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ABSTRACT

A class of linear diamidines was synthesized for the evaluation as a treatment of Human African

Trypanosomiasis.  These fused heterocyclic compounds are thiazole[5,4-d]thiazoles and are of

interest because the parent compound, 2,5-Bis(4-amidinophenyl)-thiazolo[5,4-d]thiazole HCl

salt, which is also called DB 1929, has exhibited a low nanomolar IC50 value against

Trypanosoma brucei rhodesiense and has shown selectivity for binding to the human telomere



G-quadruplex over that of DNA duplex.  A fluoro and a methoxy derivative have been

synthesized and are currently undergoing testing for activity and binding affinity.  In addition,

fluorescence studies of selected diamidines were done to study the effect of structural variation

on fluorescence.  This data is useful since it can determine what types of moieties are needed to

yield a compound that will fluoresce in the higher wavelengths (500 nm and above) of the visible

spectrum, which would be advantageous in determining the uptake of the drug in the

trypanosome within the endemic areas of Africa with a simple microscope.
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1. AFRICAN TRYPANOSOMIASIS

1.1. History of the Disease

Protozoa are eukaryotic, unicellular organisms that can infect both vertebrates and

invertebrates.  There are more than 66,000 species and about 10,000 of the living ones are

parasitic.  These organisms are unusual in that they have the ability to replicate within the host to

create hundreds of thousands of themselves in a short time frame.[1]

Protozoa consist of a membrane, surface coats, and a cytoplasm, within which many of

the common subcellular organelles are found.  They digest particulate matter by liposomal

enzymes and excrete waste by either diffusion or phagocytosis.  They can be mobile and use

both the sexual and asexual forms of reproduction.[1]

Human African trypanosomiasis is a parasitic, protozoan disease that exists in two

hemoflagellate forms, Trypanosoma brucei (T. b.) gambiense and T. b. rhodesiense.  These

organisms are transmitted through the bite of the tsetse fly.  The tsetse fly is in the genus of

Glossina (G) and is endemic to countries in Africa near the equator.[1]  Over 60 million people

are at risk of getting infected with human African Trypanosomiasis and it is always fatal if left

untreated.[2]  An epidemic exists in four countries, namely Uganda, Sudan, Angola, and the

Democratic Republic of the Congo.  Some areas have over 20% of the population infected with

the disease.[3]

Human African trypanosomiasis is also known as sleeping sickness and has been known

since at least 1742.  A cattle disease called nagana was attributed to the tsetse fly transmission of

the trypanosome in 1895.  The disease is now referred to as cattle trypanosomiasis and has

hindered the economic growth of an entire section of tropical Africa due to difficulties with

cattle ranching. Cattle trypanosomiasis is caused by T. b. brucei but it does not infect humans.[2]
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T. b. gambiense is the human equivalent of this disease.  Forde first discussed it in 1902 literature

and its counterpart, T. b. rhodesiense, was described eight years later in 1910 by Stephens and

Fantham.  In 1912, Kinghorn and Yourke used experimentation to prove that the rhodesiense

form of the disease was capable of being transmitted from humans to animals by the tsetse fly.

They also reached the conclusion that game animals such as the impala and warthog were cable

of serving as reservoir hosts for the East African form of the disease.[1]

1.2. Trypanosoma brucei gambiense

T. b. gambiense is also called West African or Gambian trypanosomiasis.[4]  It is

generally found in western and central Africa, including Ivory Coast, Senegambia, Liberia,

Guinea, Ghana, Benin, Cameroon, Nigeria, Gabon, Zaire, and Uganda.[1]  T. b. gambiense is

caused by the ‘riverine’ tsetse flies Glossina palpalis, G. tachinoides, and G. fuscipes.  The

natural habitat of these flies lie near rivers and forests that have dense foliage.  Humans are the

preferred food source but they will prey on whatever food sources are available at the time,

including pigs, dogs, and goats.[4]  T. b. gambiense has an incubation period that is several

weeks to months but it can be months to years before the brain is affected after infection.[1] As a

result, it is referred to as the chronic form of the disease.[2]  Most hosts are symptom-free during

the long incubation period.  This enables the parasite to adapt to the host and contributes to the

spread of the disease.[4]

1.3. Trypanosoma brucei rhodesiense

T. b. rhodesiense is also called East African or Rhodesian trypanosomiasis.[4]  It is

limited to East Africa, namely Zimbabwe, Zambia, Tanzania, Uganda, and Kenya.[1]  T. b.

rhodesiense is transmitted by G. morsitans, G. pallidipes, and G. swynnertoni.  The natural
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habitats of these flies are the lakes and savannah of the region.  These flies are more particular

about their food source with antelope and cattle being the primary sources.  Many other animals

can become infected but are not good hosts since they either perish quickly or the disease has a

short life span.  T. b. rhodesiense is unique in that it is a zoonosis, or a disease that is capable of

being transmitted from vertebrate animals to humans.[4]  T. b. rhodesiense has an incubation

period of 2-3 weeks and generally runs its course in several weeks with the brain being affected

3-4 weeks after infection.[1]  As a result, it is referred to as the acute form of the disease.[2]

1.4. Life Cycle of the Fly

The genus Glossina has over 20 species of the tsetse fly that are all localized in Africa.[4]

Only six species of Glossina serve as vectors for the human form of the disease and it can be

transmitted by both sexes of the fly.  The infective stage is also called the metacyclic or

metatrypanosome stage.  It occurs when the tsetse fly injects the parasites that lie in the salivary

glands through its bite.  The trypanosomes then migrate to the blood of the host and begin to

divide by binary fission at the infection location.  This causes a chancre sore to form at the site of

the bite.  The lymphatic system is used as the access mode to the bloodstream and further

divisions can occur there.[1]

The tsetse fly becomes infected when it takes a blood meal from an infected host.  The

parasite reaches the gut of the fly and become procyclic trypomastigotes.  They divide for

another 10 days and eventually migrate to the salivary glands.  Once they reach this location,

they become epimastigotes, which then further divide and become metatrypanosomes.  This form

of the parasite is actually the infective agent.  The cycle of migration and division varies for each

species of the Glossina fly but generally lasts anywhere from 25 to 50 days.  The strain of the
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trypanosome and the local temperature are also variables that affect the length of the life cycle of

the fly.[1]

The fly is now infected for life and can infect the host with more than 40,000

metatrypanosomes per bite.  It should be noted that the minimum dose for infection of a host is

only 300-500 metatrypanosomes.  Another possible source of infection occurs with the ingestion

of raw meat from an infected animal.[1]

1.5. Pathogenesis of the Disease

The trypanosome is unique in that it has two mechanisms for preventing the host from

eliminating it.  The first such mechanism involves the ability to vary its surface antigens.  After a

host has been infected, its initial response is to produce antibodies against the trypanosome

surface antigens.  These surface antigens are glycoproteins that coat the trypanosome.  The

antibodies are produced but a few trypanosomes have a protein coat that is slightly different,

allowing them to avoid elimination.  These few trypanosomes are replicated and the new

antigenic variation attacks the host.  The host initiates a second response by producing another

set of antibodies that are more specific for this second antigenic variation.  Again the majority of

the population is destroyed but a few survive.  This cycle continues until the newest antigenic

variant is capable of defeating the host.[1]

The second mechanism involves immune suppression.  When the parasite is introduced,

B-lymphocytes and macrophages are nonspecifically stimulated.  The cells are then able to

multiply and their response to antigens is increased.  On the other hand, the host’s T-cell

dependent immune responses to the antigens are depressed.  This is due to the ability of the

parasite to arouse the host’s immune response nonspecifically such that the response is not

specifically towards the trypanosome.[1]
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1.6. Clinical Diagnosis

The disease is generally the same for the two types of trypanosomes being discussed with

the only difference being the time scale for the infection. A chancre at the site of the bite from

the fly is the first sign of infection.  The lesion generally appears at 5-15 days after the infection

and the parasites are localized at that site for the interim.[1, 4]  The lesion will spontaneously

diminish after 2-3 weeks.  Once the incubation period is over, the parasites move to the

bloodstream of the host.  This occurs from a few hours to days after the initial emergence of the

chancre.  If no chancre ever presents itself, then the migration to the bloodstream will occur 1-3

weeks after infection.[4]  At this point in the infection period, numerous symptoms are possible.

They generally lack a pattern and are inconsistent.  The symptoms can even vary within the same

type of sleeping sickness.  Some of the more common symptoms include fever, rash, enlarged

lymph nodes, enlarged and softened spleen, jaundice, eye disease, and cardiovascular and

endocrine system crisis.  The final phase of the disease is the movement of the parasites to the

central nervous system (CNS).  The disease can progress to this stage in weeks to months for the

Rhodesian form or months to years for the Gambian form.  The symptoms at this stage include

headache, stiff neck, and personality and behavior changes, to name a few.  Eventually, mental

deterioration, seizures, speech impediments, tremors and narcolepsy may occur.  The final

symptoms include the inability to arouse the patient, dribbling of saliva, and wasting, or the

taking away of strength and energy.  These symptoms eventually lead to the occurrence of a

coma and the patient will usually pass away without regaining consciousness.[1, 4]  The

Rhodesian form of the disease can be so swift such that death may occur prior to the CNS

symptoms occurring.[4]
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1.7. Medication History

1.7.1. Arsenicals

Sleeping sickness was first treated with compounds that contained arsenic.  The first was

called atoxyl (1).  Thomas and Beirne first discovered the trypanocidal activity of atoxyl in 1905.

It was used to treat about 90,000 patients in Cameroon and the Congo in the early 1920’s.

Atoxyl did provided some improvement of the disease symptoms but it was rarely able to cure

the disease and frequently led to the severe side effects of optical atrophy and blindness.  A

second arsenical, tryparsamide (2), was synthesized in 1922 by Jacobs and Heidelberger.  This

drug was better than atoxyl in that it was able to cure at least 50% of the patients that took it.

The negative was that it still caused the severe side effects of optical atrophy and blindness in

5% of patients.  Tryparsamide and suramin (3), which will be discussed later, were used in

combination in the 1930’s for over 300,000 patients.  In 1938, Friedheim discovered melarsen

(4) and in 1946 he discovered melarsoprol (5).  Melarsoprol is also called Mel B and was less

toxic than tryparsamide.[5-8]

The trivalent aromatic arsenicals (As +3) are very active against trypanosomes in vitro but

are highly toxic in vivo.  Pentavalent aromatic arsenicals (As +5) were less toxic in vivo but

lacked trypanocidal activity in vitro, as compared to the trivalent variety.  It was found that the

pentavalent aromatic arsenicals could be reduced in vivo to the active trivalent form.  Atoxyl,

tryparsamide, and melarsen are examples of the pentavalent aromatic arsenicals that, upon

reduction, form active compounds in vivo.  Melarsoprol was created by reacting melarsen oxide

(6), a toxic trivalent aromatic arsenical, with 2, 3-dimercaptopropanol (7), which is also known

as British Anti-Lewisite (BAL).  The product, melarsoprol, maintained its activity against

trypanosomes but was much less toxic.[5, 9, 10]
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Figure 1 Structures of Atoxyl (1), Tryparsamide (2), Suramin (3), Melarsen (4), Melarsoprol (5), Melarsen
Oxide (6), and British Anti-Lewisite (7)

As previously stated, atoxyl and tryparsamide often caused optic atrophy or blindness.

The use of melarsoprol did not cause these severe side effects but as much as 18% of treated

patients developed encephalopathy, which was sometimes fatal.  Patients treated with

melarsoprol also developed mild renal issues, nausea, diarrhea, dermatitis, and hypertension.[5]

Arsenicals are generally nonpolar drugs that are able to cross the blood-brain barrier.

This property allows arsenicals to be used for the treatment of patients where the disease has
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affected the CNS.  Melarsoprol is the drug of choice at this stage but prior to administration,

confirmation of the disease stage must be characterized using either parasites, elevated protein,

or cell numbers in the cerebrospinal fluid (CSF) or by seeing definitive CNS symptoms in the

patients.[5]

1.7.2. Melarsoprol

As previously stated, melarsoprol (5) is used in the treatment of the late stage of human

African trypanosomiasis.   It must be administered intravenously and at a slow rate since the

drug will cause pain and necrosis at the site of contact.  There is no defined course of treatment

for the administration of melarsoprol.  Some medical professionals prefer to use a maximum

daily dosage whereas others tend to gradually increase the dosage over time.  Still other medical

professionals calculate the dosage based on the patients cardiac risk.  Most treatment regimens

include an introductory dosage of either suramin (3) or pentamidine (8), for T. b. rhodesiense and

T. b. gambiense infections, respectively.   Following treatment, 80-90% of the patients are cured

but some of those that develop the disease again will be resistant to treatment with

melarsoprol.[4, 11]
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Pentamidine (8)

Figure 2  Structure of Pentamidine (8)

Side effects of melarsoprol treatment can occur instantly following the injection.  These

side effects include malaise, diarrhea, vomiting, and fever.  Other side effects that usually do not

occur with subsequent injections include rash, tachycardia, and swelling of the lips and tongue.

Some of the more severe side effects include paralysis, cardiac arrhythmia or arrest, and
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encephalopathy.  Encephalopathy occurs with 1-11.4% of melarsoprol treated patients and it can

initially present itself in several ways with the final stage being that of a deep coma that may

involve convulsions.  Once the neurological problems arise, the melarsoprol administration

ceases until consciousness is regained.  At this point, the drug regime can begin again at lower

dosage levels.  Unfortunately, 50% of the treated patients will have a fatal response once the

disease progresses this far.[4]

1.7.3. Suramin

Ehrlich and his colleagues tested dyes for possible trypanocidal activity.  Two of them

had weak in vivo activity.  They were naphthylaminesulfonic acid derivatives called nagana red

(9) and trypan red (10).  This lead to the synthesis and testing of other derivatives for

trypanocidal activity.  One such derivative, suramin (3), was found to be effective.  Suramin was

put into production in 1916 by Bayer.  Several derivatives of suramin have been synthesized and

tested but none of them compared to suramin with regards to activity.[5, 6, 12]
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Some significant discoveries about the mode of action of the drug have been discovered.

Hawking saw that trypanosomes would loose motility in vitro after a 6 hour incubation period

with 4 nM of suramin.  Lower concentrations of the drug were effective to some extent against

the trypanosomes.  This lead to the belief that suramin does not kill the parasites immediately.

Instead, is causes subtle biochemical changes that ultimately kill the trypanosome.  In vivo, it

takes up to 24 hours after administration of the drug before the trypanosomes are removed from

the bloodstream.  It has also been discovered that several enzymes in various organisms are

sensitive to suramin.  It was found that some trypanosomal enzymes are sensitive to suramin but

the mammalian versions are not and that some trypanosomal enzymes that are not found in

mammals are also affected by suramin.  The sensitivity of these enzymes to suramin contribute

to the discerning ability of suramin for trypanosomes.[5]

Suramin must be administered intravenously.  The recommended dosage is 20 mg/kg of

body weight per injection with the maximum being 1000 mg per injection.  A test injection of

suramin should be given to the patient to gage the effect of the drug on the patient followed by

the regular dosage conditions.  Suramin administration generally involves five to seven

injections every five to seven days over the course of 21 days with a weekly dosage administered

for an additional five weeks.[4]

Treatment with suramin causes many problems within patients.  Some of the side effects

of treatment include optical atrophy, blindness, renal failure, and rash.  Less than 1% of treated

patients develop an idiosyncratic reaction that results in vomiting, nausea, seizures, and loss of

consciousness.[5]

Suramin is a polar molecule and cannot cross the blood-brain barrier.  It is therefore

generally used for the initial stage of the disease but it has been used in combination with
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melarsoprol (5) for the late stage of the disease.  It should be noted that the combination therapy

did not provide any significant improvement in trypanocidal activity as compared to the use of

melarsoprol alone.[5]

1.7.4. Eflornithine

Eflornithine (11), or DL-α-difluoromethylornithine (DFMO), was synthesized in the

1980’s as a cancer drug.  It was too toxic for cancer therapy but had some in vivo activity against

trypanosomes.[3, 13]  Elfornithine is usually used to treat patients that are resistant to

melarsoprol (5) in the late stage of the disease.[2, 3]  Eflornithine has side effects similar to other

cancer drugs including anemia, fever, alopecia, vomiting, dizziness, and diarrhea.[3]

     

H2N

O

OH
NH2

F

F

Eflornithine (11)                          

OO2N
N N

SO2

Nifurtimox (12)                         

OO2N
N N

H

Nitrofurazone (13)

NH2

O

Figure 4  Structure of Eflornithine (11), Nifurtimox (12), and Nitrofurazone (13)

1.7.5. Nitrofurans and Nitroimidazoles

Some nitrofurans and nitroimidazoles have in vivo trypanocidal activity.  Nifurtimox (12)

is used to treat the acute form of Chagas’ disease, or American trypanosomiasis, and it has been

found to have some activity against African trypanosomes.  Nitrofurazone (13) can cross the

blood-brain barrier and is used in the late stage treatment of African trypanosomiasis if the

patient has resistance to the arsenical drugs.  Nitrofurans (nitrofurazone and nitrofurtimox) are

highly toxic and can have mutagenic or carcinogenic properties.[5, 14]  They are the second

choice drug behind melarsoprol (5) and eflornithine (11) for the last stage of the disease.[2]
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1.7.6. Nifurtimox

Nifurtimox (12) has activity in both stages of T. b. gambiense.  Since it has yet to be

approved for use in human African trypanosomiasis, it has only been used in patients the are

resistant to melarsoprol (5).  In one trial of 75 patients in the late stage of the disease, 72% were

cured using a treatment regimen that consisted of a 15 mg/kg per day dosage for 14 to 45 days.

A second trial had 15 patients that used a 4-5 mg/kg dose 3 times a day for 60 days and it yielded

an 87% cure rate.[3]

The side effects of the drug are difficult to distinguish since the drug is given to patients

in the last stage of the disease that have developed resistance to melarsoprol.  Generally, the side

effects that the patients were having prior to administration of nifurtimox were exacerbated.[3]

1.7.7. Diamidines

Throughout this dissertation, diamidine structures are shown as a free base, however,

when used in biological systems, they are protonated and dicationic.

Synthalin (14), or 1, 10-Diamidinodecane, was the first diamidine that was discovered to

be effective at killing trypanosomes.  It was tested by Jansco and Jansco in 1935 for its suspected

ability to prevent the growth of the trypanosome in vivo due to hypoglycemia but this was proved

to not be the cause of the lack of trypanosome growth.  Two years later in 1937, pentamidine (8),

propamidine (15), and stilbamidine (16 ) were tested followed by the testing of berenil (17) in

1955.[5, 15-18]

It was initially believed that diamidines interacted with DNA and that this interaction

causes the trypanocidal activity.  The diamidines were thought to form salt bonds with the

phosphate groups of the DNA.  These bonds then allowed the diamidines to insert itself into the

DNA minor groove near an A-T pair.[5]  Diamidines are charged molecules that cannot pass the
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blood-brain barrier.  The inability to cross the barrier means that they are only effective against

the initial stage of the disease.[5]
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Figure 5  Structure of Synthalin (14), Propamidine (15), Stilbamidine (16), and Berenil (17)

1.7.8. Pentamidine

Pentamidine (8) is the more widely used drug of the diamidine class.[5]  It is used to treat

the early stage of the disease and has an advantage over suramin (3) in that it has a shorter time

course for drug administration.  Pentamidine must be administered intramuscularly and the

dosage recommendation is no more than 4 mg/kg of body weight per day with an injection every

day or every other day for 7-10 days.[2, 4]

Pentamidine causes nephrotoxicity and hypotensive occurrences in patients.  Other side

effects include tachycardia, fainting, vomiting, and sometimes hypoglycemia.[5]  A common

side effect is pain and inflammation of the skin at the injection site.  Some of the side effects can

be seen instantly following the injection of the drug and are attributed to the rapid decent of the

patients blood pressure that occurs when the drug is administered too quickly.[4]

1.7.9. Berenil

Berenil (17), or diminazene, is a pentamidine (8) analog that was developed to treat

trypanosomes in cattle.[2, 3]  It has been used in several countries for the human form of the
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disease and is listed by the World Health Organization (WHO) as a trypanocidal drug, but

berenil has never been registered for human use.[2]  During shortages of pentamidine, berenil

was used to treat patients in the initial phase for both forms of the disease.[3]

When used to treat humans, berenil is administered intramuscularly at 5-7 mg/kg of body

weight in up to 3 injections over 2 days.  The rate of patient relapse is 3-15% and it has side

effects that resemble pentamidine except that it has a much less painful injection.  It also has a

shorter course of treatment as compared to pentamidine.[3]
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2. THE INTERACTION BETWEEN DNA AND DRUGS

2.1. Medicinal Chemistry

Merriam-Webster’s dictionary defines the word medicinal as tending to or used to cure

disease or relieve pain and chemistry as the science that deals with the composition, structure and

properties of substances and the transformations that they undergo.[19]  If the two words are then

put together as medicinal chemistry then the definition would be the science of substances that

are intended for the treatment or cure of a pain or disease.  Furthermore, the substances that are

used for the treatment of pain and disease are called medicines and drugs are the constituent parts

that the medicines are composed of.  Today medicinal chemistry is composed of many divisions,

including but not limited to the study of the chemical transformations and excretion of the drug,

the isolation of natural products, determination of biological activity, and the synthesis of unique

molecules.[20]

Medicinal chemistry dates back thousands of years.  It began when people treated their

ailments with roots, berries, tree bark, and herbs. Many of these natural materials were

successfully employed but were randomly utilized.  It was not until the last two centuries that the

investigation into what ingredient was the cause of the successfulness of the natural source

began.  Today if a natural product is found to have some activity towards a disease, its molecular

composition will be determined followed by the synthesis of individual fragments, which are

tested to determine which component is causing the desired effect.[20]  This component is then

known as the active or lead compound.[21]  The approach used by our early ancestors is

considered to be rather random since they lacked the forethought to be certain which natural

source would be useful for a specific ailment.  The use of this random trial and error method has
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evolved into a more rational, or targeted, approach that is referred to as drug discovery and

design.[20, 21]

2.2. Drug Discovery and Design

In drug discovery, the lead compound that was isolated from a natural product may be

synthetically altered to intensify the desired properties and to diminish the negative properties.

Once these modifications are complete, the compound is referred to as a drug candidate and will

undergo several studies, including, but not limited to, biological, animal, and pharmacological

studies.  Once satisfactory testing results are received, the compound is a clinical candidate and

can be moved into clinical trials.  If the candidate drug yields adequate clinical trial data, then it

can be marketed to the public following FDA approval.[20]

Since the random discovery of successful drugs is few and far between, pharmaceutical

researchers use a more rational approach in the quest for new drug entities.  This rational

approach involves finding a molecular target for a disease of interest followed by designing a

compound that will ultimately interact with that target.  The target will generally be a receptor,

enzyme, or nucleic acid.  A receptor consists of a protein that is set into the walls of the cell

membrane such that a portion of it rests outside the actual cell.  The surface of the protein has an

irregular shape but a part of it is an exact match for a specific molecular messenger.  This part of

the receptor is called the binding site since the messenger will fit perfectly in the site.  The fitting

of the messenger into the binding site of the receptor causes the receptor to be activated and a

message to be transmitted from the messenger to the cell.[21]

An enzyme is a catalyst used to speed up the rates of biological reactions that take place

in a cell.  Enzymes are specific to their function and to the metabolic reaction that they act on.

This specificity causes a substrate to be converted into a precise product.  Enzymes are generally
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significantly bigger than its corresponding substrate and a small segment of it is referred to as the

active site.  The active site is the part of the enzyme that has a structure that is complementary to

a particular part of the substrate.  The complimentarity of the structure between the two species

enable them to identify each other and bind using weak forces such as ionic bonds, hydrogen

bonds, or van der Waals interactions.  The binding of the enzyme to the substrate thereby results

in the acceleration of the metabolic reaction.[22]

Nucleic acids are elongated polymers that are composed of linear segments of monomers.

The monomers are called nucleotides and are comprised of three units referred to as a base, a

sugar, and a phosphate group.  The base is a nitrogen containing heterocyclic moiety that is

either monocyclic or bicyclic.  The monocyclic bases are called pyrimidines (18) and the bicyclic

bases are called purines (19).  The base is connected to the sugar, which is a five membered ring

referred to as a pentose sugar.  The sugar is then connected to a phosphate ester moiety.  Nucleic

acids are the basic building blocks for DNA and RNA.[23]
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Figure 6  General Structure of Nitrogenous Bases

2.3. The Components of DNA

DNA is essential to life since it contains all the cellular genetic material.  It is composed

of several smaller segments that are joined together to form a linear polymeric structure.  These

individual components include a base, a sugar, and a phosphate group.[22]
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2.3.1. Bases

 The bases of nucleic acids are often called nitrogenous bases since they are heterocyclic

ring structures that contain several nitrogen atoms. Pyrimidines (18) and purines (19) make up

the two classes of nitrogenous bases.   Pyrimidines are made up of a six-membered  heterocyclic

ring.  It contains two nitrogen atoms, is planar, and is aromatic.  The two pyrimidines usually

found in DNA include thymine (T, 20) and cytosine (C, 21).  Purines are a fused heterocyclic

ring composed of a pyrimidine and an imidazole.  An imidazole is a five-membered,

heterocyclic, aromatic ring that contains two nitrogen atoms.  The fusion of these two rings

results in a nine-membered, fused heterocyclic ring that contains four nitrogen atoms.  The two

purines usually found in DNA include adenine (A, 22) and guanine (G, 23).[22]
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2.3.2. Sugars

The sugar moiety in DNA is called a pentose since it is a five-carbon sugar.  The sugar is

a part of the furanose class of sugars since it is a ring formation of a ribose sugar (24), which is

linear.  The sugar used is DNA is D-2-deooxyribofuranose (25).[22]

2.3.3. Nucleosides

The link between a nitrogenous base and a sugar is called a glycosidic bond.  This linked

structure is called a nucleoside (26).  The glycosidic bond joins the sugar’s carbonyl carbon,



19

                            

CHO
HH
OHH
OHH

CH2OH
D-2-Deoxyribose (24)                           

H

OH

H
HO H

H H
O

HO

D-2-Deoxyribofuranose (25)

Figure 8  Structures of Sugars for DNA

which is also referred to as the anomeric carbon, to a nitrogen atom in the base.  Since the bond

is attached to a nitrogen atom in the base, it is specifically referred to as an N-glycosidic bond.

Glycosidic bonds can exist as either a α or β conformation, with the β conformation being

preferred.  Nucleosides can also have varying conformations of the glycosidic bond.  The

conformation is determined by how the base is positioned relative to the anomeric carbon of the

sugar.  The two possible conformations are syn and anti.  In the syn form for pyrimidines, the C-

2 oxygen atom sits above the sugar and causes steric hindrance.  Steric hindrance is absent in the

anti form since the C-2 oxygen atom is turned away from the sugar ring.  As a result, pyrimidine

nucleosides prefer the anti conformation.  The smaller purine nucleosides produce less steric

hindrance and can exist in either a syn and anti conformation.[22]

H

N

H
HO H

H H
O

HO O

NH2

Nucleoside (26)                                   

H

N

H
O H

H H
O

HO
N

N

N

H2N

Nucleotide (27)
P-O
O-

O

Figure 9  Structures of a Sample Nucleoside and Nucleotide



20

2.3.4. Nucleotides and Polynucleotides

A nucleotide (27) is comprised of a nitrogenous base, a pentose sugar, and a phosphate

group.  It is formed when phosphoric acid is added to a hydroxyl group of a sugar contained in a

nucleoside creating an ester linkage.[22]

A polynucleotide, or nucleic acid, is an array of individual nucleotides that have been

linked by phosphodiester bridges in a 3’ to 5’ arrangement.   The nucleic acid formation occurs

when the 5’ phosphate of a nucleotide adds to the 3’ hydroxyl of another nucleotide.  When the

nucleic acid is composed of deoxyribonucleotides, the polymer is called deoxyribonucleic acid,

or DNA.[22]

2.4. DNA

DNA exists as a double helix structure that is created when two nucleic acid strands twist

around each other.  The two nucleic acid strands run in an antiparallel fashion and are held

together by hydrogen bonding.  The hydrogen bonding causes the nucleotide bases of one strand

to complement the nucleotide bases of the opposite strand.  This complementarity of the bases is

called base pairing.  The concept of base paring arose from the discovery by Edwin Chargaff of

the composition of bases.  In the 1940’s, he found that the four bases do not occur in equal

amounts in DNA.  Actually, two pairs of bases always occur in equivalent amounts and that

pyrimidines (18) always equal purines (19).    These discoveries lead to what is now known as

Chargaff’s rules.  Chargaff’s rules states that the number of adenine (22) and thymine (20)

residues are equivalent, the number of cytosine (21) and guanine (23) residues are equivalent,

and the number of pyrimidines and purines are equivalent.

Using Chargaff’s rules, James Watson and Francis Crick were able to deduce that the

DNA double helix was complementary.  They found that the hydrogen bonds that held the
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strands together occurred between specific bases pairs of opposite strands such that one base was

a pyrimidine and the other was a purine.  Specifically they found that adenine always paired with

thymine (A:T, 28) and that guanine always paired with cytosine (G:C, 29).[22]
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Figure 10  A:T and G:C Base Pairs with Major and Minor Groove

2.4.1. Common DNA Secondary Structures

Generally, DNA can exist is one of three secondary structures.  These three forms are A,

B, and Z DNA.  DNA has two antiparallel strands that twist upon each other in a helical

formation.  The helix is held together by hydrogen bonding between the bases on the opposing

strands and the base stacking results in a hydrophobic center.  This arrangement causes the

backbone of the chains, which consists of the sugar and the phosphate groups, to lie outside the

helix.  The helical nature of the structure causes the spacing between individual base pairs to be

0.34 nm and since the helix repeats every 10 base pairs, the pitch of the helix is 3.4 nm.   This

major conformation of DNA is referred to as B-DNA.[22]  B-DNA dominates when in a fully

hydrated state.[24]

The two backbones of the DNA are not equivalently spaced with regards to the helical

axis of the DNA strand.  This causes the two grooves to not be of the same width.  As illustrated
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in Figure 10, if the glycosidic bonds are in the downward position, then the groove that lies

above the base pair is the larger, or major, groove and the smaller, or minor, groove lies below

the base pair (28, 29). [22]  The major and minor grooves do have equal widths, or depths.[24]

An alternate form of DNA is A-DNA.  A-DNA has a pitch of 2.46 nm and has an 11 base

pair turn.  The base pairs have a 19o tilt with respect to the helical axis and the distance between

base pairs is 0.23 nm.[22]  The tilt of the base pairs causes the major groove to be very deep and

the minor groove to be rather shallow.[24]  These changes and the fact that the base pairs are

placed around the helical axis cause A-DNA to be short and squat as compared to B-DNA.[22]

A-DNA dominates when in dehydrated nonphysiological conditions.[24]

Z-DNA differs from both A and B DNA in that it is a left-handed helix instead of a right

hand helix and that the guanosine residues are syn instead of anti.  Z- DNA has a 12 base pair

turn and a rise of 0.38 nm.  The pitch of Z-DNA is 45.6 nm and these changes cause it to be long

and thin as compared it B-DNA.[22]  Z-DNA got its name from the fact that the backbone

comprised of the sugar and phosphate groups have a zigzag pattern.[24]

2.4.2. G-Quadruplexes

Guanine residues have the ability to self-associate as a result of its ability to hydrogen

bond using both Watson-Crick and Hoogsteen hydrogen bonding.[25]  A G-quartet occurs when

four guanine residues hydrogen bond amongst themselves to form a cyclic arrangement (Figure

11).  Multiple G-quartets can stack on top of one another to create a class of secondary structures

called G-quadruplexes.[26]  G-quardruplexes can be formed by an intramolecular or an

intermolecular arrangement.  In the intramolecular formation (Figure 12), one guanine-rich DNA

sequence is folded to form the G-quadruplex but in the intermolecular form (Figure 13), either

two or four different sequences are used.  Since single-stranded DNA sequences are involved,
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the strands can run in a combination of parallel and anti-parallel directions.  The folding pattern

of the stands also cause the loops of several residues in length to form around the quadruplex and

their location depends on the number of stands involved.  If two stands run parallel to each other,

then the loop occurs in the groove but if the strand runs antiparallel then the loop exists above or

below the plane of the G-quartet.[25]

                                    

NH

NN

N
O

N
H2C1'

NH
N

NN

O

NH2

C1'

NH
N

N N

O

H2N

C1'
NH

N N

N
O

H2
N

C1'

Figure 11  Arrangement of Guanine Bases to form a G-quartet

                                 

Figure 12  Examples of Intramolecular Topology Diagrams of G-quadruplexes[27]
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Figure 13  Examples of Intermolecular Topology Diagrams of G-quadruplexes[27]

2.5. DNA Binding

Several classes of drugs exist that interact with DNA.  They are alkylators, strand

breakers, and reversible binders.  Alkylators are molecules that form a covalent interaction with

DNA bases and strand breakers are molecules that create radicals that cleave the DNA strands.

Reversible binders are molecules that can interact with DNA using reversible, noncovalent

interactions.  Reversible binding modes includes groove binding and intercalation.[20]

2.5.1. Alkylators

Alkylators are drugs that will irreversibly bind to DNA thru the formation of covalent

bonds.  Alkylation occurs when an atom is replaced with an alkyl group.  This generally occurs

by way of a nucleophilic substitution reaction with nitrogen, oxygen or sulfur nucleophiles and

an eletrophilic alkylating agent.  Problems with the use of alkylators include the toxicity due to
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the non-selective alkylation and drug resistance since the cell ultimately decreases uptake of the

drug and/or increases repair of the damage caused by the drug.[20]

2.5.2. Strand Breakers

Strand breakers are able to create radicals, which then remove hydrogen atoms from

either the sugar-phosphate backbone of DNA or from the bases.  The removal of the hydrogen

atoms causes the strand of DNA to break.[20]

2.5.3. Minor Groove Binding

Small molecules can bind to the minor groove of the DNA.  These molecules usually

have aromatic ring systems attached with single bonds such that there is the ability to rotate in

the groove.  The A-T rich areas of the groove are slightly smaller than the G-C rich regions, so

for many small molecules the preference is for A-T rich areas since they can provide a tighter fit

in the minor groove.  The small molecules that prefer binding to the A-T rich regions of the

DNA strand are generally crescent-shaped and with NH groups on the internal part of the

crescent.[20]

2.5.4. Intercalation

Intercalation occurs when a flat aromatic or heteroaromatic molecule gets inserted between

the base pairs of helical DNA.  The intercalating molecule ends up being stacked perpendicular

to the helical axis.  As a result, the remaining base pairs undergo a vertical shift and are

separated.  This causes the backbone to be modified and lengthens the DNA duplex.  An

intercalator can bind to every other base pair at most since the binding at one site disrupts the

ability of a second intercalator to bind to an adjacent site due to a change in the conformation of
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the duplex.  Intercalation ultimately causes the unwinding of the DNA stand and most

intercalators exhibit a preference for G-C rich sites in the helix.[20]
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3.    SYNTHESIS

3.1. Rationale Behind the Synthetic Strategy

Parasitic diseases have been estimated to affect over a billion people worldwide.  Over 60

million people are at risk of getting infected with human African trypanosomiasis.[28]  This

number is steadily growing as the number of international travelers increase.  While there are

several drugs currently in use, there is a great need for the development of new treatments due to

the lack of drug availability, production costs of current drugs, the difficult routes of drug

administration, and drug toxicity and resistance.[2, 5]

There are several approaches for the development of new drugs for the treatment of

human African trypanosomiasis.  They include the creation of new formulations for currently

used drugs, the use of new drug combinations, and the development of new drugs.[4]  It is my

intent to use the latter method in my research.

The prototypical diamidine, pentamidine (8), has been in use for over 50 years for the

treatment of human African trypanosomiasis.  Throughout this dissertation, diamidine structures

are shown as a free base; however, when in biological systems, they are protonated and are

dications.  Unfortunately, the mechanism of action for the diamidine class of compounds has yet

to be definitively elucidated.  Research has shown that the compounds bind to the minor groove

of DNA.  It is thought that the binding to AT rich regions of the DNA helix is the crucial first

step in their mode of action.[2]  The key characteristics required for effective minor groove

binders include the cationic centers at the terminus of the compounds, molecular flexibility, the

ability to hydrogen bond, and a crescent shape of the molecule that is complementary to the

minor groove.[29]
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The center moiety of several previously synthesized diamidines has been a single

heterocyclic ring.  It is thought that the binding affinity of the molecules to DNA can be

maintained or increased by elongation of the center moiety.  As a result, my research has

centered on the synthesis of molecules that have a center moiety composed of a fused

heterocyclic ring.  The compounds are intended to be a class of novel linear diamidines since

recent literature has shown that linear diamidines exhibit both significant antiparasitic activity

and acceptable binding affinity to the minor groove of DNA.  Although these novel compounds

lack the curvature that is generally thought to be required for adequate binding to the DNA minor

groove, it has been shown that one or more water molecules can be involved in the DNA

complex.  It has been shown that the binding of the water molecule between the drug and the

DNA, in effect, provides the necessary curvature.[30]
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Figure 14  General Structures of  a Thiazolothiazole, Imidazothiazole, and Imidazothiadiazole

3.2. Proposed Fused Heterocyclic Moieties

Several fused heterocyclic moieties were of synthetic interest.  The first was a

thiazolothiazole (30).  The synthesis of the 2,5-diamidinophenyl parent compound was

successful and two derivatives were also made.  A second proposed structure was that of an

imidazothiazole (31), which was intended to have a 2,5-diamidinophenyl substitution.  The

synthesis of this parent molecule was not achieved since attempts at cyclization procedures were

not successful.  The third proposed structure for synthesis was that of an imidazothiadiazoles
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(32).  The synthesis of this 2,5-disubstituted parent compound was unsuccessful due to the

inability to convert the bromine atom to a cyano group to yield the biscyano prerequisite for

amidine formation

3.3. Thiazolo[5,4-d]thiazoles

Johnson and Ketcham were interested in some synthetic work done by Ephraim in the

19th century.  The work was of interest since Ephraim did not have structural evidence to prove

that the proposed structure for 2,2’-diphenyl-4,4’-bithiazetime was correct.  Ephraim’s proposed

structure (33) is that of two 4-membered rings joined together but Johnson and Ketchum thought

that a structure composed of two fused 5-membered rings was more appropriate.  Through a

series of experiments, Johnson and Ketchum were able to deduce that the correct structure was

that of the two fused 5-membered rings, known as a thiazolo[5,4-d]thiazole (30).[31]  Several

papers have been published which illustrate the synthesis of the parent compound and its

derivatives though a condensation reaction with dithiooxamide and an aromatic aldehydes.[31-

33]  Some of the thiazolo[5,4-d]thiazole derivatives have been tested for their liquid crystal

properties while others have tested as semiconductors.[34, 35]

                               

N

S N

S
RR

33                     

N

S

S

N
R R'

Thiazolothiazole (30)

Figure 15  Proposed and Actual Structure of Thiazolo[5,4-d]thiazole

3.3.1. 2,5-Bis(4-cyanophenyl)thiazolo[5,4-d]thiazole (36)

For the synthesis of the parent 2,5-diarylthiazolo[5,4-d]thiazole, the first step involved

the condensation of p-cyanobenzaldehyde (34) with dithiooxamide (35) in DMF (Scheme 1).
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The mixture was allowed to reflux for 24 h.  The crude solid was then recrystallized from DMF

to yield 2,5-bis(4-cyanophenyl)thiazolo[5,4-d]thiazole (36).[33]

Scheme 1  Synthesis of 2,5-bis(4-cyanophenyl)thiazole[5,4-d]thiazole (36)
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The formation of the thiazolothiazole (36) is thought to involve a multiple step process.

A proposed mechanism is presented in scheme 2.

Scheme 2  Proposed mechanism for 2,5-bis(4-cyanophenyl)thiazole[5,4-d]thiazole (36)
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3.3.2. 2,5-Bis(4-amidinophenyl)thiazolo[5,4-d]thiazole HCl salt (37, DB 1929)

For the conversion of 2,5-bis(4-cyanophenyl)thiazolo[5,4-d]thiazole (36) into an amidine,

the compound was allowed to react with lithium bis(trimethylsilyl)amide in THF (Scheme 3).

Due to the low solubility of the bis-nitrile, the mixture was stirred at room temperature for

several days until completely dissolved.  The solution was cooled and EtOH-HCl was added.

About a day later, the solvent was evaporated and ether was added.  The mixture was then

filtered, washed with ether, and dried.  The dried solid was then suspended in H2O and 10%

NaOH was added until just basic.  The mixture was then filtered, dried overnight, and suspended

in an EtOH-MeOH mixture.  The mixture was eventually filtered, washed and dried to yield 2,5-

bis(4-amidinophenyl)thiazolo[5,4-d]thiazole as an HCl salt (37, DB 1929).[36]

Scheme 3  Synthesis of 2,5-bis(4-amidinophenyl)thiazole[5,4-d]thiazole HCl Salt (37)
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The conversion of the bisnitrile to the bisamidine by the action of lithium

bis(trimethylsilyl)amide is straightforward.  The possible mechanism is presented in scheme 4.

Scheme 4  Proposed mechanism for the conversion of a bisnitrile to an amidine
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3.4. Derivatives of 2,5-bis(4-amidinophenyl)thiazolo[5,4-d]thiazole

The synthesis of several derivatives of 2,5-bis(4-amidinophenyl)thiazolo[5,4-d]thiazole

(37) were attempted using the same method as that employed to make the parent compound but

they were not successful.  The first step to yield the fused heterocyclic molecule is where the

problems were encountered.  It was never possible to get a high enough conversion of starting

material to product in the reactions or if an appreciable amount of product was present, it was

extremely difficult to separate the product from the numerous by-products in the mixture.  With

these issues in mind, an alternative procedure for making thiazolo[5,4-d]thiazoles using o-

dichlorobenzene as the solvent was used.  This solvent was therefore used in subsequent

reactions and was very successful.
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3.4.1. 2,5-Bis(4-cyano-2-fluorophenyl)thiazolo[5,4-d]thiazole (39)

The first derivative to be synthesized was a fluoro derivative (Scheme 5).  To make it

dithiooxamide (35) was reacted with 4-cyano-2-fluorobenzaldehyde (38) in o-dichlorobenzene at

reflux.  After reflux, the mixture was cooled, filtered, and washed with ethanol to yield a crude

solid.  The crude solid was then boiled in DMF, hot filtered, and cooled to induce crystallization

to yield 2,5-bis(4-cyano-2-fluorophenyl)thiazolo[5,4-d]thiazole (39).[33, 35]

Scheme 5  Synthesis of 2,5-bis(4-cyano-2-fluorophenyl)thiazole[5.4-d]thiazole (39)
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3.4.2. 2,5-Bis(4-amidinophenyl-2-fluoro)thiazolo[5,4-d]thiazole HCl salt (40)

2,5-Bis(4-cyano-2-fluorophenyl)thiazolo[5,4-d]thiazole (39) was then converted into the

amidine (Scheme 6) by the method previously described to yield 2,5-bis(4-amidinophenyl-2-

fluoro)thiazolo[5,4-d]thiazole HCl salt (40).[36]

Scheme 6  Synthesis of 2,5-bis(4-amidinophenyl-2-fluoro)thiazole[5,4-d]thiazole HCl Salt (40)
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3.4.3. 2,5-Bis(4-cyano-2-methoxyphenyl)thiazolo[5,4-d]thiazole (42)

The second derivative that was synthesized was the methoxy derivative (Scheme 7).  It

was prepared with dithiooxamide (35) and 4-cyano-2-methoxybenzaldehyde (41) by the

previously described method to yield 2,5-bis(4-cyano-2-methoxyphenyl)thiazolo[5,4-d]thiazole

(42).[33, 35]

Scheme 7  Synthesis of 2,5-bis(4-cyano-2-methoxyphenyl)thiazole[5.4-d]thiazole (42)
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3.4.4. 2,5-Bis(4-amidinophenyl-2-methoxy)thiazolo[5,4-d]thiazole HCl salt (43)

2,5-Bis(4-cyano-2-methoxyphenyl)thiazolo[5,4-d]thiazole (42) was then converted into

the amidine (Scheme 8) as previously described to yield 2,5-bis(4-amidinophenyl-2-

methoxy)thiazolo[5,4-d]thiazole HCl salt (43).[36]

Scheme 8  Synthesis of 2,5-bis(4-amidinophenyl-2-methoxy)thiazole[5,4-d]thiazole HCl Salt (43)
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3.5. Novel Findings for DB 1929

The goal of this research was to synthesize a novel class of diamidines that consisted of a

fused heterocycle as the center moiety in the hopes that the elongation of the distance between

the two cationic ends would maintain or increase the binding affinity for the DNA minor groove

as compared to other diamidines.  This novel class of compounds employs the use of a

thiazole[5,4-d]thiazole as the center motif and causes the molecule to be linear.

It was initially thought that diamidines needed to have a crescent shape that was

complementary to the curve of the DNA minor groove for acceptable binding affinity.[37]

Research has shown that linear diamidines can exhibit antiparasitic activity as well.  Several

terphenyl diamidines have displayed good binding affinity and antiparasitic activity.[38]  A near-

linear diamidine, DB 921, which is a biphenyl benzimidazole, uses a water molecule bound to

one of the amidine ends to provide the necessary molecular curvature.[30, 37]  The water

molecule assists the amidine by acting as a bridge.  The amidine hydrogen bonds to the water

molecule and the water is then able to hydrogen bond to the floor of the minor groove. It is the

use of the water that helps achieve the good binding affinity for DB 921.[39]

This data proved informative for my research since the use of a fused heterocycle,

specifically thiazole[5,4-d]thiazole, as the center motif would create a novel class of linear

diamidines that is expected to display reasonable binding affinity for the DNA minor groove.  To

date, the parent diamidine, 2,5-Bis(4-amidinophenyl)thiazolo[5,4-d]thiazole HCl salt (37) or DB

1929, and two derivatives have been synthesized.  Biological data has been collected for the

parent compound.

DB 1929 (37) underwent some biological testing that was performed by a collaborator,

Reto Brun.  The in vitro activity for T. b. rhodesiense was 77 nM (IC50) and the cytotoxicity
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measurement in L6 cells was 8.0 µM (IC50).  This data is promising since it shows that DB 1929

is highly selective for trypanosomiasis, that it is a good candidate for animal studies, and a good

candidate for optimization.

The biological data for the two derivatives of DB 1929, a fluoro compound (40) and a

methoxy compound (43) have yet to be completed and will be published at a later date.

DB 1929 has also been shown to bind to G-quadruplexes, based on the experiments done

by a collaborator, Caterina Musetti.[40]  Several measurements were taken that enable one to

arrive at this conclusion.  For starters, a circular dichroism (CD) experiment was performed with

human telomere G-quadruplex.  CD shows that binding of DB 1929 causes a conformational

change in the quadruplex.  The quadruplex changes from a parallel to an anti-parallel

arrangement.  This conformational change is illustrated in Figure 16 by the peak at about 375 nm

since the peak increases as the concentration of the compound increases.

Figure 16  CD Titration of DB 1929 with Human Telomere G-quadruplex [40]
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Surface plasmon resonance  (SPR) was also used to determine if DB 1929 binds to the G-

quadruplex.  In this instance, DB 1929 was measured with human telomeres and with c-myc.  In

the sensograms of Figure 17, the response increases as the concentration of the compound

increases and shows that DB 1929 binds to both the human telomere and to c-myc.

Figure 17  SPR Titration Curves for DB 1929 with Human Telomeres and C-Myc [40]

To prove that the binding of DB 1929 to the G-quadruplex was selective, SPR was done

with the DNA duplex (Figure 18).  The sensorgram produced from this experiment did not

display a considerable response increase as the concentration of the compound increased.  This is

evidence that DB 1929 selectively binds to the G-quadruplex over that of the DNA duplex.

A summary of the SPR data is in Figure 19.  It is a best-fit plot of the response unit (ru) values

from the steady-state region of the sensorgrams against the concentration of unbound DB 1929

from the three previous sensorgrams.  This figure further illustrates the selectivity of DB1929 for

the G-quadruplex over the DNA duplex.  Binding constants were determined from the
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binding affinity for both binding sites and the second binding affinity is lower than the first for c-

myc.

Figure 18 SPR Titration Curve for DB 1929 with Duplex DNA [40]

Figure 19  Best Fit Plot of Data from Steady State Region of SPR Sensorgrams [40]
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Figure 20  Binding Constants From SPR [40]
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In addition to the biological data, DB 1929 was tested for the possibility of fluorescence

and is compared to DB 75 (Table 1). These two compounds provided an excitation wavelength

range of 359-368 nm and an emission wavelength range of 453-466 nm. DB 75 has an excitation

wavelength of 359 nm and an emission wavelength of 466 nm.  DB 1929 has an excitation

wavelength that is 9 nm higher at 368 nm and an emission wavelength that is 13 nm lower at 453

nm, as compared to DB 75.  The emission intensity of DB 1929 is significantly lower at 11 au as

compared to a value of 295 au for DB 75.  Both compounds fluoresce in the blue region of the

visible spectrum.  A further discussion on fluorescence of diamidines follows in chapter 4.

Table 1  Comparison of DB 75 and DB 1929

DB # Excitation
λ max (nm)

Emission
λ max (nm)

Emission
Intensity (au)

Structure

75 359 466 295

O NH

NH2

HN

H2N

1929 368 453 11
N

SN

S

H2N NH2

HN NH

Note:  All data is uncorrected and fluorescence measurements were taken at excitation slitwidth of 2.5 and an
emission slitwidth of 5.  Excitation concentration is 1.66 µM to 16.66 µM and  emission concentration is 1 µM.

A collaborator, Catharine Collar, performed molecular modeling of the thiazolothiazole

compounds.  The energy minimization calculations were performed to detect the torsional angles

of the compounds.  The results showed that the phenyls and fused heterocycle are planar with the

amidines rotated approximately 60o or 120o.

Figure 21 provides a visual representation of the molecules. The top row is DB 1929,

which has unsubstituted phenyl groups.  The second row is the fluoro derivative and the third
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row is the methoxy derivative.  The left-handed column of Figure 21 is sighted along the amidine

carbon to phenyl carbon bond and shows that the amidines are rotated as compared the rest of the

structure.  The right-handed column shows that the phenyls and fused thiazolothiazole are planar.

Figure 21  Lowest energy conformations for DB1929 (Top), fluorine Derivative (Center), and methoxy
derivative (Bottom)

3.6. Conclusions

A novel class of linear diamidines with a fused heterocycle as the center moiety has been

synthesized. The parent diamidine, 2,5-Bis(4-amidinophenyl)thiazolo[5,4-d]thiazole HCl salt
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(37) or DB 1929, has exhibited high in vitro activity for T. b. rhodesiense and low cytotoxicity

L6 cells.  This data demonstrates that DB 1929 is selective for trypanosomiasis.  DB 1929 has

also been shown to selectively bind to human telomere G-quadruplexes over duplex DNA.  As a

result, these thiazole[5,4-d]thiazole molecules are promising for further study of drug candidates

for the treatment of Human African Trypanosomiasis.

3.7. Experimental

Melting points were determined using a Mel-Temp 3.0 capillary melting point apparatus

and are uncorrected.  IR was recorded on a Perkin Elmer Spectrum One spectrometer.

Analytical TLC was performed on Whatman flexible silica gel plates containing fluorescent

indicator on aluminum backing to monitor reactions.  TLC visualization was done with UV light.

1H and 13C NMR spectra were recorded using a Bruker Avance 400 instrument and the δ are in

ppm relative to TMS and coupling constants are in Hertz.  Typical proton and carbon NMR

spectra are found in the appendix.  Elemental analysis was obtained from Atlantic Microlab,

Norcross, GA.  Mass spectrometry was obtained from the GSU Mass Spectrometry Facility,

Atlanta, GA. Reagents were purchased and used without further purification from Sigma-

Aldrich, Acros Organics, Lancaster, Alfa Aesar, Frontier Scientific, and Carbocore.

2,5-Bis(4-cyanophenyl)thiazolo[5,4-d]thiazole (36)

4-Cyanobenzaldehyde 34 (7.05 g, 54 mmol), dithiooxamide 35 (3.01 g, 25 mmol), and

DMF (50 ml, anhydrous) were added together under a nitrogen atmosphere with stirring.  The

mixture was heated to reflux.  After 24 h at reflux, the red-orange mixture was cooled to room

temperature.  Once cool, the precipitate was filtered, washed with EtOH, and allowed to air dry
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overnight to yield crude 36 (4.85 g) as an orange solid.  The crude sample was recrystallized in

DMF (~1L).  After 3 days, the mixture was filtered, washed with DMF, and dried overnight

under vacuum to yield 36 (5.11 g, 15 mmol, 59%) as a yellow solid: mp 360.0-361.4oC, lit. 354-

55oC; 1H NMR (100 MHz, CDCl3) δ (ppm) 8.10 (4H, d, J = 8.4Hz), δ 7.76 (4H, d, J = 7.6 Hz);

Anal. Calcd for C18H8N4S2: C 62.77, H 2.34, N 16.27; Found C 62.75, H 2.32, N 16.25.

2,5-Bis(4-amidinophenyl)thiazolo[5,4-d]thiazole HCl Salt (37, DB 1929)

2,5-Bis(4-cyanophenyl)thiazolo[5, 4-d]thiazole (36) (0.34 g, 0.99 mmol) was added to

THF (10 ml, anhydrous) under a nitrogen atmosphere with stirring at room temperature.  Lithium

bis(trimethylsilyl)amide (8.00 ml of 1.0 M in THF) was then added drop wise.  The mixture was

allowed to stir until completely dissolved.  After 3 days, the flask containing the transparent red-

brown solution was cooled to 00C for 30 min.  The solution was made slightly acidic by the drop

wise addition of an saturated EtOH-HCl solution (~3 ml) and allowed to stir in the ice bath

overnight.  Following overnight stirring, the yellow mixture was concentrated, suspended in

anhydrous ether, and allowed to stir at room temperature for 30 min.  The mixture was then

filtered and washed with ether.  The yellow solid was then dried under vacuum at 500C for 15

min.

The crude salt was then converted into the free base by suspending it in H2O (~1 ml),

placing it in an ice bath, and adding NaOH (10%) dropwise until the solution was slightly basic.

The orange mixture was then filtered with cold H2O and stored overnight in a vacuum desiccator.

The resulting orange solid was suspended in a 50:50 EtOH-MeOH mixture and allowed to stir

for 10 min.  For conversion into the HCl salt, saturated EtOH-HCl (~1 ml) was added and the
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mixture was allowed to stir overnight at room temperature.  The precipitate was filtered and

washed with ether and allowed to dry overnight in a vacuum desiccator to yield 37 (DB 1929)

(0.355 g, 0.738 mmol, 75%) a yellow solid: mp 354.2-356.4oC; 1H NMR (100 MHz, d6-DMSO)

δ (ppm) 9.34 (6H, s, NH), δ 8.29 (4H, d, J = 8.4 Hz); δ 8.03 (4H, d, J = 8.4 Hz); 13C NMR (400

MHz, d6-DMSO) δ (ppm) 168.2, 165.2, 152.4, 137.7, 130.6, 129.9, 127.0; MS-ESI calcd m/z

378.48, found m/z  379.2 [M+H]; Anal. Calcd for C18H14N6S2*2 HCl*1 H2O*0.25 CH3CH2OH:

C 46.20, H 4.09, N 17.47; Found C 46.25, H 3.99, N 17.10.

2,5-Bis(4-cyano-2-fluorophenyl)thiazolo[5,4-d]thiazole (39)

4-Cyano-2-fluorobenzaldehyde 38 (1.62 g, 11 mmol) and dithiooxamide 35 (0.51 g, 4

mmol) were suspended in o-dichlorobenzene (15 ml) under a nitrogen atmosphere and heated at

reflux with stirring.  After 24 h at reflux, the mixture was cooled, filtered, and washed with cold

EtOH.  The resulting solid was then dried under vacuum to yield crude 39 (0.84 g) as a brown

solid.  The crude solid was then suspended in DMF, boiled for about 6 h, and filtered hot.  Once

cooled, crystallization was induced with the use of an ice bath.  Four days later, the resulting

solid was filtered and washed with cold DCM followed by being dried under vacuum with heat

(~100oC) to yield 39 (0.47 g, 1.24 mmol, 29%) as brown solid:  mp 384.3-386.8oC; 1H NMR

(100 MHz, d6-DMSO) δ (ppm) 8.439 (1H, t), δ 8.145 (1H, d, J = 11.6 Hz); δ 7.907 (1H, d, J =

7.6 Hz); IR (cm-1) 2240, 1564, 1118, 898, 801; Anal. Calcd for C18H6N4S2F2: C 56.83, H 1.59, N

14.73; Found C 56.79, H 1.60, N 14.52.
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2,5-Bis(4-amidinophenyl -2-fluoro)thiazolo[5,4-d]thiazole HCl Salt (40)

2,5-Bis-(4-cyano-2-fluorophenyl)thiazolo[5, 4-d]thiazole (39) (0.40 g, 1.05 mmol) was

added to THF (10 ml, anhydrous) under a nitrogen atmosphere with stirring at room temperature.

Lithium bis(trimethylsilyl)amide (9.00 ml of 1.0 M in THF) was then added drop wise.  The

mixture was allowed to stir until completely dissolved.  After a week, the mixture had not

dissolved so a second addition of THF (5 ml) and lithium bis(trimethylsilyl)amide (10.00 ml)

were added with continued stirring at room temperature.  About 4 days later, a third addition of

lithium bis(trimethylsilyl)amide (10.00 ml) was added.  A week later a forth addition of lithium

bis(trimethylsilyl)amide (12.00 ml) was added and allowed to continue stirring at room

temperature.  After another 3 weeks or 7 weeks total, the mixture had become a red-brown

solution.  The flask containing the red-brown solution was then cooled to 00C for 30 min.  The

solution was made slightly acidic by the drop wise addition of a saturated EtOH-HCl solution

(~4 ml) and allowed to stir in the ice bath overnight.  Following overnight stirring, the mixture

was concentrated, suspended in anhydrous ether, and allowed to stir at room temperature for 30

min.  The mixture was then filtered and washed with ether.  The light brown solid was then dried

under vacuum at 500C for 15 min.

The crude salt was then converted into the free base by suspending it in H2O (~15 ml),

placing it in an ice bath, and adding NaOH (10%) dropwise until the solution was slightly basic.

The orange mixture was then filtered with cold H2O and stored overnight in a vacuum desiccator.

The resulting brown solid was suspended in an 80:20 mixture of EtOH-MeOH (~18ml) and

allowed to stir for 10 min.  For conversion into the HCl salt, EtOH-HCl (~3 ml) was added until

the suspension was slightly acidic and it was allowed to stir overnight at room temperature.  The
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precipitate was filtered, washed with EtOH and ether and allowed to dry overnight in a vacuum

desiccator to yield 40 (0.45 g, 1.05 mmol, 84 %) as a yellow-brown solid: mp >400oC; 1H NMR

(100 MHz, d6-DMSO) δ (ppm) δ 8.357 (t), δ 7.978 (d, J = 8.4 Hz), δ 7.785 (t), δ 7.698 (d, J =

8.40 Hz), δ 7.280 (s); MS-ESI calcd 414.1 m/z, found 415.2 [M+H]; Anal. Calcd for

C18H12F2N6S2 * 1.3 HCl * 1.2 CH3CH2OH: C 47.38, H 4.00, N 16.25; Found C 47.48, H 3.61, N

15.86.

2,5-Bis(4-cyano-2-methoxyphenyl)thiazolo[5,4-d]thiazole (42)

4-Cyano-2-methoxybenzaldehyde 41 (1.77 g, 11 mmol) and dithiooxamide 35 (0.52 g, 4

mmol) were suspended in o-dichlorobenzene (80 ml) under a nitrogen atmosphere and heated at

reflux with stirring.  After 24h, the mixture was cooled, filtered, and washed with cold EtOH.

The resulting solid was then dried under vacuum to yield crude 42 (1.04 g).  The crude solid was

then suspended in a 80:20 mixture of DMF-EtOH (~30 ml), boiled for about 4h and filtered hot.

Once cooled, the mixture was filtered, washed with EtOH, and dried under vacuum with heat

(~100oC) to yield 42 (0.94 g, 2.32 mmol, 54%) as yellow solid:  mp >400oC; IR (cm-1) 3087,

2949, 2226, 1751, 1562, 1279, 1016, 821; Anal. Calcd for C20H12N4S2O2: C 59.39, H 2.99, N

13.85; Found C 59.20, H 2.84, N 13.84.

2,5-Bis(4-amidinophenyl-2-methoxy)thiazolo[5,4-d]thiazole HCl Salt (43)

2,5-Bis-(4-cyano-2-methoxyphenyl)thiazolo[5, 4-d]thiazole (42) (0.60 g, 1.49 mmol) was

added to THF (10 ml, anhydrous) under a nitrogen atmosphere with stirring at room temperature.
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Lithium bis(trimethylsilyl)amide (10.00 ml of 1.0 M in THF) was then added drop wise.  The

mixture was allowed to stir until completely dissolved.  After a week, the mixture had not

dissolved so a second addition of THF (5 ml) and lithium bis(trimethylsilyl)amide (10.00 ml)

were added with continued stirring at room temperature.  About 4 days later, a third addition of

lithium bis(trimethylsilyl)amide (10.00 ml) was added.  A week later a forth addition of lithium

bis(trimethylsilyl)amide (12.00 ml) was added and allowed to continue stirring at room

temperature.  After another 3 weeks or 7 weeks total, the mixture had become a red-brown

solution.  The flask containing the red-brown solution was then cooled to 00C for 30 min.  The

solution was made slightly acidic by the drop wise addition of a saturated EtOH-HCl solution

(~5 ml) and allowed to stir in the ice bath overnight.  Following overnight stirring, the mixture

was concentrated, suspended in anhydrous ether, and allowed to stir at room temperature for 30

min.  The mixture was then filtered and washed with ether.  The pale yellow solid was then dried

under vacuum at 500C for 15 min.

The crude salt was then converted into the free base by suspending it in H2O (~15 ml),

placing it in an ice bath, and adding NaOH (10%) dropwise until the solution was slightly basic.

The mixture was then filtered with cold H2O and stored overnight in a vacuum desiccator.  The

resulting solid was suspended in an 80:20 mixture of EtOH-MeOH (~18ml) and allowed to stir

for 10 min.  For conversion into the HCl salt, saturated EtOH-HCl (~4 ml) was added until the

suspension was slightly acidic and it was allowed to stir overnight at room temperature.  The

precipitate was filtered, washed with EtOH and ether and allowed to dry overnight in a vacuum

desiccator to yield 43 (0.88 g, 1.49 mmol, 112 %) as a yellow-green solid: mp >400oC; 1H NMR

(100 MHz, d6-DMSO) δ (ppm) 7.287 (1H, s), δ 7.816 (1H, d, J = 8.4 Hz); δ 7.996 (1H, d, J = 8.4
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Hz); MS-ESI calcd m/c 438.1, found m/z 439.3 [M+H]; Anal. Calcd for C20H18O2N6S2 * 1.4 HCl

* 0.9 CH3CH2OH: C 49.31, H 4.71, N 15.83; Found C 49.43, H 4.32, N 15.42.

Molecular Modeling

Compounds were constructed in SYBYL 8.1 and then minimized to convergence using the

conjugate gradient method with a termination gradient of 0.001, Tripos force field, and

Gasteiger-Huckel charges. Grid Search, of the Advanced Computation module in SYBYL, was

then employed to systematically explore torsional freedoms and acquire the lowest energy

conformations. All four torsional angles of the compounds were examined in full, 360°, through

increments of 60 degrees. At each increment the bond is constrained and the conformation is

minimized.
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4. FLUORESCENCE

4.1. Introduction

The emission of light from an electronically excited molecule is a phenomenon known as

luminescence.[41]  The emission can be in the form of infrared, ultraviolet, or visible

photons.[42]  Many types of luminescence exist and they differ based on the excitation process.

Luminescence that occurs with the excitation of a photon is therefore called photoluminescence.

Photoluminescence can further be divided into fluorescence, phosphorescence, and delayed

fluorescence.[42]

Fluorescence occurs from an excited singlet state.  The electron in the excited state has an

opposite spin as compared to that of the ground state.  This occurrence is referred to as spin

paired.  The return of the excited electron to the ground state is therefore allowed and results in

the emission of light, or a photon.  Fluorescence generally occurs at a rate of 108 s-1, so the

lifetime is usually 10 ns.  The lifetime of a fluorophore is the average time between the electron’s

excitation and its return to the ground state. The emission of a photon from the triplet excited

state is known as phosphorescence.  In this instance, the electrons in both the excited and the

ground states have the same spin orientation (i.e. either both are spin up or spin down).  The

transition from the excited state to the ground state is therefore not allowed.  The resulting

emission of light is much slower at 103 to 100 s–1 and have lifetimes of milliseconds to

seconds.[41]

Jablonski diagrams are the hallmark for the visual description of the absorption and

emission of light.  They are named after Alexander Jablonski, who is credited as being the father

of fluorescence.[41]  Figure 16  illustrates a typical Jablonski diagram.  The electronic states are

denoted S0, S1, and S2,….Sn with the first being the ground state and the subsequent levels being
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the excited states.  Sn is used to abbreviate the fact that it is a singlet state, where n indicates that

each electronic state is further subdivided into vibrational states and are labeled 0, 1, 2, and so

forth.  In the diagram, a vertical line is used to show the transitions between the different

electronic states for the depiction of the light absorption.  These transitions happen in a time

frame of 10-15 s.  This illustrates the Franck-Condon principle, which in a less complicated

fashion simply means that the movement from one energy level to another is so fast that the

atomic nuclei undergoing the transition are considered to be motionless during the transition.[41,

43]  The transitions are the result of the excitation of the electrons and not the movement of the

nuclei.  The excitation process is almost instantaneous so it is not possible for the nuclei to alter

their positions since they move at a slower rate as compared to the electrons.[42]

                                      

Figure 22  Jablonski Diagram[44]

During the process of absorption, the fluorophore, which is a fluorescent substance, is

excited to a vibrational level of one of the excited states.  Once absorption occurs, there is an

option for the molecule to relax downward towards the lowest, or zero, vibrational level of S1.

This phenomenon is known as internal conversion.[41]  Internal conversion is a non-radiative

process that involves the release of energy.[42]  Internal conversion is on the timescale of 10-12 s



50

and generally precedes emission since the lifetimes of a fluorescent molecule is 10-8 s.   As a

result, fluorescence usually occurs from the lowest vibrational level of S1, which is a thermally

equilibrated excited state.[41]

The next step for the fluorophore is the descent to the ground state.  In general, the

electron would have already undergone internal conversion and descended to the lowest lying

vibrational level of the S1 excited state. The fall of the electron from this level to any vibrational

level in the ground state would generate light and is known as fluorescence.[42]  On examination

of a plot of the wavelength versus intensity, it can be seen that the emission spectrum resembles

that of the absorption spectrum.  This is due to a lack of change in the geometry of the molecule

following the excitation and to the similarity in the spacing between the vibrational levels of both

the ground and excited states. This is known as the mirror image rule and it is also substantiation

that the molecule was not excited above the first excited state[45].  Stokes Rule says that the

wavelength of the fluorescence emission ought to be higher that the absorption wavelength.

Generally, the absorption and emission spectra will overlap since some of the light is actually

emitted at a wavelength that is lower than the absorption wavelength.[42]

Figure 16 also displays the conversion of the molecule from the S1 to the T1, or triplet,

state.  This is known as intersystem crossing.[41]  Intersystem crossing is a non-radiative process

and occurs between vibrational levels of the S1 and the T1 states that are energetically

equivalent.[42]  The emission that occurs with the electrons descent from the T1 excited state to

the ground state is called phosphorescence.  This happens at a much longer wavelength and

therefore a lower energy as compared to fluorescence.[41]  This process occurs in the

microsecond (10-6 s) timescale and is therefore much slower than fluorescence.  It should be

noted that the transition from the T1 state to the first vibrational level of the ground state is
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forbidden thus causing the degree of emission to be significantly smaller than that of

fluorescence.[42]

Delayed fluorescence is the transition from T1 to S1, which is reverse intersystem

crossing.  This process happens when the energy difference between the two excited states is

small.  The emission that occurs when the electron returns to the ground state following the

reverse intersystem crossing is just like the normal fluorescence except it has a longer time

constant.[42]

While phosphorescence and delayed fluorescence are important phenomena, they were

not examined in this dissertation.

For excitation to occur, an external source must provide the required energy.  In this case,

light is used. The following equation is used for the calculation of the energy of such light

Equation 1  Energy of Light

E = h * c/λ

where E is energy, h is Plank’s constant, c is the speed of light, and λ is the wavelength of light.

This leads to the following relationship

Equation 2  Proportionality of Energy to Wavelength

E α 1/λ

which shows the inverse relationship between energy and wavelength.[46]  The absorption

energy for an excited molecule is not equivalent to the energy emitted.  The emission energy is

actually lower since some energy is lost during internal conversion.  This loss of energy causes
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fluorescence to occur at a longer wavelength since the two are inversely proportional to each

other.[41]  The resulting excitation and emission spectra would therefore overlap each other.

The difference between the maximum of the absorption peak and the maximum of the

fluorescence peak is known as the Stokes Shift, and is represented by the following expression

Equation 3  Stokes Shift

Δυ = υa - υf

where Δυ is in wavenumbers, and υa and  υf are the maximum wavelength of the absorption and

emission peaks, respectively.[42]

One of the common aspects of fluorescence is that the same emission spectrum is

observed regardless of the excitation wavelength.  This concept is known as Kasha’s rule.[41]

When molecules get excited to higher levels of both the electronic and vibrational states, the

excess energy is diffused causing the fluorophore to be left in the lowest vibrational level of S1.

The relaxation happens in about 10-12 s and is due to an overlap of equal energy states.  The

relaxation causes the emission spectra to be independent of the excitation wavelength for the vast

majority of molecules.[41]

4.2. Results and Discussion

The diamidines selected for this study were chosen to study the effect of structural

variation on fluorescence.  The fluorescence comparison is done using an excitation slitwidth of

2.5 and an emission slitwidth of 5.  These slitwidths parameters were chosen since they provided

the greatest amount of comparable data.  For the discussion, the compounds are divided into

groups based on structural similarity and are all compared to DB 75.  Throughout this
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dissertation, diamidine structures are shown as a free base; however, when in biological systems,

they are protonated and are dications.  The compounds used in the fluorescence studies were

dihydrochloride salts.

4.2.1. Comparison of Data in Table 2: DB 75, 351, 1213, 1751, 1620, 262, and 320

The first set of compounds for comparison are located in Table 2 and include DB 75, 351,

1213, 1751, 1620, 262, and 320.  These compounds have a general structure that consists of

amidine-phenyl-heterocycle-phenyl-amidine.  The heterocycle moieties include furan (DB 75),

thiophene (DB 351), selenophene (DB 1213), tellurophene (DB 1751), thiazole (DB 1620),

pyrrole (DB 262) and N-methyl pyrrole (DB 320).

These seven compounds provided an excitation wavelength range of 339-376 nm and an

emission wavelength range of 433-476 nm. DB 75 has an excitation wavelength of 359 nm and

an emission wavelength of 466 nm.  Use of a thiophene in DB 351 instead of the furan of DB 75

lowers the excitation wavelength by 3 nm to 356 nm and the emission wavelength by 20 nm to

446 nm.    The substitution of a selenophene in DB 1213 for the furan of DB 75 causes an

increase in the excitation wavelength by 3 nm to 362 nm and a decrease in the emission

wavelength by 16 nm to 450 nm.  Comparing the tellurophene of DB 1751 to DB 75 causes a 9

nm increase to 368 nm and a 6 nm decrease to 460 nm for the excitation and emission

wavelengths, respectively.  The use of pyrrole in DB 262 as compared to the furan of DB 75

results in an increase in both the excitation wavelength by 17 nm to 376 nm and the emission

wavelength by 10 nm to 476 nm.  When the pyrrole is substituted with a methyl group as in DB

320 and compared to DB 75 the excitation wavelength decreases by 2 nm to 357 nm and the

emission wavelength increases by 9 nm to 475 nm.  DB 75 yielded the highest emission intensity
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Table 2  Comparison of DB 75, 351, 1213, 1751, 1620, 262, and 320

DB # Excitation
λ max (nm)

Emission
λ max (nm)

Emission
Intensity (au)

Structure

75 359 466 295

O

NH2

NHHN

NH2

351 356 446 249

S

NH2

NHHN

NH2

1213 362 450 61

Se

NH2

NHHN

NH2

1751 368 460 1

Te

NH2

NHHN

NH2

1620 339 433 188
N

S

NH2

NHHN

NH2

262 376 476 2

N

NH2

NHHN

NH2

H

320 357 475 1

N

NH2

NHHN

NH2

Me

Note:  All data is uncorrected and fluorescence measurements were taken at excitation slitwidth of 2.5 and an
emission slitwidth of 5. Excitation concentration is 1.66 µM to 16.66 µM and  emission concentration is 1 µM.
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of 295 au.  As compared to DB 75, DB 351 has an emission intensity that was 46 au less at 249

au and DB 1620 has an intensity that was 107 au less at 188 au.  The emission intensity of DB

1213 was 234 au less than that of DB 75 at 61 au.  The emission intensities of DB 1751, 262, and

320 were barely detectable.  As a result, DB 262 was assigned a value of 2 au and both DB

1751and 320 were assigned a value at 1 au

The heteroatoms O (DB 75), S (DB 351), Se (DB 1213), and Te (DB 1751) are in group

6A of the periodic table. For this group of compounds, there is not a significant correlation in the

emission and excitation wavelengths.  A trend in the data shows that the fluorescence intensity

decreases as the atomic radius of the heteroatom increases.  This is demonstrated as the emission

intensity decreases with the radius increase from O (DB 75) to S (DB 351) to Se (DB 1213) to

Te (DB 1751).  Nitrogen lies in period 5A of the periodic table and has an atomic radius slightly

larger than oxygen.  If it followed the trend associated with the heteroatoms of period 6A then

one would expect the emission intensity to be comparable to that of DB 75, the O containing

heterocyclic molecule.  Instead, DB 262 and 320 have emission intensities that are more in line

with that of Te (DB 1751), which has a much larger radius.  It is suggested that the two

compounds with nitrogen containing heterocycles, DB 262 and 320, essentially lack

fluorescence, as compared to DB 75, since the processes of photoluminescence that fail to

produce radiation are more efficient than those that produce radiation.  As a result, it is proposed

that DB 262 and 320 undergo intersystem crossing, which would contribute to the inability to

detect appreciable emission intensity.[47]  DB 1620 has two heteroatoms, sulfur and nitrogen.

The thiazole molecule (DB 1620) has an emission intensity that lies between the assigned value

of the pyrrole heterocycle (DB 262) and the thiophene heterocycle (DB 351).  It is suggested that

the presence of nitrogen in the thiazole molecule negatively affects the overall fluorescence since
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the emission intensity of DB 1620 is not in line with that of the other sulfur containing molecule

(DB 351). The lower emission wavelength exhibited by DB 1620 as compared to DB 351 is

expected since an increase in the number of nitrogen atoms in a molecule causes a hypsochromic

shift due to the decrease in the π electron conjugation.[48]  DB 1620 fluoresces in the violet

region of the visible spectrum whereas the other compounds fluoresce in the blue range.

4.2.2. Comparison of Data in Table 3:  DB 75, 820, and 829

The second group of compounds for comparison is DB 75, 820, and 829 and the

structures are shown in Table 3.  Both DB 829 and 820 are derivatives of DB 75, which consists

of amidine-phenyl-furan-phenyl-amidine structure.  DB 820 has one of the phenyl groups

replaced with a pyridyl group and DB 829 has both phenyl groups replaced with pyridyl groups.

Table 3  Comparison of DB 75, 820, and 829

DB # Excitation
λ max (nm)

Emission
λ max (nm)

Emission
Intensity (au)

Structure

75 359 466 295

O

NH2

NHHN

NH2

820 364 460 388

O

N

NH2

NHHN

NH2

829 362 432 524

O

NN

NH2

NHHN

NH2

Note:  All data is uncorrected and fluorescence measurements were taken at excitation slitwidth of 2.5 and an
emission slitwidth of 5. Excitation concentration is 1.66 µM to 16.66 µM and  emission concentration is 1 µM.
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These three compounds provided an excitation wavelength range of 339-364 nm and an

emission wavelength range of 432-466 nm. DB 75 has an excitation wavelength of 359 nm and

an emission wavelength of 466 nm.  Substitution of one of the phenyl groups in DB 75 for a

pyridyl group to form DB 820 increases the excitation wavelength by 5 nm to 364 nm but lowers

the emission wavelength by 6 nm to 460 nm, as compared to DB 75.  Substitution of both of the

phenyl groups in DB 75 for pyridyl groups to form DB 829 increases the excitation wavelength

by 3 nm to 362 nm but lowers the emission wavelength by 34 nm to 432 nm, as compared to DB

75.  DB 75 has the lowest emission intensity of the three compounds at 295 au.  As compared to

DB 75, DB 820 has an emission intensity that was 93 au more at 388 au and DB 829 has an

intensity that was 229 au more at 524 au.

There is no obvious correlation between the excitation wavelengths for the three

compounds but the emission wavelength decreases with each substitution of a pyridyl group for a

phenyl group.  This is expected since a hypsochromic shift occurs as the number of nitrogen

atoms in a molecule increases as a result of the decrease in the π electron conjugation.[48]  The

emission intensity has an opposing trend since it increases with the subsequent replacement of a

CH unit by a nitrogen atom.  In addition, DB 75 and 820 emit in the blue region of the visible

spectrum while DB 829 emits in the violet region.

4.2.3. Comparison of Data in Table 4:  DB 75, 832, and 943

The third set of compounds for analysis includes DB 75, 832, and 943 (Table 4).  The

structure of DB 75 is amidine-phenyl-furan-phenyl-amidine.  DB 832 has a structure of amidine-

phenyl-furan-furan-amidine while the structure of DB 943 is amidine-phenyl-phenyl-furan-

amidine.
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These three compounds provided an excitation wavelength range of 335-368 nm and an

emission wavelength range of 427-470 nm.  The substitution of furan for a phenyl in DB 75 to

yield DB 832 causes a slight increase in the excitation and emission wavelengths by 9 nm to 368

nm and by 4 nm to 470 nm, respectively.  Conversely, when the layout of DB 75 is changed from

amidine-phenyl-furan-phenyl-amidine to that of amidine-phenyl-phenyl-furan-amidine in DB

943, both wavelengths are lowered.  The excitation wavelength decreases by 24 nm to 335 nm

and the emission wavelength decreases by 39 nm to 427 nm.  DB 75 yielded the highest emission

intensity of 295 au.  As compared to DB 75, DB 832 has an emission intensity that was 39 au

less at 256 au and DB 943 has an intensity that was 93 au less at 202 au.  The emission data

shows that DB 943 fluoresces in the violet range of the visible spectrum whereas DB 75 and 832

fluoresce in the blue region.

Table 4  Comparison of DB 75, 832, and 943

DB # Excitation
λ max (nm)

Emission
λ max (nm)

Emission
Intensity (au)

Structure

75 359 466 295

O

NH2

NHHN

NH2

832 368 470 256

O

NH2

HN
O NH

NH2

943 335 427 202

O

H2N

NH

HN

H2N

Note:  All data is uncorrected and fluorescence measurements were taken at excitation slitwidth of 2.5 and an
emission slitwidth of 5. Excitation concentration is 1.66 µM to 16.66 µM and  emission concentration is 1 µM.
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This data shows that the substitution of a furan in DB 832 for a phenyl group in DB75

lowers the fluorescence intensity while only increasing the corresponding wavelengths slightly.

The data also shows that the structural rearrangement of the individual components of DB 75 to

yield DB 943 significantly lowers the excitation and emission wavelengths as well as the

emission intensity as compared to DB 75.  The conjugation within the molecules was maintained

so the depression of the emission intensity values were unexpected since it is believed that

conjugation enhances fluorescence emission and intensity.[47]  Most five membered

heterocyclic rings are not considered fluorescent themselves but when coupled with phenyl rings,

significant fluorescence is seen.[48]  With this in mind, it is believed that the emission intensity

of DB 832 is slightly depressed as compared to that of DB 75 since an additional phenyl has

been replaced by another furan.  The most advantageous position for the location of the non-

fluorescent furan is between two phenyl rings.[48]  The further decrease in the wavelengths and

emission intensity of DB 943 as compared to both DB 75 and 832 may be the result of the

torsional twist of the biphenyl unit.

4.2.4. Comparison of Data in Table 5: DB 75, 832, 1347 and 1871

The fourth set of compounds to be analyzed are listed in Table 5 and include DB 75, 832,

1347 and 1871.  The structure of DB 75 is amidine-phenyl-furan-phenyl-amidine.  DB 832 has a

structure of amidine-phenyl-furan-furan-amidine while the structure of DB 1347 is amidine-

furan-furan-furan-amidine.  The last compound in the group is DB 1871 and it has a structure of

amidine-indole-furan-furan-amidine.

This group of compounds provided an excitation wavelength range of 359-380 nm and an

emission wavelength range of 466-533 nm.  DB 75 has an excitation wavelength of 359 nm and

an emission wavelength of 466 nm.  The substitution of furan for one phenyl group in DB 75 to
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Table 5  Comparison of DB 75, 832, 1347, and 1871,

DB # Excitation
λ max (nm)

Emission
λ max (nm)

Emission
Intensity (au)

Structure

75 359 466 295

O

NH2

NHHN

NH2

832 368 470 256

O

NH2

HN
O NH

NH2

1347 380 470 315

O

O
NH

NH2

O

NH2

HN

1871 390 533 2

O

O

NH

H2N

NH

NH2

HN

Note:  All data is uncorrected and fluorescence measurements were taken at excitation slitwidth of 2.5 and an
emission slitwidth of 5. Excitation concentration is 1.66 µM to 16.66 µM and  emission concentration is 1 µM.

yield DB 832 causes a increase in the excitation wavelength by 9 nm to 368 nm and an increase

in the emission wavelength by 4 nm to 470 nm.  When both phenyl groups of DB 75 are

converted to furan to yield DB 1347, the excitation and emission wavelengths increase by 21 nm

and 4 nm, to 380 nm and 470 nm, respectively.  If DB 1871 is compared to DB 75, one phenyl

group is replaced with furan and the other is replaced with indole.  This change causes an

increase in the excitation wavelength by 31 nm to 390 nm and an increase in the emission

wavelength by 67 nm to 533 nm.  DB 1871 fluoresces in the green region of the visible spectrum

while DB 75, 832, and 1347 all fluoresce in the blue region.  The emission intensity of DB 75
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was 295 au.  As compared to DB 75, DB 832 has an emission intensity that was 39 au less at 256

au and DB 1347 has an intensity that was 20 au more at 315 au.  DB 1871 had an emission

intensity that barely registered and was assigned a value of 2 au.

This data shows that the first phenyl to furan substitution in DB 75 to provide DB 832

does not greatly increase the excitation and emission wavelengths but essentially maintains the

emission intensity.  As previously stated, five-membered heterocyclic rings are generally not

fluorescent on there own and their best location to exhibit fluorescence is between two phenyl

groups.[48]  With this in mind, it is believed that the emission intensity of DB 832 is slightly

depressed as compared to that of DB 75 as a result of there being two furan moieties present

instead of just one.  A subsequent substitution of replacing the second phenyl group with a

second furan to yield DB 1347, a molecule with three furans, increases the excitation wavelength

emission intensity more than both DB 75 and DB 832.  When the substitution of one phenyl

group for indole and the second phenyl for furan in DB 75 to produce DB 1871 occurs, it causes

another marginal increase in the excitation wavelength but a significant increase in the emission

wavelength.  The large emission wavelength may be caused by the larger conjugated indole ring

systems since it is known that the coupling of a non-fluorescent five-membered ring with a

phenyl group causes an increase in the emission as a result of increased conjugation.[48]

However, the emission intensity for DB 1871 is quite low.  DB 832 and DB 1871 are structurally

similar except for the fact that DB 832 has a phenyl group, which is replaced by an indole in DB

1871.  The phenyl to indole substitution causes both the excitation and emission wavelengths to

increase.  The opposite is true for the emission intensity since the intensity of DB 1871 is barely

detectable while DB 832 yields a reading of 256 au.



62

4.2.5. Comparison of Data in Table 6: DB 75, 921, 1883, and 1871

The fifth set of compounds for analysis includes DB 75, 921, 1883, and 1871 (Table 6).

The structure of DB 75 is amidine-phenyl-furan-phenyl-amidine.  DB 921 has a structure of

amidine-benzimidazole-phenyl-phenyl-amidine while the structure of DB 1883 is amidine-

indole-phenyl-phenyl-amidine.  The last compound in the group is DB 1871 and it has a structure

of amidine-indole-furan-furan-amidine.

This group of compounds provided an excitation wavelength range of 324-390 nm and an

emission wavelength range of 0-533 nm.  DB 75 has an excitation wavelength of 359 nm and an

emission wavelength of 466 nm.  DB 921 has a lower excitation wavelength and a slightly higher

emission wavelength as compared to DB 75.  The excitation wavelength is 35 nm lower at 324

nm and the emission wavelength is 3 nm higher at 472 nm.  The excitation wavelength of DB

1883 is 353 nm, which is 6 nm lower than that of DB 75 but it did not show detectable

fluorescence under the measured conditions used.  DB 1871 has an excitation wavelength that is

31 nm higher than DB 75 at 390 nm and an emission wavelength that is 74 nm higher than that

of DB 75 at 533 nm.  DB 75 has an emission intensity of 295 au.  DB 921 has an emission

intensity that is 249 au lower at 46 au and DB 1883 provides no fluorescence at these conditions.

The emission intensity of DB 1871 is barely detectable and is assigned a value of 2 au, 293 au

less than that of DB 75.

DB 1883 failed to show an emission wavelength under the conditions of measurement..

In comparison of DB 75 to that of DB 921, a phenyl group and the furan are replaced with

benzimidazole and a phenyl group.  The benzimidazole contains two nitrogen atoms.  One of the

benzimidazole nitrogen atoms has a lone pair that contributes to the aromaticity of the ring.  It is

suggested that the nitrogen containing heterocycles exhibit a decreased fluorescence intensity, as
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Table 6  Comparison of DB 75, 921, 1883, and 1871

DB # Excitation
λ max (nm)

Emission
λ max (nm)

Emission
Intensity (au)

Structure

75 359 466 295

O

NH2

NHHN

NH2

921 324 472 46
N

N
H

NH2

HN
NH2

NH

1883 353 N/A Not detected

N
H

NH2

HN
NH2

NH

1871 390 533 2

O

O

NH

H2N

NH

NH2

HN

Note:  All data is uncorrected and fluorescence measurements were taken at excitation slitwidth of 2.5 and an
emission slitwidth of 5. Excitation concentration is 1.66 µM to 16.66 µM and  emission concentration is 1 µM.

compared to DB 75, since the processes of photoluminescence that fail to produce radiation are

more efficient than those that produce radiation.  As a result, it is proposed these compounds

undergo intersystem crossing, which would contribute to the detection of lower emission

intensities.[47]  It should be noted that DB 1871 fluoresces in the green region of the visible

spectrum while DB 75 and 921 fluoresce in the blue region.

4.2.6. Comparison of Data in Table 7: DB 75, 262, 320, and 1304

The sixth set of compounds for analysis includes DB 75, 262, 320, and 1304. These

compounds are shown in Table 7 and have a general structure that consists of amidine-phenyl-5-
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membered ring-phenyl-amidine.  The heterocycle moieties include furan (DB 75), pyrrole (DB

262), N-methyl pyrrole (DB 320), and N-ethyl pyrrole (DB 1304).

Table 7  Comparison of DB 75, 262, 320, and 1304

DB # Excitation
λ max (nm)

Emission
λ max (nm)

Emission
Intensity (au)

Structure

75 359 466 295

O

NH2

NHHN

NH2

262 376 476 2

N

NH2

NHHN

NH2

H

320 357 475 1

N

NH2

NHHN

NH2

Me

1304 345 N/A Not detected

N

NH2

NHHN

NH2

Et

Note:  All data is uncorrected and fluorescence measurements were taken at excitation slitwidth of 2.5 and an
emission slitwidth of 5. Excitation concentration is 1.66 µM to 16.66 µM and  emission concentration is 1 µM.

This group of compounds provided an excitation wavelength range of 313-376 nm and an

emission wavelength range of 345-476 nm.  DB 75 has an excitation wavelength of 359 nm and

an emission wavelength of 466 nm.  DB 262 has higher excitation and emission wavelengths as

compared to DB 75.  The excitation wavelength is 17 nm higher at 376 nm and the emission

wavelength is about 10 nm higher at 476 nm.  The excitation wavelength of DB 320 is lower
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than that of DB 75 by 2 nm at 357 nm but the emission wavelength is higher by about 9 nm at

475 nm.  DB 1304 has an excitation wavelength that is 14 nm lower than that of DB 75 at 345

nm but it failed to provide detectable emission under these conditions. As stated before, DB 1304

failed to provide an emission signal or intensity reading.  DB 262 and 320 gave quite low

emission intensities.  DB 262 was assigned readings of 2 au and DB 320 was assigned a reading

of 1 au.

The excitation and emission wavelengths were very similar for the compounds compared

in Table 7.  A significant observation is that when the oxygen of DB 75 is replaced with an NH

in DB 262 or a N-methyl in DB 320, the emission intensity plummets so that it is barely

detectable.  The use of pyrrole greatly reduces the emission intensity and is consistent with

numerous observations for N-heterocycles in the literature.[47]

4.2.7. Comparison of Data in Table 8:  DB 75, 914, 1692, 1464, and 1680

The seventh set of compounds are analyzed in Table 8 and include DB 75, 914, 1692,

1464, and 1680.  The structure of DB 75 is amidine-phenyl-furan-phenyl-amidine. DB 914 has a

structure that is amidine-phenyl-furan-furan phenyl-amidine whereas DB 1692 has a structure of

amidine-phenyl-furan-furan-furan-amidine.  DB 1464 has a structure that consists of a series of

four furan moieties flanked by an amidine on each side and DB 1680 is a series of five furan

moieties flanked by an amidine on each side.

This group of compounds provided an excitation wavelength range of 359-419 nm and an

emission wavelength range of 466-549 nm.  DB 75 has an excitation wavelength of 359 nm and

an emission wavelength of 466 nm.  DB 914 has higher excitation and emission wavelengths as

compared to DB 75.  The excitation wavelength is 33 nm higher at 392 nm and the emission
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wavelength is 82 nm higher at 549 nm.  DB 1692 has an excitation wavelength that is 400 nm

and an emission wavelength that is 546 nm, which is 41 nm and 80 nm higher, respectively, as

Table 8  Comparison of DB 75, 914, 1692, 1464, 1680, and 1315

DB # Excitation
λ max (nm)

Emission
λ max (nm)

Emission
Intensity (au)

Structure

75 359 466 295

O

NH2

NHHN

NH2

914 392 549 10

O O

H2N

NH

NH2

HN

1692 400 546 9

O O

NH2

HN
O

H2N
NH

1464 405 544 7

O O

OO

NH
H2NNH2

HN

1680 419 538 2

O

OO

O
HN

NH2

O

NH2

NH

Note:  All data is uncorrected and fluorescence measurements were taken at excitation slitwidth of 2.5 and an
emission slitwidth of 5. Excitation concentration is 1.66 µM to 16.66 µM and  emission concentration is 1 µM.
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compared to that of DB 75.  DB 1464 also has elevated excitation and emission wavelengths.

The excitation wavelength is 45 nm higher at 405 nm and the emission wavelength is 78 nm

higher at 544 nm, as compared to DB 75.  The excitation wavelength of DB 1680 is 60 nm

higher and the emission wavelength is 62 nm higher than that of DB 75 at 419 nm and 538 nm,

respectively.  DB 75 had the highest emission intensity at 295 au and the readings for the

remainder of the compounds in the series were highly depressed.  DB 914 has an emission

intensity of 10 au while that of DB 1692 was 1 au lower at 9 au.  DB 1464 has an emission

intensity of 7 au and DB 1680 emission intensity was assigned a value of 2 au.

The data shows that lengthening the molecule with the addition of furan and phenyl

moieties generally results in longer excitation wavelengths under these conditions and all were

greater than that of DB 75. The compounds also have increased emission wavelengths as

compared to DB 75 so the same effect with regards to lengthening the molecule holds true for

the emission wavelength as well.  It is believed that this bathochromic shift that occurs in the

emission wavelength is the result of greater extended conjugation, i.e. 18 electrons in DB 75

versus 24 in the others.[49]  The same cannot be said for the emission intensity. If the

compounds that did fluoresce are compared to that of DB 75, it can be seen that the emission

intensities were all drastically reduced.  It is believed that the depressed intensity values are a

result of torsion angle rotation due to repulsive van der Waals interactions, which disrupts the

planarity that is required for optimal fluorescence.

4.2.8. Comparison of Data in Table 9: DB 75 and 569

The eighth group of compounds for comparison consists of DB 75 and DB 569 and they

are compared in Table 9. The structure of DB 75 is amidine-phenyl-furan-phenyl-amidine and

DB 569 is a N-phenyl amidine derivative of DB 75.
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DB 75 has an excitation wavelength of 359 nm and an emission wavelength of 466 nm

while DB 569 has essentially the same excitation wavelength at 358 nm but has an emission

wavelength that is 20 nm lower at 446 nm.  The emission intensity of DB 75 is 295 au but DB

569 has a considerably lower intensity at 6 au.

Table 9  Comparison of DB 75 and 569

DB # Excitation
λ max (nm)

Emission
λ max (nm)

Emission
Intensity (au)

Structure

75 359 466 295

O

NH2

NHHN

NH2

569 358 446 6

O

HN

NHHN

NH

Note:  All data is uncorrected and fluorescence measurements were taken at excitation slitwidth of 2.5 and an
emission slitwidth of 5. Excitation concentration is 1.66 µM to 16.66 µM and  emission concentration is 1 µM.

The substitution of hydrogen in the NH2 portion of the amidine for a phenyl group does

not affect the excitation wavelength, as compared to DB 75.  However, the change does lower

the emission wavelength and drastically reduces the emission intensity. The substitution of the

phenyl group for hydrogen potentially lengthens the conjugation of the molecule so it is expected

that the emission wavelength would be higher for DB 569 as compared to DB 75.  This does not

occur so one possible explanation is that the substitution causes a conformational change in DB

569 that makes the molecule non-planar, thereby reducing the fluorescence wavelength and

emission intensity below the values shown in DB 75.  Both compounds fluoresce in the blue

region of the visible spectrum.
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4.2.9. Comparison of Data in Table 10: DB 75, 613, 667, and 766

The last group of compounds for comparison includes DB 75, 613, 667, and 766 (Table

10).  DB 75 is an amidine and the other three compounds are called reversed amidines.  DB 75

has the structure of amidine-phenyl-furan-phenyl-amidine.  DB 613 has the structure of phenyl-

reversed amidine-phenyl-furan-phenyl-reversed amidine-phenyl.  DB 667 and 766 are

derivatives of DB 613.  In DB 667, the terminal phenyl groups have been replaced with pyridyl

Table 10  Comparison of DB 75, 613, 667, and 766

DB
#

Excitation
λ max (nm)

Emission
λ max (nm)

Emission
Intensity (au)

Structure

75 359 466 295

O

NH2

NHHN

NH2

613 343 N/A Not detected

O

N
H

N
H

NHNH

667 347 N/A Not detected

O

N
H

N
H

NHNH

N N

766 361 N/A Not detected

O

N
H

N
H

NHNH

N N

O O

Note:  All data is uncorrected and fluorescence measurements were taken at excitation slitwidth of 2.5 and an
emission slitwidth of 5. Excitation concentration is 1.66 µM to 16.66 µM and  emission concentration is 1 µM.
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groups and DB 766 retains the terminal pyridyl groups as in DB 667 but has an additional

substitution of a 2-isopropoxy group on the phenyl groups.

This group of compounds provides an excitation wavelength range of 343-361 nm and an

emission wavelength up 466 nm.  DB 75 has an excitation wavelength of 359 nm and an

emission wavelength of 466 nm. The excitation wavelengths for DB 613 and 667 are reduced by

16 nm and 12 nm as compared to DB 75, to yield values of 343 nm and 347 nm, respectively.

DB 766 has an excitation wavelength that is higher than that of DB 75 by 2 nm at 361 nm.

Unfortunately, none of the reversed amidines gave detectable fluoresce under these conditions.

The conversion of the amidine to the reversed amidine eliminates fluorescence under

these conditions, which is thought to be due, in part, to the disruption of the elongated

conjugated system.

4.3. Conclusions

Unifying correlations between structure and the corresponding emission intensity are

difficult to recognize, however some trends were seen for the excitation and emission

wavelengths.  These occurrences include the following:

• As you go down the period of the periodic table, the atomic radii of the atoms

increases but the corresponding emission intensity of the heterocyclic containing 5-

membered ring decreases;

• Compounds with nitrogen containing heterocycles may exhibit decreased or a lack of

detectable emission intensity measurements due to the importance of processes that

fail to produce radiation, i.e. intersystem crossing, being more energy efficient that

fluorescence;
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• Generally, 5-membered heterocyclic rings are not known to independently fluoresce

but if the 5-membered heterocycle ring is conjugated to other aromatic or

heteroaromatic systems fluorescence can be observed;

• Generally, N- heterocycles do not exhibit significant fluorescence due to a propensity

for intersystem crossing in the excited state;

• Extending the conjugation of a molecule generally causes an increase in the emission

wavelength;

• The larger the molecule and the more bonds that have the possibility of free rotation,

the more likely the molecule will twist into a non-planar state due to repulsive van der

Waal interactions, which will reduce fluorescence emissions;

• Substitution of a phenyl group for an amidine hydrogen or with pyridyl (reversed

amidines) potentially increases conjugation but causes the molecule to be less planar,

thereby leading to a decreased emission wavelength and intensity.

4.4. Experimental

The excitation wavelengths were measured using a Cary 300 Bio UV-Visible

spectrometer and the emission wavelengths and corresponding intensities were measured using

the Cary Eclipse Fluorescence Spectrometer.

A 1mM stock solution of the DB compounds in H2O were prepared and stored in a

refrigerator when not in use.  To determine the excitation wavelength, the stock solution was

added to 3 mL of H2O in increments of 5 µL with the upper limit of stock solution being 50 µL

(concentration = 1.66 µM to 16.66 µM) and scanned from 280 to 800 nm.  To determine the

emission wavelength, 3 µL of the stock solution was added to 3 mL of MES buffer

(concentration = 1 µM) and scanned at varying slitwidths.  All measurements were taken at room
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temperature and the slitwidths used in the previous tables were an excitation slitwidth of 2.5 and

an emission slitwidth of 5.  These slitwidths parameters were chosen since they provided the

greatest amount of comparable data.  The wavelengths are accurate to +/- 2 nm and the intensity

measurements result from a flat detection response across the wavelength range.  Error in

emission intensity is 5%.
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5. Appendix

5.1. Appendix A:  Sample Excitation Maximum Curve

DB 75 Excitation Maximum (359 nm)
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5.2. Appendix B:  Sample Spectra
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