bottom, pdb file 2v01) showing phenylalanine and 
tyrosine fluorescent domains.  
 

 Next, direct titrations of Pb2+ to CaM and CaM-Delete were conducted. For 

tyrosine fluorescence, emission scans were monitored across an emission wavelength 

(λEm) range from 290 - 350 nm following excitation at 277 nm. Integration was set over 

0.2 s, with stepsize and averages values set at 1 nm and 1, respectively. Excitation 

passbands were both set at 3 mm, and emission passbands at 4 mm. 

 For phenylalanine fluorescence, emission scans were monitored across an 

emission wavelength (λEm) range from 265 - 285 nm following excitation at 250 nm. 

Integration was set over 0.2 s, with stepsize and averages values set at 1 nm and 1, 
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respectively. Excitation passbands were both set at 7 mm, and emission passbands at 8 

mm. 

 Proteins were prepared by passing through a Calcium-Sponge column as 

previously described. The proten was then diluted to a concentration of 10 μM in 

Chelex100-treated sample buffers comprised of 10 mM TRIS pH 7.4, 100 mM KCl. 

Titrations were conducted either by direct addition of Pb2+ to the protein, titration of Pb2+ 

to the protein pre-saturated with Ca2+, or titration of Ca2+ to the protein pre-saturated with 

Pb2+. Binding dissociation constant (Kd) values based on total metal concentration for 

direct titrations were calculated using a curve-fitting equation (Eq. 7), modeled on the 

quadratic equation (see Appendix for derivation), where [P]T is total protein 

concentration, [M]T is total metal concentration, and F is the fluorescence intensity. 

T
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)][][4)][](([)][]([ 2/12

 (Eq. 7) 

)][)(())(( 1112 TdMdMappdM MKKKK     (Eq. 8) 

))()(())(]([ 2211 dMappdMTdM KKKMK    (Eq. 9) 

For competitive titrations involving pre-equilibration of the protein with one metal 

followed by titration with a second metal, the Kd in Eq. 7 becomes an apparent Kd (Kapp). 

In Eq. 8, the Kd for a titrant metal (KdM2) can be obtained based on Kapp from Eq. 7, the 

known Kd for the pre-equilibrated metal ion (KdM1) and the fixed, total concentration of the 

pre-equilibrated metal ion [M1]T [192]. For titrations where the Kd of the titrant metal is 

known but not the pre-equilibrated metal, Eq. 8 is rearranged as Eq. 9. 

Fura-2 fluorescence 

 
The direct excitation responses of Pb2+, Bi3+, In3+, Y3+, and Lu3+ were evaluated 

with 2 μM Fura-2 (Molecular Probes, Eugene, OR) in chelex-treated 10 mM TRIS pH 
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7.4. The Fluorometer was set to evaluate an excitation wavelength (λEx) 250-450 nm, 

with an emission wavelength (λEm) of 510 nm. Fura-2 produces two peak maxima over 

this excitation range at 335 and 355 nm. The maxima vary inversely, allowing for 

measurement of ratiometric fluorescence changes. Integration was set over 0.2 s, with 

stepsize and averages values set at 1 nm and 1, respectively. For Pb2+, In3+ and Y3+, 

excitation passbands were both set at 0.40 mm, and emission passbands at 0.50 mm. 

For Lu3+, analyses were run in triplicate with excitation passbands set at 0.75 mm, and 

emission passbands at 2.50 mm. Excitation and emission scans were also run with Lu3+ 

in TRIS buffer only (same conditions) to verify that no fluorescence was observed in the 

buffer-metal matrix.  

Another set of titrations involving a buffer exchange was conducted to evaluate 

the fluorescence response of Fura-2 binding with Pb2+, Lu3+, Gd3+, and Ca2+. For each 

point (20 or more) in the titration, a volume of buffer 1 (TRIS BEX B2) was exchanged by 

an equivalent volume of buffer 2 (TRIS BEX B2). This experiment was completed with 

both EDTA and NTA as chelators (Figure 2.8). Based on calculations of free metal in 

these experiments, binding affinity constants were established for the dye:chelator 

complexes. 

When Kd between a dye and the metal is known, the apparent binding affinities 

(Kapp) between a protein and the metal ion can be determined by competitive titration. 

Preliminary experiments were conducted to evaluate competitive binding between Fura-

2 and CaM for Pb2+, Gd3+ and Lu3+. Samples were 800 μL in volume comprised of 10 

mM TRIS pH 7.4, 100 mM KCl, 10 μM dye and 10 μM metal. The titrant was wt-CaM. 

The Fluorometer was set for the same parameters used to evaluate Fura-2 in previous 

experiments, with excitation passbands set at 0.2 mm, and emission passbands at 0.4 

mm. The objective of these initial experiments was to identify a dye with a Kd similar to 
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that of the protein as indicated by gradual change in fluorescence intensity as a function 

of increasing protein concentration. 

Fura-6F fluorescence 

Fura-6F (Figure 2.9, Molecular Probes, Eugene, OR) also exhibits two peak maxima at 

or near 340 and 360 nm. Lu3+ binding with Fura-6F dye in competition with NTA was 

investigated using a buffer exchange assay, where a volume of the analyte Buffer A was 

removed, then replaced with an equivalent volume of Buffer B. Buffer A was comprised 

of 200 μM NTA, 1 μM Fura-6F, 100 mM KCl in 10 mM TRIS, pH 7.4. Buffer B was 

identical except that it included 200 μM Lu3+. For the reaction, the metal ion bound to 

NTA is slowly transferred to Fura-6F. Excitation scans for Lu3+ were acquired with the 

following fluorometer settings: excitation wavelength 250-450nm; emission wavelength 

510nm; stepsize 1; integration 0.2; averages 1; excitation passband 2 nm; and emission 

passband 2 nm. For each spectrum, a minimum of 20 points were collected with 

increasing concentration of Lu3+. Although Fura-6F is reported by the manufacturer to 

have a single emission at 512 nm and two excitation wavelengths at 340 and 380nm, the 

numbers observed on our instrument were 510, 327 and 364 nm, respectively. For each 

point collected during the buffer exchange, [Lu]free was calculated based on application 

of the quadratic equation. 

a

acbb
x

2

42

        (Eq. 10) 

In Eq. 10, x = [Lu3+]free; b = [NTA]total-Volume Lu3+ added; a =  Kd of Lu3+-NTA complex; 

and c = [Lu3+]total. The Kd of Lu3+-NTA was obtained from the NIST critical database, 

reported as 2.59 X 10-13 M.  

 The fluorescence ratiometric change of the two excitation wavelengths for each 

point as the fractional intensities at 327 and 364 nm are calculated with Eq. 11. 

R = F327/F364         (Eq. 11) 



 

55 
 

These data points are then normalized using Eq. 12. 

ΔR [0,1] = (R – Rmin)/(Rmax-Rmin)      (Eq. 12) 

The calculated values for [Lu3+]free were then plotted against the normalized ratiometric 

change in fluorescence intensity (ΔR). Curve-fitting of the data was then accomplished 

using the Hill equation. 

          (Eq. 13) 

 
 

Rhod-5N fluorescence 

Rhod-5N (Figure 2.9, Molecular Probes, Eugene, OR) exhibits a single emission 

peak at or near 510 nm. Similar to competition assay for Lu3+ with Fura-6F, Pb2+ was 

evaluated with Rhod-5N. Fluorometer settings for the emission spectra at a single 

excitation wavelength of 550 nm were: emission wavelength 560-650nm; stepsize 1; 

integration 0.2; averages 1; excitation passband 3 nm; and emission passband 4 nm. 

For each spectrum, a minimum of 20 points were collected with increasing concentration 

of Pb2+. 

 For each point collected during the buffer exchange, [Pb2+]free was calculated 

based on application of the quadratic equation (Eq. 10), substituting Pb2+ for Lu3+. The 

fluorescence intensity change was measured against the baseline with no added Pb2+. 

By defining Rmin as the baseline fluorescence intensity, Eq. 12 was again used to 

normalize Pb2+-dependent changes in fluorescence intensity resulting from binding to 

dye. The calculated values for [Pb2+]free were then plotted against the normalized 

ratiometric change in fluorescence intensity (ΔR). Curve-fitting of the data was then 

accomplished using the Hill equation (Eq. 13). Kd of Pb-NTA was obtained from the NIST 

critical database, reported as 3.31 X 10-12 M. 

][
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M n
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M n
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Figure 2.8 Chelating agents  
(a) ethylenediaminetetraacetic acid  (b) Nitrilotriacetic-acid (c) ethylene glycol tetraacetic 
acid. 
 

FluoZin-1 fluorescence 

 FluoZin-1 (Figure 2.9, Molecular Probes, Eugene, OR) exhibits a single emission 

peak at or near 517 nm following excitation at 495 nm. Direct titrations of Pb2+, Bi3+, Lu3+, 

Y3+ and Ca2+ to 2 μM FluoZin-1 were completed to evaluate fluorescence response. 

Samples were 800 μL in volume comprised of 10 mM TRIS pH 7.4, 100 mM KCl, and 10 

μM dye. Metals were directly aliquoted into the sample and allowed to equilibrate for 3 

min prior to analysis. Emission scans were acquired with the following fluorometer 

settings: excitation wavelength 495nm; emission wavelength 505-550nm; stepsize 1; 

integration 0.2; averages 1; excitation passband 2 nm; and emission passband 4 nm. 
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Figure 2.9 Fluorescent dyes  
(a) Fura-2 and Fura-6F, (b) FluoZin-1, (c) Rhod-5N, (d) Fluo-4 and (e) Fluo-5N. 
 
Fluo-4 fluorescence 

 Fluo-4 (Figure 2.9, Molecular Probes, Eugene, OR) exhibits a single emission 

peak at or near 517 nm following excitation at 495 nm. Direct titrations of Pb2+, Bi3+, Lu3+, 

Y3+ and Ca2+ to 10 μM Fluo-4 were completed to evaluate fluorescence response. 

Samples were 800 μL in volume comprised of 10 mM TRIS pH 7.4, 100 mM KCl, and 10 

μM dye. Metals were directly aliquoted into the sample and allowed to equilibrate for 3 

min prior to analysis. Emission scans were acquired with the following fluorometer 

settings: excitation wavelength 495nm; emission wavelength 505-550nm; stepsize 1; 

integration 0.2; averages 1; excitation passband 2 nm; and emission passband 4 nm. 
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2.8 NMR studies 

 
NMR Spectroscopy was utilized extensively in these projects to monitor structural 

changes in proteins related to metal binding events. NMR allows us to observe the 

effects of applied magnetic fields on the QM magnetic properties (spin) of different 

nuclei. A detailed discussion on the principles of NMR spectroscopy exceeds the scope 

of this work, but the interested reader is directed to the thorough online introduction to 

NMR spectroscopy provided by Horniak [193]. At the most fundamental level, a sample 

is first subjected to a constant magnetic field (B0) which aligns the nuclear spin vectors 

(for nuclei with spin ½, i.e., 1H, 13C, 15N) in one of two orientations (up or down) along a 

common (Z) axis, based on a Boltzmann distribution between higher and lower energy 

states. An oscillating radiofrequency (RF) pulse is then applied which reorients the 

nuclear spin along a different axis. Once the RF pulse is finished, the spin orientation of 

the nuclei will relax to their alignment in the constant field (H0). This relaxation includes a 

longitudinal component (T1) and a transverse component (T2). The spin vectors are 

affected inhomogenously by the applied magnetic field(s) based on the proximity of other 

magnetic fields in the sample (e.g., other nuclei, electrons). Manipulation of the applied 

fields allows for separation of the resonances associated with different nuclei. 

Proteins, which are typically much larger than organic molecules, require 

multidimensional NMR experiments to separate degenerate resonance signals. These 

experiments will be described in greater detail below.  

All spectra were acquired on either a 500 or 600 MHz Varian NMR spectrometer. 

1D FID data were processed using MestreNova (MestreLab, Escondido, CA) Software. 

Format conversion for FID files from Varian to Sparky formats were completed using 

NMRpipe [194] software. Peak assignment and area integration for 2D and 3D spectra 

were processed using Sparky [195] software. Data were analyzed or compiled in 
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Microsoft Excel (Microsoft, Redmond, WA), while curve-fitting was completed using 

Kaleidagraph software (Synergy Software, Reading, PA). 

NMR sample tubes were purchased from Wilmad-Labglass (Vineland, NJ). For 

Pulsed Field Gradient (PFG) experiments, advanced microtubes and inserts were 

purchased from Shigemi, Inc., (Allison Park, PA). D2O (99.96%) was purchased from 

Cambridge Isotope Laboratories (Andover, MA). 

1D 1H NMR 

1D Proton spectra were acquired to compare differences in binding between Ca2+ 

and Pb2+ with wt-CaM. Binding of Pb2+ and wt-CaM was evaluated in both no-salt and 

high-salt environments, the latter being relevant to physiological conditions. 

 For 1D NMR, 500 μL samples were prepared with 100 μM wt-CaM, 50 μM EGTA 

to remove background Ca2+, 10% D2O, 10 mM TRIS, pH 7.1-7.4. The high-salt sample 

included 100 mM KCl. The Watergate pulse program was used to suppress the water 

peak in the spectra. Samples were evaluated at 37 °C. For all samples 128 scans were 

acquired covering spectral widths of 8384.9 Hz with 16384 complex data points.  

Heternuclear Single Quantum Coherence (HSQC) NMR 

Heteronuclear Single Quantum Coherence (HSQC) 2D spectra were evaluated 

for both Ca2+ and Pb2+. Through-bond polarization transfer from 1H to 15N and from 15N 

back to 1H results in signal detection in two dimensions, allowing for identification of N-H 

pairs within the protein (Figure 2.10). The 500 μL samples were comprised of 253-400 

μM 15N-labeled CaM in 10 mM Bis-TRIS pH 6.5, 5 mM MES, 10% D2O solvent, and 0.1 

mM NaN3 to inhibit bacterial growth. For 2D spectra, samples were analyzed on a 600 

MHz Varian NMR spectrometer using pulse program gNHsqc (N15 Gradient HSQC) at 

37 °C.  
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Figure 2.10 Multidimensional NMR spectra for CaM  
NMR spectra for 2D HSQC (left). Red circles highlight residues corresponding to those 
identified in 3D HNCA (right). Black lines in HNCA connect the paired chemical shifts for 
identified residues. Polarization transfer schemes for HSQC (top, center) and HNCA 
(bottom, center). Blue arrows indicate direction of polarization transfer. The dotted blue 
arrow indicates weaker polarization transfer from N to C in HNCA.  
 

Typically a total of 32 dummy scans and 32 acquisition scans were collected 

across a spectral width of 8384.9 Hz in the proton dimension, with 128 scans across a 

spectral width of 2000 Hz in the nitrogen dimension. Reference spectra for Ca2+-free or 

Ca2+-loaded CaM were acquired by treating samples first either with 10 mM EGTA or 20 

mM Ca2+. Three titration experiments were completed to monitor structural changes in 

CaM associated with metal binding. First, HSQC spectra were acquired for CaM with 0, 

1, 2, 3, 4 and 6 molar equivalents (ME) of Ca2+. Similarly, HSQC spectra were acquired 

for CaM with 0, 1, 2, 3, 4, 5 and 6 ME Pb2+. Finally, HSQC spectra were obtained for the 

addition of 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 ME Pb2+ with CaM presaturated with 6 ME Ca2+ 
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to evaluate structural changes associated with competitive binding. Total chemical shift 

changes (Δδ) across both dimensions (15N and 1H) were weight-averaged based on Eq. 

14. 

          (Eq. 14) 

HNCA NMR 

3D HNCA spectra were evaluated for both Ca2+-free and Ca2+-loaded CaM. In 

HNCA, through-bond polarization transfer occurs reversibly between 1H, 15N and 13C on 

residue i, and between 15N on residue i and 13Cα at residue i-1 (Figure 2.10). The 

resulting spectra include paired chemical shifts in the 2D plot of 13C vs. 1H. The 

(typically) less intense peak in the pair then corresponds to the more intense chemical 

shift in another pair of peaks at some different level in the 15N dimension. This 

relationship is plotted by the black lines in Figure 2.10. The 500 μL samples were 

comprised of 780-1000 μM 15N-13C-labeled CaM in NaN3 to inhibit bacterial growth, 100 

mM KCl, pH 6.5, with 10% D2O solvent.  The 1 mM Ca2+-loaded sample was 

prepared with 20 mM Ca2+, and the 780 μM Ca2+-free sample included 10 mM 

EGTA to remove all Ca2+. Samples were analyzed using pulse program ghn_ca 

(Varian Protein-Pack) [196] at 37 °C. A total of 64 dummy scans and 48 

acquisition scans were collected across a spectral width of 8384.9 Hz in the 

proton dimension, represented by 2048 complex data points, with 50 scans 

covering 4500 Hz and 32 scans covering 1700 Hz for the carbon and nitrogen 

dimensions, respectively. 

Pulsed Field Gradient (PFG) NMR 

In PFG NMR an increasing gradient pulse is applied, resulting in decreasing 

signal intensity due to dephasing of transverse magnetization. Translational motion (i.e., 

diffusion) in solution correlates with the hydrodynamic radius of the protein, based on the 

2/122 ))5/()(( NNHTotal
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Einstein-Stokes equation (Eq. 15). Details related to this method and applications have 

been previously summarized by Kay [197] and this method has been successfully 

applied in our lab in a related work by Lee [198]. PFG analyses of Pb2+ interacting with 

wt-CaM were acquired for [Pb]:[CaM] ratios 4:1 and 6:1 at 25 °C using a modified PG-

SLED pulse sequence.  Samples were 350 μL, 250 μM wt-CaM, 10% D2O, 10 mM TRIS, 

pH 7.4. Spectra were referenced using the standard DSS (4,4-dimethyl-4-silapentane-1-

sulfonic acid). A total of 320 dummy scans and 320 acquisitions were obtained over a 

spectral width of 8000 Hz in the 1H dimension, represented by 8192 complex data 

points. The gradient strength (G) was arrayed over 40 steps covering a range from 0.2 

G/cm to 31 G/cm. Results were compared with spectral data for the protein lysozyme 

which has a similar molecular weight to CaM (14.3 vs. 14.7 kDa) and a hydrodynamic 

radius of 20.1 Å. From analysis of data for the Pb:CaM complex, acquired under 

identical buffer and temperature conditions used for lysozyme, a close approximation of 

the hydrodynamic radius of the Pb:CaM complex can be obtained based on Equations 

15-19, as detailed below. 

          (Eq. 15) 

          (Eq. 16) 

          (Eq. 17) 

          (Eq. 18) 

          (Eq. 19) 

 Terms in Equations 15-19 are defined as follows: A is the integrated Area of 

resonance minus the baseline; G is Gradient Strength (G/cm); D is the Diffusion 

constant (m2 s-1); γ is the Gyromagnetic ratio of the nuclei (rad s-1 T-1); δ is the duration 

of each gradient pulse (ms); Δ is the Time between gradient pulses (ms); η is the solvent 

viscosity (in g cm-1 s-1); α is the hydrodynamic radius (in Å) of the molecule and kB is the 

Boltzmann constant (1.3807 x 10-23 J K-1). The Diffusion constant D is defined by the 
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Einstein-Stokes Equation (Eq. 15). Constants from Eq. 16 are redefined as two new 

terms m1 and m0 respectively in Eq. 17 and Eq. 18, and then applied to a modified 

exponential decay function (Eq. 19) that returns a value for m1 for CaM following curve-

fitting. Coupling this value with the known values of m1 and the hydrodynamic radius of 

lysozyme, the radius of CaM can be calculated from Eq. 20.  

Lys

CaM

m

mr
r

Lys

CaM

1

1

        (Eq. 20) 

Eq. 22, derived from Eq. 21, is used to calculate a theoretical dimeric hydrodynamic 

radius R for a monomer of radius r. 

          (Eq. 21) 

          (Eq. 22) 

 
T1, T2 and NOE relaxation studies 

To compare dynamic properties of CaM complexed with either Ca2+ or Pb2+, T1, 

T2 and 15N-{1H} NOE relaxation were collected and analyzed following the approach 

described by Seifert [199]. Samples were comprised of 1.14 mM 15N-labeled wt-CaM 

prepared in 10 mM Tris pH 6.6, 100 mM KCl, 100 µM NaN3, and 10% D2O. For analysis 

of calcium-loaded CaM, 20 mM Ca2+ was added to the sample. For analysis of Pb2+, 2 

ME of Pb2+ was added to CaM pre-loaded with 4 ME Ca2+. Both analyses were run at 37 

°C.   

For 15N T1 and T2 experiments, spectra were acquired using Varian pulse 

program gNhsqc. T1 (longitudinal relaxation) values were obtained for 15N with the 

following relaxation delays (in s): 0.00, 0.01, 0.06, 0.13, 0.23, 0.34, 0.48, 0.74, 1.00, 

1.50, and 0.00. T2 (transverse relaxation) values were obtained for 15N with the following 

relaxation delays (in s): 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15, and 0.01. Peak 

Rr
33

3

4

3

4
2

rRCalc
26.1



 

64 
 

intensity decreases with increasing relaxation time (Figure 2.11). Peaks for T1 and T2 

spectra were integrated using Sparky software.  
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Figure 2.11 Determination of relaxivity values  
(Top) Intensity of the HSQC peak decreases as relaxation time is allowed to increase. 
(Bottom) Plot of integrated peak areas of amide protons from multiple HSQC spectra 
with increasing relaxation times. T1 values are calculated using Eq. 23. T1 values for 
specified amide protons are summarized in inset. 
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Integrated peak values were plotted in Kaleidagraph as seen in Figure 2.11. T1 

and T2 values for specific amino acids were calculated by curve-fitting the data with Eq. 

23, where τ is time (ms), M0 is the signal integration at τ = 0, and  Tx = T1 or T2 (ms). 

          (Eq. 23) 

 

          (Eq. 24) 

For 15N-{1H} NOE data, two FID‘s were acquired with relaxation times of 0.0 and 

4.0 s using pulse sequence gNnoe. Data for NOE were processed as a ratio (Eq. 24) 

where t4 and t0 are the integrated peak areas for relaxation times of 4s and 0s 

respectively. 

 
Model free formalism and calculation of S2 order parameters 

The model free formalism first proposed by Lipari-Szabo is a means of relating 

molecular motions to NMR spectral densities [200]. The order parameters associated 

with motion of internuclear vectors do not depend on an explicit motional model, and the 

overall and internal motions are uncorrelated. From model free formalism, the function in 

Eq. 25 can be minimized to derive a general order parameter (S2) and internal 

correlation time (τe) from T1, T2 and NOE data. 

         (Eq. 25) 

The order parameter S2 indicates the degree of angular motion associated with 

internuclear vectors (i.e., the equilibrium distribution for the orientation of the magnetic 

moment vector, μ(t)). This provides information on the relative flexibility of different 

regions in the protein [201], while τe represents the motions of μ(t) in a molecular 

reference frame. 
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Figure 2.12 The S2 order parameter 
 (a) S2 is the square of the general order parameter for equilibrium distribution of 
orientation of μ(t) describes diffusion of the N—H bond vector in a cone of semi-angle θ. 
(b) ModelFree software parameters. D║ and D┴ are components of an axially symmetric 
diffusion tensor. Rex accounts for contributions to spin-spin relaxation rate from chemical 
exchange processes. τe is the internal correlation time for motions of μ(t) in a molecular 
reference frame.  

 

Both S2 and τe , which represent librational motion of the N—H bond vector as it 

diffuses, or ‗wobbles‘ within a cone of  semiangle  θ (Figure 2.12a) , may be calculated 

using ModelFree software [142-143], a freely-distributed software package for 

Unix/Linux systems for optimizing "Lipari-Szabo model free" parameters to 

heteronuclear relaxation data. ModelFree software parameters are illustrated in Figure 

2.12b. Five different models can be run, each with different constraints, including 

constraints for chemical exchange (Rex) and effective correlation time (τe) which requires 

a specific motional model. Files required for ModelFree processing are discussed below. 

The mfdata file contains the R1, R2 and NOE relaxation values. An example of 

data from the mfdata file is presented below. Line 1 provides an input type (spin) and a 

sample ID (e.g., sample_1) for each residue in the protein. Columns 2-4 indicate the 
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frequency of  the proton, R1 (in s) and the error. For our analysis, an averaged default 

error value was applied. 

spin   sample_1 

R1    599.863     1.355     0.030 1 

R2    599.863     5.303     0.300 1 

NOE   599.863     0.239     0.040 1 

 

spin   sample_2 

R1    599.863     1.268     0.030 1 

R2    599.863     6.011     0.300 1 

NOE   599.863     0.723     0.040 1 

 

The mfinput file includes simulation input parameters. This file includes a set of 

command lines that control global options for running ModelFree. This file can be run 

with default settings, although the fields parameter needs to reflect the proton 

frequency, and the number of simulations can be set within this file. 

The mfmodel file includes model setting for each residue. An example of data 

from the mfmodel file is presented below. This file includes a set of input model values 

for each residue in the protein. Column 4 specifies the type of simulation. In the example 

below, column 4 for S2s is set to 1, while all other values in this column are set to 0, 

specifying that this simulation is only for S2s.  

 
spin   sample_1 

M1 tloc  8.0   0   2 0.000  18.400 20  #       9.200 

M1 Theta 0.0   0   2 0.000  90.000 20  #      55.304 

M1 S2f   1.0   0   2 0.000   1.000 20  #       1.000 

M1 S2s   1.0   1   2 0.000   1.000 20  #       0.929 

M1 te    0.0   0   2 0.000 400.000 20  #      64.037 

M1 Rex   0.0   0   2 0.000   0.000 20  #       0.000 

 

The mfparam file includes Vector information, including the internuclear 1H-15N 

distance (1.02 Å) and the chemical shift anisotropy (CSA) tensor (-160 ppm) for 15N. An 

example of data from the mfparam file is presented below. This file includes a set of 

parameters for each spin input (i.e., each residue). Each spin includes two lines of input 

data, which specify the spin to be analyzed in any single run. 
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spin  sample_3 

constants 3 N15     -2.710     1.020     -160.00 

vector N H 

 

spin  sample_4 

constants 4 N15    -2.710     1.020     -160.00 

vector N H 

 

The definitions of the keywords and parameters for each spin entry are as follows: 

spin  title 
constants residue nucleus gamma rxh  csa 
vector atom1 atom2 
  

Where gamma is gyromagnetic ration of the spin in units of T-1s-1/107, rxh is bond length 

for dipole-dipole interaction (usually X-H bond length in Å),  and csa is chemical shift 

anisotropy of the spin (in ppm). 

The mfpdb file includes all ATOM records from a PDB coordinate file, modified 

by addition of H atoms and removal of everything else.  

Running ModelFree 

For the Ca:CaM complex, ModelFree software was used to calculate S2 order 

parameters following model parameters reported by Yang et al., [172] using as input the 

apparent R1 (1/T1), R2 (1/T2) and 15N-{1H} NOE values acquired for the Ca:CaM complex 

combined with the X-ray crystallographic structure of rat calmodulin (3cln.pdb). 

Calculations were optimized using the axially symmetric diffusion model based on 

Brent‘s implementation of Powell‘s multidimensional minimization method. Based on 

values reported by Palmer [202], the default input parameters for the internuclear 1H-15N 

distance and the chemical shift anisotropy (CSA) tensor for 15N were preset at 1.02 Å 

and -172 ppm, respectively.  

Models were run in succession, retaining the model for each residues that met a 

specific cutoff criterion, calculated from Eq. 26, Eq. 27 and Eq. 28. 
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         (Eq. 27) 

 

         (Eq. 28) 

Terms in Eq. 26 are derived from Eq. 25 and account for R1, R2 and NOE data. 

In this series of equations, exp represents the experimentally determined values, pred 

represents values predicted by ModelFree, and uncert represents predicted uncertainty. 

The value Γsum accounts for a percent relative error based on differences between the 

experimental results and the prediction model, while αsum calculates the same error 

based on an allowable 10% deviation. If the ratio of the two values from Eq. 26 and Eq. 

27 expressed in Eq. 28 meet the cutoff of 0.50, the model is considered acceptable and 

is retained for that residue. This process is repeated for the different models until 

acceptable values are obtained for all residues. 

2.9 Equilibrium dialysis sample preparation 

 Another method to establish the stoichiometry of metal:CaM complex formation 

involved Equilibrium Dialysis. This method is a general process whereby two separated 

solutions containing different compounds are allowed to equilibrate over time via mixing 

through a semipermeable barrier that allows certain components to move freely between 

solutions while restricting one or more components to only one side of the barrier. The 

dialysis equipment consists of two reservoir molds (Figure 2.13) with a row of 

corresponding chambers in each mold. A layer of dialysis tubing is inserted between the 

molds, separating the reservoirs and providing a semipermeable barrier between the 

reservoirs once the molds are clamped together. 
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a

b b a
 

Figure 2.13 Dialysis reservoir molds   
The four paired chambers from blocks a and b (Left) are separated by a layer of dialysis 
tubing (not shown). End-on view after clamping (Right). A vertical tube allows solutions 
to be added to each side of the bisected chamber (dark lines from top). 
 

Once the molds are sealed together, a protein sample is introduced into one side 

of the bisected chamber, while a solution containing the target metal is introduced into 

the other side. After sealing the sample injection tubes at the top with parafilm, the 

apparatus is allowed to equilibrate for 48-72 h on a shaker at 4 °C. 

 For our first experiment, eight protein samples and eight corresponding metal 

solutions were prepared as follows: 3 X CaM (2 μM) corresponding to 3 X Pb2+ (18 μM); 

3 X CaM-Delete (2 μM) corresponding to 3 X Pb2+ (18 μM); 1 X CaM (2 μM) 

corresponding to 1 X Ca2+ (12 μM), and; 1 X CaM-Delete (2 μM) corresponding to 1 X 

Ca2+ (12 μM). All sample volumes were 4 mL. Dialysis tubing used to separate the 

chambers had a MWCO of 3.5 kDa. Both protein and metal samples were prepared in 

10 mM Tris pH 7.4, 100 mM KCl. Buffers were treated by overnight dialysis with 

Chelex100. Additionally, protein was treated by passing through a Calcium Sponge 

column to remove trace metals. After 66 h for equilibration, samples were transferred 

into 5 mL disposable centrifuge tubes. 

In theory, the metal ions from the initial source reservoirs should have crossed the 

membrane and then become bound by the protein. At equilibration, the concentration of 

free metal in both the protein sample reservoir and the metal solution reservoir should 

have been equivalent, with the remainder of the initial metal bound to the protein. To 
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evaluate this, the final extracted samples were transferred to quartz cuvettes previously 

described for fluorescence. Rhod-5N dye was titrated directly into both the protein and 

metal buffer samples to compare changes in fluorescence as a measure of metal 

concentration.  

2.10 Sub-cloning of CD2.7E15 variants 

 Several mutant variants of the protein CD2 have been previously developed in 

our lab   [168, 177] to evaluate isolated EF-Hand Ca2+ binding sites. One of these, 

CD2.7E15, includes mutations (N15E, L58D, and K64D), coupled with two natural 

ligands (E56 and D62), to form a Ca2+ binding site based on the pentagonal-bipyramid 

structure of the EF-Hand motif. 

 Currently, we are modifying the CD2.7E15 plasmid DNA previously generated in 

our laboratory to introduce different charge mutations in the binding site 

microenvironment. This will allow us to further dissect the significance of charge 

associated with binding affinity for Ca2+ and other metals. The EENDN primer developed 

for the charge residue mutagenesis of CD2.7E15 is shown in Table 2.5.  

Table 2.5 Primers for charge variants of CD2.7E15 

Name Sequence

bp 

changes Tm

7E15-EEDDE GCA AAT GGA GAC TTG GAG ATA AAG AAT CTG ACA AG 1 75.8

7E15-EEDDN AC GCA AAT GGA GAC TTG AAC ATA AAG AAT CTG ACA AG 1 76.1

7E15-EEDDQ AC GCA AAT GGA GAC TTG CAG ATA AAG AAT CTG ACA AGA G 2 75.9

7E15-EENDN GCA TTT GAG ATC AAC GCA AAT GGA GAC TTG AAC ATA AAG AAT C 2 76.4

7E15-NENDN CC CTG GGT CAT GGC ATC AAC CTG AAC ATC CCT AAC TTT C 2 80.1

 

The primer for mutation 7E15.EENDN (from EEDDD), designed by Ms. Ling Wei, 

was obtained from Invitrogen. The 7E15.EENDN primer was first phosphorylated. 1 µL 

(100 ng) primer was mixed with 1 µL 10X T4 polynucleotide kinase buffer, followed by 1 

µL (1mM) ATP (pH 7.5), 6 µL ddH2O and 1 µL (10U) T4 polynucleotide kinase. This 

solution was incubated at 37 °C for 60 min, then heated at 70 °C for 10 min. For the 
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polymerase chain reaction (PCR), 2.5 µL 10X QuikChange Multi Reaction Buffer was 

mixed with 17.5 µL ddH2O, 2 µL 30ng/µL pET20b/7E15 DNA, 1 µL 100 ng/µL ℗-Primer, 

µL dNTP mix and µL QuikChange Multi enzyme blend. Samples were prepared in PCR 

microcuvettes and placed in PCR.  

After overnight PCR cycling, 1 µL Dpnl restriction enzyme was added directly to 

each PCR reaction. The reaction solution was mixed gently by pipetting up and down, 

then spun down for 1 min at maximum speed. The reaction was then immediately 

incubated at 37 °C for 60-120 min. 

 The next step was transformation. XL 10-Gold ultracompetent cells were thawed 

on ice for 10 min, and then aliquots of 22 µL were added to prechilled 15 mL 

polypropylene round-bottom tubes for each reaction. 1 µL of β-mercaptoethanol was 

added and mixed by swirling, followed by incubation of the cells on ice for 10 min, 

swirling every two min. 1.5 µL of the Dpnl-treated DNA reaction was transferred to the 

ultracompetent cells, which was swirled to mix the transformation reaction, followed by 

incubation on ice for 30 min. Next, NZY+ broth was preheated in 42 °C water bath, 

following which the reaction samples were heat-pulsed in 42 °C water bath for 30 s. The 

tubes were again incubated on ice, for 2 min, then 0.5 mL of the NZY+ broth was added 

to the tube, which was then shaken/incubated at 37 °C for 1 hour 225-250 rpm. Aliquots 

of 20 μL and 50 μL were plated on LB plate with 100 μg/mL ampicillin. The 

transformation plates were then incubated overnight at 37 °C. 

 A single colony was extracted with an inoculation loop and stirred into 5 mL LB 

medium with 100 mg/mL ampicillin. Five samples were individually prepared in 50 mL 

falcon tubes. Samples were incubated 12-16 h at 37 °C with vigorous shaking, following 

which the bacterial cells were harvested by centrifugation at 8000 rpm for 5 min. Cells 

were refrigerated at 20 °C. 
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 A QIAprep Spin Miniprep Kit (Qiagen) was prepared for plasmid DNA purification. 

The benchtop was cleaned thoroughly with ethanol and all pipets were also cleaned with 

ethanol. The bacterial cells were first resuspended in 250 μL Buffer P1 and transferred 

to a microcentrifuge tube. 250 μL Buffer P2 were added and mixed thoroughly by 

inverting the tube 4-6 times until the solution turned blue. Next, 350 μL of Buffer N3 was 

added and mixed thoroughly by inverting the tube 4-6 times until the solution becomes 

colorless. 

 Individual samples were then centrifuged 10 min at 13 000 rpm in a table-top 

microcentrifuge. The resulting supernatant was applied to the QIAprep spin column by 

pipetting and centrifuged for 30-60 s. Flow through from the column was discarded. The 

QIAprep spin column was washed by adding 0.5 mL Buffer PB and centrifuging 30-60 s 

at 13, 000 rpm, following which the flow-through was discarded. The spin column was 

washed again by adding 0.75 mL Buffer PD and centrifuging 30-60 s at 13, 000 rpm. 

The flow-through was discarded and the column centrifuged for an additional 1 min to 

remove residual wash buffer. 

 The QIAprep column was then inserted into a clean, autoclaved 1.5 mL 

microcentrifuge tube for elution of the plasmid DNA. 50 μL of Buffer EB was pipetted to 

the center of the QIAprep spin column. After allowing the column to stand for 5 min, it 

was centrifuged for 2 min at 13, 000 rpm. Samples were labeled and stored at 4 °C. 

Concentrations of the samples were first evaluated with Agarose gel. For the DNA 

samples, 1 μL of DNA was mixed with 2 μL 6X DNA dye and 7 μL ddH2O. The marker 

was a mixture of 1 μL Super coiled marker, 2 μL 6X DNA dye and 7 μL ddH2O. Based on 

the intensity of different samples observed with the agarose gel, two 5 uL samples were 

sent to the Georgia State Biology core facility for DNA sequencing to determine if the 

EENDN mutant was sub-cloned during mutagenesis. 
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3 Analyses of Ca2+-binding in proteins 

3.1 Ca2+-binding proteins and Ca2+-binding sites 

Ca2+ is demonstrably one of the more relevant metal ions associated with 

biological functions. The significance of Ca2+ in biological systems first emerged with 

early efforts to understand biomineralization nearly 200 years ago. Since then, our 

knowledge regarding the roles of calcium in biological systems has increased drastically, 

and technological sophistication now allows us to study the activity of Ca2+ at a 

molecular level revealing complex systemic interactions related to cell life cycle, diverse 

protein structures and induced or modulated responses of intra- and extra-cellular 

proteins to changes in Ca2+ concentrations.  

In the intracellular environment, Ca2+ is critical to a wide variety of functions 

related to muscle contraction, neurotransmitter release and enzyme activation [203-205]. 

Additionally, Ca2+ and Ca2+-binding proteins (CaBPs) are involved in almost every aspect 

of the eukaryotic cell life cycle including cell differentiation and proliferation, membrane 

stability, apoptosis and intracellular signaling [206-209]. Control of these diverse 

functions is regulated by changes in cytosolic Ca2+ levels, which increase from ~10-7 M 

at rest to ~10-5 M when activated. This increase results either from influx of extracellular 

Ca2+ through Ca2+-channels  or by release of Ca2+ stored internally by CaBPs (e.g., 

calsequestrin in skeletal muscle cells) in the endoplasmic/sarcoplasmic reticulum 

(ER/SR). Surface receptors on the ER/SR, which regulate Ca2+ release, differ by cell 

type. Release of Ca2+ from the ER/SR in myocardial muscle cells is regulated by 

Ryanodine Receptor RyR2 channel protein, which itself may be in part regulated by 

binding with the intracellular Ca2+-trigger protein calmodulin (CaM) [109-112]. The 

inositol 1,4,5 triphosphate receptor (e.g., IP3R receptor) also regulates Ca2+ release from 

the ER/SR. 



 

75 
 

Intracellular CaBPs are generally of two types: sensors and buffers. In response 

to increased cytosolic Ca2+, intracellular proteins such as calmodulin (CaM) and protein 

kinase C (PKC) bind Ca2+. This alters their tertiary structure which allows them to bind 

and activate other enzymes which perform different functions within the cell. Other Ca2+-

binding proteins (CaBPs), including parvalbumin and calbindinD9k act as buffers to 

regulate cytosolic Ca2+.  

More recently, new functions for Ca2+ in the extracellular environment have been 

identified. Here, Ca2+ functions as a second messenger in signal transduction through 

binding with extracellular signaling molecules, including important membrane proteins in 

the family C of G protein-coupled receptors (GPCRs): (i) Metabotropic glutamate 

receptor 1 (mGluR1) [210] which performs multiple functions in neurological processes 

(e.g., memory, learning, pain and synaptic plasticity), and (ii) the Ca2+-sensing receptor 

(CaSR) [211] which maintains extracellular Ca2+ homeostasis. 

In the last decade, a number of studies have identified bacterial EF-hand-like 

Ca2+-binding sites which may play important roles Ca2+-signaling and Ca2+-homeostasis. 

These binding sites exhibit variations in either the binding loop or the flanking sequences 

on either side of the loop which differentiates them from canonical EF-hand motifs, while 

simultaneously retaining a binding geometry similar to the pentagonal-bipyramidal 

coordination identified with EF-hand. 

Additionally, new evidence demonstrates a role for Ca2+ in viral activity [212]. The 

complex intracellular machinery controlled by Ca2+-mediated events presents diverse 

opportunities for viruses to utilize available Ca2+ to facilitate virion structure formation, 

cell entry, viral gene expression, replication and release. A Ca2+-binding motif previously 

used to identify EF-hand Ca2+-binding motifs in bacteria has identified nearly 100 

putative Ca2+-binding sites in viral proteins. A comprehensive treatment of this subject is 

presented by Zhou et al [213]. 
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The cellular activities regulated by Ca2+, while numerous, are all dependent upon 

the abilities of different proteins to bind Ca2+ selectively over other metals, and to do so 

with affinities consistent with the concentration of free Ca2+ available in any given 

environment.  

Establishing a relationship between Ca2+-binding site geometry and affinity is 

frequently problematic, and the literature remains relatively sparse with affinity data in 

comparison with the volume of available PDB structure files. A summary of some 

reported binding affinity values associated with CaBPs is available at 

http://structbio.vanderbilt.edu/cabp_database/. For many Ca2+-binding proteins, 

particularly EF-hand proteins, the determination of binding affinity between Ca2+ ions and 

their binding sites is difficult for several reasons. First, the cooperative binding exhibited 

between pairs of Ca2+-binding sites presents experimental challenges to determining 

affinity values for each of the sites as an isolated binding event. Affinity values for 

individual binding sites that function in cooperative pairs have been reported, but are 

typically calculated based on upper and lower limits derived from the relationship 

between macroscopic and microscopic binding constants as described by Linse et al. 

[139], or as relative affinities based on order of occupancy (i.e., higher affinity sites are 

populated first). Second, for higher affinity binding sites, analytical instruments lack 

sensitivity to analyze samples at concentrations comparable with their binding affinities, 

so experimental methods typically involve protein concentrations much higher than their 

metal-binding affinity, which precludes determination of binding affinity constants [214]. 

Different approaches have been made to circumvent the issue of cooperativity 

while trying to determine dissociation constants for single sites. Early efforts involved 

analyses of individual EF-hand motifs isolated as peptides. Another approach involved 

spectrofluorometric analysis, where the macroscopic Ca2+ affinities (expressed in 

dissociation constant Kd) for the N- and C-terminal domains of CaM, each comprising a 

http://structbio.vanderbilt.edu/cabp_database/
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pair of cooperative binding sites (EF I and EF II in the N-terminal, and EF III and EF IV in 

the C-terminal), were determined by monitoring Phe and Tyr residues which exhibit 

fluorescence changes upon binding of metal ions [191]. The resulting values were found 

to be approximately 12 and 2 μM, respectively, for the N- and C-terminal domains, with 

initial occupancy observed in sites EF III and EF IV. These results are consistent with 

the current consensus that Ca2+ first occupies the higher affinity C-terminal sites with 6-

fold higher affinity than the N-terminal sites. Additionally, NMR spectroscopy can provide 

data related to order of occupancy and affinity based on changes in chemical shift data 

in binding sites associated with Ca2+-binding,  however, this approach requires high-

resolution NMR and significant time investment to collect data.  

More recently, Ye et al. determined binding dissociation constants (Kd) for CaM 

EF-loops I-IV (34, 245, 185 and 814 uM, respectively) by grafting the loops into a 

scaffold proteins [173]. However, this approach, like the analyses of peptide fragments, 

fails to account for cooperative binding effects, and yields contradictory results 

compared with studies indicating that CaM EF-loops III and IV in the apo-protein exhibit 

higher binding affinity and bind Ca2+ before the N-terminal domain sites. Moreover, the 

results of this study, which show significant variance in binding affinity (> 20-fold) for EF-

loops in the same protein (CaM), suggest that the binding site microenvironment does 

not exclusively control affinity, as these binding sites share high sequence similarity and 

all exhibit pentagonal bipyramidal geometry. Beyond the obvious influence of the binding 

site, additional structural parameters associated with binding affinity remain to be 

quantitatively assessed. 
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Figure 3.1 Metal binding sites  
(a) Pentagonal-bipyramid geometry associated with EF-Hand binding motif. (b) 
Octahedral binding geometry for Ca2+ and Mg2+. (c) Holospheric binding where Ca2+ is 
surrounded on all sides by oxygen ligands. This would include both pentagonal-
bipyramid and octahedral geometries. (d) Hemispheric binding where the Ca2+ ion is 
exposed on one hemispheric surface. (e) Planar binding where the Ca2+ ion is bound in 
a ring structure with exposure above and below the plane. 

 

The interface between Ca2+ and biological activity can be localized to the protein 

Ca2+-binding sites; regions of the protein that have evolved to chelate Ca2+ and translate 

the binding event into a conformational change capable of inducing activity not observed 

in the Ca2+-free state. Binding of Ca2+, a hard Lewis acid, is almost exclusively 

coordinated in proteins by oxygen ligands which originate in sidechain carboxyl (Asp, 

Glu), carboxamide (Asn, Gln), and hydroxyl (Ser, Thr) groups. Carbonyl oxygen from the 

mainchain may also contribute to coordination, as well as oxygen from water molecules 

which are observed to form hydrogen bonds with Asp, Ser and Asn residues. Nitrogen, 

which binds Zn2+ and may associate with Ca2+ in small molecules, is only infrequently 
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observed in the structures of Ca2+-binding sites, and then, observed mostly in cases 

where the site has no net negative charge. 

Calcium-binding sites can be separated into three distinct classes [61, 215-217].  

Class I sites are comprised of consecutive amino acids in the primary sequence which 

would include canonical EF-hand (discussed below), pseudo EF-hand (e.g., S100 

proteins) and other noncanonical EF-hand (e.g., calpain) motifs. Class II sites include a 

similar stretch of consecutive amino acids, but also include a coordinating ligand that is 

close to the other binding ligands in the three-dimensional structure, but distant in the 

sequence (e.g., hcv helicase, PDB ID 1hei.pdb). Class III sites, the least commonly-

observed, include multiple coordination ligands in close spatial proximity but still distant 

in the sequence (e.g., the C2 domain of the enzyme Protein Kinase C (PKC)). It should 

be emphasized that this classification scheme is based on the relationships between 

amino acids in the sequence, rather than structure. To understand Ca2+-modulated 

protein function, metal selectivity and Ca2+-binding affinity, and develop computational 

approaches for the prediction and identification of Ca2+-binding sites, it is equally 

important to analyze structural changes associated with Ca2+-binding. 

Early work with Ca2+-binding proteins observed examples of highly-organized 

coordination geometries [5, 17-19, 131, 179-180, 209, 218-220], including either 

pentagonal-bipyramidal (Figure 3.1a), where the ion is surrounded by a planar grouping 

of five oxygen atoms with additional oxygen atoms superior and inferior to the plane, or 

octahedral (Figure 3.1b), with similar ligand coordination above and below a planar ring 

of only four oxygen atoms. However, more recent analyses of Ca2+-binding sites reveals 

much greater diversity in binding coordination geometries than previously assumed. The 

PDB currently includes structures for ~1500 CaBPs not classified as EF-hand or EF-like 

motifs, which suggests that a comprehensive structural classification scheme for Ca2+-

binding remains incomplete. To address the identification of Ca2+-binding sites exhibiting 
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increasing diversity, a more generalized set of coordination geometries may be applied, 

based on similar classification of Pb2+-binding [221] and a Hull property describing the 

spatial relationship of the Ca2+ ion to the interior volume of the surrounding binding 

ligands. Figure 3.1c describes a holospheric binding geometry where oxygen ligands 

surround Ca2+ on all sides, as would be observed in both the pentagonal-bipyramid and 

octahedral geometries. In Figure 3.1d, a hemispheric coordination scheme is observed 

with an open concavity (i.e., bowl structure) coordinating the ion. Finally, a more irregular 

binding site is described in Figure 3.1e, with as few as three coordinating ligands forming 

a plane around the ion without benefit of stabilization above or below the plane. These 

latter Ca2+-binding sites, some of which lack well-structured and recognizable geometric 

configurations and include binding ligands sequentially distant from each other in the 

structure, present interesting challenges for determining functional implications, as well 

as establishing quantitative means of relating structure to both affinity and metal 

selectivity. This issue has been addressed in recent years by using a variety of different 

computational algorithms to identify or predict Ca2+-binding sites. Some of these 

approaches utilize structural parameters associated with Ca2+ and its binding ligands, 

and statistical evaluation of different Ca2+-binding sites has demonstrated that EF-hand 

and non EF-hand proteins are differentiable based on these parameters, including 

distance between the ligand and the ion, distance between ligands, and angles between 

the carbon covalently bound to the oxygen ligand, the oxygen ligand itself and the 

calcium ion. Although a discrete structural classification system for non EF-hand proteins 

remains to be developed, these emerging computational methods are providing a 

framework for viewing Ca2+-binding beyond the limitations of sequence-based 

information [222].  
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3.2 EF-Hand superfamily 

 
 

 

Figure 3.2 Phylogenic analysis of EF-hand protein family 
The unrooted N-J tree (from Zhou, et al., [178]) was generated on the basis of multiple 
sequence alignments of 27 typical proteins containing pseudo EF-hand motifs and 22 
proteins with canonical EF hand motifs. (Circle: canonical EF-hand; Square: pseudo EF-
hand; Solid: bind Ca2+; Open: do not bind Ca2+ or Ca2+ binding capability is unknown).  
 

The increasingly populous superfamily of EF-hand proteins, comprising 

approximately 70 different genomic subfamilies, can be divided into two major groups 

based on Ca2+-binding sites: The canonical EF-hand motif which is the most common 

and widely-recognized protein Ca2+-binding structural domain, and; the more recently-

characterized non-canonical EF-loops which include the pseudo EF-hands observed in 

the N-termini of S100 and S100-like proteins (Figure 3.2) [132, 178, 223-224]. Canonical 

EF-hand motifs are almost exclusively found in pairs ranging from 2-6 copies, while 
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pseudo EF-hand motifs are often paired with a C-terminal canonical EF-hand. 

Noncanonical EF-loops, including many recently identified in prokaryotic EF-hand-like 

proteins, exhibit more sequential diversity in or near the Ca2+-binding loop, but still 

exhibit coordination properties similar to canonical EF-hand sites. Characteristics of the 

binding sites associated with the major EF-hand superfamily groups are summarized 

below. 

3.3 Canonical EF-Hand binding motif 

The canonical EF-Hand motif, first described by Kretsinger in the 1970‘s [225], is 

highly-conserved in both Eukaryotes and Prokaryotes. This sequential motif, described 

extensively in the literature, is 29 amino acids in length comprising a 12 residue loop 

surrounded by two flanking α-helices positioned in a relatively perpendicular orientation 

(Figure 3.3a). Analyses of meta-data from online databases (e.g., PFAM, ProSite) 

indicate that the length of the entering (E) and exiting (F) helices are typically 9 and 8 

residues in length, respectively. Loop residues are assigned relative position numbers 1-

12. Binding of Ca2+ is coordinated by residues in loop positions 1(x-axis), 3(y), 5(z), 7(-

y), 9(-x) and 12(-z), forming a pentagonal bipyramidal geometry (Figure 3.1a).  

The coordination number for Ca2+-binding in proteins has been reported at 5-8 

ligands, with an average between 6-7 [61, 217] . The mean Ca-O ligand binding distance 

has been reported, from different studies, as either 2.4 ± 0.1 Å, or 2.42 Å with a range of 

2.01 – 3.15 Å [5, 10, 188, 204, 226-228]. Loops typically exhibit a negative charge 

between -2 and -4 [229], which likely represents an optimal charge configuration based 

on analyses of sequence homology and energy calculations for 276 EF-Hand loops 

[129, 218]. 

Ligands observed within the EF-Loop are typically Asp at position 1, Asp or Asn 

at position 3, Asp, Ser or Asn at position 5, a water molecule at position 9, and a 



 

83 
 

bidentate Glu at position 12  [218] which may initially anchor Ca2+ and thus initiate 

rotation of loop residues to form the 

binding site. The coordinating ligand 

from position 7 is usually a carbonyl 

oxygen, while the non-coordinating 

residue in position 6 is frequently a 

flexible Gly. The conserved 

hydrophobic residues in loop position 

8 (Val, Leu or Ile) also play an 

important functional role related to the 

interaction between paired EF-loops. 

Binding of Ca2+ in paired EF-Hands is 

cooperative, and typically binding in 

one of the sites enhances the binding 

affinity of the second site (i.e., positive 

cooperativity). The hydrophobic 

residues in loop position 8 between 

paired EF-Hand sites (Figure 3.3b) 

form two short anti-parallel β-strands 

(Figure 3.3c) [230-231], and it has 

been suggested that this EFβ-scaffold 

governs Ca2+-binding and the 

associated structural changes [232] 

and represents the structural basis for 

positive cooperativity between the 

 
Figure 3.3 EF-Hand and cooperativity 
(a) EF-hand motif. (b) Paired EF-hand 
motifs from Loops EF-III and EF-IV of CaM. 
Conserved hydrophobic residues in position 
8 (Val, Leu or Ile). Cooperative binding 
between the two EF-hand motifs is related 
to formation of hydrogen bonds between 
residues in loop position 8 which create (c) 
two short anti-parallel β-strands. 
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sites [76-77]. Calmodulin, parvalbumin and troponin C all represent proteins with paired 

canonical EF-hand binding sites. See Gifford et al for recent review of EF-hand [233]. 

Instances of proteins with odd (i.e., unpaired) EF-loops have been identified, and 

in some cases, misidentified, as seen with the transmembrane protein STIM1. STIM1, 

found in the ER, responds to depletion of luminal Ca2+ by activating store-operated Ca2+ 

(SOC) channels on the plasma membrane and thereby facilitating extracellular Ca2+ 

influx into the cytoplasm. The N-terminal domain of STIM1 contains several functionally 

important regions including an ER signal peptide and a canonical EF-hand domain. 

Preliminary investigations on STIM1 had indicated that observed canonical EF-hand 

domain functioned as a solitary binding site for Ca2+, but a second hidden EF-hand site 

was later revealed which was found to stabilize the canonical EF-hand through hydrogen 

bonding between the paired loops and to exhibit the cooperative binding effects 

associated with EF-hand pairs [234].  

3.4 Pseudo EF-Hand binding motif 

The pseudo EF-hand motif is found in the S100 and S100-Like proteins [132, 

178, 223-224], including calbindin D9k and calcyclin (S100A6). The S100 proteins 

generally are of lower molecular weight (~9-14 kDa). The full range of functions 

associated with S100 proteins remains unknown, but different S100 proteins have been 

identified with a substantial number of extracellular and intracellular activity, including 

regulatory activities related to phosphorylation, enzymes, and intracellular Ca2+ release 

associated with ryanodine receptor function, as well as increased expression in 

inflammatory responses and cancer metastasis [235]. In cells, these proteins may 

organize as covalently-bound homodimers or heterodimers, with some exceptions 

including calbindin D9k which is a monomer. Dimerization of S100 proteins appears to 

directly relate to their biological activities, and the structural basis for this self-assembly 

is driven by binding with Ca2+. 
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The pseudo EF-hand binding geometry is similar to the pentagonal bipyramidal 

conformation observed with the canonical EF-hand, but significant differences are 

observed in the binding loop. Rather than a 12-residue loop, pseudo EF-hand extends to 

14 residues where the Ca2+ ion is coordinated predominantly with main-chain carbonyl 

oxygen atoms from residues occupying positions 1, 4, 6 and 9, with a water molecule 

coordinated by residue 11 and a bidentate (Asp or Glu) ligand in loop position 14 [236]. 

Because the majority of binding ligands originate from the backbone itself, the nature of 

the associated residue is less restricted than what is observed with canonical EF-hand 

binding sites. Additionally, where the canonical EF-loops typically have a formal charge 

between -2 and -4, less formal charge is observed in the pseudo EF-loops due to 

dominance of carbonyl oxygen binding ligands. An example of this can be seen with  

calprotectin (PDB ID 1xk4) which binds Ca2+ with zero formal charge in the binding site 

[237].  

This motif is usually observed to be paired with, and to sequentially precede, a 

canonical EF-hand which exhibits higher binding affinity for Ca2+. From the N-terminal, 

helices are labeled consecutively H1-H4. The pseudo EF-hand loop (L1) is flanked by 

H1 and H2, while the canonical EF-hand loop (L2) is surrounded by helices H3 and H4. 

The two motifs are separated by a flexible hinge region, while a short peptide extension 

appears at the C-terminal. Comparison of sequences indicates that the greatest 

homology is observed in the canonical EF-site, with the most variance observed in the 

hinge region and a C-terminal extension following the canonical EF-site.  

The functional role of the pseudo EF-hand appears to be a more recent 

evolutionary feature producing lower affinity in the N-terminal domain and allowing 

significant Ca2+-induced changes in the canonical EF-hand, which in turn expresses a 

hydrophobic cleft necessary for target recognition and peptide binding. 
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3.5 C2 domain 

The C2 membrane-targeting domain is identified in cellular proteins that fulfill a 

role in signal transduction, including synaptotagmin I, phospholipase A  and the β-

isoform of protein kinase C (PKC) (PDB ID 1a25) [238]. C2 domains contain a core Ca2+-

binding region (CBR) where Ca2+-binding, often accompanied with binding of additional 

cofactors as observed with certain isoforms of PKC, initiates conformational changes 

that allow the domain to identify membrane-attached targets, such as anionic 

phospholipids. C2 domain motifs diverge from the canonical EF-hand in several 

important ways. First, proteins with C2 domains exhibit β-sandwich architecture, 

compared to the predominantly α-helical nature of proteins with canonical EF-hands. 

Because of this architecture, a series of interstrand loops cluster at the end of the β-

sandwich. In the C2 domain, a cleft is formed by these loops which are densely packed 

with aspartic acid residues.  

D187, 

OD1

D187, 

OD2

D248, 

OD1

W247, 

O

D193, 

OD2

D246, 

OD2

SO4Ca 502

 

Figure 3.4 C2 domain from PKC  
The coordination for the pentagonal-bipyramidal geometry for Ca-502 is completed with 
a sulfate ion. 
 

This cleft accommodates binding of multiple Ca2+ ions as seen with PKC (Figure 

3.4), which is presumed to be cooperative and necessary for stabilizing the structure in 
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order for the domain to recognize its molecular target [238]. Second, the binding ligands 

can originate from sequentially distant regions of the protein, as seen with Ca-502 in 

PKCα (PDB ID 3gpe) where the binding site is formed by ligands D187 (bidentate), 

D193, D246, W247 (carbonyl), D248, and SO4. The overall geometry is holospheric 

(Figure 3.1c), conforming to a pentagonal bipyramidal geometry with oxygen from sulfate 

replacing the water molecule at the (-X) position. The crystal structure of PKCα shows 

binding of two additional Ca2+ ions. One of these is coordinated in a pentagonal-

bipyramidal geometry, while the other occupies a hemispheric bowl geometry (Figure 

3.1d). Unusually, several ligands appear to be shared between Ca2+ ions in the structure 

(Figure 3.2). Similar binding models in C2 domains are observed with: PKCβ (1a25.pdb); 

α-toxin, a phospholipase C enzyme from Clostridium perfringens (1qmd.pdb), and; 

cytosolic phospholipase A2 (cPLA2, PDB ID irlw). 

3.6 Ca2+ and enzymes 

The relationship between Ca2+ and the generation of trypsin from trypsinogen 

was being investigated as early as 1913 [239]. Today, we know that Ca2+ can stabilize 

the structures of different enzymes, including thermolysin [240], trypsin and proteinase 

K, which enables them to perform their catalytic activities. Many of these enzyme binding 

sites exhibit pentagonal-bipyramidal geometries, similar to canonical EF-hand sites but 

utilizing residues separated in the sequence, or octahedral geometries.  

Trypsin contains a single high-affinity Ca2+-binding site with an octahedral binding 

geometry where the superior and inferior apices are both water molecules. Binding of 

Ca2+ prevents autodegradation and is necessary for the structural integrity of the active 

enzyme. Proteinase K has two Ca2+-binding sites: a higher affinity site exhibiting 

pentagonal-bipyramidal geometry comprised of four ligand atoms from amino acid 

residues (two in close sequential proximity with a bidentate ligand more distant in the 
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sequence) and four water molecules, and a second Ca2+-binding site linked between 

residues in distant parts of the sequence (T16-O and bidentate D260) and bound with 

three water molecules [241]. As with trypsin, binding of Ca2+ in proteinase K is reported 

to stabilize the enzyme structure and facilitate structural changes necessary for catalytic 

activity. 

Calcium-dependent Phospholipase A2 (PLA2) enzymes include cytosolic and 

extracellular isoforms. Cytosolic PLA2 (cPLA2), which plays a role in production of lipid 

mediators of inflammation, contains a C2 domain with two Ca2+-binding sites. Both sites 

exhibit pentagonal bipyramidal geometry despite sequential separation of binding ligand 

residues. The roles of extracellular phospholipase A2 enzymes differ significantly from 

PLA2 in the cytosol. Extracellular PLA2 in venom help to immobilize prey, while 

pancreatic PLA2 plays an important role in the breakdown of phospholipids in dietary fat.  

Significant structural differences are also observed with extracellular PLA2 (PDB ID 

3q4y), which incorporates a hemispheric Ca2+-binding site. Residues comprising the site 

are summarized in Figure 3.2. This site includes a bidentate ligand D49 originating in an 

α-helix, similar to the bidentate anchoring ligand in the exiting helix of the canonical EF-

loop. However, this ligand is sequentially distant from the other binding ligands. 

Additionally, binding ligands are not observed in either the region in the pentagonal 

plane corresponding to the –Y axis (EF-loop position 7), which is normally occupied by 

carbonyl oxygen in the canonical EF-hand, or in the -X axis space normally occupied by 

a water molecule. The resulting binding geometry in the crystal structure of 

phospholipase A2 therefore suggests an incomplete pentagonal-bipyramidal geometry.  

Another example of pentagonal-bipyramidal geometry can be seen in MauG 

(PDB ID 3l4m). The Ca2+-binding site in MauG includes a single-charged anionic ligand 

atom (N66-OD1), two carbonyl oxygen atoms (T275 and P277) and four water 

molecules. Despite the limited charge in the site, which differs significantly from 
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observations of canonical EF-hand sites, MauG apparently binds Ca2+ with relatively 

high affinity (Kd 5.3 µM) [242].  

Table 3.1 Select CaBP’s and characteristics of their binding sites 

PDB ID Protein/Enzyme/Assembly

Binding Site 

Ligands

Seq

Class Struct Class Geometry

3gpe PKC (Ca 501)
M186-O, D187-OD1, D246-OD2, D248-OD1, 

D248-OD2, D254-OD2, 1 H2O
III holospheric

Pentagonal-

Bipyramidal 

3gpe PKC (Ca 502)
D187-OD1, D187-OD2, D193-OD2, D246-OD1, 

W247-O, D248-OD1, PO4
III holospheric

Pentagonal-

Bipyramidal 

3gpe PKC (Ca 503)
D248-OD2, D254-OD2, D254-OD2, R252-O, T251-

OG1
I hemispheric Bowl

1hml α-lactalbumin
K79-O, D82-OD1, D84-O, D87-OD1, D88-OD1, 2 

H2O  
I holospheric

Pentagonal-

Bipyramidal 

1aui calcineurin (Ca-500)
D32-OD1, E41-OE2, D30-OD1, E41-OE2, S36-O, 

S34-OG
I holospheric

Pentagonal-

Bipyramidal 

1aui calcineurin (Ca-501)
E68-O, N66-OD1, D64-OD1, E73-OE1, E73-OE2, 

D62-OD1
I holospheric

Pentagonal-

Bipyramidal 

1alv calpain (Ca 4)
D135-OD1, N226-OD1, D225-OD2, D225-OD1, 

D223-OD1, D223-OD2, 2 H2O
III holospheric --

1alv calpain (Ca 1)
D110-OD1, E112-O, A107-O, E117-OE1, E117-

OE2
I holospheric

Pentagonal-

Bipyramidal 

1hqv
ALG-2 (apoptosis-linked gene-2, 

Ca-996)
N106-OD1, 3 H2O -- Planar --

1hqv
ALG-2 (apoptosis-linked gene-2, 

Ca-997)

D38-OD2, D36-OD1, V42-O, E47-OE2, S40-OG, 

E47-OE1, D38-OD1 1 H2O
I holospheric

Pentagonal-

Bipyramidal 

1hqv
ALG-2 (apoptosis-linked gene-2, 

Ca-999)

D171-OD1,  D173-OD1, D169-OD1, W175-O, 

2H2O
I holospheric

Pentagonal-

Bipyramidal 

(incomplete)

1hz8 EGF (Ca-83) E4-OE2, D18-OD1, E4-OE1, T2-O II ? ?

1hz8 EGF (Ca-84)
N57-OD1, I42-O, E44-OE1, L58-O, D41-OD2, E44-

OE2
III holospheric

Pentagonal-

Bipyramidal 

(incomplete)

3mi4 Trypsin E70-OE1, N72-O, V75-O, E80-OE2, 2 H2O II holospheric Octahedral

2prk Proteinase K (Ca 280A) P175-O, V177-O, D200-OD1, D200-OD2, 4 H2O II holospheric
Pentagonal-

Bipyramidal 

2prk Proteinase K (Ca 281A) T16-O, D260-OD1, D260-OD2, 3 H2O -- hemispheric --

1bci

Phospholipase A2 

(cytosolic, C2 Domain, Ca 

1950A)

T1041-O, N1065-OD1, D1043-OD1, D1043-OD2, 

D1040-OD1, MES 4000-O3S, 1 H2O
III holospheric

Pentagonal-

Bipyramidal 

1bci

Phospholipase A2 

(cytosolic, C2 Domain, Ca 

1951A)

D1093-OD1, D1093-OD2, D1040-OD1, D1040-

OD2, D1043-OD2, A1094-O, N1095-OD1, 1 H2O
III holospheric

Pentagonal-

Bipyramidal 

3qfy
Phospholipase A2 

(extracellular)
Y28-O, G32-O, G30-O, D49-OD1, D49-OD2 II hemispheric

Pentagonal-

Bipyramidal 

(incomplete)

3l4m MauG (Ca 400 Chain A) N66-OD1, T275-O, P277-O, 4 H2O -- holospheric
Pentagonal-

Bipyramidal 

1qmd
alpha-toxin (phospholipase C, 

Ca 403)
A337-O, D269-O, D336-OD1, G271-O -- hemispheric Bowl

3mt5 Human BK K+ channel D892-O, Q889-O, D897-OD2, D895-OD1 I hemispheric Bowl

2aef

Ca2+-gated K+ channel in 

Methanobacterium 

autotrophicum (Ca 602)

D184-OD1, D184-OD2, E210-OE2, E212-OE2,  3 

H2O
II holospheric

Pentagonal-

Bipyramidal 
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The reason for this higher affinity is not clear, but this example suggests that 

charge is not the sole factor influencing binding affinity. Moreover, the structural 

similarity of these Ca2+-binding sites in enzymes indicates Ca2+ can be coordinated with 

much greater flexibility than what is suggested by the highly-conserved, and more 

densely-charged canonical EF-hand loops. 

3.7 Non-EF-hand binding sites 

A significant proportion of Ca2+-binding structures currently in the PDB are not 

sequentially or structurally identifiable as canonical EF-hand motifs, and may represent 

structural classes yet to be categorized. This group includes an increasing number of 

Ca2+-binding sites structurally similar to EF-hands but with increasing variability in the 

loop or helices. The structural basis for the observed diversity in EF-hand CaBPs was 

recently reviewed by Grabarek who indicated that most changes in the loop occur in the 

N-terminal part, while the C-terminal part is more conserved [232]. Figure 3.1 

summarizes many of the binding site examples discussed in this section. 

Calpain, grancalcin and ALG-2 are classified in the Penta-EF-hand protein 

family. Penta-EF-hands have five binding sites. Not all sites are necessarily active, and 

may be characterized as either EF-hand sites or incomplete EF-hands. The incomplete 

EF-hands typically exhibit the helix-loop-helix structure of canonical EF-hand, but a 

reduction in the number of residues in the loop sequence result in incomplete 

pentagonal-bipyramidal geometry. ALG-2 (apoptosis-linked gene 2, PDB ID 1hqv) 

includes four Ca2+-binding sites. The sites surrounding Ca-997 and Ca-998 are 

canonical EF-hand motifs, while the binding site chelating Ca-999 represents an 

incomplete pentagonal-bipyramidal geometry, comprising a short stretch of seven 

residues and water (Table I). The final binding site for Ca-996 includes a single 

sidechain ligand atom and water molecules, resulting in a planar binding structure. 
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Human low-density lipoprotein receptor contains two atypical Ca2+-binding sites 

found in extended loop regions. The NMR structure of this protein (PDB ID 1hz8) does 

not include water molecules, so the structures appear incomplete. This is apparent in the 

binding site surrounding Ca-84 which exhibits a distorted, incomplete pentagonal 

bipyramidal geometry comprising six binding ligand atoms. However, these ligands span 

an unusually long region of the loop (17 residues), and the loop itself is partially 

restricted by the formation of a disulfide bond. The second binding site coordinating Ca-

83 is comprised of only four ligand atoms which fail to surround the ion, although this 

may be due to the absence of water molecules in the PDB file.  

Another example is α-lactalbumin, an extracellular protein from the C-type 

lysozyme family that participates in the formation of lactose synthetase, a precursor 

enzyme involved in lactose synthesis. The Ca2+-binding site in α-lactalbumin consists of 

a short 4-residue N-terminal side helix, a 4-residue loop, and a longer (at least 12-

residue) C-terminal side helix (PDB ID 1hml). Despite this significant variance from the 

canonical EF-hand loop, this site retains a pentagonal-bipyramidal binding geometry 

comprised of 5 protein ligand atoms and two water molecules. This site is also 

interesting because, with the exception of oxygen from the two water molecules and a 

single sidechain carboxyl oxygen from D82 in the loop region, the remaining binding 

ligand atoms are contributed by residues in α–helices. 

3.8 Calcium in ion channels 

Ion channels describe trans-membrane protein assemblies that allow the 

regulated movement of ions (Na+, K+, Ca2+) across cellular compartments. Calcium 

channels, which facilitate the transfer of Ca2+ across membranes, may be either ligand-

gated or voltage-gated. Examples of ligand-gated Ca2+ channels include IP3 and 

ryanodine receptors. Voltage-gated calcium channels (VGCC) regulate the entry of Ca2+ 

into the cell following changes in the membrane potential. This Ca2+ influx in turn drives 
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diverse cellular functions including cardiac muscle contraction and neurotransmitter 

release. Voltage-gated calcium channels, through their Cav protein subunits, may be 

regulated through an indirect calcium feedback mechanism mediated by binding of Ca2+ 

to CaM which can interact with an isoleucine-glutamine (IQ) motif located in the N-

terminal region of Cav. 

Conversely, voltage-activated K+ channels (e.g., BK or Slo1 channels) can be 

directly activated by increases in intracellular Ca2+ which provides a feedback 

mechanism where opening of these channels hyperpolarizes the membrane and initiates 

closing of Ca2+ channels, thereby reducing Ca2+ influx. A Ca2+ binding site identified in 

BK K+ channel is believed to contribute to this Ca2+ regulatory mechanism. This binding 

site, identified as a ‗calcium bowl‘ [243], is hemispheric, comprised of four binding 

residues (D892-O, Q889-O, D897-OD2, D895-OD1) originating in an Asp-rich sequence 

DQDDDDDPD, as seen in the PDB crystal structure for human BK (3mt5). Mutations or 

deletions of residues in this sequence have been shown to desensitize channel activity, 

however, further evidence suggests the existence of second Ca2+-binding site that 

remains to be identified [243]. Similarly, the dimeric crystal structure of MthK Ca2+-gated 

K+ channel in Methanobacterium autotrophicum (PDB ID 2aef) reveals two symmetrical 

Ca2+-binding sites believed to stabilize the RCK (regulate the conductance of K+) 

domains. Unlike human BK, however, these binding sites conform to pentagonal-

bipyramidal geometry with the addition of water molecules (Table I), and the residues 

comprising the binding sites span a longer region of the sequence than the BK K+ 

channel binding site. 
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3.9 Statistical analysis of Ca2+-binding sites 

Coordination number and geometric configuration 

 Figure 3.5a summarizes mean coordination number (CN) values reported both 

with (PLW) and without (PL) contribution from water (HOH) oxygen ligands, where 

protein ligands may be oxygen or nitrogen. In all, 9507 ligands were identified, and of 

these, 2915 were water oxygen ligands. Interspersed within this group of identified 

ligands were 137 nitrogen atoms; approximately 42% of which fell within 2.9 Å of the 

Ca2+ ion.   

 
Figure 3.5 (a) Coordination number (CN) and (b) distribution of formal charge (FC) 
by site for Non-EF-Hand and EF-Hand protein classes  
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 As seen in Table 2.1, the mean CN for EF-Hand sites, including water, was 7 ± 1, 

compared to 6 ± 2 for non-EF-Hand sites. All CN values were reported as whole integers 

only. When water was excluded, CN values for EF and non-EF sites were reduced to 6 ± 

1 and 4 ± 2, respectively. 

Figure 3.5a summarizes the % Site Distribution of CN values for EF and non-EF 

sites, both with and without water. It is evident that fewer protein ligands are involved in 

the coordination of the non-EF-Hand binding sites, which also coordinate with more 

water ligands. The significant impact of the water molecules in the non-EF-Hand proteins 

is clearly evident in Figure 3.5a, where the distribution of ligands reaches a maxima at 

CN=7 only with the inclusion of water. 

On the other hand, the mean CN values reported in this study for EF-Hand 

proteins were consistent with previously published results indicating a CN of 6 to 8 

ligands for Ca2+-binding, with a mean of 7.3, or between 6-7 [5, 217].  Additionally, we 

identified 13 EF-Hand sites having fewer than 6 protein ligands (Figure 3.5a). Closer 

inspection of the PDB structures associated with these sites revealed that they are either 

S100 type sites classified as EF-Hands, or included an additional HOH oxygen ligand, 

although the binding sites were still located within a flexible loop region flanked by two 

helices. 

 The space defined by edges connecting the ligand vertices of each binding site, 

termed Hull, was examined to determine the relative position of the Ca2+ ion to the 

binding site center of volume. EF-Hand proteins tend to have well-defined pentagonal-

bipyramid geometric structure, as seen in Figure 3.1a. However, the results of this 

analysis indicated a wider variety of low coordination structures associated with Ca2+-

binding in non-EF-Hand proteins. In Figures 3.1c-3.1e, three generalized structures of 

Ca2+-binding sites are described. Figure 3.1c shows a holospheric site, with the ion 

enclosed in the Hull volume, and closer ligands interactions between the ion and the first 
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shell. Figure 3.1d describes a hemispheric site, with the Ca2+ ion partially- or full-

removed from the defined volume, whereas Figure 3.1e describes a roughly planar 

binding site. The results of the statistical analysis (Table 2.1) indicated that 72% and 

100% of evaluated ions were positioned within the Hull, for non-EF-Hand and EF-Hand, 

respectively. These results suggest that most Ca2+-binding involves a holospheric 

coordination geometry, which corresponds to an increasing CN value. This geometric 

configuration may contribute to strong metal selectivity for calcium over other metal ions. 

Ligand type 

 Ligand distribution is summarized in Figure 3.6. Figure 3.6a and Figure 3.6b 

illustrate major differences in ligand type between EF-Hand sites and non-EF-Hand 

sites. Sidechain groups account for the highest proportion of ligands in both classes, but 

represent a much higher percentage for EF-Hand (65.3%) than for non-EF-Hand 

(42.9%). For EF-Hand, the ligand distribution follows the order sidechain Asp > 

sidechain Glu > mainchain Carbonyl, with the percentage of Asp and Glu nearly 

equivalent (29.7% and 26.6%, Figure 3.6a). For non-EF-Hand, HOH is the dominant 

ligand comprising 33.1%, followed by sidechain Asp (24.5%), mainchain carbonyl 

(23.9%) and sidechain Glu (10.4%). It can be seen that the ratio of Asp:Glu for non-EF-

Hand (23.9:10.4) is nearly identical to that reported by Pidcock (2.4:1) but not so for EF-

Hand (29.7:26.6). Moreover, as seen in Figure 3.6a and Figure 3.6b, the presence of 

sidechain hydroxyl and amide groups (Asn, Gln, Ser, Thr, Tyr) is minimal in both 

classes. 

 Consistent with previous analyses on the canonical EF-hand motifs based on 

either sequence or structure   [61, 218], Glu is much more common to EF-Hand binding 

sites than the non-EF-Hand sites, but differs significantly from Falke‘s reported ligand 

preferences of 65% and 21% for Asp and Glu, respectively, based on 567 canonical EF-

Hand sequences analyzed [244].  This common presence of Glu within EF-Hand sites is 
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likely due to its strategic importance as a bidentate, anchoring ligand for Ca2+  [245], and 

it‘s strong propensity towards helical formation.  

 In our analysis, we have shown that EF-Hand proteins, including both canonical 

and pseudo EF-hand motifs, have similar distributions of Asp and Glu sidechains. The 

presence of carbonyl oxygen ligands is similar for EF-Hand (21.4%) and non-EF-Hand 

(23.9%), so the major contributor in non-EF-Hand to replace the missing carboxyl 

ligands comes from the increasing presence of available water oxygen atoms, as 

previously noted.  

 

Figure 3.6 Frequency distribution of ligand residues  
Distribution for (a) EF-Hand and (b) Non-EF-Hand proteins. The pie graphs (inset) show 
the distribution between water, carbonyl and sidechain residue oxygen ligands. 
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 The data for EF-Hand sites follow the trends reported by Dudev and Lim, 

(carboxylates > carbonyls > water >> hydroxyl atoms) [219], but vary for the non-EF-

Hand proteins, due to the increased presence of water. In fact, the 33.1% distribution of 

water oxygen ligands for non-EF-Hand sites is much higher than values reported by 

McPhalen (20%) [219], and Dudev (22.4%)  [181]. In the case of Dudev, this difference 

may in part be attributed to the shorter distance cutoff constraint in their study (2.9 Å vs. 

3.5 Å). When water oxygen ligands with Ca-O distances between the range 2.9 – 3.5 Å 

are eliminated from our statistics, the % distribution of water oxygen ligands drops to 

25.0%, which is only a modest increase from the value reported by Dudev, but still 

significantly different than the 13.3% reported for EF-Hand sites (Figure 3.6a) which all 

fall within 2.9 Å. 

Charge analysis by site 

 Formal Charge (FC) by site was simplified to account only for negatively-charged 

sidechain carboxyl groups (-1) from Glu and Asp [218]. Mean negative FC values of 1 ± 

1 and 3 ± 1 were found for non-EF-Hand and EF-Hand sites, respectively. The 

difference in distribution between FC in non-EF-Hand and EF-Hand sites is shown in 

Figure 3.5b, with increased negative charge (3 to 4) more apparent in the case of EF-

Hand sites. The charge data for EF-Hand sites are consistent with previous studies of 

Ca2+ indicating that a microenvironment containing 3-4 negative charges likely 

represents an optimal charge configuration [129, 218], however, it is surprising that only 

a small percentage of non-EF-Hand sites exhibit negative charge greater than 2 (Figure 

3.5b). 

 Calcium binding sites with high negative formal charges are likely located in 

flexible loop regions of the protein. Figure 3.7 shows examples of canonical EF-hand 

proteins and non-EF-hand proteins with -4 formal charge values. Figure 3.7a shows the 
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EF-Hand binding site with a helix-loop-helix from the crystal structure of coelenterazine-

binding protein from Renilla muelleri  (2hq8.pdb) formed by the sidechains of D112, 

D114, D116 and E123 and mainchain of Y118. Figure 3.7b shows Ca2+-binding in a 

flexible loop region between two β–strands from family 9 carbohydrate-binding module of 

Thermotoga maritime xylanase 10A (1i8a.pdb). Figure 3.7c shows Ca2+-binding between 

two loop regions discontinuous in the primary sequence from calcium-binding domain  

2B (1uow.pdb) [246]. 

 

Figure 3.7 Comparison of EF-Hand Ca2+-binding sites 
(a) Canonical EF-Hand binding site from coelenterazine-binding protein from Renilla 
muelleri. (b) C-terminal module of the thermostable Thermotoga maritima xylanase 10A 
(1i8a.pdb). Four negative charges are found in the site. (c) Synaptotagmin I C2B domain 
(1uow.pdb). Four negative charges are found in the site. (d) Binding site (PDB 
Sequence ID 3012) of Drp35 (2dg1.pdb). Ca2+ is bound with 5 mainchain and 1 hydroxyl 
oxygen atom, and 2 nitrogen atoms from loop region of chain F. FC in site is zero. (e) 
Binding Site (PDB Sequence ID 2003) from beta-Xylosidase (2exh.pdb). Ca2+ is 
coordinated by 3 protein ligands and 3 water oxygen ligands. FC in site is zero. (f) 
Binding site (PDB Sequence ID 503) from 1ava.pdb. The hydrated Ca2+ is bound 
between Barley alpha-amylase and its endogenous protein inhibitor BASI. Formal 
charge is zero. 
 

 Binding sites without formal charge were identified within both classes. For the 

EF-Hand proteins, 6 binding sites were identified which had zero FC in the binding site, 

all from the protein calprotectin (1xk4.pdb) [237]. These are S100/pseudo EF-Hand sites 
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predominantly binding with mainchain carbonyl oxygen atoms.  Surprisingly, over 20% of 

the non-EF-Hand binding sites (338 sites from 153 proteins) had reported FC values of 

zero.  

 Detailed structural analyses of the protein environments of these charge-deficient 

sites reveals that charge-charge stabilization beyond the chelated metal ion leads to the 

exclusion of available negatively-charged sidechain residues and facilitates the binding 

of Ca2+ with carbonyl oxygen atoms. Figure 3.7d shows the Ca2+-binding site (Ca2+ 

sequence ID 3012) of Drp35 (2dg1.pdb), a protein induced by cell wall-affecting 

antibiotics or detergents, which possesses calcium-dependent lactonase activity  [247]. 

Ca2+ is bound with 6 oxygen and 2 nitrogen ligands from a loop region in chain F. 

Binding ligands for this site are summarized in Appendix Table A.4. It is interesting to 

note that, except for OG1 of THR133, all other protein oxygen ligands are from the 

mainchain, despite the apparent availability of sidechain oxygen atoms from TYR135, 

ASP130 and SER110. A closer examination (Figure 3.7d) of the structure reveals 

several probable charge interactions (Appendix, Table A.5) between ASP130 OD2 and 

LYS86 NZ; SER110 N and ASP107 OD2. These interactions with ligands beyond the 

second shell likely stabilize the holo-protein and account for the use of mainchain 

carbonyl oxygen ligands in the binding site.  These types of interactions are even more 

apparent with the structure from 2exh.pdb, a family43 beta-Xylosidase from Geobacillus 

stearothermophilus  [248]. Ca2+ site 2003 from 2exh is coordinated by 3 mainchain 

oxygen ligands, 2 from Asp residues 333 and 528, where 528 originates in a β-strand, 

and 3 water oxygen ligands (Figure 3.7e). As was observed with 2dg1 of Drp35, charge 

interactions are apparent between ASP333 N and LYS331 O, ASP333 OD2 and LYS331 

NZ, ASP528 OD2 and LYS395 NZ, and ASP528 OD1 and HIS363 NE2 (Appendix, 

Table A.4). For these residues, both sidechain and mainchain charge interactions with 
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ligands in the second shell would stabilize the structure, enabling the observed Ca2+ 

coordination by available mainchain oxygen atoms. 

 244 of these sites lacking charged ligand residues had fewer than 3 protein 

ligands. The absence of charge and low coordination number is unusual for Ca2+-binding 

sites, and may represent incidental effects of crystallization, rather than naturally-

occurring binding sites. As such, data collected from these sites, while still meaningful 

with respect to individual ligand interactions, are less desirable for characterization of the 

total binding site. An example of a very unusual site (Ca2+ 503 from 1ava.pdb) is shown 

in Figure 3.7f. This site shows a hydrated Ca2+ ion bound between Barley alpha-amylase 

and its endogenous protein inhibitor BASI  [249].  As seen in Figure 3.7f, no protein 

ligands are associated with the Ca2+ ion, however, the hydrated ion is surrounded by a 

outer shell of protein ligand oxygen atoms orientated towards the hydrated ion: Probably 

as a result of 

hydrogen-bonding 

with the inner shell 

of water molecules.   

 
 As shown in 

Figure 3.8a, the 

non-EF-Hand site 

(Site 145) from the 

isolated N-terminal 

domain of protein S 

from Myxococcus 

xanthus (PDB ID 

1nps) is 

 
Figure 3.8 (a) Ca2+ binding site for protein S from 
Myxococcus xanthus (1nps.pdb)  
The binding site around calcium 145 has zero assigned formal 
charge. (b) Electrostatic potential map for 1nps showing 
neutral charge (gray and white contours) in the site. (c) 
Expanded view of binding site protein ligands. 
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coordinated by three protein ligands, ASN36, ASN77 and GLN53 (Figure 3.8c), with 

three additional water oxygen ligands. The absence of charge in this region is illustrated 

in the electrostatic potential map (Figure 3.8b) generated using DelPhi and GRASP  

[250-254], where the surface region corresponding to the binding site appears neutral 

(i.e. – surface area represented in gray and white contours, with no red contouring 

indicating the presence of negative charge). Ca2+-binding was not shown to increase 

protein stability in the case of the isolated N-terminal domain of protein S, although the 

intact protein was reported by Wenk et al. to be very stable across a wide pH range (2 to 

10), and resistant to both urea and thermal unfolding [255]. Wenk also reported an 

unfolding intermediate where the N-terminal domain remains folded during unfolding of 

the C-terminal domain. Cooperativity between these domains contributes to the overall 

stability, and it is evident from their study that the absence of charge in the binding site 

(site 145) has no apparent correlation with stability. Studies of Ca2+ have indicated 

higher binding affinities are observed in the presence of a net negative charge within 5-

15 Å of the ion [256-257], However, the relationship between charge and thermal 

stability is less easily evaluated. Vogt et al  [258] presented a summary of studies related 

to thermal stability where charge interaction and metal-binding were cited as factors 

contributing to increased stability. Recent work in our laboratory has suggested that 

increasing the number of localized charge residues in a relatively constrained calcium 

binding site, while increasing both metal binding affinity and stability of the calcium-

loaded form, also leads to decreased stability of the apo-form [168, 177]. It is clear that 

such effects are context dependent; i.e. strongly depend on the protein environment. 

Consequently, no attempt was made to evaluate thermal stability with respect to charge 

availability based on the data presented in this study. 

 Nitrogen, which is associated with Ca2+-binding in studies of small molecules, 

was not observed to any appreciable extent in the protein structures analyzed. Of the 
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137 nitrogen ligands identified in the study, only 2 were found within EF-Hand binding 

sites. Interestingly, 85 of the 135 nitrogen ligands identified in non-EF-Hand binding sites 

are reported in the zero-charge sites. This suggests that nitrogen may potentially play a 

secondary role in Ca2+ binding, and that this role may increase in the absence of 

negative charge, possibly due to a reduction in charge repulsion forces.   

Distance parameters 

 Mean distance parameters are summarized in Table 2.1 and in Figure 3.9a-d. 

The ranges of reported Ca-O and Ca-C distances are also summarized in Table 2.1, 

based on a 0.1 Å interval bin.   

 
Figure 3.9 Ca-O distance comparisons 
(a) Non-EF carbonyl and sidechain oxygen, (b) non-EF bidentate oxygen,  (c) EF 
carbonyl and sidechain oxygen, and (d) EF bidentate oxygen. 
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A clear delineation between these distances is apparent for both carbonyl and 

sidechain ligands in the non-EF-Hand and EF-Hand datasets (Figure 3.9a and Figure 

3.9c) at or near 3.0 Å.  

The mean Ca-O distance values reported in this study for EF-Hand and non-EF-

Hand indicate little difference between carbonyl and sidechain oxygens, and between 

the different classes (Table 2.1) for each ligand type. These results are identical to 

previously cited studies, however, our data separate bidentate ligand distances, which 

are slightly longer for both EF-Hand (2.5 ± 0.2 Å) and non-EF-Hand (2.6 ± 0.3 Å) than for 

the carbonyl and sidechain ligands, in their respective classes. Moreover, a more 

pronounced change was observed for the bidentate mean Ca-C distances, which were 

0.5-0.6 Å shorter than the distances found for carbonyl and sidechain ligands oxygen 

atoms, resulting in overlap between the Ca-O and Ca-C shells (Figure 3.9b and Figure 

3.9d). Also, the majority of reported Ca-O distance values for carbonyl and sidechain 

oxygen ligands, as seen in Figure 3.9a (non-EF-Hand) and Figure 3.9c (EF-Hand) 

indicate a narrower range of ligand distances (2.0-2.8 Å and 2.1-2.6 Å, respectively) than 

previously reported values approximately between 2.0 – 3.2 Å  [219]. 

 These effective binding ranges suggest that our cutoff of 3.5 Å may be arbitrarily 

long for structural parameterization, given the narrow distributions seen in Figure 3.9a-c. 

Additionally, nearly 60% of the identified nitrogen ligands fell within the range 2.9-3.5 Å, 

and because nitrogen is accepted as only a marginal binding ligand for Ca2+, it is 

probable that some of these identified ligands do not interact with the Ca2+ ion. However, 

only 7% of the non-EF ligands, and 1% of the EF ligands, fell within the range 2.9-3.5 Å, 

and these data did not significantly alter the statistical results, except in the case of 

water molecules for non-EF-Hand proteins, where approximately 25% of the water 

oxygen ligands were identified in this range. It is likely that not all of these identified 

water oxygen atoms are ligands, however, it is clear from Figure 3.5a that binding in the 
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non-EF-Hand sites with 7±1 ligands is possible only with inclusion of the water 

molecules, including those greater than 2.9 Å from the Ca2+ ion. We conclude from this 

that the longer cutoff of 3.5 Å, while valid for this large statistical analysis, can likely be 

reduced to 2.9 Å for future studies without loss of relevant data, with a possible 

exception for the special case of water. 

Analysis of bond angles 

 The mean Ca-O-C angles (Figure 2.1a) are summarized in Table 2.1, where 

differences are observed between carbonyl, sidechain, and bidentate oxygen ligands. 

The carbonyl Ca-O-C angles (°) were largest (151.5 ± 15.8 and 159.8 ± 12.5), followed 

by sidechain (140.4 ± 15.2 and 136.7 ± 16.0) and bidentate (93.6 ± 11.3 and 92.9 ± 6.8) 

for non-EF-Hand and EF-Hand, respectively.  

 
Figure 3.10 Ca-O-C angles  
Distribution for (a) non-EF-Hand and (b) EF-Hand binding sites. (c) Ligands comprising 
bimodal sidechain distribution for EF-Hand. 
 



 

105 
 

Figure 3.10a and Figure 3.10b show the distribution of Ca-O-C angles for non-

EF-Hand and EF-Hand Ca2+-binding ligands, respectively. It can be seen that a 

Gaussian distribution of angle values is associated with non-EF-Hand ligands, and the 

range values for both classes are nearly identical for carbonyl, sidechain and bidentate 

(Table 2.1). For the bidentate ligands, the mean and standard deviation values for 

dihedral angles are also summarized in Table 2.1. For non-EF-Hand and EF-Hand these 

values were found to be 168.1 ± 9.7 and 170.6 ± 7.1, respectively.  

  To understand the observed bimodal distribution associated with Ca-O-C angles 

for sidechain, and to a lesser extent, mainchain EF-Hand ligands in Figure 3.10b, two 

additional analyses were performed. Results of these analyses are summarized in 

Figure 3.10c and Appendix Table A.5. In Figure 3.10c, the ligands represented by the 

angle data in Figure 3.10b were further divided by residue type. The majority of these 

ligands (262/366) originated from Asp, and it is clear that the bimodal distribution seen in 

Figure 3.10b mirrors the distribution of Asp in Figure 3.10c. A similar analysis (not 

shown) of the data for mainchain carbonyl residues associated with the Ca-O-C angles 

in Figure 3.10a did not reveal a residue-specific origin for the apparent bimodal 

mainchain distribution. 

 Table A.5 (Appendix) summarizes data for the EF-Hand ligands comprising the 

Ca-O-C angle distribution in Figure 3.10b, and the associated protein families. From the 

data presented in Table A.5, protein structures were identified where a majority of the 

ligands were contributed preferentially to one peak region or the other. These regions, 

mapped to the unrooted N-J phylogenic trees in Figure 3.11, indicated two major 

phylogenic branches where the peak region sidechain Ca-O-C angle distribution 

correlated with related protein families. In Figure 3.11a, peak region R1 angles 

corresponded with the highly-conserved Parvalbumin and Penta-EF SCOP families 

(shaded oval), while angles from peak region R2 corresponded with the S100 family of 
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proteins (shaded rectangle). However, no consistent trends were observed along the 

Calmodulin-like SCOP branches.  

 

 
Figure 3.11 Unrooted N-J phylogenic tree for EF-Hand proteins  
Unlabeled chains are all in the family of Calmodulin-like proteins. (a) For sidechain 
residues, the Parvalbumin and Penta-EF families contribute the majority of their ligands 
to the first observed peak (R1) in Figure 3.10b, whereas the S100 proteins contribute the 
majority of their ligands to peak 2 (R2). (b) This distribution appears reversed for the 
mainchain carbonyl Ca-O-C angles. 
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Interestingly, the data in Table A.5 suggests an inverse correlation between the 

sidechain and mainchain angles and the related protein families, where the shorter 

sidechain angles in peak region R1 (shaded oval in Figure 3.11a) are coupled, by 

protein chain, with longer mainchain angles in peak region R2 (shaded rectangle in 

Figure 3.11b) and vice-versa. However this reversal was not observed in all cases 

(Table A.5), so the correlation is considered weak. 

These results suggest two possible explanations for the observed sidechain 

bimodal distribution in Figure 3.10b. First, the emergence of two quasi-discrete peaks for 

Asp may result from charge interactions between the Ca2+ ion and the non-ligand 

carboxyl oxygen from Asp, such that proximity of the second oxygen, while outside the 

ligand cutoff distance of 3.5 Å, is sufficient to effectively reduce the Ca-O-C angle of the 

primary oxygen ligand. Second, based on the data presented in Table A.5, it is possible 

that discrete angles are conserved along evolutionary lines. A third possibility is that the 

observed bimodal distribution relates to different secondary properties associated with 

the ligand residues, and further work is in currently in progress to evaluate this. 

3.10 Conclusions 

 Data presented in this study are based on the most comprehensive statistical 

analysis of higher resolution Ca2+-binding structures available to date. While certain data 

presented here with respect to EF-Hand proteins are generally consistent with previously 

reported studies, a clear distinction can be made between EF-Hand and non-EF-Hand 

proteins, based on the physical properties assessed. It is apparent from the data that 

non-EF-Hand CaBPs coordinate with fewer ligands, on average, than the EF-Hand 

proteins, and with a higher proportion of bound water molecules. Less formal charge is 

evident in the non-EF-Hand binding sites, which is expected given the lower proportion 

of charged sidechain ligands. It remains to be seen whether these properties can be 
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correlated with binding affinities. The EF-Hand sites additionally exhibit a bimodal 

distribution of sidechain Ca-O-C angles, which may be due to the abundant presence of 

Asp as a chelating ligand residue, which in turn may be conserved along evolutionary 

lines. In both classes, the majority of Ca2+ ions are surrounded by a holospheric binding 

geometry. In the case of EF-Hand proteins, this frequently involves a pentagonal-

bipyramid geometry, whereas the non-EF-Hand binding sites exhibit less regular 

structure. The Ca-O Bond lengths for both classes were generally equivalent, but 

discrete differences were apparent in the bond angles, and in both cases the range of 

bond angles was narrower than previously assumed (Table 2.1). Additionally, the 

dihedral angles for non-EF-Hand and EF-Hand binding sites were generally equivalent, 

with low standard deviations, indicating that these values (168.1 ± 9.7 and 170.6 ± 7.1) 

may be utilized as input parameters for computational design. 

 The significant differences between ligand types (carbonyl, sidechain, bidentate), 

demonstrate the necessity of classifying these angles separately. Moreover, the small 

standard deviation in each case provides a narrower range of ideal angles for each 

ligand type, thus improving our input parameters used to design proteins with specific 

Ca2+-binding characteristics. 

 The physical parameters and key characteristics associated with Ca2+-binding in 

different classes of CaBPs identified from our analysis have two-fold significance. First, 

structural parameters derived from a more current, comprehensive data set provide a 

more accurate representation of Ca2+-binding, particularly between different classes of 

CaBPs. Second, these data will provide input parameters to both improve the accuracy 

of prediction algorithms and facilitate the design of engineered CaBPs with high 

selectivity and affinity for Ca2+. The data compiled in this analysis have been directly 

applied to define weighted coefficients used in a graph theory-based prediction algorithm 

developed in our laboratory which can predict Ca2+ binding sites, within 0.20 of the 
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documented site, with 94% sensitivity and 93% selectivity [222]. The algorithm also 

correctly identifies only those ligands comprising the binding site in 45 out of 48 test 

sites. These results are in part attributable to refinement of the algorithm based on the 

availability of more precise structural parameters obtained from the statistical analysis 

reported in this manuscript.  

 Due to the ubiquitous presence of CaBPs in biological processes, and the roles 

of Ca2+ imbalance in different diseases, the ability to predict and identify Ca2+-binding 

sites using computational methods can accelerate our understanding of these processes 

and problems, and subsequently improve our ability to alter Ca2+-dependent functions for 

therapeutic purposes, and design CaBPs with tailored functions for medical diagnostics. 
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4 Statistical analyses of Pb2+-binding in proteins 

4.1 Pb2+-binding protein statistics 

 Table A.6 (Appendix) lists the binding sites retained for analysis, their PDB 

identifiers, and resolution of the crystal structure. Table A.1 (Appendix) summarizes the 

PDB data by binding site for retained sites, including  coordination number (CN) values 

both with (PLW) and without (PL) water molecules, formal charge (FC), and binding 

mode (D – displacement, O – opportunistic, or U - unknown) by site. As seen in Table 

S6, approximately 1/3 of the Pb2+-binding sites were identified as sites of ionic 

displacement, indicating that these sites are also known to bind physiologically-relevant 

ions, as listed in the Binding column. Statistical analysis of these two separate binding 

modes was not performed in this study due to limited data for each of the different 

metals listed.  

Binding sites from the high-resolution dataset (DS HR) are identified by an asterisk 

preceding the PDB_ID. A charge of (-1) was assigned to acidic side-chain ligands Glu 

and Asp, and the Cys thiol  [218]. Table 4.1 presents a summary of all statistical data 

from the analysis. A comparison of the values reported for DS HR and DS Final show 

little difference in ligand distance values, coordination number, and charge, indicating 

that resolution did not significantly alter the results. Consequently, unless otherwise 

specified, results from only the DS Final dataset are discussed from the analysis. These 

statistical results for Pb2+ are then compared with data recently compiled for Ca2+ to 

emphasize differences in binding characteristics exhibited by the two metals. 
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Table 4.1 Pb2+-binding statistics 

  DS HR DS Final 

Total PDB proteins in study 7 21 

Total Pb binding sites evaluated 27 48 

Total target ligand atoms 105 177 

Total Oaa ligands 86 118 

Total OHOH ligands 16 36 

Total N ligands 3 10 

Total S ligands 0 13 

Total sites with N ligands 3 9 
   

Mean CN, PLW 3.9 ± 2.3 3.7 ± 2.0 

% CN 2-5 77.8 77.1 

% CN 6-9 22.2 16.7 

Mean CN, PL 3.3 ± 2.0 2.9 ± 1.7 

% CN 2-5 70.4 72.9 

% CN 6-9 14.8 8.3 

Mean charge by site -1.8 -1.7 
   

Total identified bidentate pairs 24 36 
Total sites with bidentate 
ligands 21 30 

% Sites with bidentate ligands 77.8 62.5 
   

Mean distance, Pb-Oaa, (Å) 2.7 ± 0.4 2.7 ± 0.4 

Mean distance, Pb-OHOH, (Å) 2.8 ± 0.3 2.8 ± 0.4 

Mean distance, Pb-N (Å) 2.7 ± 0.3 2.6 ± 0.4 

Mean distance, Pb-S (Å) ---  3.2 ± 0.3 

DS HR: High resolution dataset (R ≤ 1.76 Å), 3.5 Å ligand-atom distance cut off. DS 
Final: Summary dataset, no restriction on resolution, 3.5 Å ligand-atom distance cut off, 
refined for bidentate ligands. CN: Coordination Number. PLW: Ligands from protein and 
water. PL: Ligands from protein only. Oaa: Amino acid oxygen ligand. OHOH: Water 
oxygen ligand.  

4.2 Ligand coordination by binding site 

 
 The coordination numbers presented in Table 4.1 are differentiated based on the 

inclusion or exclusion of water oxygen ligands. For the DS Final dataset, mean CN 

values were reported as 2.9 ± 1.7 and 3.7 ± 2.0 for the exclusion (PL) and inclusion 

(PLW) of water ligands, respectively.  As reported in this study, ligands (e.g. – carboxyl 
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groups) are monodentate unless specifically identified as bidentate; i.e. comprising two 

ligand atoms. Water occupancies in the crystalline structures are considered 

approximations. The distribution of CN by site (Figure 4.1a) indicates that binding was 

most commonly observed with two, or to a lesser extent, four ligands. Interestingly, nine 

sites were reported with only a single amino acid ligand atom for coordination when 

water was excluded, and three of these were unchanged even with the inclusion of 

oxygen ligands from water.  

 The distribution of CN values in Table 4.1 is further divided into percentages 

falling between the ranges of 2 to 5 ligands (77.1%) and 6 to 9 ligands (16.7%). The CN 

range of 2 to 5 was selected for two reasons. First, previous studies have indicated that 

Pb2+ may adopt a binding structure similar to Zn2+ , using 4 to 6 binding ligands, as a 

result of ionic displacement  [50-51]. Second, a study of crystalline structure data in the 

Cambridge Structural Database by Shimoni-Livny et al. [221] observed two general 

geometries for Pb2+-binding: a holodirected, spherical geometry comprised of 9 to 10 

ligands (Figure 3.1c); and a hemidirected geometry where 2 to 5 coordination ligands 

occupy only half of a sphere (Figure 3.1d).  It is notable that a hemidirected or planar 

geometry was also observed in nearly 28% of the Non-EF-Hand Ca2+ binding sites 

surveyed in our recent statistical analysis [229], indicating that this geometry is not 

confined to Pb2+-binding. 

 Alternatively, the CN range of 6 to 9 was selected for comparison with Ca2+-

binding (6 to 8 ligands) [245] and because previous studies with small molecules 

suggested a coordination number of 6.9 for Pb2+  [5]. The results of this analysis indicate 

that binding coordination of Pb2+, based on number of ligands, is more closely-related to 

that of Zn2+ than Ca2+. This is particularly apparent with respect to the EF-Hand Ca2+-

binding sites which average 6 to 8 ligands in well-ordered structures. These results, 

which conflict with conclusions reported from studies of small molecules, are however, 
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consistent with hard-soft acid models for metals. Ca2+ is classified as a hard Lewis acid 

(Appendix, Table A.7) with an ionic radius of 0.99Å - 1.12 Å for a typical coordination 

number of 6 to 8 based on studies of small molecules  [5, 208]. Conversely, Pb2+ has a 

reported ionic radius of 1.12 Å – 1.19 Å for similar coordination. Both Pb2+ and Zn2+ are 

classified as borderline acids, exhibiting properties of both hard and soft acids, so it is 

reasonable to assume that Pb2+ may share more similar binding features (e.g., 

polarizability) with Zn2+ than Ca2+. 

4.3 Charge by binding site 

 

 The Relative % Distribution of charge between the two datasets is shown in 

Figure 4.1b, indicating a range from 0 to -4 in the binding site, with a mean negative 

charge of 1.7 ± 1.1 for DS Final (Table 4.1). The mean and net charge values reported 

for the metal binding sites do not reflect positive charge contribution from the divalent 

cation. Previous studies of Ca2+ have indicated that higher binding affinities are found 

with a net negative charge within 5-15 Å of the ion  [256-257], and a microenvironment 

containing 3-4 negative charges likely represents an optimal charge configuration  [129, 

218]. However, a more recent study in our laboratory indicates that this is representative 

of the more highly-structured EF-Hand proteins. The mean integer net negative charge 

for Pb2+-binding sites (2 ± 1) falls between the structurally more diverse Non-EF-Hand 

proteins (1 ± 1) and the EF-Hand proteins (3 ± 1). Charge interactions for Pb2+ are likely 

stabilized due to the higher electronegativity (Appendix, Table A.7) and increased 

potential for partial covalent bond formation of Pb2+, compared with Ca2+. 
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Figure 4.1 Select Pb2+-binding statistics 
(a) Frequency distribution of CN values, with and without water, for DS HR and DS Final.  
(b) Relative % distribution of charge values for Pb2+-binding sites from DS HR and DS 
Final, and Ca2+-binding sites for Non-EF-Hand and EF-Hand proteins. (c) Distribution of 
CN values by type for six Pb2+-binding sites containing sulfur ligands. Other AA in the 
figure represents ligand atoms other than sulfur from amino acids. 
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4.4 Binding ligands 

 

 Oxygen atoms from amino acids represent the major binding ligand for Pb2+ 

(118), followed by oxygen from water (36), sulfur (13) and nitrogen (10) (Table 4.1). The 

% Relative Distribution of ligand atoms shown in Figure 4.2a indicates that binding 

ligand preference for Pb2+ followed the order sidechain Glu (38.4%) > sidechain Asp 

(20.3%) = water (20.3%) > Sulfur (7.3%). For comparison, the distributions of ligand 

preference for EF-Hand and Non-EF-Hand Ca2+-binding proteins are presented in 

Figures 4.2b and 4.2c, respectively. From these figures, it can be seen that Pb2+ differs 

in several significant ways from Ca2+-binding. The increased use of sidechain Glu by 

Pb2+ (38.4%) followed by sidechain Asp (20.3%) contrasts sharply with trends observed 

in both the highly-structured EF-Hand sites (sidechain Asp, 29.7%; sidechain Glu 26.6%) 

and the more structurally-diverse Non-EF-Hand sites (sidechain Asp, 24.5%;  sidechain 

Glu, 10.4%). The presence of water in the Pb2+ sites falls roughly in the middle of the two 

Ca2+-binding classes, but utilization of carbonyl oxygen atoms by Pb2+ is considerably 

lower than both the EF and Non-EF Ca2+-binding classes (Figure 4.2).  

 Table 4.1 also summarizes the mean binding distance values determined from 

the analysis. The Pb-O distance (for amino acids) was found to be 2.7 ± 0.4 Å, which is 

slightly higher than the mean of 2.4 ± 0.2 Å reported for Ca-O. The mean distances 

reported for Pb-O (water), Pb-N and Pb-S were 2.8 ± 0.4 Å, 2.6 ± 0.4 Å, and 3.2 ± 0.3 Å, 

respectively. Except for Pb-S, these values were nearly identical despite expectations 

that Pb-N would exhibit a longer binding distance based on a comparison with data from 

Sarret et al. [187], where ranges for Pb-O, Pb-N  and Pb-S  were reported as 2.2-4.2 Å, 

3.0-4.2 Å, and 2.6-3.4 Å, respectively. 

 Nitrogen is generally accepted as a binding ligand for Pb2+, and marginally for 

Ca2+, with small molecules; however, in our detailed statistical analysis of protein 
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calcium binding sites, less than 1% of all identified potential ligands were nitrogen 

atoms, and the limited contribution by nitrogen to bind Pb2+ in proteins is clear in Figure 

4.2a. Only ten nitrogen atoms were identified as potential ligands within a cutoff distance 

of 3.5 Å. Nine of these were from side-chains, with six from His, two from Lys and one 

from Gln. Although the low pKa (6.0) for His makes it a suitable binding ligand, Lys is 

unlikely to function as a binding ligand as its pKa is significantly higher than physiological 

pH. For Gln, and presumably Asn, it is more likely to assume that binding of Pb2+ would 

occur with the polar, uncharged –CO(NH2) functional group, rather than the isolated 

sidechain nitrogen, due to the conjugated π–bond system and the planar structure of the 

group resulting from resonance. It can be inferred from these data that nitrogen plays a 

more limited role in the binding of Pb2+ to proteins than what has been reported in the 

case of small molecules. 

 Additionally, since Pb2+ was previously reported by Magyar and Andersen [49, 

259] to bind in a thiol-rich site with a tendency to adopt a three ligand, trigonal pyramidal 

geometry, we attempted to evaluate the limited data available for sulfur ligands.  As 

shown in Figure 4.1c, data were available for only six Pb2+-binding sites which included 

sulfur ligands, where coordination number values reported were 1, 2, 4 and 6, with 

binding by 4 ligands apparent in three of the six sites. A trigonal pyramidal geometry for 

Pb2+ was not observed in our study; however this may be due to fact that the structures 

in our limited dataset were not identical to those reported by Magyar and Andersen. 
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Figure 4.2 Comparison of ligand distributions between Pb2+ and Ca2+ 
Percent distribution of ligands for (a) Pb2+, (b) EF-Hand Ca2+ and (c) Non-EF-Hand Ca2+ 
binding sites, where: SC indicates sidechain; MC indicates mainchain; O, N, S indicates 
oxygen, nitrogen, and sulfur, respectively, and; HOH represents ligand oxygen from 
water. 

4.5 Structural analysis 

 

 Next we evaluated structural changes associated with the displacement of Ca2+ 

by Pb2+ in the EF-Hand protein CaM. CaM, like most EF-Hand proteins, exhibits an 

irregular pentagonal-bipyramidal geometry (Figure 3.1a), with 5 planar ligands at -Z, Y, 

Z, and –Y, where –Z is a bidentate ligand. Ligands at X and –X are typically oxygen 

atoms from a side-chain carboxyl group and a bound water molecule, respectively. CaM 

also has high sequence similarity between species. An alignment for PDB proteins 3cln, 

1exr, and 1n0y using ClustalW (http://www.ebi.ac.uk/clustalw/) indicates that the Ca2+- 

http://www.ebi.ac.uk/clustalw/
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and Pb2+-bound complexes of CaM (1exr.pdb and 1n0y.pdb) share 100% sequence 

similarity except for an additional Ala at the N-terminal, and a Lys at the C-terminal in 

1n0y, and both are 88% homologous to 3cln (Appendix, Figure A.1). The structures of 

Ca2+ -CaM (1exr) and Pb2+ -CaM (1n0y, Figure 1.4e), were compared by Wilson et al. 

[134], who reported a Cα  RMSD of 2.1 Å in the N-terminal domain compared with 1.1 Å 

in the C-terminal domain, with the most apparent deviation occurring between the N-

terminal helix A and the C-terminal half of helix D/E. Additionally, Figure 1.4e shows that 

14 Pb2+ ions are bound in the crystalline structure of CaM (1n0y), such that Pb2+ ions 

have not only replaced Ca2+ ions in the binding pockets, but have also become bound to 

surface ligands.  

 The pronounced global conformational changes observed in Figure 1.4e for Pb2+ 

bound CaM indicate new folding that is not observed in the Ca2+ bound form. An 

electrostatic potential surface map of protein 1n0y generated using DelPhi and GRASP 

(Figure 1.4f) [250-251, 253-254] shows an area of concentrated negative charge in the 

folding groove between Chains A and B where the 4 Pb2+ ions appear bound in the 

structure. However, the backbone RMSD comparing sites EF-I through EF-IV in the two 

structures, calculated using Sybyl software (Tripos, St. Louis, MO), indicated RMSD 

values ranging from 0.12 in EF-III, to 0.35 in EF-IV (Table 4.2). This suggests minimal 

disruption of the site due to ion displacement. To further validate this, a Ramachandran 

plot generated by VADAR  [260] for 1n0y revealed that all dihedral angles fall within 

allowed regions, indicating no apparent strain on the backbone associated with binding 

of Pb2+. The limited perturbation in the binding sites and the secondary binding of Pb2+ 

coincident with regions of high electrostatic potential strongly suggest that the observed 

conformational changes are independent of ion displacement, but related instead to our 

proposed mechanism of opportunistic binding which would imply much stronger binding 
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affinity for the Pb2+ ions than what is typically observed with low affinity, non-specific 

binding of metals at high concentrations.   

Table 4.2 Summary of angle/distance values for 1exr and 1n0y 

  EF-I EF-II EF-III EF-IV Mean 

1EXR total Ca
2+

 
ligands 

6 6 6 6 6 

      

1N0Y total Pb
2+

 
ligands 

7 8 6 7 7 

      
Mean sum Δ 

Binding 
Distance Ca→ 

Pb (Å) 

0.14 0.08 0.01 0.08 0.08 

      

Mean sum Δ CLI 
Angle Ca→ Pb 

(°) 
-8.67 -5.38 -1.34 -4.62 -5.00 

      

RMSD by site 0.28 0.28 0.12 0.35 0.26 ± 0.10 

      

Ca
2+

 planar 
monodentate 
LIL angles (°) 

78.14 ± 3.34 78.05 ± 3.08 77.07 ± 1.75 78.76 ± 1.59 78.00 ± 2.37 

      

Pb
2+

 planar 
monodentate 
LIL angles (°) 

78.95 ± 5.86 75.80 ± 4.74 77.12 ± 2.00 78.70 ± 5.89 77.64 ± 4.57 

      

Ca
2+

 planar 
bidentate LIL 

angles (°) 
53.01 51.48 52.30 52.35 52.29 ± 0.63 

      

Pb
2+

 planar 
bidentate LIL 

angles (°) 
50.84 46.49 51.77 48.99 49.52 ± 2.33 

      

Ca
2+

 Ion 
Dihedral (°) 

4.91 4.12 7.43 0.23 4.17 ± 2.98 

      
Pb

2+
 Ion 

Dihedral (°) 
20.76 26.03 21.10 11.79 19.92 ± 5.93 

      
Distance of Ca

2+
 

ion out of 
bidentate plane 

0.24 0.21 0.37 0.01 0.21 ± 0.15 

      

Distance of Pb
2+

 
ion out of 

bidentate plane 
1.01 1.36 1.02 0.61 1.00 ± 0.31 

CLI: Carbon-Ligand-Ion. LIL: Ligand-Ion-Ligand. 
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 Consistent with this, a comparison of paired models (Figure 4.3: ab, cd, ef, gh) 

corresponding to EF sites I-IV for Ca2+-binding and Pb2+-binding indicates that the basic 

geometry for binding of Ca2+ is conserved upon binding with Pb2+, and the same binding 

ligands, with minor exceptions, are used by both ions (Appendix, Table A.8). A 

comparison of distance and angle values for binding ligands utilized by both ions (Table 

A.8) shows a negligible, mean net increase in the binding distance (0.08 Å) and a 

corresponding mean sum decrease in the C-Lig-Ion angle (-5.00 º) for Pb2+, but the 

monodentate and bidentate carbon-ligand-ion angles were nearly identical, and in both 

cases, the mean differences fall within the range of the standard deviation, so they are in 

all probability not statistically different. 

 The data associated with the bidentate dihedral angles for Ca2+-binding, as 

summarized in Table 4.2, correlate well with research reported by McPhalen [219] that 

indicated a mean distance of 0.4 Å for the Ca2+ ion out of the carboxlyate plane, with a φ 

angle under 30°. For Pb2+, however, the mean average distance for the ion increases to 

1.00 ± 0.31 Å from 0.21 ± 0.15 Å observed for Ca2+, and the mean bidentate ligand 

dihedral (φ) angle was much larger for the Pb2+ ion (19.92 ± 5.93º) than for Ca2+ (4.17 ± 

2.98º) (Figure 4.4a).    

 Mean values of 6 and 7 coordination ligands (excluding water) were found for 

Ca2+ and Pb2+ respectively (Table 4.2), indicating that Pb2+ may take advantage of 

additional proximate ligand oxygen atoms when available, without disruption to the 

binding site. Nitrogen atoms potentially available as sidechain ligands in the binding loop 

sequence (Asn60 and Asn97; Figure 4.4d and Figure 4.4f, respectively) do not appear to 

be involved in binding, although there are no apparent barriers restricting rotation of the 

amide group around the Cγ-Cβ bond. This may, however, be due to mislabeling of 

atoms in the original structure.  
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 For comparative purposes, two structures of yeast 5-aminolaevulinic acid 

dehydratase (ALAD) from Saccharomyces cerevisiae bound with Zn2+ (1eb3.pdb) and 

Pb2+ (1qnv.pdb) were also evaluated for changes associated with ionic displacement by 

Pb2+. ALAD is a 280-kDa protein comprised of eight identical subunits that each bind a 

single Zn2+ ion. A single subunit from Chain A is presented in PDB files 1eb3 and 1qnv. 

Previous work by Bergdahl identified ALAD as the protein binding Pb2+ in human 

erythrocytes, where 99% of free Pb2+ concentrates in the blood  [261], and the 

relationship between Pb2+ toxicity and human ALAD has been well-established  [262].  

 Data from a structural analysis are summarized in Table A.9 (Appendix), which 

demonstrates strong similarity to changes observed in the EF-Hand binding sites for 

CaM. Distortion of the binding site is observed based on a mean increase in the binding 

distances of the three Cys thiol ligands (0.54 Å) and decreasing carbon-ligand-ion (CLI) 

angles for Cys133 and Cys135 (Table A.9) which is consistent with the larger radius of 

Pb2+.   

 Additionally, the carbonyl oxygen of Ser179 which does not appear to be a 

binding ligand for Zn2+ (Figure 4.4d, top) is reoriented 0.9 Å to interact with the Pb2+ ion 

(Figure 4.4d, bottom). The binding site is formed in a deep pocket where interestingly, a 

second Pb2+ ion is bound 4.40 Å from the ion occupying the binding site,  sharing the SG 

sulfur ligand from Cys143, whereas only a single Zn2+ ion is bound in the 1eb3 ALAD 

structure. Generation of an electrostatic potential map with Sybyl did not indicate dense 

charge clustering in this region, possibly due to the buried nature of the site. 

 Erskine et al., who deposited the structure 1qnv.pdb, reported a RMSD value of 

0.4 for 326 matched Cα atoms  [263]. Calculations with Sybyl for the resolved structural 

region indicated a backbone RMSD of 0.58 for the structure comprising residues 133-

179 and a backbone RMSD value of 1.43 for the structure comprising residues 1-219. 
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As was seen with the displacement of Ca2+, disruption of the backbone in the binding 

site microenvironment appeared minimal as a result of Pb2+-binding. 
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Figure 4.3 Paired binding sites EF-I (ab) EF-II (cd) EF-III (ef) and EF-IV (gh) for PDB 
proteins 1exr (left) and 1n0y (right) 
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Figure 4.4 Ca2+ and Pb2+ binding site occupancy 
(a) Illustration of position of the Pb2+ ion (left) and the Ca2+ (right) with respect to the 
carboxlyate bidentate plane. D and φ indicate distance and angle of ion relative to plane 
formed by Cγ, Oδ1 and Oδ2. (b) Positions of Ca2+ ion (top) and Pb2+ ion (bottom) with 
respect to pentagonal plane. (c) Example illustrating comparison of Ca2+- and Pb2+-
binding characteristics with respect to the pentagonal plane. DCa and DPb indicate ion 
distance out of pentagonal plane. (d) Comparison of a binding site from ALAD protein 
showing Zn2+-binding in 1eb3.pdb (top) and Pb2+-binding in 1qnv (bottom) where one 
additional ligand (Ser179) is provided for binding of Pb2+. For the color scheme, red is 
oxygen, blue is nitrogen, yellow is sulfur, and green is carbon. In (c), the small, red 
spheres indicate water molecules. 
 

Based on the results of our analysis, Figure 4.4 illustrates characteristics of a 

proposed model showing the differences between Ca2+ and Pb2+ during binding. In this 

model, which includes parameters that may be extensible to Zn2+-binding sites, the 

slightly larger ionic radius of Pb2+ is accommodated by small changes in sidechain ligand 

orientations, increased displacement of the ion (DPb) relative to the Ca2+ occupancy (DCa) 

of the site (Figure 4.4c), and more pronounced reorientation of the Glu anchor at –Z 
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(Figure 4.4a). This would account for the apparent minimal distortion in the pentagonal 

plane (Figure 4.4b) and more significantly, the backbone. This proposed model accounts 

for the larger ionic radius of Pb2+, minor rotation of the side-chains, the net increase in 

binding distance and net decrease in bond angles when binding Pb2+ (Table 4.2), and 

the increase observed in the bidentate ligand dihedral (φ) angle for the Pb2+ ion. It is also 

consistent with previously-noted observations indicating that Pb2+ initially activates then 

deactivates CaM with increasing Pb2+ concentration, where activation of CaM results 

from ionic displacement, followed by strong opportunistic binding to effect conformational 

changes. 

4.6 Conclusions 

 It is apparent from both the structural and database analyses of Pb2+-binding 

sites that oxygen is the dominant binding ligand for Pb2+, or sulfur in the case of Zn2+-

binding sites, with only negligible interaction between Pb2+ and nitrogen. The Pb2+ 

binding sites were significantly different from those observed for EF-Hand proteins, 

requiring fewer coordinating ligands and less negative charge, but sharing more 

structural similarity with the more disordered Non-EF-Hand sites. Conversely, the 

increased utilization by Pb2+ of Glu (38.4%) over Asp (20.3%) reverses the trend 

observed for Non-EF-Hand CaBPs (10.4% and 24.5%, respectively), indicating 

differences in the two binding models not accounted for solely by ionic charge and atom 

type. Moreover, the significant structural alterations in CaM appear to be due to binding 

of Pb2+ in regions of high surface negative charge potential (Figure 1.4f), rather than 

exchange of Ca2+ with Pb2+, which is supported by the low RMSD values reported for 

ionic displacement (Table 4.2). The combination of these results, and previous studies 

citing the initial activation and subsequent inhibition of CaM as a function of toxic metal 

concentration [83, 85-86, 88, 137-138], argues that strong opportunistic binding, either 
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coupled with, or independent of, ionic displacement, has several important ramifications 

with respect to toxicity. First, proteins may bind both opportunistically and by ionic 

displacement, resulting in activation or inhibition of the protein as a function of metal 

concentration. Studies of CaM showing initial activation followed by inhibition in 

response to increasing concentration of metal ion (e.g. – Pb2+) suggests that initial 

binding in the active sites may first activate the protein as if bound with Ca2+, but the 

subsequent deactivation may result from more pronounced conformational changes 

resulting from additional opportunistic binding. Second, strong non-specific or 

opportunistic binding can potentially increase solubility and facilitate transport and 

diffusion of toxic metals, as may be the case with ALAD from human blood erythrocytes, 

which may potentially bind multiple Pb2+ ions in a site normally occupied by a single Zn2+ 

ion.  

 Furthermore, the apparent, promiscuous binding of Pb2+ is suggested by the 

variety of ions it can displace (Table A.1), its adaptability to different coordination 

geometries, and the wide range of coordination numbers and charge values associated 

with opportunistic binding in the absence of well-defined binding sites. Additionally, 

recently reported studies indicate that bacterial proteins encode different binding motifs 

in sensors capable of detecting Pb2+. CmtR, a Cd2+/Pb2+ regulator expressed in 

Mycobacterium tuberculosis, binds Pb2+ with three Cys thiols, more typical of Zn2+ 

binding  [264]. However, in Ralstonia metallidurans strain CH34, a Cys ligand is replaced 

by two Glu residues, resulting in a binding motif more similar to that of Ca2+  [23]. It is 

presumed that the ability of Pb2+ to bind opportunistically may extend to non-

metalloproteins, thus increasing the number of potential target proteins whose function 

may be altered due to the introduction of toxic metals.  
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5 Investigation of Pb2+-toxicity via Ca2+-binding proteins 

5.1 Fluorescent response of Pb2+-binding in isolated EF-hand Ca2+-binding site 

 Previous work in our laboratory had produced unusual results with respect to 

binding of Pb2+ with Enhanced Green Fluorescent Protein (EGFP) and several 

engineered variants with grafted Ca2+-binding sites [265]. Changes in signal intensity 

were observed during titrations of Pb2+ with EGFP and variants, regardless of whether a 

metal-binding site was grafted to the construct. Additionally, during competitive titrations 

where Pb2+ was added in µM concentrations in the presence of mM concentrations of 

Ca2+, changes in fluorescence intensity were coupled with small but persistent red-shifts 

in the spectra, as seen in Figure 5.1 through Figure 5.4. These results were consistent 

with our proposed hypothesis concerning opportunistic binding as a potential avenue of 

molecular toxicity for Pb2+.  

Using EGFPwtF as a scaffold, several variants were produced by grafting the 

calcium-binding loop III (sequence DKDGNGYISAAE) and it‘s flanking E (sequence 

EEEIREAFRVF) and F (sequence LRHVMTNL) helices from calmodulin onto one of 

three targeted, solvent-exposed loops on EGFPwtF (Figure 5.5), designated herein as A, 

B and C (not shown in Figure 5.5). This grafting approach has been used to evaluate 

EF-hand Ca2+-binding motifs [173, 175], and previous work in our lab has demonstrated 

that Ca2+ binding motifs maintain their binding properties when grafted onto non-Ca2+-

binding proteins [174, 266]. The E-III-F segments were variously combined as indicated 

in Figure 5.5, and will be referenced as sub-variant types 1-4 (e.g, EGFP-C2 indicates 

sub-variant 2, the E Helix and Loop III only, grafted onto EGFP at site C). 
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Figure 5.1 490 nm fluorometric emission scans of 1 µM EGFP-C2 variant 
Competitive titration between 1 mM Ca2+ and 0-100 µM Pb2+ in 10 mM chelexed TRIS-Cl 
buffer, pH 7.4. Red-shift observed at 5 µm Pb2+ from 511 nm to 513 nm. 
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Figure 5.2 398 nm fluorometric emission scans of 1 µM EGFP-C2 variant 
Competitive titration between 1 mM Ca2+ and 0-100 µM Pb2+ in 10 mM chelexed TRIS-Cl 
buffer, pH 7.4. Red-shift observed at 5 µm Pb2+ from 511 nm to 513 nm. 
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Figure 5.3 490 nm fluorometric emission scans of 1 µM EGFPwtF EF172 variant 
Competitive titration between 1 mM Ca2+ and 0-100 µM Pb2+ in 10 mM chelexed TRIS-Cl 
buffer, pH 7.4. Red-shift observed at 5 µm Pb2+ from 511 nm to 513 nm. 
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Figure 5.4 398 nm fluorometric emission scans of 1 µM EGFP-C-4 variant 
Competitive titration between 1 mM Ca2+ and 0-100 µM Pb2+ in 10 mM chelexed TRIS-Cl 
buffer, pH 7.4. Red-shift observed at 5 µm Pb2+ from 511 nm to 513 nm. 
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Figure 5.5 Grafting approach to protein engineering 
(Top) Grafting approach to incorporate all or part of the EF-III binding motif from CaM 
into EGFP at solvent-exposed loops. (Bottom left). Coding for partial or complete EF-III 
components grafted into EGFP. (Bottom right) Calculation of Kd for Pb2+ binding to a 
Ca2+-binding site with 1 µM EGFP-C2 in chelex-treated 10 mM TRIS buffer, pH 7.4. 
Fluorescence changes were measured with addition of Pb2+ at 398 nm and 490 nm. 
Changes in the ratio F398/F490 were plotted against Pb2+ concentration. Curve-fitting of 
data indicated the binding affinity of Pb2+ for our modified EGFP variants was over 200-
fold greater than that of Ca2+ (inset). 
 

Normalized data for variants C2 and C4 were plotted and Kd values were 

calculated by curve-fitting with Eq. 7. The results indicated that Pb2+ has 200-fold or 

higher affinity for CaM EF-III than Ca2+ (Figure 5.5). 
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5.2 CaM tyrosine fluorescence response to binding of Pb2+, Gd3+and In3+  
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Figure 5.6 CaM tyrosine fluorescence 
Equilibrium titration with wt-CaM and (a) Ca2+ , and (b) Gd3+  
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Figure 5.7 Fluorescent response of Gd3+, Pb2+ and In3+ in 10 mM TRIS 
 

Tyrosine in CaM exhibits a change in its fluorescence emission at ~304 nm as a 

result of metal binding. A series of titrations were conducted to measure the tyrosine 

response to Ca2+ and Gd3+ (Figure 5.6). The binding affinity for calcium to the C-

Terminal of CaM, based on tyrosine fluorescence, was previously calculated to be 2 µM 
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(data not shown). Additionally, we observed in Figure 5.6b a second peak emerging at 

312 nm that rapidly obscured the tyrosine fluorescence peak. It is believed that this 

second peak is a result of Gd3+ interaction with the buffering system, but to date, this has 

not been established. It was apparent from these preliminary data, however, that a 

different buffering system was required to evaluate Gd3+. TRIS was then evaluated as an 

alternative to HEPES, with no apparent interaction (Figure 5.7). It should be noted that 

Gd3+ precipitates in solutions at some point after 64 µM concentration, as seen in the 

isolated spectral line at the top of Figure 5.7. 

5.3 Determining Kd for Ca2+ and Pb2+ binding with CaM by intrinsic fluorescence  

Methods for establishing Kd values for Ca2+ binding to the N- and C-terminal 

domains of CaM based on metal-induced changes to the intrinsic fluorescence of Phe 

and Tyr residues were previously detailed by VanScyoc [191]. The distribution of Tyr 

residues in the C-terminal domain and Phe residues in the N-terminal domain are 

highlighted in bold in Figure 2.7. This delineation allows for monitoring of domain-

specific, metal-induced fluorescent changes. Effective Kd values for Ca2+ binding to the 

N- and C-terminal domains were found to be 1.15 ± 0.68 X 10-5 M and 2.04 ± 0.02 X 10-6 

M, respectively (Table 5.1). The calculated Kd values are consistent both with reported 

values for Ca2+ [267] and with known Ca2+ intracellular concentrations in the μM range. 

Table 5.1 Domain-specific binding dissociation constants for CaM 

  Kd (M) 

  Ca2+ Pb2+ 

N-terminal (EF-Hand I & II) 1.15 ± 0.68 X 10-5 1.40 ± 0.30 X 10-6 

C-terminal (EF-Hand III & IV) 2.04 ± 0.02 X 10-6 a7.34 ± 0.95 X 10-7 

C-terminal (EF-Hand III & IV) -- b6.69 ± 0.63 X 10-7 

C-terminal (secondary) -- 1.93 ± 0.32 X 10-6 
a Direct titration 
b Competitive titration with Ca2+ 
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Direct titration of Pb2+ to CaM produced a decrease in Phe fluorescence (Figure 

5.8b), similar to the response observed with Ca2+ (Figure 5.8a). Curve-fitting of data, 

based on Eq. 7, produced a calculated Kd of 1.40±0.30 X 10-6 M for binding of Pb2+ in the 

N-terminal domain (Table 5.1).  
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Figure 5.8 CaM fluorescence with binding of Ca2+ and Pb2+ 
(a) Mean normalized Tyr and Phe fluorescence changes as functions of the ratio 
[Ca2+]/[CaM]. (b) Relative Tyr fluorescence as a function of Pb2+:CaM complex formation 
for CaM (open circles) and CaMDelete (filled circles). The observed biphasic fluorescent 
response is divided into (c) Phase 1 with a calculated Kd of 7.34 ± 0.95 X 10-7 M and (d) 
Phase 2 with a calculated Kd of 1.93 ± 0.32 X 10-6 M. (e) Mean normalized Phe 
fluorescence change as a function of total [Pb2+] for the N-terminal domain. The 
calculated Kd of 1.40 ± 0.30 X 10-6 M was equivalent to the value calculated in (d) for 
Phase 2 of the Tyr fluorescence associated with the C-terminal domain sites.  
 

Different from the increase in Tyr fluorescence upon addition of Ca2+ (Figure 

5.8a), the direct titration of Pb2+ produced a biphasic response characterized by a rapid 

initial increase in fluorescence intensity up to ~2:1 molar equivalents of Pb2+/Protein, 

followed by a hyperbolic decrease in intensity reaching a minima below 10 molar 

equivalents of Pb2+ (Figure 5.8b). The initial increase (Phase 1, Figure 5.8c) which 

a 

b 

c 

d e 
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mimics the Ca2+ response and peaks at ~2 ME of Pb2+, was interpreted as binding of 

Pb2+ in one of the two binding sites EF-III and EF-IV, while the subsequent decrease 

(Phase 2, Figure 5.8d) was interpreted as binding in the other C-terminal domain site. 

Curve-fitting of data, based on Eq. 7, produced a calculated Kd of 7.34 ± 0.95 X 10-7 M 

for Phase 1 and a Kd of 1.93 ± 0.32 X 10-6 M for Phase 2 (Table 5.1). Interestingly, this 

value and the associated curve of the second phase in the tyrosine titration (Figure 5.8d) 

are nearly identical to the corresponding curve and calculated Kd observed for the Phe 

signal change for the N-terminal domain (Figure 5.8e).  These results are consistent with 

a single higher affinity Pb2+-binding site in the C-terminal domain and nearly equivalent 

affinity for the three remaining sites. 

Precipitation was typically observed at or beyond 10 ME Pb2+. Except for a higher 

observed fluorescence intensity, the same biphasic response was observed for both 

CaM and CaM-Delete (not shown), indicating that fluorescent changes were 

independent of activity in the deleted subset of residues from the central linker region 

(76-80).  

Competitive titrations to analyze changes in Tyr fluorescence were also 

conducted. CaM was first presaturated with Ca2+ followed by titration with Pb2+, however, 

no change in fluorescence intensity was observed using this approach and the samples 

precipitated with increasing Pb2+ concentration (data not shown). Based on this 

preliminary evidence, and results from NMR studies suggesting that Pb2+ does not 

readily displace Ca2+ in the C-terminal domain sites, we instead equilibrated 10 µM CaM 

with different concentrations of Pb2+ followed by titration with Ca2+. At 20 µM equilibration 

(Figure 5.9a), the addition of Ca2+ produced a plot similar to that observed for direct 

titration of Pb2+, indicating rapid displacement of Pb2+ by Ca2+ in the two C-terminal EF-

Hand sites. However, at 50 µM Pb2+ equilibration (Figure 5.9b), a biphasic curve was 

observed, similar to the response observed with direct Pb2+ titration (Figure 5.8c), which 
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peaked near 20 µM (2 ME Pb2+), followed by decreasing fluorescence. Assuming that 

the first phase of the curve represents binding in the EF-hand sites, we concluded that 

the decreasing fluorescence observed from 20-50 µM resulted from binding in the lower 

affinity C-terminal domain site. Finally, at 100 µM Pb2+ presaturation (Figure 5.9c), 

sample precipitation became apparent after addition of the first 2 ME Ca2+. This latter 

result suggested that Ca2+ displaced Pb2+, followed by precipitation of free Pb2+. 

Collectively, these results indicated that the C-terminal EF-Hand sites bind Ca2+ 

selectively even in the presence of high concentrations of Pb2+ and despite the apparent 

higher binding affinity of CaM for Pb2+ as calculated based in a Ca2+-free environment 

(Table 5.1). This would indicate also that binding of Pb2+ does not conform to the same 

model of positive cooperativity between paired sites as Ca2+, consistent with 

observations from our HSQC NMR data.  
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Figure 5.9 Calcium titrations with 10 μM wt-CaM presaturated with Pb2+ 
Samples were prepared in 10 mM Tris pH 7.4, 100 mM KCl, presaturated with (a) 20, (b) 
50 and (c) 100 μM Pb2+, respectively.  
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Based on these preliminary results, 10 µM samples of Ca2+-free CaM were pre-

equilibrated with 20 µM Pb2+, assuming that all Pb2+ was binding to sites EF-III and EF-

IV, followed by titration of Ca2+. The resulting data is still fit with Eq. 7, but the Kd value 

returned for Pb2+ is calculated by rearranging Eq. 8 into Eq. 9, and solving for Kdm1 based 

on the known Kd for Ca2+ (Kdm2), Kd from Eq. 7 which becomes Kapp, and the total, fixed 

concentration of Pb2+ pre-equilibrated with the protein [M1]T. Results indicated a Kd (Kdm1) 

of 6.7±0.6 X 10-7 M (Table I), which overlaps the standard deviation reported for results 

obtained by direct titration of Pb2+ (Figure 5.8d). 

These results were interpreted to indicate that Pb2+ initially binds in the known 

EF-Hand sites, followed by binding of one or more additional ions in either the C-terminal 

domain or the linker region. However, aside from a marginal increase in fluorescence 

intensity in the wt-CaM titration, the same trends were observed with the CaM-Del 

variant, which did not support binding of Pb2+ in the Linker region of the protein, but was 

consistent with the possibility of an 

additional site in the C-terminal domain. 

5.4 Effect of Ca2+ titration on Phe 

fluorescence in Pb2+-bound 

CaM  

A competitive titration was also 

conducted where 10 μM CaM was 

presaturated with 50 μM Pb2+ prior to 

titration with Ca2+. This resulted in an 

oscillating fluorescence response 

(Figure 5.10) which may be due to rapid exchange between two metal ions, although 

kinetics have not been investigated as part of this study, to date.  
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Figure 5.10 CaM Phe fluorescence 
 Addition of Ca2+ to 10 μM CaM 
presaturated with 50 μM Pb2+ results in an 
oscillating fluorescent response. 
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5.5 1D NMR Spectra of Pb2+- and Ca2+-CaM complexes 

 The 1D NMR spectra presented in Figure 5.11 indicate changes in the chemical 

shifts as a consequence of adding Pb2+ to 100 µM wt-CaM in a salt free environment.  

Changes were apparent up to 6:1 molar equivalents (ME) of Pb2+/wt-CaM, however, 

precipitation was observed beginning at 8:1 (data not shown). At 6:1 ME, peak intensity 

has decreased and signals have become obscured with increased peak broadening. 

These same trends were observed in the parallel analysis in 100 mM KCl (Figure 5.12), 

indicating that the presence of high salt did not significantly inhibit the response due to 

metal-protein interactions, but did result in increased line broadening. No attempt was 

made to assign the proton spectra due to extensive overlapping of chemical shifts 

observed with proteins. This information is more readily acquired through 

multidimensional NMR experiments described later in this chapter.  

1:1
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3:1
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Figure 5.11 1H spectrum of sidechain region of CaM in salt-free buffer for titration 
of Pb2+ (0-6ME) 
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Figure 5.12 1H spectrum of sidechain region of CaM in 100 mM KCl buffer for 
titration of Pb2+ (0-6ME) 
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Figure 5.13 Competitive titrations between Ca2+ and Pb2+, spectra from 0.2-3.6 ppm 
 
 In Figure 5.13 we observe the competitive effects between Ca2+ and Pb2+. For 

consistency, Ca2+ was added up to 6:1 ME with wt-CaM, followed by the addition of Pb2+. 
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Interestingly, precipitation was observed after 3 ME of Pb2+ was added, at which point 9 

ME of metal had been titrated with the protein. We conclude from this and other results 

that CaM may only bind a maximum of 3 ME of Pb2+ in the Ca2+ -loaded, which would 

indicate that Pb2+ cannot displace all of the Ca2+ in the binding sites.    
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Figure 5.14 Ca2+ titration with 100 µM wt-CaM 
The spectrum appears unchanged following addition of 4 ME Ca2+, corresponding to 
binding in the four known EF-Hand binding sites. 
 

It can be seen in the 1D spectrum for titration of Ca2+ with CaM (Figure 5.14) that 

chemical shift changes occur with the addition of 1-4 ME of Ca2+, following which no 

further changes are observed up to 16 ME of Ca2+. In contrast, chemical shift changes 

are observed with Pb2+ up to 6 ME of metal (Figure 5.12), which suggests that 

conformational changes occur with further addition of Pb2+. These preliminary data 

suggest that Pb2+ binds not only in the known EF-Hand binding sites, but binds 
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opportunistically in secondary sites resulting in conformational changes not observed 

with the Ca2+-bound state of CaM. 

5.6 Assignment of CaM HSQC chemical shifts 

From our HNCA spectra using 15N-13C-labeled CaM and HSQC assignments 

reported by Kuboniwa [268] we were able to assign most of the HSQC chemical 

chemical shifts for apo-CaM at pH 6.5 (Figure 5.15) and pH 7.4 (Figure 5.16, see 

Appendix for full list of assignments). From these spectra it can be seen that the pH 

difference had no significant impact on the chemical shifts observed. 

 

Figure 5.15 HSQC assignment of 1.0 mM apo-CaM at 37 °C, pH 6.5 
Samples prepared in 0.1 mM NaN3, 100 mM KCl, 10% D2O, 10 mM EGTA 
 
 The chemical shifts for CaM presaturated with 6 ME Ca2+ (Figure 5.17), were 

assigned based on both HNCA experiments in our laboratory and assignments 

published by Torizawa [269]. Chemical shifts for glycine and hydrophobic residues that 

move downfield as a result of Ca2+-binding in the EF-hand sites are circled in the 

spectrum of Figure 5.17.  
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Figure 5.16 HSQC assignment of 1.0 mM apo-CaM, 37 °C, pH 7.4  
Samples prepared in 10 mM TRIS, 100 mM KCl, 10% D2O, 10 mM EGTA 

Gly in N- and C-terminal 

EF-hand sites

Hydrophobic residues in EF-hand 

sites (N- and C-terminals)

 
Figure 5.17 HSQC assignment of 400 μM Ca:CaM Complex (6:1), 37 °C, pH 6.6  
Samples prepared in 10 mM Bis-TRIS, 0.1 mM NaN3,100 mM KCl, 10% D2O, 10 mM 
EGTA 
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5.7 HSQC spectra for CaM binding with Pb2+ and Ca2+ 

Two sets of 15N-HSQC Titrations were completed. In the first series, Pb2+ was 

directly titrated into CaM, up to 6 Molar Equivalents (ME). In the second series, Ca2+ was 

added to CaM up to 6 ME, followed by 3 additional ME of Pb2+. Changes in the proton 

chemical shifts (Δδ) were calculated after all spectra were superimposed, referenced to 

a stable residue E6. A change in the chemical shift is considered significant if Δδ ≥ 

0.050. 

3:1 Ca2+:CaM

3:1 Pb2+:CaM

 
Figure 5.18 Overlaid HSQC spectra for CaM with 3 ME Ca2+ and 3 ME Pb2+  
Lack of structural homology between the Ca2+- and Pb2+-bound states is evidenced by 
the number of C-terminal domain residues in the Ca2+ spectrum lacking a corresponding 
peak from the Pb2+ spectrum. 
 

Comparison of spectra for the addition of Ca2+ to apo-CaM, the addition of Pb2+ 

to apo-CaM, and the addition of Pb2+ to CaM presaturated with Ca2+ suggests that all 

three structures differ from one another. Overlaid spectra for CaM with 3 ME Ca2+ and 3 

ME Pb2+ show significant loss of shift data, almost exclusively for residues in the C-

terminal domain (Figure 5.18). Additionally, the overlaid spectra for holo-CaM with 3 ME 

Pb2+, and apo-CaM with 3 ME Pb2+, reveals that while Pb2+ alters the structural 
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conformation of holo-CaM, it does not produce structural changes identical to those 

observed in the absence of Ca2+ (Figure 5.19). 

 

6:3:1 Ca2+:Pb2+:CaM

3:1 Pb2+:CaM

 
Figure 5.19 Overlaid HSQC spectra for CaM bound with 6 ME Ca2+ followed by 
addition of 3 ME Pb2+ 
Lack of structural homology between Pb2+-bound states in the presence and absence of 
Ca2+ is evidenced by the number of C-terminal domain residues in the dual ion spectrum 
lacking a corresponding peak from the Pb2+ spectrum. 
 

5.8 Chemical exchange with addition of Ca2+ to apo-CaM 

Analyses of spectra for the titration of Ca2+ to apo-CaM indicates a domain-

specific differentiation in chemical exchange, consistent with results published by Jaren 

et al. for paramecium CaM [73].  

At low concentrations of Ca2+ we observe both peak loss due to broadening 

associated with intermediate chemical exchange, and the emergence of coupled peaks 

as a result of slow chemical exchange (Figure 5.20a). These changes in the spectra 

contrast sharply with fast chemical exchange as seen with G59 and G23 (Figure 5.20b) 

indicating single, averaged peaks transient in the spectra in response to Ca2+-binding. In 

Figure 5.20c we color-label the residues based on fast (blue), intermediate (purple) or 
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slow (red) chemical exchange, which demonstrates that slow and intermediate exchange 

occur almost exclusively in the C-terminal domain, with fast exchange observed primarily 

in the N-terminal domain. A summary of residues and their associated chemical 

exchange can be found in Table A.10 (Appendix). 
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Figure 5.20 NMR chemical exchange in CaM 
(a) Slow chemical exchange for G113 (rounded rectangle) and G96 (circle). Both 
residues display a single peak at 0 ME Ca2+, with emergence of a second peak at 1 ME 
Ca2+. At 2 ME Ca2+, the original shift in each pair is undetectable. (b) Fast chemical 
exchange for G23 and G59. (c) CaM (3cln.pdb) with residues color-labeled to indicate 
fast (blue), intermediate (purple) and slow (red) chemical exchange. 
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The Jaren study [73] reported three important conclusions supported by our 

results: (1) The largest conformational changes associated with binding of Ca2+ were 

observed in the four EF-hand Ca2+-binding sites; (2) the initial, slow exchange in the C-

terminal domain sites indicated high affinity binding of Ca2+ occurred first in sites EF-III 

and EF-IV in the C-terminal domain; and (3) the variable exchange observed in the 

trans-domain linker region provided evidence of domain coupling. 

 
5.9 HSQC chemical shifts reveal where Ca2+ and Pb2+ bind with CaM 

By comparing the spectra from the Ca2+-free to the Ca2+-loaded states, the 

magnitude of the absolute chemical shift change (i.e., change in total distance across 

both the 1H and 15N dimensions from the initial δ values) reveals that the most significant 

changes occur for residues within the Ca2+-binding sites (Figure 5.21a), while 

comparatively small changes are observed in the linker region. For the titration of Pb2+ to 

CaM, some loss of data is observed as a number of peaks observed in the Ca2+ 

spectrum fail to reappear following addition of Pb2+. However, from the peaks that are 

assigned, it is clear that the same trend is observed with addition of Pb2+, with the most 

significant changes observed only in the canonical EF-Hand sites (Figure 5.21b). We 

can also establish a relative order of occupancy for Ca2+ by (1) comparing total Δδ 

across both dimensions for successive points in the titration (Figure 5.22) or (2) plotting 

the order in which chemical shifts disappear relative to ME of Ca2+ added (Figure 5.23). 
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Figure 5.21 Weight-averaged Δδ in 15N HSQC spectra for CaM titrations 
The EF-Hand sites and the linker region in the sequence are highlighted in gray. (a) 
Titration of Ca2+ to apo-CaM. (b) Titration of Pb2+ to apo-CaM. Some loss of data is 
observed in (b) for addition of Pb2+, however, in both graphs the highest magnitude Δδ is 
clearly observed for residues within the four EF-Hand Ca2+-binding sites, with minimal 
change observed in the linker region. (c) Titration of Pb2+ to Ca2+-loaded CaM. In (c) 
Pb2+ displaces Ca2+ in sites EF-I and EF-II, while the most significant structural changes 
occur in the linker.  
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Figure 5.22 Absolute changes in δ between successive points in the titration of 
Ca2+ to CaM 
Changes are expressed in molar ratios of Ca2+:CaM (0:1-6:1). Viewed from top to 
bottom, Δδ values indicate binding of Ca2+ first in the C-terminal domain, followed by the 
N-terminal domain. Additionally, binding in one domain affects structural changes in the 
other. The gray arrows indicate direction of changes.  
 

Based on the relative magnitude of the chemical shift changes between points in 

the titration in Figure 5.22, we can observe that Ca2+ first binds in the C-terminal domain 

followed by the N-terminal domain sites. Moreover, binding of Ca2+ in one domain is 

accompanied by structural changes in the opposite domain (i.e., domain coupling): 

Chemical shift changes from 0-2 ME Ca2+ (Figure 5.22), corresponding to binding in the 

C-terminal domain, also produces structural changes in the N-terminal domain.  
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Figure 5.23 Chemical exchange effects by binding site 
The order in which chemical shifts disappear and reappear as a function of metal 
concentration. For Ca2+, δ peaks highlighted in gray disappear first in the C-terminal 
domain followed by the N-terminal domain, then reappear with increasing concentration 
of Ca2+, showing the same trend observed with Δδ. For Pb2+, δ peaks disappear first in 
site EF-IV, followed by concurrent disappearances in Sites EF-I through EF-III. 
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From 2-3 ME Ca2+, more restructuring is observed in the N-terminal domain due 

to binding in either site EF-I or EF-II, but is still accompanied with changes in the C-

terminal domain. From 3-4 ME Ca2+, chemical shift changes indicate restructuring in 

both domains. Interestingly, the final, Ca2+-saturated state of the protein was not 

observed until the addition of 6 ME of Ca2+, as determined by comparison with a 

reference spectrum obtained for 400 μM CaM in 20 mM Ca2+ (Figure 5.17). Similarly, the 

disappearance of critical residues in each of the binding sites occurred in a domain-

specific order (Figure 5.23) with δ peaks (highlighted in gray) disappearing first in the C-

terminal domain followed by the N-terminal domain. 

For Pb2+, however, the order of occupancy could not be determined by analysis 

of Δδ which exhibited simultaneous changes in both domains (data not shown). 

However, from Figure 5.23 we observe the most significance disappearance of peaks 

first in site EF-IV, followed by nearly-concurrent disappearance of peaks for residues in 

sites EF-I through EF-III. This is consistent with results of fluorescence analysis 

indicating a single higher affinity Pb2+ site in the C-terminal domain with equivalent 

affinity for the three remaining sites. 

5.10 Disappearance of chemical shifts associated with cooperative Ca2+-binding 

The addition of Ca2+ sufficient to saturate CaM produces a number of significant 

changes in the locations of chemical shifts. Shifts for I27, I63, I100 and V136 have been 

observed to move 4-8 ppm downfield in the spectra, and this shift movement (Figure 

5.17) is related to cooperative binding between the paired binding sites in each domain 

[270]. While these changes are observed in our spectrum for Ca2+-loaded CaM, they 

were not observed for binding of Pb2+, which suggests that Pb2+ occupancy in the Ca2+-

binding sites may disrupt this intradomain cooperativity.  
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5.11 Pb2+ partially displaces Ca2+ in CaM, binds in secondary site in linker 

Titrations of Pb2+ to CaM presaturated with 6 ME of Ca2+ produced changes in 

the chemical shifts not observed with direct addition of Pb2+ to apo-CaM. Overlaying the 

HSQC spectra reveals significant movement for key residues in or adjacent to the trans-

domain linker region, specifically residues D78, D80, S81, E82, E83 and R86 (Figure 

5.24a). Analysis of absolute Δδ values (Figure 5.21c) indicate displacement of Ca2+ by 

Pb2+ only in sites EF-I and EF-II, but not sites EF-III and EF-IV, as seen for residues G25 

and G61 in Figure 5.24b, which disappear following the addition of 0.5 ME Pb2+.  

EF-I

EF-III

EF-II

EF-IV

EF-I
EF-III

EF-II

EF-IV

L4

a b

c

 
 
Figure 5.24 (a) Movement of HSQC chemical shifts for CaM bound with 6 ME Ca2+  
Pb2+ was titrated into Ca2+-bound CaM in 0.5 ME increments up to 3 ME. Residues in the 
C-terminal domain exhibit stable chemical shifts, while significant changes are observed 
for residues D78, D80, S81, E82, E83 and R86, which suggests a potential Pb2+-binding 
site in the linker region (74-82). (b) Residues in sites EF-I and EF-II, but not EF-III and 
EF-IV, disappear with addition of Pb2+ to Ca2+: CaM complex. (c) Similar results are 
observed for residues I27 and I63 occupying position 8 in the EF loop regions of sites 

EF-I and EF-II only.  
 

Additionally, chemical shifts for I27 and I63 disappear following addition of 0.5 

ME Pb2+, indicating loss of interdomain cooperativity (Figure 5.24c). However, shifts for 
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I100 and V136 remain visible in the spectrum. These results strongly indicate that Pb2+ 

displaces Ca2+ only in the N-terminal domain sites EF-I and EF-II. 

5.12 Calculation of order parameter for CaM from relaxation studies  

15N-{1H} NOE data acquired for Ca2+-saturated CaM (Figure 5.25a) followed the 

same trends reported previously by Barbato et al [271] with increasing flexibility (i.e., 

less ordered secondary structure) apparent in the end termini, the central helix, and the 

small loop region separating sites EF-III and EF-IV. 

Comparison of our NOE data between Ca2+-loaded CaM in the absence (Figure 

5.25a) or presence (Figure 5.25b) of 2 ME Pb2+ indicate increased flexibility in sites EF-I 

and EF-II, but loss of flexibility in the linker region. Additionally, NOE values for residues 

in sites EF-III and EF-IV, while exhibiting more variance in the Pb2+-bound protein, do 

not indicate any significant change in these regions, further indicating that Pb2+ does not 

displace Ca2+ in these sites. 

The calculated S2 values for Ca2+-loaded CaM in the absence (Figure 5.25c) or 

presence (Figure 5.25d) of 2 ME Pb2+ , are generally consistent with the NOE data. The 

absence of significant changes in residues in the C-terminal domain suggest that Pb2+ 

does not displace Ca2+ ions in the canonical binding sites. However, the disappearance 

of residues within sites EF-I and EF-II indicate dynamic changes associated with Pb2+ 

binding. A direct comparison of residues in the important linker region could not be made 

using the calculated S2 values due to the loss of chemical shift data for either T1, T2 or 

NOE relaxation data. 
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Figure 5.25 NOE and S2 data for CaM 
Comparison of NOE data for (a) Ca-CaM and (b) Ca-CaM with the addition of 2 ME 
Pb2+. Helices, loop regions and Ca2+-binding sites are identified above the plots. Pb2+ 
appears to displace Ca2+ in the N-terminal domain but not the C-terminal domain, with 
additional binding in the linker region. Comparison of S2 data for (c) Ca-CaM and (d) Ca-
CaM with the addition of 2 ME Pb2+.   

5.13 Discussion: CaM binding with Pb2+  

While previous studies have reported that CaM exhibits a relatively higher 

binding affinity for Pb2+ compared with Ca2+, our data quantitatively distinguish between 

the two metals, clearly showing a much higher relative affinity (~8-fold) for Pb2+ over 

Ca2+ in the N-terminal domain with a smaller comparative increase (~3-fold) in the C-

terminal domain (Table 5.1). The calculated Kd values are consistent both with reported 

values for Ca2+ and with known Ca2+ intracellular concentrations in the μM range.  
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Additionally, we report a previously unobserved biphasic response in the tyrosine 

fluorescence change associated with Pb2+-binding. The initial tyrosine increase (Figure 

5.8c), which resembles the Ca2+ response (Figure 5.8a) is interpreted as binding of Pb2+ 

in one of the two C-terminal domain EF-Hand sites, while the decrease in Phase II 

(Figure 5.8d) is interpreted as a structural change unique to Pb2+-binding in the other 

site. This interpretation is consistent with our NMR chemical shift data suggesting initial 

occupancy of site EF-IV by Pb2+, followed by concurrent occupancy of sites EF-I through 

EF-III, and with reports by Aramini [135] and Ouyang and Vogel [133] indicating that 

Pb2+ occupies all four EF-Hand sites concurrently and with equal high affinity.  

Results of the analysis of HSQC data for Ca2+-binding to CaM are consistent with 

previously published results, indicating cooperative pairwise binding of Ca2+ first in the 

C-terminal domain, followed by the N-terminal domain. Comparing our results with those 

reported by Jaren et al. for paramecium CaM [73], we observe a similar differentiation 

between fast and slow chemical exchange in the N-terminal domain and C-terminal 

domain, respectively.  

For the direct titration of Pb2+ to Ca2+-free CaM, we observe from the HSQC Δδ 

values that Pb2+ binds in the four EF-Hand binding sites, which was also reported in both 

the Aramini and Ouyang studies, and is observed in PDB crystal structures 1n0y.pdb 

and 2v01.pdb (Figure 1.4e and Figure 1.4g). The study by Ouyang and Vogel [133] 

reporting equivalent, high binding affinity between Pb2+ and the four EF-Hand sites was 

based on the disappearance of chemical shifts for G23, G59, G96 and G132 following 

addition of 1 ME of Pb2+, and the disappearance of G25, G61, G98 and G134 at 2 ME of 

Pb2+ [133]. Comparing our results with those reported by Ouyang, we observed the 

disappearance of G61, G132 and G134 at 1 ME Pb2+, followed by G23, G59, and G96 at 2 

ME Pb2+ (Figure 5.23). However, shifts for residues G23, G61, and G96 reappeared in the 

spectra with increasing Pb2+ concentration, while shifts for residues G25 and G98 
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remained visible across the spectra. Additionally, only shifts for G25 and G61 

disappeared following the addition of Pb2+ to Ca2+-loaded CaM. The initial disappearance 

of residues G132 and G134 along with the majority of the loop residues (Figure 5.23) at 1 

ME Pb2+ suggests binding first in site EF-IV, followed by a concurrent distribution of Pb2+ 

across sites EF-I through EF-III.  

Although Pb2+ does occupy the EF-Hand Ca2+-binding sites, it is also clear from 

the spectra (Figure 5.20) that Pb2+-bound CaM exhibits structural differences compared 

with Ca2+-bound CaM, as evidenced by the significant loss of spectral data for residues 

in the C-terminal domain. The extent to which the structure of Pb2+-bound CaM deviates 

from Ca2+-bound CaM is not yet known, however we can make some predictions based 

on our observations and results presented by others. A study by Chao et al. reported 

that Pb2+ exhibited a biphasic effect on the amount of phosphate transferred from [γ-32P] 

ATP into MLCK, with stimulation observed at low concentrations followed by inhibition at 

higher concentrations [85]. Similarly, Habermann who observed that Pb2+-bound CaM 

initially activates PDE with higher potency than Ca2+, but increasing Pb2+ concentration 

subsequently inhibited CaM-dependent phosphorylation [88]. From these functional 

assays and our structural data, we suggest that at low concentrations of Pb2+, the nearly-

equivalent binding affinity of CaM for Pb2+ likely results in multiple complex conformers, 

one or more resembling the Ca2+/CaM complex in form and function. With increasing 

Pb2+ concentration, CaM eventually adopts a conformation which inhibits the proteins 

function. The potential for complex speciation at low levels of Pb2+ is consistent with both 

Aramini [135] and Ouyang and Vogel [133] who observed binding in four EF-Hand sites 

at a 2:1 ratio of Pb2+:CaM, while the inhibitory effects with increasing concentration are 

consistent with results reported by both Chao and Hambermann.   

While useful information is acquired by addition of Pb2+ to Ca2+-free CaM, the 

behavior of Pb2+-binding to CaM in the presence of Ca2+, as would be observed in a 
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cellular environment, provides us with more relevant data to understand the mechanism 

of Pb2+ toxicity at a molecular level. From our data we observed that the binding of Pb2+ 

in Ca2+-loaded CaM results in the disappearance of residues exclusively in sites EF-I 

(D22, G25 and I27) and EF-II (D56, A57, G61, I63, and E67). Conformational change due 

to binding is further revealed in the movement of δ in the spectra (Figure 5.21), 

particularly in sites EF-I, EF-II, and the linker region, as plotted in Figure 5.21c. These 

results are closely-correlated with our analyses of NOE data and calculated S2 

parameters which indicate that the addition of Pb2+ to Ca2+-loaded CaM results in a 

rapidly changing environment (e.g., increasing flexibility) in sites EF-I, EF-II, coupled with 

loss of flexibility in the linker region (Figure 5.25), while residues in sites EF-III and EF-IV 

appear unperturbed. Together, these data suggest that Pb2+ displaces Ca2+ only in the 

N-terminal domain sites EF-I and EF-II, and we can speculate that the positive 

cooperativity associated with Ca2+-binding between the paired sites EF-III and EF-IV [76-

77] in the C-terminal domain is sufficient to inhibit translocation of Pb2+ into the sites, 

while the 8-fold higher affinity of CaM for Pb2+ compared with Ca2+ in the N-terminal 

domain is sufficient for Pb2+ to displace Ca2+.  

The disappearance of δ for residues I27 and I63 (Figure 5.24c) may also indicate 

that binding of Pb2+ in sites EF-I and EF-II disrupts the intradomain cooperativity 

observed with Ca2+-binding. These residues occupy position 8 in the EF-loop sequence. 

Previous NMR studies reported by Biekofsky et al. [270] indicated that Ca2+ binding with 

the loop position 7 ligand results in observed deshielding (+4 to +8 ppm) of the 

mainchain nitrogen in position 8 due to polarization of the O(7)=C(7)-N(8) amido group, 

which was used to monitor occupancy of Ca2+ in CaM, and provide evidence of 

cooperativity between the paired EF-Hand sites. This intradomain cooperativity observed 

between CaM EF-Hand binding site pairs in the presence of Ca2+ [76-77] is believed to 

be due to the formation of a short β-sheet between residues in position 8 of the paired 
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EF-Loops joining EF-I with EF-II, and EF-III with EF-IV [230-231]. In our HSQC spectra 

for titration of Pb2+ to Ca2+-loaded CaM, peak loss for residues I27 and I63 due to 

intermediate chemical exchange is observed immediately upon addition of Pb2+. A 

structural basis for this minor conformational change may be observed in the crystal 

structures of Pb2+-bound CaM (1n0y.pdb and 2v01.pdb), where the T26 Oγ oxygen 

appears to rotate inward, placing it close enough (~3.5 Å) to the Pb2+ ion to serve as an 

active coordinating ligand in addition to the carbonyl oxygen utilized in binding of Ca2+ 

(Figure 5.26). This may be associated with changes in the orientation of I27 which alters 

the distance between atoms in I27 and I63 (Table 5.2) which could alter the hydrogen 

bonding network and disrupt the formation of the anti-parallel β-sheets between residues 

in position 8 of the EF-Loop joining EF-I with EF-II. From these data we infer that minor 

conformational changes associated with binding of Pb2+ in site EF-I could disrupt the 

intradomain cooperativity between the paired EF-Hands as well as reducing binding 

affinity [141]. 

 
Figure 5.26 Crystal structure variations with CaM site EF-I  
(a) Ca2+ is coordinated by the T26 carbonyl oxygen (red dashed line). PDB structures for 
Pb2+-bound CaM (b) 1n0y and (c) 2v01 suggest that the T26 OG1 oxygen participates in 
the coordination of Pb2+ along with the T26 carbonyl oxygen, which may account for 
chemical shift differences seen with T26.  
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Table 5.2 Calculated hydrogen bond and 
metal to ligand distances for CaM EF-I 

    PDB ID 

    3CLN 1N0Y 2V01 

D
is

ta
n

c
e

  
(Å

)         

T26O-M 2.45 2.67 2.56 

T26OG1-M 4.13 3.49 3.57 

I27O-I63NH 2.02 2.26 1.96 

I27NH-I63O 1.63 2.20 1.84 

 
 

 

In addition to binding in the EF-Hand sites, the crystal structures of Pb2+/CaM 

indicate binding of Pb2+ in regions of high electrostatic potential, including the trans-

domain linker. This functionally-important region of CaM contains a string of oxygen-rich 

sidechains (DTDSEEE) in position 78-84. Results of our study demonstrate significant δ 

movement due to fast chemical 

exchange for residues in the linker 

with the addition of Pb2+ to the 

Ca2+-bound protein (Figure 5.21c), 

but not with the addition of Pb2+ to 

Ca2+-free CaM. This argues for a 

unique binding mode observed 

only when CaM initially adopts an active Ca2+-induced conformer which prevents 

structural degradation in the C-terminal domain due to ionic displacement. Furthermore, 

Δδ values for residues in the linker exceed changes observed in sites EF-I and EF-II 

(Figure 5.21c), which suggests the potential for opportunistic binding of Pb2+ in this 

region of oxygen-rich sidechains.  

The potential for binding of Pb2+ in this region was summarized in a previous 

statistical analysis conducted in our laboratory which reported that Pb2+ can bind to 

carboxyl and hydroxyl groups in regions lacking defined binding geometries [136]. 

Although to date little evidence has been presented demonstrating metal-binding in this 

region, Kursula and Majava [272] reported a Ca2+-binding site in the linker chelated by 

residues R74 and D78 in the crystal structure of Pb2+-bound to human CaM. Additionally, 

two different prediction algorithms recently developed in our lab have predicted a Ca2+-

binding site in this region. An analysis of CaM with MUGSR, which predicts Ca2+-binding 

sites based on oxygen clusters with high sensitivity, revealed a potential site comprising 
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residues D80, E83, and E84 [273]. A similar analysis with MUGC, a variation of MUGSR 

which predicts Ca2+-binding sites based on refined carbon clusters suggested a potential 

site comprising residues D2, M76, K77, and D80, which would be possible if the two 

domains were brought together. Further support is provided by Bertini et al [90] who 

reported a potential metal-binding site in this region based on the disappearance of 

chemical shifts in the linker (78-81) following addition of 0.3 equivalents of Yb3+, and 

Raos and Kasprzak who suggested the existence of two secondary binding sites 

occupied by Ni2+ in the Ca2+-bound state [274].  

Arguments for this unique, Ca2+-potentiated binding mode for Pb2+ are provided 

by Mills and Johnson who reported that Pb2+ and other metals may bind to Ca2+-bound 

CaM in secondary sites forming an allosterically potentiated conformer [59]. Additionally, 

Kern et al demonstrated that inorganic Pb2+ and Ca2+ can interact positively to activate 

CaM [83] while Shirran and Barran reported that Pb2+ affinity for CaM increases relative 

to other divalent cations in the presence of Ca2+ [84]. These results suggest that this 

observed opportunistic binding of Pb2+ is dependent upon Ca2+-induced restructuring of 

CaM, as would be observed in an intracellular environment.  

It is also possible that the observed changes in the linker only reflect structural 

changes induced by binding in some region of the protein more distant from the linker. 

The Pb-CaM structure reported by Kursula and Majava [272] depicts binding of Pb2+ 

between sidechain carboxyl groups from D118 and D122 (Figure 5.27), and significant 

chemical shift changes (>0.05δ) are observed in our data for residues T117 and R126 

(Figure 5.21c) as a result of Pb2+-binding. The sequence 117-123 comprised of residues 

TDEEVDE (Figure 1.4a) also represents a grouping of carboxyl-rich sidechains that 

could potentially bind Pb2+. However, unlike the proposed binding sites in the linker, 

these residues are all found in an α–helical structure. If binding were confined to 

residues D118 and D122, the secondary structure could remain intact, but it is not clear 
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how binding in this region would induce major conformational changes in the linker 

region unless the helix itself were to lose its structure, which was not indicated in the 

analysis of our dynamic NMR data. Also, the biphasic fluorescent response observed 

(Figure 5.8d) could relate to binding of Pb2+ in a secondary site in the C-terminal domain, 

however, this can only be clarified with further study. 

D118

D122

1prw

2v01
a

c

b

 
Figure 5.27 Potential Pb2+ site in CaM C-terminal 
(a) Binding of Pb2+ ions in CaM (2v01.pdb). The additional C-terminal binding site is 
highlighted in the red box. (b) Closer view of binding site showing orientation of carboxyl 
groups from D118 and D122. (c) Position of binding site ligands (red box) relative to 

trans-domain linker region (purple box) in the compact structure of CaM.   
 

5.14 PFG Diffusion NMR reveals dimerization of Pb2+ CaM at 6 ME Pb2+ 

Translational motion of the protein in solution was evaluated for Pb2+:CaM 

complexes using PFG NMR. The calculated hydrodynamic radius (rCaM) for the Pb2+:CaM 

complex at 4:1 was 22.0 Å (Figure 5.28). This was not significantly different than values 
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similarly measured in our lab for Ca2+-free CaM (22.4 ± 0.3 Å) and Ca2+-loaded CaM 

(22.8 ± 0.5 Å). However, it is possible that CaM bound with 4 ME Pb2+ adopts a more 

compact structure which would be consistent with results published by Dowd for Pb2+-

binding with the Ca2+-binding protein osteocalcin [275], and with a recently-reported  

compact structure of CaM [276] (Figure 5.29). 
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Figure 5.28 PFG experiment  
(Top) PFG spectrum for Pb-CaM at 25 °C. (Bottom Left) Diffusion plot based on Eq. 19 
for CaM with 4 ME Pb2+ (Bottom Left), and 6 ME Pb2+ (Bottom Right).   
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Additionally, for the Pb2+:CaM complexes at 6:1 (Figure 5.28), rCaM was 

calculated to be  26.7 Å. The theoretical value for the radius R of a dimer using Eq. 22, 

with rCaM = 22.0 Å was 27.7 Å, indicating that Pb2+:CaM oligomerizes at 6:1, likely in the 

form of a dimer. This is consistent with line broadening observed in both 1D and 2D 

HSQC spectra at 6-8 ME Pb2+ added to CaM, and could be explained by loss of flexibility 

in the linker region and the resulting compaction of the tertiary structure.  

a b c
 

Figure 5.29 Comparison of CaM structures 
(a) Apo form (1cfc.pdb), (b) calcium-loaded form (3cln.pdb), and (c) Compact form 
(1prw.pdb) of CaM. Binding of Pb2+ suggests a structure more similar to that seen in (c) 
than in (b).   
 

These data and calculations support the conclusion that Pb2+ causes CaM to 

oligomerize at 6 ME of Pb2+.  While this has not been verified in the case where Pb2+ is 

added to Ca2+-loaded CaM, it does suggest a potential mechanism by which the 

introduction of Pb2+ may induce toxicity at the molecular level when present in low 

concentrations.    

5.15 Opportunistic binding of Pb2+ to Ca2+/CaM complex 

Based on our current results, we propose a mechanism to explain binding of Pb2+ 

to Ca2+-loaded CaM (Figure 5.30) as would be observed in an intracellular environment. 

In Figure 5.30 we initially illustrate the cooperative pairwise binding of Ca2+ in the C-

terminal domain, following by similar response to increasing Ca2+ in the N-terminal 
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domain. In this state, the central linker region interconverts between a random coil and 

an extended helix, and this flexibility allows CaM to interact with target ligand molecules.  

The introduction of Pb2+ in this environment results in displacement of Ca2+ in 

sites EF-I and EF-II, followed by opportunistic binding which alters the conformation of 

the central linker region, thus inhibiting the ability of CaM to bind other molecules. 

EF-III

EF-I EF-II

EF-IV

Ca2+

Pb2+ Unknown cooperativity

Cooperative

Complex

Ligand Molecule

Interconversion

Equilibrium

 
 
Figure 5.30 Model of Pb2+-binding to holo-CaM 
Calcium binds with intradomain cooperativity first in the C-terminal domain sites, 
followed by the N-terminal domain. The linker region of Ca2+-loaded CaM interconverts 
between a flexible random coil and an extended helix. Pb2+ added to Ca2+-loaded CaM 
binds in the N-terminal domain sites and potentially the linker region. Conformational 
changes in the linker region inhibit the ability of CaM to bind target ligand molecules.  

5.16 Conclusions: CaM binding with Pb2+ 

In the Ca2+-free state, CaM appears to bind Pb2+ with an ~8-fold higher affinity 

than Ca2+ in the N-terminal domain. The biphasic Tyrosine fluorescent response 

suggests that one of the paired EF-Hand sites in the C-terminal domain binds with 3-fold 

higher affinity than Ca2+, and that the affinity of the second site is very similar to that for 

the N-terminal domain sites. This conclusion is further supported by analysis of HSQC δ 

values which indicated binding of Pb2+ in site EF-IV followed by concurrent binding in 
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sites EF-I through EF-III, based on the disappearance of peaks due to broadening 

effects related to chemical exchange.  

More importantly, the addition of Pb2+ to Ca2+-bound CaM does not follow an 

exclusive displacement mechanism. While Ca2+ appears to be retained in the C-terminal 

domain sites, the addition of low concentrations of Pb2+ initiates replacement of Ca2+ in 

the N-terminal domain sites resulting in more pronounced conformational changes, as 

indicated by changes in NMR HSQC chemical shifts and NOE data analysis. These 

changes in the trans-domain linker region may be coupled with binding of Pb2+ in the 

oxygen-rich linker itself. The biphasic Tyr fluorescence response suggests either the 

presence of one or more secondary Pb2+-binding sites in the C-terminal domain, or may 

be related to the same changes observed by phenylalanine fluorescence in the N-

terminal domain.  

This mechanism results in significant conformational changes to the linker, 

observable at low concentrations of Pb2+ in the HSQC spectrum. If binding of Pb2+ 

produces similar effects to those observed with osteocalcin [275], increasing Pb2+ 

concentration presumably produces a more compact or dynamically-restricted conformer 

incapable of binding properly with target ligand molecules. The apparent dimerization of 

CaM in the presence of increasing Pb2+ concentration further supports this conclusion. 

Moreover, our NMR results indicate that while Pb2+ may displace Ca2+ in site EF-I 

in the N-terminal domain, there is no indication that Ca2+ is displaced in either site in the 

C-terminal domain, suggesting that positive cooperativity between these paired sites for 

Ca2+ sufficiently inhibits translocation by Pb2+, despite the apparent higher binding affinity 

for Pb2+ relative to Ca2+. 

Furthermore, the NMR results indicate that binding of Pb2+ in secondary binding 

sites, either alone or in conjunction with binding in site EF-I and possibly EF-II, 

allosterically produce conformational changes sufficient to alter the function of CaM. 
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These changes are apparent with the addition of 1-2 ME Pb2+ in Ca2+-saturated states, 

and coupled with the apparent stable occupancy of Ca2+ in the C-terminal domain sites, 

would explain results reported by both Chao [85] and Habermann [88] showing a 

concentration-dependent activation followed by inhibition of CaM relative to downstream 

enzyme activity, as well as results reported by Kern [83] showing that Pb2+ and Ca2+ can 

interact positively to activate CaM.  

The positive cooperativity reported between EF-Hand sites in each CaM domain 

as a result of Ca2+-binding is not apparent for binding of Pb2+, while the equivalent affinity 

model proposed by Ouyang [133] does not account for an additional, induced binding 

sites. The role of CaM in Pb2+ toxicity requires further clarification, however, the results 

of this study demonstrate that Pb2+ can adversely impact the conformation of CaM even 

in the Ca2+-bound state, and provides evidence that molecular toxicity may be induced in 

CaM or other proteins as a result of binding opportunistically in secondary sites outside 

of known metal-binding sites. This allosteric mechanism suggests that the nature of Pb2+ 

allows for multiple molecular targets and by extension offers a comprehensive 

explanation for the resulting systemic pathology of Pb2+ toxicity. 



 

166 
 

6 Preliminary investigations of RNT metals 

6.1 Selection of metals 

Lu700 from 1plu.pdb

Ga37 from 1cfw.pdb

Pb1322 from 1n0y.pdb

Y1 from 3bfw.pdb

a b

c d

 
Figure 6.1 Binding sites of non-essential metals 
(a) Pb2+ binding in a Ca2+-binding site from calmodulin (1n0y.pdb). (b) Lu3+ is expected 
to behave similarly to Gd3+ and Tb3+, binding in oxygen-rich sites as seen in 1plu.pdb. (c) 
Binding of Y3+ in 3bfw.pdb appears to involve less structure than the other metals. (d) 
Ga3+ from 1cfw.pdb occupies a a Cys-rich site consistent with observed Zn2+ sites. 
 
 Of the ions identified as potentially useful radionuclides in our preliminary review 

of the literature, significant data was obtained from the PDB only for Pb2+. While the 

molecular toxicity of Pb2+ renders it less than ideal as a candidate for beneficial therapy, 

the strong binding affinity of Pb2+ for Ca2+ binding sites is clearly advantageous, and it is 

likely that it can be further enhanced to form stable complexes with rapid binding 

kinetics, based on previous observations reported in our laboratory. Of the remaining 

metals, data was available only for Lu3+, Y3+ and Ga3+. Examples of protein binding for 
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these four ions are seen in Figure 6.1.  Despite its potential for metal toxicity, Pb2+ is an 

attractive candidate for radioimmunotherapy for several reasons, assuming the ions can 

be rapidly removed from the patient following therapy. This can most likely be achieved 

with current EDTA therapies, although further research is necessary to validate this 

assumption. For Pb2+ (Figure 6.1a), previous research completed in our laboratory has 

demonstrated that that Pb2+ will readily displace Ca2+ and occupy Ca2+ binding sites with 

high affinity in an isolated binding site on a scaffold protein (Figure 5.5), exhibits high EN 

(Table 1.1), and exhibits nearly-instantaneous binding kinetics. Additionally, Pb2+ 

radioisotopes may act as both β- - and α-emitters, which suggests it may be possible to 

develop radionuclide ―cocktails‖ capable of providing simultaneous, dual decay therapy. 

However, in additional to the primary risk associated with radiation and the secondary 

risk of molecular toxicity, the potential for opportunistic binding of Pb2+ in regions outside 

the binding motif on the targeting structure or with incidental contact between other 

proteins may be a concern. 

 With the exception of La3+, several lanthanides studied in our laboratory have 

been observed to occupy Ca2+-binding sites, albeit with affinities lower than that 

observed for Pb2+. The binding site for Lu3+ (Figure 6.1b) is consistent with behavior 

observed for Gd3+ and Tb3+, suggesting the engineered proteins already developed in 

our laboratory may be modified to provide a strong chelator for this β- -emitting 

radionuclide. 

 Data available for Y3+ was limited in the PDB, and the few structures available 

suggested incidental binding, rather than occupancy of a well-structured site, as seen in 

Figure 6.1c. This β- -emitting radionuclide is non-imageable, requiring the concurrent use 

of In3+ dosimetry if imaging is required. Despite this limitation, Y3+ is also a good 

candidate for protein-based radioimmunotherapy due to its previously-noted capacity to 

deliver high dosage radiation, and its chemical properties noted in Table 1.1.  
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 Data from the PDB suggests that Ga3+ can occupy Cys-rich sites in a geometry 

similar to some Zn2+-binding sites, and as seen in Table 1.1, the ionic radius of Ga3+ is 

closer to that of Zn2+ than Ca2+. To evaluate this, the design of grafted Zn2+ motifs is 

proposed, again using protein constructs developed in our lab. 

 No protein data was available for Bi3+, the only α-emitter listed in Table 1.1. 

However, as seen in Table 1.1, Bi3+ exhibits strong EN (2.02) and has an ionic radius 

very similar (1.03 Å) to that of Ca2+ (0.99 Å). Based on its physical and chemical 

properties, it is reasonable to assume binding of Bi3+ will be similar to that of Pb2+. Unlike 

Pb2+ which appears to bind very rapidly, complex formation between Bi3+ and current 

radioimmunotherapy chelators is nearly as long as the half-lives, as previously 

discussed. In this respect, it is possible that a protein-based chelator may provide a 

more stable complex for Bi3+ with improved binding kinetics. 

6.2 PAR assay 

 To establish the stoichiometry of metal:CaM complex formation, work was 

completed to develop a modified colorimetric assay using 4-(2-pyridylazo)resorcinol 

(PAR) (Sigma-Aldritch, St. Louis, MO) for the detection of Pb2+ and various lanthanides. 

As reported by McCall and Fierke [277], this method provides a rapid means for 

quantifying micromolar concentrations of transitions metals, when PAR forms a 2:1 

complex with the metal, resulting in a decrease in the dye‘s absorbance at 410 nm.  

 Carbonic anhydrase (CA), a Zn2+-binding protein with a single binding site was 

used to first bind the transition metal. Following removal of free metal ions in solution, 

the protein was digested with protease K, and PAR was then added to the solution to 

complex with the available ion of interest. Comparison with a standard curve of the 

PAR:metal complex provides a cost-effective and rapid method for determining the metal 

concentration in solution. 
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 PAR was selected for optimization of a colorimetric assay to evaluate the 

stoichiometry associated with the binding of Pb2+, Gd3+ and other toxic metals to CaM. A 

5 mM solution of PAR was prepared according to procedures described by Hunt and 

Ginsburg [278]. Briefly, solid PAR was dissolved in ddH2O while adding 1 N KOH to 

maintain pH at 8.8. It should be noted that some particulate remained in solution. 

 As the control, 29 mg of bovine CA (92% pure, Sigma, from bovine erythrocytes, 

MW = 28980 g/mol), was dissolved in 10 mL ddH2O to a final concentration of 100 µM. 

CA has an apparent extinction coefficient of 56, 000 cm-1 M-1. 

 The response of PAR to both Zn2+ and Pb2+ was first evaluated, and linear 

regression analyses conducted to determine standard curves. The analytical matrix was 

comprised of 10 mM Tris (pH 7.4, treated with chelex to remove background metals), 1.0 

mg protease K, and 5 mM IAM (Sigma Ultra Iodoacetamide (Sigma-Aldritch, St. Louis, 

MO)). Zn2+ and Pb2+ were obtained from analytical grade ZnCl2 and PbCl2, respectively.  

 From the procedures described by McCall, several modifications were introduced 

to work with CaM. DTT, used to prevent disulfide bond formation in CA, was found to 

interfere with CaM in preliminary testing, and had to be removed. Iodoacetamide also 

appeared to exert an inhibitory effect, but it was negligible compared to DTT, and did not 

prevent quantitation of the metal ions.  

 To evaluate Zn2+ and Pb2+ using PAR, solutions of 50 μM protein were prepared 

in 10 mM Tris buffer, pH 7.4. CaM, which is treated with CaCl2 during purification, was 

first dialyzed in 2 L 10 mM Tris, pH 7.4 with 100 mM EGTA to remove Ca2+, followed by 

dialysis in Chelex-treated 10 mM Tris to dilute the EGTA to less than 1 μM. CA and CaM 

were then equilibrated with both Zn2+ and Pb2+, respectively, in the ratios Metal:CA, 2:1, 

and Metal:CaM, 8:1. Equilibration was accomplished by slow shake overnight at 4 °C, 

followed by dialysis in 3 L Chelex-treated 10 mM Tris-Cl, pH 7.4. Final concentrations of 

CaM and CA were determined by UV-Vis absorbance. CaM exhibits a tyrosine 
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absorbance at 274 nm, and CA exhibits a tyrosine absorbance at 274 nm and a 

tryptophan absorbance at 278 nm. Molar absorptivity values for CA and CaM are 54000 

cm-1 M-1 and 3030 cm-1 M-1, respectively. 

 For CA and CaM, three 1 mL samples were prepared in autoclaved microcuvette 

tubes to obtain concentrations of protein-bound metals in the range 5-15 µM, based on 

linear response of PAR. The target protein concentration for CA and CaM was 50 µM. 

100 µL of protease K (1 mg/mL) was added, and the sample filled to 600 µL. Samples 

were placed in a water bath at 56 °C for 30 min, and shaken every 5 min to ensure 

mixing of the protein with protease K. Following digestion of the protein, 100 µM PAR 

was added, followed by 5 mM IAM, to a final volume of 1 mL. Absorbance of the 

complexes was measured using UV-Vis. The calculated concentration values for Zn2+ 

and Pb2+ were then compared with the previously-established standard curves. 

  
Figure 6.2 Absorbance spectra for (a) Zn2+ and (b) Pb2+, with linear regression 
analyses  
  
 As seen in Figure 6.2, the response to Pb2+ and the isosbestic point both appear 

red-shifted approximately 20-25 nm compared with Zn2+. Additionally, the dynamic range 
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is reduced by about 50%, although a standard curve with good linearity is still achieved. 

The observed red-shift may result from complex formation between Pb2+:PAR where the 

stoichiometry is greater than the 2:1 observed with Zn2+. In this case, the larger complex 

would produce a more extensive conjugated п electron network, thereby increasing the 

absorbance wavelength. 

 While the results for the Zn-CaM analysis appear consistent with those reported 

by McCall and Fierke [277], several difficulties were encountered while attempting to 

quantify Pb2+ bound to CaM. Protease K, a Ca2+ binding protein, appears to strongly 

interact with Pb2+, as seen in Figure 6.3a, and in comparison with the absorbance data in 

Figure 6.2b. Additionally, the activity of Protease K was apparently inhibited by the 

presence of Pb2+ as seen in Figure 6.3b, and summarized in Table 6.1. This inhibitory 

effect was not observed in the presence of Zn2+ (Figure 6.2a). Figure 6.3b also suggests 

that Zn2+ may still be present in solution for CA, as evidenced by the peak absorbance at 

490 nm. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

350 400 450 500 550 600

A
b

so
rb

an
ce

λ (nm)

0 µM

2 µM

4 µM

6 µM

8 µM

10 µM

12 µM

16 µM

20 µM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

350 400 450 500 550 600

A
b

so
rb

an
ce

λ (nm)

CaM 5 µM

CaM 10 µM

CaM 15 µM

CA 5 µM

CA 10 µM

CA 15 µM

 
Figure 6.3 Reduced absorbance of PAR-Pb2+ in the presence of protease K  
(a) The reduced dynamic range observed for Pb2+ is likely due to competition between 
PAR and Protease K for Pb2+. (b) Absorbance of PAR-Pb2+ complex for CA and CaM 
following digestion with Protease K. 
 

 

 

a b 
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Table 6.1 Pb2+ complexed with PAR following protease K digestion of CA and CaM 

[Protein]

µM

CA 

(492 nm)

CA

[Pb2+] (µM)

CaM 

(509.4 nm)

CaM

[Pb2+]

(µM)

5 0.4001 32.3 0.2029 15.0

10 0.6530 54.5 0.2660 20.5

15 0.8113 68.4 0.3008 23.6
  

PAR assay conclusions 

 These efforts to modify the PAR assay for detection of Pb2+ were unsuccessful 

apparently due to interactions between protease K and Pb2+. Future efforts will be 

directed towards investigating different methods to decomplex Pb-CaM, such as heat 

denaturation or addition of Urea.  

6.3 Response of fluorescent dyes to target metals 

 Fluorescent dyes with high affinity for different metals can be utilized 

competitively with proteins to establish binding affinities between the metals and the 

proteins. To be useful, the dyes need to have affinities for the metals similar to those of 

the proteins, and binding needs to produce a dynamic range sufficiently large enough to 

curve-fit data representing incremental changes between the unsaturated and saturated 

states of the dye. Here we summarize the responses of different dyes to target RNT 

metals. 

Fura-2 

The fluorescence response of Fura-2 dye was evaluated with different metals. 

For the emission scans (Figure 6.4), spectra were collected for four conditions: (1) TRIS 

buffer only; (2) Addition of 1 µM Fura-2; (3) Addition of 2 µM Mn+; (4) Addition of 50 µM 

Mn+. For the excitation scans, a fifth condition was included: addition of 168 μM EGTA to 

chelate the metal ions. 
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Figure 6.4 Fluorescent emission scans, 1 uM Fura-2 dye pH 7.4 
Spectra for addition of (a) Ca2+. (b) Gd3+ (c) Pb2+ and (d) In3+ 
 

As seen in Figure 6.4, a blue-shift was observed following addition of all metals, 

except Ca2+. This appears most pronounced in the case of In3+ (Figure 6.4d), however, 

the peak for Fura-2 in the In3+ spectrum was unusually low compared with the other 

spectra, indicating the concentration of Fura-2 was probably lower than the other 

experiments, suggesting this experiment will need to be repeated due to random error.  

The decreasing fluorescence following addition of EGTA strongly suggests that 

sufficient background Ca2+ was present at the beginning of the experiment to increase 

the Fura-2 signal before additional Ca2+ was added, despite pre-treatment of the buffers. 
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Also, the apparent high binding affinity of Fura-2 for Pb2+, which remains to be 

quantified, suggests that it may be an effective, competitive chelator for protein titration 

experiments, although EDTA should be used to remove Pb2+ in future experiments.  
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Figure 6.5 Lu3+ fluorescence scans 
(a) Emission and (b) excitation scans of Lu3+ in 10 mM TRIS, pH 7.4. 
 

Results of the emission and excitation scans for 10 mM TRIS pH 7.4 with Lu3+ 

can be seen in Figure 6.5, which clearly indicate that the selected buffering system has 

no apparent interaction with Lu3+ that would interfere with the signal intensity. 

Fluorescent excitation scans of the direct addition of Pb2+, In 3+ and Y3+ to Fura-2 

followed by chelation of metal ions with EGTA are shown in Figure 6.6. These results 

suggest that all 3 metals exhibit high response to binding with Fura-2, with apparent 

higher binding affinity for In3+ based on the increased concentration of EDTA (400 μM) 

required to remove the background free metal. Results for In3+ suggest some unusual 

binding effects not apparent with the other metals. The addition of In3+ resulted in a 

significant decrease in fluorescence that was almost completely restored with the 

addition of EGTA. However, only a single maxima was observed at 340 nm, and this 

maxima exhibited an unexpected concavity at the apex which remains to be explained. 
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Figure 6.6 Excitation scans with Fura-2 
Metals analyzed were (a) Pb2+, (b) In3+ and (c) Y3+ in 10 mM TRIS, pH 7.4. 
 

We evaluated direct titration of CaM into buffer matrices comprised of 10 µM 

concentrations of Pb2+, Gd3+ and Lu3+ with Fura-2 (Figure 6.7). Results indicate that all 3 

metals bind with relatively higher affinity to the dye compared with the protein, thus 

rendering this method undesirable due to the high concentration of protein required for 

analyses. 
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Figure 6.7 Competitive titration of CaM with Fura-2 
Samples contained 10 µM concentrations of (a) Pb2+ (b) Gd3+ and (c) Lu3+. Very high 
concentrations of CaM were required to produce changes in spectra. 
 
 
 Spectra for a second series of excitation scans for 2 μM Fura-2 binding with Pb2+, 

Bi3+, Lu3+ and Y3+ are presented in Figure 6.8. The addition of 100 uM EDTA at the end 

of these titrations demonstrated that metals were present in the initial samples, either the 

buffer or the dye itself, prior to the experiment. This is evident based on the observed 

peak at or near 370nm following addition of the chelator. Had the sample been metal-

a b c 

a b c 
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free prior to the titration, this peak would have emerged with the first titration point, prior 

to addition of metal.  Fura-2 Excitation Scans
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Figure 6.8 Changes in Fura-2 fluorescence with different metals 
Spectra analyzed following addition of (a) Pb2+ (b) Bi3+ (c) Lu3+ and (d) Y3+. Spectra for 
(e) Ca2+ [279] included for comparison. Except for Bi3+, metals evaluated wavelength 
shifts that differed from observed Ca2+ response. All samples also appeared to have 
been contaminated by metals prior to experiment. 
 
 Spectra for Pb2+, Lu3+ and Y3+ also suggest that Fura-2 is not a suitable dye for 

analysis of these metals. When comparing these spectra with Ca2+ (Figure 6.8e) we do 

not observe an isosbestic point indicating the transition between the peak maxima, but 

rather we observe gradual shifts in the wavelength suggesting additional conformational 

changes in the dye, possibly due to binding in ratios exceeding 1:1. Bismuth may be an 

exception to this (Figure 6.8b), as the wavelength shift observed for the other metals is 

not immediately apparent in this spectra, but this will have to be further evaluated by 

repeating the experiment in such a way as to eliminate the background metal effects 

(e.g., increasing the dye concentration so that the background metal contamination 
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becomes negligible), and using a buffering system to chelate the metal ions during the 

titration to allow for the observation of more points during the transition, as the rapid 

changes observed in the spectra suggest high affinity binding.  

Fura-6F 

 We evaluated direct titration of CaM into matrices comprised of 10 µM 

concentrations of Pb2+, Gd3+ and Lu3+ with Fura-6F. Results of these direct addition 

titrations are presented in Figure 6.9. An observable transition between peak states for 

both Gd3+ and Lu3+ suggested that this dye may be suitable as a competitive chelator for 

quantitative analysis of complex formation between CaM and these metals. 
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Figure 6.9 Competitive titration of CaM with Fura-6F 
Samples contained 10 µM concentrations of (a) Pb2+ (b) Gd3+ and (c) Lu3+. Response for 
matrices containing Gd3+ and Lu3+ suggest Fura-6F may be suitable for competitive 
titration analyses with CaM. 
 

 Another set of titrations involved the controlled addition of Lu3+ to Fura-6F using a 

buffer exchange system. From the curve-fitting presented in Figure 6.10, a constant Kd 

for Lu3+ dissociation from Fura-6F was calculated at 9.41 X 10-13 M, which was close to 

the NIST Critical database value of 7.59 X 10-13 M for NTA- Lu3+. However, the hill 

coefficient n calculated during the curve-fitting was 3.45, suggesting positive 

cooperativity which would imply some complex with multiple Lu3+ ions binding to a single 

molecule of dye. Evidence to support this type of complex formation has not yet been 

discovered in the literature. 
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Figure 6.10 Fitting of calculated free Lu3+ for titration of Lu3+ with Fura-6F 
 
Rhod-5N 

 We evaluated direct titration of CaM into a matrix comprised of equimolar 

concentrations of Pb2+, Gd3+ and Lu3+ with Rhod-5N. Results of these direct addition 

titrations are presented in Figure 6.11. Comparison of these spectra suggested that 

Rhod-5N affinity for Pb2+ was similar enough to CaM that Rhod-5N would be a viable 

chelator for further competitive titration experiments (Figure 6.11a). For both Gd3+ and 

Lu3+, the addition of CaM resulted in more rapid decrease in fluorescence intensity, 

suggesting that these metals have higher affinity for CaM than the Rhod-5N. These latter 
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results indicate that Rhod-5N may be a good competitive chelator for these metals in the 

presence of proteins with weaker metal binding affinities. 
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Figure 6.11 Competitive titration of CaM with Rhod-5N 
Samples contained 10 uM of (a) Pb2+ (b) Gd3+ and (c) Lu3+. Results suggest similar 
affinity between Rhod-5N and CaM for Pb2+ and higher CaM affinity for Gd3+ and Lu3+ 
relative to Rhod-5N. 
 

 In a related experiment, Pb2+ was titrated directly against Rhod-5N (inset, Figure 

6.12). Changes in signal intensity at the observed peak maxima were normalized against 

the baseline scan. The plot in Figure 6.12, averaged over three trials, was fit with a 

quadratic equation, yielding a Kd value 1.82 X 10-6 M. However, it is clear that the data 

do not fit the curve. In this experiment, the binding affinity between Pb2+ and Rhod-5N is 

too strong for this experimental method. 

 Next, a buffer (NTA) exchange experiment was conducted, involving the 

controlled addition of Pb2+ to Rhod-5N, as seen in Figure 6.13. A dissociation constant 

Kd for Pb2+, based on mean and standard deviation for three trials, was calculated at 

1.14 X 10-11 M using a quadratic equation for curve-fitting. This was close to the NIST 

Critical value of 3.31 X 10-12 M for Pb2+-NTA. The fitting in Figure 6.13 had a calculated 

R value of 0.999. Therefore, the Kd calculated from the buffer exchange experiment will 

be used as the assumed correct value. 
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Figure 6.12 Binding of Pb2+ to Rhod-5N via direct titration  
Titrations done in triplicate. Curve was fit with Hill equation. 
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Figure 6.13 Fluorescence changes in Rhod-5N due to binding of Pb2+ 
Fitting of calculated free Pb2+ in sample to normalized change in fluorescence intensity 
was completed using quadratic equation. 
 

FluoZin-1 

 The fluorescence responses of 2 μM samples of FluoZin-1 binding to Pb2+, Bi3+, 

Lu3+, Y3+ and Ca2+ were investigated by direct titration. The addition of Pb2+ resulted in 

an initial increase in fluorescent intensity followed by a decrease that is attributed to 

either binding of multiple ions resulting in inhibitory quenching, and/or precipitation 

(Figure 6.14a). This response makes the use of FluoZin-1 problematic for analysis of 

Pb2+ due to the biphasic trend preventing reasonable curve-fitting of the data. 

Additionally, only Pb2+ produced any measurable change in intensity (Figure 6.14b) 
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similar to the observed fluorescent changes reported by the manufacturer, Invitrogen 

(Figure 6.14c, http://products.invitrogen.com), which indicates that FluoZin-1 is unlikely 

to be suitable for use with the other target metals for fluorescent analyses. 

-10

0

10

20

30

40

50

Pb(II) Bi(III) Lu(III) Y(III) Ca(II)

(F
-F

0
)/

F 0

1 uM ion

112 uM ion

1.00

11.00

21.00

31.00

41.00

51.00

61.00

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

R
el

at
iv

e 
Fl

u
o

re
sc

en
ce

 (
F/

F 0
)

[Pb2+]/[FZ1]

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

5
0

5

5
0

8

5
1

1

5
1

4

5
1

7

5
2

0

5
2

3

5
2

6

5
2

9

5
3

2

5
3

5

5
3

8

5
4

1

5
4

4

5
4

7

5
5

0

In
te

n
si

ty
 (c

o
u

n
ts

)

λ (nm)

2010-03-16 Pb/FluoZin-1

000 μM

001 μM

002 μM

012 μM

052 μM

112 μM

212 μM

a

b

c

 

Figure 6.14 Direct titration of Pb2+, Bi3+, Lu3+, Y3+ and Ca2+ into 2 μM FluoZin-1  
Spectra for (a) Pb2+ were characterized by an initial increase followed by a decrease 
(inset) possibly due to binding of multiple ions and/or precipitation. (b) Comparison of 
fluorescence changes following addition of 1 μM ion (blue bar) and 112 μM ion (red bar). 
Data for each ion are plotted as (F-F0)/F0 for comparison with (c) the manufacturers 
(Invitrogen) reported values at 1 and 100 μM, respectively.  
 

Fluo-4 

 The fluorescence responses of 2 μM samples of Fluo-4 binding to Pb2+, Bi3+, 

Lu3+, Y3+ and Ca2+ were also investigated by direct titration. As seen in Figure 6.15a, all 

metals except for Ca2+ produced a fluorescent response as a result of binding to Fluo-4. 

These preliminary results suggest that dissociation constants may be calculated with 

further experimentation. However, the results also demonstrate a serious problem with 

this experiment. The fluorescence observed for Pb2+ in Figure 6.15a differs from that 

reported by the manufacturer as seen in Figure 6.15b. Consistent with this, the addition 
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of EDTA to both the Pb2+ and Bi3+ complexes resulted in elimination of the fluorescence 

signal, indicating that the initial dye sample was probably contaminated with metal.  
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Figure 6.15 Direct titration of Pb2+, Bi3+, Lu3+, Y3+ and Ca2+ into 2 μM Fluo-4 
Spectra indicated fluorescent responses to all metals except Ca2+. Comparison of (a) the 
response from both Ca2+ and Pb2+ differ from (b) results reported by the manufacturer. 
The addition of EDTA to both samples titrated with (c) Pb2+ and (d) Bi3+ indicate the 
initial dye samples were contaminated with metal prior to initiation of the experiment. 
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7 Significance and conclusions 

 The results of our statistical and structural analyses confirm that Pb2+ exhibits 

greater flexibility than Ca2+ in binding with respect to ligand type and number, charge, 

and geometry. This behavior more closely resembles that exhibited by the less 

structured Non-EF hand Ca2+-binding proteins. These features appear to increase the 

binding promiscuity of Pb2+, allowing for opportunistic binding in the absence of well-

defined binding sites. Our results suggest that Pb2+ may bind to proteins both 

opportunistically in regions of high surface negative charge and by ionic displacement, 

resulting in activation or inhibition of the protein as a function of metal concentration. 

Pb2+ binding in CaM does not appear to follow the same order of occupancy described 

for Ca2+. However, the significant structural alterations in CaM revealed by NMR appear 

to be due to opportunistic binding of Pb2+ resulting in an induced secondary binding site 

(i.e., residues 78-82) rather than as a result of displacement in known binding sites. 

Moreover, this region appears to exhibit rapid conformational change with the addition of 

Pb2+ after CaM has been saturated with Ca2+, suggesting that in the Ca2+-bound form, 

Pb2+ does not readily displace Ca2+. Additionally, CaM appears to dimerize with the 

addition of 5-6 ME Pb2+. After that, the protein precipitates. The significance of this 

dimerization has not yet been established, however, the picture that is emerging, with 

respect to toxicity, is that CaM activity even in the holo-form may be disrupted by low 

concentrations of Pb2+. This again supports our hypothesis that the characteristics of 

Pb2+ may allow it to bind to non-metalloproteins as well as known metal-binding proteins 

and alter their activity or function through a subtle mechanism involving weak 

opportunistic binding in charged regions where physiologically-relevant cations fail to 

bind. 
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9 Appendix 

9.1 Derivation of quadratic equation for data curve-fitting 
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9.2  Explanation for Eq. 3 

 

 

                                          
 

In the observed figure, we make the following two assumptions: 
 

(1) The carbon atom c, its associated two oxygen atoms o1, o2, and the calcium ion 
Ca are lying on the same plane.   

(2) The length between c and o1 is equivalent to that between c and o2. 
 
In triangle o1o2ca, according to the law of sines, we have: 
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According to our statistical analysis results, the dihedral angle measured between the 
plane formed by c, o1 and o2, and the plane formed by o1, o2, and ca had a mean value of 
170.6 ± 7.1 (°), which is the basis for assumption (1). Furthermore, the length between c 
and o1 (d1) is very close to that between c and o2 (d2) which is the basis for assumption 
(2).   
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9.3  Supplementary figures and tables 

 

Table A.1 PDB data by Pb2+ -binding site  

PDB_ID SN PL PLW FC Binding PDB_ID SN PL PLW FC Binding 

1afv 9029 2 2 -1 O *1n0y 1322 7 8 -4 D (Ca) 

1e9n 4341 3 4 -1 D (Mg) *1n0y 1323 2 3 -1 O 

1e9n 4342 1 2 -1 D (Mg) *1n0y 1324 6 7 -3 D (Ca) 

1fjr 3168 2 5 -1 O *1na0 1973 1 1 -1 O 

1fjr 3169 2 2 -1 O *1na0 1975 2 2 -1 O 

1hd7 2072 3 7 -2 D (Mg) *1na0 1976 2 2 -2 O 

*1hqj 1645 1 3 -1 O 1qnv 2548 4 4 -3 D (Zn) 
*1hqj 1646 1 2 -1 O 1qnv 2549 2 2 -1 O 
*1hqj 1647 1 2 0 O 1qr7 10296 5 5 -3 D (Mn) 
*1hqj 1648 1 3 -1 O 1sn8 1330 1 1 0 O 
*1hqj 1649 3 4 -2 O 1sn8 1331 2 3 -1 O 
*1hqj 1650 2 2 -1 O *1syy 2617 2 2 -1 D (Fe) 
*1hqj 1651 2 2 -2 O 1v0d 1940 1 1 -1 U 

1iw7 53577 4 4 -3 D (Zn) 1xxa 3715 2 4 0 O 

1iw7 53578 4 4 -4 D (Zn) 1xxa 3716 1 3 0 O 

1ka4 4165 3 4 -1 O *1zhw 3516 2 2 -1 O 

*1n0y 1314 4 4 -3 O *1zhy 3516 3 3 -1 O 
*1n0y 1315 8 9 -4 D (Ca) *1zhy 3517 2 2 -1 O 
*1n0y 1316 2 2 -1 O 2ani 2618 2 3 -1 O 
*1n0y 1317 7 8 -3 D (Ca) 2ch7 4633 4 4 -2 D (Zn) 
*1n0y 1318 4 4 -2 O 2ch7 4634 3 4 -2 D (Zn) 
*1n0y 1319 5 6 -3 O *2fp1 2705 5 7 -2 O 
*1n0y 1320 3 3 -2 O *2fp1 2706 4 4 -2 O 

*1n0y 1321 4 5 -3 O 2g0a 4655 4 7 -2 D (Mg) 

PDB_ID indicates PDB Identification. PDB_ID values preceded by * indicate structural 
resolution of 1.75 Å or better. SN is the PDB serial number for ion. PL is the number of 
protein ligands. PLW is the number of ligands from the protein and water. FC is the 
formal charge within the binding site. Binding indicates either opportunistic (O) where 
no apparent binding site is present, displacement (D) indicating other ions (listed to the 
right of D) previously identified with binding that may be displaced by Pb2+, or unknown 
(U). 
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Table A.2 Summary of selected Ca2+-binding sites 

PDB 
ID 

Ca  
Seq 
ID 

 PDB 
ID 

Ca  
Seq 
ID 

 PDB 
ID 

Ca  
Seq 
ID 

 PDB 
ID 

Ca  
Seq 
ID 

 PDB 
ID 

Ca  
Seq ID 

1A0J 247 1JAE 500 1SVY 1 1YLI 4 2I1Q 504 

1A75 109 1JE5 502 1SXN 154 1YN8 1001 2I4B 454 

1A75 110 1JI1 2001 1SXN 154 1YN8 1002 2I6H 501 

1A75 109 1JI1 2002 1SZO 2001 1YN8 1003 2I6H 502 

1A75 110 1JI1 2003 1SZO 2002 1YN8 1004 2I6H 503 

1AG9 200 1JI1 2004 1SZO 2003 1YN8 1005 2I6O 1308 

1AG9 1000 1JI1 2005 1SZO 2004 1YN8 1006 2I7A 2 

1AG9 300 1JI1 2006 1T0I 201 1YN8 1007 2I8T 400 

1AG9 350 1JIX 600 1T0I 202 1YN8 1008 2I8T 402 

1AJK 1 1JTG 645 1T1G 358 1YN8 1009 2ID3 601 

1AJK 2 1JTG 702 1T61 813 1YN8 1010 2ID3 602 

1ATL 403 1JUG 126 1T61 814 1YOE 1001 2ID3 603 

1ATL 404 1JX6 401 1T64 389 1YRO 124 2ID3 604 

1AVA 500 1K12 160 1T64 390 1YRO 124 2ID3 605 

1AVA 501 1K3I 701 1T64 1390 1YS1 400 2ID3 606 

1AVA 502 1K3I 702 1T6C 502 1YS6 1001 2ID3 607 

1AVA 503 1K7I 480 1T9H 412 1YS6 1002 2ID4 901 

1AVA 500 1K7I 481 1T9H 413 1YU0 501 2ID4 902 

1AVA 501 1K7I 482 1T9H 414 1YU0 502 2ID4 903 

1AVA 502 1K7I 483 1T9H 415 1YXH 1001 2ID4 904 

1AVA 503 1K7I 484 1TAD 352 1YYD 371 2IE7 401 

1AXN 351 1K7I 485 1TAD 352 1YYD 372 2IE7 402 

1AXN 352 1K7I 487 1TAD 352 1Z0W 901 2IE7 403 

1AXN 353 1K94 997 1TE2 701 1Z0W 902 2IE7 404 

1AXN 354 1K94 998 1TE2 702 1Z32 497 2IE7 405 

1AXN 355 1K94 999 1TE2 703 1Z6O 5302 2IE7 407 

1AYO 1 1K96 91 1TE2 704 1Z6O 5303 2IE7 408 

1B1C 200 1K96 92 1TF4 3001 1Z6O 6302 2IEW 501 

1B2L 301 1K9U 1001 1TF4 3002 1Z6O 6303 2IG9 601 

1B2V 199 1K9U 1002 1TF4 3003 1Z6O 7302 2II1 400 

1B9O 124 1K9U 1003 1TF4 3004 1Z6O 7303 2II1 401 

1BF2 751 1K9U 1004 1THM 301 1Z6O 8302 2II1 400 

1BG7 174 1KA1 401 1THM 302 1Z6O 8303 2II1 401 

1BGP 501 1KAP 614 1TKJ 905 1Z70 3001 2II1 400 

1BH6 501 1KAP 615 1TN3 182 1Z70 3002 2II1 401 

1BK9 200 1KAP 616 1TN3 183 1ZCH 303 2II1 400 

1BLX 0 1KAP 617 1TO2 450 1ZCM 1001 2II1 401 

1BN8 400 1KAP 618 1TRK 681 1ZCM 1002 2II1 1 

1BQB 351 1KAP 619 1TRK 681 1ZDE 291 2II1 2 

1BQB 352 1KAP 620 1TVG 221 1ZDE 292 2II1 3 

1BQB 353 1KAP 621 1TZW 900 1ZED 906 2II1 4 

1BU3 109 1KB0 801 1U4G 401 1ZH2 201 2II1 5 

1BU3 110 1KIC 328 1U94 701 1ZH2 202 2II1 6 

1BUD 900 1KIC 328 1U94 702 1ZJA 7000 2II1 7 

1BYF 201 1KP4 200 1U94 703 1ZJA 7001 2IIM 600 

1BYF 201 1KSC 500 1UCN 1162 1ZL7 1001 2IPX 301 

1BYF 202 1KV9 802 1UCN 2162 1ZUD 601 2IPX 302 
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1BYF 202 1L6R 901 1UCN 3162 1ZUD 602 2IQY 501 

1C1Y 173 1L6R 902 1UCN 1001 1ZW6 201 2IUF 1696 

1C7I 746 1L6R 903 1UCN 1002 1ZW6 202 2IUF 1697 

1C7K 134 1L6R 904 1UET 501 2A2R 1 2IUF 1697 

1CB8 3000 1L6R 905 1UET 503 2A8K 401 2IUF 1698 

1CEL 440 1L7L 201 1UET 504 2A8K 402 2IUF 1710 

1CGT 685 1L8S 313 1UHA 100 2A8K 403 2IUF 1711 

1CGT 686 1L8S 314 1UIS 1003 2A8K 404 2IVZ 1432 

1CLC 591 1LE6 461 1UIS 1004 2AAO 293 2IVZ 1433 

1CLC 592 1LE6 462 1UJC 157 2AAO 294 2IVZ 1432 

1CLC 593 1LE6 463 1UKG 1262 2AAO 295 2IVZ 1432 

1CPN 209 1LED 251 1UKG 2262 2AAO 296 2IVZ 1433 

1CRU 901 1LLP 351 1UL3 601 2AAO 297 2IVZ 1432 

1CRU 902 1LLP 352 1UL3 602 2AAO 298 2IVZ 1433 

1CRU 903 1LOM 103 1UOW 1419 2AAO 299 2IWA 501 

1CRU 904 1LOM 104 1UOW 1420 2AAO 300 2IWK 1606 

1CRU 908 1LQV 34 1UPS 501 2AAO 301 2IWK 1607 

1CRU 909 1LQV 35 1UPS 501 2AD6 702 2IWK 1608 

1CVL 320 1LQV 36 1USR 1574 2AD6 704 2IWK 1609 

1CVR 648 1LQV 37 1USR 1573 2AEF 601 2IWK 1610 

1CVR 501 1LQV 38 1UV4 502 2AEF 602 2IWK 1611 

1CVR 477 1LQV 39 1UV4 1294 2APR 1 2IWK 1612 

1CVR 686 1LQV 40 1UWW 1192 2AYH 417 2IWK 1613 

1CVR 678 1LQV 41 1UWW 1193 2B50 1303 2IWK 1614 

1CVR 723 1LQV 42 1UWW 1194 2B50 2303 2IWK 1615 

1CXL 688 1LQV 43 1UWW 1195 2B6N 300 2IWK 1616 

1CXL 689 1LQV 44 1UWW 1191 2B9L 308 2IWK 1617 

1D0B 201 1LQV 45 1UWW 1192 2BF6 1693 2IWK 1618 

1D0B 202 1LQV 46 1UX6 2001 2BF6 1694 2IWK 1619 

1D0L 400 1LQV 47 1UX6 2002 2BIB 1551 2IWK 1620 

1D2S 401 1M1N 6492 1UX6 2003 2BIB 1552 2IWK 1621 

1D2S 501 1M1N 7492 1UX6 2004 2BKO 1199 2IWK 1639 

1DAF 227 1M1N 8492 1UX6 2005 2BKO 1200 2IWK 1606 

1DBI 701 1M1N 9492 1UX6 2006 2BKO 1201 2IWK 1607 

1DBI 703 1M6S 1300 1UX6 2007 2BKO 1202 2IWK 1608 

1DBI 704 1M6S 1301 1UX6 2008 2BKO 1203 2IWK 1609 

1DFX 150 1M6S 1302 1UX6 2009 2BL0 1146 2IWK 1610 

1DL2 901 1M6S 1303 1UX6 2010 2BL0 1155 2IWK 1611 

1DM5 1121 1M6S 1304 1UX6 2011 2BOQ 1351 2IWK 1612 

1DM5 1122 1M6S 1305 1UX6 2012 2BOQ 1352 2IWK 1613 

1DM5 1123 1MDW 1 1UX6 2013 2BOU 157 2IWK 1614 

1DM5 1124 1MDW 2 1UX6 2014 2BOU 158 2IWK 1615 

1DM5 1125 1MDW 3 1UX6 2015 2BQ4 1119 2IXT 1310 

1DM5 1126 1MDW 4 1UX6 2016 2BQ4 1120 2IXT 1311 

1DM5 1131 1MMQ 3 1UXX 1130 2BU3 1242 2IXT 1312 

1DM5 1132 1MMQ 4 1UY4 1147 2BU3 1242 2IXT 1313 

1DM5 1133 1MNZ 390 1UYY 1132 2BV2 1084 2IXT 1314 

1DM5 1134 1MPX 638 1UYY 1133 2BV2 1085 2IXT 1311 

1DM5 1135 1MPX 638 1UYY 1132 2BV2 1084 2IXT 1312 

1DNU 1 1MPX 638 1UYY 1133 2BV2 1085 2IXT 1313 
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1DNU 2 1MPX 638 1UZK 2512 2BV4 200 2IXT 1314 

1DPO 246 1MU5 1 1UZV 997 2BV4 300 2IXT 1315 

1DYK 4001 1MU5 2 1UZV 998 2BV4 200 2J12 1139 

1DYK 4002 1MVE 400 1UZV 997 2BV4 300 2J1A 1769 

1E29 225 1MVQ 237 1UZV 998 2BWR 500 2J1G 1290 

1E29 226 1MXG 438 1UZV 997 2BWR 501 2J1G 1291 

1E29 227 1N28 125 1UZV 998 2BWR 500 2J1G 1289 

1E43 501 1N28 126 1UZV 997 2BWR 501 2J1G 1290 

1E43 502 1N28 127 1UZV 998 2BZ6 1260 2J1G 1291 

1E43 503 1N28 128 1V0A 1176 2C1V 403 2J1V 1152 

1E43 504 1N7S 501 1V0A 1177 2C1V 403 2J1V 1152 

1E8A 89 1N7S 502 1V0Z 1477 2C2H 1183 2J1Y 1291 

1E8A 90 1N7S 503 1V0Z 1477 2C2H 1184 2J1Y 1291 

1E8A 89 1NBC 1 1V0Z 1477 2C2H 1185 2J1Y 1291 

1E8A 90 1NBC 1 1V0Z 1477 2C2H 1186 2J1Y 1291 

1ECS 390 1NKG 800 1V3E 4001 2C2H 1187 2J22 1150 

1EDM 3 1NL1 201 1V3E 2001 2C2H 1193 2J45 1401 

1EDM 1 1NL1 202 1V3W 3002 2C2H 1182 2J45 1401 

1EDM 2 1NL1 203 1V3W 3003 2C2H 1183 2J5Z 1277 

1EJ8 218 1NL1 204 1V3W 3004 2C2H 1184 2J5Z 1277 

1EK3 498 1NL1 205 1V3W 3005 2C2H 1185 2J5Z 1277 

1EK3 499 1NL1 206 1V73 2001 2C2H 1186 2J78 1447 

1EL1 130 1NL1 207 1V73 2002 2C2H 1191 2J78 1448 

1EL1 130 1NLS 240 1V7W 1001 2C42 2239 2J78 1445 

1ELT 300 1NNL 2001 1V7W 1002 2C42 2239 2J7T 332 

1EPF 5001 1NNL 2002 1V7W 1003 2C4X 1252 2J7T 333 

1EX0 1320 1NNL 2003 1V97 3008 2C4X 1253 2J7T 1318 

1EX0 1321 1NPC 319 1V97 4008 2C60 1123 2J7T 1319 

1EXR 1000 1NPC 320 1VBL 417 2C8S 1174 2J7T 1320 

1EXR 1001 1NPC 321 1VCH 1006 2CCM 1192 2J7T 1321 

1EXR 1002 1NPC 322 1VCL 1001 2CCM 1193 2J7T 1322 

1EXR 1003 1NPS 90 1VCL 1002 2CCM 1194 2JAM 1306 

1EXR 1004 1NPS 145 1VCL 1003 2CCM 1192 2JBH 1228 

1F4N 101 1NQD 1009 1VCL 1004 2CCM 1193 2JBH 1229 

1F4N 102 1NQD 1010 1VCL 1005 2CCM 1194 2JBH 1228 

1F4N 103 1NQD 1009 1VCL 1001 2CDO 1139 2JBH 1229 

1F4N 104 1NQD 1010 1VCL 1002 2CDO 1140 2JDA 1146 

1F7L 130 1NRW 903 1VCL 1003 2CDO 1139 2JDA 1146 

1F7L 132 1NSC 468 1VCL 1004 2CDO 1140 2JEP 1398 

1F8E 999 1NSC 469 1VCL 1005 2CDO 1139 2JEP 1397 

1F8E 998 1NSC 470 1VEM 930 2CDO 1140 2JFP 1271 

1FKQ 124 1NXC 1 1VJJ 911 2CDO 1139 2JFP 1271 

1FMJ 402 1NZI 1001 1VJJ 912 2CDO 1140 2MCM 163 

1FMJ 502 1NZI 1002 1VJJ 913 2CF7 2173 2MSB 1 

1FNY 500 1O4Y 700 1VJJ 941 2CF7 2174 2MSB 2 

1FOB 400 1O5K 601 1VJJ 942 2CF7 2175 2MSB 3 

1FS7 651 1O6V 1497 1VJJ 943 2CFT 1297 2MSB 1 

1G1T 160 1O6V 1497 1VLF 900 2CFT 1298 2MSB 2 

1G4I 124 1O9I 269 1VLF 901 2CHH 1114 2MSB 3 

1G87 18 1O9I 269 1VLF 900 2CHH 1115 2NQ6 404 
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1G87 19 1O9I 269 1VLF 901 2CHI 210 2NVO 1 

1G87 20 1O9I 269 1VLF 900 2CHI 211 2NWH 401 

1G87 21 1O9I 269 1VLF 901 2CHI 218 2NWH 402 

1G8F 517 1O9I 269 1VLF 900 2CHO 1717 2O1K 501 

1G8F 519 1OAC 802 1VLF 901 2CHO 1716 2O4V 701 

1G8F 520 1OAC 803 1VLF 900 2CKI 997 2O4V 702 

1G8I 1597 1OAC 802 1VLF 901 2CKI 998 2O4V 703 

1G8I 1598 1OAC 803 1VLF 900 2CKI 1403 2OAI 101 

1G8I 1599 1OCN 456 1VLF 901 2CKI 997 2OAI 102 

1G8I 1600 1OCN 457 1VLY 505 2CKI 998 2OBL 1001 

1G8I 1601 1OD3 1153 1VZI 1126 2CM5 1678 2OEE 1 

1G8I 1602 1OFL 528 1VZI 1127 2CM5 1679 2OEE 2 

1G8K 5007 1OH4 1186 1W07 1661 2CN3 1778 2OG9 401 

1G8K 5008 1OMR 501 1W0N 1132 2CN3 1777 2OG9 402 

1G8K 5107 1OS1 999 1W0P 1779 2CNH 1299 2OLG 2001 

1G8K 5108 1OS8 249 1W0P 1780 2CY5 1500 2OPO 301 

1G8K 5207 1OU9 1 1W0P 1781 2CYY 2001 2OPO 302 

1G8K 5208 1OU9 2 1W0P 1782 2CYY 2002 2OPO 303 

1G8K 5307 1OVA 500 1W15 1001 2CYY 2003 2OPO 304 

1G8K 5308 1OYG 500 1W15 1002 2CYY 2004 2OPO 305 

1G94 800 1P6O 402 1W15 1003 2D39 1401 2OPO 306 

1G9G 398 1P6O 403 1W32 1347 2D39 2401 2OPO 307 

1G9K 700 1PA2 307 1W32 1347 2D3D 101 2OPO 308 

1G9K 701 1PA2 308 1W3M 2013 2D3N 501 2OR4 1753 

1G9K 702 1PAM 1 1W3M 2015 2D3N 502 2OTM 1 

1G9K 703 1PAM 2 1W3M 2016 2D3N 503 2OVX 405 

1G9K 704 1PAM 1 1W3M 2017 2D73 801 2OVX 406 

1G9K 705 1PAM 2 1W3M 2014 2D73 802 2OVX 407 

1G9K 706 1PG6 201 1W3M 2015 2DDF 400 2OVX 408 

1GA6 374 1PG6 202 1W3M 2016 2DDR 1324 2OVX 409 

1GBG 373 1PJX 491 1W3M 2013 2DDR 1325 2OVX 410 

1GCI 277 1PJX 492 1W3M 2014 2DDR 1326 2OVX 411 

1GCI 278 1PK6 1 1W3M 2013 2DDR 1327 2OVX 412 

1GCY 451 1PMH 300 1W3M 2014 2DDR 1328 2OVX 413 

1GCY 452 1POA 201 1W3M 2013 2DDR 1329 2OVX 414 

1GGZ 148 1POA 401 1W3M 2014 2DDR 1330 2OX9 801 

1GGZ 149 1POC 501 1W3M 2015 2DDR 1331 2OX9 802 

1GGZ 150 1PVA 110 1W3M 2016 2DG1 3001 2OX9 803 

1GGZ 151 1PVA 111 1W3M 2017 2DG1 3002 2OX9 804 

1GK9 1579 1PVA 110 1W3M 2016 2DG1 3003 2OX9 801 

1GR3 901 1PVA 111 1W3M 2017 2DG1 3004 2OX9 802 

1GR3 903 1PWB 401 1W3M 2013 2DG1 3005 2OX9 803 

1GTT 1430 1PWB 402 1W3M 2014 2DG1 3006 2OX9 804 

1GTT 1430 1PWB 403 1W3M 2014 2DG1 3007 2OX9 801 

1GTT 1430 1PWB 401 1W3M 2015 2DG1 3008 2OX9 802 

1GTT 1430 1PWB 402 1W3M 2015 2DG1 3009 2OX9 803 

1GUI 200 1PWB 403 1W3M 2016 2DG1 3010 2OX9 804 

1GUN 1071 1PWB 401 1W3M 2013 2DG1 3011 2OX9 801 

1GUN 1071 1PWB 402 1W3W 1328 2DG1 3012 2OX9 802 

1GVK 1246 1PWB 403 1W6S 1599 2DOB 601 2OX9 803 
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1GWU 1307 1PZ7 701 1W6S 3599 2DPQ 101 2OX9 804 

1GWU 1308 1PZ7 702 1W7C 802 2DPQ 102 2OZI 503 

1GXR 1003 1Q6Z 532 1W7C 803 2DPQ 103 2P3U 501 

1GZC 290 1Q6Z 533 1WAD 116 2DPR 101 2P3U 502 

1H0H 1100 1Q6Z 534 1WDC 501 2DPR 102 2P5V 1001 

1H0H 1100 1Q8F 2001 1WKY 503 2DPR 103 2P5V 1002 

1H1A 1195 1Q8F 2002 1WL7 314 2DPR 104 2P5V 1003 

1H4W 260 1Q8F 2003 1WMD 1001 2DS5 299 2P5V 1004 

1H5V 305 1Q8F 2004 1WMD 1002 2DSN 2011 2P5V 1005 

1H5V 306 1Q8H 71 1WMD 1003 2DSN 2012 2P5V 1006 

1H5V 307 1Q8H 72 1WMZ 201 2DUR 1 2P5V 1007 

1H5V 308 1Q8H 73 1WMZ 202 2DUR 2 2P5V 1008 

1H5V 309 1QDB 520 1WMZ 203 2E26 601 2PAG 201 

1H5V 310 1QDB 520 1WMZ 201 2E26 602 2PAG 202 

1H5V 311 1QDB 520 1WMZ 202 2E26 604 2PKT 201 

1H5V 312 1QGD 675 1WMZ 203 2E26 605 2PKT 202 

1H5V 313 1QGD 675 1WMZ 201 2E3B 501 2PLT 101 

1H5V 314 1QGJ 2001 1WMZ 202 2E3B 502 2PNY 1 

1H6L 401 1QGJ 2002 1WMZ 203 2E4T 701 2POR 302 

1H6L 402 1QGJ 2001 1WMZ 201 2E6U 201 2POR 303 

1H6L 403 1QGJ 2002 1WMZ 202 2EAB 1 2POR 304 

1H6L 404 1QH4 382 1WMZ 203 2EAB 2 2PQX 500 

1H6L 405 1QHD 503 1WWS 1 2EJN 1001 2PR7 1 

1H6L 406 1QHD 508 1WWS 2 2EJN 1002 2PR7 2 

1H6L 407 1QHD 601 1WWS 4 2EJN 1003 2PVB 110 

1H80 1492 1QHD 602 1WWS 5 2EJN 1004 2PVB 111 

1H80 1493 1QHD 603 1WWS 6 2ERV 195 2PVZ 1001 

1H80 1494 1QHO 696 1WWS 7 2ESL 1 2PVZ 1002 

1H80 1492 1QHO 697 1WZA 601 2ESL 2 2PVZ 1003 

1H80 1493 1QHO 698 1WZA 602 2ESL 3 2PVZ 1004 

1H80 1494 1QMP 301 1WZL 1601 2ESS 1 2PWA 1280 

1H9W 239 1QMP 301 1WZL 2601 2EU8 1 2PY2 901 

1H9W 239 1QMP 301 1X1N 2001 2EXH 2001 2PY2 902 

1H9W 243 1QMP 301 1X7I 1251 2EXH 2002 2PY2 903 

1HDH 1528 1QPA 351 1X9D 1001 2EXH 2003 2PY2 904 

1HDH 1528 1QPA 352 1XF1 1109 2EXH 2004 2PY2 905 

1HFC 277 1QPA 351 1XF1 1110 2F1W 301 2PY2 906 

1HFX 124 1QPA 352 1XK4 1501 2F1W 302 2QLT 278 

1HJ8 1001 1QV1 403 1XK4 1502 2FCW 3001 2QNG 201 

1HJ9 1001 1QX2 1001 1XK4 2501 2FCW 3002 2QNG 202 

1HL5 156 1QX2 1002 1XK4 2502 2FGQ 502 2QP2 512 

1HL5 156 1QX2 1005 1XK4 3501 2FGQ 503 2QU1 239 

1HL5 156 1QX2 1006 1XK4 3502 2FGQ 501 2QUB 614 

1HLE 647 1R0R 301 1XK4 4501 2FH1 2001 2QUB 615 

1HM9 1901 1R0R 302 1XK4 4502 2FH1 2002 2QUB 616 

1HM9 1902 1R0R 303 1XK4 1511 2FH1 2003 2QUB 617 

1HM9 1903 1R0R 305 1XK4 1512 2FH1 3001 2QUB 618 

1HM9 1904 1R17 501 1XK4 2511 2FH1 3002 2QUB 619 

1HM9 2901 1R17 502 1XK4 2512 2FH1 3003 2QUB 620 

1HM9 2902 1R55 402 1XK4 3511 2FH1 4001 2QUB 621 
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1HM9 2903 1R6V 1 1XK4 3512 2FH1 4002 2QUB 614 

1HM9 2904 1RDO 1 1XK4 4511 2FH1 4003 2QUB 615 

1HT6 500 1RDO 2 1XK4 4512 2FHF 2401 2QUB 616 

1HT6 501 1RDO 1 1XK4 1521 2FHF 2402 2QUB 617 

1HT6 502 1RDO 2 1XK4 1522 2FHF 2403 2QUB 618 

1HVX 501 1RK8 9001 1XK4 2521 2FHF 2404 2QUB 619 

1HVX 502 1RK8 9002 1XK4 2522 2FHF 2405 2QUB 620 

1HVX 503 1RK8 9003 1XK4 3521 2FI1 1 2QUB 621 

1HX0 500 1RM8 502 1XK4 3522 2FMD 301 2QUB 614 

1HY7 303 1RM8 504 1XK4 4521 2FPW 503 2QUB 615 

1HY7 304 1RRO 109 1XK4 4522 2FPW 504 2QUB 616 

1HY7 305 1RRO 110 1XO5 1 2FPW 505 2QUB 617 

1HY7 803 1RRO 124 1XO5 2 2FVY 308 2QUB 618 

1HY7 804 1RRO 135 1XO5 3 2FXF 301 2QUB 619 

1HY7 805 1RU4 1 1XO5 4 2FXF 302 2QUB 620 

1HYO 1006 1RU4 2 1XO5 5 2FXF 304 2QUB 621 

1HYO 1007 1RWY 421 1XO5 6 2FXF 305 2QUB 614 

1I0V 105 1RWY 422 1XO5 7 2FXU 100 2QUB 615 

1I40 302 1RWY 423 1XO5 8 2FXU 200 2QUB 616 

1I40 303 1RWY 424 1XPH 402 2FXU 300 2QUB 617 

1I40 304 1RWY 425 1XVB 1174 2FXU 400 2QUB 618 

1I40 305 1RWY 426 1XYN 601 2G0I 1001 2QUB 619 

1I40 306 1RZ3 555 1XZO 1005 2G0I 1002 2QUB 620 

1I4A 401 1S0E 1292 1XZO 1006 2G8J 301 2QUB 621 

1I4A 410 1S0E 1293 1XZO 1007 2G8J 302 2QUB 614 

1I52 2001 1S1D 1001 1XZO 1008 2G8S 2001 2QUB 615 

1I76 996 1S1D 1002 1XZO 1009 2G8S 2002 2QUB 616 

1I76 997 1S3X 385 1XZO 1010 2GEB 201 2QUB 617 

1I8A 190 1S3X 386 1XZO 1011 2GEB 202 2QUB 618 

1I8A 191 1S6C 201 1XZO 1012 2GF6 1 2QUB 619 

1I8A 192 1S6C 202 1XZO 1013 2GJP 1486 2QUB 620 

1I9Z 301 1S99 801 1XZO 1014 2GJP 1487 2QUB 621 

1IA6 1263 1SAC 1 1XZO 1015 2GJP 1488 2QUB 614 

1IAG 250 1SAC 2 1XZO 1016 2GKO 610 2QUB 615 

1IQC 410 1SAC 1 1XZO 1017 2GKO 611 2QUB 616 

1IQC 1411 1SAC 2 1XZO 1018 2GKO 612 2QUB 617 

1IQC 410 1SAC 1 1Y1X 201 2GKO 613 2QUB 618 

1IQC 410 1SAC 2 1Y1X 202 2GQT 501 2QUB 619 

1IQC 410 1SAC 1 1Y1X 211 2GSM 3007 2QUB 620 

1IVG 470 1SAC 2 1Y1X 212 2GSM 4007 2QUB 621 

1IVG 470 1SAC 1 1Y3N 493 2GUY 601 2R01 210 

1IYI 1900 1SAC 2 1Y4J 1001 2GXS 601 2SCP 190 

1IYI 1901 1SAT 473 1Y4J 1002 2GXS 602 2SCP 191 

1IZ7 2002 1SAT 474 1Y4J 1003 2GXS 603 2SCP 192 

1IZ7 2003 1SAT 475 1Y4J 1004 2GXS 604 2SCP 193 

1IZ7 2004 1SAT 476 1Y5Y 201 2GXS 605 2SCP 194 

1J0H 601 1SAT 477 1Y7B 3001 2H2K 301 2SCP 195 

1J0H 602 1SAT 478 1Y7B 3002 2H2K 302 2UZP 1296 

1J1N 493 1SAT 479 1Y7B 3003 2H2K 303 2UZP 1297 

1J1N 493 1SEO 806 1Y7B 3004 2H2K 304 2UZP 1298 
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1J1T 301 1SH7 1290 1Y93 266 2H2T 160 2UZP 1296 

1J24 1001 1SH7 1291 1Y93 267 2H9D 301 2UZP 1297 

1J34 502 1SH7 1292 1Y93 268 2HD9 2001 2UZP 1298 

1J34 503 1SH7 2290 1Y9I 501 2HES 400 2UZP 1296 

1J34 504 1SH7 2291 1Y9I 502 2HNF 301 2UZP 1297 

1J34 505 1SH7 2292 1Y9I 503 2HNF 302 2UZP 1298 

1J34 506 1SL4 401 1Y9I 504 2HNF 303 3CSU 53 

1J34 511 1SL4 402 1Y9Z 603 2HNF 304 3CSU 114 

1J34 512 1SL4 403 1Y9Z 604 2HQ8 201 3LHM 131 

1J3B 1001 1SL8 669 1Y9Z 605 2HQ8 202 3STD 501 

1J3B 1002 1SL8 670 1Y9Z 606 2HQ8 203 3STD 502 

1J4G 1201 1SL8 671 1YDY 903 2HQ8 301 4DFR 3 

1J4G 1202 1SNC 142 1YDY 904 2HQ8 302 4ICB 76 

1J4G 1203 1SNN 403 1YFQ 800 2HQ8 303 4ICB 77 

1J4G 1204 1SNN 503 1YFQ 801 2HRG 1001 5CHY 401 

1J55 101 1SNN 601 1YFQ 802 2HRG 1002 5PAL 110 

1J55 102 1SNN 602 1YFQ 803 2HRG 1003 5PAL 111 

1J5U 301 1SPJ 300 1YII 401 2HYV 601 830C 264 

1J83 4000 1SPJ 301 1YII 402 2HYV 602 830C 263 

1J83 4001 1SRA 301 1YII 403 2HYV 605 8DFR 200 

1J8E 201 1SRA 302 1YLE 701 2HYV 607 8TLN 317 

1J9L 1301 1SRA 303 1YLI 1 2HYV 608 8TLN 318 

1J9L 1302 1SRR 531 1YLI 2 2I1Q 502 8TLN 319 

1J9L 1303 1SRR 532 1YLI 3 2I1Q 503 8TLN 320 

Summary list of all Ca2+-binding sites evaluated in statistical analysis. PDB ID: Protein 
Data Bank structural data file identifier. Ca Seq ID: PDB identifier for sequence number 
of Ca2+ ion. 
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Table A.3 Summary data for examples of zero charge Non-EF-Hand binding sites 

PDB ID 
Ca

2+
 

Site Res 
Atom 

ID 

Res 
Seq 

# Chain 
Dligand 

(Å) 

CLI 
Angle 

(°) 
Ligand 
Type 

2° 
Structure 

1AVA 503 HOH O 113 --- 2.9 --- HOH --- 

1AVA 503 HOH O 702 --- 2.7 --- HOH --- 

1AVA 503 HOH O 562 --- 2.4 --- HOH --- 

1AVA 503 HOH O 97 --- 2.4 --- HOH --- 

1AVA 503 HOH O 114 --- 2.3 --- HOH --- 

1AVA 503 HOH O 152 --- 2.2 --- HOH --- 

1AVA 503 HOH O 98 --- 2.1 --- HOH --- 

1AVA 503 GLU OE2 168 D 4.5 --- O Loop 

1AVA 503 TYR OH 170 D 4.7 --- O Loop 

1AVA 503 ASP OD1 179 B 4.3 --- O Loop 

1AVA 503 ASP OD2 179 B 4.9 --- O Loop 

1AVA 503 GLU OE2 204 B 4.9 --- O Loop 

1AVA 503 GLU OE1 204 B 5.0 --- O Loop 

1AVA 503 ASP OD2 289 B 4.4 --- O Loop 

1AVA 503 ASP OD1 289 B 4.7 --- O Loop 

2DG1 3012 TYR O 135 F 2.6 135.88 MC O Loop 

2DG1 3012 TYR N 135 F 3.4 97.43 MC N Loop 

2DG1 3012 THR O 133 F 2.6 109.64 MC O Loop 

2DG1 3012 THR OG1 133 F 2.5 135.96 SC O Loop 

2DG1 3012 ASP O 130 F 2.5 133.96 MC O Loop 

2DG1 3012 GLY O 112 F 2.5 138.63 MC O Loop 

2DG1 3012 GLY N 112 F 3.4 107.09 MC N Loop 

2DG1 3012 SER O 110 F 2.3 149.99 MC O Loop 

2EXH 2003 ASP O 333 C 2.4 132.19 MC O Loop 

2EXH 2003 GLY O 362 C 2.7 109.84 MC O Loop 

2EXH 2003 ASP O 528 C 2.3 138.9 MC O Beta 

2EXH 2003 HOH O 709 C 2.6 --- HOH --- 

2EXH 2003 HOH O 779 C 2.4 --- HOH --- 

2EXH 2003 HOH O 904 C 3.1 --- HOH --- 

PDB ID indicates the code associated with structural data deposited in Protein Data 
Bank; Ca2+ Site is the PDB sequence number associated with the calcium ion; Res is 
the amino acid providing the ligand atom; Atom ID indicates the atom type; Res Seq # is 
the primary sequence number of the residue; Chain is the PDB chain identifier; Dligand is 
the distance between the ion and the ligand atom; CLI Angle is the angle between the 
calcium ion, the binding ligand atom and its associated carbon; Ligand Type indicates 
whether the ligand atom (N or O) is from the mainchain, sidechain, or water; and 2° 
Structure indicates secondary structure origin of ligand.  
 



 

207 
 

Table A.4 Charge-charge interactions beyond primary Ca2+-binding coordination 

    Primary Ligand Charge-Charge Network   

PDB 
ID 

Ca
2+

 
Site Residue 

Res 
Seq 

# 
Atom 

ID Residue 

Res 
Seq 

# 
Atom 

ID 
Dchg-chg 

 (Å) 

2DG1 3012 SER 110 N ASP 107 OD2 2.9 

2DG1 3012 ASP 130 OD2 LYS 86 NZ 3.0 

2EXH 2003 ASP 528 OD2 LYS 395 NZ 3.0 

2EXH 2003 ASP 528 OD1 HIS 363 NE2 2.8 

2EXH 2003 ASP 333 N LYS 331 O 3.1 

2EXH 2003 ASP 333 OD2 LYS 331 NZ 4.1 

PDB ID indicates the code associated with structural data deposited in Protein Data 
Bank; Ca2+ Site is the PDB sequence number associated with the calcium ion; Res is 
the amino acid providing the ligand atom; Res Seq # is the primary sequence number of 
the residue; Atom ID indicates the atom type; Dchg-chg is the distance between the 
primary ligand and charged atoms beyond the second shell.  
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Table A.5 Peak differentiation for EF-Hand sidechain and mainchain Ca-O-C 
angles in bimodal distribution 

PDB 
ID 

a
SC 
R1  

b
SC 
R2 

c
MC 
R1 

d
MC 
R2 Description 

e
Family 

1QX2 3 3 7 3 calbindomodulin Calbindin D9K 

4ICB 1 2 3 2 calbindin D9K Calbindin D9K 

1EXR 7 5 4 0 Calmodulin Calmodulin-like 

1G8I 6 11 1 5 neuronal Ca sensor Calmodulin-like 

1GGZ 8 4 1 3 calmodulin-like protein Calmodulin-like 

1OMR 2 1 0 1 bovine recoverin Calmodulin-like 

1QV1 1 2 0 1 Obelin Calmodulin-like 

1S6C 1 5 1 1 KChIP1/Kv4.2 N1-30 Calmodulin-like 

1SL8 3 6 1 2 apo-aequorin Calmodulin-like 

1WDC 2 1 3 0 scallop myosin Calmodulin-like 

1XO5 6 8 4 1 CIB1 Calmodulin-like 

2BL0 0 3 1 0 polycelphalin myosin II Calmodulin-like 

2SCP 7 9 1 5 sarcoplasmic CaBP Calmodulin-like 

1SRA 3 2 2 1 osteonectin Osteonectin 

1A75 10 3 2 2 parvalbumin Parvalbumin 

1BU3 5 2 1 1 parvalbumin Parvalbumin 

1PVA 8 6 1 3 parvalbumin Parvalbumin 

1RRO 4 2 0 2 rat oncomodulin Parvalbumin 

1RWY 13 8 3 3 alpha-parvalbumin Parvalbumin 

2PVB 5 2 1 1 parvalbumin Parvalbumin 

5PAL 5 2 0 2 alpha-parvalbumin Parvalbumin 

1K94 5 4 3 1 grancalcin Penta-EF-Hand 

1Y1X 7 5 0 4 cell death 6 protein Penta-EF-Hand 

1K9U 3 7 2 2 polcalcin Polcalcin 

1E8A 2 3 6 4 human S100A12 S100 Proteins 

1J55 1 2 4 1 human S100P S100 Proteins 

1K96 2 1 3 2 human S100A6 S100 Proteins 

1XK4 15 24 46 14 human calprotectin S100 Proteins 

2H2K 3 3 5 5 human S100A13 S100 Proteins 

2AAO 13 8 2 5 protein kinase **SCU 

2CCM 8 10 0 6 calexcitin **SCU 

2HQ8 10 8 4 2 coelenterazine-binding  **SCU 

2OPO 15 9 2 6 polcalcin che a 3 **SCU 
aSidechain Region 1 (116.00°-138.49°); bSidechain Region 2 (138.50° - 170.00°); 
cMainchain Region 1 (116.00°-163.49°); dMainchain Region 2 (163.50° - 180.00°); 
eSCOP Classifications; *Contains both EF-Hand/S100 Sites; 
**SCOP Classification Unavailable 
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Table A.6 Crystallized PDB proteins found to bind Pb
2+

 ions 

aPDB 
ID Description 

bRes 
(Å) 

Total 
Pb2+  
Sites 

Retained 
Pb2+ Sites 

1AFV Hiv-1 Capsid Protein (P24) Complex 3.7 2 1 
1E9N Human apurinic/apyrimidin endonuclease 2.2 4 2 
1FJR Crystal Ectodomain Of Methuselah 2.3 4 2 
1HD7 apurinic/apyrimidin endonuclease 1.95 1 1 
1HQJ De Novo Designed coiled-coil peptide 1.2 9 7 
1IW7 Bacterial Rna Polymerase... 2.6 4 2 
1KA4 Pyrococcus Furiosus Carboxypeptidase 3 1 1 
1N0Y Crystal Pb-Bound Calmodulin 1.75 14 11 
1NA0 Tetratricopeptide repeat 1.6 5 3 
1QNV Yeast 5-Aminolaevulinic Acid... 2.5 2 2 

1QR7 
3-deoxy-D-arabino-heptulosonate-7-

phosphate synthase 
2.6 4 1 

1SN8 S1 Domain Of Rnase E 2 2 2 
1SYY Ribonucleotide Reductase 1.7 1 1 
1V0D Caspase-Activated DNAse (Cad) 2.6 1 1 
1XXA E.Coli ARG Repressor 2.2 4 2 
1ZHW Yeast Oxysterol Binding Protein Osh4 1.7 1 1 
1ZHY Yeast Oxysterol Binding Protein Osh4 1.6 2 2 
2ANI F127y Mutant Ribonucleotide Reductase 2 1 1 

2CH7 
Cytoplasmic Domain, Bacterial 

Chemoreceptor 
2.5 2 2 

2FP1 Chorismate Mutase 1.55 2 2 
2G0A Mouse Pyrimidine 5'-Nucleotidase 2.35 2 1 

  Total 68 48 
aProtein DataBank Identification 
bResolution 
 

 
Table A.7 Selected metal properties 

Z Ion 

aIonic 
Radius  

(Å) 

aPauling  
EN 

aElectron 
Configuration 

bAcid 
Type 

bLigand  
Preference 

20 Ca2+ 0.99 1 [Ar]4s0 Hard Oxygen 

30 Zn2+ 0.74 1.65 [Ar]3d10 4s0 Borderline Nitrogen 

82 Pb2+ 1.19 2.33 [Xe]4f145d106s26p0 Borderline Nitrogen 
ahttp://environmentalchemistry.com/yogi/periodic/ 
bGlusker et al. [5] 

 



 

210 
 

Table A.8 Binding site data for Ca2+ (1exr, R=1.00 Å) and Pb2+ (1n0y, R=1.75 Å) in 
CaM EF loops I-IV 

Res  
Seq 
Nbr 

Ca
2+

 
 Lig 
Res 

Ca
2+

 
 Lig 
Ato
m 

Ca
2+

  
Bind  
Dist  
(Å) 

Ca
2+

 
CLI  

Angle 
(°) 

Pb
2+

 
 Lig 
Res 

Pb
2+

 
 Lig 

Atom 

Pb
2+

  
Bind  
Dist 
(Å) 

Pb
2+

 
CLI  

Angle 
(°) 

Bind 
ΔDist 

CLI 
ΔAngle 

 1exr 1n0y   

20 ASP OD1 2.31 144.80 ASP OD1 2.30 146.18 -0.01 1.38 

22 ASP OD1 2.44 143.85 ASP OD1 2.51 129.63 0.07 -14.22 

24 ASP OD1 2.35 133.89 ASP OD1 2.62 117.80 0.27 -16.09 

26 THR O 2.35 155.06 THR O 2.67 134.14 0.32 -20.92 

26 THR *OG1 -- -- THR ‡OG1 3.49 130.31 -- -- 

31 GLU OE1 2.47 92.41 GLU OE1 2.58 90.19 0.11 -2.22 

31 GLU OE2 2.48 92.02 GLU OE2 2.54 92.06 0.06 0.04 

EFI        Mean 0.14 -8.67 

56 ASP OD1 2.34 133.03 ASP OD1 2.25 154.66 -0.09 21.63 

58 ASP OD1 2.43 146.8 ASP OD1 2.45 109.63 0.02 -37.17 

58 ASP *OD2 -- -- ASP ‡OD2 3.13 77.27 -- -- 

60 ASN OD1 2.40 127.89 ASN OD1 2.35 118.54 -0.05 -9.35 

62 THR O 2.41 159.42 THR O 2.52 153.61 0.11 -5.81 

64 ASP *OD2 -- -- ASP ‡OD2 3.34 112.38   

67 GLU OE1 2.47 96.4 GLU OE1 2.75 93.73 0.28 -2.67 

67 GLU OE2 2.60 89.39 GLU OE2 2.82 90.49 0.22 1.10 

EFII        Mean 0.08 -5.38 

93 ASP OD1 2.30 161.87 ASP OD1 2.36 166.97 0.06 5.10 

95 ASP OD1 2.33 130.85 ASP OD1 2.35 122.79 0.02 -8.06 

97 ASN OD1 2.42 132.81 ASN OD1 2.36 136.53 -0.06 3.72 

99 LEU O 2.28 162.46 LEU O 2.28 157.24 0.00 -5.22 

104 GLU OE1 2.46 94.51 GLU OE1 2.49 91.74 0.03 -2.77 

104 GLU OE2 2.54 89.99 GLU OE2 2.54 89.17 0.00 -0.82 

EFIII        Mean 0.01 -1.34 

129 ASP OD1 2.30 150.12 ASP OD1 2.37 145.6 0.07 -4.52 

131 ASP OD1 2.34 123.46 ASP OD1 2.47 110.61 0.13 -12.85 

131 ASP *OD2 -- -- ASP ‡OD2 3.19 75.87 -- -- 

133 ASP OD1 2.38 127.08 ASP OD1 2.25 134.04 -0.13 6.96 

135 HIS O 2.35 149.88 HIS O 2.52 133.14 0.17 -16.74 

140 GLU OE1 2.44 96.06 GLU OE1 2.47 100.58 0.03 4.52 

140 GLU OE2 2.55 91.05 GLU OE2 2.78 86.05 0.23 -5.00 

EFIV        Mean 0.08 -4.61 

ResSeqNbr: residue sequence number. Ca2+ LigRes: ligand residue for calcium-
binding. Ca2+ LigAtom: ligand atom. Ca2+ BindDist: distance between the Ca2+ ion and 
the ligand atom. Ca2+ CLI Angle: carbon-ligand-ion angle for the Ca2+ ion. Columns are 
repeated for Pb2+.  Bind ΔDist: difference in binding distance between Ca2+ and Pb2+ for 
identical ligands. CLI ΔAngle:  difference in carbon-ligand-ion angles. Ligand atoms 
labeled with * indicate non-binding. Ligand atoms labeled with ‡ indicate possible 
binding. 
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Table A.9 Binding site data for Zn2+ (1eb3, R=1.75 Å) and Pb2+ (1qnv, R=2.50 Å) in 
ALAD 

  1eb3 1qnv     

Res  
Seq 
 Nbr 

Zn2+ 
 Lig 
Res 

Zn2+ 
 Lig 

Atom 

Zn2+  
Bind  
Dist  
(Å) 

Zn2+ 
CLI  

Angle 
(°) 

Pb2+ 
 Lig 
Res 

Pb2+ 
 Lig 

Atom 

Pb2+  
Bind  
Dist 
(Å) 

Pb2+ 
CLI  

Angle 
(°) 

Bind 
ΔDist 

CLI 
ΔAngle 

133 CYS SG 2.26 107.96 CYS SG 2.74 97.53 0.48 
-

10.43 

135 CYS SG 2.26 105.77 CYS SG 2.82 81.99 0.56 
-

23.78 

143 CYS SG 2.27 105.71 CYS SG 2.84 106.05 0.57 0.34 

179 SER *OG 4.19 128.94 SER *OG 3.99 128.22 -- -- 

179 SER *O 4.28 106.69 SER O 3.38 164.63 -- -- 

                Mean 0.54 
-

11.29 

ResSeqNbr: residue sequence number. Zn2+ LigRes: ligand residue for zinc-binding. 
Zn2+ LigAtom: ligand atom. Zn2+ BindDist: distance between the Zn2+ ion and the ligand 
atom. Zn2+ CLI Angle: carbon-ligand-ion angle for the Zn2+ ion. Columns are repeated 
for Pb2+.  Bind ΔDist: difference in binding distance between Zn2+ and Pb2+ for identical 
ligands. CLI ΔAngle:  difference in carbon-ligand-ion angles. Ligand atoms labeled with * 
indicate non-binding.  
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Table A.10 Ca/CaM chemical exchange 
Slow Intermediate Fast

K77 D20 I9

E83 K21 A10

E84 D22 E11

I85 G23 F12

D93 D24 K13

D95 G25 E14

G96 T26 A15

A103 I27 F16

V108 T28 S17

T110 T29 L18

N111 K30 F19

L112 E31 L32

G113 D56 G33

K115 A57 T34

D118 G61 V35

E119 T62 R37

V121 I63 S38

I125 D64 L39

R126 F65 G40

E127 E67 A46

D129 T79 E47

G132 S81 L48

Q135 E82 Q49

E140 E87 D50

F141 K94 M51

V142 N97 I52

T146 G98 N53

A147 Y99 E54

I100 V55

S101 D58

A102 G59

R106 F68

E114 L69

L116 T70

A128 M72

I130 A73

D131 K75

D133 M76

G134

V136

N137

Y138

E139

Q143

M144

M145

Ca/CaM Chemical Exchange
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Figure A.1 ClustalW (1.83) MSA (Multiple Sequence Alignment) for three 
calmodulin sequences from different PDB files 
 
 

9.4  HNCA/HSQC assignment: apo-CaM 

 
       
1 mM apo-CaM, 37 °C, pH 6.5, 0.1 mM NaN3, 100 mM KCl, 10 mM EGTA 
 
 Assignment         w1         w2         w3   

 

          Q3H-C-N      8.227     55.680    118.259  

          L4H-C-N      8.248     54.518    121.498  

          T5H-C-N      8.716     60.532    112.570  

          E6H-C-N      9.025     60.182    120.139  

          E7H-C-N      8.741     60.167    118.976  

          Q8H-C-N      7.731     58.748    120.089  

          I9H-C-N      8.265     66.408    118.321  

         A10H-C-N      7.978     55.528    120.400  

         E11H-C-N      7.808     59.571    119.716  

         F12H-C-N      8.778     58.611    119.839  

         K13H-C-N      9.239     59.874    121.104  

         E14H-C-N      8.130     59.647    120.253  

         A15H-C-N      7.721     55.231    120.636  

         F16H-C-N      8.545     61.941    117.473  

         S17H-C-N      8.436     61.775    110.788  

         L18H-C-N      7.429     57.201    120.965  

         F19H-C-N      7.413     58.477    114.440  

         D20H-C-N      7.380     52.937    122.108  

         K21H-C-N      8.113     58.483    123.421  

         D22H-C-N      8.680     54.709    116.867  

         G23H-C-N      8.080     47.276    110.026  

         D24H-C-N      8.790     54.071    120.641  

         G25H-C-N     10.213     46.502    111.825  

         T26H-C-N      7.678     60.124    109.975  

         I27H-C-N      8.337     59.454    110.845  

         T28H-C-N      8.344     60.733    110.700  

         T29H-C-N      8.353     65.077    112.491  

         K30H-C-N      7.696     58.482    118.781  
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         E31H-C-N      7.570     56.365    117.240  

         L32H-C-N      7.448     58.738    120.647  

         G33H-C-N      8.811     48.459    105.118  

         T34H-C-N      7.541     65.936    118.122  

         V35H-C-N      7.997     66.241    122.653  

         M36H-C-N      8.446     60.193    118.068  

         R37H-C-N      8.496     59.386    119.305  

         S38H-C-N      8.184     61.859    118.796  

         L39H-C-N      7.419     54.720    120.734  

         G40H-C-N      7.976     46.289    106.923  

         Q41H-C-N      7.842     54.262    117.627  

         T44H-C-N      8.744     60.817    112.777  

         E45H-C-N      8.871     60.129    120.431  

         A46H-C-N      8.309     55.194    120.628  

         E47H-C-N      7.754     59.014    118.807  

         L48H-C-N      8.359     58.141    119.874  

         Q49H-C-N      8.121     58.854    117.368  

         D50H-C-N      7.868     57.579    118.818  

         M51H-C-N      8.009     59.792    118.799  

         I52H-C-N      8.363     65.202    118.757  

         N53H-C-N      8.261     55.541    117.241  

         E54H-C-N      7.656     58.497    117.301  

         V55H-C-N      7.691     62.432    113.037  

         D56H-C-N      8.487     53.782    121.840  

         A57H-C-N      8.141     54.771    124.631  

         D58H-C-N      8.432     54.713    114.818  

         G59H-C-N      7.971     47.265    108.722  

         N60H-C-N      9.252     54.438    119.536  

         G61H-C-N      9.946     46.392    109.863  

         T62H-C-N      7.627     59.928    110.766  

         I63H-C-N      8.922     60.055    118.813  

         D64H-C-N      8.616     52.361    124.422  

         F65H-C-N      8.679     62.977    118.857  

         E67H-C-N      8.047     59.393    117.600  

         F68H-C-N      8.473     61.485    122.168  

         L69H-C-N      8.486     57.965    118.494  

         T70H-C-N      7.765     66.378    115.014  

         M71H-C-N      7.785     59.127    121.154  

         M72H-C-N      8.043     56.125    117.201  

         A73H-C-N      8.353     55.049    120.987  

         R74H-C-N      7.543     58.724    116.370  

         K75H-C-N      7.752     56.832    117.972  

         M76H-C-N      7.952     56.639    117.529  

         K77H-C-N      7.754     56.981    120.244  

         D78H-C-N      8.325     54.911    121.687  

         T79H-C-N      8.137     62.438    114.288  

         D80H-C-N      8.458     54.979    122.946  

         S81H-C-N      8.443     59.923    116.716  

         E82H-C-N      8.487     59.277    121.897  

         E83H-C-N      8.233     58.979    118.683  

         E84H-C-N      8.072     59.164    119.099  

         I85H-C-N      8.202     66.522    120.425  
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         E87H-C-N      8.386     58.850    117.162  

         A88H-C-N      7.600     54.730    121.159  

         F89H-C-N      7.555     60.125    114.091  

         R90H-C-N      8.222     58.971    117.994  

         V91H-C-N      7.262     64.923    116.807  

         D93H-C-N      7.914     52.849    121.140  

         K94H-C-N      8.388     58.723    123.729  

         D95H-C-N      8.596     54.694    116.293  

         G96H-C-N      8.086     47.289    109.922  

         N97H-C-N      9.009     53.519    118.629  

        S101H-C-N      8.897     58.187    117.284  

        A102H-C-N      8.811     55.524    124.702  

        A103H-C-N      8.266     55.028    118.873  

        R106H-C-N      8.063     59.881    117.154  

        H107H-C-N      7.753     59.364    118.939  

        V108H-C-N      8.131     66.149    119.322  

        M109H-C-N      8.227     58.109    115.525  

        T110H-C-N      7.985     64.527    111.023  

        N111H-C-N      7.740     54.818    119.560  

        L112H-C-N      7.807     55.568    119.729  

        G113H-C-N      8.168     46.693    107.635  

        E114H-C-N      8.178     56.778    120.127  

        K115H-C-N      8.261     57.060    119.831  

        L116H-C-N      7.831     54.334    121.093  

        T117H-C-N      8.876     60.923    113.120  

        D118H-C-N      8.764     57.758    120.837  

        E119H-C-N      8.603     59.780    118.004  

        V121H-C-N      7.966     64.258    119.996  

        E123H-C-N      7.915     57.752    118.913  

        M124H-C-N      7.967     59.178    118.538  

        I125H-C-N      8.318     64.859    118.241  

        R126H-C-N      7.998     59.184    119.783  

        E127H-C-N      7.921     57.383    117.176  

        A128H-C-N      7.687     52.741    121.447  

        D129H-C-N      8.347     54.296    119.406  

        I130H-C-N      7.851     61.076    120.613  

        D131H-C-N      8.593     54.050    123.904  

        G132H-C-N      8.358     46.990    107.799  

        D133H-C-N      8.343     54.290    119.536  

        G134H-C-N      8.572     46.337    109.145  

        Q135H-C-N      8.321     55.261    119.218  

        N137H-C-N      8.801     52.513    124.755  

        Y138H-C-N      7.682     59.253    122.393  

        E139H-C-N      8.160     59.527    125.044  

        E140H-C-N      7.850     58.936    117.333  

        F141H-C-N      7.646     61.284    118.917  

        V142H-C-N      8.182     66.435    119.563  

        M144H-C-N      7.823     58.482    117.932  

        M145H-C-N      8.011     57.341    116.213  

        T146H-C-N      7.766     62.596    110.194  

        A147H-C-N      7.686     52.936    125.278  

        K148H-C-N      7.688     57.781    125.246  
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9.5 HSQC assignment: apo-CaM 

 
       
500 μM apo-CaM, 37 °C, pH 7.4, 100 mM TRIS, 100 mM KCl, 10 mM EGTA 
 
 
      Assignment         w1         w2   

 

           Q3NH-N      8.229    118.278  

           L4NH-N      8.251    121.560  

           T5NH-N      8.730    112.664  

           E6NH-N      9.025    120.139  

           E7NH-N      8.755    119.038  

           Q8NH-N      7.729    120.182  

         Q8E2NH-N      6.740    110.748  

         Q8E2NH-N      7.574    110.752  

           I9NH-N      8.261    118.315  

          A10NH-N      7.973    120.295  

          F12NH-N      8.788    119.920  

          K13NH-N      9.235    121.138  

          E14NH-N      8.119    120.337  

          A15NH-N      7.706    120.700  

          F16NH-N      8.547    117.499  

          S17NH-N      8.445    110.852  

          L18NH-N      7.422    120.871  

          F19NH-N      7.421    114.498  

          D20NH-N      7.364    122.231  

          K21NH-N      8.085    123.439  

          D22NH-N      8.683    116.838  

          G23NH-N      8.068    110.111  

          D24NH-N      8.780    120.693  

          G25NH-N     10.224    111.870  

          T26NH-N      7.704    110.088  

          I27NH-N      8.327    110.770  

          T28NH-N      8.327    110.770  

          T29NH-N      8.357    112.623  

          K30NH-N      7.695    118.797  

          E31NH-N      7.568    117.212  

          L32NH-N      7.422    120.871  

          G33NH-N      8.827    105.178  

          T34NH-N      7.539    118.120  

          V35NH-N      7.994    122.643  

          M36NH-N      8.450    118.160  

          R37NH-N      8.500    119.278  

          S38NH-N      8.172    118.803  

          L39NH-N      7.422    120.871  

          G40NH-N      7.963    106.967  

          Q41NH-N      7.837    117.722  

        Q41E2NH-N      6.694    110.943  

        Q41E2NH-N      7.497    110.948  
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        N42D2NH-N      6.753    111.841  

          T44NH-N      8.769    112.904  

          E45NH-N      8.866    120.394  

          A46NH-N      8.307    120.781  

          E47NH-N      7.757    118.721  

          L48NH-N      8.358    119.899  

          Q49NH-N      8.109    117.428  

        Q49E2NH-N      7.495    112.631  

        Q49E2NH-N      6.623    112.800  

          D50NH-N      7.864    118.831  

          M51NH-N      7.998    118.877  

          I52NH-N      8.362    118.822  

          N53NH-N      8.266    117.311  

        N53D2NH-N      6.909    111.445  

        N53D2NH-N      7.783    111.443  

          E54NH-N      7.648    117.318  

          V55NH-N      7.694    113.136  

          D56NH-N      8.486    121.874  

          A57NH-N      8.152    124.737  

          D58NH-N      8.433    114.757  

          G59NH-N      7.962    108.795  

          N60NH-N      9.268    119.672  

        N60D2NH-N      7.780    113.853  

          G61NH-N      9.993    110.019  

          T62NH-N      7.619    110.773  

          I63NH-N      8.918    118.748  

          D64NH-N      8.653    124.545  

          F65NH-N      8.661    118.815  

          E67NH-N      8.063    117.692  

          F68NH-N      8.473    122.162  

          L69NH-N      8.481    118.571  

          T70NH-N      7.761    115.063  

          M71NH-N      7.774    121.192  

          M72NH-N      8.035    117.247  

          A73NH-N      8.331    120.985  

          R74NH-N      7.535    116.438  

          K75NH-N      7.748    117.979  

          M76NH-N      7.941    117.700  

          K77NH-N      7.760    120.427  

          D78NH-N      8.339    121.855  

          T79NH-N      8.147    114.393  

          D80NH-N      8.463    123.038  

          S81NH-N      8.443    116.842  

          E82NH-N      8.486    121.874  

          E83NH-N      8.223    118.806  

          E84NH-N      8.080    119.231  

          I85NH-N      8.205    120.465  

          E87NH-N      8.394    117.304  

          R90NH-N      8.229    118.278  

          D93NH-N      7.920    121.311  

          K94NH-N      8.369    123.763  

          D95NH-N      8.606    116.346  
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          G96NH-N      8.064    109.966  

         A102NH-N      8.795    124.666  

         A103NH-N      8.264    119.055  

         R106NH-N      8.058    117.268  

         H107NH-H      7.767    119.157  

         V108NH-N      8.116    119.331  

         M109NH-N      8.241    115.685  

         T110NH-N      7.986    110.938  

         N111NH-N      7.760    119.829  

       N111D2NH-N      7.436    110.571  

       N111D2NH-N      6.646    110.569  

         L112NH-N      7.804    119.817  

         G113NH-N      8.175    107.766  

         K115NH-N      8.250    119.889  

         L116NH-N      7.859    121.164  

         D118NH-N      8.756    120.869  

         E119NH-N      8.605    117.968  

         V121NH-N      7.973    120.295  

         E123NH-N      7.924    119.054  

         M124NH-N      7.972    118.598  

         I125NH-N      8.311    118.340  

         R126NH-N      8.003    120.030  

         A128NH-N      7.700    121.478  

         I130NH-N      7.851    120.699  

         D131NH-N      8.588    123.846  

         G132NH-N      8.351    107.967  

         D133NH-N      8.349    119.430  

         G134NH-N      8.582    109.259  

         Q135NH-N      8.324    119.257  

         N137NH-N      8.795    124.666  

         E139NH-N      8.163    125.026  

         E140NH-N      7.856    117.503  

         F141NH-N      7.649    118.955  

         V142NH-N      8.167    119.741  

         M144NH-N      7.847    118.170  

         M145NH-N      8.021    116.338  

         T146NH-N      7.773    110.411  

         A147NH-N      7.697    125.339  

         K148NH-N      7.697    125.339  
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