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THE DESIGN AND EVALUATION OF BORONIC ACID DERIVATIVES FOR 

THE RECOGNITION OF CELL SURFACE CARBOHYDRATES FOR 

MEDICINAL APPLICATIONS 

by 

SANDRA NAVONNE CRAIG 

Under the Direction of Binghe Wang 

ABSTRACT 
 
 
 
     Carbohydrates in various forms play vital roles in numerous critical biological 

processes including cell-cell adhesion and communication, embryo development, 

immune response, etc.  Fluorescent sensors for such carbohydrates have a wide range of 

potential applications including glucose concentration determination, cell labeling and 

targeting based on carbohydrate biomarkers, as in vitro diagnostic tools, and biomarker-

directed cellular imaging.  Our group has been interested in the design and synthesis of 

multi-boronic acid compounds with well-defined three-dimensional scaffolding for the 

specific recognition of selected carbohydrate biomarkers.  Aberrant expression of 

carbohydrate antigens such as sialyl Lewis X (sLex), sialyl Lewis A (sLea), Lewis X 

(Lex), and Lewis Y (Ley) have been associated with tumor formation and metastasis in 

various cancer types.1-4  As such, for our initial design, we have selected sialyl Lewis X 

(sLex) as our potential target due to implication in the development of liver and colon 

cancer.5, 6  Herein, we describe the design, synthesis and evaluation of four such 

compounds, each having about ten linear steps in its synthesis.  In addition to the design 

of fluorescent probes for cell surface carbohydrates, we also have designed lipophilic 



 

boronic acid derivatives as potential fusogenic agents.  Due to boronic acid’s ability to 

bind to 1,2 and 1,3 cis diols, we hypothesize that the aliphatic chain should be able to 

insert into lipid cellular membrane and the boronic acid units should allow for the 

“attachment to neighboring cells” through complexation with cell surface glycans.  Such 

interactions should allow the boronic acid compounds to bring two or more cells together 

for fusion.  Herein, we have described the methodologies of the design of such 

compounds.    

INDEX WORDS:  Boronic acid, sialyl Lewis X probe, boronolectin, fluorescence, 

sensor, cell-cell fusion, fusogen, immunotherapy. 
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TTThhheee EEEllleeemmmeeennntttsss ooofff   EEEsssssseeennnccceee   
Once I reflected on everything that was good and wanted to 
thank him for all his creations. Kneeling suddenly appeared 

this revelation. 
I envisioned His hands reaching down on a ball of clay 

molding and shaping a man in just one day. He reveled at the 
finished product and knew this accomplishment was grand, 

But wanted to add perfection to his great land and decided to 
create woman. 

An easy task he knew this would not be 
for this creature would reign as Queen and from her would be 

born all posterity. 
The Creator took his time and shaped a form that was 

sophisticated and added loyalty for she was going to be 
dedicated. 

He made her audacious and autonomous to convey her 
strength. 

Delightful, admirable, graceful so her company will be good 
when you are in it. He formed her lips ever so that the words 

will be genuine, authentic as she flows. 
This woman had to possess an attitude, not simple, but 
complex. He made her positive, attentive, distinctive, 

aggressive, all that, and nothing less. Determined, charming, 
and daring, elegant, independent, strong, and bold 

With all these divine traits this ruby is not matched with the 
wealth of gold. 

The Creator’s masterpiece was finally completed and today 
she still walks the Earth in you and me. You called her 

Mother, Sister, Friend, and Granny.  
Now, she stands proud in her white robe and boasts her 

crown upon her head. Having planted seeds into her legacy 
through which love will be fed. 

Long she lived until the Creator called her back home 
She is now His angel of fortitude and her spirit lives on. 

She watches over us from her mansion on high 
Soaring through her garden naming each lily for us and 

blowing kisses through the sky. 
Revere her, she is divine, marvel in her magnificence 

And remember that all things in her that were good were  
The Elements of Essence. 

by 
Tanya D. McPhail 
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1. Introduction 
 
 
     The recognition and detection of particular saccharides in an aqueous environment can 

be a useful way for monitoring the progression of certain diseases such as cancer and 

diabetes among others.  A key in developing such a system is to design a molecule with 

the appropriate three-dimensional scaffold that is conducive to a particular carbohydrate 

only. In addition, the molecule must have strong functional group interactions with the 

saccharide of interest, and must exhibit some physiochemical property that can trigger a 

measurable event when bound to an oligosaccharide.  With that said, boronic acids in the 

last decade, due to their ability to bind reversibly to 1,2 and 1,3 cis diols (Scheme 1.1), 

are an attractive commodity  for sensory design in the diagnosis of the detection, and in 

monitoring of the progression of various diseases.7-11  

 

 

 

 

   

 

Scheme 1.1  Ester formation of boronic acid and 1, 2 or 1, 3 cis diol.  
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     In developing a sensor for a particular carbohydrate, it is important to select a mode of 

detection that is conducive to the output desired.  There have been many methods used to 

determine the binding constant for the interaction of boronic acid and a diol such as: pH 

depression,12-14 11B-NMR,15-17 and other spectroscopic methods18, 19 to name a few.  In 

addition, there are factors that govern the interaction of a boronic acid and diol that must 

be considered before devising a receptor with specificity for the carbohydrate of interest. 

For instance: the boronic acid pKa, diol pKa solution pH, solvent, buffer, steric and 

stereoelectronic effects are all factors that need to be considered.  Our group has 

performed extensive studies in determining the method of detection that is required in 

designing spectroscopic boronic acid sensors.20  Also we have studied the factors that 

govern the interaction between a diol and boronic acid.21-23  With such understanding of 

the interactions between a boronic acid and a diol, one has the essentials needed to 

develop the appropriate sensory device for the saccharide of choice. 

1.1. Factors That Influence the Binding Affinity of Boronic Acids and Diols  
 

     In designing an artificial receptor for saccharides, one must consider factors that 

govern relevant intermolecular interactions.  Boronic acid acidity is quite uniquely 

different from the traditional carboxylic acid.  With boronic acid in an aqueous 

environment, it is the reaction of a water molecule with the boron empty p orbital of the 

center and the concomitant release of a proton from the water that accounts for the 

aciditiy of a boronic acid. Such an ionization reaction also converts the boron from a 

planar (sp2) form to a sp3 tetrahedral (boronate) anionic species (Scheme 1.2).  Upon 

addition of a cis 1,2 or 1,3 diol, the complexation of the boronic acid and corresponding 
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diol is governed by several factors such as 1) the pKa  of the diol and a boronic acid, 3) 

pH of solution, 4) properties and sometimes concentration of the buffer system, and 5) 

steric and stereoelectronic effects.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 1.2 The ionization states of a boronic acid molecule and the complexation with a 
diol in aqueous buffered medium. 12, 13   
 
 
     The formation of the complexation between a diol and boronic acid is a function of pH; 

for example the apparent pKa of phenylboronic acid (PBA) is 8.8.20 Theoretically speaking 

at physiological pH, PBA is approximately 10 times more in its acidic form than basic 

form.  As the pH solution becomes more basic the anionic boronate species 2 becomes 

predominant. After addition of a diol in Scheme 1.2, the boronate ester 3 is more acidic 

than the boronic acid, in some cases at physiological pH elucidating species 4, as the major 

counterpart.        
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     With most commonly seen sugars, the apparent pKa of the boronic ester is lower than 

7.4.  For example, glucose (pKa ~ 12) lowers the apparent pKa of PBA by 2 units to 6.8.20 

Generally speaking, the lower the pKa of the boronic acid, the greater the binding affinity 

with a given diol.  Consequently, electron-withdrawing substituents (-R group) should 

increase the acidity and thus augment binding affinity.  Our group has studied a series 

substituted PBA and determine the apparent pKa of each boronic acid, and their binding 

constants at various pH values with commonly seen diols such as glucose, fructose, and 

catechol.21  It was found that there were many exceptions to the commonly held beliefs24, 25 

of the pKa effect on binding.21  For example, the ester formation between 2,5-

difluorophenylboronic acid (pKa 7.6) and 3,4,5-trifluorophenylboronic acid (pKa 6.8) with 

glucose (pKa 12.5) is not what is expected (Table 1.1).21  If the common belief is that the 

lower the pKa of boronic acid the higher the binding affinity, then theoretically the binding 

constant of 3,4,5-trifluoroPBA with glucose 8 should be higher than that of 2,5-

difluoroPBA-glucose 5 at pH ranging from 6.5-7.5, which is not the case (Table 1.1).  
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Scheme 1.3 Example of factors that affect binding affinity of the interaction of a boronic 
acid and a diol. 
 
 
Table 1.1 Binding constants (M-1) of PBAs and glucose (pKa 12.6). 

 
 
 
 

               2,5-difluoroPBA (pKa 7.6)                                3,4,5-trifluoroPBA (pKa 6.8) 

pH 6.5                   33                                                                        17 
 
pH 7.5                   47                                                                        41 
 
pH 8.5                   7.3                                                                       53          
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Along with the pKa of the two components, the affinity of the boronic acid for a diol is 

also affected by the dihedral angle O-C-C-O of the carbohydrate.  The smaller the angle, 

the easier it is for the anionic boronate species to adapt to the “ideal” tetrahedral 

configuration, which increases stability of the boronate complex and enhances the 

binding affinity.18    

     In conclusion, the factors that govern the stability of the interaction between a boronic 

acid and a diol include 1) the pKa of each component, 2) solution pH, 3) dihedral angle of 

the diol, and 4) other properties such as steric and stereoelectronic factors.  These factors 

must be carefully considered before designing a receptor for the recognition of a 

carbohydrate of interest.  

1.2. Method for Determining Binding Constants 
 
     The ability for boronic and boric acids to bind with diols was first recognized over a 

century ago. In 1842, it was reported that sugars increased the acidity of boric acid.26  

The acquirement of such knowledge led to extensive studies to determine the strength of 

boronic/boric acid binding with diols.  Some of the common methods used were pH 

depression, 11B-NMR, and spectroscopic methods among others.  In determining which 

method would be most appropriate, one must consider the specific circumstance. 

       In 1959, Lorand performed the first quantitative assay between a series of diols and 

phenylboronic acid (PBA).14  He determined the binding constant by using the pH 

depression method (Table 1.2).  With this method, two assumptions were made: 1) that 

only the boronate anion complexes (10,12) were formed and 2) that the change in 

concentration of the boronic acid (9) form due to ionization was negligible. The 
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formation of the complex between a boronic acid and a diol is pH and pKa dependent as 

discussed earlier.  Initially with the pH depression method the concentration of boronic  

 

Table 1.2 Association constants with PBA  
as measured by the pH depression method.14 
 

1,3-propanediol 0.88
ethylene glycol 2.8

phenyl-1,2-ethanediol 9.90
glucose 110
fructose 4370
catechol 17500  

acid 9 and the boronate ion 10 are at equal quantities, which allows the pH to be equal to 

the pKa.  After the addition of a diol to an aqueous boronic acid solution, a change in pH 

occurs and the equilibrium is shifted toward the boronate ester form 12.  The boronic 

ester form is said to more acidic than boronic acid, which results in a pH decrease with 

diol addition.  The change in pH is directly related to the binding constant. If the 

concentration of the boronic acid is in essence constant and there is no formation of 11, 

then Ktet (binding constant of the complex formation boronate and diol) and the change in 

pH are directly correlated. With such assumptions, Lorand derived equation 1 to 

determine the binding constant with Kc being the formation constant, ∆pH the change in 

pH after polyol is added to the acid-base equilibrium, and [P]f the equilibrium polyol 

concentration.  

                       

                                                                        
This method is generally acceptable when a high concentration of boronic acid is used, 

but is not very useful when the boronic acid quantity is limited.  Furthermore, the central 

  10 – ∆pH -1 
 

[P]f

= Kc (1) 
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hypothesis that the boronic ester form does not exist is not correct in a large number of 

cases.  Therefore, the pH depression method only gives an approximation of the Ktet, not 

Keq (Schemes 1.4 and 1.5).20 

    Another method commonly used is that of 11B-NMR spectroscopy.  This method is 

somewhat analogous to the pH depression method in that it relates to the ionization states 

of the boronic acid-diol complex.  When a diol is added to a solution of boronic acid 

promoting formation of a boronic ester, the ester is consider to be more ‘acidic’ than the 

acid, reducing the apparent pKa.  This helps to facilitate a large portion of the boronic 

ester complex to be converted from a neutral trigonal form to the anionic tetrahedral 

form. The change from a trigonal ester 11 to tetrahedral ester 12 can be directly detected 

using 11B-NMR because of the significant change in chemical shift of the boron atom, 

trigonal ester being around 30 ppm and the tetrahedral form around 10 ppm.  This method 

can be used for studying physiochemical changes that may occurred due to binding, 

solvolysis, pH, steric and other factors.  However, this method also requires a large 

amount of sample and therefore is not applicable when only a small amount of the 

boronic acid can be obtained in sensor research. 
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Scheme 1.4 Binding process between phenylboronic acid and a diol.  
 
 
 
 
 
 
 

 

 

 

 

 

Scheme 1.5 Overall binding process between phenylboronic acid and a diol. 
 
 
     Lastly, spectroscopic methods are commonly used to detect the binding between a 

boronic acid and diol because this provided sensitivity, rapid detection, and a continuous 
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used for binding constant determination include CD, absorption, and fluorescence 

approaches.  Our group has established a three component- competitive assay containing 

a fluorescent compound Alizarin Red S. (ARS), phenyl boronic acid (PBA), and a cyclic 

or acyclic diol.  ARS is commercially available and commonly used in the textile 

industry.  It has also been used for fluorometric detection of boric acid27 and other 

metals.28, 29  We have employed it as a fluorophore due to its sensitivity in the detection 

of boronic acids.  ARS (13) initially is non-fluorescent due to excited state proton transfer 

resulting in fluorescence quenching (Scheme 1.6).30, 31 However, after addition of a 

boronic acid, the proton on the phenol hydroxyl group is no longer present.  Therefore, 

fluorescence quenching through excited state proton transfer is no longer possible, which 

leads to a fluorescence intensity increase.  A more in depth discussion of how this method 

works for binding constant determination is as follows: the first equilibrium between the 

boronic acid and the ARS reporter can be directly measured based on fluorescence 

intensity changes (Scheme 1.6).  The addition of a diol produces a second equilibrium 

between the boronic acid and diol to give boronate ester 13b.  This perturbs the 

ARS/boronic acid equilibrium resulting in a change in the fluorescence intensity of the 

solution.  With the establishment of this design, the binding constants of phenyl boronic 

acid with a series of diols were determined.  After carefully obtaining the results, we 

noticed a discrepancy between our binding constant and the binding constant of Lorand 

and co-workers determined using pH depression method (Table 1.2).  Several reasons led 

to this discrepancy.  First, the assumption that there is no formation of trigonal boronate 

ester is not true in all cases.  Boronic acids and their esters can exist in two different 

ionization states; there are actually three different “binding constants” to consider.  The 
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first one relates to the conversion of the trigonal boronic acid (9) to the trigonal ester (11) 

termed Ktrig.  The second one refers to the conversion of tetrahedral boronate (10) to its 

ester counterpart (12) termed Ktet.  However, neither of these two truly represents the 

overall binding constant between a diol and boronic acid for the purpose of sensor design.  

The third binding constant describes the overall binding strength regardless of the 

ionization state of the boron species, Keq (Scheme 1.5).  Lorand’s assumption does not 

consider the nature of diol in question. For example, the pKa of the phenylboronic ester 

of glucose is determined to be 6.8.  At physiological pH, ca. 20% should be in the free 

boronic ester form.  Our group was the first to derive an equation to determined the Ktrig 

binding constant within the equilibrium process.20  In most cases, the trigonal boronic 

ester is present in substantial proportions and this must be considered when determining 

binding constants. 
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Scheme 1.6 Competitive binding assay with a boronic acid, ARS, and a diol. 
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Table 1.3  Association constants with PBA.  
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     When choosing a method for determining the binding constant of the interaction 

between a diol and a boronic acid, one must be aware of the limitations of each method.  

Clearly, with the pH depression method, the binding constant is determine to be between 

the anionic ionization state of the complex of a diol and boronic acid, Ktet , not the overall 

binding constant Keq regardless of the ionization state of the boron species.  11B-NMR 

method is only significant in acquiring knowledge of the physical state of the complex 

and physiochemical properties; in addition both the pH depression method and 11B-NMR 

require a large amount of sample which is not always appreciable in the preliminary 

discovery of sensory design.  Spectroscopic approaches are the most efficient mode of 

detection due to: 1) high sensitivity, 2) facile preparatory set-ups, and 3) the requirement 
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for very little sample.  Below is a brief discussion of the progression of fluorescent 

chemosensors in the detection of saccharides.       

1.3. The Development of Fluorescent Chemosensors 
 
     In the design of chemosensors for carbohydrates, there must be a method, with high 

sensitivity in determining the concentration at a low detection limit for medicinal 

applications; and a physiochemical change that is measurable when the recognition 

moiety is complexed to an oligosaccharide.  Fluorescent boronic acid sensors have been 

in development since the early 1990’s. Much ground work has been laid in developing 

fluorophores that can act as molecular reporter units.  A brief review in the advancement 

of fluorescent reporters will be briefly presented.  More in depth discussions can be found 

in many excellent reviews on fluorescent boronic acid sensors.18, 19, 32-34 

     Czarnik and co-workers were the first to design a fluorescent chemosensors using an 

anthracene-boronic based system for the detection of polyol through a photoinduced 

electron transfer mechanism (Scheme 1.7).35  In basic aqueous medium, the ionization 

state of anthrylboronic acid shifts from a trigonal planar boron species, which is 

fluorescent, to a weakly fluorescent tetrahedral species 14b.  The addition of a diol 

creates a new equilibrium between the boronate ester form (weakly fluorescent) and the 

boronic ester form (fluorescent).  The quenching process was said to be regulated by the 

boronate anionic species.  This pioneering work signaled the beginning of subsequent 

extensive work in chemosensory design for the detection of carbohydrates for industrial 

and medicinal applications.  Shinkai and colleagues in the early 90’s designed mono and 

di-boronic acid derivatives using the fluorescent anthracene system.36 
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Scheme 1.7 Equilibrium of anthrylboronic acid in aqueous media in the presence and 
absence of diol. 
 

In hopes of establishing an anthracene-boronic acid based system that can function at 

physiological pH, Shinkai incorporated a tertiary amine in a 1,5 arrangement based on the 

concept first introduced by Wulff.37  In this system it is presumed that, when no sugar is 

added the lone pair electrons on the amine reduce the intensity of the fluorescence 

through an exicited state photoinduced electron transfer quenching mechanism (Scheme 

1.8).  This was considered to be the ‘off’ state of the sensor.  When sugar is added the 

amine and boron interact and form a B-N bond, stopping the quenching mechanism thus 

creating an ‘on’ state of the sensor.  It was proposed that the interaction of the boron and 

amine lowered the pKa of the boronic acid.  This interaction supposedly helped to 

increase binding affinity between a diol and boronic acid, along with an increase in 

fluorescent intensity, and enhancement in B-N bond strength.  This system has had much 

success in the selective detection of fructose over glucose, and has prompted others to use 
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this system as well to develop selective sensors for carbohydrates.7, 38-40  However, the 

mechanism, as originally proposed by Shinkai, through which the fluorescent intensity 

change occurs is somewhat questionable in buffered aqueous medium.22, 23  The B-N 

formation has been analyzed by 11B-NMR studies under various experimental conditions. 

Within these studies, indications of the boronate ester being prone to solvolysis  by protic 

solvent were made, thus eliminating the B-N bond to some extent.17  Therefore, is the B-

N bond strength enough to tie-up the lone pairs of the nitrogen with a competing 

solvolysis mechanism in place?  Wang group has performed several studies to resolve the 

ambiguity in essentially how the PET mechanism works in the Shinkai system.  They 

believe that there is another plausible hydrolysis mechanism at play, and to test our 

theory we performed several tests.  We: 1) repeated the pH profile of  16 in the presence 

and absence of sugar, 2) tested the effect of sugars that are capable of trivalent binding to 

boronic acid, and 3) calculated the B-N bond strength.22, 23 
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Scheme 1.8 Possible PET mechanisms for the fluorescence intensity changes of the 
Shinkai system. 
 



17 

    Theoretically, in an aqueous pH dependent environment, (16a) has two pKa values to 

consider, the pKa of the boron and the pKa of the amine.   It is known in literature that in 

a 1, 5 relationship between a tertiary amine and boron, the pKa of the amine is roughly 541  

The first pKa is related to the amine which coincides with the reduction of the 

fluorescence. As the pH increases, 16b is formed.   The addition of a diol promoting 

formation of a boronic ester 17b supposedly strengthens the B-N bond in such a way as 

to ‘tie-up’ the lone pair on the nitrogen preventing the quenching process, thus 

augmenting fluorescence, which is contingent upon the ‘physiochemical’ properties of 

the carbohydrates (properties in which were discussed earlier in Section 1.2).  The 

apparent pKa values of boronic esters are different with diverse sugars as it is well known 

in literature.  This would mean B-N bond strength would be different for 17b which 

should in turn affect the quenching efficiency by the lone pair electrons and consequently 

the maximal fluorescent intensity for a particular ester.  However, in our studies all esters 

gave the same maximal fluorescent intensity, which is consistent with the hydrolysis 

mechanism.  The fluorescent species 17d has the same protonated amine form regardless 

of which sugar is added.  In addition, if the fluorescence change depended upon the B-N 

formation then with trivalent sugars, fructose20 and sorbitol42, there would not be any 

change in fluorescence intensity, which is not the case.  We have also calculated the B-N 

bond strength to be ca. around 3 kcal/mol, which is essentially the same as a nonlinear 

hydrogen bond dissociation constant.22, 23  It was concluded that an alternate hydrolysis 

mechanism might produce the fluorescent boronate ester form, 17d in Scheme 1.8.  The 

addition of a diol within the system of 16b is correlated with a lower intrinsic pKa of the 

boron species.  As a result the first pKa becomes the reaction of the boron with the water 
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molecule to give 17d.   The formation of a zwitterion creates stability, which increases 

the pKa of the amine.  The conversion of the weak B-N bond form in 16b to the amine-

protonated form 17d allows for the masking of the lone pairs electrons, which prevents 

the fluorescence quenching process through PET of the anthracene moiety and results in 

an increase in fluorescent intensity.22 

     Although the mechanism of 16b in which the fluorescence intensity is regulated to 

produce an ’on-off’ state sensor for carbohydrates maybe questionable in some cases, it 

has sparked the initiation in the diversity of molecular reporter units for carbohydrates.  

There has been continuing development in PET sensory design for in vivo application 

with various fluorophores.  FET (fluorescence resonance energy transfer) and ICT 

(internal charge transfer) have also been introduced as quenching mechanism in 

designing ‘on-off’ sensors for saccharides, among others.  In addition to the exploration 

of other ‘on-off’ molecular chemosensors, this system has also given a starting point for 

developing a selective sensor for glucose, a biological carbohydrate, the detection and 

monitoring of which are essential for the control of diabetes.  There have been numerous 

efforts to design molecular reporting units for carbohydrates,43-46 briefly below are 

discussed a few chosen chemosensors to display the progression of sensory design to 

date.     

      Tony James and co-workers designed an intramolecular energy transfer saccharide 

sensor with phenanthrene as the donor with excitation and emission wavelengths of  

299 nm and 369 nm and an acceptor pyrene with an excitation and emission at 342 nm 

and 397 nm.47  Fluorescence energy transfer (FET) is the transfer of energy from a donor 

to an acceptor.  The emission spectrum of the phenanthrene donor overlaps with the 
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excitation spectrum of the pyrene acceptor, which gives some indication that internal 

energy transfer can occur.  
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Figure 1.1 Fluorescent energy transfer sensor. 
 
  James tethered compounds 18 and 19 to a hexamethylene group to promote selectivity 

toward glucose since it was known in literature that a bisboronic acid with the appropriate 

spatial arrangement enhances selectivity toward glucose.  When excited at 299 nm and 

342 nm, compound 20 displayed an increase in fluorescence 417 nm with the addition of 

sugar.  No emission was observed at the donor emission wavelength (369 nm) in 

compound 20 when excited at 299 nm, suggesting that the FET mechanism took place.  

The stability constant K of sensors 18, 19, and 20 were also determined for glucose, 

fructose and others. Bisboronic acid 20 showed selectivity for glucose which complexes 

in a 1:1 fashion with bisboronic acid as opposed to fructose that binds in a 2:1 complex.  

In contrast, reporters 18 and 19 favored fructose as presented in literature for 

monoboronic acids.36, 42   
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Figure 1.2 Fluorescent chelating enhancing reporters. 
 

     Thus far there has been many successful chemosensors.  However they lack the 

characteristics of an ideal sensor for in vivo biological applications.  An ‘ideal’ sensor 

must be one that is water soluble, nontoxic, and minimal amount of energy for detection.  

The Heagy lab synthesized and evaluated a series of water soluble N-phenyl-1,8-

naphthalenedicarboimides reporter compounds.48  They varied functionality at the R3 

position (21a-c) H, a strong electrowithdrawing group (–nitro) and an electrodonating 

group (-amino).  The results with 21a-b demonstrated a decrease in fluorescence intensity 

upon addition of diol; it was thought that this was due to a chelation enhanced quenching 

mechanism.  Compound 21a showed the greatest intensity change (ca. 25%) in the 

presence of fructose with a dissociation constant of 1 mM. Compound 21b showed pH-

dependent selectivity toward glucose over fructose in a ratiometric response.  However, 

the compound exhibited higher binding for fructose over glucose.  The fluorescence 

decreased at an emission wavelength of 430 nm while a small increase was shown at 550 

nm.  It was proposed that this change may have occurred because of the ability of the N-

arylnaphthalimides to exhibit a twist angle effect.  The amino derivative 21c showed 

preferential fluorescence in the order of galactose>glucose>fructose at pH values 

between 3 and 5.  In continuing the efforts to search for more efficient and water-soluble 
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boronic acid fluorescent reporter compounds, our group discovered that 8-quinoline 

boronic acid (8-QBA), upon addition of a diol, increased fluorescence intensity over 40-

fold at physiological pH.10, 49 The mechanism through which this compound changes 

fluorescence is not well understood.  Compound 22 is non-fluorescent at pH values above 

5 and weakly fluorescent at lower pH in aqueous solutions. However, upon addition of a 

diol the fluorescent intensity drastically increases providing an ‘off-on’ state for the 

detection of a carbohydrate.  11B-NMR studies were conducted to understand the 

hybridization states of 8-QBA and ester formation with sugars. The results showed that 

the boron atom in both 8-QBA and the corresponding ester are in their tetrahedral form 

before reaching physiological pH, indicating that the fluorescence intensity changes are 

not due to the hybridization state of boron.  Lakowicz also used a quinoline system to 

synthesized a series of 6-methoxyquinoline boronic acid analogs 23 (boronic acid being 

in the ortho, meta, and para positions) to design a sensor to detect tear glucose 

concentrations to be placed in a plastic disposable contact lens.50  Norrild and coworkers 

synthesized anthracene diboronic acid 24 that was selective for glucose with a binding 

constant 2512 M-1.  This type of scaffold was first reported by Shinkai.  However, Norrild 

introduced a 3-boronic acid pyridinium hydrochloride salt as the receptor to enhance the 

hydrophilicity needed for in vivo design.  Although the selectivity showed a substantial 

decrease compared to Shinkai’s system, this provided a starting point for using this 

particular backbone to improve on the selectivity for glucose as it has displayed binding 

in a neutral aqueous environment.     
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Figure 1.3 Water soluble fluorescent boronic acid sensors. 
 
       In addition to PET sensor design and among other reporters, internal charge transfer 

chemosensors have also been explored.  Usually in this system, the donor and acceptor 

molecule are in conjugation with the fluorophore.  At the excited state, there is a charge 

transfer from the donating group to the empty p orbital of the acceptor group (boron in 

this case), which quenches the fluorescence.  The addition of a diol stops the quenching 

process by increasing the Lewis acidity of the boron atom, promoting formation of the 

anionic tetrahedral boronate ester, thus leading to an ‘off-on’ fluorescence 

sensor.
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Figure 1.4 Charge transfer fluorescent boronic acid reporters. 
 
   There have been several internal charge transfer fluorescent reporter compounds within 

the realm of sensory design which includes Wang group, and the groups of Shinkai, and 

Lakowicz as well as others.  Shinkai’s lab introduced a stilbene boronic acid system that 

was selective for fructose under basic aqueous conditions 25.51 The Lakowicz group also 

developed a stilbene system with various donor and electron-withdrawing groups to 

determine the effects on the fluorescence and binding affinities of several diols.  They 

prepared four stilbene boronic acid derivatives one of which was Shinkai’s stilbene 

system (25), 4'- cyanostilbene -4- boronic acid (26c), 4'- methoxystilbene-4-boronic acid 

(26b), and lastly a stilbene derivative without the boronic acid attached (26a) as a 

reference to obtain the different spectral changes with each analog.52  The incorporation 

of a boronic acid moiety within systems 25 and 26b in basic media produced a blue shift 

in the emission spectra compared to 26a and an increase in fluorescent intensity, whereas 
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26c displayed a red shift in its emission spectra and a decrease in fluorescent intensity. 

Lakowicz correlated these spectral changes in 25 and 26b to the elimination of the charge 

transfer between the donor methoxy and/or dimethylamine group with the boronic acid 

acceptor unit.  With increasing pH, the boron hybridization changes from sp2 to sp3 

creating more electron density around the boron center nullifying the charge transfer 

quenching mechanism under certain conditions.  The same type of spectral changes 

occurred after the addition of sugar. 

     Lastly, our group has designed water soluble fluorescent naphthalene-based system 

27.53 This sensor at physiological pH exhibited a 41-fold increase in fluorescence 

intensity upon addition of fructose in aqueous phosphate buffer. The fluorescence is said 

to be quenched due to an internal charge transfer process.  Upon addition of a diol, the 

Lewis acidity is enhanced at the boron center inducing sp3 hybridization of the boron 

atom, stopping the charge transfer quenching mechanism.  A pH profile study was 

conducted to determine the relationship between the fluorescence intensity changes and 

the boron ionization states. Increasing pH leads to the conversion of boron from a 

trigonal planar species (27a; emission wavelength, 338 nm) to a tetrahedral hybridization 

state entity (27c; emission wavelength, 445 nm) (Scheme 1.10).  The pKa of the amino 

and the boronic acid moieties regulate the fluorescent intensity with or without sugar, 

providing a method for detection of sugars at physiological pH.  
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Scheme 1.9 Ionization state of 4-dimethyaminonapthaleneboronic acid in the presence 
and absence of a sugar. 
 

      Tremendous efforts in designing fluorescent boronic acid chemosensors for biological 

carbohydrates have been made.  The first PET chemosensor initiated by Czarnik and co-

workers begin the development of ‘off-on’ sensors.  This system has prompted the 

advancement of incorporating other photodynamic approaches such as FET and ICT, to 

name a few.  The progression of water soluble small fluorescent molecules which 

exhibits longer wavelength and less energy with the appropriate scaffold to enhance 

selectivity could lead to the design of continuously monitored chemosensors for glucose.  

In addition, they could serve as molecular probes for various cell surface carbohydrate 
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markers present on certain cancer and tumor cell types,39-41site specific drug delivery 

systems, among other possibilities.  
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2. The Synthesis and Evaluation of Fluorescent Artificial Receptors   
for sLex 

2.1. Importance for the Recognition of Carbohydrates 
 
     Carbohydrates are essential for the cell-cell recognition and various biological 

responses such as inflammation, lymphocyte homing, regulation of metabolic pathways, 

cell–cell signaling events, pathogenesis of various degenerative diseases,54-56 autoimmune 

diseases, bacteria and viral infection,57, 58 and fertilization to name a few. In addition, the 

cross-talk between cell surface carbohydrates and receptors of regulatory cells has also 

been associated with the metastatic behavior of various cancer types.1, 3, 4   

 
 
Figure 2.1 Interaction of selectin and ligand during leukocyte recruitment. 
The initiation of the recruitment of leukocytes to the inflamed tissue is orchestrated by 
the interaction of selectins with corresponding carbohydrate ligand. This interaction 
allows the immune cells to slow down and tether to the endothelium. 
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For example, in a well studied pathway such as the leukocyte recruitment during an 

inflammatory response, the overexpression of upstream molecules has been linked to the 

progression of certain cancer types as well as autoimmune diseases.  The first committed 

step in an acute inflammatory response stimulated by chemical messengers, cytokines 

(chemokines) as well as other mediators, is the rapid dissociation and association 

between the carbohydrate sialyl Lewis X (sLex), present on the surface of leukocytes and 

the adhesion molecule of the lectin family, E-and P-selectins, expressed on the surface of 

activated endothelial cells.  This process allows the immune cells to slow down their 

movement in the vessels and attach nonspecifically to the infected tissue (Figure 2.1).59-61  

Tumor metastasis mimics this process.62, 63  Some blood-borne cancer cells expressing 

sialyl Lewis X (sLex) and sialyl Lewis A (sLea) stimulate the expression of the adhesion 

molecule E-selectin present on endothelial cells, which promotes adhesion followed by 

tumor intravasation and metastasis (Figure 2.2).62  In addition to this aberrant behavior of 

an inflammatory response, carbohydrate recognition has been implicated in the 

pathogenesis of such diseases as rheumatoid arthritis (RA), multiple sclerosis, and insulin 

dependent diabetes, as well as allergies and sepsis.64, 65 
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Figure 2.2  Tumor metastasis.  
E- selectin mediates the tethering of tumor cells to the vascular endothelium by binding 
to its glycan ligand, which is followed by tumor intravasation and metastasis.  
 

There is a great need to design small molecules that can aid in the detection of or to block 

the action of cell surface carbohydrates to combat these aformentioned diseases as well as 

cancer. Researchers have designed anti-selectin antibodies,66, 67 synthetic 

carbohydrates,68, 69 chemokine-receptor antagonist,70, 71 as well as bioimaging agents72, 73 

to block the action and/or study the pathways that lead to the abnormalities of this 

process. 

     Wang lab is interested in the design and synthesis of small organic molecules with an 

ability to recognize specific oligosaccharide patterns.  With that in mind, boronic acid 

moieties since the 1940’s have been known to form a rapid reversible complex with 1,2 

and 1,3 cis diols14 (Scheme 1.1.) which make boronic acid an ideal system for the 

detection of a particular biological saccharide of interest and/or blocking of the action of 

the lectins, among other possibilities.  We have adapted the term,” boronolectin” to refer 

to small molecule boronic acid compounds that mimic the action of lectins.   
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2.2. Design of Potential Sensors for Cancer Carbohydrate Biomarkers 
 
     An ideal in vivo sensor for carbohydrates consists of: (1) a recognition moiety that is 

water soluble, (2) a receptor which has strong functional group interaction with the 

saccharide of interest, (3) a molecule that displays the appropriate three-dimensional 

scaffold that is conducive to the particular carbohydrate only at physiological pH, and (4) 

a spectroscopic reporter attached to the receptor which upon binding will change its 

intrinsic properties and thus allow a measurable event to occur.  With that said, the initial 

design began with the fluorescent anthracene-boronic acid system.  This system was first 

introduced in 1992 by the Czarnik group,35 and was later used by Shinkai to incorporate a 

1,5 relationship between an amine and boron to create more electron density around the 

boron center.  In doing so, they developed monoboronic acid 16, which is intrinsically 

selective for fructose, and a diboronic derivative also selective for glucose.22  Our group 

has designed successful sensors using this system, and was the first to develop a sLex 

artificial receptor (28)39 for the hepatocellular carcinoma cell line. 

     Aberrant expression of carbohydrate antigens such as sialyl Lewis X (sLex), sialyl 

Lewis A (sLea), Lewis X (Lex), and Lewis Y (Ley) have been associated with tumor 

formation and metastasis in various cancer types.1-4  One such cancer hepatocellular 

carcinoma (HCC)74  carries a poor prognosis and systemic cytotoxic agents provide 

marginal benefit.75  To date, the only detectable marker used in determining the prognosis 

of HCC is α-fetoprotein.  Although the function of this α-1, 3 fucosylated glycoprotein is 

unknown, it presents itself at increased levels in the sera of patients with HCC.  However, 

the sensitivity and its specificity is not enough for early detection of HCC.75  
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An alternative biomarker is desperately needed along with a method of detection with 

higher specificity and selectivity in hopes to improve treatment outcome.  It is known that 

sLex present on immune cells is a natural ligand for E- and P- selectin on endothelial 

cells.  The cell-cell adhesion mediated by these macromolecules is the first step in 

leukocyte recruitment.  This step has also been implicated in of colon cancer metastasis 

to the liver, thus making the detection of sLex an attractive source for the diagnosis and 

monitoring the progression of liver cancer.74     In continuing the efforts to produce more 

successful fluorescent artificial receptors. 

  

 

 

 

 

 

 

 

 

 

 
 
 
Figure 2.3 Structures of sLex, Lex, sLea, and sLex. 
 

  Heteroatom(s) were added within the di-carboxylic acid motif in 28, which has been 

shown to bind sLex.  The tertiary amine attached to the carbonyl group was changed to a 
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secondary amine to increase the hydrophilicity.  The evaluation of how a slight change in 

electronic properties and reduction of a possible steric effect by the replacement of a 

methyl group with hydrogen affect the selectivity.  Lastly, it is known in literature that 

the appropriate spatial arrangement is imperative for optimal binding between a boronic 

acid scaffold36, 40 and a carbohydrate of choice a such a ring contraction with the use of 

an imidazole di-carboxylic acid moiety was incorporated to probe the effect of such a 

change.  With that in place, four di-anthracene boronic acids were synthesized and the 

determination of the selectivity compared with 28 was conducted.  As a replica of 28 

which labeled HCC cell line selectivity at a concentration of 1 µM, values between 0.5 

and 10µM were studied using fluorescence microscopy.  This was accomplished with 

HEPG2 cells possessing the the sLex antigen and COS7 a non-expressing cell line.   
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Figure 2.4 Fluorescent chemosensors for saccharides. 
 

2.3. Synthesis of an Artificial Receptor for sLex 
 
     The preparation of a dianthracene boronic acid for the development of a fluorescent 

probe for cell surface oligosaccharide sLex, began with commercially available 
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anthraquinone 2976 which was treated with trimethylsulfonyl iodide (CH3)3SI in the 
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Scheme 2.1 Synthesis of bis-anthracene boronic acid derivatives. 
 
(a) DMSO, Me3SI, NaH, RT; 86%; (b) CH3CN, LiBr, 60°C; 85%; (c) i. MeOH, THF, MeNH2 

(40% wt), ii.NaBH4, RT; 71%; (d ) MeOH, TEA, (Boc)2O, RT; 80%; (e) DMF, PPh3, CCl4, 

NaN3, RT; 90%; (f) (aq.) THF, PPh3, RT; 85%; (g) CH2Cl2, DMF, EDCI, HOBt, TEA, 

HOOCRCOOH, 0°C→RT; 50-80%; (h) i. TFA, CH2Cl2 , ii. K2CO3, cat. KI, CH3CN, 

iii.10%NaHCO3, CH2Cl2, H2O, RT; 15-30%.  
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presence of sodium hydride to afford the bis-epoxide derivative 30.  The rearrangement 

of 3076 in the presence of LiBr led to the aldehyde hydroxyl derivative 31.  Upon 

reductive amination with methylamine in MeOH/THF along with NaBH4, amine 32 was  

obtained.  After an aqueous acid wash, the protection of 32 was accomplished with di-

tert-butyldicarbonate ((Boc)2O) in the presence of triethylamine (TEA) in MeOH giving 

rise to 33 in 60% yield. The  hydroxyl moiety of 33 was converted to azide 34 in 90% 

yield using a mild Mitsunobu type reaction.76   The reduction of the azide was achieved 

by the addition of triphenylphosphine in aqueous THF to generate amine 35 in 81% yield.  

The amidation reaction of 35 with various di-acids was performed by treatment with 1-(2 

dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) along with N-

hydroxybenzotriazole (HOBt) as the activating agents to afford compounds 36a-d in 50-

60% yield.  After deprotection of  derivatives 36 with trifluoroacetic acid (TFA), the 

unprotected free amines were then reacted with aryl boronic ester 3836 in the presence of 

potassium carbonate with a catalytic amount of potassium iodide.  Then deprotection of  

the boronate produced compounds 37a-d in yields of 15-30%. 

2.4. Evaluation of Artificial Receptors for sLex   
 
      To explore the selectivity for the cell surface carbohydrate sLex with our fluorescent 

based bis-anthracene boronic acid system, a cell-based assay was conducted.  The cell 

lines of choice were HEPG2 cell line expressing sialyl Lewis X and a non-expressing cell 

line, (COS7).  The procedure was presented in a previous publication.39 Briefly, cells 

were cultured in six-well plates with 1 × 106 M per well and incubated at 37 °C in 5% 

CO2 for 48 h.  The media was then removed and cells were washed with PBS.  The cells 



35 

then were fixed with methanol/PBS.  After fixation, cells were washed twice with PBS. 

The concentrations between 0.5-10 µM of bis-anthracene boronic acids were added to 

each well that contained 1 ml of 1:1 MeOH/PBS, and incubated for 45 min at 4 °C.  The 

staining of the biomarkers with the fluorescent probes was observed using a fluorescent 

microscope with a blue optical filter. 

 
 
Figure 2.5 Fluorescent labeling studies of the expressing sLex cell line HEPG2 and 
nonexpressing COS7 with compounds 37a-d. S3-pCN77 a sensor selective for glucose 
was used as a negative control. 

2.5. Effects of the Substitution of Phenyl Ring at the Carboxyamide Position 
 
     Compound 28 is our lead compound in the development in the design of a fluorescent 

probe for sLex.  It stained the HEPG2 cell selectively at 1 µM.   Heteroatoms were added 

within the dicarboxylic unit to decipher what intermolecular interactions are essential to 

enhance selectivity toward the cell surface carbohydrate, sLex.  S3-pCN , a sensor design 

for the recognition of glucose was used as the negative control.77  Results are shown in 

Figure 2.5.  In compound 37a, the tertiary amine was converted into a secondary amine to 

increase hydrophilicity. Compound 37a showed a similar staining concentration as our 

initial fluorescent probe 28 at (1µM), however showed no selectivity between cell lines.  

Compound 37b with a pyridine ring, which is a nonclassical isostere replacement of 

S3-pCN 
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HEPG2 

Cos7 

37b 37c 37d 
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benzene, was incorporated to introduce a heteroatom.  This introduction of a hereoatom 

supplies additional hydrogen bonding capability along with the secondary amine.  This 

compound 37b seemed to display fluorescence labeling behavior that is similar to 28.  

Compound 37b labeled the HEPG2 cell line selectivity also at a concentration of 1 µM.  

The pyrazine compound 37d at concentrations between 0.5-10 µM showed no selectivity 

toward either cell line possibly due to the heteroatom adding electron repulsion, 

diminishing any selectivity.  The imidazole ring of 37c is also a nonclassical isostere 

replacement for benzene.  This compound has increased selectivity presumably due to its 

reduced ring size.  Compound 37c labeled the HEPG2 cell line selectively at a 

concentration as low as 0.5 µM.   Thus of all the compounds tested, 37c showed the most 

promising results in labeling HEPG2.  It is possible that the observed effect with 37c was 

due to the ring contraction and additional hydrogen bonding capability.  This type of 

intermolecular interaction is associated with the natural lectin ligand for sLex.78 
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Figure 2.6 sLex and postulated binding of amino acid residues of E-selectin. 
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     In conclusion, there is an obvious need for a recognition moiety as a diagnostic tool to 

monitor the presence of sialyl Lewis X as it is associated with the progression and the 

metastatic behavior of certain cancer and tumor cell types.  With the appropriate boronic 

acid scaffold to detect this oligosaccharide one could begin to design selectin inhibitors to 

block the abnormalities that occur in this particular pathway, possibly aiding in the 

therapeutic realm of autoimmune diseases and cancer.  In addition, it could be used as a 

diagnostic tool to pursue the effector mechanisms that govern this pathogenesis of cancer 

and autoinflammatory diseases. With that said, additional exploratory computational 

and/or molecular modeling design could aid in the discovery of a boronic acid with the 

appropriate scaffold to serve as lectin antagonists.  
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3. Cell–Cell Fusion: An Evolving Phenomenon used in “Drug 
Discovery” 

3.1. What is Cell-Cell Fusion? 
 
     The human cell is a highly complex unit that contains more than 10 subcellular 

components that function to regulate and maintain bodily activities.  Through the 

advancement of microscopic technology, scientists are now able to acquire an in depth 

‘picture’ of the anatomy, physiology, and processes of a cell.  One particular process of 

interest is cell to cell fusion also called cell-cell fusion (Figure 3.1).   

 

 
Figure 3.1 Microscopic images of cell-cell fusion of  Hela cell line in response to 
induced fusion.  
Differential interference contrast (DIC) images show multinucleated cell.  The overlayed 
fluorescent microscopic image displaying the nuclei and plasma membrane by DAPI 
(4',6-diamidino-2-phenylindole) and a wheat germ agglutinin protein conjugated to a red 
dye (alexa fluor 594).    
 

     In mammals, cell-cell fusion is a naturally occurring phenomenon that occurs in bone 

cells, muscle cells, and during fertilization process.  There has been a great deal of in 

vitro studies conducted with mammalian cells to determinine what is required for cell-cell 

fusion to occur and what mediators play a significant role in this process.   
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     There are four stages during the cell-cell fusion that are common irrespective of cell 

type.  The first stage is called the initiation process which begins with cell-cell 

recognition.  The next stage involves cell-cell adhesion (Figure 3.2).  The adherence 

phase is followed by the alignment of the plasma membrane of the adjacent cells.  Lastly, 

destabilization of the lipid bilayers occur.  As a result fusion pores develop and 

membrane union takes place to form a single multinucleated cell (Figure 3.2).  There 

many mediators orchestrated the cell-cell fusion event.  The externalization of 

phosphatidylserine (PS) from the inner to the outer leaflet of the plasma membrane and 

the activation of caspases have also been associated with the initiation of syncytial 

(multinucleated) fusion.79, 80  These processes are also involved in the pathway that leads 

to apoptosis.  In addition, proteases such as ADAM12, calpain and calmodulin, as well as 

adhesion molecules, VLA4 and VCAM-1 all have been involved in the alignment, 

adherence phase, cytoskeletal rearrangement, and destabilization of the plasma 

membrane that lead to cell-cell fusion.79-81 

 

 

Figure 3.2 Induced cell-cell fusion with PEG of a messa (uterine) sarcoma cell line. 
(A) Cells are beginning to adhere to one another. (B) Destabilization of lipid bilayer, 
creating fusion pores and advancement of cell-cell fusion. 
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     Although the mechanism is not well understood, the process of cell fusion has been 

used to design monoclonal antibodies for various autoimmune diseases, cancer, and 

bioimaging, among others.82-84 The development of a vaccine with the aid of cell fusion is 

also on the rise as a method to invoke our own immune system to fight against cancer.85-

87  This programmed cell-cell fusion event has also been associated with the development 

of various defects and diseases. Among them is the metastatic behavior of certain cancer 

cell types.88, 89  Devising methods to study the upstream and downstream effectors that 

play a role in in vivo cell-cell fusion may give insight into how the evolution of certain 

diseases takes place.  Below is a brief discussion, non-inclusive, of cell-cell fusion as it 

relates to disease and preventative drug therapy.       

3.2. Cell-Cell Fusion and Human Diseases 
 
     With any controlled process, there is always a possibly that abnormalities will occur.  

Defects in the sperm-egg fusion promote infertility,80 irregularities of bone cell fusion 

cause abnormalities such as osteopetrosis,90 and lastly experimentally evaluated results 

show tumor cells’ ability to spontaneous fuse with each other as well as with normal 

somatic cells, leading to the formation of metastatic cells.88, 89, 91  In retrospect, membrane 

fusion, a process involving in vesicle trafficking, is imitated by HIV as well as by the 

human influenza virus. HIV-envelope protein gp120/gp41, gp120 binds to the co-receptor 

CD4 on the surface of T-lymphocytes and macrophages.  Subsequently gp41 undergoes a 

conformational change mediating fusion of the viral membrane with the target cell 

membrane.  In turn, the infected cells expressing gp120/gp41 on the surface can fuse with 

uninfected cells initiating syncytium formation.92  This process has been replicated with 

transfected cell culture experiments to develop fusion inhibitors to block this action.  
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Sialylated cell surface receptors that line the respiratory tract serve as an entry for the 

influenza virus via hemagglutinin (HA) binding.  The protein HA binds to the surface of 

the receptor followed by endocytosis and is activated  once at endosomal pH by 

undergoing conformational changes to mediate viral and endosomal targeted membrane 

fusion.93 This viral protein has been used to direct liposome drug delivery systems to 

specific sites for therapeutic purposes.94 

3.3. Applications of Cell-Cell Fusion 

3.3.1. Advances in Monoclonal Antibodies as Therapeutic Agents 
 
     Cell fusion is a technique used in traditional hybridoma technology to obtain specific 

monoclonal antibodies to be used as therapeutic agents for cancer, autoimmune diseases 

and infections, among others.82  Production of hybridomas can be formed by injecting a 

specific antigen into a mouse, collecting antibody-producing cells (plasma or B cells) 

from the mouse spleen, and then fusing them with long-lived cancerous immune cells 

with the aid of PEG, electrofusion, or virus. The resulting hybrid cells (hybridomas) 

become immortal, that is, capable of unlimited cell division (Figure 3.2).  Each individual 

hybridoma (hybrid cell) is cloned and tested to find those that produce the desired 

antibody.  
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Figure 3.3 Standard hybridoma technology.95 
 

The introduction of the mouse hybridoma was first reported in the mid- 1970’s by 

Cesar Milstein and Georges Köhler of the Medical Research Council in Cambridge, 

England. Their experiments paved the way for the evolution of therapeutic monoclonal 

antibodies as we know it.  

     The “first century” monoclonal antibodies (mAb) proved to be unsuccessful in 

medicinal applications for many reasons.  Primarily, these antibodies were produced by 

mouse cells and encoded by mouse genes. As a result use of these antibodies in 

therapeutics was limited by their immunogenicity.  In recent years, there has been a 

tremendous amount of progress in genetic engineering techniques to make “mousey” 

antibodies more humanlike (Figure 3.4).82  The humanization era of monoclonal 

antibodies began with the design of chimeric antibodies which are one-third mouse and 

two-thirds human.  They are engineered by grafting the variable regions of the targeted 

specific antigen from a murine antibody onto the human constant regions (Figure 3.4).84 

Four of the eleven antibodies approved are chimeric antibodies, including Rituxan.  
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Rituxan is a chimeric antibody used to treat Non-Hodgkin’s lymphoma.  A more 

‘humanized’ monoclonal antibodies with only 5-10% mouse, was accomplished by CDR 

(complementarity-determining region) grafting.  Only the DNA sequences encoding the 

actual antigen binding pocket of the original “mousey” antibody, the CDR sequences  

 

 

Figure 3.4 The evolution of monoclonal antibody technologies.82 
 

remain.82  The CDR sequences of the mouse are inserted into the genes encoding a 

selected human antibody of interest. Trastuzumab (Herceptin) is produced in this fashion.  

Herceptin is directed against the protein HER2 which is the receptor for epidermal 

growth factor.  Epidermal growth factor binds to HER2 protein and stimulates 

proliferation in breast cancer cells.  Herceptin binds to the extracellular domain of the 

HER2 receptor and thus blocks the triggering event.  Clinical trials demonstrate that it is 

effective as a single entity or in combination with other anticancer drugs, such as Taxol.84  

Further advancement in technology is the fully ‘humanized’ antibodies, Xenomouse 

technology. The transgenic mouse are genetically engineered and bred for the human Ig 

(immunoglobulin) locus.  After removal of the B cells (antibody producing cells) from 

the spleen of the mouse, they are then harvested.  After immunization, they are 
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immortalized by fusion with cancerous cell line, as in traditional hybridoma technology.  

Hybrid cells are then screened for specific antibodies. 82, 96  

       Up to date, there are hundreds of monoclonal antibodies in clinical trials for various 

diseases.  This technology has the great advantages of high throughput  and specificity.82 

 

Figure 3.5 Structure of immunoglobulin.  
The molecule contains two identical light chains and heavy chains. They both 
are composed of a variable region and a constant region. The variable region 
of both heavy and light chains is the antigen binding part of the molecule. 
Within the variable region, the complementarity determining region (CDR) 
defines the specificity of the antibody. Fc is glycosylated and contains three 
sites for interactions with effector molecule and complement.82      
    

3.3.2. New Evolution of   ”Cell – Fused Vaccines” 
 
     Vaccines were first discovered in 1796 by an English doctor Edward Jenner. Jenner 

performed a courageous experiment.  First he infected a patient with cowpox and gave 

him time to recovery.  After some time, he injected the smallpox virus into the same 

patient. The patient showed no signs of smallpox. This process of vaccination saved 

thousands of lives.97  Most modern day vaccines are B cell vaccines.97 They contain 

attenuated pathogens, which are capable of stimulating immunity, but have been 

genetically “disabled” so that they cannot cause disease.  In the late 1990’s, a new 

innovative way of developing vaccines was introduced by a group of German physicians 
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and scientists for renal cell carcinoma.87 Standard vaccines are used to prevent infections 

such as tetanus, small pox, and polio, where these vaccines actually treat the disease.  The 

concept involves fusing tumor cells with immune system cells and using these hybrids 

cells as a vaccine to stimulate the immune system to eliminate the tumor.  Dr. David Kufe 

and colleagues were the first to illustrate this type of vaccine therapy.  They fused 

dendritic cells (APC’s) from an unrelated donor with cancerous cells from a patient. 

These hybrid cells were then treated with radiation and finally injected with and without 

interleukin 12 (used to activate cell-mediated immunity). The results showed that 

interleukin 12 induces an immune response.  Seventeen patients were administered this 

vaccine.  Seven of the seventeen responded to hybrid cell vaccination with four complete 

tumor remission and three partial responses.  All of the complete responses were ongoing 

after 10-19 months.  Among the partial responders, one patient relapsed after six months, 

but two others were still in remission after 9 and 21 months. The results seem to be 

promising, although it is too soon to draw conclusions at the initial pre-clinical stage.86, 98  

This study introduced a new therapeutic method which uses ‘nature’ to fight off cancer 

instead of xenobiotics.    

3.3.3. Stem Cell Research 
 
     Stem cells are self-renewing cells.  They are not terminally differentiated. Upon 

division the daughter cells have a choice of two fates: 1) they can remain an 

undifferentiated stem cells or 2) they can terminally differentiate into specialized cells 

such as epidermal stem cells for the epidermis, intestinal stem cells for intestinal 

epithelium, hemopoietic stem cells for the blood, and so forth. Undifferentiated stem cells 

are in place for the (re)generation and/or repair of corresponding damaged tissue.  Cell 
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culture studies have shown that mouse embryonic stem (ES) cells can differentiate into 

any linage of cell types and all tissue in the body, allowing an avenue for facilitating 

tissue repair.99  Although the mechanism of how this process takes place is still under 

scrutiny, one of the proposed evaluated mechanisms is spontaneous cell-cell fusion.99, 100  

Some tissues seem to be incapable of repairing because no competent stem cells are 

present.  Therefore, stem cells could be very useful for tissue repair and regeneration for 

patients with various diseases such as muscular dystrophy, Parkinson’s disease, diabetes 

and so on.                   

3.3.4. Conclusion 
 
     Cell fusion has been a powerful tool for antibody production and other applications. 

Recent developments in the treatment of various cancers by the use of monoclonal 

antibodies have shown much success as well.  There are hundreds of mAb (monoclonal 

antibodies) in clinical trials for the treatment of inflammatory and other autoimmune 

diseases.82  In addition, the new “wave” vaccine therapy has shown promising results 

with minor side effects.98   

     As of now, cell-cell fusion is accomplished by ‘nature’ spontaneously and by, viruses, 

PEG, or electrofusion.  To continue to use the attributes of cell-cell or cell-membrane 

fusion in creating versatility for drug design.  In such a case as in the development of in 

vivo site specific drug vehicles or the design of small fusogenic molecules that can aid in 

monitoring the pathogenic behavior of various diseases related to cell fusion for the 

development of drugs, and immunotherapeutic applications, among other possibilities. 

One must use a vector (fusogenic agent) that does not provoke immunogenicity and that 

possess minimum toxic effect.  Taking advantages of the properties of arylboronic acids’  
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ability to bind to 1,2 and 1,3 cis diols in aqueous media,14 Wang group, among others, 

have designed various chemosensors to detect biological carbohydrates for medicinal 

applications.  We are interested in expanding the application of boronic acids into the 

design and synthesis of boronic acids with long aliphatic chains as potential fusogens.  

We hypothesize that the aliphatic chain should be able to insert into lipid cellular 

membranes and then the boronic acid units should allow for the “attachment to 

neighboring cells” through complexation with cell surface glycans. Such interactions 

should allow the boronic acid compounds to bring two or more cells together for fusion.  

The next chapter discusses the details of our work along this line. 
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4. Phenylboronic Acid Derivatives as Potential Fusogen 

4.1. Boronic Acids as Recognition Moiety for Cell-Cell Fusion   
 
     Cell fusion is a technique used in traditional hybridoma technology to obtain 

monoclonal antibodies for medicinal, diagnostic, and other biomedical purposes (Figure 

3.2).82  The process involves fusion of two different cells or two cells of different species. 

Upon cell-cell fusion, the plasma membranes adhere to one another and a single 

continuous cytoplasm forms producing one cell.  Currently, cells are induced to fuse by 

the aid of PEG (polyethylene glycol), viruses, or by a mild electric shock. Although the 

mechanism is not well understood, in vivo and in vitro systems involving cell fusion have 

been studied extensively.80, 81, 92, 101 In the course of cell-cell fusion, there is a 

destabilization of the lipid bilayer, which leads to aggregation; subsequently fusion is 

triggered.  In the enveloped virus systems, it is proposed that the congruity of the bilayer 

is caused by a conformational change of the fusogenic peptide establishing membrane 

fusion.88  On the other hand, PEG’s mechanism is based on: 1) PEG’s adsorption on the 

cell surface brings cells together, and 2) PEG’s depletion from cell surface resulting in 

cells being induced together by osmotic pressure.102   It is noteworthy to mention that pH 

sensitive PEG-COOH derivatives are used in drug delivery systems.94 The acidity of the 

PEG-COOH derivative causes membrane destabilization and fusion occurs with the 

plasma membrane of the target cell.  

      In our group, we are designing molecules that could be a potential asset to this field.  

It was discovered in the 1940’s that boronic acid moieties reversibly bind to 1, 2 or 1, 3 



49 

cis diol in aqueous media.14 There has been much success in the design various 

fluorescent chemosensors for the recognition of biological carbohydrates.103-105  With the 

knowledge of success in the recognition of cell surface carbohydrate,39, 106 boronic acid 

was incorporated as a potential fusogen.  Boronic acid derivatives with a fatty aliphatic 

side chain were designed to investigate the potential application of fusogenic properties.  

The hypothesis is that the boronic acid will serve as a receptor for a carbohydrate 

substituent on one cell and the fatty aliphatic side chain will migrate in the bilayer of the 

adjacent cell merging the cells together provoking a cascade of events that lead to the 

fusion process (Figure 4.1).  

  

 
Figure 4.1 Plausible mechanism of boronic acid derivatives as a potential fusogen.  
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     Cancer cells are known to be fusogenic in nature, although the mechanism is not well 

understood.89  For the initial design, cancer cells were chosen to validate the potential 

fusogenic properties of the boronic acid derivatives.  Can they increase cell fusion above 

basal activity of various human cancer cell lines.  With that in mind, four [4–

caboxyamide,2-nitro(phenyl boronic acid)] derivatives have synthesized to test the 

fusogenicity with the use of cancer cells.  

4.2. Synthesis of 4-Carboxyamide Phenyl Boronic Acid Derivatives 
 
     The synthesis of each compound was accomplished in three-step process. We begin 

with the commercially available 4-carboxy phenyl boronic acid 39, which was treated 

with fuming nitric acid in sulfuric acid to afford the nitro derivative 40 in a 65% yield.  

The next step involved the formation of an acid chloride, 41 with the use of thionyl 

chloride.  Finally, the carboxyamide 42 was obtained in 25-39% yields through the 

amidation of an alkyl amine derivative in tetrahydrofuran.  The very nature of boronic 

acid being a Lewis acid makes it acceptable to the attack of polar protic solvent.  As a 

result, for further 1H-NMR spectral characterization, boronic acid derivatives were 

oxidized with 30% hydrogen peroxide in the presence of sodium hydroxide to yield 

phenol compounds. 
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Scheme 4.1 Synthesis of boronic acid derivatives as potential fusogens. 
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Figure 4.2 Structures of potential fusogens. 
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4.3. Applicable Procedures in Determining Fusogenic Properties of 
Phenylboronic Acid Derivatives 

 
     For our initial studies, we chose three human cancer cell lines: two epithelial cell lines 

Hey (ovarian) and Hela (cervical) and one fibroblast cell line Messa (uterine sarcoma).  

Cell- cell fusion is a process in which plasma membrane and cytoplasm of two adjacent 

cells become incessant. A discrete assay to monitor this process is needed.  We chose 

DAPI [4',6-diamidino-2-phenylindole] to stain the amount of nuclei present in a given 

cell boundary, and next cytoplasmic dyes107 (rhodamine and fluorescein derivatives) to 

determined merger of the cell cytoplasms, and lastly an artificial lectin to stain the plasma 

membrane.108   

4.3.1. Nuclear staining. 
 
     Cells were stained with DAPI to demonstrate the amount of nuclei or the presence of 

gigantic nuclei per cell.  Cell-cell fusion index and syncytium formation were analyzed 

using Zeiss microscope particle fluorescent counting program, which allows one to 

measure the size of each cell.  Compound 42a displayed poor activity compared to 

control at basal level, an increase in compound concentration caused salt formation to 

occur during the fusion process in all cell lines.  Compounds 42c and 42d both had 

solubility problems and exhibited toxic effect in Hey and Messa cell lines.  Compound 

42b (Figures 4.3, 4.4, 4.5) was the most effective (Table 4.1.), predominantly in the 

Messa cell line.  
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Table 4.1 Results from fluorescent staining counting software  
of each cell line and control.  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
Each experiment was performed in triplicate; statistical analysis (mean ± s.e.m.) 
aNo results were obtained  due to solubility problems and toxic effect of 42c and 42d 
 with Hey and Messa cell lines. 
 
 
     Cell aggregation brings difficulty in distinguishing cell fusion events from cell 

adhesion with using this assay alone, especially with the Messa cell line.  After careful 

evaluations, before continuing the remaining protocols several issues were addressed: 1) 

solubility of phenylboronic acid derivatives; 2) concentration of phenylboronic acid 

derivatives, preventing toxicity issues; 3) volume of medium used during the cell fusion 

process; 4) time and temperature during process and lastly; 5) cell density.      

     As far as we know, we are the first group to use cell base assays to indicate fusogenic 

properties of phenylboronic acid derivatives.  We initially begin by adapting a procedure 

used for PEG, with the exception of the use of growth medium instead of phosphate 

buffer.  The protocol was finally adjusted after evaluating each parameter listed above.   

  37±2.5a42d (29 µM) 
  28±4.2a42c (40 µM) 

49.7±5.3 36.7±1.9743.6±1.4542b (47 µM) 
41.7±0.42 26.5±0.0337±2.542a (76 µM) 
40.5±3.5 35.0±5.5447.4±0.32Control 
Messa HeyHela% Fusion 
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Figure 4.3 Cell fusion assay of Hey cell line. 
Images are displayed as DIC overlays, DAPI, and numbers in red indicating size of each 
cell. A cell line without PBA derivative was used as a negative control. Compound 42b is 
at a concentration of 47 µM. 
 

 
Figure 4.4 Cell fusion assay of Hela cell line. 
Images are displayed as DIC overlays, DAPI, and numbers in red indicating size of each 
cell. A cell line without PBA derivative was used as a negative control. Compound 42b is 
at a concentration of 47 µM. 
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Figure 4.5 Cell fusion assay of Messa cell line. 
Images are displayed as DIC overlays, DAPI, and numbers in red indicating size of each 
cell. A cell line without PBA derivative was used a as negative control. Compound 42b is 
at a concentration of 47 µM. 
The experimental conditions among cell lines consisted of a reduction in volume to 2.5 

ml of growth medium, an increase in time to 15 min to allow cell-cell fusion to occur, 

and a cell density of 0.5-1 ×106 M/cell before seeding.  After seeding cells were allowed 

to fused for three days before evaluations (a density per well was determine by the cell 

size of each line) and lastly upon the addition of PBA derivative, which was dissolved in 

DMSO (a stock solution of (5-11 mg/ml) before addition to medium. The temperature 

played a factor as well as the amount in salt formation of boronic acid derivatives.  The 

temperature was maintained at room temperature during addition of boronic acid and 

increased to 37 °C during fusion process.  The concentration of each PBA derivative was 

adjusted according to their toxicity to cells and the solubility in the growth medium in 

each cell line.  The finding suggested that the added volume amount of boronic acid to 
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the medium before aliquoting to the cells should not exceed 10 µl to prevent salt 

formation.   These final parameters were accessed by the use of fluorescent microscopy 

with DAPI and the plasma membrane dyes in combination (data not shown).  This 

procedure was used in remaining assays.  

       Hey cell line was eliminated due to lack of cell fusion events, and because the cells 

seemed to acquire a lot of space to grow and adhere to the flask.  This could hinder cell-

cell contact, a process needed for cell fusion to occur.  A CHO (Chinese hamster ovarian) 

cell line was introduced as a non-human cell base assay, and because the cells grew in a 

nice monolayer in close proximity to each other and the diameter of the cell allowed 

visibility of organelles with the inverted microscope.  

 

 

4.3.2. Plasma Membrane Staining   
 
     A wheat germ agglutinin protein conjugate to dye, alexa fluor 594, selectively binds to 

N-acetylglucosamine and N-acetylneuraminic (sialic) acid residues allowing labeling of 

the plasma membrane along with Hoechst for nuclear staining. The combination of the 

two dyes provides a precise measurement of cell-cell fusion events, and reduces the 

uncertainty between cell-cell adhesion.  Generally speaking, in the Hela and CHO cell 

lines, there was no evidence of cell fusion events with boronic acid or any spontaneous 

events (Table 4.2).  However in the Messa cell line, there was some indication of cell 

fusion.  Compound 42d showed the most promising results, displaying over 2-fold 

increases compared to cells without boronic acid, which indicates that cell-cell fusion 
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initiated by boronic acid derivatives is possibly a function of chain length (Figure 4.6, 

Table 4.3).  

 

Table 4.2 Results of % cell fusion from the plasma and nuclear membrane assay of CHO 
and Hela cell lines. 
 
 
 
 
 
 
 
 
 
 
 
 Experiments performed in triplicate  
 
 

 

Images of each cell line were displayed below (Figures 4.7, 4.8, 4.9).  The Messa cell line 

seemed to grow in clusters and in monolayers.  To aid in the visibility of the nuclei; cells 

were permeabilized with 70% methanol (MeOH). The cells at this time were not labeled 

with the plasma membrane dye, because of the distortion of membrane that occurs with 

the use of methanol (Figure 4.10).  The results were similar to the plasma and nuclear 

membrane results (data not shown).  In order to validate these results flow cytometry was 

conducted with the Messa cell line.  CHO and Hela cell line were used to test the 

fusogenic properties of the PBA derivatives between two different cell types.   

 

 

 

2 2 42d (20) 

4 2 42c (20) 

4 1 42b (75) 

5 2 42a (100) 

3 1 Control (0) 

Hela (%) CHO (%) Concentration (µM) 
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Table 4.3 Results of % cell fusion from plasma and nuclear membrane assay of the 
Messa cell line. 
 

 

 

 

 
Each experiment was performed in triplicate; statistical analysis (mean ± stdev.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.6 Cell fusion assay of the Messa cell line with plasma and nuclear membrane 
staining. 
WGA-alexafluor594 was used to display the plasma membrane and DAPI stains the 
nucleus.  A cell line without addition of boronic acid was used as the negative control. 
PBA derivatives were displayed as a function of concentration.   
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Figure 4.7 Cell fusion images of the CHO cell line. 
WGA-alexafluor594 was used to display the plasma membrane and Hoescht stains the   
nucleus. A cell assay without the addition of boronic acid was used as the negative 
control. Compound 42d is at a concentration of 20 µM. Phase contrast is also shown. 
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Figure 4.8 Cell fusion images of the Hela cell line. 
WGA-alexafluor594 was used to display the plasma membrane and Hoescht stains the 
nucleus. A cell assay without the addition of boronic acid was used as the negative 
control. Compound 42a is shown at a concentration of 100 µM. DIC images are also 
shown. 
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Figure 4.9 Cell fusion images of the Messa cell line. 
WGA-alexafluor594 was used to display the plasma membrane and Hoescht stains the 
nucleus. A cell assay without the addition of boronic acid was used as the negative 
control. Compound 42d is at a concentration of 10 µM. 
 

 

Figure 4.10 Cell fusion phase contrast images of the Messa cell line. 
Cells have been impermeabilize with 70% MeOH to help in displaying the nucleus. A 
cell assay without the addition of boronic acid was used as the negative control. 
Compound 42d is at a concentration of 10 µM. 
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4.3.3. Cytoplasmic Staining  
 
     Dual dye assays of homogeneous and heterogeneous cell types were performed to help 

differentiate between cell division or endomitosis of cell fusion events. Once stained with 

the cytoplasmic dyes upon fusing of the cytoplasms a change in color from the 

combination of red [(5-(and-6)-(((4-chloromethyl) benzoyl)amino) tetramethylrhodamine 

(CMTMR)] isomers and green (5-chloromethylfluorescein diacetate (CMFDA)) dyes 

appears as a yellow to orange color.  Before performing flow cytometry experiments 

(FACS), the dual dye assay was assessed using fluorescent microscopy with compound 

42b.  Hey was re-introduced as a possible human cell line to fuse with cell of different 

origins.  The orange color after fusion between cells appears randomly if at all (Figs. 

4.11, 4.12) with each homogeneous cell type.  Green cells seem to aggregate and then 

fuse with each other and vice versa.  However as seen with phase contrast microscopy 

multinucleated cells are present (Figs. 4.11, 4.12).  Interestingly enough, in the Hela cell 

line, the control appeared to have two gigantic nuclei and cytoplasms where as with 

addition of the 42b, multiple nuclei and cytoplasms co-existed within the plasma 

membrane (Figure 4.11).  The Hey and Hela cell lines were used to test for fusion events  

with 42b.  There seemed to be some fusion activity as the day progressed.  Fusion events 

slightly increased, however the event was not enough to be significant.  At this time, flow 

cytometry was introduced for quantitative and validation of cell fusion events.   

     The Messa cell line showed inconsistent results with the plasma and nuclear 

membrane data.  Possibly cell aggregation contributed to false positive/negative results 

(Figure 4.14, Table 4.4).      
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Figure 4.11 Dual dye assay for the Hela cell line 
in response to 42b.  The cell line without 42b  
was used as the control. 
 

 

Figure 4.12 Dual dye assay for the Messa cell line 
in response to 42b.  The cell line without 42b 
was used as the control. 
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Figure 4.13 Fluorescence and phase contrast microscopy. 
The fusion of Hey (green) and Hela (red) cell lines in response to addition of 42b. A, is a 
3 day process with 42b; B, is a 4 day process with 42b; C,D are 3 and 4 day process used 
as the controls without 42b.    
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Figure 4.14 Cell-cell fusion assay with the Messa cell line using FACS analysis. 
Cell density was divided into two equal halves before fusion. They were dye with 
CMTMR and/or CMFDA.  Following seeding overnight, the cells of different dyes were 
allowed to fuse for 3 days after which the flow cytometry assay was conducted. The 
upper right quadrant represents dual staining, a indication of cell-cell fusion occurred 
between different cells of different dyes.  
 
 
Table 4.4 FACS data of the Messa cell line for cell fusion events. 
Each experiment was performed in triplicate; statistical analysis 
 (mean ± stdev.) 
 

 

 

 

 
17.3±4.69 19.5 20.4 11.9 42d (10) 

15.8±4.31 11.2 19.9 16.4 42c (10) 

18.7±6.31 16.9 13.4 25.7 42b (60) 

15.2±3.45 11.2 17 17.4 42a (100) 

18.2±2.7 17.2 16.1 21.3 control (0) 

Avg. Trial 3 Trial 2 Trial 1 Concentration (µM) 
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An assay that displays DNA content (ploidy) and cell cycle information (Figure 4.15) 

would perhaps give a better assessment of cell fusion events for the Messa cell line.  

DNA ploidy is defined as DNA diploid, a single G0/G1 peak corresponding to the same 

channel of the biological control, and a DNA aneuploid, a separate distinct G0/G1 peak 

from the diploid G0/G1.109 RNA was removed and propidium iodide (PI), a dye that 

binds to DNA, was used to acquire chromosomal content to validate cell fusion event in 

the Messa cell line.  

 

 

Figure 4.15 FACS of cellular DNA content. 
A, display of cell cycle analysis; B, DNA analysis in 
tumor near diploid fibrosarcoma. 
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The results are somewhat identical to results from the unfused control (Figure 4.17), 

validating that the phenylboronic acid derivatives did not increase fusion above basal 

activity in the Messa cell line. The single cell fusion approach was abandoned and focus 

was geared toward fusion analysis between two different types of cells.         

 

 

Figure 4.16  Phase contrast images of Messa cell line in response to PBA derivatives. 
 

 

Figure 4.17 Cellular DNA content of Messa cell line in response PBA derivatives. 
  

      Hela and CHO cell lines were used to demonstrate cell fusion between two different 

types of cells.  Before fusion between the chosen cell line, each cell line was fused as a 
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separated entity and cell survival assays were conducted to determine the most effective 

concentration of each compound without creating toxicity.   

     In normal live cells phosphatidylserine (PS) is located on the cytoplasmic surface of 

the cell membrane.  However in apoptotic cells PS is flipped from the inner leaflet of the 

plasma membrane to outer leaflet of plasma membrane exposing it to the external cellular 

environment.  Annexin, the human anticoagulant has a high affinity for PS.  The Annexin 

conjugate use in this case AlexaFluro488 (green dye) can be used to label PS and can be 

detected by a fluorescent activated cell sorter (FACS).  Propidium iodide (PI) a red 

nucleus binding dye can be used simultaneously to label dead cells only, because it can 

not permeant in live or apoptotic cells.  In this particular assay, we have dead cells 

staining red and green, apoptotic cells staining green and live cells showing little or no 

fluorescence.     

Table 4.5 Cell survival assays of CHO cell line. 
 
 

 

 

 

 

 

Experiments performed in duplicates 

    

11.8 12 15.5 13.4 5.7  

10.6 7.6 14.9 11 4.6 Apoptosis 

10.0 7.5 16 8 6.5  

7 6.8 10.4 5.6 13 Dead 

78.6 80.6 68.3 78.6 86.9  

82.8 85.5 74.8 83.7 81.7 Live 

42d (30 µM) 42c (30 µM) 42b (100 µM) 42a (100 µM) control (0 µM) CHO 
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     Raw data from CHO and Hela cell line were analyzed (Table 4.5, 4.6) and 

concentration for cell fusion assay was in some cases reduced in 42b (75 µM), 42c and 

42d to (20 µM); whereas 42a remained constant.    

 

 

Table 4.6 Cell survival assays of Hela cell line. 
 
 
 
 

 

 

 

Experiments were performed in duplicates 

 

    Cell fusion experiments were performed, and each PBA derivative showed fusogenic 

properties with compound 42c displaying the highest percentage of cell-cell fusion 

activity (Figure 4.18, 4.19, and Table 4.7).   

 

 

14.1 10.5 8 1.3 1.3  

26.4 6 5.7 4.7 6.0 Apoptosis 

25.5 3.8 17.3 4.8 6.0  

22 5.1 10.7 6.3 5.1 Dead 

57.4 84 72.6 93.1 90.7  

48.0 87.6 81.9 87.9 86.7 Live 

42d (30 µM) 42c (30 µM) 42b (100 µM) 42a (100 µM) control (0 µM) Hela 
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Figure 4.18 Cell-cell fusion assay with Hela and CHO cell line. 
Cell were seeded in Petri dishes for two days then stained with the corresponding dye. 
The cells were then detached and with equal density were allowed to fuse for 3 days after 
which flow cytometry assay was conducted. The upper R3 represents dual staining, an 
indication of cell-cell fusion occurred between different cells of different dyes. Hela cells 
are stain with (green dye (CMFDA)) and CHO stain with (red dye (CMTMR)).  
 
 
Table 4.7 Extrapolated data of cell-cell fusion experiment of Hela and CHO cell lines.   
 

 

 

 

 

Each experiment was performed in triplicates; statistical 
analysis (mean ± stdev.) 

15.8±3.53 15.7 12.4 19.4 42d(20) 

21.9±4.92 27.2 20.8 17.6 42c (20) 

9.8±1.98 9.2 8.2 12 42b (75) 

3.4±0.45 3.7 3.6 2.9 42a (100) 

1.9±0.66 2.5 1.9 1.2 Control (0) 

%Cell Fusion Trial 3 Trial 2 Trial 1 Conc. (µM) 
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Figure 4.19 A plot of cell fusion data of Hela and CHO cell line using cytoplasmic dye. 
 
 

4.3.4. Conclusion 
     A series of boronic acids were synthesized as potential fusogens for medicinal 

purposes such as drug delivery, immunotherapy, hybridoma technology, and among other 

possibilities.  All compounds exhibited fusogenic activities between the CHO, a 

mammalian ovarian cell line and Hela, a human cervical cancer cell line.  Among them 

compound 42c has a greatest potential in aiding in induction of cell-cell fusion.   

     Next endeavors in this project will be geared toward actually implementing boronic 

acid derivatives in immunotherapeutic applications.  In addition, to increase our 

knowledge in the mechanism at which the PBA derivatives induces cell fusion; the 

design of fluorescent boronic acid dyes are in route, which will be monitored by Time 

Lapse Video Microscopy.       
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5. Experimental Section. 

5.1. Biology 

5.1.1. Cell Culture 
 
     Cell lines were purchased from ATCC. HEPG2 and COS7 cells were maintained in 

RPMI with 10% FBS (fetal bovine serum), 1% L-glutamine, and 0.5% gentamicin sulfate 

(50mg/ml) (MediaTech).  Hela, CHO, and Hey were cultured in DMEM/F12 media 

containing 5% FBS, 1% penicillin/streptomycin.  Messa cell line was seeded in McCoy’s 

media comprising of 10% FBS, 1% penicillin/streptomycin.  All cells were maintained at 

37 °C in a 5% CO2 incubator.  Remaining materials were purchased from Media-Tech 

unless otherwise noted. 

5.1.2. Fluorescent Labeling Studies   
 
HEPG2 and COS7 cells were harvest in six well plates in growth medium until ca. 50% 

confluency.  Cells were then washed with PBS following fixation with 4% 

paraformaldehyde at 4 °C for 25 min or in 1:1 solution of MeOH/PBS for 25 min.  After 

fixation the cells were washed with PBS twice.  Next, 1 ml of 1:1 MeOH/PBS was placed 

in each well, followed by the desired concentration of anthracene boronic acid derivative 

(0.5-10 µM).  The six well plates were placed at 4°C for 45 min.  The cells were viewed 

with a blue emission filter.    

5.1.3. Images   
 
Phase contrast, DIC (Differential Interference Contrast), and fluorescence overlay images 

were taken with Carl Zeiss Axiovert 200M by the process imaging software Axiovision 

with the use of a blue long pass no filter (emission wavelength: 397 nm), green band pass 
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filter (emission wavelength: 515-565 nm) and two red filters (emission wavelength: 590 

nm; band pass: 630/75 nm).  All dyes used in experiments were purchased from 

Molecular Probes (Invitrogen). 

5.1.4. Fusion Assays 
 
     Cells were grown in tissue culture dishes until 80% confluency, detached by 

trypsinization; then resuspended in appropriate growth media, and centrifuged for 10min 

at 1000rpm. The medium was then removed, and a portion of the resuspended cells were 

added to hemacytometer for cell counting. Negative control data were obtained by with 

the same assay protocol without added boronic acids. Polyethylene glycol (PEG) was 

used as a reference for interpretation of cell-cell fusion (Data not shown).  Statistical 

analysis was performed by collecting 10 images randomly, in the magnification field 

using phase contrast, DIC, and fluorescent microscopy with cell compartmental staining. 

Cell-cell fusion index was calculated by the number of fused cells (F) divided by number 

of cells in magnification field (NF), [F/NF*100] for percentile. Syncytia index was 

determined by the number of nuclei per cell. Each experiment was done in triplicates. 

FACS was also used for validation of cytoplasm assay.  In addition cell survival and cell 

cycle assays were determined using this method.  Preparation of a FACS sample is as 

follows: to a 5 ml tube a suspension of ca. 1 × 106 cells in 500 µl FACS buffer was added 

to FACS tubes and analyzed with FACScan.  Each boronic acid derivative was dissolved 

in 1 ml of DMSO to obtain concentrations between 5-11 mg/ml to be used as stock 

solutions. 
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5.1.5. Nuclear staining.   
 
Method 1. 10 µl of boronic acid was added in 500 µl of appropriate medium.  The 

homogeneous mixture was added to a suspension of 2M/ml of cells in centrifuge tube. 

This mixture was stirred for 2 min at 37 °C.  Afterwards the volume was raised with 

medium to 5 ml and allowed to stir two additional min at 37 °C. Next, the tube was 

incubated for 5 min at 37°C and lastly centrifuged for 10 min at 1000 rpm. The 

supernatant was then removed and cells were seeded in 6 well plates 1M/well.  The cells 

were viewed between 18-72 h. Revised Method 1.  Five hundred µl of boronic acid in 

suitable growth medium (according to cell type) was added to a cell suspension of 0.5-1.0 

× 106 in 2 ml medium. The centrifuge tubes were then placed on a shaker at 37 °C for 15 

min and then centrifuged for 10 min at 1000 rpm.  The supernatant was then removed and 

cells were seeded in 6 well plates or Petri dishes. Cells were allowed to fuse up to 3 days. 

After cell-cell fusion process, cells were fixed with 3.7% formaldehyde for 30 min.  After 

washings with PBS cells were stained with DAPI [4',6-diamidino-2-phenylindole] 

(Molecular Probes). Nucleus was viewed by fluorescence (blue pass filter) and DIC 

microscopy. To determine the amount of nuclei present per cell the fluorescent images 

were analyzed by Zeiss fluorescent particle counter software. 

5.1.6. Cytoplasmic staining.   
 
Prior to fusion, adherent cells were stained at concentration of 0.5-10 µM for 45minutes 

in medium containing FBS for 45 minutes at 37°C, using either 5-

chloromethylfluorescein diacetate (CMFDA) or (5-(and-6)-(((4-chloromethyl) 

benzoyl)amino) tetramethylrhodamine (CMTMR) (Molecular Probes). After washing 

cells were further incubated at least 30 minutes at 37°C.  Medium was removed and cells 
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were allowed to adjust overnight.  A density of 0.5-2.0 × 106 M/ml 1:1 mixture (homo- or 

heterogeneous) cell types were suspended in 2 ml of suitable growth media in a 

centrifuge tube.  A solution (500 µl) containing boronic acid was added to the suspension 

over a period of one minute with constant stirring with the tip of a pipet.  Afterwards, the 

centrifuge tube was placed on a controlled temperature shaker for 15 min at 37 °C. The 

tube was then removed and centrifuged for 10 min at 1000 rpm (room temperature).  The 

supernatant was removed and the pellet was then resuspended in 5-10% FBS and proper 

medium was added.  After fusion process, a density of 1-5 × 105 M/ml of cells were 

seeded in duplicates in 6-well plates or 0.5-1 × 106 M/ml in petri dishes and then 

incubated for 1-3 days. Dual–labeled cytoplasm (color ranging from yellow to orange 

upon overlay of filters) was imaged by phase contrast and fluorescent (red and green pass 

filters) microscopy and/or analyzed by flow cytometry.   

5.1.7. Plasma membrane staining (artificial lectin).  
 
After fusion assay described above (with the exception of cytoplasmic dye), the cells 

were fixed with 1-4% formalin for 15 minutes at 37°C, followed by addition of 

alexafluoro-WGA (0.5-1µM) and Hoescht for nuclear staining (1-2µM) in PBS or HBSS 

for 10minutes at room temperature. The cells were washed with PBS twice and viewed 

with phase contrast and fluorescent (red and blue filters) microscopy. 

5.1.8. DNA ploidy or cell cycle assay.   
 
After cell fusion process described in section 5.1.6, cells were detached with 0.25% 

trypsin, then centrifuged.  The supernatant was removed and then washed with PBS.  

After aspiration of PBS, 500 µl of 70% ethanol added dropwise.  The cells were allowed 
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to incubate for 15 min on ice or at -20 °C overnight.  The centrifuge tubes were then 

centrifuged and ethanol was removed.  Then 1 ml of PI staining solution (10 ml of 0.1 

Triton X-100/PBS, 0.40 ml of 500 µg/ml of PI (Propidium Iodide), and 2mg/ml of 

DNase-free RNase) were added to 1 × 106 cells, placed on ice for 30 min and then 

analyzed by FACS with a red filter. 

5.1.9. Cell survival assay.   
 
After cell fusion process, cells were trypsinized and then washed with cold PBS.  The 

supernatant was then discarded.  To a suspension of 1 × 106 cells in 1X annexin-binding 

buffer, 5 µl of alexa fluor 488 Annexin V and 1 µg/ml of 100 µg/ml of PI solution was 

added. The cells were incubated at room temperature for 15 min.  After incubation 

period, 400 µl of additional 1X annexin-binding buffer was added.  Cells were analyzed 

using a red and green filter with FACScan.     

5.2. Chemistry 

5.2.1. General  
 
All 1H and 13C MHz were recorded at 400 MHz and 100 MHz, respectively, with 

tetramethylsilane as the internal reference. Elemental and mass spectral analyses were 

performed at Georgia State University Analytical Facilities.  All commercial reagents 

were used without further purification unless otherwise noted.  Acetonitrile (CH3CN) and 

dichloromethane (CH2Cl2) were distilled from CaH2.  Tetrahyrofuran (THF) was distilled 

from Na and benzophenone.   
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5.2.2 Synthesis and Structural  Analysis 

Trans-Dispiro[oxirane-2,9'(10'H)-anthracene-10',2"-oxirane] (30).76 
 
Compound (29) (1.0 g, 4.8 mmol) and sodium hydride (60% oil dispersion) (0.43g, 17.9 

mmol) was added to a round bottom flask in 30 ml of anhydrous DMSO, followed by 

dropwised addition of trimethylsulfonyl iodide (2.2g, 10.8 mmol) in 30 ml of anhydrous 

DMSO. The reaction was allowed to stir at room temperature for two h under nitrogen. 

After completion the reaction was vacuum filtrated and then poured into 600 ml of ice 

water and allowed to stand for 20 min. The crystals were collected and then washed with 

water to obtain an isolated (0.97 g, 86% yield). 

1H NMR(CDCl3, 400 MHz) δ: 7.38-7.37 (m, 8H), 3.24 (s, 4H). 

10-(Hydroxylmethyl)-9-anthraldehyde (31).76  
 
Compound 30 (2.88 g, 12.2 mmo1) and lithium bromide (4.87 g, 56.0 mmol) was 

refluxed in 182 ml of dry acetonitrile in the dark at 70 °C for 16h. The reaction was then 

cooled and placed in a -40 °C dry ice-acetone bath. The resulting yellow crystals were 

collected by filtration and washed with water to give a (2.45 g, 85% yield). 

1H NMR(CDCl3, 400 MHz) δ: 11.54 (s, 1H), 8.93-8.91 (d, J = 8.4 Hz, 2H), 8.55-8.53 (d, 

J = 8 Hz, 2H), 7.71-7.64 (m, 4H), 5.75 (s, 2H).  

(10-Methylaminomethyl-anthracen-9-yl)-methanol (32).  
 
To a solution of compound 31 (1.57 g, 6.6 mmol) in MeOH (47 ml) and THF (74 ml) was 

added an aqueous solution of methylamine (40% wt, 34 ml). The mixture was then 

allowed to stir for 16 h and then sodium borohydride (1.27 g, 33.4 mmol) was added and 

allowed to stir an additional 2 h. The resulting mixture was evaporated. The residue was 
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then dissolved in (25 ml) of ethyl acetate and washed with 10% HCl (3 × 50 ml). The 

aqueous layer was cooled to 0 °C and was made basic with ammonium hydroxide.  This 

was followed by washing (3 × 100ml) with ethyl acetate. The combined organic layers 

was washed with brine; then dried over magnesium sulfate, suction filtrated, and 

evaporated under vacuo to give a yellow solid in (1.17g, 71% yield). 

1H NMR(CDCl3, 400 MHz) δ: 8.39-8.36 (m, 2H), 8.27-8.26 (m, 2H), 7.51-7.46 (m, 4H), 

5.56 (s, 2H), 4.57 (s, 2H), 2.58 (s, 3H).     

(10-Methylaminomethyl-anthracen-9-ylmethyl)-methyl-carbamic acid tert-butyl 
ester (33). 
 
Compound 32 (1.22g, 4.86 mmol) was dissolved in MeOH (55 ml), then di-tert-

butyldicarbonate and triethylamine (11 ml) was added. The solution was allowed to stir 

for 12 h. The solution was then evaporated, after which 50 ml of dichloromethane (DCM) 

was added.  The organic layer was separated and washed (3 × 20ml) with water, then 20 

ml of brine. The resulting organic layer was then dried over magnesium sulfate, filtered 

and solvent was removed under reduced pressure. The residue was then purified by silica 

gel flash chromatography eluting with DCM/MeOH (95:5) to yield 1.21 g of a yellow 

solid (71% yield).  

1H NMR(CDCl3, 400 MHz) δ: 8.50-8.40 (m, 4H), 7.58-7.54 (m, 4H), 5.69 (s, 2H), 5.45 

(s, 2H), 2.45 (s, 3H), 1.54 (s, 9H). 

 (10-Azidomethyl-anthracen-9-ylmethyl)-methyl-carbamic acid tert-butyl ester (34).  
 
Triphenylphosphine (717 mg, 2.74 mmol), carbon tetrachloride (1 ml), and 2 ml of dry 

DMF was added to a round bottom flask followed by alcohol derivative 33 (300 mg, 

0.856 mmol, in 3 ml of dry DMF). After disappearance of 33 as monitored by TLC, 
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sodium azide (208 mg, 3.16 mmol) was added. The reaction was allowed to stir at room 

temperature until completion as inidicated by TLC and GC-MS analysis. Ice water (10 

ml) was added to reaction and the reaction mixture was stirred for 5 min.  Then the 

reaction solution was diluted with ether (50 ml). The organic layer was washed (2 × 

10ml) with water and brine, dried over anhydrous magnesium sulfate, and concentrated. 

The residue was purified by flash chromatography with ethyl acetate/hexanes (15:85) to 

produce a yellow oil, (277mg, 90% yield).  

1H NMR(CDCl3, 400 MHz) δ: 8.52-8.36 (m, 4H), 7.64-7.59 (m, 4H), 5.57 (s, 2H), 5.37 

(s, 2H), 2.51 (s, 3H), 1.59 (s, 9H); 13C-NMR (CDCl3, 100 MHz): 155.8, 131.0, 130.4, 

127.1, 126.5, 126.1, 126.0, 125.1, 124.3, 79.9, 46.5, 42.7, 31.8, 28.5; ESI MS: [M+(Na)] 

calculated 400.2, found 400.1.   

(10-Aminomethyl-anthracen-9-ylmethyl)-methyl-carbamic acid tert-butyl ester (35).  
 
Compound 34 (154 mg, 0.410 mmol) and triphenylphosphine (268 mg, 1.02 mmol) in 

aqueous THF (1:100) was stirred at rt for 16 h. The solution was then concentrated and 

purified by means of flash chromatography with CH2Cl2/MeOH (90:10) to give 122 mg 

of a yellow solid, 85% yield. 

 1H NMR(CDCl3, 400MHz) δ: 8.45-8.38 (m, 4H), 7.57-7.52 (m, 4H), 5.50 (s, 2H), 4.83 

(s, 2H), 2.47 (s, 3H), 1.55 (s, 9H); 13C-NMR (CDCl3): 155.8, 135.8, 131.2, 129.0, 

128.5,125.8, 125.7, 125.1, 124.5, 79.7, 42.5, 38.4, 31.7, 28.5; MS(EI) calculated 350, 

found 350. 

General procedure for preparation of Boc-protected diamides (36).  
 
The di-acid (0.543 mmol, 1 equivalent), N-hydroxybenzotriazole (HOBt, 1.9 mmol, 1.47 

mg), 1-(2-dimethylaminopropyl)-3-ethylcarbodiimide (EDCI, 1.07 mmol, 213 mg), and 

then compound 35 (1.14 mmol, 400 mg) was added to round bottom flask, followed by 

the addition of 30 ml of dry CH2Cl2.  The solution was allowed to mix for 30 min at 0° C, 
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then triethylamine (TEA) was added to obtain a slight basic solution.  Then the reaction 

temperature was slowly raised to room temperature and allowed to stir for 18 hr. The the 

reaction mixture was washed with 5% sodium bicarbonate (10 ml), 5% citric acid (10 

ml), and brine (10 ml). The organic layer was dried over anhydrous magnesium sulfate, 

gravity filtered, and concentrated. The crude product was purified by flash 

chromatography with CH2Cl2/MeOH or precipitation from CH2Cl2/Hexanes.  

[10-({[4-({10-[(tert-Butoxycarbonyl-methyl-amino)-methyl]-anthracen-9-ylmethyl}-

methyl-carbamoyl)-benzoyl]-aminomethyl)-anthracen-9-ylmethyl]-methyl-carbamic 

acid tert-butyl ester (36a). 80% yield. 1H NMR(CDCl3, 400 MHz) δ: 8.49-8.39 (m, 8H), 

7.70-7.59 (m, 8H), 6.27 (s, 2H), 5.64 (s, 4H), 5.54 (s, 4H), 2.49 (s, 6H), 1.57 (s, 18H).  

MS data for di-amides were not useful for spectral analysis.  The molecular ion was not 

present; MS (ESI+) [-C2H4] calculated 803.4, found 803.3. 

 

[10-({[4-({10-[(tert-Butoxycarbonyl-methyl-amino)-methyl]-anthracen-9-ylmethyl}-

methyl-carbamoyl)-pyridine-2-carbonyl]-aminomethyl)-anthracen-9-ylmethyl]-

methyl-carbamic acid tert-butyl ester (36b). 60% yield. 1H NMR(CDCl3, 400 MHz) δ: 

8.68 (s, 1H), 8.42-8.40 (m, 2H), 8.35-8.31 (m,6H), 8.12 (s, 1H), 8.05 (s, 1H), 7.53-7.44 

(m, 8H), 5.58 (d, J = 4.4 Hz, 2H), 5.45 (s, 4H), 5.31 (s, 2H), 2.42 (s, 3H), 2.36 (s, 6H), 

1.51 (s, 18H).  MS data for di-amides were not useful for spectral analysis.  The 

molecular ion was not present; MS (ESI+) [-C2H5] calculated 803.3, found 803.1. 

  

 

[10-({[4-({10-[(tert-Butoxycarbonyl-methyl-amino)-methyl]-anthracen-9-ylmethyl}-

methyl-carbamoyl)-imidazole-4-carbonyl]-aminomethyl)-anthracen-9-ylmethyl]-

methyl-carbamic acid tert-butyl ester (36c). 43% yield  1H NMR(CDCl3, 300 MHz) δ: 

8.37-8.31 (m, 8H), 7.59 (s, 1H), 7.57-7.55 (m, 8H), 5.96 (s, 2H), 5.38 (s, 2H), 2.43 (s, 

6H), 1.52 (s, 18H).  MS data for di-amides were not useful for spectral analysis.  The 

molecular ion was not present.  
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 [10-({[4-({10-[(tert-Butoxycarbonyl-methyl-amino)-methyl]-anthracen-9-ylmethyl}-

methyl-carbamoyl)-pyrazine-2-carbonyl]-aminomethyl)-anthracen-9-ylmethyl]-

methyl-carbamic acid tert-butyl ester (36d). 50% yield 1H NMR(CDCl3, 400 MHz) δ: 

9.22-9.20 (m, 1H), 8.51-8.40 (m, 8H), 8.05-8.04 (m, 1H), 7.2-7.56 (m, 8H), 5.67 (s, 4H), 

5.54 (s, 4H), 2.52 (s, 6H), 1.66 (s, 18H).  MS data for di-amides were not useful for 

spectral analysis.  The molecular ion was not present; MS (ESI+) [-C2H6] calculated 

803.4, found 803.4.  

General procedure for preparation of the symmetrical diboronic acids (37).  
 
Deprotection of the amine moiety of diamide 35 was accomplished by dissolving it in dry 

CH2Cl2 (15 ml) followed by trifluoroacetic acid addition and stirring at room temperature 

15 min. After removal of Boc-protected group, the residue was concentrated and dried in 

vacuo for 3 hr.  The reaction mixture was then subsequently placed in a round bottom 

flask.  Then dry acetonitrile (35 ml), potassium carbonate (2.2 mmol, 305 mg), catalytic 

amount of potassium iodide, and compound 38 (0.88 mmol, 251 mg) were added to the 

same flask. The reaction mixture was allowed to stir for 18h. The insoluble materials 

were filtered, and the filtrate was evaporated under vacuo. The resulting residue was 

dissolved in CH2Cl2, 20 ml of 10% sodium bicarbonate, and 8 ml of water for the 

removal of protecting group of the boronate motif. The mixture was stirred for 4h. The 

organic phase was washed with brine and dried over anhydrous magnesium sulfate. The 

solvent was removed under reduced pressure. The crude material was precipitated from 

THF/Hexanes. 

Diboronic acid (37a). 28% yield.  1H NMR(CD3OD, 400MHz) δ: 8.43-8.41 (m, 4H), 

8.23-8.21 (m, 4H), 7.72-7.71 (m, 4H), 7.62-7.56 (m, 8H), 7.38-7.31 (m, 8H), 5.38 (s, 

4H), 5.03 (s, 4H), 4.37 (s, 4H), 2.42 (s, 6H); HRMS(+H/D)[-H2O] calculated 882.4124, 

found 882.4105. 
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Diboronic acid (37b). 25% yield. 1H NMR(CD3OD, 400 MHz) δ: 8.71-8.70 (m, 1H), 

8.52-8.44 (m, 4H), 8.24-8.19 (m, 4H), (m, 1H), 7.69-7.66 (m, 2H), 7.57-7.51 (m, 9H), 

7.37-7.32 (m, 4H), 7.29-7.26 (m, 2H), 5.59 (s, 1H), 5.54 (s, 1H), 5.49 (s, 2H), 5.00 (s, 

4H), 4.31 (s, 4H), 2.38 (s, 6H); HRMS(+H)[-H2O] calculated 882.3997, found 882.4001.  

Diboronic acid (37c). 15% yield. 1H NMR(CD3OD, 400MHz) δ: 8.42-8.41 (m, 4H), 

8.23-8.21 (m, 4H), 7.72-7.56 (m, 11H), 7.38-7.31 (m, 6H), 5.35 (s, 4H), 5.04 (s, 4H), 

4.37 (s, 4H), 2.40 (s, 6H); MS ES(+) [-3H2O] : 835.4    

Diboronic acid (37d). 20% yield. 1H NMR(CD3OD, 400MHz) δ: 9.09 (s, 2H), 8.53-8.51 

(m, 4H), 7.71-7.69 (m, 2H), 7.60-7.52 (m, 8H), 7.37-7.33 (m, 4H), 7.30-7.28 (m, 2H), 

5.60 (s, 4H), 5.49 (s, 4H), 4.29 (s, 4H), 4.29 (s, 4H), 2.37 (s, 6H), HRMS(+H)[-H2O] 

calculated 883.3951, found 883.3978. 

General Procedures for synthesis of the boronic acid derivatives (42). 
 

[4-Carboxy,2-nitro(phenyl boronic acid)] (40).Twelve ml of fuming nitric acid was 

added to a flask  along with 13 ml of sulfuric acid. The solution was chilled to 0 °C, then 

39 (2.01 g, 0.012 mol) was added in portions over 15 min.  Then the mixture became 

yellow. After determining completion by thin layer chromatography, the solution was 

then poured over crushed ice. A white precipitate formed and was collected through 

vacuum filtration and dried under vacuum. The resulting crude solid was purified with 

flash chromatography eluting with CH2Cl2/MeOH (95:5) to give a (1.65 g, 65% yield). 

[4-Acyl chloride,2-nitro(phenyl boronic acid)] (41). To a flask was added compound 

40 (300 mg, 1.42 mmol), thionyl chloride in 6 ml, with and a drop of DMF. The reaction 

was refluxed for 48hr.  Solvent was removed and the reaction mixture dried overnight to 
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remove remaining thionyl chloride.  No isolation was performed; the crude product was 

used directly for the next step. 

[4–Caboxyamide,2-nitro(phenyl boronic acid)] (42). To compound 41 (1 eq.), 7ml of 

dry tetrahydrofuran (THF) was added.  The mixture was allowed to chill to 0 °C, then 

appropriate alkylamine was added dropwise (1.1eq.). Then the reaction was allowed to 

warm up to room temperature. The completion of reaction was monitored by thin layer 

chromatography. The solution was concentrated and the residue was purified by column 

chromatography with a dichloromethane/methanol (95:5) mixture.  Each compound was 

oxidized with hydrogen peroxide in the presence of sodium hydroxide (pH ca. 9) for 

further verification of characterization and spectral analysis. 

[4-(N-octyl)carboxamido,2-nitro(phenyl boronic acid)] (42a). 39% yield. 

 1H NMR(CDCl3 with a drop of CD3OD, 400 MHz) δ: 8.62 (s, 1H), 8.16-8.14 (dd, J = 

7.6, 1.6 Hz, 1H), 7.57-7.55 (d, J = 7.6 Hz, 1H), 3.47-3.40 (m, 2H), 1.68-1.60 (m, 2H), 

1.39-129(m, 10H), 0.90-0.86 (t, J = 6.8 Hz, 3H); 13C NMR(CDCl3 with a drop of 

CD3OD, 100 MHz)  δ: 165.7, 150.5, 136.6, 132.8, 132.0, 121.4, 40.5, 31.7, 29.4, 29.2,  

27.0, 22.5, 13.8; MS (ESI-) calculated  321.16, found 321.53. 

[4-(N-octyl)carboxamido,2-nitrophenol] (42aa). 1H NMR (CDCl3, 400 MHz) δ: 8.51-

8.50 (d, J = 2.0 Hz, 1H), 8.08-8.05 (dd, J = 8.8, 2.4 Hz, 1H), 7.24-7.22 (d, J = 8.8 Hz, 

1H), 3.49-3.43 (m, 2H), 1.66-1.59 (m, 2H), 1.38-1.25 (m,10H), 0.90-0.86 (t, J = 6.8 Hz, 

3H); MS (ESI-) calculated 293.15, found 293.17; Elemental analysis: calculated % C: 

61.21, %H: 7.53, %N: 9.52, found %C: 61.50, %H: 7.92, %N: 9.06. 
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[4-(N-dodecyl)carboxamido,2-nitro(phenyl boronic acid)] (42b). 33% yield. 

 1H NMR (CDCl3 with a drop of CD3OD, 400MHz) δ: 8.62 (s, 1H), 8.16-8.14 (dd, J = 

7.6, 1.6 Hz, 1H), 7.57-7.55 (d, J = 7.6 Hz, 1H), 3.47-3.40 (m, 2H), 1.68-1.60 (m, 2H), 

1.39-1.29 (m, 18H), 0.90-0.86 (t, J = 6.8 Hz, 3H); 13C NMR (CDCl3 with a drop of 

CD3OD, 100 MHz)  δ: 165.4, 150.4, 136.5, 132.7, 132.0, 121.2, 40.3, 31.8, 29.5, 29.2,  

26.9, 22.5, 13.8; MS (ESI-) calculated  377.22, found 377.04. 

[4-(N-dodecyl)carboxamido,2-nitrophenol] (42bb). 1H NMR (CDCl3, 400MHz) δ: 

8.59-8.58(d, J = 2.0 Hz, 1H), 8.10-8.07 (dd, J = 8.8, 2.0 Hz, 1H), 7.23-7.21 (d, J = 8.8 

Hz, 1H), 3.44-3.39 (m, 2H), 1.64-1.58 (m, 2H), 1.34-1.26 (m, 18H), 0.90-0.86 (t, J = 6.8 

Hz, 3H); No of protons does not match the structure!!(28 protons correct) MS (ESI-) 

calculated 349.21, found 349.23; Elemental analysis: calculated %C: 65.12, %H: 8.63, 

%N: 7.99, found %C: 65.14, %H: 9.04, %N: 7.33. 

 [4-(N-hexadecyl)carboxamido,2-nitro(phenyl boronic acid)] (42c). 28% yield.   

 1H NMR(CDCl3,dropCD3OD, 400 MHz) δ: 8.50 (s, 1H), 8.08-8.06 (dd, J = 7.6, 1.6 Hz, 

1H), 7.57-7.55 (d, J = 7.6 Hz 1H), 3.47-3.40 (m, 2H), 1.68-1.60 (m, 2H), 1.39-129 (m, 

26H), 0.90-0.86 (t, J = 6.8 Hz, 3H); 13C NMR (CDCl3 with a drop of CD3OD, 100 MHz) 

δ: 165.4, 150.3, 136.5, 132.7, 132.0, 121.2, 40.3, 31.8, 29.4, 29.2,  27.0, 22.5, 13.8; 

HRMS (-H) calculated  433.2874, found 433.2889. 

[4-(N-hexadecyl)carboxamido,2-nitrophenol] (42cc). 1H NMR (CDCl3, 400 MHz) δ: 

8.60-8.59 (d, J = 2.0 Hz, 1H), 8.10-8.07 (dd, J = 8.8, 2.0 Hz, 1H), 7.23-7.21 (d, J = 8.8 

Hz, 1H), 3.43-3.38 (m, 2H), 1.64-1.60 (m, 2H), 1.34-1.26 (m, 26H), 0.90-0.86 (t, J = 6.8 

Hz, 3H); MS (ESI-) calculated 405.27, found 405.29; Elemental analysis: calculated %C: 

67.95, %H: 9.42, %N: 6.89, found %C: 66.92, %H: 9.67, %N: 5.94. 
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[4-(N-octadecyl)carboxamido,2-nitro(phenyl boronic acid)] (42d). 29% yield.  1H 

NMR (DMSO, 400 MHz) δ: 8.78 (s, 1H), 8.58 (s, 1H), 8.30 (s, 2H), 8.20-8.18 (d, J = 7.6 

Hz, 1H) 7.66-7.64 (d, J = 7.6 Hz, 1H), 3.18-3.17 (m, 2H), 1.54 (m, 2H), 1.24 (m, 30H), 

0.86-0.84 (m, 3H); 13C NMR (DMSO, 100 MHz)  δ: 164.00, 150.11, 138.19, 135.72, 

132.54, 121.22, 39.10, 31.29, 29.03, 28.92,  26.49, 22.09, 13.93; MS (ESI-) calculated  

461.32, found 461.85. 

 

[4-(N-octadecyl)carboxamido,2-nitrophenol] (42dd). 1H NMR (DMSO, 400 MHz) δ: 

8.29-8.28 (d, J = 2.8 Hz, 1H), 7.47-7.44 (dd, J = 9.2, 2.4 Hz, 1H), 6.30-6.28 (d, J = 9.2 

Hz, 1H), 3.17-3.13 (m, 2H), 1.47-1.45 (m, 2H), 1.23 (m, 30H), 0.87-0.83 (t, J = 6.8 Hz, 

3H); MSI (ES-) calculated 433.30, found 433.10. 
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6. Closing Remarks and Future Directions 

6.1.  Fluorescent Probes for Cell Surface Carbohydrates 
 
     Carbohydrates serve as a source of energy and provide structural framework for 

RNA and DNA, among others.  A particular property of carbohydrates is its 

involvement in cell-cell adhesion interactions, as it has been correlated with 

metastatic behavior of various cancer types.3, 5, 6  Several oligosaccharides such as 

sLea, sLex, Lex, and Ley have been identified as cell identification biomarkers in the 

development and progression of such cancers, thus making these carbohydrates an 

attractive target for sensor design.   

     The essential components of a sensor are: 1) molecular recognition; 2) functional 

group interactions; 3) selectivity toward target molecule, and 4) signal output.  

Boronic acids have been employed as drug transporters,110 intermediates in Suzuki 

cross-coupling reaction,111 enzyme inhibitors,112 and many others.  One of the most 

interesting properties of boronic acid is its ability to covalently react with 1,2 or 1,3 

cis diols to form five or six membered cyclic esters in aqueous media.14  This unique 

attribute makes boronic acid ideal receptor for the molecular recognition of biological 

carbohydrates. 

     Sialyl Lewis X has been chosen as the initial target due to implications in the 

development of liver and colon cancer.5, 6   Secondly, fluorescence has been chosen as 

the signal output, as it provides high sensitivity, and requires very little sample.  The 

approach in designing a fluorescent probe for sLex is to develop a system in which 

there is an off and on state of detection (Figure 6.1).     
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Figure 6.1  The approach of the design of a fluorescent receptor for sLex. 
 

The fluorescent anthracene-boronic acid system was chosen as the initial design.  

This system was first introduced in 1992 by the Czarnik group, 35 and was later used 

by Shinkai to incorporate a 1,5 relationship between an amine and boron to create 

more electron density around the boron center.  In doing so, they developed 

monoboronic acid 16, which is intrinsically selective for fructose, and a diboronic 

derivative also selective for glucose.22  In this system the amine regulates the 

fluorescence intensity.  The anthracene moiety is quenched by an excited state 

photoinduced electron transfer, whish is considered to be the ‘off’ state of the sensor.  

Upon addition of a diol, the fluorescence intensity increases, which represent the ‘on’ 

state of the sensor.  There are two proposed mechanism in literature that have been 

introduced as the mechanism which stops the queching process of the anthracene 

motif.22, 36  Shinkai and co-workers proposed that there is a B-N bond formation 

which stops the quenching process.  Upon addition of a diol, leading to the formation 

of a boronic ester; the pKa of the boron species decrease.  This causes the amine to 
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react with the boron, forming a B-N bond, stopping the quenching process.  Later, the 

Wang group published a paper with detailed experimentations providing   

 

          

      

       
      

 

      

 
Figure 6.2 Signaling unit for anthracene based photoinduced electron transfer (PET) 
system. 
 
 
additional insight as to the mechanism in which the quenching  process is eliminated in 

aqueous medium.  They proposed the mechanism is stopped through a hydrolysis 

mechanism.  The B-N bond is labile, as a result it is hydrolyzed.  The amine is then 

protonated, stopping the quenching process.  There has been much success with this 

system, and the Wang group has used this system to develop the first fluorescent probe 

for sLex in hepatocellular carcinoma cell line.104  This bis-anthracene-boronic acid 

compound has begun the quest of the future design for fluorescent probes for cell surface 

carbohydrates, and was used as the lead compound for the initial design of this project.  

The di-carboxylic acid motif of this system, 28 was slightly changed to increase 

hydrophilicity, as this is the major intermolecular interaction  with the natural ligand.78  

Three ring substitutions with heteroatom(s) were introduced within the di-carboxylic acid 

unit; an imidazole, pyridine, and a pyrazine ring.  The imidazole added a ring contraction 
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effect.  The tertiary amine attached to the di-carboxylic acid unit was changed to a 

secondary amine.  These changes were made in hopes to increase selectivity toward sLex.  

Compound 28 labeled HEPG2 cell line at a concentration of 1 µM.  The protocols were 

mimicked.  The HEPG2 cell line expressing sLex and COS7 non-expressing cell line 

were adapted.  The cell lines were stained with the different di-anthraceneboronic acid 

(28) analogs between concentrations of 0.5-10 µM.  The results were analyzed using 

fluorescent microscopy with the use of a blue filter.   

     Compound 37c labeled the HEPG2 cell line selectively at a concentration as low as 

0.5 µM.  It is possible that the observed effect with 37c was due to the ring contraction 

and additional hydrogen bonding capability.  This type of intermolecular interaction is 

associated with the natural lectin ligand for sLex.78 

     In conclusion, there is an obvious need for a recognition moiety as a diagnostic tool to 

monitor the presence of sialyl Lewis X as it is associated with the progression and the 

metastatic behavior of certain cancer and tumor cell types.  With the appropriate boronic 

acid scaffold to detect this oligosaccharide one could begin to design selectin inhibitors to 

block the abnormalities that occur in this particular pathway, possibly aiding in the 

therapeutic realm of autoimmune diseases and cancer.  In addition, it could be used as a 

diagnostic tool to pursue the effector mechanisms that govern this pathogenesis of cancer 

and autoinflammatory diseases. With that said, additional exploratory computational 

and/or molecular modeling design could aid in the discovery of a boronic acid with the 

appropriate scaffold to serve as lectin mimics or a diagnostic tool to monitor the 

progression of various cancers, among other possibilities. 
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6.2. Phenylboronic Acid as Fusogens   
 

     Cell-cell fusion is a process in which two or more different types of cells are fused to 

produce one cell with a common cytoplasm and a single continuous plasma membrane 

(Figure 6.3).  Cell-cell fusion has been employed as a technique used in traditional    

 

 
 
 
 
 
Figure 6.3 Cell-cell fusion process.113 
 
hybridoma technology to obtain specific monoclonal antibodies to be used as therapeutic 

agents for cancer, autoimmune diseases and infections, among others.82  In addition, the 

new “wave” vaccine therapy has shown promising results with minor side effects.98   As 

of now, cell-cell fusion is accomplished by ‘nature’ spontaneously and by, viruses, PEG, 

or electrofusion.  Due to boronic acid ability to recognize and covalently react with 1,2 

and 1,3 cis diols, makes it ideal for tethering two cells together to induce the cascade of 

events required for cell-cell fusion.  With that in mind, four [4–caboxyamide,2-

nitro(phenyl boronic acid)] derivatives were synthesized to test the fusogenicity with the 

use of human cancer cells.    The hypothesis is that the boronic acid will serve as a 

receptor for a carbohydrate substituent on one cell and the fatty aliphatic side chain will 

migrate in the bilayer of the adjacent cell merging the cells together.  Cancer cells 
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spontaneously fuse together, and to validate the hypothesis, boronic acid derivatives were 

added as fusogens to induce cell-cell fusion above basal activity in human cancer cell 

lines.   

     Several cell lines were tested as possible cell based assays.  The final selection chosen 

were, Hela (cervical cancer), Messa (uterine sarcoma), and CHO (Chinese hamster 

ovarian cell line).  The approach began with fusing cells of the same type together.  

Immuno-fluorescence microscopy was used to give indication of cell-cell fusion.  The 

first assay began with, dyeing the nuclei directly after the cell-cell fusion process with 

DAPI.  This procedure was viewed with a blue filter, followed by analysis using a cell 

counting software.  It was hard to establish cell-cell fusion events from cell-cell adhesion 

using this protocol alone.  Next, an artificial lectin tagged with a red dye was used for 

plasma membrane labeling, along with a dye to stain the nucleus, Hoescht.  This dye 

combination system helped to eliminate confusion between cell-cell fusion and cell-cell 

adhesion.  The boronic acid derivatives, using this protocol in Hela and CHO cell lines 

did not increase fusion beyond basal activity.  However, in the Messa cell line, 37d 

increased over 2-folds above basal activity.  This was further validated using a dual 

cytoplasmic dye staining protocol.  One half of the cells were stained with a red dye and 

the other half with a green dye.  If cell-cell fusion occurred, a yellow to orange color 

would appear; which could be viewed by fluorescence microscopy or FACS analysis.  

Results from FACS analysis contradicted with the results obtained through plasma 

membrane staining.  A further experiment was conducted to determine the DNA content 

using PI.  This experiment did not display any tetraploid peaks, meaning double the 

amount of chromosomal content in normal somatic cells.  With the analysis combined, 
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the fusion of the same cell type was abandoned.  The project was geared toward fusion 

between two cells from different species. 

     Hela (cervical cancer) and CHO (Chinese hamster ovarian) cell lines were chosen as 

the cell based assay.  Each line was subjected to the fusion process, and cell survival 

assays were conducted to gain a reference point of the toxicity concentration limit of each 

phenylboronic acid derivative.  The concentrations were reduced if cell death occurred 

above 5%.  Next, Hela and CHO cell lines were labeled with red or green dye and fused 

together for 3 days; then analyzed by FACS analysis.  The results show compounds 37b, 

37c, and 37d increased up to 10-folds above basal activity, with compound 37c showing 

the greatest potential of fusogenic properties.   

     Next endeavors in this project will be geared toward actually implementing boronic 

acid derivatives in immunotherapeutic applications.  In addition, to increase our 

knowledge in the mechanism at which the PBA derivatives induces cell fusion; the 

design of fluorescent boronic acid dyes are in route, which will be monitored by Time 

Lapse Video Microscopy.       
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