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Acridine and Phenothiazine Based Photosensitizers 

by 

Beth Wilson 

Under the Direction of Dr. Kathryn B. Grant 

ABSTRACT 

Photosensitizing molecules and/or metal complexes that interact with DNA via 

intercalation and groove binding have potential applications as molecular structural 

probes, as footprinting reagents and in photodynamic therapeutics. To this regard, small 

molecules that bind to DNA and the energetics involved in these interactions, acridine-

based therapeutics, photosensitization, photodynamic therapy, phenothiazine-mediated 

photosensitization, DNA photocleavage reaction mechanisms and photosensitizing metal 

complexes are introduced in Chapter I. Next, in Chapter II, the synthesis of a 

photonuclease consisting of a 3,6-acridinediamine chromophore attached to four metal-

coordinating imidazole rings is described. The DNA photocleavage yields, emission 

quantum yields, and thermal denaturation studies by this acridine-imadazole conjugate in 

the presence of 16 metal salts are also reported. In Chapter III is the synthesis of a 

bisacridine covalently tethered to a copper(II)-binding pyridine linker. Additionally, 

DNA photocleavage studies as well as DNA binding affinity and binding mode(s) of this 

bisacridine incorporating the copper(II)-binding pyridine linker are examined. The 

syntheses, characterization, DNA photocleavage studies, DNA thermal denaturation, and 



   

viscometric measurements of three new phenothiazinium photosensitizers are described 

in Chapters IV and V. Collectively, markedly enhanced DNA photocleavage yields are 

observed in the presence of metals (Chapters II-III) or in comparison to a parent 

molecule, Chapters II and IV. DNA melting isotherms show higher levels of duplex 

stabilization with the acridines, specifically in the presence of several metals (Chapter II-

III) as well as with the phenothiazine-based ligands (Chapters IV-V). Moreover, different 

DNA binding modes were observed depending on metal complexation (Chapter III) and 

nucleic acid structure (Chapter IV). Finally, Chapter VI describes a small project 

implemented as a National Science Foundation pedagogical laboratory exercise in which 

a non-invasive procedure for DNA isolation from human cheek cells was utilized with 

the polymerase chain reaction to amplify alleles encoding a single nucleotide 

polymorphism involved in normal human color vision. 
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CHAPTER I 

Introduction 

Small Molecules and DNA Interactions 

In 1953, Watson and Crick introduced their original presentation that genetic 

material exists structurally as a double-helix (1). Subsequent discoveries on the structural 

features of DNA and its role in replication and transcription suggested it as a potential 

target for treating diseases of genetic origin, in particular cancer. Accordingly, the field of 

anticancer drug design over the past 40 years has focused intense research on the 

interaction of small molecules that bind to nucleic acids. Pioneering structural and 

functional studies conducted by Rauen and Reich in the 1960’s on the interactions of the 

DNA intercalating antibiotic actinomycin D (Figure 1.1) demonstrated the utility of DNA 

as a powerful target for disrupting cellular metabolism (2, 3).  

There are two major binding modes associated with small organic molecules that 

interact with DNA, intercalation and groove binding. In addition, cationic molecules may 

externally associate with the phosphate backbone. Consequently, these binding 

interactions may involve changes to both DNA and ligand molecules in order to facilitate 

complex formation. Moreover, structural perturbations or interference by the complex 

with other DNA binding macromolecules such as proteins may lead to non-lethal 

alterations or apoptosis (4). The chemical structures of representative intercalating and 

groove binding agents are shown in Figure 1.1.  

Intercalation. In 1961, Lerman conducted the seminal investigations that 

launched the classical intercalation model. He observed that the viscosity of a DNA 

solution was markedly increased while the sedimentation coefficient was decreased upon 
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the addition of acridine, proflavin or acridine orange. These observations led him to 

suggest that the acridines induced structural perturbations and that an intercalative type of 

binding mechanism would result in a lengthening of the DNA duplex (5). In addition, he 

conducted flow dichroism and polarized fluorescence studies that demonstrated the plane 

of the bound acridines was parallel to the DNA base pairs and perpendicular to the axis of 

the double helix (6). Finally, Neville and Davies reported that X-ray fiber diffraction 

patterns of DNA complexed with proflavin and acridine orange were consistent with 

intercalation (7). 

 

Figure 1.1. Representative classical (acridine, proflavin, acridine orange, and methylene 
blue) and non-classical (daunomycin and actinomycin D) intercalators and the groove 
binding agent netropsin. 
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In order for intercalation to ensue, the DNA base pairs separate by 3.4 Å to form a 

cavity for the incoming chromophore through localized unwinding of the duplex. The 

normal twist of B-form DNA is 36º (10 base pair per 360º turn). Therefore, to 

accommodate the ligand in the intercalation site, a reduction of this rotation occurs. 

However, the unwinding angle varies with the geometry of the ligand-DNA complex. For 

example, the insertion of the phenanthradinium ring of ethidium bromide results in a 

reduction of the 36º twist to 10º thereby creating an unwinding angle of 26º, while 

proflavin and daunomycin unwind DNA by 17º and 11º, respectively (8). As the duplex 

unwinds, the distance between the phosphate groups increases and results in the reduction 

of localized charge density thereby facilitating the release of condensed counterions such 

as sodium. The next step that occurs is the transfer of the aromatic ligand from solution to 

the intercalation site, a favorable hydrophobic interaction since the nonpolar intercalating 

aromatic ring is buried within the hydrophobic base pairs (9). Moreover, cationic 

intercalators exhibit additional counterion release through a polyelectrolyte process as 

described by Manning and Record (10, 11). Collectively, noncovalent forces including 

the hydrophobic effect, a decrease in coulombic repulsion, van der Waals interactions, π-

π stacking, and hydrogen bonding stabilize the energy of the newly formed complex (9). 

Furthermore, intercalators that possess substituents that form van der Waals contacts in 

the minor groove and/or hydrogen bond with AT base pairs (e.g., daunomycin and 

actionomycin D, Figure 1.1) may be influential in directing the thermodynamic binding 

mechanism, the geometry of the complex and sequence selectivity (12, 13).  

Groove Binding. The antibiotic netropsin (Figure 1.1) was the first reported AT-

specific DNA groove binding agent (14). In contrast to intercalators, the unfused 
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aromatic rings of groove-binders can adopt a cresent-like shape that matches the 

curvature of the minor groove and bind without significant steric hinderance or 

pertubation of the DNA duplex. A groove binding model involves two steps in which 

hydrophobic transfer of the ligand from solution is then followed by noncovalent 

molecular interactions including hydrogen bonding to AT base pairs and van der Waals 

contacts within the walls of the groove (15). Another important feature of groove-binders 

is that they can be designed to cover many base pairs and consequently may exhibit high 

sequence-specificity recognition of nucleic acids (8).  

Bisintercalation. Bisintercalators incorporate two covalently attached 

intercalating ring systems to a linking chain of variable lengths (Figure 1.2). 

Bisintercalating agents may offer several advantages: (i) higher binding affinity (since the 

binding constant of a bisintercalator, in theory, should be the square of the binding 

constant of the monomer), (ii) biological activity may be augmented as a function of 

increased binding affinity and slower dissociation rates, (iii) potential sequence 

selectivity, since the binding site size of a bisintercalator is increased relative to the 

monomer. Moreover, the linker chain may provide numerous enhancements to the 

structural design.  

Several lines of evidence have indicated that bisintercalation is achieved when the 

linker chain contains structurally rigid moieties and separates the two chromophores by 

approximately ten angstroms (16-19). The former prevents self-stacking between the 

heterocyclic aromatic rings and the latter violation of the nearest-neighbor exclusion 

principle. Intramolecular interactions such as self-stacking compete with DNA binding 

and therefore decrease affinity (17). Furthermore, the linker may impart additional 
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stabilization to the helix by binding to the grooves. Accordingly, high-resolution 

structural studies of the bisintercalating drug ditercalinium have demonstrated favorable 

interactions by the linker localized to the major groove (17). These interactions have been 

considered an important factor in the stability and conformation of the ditercalinium-

DNA complex. Similar high-resolution structural studies of the dimeric daunomycin 

analog WP631 have confirmed bisintercalation of the daunomycin rings and minor 

groove binding by the xylene linker motif (20). These design elements have correlated 

with ultra-tight binding to DNA (Ka = 3.2 x 1011 M-1) and with enhanced cytotoxicity in 

MCF-7/VP-16 cell lines (21).  

 

Figure 1.2. The bisintercalators ditercalinium and WP631. High resolution structures: 
ditercalinium (RCSB Protein Data Bank ID 1D32, reference 17); WP631 (RCSB Protein 
Data Bank ID 1AL9, reference 20). 
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in the DNA and ligand while ΔGt+r represents the free energy cost from the loss of 

translational and rotational degrees of freedom upon complex formation. The terms ΔGhyd 

and ΔGpe correspond to the hydrophobic transfer of the ligand from solution and the 

polyelectrolyte counterion release, respectively. Lastly, the free energy contribution 

arising from noncovalent molecular interactions between DNA and binding agents is 

ΔGmol. With regards to intercalators, conformational changes and the loss of translational 

and rotational freedom in order to accommodate the ligand within the base pairs result in 

unfavorable free energy barriers for binding. Notwithstanding, such barriers are 

overcome by favorable free energy contributions from hydrophobic transfer of the ligand 

from solution, polyelectrolyte effect, and molecular noncovalent interactions within the 

intercalation site (15). In the case of groove-binders, the losses in translational and 

rotational freedom lead to unfavorable free energy barriers upon bimolecular 

complexation. Similar to intercalators, these are compensated for by hydrophobic transfer 

of the ligand from solution, polyelectrolyte effect, and molecular noncovalent interactions 

(15). Although the free energy contributions are similar for both binding modes, 

experimentally determined thermodynamic parameters suggest that intercalation is 

mostly favored by enthalpic contributions while groove binding is an entropically driven 

process (22). A larger entropic cost for distortion of the DNA structure by intercalation 

and higher favorable entropy for groove binding due to the release of water molecules 

from the minor groove have been proposed to account for this discrepancy (22).  

 

ΔGobs = ΔGconf + ΔGt+r + ΔGhyd + ΔGpe + ΔGmol (1.1) 

ΔGobs = -RT ln K (1.2) 
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Acridines  

The acridines were first developed as dyes and during the early 20th century their 

pharmacological properties were evaluated. At this time, proflavin was used as a topical 

antibacterial and antifungal agent (23). In the 1940’s and to the present day (e.g., 

chloroquine, mepacrine, and pyronaridine; Figure 1.3), the acridines have been used as 

antimalarial drugs (24). The first acridine-based therapeutic agents specifically designed 

for cancer treatment were developed during the 1970’s. These efforts led to the 

development of m-amsacrine (Figure 1.3), an 9-anilinoacridine introduced into clinical 

use in 1976 (25). Accordingly, this acridine has been clinically utilized as a single agent 

or in combination with other antineoplastic drugs in the treatment of acute 

nonlymphocytic, lymphocytic (26, 27), and acute myeloid (28, 29) leukemias. However, 

m-amsacrine has not generally been effective in the treatment of solid tumors (30). 

Recent work on the anticancer activity of acridine derivatives (Figure 1.3) is focused on 

the synthetically derived pyrazoloacridines (31) and on pyridoacridine alkaloids isolated 

from marine organisms (32). 

While the intercalative interactions and DNA binding affinity of acridines have in 

general been correlated with cytotoxicity, new evidence has indicated that these agents 

form ternary DNA-topoisomerase II enzyme complexes that disrupt cellular processes, 

culminating in cellular death. Eukaryotic DNA topoisomerases (I and II) are enzymes 

involved in topological processes that occur during transcription, recombination, 

chromatin assembly, and chromosome partitioning at cell division (33, 34). Specifically, 

type I topoisomerases catalyze the cleavage of a phosphate diester bond in one strand of 

duplex DNA and then reseal the nick by allowing free rotation of the other strand. In 
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contrast, type II topoisomerases effect the cleavage of both strands and catalyze the 

transport of DNA segments through the break. The mechanism for both types is ATP 

driven and result in removing DNA supercoils (35). DNA binding agents are thought to 

“poison” the DNA-enzyme association by forming ternary complexes, which are then 

detected by the cell as damaged species. The interaction then triggers a cascade of events 

that lead to the activation of p53 protein and to the induction of apoptosis (36).  

 

Figure 1.3. Structures of medically important acridines. 
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cytotoxicity through the formation of a ternary complex between ligand, DNA and 

topoisomerase II (39). 

Phenothiazines  

Methylene blue (MB), a DNA intercalating chromophore and the most 

extensively studied phenothiazine (Figure 1.1) was developed as dyestuff during the late 

1800’s. In 1891, Ehrlich successfully used methylene blue (MB) in patients infected with 

malaria (40). However application of MB as an antimalarial agent was abandoned due to 

the blue staining of the skin and to the development of acridine-based antimalarial agents 

(41). Notwithstanding, a recent resurgence in investigating MB as a potential antimalarial 

agent has been reported (42). Clinically, MB has been administered as an antidote for 

nitrate poisoning, as well as employed in the treatment of methemoglobinemia and 

ifosfamide-induced encephalopathy due to its low toxicity in human cells (41, 43). 

Moreover, the phenothiazine molecule has been the basis for the development of 

antihistamines and antipsychotic drugs such as promethazine and chlorpromazine, 

respectively (43). Perhaps the most important and evolving application of MB and its 

derivatives has been as photosensitizing agents in photodynamic therapy. 

Photosensitization  

While the effects of light had been known throughout ancient civilizations, the 

first experimental account of photosensitization was reported by Oscar Raab in 1900. He 

serendipitously observed that low concentrations of acridine were lethal to paramecium 

during daylight experiments but not during nighttime experiments (44). These findings 

were significant in proving the connection between light activation and therapeutic 

outcome. Shortly thereafter, studies by von Tappeiner demonstrated the role of oxygen in 
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the light-dependent “photodynamic reaction” (45). In attempt to utilize photosensitization 

for potential antitumor activity, Jesionek and von Tappeiner treated skin tumors with 

visible light in the presence of eosin (46). The modern interest in photosensitization 

began in the 1960’s with investigations by Lipson and Baldes that revealed the 

localization of a mixture of porphyrins (known as hematoporphyrin derivative) in tumor 

cells (47). The breakthrough however occurred in the 1970’s when Dougherty reported 

that irradiation of murine mammary tumors with hematoporphyrin derivative resulted in 

significant cell death (48).  

Photodynamic Therapy. These pioneering studies led to present day 

photodynamic therapy (PDT), an alternative approach to conventional chemotherapy that 

involves the use of a photosensitizing drug and visible light. In the presence of oxygen, 

the photoactivated drug generates reactive oxygen species that initiate a series of events 

resulting in cell death. An advantage of PDT is the localization of the photosensitizer in 

and selective irradiation of target tissue, thereby minimizing damage to surrounding 

healthy cells. Accordingly, clinical protocols for systemic applications in the treatment of 

numerous malignancies have been developed, including cancers of the lung, 

gastrointestinal tract, head and neck regions, and bladder (49). Moreover, the successful 

treatment of non-melanoma skin cancers (basal cell carcinoma and actinic keratosis) has 

been documented with LevulanTM-mediated PDT (50). While the main focus of PDT has 

been in oncology, its most triumphant application has been in the VisudyneTM-mediated 

treatment of wet-macular degeneration, a non-malignant ophthalmic condition that is the 

leading cause of blindness in the Western world (51). Currently, there are three 

photosensitizing drugs approved for PDT by the U.S.A. Food and Drug Administration: 
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Photofrin,TM Visudyne,TM and LevulanTM (52). While currently utilized PDT agents 

(Figure 1.4) are based on the porphyrin nucleus or mediate the in situ generation of 

endogenous porphyrins (e.g., LevulanTM), other chromophores such as the phenothiazines 

are gaining attention as potential PDT agents.  

 

 

Figure 1.4. Structures of FDA approved PDT drugs. 
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maximally absorb light within the therapeutic window for PDT (600-800 nm). 

Absorption within the therapeutic window is a desired feature, since the penetration of 

light into tissues is limited by: 1) light scattering, which decreases at longer wavelengths, 

and 2) absorption by pigmented biomolecules (49). With regards to PDT, MB and 

derivatives (Figure 1.5) have demonstrated phototoxicity in several malignant cell lines 

and colon tumors in mice. Specifically, Boehncke and co-workers demonstrated that 

irradiation of human immortalized keratinocytes, mouse fibroblasts, human transformed 

T-, and B-lymphoctes with polychromatic red light in the presence of MB exhibited 

better ED50 values in all cell lines and in comparison to hematoporphyrin derivative or 

aminolevulinic acid (53). Moreover, Wainwright and colleagues reported enhanced 

cytotoxicity in multidrug resistant mammary tumor cells irradiated in the presence of MB 

(54). Studies by Rice et al. revealed that photo-induced apoptosis of murine and human 

melanoma cell lines occurred with MB but that the more lipophilic derivatives dimethyl 

methylene blue (DMMB) and new methylene blue (NMB) were more phototoxic (55). 

Additionally, the more lipophilic derivatives (DMMB and NMB) exhibited higher levels 

of cellular uptake and retention. Similarly, Wainwright and co-workers correlated 

increased phototoxicity in murine mammary tumor cell lines with higher levels of cellular 

uptake and retention when employing DMMB or NMB as compared to MB (56). 

Additionally, these authors observed lower rates of reduction with the more lipophilic 

dyes and suggested that the electron donating effects of the methyl groups in the 1 and 9 

or 2 and 8 positions of DMMB and NMB, respectively, accounted for this observation 

(56).  
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Figure 1.5. Structure of photoactive phenothiazinium salts. 
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MB to effect DNA photodamage in Escherichia coli and Proteus mirabilis, respectively 

(60, 61). More recently, the Phoenix group has reported enhanced cell death by 

photoactivated DMMB in Escherichia coli and Staphylococcus aureus cultures with 

minimal lethal concentrations of 0.5 µM and 0.8 µM, respectively (62). Furthermore, 

DMMB has shown high levels of photo-induced bactericidal activity against the 

vancomycin-resistant Enterococcus faecalis and faecium strains (63).  

Another important application of MB-PDT has been in the photoinacivation of 

viral pathogens in blood products. The photodecontamination of plasma has been utilized 

with MB in Germany since 1993 and more recently in other European communities (64). 

Floyd and colleagues have recently reported that MB has shown efficacy in the 

photoinactivation of human immunodeficiency virus (HIV). In their assays, HIV-1 

infected cells that were treated with MB followed by irradiation with visible light (400-

700 nm) resulted in the attenuation of viral infectivity in a concentration dependent 

manner (65).  

DNA Damage and Photosensitization 

DNA damage induced by chemical photosensitization has been extensively 

investigated with endogenous porphyrins, xenobiotic dyes and metal complexes. 

Collectively, these studies have led to a better understanding of phototoxicity and 

phototherapy either to prevent cell damage or to enhance the cytotoxicity of anticancer 

drugs. Moreover, DNA and RNA interacting photosensitizers may serve as structural and 

molecular probes to further elucidate nucleic acids and other biomolecules interactions.  
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When a sensitizing molecule absorbs a photon of light, an electronic transition 

results in the promotion of an electron from a ground state orbital to an unoccupied 

orbital and the molecule is said to be in an excited state. This excited singlet has a 

relatively short lifetime and can be de-activated back to the ground state with the 

emission of a photon (fluorescence). Alternatively, the excited singlet can be de-activated 

by an intersystem crossing (ISC) transition that populates the triplet excited state. 

Because the triplet state has a longer lifetime, it tends to be important in many 

photochemical reactions (66). Accordingly, the triplet excited state sensitiser (not directly 

involved in DNA damage) can react with molecular oxygen to produce reactive oxygen 

species (type I and II mechanisms) or accepts an electron from a biological substrate to 

generate oxidized species (type I mechanism). These mechanisms are schematically 

illustrated in Figure 1.6.  

 

Figure 1.6. Mechanisms involved in DNA photosensitization. 
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Hydroxyl Radical Mediated Deoxyribose Damage. The hydroxyl radical (•OH) 

is chemically generated (also can be generated through the homolysis of water by 

ionizing radiation) via superoxide anions (type I mechanism) that can spontaneously (in 

aqueous media) or catalytically (in vivo by superoxide dismutase, SOD) dismutate to 

produce hydrogen peroxide. In the presence of redox active metals, hydrogen peroxide is 

reduced thereby generating diffusible hydroxyl radicals through Fenton reactions (Figure 

1.6). This electrophilic and highly reactive radical can efficiently abstract hydrogen 

atoms from the deoxyribose units in DNA culminating in direct strand cleavage (frank 

strand breaks; 67) and the production of alkaline-labile lesions. While single strand 

breaks are usually not lethal, multiple •OH-mediated lesions result in double strand 

breaks, which lead to permanent DNA damage (68). While hydrogen atom abstraction 

can occur from all the carbon atoms of the deoxyribose sugars (69, 70), C-2’ carbon-

centered radicals are stabilized by the lone pair electrons of adjacent oxygen atoms which 

renders atom abstraction form this carbon the least favorable (69, 71). The majority of 

hydroxyl radical chemistry involves C-4’ hydrogen atom abstraction due to solvent 

accessibility and increased lability of the C-H bond (69, 71). The mechanism of Fe(II)-

bleomycin mediated Frank strand cleavage via C-4’ hydrogen atom abstraction (which 

leads to oligonucleotide 3’-phosphoglycolate, base propenal, and oligonucleotide 5’-

phosphate DNA fragments) is shown in Figure 1.7. 

 

 

 



  17 

 

Figure 1.7. Fe(II)-bleomycin mediated C-4’ hydrogen atom abstraction. 
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5 positions of guanine result in radical adducts. However, these adducts can gain 

electrons from the medium or from cellular thiols in vivo and thus revert back to guanine 

(72). Alternatively, addition across the C-8 position generates 7,8-dihydro-8-oxoguanine 

(8-oxoG). These lesions do not typically result in direct strand cleavage and thus require 

alkali treatment for further fragmentation to occur (73). 

Electron Transfer and Singlet Oxygen Mediated DNA Damage. In general, 

DNA oxidation by singlet oxygen (type II) or by electron transfer reactions (type I) leads 

to base modifications (predominantly 8-oxoG; Figure 1.8) and do not often result in 

permanent DNA damage as compared to deoxyribose chemistry. The majority of these 

lesions require piperidine treatment post-irradiation in order to reveal the site of damage. 

Notwithstanding, several accounts of direct strand cleavage at guanine bases by singlet 

oxygen have appeared in the literature (74-76). More recently, Kochevar and colleagues 

have reported that irradiation of HeLa cells incubated with Rose Bengal, a well known 

singlet oxygen generator, induced apoptosis and DNA fragmentation (77). Because both 

singlet oxygen and electron transfer mechanisms predominantly involve the formation of 

alkaline-labile lesions at guanine bases, it is sometimes difficult to experimentally (via 

nucleotide resolution assays) distinguish one mechanism from the other. However, the 

Barton group has reported that damage by electron transfer exhibits a signature intense 

cleavage at the first guanine in a ‘5-GG-3’ step, while damage by singlet oxygen occurs 

equally at all guanines (78).  
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Figure 1.8. Hydroxyl radical, electron transfer and singlet oxygen guanine base 
modifications. 
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mechanisms. Therefore, the type of mechanism that predominates and the reactive 

species that lead to damage highly depend on the specific photochemistry of the 

photosensitiser, experimental conditions, and DNA binding interactions. For example, 

Shuster’s group reported that DNA damage by a photoactivated intercalated 

anthraquinone (Figure 1.9) produced guanine base lesions consistent with an electron 

transfer mechanism. However, irradiated unbound molecules (excess concentration of 

anthraquinone relative to DNA in solution) resulted in non-specific frank strand breaks 

(79). Moreover, Bohne et al. reported two distinct mechanisms for DNA photocleavage 

by an acridizinium salt (80, Figure 1.9). In the presence of oxygen, DNA photodamage 

resulted from a singlet oxygen-mediated mechanism via energy transfer of the triplet 

excited state acridizinium salt, while anaerobic conditions implicated the involvement of 

hydroxyl radicals. Based on excited-state reduction potentials, the authors reasoned that 

under anaerobic conditions photoinduced electron transfer between the excited 

acridizinium and water might lead to a reduced chromophore and a water radical cation. 

They also suggested that hydroxyl radicals were generated by subsequent deprotonation 

of the water radical cation. 

 

Figure 1.9. Anthraquinone and acridizinium DNA photocleaving agents. 
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Metal Complexes and DNA Photocleavage. Metal ions are involved in many 

biological processes including hydrolysis and redox cycling reactions. Moreover, their 

Lewis acidic charged centers are well suited to bind negatively charged biomolecules 

including nucleic acids and proteins. Accordingly, the development of metal-based 

therapeutics has been an area of active research. One of the most successful metal 

complexes in medicine is cisplatin, a DNA interacting and clinically important anticancer 

agent. In addition, studies on DNA binding and damage by Fe(II)-bleomycin as well as 

by metal-porphyrin complexes have further contributed to the search for newer metal 

complexes with improved antitumor properties.  

Numerous metal complexes by virtue of their d-orbitals and redox properties have 

been shown to promote photo-induced DNA damage. In this regard, representative 

cobalt(II), copper(II), ruthenium(II), and rhodium(III) complexes have exhibited efficient 

photonuclease activity (Figure 1.10). Nair and Vaidyanathan used a 2,6-

bis(benziimidazol-2-yl)pyridine cobalt(II) complex to conduct aerated plasmid nicking 

assays that demonstrated DNA photocleavage by this cobalt(II)-complex (81). Based on 

fluorescence quenching studies, the authors postulated that DNA damage might occur 

through photoelectron transfer from guanine to the excited state of the complex. Zaleski’s 

group found that copper(II) complexes of cis-1,8-bis(pyridin-3-oxy)oct-4-ene-2,6-diyne 

produced photolytic degradation of pUC19 plasmid DNA via C-4’ hydrogen atom 

abstraction. This enediyne ligand was shown to undergo metal-assisted photochemical 

Bergman cyclization, thereby generating diradicals which efficiently abstracted C-4’ 

hydrogens atoms (82). Furthermore, Turro and co-workers demonstrated that a 

supramolecular ruthenium(II)-viologen complex effected DNA photocleavage under 
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aerobic and anaerobic conditions (83). The authors suggested an electron transfer 

mechanism involving guanine and the photooxidized ruthenium(III) center of the 

complex. Lastly, Barton and co-workers reported direct strand cleavage via 3’-hydrogen 

abstraction upon irradiation of an intercalated phenanthrenequinone diimine complex of 

rhodium(III). Their studies indicated that the 3’-hydrogen located in the major groove 

was a prime target for abstraction by a photoinduced phenanthrenequinone diimine 

radical owing to the spatial conformation of the rhodium complex within the major 

groove (84). 

 

Figure 1.10. Representative DNA photocleaving metal complexes. 
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Photofootprinting 

Footprinting is a widely utilized technique employed to map the sequence specific 

sites of DNA binding drugs and proteins. While many enzymatic (e.g., DNase I and II) 

and chemical footprinting agents (e.g., methidium-EDTA-iron(II) and 1,10-

phenanthroline copper(I)) have been successfully utilized, photofootprinting reagents 

offer the advantage of controlling DNA cleavage with light (85). In this method, a 

radiolabeled DNA fragment is reacted with a footprinting agent in the absence and 

presence of DNA binding ligand. The footprinting agent then cleaves DNA at all residues 

except for those sites where the ligand is bound. Accordingly, the uncleaved DNA 

(ligand-bound sites) produce a “footprint,” an electrophoretic pattern that is devoid of 

cleaved DNA bands. The footprinted site(s) are then compared to the electrophoretic 

pattern produced by the footprinting agent run in the absence of the DNA binding ligand. 

Typical footprinting agents cleave DNA without any sequence or base specificity, a 

necessary requirement to prevent binding sequence ambiguity of the ligand or protein. 

Examples of photofootprinting acridine agents have been reported. Jeppesen and 

Nielsen described the photofootprinting capability of two acridine derivatives (DHA and 

MAA; Figure 1.11). Their analyses revealed comparable reactivity of the the two 

photoactive reagents to DNase I in identifying the binding sites of well known DNA 

binding agents including distamycin and echinomycin (86). In another study, Saito and 

co-workers reported efficient direct DNA strand breaks by a photoactive 

dibenzoyldiazomethane-acridine conjugate (Figure 1.11). Furthermore, DNA nucleotide 

resolution photocleavage assays by this dibenzoyldiazomethane-acridine conjugate 
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revealed cleavage at all residues without any sequence or base specificity, thereby 

demonstrating its potential application as a photofootprinting reagent (87). 

 

Figure 1.11. Structures of acridine based photofootprinting reagents. 
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photonuclease 7 described in Chapter II was designed to incorporate a central acridine 

chromophore covalently attached to four metal-binding imidazole rings. This design 

rationale was developed in an attempt to modulate and to enhance DNA photodamage in 

the presence of metal ions. Accordingly, DNA photocleavage by compound 7 was 

evaluated in the presence of 16 different metal salts.  

The design rationale for the synthesis of compound 4 as described in Chapter III 

was based on utilizing two units of an acridine chromophore covalently tethered to a 

pyridine linker. In this case, the bisacridine element was employed to develop a putative 

bisintercalator. Because bisintercalators have demonstrated higher DNA binding 

affinities in comparison to monointercalators, DNA photodamage might be augmented as 

a result of the stronger association between the bisintercalator and DNA. Additionally, 

the pyridine linker was introduced specifically as a copper-binding motif to modulate and 

to enhance DNA photocleavage in the presence of copper(II) ions.  

In response to the interest in developing non-porphyrin chromophores possessing 

suitable light properties for photodynamic therapy, three new compounds incorporating a 

phenothiazine nucleus were synthesized, characterized and evaluated (Chapters IV-V). 

The major objective involving their development was to design putative bisintercalating 

agents capable of effecting enhanced levels of DNA photodamage at longer wavelengths.  

A salient feature of photodynamic therapy is the requirement for strong 

absorption of light by photosensitizing chromophores within the “therapeutic window” 

(600-800 nm), in order to increase the depth of light penetration in tissues. This is met by 

phenothiazine dyes possessing electron donating groups, a factor which motivated the 

design of the linkers in compounds 3, 5, and 6. Moreover, the linkers are composed of six 
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member piperidine or piperazine and xylene ring systems to potentially provide 

additional duplex stability by binding within the grooves of DNA. 

The major goal of this project as described in Chapters II-V was to evaluate the 

DNA photocleavage efficiencies produced by the compounds when irradiated in the 

presence of pUC19 plasmid DNA. In these assays, pUC19 plasmid DNA was utilized due 

to the fact that uncleaved and cleaved plasmid forms migrate through agarose gels at 

different rates. Upon light exposure, the DNA-bound photosensitizers are expected to 

generate reactive oxygen species, which then mediate direct DNA strand scission by 

converting uncleaved supercoiled DNA into the nicked (single strand breaks) and linear 

(double strand breaks) forms. The nicked, linear and supercoiled forms of pUC19 

plasmid DNA are then easily visualized by staining the agarose gel with the fluorescent 

and DNA intercalating dye ethidium bromide. The photocleavage yields are then 

determined by utilizing light densitometry to quantitate each form of DNA produced 

during irradiation in the presence of the photosensitizing nucleases. 

Corollary assays to evaluate metal complex formation, fluorescence quantum 

yields, DNA thermal denaturation, competitive equilibrium dialysis binding, viscosity, 

reactive oxygen species sequestration and DNA photocleavage at nucleotide resolution 

were conducted. Taken together, the projects integrated organic, biophysical, photo-, and 

bio-chemical methods to dissect the factors involved in the enhancement of DNA 

photosensitization. 

Lastly, a small project was implemented as a National Science Foundation 

workshop laboratory exercise involving a non-invasive DNA isolation technique and the 

amplification of alleles encoding normal variations in human color vision (Chapter VI). 
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The goals of this exercise were aimed at providing the workshop participants with “hands 

on” experience in currently utilized protocols in molecular biology. 
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CHAPTER II 

Tunable DNA Photocleavage by an Acridine-Imadazole Conjugate 

(This chapter is verbatim as it appears in Wilson, B.; Gude, L.; Fernández, M.-J.; 
Lorente, A.; Grant, K. B. Inorganic Chemistry 2005, 44, 6159-6173. The initial syntheses 
of compounds 1-10 were conducted by Drs. Gude, Fernández, and Lorente. Dr. Gude also 
conducted the characterization of the Zn(II)-complex by 1H NMR spectroscopy. Mass 
spectra were conducted by Dr. Siming Wang at Georgia State University. The 
contributions to the project by the author of this dissertation were as follows: preparation 
of compounds 1-7; conception and execution of all biological, biophysical, and 
photochemical experiments; and authorship of the original manuscript. The final 
manuscript was extensively revised by Dr. Grant.) 
 

Abstract  

We report the synthesis and characterization of photonucleases N,N’-bis[2-

[bis(1H-imidazol-4-ylmethyl)amino]ethyl]-3,6-acridinediamine (7) and N-[2-[bis(1H-

imidazol-4-ylmethyl)amino]ethyl]-3,6-acridinediamine (10), consisting of a central 3,6-

acridinediamine chromophore attached to 4 and 2 metal coordinating imidazole rings, 

respectively. In DNA reactions employing 16 metal salts, photocleavage of pUC19 

plasmid is markedly enhanced when compound 7 is irradiated in the presence of either 

Hg(II), Fe(III), Cd(II), Zn(II), V(V), or Pb(II) (low intensity visible light, pH 7.0, 22 ºC, 8 

µM 7 to 50 µM 7). We also show that DNA photocleavage by 7 can be modulated by 

modifying buffer type and pH. Evidence of metal complex formation is provided by 

EDTA experiments and by NMR and electrospray ionization mass spectral data. Sodium 

azide, sodium benzoate, superoxide dismutase, and catalase indicate the involvement of 

Type I and Type II photochemical processes in the metal-assisted DNA photocleavage 

reactions. Thermal melting studies show that compound 7 increases the Tm of calf thymus 

DNA by 10 + 1 °C at pH 7.0 and that the Tm is further increased upon the addition of 

either Hg(II), Cd(II), Zn(II), or Pb(II). In the case of Fe(III) and V(V), a colorimetric 
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assay demonstrates that compound 7 sensitizes one electron photoreduction of these 

metals to Fe(II) and V(IV), likely accelerating the production of Type I reactive oxygen 

species. Our data collectively indicate that buffer, pH, Hg(II), Fe(III), Cd(II), Zn(II), 

V(V), Pb(II), and light can be used to "tune" DNA cleavage by compound 7 under 

physiologically relevant conditions. The 3,6-acridinediamine acridine orange has 

demonstrated great promise for use as a photosensitizer in photodynamic therapy. In view 

of the distribution of iron in living cells, compound 7 and other metal-binding acridine-

based photonucleases should be expected to demonstrate excellent photodynamic action 

in vivo.  

Introduction 

Photodynamic therapy (PDT) has been proven to be an effective treatment option 

for age-related macular degeneration, actinic keratoses, as well as for neoplastic diseases 

such as lung, bladder, and esophageal cancers.1 PDT is also being explored for its 

potential application in the photoinactivation of viruses (e.g., in blood disinfection) and 

of multi-drug resistant bacteria.2 The procedure involves the administration of a 

photoactive drug (photosensitizer) either systemically or topically followed by irradiation 

of target tissue with light wavelengths specifically absorbed by the photosensitizer. 

Damage to surrounding healthy tissue is mitigated by the preferential accumulation and 

activation of the photosensitizer in diseased tissue. In this regard, PDT represents a very 

attractive alternative to conventional chemotherapy. Nevertheless, only a few drugs, 

mostly first and second generation porphyrin derivatives, have been approved for clinical 

use in PDT.1a,3 The most extensively researched and utilized is Photofrin.® Yet, large 

doses of this porphyrin are required to achieve therapeutic efficacy, the identity of the 
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active component(s) has not been determined, and the drug causes prolonged periods of 

skin photosensitivity.4 There is now a great interest in the development of new 

photoactive drugs that are therapeutically more effective and less toxic. 

Following the absorption of a photon of light, PDT sensitizer molecules are 

excited to a high energy singlet state. Subsequent intersystem crossing yields a long-lived 

excited triplet state which can undergo energy transfer with ground state molecular 

oxygen to generate cytotoxic singlet oxygen (1O2; Type II reaction). Alternatively, the 

photosensitizer triplet participates in one electron oxidation of a nearby substrate such as 

DNA (Type I reaction). In the case of molecular oxygen, Type I electron transfer from 

the triplet to O2 produces superoxide (O2
•−), which reacts further to generate hydrogen 

peroxide and cytotoxic hydroxyl radicals (OH•). Although Type I processes play a 

relatively minor role in PDT compared to Type II, singlet oxygen, hydroxyl radicals, and 

one electron oxidation can all cause significant damage to DNA and other biomolecules, 

eventually effecting necrosis and/or apoptosis of targeted cells.5 In addition, recent 

investigations indicate that PDT may function by triggering localized inflammatory cell 

and immune reaction responses.6  

A precondition for efficacious photodynamic activity is selective and preferential 

retention of the photosensitizer in diseased tissue. This prerequisite is met by sensitizing 

chromophores that bind to nucleic acids with high affinity. The acridines are well known 

DNA intercalating drugs that possess photo- and cytotoxic properties. The 3,6-

acridinediamines acridine orange and proflavin have been shown to photocleave DNA7 as 

a function of increasing nucleic acid bound chromophore.7a,c Furthermore, acridine orange 

has demonstrated selective localization in a number of tumor types and has effected 
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efficient in vivo photodestruction of epithelial tumors in mice, Walker carcinosarcoma 

256 stomach tumors in rats, and musculoskeletal sarcomas in mice.8 In fact, Tatsuta et al. 

reported comparable PDT-mediated necrosis of rat carcinosarcoma stomach tumors by 

both acridine orange and hematoporphyrin.8c Finally, second and third generation 

acridines have produced cytotoxic effects in a variety of cancerous tissues and are being 

developed as HIV antivirals.9 

In view of the close association of iron and other metals with genomic DNA10 and 

the co-accumulation of iron and acridine orange in lysosomes and the cell nucleus,11 

acridine-based photonucleases that sequester metals are potentially of great utility in 

living cells. Towards this end, we report the syntheses of compounds 7 and 10, 

containing a central DNA binding 3,6-acridinediamine chromophore attached to 4 and 2 

metal coordinating imidazole rings, respectively. In a survey of 16 metal salts, we 

demonstrate that the in vitro DNA photocleaving properties of compound 7 are markedly 

enhanced by specific ions in the approximate order Fe(III) ≈ Hg(II)  > Cd(II) > Zn(II) > 

V(V) ≈ Pb(II). In the presence of these metals, pUC19 plasmid DNA is readily converted 

into its nicked form upon exposure to low intensity, visible light (pH 7.0, 22 ºC, 8 µM 7 

to 50 µM 7).  

Results and Discussion 

Synthesis.12 The tetraimidazole derivative of 3,6-acridinediamine 7 was 

synthesized according to the procedures depicted in Schemes 2.1 and 2.2. In the first step 

of the synthetic route, 2-[bis(1H-imidazol-4-ylmethyl)amino]ethanol (1) was obtained by 

reaction of 4-(chloromethyl)-1H-imidazole hydrochloride with 2-aminoethanol in 

refluxing ethanol. Afterwards, a solution of 1 in dry DMF with thionyl chloride was 
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stirred at room temperature for 24 h to yield N-(2-chloroethyl)-N-(1H-imidazol-4-

ylmethyl)-1H-imidazole-4-methanamine trihydrochloride (2). 

Scheme 2.1a 

 

Conditions: aHOCH2CH2NH2, EtOH, Et3N, reflux, 70%; bSOCl2, DMF, rt, 86%; cPh3CCl, 
Et3N, DMF, rt, 61%. 
 

Next, several attempts were made to accomplish the straightforward synthesis of 7 

by reaction of 3,6-acridinediylbiscarbamic acid bis(1,1-dimethylethyl) ester (4) with 2 in 

the presence of different bases, but with no success. The basic conditions required for 

proflavin dicarbamate alkylation made previous protection of the imidazole nitrogen 

advisable. Therefore, we proceeded to protect it regioselectively by using the 

triphenylmethyl group (Scheme 2.1), a robust protecting group that under basic 

conditions can be easily removed by acid hydrolysis. 
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Scheme 2.2a 

 

Conditions: a tBuOOCOCOOtBu, acetone, reflux, 72%; bCs2CO3, DMF, rt, 89%; c2 N 
HCl, 60 ˚C, d2 N NaOH, 87%. 
 

We then evaluated conditions for the reaction of protected derivative 3 with 

dicarbamate 4. Although we initially employed sodium hydride in DMF, which afforded 

a mixture of the di- (5) and monoalkylated (6) products (in 54 and 32% yields, 

respectively), a more convenient approach resulted from substitution of NaH with 

Cs2CO3 (Scheme 2.2). This simplified the work-up process and increased the reaction 

yield. Finally, all the protecting groups were removed simultaneously by treatment of 5 at 

60 ˚C with 2 N hydrochloric acid. After basification of the reaction mixture, N,N’-bis[2-

[bis(1H-imidazol-4-ylmethyl)amino]ethyl]-3,6-acridinediamine (7) was precipitated and 

purified.  

The synthesis of bisimidazolic proflavin derivative 10 was carried out following a 

similar procedure (Scheme 2.3). Compound 9 was prepared through the reaction of (6-
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amino-3-acridinyl)carbamic acid 1,1-dimethylethyl ester (8) with 3 using cesium 

carbonate as base and dry DMF as solvent. Deprotection with 2 N hydrochloric acid at 60 

˚C afforded, after basification with aqueous sodium hydroxide, N-[2-[bis(1H-imidazol-4-

ylmethyl)amino]ethyl]-3,6-acridinediamine (10). 

Scheme 2.3a 

 

Conditions: aCs2CO3, DMF, rt, 85%; b 2 N HCl, 60 ˚C, c2 N NaOH, 70%. 

1H NMR Spectroscopy. In order to obtain evidence of complex formation, NMR 

spectra were recorded for 5.7 mM of compound 7 as function of increasing ZnCl2 

concentration (300 MHz, CD3OD). At 5.7 mM Zn(II) (1:1 metal-to-ligand ratio), 

integration of the H-2 and H-5 imidazole signals revealed that only two of the four 

protons were downfield shifted, suggesting the formation of a stoichiometric 1:1 species. 

(Chemical shifts were 7.58 and 6.94 ppm with no metal ion and 8.00 and 7.22 ppm with 

metal, respectively.) At a 2:1 metal-to-ligand ratio, the downfield shifts were observed 

for all the H-2 and H-5 proton signals, indicating a 2:1 metal-to-ligand complex. No 
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additional changes in the NMR spectra were seen at zinc(II) concentrations higher than 

11.4 mM. 

Mass Spectrometry. Electrospray ionization (ESI) mass spectrometry is 

routinely used for the detection of labile metal complexes in situ. To allow for varied 

stoichiometries, we prepared electrospray samples by mixing different volumes of 0.4 

mM methanolic stock solutions of 7 and a metal salt (either CdCl2, FeCl3•6H2O, HgCl2, 

Na3VO4, PbCl2, or ZnCl2) in pure HPLC grade methanol. The samples were then allowed 

to equilibrate at room temperature for 45 min, after which mass spectra were recorded.  

In the case of ZnCl2 and CdCl2, the major isotopic peaks were found to correspond to: 1:1 

metal-to-ligand complex and unreacted 7 at a metal-to-ligand ratios of 1:2; 1:1 metal-to-

ligand complex, 2:1 complex, and unreacted 7 at metal-to-ligand ratios of 1:1; and 2:1 

metallic complex at metal-to-ligand ratios of 2:1. Alternatively, the major isotopic peaks 

of HgCl2 and PbCl2 indicated the formation of 1:1 metal-to-ligand complex and unreacted 

7 at metal-to-ligand ratios of 1:2, and a gradual conversion of unreacted 7 to 1:1 complex 

as the ratios of metal-to-ligand were increased to 1:1 and then to 2:1. In the case of 

FeCl3•6H2O, there was no evidence of complex formation at metal-to-ligand ratios of 1:2 

and 1:1. However, at the 1:2 ratio, minor isotopic peaks corresponding to a 1:1 complex 

were observed. Although attempts to study vanadium(V) complex formation were 

unsuccessful in neat methanol, low levels of a 1:1 metal-to-ligand complex were seen at 

all metal-to-ligand ratios when Na3VO4 and compound 7 were dissolved in a 1:1 

ddH2O:methanol solution. Taken together, the ESI mass spectral data indicate that the six 

metals undergo complexation in the order Cd(II) ≈ Zn(II) > Hg(II) ≈ Pb(II) >> Fe(III) > 

V(V). 
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Photocleavage Experiments. To determine the effects of various metals on DNA 

photocleavage, compounds 7 and 10 were individually treated in the presence of 

CaCl2•2H2O, CdCl2, (CH3)2SnCl2, CoCl2•H2O, CrCl3•6H2O, CuCl2•2H2O, FeCl3•6H2O, 

HgCl2, MgCl2•6H2O, MnCl2•4H2O, Na3VO4, NiCl2•6H2O, PbCl2, Sc(CF3SO3)3, ZnCl2, 

and ZrCl4. Photolysis reactions consisted of 20 mM sodium phosphate buffer pH 7.0 and 

38 µM bp pUC19 plasmid DNA equilibrated in the absence and presence of: 25 µM  

metal salt, 50 µM  7 or 10, and 25 µM  metal salt with  50 µM 7 or 10.13 (In reactions 

containing PbCl2 and Na3VO4, 20 mM sodium cacodylate buffer pH 7.0 was used to 

substitute for sodium phosphate.) The samples were irradiated under aerobic conditions 

with a low intensity, broad-spectrum 4 W T4T5/D fluorescent lamp for 50 min at 22 °C. 

After this, photocleavage products were resolved on a 1.0% non-denaturing agarose gel 

stained with ethidium bromide. ImageQuant Mac v. 1.2 software was then used to 

quantitate the % conversion of supercoiled plasmid DNA to its nicked form (Figure 2.1). 

This analysis revealed that DNA photocleavage by compound 7 was selectively enhanced 

in the presence of Hg(II), Fe(III), Cd(II), Zn(II), V(V), and Pb(II). In the case of 

compound 10, Hg(II), Fe(III), Cd(II), and Zn(II) also increased photocleavage, but at 

lower levels in comparison to 7. (The fact that 7 possesses two additional imidazole rings 

may confer upon this compound superior metal chelating ability.) As exemplified by the 

representative gel shown in Figure 2.2 (50 µM 7, 25 µM ZnCl2), minimal levels of 

photocleavage were always observed for DNA reactions irradiated in: the absence of 

compound and metal (Lane 1), the absence of compound (Lane 2), the absence of metal 

(Lane 3), and in a complete series of parallel reactions run in the dark (50 min, 22 °C; 

Lanes 5-8). We therefore concluded that Hg(II), Fe(III), Cd(II), Zn(II), V(V), and Pb(II) 
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ions could be used in combination with light to "tune" levels of DNA cleavage by 

compound 7.  

 

Figure 2.1. A histogram depicting metal-assisted photocleavage of pUC19 plasmid DNA 
in the presence of 50 µM 10 and 50 µM 7 without and with 25 µM metal salt as indicated 
(38 µM bp DNA, 20 mM sodium phosphate buffer pH 7.0). All reactions were irradiated 
with a broad-spectrum fluorescent lamp for 50 min at 22 °C. Percent cleavage (% nicked 
DNA) was averaged over three trials with error bars representing standard deviation. The 
asterisk identifies reactions in which 20 mM sodium cacodylate buffer pH 7.0 was used 
to substitute for sodium phosphate buffer. In the controls, DNA was irradiated in 20 mM 
buffer in the absence of 10, 7, and metal. 
 

The central chromophore of compounds 7 and 10 is a DNA binding 3,6-

acridinediamine closely related in structure to acridine orange and proflavin (Figure 2.S1 

in Supporting Information). It was therefore of interest to conduct a comparative analysis 

of DNA photocleavage. To accomplish this, individual reactions containing 50 µM 

acridine orange and proflavin without and with 25 µM ZnCl2, 25 µM FeCl3, and 200 µM 
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imidazole were irradiated for 50 min with the broad- spectrum fluorescent lamp (38 µM 

bp pUC19 plasmid DNA, 20 mM sodium phosphate buffer pH 7.0, 22 °C). Yields were 

calculated and compared to data from the previous experiment (Table 2.1).  

 

Figure 2.2. Photograph of a 1.0% non-denaturing agarose gel showing photocleavage of 
pUC19 plasmid DNA (50 µM 7 and 25 µM ZnCl2 as indicated; 38 µM bp DNA; 20 mM 
sodium phosphate buffer pH 7.0; 22 °C). Lanes 1-4: reactions were irradiated with a 
broad-spectrum fluorescent lamp for 50 min. Lanes 5-8: parallel reactions maintained in 
the dark for 50 min. Abbreviations: N = nicked; S = supercoiled. 
 

It is evident that acridine orange, proflavin, 7 and 10 all photocleave DNA at low 

levels in the absence of metal. However, upon the addition of either 25 µM  ZnCl2 or 25 

µM FeCl3, significant enhancements were observed for 7 and 10, but not in the case of 

acridine orange and proflavin. In an attempt to “mimic” the structure of compound 7, 4 

mol equiv of imidazole were added along with each metal salt to the acridine orange and 

proflavin reactions, but as shown in Table 2.1, levels of photocleavage were unaffected. 

It is apparent that metal chelating imidazole must be covalently tethered to the DNA 
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binding 3,6-acridinediamine chromophore in order for Zn(II) and Fe(III) to enhance DNA 

photocleavage. 

 
Table 2.1. Zn(II) and Fe(III)-Assisted Photocleavage of pUC19 DNA by Acridine 
Orange, Proflavin, 7 and 10a 
  

% nicked DNA: 
 

reactants 
 
AO 

 
P 

 
7 

 
10 

 
DNA 

 
14 

 
14 

 
7 

 
12 

 
DNA + 50 µM intercalator 

 
28 

 
15 

 
23 

 
26 

 
DNA + 50 µM intercalator + 25 µM ZnCl2 

 
30 

 
13 

 
92 

 
39 

 
DNA + 50 µM intercalator + 25 µM ZnCl2,  
200 µM imidazole 

 
 
35 

 
 
11 

 
 
NA 

 
 

N
A  

DNA + 50 µM intercalator + 25 µM FeCl3 
 
29 

 
15 

 
96 

 
66 

 
DNA + 50 µM intercalator + 25 µM FeCl3,  
200 µM imidazole 

 
 
27 

 
 
17 

 
 
NA 

 
 

N
A  

a Photocleavage reactions consisted of 38 µM bp pUC19 plasmid DNA in sodium 
phosphate buffer pH 7.0 equilibrated without and with ZnCl2, FeCl3, imidazole, and the 
intercalators acridine orange, proflavin, 7, and 10. All reactions were irradiated with a 
broad-spectrum fluorescent lamp for 50 min at 22 °C. Abbreviations: AO = acridine 
orange; NA = not applicable; P = proflavin. 
 

pH Profile. The Hg(II), Fe(III), Cd(II), Zn(II), V(V), and Pb(II)-assisted 

photocleavage reactions were then studied by means of an extensive pH profile in which 

50 µM 7, 25 µM metal salt and 38 µM bp pUC19 plasmid DNA were irradiated in a 

variety of buffer systems: sodium cacodylate pH 5.0, 6.0, and 7.0; sodium phosphate pH 

5.0, 6.0, 7.0, and 8.0; and sodium borate pH 8.0, and 9.0 (Table 2.2). The goal of this 

experiment was to access the combined effects of buffer and pH in order to gain insight 

into possible mechanisms underlying metal-assisted DNA photocleavage.  
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At pH 5.0, compound 7 was shown to efficiently photocleave DNA in the absence 

of metal. However, as pH was raised, the general effect was to produce a decrease in 

photocleavage, irrespective of the buffer system employed (Table 2.2, first row). This 

result can be rationalized as follows. Compound 7 would be expected to bear a relatively 

high net positive charge at low pH, and as a result would bind to negatively charged 

DNA with high affinity. However, at higher pH values, the positive charge on 7 would be 

reduced and as a result DNA binding affinity and photocleavage yields would decrease. 

Notwithstanding, it is evident that pH can be used as an additional chemical tool to 

“tune” the reactivity of compound 7. 

When 7 was reacted in the presence of Hg(II), Fe(III), Cd(II), Zn(II), V(V), and 

Pb(II), the greatest DNA photocleavage enhancement was observed at a pH value greater 

than 5.0 for each of the six metals (Table 2.2). It is conceivable that one or more of these 

metals might be compensating for the loss of positive charge experienced by compound 7 

as pH is raised. (The effect of restoring electrostatic interactions between 7 and DNA 

would be to increase binding affinity and photocleavage yields.) The maximum cleavage 

enhancement was 85%, produced by Cd(II) in the presence of compound 7 and sodium 

phosphate buffer pH 8.0. This was followed by Zn(II), Cd(II), and Hg(II) ions, which 

increased DNA cleavage by 79% in sodium phosphate pH 6.0. At the near physiological 

pH value of 7.0, the best results were achieved by Hg(II) and Fe(III) in sodium phosphate 

buffer, which produced enhancements of 76% and 73%, respectively. This is significant 

for two reasons. The H2PO4
- and HPO4

2- conjugate pair constitutes one of the two most 

important buffering systems in human physiology. Second, iron, which is present in 

relatively high quantities in genomic DNA,10 efficiently enhances DNA photocleavage in 
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the phosphate buffer system. With respect to V(V) and Pb(II), the best photocleavage 

results were generally obtained by using sodium cacodylate buffer. 

 
Table 2.2. % DNA Photocleavage by Compound 7 as a Function of Buffer and pHa 

 % nicked + %linear DNA: 

reactants 
pH 5.0 

phosphate 
pH 5.0 

cacodylate 
pH 6.0 

phosphate 
pH 6.0 

cacodylate 
pH 7.0 

phosphate 
pH 7.0 

cacodylate 
pH 8.0 

phosphate 
pH 8.0 
borate 

pH 9.0 
borate 

7 51 ± 8 64 ± 7 21 ± 7 28 ± 7 23 ± 8 20 ± 5 13 ± 5 19 ± 4 14 ± 4 

7 + Hg(II) 97 ± 2(46) 98 ± 1 (34) 100 ± 0 (79) 90 ± 1 (62) 99 ± 2 (76) 83 ± 3 (63) 81 ± 4 (68) 90 ± 3 (71) 80 ± 7 (66) 

7 + Fe(III) 75 ± 3 (24) 96 ± 2 (32) 67 ± 6 (46) 95 ± 7 (67) 96 ± 1 (73) 83 ± 4 (63) 80 ± 4 (67) 64 ± 5 (45) 59 ± 11 (45) 

7 + Cd(II) 96 ± 0 (45) 99 ± 1 (35) 92 ± 8 (79) 84 ± 5 (56) 94 ± 5 (71) 85 ± 4 (65) 98 ±3 (85) 86 ± 6 (67) 74 ± 6 (60) 

7 + Zn(II) 89 ± 2 (38) 92 ± 3 (28) 95 ± 5 (79) 83 ± 4 (55) 92 ± 2 (69) 66 ± 6 (46) 87 ± 4 (74) 71 ± 6 (52) 57 ± 6 (43) 

7 + V(V) 93 ± 1 (42) 91 ± 4 (27) 83 ± 2 (62) 97 ± 3 (69) 56 ± 10 (33) 77 ± 7 (57) 22 ± 16 (9) 29 ± 11 (10) 9 ± 2 (-5) 

7 + Pb(II) 22 ± 5 (-29) 87 ± 5 (23) 33 ± 8 (12) 95 ± 9 (67) 28 ± 2 (5) 48 ± 10 (28) 20 ± 9 (7) 61 ± 5 (42) 54 ± 6 (40) 

a % DNA photocleavage = % nicked + % linear DNA. Listed in parentheses are % DNA 
photocleavage enhancement values expressed as the difference: % DNA photocleavage 
by 7 with metal minus % photocleavage by 7 without metal. Individual reactions 
consisted of 38 µM bp pUC19 plasmid DNA equilibrated with 50 µM 7, 20 mM sodium 
phosphate, sodium cacodylate, or sodium borate buffers, without and with 25 µM metal 
salt (pH 5.0-9.0). All reactions were irradiated with a broad-spectrum fluorescent lamp 
for 50 min at 22 °C. The data are averaged over three trials, and errors are reported as 
standard deviation. 
 

Intercalators and groove binding compounds interact with double-helical DNA 

predominantly through π-π stacking and a combination of van der Waals and electrostatic 

interactions, respectively. As a consequence, double-helical DNA is stabilized, increasing 

the melting temperature (Tm) of the duplex as a function of the binding affinity of the 

intercalator or groove binder. In an attempt to explain the trends observed in the above 

pH profile, thermal melting curves were used to determine Tm values of 12.5 µM bp calf 

thymus DNA in sodium phosphate buffer pH 5.0 and pH 7.0, in the absence and presence 

of 8 µM 7 (Figure 2.3). While compound 7 raised the Tm of calf thymus DNA from 65 °C 
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to 94 °C at pH 5.0, the effect was much less pronounced at pH 7.0. In this case, the Tm 

was raised from 75 °C to 84 °C. In the absence of compound 7, 4 µM ZnCl2 had no effect 

on the melting temperature of the calf thymus DNA (Tm = 75 °C at pH 7.0). However, the 

addition of 4 µM ZnCl2 to 8 µM 7 raised the Tm by 6 °C at pH 7.0, from 84 °C to 90 °C 

(Figure 2.3).  Taken together, these data suggest that Zn(II) increases binding affinity and 

DNA photocleavage  efficiency by restoring positive charge lost by 7 upon transition 

from pH 5.0 to pH 7.0. 

 

Figure 2.3. Effects of 8 µM compound 7, 4 µM ZnCl2, and 20 mM sodium phosphate 
buffers pH 5.0 and 7.0 on the thermal melting curve of 12.5 µM bp calf thymus DNA: , 
pH 5.0 buffer, Tm = 65 °C; , pH 7.0 buffer, Tm = 75 °C; Δ, compound 7 in pH 7.0 buffer, 
Tm = 84 °C; x: ZnCl2 and compound 7 in pH 7.0 buffer, Tm = 90 °C; +, compound 7 in pH 
5.0 buffer, Tm = 94 °C. 
 

Inhibition of DNA Photocleavage. Hydroxyl radical, hydrogen peroxide, singlet 

oxygen, and superoxide scavengers all reduce the formation of DNA strand breaks 

produced by the exposure of proflavin to visible light.7b,c A series of scavengers including 
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the metal chelating agent ethylenediaminetetraacetic acid (EDTA) was therefore utilized 

to further investigate the mechanism(s) underlying metal-assisted DNA photocleavage by 

compound 7. Individual photocleavage reactions consisted of 38 µM bp plasmid DNA in 

pH 7.0 buffer, 50 µM 7, and 25 µM  Hg(II), Fe(III), Cd(II), Zn(II), V(V), or Pb(II) in the 

presence of scavenger. Sodium azide was used to trap the Type II reactive oxygen species 

(ROS) singlet oxygen (1O2), while superoxide dismutase (SOD), catalase, and sodium 

benzoate were employed for the Type I ROS superoxide (O2
•−), hydrogen peroxide 

(H2O2), and hydroxyl radicals (OH•), respectively. The data in Table 2.3 show that EDTA 

consistently produced strong DNA photocleavage inhibition (> 78% in all cases). This 

result indicates that complexation between compound 7 and each of the six metals is 

likely to be a prerequisite for efficient cleavage. In the Hg(II)/sodium benzoate, 

Fe(III)/sodium azide, Cd/sodium benzoate, Cd/SOD, and Pb(II)/SOD reactions, 

essentially no protection was observed. Otherwise, levels of photocleavage inhibition 

ranged from moderately low to high for all of the metal/scavenger combinations. (In the 

case of sodium benzoate, weak inhibitory effects cannot rule out the existence of non-

diffusible hydroxyl radicals closely associated with the metal center of the complex. 

Second, because SOD produces H2O2 which itself can contribute to cleavage, weak 

inhibition by this enzyme cannot rule out superoxide.) In conclusion, the scavenger 

experiments collectively indicate that, with the exception of iron, Type I and Type II 

photochemical processes are involved in compound 7 metal-assisted DNA cleavage. The 

Fe(III) reaction appears to proceed almost exclusively through a Type I pathway.  
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Table 2.3. % Inhibition of Metal-Assisted DNA Photocleavagea 
 
metal 

azide  
(100 mM) 

benzoate 
(100 mM) 

SOD 
(50 U) 

catalase 
(50 U) 

EDTA 
(100 mM) 

Hg(II) 35 ± 6 2 ± 2 16 ± 6 24 ± 12 78 ± 7 

Fe(III) 9 ± 6 20 ± 3 23 ± 12 66 ± 4 79 ± 4 

Cd(II) 18 ± 3 7 ± 9 0 ± 1 26 ± 7 79 ± 8 

Zn(II) 38 ± 13 28 ± 10 18 ± 7 35 ± 3 79 ± 6 

V(V) 38 ± 10 38 ± 10 18 ± 9 41 ± 11 78 ± 7 

Pb(II) 28 ± 8 32 ± 19 5 ± 4 53 ± 7 79 ± 2 

a Individual reactions consisting of 38 µM bp pUC19 plasmid DNA, 50 µM 7, 25 µM 
metal salt, and one of the above reagents were irradiated with a broad-spectrum 
fluorescent lamp for 50 min at 22 °C. The Zn(II), Cd(II), Hg(II) and Fe(III) reactions 
were in 20 mM sodium phosphate buffer pH 7.0 while the V(V) and Pb(II) reactions were 
in sodium cacodylate buffer pH 7.0. Percent inhibition was averaged over at least three 
trials with error reported as standard deviation. Working reagent concentrations are in 
parentheses. 
 

Photocleavage at Lower Concentrations. Metal-assisted DNA photocleavage 

reactions were conducted using 8 µM 7, 4 µM metal, and 12.5 µM bp pUC19 plasmid 

DNA. Because distortions in UV-visible and emission spectra are typically associated 

with highly concentrated chromophores, it was necessary for us to examine 

photocleavage patterns at these lower concentrations of 7 and metal to establish the 

feasibility of conducting additional spectroscopic studies. Reaction samples were 

irradiated with the broad-spectrum fluorescent lamp for 50 min at 22 °C. After this, the % 

conversion of supercoiled to nicked DNA produced by 7 in the presence of the 16 metal 

salts was quantitated. As shown in Figure 2.4, a similar trend was observed in the DNA 

photocleavage cleavage studies conducted at 50 µM 7 and 25 µM metal (Figure 2.1). The 

metal ions Hg(II), Fe(III), Cd(II), Zn(II), V(V), and Pb(II) all enhanced photocleavage at 

the lower reagent concentrations (Figure 2.4).  
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Figure 2.4. A histogram depicting metal-assisted photocleavage of pUC19 plasmid DNA 
in the presence of 8 µM 7 without and with 4 µM metal salt as indicated (12.5 µM bp 
DNA, 20 mM sodium phosphate buffer pH 7.0). All reactions were irradiated with a 
broad-spectrum fluorescent lamp for 50 min at 22 °C. Percent cleavage was averaged 
over three trials with error bars representing standard deviation. The asterisk identifies 
reactions in which 20 mM sodium cacodylate buffer pH 7.0 was used to substitute for 
sodium phosphate buffer. 
 

Absorbance and Emission Studies. In an attempt to account for the relative 

influence of the 16 metal salts on the efficiency of DNA photocleavage, we recorded 

absorbance and fluorescence emission spectra of compound 7 equilibrated in 20 mM 

sodium phosphate or 20 mM sodium cacodylate pH 7.0 buffer, without and with metal 

salt (Table 2.4). We then calculated the % change in emission quantum yield resulting 

from the addition of each of the 16 metals to 7 (%Δ Φem + metal) as well as the % change 

in absorbance intensity (%Δ Abs + DNA) and emission quantum yield (%Δ Φem + DNA) 
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and the change in the wavelength of maximum absorbance (Δ λmax + DNA) resulting from 

the addition of calf thymus DNA (Table 2.4).  

 
Table 2.4. Absorbance, Emission and Thermal Melting Dataa 
   

absorbance studies 
  

emission studies 
  

Tm studies 

 
reactants 

  
abs 

%Δ abs 
+ DNA 

 
λmax(nm) 

Δ λmax 

+ DNA 
  
Φem 

%Δ Φm 
+ metal 

%Δ Φm 
+ DNA 

  
Tm (ºC) 

 
ΔTm (ºC) 

7  0.16 -6 459 8  0.090 NA -26  84 NA 
7 + Hg(II)  0.15 -10 451 16  0.025 -72 16  86 2 
7 + Fe(III)  0.20 -21 459 8  0.068 -24 -28  84 0 
7 + Cd(II)  0.18 -17 448 18  0.036 -60 -42  90 6 
7 + Zn(II)  0.17 -17 458 9  0.062 -31 -42  90 6 
7 + Sc(III)  0.21 -23 459 8  0.083 -8 -30  84 0 
7 + Zr(IV)  0.21 -24 459 8  0.083 -8 -31  83 -1 
7 + Mg(II)  0.21 -21 459 8  0.088 -2 -24  84 0 
7 + Cr(III)  0.21 -18 458 9  0.085 -6 -22  83 -1 
7 + Ca(II)  0.22 -29 459 8  0.087 -3 -18  84 0 
7 + Mn(II)  0.20 -18 459 8  0.088 -2 -21  84 0 
7 + Sn(IV)  0.22 -19 459 8  0.101 +12 -26  84 0 
7 + Cu(II)  0.18 -19 452 7  0.019 -79 -74  87 3 
7 + Co(II)  0.17 -15 448 11  0.023 -74 -74  88 4 
7 + Ni(II)  0.12 3 448 16  0.011 -88 -46  92 8 
*7  0.16 -10 452 17  0.083 NA -17  85 NA 
*7 + V(V)  0.15 -27 451 20  0.080 -4 -12  86 1 
*7 + Pb(II)  0.17 -24 452 18  0.074 -11 -40  87 2 
aAbsorbance and Tm measurements were conducted using solutions consisting of 8 µM 7 
in 20 mM sodium phosphate buffer pH 7.0 equilibrated without and with 12.5 µM bp calf 
thymus DNA and 4 µM metal salt (22 °C). Tm data were averaged over two trials 
producing an average standard deviation of ± 1 °C. Φem measurements were conducted at 
25 °C with 7 in 20 mM sodium phosphate buffer pH 7.0 equilibrated without and with 
calf thymus DNA and metal salt. Absorbance in all Φemexperiments was ~ 0.04 at the 430 
nm excitation wavelength. Φem values were averaged over three trials producing an 
average standard deviation of ± 0.002. Abbreviations: Abs = absorbance intensity at λmax; 
NA = not applicable; %Δ + DNA = percent change upon addition of DNA = [((7 + metal 
+ DNA) – (7 + metal))/(7 + metal)] x 100; Δ = change upon addition of DNA = (7 + 
metal + DNA) – (7 + metal); %Δ + metal = percent change upon addition of metal = [((7 
+ metal) – (7))/(7)] x 100; Δ Tm = Tm(7 + Metal) - Tm(7). The asterisk identifies solutions in 
which 20 mM sodium cacodylate buffer pH 7.0 was used to substitute for 20 mM sodium 
phosphate buffer pH 7.0. 
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Bathochromic wavelength shifts and hypochromic absorption are characteristic of 

the electronic spectra of many DNA-bound groove binders and most if not all DNA-

bound intercalators. The “%ΔAbs + DNA” and “Δ λmax + DNA” data in Table 2.4 show 

that compound 7 demonstrates appreciable bathochromicity and hypochromicity in the 

presence of DNA. While the data cannot be used to account for different photocleavage 

levels, it is very likely that compound 7 continues to bind to DNA in the presence of each 

of the 16 metals: red-shifts (positive “Δ λmax + DNA” values) are consistently produced 

upon the addition of DNA, and with the exception of Ni(II), depressed absorption 

(negative “%Δ Abs + DNA”) is observed. In addition, none of the metal-induced changes 

in the electronic spectra of 7 appear to be of sufficient magnitude to markedly attenuate 

or enhance DNA photocleavage levels. 

Upon binding to DNA, acridine orange exhibits an increase in fluorescence 

emission. In the case of proflavin, pronounced sequence dependent effects are observed. 

Fluorescence emission is increased in the presence of A•T rich DNA and but is almost 

completely quenched by G•C rich sequences.14 The “%Δ Φem + DNA” values in Table 

2.4 indicate that fluorescence is reduced upon the addition of DNA to (i) compound 7 and 

(ii) compound 7 in the presence of 15 out of 16 metals.  

Table 2.4 also summarizes the effects of metal ions on compound 7 fluorescence 

emission in the absence of DNA. The 14 “%Δ Φem + metal” values recorded in sodium 

phosphate buffer show that the photoinactive metals Ni(II), Cu(II), Co(II) produce the 

most significant reductions in fluorescence intensity, followed by the three photoactive 

metals Hg(II), Cd(II), and Zn(II). The percent changes in emission quantum yield 

produced by the photoactive metal Fe(III) and the seven photoinactive metals Sn(IV), 
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Sc(III), Zr(IV), Cr(III), Ca(II), Mg(II) and Mn(II) are all lower. Overall, the 14 metals 

follow the order: Ni(II) > Cu(II) > Co(II) > Hg(II) > Cd(II) > Zn(II) > Fe(III) > Sn(IV) > 

Sc(III) = Zr(IV) > Cr(III) > Ca(II) > Mg(II) = Mn(II).  The two “%Δ Φem + metal” values 

recorded in sodium cacodylate buffer show that Pb(II) is a more efficient quencher than 

V(V).  

According to Hard-Soft Acid-Base (HASB) Theory, the seven metals with the 

largest “%Δ Φem + metal” values in their respective buffer systems are classified as either 

borderline or soft acids (Ni(II), Cu(II), Co(II), Hg(II), Cd(II), Zn(II), and Pb(II)), while 

the nine metals that have relatively minor effects on fluorescence emission (Fe(III), 

Sn(IV), Sc(III), Zr(IV), Cr(III), Ca(II), Mg(II), Mn(II) and V(V)), are classified as hard 

acids. Because imidazole is a borderline base, it is conceivable that compound 7 might 

display a preference for forming stable complexes with the seven borderline and soft 

metals. Therefore, it is possible that there is a relationship between the degree of 

fluorescence quenching and the degree of complex formation between compound 7 and 

each of the 16 metals. 

Thermal Denaturation Studies. In our next set of experiments, we determined 

the Tm values of 12.5 µM bp calf thymus DNA at pH 7.0 in the absence and presence of 8 

µM 7 and 4 µM of the 16 metal salts. The change in DNA melting temperature effected 

by the addition of metal to 7 was defined as Δ Tm = Tm (7 + Metal) - Tm (7) (Table 2.4). Under 

our experimental conditions, the Tm obtained for calf thymus DNA was 74 + 1 °C. The 

addition of each of the 16 metal salts to the DNA made little difference, since the 

resulting Tm values ranged from 73 – 75 °C. Therefore, none of the metals were able to 

effect the stability of double-helical calf thymus DNA on their own. Addition of 7 to the 
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calf thymus DNA raised the Tm to 84 °C in 20 mM sodium phosphate buffer pH 7.0. 

When compound 7 and metals were present in combination, additional statistically 

significant increases in Tm were observed for seven of the 16 metals: Ni(II), ΔTm = 8 °C;  

Cd(II), ΔTm = 6 °C;  Zn(II), ΔTm = 6 °C;  Co(II), ΔTm = 4 °C;  Cu(II), ΔTm = 3 °C;  

Hg(II), ΔTm = 2 °C; and Pb(II), ΔTm = 2 °C. (Tm values determined over several trials 

showed the error in measurement to be + 1 °C.) 

Taken together, the thermal denaturation and fluorescence quenching data suggest 

possible correlations between metal complex stability and DNA binding affinity. The 

seven borderline and soft acids Ni(II), Cd(II), Zn(II), Co(II), Cu(II), Hg(II), and Pb(II) 

produce: (i) appreciable positive ΔTm values indicative of the formation of stable 

complexes that increase the binding affinity of 7 to DNA, and (ii) moderate to high “%Δ 

Φem + metal” values in their respective buffer systems. Alternatively, the nine hard metals 

Sn(IV), Mn(II), Ca(II), Cr(III), Mg(II), Zr(IV), Sc(III), V(V), and Fe(III) have no 

appreciable effects on Tm and have lower “%Δ Φem + metal” values. Again, because 

imidazole is a borderline base, it is reasonable that compound 7 should display a 

preference for forming complexes with the seven borderline and soft metals rather than 

with the nine hard metals.  

The appreciable ΔTm values associated with Cd(II), Zn(II), Hg(II), and Pb(II) are 

consistent with the observation that levels of DNA photocleavage are increased when 

each of these four metals is added to compound 7 (Figure 2.1). In contrast, Ni(II), Co(II), 

and Cu(II) have appreciable ΔTm values but at 25 µM  concentrations yield the lowest 

levels of DNA photocleavage out of the 16 metals tested (Ni(II) < Cu(II) < Co(II); Figure 

2.1). In addition, Ni(II), Co(II), and Cu(II) produce the three largest “%Δ Φem + metal” 
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values in Table 2.4 (Ni(II) > Cu(II) > Co(II)). In the case of many photosensitizers5c 

including the 3,6-acridinediamine proflavin,7b,c, 15 dye sensitized generation of singlet 

oxygen (1O2; Type II reaction) and superoxide (O2
•−; Type I reaction) are thought to arise 

from the triplet state. With respect to compound 7, fluorescence quenching by any one of 

the following three mechanisms could reduce the triplet state population, either directly 

or indirectly: (i) heavy atom or paramagnetically induced spin-orbit coupling that 

increases the rate of S1 → T1 and T1 → S0 processes, (ii) electron transfer between the 

excited singlet state fluorophore and the metal ion, (iii) energy transfer from the excited 

singlet state to the metal ion.16 The efficiency of Type I and Type II triplet state 

photochemical processes that contribute to DNA photocleavage would then be decreased. 

This hypothesis is consistent with the observation that compound 7 produces appreciably 

Tm but extremely low levels of DNA photocleavage in the presence of Ni(II), Co(II), and 

Cu(II) (Figures 2.1 and 2.4). In a study of acridine orange-DNA-metal ternary complexes, 

Bregadze and co-workers observed significant emission quenching by Ni(II), Co(II), and 

Cu(II) relative to Mn(II) and Zn(II).10 By calculating overlapping integrals and energy 

transfer radii, the investigators concluded that Ni(II), Co(II), and Cu(II) had quenched the 

excited singlet state of acridine orange by Förster-energy transfer.10, 17 While the 

photoactive metals Cd(II), Zn(II), Hg(II), and Pb(II) also produce relatively high levels of 

fluorescence quenching, there is no reason to assume that any of the 16 metal ions 

evaluated in this study quench the singlet excited state of compound 7 by the same or 

even a single mechanism. 

The two remaining metals in the series of 16 constitute a special case. As 

expected, the ΔTm and “%Δ Φem + metal” values of the hard acids V(V) and Fe(III) are 
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negligible. However, DNA photocleavage by compound 7 is increased in both cases. For 

the six photoactive metals Hg(II), Fe(III), Cd(II), Zn(II), V(V), and Pb(II), complex 

formation is indicated by scavenger experiments in which EDTA was shown to inhibit 

metal-assisted DNA photocleavage by 7 (Table 2.3). Additional evidence was provided 

by NMR and/or ESI mass spectra of 7 recorded in the presence of Hg(II), Fe(III), Cd(II), 

Zn(II), V(V), and Pb(II). While extensive 2:1 metal-to-ligand complex formation was 

observed only in the case of Cd(II) and Zn(II),  1:1 metallic complexes were formed by 

all six photoactive metals the following order: Cd(II) ≈ Zn(II) > Hg(II) ≈ Pb(II) >> 

Fe(III) > V(V). Thus, the extent of metal complex formation was found to be in good 

agreement with the magnitude of the Tm increase: Cd(II) ≈ Zn(II) > Hg(II) ≈ Pb(II) >> 

Fe(III) ≈ V(V). Taken together, these data indicate that V(V) and Fe(III) are likely to 

form weak complexes with compound 7. There is at least one reasonable explanation to 

account for the observation that both metals significantly enhance DNA photocleavage. It 

is well known that electron transfer from the photochemically excited triplet states of 

acridine orange,18a proflavin,18b and other 3,6-acridinediamines18b effect photoreduction of 

Fe(III) to Fe(II). Although acridine-sensitized photoreduction of V(V) to V(IV) has not 

been documented, irradiation of oxoperoxovanadium(V) in acidic media has been shown 

to produce V(IV) with evolution of molecular oxygen.19 A potential source of 

photocleavage enhancement might therefore involve compound 7-sensitized one electron 

photoreduction of Fe(III) and V(V). The reduced metals would then be expected to 

produce highly reactive, DNA damaging hydroxyl radicals by the Fenton reaction.20 

Spectrophotometric Determination of Fe(II) and V(IV). In order to test for 

photoreduction of Fe(III), we employed 1,10-phenanthroline, which forms a stable 
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complex with Fe(II) (λmax = 510 nm).21 Because vanadium(IV) reduces ferric to ferrous 

ions, we then used a modified version of this colorimetric assay to detect V(IV).22 For 

determination of Fe(II), individual photolysis reactions contained 20 mM sodium 

phosphate buffer pH 7.0 with two  or more of the following reagents: 50 µM compound 

7, 25 µM  FeCl3•6H2O, and 400 µM 1,10-phenanthroline monohydrate. The samples 

were then irradiated with the broad-spectrum fluorescent lamp (50 min at 22 °C), while a 

parallel set of reactions was kept in the dark. An irradiated reaction sample was then 

equilibrated in 100 mM EDTA to promote Fe(II)/1,10-phenanthroline complex 

disassociation. For V(IV) detection, the same procedure was employed except that: (i) 20 

mM sodium cacodylate buffer pH 7.0 and 25 µM  Na3VO4 were used during photolysis to 

substitute for 20 mM sodium phosphate buffer and 25 µM FeCl3•6H2O; (ii) 25 µM  

FeCl3•6H2O was added immediately after the sample irradiation interval to enable V(IV) 

to reduce Fe(III) to Fe(II) and the Fe(II) product to form a complex with 1,10-

phenanthroline. UV-visible spectra were immediately recorded (Figure 2.5).  

The reaction irradiated in the presence of compound 7, Fe(III), and 1,10-

phenanthroline produced an orange color change and a ~ 510 nm shoulder in the 

absorption band of 7 (Figure 2.5A). A similar shoulder appeared upon the addition of 

Fe(III) to the reaction irradiated in the presence of compound 7, V(V), and 1,10-

phenanthroline (Figure 2.5D). When EDTA was added to both reactions, the 510 nm 

absorption became attenuated until the shoulder disappeared (Figure 2.5A and 2.5D).  

The signature orange color change and absorption at ~ 510 nm were absent in all of the 

dark reactions and in all of the reactions in which either 1,10-phenanthroline or 

compound 7 were omitted (Figure 2.5). These data collectively indicate that compound 7 
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sensitizes the one electron photoreduction of Fe(III) and V(V). There are numerous 

examples of stable Fe(II)20c,e,g and V(IV)20a,b,d complexes that participate in the Fenton 

reaction20g (Figure 2.6). The reduced metals react with hydrogen peroxide to produce  

 
Figure 2.5. UV-visible spectra to detect  Fe(II) (A-C) and V(IV) (D-F) formation in 20 
mM pH 7.0 buffer. Reactions containing 25 µM FeCl3•6H2O or 25 µM Na3VO4, and 50 
µM 7 and/or 400 µM 1,10-phenanthroline monohydrate were irradiated with a broad 
spectrum visible lamp for 50 min at 22 °C (red) or were maintained in the dark for 50 
min at 22 °C (black). A final concentration of 100 mM EDTA was added after irradiation 
(blue). In the V(IV) assay, 25 µM FeCl3•6H2O was added after irradiation (D, F). 
 

short lived, diffusible hydroxyl radicals (OH•) that cleave DNA with an extremely high 

rate constant. (In the case of iron, a few studies have suggested that a non-diffusible iron-

oxygen (ferryl) radical is the active species formed.20c,f) Through the use of catalase, 

sodium benzoate, and superoxide dismutase, we showed that hydrogen peroxide (H2O2), 
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hydroxyl radicals, superoxide anion radicals (O2
•−) contribute to Fe(III) and V(V)-assisted 

DNA photocleavage by compound 7 (Table 2.3). The H2O2 detected in these experiments 

was most likely formed through dismutation of superoxide anion radicals (O2
•−)20f 

produced by Type I electron transfer from the excited triplet state of compound 7 to O2. 

The fact that the H2O2 was generated in the presence of Fe(II) and V(IV) suggests that the 

hydroxyl radicals originated from the Fenton reaction (Figure 2.6). 

 

Figure 2.6. Fenton reaction. Abbreviation: M = metal. 

According to Rehm and Weller theory, excited state redox potentials can be 

calculated from corresponding ground state redox potentials and exited state energies.23 

Thus, for acridine orange, the excited singlet state oxidation potential was estimated to be 

–1.71 V in 0.18 M phosphate buffer pH 6.5.24 This value was obtained by Kittler and co-

workers using eq 1, in which U(*D/D•+) stands for excited state oxidation potential, 

U(D/D•+)  is the ground state oxidation potential, and E∞ is excited state energy. 

 
U(*D/D•+) = U(D/D•+) — E∞         (2.1) 

 
By substituting Kittler’s value for the ground state oxidation potential of acridine orange 

in 0.18 M phosphate buffer pH 6.5 (0.70 V)24 and the excited triplet state energy of 

acridine orange (2.13 eV) 25 into equation 1, we obtained an estimated value of –1.43 V 

for the excited triplet state oxidation potential of acridine orange. Standard reduction 

potentials at pH 7.0 are 0.991 V26 and 0.330 V27 for the V(V)/V(IV) and O2/O2
•− couples, 

respectively. In the case of iron, the reduction potential of the LFe(III)/LFe(II) couple 

M
n -1

  +  H2O2 M
n
  + OH   +   OH-
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shows extreme variability based on the nature of the ligand L: at pH 7.0, standard values 

range from –0.750 V to 1.15 V. 28 Notwithstanding, the estimated excited singlet and 

excited triplet state oxidation potentials of acridine orange are more negative than all of 

the above ground state reduction potentials, indicating that it should be possible for 

acridine orange to sensitize one electron reduction of V(V), Fe(III), and O2. In the case of 

Fe(III) and O2, this assertion is supported by the following experimental data. Acridine 

orange photosensitized cell inactivation 29 and proflavin triplet state photosensitized DNA 

cleavage 7b, 15b have both been associated with superoxide production, while the excited 

triplet states of acridine orange,18a proflavin,18b  and other 3,6-acridinediamines18b have 

been shown to effect photoreduction of Fe(III) to Fe(II). Because the central core of 

compound 7 is a 3,6-acridinediamine nearly identical in structure to acridine orange 

(Figure 2.S1 in Supporting Information), the two chromophores are likely to have similar 

excited singlet and triplet state oxidation potentials. Electron transfer from the excited 

states of compound 7 to V(V), Fe(III), and O2 should also be feasible. This hypothesis is 

consistent with the following lines of evidence reported in this paper. (i) In a series of 

scavenger experiments, SOD was shown to inhibit Hg(II), Fe(III), Zn(II), and V(V)-

assisted DNA photocleavage, indicating that compound 7 is capable of photosensitizing 

one electron reduction of O2 to O2
•−  (Table 2.3). (ii) In a spectrophotometric assay based 

on 1,10-phenanthroline, compound 7 was shown to photosensitize one electron reduction 

of Fe(III) and V(V) (Figure 2.5). 

In summary, this report describes the synthesis and characterization of 

compounds 7 and 10, which contain a central DNA binding 3,6-acridinediamine 

chromophore attached to 4 and 2 metal coordinating imidazole rings, respectively. In a 
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survey of 16 metal salts, we have demonstrated that the highest levels of DNA 

photocleavage are attained by 7 in the presence of either Hg(II), Fe(III), Cd(II), Zn(II), 

V(V), or Pb(II) (pH 7.0, 22 ºC, 8 µM 7 to 50 µM 7). Scavenger experiments conducted 

with sodium azide, superoxide dismutase, catalase, and sodium benzoate indicated the 

involvement of Type I and Type II photochemical processes in these metal-assisted DNA 

photocleavage reactions. Compound 7 afforded relatively low amounts of photocleavage 

both in the absence of metal and in the presence of either Ni(II), Co(II), Cu(II), Sn(IV), 

Mn(II), Ca(II), Cr(III), Mg(II), Zr(IV), or Sc(III). We also showed that photocleavage 

could be modulated by modifying buffer type and pH.  

Metallic complex formation between compound 7 and the six photoactive metals 

Hg(II), Fe(III), Cd(II), Zn(II), V(V), and Pb(II) was implied by scavenger experiments in 

which EDTA was shown to inhibit metal-assisted DNA photocleavage. Direct evidence 

was provided by NMR and/or ESI mass spectral data.  

On the basis of thermal melting and spectroscopic studies, we concluded that 

several phenomena were likely to influence DNA photocleavage. When the 16 metals 

were added to 7, significant changes in emission quantum yield and significant increases 

in Tm were observed only for the seven borderline and soft metals in the series. The ΔTm 

values of 8 °C for Ni(II), 6 °C for Cd(II), 6 °C for Zn(II), 4 °C for Co(II), 3 °C for Cu(II), 

2 °C for Hg(II), and 2 °C for Pb(II) indicate that the seven borderline and soft metals 

form complexes that increase the binding affinity of 7 to DNA. Alternatively, the 

minimal “%Δ Φem + metal” and ΔTm values associated with Fe(III), Sn(IV), Sc(III), 

Zr(IV), Cr(III), Ca(II), Mg(II), Mn(II) and V(V) suggest that that these nine hard metals 

are unable to form strong complexes with the borderline imidazole rings of compound 7. 
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Regarding the six photoactive metals for which ESI mass spectra were recorded, the 

extent of metal complex formation (Cd(II) ≈ Zn(II) > Hg(II) ≈ Pb(II) >> Fe(III) > V(V)) 

was found to be in good agreement with the above melting temperature trends. It is likely 

that complex formation with positively charged metal enhanced electrostatic interactions 

between compound 7 and the negatively charged DNA phosphate backbone. This may in 

fact account for the increase in DNA photocleavage by compound 7 produced in the 

presence of Hg(II), Cd(II), Zn(II), and Pb(II). Although Ni(II), Co(II), and Cu(II) also 

raised Tm when added to compound 7, they were shown to efficiently quench 

fluorescence and in turn to inhibit photocleavage. Melting temperature values were 

unchanged upon addition of Fe(III) and V(V) to 7, in agreement with fluorescence 

quenching data and with ESI spectra that showed weak complexation between the two 

metals and 7. To account for the fact that DNA photocleavage was enhanced, we 

employed a colorimetric assay to demonstrate that compound 7 sensitized the one 

electron photoreduction of Fe(III) and V(V). The reduced metals would then accelerate 

the production of highly reactive, DNA damaging hydroxyl radicals by the Fenton 

reaction.20 

Perhaps our most significant finding was the notable increase in compound 7 

DNA photocleavage produced by Fe(III) in sodium phosphate buffer pH 7.0 (Figure 2.1, 

Figure 2.4, Table 2.2). This is important in light of the fact that the H2PO4
- and HPO4

2- 

conjugate pair constitutes one of the two most important buffering systems in human 

physiology. Second, iron is widely distributed throughout the human body and as a result, 

has the potential to play an important role in the photodynamic action of compound 7 in 

vivo. Several lines of experimental evidence have established that cellular lysosomes 
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contain low molecular weight pools of weakly chelated, redox active iron capable of 

catalyzing the Fenton reaction.11, 30 (This iron pool is thought to arise from lysosomal 

degradation of ferritin and other metalloproteins.) Upon entry into the cell, acridine 

orange accumulates mainly in the lysosomes and to the lesser degree in the cytoplasm 

and nucleus.11, 30a,c, 31 After this, iron catalyzed rupture of the lysosomal membranes is 

triggered by reactive oxygen species generated upon exposure to H2O2.11, 30a,c, 32 Irradiation 

of acridine orange with intense blue light also produces reactive oxygen species that 

rupture the membranes.31b, 33 In both cases, the acridine orange is relocated from the 

lysosomes to the cytoplasm and nucleus.11, 30a, 31b It has recently been suggested that 

membrane rupture also triggers the diffusion of the weakly chelated iron from the 

lysosomes into the nucleus, resulting in significant damage to genomic DNA by the 

Fenton reaction.11  

Acridine orange has demonstrated promise for use as a photosensitizer in 

photodynamic therapy. It is selectively localized in a number of tumor types and has been 

used to effect efficient in vivo photodestruction of epithelial tumors, Walker 

carcinosarcoma 256 stomach tumors, and musculoskeletal sarcomas in animal models.8 

Furthermore, the reactive oxygen species produced by irradiation of DNA bound acridine 

orange are thought to play a role in triggering tumor cell death.8a,c, 31a, 34 The 3,6-

acridinediamine 7 possesses four iron chelating imidazole rings attached to a central 

"acridine orange" core. In this paper, we have shown that iron markedly enhances DNA 

photocleavage by compound 7 in vitro, while having little if any effect on photocleavage 

produced by acridine orange (Table 2.1). We expect that it should also be possible for 

compound 7 to demonstrate superior photodynamic action in vivo. It is conceivable that 



  65 

compound 7 might chelate iron in lysosomes, facilitating the relocation of this metal to 

the nucleus upon irradiation-induced membrane rupture. Subsequent binding of 7 to 

nucleic acids would enable iron to catalyze the production of hydroxyl radicals within 

angstroms of genomic DNA. 

Conclusions 

Our data indicate that buffer, pH, Hg(II), Fe(III), Cd(II), Zn(II), V(V),  Pb(II) and 

light can be used to "tune" DNA cleavage by compound 7 under physiologically relevant 

conditions. In addition to its potential use as a photosensitizer in photodynamic therapy, 7 

has serendipitously demonstrated metal chemosensing capabilities as indicated by our 

spectrofluorometric experiments. Our immediate goal will be to explore the anti-tumor 

properties of compound 7 in vivo. The use of metal coordinating imidazole rings may 

represent an attractive chemical tool to enhance the photodynamic action of acridine 

orange for chemotherapeutic purposes.  

Experimental Section 

General Methods. Melting points were determined in an Electrothermal IA9100 

apparatus. Infrared spectra were taken on an FT-IR Perkin-Elmer 1725X 

spectrophotometer. All 1H and 13C NMR spectra were recorded at 300 and 75 MHz, 

respectively, on a Varian Mercury spectrometer. EI and CI mass spectra were generated 

on a Hewlett-Packard HP-5988a spectrometer at 70 eV, while ESI and APCI mass 

spectra were done either on an Automass Multi GC/API/MS Finnigan spectrometer or on 

a Micromass Q-Tof hybrid mass spectrometer. FAB mass spectra were recorded using a 

V.G. Autoexpec spectrometer with 3-nitrobenzyl alcohol as matrix. Elemental analyses 

were performed with a Heraeus CHN analyzer. Merck silica gel 60 (230-400 ASTM 
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mesh) was employed for flash column chromatography. UV-visible spectra were 

recorded with a Shimadzu UV-1601 spectrophotometer, while a Cary Bio100 UV-vis 

spectrophotometer (Varian) was used to plot thermal melting curves.  

Distilled, de-ionized water was utilized in the preparation of all buffers and 

aqueous reactions. Chemicals were of the highest available purity and were used without 

further purification. The metal salts CaCl2•2H2O, CdCl2, (CH3)2SnCl2, CoCl2•H2O, 

CrCl3•6H2O, CuCl2•2H2O, FeCl3•6H2O, HgCl2, MgCl2•6H2O, MnCl2•4H2O, Na3VO4, 

NiCl2•6H2O, PbCl2, Sc(CF3SO3)3, ZnCl2, and ZrCl4 were purchased from the Aldrich 

Chemical Company (purity > 99%). Superoxide dismutase and catalase were from 

Sigma. All other reagents, including cacodylic acid, ethidium bromide, 1,10-

phenanthroline monohydrate, sodium azide, sodium benzoate, sodium borate, sodium 

cacodylate, sodium phosphate dibasic, and sodium phosphate monobasic, were from 

Aldrich. Both 1H-imidazole-4-methanol hydrochloride,35 4-(chloromethyl)-1H-imidazole 

hydrochloride36 were synthesized according to reported procedures. Transformation of E. 

coli competent cells (Stratagene, XL-1 blue) with pUC19 plasmid DNA (Sigma) and 

growth of bacterial cultures in Lauria-Bertani broth were performed using standard 

laboratory protocols.37 The plasmid DNA was purified with a Qiagen Plasmid Mega Kit. 

Calf thymus DNA (average size of ≤ 2000 bp, Invitrogen Catalog # 15633-019) was 

utilized without further purification.  

To promote complex formation, aqueous stock solutions containing 250 µM of 7 

or 10 and 125 µM  of each respective metal salt were equilibrated in the dark for 24 h at 

22 °C. Subsequent photocleavage experiments and absorbance, emission and thermal 
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melting studies were conducted using the equilibrated solutions diluted to the appropriate 

concentration. 

2-[Bis(1H-imidazol-4-ylmethyl)amino]ethanol (1). To a solution of 2-

aminoethanol (0.6 mL, 9.8 mmol) in dry ethanol (20 mL) was added triethylamine (5.5 

mL, 39.2 mmol). The reaction mixture was heated at reflux after which a solution of 4-

(chloromethyl)-1H-imidazole hydrochloride (3 g, 19.6 mmol) in dry ethanol (30 mL) was 

added dropwise over 20 min. The mixture was heated at reflux for 3 h and the solvent 

evaporated under reduced pressure. The resulting residue was stirred with 

dichloromethane (100 mL) for 2 h, from which an oil was separated. The 

dichloromethane was decanted and the oily product purified by flash column 

chromatography using silica gel as adsorbent and methanol-ethyl acetate (1:1) as eluent. 

This afforded 2 as a colorless oil in 70% yield. IR (KBr): 3108, 2879, 1628, 1571, 1450, 

1085 cm-1. 1H NMR (CD3OD): δ 7.76 (d, J = 1.1 Hz, 2H, H-2), 7.16 (d, J = 1.1 Hz, 2H, 

H-5), 3.88 (s, 4H, CH2Im), 3.70 (t, J = 5.5 Hz, 2H, CH2OH), 2.81 (t, J = 5.5 Hz, 2H, 

CH2N). 13C NMR (CD3OD): δ 136.80 (C-2), 133.79 (C-4), 120.47 (C-5), 59.47 (CH2OH), 

55.70 (CH2N), 50.23 (CH2Im). MS (CI): m/z 222 ([M + H]+, 32%), 170 (8), 161 (41), 142 

(100), 109 (13), 90 (11), 81 (33). Anal. Calcd for C10H15N5O: C, 54.28; H, 6.83; N, 31.65. 

Found: C, 54.04; H, 6.90; N, 31.91.   

N-(2-Chloroethyl)-N-(1H-imidazol-4-ylmethyl)-1H-imidazole-4-methanamine 

Trihydrochloride (2). To a solution of 2-[bis(1H-imidazol-4-ylmethyl)amino]ethanol (1) 

(259 mg, 1.17 mmol) in dry DMF (5 mL) was added thionyl chloride (170 mL, 2.34 

mmol). The reaction mixture was stirred at room temperature for 24 h and then 

concentrated to dryness. The oily product thus obtained was dissolved in methanol, 
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precipitated with cold ethyl acetate, filtered out, and washed thoroughly with cold ethyl 

acetate. The hygroscopic solid was dried and kept under vacuum. Yield: 352 mg (86%); 

Mp: 173-174 ˚C. IR (KBr): 3412, 3118, 1701, 1621, 1439, 1277, 1169, 1087 cm-1. 1H 

NMR (CD3OD): δ 8.92 (d, J = 1.0 Hz, 2H, H-2), 7.59 (d, J = 1.0 Hz, 2H, H-5), 3.96 (s, 

4H, CH2Im), 3.65 (t, J = 6.5 Hz, 2H, CH2Cl), 2.93 (t, J = 6.5 Hz, 2H, CH2N). 13C NMR 

(CD3OD): δ 135.63 (C-2), 131.43 (C-4), 119.22 (C-5), 55.80 (CH2N), 48.45 (CH2Im), 

42.12 (CH2Cl). MS (ESI): m/z 240 [(M -3HCl) + H]+ (Calcd for C10H17Cl4N5 347). Anal. 

Calcd for C10H17Cl4N5: C, 34.58; H, 4.94; Cl, 40.31; N, 20.18. Found: C, 34.72; H, 4.91; 

N, 19.83. 

N-(2-Chloroethyl)-N-[1-(triphenylmethyl)-1H-imidazol-4-ylmethyl]-1-

(triphenylmethyl)-1H-imidazole-4-methanamine (3). To a solution of N-(2-

chloroethyl)-N-(1H-imidazol-4-ylmethyl)-1H-imidazole-4-methanamine trihydrochloride 

(2) (492 mg, 1.42 mmol) in dry DMF (8 mL) was added triethylamine (2 mL, 14.75 

mmol). The reaction mixture was stirred at room temperature for 20 min and then a 

solution of triphenylmethylchloride (2.10 g, 7.36 mmol) in anhydrous DMF (20 mL) was 

added dropwise. After 2 h stirring, the reaction mixture was poured onto crushed ice. The 

precipitate was filtered and purified by flash column chromatography using silica gel 

(0.1% Ca enriched) as adsorbent and ethyl acetate as eluent to give 3 in 61% yield; Mp: 

125-127 ˚C. IR (KBr): 3059, 3031, 2927, 1596, 1492, 1444, 1324, 1237 cm-1. 1H NMR 

(CDCl3): δ 7.36 (d, J = 1.5 Hz, 2H, H-2 Im), 7.30-7.26 (m, 18H, Ph), 7.13-7.08 (m, 12H, 

Ph), 6.60 (br s, 2H, H-5 Im), 3.64 (s, 4H, CH2Im), 3.41 (t, J = 7.4 Hz, 2H, CH2Cl), 2.84 

(t, J = 7.4 Hz, 2H, CH2N). 13C NMR (CDCl3): δ 142.36 (Cipso Ph), 138.48 (C-2 Im), 

138.25 (C-4 Im), 129.65, 127.98, 127.92 (Ph), 120.43 (C-5 Im), 75.10 (CPh3), 54.65 
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(CH2N), 51.90 (CH2Im), 42.13 (CH2Cl). MS (APCI): m/z 724 ([M + H]+) (Calcd for 

C48H42ClN5 723). Anal. Calcd for C48H42ClN5: C, 79.63; H, 5.85; Cl, 4.83; N, 9.68. 

Found: C, 79.92; H, 5.62; N, 9.45. 

3,6-Acridinediylbiscarbamic Acid Bis(1,1-dimethylethyl) Ester (4). To a 

solution of di-tert-butyl dicarbonate (26.4 mL, 115 mmol) in dry acetone (250 mL) was 

added 3,6-acridinediamine (2 g, 9.56 mmol). The reaction mixture was heated at reflux 

for 72 h and then concentrated to dryness. The crude product thus obtained was purified 

by flash column chromatography on silica gel using hexane-ethyl acetate (1:1) as eluent. 

The 3,6-acridinediylbiscarbamic acid bis(1,1-dimethylethyl) ester (4) was obtained in 

72% yield; Mp: > 280 ˚C. IR (KBr): 3282, 2976, 1703, 1618, 1523, 1461, 1367, 1336, 

1235, 1156 cm-1. 1H NMR (DMSO-d6): δ 9.81 (s, 2H, N-H), 8.75 (s, 1H, H-9), 8.19 (d, J 

= 2.2 Hz, 2H, H-4, H-5), 7.96 (d, J = 9.1 Hz, 2H, H-1, H-8), 7.58 (dd, J = 9.1, 2.2 Hz, 

2H, H-2, H-7), 1.52 (s, 18H, CMe3). 13C NMR (DMSO-d6): δ 152.90 (CO), 149.95 (C-4a, 

C-10a), 141.39 (C-3, C-6), 135.26 (C-9), 129.18 (C-1, C-8), 122.01 (C-8a, C-9a), 119.67 

(C-2, C-7), 112.40 (C-4, C-5), 79.88 (CMe3), 28.29 (CMe3). MS (EI): m/z 409 (M+, 17%), 

353 (8), 309 (18), 297 (93), 254 (13), 253 (83), 235 (3), 210 (11), 209 (72), 208 (25), 182 

(31), 181 (37), 179 (11), 154 (13), 153 (11), 127 (9). Anal Calcd for C23H27N3O4: C, 

67.46; H, 6.65; N, 10.26. Found: C, 67.59; H, 6.53; N, 10.02. Continued elution with 

ethyl acetate and then with ethyl acetate-acetone-triethylamine (5:5:1) afforded the (6-

amino-3-acridinyl)carbamic acid 1,1-dimethylethyl ester (8) in 10% yield. 

Synthesis of 3,6-Acridinediylbis[2-[bis[[1-(triphenylmethyl)-1H-imidazol-4-

yl]methyl]-amino]ethyl]carbamic Acid Bis(1,1-dimethylethyl) Ester (5). A mixture of 

3,6-acridinediylbiscarbamic acid bis(1,1-dimethylethyl) ester (4) (61 mg, 0.15 mmol) and 
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Cs2CO3 (635 mg, 1.95 mmol) in dry DMF (5 mL) was stirred at room temperature for 30 

min, after which N-(2-chloroethyl)-N-[1-(triphenylmethyl)-1H-imidazol-4-ylmethyl]-1-

(triphenylmethyl)-1H-imidazole-4-methanamine (3) (225 mg, 0.31 mmol) in 5 mL DMF 

was added. After 24 h of stirring at room temperature, 3 (225 mg, 0.31 mmol) in 6 mL 

DMF was added. The reaction was stirred for another 24 h and then poured onto crushed 

ice. The resulting precipitate was collected, washed thoroughly with cold water, dried and 

purified by flash column chromatography on silica gel using ethyl acetate-methanol (9:1) 

as eluent, yielding pure 3,6-acridinediyl-bis[2-[bis[[1-(triphenylmethyl)-1H-imidazol-4-

yl]methyl]-amino]ethyl]carbamic acid bis(1,1-dimethylethyl) ester (5) (239 mg, 89%); 

Mp: 125-127 ˚C. IR (KBr): 3423, 3059, 2926, 2849, 1698, 1615, 1492, 1448, 1367, 1300, 

1239, 1152, 1037 cm-1. 1H NMR (CDCl3): δ 8.37 (s, 1H, H-9 Acr), 7.87 (d, J = 1.8 Hz, 

2H, H-4, H-5 Acr), 7.62 (d, J = 9.1 Hz, 2H, H-1, H-8 Acr), 7.43 (dd, J = 9.1, 1.8 Hz, 2H, 

H-2, H-7 Acr), 7.31 (d, J = 1.1 Hz, 4H, H-2 Im), 7.23-7.15 (m, 36 H, Ph), 7.06-7.01 (m, 

24 H, Ph), 6.49 (d, J = 1.1 Hz, 4H, H-5 Im), 3.92 (t, J = 7.3 Hz, 4H, CH2N-Acr), 3.58 (s, 

8H, CH2Im), 2.84 (t, J = 7.3 Hz, 4H, CH2N), 1.39 (s, 18H, CMe3). 13C NMR (CDCl3): 

δ 154.15 (CO), 149.41 (C-4a, C-10a Acr), 144.81 (C-3, C-6 Acr), 142.41 (Cipso Ph), 

138.35 (C-2, C-4 Im), 134.62 (C-9 Acr), 129.63, 127.90, 127.83 (Ph), 127.49, (C-1, C-8 

Acr), 126.97 (C-2, C-7 Acr), 124.31 (C-8a, C-9a Acr), 123.53 (C-4, C-5 Acr), 120.38 (C-

5 Im), 80.56 (CMe3), 74.97 (CPh3) 51.87 (CH2N), 50.78 (CH2Im), 48.53 (CH2N-Acr), 

28.35 (CMe3). MS (FAB): m/z 1785 [M + H]+ (Calcd for C119H109N13O4 1784). Anal. 

Calcd for C119H109N13O4: C, 80.06; H, 6.15; N, 10.20. Found: C, 80.27; H, 6.22; N, 9.97. 

3,6-Acridinediyl-[2-[bis[[1-(triphenylmethyl)-1H-imidazol-4-yl]methyl]-

amino]ethyl]carbamic Acid Bis(1,1-dimethylethyl) Ester (6): Mp: 117-118 ˚C. IR 
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(KBr): 3415, 3058, 2975, 1698, 1617, 1569, 1544, 1492, 1450, 1367, 1240, 1152, 1037 

cm-1. 1H NMR (CDCl3): δ 8.46 (s, 1H, H-9 Acr), 7.92 (d, J = 1.7 Hz, 1H, H-4 Acr), 7.87 

(br s 2H, H-7, H-8 Acr), 7.76 (br s, H-5 Acr), 7.64 (d, J = 8.9 Hz, 1H, H-1 Acr), 7.41 (dd, 

J = 8.9, 1.7 Hz, H-2 Acr), 7.31 (d, J = 1.3 Hz, 2H, H-2 Im), 7.23-7.20 (m, 18H Ph), 7.05-

7.02 (m, 12H, Ph), 6.52 (d, J = 1.3 Hz, 2H, H-5 Im), 3.90 (t, J = 7.0 Hz, 4H, CH2N-Acr), 

3.59 (s, 4H, CH2Im), 2.84 (t, J = 7.0 Hz, 2H, CH2N), 1.58 (s, 9H, CMe3), 1.39 (s, 9H, 

CMe3). 13C NMR (CDCl3): δ 154.12, 152.40 (CO) 149.55 (C-4a, C-10a Acr), 144.97 (C-

3, C-6 Acr), 142.42 (Cipso Ph), 138.35 (C-2, C-4 Im), 135.01 (C-9 Acr), 129.64 (C-8 Acr 

and Ph), 127.88 (Ph), 127.80 (Ph and C-1 Acr), 126.57 (C-2 Acr), 123.78 (C-8a Acr), 

123.25 (C-9a, C-4a Acr), 120.42 (C-5 Im), 119.78 (C-7 Acr), 113.70 (C-5 Acr), 81.12, 

80.60 (CMe3), 75.01 (CPh3), 51.78 (CH2N), 50.94 (CH2Im), 48.42 (CH2N-Acr), 28.32 

(CMe3). MS (FAB): m/z 1097 [M+H]+ (Calcd for C71H68N8O4 1096). Anal. Calcd for 

C71H68N8O4: C, 77.71; H, 6.25; N, 10.21. Found: C, 77.51; H, 6.34; N, 10.47. 

N,N’-Bis[2-[bis(1H-imidazol-4-ylmethyl)amino]ethyl]-3,6-acridinediamine 

(7). A suspension of 5 (591 mg, 0.33 mmol) in 2 N HCl (20 mL) was heated at 50-60 ˚C 

for 3.5 h. The resulting precipitate of triphenylmethanol was filtered off and the filtrate 

basified to pH 8-9 with 2 N NaOH. The precipitate thus obtained was filtered, washed 

with cold water, and dried in a vacuum dessicator to give 177 mg (87%) of pure product; 

Mp: 146-148 ˚C. IR (KBr): 3118, 2923, 2834, 2834, 1642, 1610, 1450, 1375, 1279, 1168, 

1105 cm-1. 1H NMR (CD3OD): δ 8.30 (s, 1H, H-9 Acr), 7.62-7.58 (m, 6H, H-1, H-8 Acr 

and H-2 Im), 6.97 (d, 4H, J = 0.7 Hz, 4H, H-5 Im), 6.90 (dd, J = 9.2, 2.2 Hz, 2H, H-2, H-

7 Acr), 6.58 (d, J = 2.2 Hz, 2H, H-4, H-5 Acr), 3.69 (s, 8H, CH2Im), 3.28 (t, J = 5.9 Hz, 

4H, CH2N-Acr), 2.76 (t, J = 5.9 Hz, 4H, CH2N). 13C NMR (CD3OD): δ 153.13 (C-4a, C-
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10a Acr), 150.36 (C-3, C-6 Acr), 138.54 (C-9 Acr), 136.49 (C-2 Im), 134.90 (C-4 Im), 

130.64 (C-1, C-8 Acr), 120.65 (C-5 Im), 120.10 (C-8a, C-9a Acr), 119.22 (C-2, C-7 Acr), 

97.91 (C-4, C-5 Acr), 52.13 (CH2N), 50.74 (CH2Im), 41.72 (CH2N-Acr). MS (FAB) m/z 

616 [M + H]+ (Calcd for C33H37N13 615). Anal. Calcd for C33H37N13: C, 64.37; H, 6.06; N, 

29.57. Found: C, 64.24; H, 6.11; N, 29.71. 

(6-Amino-3-acridinyl)carbamic Acid 1,1-Dimethylethyl Ester (8). To a 

solution of di-tert-butyldicarbonate (4.4 mL, 19.12 mmol) in dry acetone (150 mL) was 

added 3,6-acridinediamine (2 g, 9.56 mmol). The reaction mixture was heated at reflux 

for 8 h and then concentrated to dryness. The crude product thus obtained was purified by 

flash column chromatography using silica gel as adsorbent. With hexane-ethyl acetate 

(1:1) as eluent, 3,6-acridinediylbiscarbamic acid bis(1,1-dimethylethyl) ester (4) (746 mg, 

25%) was obtained. Continued elution with ethyl acetate and then ethyl acetate-acetone-

triethylamine (5:5:1) afforded 2.3 g (59%) of the (6-amino-3-acridinyl)carbamic acid 1,1-

dimethylethyl ester (8); Mp: > 280 ˚C. IR (KBr): 3363, 2976, 1709, 1624, 1572 cm-1. 1H 

NMR (DMSO-d6): δ 9.69 (s, 1H, N-H), 8.50 (s, 1H, H-9), 8.05 (d, J = 2.1 Hz, 1H, H-4), 

7.81 (d, J = 9.1 Hz, 1H, H-1), 7.73 (d, J = 9.1 Hz, 1H, H-8), 7.43 (dd, J = 9.1, 2.1 Hz, 1H, 

H-2), 6.99 (dd, J = 9.1, 2.1 Hz, 1H, H-7), 6.85 (d, J = 2.1 Hz, 1H, H-5), 6.04 (s, 2H, 

NH2), 1.51 (s, 9H, CMe3). 13C NMR (DMSO-d6): δ 152.93 (CO), 151.49 (C-10a), 151.06 

(C-6), 49.75 (C-4a), 140.93 (C-3), 134.96 (C-9), 129.61 (C-8), 129.12 (C-1), 120.54 (C-

9a), 120.11 (C-8a), 120.00 (C-7), 117.68 (C-2), 112.16 (C-4), 102.93 (C-5), 79.68 

(CMe3), 28.32 (CMe3). MS (EI): m/z 309 (M+, 8%), 253 (33), 235 (23), 209 (100), 182 

(31), 181 (25), 127 (5), 104 (7), 57 (10). Anal. Calcd for C18H19N3O2: C, 69.88; H, 6.19; 

N, 13.58. Found: C, 69.61; H, 6.13; N, 13.84. 
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(6-Amino-3-acridinyl)-[2-[bis[[1-(triphenylmethyl)-1H-imidazol-4-

yl]methyl]amino]ethyl]carbamic Acid 1,1-Dimethylethyl Ester (9). To a mixture of 6-

amino-3-acridinyl)carbamic acid 1,1-dimethylethyl ester (8) (156 mg, 0.51 mmol) and 

cesium carbonate (900 mg, 2.76 mmol) in dry DMF (40 mL) was added N-(2-

chloroethyl)-N-[1-(triphenylmethyl)-1H-imidazol-4-ylmethyl]-1-(triphenylmethyl)-1H-

imidazole-4-methanamine (3) (400 mg, 0.55 mmol). The reaction mixture was stirred at 

room temperature under argon. After 24 and 48 h, an additional amount (100 mg, 0.14 

mmol) of 3 was added. Finally, the reaction was stirred for another 24 h and then poured 

onto crushed ice. The precipitate was filtered and washed with cold water. The solid thus 

obtained was purified by column chromatography on silica gel (0.1% Ca enriched) using 

ethyl acetate-triethylamine (10:1) and acetone-ethyl acetate-triethylamine (5:5:1) as 

eluents, yielding pure 9 (428 mg, 85 %); Mp: 115-117 ˚C. IR (KBr): 3353, 3058, 2925, 

1694, 1641, 1612, 1492, 1463, 1445 cm-1. 1H NMR (CD3OD): δ 8.46 (s, 1H, H-9 Acr), 

7.77 (d, J = 9.0, 1H, H-8 Acr), 7.71 (d, J = 2.0, 1H, H-4 Acr), 7.61 (d, J = 9.0 Hz, 1H, H-

1 Acr), 7.29 (d, J = 1.5 Hz, 2H, H-2 Im), 7.21-7.18 (m, 19H, H-2 Acr and Ph), 7.12 (dd, J 

= 9.0, 2.0 Hz, 1H, H-7 Acr), 7.01-6.96 (m, 13H, H-5 Acr and Ph), 6.55 (d, J = 1.5 Hz, 2H, 

H-5 Im), 3.82 (t, J = 7.0 Hz, 2H, CH2N-Acr), 3.52 (s, 4H, CH2Im), 2.74 (t, J = 7.0 Hz, 

2H, CH2N), 1.36 (s, 9H, CMe3). 13C NMR (CD3OD): δ 155.52 (CO), 153.43 (C-10a Acr), 

151.69 (C-4a Acr), 148.94 (C-6 Acr), 146.14 (C-3 Acr), 143.28 (Cipso Ph), 139.01, 138.88 

(C-2, C-4 Im), 137.84 (C-9 Acr), 130.89 (C-8 Acr), 130.49 (Ph), 129.62 (C-1 Acr), 

129.02 (Ph), 125.31 (C-2 Acr), 123.35, 122.89, (C-8a, C-9a Acr), 122.28 (C-4 Acr), 

121.89, 121.82 (C-5 Im, C-7 Acr), 102.54 (C-5 Acr), 82.00 (CMe3), 76.64 (CPh3), 54.79 

(CH2N), 52.72 (CH2Im), 52.18 (CH2N-Acr), 28.71 (CMe3). MS (FAB): m/z 997 [M + H]+ 
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(Calcd for C66H60N8O2 996). Anal. Calcd for C66H60N8O2: C, 79.49; H, 6.06; N, 11.24. 

Found: C, 79.63; H, 6.21; N, 10.96. 

N-[2-[Bis(1H-imidazol-4-ylmethyl)amino]ethyl]-3,6-acridinediamine (10). A 

suspension of 9 (377 mg, 0.38 mmol) in 2 N HCl (20 mL) was heated at 50-60 ˚C for 3.5 

h. The resulting white precipitate of triphenylmethanol was filtered off and the filtrate 

basified to pH 8-9 with 2 N NaOH. The precipitate thus obtained was filtered and dried in 

a vacuum dessicator, affording 109 mg (70%) of pure product that decomposed above 

198 ˚C. IR (KBr): 3328, 3115, 2827, 1610, 1521, 1464, 1418, 1390, 1274, 1223, 1159, 

1104 cm-1. 1H NMR (CD3OD): δ 8.36 (s, 1H, H-9 Acr), 7.67-7.60 (m, 2H, H-1, H-8 

Acr), 7.63 (s, 2H, H-2 Im), 7.25 (s, 1H, NH-Acr), 6.97 (s, 2H, H-5 Im), 6.91 (m, 2H, H-2, 

H-7 Acr), 6.85 (br s, 1H, H-5 Acr), 6.58 (br s, 1H, H-4 Acr), 3.68 (s, 4H, CH2Im), 3.27 (t, 

J = 6.0 Hz, 2H, CH2N-Acr), 2.74 (t, J = 6.0 Hz, 2H, CH2N). 13C NMR (CD3OD): 

δ 153.80, 153.33, (C-4a, C-10a Acr), 150.24, 149.76, (C-3, C-6 Acr), 139.02 (C-9 Acr), 

136.49 (C-2 Im), 134.99 (C-4 Im), 131.30, 130.78, (C-1, C-8 Acr), 120.60 (C-5 Im), 

120.11, 119.94,  (C-8a, C-9a Acr), 119.44, 118.87 (C-2, C-7 Acr), 101.50 (C-5 Acr), 

97.46 (C-4 Acr), 52.09 (CH2N), 50.74 (CH2Im), 41.69 (CH2N-Acr). MS (FAB): m/z 413 

[M+H]+ (Calcd for C23H24N8 412). Anal. Calcd for C23H24N8: C, 66.97; H, 5.86; N, 27.16. 

Found: C, 66.84; H, 5.61; N, 27.56. 

Photocleavage Experiments. In a total volume of 20 µL, individual reactions 

contained 38 µM bp pUC19 plasmid DNA in (i) 20 mM buffer or in (ii) 20 mM buffer, 

50 µM 7 and/or 25 µM of one of the following metal salts: CaCl2•2H2O, CdCl2, 

(CH3)2SnCl2, CoCl2•H2O, CrCl3•6H2O, CuCl2•2H2O, FeCl3•6H2O, HgCl2, MgCl2•6H2O, 

MnCl2•4H2O, Na3VO4, NiCl2•6H2O, PbCl2, Sc(CF3SO3)3, ZnCl2, or ZrCl4. The buffer 



  75 

systems employed were: 20 mM sodium cacodylate pH 5.0, 6.0, and 7.0; 20 mM sodium 

phosphate pH 5.0, 6.0, 7.0, and 8.0; and sodium borate pH 8.0, and 9.0. Reactions were 

kept in the dark or were irradiated for 50 min at 22 °C in 1.7 mL microcentrifuge tubes 

with a broad-spectrum 4 W T4T5/D fluorescent lamp (EIKO Ltd.) located 6 cm above 

the opened tubes. Aerobic ventilation was achieved by placing a table fan directly 

adjacent to the lamp. Cleavage products were then electrophoresed on a 1.0 % non-

denaturing agarose gel stained with ethidium bromide (0.5 µg/mL), visualized on a 

transilluminator set at 302 nm, photographed, and scanned. Amounts of supercoiled, 

nicked and linear plasmid DNA were then quantitated using ImageQuant Mac v.1.2 

software (Amersham Biosciences). In calculating photocleavage yields, the density of the 

supercoiled DNA band was multiplied by a correction factor of 1.22 to compensate for 

the relatively low ethidium bromide staining efficiency of supercoiled DNA compared to 

nicked and linear plasmid. 

Thermal Melting Studies. Individual 3 mL solutions containing 12.5 mM bp calf 

thymus DNA in (i) 20 mM sodium phosphate buffer pH 7.0 or in (ii) 20 mM sodium 

phosphate buffer pH 7.0, 8 µM 7 and/or 4 µM of each of the 16 metal salts were placed 

in 3 mL (1 cm) quartz cuvettes (Starna). For V(V) and Pb(II), 20 mM sodium cacodylate 

buffer was used to substitute for the sodium phosphate buffer. While absorbance was 

monitored at 260 nm, DNA was denatured by using a Peltier heat block to increase the 

temperature from 25 ºC to 100 ºC at a rate of 0.5 °C min-1. KaleidaGraph™ Version 3.5 

was then utilized to approximate the first derivative of ΔA260/ΔT vs temperature, where 

the Tm value at the inflection point of each sigmoidal melting transition was marked by 

the maximum of its corresponding first derivative plot.  
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Scavenger Experiments. Individual 20 µL reactions containing 20 mM sodium 

phosphate buffer pH 7.0, 38 µM bp pUC19 plasmid DNA, 50 µM 7, and 25 µM of the 

metals salts CdCl2, FeCl3•6H2O, HgCl2, Na3VO4, PbCl2, and ZnCl2 were irradiated with a 

broad-spectrum 4 W T4T5/D fluorescent lamp (EIKO Ltd.) in the presence of either 100 

mM sodium azide, 100 mM sodium benzoate, 50 U superoxide dismutase, 50 U catalase, 

or 100 mM EDTA (50 min at 22 °C). For V(V) and Pb(II), 20 mM sodium cacodylate 

buffer was used to substitute for the sodium phosphate buffer. Reaction products were 

then resolved on a 1.0% non-denaturing agarose gel and quantitated as described above. 

The percent inhibition of DNA photocleavage was calculated based on cleavage yields 

obtained in parallel reactions run without scavenger: [((% cleavage in the presence of 7 

and metal) – (% cleavage in the presence of scavenger, 7, and metal))/(% cleavage in the 

presence of 7 and metal)] x 100. 

Quantum Yield Measurements. Emission spectra were recorded from 440 to 

630 nm at 25 °C in 1 cm quartz cuvettes (Starna) using an Olis SLM-8000 

spectrofluorimeter equipped with Olis Spectral Works v. 3.0.12 software. A 2 µM 

solution of proflavin in 50 µM  potassium acetate buffer pH 4.0 (Φ = 0.27, 38 λmax = 444 

nm, ε = 30 800 M-1 cm-1) was used as the reference to calculate the quantum yields of 5 

µM 7 in 20 mM sodium phosphate buffer pH 7.0 (λmax = 459 nm, ε = 20 000 M-1 cm-1) 

and in 20 mM sodium cacodylate buffer pH 7.0. Compound 7, calf thymus DNA, and 

metal salt were adjusted to the following concentrations in order to give an absorbance of 

~0.04 at the 430 nm excitation wavelength:  4-7 µM 7 and 2-3.5 µM metal salt in 

solutions containing compound 7 and metals salt; 7-10 µM 7, 3.5-5 µM and 10.9-15.6 

µM bp DNA in solutions containing compound 7, metal salt, and calf thymus DNA. 
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Additional emission spectra were then recorded 20 mM sodium phosphate buffer pH 7.0 

and in 20 mM sodium cacodylate buffer pH 7.0 after which emission quantum yields 

were relative to 7 in the appropriate buffer. The excitation and emission monochromator 

slit widths of the spectrofluorimeter were set at 1 nm and 8 nm, receptively. An excitation 

polarizer set at 0° and an emission polarizer set at the “magic angle” (54.7°) were used in 

order to eliminate possible effects from non-isotropic fluorescence. Lamp spectral 

intensity output was monitored by recording the Raman peak of water (λex = 350 nm, λem 

397 nm) and the emission of 7 (λex = 430 nm, λem 500 nm). The emission spectra were 

corrected for wavelength-dependent response of the spectrofluorimeter, converted to 

quanta units, and integrated. Relative emission quantum yields were then calculated by 

the comparative method.39 All data were averaged over three trials with errors reported as 

standard deviation. 

Colorimetric Detection of Fe(II).21 A series of 500 µL reactions was prepared 

containing 20 mM sodium phosphate buffer pH 7.0 and two or more of the following 

reagents: 50 µM 7, 25 µM  FeCl3•6H2O, and 400 µM 1,10-phenanthroline monohydrate. 

The samples were irradiated with the 4W F4T5/D fluorescent lamp, while a parallel set of 

reactions was kept in the dark. After 50 min, the solutions were visually examined for 

color change, placed in 500 µL quartz cuvettes, and monitored between 250 nm and 650 

nm for evidence of Fe(II)–1,10-phenanthroline complex formation. To dissociate the 510 

nm complex, an irradiated reaction sample containing 50 µM 7, 25 µM  FeCl3•6H2O, and 

400 µM 1,10-phenanthroline was equilibrated in 100 mM EDTA for 6 h in the dark.  

Colorimetric Detection of V(IV).22 In order to detect V(IV), the following 

modifications were made to the colorimetric assay described above: (i) 20 mM sodium 
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cacodylate buffer pH 7.0 and 25 µM  Na3VO4 were used during photolysis to substitute 

for 20 mM sodium phosphate buffer and 25 µM FeCl3•6H2O; (ii) after 50 min of 

irradiation, 12.5 µL of 1 mM FeCl3•6H2O were added to the reactions containing 7, 

V(V), 1,10-phenanthroline, and V(V), 1,10-phenanthroline. The solutions were 

equilibrated in the dark for 45 min, visually examined for color change, and monitored 

between 200 nm and 650 nm for evidence of Fe(II)–1,10-phenanthroline complex 

formation.  
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Figure 2.7. Synopsis Graphic. The synthesis and DNA photocleaving properties of a 3,6-
acridinediamine chromophore centrally attached to four metal coordinating imidazoles 
are reported. Nicking assays of pUC19 plasmid DNA reacted with this acridine-imidazole 
conjugate reveal that the presence of either Hg(II), Fe(III), Cd(II), Zn(II), V(V), or Pb(II) 
serves to markedly enhance DNA cleavage produced by irradiation with low intensity, 
visible light. Moreover, photocleavage efficiency can be regulated by modifying buffer 
type and pH. 
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Supporting Information 

 

Figure 2.S1. The 3,6-acridinediamines 7, 10, acridine orange, and proflavin. 
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CHAPTER III 

Copper-Activated DNA Photocleavage by a Pyridine-Linked  

Bis-Acridine Intercalator 

(This chapter is verbatim as it will appear in Fernández, M.-J.; Wilson, B.; Palacios, M.; 
Rodrigo, M.-M.; Grant, K. B.; Lorente, A. Bioconjugate Chemistry. The synthesis of 
compound 4 was conducted by Ms. Palacios and Dr. Fernández. Additionally, 
competition dialysis experiments and electrospray spectrometry were conducted by Dr. 
Fernández. The original manuscript was written by Drs. Fernández, Lorente, and Grant. 
The contributions to the project by the author of this dissertation were as follows: thermal 
denaturation and DNA photocleavage experiments, viscometric titrations, colorimetric 
assays and minor revisions to the manuscript. The final manuscript was extensively 
revised by Dr. Grant.) 
 

Abstract 

We report the synthesis of new photonuclease 4 consisting of two acridine rings 

joined by a pyridine-based copper binding linker. We have shown that photocleavage of 

plasmid DNA is markedly enhanced when this ligand is irradiated in the presence of 

copper(II) (419 nm, 22 °C, pH 7.0). Viscometric data indicate that 4 binds to DNA by 

monofunctional intercalation, and equilibrium dialysis provides an estimated binding 

constant of 1.13 x 105 M-1 for its association with calf thymus DNA. In competition 

dialysis experiments, 4 exhibits preferential binding to GC-rich DNA sequences. When 

Cu(II) is added at a ligand to metal ratio of 1:1, electrospray ionization mass 

spectrometry demonstrates that compound 4 undergoes complex formation, while thermal 

melting studies show a 10 °C increase in the Tm of calf thymus DNA. Groove binding and 

intercalation are suggested by viscometric data. Finally, colorimetric and scavenger 

experiments indicate that the generation of Cu(I), H2O2, and superoxide contributes to the 

production of DNA frank strand breaks by the Cu(II) complex of 4. Whereas the strand 

breaks are distributed in a relatively uniform fashion over the four DNA bases, 
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subsequent piperidine treatment of the photolysis reactions shows that alkaline labile 

lesions occur predominantly at guanine. 

Introduction 

The design and synthesis of small molecules that bind to and cleave nucleic acids 

are still major challenges. These artificial nucleases have important applications as tools 

in molecular biology and as potential therapeutic agents for the treatment of cancer and 

viral diseases. DNA cleavage is often associated with redox active or photoactivated 

transition metal complexes (1-3). To date, a number of metal complexes capable of 

inducing double-stranded DNA lesions have been developed (4-7). 

Photosensitization of intercalating units can promote DNA damage by three main 

mechanisms: a) electron transfer from DNA nucleobases, specially guanine, to a 

photochemically excited state of the intercalator, b) photogeneration of hydroxyl radicals, 

an intermediate reactive species which can abstract hydrogen atoms from the DNA sugar 

backbone, and c) preferential oxidation of guanines by singlet molecular oxygen 

generated through energy transfer from an electronically excited photosensitizer (8-11). 

In some cases, photoreduction of metal complexes is an important step in DNA cleavage 

reactions (12-16). 

Photochemical DNA-cleaving molecules can be used as photonucleases, as photo-

footprinting agents, and as drugs in photodynamic therapy. Copper exists at micromolar 

levels in serum and other biological fluids (17), and is closely associated with nucleic 

acids and chromosomes (18-20), where it is thought to play a role in regulating gene 

expression (21, 22). Taking this into account, photonucleases which bind to copper may 

be of greater utility at the cellular level in comparison to photonucleases containing other 
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transition metals or to chemical nucleases which require an external reducing agent. 

Accordingly, a number of references on copper binding complexes with photolytic 

activity have appeared in the literature (14-15, 23-35). While in vivo levels of free copper 

are tightly controlled by proteins (36-38), the kinetically labile nature of this metal allows 

ion exchange between small ligands and proteins to take place (38, 39). 

Herein we present the synthesis, characterization, and DNA photocleaving 

properties of a pyridine-linked bis-acridine intercalator (4). We have found that 4 is a 

good DNA photocleaver, but that cleavage efficiency is markedly enhanced in the 

presence of Cu(II), converting pUC19 plasmid DNA into its nicked and linear forms 

upon exposure to visible light (419 nm, pH 7.0, 22 °C). Use of the colorimetric reagent 

bathocuproinedisulfonic acid disodium salt hydrate (BCS) indicates that the DNA 

photocleavage reaction involves acridine sensitized photoreduction of Cu(II) to Cu(I). 

Materials and Methods 

General Procedures. Merck silica gel 60 (230-400 ASTM mesh) was employed 

for flash column chromatography. TLC was performed on precoated aluminum silica gel 

plates (Merck or Macherey-Nagel 60F254 0.25 mm). Melting points were determined in 

an Electrothermal digital IA9100 apparatus. Infrared spectra were taken on an FT-IR 

Perkin-Elmer 1725X spectrophotometer. All 1H and 13C NMR spectra were recorded at 

300 and 75 MHz, respectively, on a Varian Mercury-VX-300 spectrometer. Chemical 

shifts are reported in ppm using the residual peaks of either chloroform (δ 7.26 and 77.0 

ppm) or methanol (δ 3.30 and 49.0 ppm) as an internal reference. Carbon and proton 

assignments were based on HSQC and HMBC experiments. CI mass spectra were 

generated on a Hewlett-Packard HP-5988a spectrometer at 70 eV. An Automass Multi 
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GC/API/MS Finnigan spectrometer was used for ESI mass spectra. Elemental analyses 

were performed with a Heraeus CHN analyzer. A Cary Bio100 UV-visible 

spectrophotometer (Varian) was used to plot thermal melting curves, while all other UV-

visible spectra were recorded with a Shimadzu UV-1601 or a Lambda 18 Perkin-Elmer 

spectrophotometer. DNA photolysis reactions were run in an aerobically ventilated 

Rayonet Photochemical Reactor fitted with eight RPR–4190 Å lamps (The Southern New 

England Ultraviolet Company). 

Reagents were of the highest available purity and were used without further 

purification. L-ascorbic acid, catalase, copper(II) chloride dihydrate, sodium phosphate 

monobasic and dibasic salts, and superoxide dismutase were purchased from Sigma. 

Glycogen and G-50 Sephadex columns were from Roche Applied Science. Sequenase™ 

Version 2.0, Sequenase™ Stop Solution, and [35S]dATPaS were supplied by Amersham 

Biosciences. EcoRI and FspI restriction endonucleases were from New England Biolabs. 

All other chemicals including bathocuproinedisulfonic acid disodium salt hydrate, 

dimethyl sulfoxide, ethanol, ethidium bromide, D-mannitol, piperidine, and sodium azide 

were obtained from the Aldrich Chemical Company. Both 2,6-bis[(2-

hydroxyethyl)methylaminomethyl]pyridine (1) (40) and (6-amino-3-acridinyl)carbamic 

acid methyl ester (3) (41) were prepared according to reported procedures. 

Transformation of E. coli competent cells (Stratagene, XL-1 blue) with pUC19 

plasmid DNA (Sigma) and growth of bacterial cultures were performed according to 

established methods (42). Purification of the plasmid DNA was accomplished using a 

Qiagen Plasmid Mega Kit. All enzymes were used according to manufacturer's 

instructions in the buffers supplied.  
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2,6-Bis[(2-chloroethyl)methylaminomethyl]pyridine (2). Thionyl chloride (10 

mL) was added to 348 mg (1.32 mmol) of 2,6-bis[(2 

hydroxyethyl)methylaminomethyl]pyridine (1). The reaction mixture was stirred at room 

temperature for 24 h and then was concentrated at reduced pressure affording a syrup 

characterized as 2 • 3HCl. IR (film): υ 3393, 2968, 2666, 1598, 1463, 1407, 1217, 1160, 

756 cm-1. 1H-NMR (CD3OD): δ 8.04 (t, J = 7.7 Hz, H4), 7.56 (d, J = 7.7 Hz, 2H, H3, H5), 

4.62 and 4.80 (AB, 4H, J = 14 Hz, CH2-pyr), 4.12 (t, J = 6.4 Hz, 4H, CH2Cl), 3.69 (m, 

4H, CH2N), 3.01 (s, 6H, CH3). 13C-NMR (CD3OD): δ 151.44 (C2, C6), 140.92 (C4), 

125.41 (C3, C5), 60.54 (CH2-pyr), 58.33 (CH2N), 42.21 (CH3), 38.04 (CH2Cl). To a 

solution of 1.23 g (3.08 mmol) of 2 • 3HCl in methanol (20 mL), 1.14 g (10.78 mmol) of 

Na2CO3 were added. The mixture was stirred for 3 h and then concentrated to dryness. 

The residue was treated with dichloromethane (25 mL) and the mixture was washed three 

times with water (10 mL). The organic layer was dried over MgSO4, filtered and 

concentrated at reduced pressure to yield 2 as a brown oil (580 mg, 65%). IR (film): υ 

2950, 2795, 1591, 1577, 1455, 1353, 1305, 1262, 1118, 1062, 739 cm-1. 1H-NMR 

(CDCl3): δ 7.65 (t, J = 7.7 Hz, 1H, H4), 7.35 (d, J = 7.7 Hz, 2H, H3, H5), 3.73 (s, 4H, 

CH2-pyr), 3.59 (t, J = 6.9 Hz, 4H, CH2Cl), 2.81 (t, J = 6.9 Hz, 4H, CH2N), 2.35 (s, 6H, 

CH3). 13C-NMR (CDCl3): δ 158.23 (C2, C6), 136.93 (C4), 121.31 (C3, C5), 63.59 (CH2-

pyr), 58.69 (CH2N), 42.59 (CH3), 41.56 (CH2Cl). MS (CI) m/z 290 ([M+H] +, 39%), 254 

(100) (calcd C13H21Cl2N3 289.1). Anal. Calcd for C13H21Cl2N3: C, 53.80; H, 7.29; N, 

14.48, Cl 24.43. Found: C, 53.94; H, 7.09; N, 14.77.  

2,6-Bis{[((6-amino-acridin-3-yl)methoxycarbonylamino)-

ethyl]methylaminomethyl} pyridine (4). To a solution of (6-amino-3-
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acridinyl)carbamic acid methyl ester (3) (184 mg, 0.69 mmol) in dry DMF (5 mL), 80% 

NaH (41 mg, 1.38 mmol) was added. The reaction mixture was stirred under an argon 

atmosphere for 20 min and then a solution of 2,6-bis[(2-

chloroethyl)methylaminomethyl]pyridine (2) (100 mg, 0.345 mmol) in dry DMF (6 mL) 

was added. The reaction mixture was heated at 50 °C for 20 h and then concentrated at 

reduced pressure. The crude product thus obtained was purified by flash column 

chromatography on silica gel using ethyl acetate/acetone/triethylamine (5:3:1), affording 

unreacted carbamate 3. Continued elution with ethyl acetate/methanol/triethylamine 

(10:2:1) afforded the desired product as an oil. The product was then dissolved in 

chloroform and precipitated with diethyl ether affording 81 mg (31%) of an orange solid. 

Mp: 128-130 °C. IR (KBr): υ 3414, 1702, 1638, 1612, 1459, 1383, 1158 cm-1. 1H-NMR 

(CDCl3): δ 8.49 (s, 2H, H9), 7.85 (d, J = 2.2 Hz, 2H, H4), 7.80 (d, J = 9.0 Hz, 2H, H1), 

7.77 (d, J = 9.0 Hz, 2H, H8), 7.35 (t, J = 7.7 Hz, 1H, H4 pyr), 7.30 (dd, J = 9.0, 2.2 Hz, 

2H, H2), 7.19 (d, J = 2.2 Hz, 2H, H5), 7.09 (d, J = 7.7 Hz, 2H, H3, H5 pyr), 7.00 (dd, J = 

9.0, 2.2 Hz, 2H, H7), 3.95 (t, J = 6.9 Hz, 4H, CH2N-acridine), 3.68 (s, 6H, OCH3), 3.55 

(s, 4H, CH2-pyr), 2.63 (t, J = 6.9 Hz, 4H, CH2NMe), 2.17 (s, 6H, NCH3). 13C-NMR 

(CDCl3): δ 158.40 (C2, C6 pyr), 155.86 (CO), 151.16 (C10a), 149.51 (C4a), 148.65 (C6), 

143.57 (C3), 136.57 (C4 pyr), 135.42 (C9), 129.72 (C8), 128.57 (C1), 124.63 (C2), 

124.06 (C4), 123.20 (C9a), 121.94 (C8a), 120.82 (C3, C5 pyr), 120.15 (C7), 106.00 (C5), 

63.77 (CH2-pyr), 55.46 (CH2NMe), 52.96 (OCH3), 48.31 (CH2N-acridine), 42.52 (NCH3). 

MS (ESI) m/z 752 [M+H] + (calcd for C43H45N9O4 751.36). Anal. Calcd for C43H45N9O4: 

C, 68.69; H, 6.03; N, 16.77. Found: C, 68.81; H, 6.13; N, 16.49. A stock solution of 4 

was prepared in dimethyl sulfoxide (purity ≥ 99.9%) and was stored at –20 °C until use.  
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Viscometric Titrations. UltraPure™ Calf Thymus DNA (Invitrogen Catalog 

Number 15633-019, average size ≤ 2000 bp, 10 mg/mL in ddH2O) was used without 

further purification. Viscosity experiments were conducted in a Cannon-Ubbelohde size 

75 capillary viscometer immersed in a thermostated, circulating water bath maintained at 

25 ± 0.2 ºC. Compound 4 was titrated in a Buffer A: 6 mM Na2HPO4, 2 mM NaH2PO4, 1 

mM Na2EDTA, and 15 mM NaCl (pH 7.0). Alternatively, Cu(II) and Cu(II):4 (ligand to 

metal ratio of 1:1) were titrated in Buffer B: 20 mM sodium phosphate (pH 7.0). In three 

separate titrations, a total of five 10 µL aliquots of each of the following three stock 

solutions were sequentially added to 1000 µL of the appropriate buffer in the viscometer 

containing 200 µM bp calf thymus (CT) DNA: (i) 4 (400 µM in Buffer A); (ii) Cu(II):4 

(400 µM each, in Buffer B), and Cu(II) (400 µM in Buffer B). After each sequential 

addition, the resulting solution was allowed to equilibrate for 15 min before the flow time 

was recorded with a stopwatch. (The final concentrations of 4, Cu(II):4, and Cu(II) 

ranged from 4 to 20 µM in each of the three titrations.) The flow times of the buffer and 

then of the DNA in buffer were also recorded. All measurements were averaged over four 

trials to an accuracy of + 0.2 s. After subtracting the averaged flow time of the buffer, 

DNA (η0) and dye-DNA (η) averaged flow times were plotted as (η/ηo)1/3 versus the 

molar ratio r of dye to DNA bp (43). Slopes were generated by conducting linear least 

square fits to these data (KaleidaGraph version 3.6.4 software). 

Competition Dialysis Assay. Calf thymus (CT), Clostridium perfringens (CP), 

and Micrococcus lysodeikticus (ML) DNAs and the synthetic polynucleotides poly(dA)-

poly(dT), [poly(dGdC)]2 and [poly(dAdT)]2 were purchased from Sigma and were used 

without further purification. A buffer containing 6 mM Na2HPO4, 2 mM NaH2PO4, 1 mM 
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Na2EDTA, and 185 mM NaCl (pH 7.0) was utilized in the preparation of all nucleic acid 

stock solutions. The concentrations of the nucleic acid solutions were determined by UV-

visible spectrophotometry using the λmax values and extinction coefficients listed in Table 

3.S1 (Supporting Information). In a buffer consisting of 6 mM Na2HPO4, 2 mM 

NaH2PO4, 1 mM Na2EDTA, and 15 mM NaCl (pH 7.0), competition dialysis experiments 

were performed as described by Chaires (44, 45). For each dialysis assay, a 0.5 mL 

volume of DNA (75 µM bp DNA in buffer; Table 3.S1) was pipetted into one of 6 

individual Spectra/Por DispoDialyzer units (S135062, Spectrum Laboratories, Inc.). The 

6 dialysis units were then placed in a beaker containing 225 mL of a 1.5 µM solution of 4 

in buffer. The beaker was covered with Parafilm and wrapped in foil, and its contents 

were allowed to equilibrate with continuous stirring for 24 h at room temperature (20-22 

ºC). At the end of the equilibration period, the DNA solutions inside the dialysis units 

were carefully transferred to microcentrifuge tubes and a 10.0% (w/v) stock solution of 

sodium dodecyl sulfate (SDS) was added to give a final concentration of 1.0% (w/v). The 

DNA-SDS solutions were allowed to equilibrate for 2 h, after which the total 

concentration of ligand 4 (Ct) was determined by UV-visible absorbance measurements 

using the extinction coefficient for free ligand 4 in the presence of 1.0% SDS (ε451 = 

22,716 M-1 cm-1). An appropriate correction for the slight dilution of the sample resulting 

from the addition of SDS stock solution was made. The concentration of free ligand 4 

(Cf; ε451= 12,500 M-1 cm-1) was also determined spectrophotometrically using an aliquot 

of the dialysate solution. The amount of DNA-bound 4 (Cb) was calculated  by difference 

(Cb = Ct - Cf). 
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Thermal Melting Studies. Individual 3 mL solutions containing 15 µM bp of 

calf thymus DNA (Invitrogen Cat. #15633-019) in 20 mM sodium phosphate buffer pH 

7.0 or in 20 mM sodium phosphate buffer pH 7.0, 10 µM 4 and/or 10 µM CuCl2 were 

placed in 3 mL (1 cm) quartz cuvettes (Starna). The DNA was then denatured by 

increasing the temperature from 25 °C to 100 °C at a rate of 0.5 °C min-1 while 

absorbance was monitored at 260 nm. KaleidaGraph™ Version 3.5 software was used to 

approximate the first derivative of ΔA260/ΔT vs temperature, where the Tm value for each 

melting transition was marked by the maximum of the first derivative plot. 

Photocleavage of Supercoiled Plasmid DNA. Concentration profile reactions 

were conducted in a volume of 20 µL as follows. A total of 38 µM bp of pUC19 plasmid 

DNA in 20 mM sodium phosphate buffer pH 7.0 or in 20 mM sodium phosphate buffer 

pH 7.0, 50 µM, 30 µM, 20 µM, 10 µM, 5 µM, or 2 mM of CuCl2 and/or one mol equiv 

(50 µM, 30 µM, 20 µM, 10 µM, 5 µM, or 2  µM) of 4 was irradiated for 50 min at 419 

nm and 22 °C. A parallel control reaction consisting of 20 mM sodium phosphate buffer 

pH 7.0, 38 µM bp of pUC19, 50 µM of CuCl2, and 50 µM of 4 was kept in the dark for 50 

min. 

Individual time course reactions were conducted in a volume of 20 µL. A total of 

38 µM bp of pUC19 plasmid DNA in 20 mM sodium phosphate buffer pH 7.0 or in 20 

mM sodium phosphate buffer pH 7.0, 50 µM CuCl2 and/or 50 µM 4 was irradiated at 419 

nm and 22 °C. The 20 µL reactions were removed from the Rayonet Photochemical 

Reactor at 10, 20, 30, 40 or 50 min time intervals. Parallel controls consisting of 20 mM 

sodium phosphate buffer pH 7.0, 38 µM bp of pUC19 plasmid, 50 µM of CuCl2, and/or 

50 µM of 4 were kept in the dark for 50 min. After the addition of 3 µL of electrophoresis 
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loading buffer to the photocleavage reactions (15.0% (w/v) Ficoll, 0.025% (w/v) 

bromophenol blue), cleavage products were separated on a 1.0% non-denaturing agarose 

gel stained with ethidium bromide (0.5 µg/mL). To determine the percent conversion of 

supercoiled plasmid DNA to nicked and linear forms, the gel was visualized on a 

transilluminator set at 302 nm, photographed, and then quantitated using ImageQuant v. 

5.2 software (Amersham Biosciences). 

Colorimetric Detection of Copper(I). A series of 500 µL reactions was prepared 

in which each contained 20 mM sodium phosphate buffer pH 7.0 and one or more of the 

following reagents: 50 µM of 4, 50 µM of CuCl2, and 38 µM bp of pUC19 plasmid DNA. 

The samples were irradiated at 419 nm in the absence and presence of 100 µM of 

bathocuproinedisulfonic acid disodium salt hydrate, while a parallel set of reactions was 

kept in the dark. After 50 min, the solutions were visually examined for color change, 

placed in 500 µL quartz cuvettes, and monitored between 200 nm and 600 nm for 

evidence of Cu(I)–bathocuproine complex formation. As a positive control, 500 µL 

samples containing 20 mM sodium phosphate buffer pH 7.0 and 100 µM 

bathocuproinedisulfonic acid disodium salt hydrate in the presence of 50 µM CuCl2 or 50 

µM CuCl2 and 50 µM L-ascorbic acid were reacted at 22 °C for 1 min, after which UV-

visible spectra were recorded. 

Inhibition of DNA Photocleavage. Twenty µL reactions containing 20 mM 

sodium phosphate buffer pH 7.0, 38 µM bp pUC19 plasmid DNA, 50 µM of 4, and 50 

µM of CuCl2 were irradiated at 419 nm for 50 min in the presence of either 100 mM 

sodium azide, 100 mM D-mannitol, 100 U superoxide dismutase, 100 U catalase, or 100 

µM bathocuproinedisulfonic acid disodium salt hydrate. Reaction products were then 
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resolved on a 1.0% non-denaturing agarose gel and quantitated as described above. The 

percent inhibition of DNA photocleavage was calculated based on a comparison to 

parallel reactions run in the absence of scavenger or chelator. 

DNA Photocleavage at Nucleotide Resolution. EcoRI linearized pUC19 

plasmid was 3'-end-labeled using Sequenase™ Version 2.0 and [35S]dATPαS according 

to an established laboratory protocol (46). Unincorporated nucleotides were removed 

with a G-50 Sephadex spun column. The DNA was then digested with FspI to produce a 

restriction fragment 138 bp in length, and resolved on a 2.0% agarose gel. The fragment 

was excised and DNA was isolated using a QIAquick Gel Extraction Kit purchased from 

Qiagen. The purified DNA was stored in a total volume of 400 µL of deionized, distilled 

water at -78 °C.  

Typical photocleavage reactions contained 15 µM bp of the 138 bp DNA 

fragment in 20 mM sodium phosphate buffer pH 7.0 or in 20 mM sodium phosphate 

buffer pH 7.0, 5 µM 4 and 5 µM CuCl2 (50 µL total volume). The samples were 

irradiated for 2 h at 419 nm, after which DNA was precipitated with 40 µg glycogen/2.5 

volumes EtOH, and washed with 70.0% EtOH. A duplicate set of reactions was 

precipitated, dissolved in 100 mL of 1.0% piperidine, heated at 90 °C for 30 min, and 

then lyophilized to dryness. Cleavage products without and with piperidine treatment 

were dissolved in 4 µL of Sequenase™ Stop Solution (95.0% (v/v) deionized formamide, 

10 mM EDTA, 0.1% (w/v) xylene cyanol and 0.1% (w/v) bromophenol blue), denatured 

for 3 min at 95 °C, and resolved on a 10.0% denaturing polyacrylamide gel adjacent to G, 

G+A, and T chemical sequencing reactions. To determine yields, the gel was scanned 

with a FujiFilm Image Reader v. 2.01 Gel Imaging System. The resulting storage-
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phosphor autoradiogram was quantitated using FujiFilm ImageGauge v. 3.41 software. 

The DNA sequencing reactions were performed as previously described (46). 

Results and Discussion 

Our approach to the design of ligand 4 combines a 2,6-bis(aminomethyl)pyridine-

based copper binding moiety and two photochemically active 3,6-acridinediamine groups 

as DNA recognition elements. The ligand 2,6-bis(aminomethyl)pyridine and its amino-N-

substituted analogs form stable 1:1 complexes with Cu(II) (logQCu(II) = 15.2-15.7, 

equilibrium quotient Q = [ML]/[M][L]; 47, 48). Alternatively, acridine orange, proflavin, 

and other 3,6-acridinediamines intercalate into DNA and, upon irradiation with visible 

light, efficiently effect DNA photocleavage (16, 49-51). Therefore, the acridine rings of 4 

were intended to increase DNA binding and to initiate DNA photocleavage. We also took 

into account that cleavage levels might be enhanced by acridine sensitized 

photoreduction of pyridine-bound copper(II). 

Synthesis of Ligand 4. Compound 4 was obtained from 2,6-bis[(2-

hydroxyethyl)methylaminomethyl]pyridine (1) (40), which upon treatment with thionyl 

chloride at room temperature for 24 h, followed by basification with sodium carbonate 

afforded 2,6-bis[(2-chloroethyl)methylaminomethyl]pyridine (2) as a brown oil in 65% 

yield. Compound 2 was reacted with (6-amino-3-acridinyl)carbamic acid methyl ester (3) 

(41) in anhydrous DMF with 80% NaH as base at 50 °C for 20 h (Scheme 3.1). 

Purification of the crude product afforded 4 in 31% yield.  
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Scheme 3.1. Synthesis of Ligand 4 

 

Viscometric Analysis. In order to test for the intercalating ability of 4 and to 

further examine its behaviour as a groove binder or as a mono- or bis-intercalator, DNA 

viscosity measurements were conducted. In the process of intercalation, helical DNA 

unwinds to accommodate planar aromatic ring systems that become inserted in between 

DNA base pairs. This process is accompanied by an effective increase in contour length 

that adds to the intrinsic viscosity of the DNA polymer. Because groove binding 

compounds do not markedly lengthen helical DNA, there is no significant change in 

viscosity (52). Consequently, viscometric titrations represent a highly reliable method for 

establishing the binding modes of DNA interacting ligands (52).  

The viscometry data for compound 4 and copper(II) are presented as plots of 

(η/ηo)1/3 (the relative increase in DNA contour length) versus r (the molar ratio of added 

compound to DNA base pairs). The contour lengths in the presence (η) and absence (ηo) 

 

N

N

OH

N

OH

H3C

H3C

N

N

Cl

N

Cl

H3C

H3C

N NH2N
H

H3CO2C

N NH2

N

N

N

N

H3C

H3C

N NH2N

H3CO2C

H3CO2C

4

3

1 2

a,b

c

a
 SOCl2/ RT/ 24 h

b
 Na2CO3/ MeOH

c
 80% NaH/ DMF/ 50 °C/ 20 h

Scheme 1. Synthesis of Ligand 4

1

2

4 5

7

89



  99 

of these reagents were calculated by the method of Cohen and Eisenberg (43). Figure 3.1 

shows that compound 4 increases the relative contour length of calf thymus DNA as a 

function of increasing r and that the slope (0.82) obtained from the (η/ηo)1/3 versus r plot 

falls within the range expected for monofunctional intercalators (53). It is conceivable 

that the lowest energy conformation of 4 is incompatible with the neighbor exclusion 

principle and therefore permits the intercalation of only one acridine ring. In contrast, the 

viscometric data of copper(II) with CT DNA yield slopes of -0.12 and 0.41 in the absence 

and presence of one mol equiv of 4, respectively. The observed reduction in slope from 

0.82 to 0.41 may indicate that interaction of the compound’s 2,6-

bis(aminomethyl)pyridine linker with copper(II) induces a conformational change that 

introduces a competing, non-intercalative DNA binding mode, most likely groove 

binding. Notwithstanding, the increase in the apparent DNA contour length by the 

copper(II) complex of 4 is still substantial, suggesting some degree of intercalative 

binding (54). 

Electrospray Ionization Mass Spectrometry. Our next goal was to obtain direct 

evidence of copper(II) complex formation. Ligand 4 was reacted with CuCl2 in HPLC 

grade methanol at a ligand to metal ratio of 1:1 (90 min, 22 °C), after which a positive-

ion electrospray (ESI) mass spectrum was recorded (Figure 3.S1 in Supporting 

Information). Isotopic distributions of molecular ions corresponding to the following 1:1 

metallic complexes were observed: (i) [4HCuCl]2+ between 425 and 428 m/z (calcd for 

[C43H46N9O4CuCl]2+ 425.13); (ii) [4CuCl]1+ between 849 and 855 m/z (calcd for 

[C43H45N9O4CuCl]1+ 849.26); and (iii) [4HCuCl2]1+ between 885 and 892 m/z (calcd for 

[C43H46N9O4CuCl2]1+ 885.24). 
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Figure 3.1. Change in relative DNA contour length (η/ηo)1/3 of CT DNA as a function of 
r, the molar ratio of compound to DNA base pairs. Viscometric titrations were conducted 
in the presence of: (i) compound 4 (circles; slope = 0.82; 6 mM Na2HPO4, 2 mM 
NaH2PO4, 1 mM Na2EDTA and 15 mM NaCl buffer pH 7.0);  (ii) compound 4 and 
copper(II) at a ligand to metal ratio of 1:1 (squares; slope = 0.41; 20 mM sodium 
phosphate buffer pH 7.0); (iii) copper(II) (triangles; slope = -0.12; 20 mM sodium 
phosphate buffer pH 7.0). 
 

Competition Dialysis. The results of dialysis experiments are depicted in a bar 

graph which shows the concentrations of ligand 4 bound to calf thymus, Clostridium 

perfringens, and Micrococcus lysodeikticus DNAs and to the synthetic, double-helical 

polynucleotides poly(dA)-poly(dT), [poly(dGdC)]2 and [poly(dAdT)]2 (Table 3.S1, 

Figure 3.2). The data were obtained after equilibrating 1.5 µM of 4 (in the dialysate 

solution) and 75 µM bp of nucleic acid (in each sample dialysis unit) for 24 h. At the end 

0.95

1.00

1.05

1.10

0 0.02 0.04 0.06 0.08 0.1

r

( !
/!
o
)1
/3



  101 

of the equilibration period, UV-visible spectra were recorded in order to determine the 

concentrations of free ligand 4 and DNA-bound 4. The amount of the DNA-bound ligand 

was averaged over three trials and the estimated error was between 5-10% for each 

nucleic acid structure tested. The competition dialysis data were then used to calculate the 

apparent association constants of ligand 4, given by Kapp = Cb / Cf [DNA], where Cb and 

Cf are the DNA-bound and free ligand concentrations, respectively, and [DNA] is the 

concentration of DNA in molar base pairs (Table 1).1 Clearly, the data in Figure 3.2 and 

Table 3.1 indicate that ligand 4 shows a preference for GC base pairs as exemplified by 

an increase in levels of binding to ML DNA (71% GC, Kapp = 1.26 x105 M-1) relative to CP 

DNA (31% GC; Kapp = 0.85 x105 M-1). 

 

 

Figure 3.2. The bar graph indicates the concentrations of DNA-bound ligand 4 detected 
after a 24 h equilibration in competition binding dialysis studies of six DNA sequences. 
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Table 3.1. Apparent Association Constants Obtained by Competition Dialysisa  
  Deoxyribo Nucleic Acid Kapp  x105 M-1 
    [poly(dGdC)]2   (100% GC) 1.30 

ML DNA   (72% GC) 1.26 

CT DNA   (42% GC) 1.13 

CP DNA   (31% GC) 0.85 

poly(dA)-poly(dT)   (0% GC) 0.66 

[poly(dAdT)]2   (0% GC) 0.63 

a The abbreviations ML DNA, CT DNA, and CP DNA correspond to Micrococcus 
lysodeikticus, Calf thymus, and Clostridium perfringens DNAs, respectively. 
 

Thermal Melting Studies. The majority of DNA intercalators bind to double-

helical DNA through a combination of π-π stacking and electrostatic interactions. As a 

consequence, double-helical DNA is stabilized, and the melting temperature (Tm) of the 

duplex is increased as a function of the increasing binding affinity of the intercalator (55). 

Melting temperature (Tm) values of 15 µM bp calf thymus DNA in 20 mM sodium 

phosphate buffer pH 7.0 were derived from thermal melting curves recorded at 260 nm 

(Figure 3.3). While 10 µM of Cu(II) had no effect in the absence of the ligand, 10 µM of 

4 increased the Tm of calf thymus DNA by 4 °C and 10 °C in the absence and presence of 

10 µM concentrations of Cu(II), respectively. Taken together, these data indicate that 4 

binds to double-helical DNA, thereby increasing its stability. Duplex stability is then 

further enhanced by the interaction of 4 with copper(II). In light of the above viscometric 

data, this result would appear to suggest that groove binding and intercalation of 4 in the 

presence of Cu(II) might stabilize duplex DNA to a greater degree than simple 

monointercalation. It is conceivable that complex formation with positively copper might 
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enhance electrostatic interactions between 4 and the negatively charged phosphate 

backbone of the DNA duplex. Notwithstanding, the increase in Tm observed when Cu(II) 

is added to 4 indicates that the apparent DNA association constant Kapp of the Cu(II) 

complex of 4 is higher than the Kapp of the free ligand 4.1 The small increases in low 

temperature absorbance produced by compound 4 and its Cu(II) complex probably arise 

from thermally induced changes in the ratio of DNA-bound ligand to free ligand (Figure 

3.3; 56). 

 
Figure 3.3. Thermal melting curves and Tm values of 15 µM bp calf thymus DNA in the 
absence and presence of 10 µM 4 and/or 10 µM CuCl2 (20 mM sodium phosphate buffer 
pH 7.0). 
 

Photocleavage of Supercoiled Plasmid DNA. To detect the formation of DNA 

frank strand breaks,2 a preliminary concentration profile was conducted in which 

individual samples containing 38 µM bp of pUC19 plasmid DNA in 20 mM sodium 
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phosphate buffer pH 7.0 were equilibrated with 50 µM to 2 µM of 4 in the absence and 

presence of one mol equiv of CuCl2. The samples were irradiated for 50 min at 419 nm 

and 22 °C in an aerobically ventilated Rayonet Photochemical Reactor, after which DNA 

photocleavage products were resolved on a 1.0% non-denaturing agarose gel. The results 

of the profile showed that one mol equiv of Cu(II) enhanced DNA photocleavage 

produced by 50 to 20 µM concentrations of compound 4 in a concentration-dependent 

fashion, with maximum levels of photocleavage occurring in the 50 µM reaction (Figure 

3.S2 in Supporting Information).  

DNA photocleavage as a function of time was studied next. Reactions consisting 

of 20 mM sodium phosphate buffer pH 7.0 with 38 µM bp pUC19 plasmid DNA, 50 µM 

of compound 4, and 50 µM of CuCl2 were irradiated as described above, except that the 

reactions were removed at 10 to 50 min time points prior to agarose gel electrophoresis. 

While 50 µM of intercalator 4 clearly demonstrated time-dependent DNA photocleavage 

(Figure 3.4, Lanes 1 to 5), reaction yields were markedly enhanced at all time points upon 

the addition of equivalent concentrations of CuCl2 (Figure 3.4, Lanes 6 to 10). (Virtually 

no cleavage was observed in parallel control reactions run in the dark; Figure 3.4, Lanes 

C3 and C4.) Notably, after 50 min of irradiation, supercoiled plasmid was converted into 

28% nicked DNA in the presence of Cu(II)/buffer, 55% nicked in 4/buffer, and 75% 

nicked plus 18% linear when 4/Cu(II)/buffer were present in combination (Figure 3.4, 

Lanes C2, 5, and 10, respectively). Taking into consideration that 15% of photonicked 

DNA was produced in buffer alone, it is evident that ligand 4 and Cu(II) interact in a 

synergistic rather than additive fashion. Because photoreduction of Fe(III) is readily 

effected with visible light by means of electron transfer from the photochemically excited 
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triplet states of acridine orange and other 3,6-diaminoacridines (57, 58), we hypothesized 

that a potential source of synergism might involve acridine sensitized photoreduction of 

pyridine-bound Cu(II). Subsequent reaction of Cu(I) with O2 would be expected to 

generate DNA cleaving, reactive oxygen species (59-61). 

 

Figure 3.4. A photograph of a 1.0% non-denaturing agarose gel showing photocleavage 
of pUC19 plasmid DNA in the presence of 50 µM of 4 without and with 50 µM of CuCl2 
(22 °C, pH 7.0). C1 and C2 correspond to DNA irradiated at 419 nm, without and with 
CuCl2, respectively (no 4). C3 and C4 correspond to DNA treated for 50 min with 4, 
without and with CuCl2, respectively (no hν). Lanes 1-10 correspond to DNA irradiated 
at 419 nm for 10, 20, 30, 40, and 50 min in the presence of 4, without and with CuCl2. 
The above yields corresponding to C1, C2, Lane 5, and Lane 10 were averaged over 
three trials with standard deviations of ± 3%, ± 5%, ± 3%, and ± 2%, respectively. S, L, 
and N designate supercoiled, linear, and nicked forms of pUC19 plasmid DNA. 
 

Colorimetric Detection of Copper(I). Our next goal was to obtain experimental 

evidence that would substantiate photoreduction of Cu(II) by ligand 4. We utilized a 

colorimetric assay based on bathocuproinedisulfonic acid disodium salt hydrate (BCS), 
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which forms a 2:1 stable, brightly colored orange complex with Cu(I) (λmax = 480 nm; ε = 

13,500 M-1 cm-1; 62). Photolysis reactions in 20 mM sodium phosphate buffer pH 7.0 

were irradiated at 419 nm and 22 °C for 50 min in the presence of one or more of the 

following reagents: 50 µM 4, 50 µM CuCl2, 38 µM bp pUC19 plasmid DNA, 100 µM 

BCS, after which UV-visible spectra were immediately recorded (Figure 3.5). Parallel 

reactions run in the dark were used as negative controls (Figure 3.5 B, D). As a control 

for BCS-Cu(I) complex formation, 100 µM BCS was reacted with 50 µM CuCl2 in the 

absence and presence of 50 µM of the reducing agent L-ascorbic acid (Figure 3.5 F). 

As expected, the addition of BCS to Cu(II) produced a bright orange color and 

signature 480 nm absorption in the L-ascorbic acid control reaction (Figure 3.5 F), but 

not in any of the dark DNA reactions (even those containing 4 and/or Cu(II); Figure 3.5 

B, D), and not in any reactions in which BCS was omitted (Figure 3.5 A, B). However, 

the DNA reaction irradiated in the presence of ligand 4, Cu(II), and BCS produced a 

significant orange color change. In addition, a strong hyperchromic absorption band 

indicative of the formation of a BCS-Cu(I) complex was observed at 472 nm (Figure 3.5 

C: DNA + 4 + Cu(II) + BCS). (Spectral overlap with 4 and/or one of its photoproducts 

most likely accounts for the 8 nm blue shift relative to 480 nm: Figure 3.5 C compared to 

Figure 3.5 E, F.) Importantly, there was no evidence of BCS-Cu(I) complex formation 

when 4 was omitted from the photocleavage reaction (Figure 3.5C: DNA + Cu(II) + 

BCS). When DNA was left out, significant absorption and color were still produced 

(Figure 3.5 E: 4 + Cu(II) + BCS). Therefore, the BCS data collectively indicate that bis-

acridine ligand 4 sensitizes photoreduction of Cu(II) to Cu(I) and that DNA is not 

required for photoreduction.  
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Figure 3.5. UV-visible spectra to assay for Cu(I)-BCS complex formation in 20 mM 
sodium phosphate buffer pH 7.0, 22 °C. 
 

Inhibition of DNA Photocleavage. To further investigate mechanism(s) 

underlying the Cu(II)-assisted formation of DNA frank strand breaks, we conducted the 

following inhibition experiments. Individual photocleavage reactions consisted of 38 µM 

bp of pUC19 plasmid DNA, 50 µM of 4 and 50 µM of CuCl2 pre-equilibrated with one of 

the following reagents: the singlet oxygen (1O2) scavenger sodium azide, the hydroxyl 

radical (•OH) scavenger D-mannitol, the hydrogen peroxide (H2O2) scavenger catalase, 

the superoxide (O2•
−) scavenger superoxide dismutase (SOD), and the Cu(I)-specific 

chelating agent BCS. From examination of the data in Table 3.2, it is evident that sodium 

azide, catalase, and BCS blocked frank stand break formation to a significant degree, 
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while D-mannitol was almost completely ineffective. Intermediate levels of inhibition 

were produced by SOD, indicating that superoxide contributes to photocleavage. (SOD 

produces H2O2, which can itself play a part in cleavage and thereby lower inhibition by 

this enzyme.) Although the piperidine labile lesion 8-hydroxyguanosine is the primary 

form of DNA damaged produced by singlet oxygen, the relative efficiency of sodium 

azide implies that singlet oxygen may play a major role: singlet oxygen is capable of 

cleaving DNA directly by producing frank strand breaks at guanine bases (63). However, 

because frank strand breaks account for no more than 5% of total DNA damage produced 

by 1O2 (64), it is conceivable that cleavage inhibition by sodium azide involves a copper-

peroxide type complex (60) of ligand 4. The relatively strongly inhibitory effects of 

catalase and of the Cu(I)-specific chelating agent BCS clearly indicate that hydrogen 

peroxide and Cu(I) participate in DNA photocleavage. Alternatively, the ineffectiveness 

of the hydroxyl radical scavenger D-mannitol suggests that freely diffusible hydroxyl 

radicals do not make a significant contribution. This latter result is consistent with the 

majority of literature reports in which copper-peroxide type complexes rather than 

hydroxyl radicals were found to be the principal reactive species involved in DNA 

cleavage by Cu(II)/Cu(I) redox cycling systems (59-61, 65). A mechanism consistent 

with the above photocleavage inhibition data is shown in Figure 3.6 (61). It is 

conceivable that Cu(II) bound to the pyridine linker of ligand 4 is photoreduced to Cu(I), 

which in turn reacts with hydrogen peroxide to produce a DNA damaging Cu(I)-peroxide 

complex. Because the colorimetric BCS assay detected Cu(I) only when 4 was present, it 

can also be inferred that DNA photocleavage involves acridine-sensitized photoreduction 

of Cu(II) to Cu(I). 
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Table 3.2. Average % Inhibition of DNA Photocleavage by Scavengers and BCSa 
   Scavenger/chelator Species Targeted Percent Inhibition 
      D-mannitol (100 mM) •OH 5+1 

superoxide dismutase (100 U) O2•
− 29+1 

BCS (100 mM)  Cu(I) 51+2 b 

catalase (100 U) H2O2 56+2 

sodium azide (100 mM) 1O2 61+3 

a Individual reactions consisting of 38 µM bp of pUC19 plasmid DNA equilibrated with 
50 µM of 4, 50 µM of CuCl2, and one of the above reagents were irradiated under aerobic 
conditions at 419 nm for 50 min at 22 °C. Percent inhibition was averaged over three 
trials with error reported as standard deviation. Final reagent concentrations are in 
parenthesis. b In control experiments, we observed direct photocleavage of DNA by BCS 
in the absence of 4 (data not shown). Therefore, the 51% inhibition produced by BCS 
may be lower than the actual % inhibition value. 
 

 

Figure 3.6. A proposed model in which superoxide (O2•
−), hydrogen peroxide (H2O2), 

and Cu(I) contribute to the formation of a Cu(I)-peroxide complex.  
 

DNA Photocleavage at Nucleotide Resolution. In order to map the sequence-

specificity of Cu(II)-assisted DNA photocleavage, pUC19 plasmid was linearized with 

EcoRI, 3'-end labeled with [35S]dATPαS, and then cut with FspI to produce a 138 bp 

restriction fragment (58). Reactions containing 15 µM bp of the radiolabeled DNA 

fragment in the absence and presence of 5 µM 4 and 5 µM CuCl2 were irradiated at 419 

nm for 2 h (20 mM sodium phosphate buffer pH 7.0). Half of the reactions were 

 

H HO O H2O2
1e- 1H

Cu(I) + O2 Cu(II) + O2

Cu (I) + H2O2 Cu(I)OOH + H

O2
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subsequently treated with 1.0% piperidine (90 °C, 30 min) in order to produce strand 

breaks at alkaline labile lesions in the DNA. Products were electrophoresed adjacent to 

G, G+A, and T chemical sequencing reactions on a 10.0% denaturing polyacrylamide gel, 

after which cleavage patterns were analyzed. Shown in Figure 3.7 are cleavage plots of a 

representative 40 bp sequence within the radiolabeled restriction fragment. The top 20 

bases producing the highest levels of photocleavage appear in the inset of each plot. In 

the absence of piperidine, it is evident that the Cu(II) complex of 4 almost always 

produces frank strand breaks without a marked base preference (Figure 3.7A). This result 

suggests that photocleavage may involve hydrogen atom abstraction from deoxyribose. 

Because sugar residues are present in every nucleotide, reagents which function by 

hydrogen atom abstraction are expected to cleave at all nearby DNA sequences 

irrespective of base composition (11). Singlet oxygen and direct electron transfer from 

DNA nucleobases produce DNA damage predominately at guanine bases (11, 63), and 

are therefore unlikely to have made overriding contributions to the formation of frank 

strand breaks. Alternatively, the cleavage pattern was changed after the DNA photolysis 

reactions were treated with piperidine, showing preferential damage at guanine. This 

result indicates that alkaline labile lesions were formed at guanine bases, either through 

the production of singlet oxygen and/or by direct electron transfer from DNA (Figure 

3.7B). 
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Figure 3.7. Cleavage plots of a representative 40 bp DNA sequence. Photocleavage 
intensities as a function of DNA base were calculated by quantitating a storage-phosphor 
autoradiogram of DNA photocleavage products resolved on a 10.0% denaturing 
polyacrylamide gel (Figure 3.S3 in Supporting Information). A total of 15 µM bp of 35S 
3'-end labeled 138 bp restriction fragment was irradiated at 419 nm in the presence of 5 
µM 4 and 5 µM CuCl2 without (A) and with (B) subsequent piperidine treatment. The 
ordinate is in units of fa – fc, where fa is the fractional cleavage intensity produced in the 
photocleavage reaction and fc is fractional cleavage intensity in a parallel control reaction 
in which DNA was irradiated in the absence of the Cu(II) complex of compound 4, 
without (A) and with (B) the piperidine treatment. A horizontal line has been drawn 
through each plot in order to identify the top 20 DNA bases (inset) producing the highest 
levels of cleavage. 
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Conclusion 

In summary, our data indicate that Cu(II) markedly enhances DNA photocleavage 

by ligand 4 under near physiological conditions of temperature and pH. Although the 

precise cleavage mechanism is unknown, at this time we believe that the formation of 

frank strand breaks may involve acridine sensitized photoreduction of Cu(II) to Cu(I) 

followed by reaction of 4/Cu(I) with hydrogen peroxide to form a copper-peroxide 

complex. Considering the bioavailability of copper at the cellular level, copper-based 

photonucleases are advantageous in comparison to complexes based on other metals or to 

chemical nucleases which require an external reducing agent for their activity. To the best 

of our knowledge, bis-acridine 4 is only the third example of a photonuclease that has 

been shown to cleave DNA by a process that involves direct photochemical reduction of 

copper (14, 15). Our future work will focus on mechanistic studies and on synthetic 

endeavors to develop new copper-based photonucleases for use in chemical and medical 

applications. 

Footnotes 

1 Competition dialysis experiments were conducted at room temperature in 

sodium phosphate buffer pH 7.0. Under these conditions, the UV-visible spectra of the 

Cu(II) complex of 4 and of ligand 4 were found to be nearly super imposable. Therefore, 

the Kapp of the Cu(II) complex of 4 could not be accurately determined by competition 

dialysis because the concentration of the Cu(II) complex of 4 versus that of 4 could not 

be ascertained. 
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2 DNA frank strand breaks are defined as single- or double-stranded DNA breaks 

directly induced by the effects of a cleaving reagent alone, in the absence of subsequent 

treatment with alkaline or with a secondary amine such as piperidine. 
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Supporting Information 

Table 3.S1. Nucleic Acid Samples Used in Competition Dialysis Experimentsa 

   Deoxyribo Nucleic Acid λ (nm) ε (M-1(bp) cm-1) 

      [poly(dGdC)]2  (100% GC) 254 16,800 

ML DNA  (72% GC)  260 13,846 

CT DNA  (42% GC) 260 12,824 

CP DNA  (31% GC) 260 12,476 

poly(dA)-poly(dT) (0%GC) 260 12,000 

[poly(dAdT)]2 (0% GC) 262 13,200 

a ε is the molar extinction coefficient at the wavelength l, expressed in terms of DNA base 
pairs.  
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Figure 3.S1. (A) Positive ion ESI mass spectrum showing complexes formed between 
ligand 4 and CuCl2 in HPLC grade methanol at a ligand to metal ratio of 1:1. Isotopic 
distributions of molecular ions corresponding to the following 1:1 metallic complexes are 
observed: (i) [4HCuCl]2+ between 425 and 428 m/z (calcd for [C43H46N9O4CuCl]2+ 
425.13); (ii) [4CuCl]1+ between 849 and 855 m/z (calcd for [C43H45N9O4CuCl]1+ 849.26); 
(iii) [4HCuCl2]1+ between 885 and 892 m/z (calcd for [C43H46N9O4CuCl2]1+ 885.24). (B) 
Positive ion ESI mass spectrum of ligand 4 in HPLC grade methanol (no CuCl2). The 
following isotopic distributions of molecular ions corresponding to ligand 4 are observed: 
(i) [4H2]2+ between 377 and 378 m/z (calcd for [C43H47N9O4]2+ 376.69); (ii) [4H]1+ between 
752 and 755 m/z (calcd for [C43H46N9O4]1+ 752.37). A comparison of the spectra shows 
that there is no evidence of free ligand 4 in (A). The asterisk identifies peaks in common 
to both spectra. 
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Figure 3.S2. Concentration profile: percent photocleavage of pUC19 plasmid DNA. 
Reactions contained 20 mM sodium phosphate buffer pH 7.0 and 38 µM bp DNA 
without and with 50 µM to 2 µM concentrations of CuCl2 and/or compound 4. The 
samples were aerobically irradiated at 419 nm for 50 min at 22 ºC. The results showed 
that nicked DNA was the exclusive cleavage product, with the exception of the reaction 
irradiated in the presence of 50 µM of CuCl2 and 50 µM of compound 4. (In this reaction, 
nicked and linear DNA forms were produced in 87% and 8% yield, respectively.) 
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Figure 3.S3. A storage-phosphor autoradiogram of DNA photocleavage products 
resolved on a 10.0% denaturing polyacrylamide gel. Shown in the gel is a representative 
40 bp sequence within an 35S 3'-end labeled 138 bp restriction fragment from pUC19. 
Lanes 1, 2: 15 µM bp the restriction fragment irradiated at 419 nm, in the presence of 5 
µM 4  and 5 µM CuCl2, without and with subsequent piperidine treatment. Lanes 3, 4: 15 
µM bp of the restriction fragment irradiated in the presence of 10 µM 4 and 10 µM 
CuCl2, without and with subsequent piperidine treatment. Lanes 5, 6: 15 µM bp of the 
restriction fragment irradiated without and with subsequent piperidine treatment  (no 4, 
no CuCl2). DNA bases are identified to the right and left of the gel. To produce the 
cleavage plot shown in Figure 7A of the accompanying manuscript, Lane 5 (fc) was 
subtracted from Lane 1 (fa). To produce the cleavage plot shown in Figure 7B of the 
accompanying manuscript, Lane 6 (fc) was subtracted from Lane 2 (fa).   
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CHAPTER IV 

Synthesis and DNA Interactions of a Bis-Phenothiazinium Photosensitizer 

(The content of this chapter will be submitted by Wilson, B.; Fernández, M.-J.; Lorente, 
A.; Grant, K. B. an American Chemical Society journal. The contributions to this project 
by the author of this dissertation were as follows: design and synthesis of the 
photosensitizer 3; conception and execution of all biological, biophysical, and 
photochemical experiments; and authorship of the original manuscript. Drs. Fernández 
and Lorente were instrumental in directing the strategies developed for the synthesis of 
compound 3 as well as made minor revisions to the manuscript. Dr. Grant made extensive 
revisions to the final manuscript.) 
 

Abstract 

We report the synthesis and characterization of N,N'-bis[(7-

dimethylamino)phenothiazin-5-ium-3-yl]-4,4'-ethylenedipiperidine diiodide (3), 

consisting of two photosensitizing phenothiazinium rings attached to a central 

ethylenedipiperidine linker. At all time points (10, 30, 60 min) and all wavelengths (676, 

700, 710 nm) tested, photocleavage of pUC19 plasmid DNA (22 °C and pH 7.0) was 

markedly enhanced by 1 µM of 3 in comparison to 1 µM of the parent phenothiazine 

methylene blue (MB). In addition, the photocleavage levels produced by 5 to 0.5 µM 

concentrations of compound 3 were consistently higher than the cleavage levels produced 

using approximately twice as much MB (10 to 1.0 µM). (As an example, 710 nm 

irradiation of 5 µM of 3 and 10 µM of MB cleaved the plasmid DNA in 93% and 71% 

yields, respectively). Scavenger assays provided evidence for the involvement of DNA 

damaging singlet oxygen and hydroxyl radicals, whereas analysis of photocleavage 

products at nucleotide resolution revealed that DNA damage (i.e., frank strand breaks and 

alkaline-labile lesions) occurred predominantly at guanine bases. While compound 3 and 

MB both appeared to increase duplex stability, the Tm values of calf thymus (CT) and C. 
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perfringens DNAs were increased by 13 ºC and 18 ºC in the presence of compound 3, in 

comparison to only 4 ºC and 6 ºC in the presence of MB. Finally, viscometric data 

indicated that CT DNA can interact with compound 3 and MB by a combination of 

groove binding and monofunctional intercalation, and with compound 3 by a third, 

bisintercalative binding mode.  

Introduction  

In photodynamic therapy (PDT), photosensitizing drugs are employed to 

effectively treat a variety of malignant tumors and non-cancerous diseases.1 PDT offers 

the advantage of selective localization and light activation of the photosensitizer in 

diseased tissue, thereby minimizing damage to healthy cells. Notwithstanding, only a few 

drugs, mostly first and second generation porphyrin derivatives, have been approved 

clinically.1a,b There is now a great interest in the development of alternative 

photosensitizing agents for use in PDT. An important requirement of PDT is strong 

absorption of light within a therapeutic window of 600 - 800 nm.1b These longer 

wavelengths reduce light scattering and are more readily transmitted by biological 

constituents, thereby providing maximal light penetration.  

The phenothiazine dye methylene blue (MB; Scheme 1) strongly absorbs light at 

664 nm (ε = 6.40 x 104 M-1 cm-1 in H2O). With regards to PDT, MB has demonstrated 

efficient photodynamic activity in several malignant cell lines,2 murine tumor models,3 

and in the palliation of human esophageal cancer.4 Additionally, MB has exhibited 

photoinactivation of nosocomial bacterial pathogens5 and is utilized as a 

photodecontamining agent in donated blood products.6b Specifically, MB has been shown 

to photoinactivate the human immunodeficiency virus in culture media6a and in human 
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plasma.6b Recent, preliminary studies have indicated that cell cultures phototreated in the 

presence of MB significantly reduce the infectivity of West Nile virus.6b  

Methylene blue meets a second important criterion of PDT: low levels of 

cytotoxicity in the absence of irradiation.1d Due to its low toxicity in human cells, MB has 

been employed in histopathology as a tumor delineating agent7a and as a radioactive 

diagnostic tracer for breast cancer.7b Low toxicity levels have permitted other non-PDT 

clinical applications, which include the administration of MB as an antidote for nitrate 

poisoning and as effective treatments for methemoglobinemia and for ifosfamide-induced 

encephalopathy.8 

While methylene blue has been reported to accumulate in mitochondria and 

lysosomes,9 Rück and co-workers have demonstrated that irradiation triggers the re-

localization of MB from lysosomes to the cell nucleus.9a MB is positively charged at 

physiological pH (pKa = 12.0),10 rendering DNA an attractive biological target. In fact, it 

has been well established that MB can non-covalently bind to DNA (Ka = 7-10 x 105 M-

1), by exhibiting one of two different binding modes (intercalation or groove binding), as 

a function of DNA sequence.11 Its close association with DNA is the basis for effective 

oxidative photodamage by MB.12 

In spite of the many advantages of MB, the use of phenothiazine-based 

chromophores in PDT has remained relatively unexplored. Herein we report the synthesis 

and characterization of photosensitizer 3 in which two phenothiazine intercalating units 

are attached by an electron donating ethylenedipiperidine linker. Our goal was to design a 

reagent capable of photocleaving DNA more efficiently and at longer wavelengths than 

MB.  
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Results and Discussion 

Synthesis. Bis-(phenothiazinium)ethylenedipiperidine salt 3 was synthesized 

according to Scheme 4.1. The precursors 1 and 2 are both known compounds,13 and 2 was 

prepared by making a minor modification to the published literature procedure 

(chloroform was utilized as solvent instead of methanol). While the syntheses of other 

3,7-disubstituted phenothiazin-5-ium salts have been reported,13,14 the nucleophilic 

attachment of a linker chain to two equivalents of 2 to form dicationic 3 required the 

exploration of a number of different solvents (e.g., methanol, chloroform, DMSO) and 

counterions (e.g, hexafluorophosphate). The synthesis of the iodide salt of 3 was finally 

achieved in DMF using cesium carbonate as base. 

Scheme 4.1a 

 

a Reagents and conditions: a) I2, CHCl3, 5 ºC, 2 h, 80%; b) HN(CH3)2 in CH3OH, CHCl3, 
RT, 4 h, 55%; c) 4,4’-ethylenedipiperidine dihydrochloride, Cs2CO3, DMF, RT, 48 h, 
54%. 
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UV-Visible Spectrophotometry. In our first set of experiments, we recorded 

UV/vis absorption spectra of compound 3 and MB in the presence and absence of calf 

thymus (CT) DNA (10 µM phenothiazine, 380 µM bp CT DNA, 10 mM sodium 

phosphate buffer pH 7.0; Figure 4.1, Table 4.1). The negatively charged surfactant 

sodium dodecyl sulfate (SDS) was added to samples with no DNA in order to disrupt 

intermolecular aggregation of 3 and MB. Under our experimental conditions, compound 

3 exhibited maxima at 676 nm (ε = 1.45 x 105 M-1 cm-1) and 680 nm (ε = 7.78 x 104 M-1 

(bp) cm-1) in the presence of 1% SDS and DNA, respectively. Alternatively, λmax values 

for MB were 661 nm (ε = 7.84 x 104 M-1 cm-1) in the presence of 1% SDS and 674 nm (ε 

= 5.80 x 104 M-1 (bp) cm-1) in the presence of DNA. It is evident that DNA-bound 

compound 3 absorbs light more strongly and at longer wavelengths in comparison to MB 

(Figure 4.1, Table 4.S1 in Supporting Infromation). 

 

Figure 4.1. UV-visible spectra recorded at 22 ºC in 10 mM sodium phosphate buffer pH 
7.0 of A) 10 µM compound 3 (red) or of B) 10 µM MB (blue) in the presence of 380 µM 
bp calf thymus DNA (green) or 1% sodium dodecyl sulfate (w/v) (black). C) 1 µM 
compound 3 (solid green line) or 1 µM MB (dashed green line) with 38 µM bp calf 
thymus DNA in 10 mM sodium phosphate buffer pH 7.0. The samples containing DNA 
were pre-equilibrated for 12 h in the dark at 22 ºC.  
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Table 4.1. Absorbance Dataa 

compound 
 
λmax (nm) 

 

 
ε x 104 (M-1 cm-1)  

 

 
ε x 104 (M-1(bp) cm-1)  

 
3 615 

615 

nd na 

6.43 3 + 1% SDS 676 14.5 na 

3 + DNA 680 na 7.78 

MB 664 6.43 na 

MB + 1% SDS 661 7.84 na 

MB + DNA 674 na 5.80 

a Extinction coefficients for compound 3 and MB were determined in 10 mM sodium 
phosphate buffer pH 7.0 using solutions containing 1 to 10 µM of dye in the presence and 
absence of 1% sodium dodecyl sulfate (w/v) or 38 to 380 µM bp calf thymus DNA. The 
samples containing DNA were pre-equilibrated for 12 h in the dark at 22 ºC. na = not 
applicable; nd = not determined due to aggregation in buffer. 
 

Photocleavage Experiments. DNA photocleavage as a function of wavelength 

(676, 700 and 710 nm) and time (10, 30, 60 min) was studied next. Reactions were 

carried out in 10 mM sodium phosphate buffer pH 7.0 with 38 µM bp pUC19 plasmid 

DNA and 1 µM of 3 or MB. The samples were aerobically irradiated using a Photon 

Technology light supply fitted with a 75 W xenon lamp and a monochromator. DNA 

photocleavage products were then visualized on a 1.0% non-denaturing agarose gel. 

While both phenothiazines showed time-dependant photocleavage that continued to 

increase even after 30 min of irradiation, compound 3 exhibited markedly higher levels of 

cleavage at all time points and all wavelengths tested (Figure 4.2). In Figure 4.1C, the 

absorbance spectra of 1 µM compound 3 and MB in the presence of 38 µM bp calf 

thymus DNA are shown. The absorption of DNA-bound compound 3 is stronger and 

more red-shifted than MB at the three wavelengths examined (Figure 4.1C, Table 4.S2 in 
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Supporting Information). The absorbance data (Table 4.S2) are in agreement with the 

higher levels of photocleavage produced by 1 µM compound 3 in comparison to MB. We 

then used the longest wavelength to compare DNA photocleavage as function of dye 

concentration. Reactions consisting of 38 µM bp pUC19 plasmid DNA and 10 to 0.25 

µM of compound 3 or MB were irradiated at 710 nm for 60 min. Compound 3 

consistently generated higher levels of DNA photocleavage at all of the six 

concentrations (Figure 4.3). Notably, irradiation of only 5 µM of dye at 710 nm produced 

cleavage yields of 93% and 59% for 3 and MB, respectively. In addition, the cleavage 

levels produced by 5 to 0.5 µM concentrations of compound 3 were consistently higher 

than the cleavage produced using approximately twice the amount of MB (10 to 1.0 µM). 

 

Figure 4.2. DNA photocleavage % of 38 µM bp pUC19 plasmid DNA in the presence of 
1 µM compound 3 (gray bars) or 1 µM MB (white bars) in 10 mM sodium phosphate 
buffer pH 7.0 at 22 ºC. The samples were irradiated at: 676, 700, or 710 nm with a 75 W 
xenon lamp connected to a monochromator. The black bars represent DNA that was 
irradiated for 60 min in 10 mM sodium phosphate buffer pH 7.0 in the absence of dye. In 
the inset are dark controls in which 1 µM of 3 and 1 µM of MB were reacted with 38 µM 
bp pUC19 plasmid for 60 min (22 ºC, no hν). DNA cleavage % (% nicked + % linear 
DNA) was averaged over three trials with error bars representing standard deviation. 
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Figure 4.3. Photograph of a 1% nondenaturing agarose gel showing photocleavage of 
pUC19 plasmid DNA. Samples contained 10 mM sodium phosphate buffer pH 7.0 and 
38 µM bp DNA in presence and absence of dye. After being equilibrated for 12 h in the 
dark at 22 ºC, the samples were aerobically irradiated at 710 nm for 60 min at 22 ºC. 
Lanes 1 and 9: DNA controls (no dye). Lanes 3 to 8: 10 to 0.25 µM compound 3. Lanes 
11 to 16: 10 to 0.25 µM MB. Lanes 2 and 10: 10 µM 3 and 10 µM MB (no hν). 
Abbreviations: N = nicked; S = supercoiled. It is evident that DNA photocleavage yields 
increase as a function of increasing dye concentration with one exception, we attribute 
the slight decrease in photocleavage observed in the presence of 10 µM of compound 3 to 
DNA precipitation. 
 

Inhibition of DNA Photocleavage. DNA photodamage by MB proceeds through 

Type I (electron transfer) and Type II (energy transfer) pathways.12 We therefore 

conducted scavenger experiments to test for DNA damaging Type I hydroxyl radicals 

(•OH) and DNA damaging Type II singlet oxygen (1O2). A total of 50 mM of the •OH 

scavenger D-mannitol or of the 1O2 scavenger sodium azide was added to photolysis 

reactions containing 1 µM compound 3 or 1 µM MB and 38 µM bp plasmid DNA (10 

mM sodium phosphate pH 7.0). DNA photocleavage yields in the presence of D-mannitol 

and sodium azide were reduced by approximately 20% and 48% in reactions containing 

compound 3 and by 20% and 40% in reactions with MB (Table 4.2). These data confirm 

that Type I and Type II photochemical pathways contribute to phenothiazine-induced 

DNA photocleavage. 
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Table 4.2. Percent Inhibition of DNA Photocleavage by Compound 3 and MBa 

compound D-mannitol sodium azide 

3 20 ± 1 48 ± 2 

MB 20 ± 7 40 ± 1 

a Individual reactions consisted of 38 µM bp pUC19 plasmid DNA, 1 µM 
compound 3 or 1 µM MB, and 50 mM of each of the above reagents in 10 mM 
sodium phosphate buffer pH 7.0 were aerobically irradiated at 710 nm for 60 
min, 22 ºC. Percent inhibition was averaged over three trials with errors 
reported as standard deviation. 
 

DNA Photocleavage at Nucleotide Resolution. To further investigate 

mechanism(s) underlying photocleavage, pUC19 plasmid DNA was linearized with 

EcoRI, 3'-end labeled with [35S]dATPαS, and then cut with FspI to generate a 138 bp 

restriction fragment. Duplicate sets of reactions containing 15 µM bp of the radiolabeled 

DNA in 10 mM sodium phosphate buffer pH 7.0 without and with 5 µM of 3 and 5 µM 

of MB were irradiated for 60 min in a ventilated Rayonet Photochemical Reactor fitted 

with twelve 575 nm lamps (spectral output 400-650 nm). In order to produce DNA strand 

breaks at alkaline labile lesions, half of the reactions were treated with 1.0% piperidine 

(90 °C, 30 min) immediately after the 60 min irradiation period. Products were resolved 

adjacent to G, G+A, and T chemical sequencing reactions on a 10.0% denaturing 

polyacrylamide gel. Shown in Figure 4.4 are photocleavage plots generated from a 

representative 40 bp sequence within the 138 bp radiolabeled DNA fragment. In the 

absence of piperidine, it is evident that the majority of pronounced frank strand breaks 

produced by compound 3 and MB are at guanine bases (Figure 4.4A). This result points 

to a photocleavage mechanism that involves either singlet oxygen and/or direct electron 

transfer from DNA nucleobases, as both produce preferential DNA damage at 
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guanines.15,16 Figure 4.4A also indicates that hydroxyl radicals are less likely to have 

made a major contribution to the formation of frank strand breaks. These reactive oxygen 

species cleave DNA by abstracting hydrogen atoms from deoxyribose. Because sugar 

residues are present at every nucleotide position, hydroxyl radicals and other reagents 

which function by hydrogen atom abstraction tend to cleave at all nearby DNA sequences 

irrespective of the base.15 (It is interesting to note that the cleavage patterns produced by 

compound 3 and MB are in agreement with the results scavenger experiments 

summarized in Table 4.2: the higher levels of cleavage inhibition exhibited by sodium 

azide in comparison to D-mannitol indicate that singlet oxygen, rather than hydroxyl 

radicals, makes the more significant contribution to the formation of DNA frank strand 

breaks.) Figure 4.4B shows that levels of damage at guanine bases are dramatically 

increased after the DNA photolysis reactions are treated with piperidine. This result 

indicates that 3 and MB formed alkaline labile lesions at guanine bases, either through 

the production of singlet oxygen and/or by direct electron transfer from DNA.  
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Figure 4.4. Cleavage plots of a representative 40 bp DNA sequence. Photocleavage 
intensities as a function of DNA base were calculated by quantitating a storage-phosphor 
autoradiogram of DNA cleavage products resolved on a 10.0% denaturing 
polyacrylamide gel. A total of 15 µM bp of 35S 3'-end labeled 138 bp restriction fragment 
was irradiated at 575 nm in the presence of 5 µM 3 and 5 µM MB without (A) and with 
(B) post-irradiation piperidine treatment. 
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Thermal Denaturation Studies. Thermal melting studies offer a reliable method 

for ranking the relative binding affinities of ligands that stabilize duplex DNA. In the 

process of intercalation and/or groove binding, free energy contributions from π-π, van 

der Waals, electrostatic and hydrogen bonding interactions stabilize helical DNA. As a 

result, these forces increase the DNA binding affinity, thereby increasing the melting 

temperature of the DNA-ligand complex. The melting curves shown in Figure 4.5A were 

generated at dye to DNA bp molar ratios (r = [dye]/[DNA bp]) of 0.0 and 0.3. Under 

these conditions, the melting temperature (Tm) obtained for 12.5 µM bp CT DNA was 65 

ºC, while the addition of compound 3 or MB produced Tm values of 78 ºC (ΔTm = 13 ºC) 

and 69 ºC (ΔTm = 4 ºC), respectively. We then recorded thermal melting curves at r 

values ranging from 0.05 to 0.6 (Figure 4.5B). At r > 0.3, the ΔTm values produced by 

compound 3 (Figure 4.5B) did not change. In the case of MB, a plateau in ΔTm values 

was not observed by raising the r value from 0.3 to 0.6 (Figure 4.5B). The corresponding 

Tm for MB was 69 ºC (ΔTm = 4 ºC), which is still significantly lower than the Tm of 78 ºC 

(ΔTm = 13 ºC), recorded for compound 3 at r = 0.3. These data show that compound 3 

saturates the DNA binding sites at a lower concentration in comparison to MB. Even at 

the lowest ratio tested (r = 0.05), the addition of 3 raised the Tm of CT DNA from 65 ºC to 

70 ºC compared to only 66 ºC for MB. 

In order to further examine the relative DNA binding affinities of compound 3 

and MB, parallel melting isotherms were generated employing C. perfringens DNA (CP) 

DNA. In comparison to CT DNA (58% AT), CP DNA possesses a slightly higher AT 

content (69% AT). As shown in Figure 4.6, the Tm of 12.5 µM bp CP DNA is 60 ºC while 

the addition of 3 or MB (r = 0.3) raises the Tm by 78 ºC (ΔTm = 18 ºC) and 66 ºC (ΔTm = 6 
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ºC), respectively. Collectively, the melting data indicate that compound 3 effects a 3-fold 

higher level of duplex stabilization than MB with either CT DNA (Figure 4.5A) or CP 

DNA (Figure 4.6). These results show that higher DNA binding affinity in addition to 

stronger light absorption exhibited by compound 3 may account for its more efficient 

DNA photocleaving ability as compared to MB.  

 

 

Figure 4.5. Melting curves of: (A) 12.5 µM bp CT DNA (Δ, Tm = 65 ºC); 12.5 µM bp CT 
DNA with 3.75 µM of MB (� , Tm = 69 ºC) or with 3.75 µM of 3 (, Tm = 78 ºC) in 10 
mM sodium phosphate buffer pH 7.0 and (B) ΔTm of 12.5 µM bp calf thymus DNA as a 
function of increasing dye concentration. : [compound 3] = 0.625, 1.25, 3.75, or 7.50 
µM. � : [MB] = 0.625, 1.25, 3.75, or 7.50 µM.  

0.0

0.2

0.4

0.6

0.8

1.0

30 40 50 60 70 80 90

n
o
rm

a
liz

e
d
 a

b
s
o
rb

a
n
c
e
 2

6
0
 n

m

temperature (ºC)

A

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

!
T

m
 (

ºC
)

B

r = [dye]/[DNA bp]



  139 

 

Figure 4.6. Melting curves of: 12.5 µM bp C. perfringens (CP) DNA (Δ, Tm = 60 ºC); 
12.5 µM bp CP DNA with 3.75 µM of MB (� , Tm = 66 ºC) or with 3.75 µM of 3 (, Tm = 
78 ºC) in 10 mM sodium phosphate buffer pH 7.0.  
 

Viscosity Assays. When an intercalator binds to duplex DNA, the helix unwinds 

and lengthens to accommodate the ligand in between base pairs. This increase in length 

results in an increase in DNA viscosity. (Groove binding compounds do not lengthen 

helical DNA and viscosity is not significantly changed.17) In the case of classical 

monointercalators, the slopes observed from plots of the cubed root of the relative 

viscosity ((η/ηo)1/3) versus r (molar ratio of bound ligand to DNA bp) range from 0.80 to 

1.50.18 Alternatively, for bisintercalators typical slopes are from 1.3 to 2.3.18c,19 Figure 4.7 

shows that viscometric data of MB with CT DNA (42% GC) yields a slope of 0.962 ± 

0.002, clearly consistent with monofunctional intercalation, while the slope for 
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compound 3 with DNA might involve the existence of multiple binding modes (e.g., 

concomitant monointercalation, bisintercalation, and/or groove binding). In fact, 

combinations of these modes are thought to account for DNA viscosity enhancements 

produced by a number of bifunctional agents with non-ideal slopes (usually lower than 

twice the slope of the corresponding monointercalator).20 

To test our hypothesis, we performed viscometric measurements of 3 and MB in 

the presence of additional double-helical sequences. Plots of (η/ηo)1/3 versus r for 

poly(dA)•poly(dT) and alternating poly[(dA-dT)]2 DNAs yielded slopes of 0.22 and 1.18 

for compound 3, and 0.17 and 1.11 for MB, respectively (Figure 4.S4 in the Supporting 

Information). These data indicate the existence of different binding modes as a function 

of DNA sequence: groove binding for poly(dA)•poly(dT) and monointercalation for 

poly[(dA-dT)]2. However, taking into consideration the minimal effect of compound 3 on 

poly(dA)•poly(dT) viscosity, we recorded the circular dichroism (CD) spectra shown in 

Figure 4.8. The strong, positive induced CD signal at 690 nm confirms the formation of a 

complex in which 3 associates with the duplex via DNA groove binding. 

Our viscosity data are also consistent with a published CD study in which MB 

was shown to bind to poly(dA)•poly(dT) and alternating poly[(dA-dT)]2 via groove 

binding and intercalation, respectively.21 We next attempted to measure the viscosity of 

poly(dG)•poly(dC) and M. lysodeikticus (28% AT) DNA, but were unsuccessful due to 

DNA precipitation in the presence of high concentrations of 3. Notwithstanding, when 

the poly(dA)•poly(dT), alternating poly[(dA-dT)]2, and CT DNA (58% AT) slopes are 

compared side by side, it can be inferred that CT DNA interacts with MB 
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monofunctional intercalation, and with compound 3 by a combination of three modes: 

groove binding, and mono- and bisintercalation. 

 

Figure 4.7. Viscometric measurements of CT DNA in the presence of compound 3 (, 
slope = 1.50 ± 0.130, R = 0.997) and MB (, slope = 0.962 ± 0.002, R = 0.987). The 
values were averaged at least over three trials. Error bars represent standard deviation. 
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Figure 4.8. CD spectra recorded at 22 ºC of 10 mM sodium phosphate buffer pH 7.0 in 
the presence and absence of 50 µM bp poly(dA)•poly(dT) DNA or 12 µM of compound 
3. Red dashed line: compound 3. Red solid line: poly(dA)•poly(dT) DNA. Black Solid 
line: compound 3 + poly(dA)•poly(dT) DNA. 
 

Conclusion 

In summary, we have synthesized a new DNA photocleaving agent (3) in which 

two phenothiazine units are attached by an ethylenedipiperidine linker. In comparison to 

the phenothiazine methylene blue, this compound absorbs light more strongly at longer 

wavelengths, exhibits higher levels of photocleavage under near physiological conditions 

of temperature and pH, and, as indicated by Tm data, associates more strongly with 

double-helical DNA. Finally, to the best of our knowledge, compound 3 represents the 

first example of a phenothiazine that binds to DNA through bisintercalation. Our future 

research efforts will focus on obtaining high-resolution structural data that will aid in the 

design of new and effective DNA intercalators. We envisage that phenothiazine-based 
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compounds will represent attractive alternatives to porphyrins for use in phototherapeutic 

applications. 

Experimental Section 

General Methods. Melting points were determined in a Stuart Scientific model 

SMP10 apparatus. Infrared spectra were taken on an FT-IR Perkin Elmer Spectrum One 

spectrophotometer. 1H and 13C NMR spectra were recorded at 300 and 75 MHz, 

respectively, on a Varian Unity One instrument. Carbon and proton assignments for 

compound 3 were based on HMQC experiments. Tetramethyl silane was utilized as an 

internal reference. Elemental analyses (CHNS) were conducted on a Leco CHNS-932 

automatic analyzer while iodine composition was performed by oxygen flask combustion 

and by ion chromatography (Atlantic Microlabs, Inc. Norcross, GA). Electrospray 

ionization (ESI) mass spectra were generated on a Micromass Q-Tof hybrid mass 

spectrometer. Merck silica gel 60 (230-400 ASTM mesh) was employed for flash column 

chromatography. UV-visible and CD spectra were recorded with a UV-1601 Shimadzu 

spectrophotometer and a JASCO J-810 spectropolarimeter, respectively. Thermal melting 

curves were generated using a Cary Bio 300 UV-Vis spectrophotometer . 

Distilled, deionized water was utilized in the preparation of all buffers and 

aqueous reactions. Chemicals were of the highest available purity and were used without 

further purification. Methylene blue chloride (99.99% purity) was purchased from Fluka. 

Allyl alcohol, Cesium carbonate, chloroform, dimethylamine (2 M solution in methanol), 

DMF, dimethyl sulfate, ethidium bromide, 4,4’-ethylenedipiperidine dihydrochloride, 

formic acid, iodine, 10H-phenothiazine, piperidine, potassium permanganate, sodium 

azide, D-mannitol, sodium phosphate dibasic, and sodium phosphate monobasic were 
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obtained from the Aldrich Chemical Co. Transformation of Escherichia coli competent 

cells (Stratagene, XL-blue) with pUC19 plasmid (Sigma) and growth of bacterial cultures 

in Lauria-Bertani broth were performed according to standard laboratory procedures.22 

The plasmid DNA was purified with a Qiagen Plasmid Mega Kit. The restriction 

enzymes EcoRI and FspI were purchased from New England BioLabs. Ultra PureTM calf 

thymus (Invitrogen Lot No. 15633-019, 10 mg/mL, average size ≤ 2000 bp) and C. 

perfringens DNA (Sigma, Lot No. 024K4065, purity ratio A260/A280 = 1.9) were used 

without purification. The DNA polymers poly(dA)•poly(dT) (average size ~6000 bp, Lot 

No. GD0276), and poly[(dA-dT)]2 (average size ~5183 bp, Lot No. GF0106) were 

obtained as lyophilized powders from Amersham Biosciences. They were dissolved in 10 

mM sodium phosphate pH 7.0 and were used without further purification. The 

concentrations of all DNA solutions were determined by UV-Vis spectrophotometry 

using the following extinction coefficients in units of M-1 (bp) cm-1: calf thymus DNA, 

ε260 = 12,824; C. perfringens DNA, ε260 = 12,476; poly(dA)•poly(dT), ε260 = 12,000; and 

poly[(dA-dT)]2, ε262 = 13,200. 

Phenothiazin-5-ium tetraiodide hydrate (1). A solution of 10H-phenothiazine 

(0.566 g, 2.84 mmol) in 20 mL of chloroform was stirred at 5 ºC and iodine (2.16 g, 8.51 

mmol) dissolved in 50 mL of chloroform was added drop-wise over 1 h. The reaction 

mixture was stirred at 5 ºC for an additional h and the progress was monitored by silica 

gel TLC using chloroform as the solvent. The precipitate from the reaction was then 

filtered, washed with a copious amount of chloroform and was dried under high vacuum 

overnight to afford 1.63 g (80% yield) of dark-blue solid 1; Rf = 0.09 (chloroform); M.p. 

170 ºC (decomp.); 1H NMR (300 MHz, Acetone-d6): δ = 8.01 (m, 2H), 7.92 (m, 2H), 7.64 
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ppm (m, 4H); 13C NMR (75 MHz, Acetone-d6): δ = 153.58, 130.67, 129.47, 128.64, 

125.50, 123.52 ppm; IR (film): n = 2967, 1558, 1467, 1440, 1311, 1233, 1131, 1067, 

1023, 841, 705 cm-1. LRMS (ESI): calcd for C12H8NS [M+]: 198.0; found: 199.0 [M+H+]+. 

3-(Dimethylamino)phenothiazin-5-ium triiodide (2). To a solution of 

phenothiazin-5-ium tetraiodide hydrate (0.400 g, 0.553 mmol) in 20 mL of chloroform 

was added a 2 M solution of dimethylamine in methanol (0.553 mL, 1.106 mmol) drop-

wise over 4 h. The reaction progress was monitored by silica gel TLC (3:7 10% aqueous 

ammonium acetate/methanol, v/v). The resultant precipitate was filtered, washed with 

chloroform and allowed to air dry. Product 2 (189 mg, 55% yield) was obtained as a 

dark-blue solid; Rf  = 0.28 (3:7 10% aqueous ammonium acetate/methanol, v/v); M.p. 144 

– 145 ºC; 1H NMR (300 MHz, DMSO-d6): δ = 8.22 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H, H-9), 

8.17 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H, H-6), 8.10 (d, J = 10 Hz, 1H, H-1), 8.04 (dd, J = 10 

Hz, 1H, H-2), 8.00 (d, J = 2.4 Hz, 1H, H-4), 7.85 (m, 2H, H-7 and H-8), 3.64 and 3.60 

ppm (2s, 6H, N(CH3)2); 13C NMR (75 MHz, DMSO-d6): δ = 156.09, 144.13, 139.81, 

139.56, 138.03, 134.55, 133.22, 129.81, 126.27, 126.06, 125.84, 109.66, 43.35, 42.88 

ppm; IR (film): ν = 2800, 1617, 1559, 1489, 1429, 1411, 1252, 1118, 1411, 1078, 887, 

835, 772 cm-1; LRMS (ESI): calcd for C14H13N2S [M+]: 241; found: 241. Anal. Calcd for 

C14H13N2SI3: C, 27.03; H, 2.11; N, 4.50; S, 5.15; I, 61.20. Found: C, 27.12; H, 1.97; N, 

4.46; S, 5.23; I, 60.94. 

N,N'-Bis[(7-dimethylamino)phenothiazin-5-ium-3-yl]-4,4'-

ethylenedipiperidine diiodide (3). To a solution of 2 (0.200 g, 0.322 mmol) in 20 mL of 

DMF were added 4,4’-ethylenedipiperidine dihydrochloride (0.044 g, 0.161mmol) and 

cesium carbonate (0.629 g, 1.931 mmol). The reaction was vigorously stirred at RT for 
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48 h and then concentrated under reduced pressure. The progress of the reaction was 

monitored by silica gel TLC (9.5:0.5 dichloromethane/methanol, v/v). The resultant solid 

was purified by flash column chromatography (3 cm column, 39 g silica gel) using 

(9.5:0.5 dichloromethane/methanol, v/v) as the eluent. Then, two successive 

recrystallizations from methanol afforded 81 mg (54% yield) of dark-blue solid 3; Rf = 

0.2 (9.5:0.5 dichloromethane/methanol, v/v); M.p. > 300 ºC; 1H NMR (300 MHz, 

CDCl3:CD3OD): δ = 7.95 (d, J = 9.6 Hz , 2H, H-1), 7.94 (d, J = 9.6 Hz , 2H, H-9), 7.48 

(m, 4H, H-6 and H-8), 7.33 (dd, J = 9.6, 2.7 Hz, 2H, H-2), 7.26 (d, J = 2.7 Hz, 2H, H-4), 

4.42 (d, J = 13.5 Hz, 4H, CH2-α), 3.43 (s, 12H, NCH3), 3.38 (m, overlap with CH3OH, 

4H, CH2-α), 2.06 (d, J = 11.7 Hz, 4H, CH2-β), 1.81 (broad, 2H, CH), 1.37 ppm (m, 8H, 

CH2-CH2 and CH2-β); 13C NMR (75 MHz, CDCl3:CD3OD): δ = 154.26 and 153.35 (C-3, 

C-7), 139.16 and 138.66 (C-1, C-9), 136.41, 135.90, 135.79, and 134.78 (C4a, C5a, C9a 

and C10a), 119.32 and 118.61 (C-2, C-8), 107.12 and 106.39 (C-4, C-6), 49.25 (C-α), 

41.61 (NCH3), 35.82 (CH), 33.02 and 32.85 ppm (C-β, CH2-CH2); IR (film): ν = 2907, 

1592, 1487, 1389, 1330, 1232, 1133, 1038, 969, 883, 825, 779 cm-1; HRMS (ESI): m/z 

calcd for C40H46N6S2 [M+]: 674.3225; found: 337.1612 [M+/2]. 

UV-Visible Spectrophotometry. Extinction coefficients for compound 3 and 

MB were determined using 500 µL solutions containing 1 to 10 µM of dye in the 

presence and absence of 38 to 380 µM bp calf thymus DNA in 10 mM sodium phosphate 

buffer pH 7.0. The solutions were pre-equilibrated for 12 h in the dark, after which 

spectra were recorded in 1 cm quartz cuvettes at 22 ºC. The absorbance was then plotted 

as a function of concentration and linear least square fits to these data yielded slopes 

(KaleidaGraph version 3.6.4 software) that were averaged over three trials. Using the 
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procedure described above, extinction coefficients in the absence of calf thymus DNA 

were also recorded in the presence of a final concentration of 1% sodium dodecyl sulfate 

(w/v). 

Photocleavage Experiments. Individual samples consisted of 38 µM bp pUC19 

plasmid DNA and 1 µM of compound 3 or MB in 10 mM sodium phosphate buffer pH 

7.0 (total volume 20 µL). The samples were pre-equilibrated in the dark for 12 h at 22 ºC, 

after which they were kept in the dark or aerobically irradiated at 676, 700 or 710 nm for 

10, 30, or 60 min at 22 ºC using a Photon Technology Inc. Model A1010 light supply 

fitted with a 75 W xenon lamp and a monochromator with a grating (blazed at 500 nm, 

1200 lines/mm, 20 nm slit width). After irradiation, cleavage products were 

electrophoresed on a 1% nondenaturing agarose gel stained with ethidium bromide (0.5 

µg/mL), visualized on a transilluminator set at 302 nm, photographed and scanned. The 

amounts of supercoiled, nicked, and linear plasmid DNA were quantitated by 

densitometry using ImageQuant version 5.2 software (Amersham Biosciences). In DNA 

photocleavage as a function of concentration, reactions consisted of 10 to 0.0 µM 

compound 3 or MB with 38 µM bp pUC19 plasmid DNA in 10 mM sodium phosphate 

buffer pH 7.0 (total volume 20 µL). The samples were pre-equilibrated in the dark for 12 

h at 22 ºC, after which they were kept in the dark or aerobically irradiated at 710 nm for 

60 min. Photocleavage yields were calculated using the formula [(nicked DNA + linear 

DNA)/total DNA] x 100. The density of supercoiled DNA was multiplied by a correction 

factor of 1.22 to account for the decreased binding affinity of ethidium bromide to 

supercoiled DNA as compared to the nicked and linear forms. 
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Inhibition of DNA Photocleavage. Immediately prior to irradiation, a final 

concentration of 50 mM of sodium azide or of D-mannitol was added to individual 20 µL 

reactions. Each consisted of 38 µM bp pUC19 plasmid DNA pre-equilibrated with 1 µM 

of compound 3 or MB in 10 mM sodium phosphate buffer pH 7.0 in the dark for 12 h at 

22 ºC. Control reactions containing 1 µM of compound 3 or MB, 38 µM bp pUC19 

plasmid, and 10 mM sodium phosphate buffer pH 7.0 were run in the absence of 

scavenger. The samples were then aerobically irradiated at 710 nm using a Photon 

Technology Inc. light supply (Model A1010) fitted with a 75 W xenon lamp and 

monochromator with a grating (blazed at 500 nm, 1200 lines/mm, 20 nm slit width) for 

60 min at 22 ºC. Reaction products were resolved on a 1.0% nondenaturing agarose gel 

and quantitated as described above. The percent inhibition of DNA photocleavage was 

calculated as follows: [((% cleavage without scavenger) - (% cleavage with 

scavenger))/(% cleavage without scavenger)] x 100. 

DNA Photocleavage at Nucleotide Resolution. EcoRI linearized pUC19 

plasmid was 3'-end-labeled using Sequenase™ Version 2.0 (USB Scientific) and 

[35S]dATPαS (GE Healthcare) according to an established laboratory protocol.23 

Unincorporated nucleotides were removed with a G-50 Sephadex spun column (Roche 

Diagnostics). The DNA was then digested with FspI to produce a restriction fragment 

138 bp in length, and resolved on a 2% agarose gel. The fragment was excised and DNA 

was isolated using a QIAquick Gel Extraction Kit purchased from Qiagen. The purified 

DNA was stored in a total volume of 400 µL of deionized, distilled water at -78 °C.  

Typical photocleavage reactions contained 15 µM bp of the 138 bp DNA 

fragment in 10 mM sodium phosphate buffer pH 7.0 or in 10 mM sodium phosphate 
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buffer pH 7.0, 5 µM 3 and MB (50 µL total volume). The reaction samples were pre-

equilibrated in the dark, 22 ºC for 2 hours and then were aerobically irradiated in a 

ventilated Rayonet Photochemical Reactor (Southern New England Ultraviolet Co.) fitted 

with twelve 575 nm lamps (spectral output 400-650 nm) for 60 min. The photolyzed 

DNA was precipitated with 40 µg glycogen/2.5 volumes neat EtOH, and washed with 

70% EtOH. A duplicate set of reactions was precipitated, dissolved in 100 µL of 1.0% 

piperidine, heated at 90 °C for 30 min, and then lyophilized to dryness. Cleavage 

products without and with piperidine treatment were dissolved in 4 µL of Sequenase™ 

Stop Solution (95% (v/v) deionized formamide, 10 mM EDTA, 0.1% (w/v) xylene 

cyanol and 0.1% (w/v) bromophenol blue), denatured for 3 min at 95 °C, and resolved on 

a 10.0% denaturing polyacrylamide gel adjacent to G, G+A, and T chemical sequencing 

reactions. To determine yields, the gel was scanned with a Storm 860 PhosphoImager 

(Molecular Dynamics). The resulting storage-phosphor autoradiogram was quantitated 

using ImageQuant 5.2 software (Molecular Dynamics). The DNA sequencing reactions 

were performed as previously described.23 

Thermal Denaturation Studies. Individual 3 mL solutions containing 10 mM 

sodium phosphate buffer pH 7.0 and 12.5 µM bp calf thymus DNA in the presence and 

absence of 0.625 to 7.50 µM of compound 3 or MB in were placed in 3 mL (1 cm) quartz 

cuvettes (Starna). Similarly, 12.5 µM bp C. perfringes DNA was utilized in the absence 

and presence of 3.75 µM compound 3 or 3.75 µM MB. After the samples were 

equilibrated in the dark for 12 h and 22 ºC, absorbance was monitored at 260 nm while 

the DNA was denatured using a Peltier heat block programmed to increase the 

temperature from 25 to 95 ºC at a rate of 0.5 ºC min-1. KaleidaGraph version 3.6.4 
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software was then used to approximate the first derivative of ΔA260/ΔT versus 

temperature, where the Tm value corresponded to the maximum of each first derivative 

plot. 

Viscosity Assays. In a total volume of 1 mL, individual solutions containing 10 

mM sodium phosphate buffer pH 7.0 and 200 µM bp of calf thymus DNA (average 

length ≤ 2000 bp) in the absence and presence of 2 to 12 µM of compound 3 or MB were 

pre-equilibrated for 12 h in the dark at 22 ºC. DNA viscosity was then measured in a 

Cannon-Ubbelohde size 75 capillary viscometer immersed in a thermostated water bath 

maintained at 25 ± 0.1 ºC. The flow times of the buffer, DNA in buffer, and dye-DNA in 

buffer were measured with a stopwatch. The measurements were averaged over four 

trials to an accuracy of + 0.2 s. After subtracting the averaged flow time of the buffer, 

DNA (η0) and dye-DNA (η) averaged flow times were plotted as (η/ηo)1/3 versus the 

molar ratio of dye to DNA bp.24 Slopes were generated by conducting linear least square 

fits to these data (KaleidaGraph version 3.6.4 software). The viscosity measurements 

containing poly(dA)•poly(dT) (average length ~6000 bp) and poly[(dA-dT)]2 (average 

length ~5183 bp) were conducted exactly as described for calf thymus DNA except that 

DNA concentrations were decreased to account for the longer average lengths of these 

polymers as compared to calf thymus DNA. Accordingly, measurements were conducted 

with 50 µM bp of each polymer and 0.5 to 3 µM of compound 3 or MB such that dye to 

DNA bp molar ratios were consistent with the calf thymus DNA measurements. While 

the conventional method for performing viscosity assays involves titration of the ligand 

into a DNA solution inside the viscometer, here we report an alternative and efficient 

technique that may be particularly useful for 3 as well as for other phenothiazines (e.g., 
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1,9-dimethyl methylene blue and methylene blue) where pre-equilibration with DNA is 

required to reduce ligand stacking associations in solution.25 

Circular Dichroism Analysis. Samples consisted of 10 mM sodium phosphate 

buffer pH 7.0 and 12 µM of compound 3 in the presence and absence of 50 µM bp 

poly(dA)•poly(dT) DNA in a total volume of 500 µL. After equilibration in the dark for 

12 h at 22 ºC, spectra were recorded from 800 to 200 nm at 22 ºC in a 0.5 cm quartz 

cuvette using a scan rate of 100 nm/min and a time constant of 1 s. The spectra were 

averaged over 4 acquisitions and were baseline-corrected to remove signals generated by 

the buffer. 
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Figure 4.9. Table of content graphic depicting photocleavage by 5 µM of compound 3 
irradiated at 710 nm under near physiological conditions of pH and temperature. 
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Supporting Information 
 

Table 4.S1. Absorbance Data at 10 µM of Dyea 
  

compound 3 
 

 
MB 

 

 
Ratio 

 
 
λ max (nm) 
 

 
680 

 

 
674 

 

 
NA 

 
Abs 676 nm 
 

0.8131 
 

0.5091 
 

1.6 
 

Abs 700 nm 
 

0.5182 
 

0.1490 
 

3.5 
 

Abs 710 nm 
 

0.2498 
 

0.0515 
 

5.0 
 

a UV-visible absorbance of 10 µM of dye pre-equilibrated with 380 µM bp of calf thymus 
DNA in 10 mM sodium phosphate buffer pH 7.0 for 12 h at 22 ºC. Ratio = Abs 3/Abs 
MB. NA = not applicable. 
 

 

Table 4.S2. Absorbance Data at 1 µM of Dyea 
  

compound 3 
 

 
MB 

 

 
Ratio 

 
 
λ max (nm) 
 

 
680 

 

 
672 

 

 
NA 

 
Abs 676 nm 
 

0.0806 
 

0.0522 
 

1.5 
 

Abs 700 nm 
 

0.0472 
 

0.0144 
 

3.3 
 

Abs 710 nm 
 

0.0232 
 

0.0046 
 

5.0 
 

a UV-visible absorbance data of 1 µM of dye pre-equilibrated with 38 µM bp of calf 
thymus DNA in 10 mM sodium phosphate buffer pH 7.0 for 12 h at 22 ºC. Ratio = Abs 
3/Abs MB. NA = not applicable. 
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Figure 4.S1. Proton NMR of compound 3, (300 MHz, CDCl3:CD3OD): δ = 7.95 (d, J = 
9.6 Hz , 2H, H-1), 7.94 (d, J = 9.6 Hz , 2H, H-9), 7.48 (m, 4H, H-6 and H-8), 7.33 (dd, J 
= 9.6, 2.7 Hz, 2H, H-2), 7.26 (d, J = 2.7 Hz, 2H, H-4), 4.42 (d, J = 13.5 Hz, 4H, CH2-α), 
3.43 (s, 12H, NCH3), 3.38 (m, overlap with CH3OH, 4H, CH2-α), 2.06 (d, J = 11.7 Hz, 
4H, CH2-β), 1.81 (broad, 2H, CH), 1.37 ppm (m, 8H, CH2-CH2 and CH2-β). 
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Figure 4.S2. Aromatic region with integration of compound 3 enlarged from Figure 4.S1. 
δ = 7.95 (d, J = 9.6 Hz , 2H, H-1), 7.94 (d, J = 9.6 Hz , 2H, H-9), 7.48 (m, 4H, H-6 and 
H-8), 7.33 (dd, J = 9.6, 2.7 Hz, 2H, H-2), 7.26 (d, J = 2.7 Hz, 2H, H-4). Note: Resonance 
at 7.45 ppm is a residual solvent peak of CHCl3. 
 



  159 

 

Figure 4.S3. Aliphatic region with integration of compound 3 enlarged from Figure 4.S1. 
Note: there is overlap with CH3OH resonances and CH2-α at 3.38 ppm. δ = 4.42 (d, J = 
13.5 Hz, 4H, CH2-α), 3.43 (s, 12H, NCH3), 3.38 (m, overlap with CH3OH, 4H, CH2-α), 
2.06 (d, J = 11.7 Hz, 4H, CH2-β), 1.81 (broad, 2H, CH), 1.37 ppm (m, 8H, CH2-CH2 and 
CH2-β). 
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Figure 4.S4. Viscometric measurements as described in the accompanying manuscript 
were conducted at 25 ± 0.1 ºC in 10 mM sodium phosphate buffer pH 7.0 with 50 µM bp 
alternating poly[(dA-dT)]2 or 50 µM bp poly(dA)•poly(dT) DNA pre-equilibrated for 12 
h in the dark at 22 ºC in the presence of 0.0 to 3 µM of the dyes A) compound 3 and B) 
MB. Red filled circles: compound 3 with alternating poly[(dA-dT)]2, slope = 1.18, R = 
0.9066. Red open circles: compound 3 with poly(dA)•poly(dT), slope = 0.22, R = 0.9202.  
Blue filled circles: MB with alternating poly[(dA-dT)]2, slope = 1.11, R = 0.9518.  
Blue open circles: MB with poly(dA)•poly(dT), slope = 0.17, R = 0.7111.  
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CHAPTER V 
 

Syntheses and DNA Photocleavage by Phenothiazinium-Piperazinexylene 

Intercalators 

(The data presented in this chapter will be submitted by Wilson, B.; Fernández, M.-J.; 
Lorente, A.; Grant, K. B. to a peer-reviewed chemistry journal. The contributions to this 
project by the author of this dissertation were as follows: design and synthesis of 
photonucleases 5 and 6; conception and execution of all biological, biophysical, and 
photochemical experiments; and authorship of the original manuscript. Drs. Fernández 
and Lorente were instrumental in directing the strategies developed for the synthesis of 
compounds 5 and 6.) 
 

Abstract 

Two photonucleases incorporating one phenothiazinium ring with a bis-

piperazinexylene substituent (compound 5) or the same bis-piperazinexylene as a linker 

centrally attached to two phenothiazinium rings (compound 6) were designed, 

synthesized and evaluated as DNA photocleaving agents. In reactions employing 10 µM 

to 0.25 µM of compound 5 or 6, irradiation with visible light (400-650 nm) produced 

enhanced cleavage yields of plasmid DNA in a concentration dependent manner under 

near physiological conditions of pH and temperature (pH 7.0, 22 ºC). Thermal melting 

assays showed that compounds 5 and 6 increased the Tm of calf thymus DNA by 17 ºC 

and 19 ºC, respectively. Viscosity measurements revealed that both compounds were 

bound to DNA as monofunctional intercalators. 

Introduction 

Phenothiazines are basic dyes that possess redox properties and have been 

investigated as both potential electrophore probes in supramolecular assemblies1 and as 

components in photogalvanic systems for potential solar energy conversion.2 In 
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biological systems, this chromophore has been shown to interact with DNA primarily 

through intercalation. Additionally, phenothiazines are involved in photosensitization 

reactions and have demonstrated efficient photooxidative damage to DNA as well as to 

other biomolecules.3 In this regard, the phenothiazines have been attracting considerable 

attention as potential photodynamic therapy agents due to their absorption of light within 

the therapeutic window for PDT (600-800 nm)4a and to the low toxicity of the 

chromophore in human cells.4b,c Accordingly, 1,9-dimethyl methylene blue (λmax = 648 

nm, methanol)5b and 2,8-dimethyl methylene blue (λmax = 630 nm, methanol)5b have 

demonstrated efficient photoactivity against several tumor cell lines.4b, 5 Moreover, 

phenothiazines have also exhibited the in vitro photoinactivation of nosocomial bacterial6 

and viral7 pathogens.  

In the present study, we describe the syntheses and characterization of 7-

dimethylamino-3-(1,1’-[1,4-phenylenebis(methylene)bispiperazine])phenothiazin-5-ium 

iodide (5) and N,N’-bis[(7-dimethylamino)phenothiazin-5-ium-3-yl]-1,1’-[1,4- 

phenylenebis(methylene)bispiperazine] diiodide (6). Additionally, we evaluate the DNA 

photocleavage efficiencies, access the DNA binding affinity, and determine the DNA 

binding modes of the two compounds.  

We exploited several design elements in the development of compounds 5 and 6. 

The phenothiazine chromophore was selected due to its intercalative DNA binding 

association and absorption of light at longer wavelengths (> 600 nm). We reasoned that 

by incorporating this chromophore, DNA photocleavage might be effectively enhanced at 

longer wavelengths. In addition, bis-piperazinexylene (4) was employed as a substituent 

or as a linker to effect light absorption properties (electron-donating species) and to 
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potentially enhance DNA binding and duplex stability. DNA intercalating chromophores 

that possess xylene motifs and/or six member rings (e.g., piperidines, sugars) have been 

shown to impart additional duplex stability through van der Waals contacts within the 

grooves and hydrogen bonding.8 Furthermore, the structural composition (one 

intercalating ring and a potential groove binding substituent versus two intercalating 

molecules) was intentionally included in the design rationale to evaluate DNA 

photocleavage and binding affinity as function of binding mode.  

Results and Discussion 

Synthesis. Precursor phenothiazin-5-ium tetraiodide hydrate (1) and 3-

(dimethylamino)phenothiazin-5-ium triodide (2) salts (Scheme 5.1) were prepared 

according to a published literature protocol.9 In the case of compound 2, chloroform was 

employed as the solvent in the reaction instead of methanol. Then, compound 3 was 

prepared as described by McConnaghie et al. (Scheme 5.2).10 Although compound 3 was 

previously hydrolyzed under acidic conditions to afford 4,10 we found that bis-

piperazinexylene 4 was obtained more efficiently under basic conditions (Scheme 5.2). 

Under acidic conditions, we obtained mixtures of starting material and product even after 

employing longer refluxing times (48 h). 

After preparing the precursor chromophore 2 and bis-piperazinexylene 4, our first 

goal was to synthesize compound 6. We envisioned that this transformation might require 

more effort, since two aromatic nucleophilic additions (compound 6) versus one aromatic 

nucleophilic addition (compound 5) would be needed. Moreover, several syntheses of 

3,7-disubstituted phenothiazin-5-ium salts have appeared in the literature,9, 11 while to the 
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best of our knowledge, no synthetic accounts of bis-phenothiazinium salts (incorporating 

our design features) have been reported. 

Accordingly, in our first attempts methanol, and chloroform were utilized as 

solvents and various mol equiv of 2 and 4 were explored. Ultimately, we found that 

reacting 1 mol equiv of each reagent (2 and 4) in methanol afforded compound 5 in 34% 

yield after purification (Scheme 5.3). A small quantity (10%) of impure compound 6 was 

also recovered. Because yields of compound 6 under the above conditions were not 

optimal, we explored other strategies. After employing several alternative solvents (e.g., 

DMSO, DMF) and reaction conditions (e.g., room temperature, refluxing), the synthesis 

of compound 6 was achieved by using cesium carbonate as base and DMF as solvent, 

affording compound 6 in 41% yield (Scheme 5.3).  

 

Scheme 5.1. Preparation of precursors 1 and 2. (a) I2, CHCl3, 5 ºC, 2 h, 80% yield; (b) 
HN(CH3)2 in CH3OH-CHCl3, RT, 4 h, 55% yield. 
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Scheme 5.2. Preparation of 3 and 4. (a) K2CO3, CH3OH, reflux, 24 h, 75% yield; (b) 
KOH, EtOH, H2O, reflux, 24 h, 78% yield. 
 

 

 

Scheme 5.3. Synthesis of new compounds 5 and 6. (a) CH3OH, RT, 72 h, 34% yield; (b) 
Cs2CO3, DMF, RT, 48 h, 41% yield. 
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UV-Visible Spectrophotometry. The absorption spectra of 10 µM compound 5 

and 6 (Fig. 5.1) were recorded in 10 mM sodium phosphate buffer pH 7.0 at 22 ºC. Under 

these conditions, the λmax observed for 5 and 6 were 662 nm and 580 nm, respectively. 

Because phenothiazines are known to self-associate in aqueous solutions,12 the spectra of 

5 and 6 were recorded after the addition of 1.0% (w/v) sodium dodecyl sulfate (SDS) as 

well as after the addition of 380 µM bp calf thymus DNA (10 mM sodium phosphate 

buffer pH 7.0 at 22 ºC). In the case of DNA, the solutions were allowed to pre-equilibrate 

for 12 h in the dark at 22 ºC prior to the measurements.  

The absorbance spectra of compounds 5 and 6 in the presence of SDS and calf 

thymus DNA are shown in Figure 5.1. In the presence of 1.0% SDS, the maximal 

absorbances for 10 µM 5 and 6 are 660 nm (ε = 5.81 x 104 M-1 cm-1) and 662 nm (ε = 

1.46 x 105 M-1 cm-1), respectively. Upon the addition of calf thymus DNA, the respective 

λmax values for compounds 5 and 6 are 665 nm (ε = 3.66 x 104 M-1 (bp) cm-1) and 665 nm 

(7.80 x 104 M-1 (bp) cm-1). It is evident from the data that compound 5 exhibits 

bathochromicity and hypochromicity in the presence of DNA. In the case of compound 6, 

we observe significant disruption of intramolecular self-association upon the addition of 

DNA as well as bathochromicity. These observations indicate that both compounds 

interact with DNA. Additionally, the DNA-bound phenothiazines exhibit maximal 

absorbances greater than 600 nm. 

 

 

 

 



  167 

 

Figure 5.1. UV-visible spectra of A) compound 5 and B) compound 6 recorded at 22 ºC 
in 10 mM sodium phosphate buffer pH 7.0 with 10 µΜ compound 5 (line with squares) 
or with 6 (line with filled circles) and in the presence of 380 µΜ bp calf thymus DNA 
(solid line) or 1.0% sodium dodecyl sulfate (w/v) (dashed line). The samples containing 
DNA were pre-equilibrated for 12 h in the dark at 22 ºC. ND = not determined due to 
aggregation in buffer. 
 

Table 5.1. Absorbance Dataa 

compound 
 
λmax (nm) 

 

 
ε x 104 (M-1 cm-1)  

 

 
ε x 104 (M-1(bp) cm-1)  

 
5 662 

615 

4.56 na 

6.43 5 + 1% SDS 660 5.81 na 

5 + DNA 665 na 3.66 

6 580 nd na 

6 + 1% SDS 662 14.6 na 

6 + DNA 665 na 7.80 

a Extinction coefficients for compound 5 and 6 were determined in 10 mM sodium 
phosphate buffer pH 7.0 using solutions containing 1 to 10 µM of dye in the presence and 
absence of 1% sodium dodecyl sulfate (w/v) or 38 to 380 µM bp calf thymus DNA. The 
samples containing DNA were pre-equilibrated for 12 h in the dark at 22 ºC. na = not 
applicable; nd = not determined due to aggregation in buffer. 
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DNA Photocleavage. In the next set of experiments, DNA photocleavage was 

evaluated as a function of dye concentration and irradiation time. Reaction samples were 

carried out with 10 to 0.25 µM compound 5 or 6 equilibrated with 38 µM bp pUC19 

plasmid DNA in 10 mM sodium phosphate buffer pH 7.0 for 12 h in the dark at 22 ºC. 

The samples were then aerobically irradiated in a Rayonet Photochemical Reactor fitted 

with twelve 575 nm lamps for 60 min (spectral output, 400-650 nm). The photolysis 

reaction products were then resolved on a 1.0% non-denaturing agarose gel. As shown in 

Figure 5.2, both compounds produced enhanced levels of DNA damage in a 

concentration dependent manner. The highest photocleavage yields (conversion of 

supercoiled to nicked form) were 96% (Fig. 5.2, Lane 3) and 93% (Fig. 5.2, Lane 11) for 

samples irradiated with 10 µM 5 and 6, respectively.  

We then employed 10 µM of compound 5 or 6 equilibrated with 38 µM bp 

pUC19 plasmid DNA in 10 mM sodium phosphate buffer pH 7.0 to examine the 

irradiation time dependence on DNA photocleavage (Fig. 5.3). Individual samples were 

irradiated as described above at time-points ranging from 10 to 60 min. As shown in 

Figure 5.3, DNA photocleavage by compounds 5 and 6 increased as a function of 

increasing irradiation time, generating maximal cleavage yields of 93% and 95% at the 

60 min time-point. 
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Figure 5.2. Photograph of a 1.0% non-denaturing agarose gel showing photocleavage of 
pUC19 plasmid DNA. Samples contained 10 mM sodium phosphate buffer pH 7.0 and 
38 µM bp DNA in the presence and absence of dye. A) compound 5 and B) compound 6. 
After pre-equilibrated for 12 h in the dark at 22 ºC, the samples were aerobically 
irradiated in a Rayonet Photochemical reactor fitted with twelve 575 nm lamps for 60 
min at 22 ºC. Lanes 1 and 9: DNA controls (no dye). Lanes 3 to 8: 10 to 0.25 µM 
compound 5. Lanes 11 to 16: 10 to 0.25 µM compound 6. Lanes 2 and 10: 10 µM 5 and 
10 µM 6 (no hν). Abbreviations: N = nicked; S = supercoiled.  
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Figure 5.3. DNA photocleavage of 38 µM bp pUC19 plasmid DNA in 10 mM sodium 
phosphate buffer pH 7.0 by 10 µM compound 5 (white bars) and 10 µM compound 6 
(gray bars) as a function of irradiation time. After pre-equilibrated for 12 h in the dark at 
22 ºC, the samples were aerobically irradiated in a Rayonet Photochemical reactor fitted 
with twelve 575 nm lamps for 10-60 min at 22 ºC.  The black bar represents DNA that 
was irradiated for 60 min in 10 mM sodium phosphate buffer pH 7.0 in the absence of 
dye. 
 

DNA Thermal Denaturation. Melting assays provide a straightforward method 

to access the relative DNA binding affinities of compounds that associate with double-

helical DNA. In the process of intercalation and/or groove binding, free energy 

contributions from π-π, van der Waals, electrostatic and hydrogen bonding interactions 

stabilize helical DNA. As a result, these interactions increase the DNA binding affinity, 

thereby increasing the melting temperature of the DNA-ligand complex.13  

The melting isotherms shown in Figure 5.4 were generated by employing 12.5 

µM bp calf thymus DNA equilibrated in the absence or presence of 7.5 µM 5 or 6 (10 

mM sodium phosphate pH 7.0). As compared to calf thymus DNA (Tm = 69 ºC), 
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compound 5 exhibited a Tm of 86 ºC (ΔTm = 17 ºC) while compound 6 produced a Tm of 

88 ºC (ΔTm = 19 ºC). Clearly, the Tm values produced by compounds 5 and 6 were 

significant, thereby indicating significant levels of duplex stabilization interactions. 

The above results are consistent with the dicationic nature of both dyes under the 

experimental conditions employed. At pH 7.0, basic phenothiazine dyes have pKa values 

of approximately 12.14 In the case of compound 5, the bis-piperazinexylene substituent 

would be expected to bear one positive charge (secondary amino group of piperazine) as 

the piperazine tertiary amino group would not be protonated due a reduction in charge 

density by the withdrawing effects of the xylene as previously described.10  

Therefore, the positive charge density of compound 6 is imparted by the two 

phenothiazines, while in compound 5 the bis-piperazinexylene substituent is expected to 

furnish one and the phenothiazine provide the other positve charge. 

 
Figure 5.4. Melting isotherms of: 12.5 µM bp CT DNA (Δ, Tm = 69 ºC); 12.5 µM bp CT 
DNA with 7.50 µM of 5 (� , Tm = 86 ºC) or with 7.50 µM of 6 (, Tm = 88 ºC) in 10 mM 
sodium phosphate buffer pH 7.0. The ordinate represents normalized absorbance 
monitored at 260 nm. 
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Viscosity Measurements. In order for intercalation to occur, the DNA base pairs 

separate to form a cavity for the incoming chromophore through localized unwinding of 

the duplex. Consequently, the contour length of DNA is increased. Because groove 

binding agents do not unwind helical DNA, hydrodynamic assays (e.g., viscosity) 

sensitive to the change in DNA length can be employed to distinguish between binding 

modes.15 According to the theory of Cohen and Eisenberg, plots of the cubed root of the 

relative viscosity (η/ηo)1/3 versus r the molar ratio of bound ligand to DNA bp (r) should 

result in a slope close to 1.0 for a monointercalator.16. The slope of a bisintercalator is 

then expected to be twice that observed for the monointercalative binding. 

Our next goal was to determine the DNA binding mode of compounds 5 and 6. 

Viscosity measurements were carried out with individual solutions equilibrated with 10 

mM sodium phosphate buffer pH 7.0 and 200 µM bp of calf thymus DNA in the presence 

(η) and absence (ηo) of dye. The viscosity data (Fig. 5.5) was plotted as (η/ηo)1/3 versus 

dye to DNA bp molar ratios (r) ranging from 0.01 to 0.06. The slopes obtained from 

these plots were 0.99 and 1.2 for compounds 5 and 6, respectively. Clearly, both 

compounds interacted with calf thymus DNA as monofunctional intercalators.  

In order to prevent violation of the nearest-neighbor exclusion theory, 

bisintercalators should possess a linker ≥10 Å in length.17 While compound 6 meets this 

requirement,18 it is conceivable that conformation constraints lower the free energy of 

binding19 or that self-association of the dye in the buffer solution prevent the insertion of 

the second ring. 
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Figure 5.5. Viscosity measurements conducted with 200 µM bp calf thymus DNA in 10 
mM sodium phosphate buffer pH 7.0 pre-equilibrated with 0, 2, 4, 6, 8, 10, 12 µM of 
compound 5 or of compound 6 for 12 h at 22 ºC.  
 

Conclusions 

Two cationic and photoactive intercalators incorporating one phenothiazinium 

ring with a bis-piperazinexylene substituent (compound 5) or the same bis-

piperazinexylene as a linker centrally attached to two phenothiazinium rings (compound 

6) have been synthesized and characterized. In the presence of DNA, both compounds 

exhibit maximal absorbance at 665 nm in 10 mM sodium phosphate pH 7.0. Moreover, 

irradiation (400-650 nm) of pUC19 plasmid DNA in the presence of 10 µM 5 or of 6 

produces photocleavage yields of 96% and 93%, respectively. DNA melting assays show 

that significant increases in Tm values were produced by 5 (ΔTm =17 ºC) and 6 (ΔTm =19 

ºC) relative to calf thymus DNA (in the absence of dye). Lastly, viscosity measurements 

indicate that both compounds bind to DNA as monofuntional intercalators. 
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Considering the great interest in developing non-porphyrin based 

phototherapeutics that strongly absorb light at wavelengths greater than 600 nm and 

possess low toxicity in human cells, our future research efforts will involve the synthesis 

of second-generation bis-phenothiazine dyes with improved intercalating abilities.  

Experimental 

General Methods. Melting points were determined in a Stuart Scientific model 

SMP10 apparatus. Infrared spectra were taken on an FT-IR Perkin Elmer Spectrum One 

spectrophotometer. 1H and 13C NMR spectra were recorded at 300 MHz and 75 MHz, 

respectively, in either Varian Unity One or Varian Mercury-VX-300 spectrometers. 

Elemental analyses (CHNS) were conducted on a Leco CHNS-932 automatic analyzer 

while iodine composition was performed by oxygen flask combustion and by ion 

chromatography (Atlantic Microlabs, Inc. Norcross, GA). Electrospray ionization (ESI) 

mass spectra were generated on a Micromass Q-Tof hybrid mass spectrometer. Merck 

silica gel 60 (230-400 ASTM mesh) was employed for flash column chromatography. 

UV-visible and CD spectra were recorded with a UV-1601 Shimadzu spectrophotometer, 

while thermal melting curves were generated using a Cary Bio 100 UV-Vis 

spectrophotometer. 

Distilled, deionized water was utilized in the preparation of all buffers and 

aqueous reactions. Chemicals were of the highest available purity and were used without 

further purification. Anhydrous magnesium sulfate, cesium carbonate, chloroform, α,α’-

dibromo-p-xylene, dichloromethane, dimethylamine (2 M solution in methanol), 

dimethylformamide, ethidium bromide, iodine, methanol, 10H-phenothiazine, 1-

piperazinecarboxaldehyde, potassium hydroxide, potassium carbonate, sodium phosphate 
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dibasic, and sodium phosphate monobasic were obtained from the Aldrich Chemical Co. 

Transformation of Escherichia coli competent cells (Stratagene, XL-blue) with pUC19 

plasmid (Sigma) and growth of bacterial cultures in Lauria-Bertani broth were performed 

according to standard laboratory procedures.20 The plasmid DNA was purified with a 

Qiagen Plasmid Mega Kit. Ultra PureTM calf thymus DNA (Invitrogen Lot No. 15633-

019, 10 mg/mL, average size ≤ 2000 bp) was used without purification. The 

concentration of calf thymus DNA solutions were determined by UV-visible 

spectrophotometry using the following extinction coefficient in units of M-1 (bp) cm-1: ε260 

= 12,824.  

Phenothiazin-5-ium tetraiodide hydrate (1). A solution of 10H-phenothiazine 

(0.566 g, 2.84 mmol) in 20 mL of chloroform was stirred at 5 ºC and iodine (2.16 g, 8.51 

mmol) dissolved in 50 mL of chloroform was added drop-wise over 1 h. The reaction 

mixture was stirred at 5 ºC for an additional h, while the progress was monitored by silica 

gel TLC using chloroform as the solvent. The precipitate from the reaction was then 

filtered, washed with a copious amount of chloroform and was dried under high vacuum 

overnight to afford 1.63 g (80% yield) of dark-blue solid 1; Rf = 0.09 (chloroform); M.p. 

170 ºC (decomp.); 1H NMR (300 MHz, Acetone-d6): δ = 8.01 (m, 2H), 7.92 (m, 2H), 7.64 

ppm (m, 4H); 13C NMR (75 MHz, Acetone-d6): δ = 153.58, 130.67, 129.47, 128.64, 

125.50, 123.52 ppm; IR (film): ν = 2967, 1558, 1467, 1440, 1311, 1233, 1131, 1067, 

1023, 841, 705 cm-1. LRMS (ESI): calcd for C12H8NS [M+]: 198.0; found: 199.0 [M+H+]+. 

3-(Dimethylamino)phenothiazin-5-ium triiodide (2). To a solution of 

phenothiazin-5-ium tetraiodide hydrate (0.400 g, 0.553 mmol) in 20 mL of chloroform 

was added dimethylamine in methanol (0.553 mL, 1.11 mmol) drop-wise over 4 h. The 
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reaction was monitored by silica gel TLC (3:7 10% aqueous ammonium 

acetate/methanol, v/v). The resultant precipitate was filtered, washed with chloroform 

and allowed to air dry. Product 2 (189 mg, 55% yield) was obtained as a dark-blue solid; 

Rf  = 0.28 (3:7 10% aqueous ammonium acetate/methanol, v/v); M.p. 144-145 ºC; 1H 

NMR (300 MHz, DMSO-d6): δ = 8.22 (dd, J = 8.0 Hz, J = 1.6 Hz, 1H, H-9), 8.17 (dd, J = 

8.0 Hz, J = 1.6 Hz, 1H, H-6), 8.10 (d, J = 10 Hz, 1H, H-1), 8.04 (dd, J = 10 Hz, 1H, H-2), 

8.00 (d, J = 2.4 Hz, 1H, H-4), 7.85 (m, 2H, H-7 and H-8), 3.64 and 3.60 ppm (2s, 6H, 

N(CH3)2); 13C NMR (75 MHz, DMSO-d6): δ = 156.09, 144.13, 139.81, 139.56, 138.03, 

134.55, 133.22, 129.81, 126.27, 126.06, 125.84, 109.66, 43.35, 42.88 ppm; IR (film): ν = 

2800, 1617, 1559, 1489, 1429, 1411, 1252, 1118, 1411, 1078, 887, 835, 772 cm-1; LRMS 

(ESI): calcd for C14H13N2S [M+]: 241; found: 241. Anal. Calcd for C14H13N2SI3: C, 27.03; 

H, 2.11; N, 4.50; S, 5.15; I, 61.20. Found: C, 27.12; H, 1.97; N, 4.46; S, 5.23; I, 60.94. 

1,1’-[1,4-Phenylenebis(methylene)]bis(4-piperazinecarboxaldehyde) (3). A 

solution containing α, α’-dibromo-p-xylene (2.60 g, 0.010 mol), 1-piperazine 

carboxaldehyde (2.30 mL, 0.022 mol) and potassium carbonate (1.40 g, 0.010 mol) in 40 

mL of methanol was refluxed under an open atmosphere for 24 h. Reaction progress was 

monitored by silica gel TLC (44:8:1 chloroform-methanol-ammonium hydroxide, v/v/v). 

After the starting materials were consumed, the reaction was concentrated to dryness 

under reduced pressure. The resulting solid was then dissolved in 25 mL of water and 

extracted with dichloromethane (50 mL) three times. The organic layer was dried over 

anhydrous magnesium sulfate, filtered and concentrated under reduced pressure to yield 

2.47 g (75%) of white solid 3; Rf = 0.69 (44:8:1 chloroform-methanol-ammonium 

hydroxide, v/v/v); M.p. 140 – 142 ºC; 1H NMR (300 MHz, DMSO-d6): δ 2.29 and 2.35 (t, 
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J = 4.8 Hz, 4H, CH2-NCH2Ph), 3.35 and 3.37 (tt, J = 4.8 and 5.2 Hz, 8H, CH2-NCHO), 

3.48 (s, 4H, CH2-Ph), 7.27 (s, 4H, Ph-H), 7.99 ppm (s, 2H, NCOH); 13C NMR (75 MHz, 

DMSO-d6): δ 39.11 and 44.77 (CH2-NCHO), 51.89 and 53.11 (CH2- NCH2Ph), 61.62 

(CH2-Ph), 128.73 (Ph-H), 136.55 (Cipso Ph) 160.68 ppm (CHO); IR (film): ν = 770, 821, 

841, 998, 1017, 1125, 1226, 1400, 1431, 1489, 1514, 1668, 2805, 2870 cm-1; LRMS 

(ESI): calcd for C18H26N4O2 [M+] 330; found: 331 [M+H+]+. 

1,1’-[1,4-Phenylenebis(methylene)]bispiperazine (4). A solution of 3 (0.500 g, 

1.50 mmol) in 3 mL of ethanol and 2 mL of water was treated with potassium hydroxide 

(0.421 g, 7.50 mmol) and refluxed under an open atmosphere for 24 h. Reaction progress 

was monitored by silica gel TLC (44:8:1 chloroform-methanol-ammonium hydroxide, 

v/v/v). After the starting material was consumed, the reaction mixture was allowed to 

cool and was then extracted with dichloromethane (10 mL) three times. The organic layer 

was dried over anhydrous magnesium sulfate, filtered and concentrated under reduced 

pressure to yield 0.321 g (78%) of white solid 4; Rf  = 0.45 (44:8:1 chloroform-methanol-

ammonium hydroxide, v/v/v); M.p. 146 – 148 ºC; 1H NMR (300 MHz, DMSO-d6): δ 2.23 

(t, J = 4.6 Hz, 8H, CH2-NCH2Ph), 2.64 (t, J = 4.6 Hz, 8H, CH2-NH), 3.36 (s, 4H, CH2-

Ph), 7.19 ppm (s, 4H, Ph-H); 13C NMR (75 MHz, DMSO-d6): δ 45.55 (CH2-NH), 54.07 

(CH2- NCH2Ph), 62.62 (CH2-Ph), 128.5 (Ph-H), 136.7 (Cipso Ph); IR (film): ν = 765, 830, 

858, 1008, 1134, 1249, 1335, 1360, 1453, 1514, 2804, 2880, 3244 cm-1; LRMS (ESI): 

calcd for C16H26N4 [M+]: 274; found: 275 [M+H+]+, 138 [M+H+]+2. 

7-Dimethylamino-3-(1,1’-[1,4-phenylenebis(methylene)bispiperazine]) 

phenothiazin-5-ium iodide (5). A solution of 2 (0.507 g, 0.815 mmol) and 4 (0.224 g, 

0.815 mmol) in 25 mL of methanol was vigorously stirred for 72 h. The progress of the 
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reaction was monitored by silica gel TLC (9.5:0.5 dichloromethane-methanol, v/v). The 

reaction was concentrated under reduced pressure and the resultant solid was purified by 

flash column chromatography (4 cm column, 70 g silica gel) using 9.5:0.5 

dichloromethane-methanol, v/v as the eluent to afford 170 mg (34%) of dark-blue solid 5; 

Rf  = 0.2 (9.5:0.5 dichloromethane-methanol, v/v); M.p. > 300 ºC; 1H NMR (300 MHz, 

DMSO-d6): δ 2.55 (b, 8H,CH2-β, β’) 3.09 (t, J = 5 Hz, 4H, CH2-α’), 3.37 (s, 6H, NCH3), 

3.54 (s, 4H, CH2-Ph) 3.85 (s, broad, 4H, CH2-α), 7.30 (m, 4H, Ph-H), 7.51-7.68 (m, 4H, 

H-2, H-4, H-6 and H-8) 7.90 ppm (m, 2H, H-1 and H-9); 13C NMR (75 MHz, DMSO-d6): 

δ 40.66 (NCH3), 42.48 (C-α’), 46.74 (C-α), 48.38 (C-β), 51.65 (C-β’), 60.36 and 60.53 

(CH2-Ph), 106.41 and 106.52 (C-4 or C-6), 118.22 and 119.01 (C-2 or C-8), 128.27 (C-

Ph), 133.04 and 133.36 (C-9a or C-10), 134.33 (Cipso-Ph), 135.10 and 135.94 (C4a or  C-

5a), 137.25 and 137.39 (C-1 or C-9), 152.25 (C-7) and 153.45 ppm (C-3); IR (film): ν = 

779, 825, 882 , 990, 1042, 1136, 1229, 1352, 1386, 1487, 1593, 1743 cm-1; HRMS (ESI): 

calcd for C30H37N6S 513.2800, found 513.2815 [M+] and 257.1462 [M+/2]. 

N,N’-Bis[(7-dimethylamino)phenothiazin-5-ium-3-yl]- 

1,1’-[1,4-phenylenebis(methylene)bispiperazine] diiodide (6). To a solution of 2 

(0.200 g, 0.322 mmol) in 20 mL of dimethylformamide were added 4 (0.044 g, 0.160 

mmol) and cesium carbonate (0.156 g, 0.480 mmol). The reaction was vigorously stirred 

at RT for 48 h and then concentrated under reduced pressure. The progress of the reaction 

was monitored by TLC (9.5:0.5 dichloromethane-methanol, v/v). The resultant solid was 

purified via flash column chromatography (3 cm column, 39 g silica gel) using 9.5:0.5 

dichloromethane-methanol, v/v as the eluent to afford 66 mg (41%) of dark-blue solid 6; 

Rf  = 0.3 (9.5:0.5 dichloromethane-methanol, v/v) M.p. > 300 ºC; 1H NMR (300 MHz, 
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DMSO-d6): δ 2.55 (s, 8H,CH2-β), 3.38 (s, 12H, NCH3), 3.55 (s, 4H, CH2-Ph) 3.85 (s, 

broad, 8H, CH2-α) 7.31 (s, 4H, Ph-H), 7.55-7.69 (m, 8H, H-2, H-4, H-6 and H-8) 7.93 

ppm (m, 4H, H-1 and H-9); 13C NMR (75 MHz, DMSO-d6): δ 41.91 (NCH3), 47.99 (C-

α), 53.01 (C-β), 61.76 (CH2-Ph), 107.77 (C-4, C-6), 119.53 and 120.39 (C-2, C-8), 

129.59 (C-Ph), 137.16 and 138.75 (C-1, C-9), 153.45 ppm (C-3 or C-7); IR (film): ν = 

778, 830, 881, 1001, 1035, 1140, 1228, 1347, 1385, 1488, 1590, 2834, 2884, 2954 cm-1; 

HRMS (ESI): calcd for C44H48N8S2 752.3443, found 376.1725 [M+/2]. 

UV-Visible Spectrophotometry. Extinction coefficients for compound 5 and 6 

were determined using 500 µL solutions containing 1 to 10 µM of dye in the presence 

and absence of 38 to 380 µM bp calf thymus DNA in 10 mM sodium phosphate buffer 

pH 7.0. After a 12 h pre-equilibration period in the dark, UV-visible spectra were 

recorded in 1 cm quartz cuvettes at 22 ºC. The absorbance was then plotted as a function 

of concentration and linear least square fits to these data yielded slopes (KaleidaGraph 

version 3.6.4 software) that were averaged over three trials. Using the procedure 

described above, extinction coefficients in the absence of calf thymus DNA were also 

recorded in the presence of a final concentration of 1% sodium dodecyl sulfate (w/v). 

DNA Photocleavage. Individual samples consisted of 38 µM bp pUC19 plasmid 

DNA and 10 to 0.0 µM of compound 5 or 6 in 10 mM sodium phosphate buffer pH 7.0 

(total volume 20 µL). The samples were pre-equilibrated in the dark for 12 h at 22 ºC, 

after which they were kept in the dark or were aerobically irradiated in a Rayonet 

Photochemical reactor fitted with twelve 575 nm lamps (Southern New England 

Ultraviolet Co.) for 60 min. In time course experiments, individual 20 µL reactions 

contained 10 µM 5 or 6 and 38 µM bp pUC19 plasmid DNA in 10 mM sodium 
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phosphate buffer pH 7.0. The samples were pre-equilibrated in the dark for 12 h at 22 ºC, 

after which they aerobically irradiated as described above for 10 to 60 min. The resulting 

cleavage products were electrophoresed on a 1% nondenaturing agarose gel stained with 

ethidium bromide (0.5 µg/mL), visualized on a transilluminator set at 302 nm, 

photographed and scanned. The amounts of supercoiled and nicked plasmid DNA were 

quantitated by densitometry using ImageQuant version 5.2 software (Amersham 

Biosciences). Photocleavage yields were calculated using the formula [(nicked 

DNA)/total DNA] x 100. The density of supercoiled DNA was multiplied by a correction 

factor of 1.22 to account for the decreased binding affinity of ethidium bromide to 

supercoiled DNA as compared to the nicked and linear forms. 

Thermal Melting Studies. Individual 3 mL solutions containing 10 mM sodium 

phosphate buffer pH 7.0 and 12.5 µM bp calf thymus DNA in the presence and absence 

of 7.50 µM of compound 5 or 6 in were placed in 3 mL (1 cm) quartz cuvettes (Starna). 

After the samples were equilibrated in the dark for 12 h and 22 ºC, absorbance was 

monitored at 260 nm while the DNA was denatured using a Peltier heat block 

programmed to increase the temperature from 25 to 100 ºC at a rate of 0.5 ºC min-1. 

KaleidaGraph version 3.6.4 software was then used to approximate the first derivative of 

ΔA260/ΔT versus temperature, where the Tm value corresponded to the maximum of each 

first derivative plot. 

Viscosity Measurements. In a total volume of 1000 µL, individual solutions 

containing 10 mM sodium phosphate buffer pH 7.0 and 200 µM bp of calf thymus DNA 

(average length ≤ 2000 bp) in the absence and presence of 2 to 12 µM of compound 5 or 

6 were pre-equilibrated for 12 h in the dark at 22 ºC. DNA viscosity was then measured 
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in a Cannon-Ubbelohde size 75 capillary viscometer immersed in a thermostated water 

bath maintained at 25 ± 0.2 ºC. The flow times of the buffer, DNA in buffer, and dye-

DNA in buffer were measured with a stopwatch. The measurements were averaged over 

four trials to an accuracy of + 0.2 s. After subtracting the averaged flow time of the 

buffer, DNA (η0) and dye-DNA (η) averaged flow times were plotted as (η/ηo)1/3 versus 

the molar ratio of dye to DNA bp. Slopes were generated by conducting linear least 

square fits to these data (KaleidaGraph version 3.6.4 software). While the conventional 

method for performing viscosity assays involves titration of the ligand into a DNA 

solution inside the viscometer, here we report an alternative and efficient technique that 

may be particularly useful for 5 and 6 as well as for other phenothiazines (e.g., 1,9-

dimethyl methylene blue and methylene blue), where pre-equilibration with DNA is 

required to reduce ligand stacking associations in solution.12 
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CHAPTER VI 

Allele-Specific PCR-Based Genotyping of a Normal Variation in 
Human Color Vision 

 

(This chapter is verbatim as it appears in Wilson, B.; Lubin, I. M.; Grant, K. B. Journal 
of Chemical Education 2003, 80, 1289-1291. The contributions to the project from the 
author of this dissertation were as follows: collection and extraction of DNA from 
volunteer subjects, allele-specific amplification of the DNA, and authorship of the 
original manuscript. Dr. Lubin’s contribution was the conception of designing a 
laboratory exercise based on the extraction of DNA from buccal cells. Additionally, Dr. 
Lubin made helpful suggestions regarding the content of the manuscript. Dr. Grant’s 
contributions were conception of amplifying the SNP involved in human color vision, 
PCR primer design, minor revisions to the manuscript as well as revisions to the 
supplemental material section. 
 

Abstract  

This laboratory exercise offers undergraduate biochemistry students the 

opportunity to gain experience in a variety of techniques employed in modern molecular 

biology and biochemistry laboratories. Students utilize microcentrifugation and silica-gel 

column chromatography to extract DNA from their own buccal (cheek) epithelial cells. 

The polymerase chain reaction (PCR) and agarose gel electrophoresis are then employed 

to identify a single nucleotide polymorphism (SNP) that is responsible for a commonly 

encountered variation in human red color vision. 

Introduction 

The tremendous impact of the Human Genome Project on the life sciences, both 

in basic research and in education, has given rise to a need for new laboratory 

experiments in undergraduate biochemistry. Two main goals of the Human Genome 

Project are to sequence the entire 3.2 billion base pair human genome and to identify an 

estimated 100,000 human genes by the year 2003 (1). Although 99% of human DNA 
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sequences are identical across populations, most genetic variation can be traced to single 

nucleotide polymorphisms (SNPs) (1, 2). An SNP is a base substitution found at a single 

nucleotide position (3). Approximately 1.4 million SNPs have been mapped within the 

human genome (2). Chakravarti and others anticipate that SNP analyses will lead to the 

development of new therapeutic drugs by uncovering genetic differences that influence 

human disease susceptibility (1-4). SNP analysis also makes important contributions 

towards the study of normal human physiology by providing clues that elucidate gene 

function and evolutionary development (3). Nevertheless, there are few if any 

undergraduate laboratory experiments that provide students with training in this 

important area of human genetics research. We have therefore designed a new exercise 

with the aim of providing direct “hands-on” experience and knowledge beyond what is 

obtained through routine laboratory instruction. 

The following experiment entails the identification of a single nucleotide 

polymorphism responsible for a normal variation in human red color vision. In the course 

of this exercise, students will extract their own DNA from buccal (cheek) epithelial cells 

using a safe and non-invasive procedure. An allele-specific polymerase chain reaction 

(PCR) will then be employed to amplify a fragment of the gene encoding human red cone 

opsin. Finally, visualization of the amplified DNA by agarose gel electrophoresis will 

serve to identify the SNP. 

Molecular Basis for Human Color Vision. Human color vision is mediated by 

red, blue, and green membrane bound proteins (opsins) each residing in different cone 

cells within the retina.  Although the three cone opsins contain the same chromophore, 

11-cis retinal, their absorption maxima vary greatly, from 426 nm for human blue cone 
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opsin to 557 nm for human red cone opsin (5, 6). Within the human red cone opsin gene, 

a thymine to guanine single nucleotide polymorphism results in a serine to alanine amino 

acid substitution at position 180 of the red opsin (7, 8). The wavelength of maximal 

absorbance (λmax) is shifted from 557 nm for the serine wild type opsin to 552 nm for the 

alanine variant (6). This difference is due to the close proximity of amino acid position 

180 to the 11-cis retinal chromophore. Because the red cone opsin gene is located on the 

long arm of the X chromosome (9), males can be homozygous for either the serine or 

alanine allele, while females are either homozygous or heterozygous. In any case, 

individuals with one or more serine alleles of the opsin have a greater sensitivity to red 

light (6 - 8). Although this difference in perception is only slight, it is significant in 

practical terms. If an individual were to coordinate a shirt with a tie, someone else with 

the alternate allele might say that the colors were a bad match. 

DNA Extraction from Buccal Cells. Several traditional methods of DNA 

extraction for PCR analysis, such as fractionation of white cells from whole blood, yield 

large quantities of quality DNA.  However, these methods are often impractical in 

classroom, diagnostic, and research settings due to the inconvenience of drawing blood, 

risk of exposure to blood-borne pathogens, and/or complicated extraction procedures 

(10).  DNA isolation from buccal cells has been successfully employed in PCR-based 

human genetics research (10, 11). The procedure is safe, non-invasive, reproducible, fast, 

and inexpensive. Herein, undergraduate biochemistry students remove a small sample of 

their own buccal cells by performing a brief oral swab with a soft-bristled, sterile 

cytobrush. (Because the cytobrush is similar in texture to a toothbrush, there is no 

discomfort associated with this procedure, no loss of blood, and no risk of infection.) The 
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students then extract approximately 2 to 5 µg of genomic DNA from the buccal cells 

using a commercially available QIAampTM DNA Mini Kit in which cell lysates are 

microcentrifuged through a silica-gel membrane spin column.  

Allele Specific PCR. Allele-specific PCR (AS-PCR) is a well-established method 

affording facile detection of single nucleotide polymorphisms in genomic DNA (12). AS-

PCR provides reliable SNP detection, requires no post-PCR processing, and avoids 

radioactive or fluorescent labeling of primers, thereby reducing cost and labor time (13). 

In this approach, two separate PCR reactions are conducted for each genomic DNA 

sample. In the first PCR reaction, the 3'-base of one PCR primer will anneal to only one 

out of two alleles, while the opposing PCR primer hybridizes to both alleles. The second 

PCR reaction is carried out using the opposing primer and a primer with a 3’-base that is 

specific for the second allele. The two PCR reactions are then resolved on a 

nondenaturing agarose gel, upon which the presence or absence of a band in each of two 

adjacent gel lanes indicates the genotype.  

Shown in Figure 6.1 is a schematic of the allele-specific PCR strategy employed 

in our laboratory exercise. The primer pair FT/R amplifies the serine allele of the human 

red cone opsin gene, while the primer pair FG/R amplifies the alanine allele. 

Experimental Procedure 

A biochemistry laboratory equipped with standard pipetters, a PCR thermal 

cycler, an electrophoresis gel box and power supply, a microcentrifuge, vortexers, and a 

UV transilluminator will be required to conduct this laboratory experiment. In large 

classroom settings, students may work in teams designated by one buccal cell donor per 

team. Two cytobrushes are collected per donor (one from each cheek). 
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Figure 6.1. Allele-specific PCR amplification of two human red cone opsin polymorphic 
variants using forward primer FT (5’-TGCCTTCTCCTGGATCTGGT-3’), forward 
primer FG (5’-TGCCTTCTCCTGGATCTGGG-3’), and reverse primer R (5’- 
ATGATGATAGCGAGTGGGATG-3’). 
 

Each brush is placed in the inner cheek and is gently twirled for 1 min to collect 

dead buccal cells. The subsequent DNA extraction procedure is completed in ~ 2 h at a 

cost of approximately 2 dollars per extraction. (Most materials and reagents are included 

in the QIAampTM DNA Mini Kit.) The most time-consuming component of the laboratory 

exercise entails the polymerase chain reaction, which requires approximately 1/2 h to set-

up and 4 h to run. The cost of each PCR reaction is approximately 2 dollars, based on 

reagents purchased from Roche Molecular Biochemicals.  Buccal cell collection, DNA 

extraction, and PCR set-up are carried out during an initial 3 1/2 h laboratory period, at 

which time the PCR thermal cycler is programmed to run overnight. In a subsequent 3 

1/2 h laboratory period, a 1% agarose gel is cast and stained with ethidium bromide, after 

which the allele-specific PCR products are electrophoresed and then visualized at 302 nm 

on a UV transilluminator. Detailed notes, laboratory protocols, and buffer recipes, along 

with a list of equipment, supplies, and chemicals, appear in the supplemental material 

section of JCE online.ω 
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Hazards. Students should wear splash proof goggles and latex gloves at all times. 

Ethidium bromide is a known mutagen and should therefore be reacted with bleach prior 

to disposal. Spent cytobrushes, pipette tips, collection tubes, and spin columns should be 

washed with EtOH and buccal waste solutions should be reacted with bleach. 

Results and Discussion 

Buccal DNA samples were isolated from 7 female and 7 male Caucasian 

volunteers and were screened for the red cone opsin SNP. Shown in Figure 6.2 are the 

corresponding allele-specific PCR reactions resolved on two 1% agarose gels. It is 

evident that 3 of the 7 females (43%) are heterozygous for the serine (thymine) and 

alanine (guanine) alleles, while the remaining four females (57%) are homozygous for 

serine. Of the 7 male volunteers, six (86%) are homozygous for serine and one (14%) is 

homozygous for the alanine allele. 

In a population distribution study, Windericks et al. screened 50 Caucasian males 

for the red cone polymorphism and found that 62% carried the serine allele while 38% 

were homozygous for alanine (8).  In a recent survey of 9 females by Neitz et al., 56% 

were found to be heterozygous, while 33% and 11% were homozygous for serine and 

alanine respectively (14). Together with our results, the above data indicate that serine is 

the predominant allele associated with the red cone opsin SNP. 
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Figure 6.2. Human red cone opsin allele-specific PCR reactions resolved on 1% 
nondenaturing agarose gels.  Serine and alanine reactions were run with primer pairs 
FT/R and FG/R respectively, for A) seven female and B) seven male buccal cell donors.  
M: pGEM DNA size marker.  C: control PCR reaction, without template DNA.  S: PCR 
reaction, with template DNA.  T: serine (thymine) PCR reaction.  G: alanine (guanine) 
PCR reaction. 
 
Conclusion 

We have presented a new undergraduate biochemistry laboratory exercise in 

which students extract DNA from their own buccal cells and employ allele-specific PCR 

to identify a single nucleotide polymorphism that is responsible for a normal variation in 

red color vision. This exercise has substantial educational merit in that the techniques 

presented are widely employed in industrial, academic, and government research 

institutions. Therefore, the exercise is likely to be of great benefit to undergraduate 

chemistry students, particularly those seeking careers in biochemistry, forensics, 

medicinal chemistry, medicine, and related fields. 
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Notes 

1. Dr. Lubin's participation in this work was undertaken in his private capacity.  No 

official support or endorsement by the Centers for Disease Control and Prevention 

is intended or should be inferred. 

2. The sequence variation determined in this exercise should not be construed to 

indicate the presence or absence of any medical condition including those related 

to color vision. This exercise was developed to teach principles of PCR and its 

application in molecular genetics. Pipetting and other experimental errors can 

occur that result in absence of PCR products or incorrect determination of the 

sequence variation. Since it is not feasible to access or critically control for all 

such errors in the context of this exercise, results should not be taken as definitive 

assignment of sequence variations to specific individuals. 
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Supplemental Material 

Part 1: DNA Extraction from Buccal Cell Samples using a QIAampTM DNA Mini 

Kit 

Experimental Procedure 

1. Two cytobrushes will be used, one brush for each of your cheeks (left and right). 

2. Place a sterile cytobrush in between your gums and cheek. Gently twirl each brush 

both in the upper and bottom cheeks, 1 min per brush. 

3. Place each brush into a separate 1.7 mL microcentrifuge tube and clip off the brush 

handle with a pair of scissors. 

4. Add 500 µL of phosphate buffered saline (PBS) to each of the two tubes. Vortex 

the tubes vigorously for 1 min. Scrape the bristles against the walls of the tube. 

Remove the brushes with a pair of forceps and discard into a solid waste container 

containing 70% ethanol. 

5. Decant the contents of one tube into the other to obtain a total volume of 1000 µL. 

(After decanting, transfer any residual liquid with a pipette tip. Discard the used 

pipette tip into the solid waste container.) 

6. Centrifuge at 8,000 RPM for 5 min. Decant the supernatant into a liquid waste 

container containing a 5% bleach solution. 

7. Add 200 µL of PBS to the microfuge tube and resuspend the cell pellet by 

vortexing vigorously for 1 min. 

8. Add 20 µL of Proteinase K and mix by pulse-vortexing for 15 s. (Use of the 

QIAamp Kit begins here.) 

9. Add 200 µL of lysis Buffer AL to the sample and mix by pulse-vortexing for 15 s. 
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10. Incubate at 56 °C for 10 min, then centrifuge at 8,000 RPM for 15 s. 

11. Add 200 µL of 100% ethanol to the sample and mix by pulse-vortexing for 15 s. 

Centrifuge for 2 - 3 s. 

12. Transfer 500 µL of the total solution (~ 700 µL) from step 11 to the QIAamp spin 

column (placed in a 2 mL collection tube) without wetting the rim of the column. 

Centrifuge at 8,000 RPM for 2 min and decant the filtrate into the liquid waste 

container. 

13. Repeat step 12 once more with the remaining solution from step 11. 

14. Discard the used collection tube into the solid waste container. Place the QIAamp 

column into a clean 2 mL collection tube. 

15. Add 500 µL of Buffer AW1, centrifuge at 8,000 RPM for 1 min, and decant the 

filtrate into the liquid waste container. 

16. Add 500 µL of Buffer AW2 and centrifuge at 14,000 RPM for 3 min. 

17. Examine the column to ensure that there is no residual liquid adhering to the silica-

gel membrane. If found, continue to centrifuge until all of the liquid has been 

transferred to the collection tube. 

18. Decant the filtrate into the liquid waste container. Discard the used collection tube 

into the solid waste container. 

19. Place the QIAamp spin column into a clean 1.7 mL microcentrifuge tube and add 

100 µL of ddH2O to the column. Close the column’s cap, leaving the cap of the 

outer 1.7 mL centrifuge tube open. Incubate at room temperature for 5 min. To elute 

DNA, centrifuge at 8,000 RPM for 2 min. 
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20. Discard the spin column into the solid waste container. Close the cap on the 1.7 mL 

centrifuge tube containing the DNA. The approximate yield of DNA will be 10 - 40 

ng/µL. 

Commentary 

In this section of the laboratory, you will perform an oral swab with a soft-

bristled, sterile cytobrush (Fisher Scientific). This procedure will remove a small quantity 

of your buccal (cheek) cells, which are dislodged from the brush by vortexing in PBS. 

You will then use a QIAampTM DNA Mini Kit to isolate a sample of your own genomic 

DNA from the resulting cell suspension. DNA purification using the QIAampTM Kit is 

based on a simple bind-wash-elute procedure. Nucleic acids are adsorbed onto a silica-gel 

membrane in the presence of high concentrations of chaotropic salts, which remove water 

from hydrated molecules in solution. Polysaccharides and proteins do not adsorb onto the 

silica and are removed. After two wash steps, pure nucleic acids are eluted under low-salt 

conditions in small volumes. 

Isolation Procedure. The precise chemical compositions, concentrations, and pH 

values of the buffers contained in the QIAampTM DNA Mini Kit are proprietary and are 

not described by the manufacturer. The buccal cell pellet is resuspended in PBS to which 

Proteinase K and Buffer AL are added. Lysis Buffer AL contains a chaotropic, 

guanidinium-based salt that degrades cell membrane and denatures proteins, while 

Proteinase K enzymatically hydrolyzes accessible peptide amide bonds. The lysate is 

then applied to the QIAamp spin column containing an unmodified silica-gel membrane 

which retains the DNA. (It has been determined empirically that nucleic acids bind to 

silica at pH ≤7.5, in the presence of ethanol and high concentrations of salt (1). The 



  196 

precise mechanism through which DNA is adsorbed onto the silica is unknown.) After 

brief centrifugation, proteins and cellular debris are eluted in the filtrate. The first wash 

Buffer AW1 contains a different chaotropic salt which serves to further denature proteins 

and elute residual protein contamination from the membrane. The ethanol-based wash 

Buffer AW2 is then utilized to remove any residual salts. Finally, ddH2O is used to elute 

the purified DNA from the membrane. 

Instructor’s Notes 

All procedures in Parts 1 and 2 of this exercise can be conducted in a single 3 1/2 

h laboratory period. 

All buffer solutions, proteinase K, spin columns, and collection tubes are included 

in the QIAampTM DNA Mini Kit (with the exception of PBS and 100% ethanol). 

Although the QIAamp Kit contains an eluting buffer (Buffer AE), its use is not 

recommended for applications that involve subsequent PCR amplification of genomic 

DNA, as Buffer AE contains salts that may interfere with PCR. Also note that the 

QIAamp Kit includes a Handbook with step by step instructions for the extraction of 

DNA from many different types of tissue. The buccal extraction protocol described here 

was adapted from the “Blood and Body Fluid Spin Protocol” on pp. 22-24 of the January 

1999 QIAamp Handbook. Before beginning this laboratory exercise, you should read the 

Handbook included in your particular Kit to determine if any instructions have been 

updated or changed. 

Literature Cited 

1. Vogelstein, B; Gillespie, D. Proc. Natl. Acad. Sci. USA 1979, 76, 615-619. 
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Part 2:  PCR Protocol, Genotyping a Serine/Alanine Polymorphism of the Long-

Wavelength Cone Opsin in Normal Human Color Vision 

Experimental Procedure 

1. You will prepare two separate PCR reactions which will be used to identify wild 

type and polymorphic alleles of the human red cone opsin gene. The first reaction 

will utilize primer pair FT/R while the second will utilize primer pair FG/R. 

FT: Forward Primer 5’-ATTGCCTTCTCCTGGATCTGGT-3’ 

FG: Forward Primer 5’-ATTGCCTTCTCCTGGATCTGGG-3’ 

R: Reverse Primer  5’- AGCATGATGATAGCGAGTGGGA-3’ 

2. Add 10 µL of genomic DNA (10 - 40 ng/µL, in ddH20) to each of two pre-labeled 

PCR tubes (one for primer pair FT/R and one for primer pair FG/R). 

3. To each tube, add 40 µL of a PCR cocktail mix* prepared by the Laboratory 

Instructor. The resulting 50 µL PCR reaction will contain: 

      1X  Final Concentration   

DNA Template (10 - 40 ng/µL) 10.0 µL (2.0 – 8.0 ng/µL)  

dNTP’s (10 mM each nucleotide) 1.0 µL * 200 µM  

10X PCR buffer w/Mg++  5.0 µL * 1X 

Forward primer (10 µM)  5.0 µL * 1 µM  

Reverse primer (10 µM)  5.0 µL * 1 µM 

Taq polymerase (5 Units /µL)  0.5 µL * 0.05 Units/µL 

Deionized water   23.5 µL* 

 Total Volume     50 µL 
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4. Vortex and centrifuge each tube briefly. 

5. Add three drops of mineral oil to each tube with a Pasteur pipette. This will prevent 

the mixture from evaporating during PCR amplification. 

6. Centrifuge briefly. 

7. Load the samples into a Perkin-Elmer Model 480 Thermal Cycler programmed 

with the following cycling parameters: 

94 °C   5 min  1 cycle  Initial Denaturation 

 

94 °C  50 s  45 cycles  Denaturation 

64 °C  1 min  45 cycles Annealing 

72 °C  2 min  45 cycles Elongation 

 

72 °C  10 min  1 cycle  Final Extension 

 

Note: because PCR is an extremely sensitive technique, the Instructor will prepare 

and run two additional reactions (one for primer pair FT/R and a second for primer 

pair FG/R) containing all reagents with the exception of template DNA, which will 

be substituted by equivalent volumes of water. These two reactions will serve as 

negative controls to rule out the presence of trace levels of contaminating DNA in 

buffer, primers, dNTP’s, enzyme, and in any other reagents you utilized to prepare 

your PCR reactions. 
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Commentary 

T

A

Forward primer FT 

Reverse primer R

Thymine (Serine) Allele:

G

C

Forward primer FG

Reverse primer R

Guanine (Alanine) Allele:

 

“Allele-specific PCR amplification of two human red cone opsin variants.” 

 

In this section of the laboratory, you will utilize the polymerase chain reaction 

(PCR) to screen your genomic DNA sample. The purpose of this exercise will be to 

identify a common genetic polymorphism that accounts for a normal variation in human 

color vision. This polymorphism involves a thymine to guanine base substitution in the 

gene encoding human red cone opsin. Shown above, the primer pair FT/R will amplify 

the thymine allele of the opsin, while the primer pair FG/R will amplify the guanine 

allele. 

As light enters the eye, it hits the retina, where cone cells containing blue, green, 

and red opsins mediate color vision. The opsins bind tightly to the chromophore 11-cis 

retinal. This chromophore absorbs light differently, depending upon how it is held by the 

opsin. The above thymine to guanine base substitution produces a corresponding serine to 

alanine amino acid substitution at position 180 of human red cone opsin. Because 

position 180 is near 11-cis retinal, the wavelength of maximal absorbance (λmax) of the 

red cone opsin is shifted from 557 nm (for the serine variant) to 552 nm (for the alanine 

variant; 1,2). As a result, individuals with serine alleles of the opsin have a greater 
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sensitivity to red light. Although the difference between the two types of color vision is 

only slight, it is significant in practical terms: if an individual were to buy a shirt and tie 

that he or she believed to be a good color match, someone else with the alternate allele 

might say that they are not. 

Because the human red cone opsin gene is X-linked, males will be homozygous for 

either the serine or the alanine allele, while females will be either homozygous or 

heterozygous (serine and alanine alleles, each on separate X chromosomes). 

Instructor’s  Notes 

 All procedures in Parts 1 and 2 of this laboratory exercise can be conducted in a 

single 3 1/2 h laboratory period. At this time, the PCR reactions should be set-up to run 

overnight. (The PCR reactions will require approximately 1/2 h to set-up and 5 h to run.) 

As a time-saving measure, you should prepare a PCR “cocktail” mix which the 

students will use to set-up their PCR reactions. For multiple reactions, use of a cocktail 

minimizes pipetting errors. As described in the experimental procedure, this cocktail 

includes all asterisked PCR reagents minus template DNA. To make the cocktail, simply 

multiply each 1X volume times the total number of PCR reactions plus one. Remember 

to prepare separate cocktails for each primer pair and to keep all PCR reagents on ice. 

(The 10X PCR buffer w/Mg++ is provided with Taq polymerase purchased from Roche 

Molecular Biochemicals under catalog # 1146165.) 

You should also utilize the procedures in Part 2 to prepare two negative control 

PCR reactions (one for primer pair FT/R and a second for primer pair FG/R) in which 

template DNA is substituted by equivalent volumes of water. Prior to running the PCR 
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reactions, add ~ 2 drops of mineral oil to each well of the thermal cycler heating block. 

This will ensure uniform heating and cooling of all PCR reaction tubes.  

PCR Troubleshooting.  In this laboratory exercise, we have designed PCR primers 

and have optimized cycling parameters, reagent concentrations, and other experimental 

variables to avoid errors commonly encountered in PCR experiments. These errors can 

result in the absence of PCR product, nonspecific priming, primer-dimer formation, 

and/or the production of faint or smeared PCR bands. Although we have advised the use 

of a PCR cocktail, inaccurate pipetting may still be a problem in the context of an 

undergraduate laboratory setting. 

We suggest that you perform the FT/R and FG/R PCR reactions in advance of the 

laboratory exercise in order to verify the integrity of the PCR reagents that you have 

purchased. We would also like to point out that the PCR cycling parameters described 

here have been optimized for a Perkin-Elmer Model 480 DNA thermal cycler. Thermal 

cyclers from other manufactures should work well, but the cycling parameters may need 

to be adjusted in advance to optimize sensitivity and specificity of the PCR reactions. It is 

also advisable to set aside approximately 10 min of the initial laboratory period in order 

to allow students to become familiar with laboratory equipment and to practice pipetting 

water into microcentrifuge tubes. Finally, there are several excellent literature references 

that provide additional information on PCR optimization and troubleshooting strategies 

(3-5). 
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Part 3: Agarose Gel Electrophoresis, Genotyping A Serine/Alanine Polymorphism 

of the Long-Wavelength Cone Opsin in Normal Human Color Vision 

Experimental Procedure: Gel Pouring Demonstration (to be conducted by the 

Laboratory Instructor) 

1. The ends of a 10 x 15 cm agarose gel casting tray are sealed with tape to form a 

mold. Electrophoresis combs are placed in the tray. 

2. A 2% agarose gel is cast as follows: 

BioRad Mini Sub Gel apparatus: A total of 105 mL of 1X Tris-acetate EDTA 

Buffer (TAE) is transferred to a 250 mL Erlenmeyer flask and 2.1 g of agarose are 

added. The neck of the flask is loosely sealed with saran wrap, and a magic marker 

is used to annotate the fluid level on the side of the flask. The agarose mixture is 

then boiled for ~3 min using a microwave oven set at high power. An oven mitt is 

utilized to swirl the contents of the flask intermittently. The solution should be 

visually inspected to ensure that all agarose has completely dissolved. If any buffer 
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has evaporated, the flask should be filled to the mark with ddH2O and its contents 

swirled. 

3. The agarose solution is cooled to ~60 °C. A total of 10.5 µL of ethidium bromide 

(5 mg/mL) is added and the flask is swirled to mix. 

4. To cast the gel, the agarose solution is poured into the gel tray. Air bubbles are 

aspirated from the poured gel using a Pasteur pipette. The gel is then allowed to 

solidify undisturbed (~40 min at room temperature). 

5. A few mL of 1X TAE are poured onto the tray. The tape is gently removed and the 

gel tray is transferred to an electrophoresis tank. 

6. Approximately 700 mL of 1X TAE are added to the tank. The gel combs are gently 

removed and a total of 70 µL of ethidium bromide (5 mg/mL) is added to the 1X 

TAE. 

Experimental Procedure: Loading and Running the Gel Demonstration (to be 

conducted by the Instructor and Students) 

1. In order to separate the PCR products from the mineral oil layer, insert a pipette tip 

through the mineral oil and transfer 20 µL of the FT/R PCR reaction from the 

lower (aqueous) layer to a new 1.7 mL microfuge tube. In a similar fashion, transfer 

20 µL of the FG/R reaction into a second 1.7 mL microfuge tube. Add 3 µL of 6X 

loading buffer to each, briefly spin the microfuge tubes, vortex, and spin again. 

2. The Instructor will add 3 µL of 6X loading buffer to 20 µL of a 1:20 dilution of 

pGEM DNA size marker. He or she will load the resulting solution into two 

outside wells of the 2% agarose gel (11 µL per well). The Instructor will also load 
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two control PCR reactions in which the template DNA has been substituted by 

equivalent volumes of water. 

3. Load 20 µL of the FT/R PCR reaction followed by 20 µL of the FG/R reaction into 

interior wells of the gel, from left to right, in the order indicated below.  

M  =            pGEM DNA size marker  (2645 bp - 36 bp).

Control  =  PCR reactions, without template DNA.

Sample  =   PCR reactions, with template DNA.

T  =             FT/R PCR reaction.

G  =            FG/R PCR reaction.

Loading 

M M

Control ...... Sample 1..... Sample 2..... Sample 3.....

Wells ......

T G T G T G T G

Sample 4.....

T G

 

“Agarose gel loading scheme.” 

 

4. The Instructor will close the lid of the gel tank and will attach the leads so that the 

DNA will migrate towards the anode (red lead). 

5. The Instructor will apply a voltage of 1-5 V/cm (measured as the distance between 

electrodes). If the leads have been attached correctly, the bromophenol blue in the 

loading buffer will migrate from the wells into the body of the gel (towards the 

anode). He or she will run the gel (~1 h) until the bromophenol blue has migrated 

an appropriate distance. 

6. After turning off the electric current and removing the leads and the lid from the gel 

tank, the Instructor will (i) transfer the gel tray from the tank to a UV 

transilluminator set at 302 nm, (ii) remove the tray, (iii) and photograph the gel 

(optional). 
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7. Draw a sketch of the gel in your laboratory notebook. Discard all unused genomic 

DNA and PCR amplified DNA into the liquid waste container containing 5% 

bleach solution. 

Commentary 

In the final section of this laboratory, you will run your individual PCR reactions 

on a 2% agarose gel adjacent to a pGEM DNA size marker (Promega). The pGEM 

marker is comprised of DNA fragments that are 2645, 1605, 1198, 676, 517, 460, 396, 

350, 222, 179, 126, 75, 65, 51, and 36 bp in size. The relative mobilities of these 

fragments will enable you to identify your PCR products as follows. The primer pairs 

FT/R and FG/R will each produce a DNA fragment 1661 bp in size in the case of 

heterozygous females (both serine-T and alanine-G alleles are present, each on a separate 

X chromosome). For homozygous males and females carrying the serine allele, only the 

FT/R primer pair will produce a 1661 bp PCR product. Alternatively, only the FG/R 

primer pair will produce a 1661 bp fragment in males and females that are homozygous 

for the alanine allele. 

Agarose Gel Electrophoresis. Agarose gel electrophoresis is a routinely used 

method for the separation and identification DNA fragments ranging from 200 bp to 50 

kbp in length (1,2).  Agarose, which is extracted from seaweed, in a linear polysaccharide 

consisting of repeating D-galactose and 3,6-anhydro L-galactose subunits. When voltage 

is applied across an agarose gel, negatively charged DNA will migrate through the 

agarose pores towards the positively charged anode. The rate of migration is (i) inversely 

proportional to the log10 of the number of base pairs in the DNA fragment and is (ii) 

unaffected by base composition. The locations of bands containing as little as 1 ng – 10 
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ng DNA can be determined by treating the agarose gel with the fluorescent intercalating 

dye ethidium bromide. (Ethidium bromide is a mutagen and should be handled with 

extreme care.) Finally, the size of the DNA fragments which can be accurately resolved 

is a function of the amount of agarose used to pour the gel (% [w/v]). 

Instructor’s Notes 

 All procedures in Part 3 of this laboratory exercise should be conducted in a 

second 3 1/2 h laboratory period. As part of a gel pouring demonstration, you should cast 

and then run the 2% agarose gel that the students will use to resolve their PCR reactions. 

In this way, it will only be necessary to use a single gel electrophoresis apparatus and 

power supply to conduct this laboratory exercise. In addition, you should prepare and 

load the pGEM DNA size marker and the negative PCR control reactions into appropriate 

wells of the 2% agarose gel. 

It may be necessary to optimize the volume of molten agarose used to cast the gel, 

if an alternative to the recommended gel apparatus is employed. It is also important to 

note that the robustness of the PCR reactions will depend on the yields of DNA obtained 

in the extraction step of this laboratory exercise. Relatively low yields of genomic DNA 

may produce faint PCR bands on the agarose gel. Finally, you should stress to your 

students that their PCR data should not be taken as a definitive assignment of sequence 

variation as it is not feasible to rule out the possibility of pipetting and other experimental 

errors in the context of the laboratory exercise. 
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Hazards 

Students should wear splash proof goggles and latex gloves at all times. Ethidium 

bromide is a known mutagen and should therefore be reacted with bleach prior to 

disposal. Spent cytobrushes, pipette tips, collection tubes, and spin columns should be 

washed with 70 % EtOH and buccal waste solutions should be reacted with bleach prior 

to disposal. 
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Product Information 

Chemicals, Supplies, and Equipment 

Product    Manufacturer Catalog # CAS#  

Agarose    Invitrogen  15510019 - 

Bromophenol blue   Aldrich  114405  [62625-28-9] 

Cyto-Soft cytobrushes   Fisher   2226357 - 

DNA thermal cycler   Perkin-Elmer  Model 480 - 

dNTP mix (10 mM each)  Roche   1581295 - 

EDTA     Aldrich  106321  [85715-60-2] 

Electrophoresis power supply  Invitrogen  Model 250 - 

Ethanol (100%)   Aldrich  245119  [64-17-5] 

Ethidium bromide tablets  Sigma   E2515  [1239-45-8] 

Ficoll (20% aqueous solution) Sigma   F5415  [26873-85-8] 

Gel electrophoresis  

apparatus (large)   Owl Scientific  Model A1 - 

Gel electrophoresis  

apparatus (small)   Bio-Rad  Wide Mini Sub  - 

Glacial acetic acid   Aldrich  338826 [64-19-7] 

KCl     Aldrich  208000 [7442-40-7] 

KH2PO4    Sigma   P5379  [7778-77-0] 

Microcentrifuge tubes (1.7 mL) VWR   20170-650  - 

Mineral Oil    Fisher   O121-1 - 

Na2HPO4    Sigma   S9390  [7782-85-6]  
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NaCl     Aldrich  223514 [7647-14-5] 

PCR primers    BioSource   Custom Order - 

PCR reaction tubes (0.6 mL)  Costar   29442-340 - 

pGEM DNA size marker  Promega  G1741  - 

Polaroid camera*   Fisher   FBPDC34 - 

Polaroid B&W film 3000 ISO* Fisher   617538 - 

QIAamp DNA Mini Kit  Qiagen   51304  - 

Taq polymerase Kit   Roche   1146165 - 

Tris base    Aldrich  154563 [77-86-1] 

UV Transilluminator   VWR   21475-464 - 

Vortexer    VWR   58816-121 - 

* These items are optional. They are not required to conduct this laboratory exercise. 

Manufacturers 
Aldrich 1-800-558 9160 

Bio-Rad Laboratories 1-800-424-6723 

BioSource International 1-800-788-4362 

Fisher Scientific 1-800-766-7000 

Invitrogen Life Technologies 1-800-828-6686  

Owl Scientific Inc. 1-800-242-5560 

Perkin-Elmer Biosystems 1-800-327-3002 

Promega Corporation 1-800-356-9526 

Qiagen 1-800-426-8157 

Roche Molecular Biochemicals 1-800-262-1640 

Sigma 1-800-325-3010 
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VWR Scientific Products 1-800-932-5000 

 

Buffer Preparation 

Ethidium Bromide (5 mg/ml):  

Dissolve one 100 mg ethidium bromide tablet (Sigma) in 20 mL of ddH2O. 

Protect the solution from light in an amber bottle or with aluminum foil. Store at 

room temperature. 

 

PBS:  

Dissolve 8 g of NaCl, 0.2 g of KCl, 1.44 g of Na2HPO4 and 0.24 g of KH2PO4 in 

800 mL of ddH2O. Adjust pH to 7.4 with HCl, add ddH2O to 1000 mL. Sterilize 

by autoclaving. Store at room temperature. 

 

6X Loading Buffer (0.25% Bromophenol Blue, 15% Ficoll):  

Dissolve 2.5 mg of bromophenol blue in 25 mL of ddH2O. Add 75 mL of 20% 

Ficoll. Store at room temperature. 

 

50X TAE Buffer:  

Dissolve 242 g of Tris base in 600 mL of ddH2O, add 57.1 mL of glacial acetic 

acid and 100 mL of 0.5M EDTA (pH 8.0). Adjust final volume to 1 liter with 

ddH2O. (1X TAE is made from this stock solution by diluting with ddH2O.) Store 

at room temperature. 
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SUMMARY 

In Chapter II the syntheses of two acridine chromophores incorporating two or 

four metal binding imidazole rings were described. DNA photocleavage assays were 

conducted with compound 7 (four imidazole rings) and compound 10 (two imidazole 

rings) in the absence and presence of 16 metals salts in sodium phosphate buffer pH 7.0. 

Irradiation of pUC19 plasmid DNA employing a low-intensity broad spectrum 

fluorescent lamp for 50 min (under aerobic conditions) revealed that photocleavage 

yields by compound 7 were significantly enhanced in the presence of Hg(II), Fe(III), 

Cd(II), Zn(II), V(V), and Pb(II). Moreover, compound 7 consistently produced higher 

levels of metal-assisted DNA photocleavage in comparison to compound 10. DNA 

cleavage yields by compound 7 irradiated without metal or run in the dark exhibited low 

levels of cleavage.  

To further examine DNA photocleavage and to gain insight on the factors 

effecting metal-assisted photodamage, nicking assays were conducted by employing 

different buffers and by varying the pH. These experiments indicated that at pH 5.0 

compound 7 demonstrated efficient levels of DNA photocleavage. However, as the pH 

was increased cleavage levels were dramatically reduced. At pH values ranging from 6.0-

8.0 and in the presence of Hg(II), Fe(III), Cd(II), Zn(II), V(V), and Pb(II), DNA 

photocleavage yields were markedly enhanced. DNA thermal denaturation studies were 

then conducted with calf thymus DNA in the presence of compound 7 and ZnCl2 as a 

function of pH. At pH 5.0, the Tm value produced by compound 7 (no metal) was 96 ºC 

while the value at pH 7.0 was 84 ºC. Upon the addition of ZnCl2, the Tm exhibited by 

compound 7 at pH 7.0 was 90 ºC. Collectively, these studies indicated that both buffer 
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and pH could be utilized to effect metal-assisted DNA photocleavage. Moreover, the 

metals might be compensating for the loss in positive charge density in compound 7 as 

the pH was increased thereby increasing duplex stabilization and consequently enhancing 

DNA photocleavage yields.  

Scavenger assays with the six photoactive metal ions were employed to provide 

insights into the photosensitization mechanism(s) underlying DNA damage. In the case of 

Fe(III), metal-assisted photocleavage predominantly proceeded through a type I 

(hydroxyl radical) mechanism. Metal-assisted DNA photocleavage by Hg(II), Cd(II), 

Zn(II), V(V), and Pb(II) proceeded via type I and type II mechanisms. Additionally, 

DNA photocleavage yields were dramatically reduced in photolysis reactions containing 

the metal chelator EDTA, further establishing the necessary requirement for the presence 

of Hg(II), Fe(III), Cd(II), Zn(II), V(V), and Pb(II) in DNA photodamage mediated by 

compound 7.  

The next studies explored the photochemical (absorbance and emission) 

properties and DNA binding affinity (Tm) of compound 7 in the presence of the 16 metals 

salts and calf thymus DNA. Based on the Hard-Soft Acid-Base theory, imidazole is a 

borderline base which would be expected to form stable complexes with borderline and 

soft acid metals. In the case of the borderline or soft acids, two trends emerged. First, the 

photocleavage enhancing metals Zn(II), Cd(II), Hg(II), and Pb(II) exhibited high Tm 

values and relatively low levels of fluorescence quenching in the presence of DNA. 

Alternatively, the DNA photocleavage inactive metals Ni(II), Co(II), and Cu(II) produced 

increased Tm values and the highest levels of fluorescence quenching with DNA. While 

its conceivable that these three borderline metals interacted with compound 7 and 
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increased the Tm values of calf thymus DNA, their inability to enhance DNA 

photocleavage might be attributed to the high levels of fluorescence quenching produced 

in the presence of these metal ions and DNA. The hard acid metals Sn(IV), Sc(III), 

Zr(IV), Cr(III), Ca(II), Mg(II), and Mn(II) produced low cleavage, while Fe(III) and 

V(V) exhibited high levels of DNA photocleavage, respectively. Additionally, these 9 

hard acid metals did not significantly effect fluorescence quantum yields or the Tm of calf 

thymus DNA. In order to test for the one-electron photoreduction of Fe(III) and V(V) by 

the excited state triplet of compound 7, a colorimetric assay using 1,10-phenanthroline 

was developed. Accordingly, the assay revealed the involvement of Fe(II) and V(IV) 

thereby suggesting that DNA photodamage in the presence of these two metal ions might 

proceed via a Fenton mechanism generating cytotoxic diffusible hydroxyl radicals.  

In Chapter III, the synthesis and characterization of a bisacridine incorporating a 

copper(II) binding pyridine linker (compound 4) was reported. In the absence of metal, 

ligand 4 displayed higher apparent binding constants and preferential binding to GC-rich 

DNA sequences as determined by employing a competitive equilibrium dialysis 

experiment. DNA photocleavage studies employing pUC19 plasmid DNA irradiated at 

419 nm under aerobic conditions equilibrated with compound 4 and CuCl2 in sodium 

phosphate buffer pH 7.0 were conducted. These studies indicated that while irradiated 

ligand 4 exhibited direct single strand breaks, in the presence of copper(II) DNA 

photodamage produced additional double strand scission thereby markedly enhancing 

cleavage yields.  

To gain insight into the DNA binding affinity of compound 4 in the presence of 

Cu(II) ions, DNA thermal denaturation experiments with calf thymus DNA were 
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conducted. DNA equilibrated with only CuCl2 did not exhibit any changes in the Tm 

values (Tm values for DNA = 75 ºC and with Cu(II) = 75 ºC), while the addition of 

compound 4 (no metal) produced a Tm value of 79 ºC. In the presence of 4 and Cu(II) 

ions, the ΔTm was increased by 6 ºC in comparison to the value obtained for ligand 4 

without metal.  

With regards to the DNA photosensitization mechanism(s) involved in 

photodamage, scavenger assays indicated the involvement of a singlet oxygen, hydrogen 

peroxide and Cu(I). Because photoreduction of Fe(III) and V(V) by the excited state 

acridine was observed in the previous study, a colorimetric assay employing the Cu(I)-

specific chelating agent bathocuproinedisulfonic acid disodium salt was employed. This 

experiment provided evidence for the one-electron photoreduction of Cu(II) by the 

excited state acridine chromophore and thus its involvement in mediating efficient DNA 

photodamage via a Cu(I)-peroxide radical center. Furthermore, analysis of DNA 

photocleavage at nucleotide resolution assays utilizing a 35S radiolabeled 138 bp from 

pUC19 plasmid DNA fragment revealed direct DNA strand breaks without any base 

specificity, thereby suggesting the participation of radicals in hydrogen atom abstraction 

from deoxyribose at every nucleotide position. In contrast, post-irradiation addition of 

piperidine base to the reactions containing ligand 4 and CuCl2 ions revealed alkali-labile 

damage predominantly at guanine bases, most likely produced by singlet oxygen.  

Taken together, these studies indicate that incorporating metal binding domains to 

DNA photosensitizing acridine conjugates, can significantly increase the photoactivity of 

these agents in the presence of metals. In the case of compound 7, efficient DNA 

photodamage is achieved by employing a low-intensity light and can be modulated by 
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buffer and pH. Additionally, compound 7 demonstrates fluorescence emission tunability 

in the presence of metals and may serve as a chemical tool to further probe nucleic acid-

ligand interactions. With regards to compound 4, the fact that non-specific DNA damage 

was observed at every nucleotide position, make it conceivable that this ligand has 

potential applications as a photofootprinting reagent. Finally, considering that Zn(II), 

Fe(III) and Cu(II) are biologically important metal ions, photosensitizers that form 

complexes with or can be effected by these metals may offer enhanced in vivo reactivity. 

Chapter IV described the syntheses, characterization, and evaluation of a new 

photosensitizer incorporating two phenothiazine rings (compound 3) and an electron 

donating 4,4’-ethylenedipiperidine linker. The phenothiazine chromophore and linker 

were introduced to potentially effect DNA photosensitization at longer wavelengths and 

to provide additional DNA stability.  

In the presence of DNA, compound 3 exhibited stronger absorption of light at a 

longer wavelength (ε680 = 7.78 x 104 M-1 (bp) cm-1) in comparison to the archetypal 

phenothiazine MB (ε674 = 5.80 x 104 M-1 (bp) cm-1). DNA photocleavage experiments 

demonstrated that utilizing only 1 µM of compound 3 effected higher cleavage levels at 

all wavelengths (676, 700, 710 nm) and time-points (10, 30, 60 min) tested as compared 

to 1 µM MB. Irradiation of DNA at the longest wavelength (710 nm) as a function of 

concentration also revealed that compound 3 possessed higher DNA cleaving activity. 

Notably, 5 µM of compound 3 and 5 µM MB produced photocleavage yields of 93% and 

59%, respectively.  

DNA photocleavage inhibition of compound 3 was observed in the presence of 

sodium azide (type II mechanism, singlet oxygen) and to a lesser extent with D-mannitol 
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(type I mechanism, hydroxyl radicals). Additionally, the analysis of DNA photodamage 

at nucleotide resolution indicated the formation of both direct strand breaks and alkali-

labile lesions predominantly at guanine bases, pointing to the involvement of singlet 

oxygen and/or electron transfer from guanine. 

In order to investigate binding affinity, DNA melting experiments in the absence 

and presence of compound 3 or MB with calf thymus and C. perfringens DNAs were 

conducted. In each case, the ΔTm values produced by compound 3 pre-equilibrated with 

calf thymus or C. perfringens DNAs were approximately 3-fold higher than the values 

exhibited by MB under the identical experimental conditions. Furthermore, evaluation of 

ΔTm as a function of the molar ratio of dye to calf thymus DNA bp (r) demonstrated that 

the ΔTm values were consistently higher for compound 3 than MB at all the r values 

tested (r = 0.05–0.6). Moreover, a plateau in the ΔTm produced by 3 at a r value ≥ 0.3 

was observed thereby suggesting the saturation of DNA binding sites. This was not case 

for MB: the ΔTm values continued to increase as a function of increasing dye 

concentration (r > 0.3). Effectively, compound 3 demonstrated enhanced levels of duplex 

stabilization compared to MB, thereby indicating a stronger association with DNA.  

Viscometric measurements were conducted to ascertain the DNA binding mode(s) 

of compound 3 in comparison to MB. The viscosity enhancement of CT DNA (slope = 

0.962) produced by MB was consistent with monointercalation. However, the viscosity 

enhancement of CT DNA (slope = 1.50) exhibited by compound 3 indicated the 

possibility of multiple binding modes. To test this hypothesis, viscometric measurements 

with poly(dA)•poly(dT) and alternating poly[(dA-dT)]2 DNAs yielded slopes of 0.22 and 

1.18 for compound 3, and 0.17 and 1.11 for MB, respectively. Collectively, these assays 
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revealed that compound 3 is likely to associate with heterogeneous DNA through a 

combination of binding modes including monointercalation, bisintercalation, and/or 

groove binding.  

The syntheses, characterization, and evaluation of two new photonucleases 

incorporating one phenothiazinium ring with a bis-piperazinexylene substituent 

(compound 5) or the same bis-piperazinexylene as a linker centrally attached to two 

phenothiazinium rings (compound 6) were described in Chapter V. In the presence of 

DNA, both compounds exhibited maximal absorbance at 665 nm in 10 mM sodium 

phosphate pH 7.0. Moreover, 400-650 nm irradiation of pUC19 plasmid in the presence 

of 10 µM 5 or 6 produced efficient photocleavage. DNA melting assays showed 

significant changes in the ΔTm values produced by 5 (17 ºC) and 6 (19 ºC) relative to calf 

thymus DNA (in the absence of dye). Lastly, viscosity measurements indicated that both 

compounds bind to DNA as monointercalators. 

The impetus for designing the three new phenothiazine-based photosensitizers 

was to synthesize putative bisintercalators incorporating a chromophore that might 

effectively mediate DNA photodamage at longer wavelength within the therapeutic 

window for photodynamic therapy (600-800 nm). Towards this end, all three compounds 

exhibited maximal absorption of light in the presence of DNA at wavelengths greater 

than 650 nm and mediated efficient levels of DNA photocleavage. Moreover, cooperative 

and stronger associations with DNA as demonstrated by thermal melting studies was 

indicated for compounds 3, 5, and 6 in comparison to the MB parent. In the case of 

compound 3, irradiation of pUC19 plasmid DNA at 710 nm produced approximately a 

two-fold increase in cleavage yield in comparison to MB. Additionally, viscosity data 



  218 

indicated that compound 3 associates with DNA through multiple modes including 

bisintercalation. 

 Finally, the DNA isolation and amplification procedures presented in Chapter VI 

constitute a laboratory workshop which provided participants with pratical experience in 

commonly utilized methods in molecular biology. Moreover, the methods were modified 

to be appropriate for the use in an undergraduate laboratory setting. While the goal was to 

examine a single nucleotide polymorphism involved in a normal variation in human color 

vision, the protocols offer experimental flexibility and can be utilized to investigate other 

interesting single nucleotide polymorphisms.  

With regards to the acridine and phenothiazine photosensitizers, the author of this 

dissertation and her co-workers hope that the project findings described herein will 

stimulate a growing interest in the design of new intercalating photosensitizers for the use 

in non-porphyrin based phototherapeutics. 
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