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NEURONAL GROWTH CONE DYNAMICS ARE REGULATED BY A  

NITRIC OXIDE-INITIATED SECOND MESSENGER PATHWAY 

by 

KRISTY WELSHHANS 

 
Under the direction of Vincent Rehder 

 

ABSTRACT 

 

During development, neurons must find their way to and make connections with their 

appropriate targets. Growth cones are dynamic, motile structures that are integral to the 

establishment of appropriate connectivity during this wiring process. As growth cones 

migrate through their environment, they encounter guidance cues that direct their 

migration to their appropriate synaptic targets. The gaseous messenger nitric oxide (NO), 

which diffuses across the plasma membrane to act on intracellular targets, is a signaling 

molecule that affects growth cone motility. However, most studies have examined the 

effects of NO on growth cone morphology when applied in large concentrations and to 

entire cells. In addition, the intracellular second messenger cascade activated by NO to 

bring about these changes in growth cone morphology is not well understood. Therefore, 

this dissertation addresses the effects that a spatially- and temporally-restricted 

application of physiological amounts of NO can have on individual growth cone 

morphology, on the second messenger pathway that is activated by this application of 



    

NO, and on the calcium cascades that result and ultimately affect growth cone 

morphology. 

Helisoma trivolvis, a pond snail, is an excellent model system for this type of 

research because it has a well-defined nervous system and cultured neurons form large 

growth cones. In the present study, local application of NO to Helisoma trivolvis B5 

neurons results in an increase in filopodial length, a decrease in filopodial number, and an 

increase in the intracellular calcium concentration ([Ca2+]i). In B5 neurons, the effects of 

NO on growth cone behavior and [Ca2+]i are mediated via sGC, protein kinase G, cyclic 

adenosine diphosphate ribose, and ryanodine receptor-mediated intracellular calcium 

release. This study demonstrates that neuronal growth cone pathfinding in vitro is 

affected by a single spatially- and temporally-restricted exposure to NO. Furthermore, 

NO acts via a second messenger cascade, resulting in a calcium increase that leads to 

cytoskeletal changes. These results suggest that NO may be a signal that promotes 

appropriate pathfinding and/or target recognition within the developing nervous system. 

Taken together, these data indicate that NO may be an important messenger during the 

development of the nervous system in vivo.  

 

 

INDEX WORDS: Nitric oxide, Growth cone, Filopodia, Soluble guanylyl cyclase, 

Protein Kinase G, Cyclic adenosine diphosphate ribose, Ryanodine 

receptor, Calcium, Helisoma trivolvis 
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Neuronal development is an essential period encompassing the processes of proliferation, 

differentiation, neuronal migration, growth cone formation and neurite elongation, and 

synaptogenesis. During this period, a neuron will establish itself from a precursor cell and 

then it will form growth cones and extend neurites (as reviewed in Sanes et al., 2000; 

Escuin & Georges-Labouesse, 2007). The growth cone will pathfind to its target region, 

identify its appropriate cellular target, and finally, form a synapse on that target. These 

steps ultimately define the wiring connectivity of the nervous system and as such, a 

defect in any one of these steps can lead to inappropriate connections or lack of 

connectivity, both of which can result in a number of disease states (Kenwrick et al., 

2000; Fan & Simard, 2002; Antar et al., 2006). Therefore, the study of how neurons find 

and make connections with their appropriate targets is essential. Although much is known 

about the extracellular cues that affect growth cone navigation, much less is known about 

the intracellular pathways that are activated by these cues. Thus, understanding how 

growth cone behavior is affected by extracellular cues, as well as the intracellular 

pathways that lead to those changes, is fundamental to elucidating the mechanisms 

underlying growth cone pathfinding during development.  

 

Growth cones are the essential pathfinding structures of developing neurons. 

The growth cone is a unique structure that tips a neurite and allows for proper pathfinding 

and navigation in the developing and regenerating nervous system. There are a number of 

factors, or guidance cues, that direct the migration of the growth cone by activating 

signaling cascades that lead to changes in the cytoskeleton, thereby “guiding” the growth 
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cone. The initial formation of the neurite and the growth cone and its forward movement 

is dependent on the presence of substrate-bound factors and soluble trophic factors (da 

Silva & Dotti, 2002; Escuin & Georges-Labouesse, 2007). In Helisoma trivolvis, it has 

been shown that the ability to form growth cones is an intrinsic property of the neuron, 

because a growth cone will form on the axon stump of a neuron placed into conditioned 

medium deprived-culture, however, the growth cone will not exhibit neurite extension 

(Williams & Cohan, 1994). This study suggests that the formation of the growth cone is 

an intrinsic property of the neuron; however, growth factors are required for 

neuritogenesis and growth cone motility. 

 

The neuronal growth cone 

Growth cones are motile, pathfinding structures that are essential for sensing and 

responding to various cues that neurons encounter in their environment. Growth cones 

were first described and drawn in detail by Ramón y Cajal in 1899 (Ramón y Cajal, 1899, 

as translated by Pasik & Pasik, 1999). He even had the foresight to anticipate that these 

growth cones would have “exquisite chemical sensitivity” (Ramón y Cajal, 1899, as 

translated by Pasik & Pasik, 1999). From extensive research encompassing numerous 

studies, we are now fully aware that the appropriate wiring of the nervous system is 

dependent on the growth cone and its ability to sense and respond to the chemicals cues 

that are found within the growth cone’s surrounding environment.  

There are three major components of the growth cone (Figure 1.1): the central 

domain, which is the thickened central region made up of mainly microtubules;  
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Figure 1.1: The neuronal growth cone. Phase contrast image of a Helisoma trivolvis B5 
growth cone. There are 3 major components to the growth cone: the central domain 
(indicated with a “C”), the lamellipodial region (“L”), and filopodia (“F”; the arrows 
point to representative filopodia). 
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the lamellipodia, which is the peripheral region that surrounds the central domain and 

contains an actin meshwork; and filopodia, which are the finger-like extensions that 

extend out from the central domain and through the lamellipodia and are composed of 

actin bundles (Suter & Forscher, 2000; Bamburg, 2003). Filopodia have been shown to 

be autonomous units that contain ion channels, as well as receptors for various guidance 

molecules (Davenport et al., 1993; Kater & Rehder, 1995; Gomes et al., 2006). These 

receptors allow for detection of cues in advance of the growth cone proper, which further 

allows for highly regulated directional pathfinding.  

 

Growth cone guidance 

Growth cones will change the length and number of their filopodia in response to various 

guidance cues that they encounter during pathfinding (for review see Huber et al., 2003). 

When a growth cone changes the length of its filopodia, we term this a change in the 

“sensory radius” of the growth cone. The sensory radius is the area within which a 

growth cone can detect cues at any given point in time. For example, if a filopodia 

encounters a repulsive cue, it may shorten its filopodia on the side where it senses the 

cue, which results in a decrease in the sensory radius of the growth cone. Likewise, the 

opposite is also true, growth cones will increase the length of their filopodia in order to 

be able to sense and respond to cues in a much larger area, which results in an increase in 

the sensory radius of the growth cone. Changes in the sensory radius of the growth cone 

translate into behaviors that are necessary for the growth cone to pathfind appropriately 

and make connections with its correct target. 
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There are numerous guidance cues that have been demonstrated to affect neuronal 

pathfinding both in vitro and in vivo. These guidance cues fall into two main categories: 

bound factors, such as cell adhesion molecules, and diffusible molecules, such as trophic 

factors. Cell adhesion molecules include the integrin, cadherin, and immunoglobulin 

families and they mediate interactions either with the extracellular matrix or with other 

cells (Huber et al., 2003; Escuin & Georges-Labouesse, 2007). One cell adhesion 

molecule, L1, is involved in the processes of fasciculation, neuritogenesis, and axon 

outgrowth (as reviewed in Kenwrick et al., 2000; Kiryushko et al., 2004; Maness & 

Schachner, 2007). In addition, mutations in the gene encoding L1 can result in mental 

retardation and hydrocephalus, thus highlighting the essential role of guidance cues for 

the appropriate wiring of the nervous system.  

Some common and well-studied trophic molecules are the netrins, semaphorins, 

and nerve growth factor (NGF). These chemotrophic factors can serve as attractants or 

repellants depending on their type. Furthermore, in some cases the intracellular 

messengers present in the affected growth cone determine the response of the growth 

cone to the trophic factor. For example, netrin-1 has been shown to serve as either an 

attractive or a repulsive guidance cue, dependent on the ratio of cyclic nucleotide 

signaling (cAMP to cGMP) within the growth cone (Nishiyama et al., 2003). A high 

cAMP/cGMP ratio results in attractive turning due to signaling through the netrin-1 

receptor, DCC, and calcium influx through L-type calcium channels, whereas a low 

cAMP/cGMP ratio results in repulsive turning due to blockage of this calcium influx. 

Semaphorins are a large family of molecules that can also have varied effects on growth 



  7  

cone dynamics. For example, Sema3A is an inhibitor of neurite outgrowth and often 

causes growth cone collapse in a variety of cell types, whereas Sema3C acts as an 

attractive cue (for review see Goshima et al., 2002). NGF is a neurotrophin that signals 

via p75 and TrkA receptors, and has been shown to act as a chemoattractant (for review 

see Huber et al., 2003). Additionally, there are numerous other guidance cues that 

influence growth cone pathfinding, including brain derived neurotrophic factor, myelin 

associated glycoprotein, ephrins, and a variety of cell adhesion molecules (Huber et al., 

2003; Henley & Poo, 2004; Wen & Zheng, 2006). 

It is important to note that the effect of guidance cues on growth cone motility is 

not limited simply to attraction and repulsion of growing neurites. Growth factors can 

also have a variety of other effects on the growth cone cytoskeleton, including branching, 

fasciculation and growth cone collapse. Furthermore, these effects directly affect the 

wiring of the nervous system. For example, an increase or decrease in axonal branching 

can directly alter the number of synapses formed within an area. Netrin-1 and a 

semaphorin, Sema3A, regulate the branching of cortical axons, resulting in an increase or 

decrease in branching, respectively (Dent et al., 2004). Fasciculation is a process that 

results in the appropriate pathfinding of the neurites from “follower” neurons. 

Semaphorins play an essential role in the fasciculation of axons, in that overexpression of 

Sema1a in Drosophila leads to hyper-fasciculation of photoreceptor axons, whereas loss 

of Sema3A signaling in mouse lateral motor column spinal neurons leads to 

defasciculation (Huber et al., 2005; Cafferty et al., 2006). Growth cone collapse is 

necessary to prevent growth cones from entering inappropriate tissues or tissue regions; 
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additionally, growth cone collapse serves as a mechanism to allow for the formation of a 

single terminal growth cone (Knobel et al., 1999). Complete collapse of growth cones is 

mediated via a number of signaling molecules, including Slit2, ephrinA5, Sema3A and 

nitric oxide (Luo et al., 1993; Ernst et al., 2000; Trimm & Rehder, 2004; Wong et al., 

2004). Overall, these studies demonstrate that guidance cue-induced changes in specific 

facets of growth cone motility can regulate numerous aspects of neuronal connectivity. 

 

Environmental cues that growth cones encounter during development are translated 

into cytoskeletal changes via second messenger cascades. 

When a growth cone encounters a guidance cue during migration, that cue will bind to a 

receptor and activate a signaling cascade that ultimately results in changes in the growth 

cone cytoskeleton. There are numerous second messengers that play roles in this 

signaling cascade; however, they all ultimately appear to converge on the two major 

cytoskeletal polymeric proteins in the growth cone, actin and tubulin. There are a number 

of common and well-studied intracellular pathways that lead to changes in the 

cytoskeleton. For example, some of the most common guidance cues, the neurotrophins 

(such as NGF and brain derived neurotrophic factor) bind to tyrosine kinase receptors. 

After these neurotrophins bind to either p75 or Trk receptors, they activate intracellular 

signaling cascades, including molecules such as PI-3K and the Rho GTPases, which 

include Rac1, Cdc42, and RhoA (Dontchev & Letourneau, 2003; Huber et al., 2003). 

Another common guidance cue, semaphorin 3A, affects growth cone motility by binding 

to neuropilin-1/plexin-A1 and activating a signaling cascade involving the Rho GTPase, 
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Rac1 (Vastrik et al., 1999; Turner et al., 2004; Woo & Gomez, 2006). Subsequently, 

these Rho GTPases affect cytoskeletal dynamics by being integral members of a 

signaling cascade that leads to direct regulation of actin dynamics through proteins such 

as cofilin, myosin, and the Arp2/3 complex (for review see Huber et al., 2003). 

 

Regulation of growth cone guidance by calcium 

One extremely important second messenger that is involved in the regulation of growth 

cone morphology in a variety of species is calcium. The intracellular calcium 

concentration within cells can be modulated through two major pathways, either calcium 

influx across the plasma membrane or calcium release from intracellular calcium stores 

(Berridge et al., 2003). Calcium influx across the plasma membrane of growth cones is 

thought to be mainly carried either through L-type voltage gated calcium channels or 

transient receptor potential (TRP) channels. L-type voltage gated calcium channels are 

present in growth cone membranes and have been demonstrated to regulate growth cone 

motility, including outgrowth rate and turning (Ohbayashi et al., 1998; Nishiyama et al., 

2003; Tang et al., 2003). Calcium influx through a particular type of TRP channel, 

TRPC, has been shown to regulate growth cone turning and morphology (Greka et al., 

2003; Li et al., 2005; Shim et al., 2005; Wang & Poo, 2005).  

 The major pool of stored intracellular calcium is in the endoplasmic reticulum 

(ER), in which calcium is weakly buffered by proteins such as calreticulin and 

calsequestrin (Berridge et al., 2003; Verkhratsky, 2005). However, calcium stores also 

exist in other intracellular compartments, such as the mitochondria and nucleus (Rizzuto 
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et al., 2000; Carafoli, 2004; Marchenko & Thomas, 2006). Calcium release from 

intracellular calcium stores occurs through two main receptor-mediated channels, inositol 

triphosphate receptors (InsP3Rs) and ryanodine receptors (RyRs) (Berridge et al., 2003; 

Verkhratsky, 2005). InsP3Rs are activated by binding of the second messenger IP3. IP3 is 

formed via a signaling cascade that involves activation of phospholipase C by G-proteins 

or receptor tyrosine kinases. Phospholipase C subsequently cleaves phosphatidylinositol 

4,5 bisphosphate into diacylglycerol and IP3. IP3 will then bind to InsP3Rs on the 

endoplasmic membrane and result in the release of calcium from intracellular stores. 

Ryanodine receptors (RyRs) are activated by the binding of calcium, and therefore, are 

usually thought of as mediators of calcium-induced calcium release (CICR). CICR is the 

mechanism through which a calcium elevation within the cytosol (e.g. IP3 binding to 

InsP3Rs) leads to a further calcium elevation via activation of other calcium release 

channels (e.g. calcium binding to RyRs). Cyclic adenosine diphosphate ribose (cADPR) 

is an additional second messenger molecule that facilitates release of calcium through the 

RyR. cADPR can cause release of calcium directly in some cell types (Koshiyama et al., 

1991; Thorn et al., 1994; Mothet et al., 1998), whereas it potentiates calcium release 

initiated through other sources in other cell types (De Flora et al., 1996; Hashii et al., 

2000). These studies suggest that calcium release from intracellular stores can occur in 

multiple ways and help shape the calcium dynamics that occur within the cell. 

 The level of calcium within growth cones directly modulates their behavior. For 

example, the length of filopodia can be correlated with the intracellular calcium 

concentration within Helisoma growth cones (Rehder & Kater, 1992). The resting 
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calcium concentration within Helisoma neurons is around 100 nM, and interestingly, an 

increase in calcium as small as 50 nM within Helisoma growth cones results in a 

significant increase in filopodial length, as well as a significant decrease in filopodial 

number. Additionally, neurite outgrowth in Helisoma is dependent on the intracellular 

calcium concentration, as high concentrations of calcium influx blockers suppress 

outgrowth, whereas low concentrations enhance the outgrowth rate (Mattson & Kater, 

1987). This study and others have demonstrated that there is an optimal concentration of 

intracellular calcium that promotes growth cone motility, and increases or decreases from 

this concentration range lead to reduction or suppression of neurite outgrowth (Kater & 

Mills, 1991). 

 Growth cone steering or turning has been shown to be directly related to the 

gradient of calcium that is set up within the growth cone by external guidance cues. For 

example, local application of netrin-1 to one side of a growth cone results in a transient 

gradient of calcium within the growth cone that is higher on the side facing the netrin-1 

source; this calcium gradient then leads to attractive turning (Hong et al., 2000). 

Downstream of calcium, there are a number of effector proteins that have been identified 

in growth cones as being involved in calcium signaling. Calmodulin and Ca2+-

calmodulin-dependent protein kinase II (CaMKII), two effectors that are activated by 

calcium, are essential for proper growth cone navigation and motility (VanBerkum & 

Goodman, 1995; Kuhn et al., 1998; Wen et al., 2004). There are numerous other effectors 

of calcium signaling, including calcineurin, protein kinase C, and myosin II (for review 

see Henley & Poo, 2004). Taken together, these studies demonstrate that calcium 
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regulates many aspects of growth cone motility, thereby defining calcium as an integral 

molecule involved in the formation of connectivity within the nervous system.  

 

Second messenger signaling leads to changes in growth cone morphology and motility 

Importantly, all of the aforementioned second messengers converge on downstream 

targets that regulate actin and microtubules within growth cones. Local changes in 

filopodia are mediated mainly through changes in actin whereas changes in outgrowth 

and extension rates are mediated mainly via microtubules; however, the interaction 

between the two is also important for overall motility (Kalil & Dent, 2005). Therefore, 

different external guidance cues and their subsequent intracellular signaling pathways 

lead to various effects on the growth cone due to their action on different cytoskeletal 

proteins. Although many of these cytoskeletal binding proteins have not been well 

studied in the growth cone, there is a basis of knowledge about a few actin-binding 

proteins and microtubule-associated proteins. One major actin-binding protein is actin 

depolymerizing factor (ADF)/cofilin, which severs and depolymerizes f-actin filaments 

(for review see Sarmiere & Bamburg, 2004). Interestingly calcium also plays a role in the 

positive regulation of ADF/cofilin, because calcium/calmodulin activates calcineurin, 

which is a protein phosphatase that subsequently activates ADF/cofilin (Henley & Poo, 

2004). There are also microtubule-associated proteins, such as microtubule-associated 

protein 2 and Tau, that are regulated by calcium via CaMKII and lead to the stabilization 

of microtubules (for review see Dehmelt & Halpain, 2004). In addition, microtubules 

within growth cones can be stabilized by microtubule-associated plus end tracking 
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proteins, such as CLASP (Lee et al., 2004; Kalil & Dent, 2005). Although it is not 

completely understood how actin and microtubules within growth cones are regulated 

and interact with one another, it is known that they are the components that directly 

translate the intracellular second messenger cascades into cytoskeletal changes. 

Furthermore, it is these changes in the cytoskeleton that direct growth cones to their 

appropriate targets and thereby create appropriate connectivity within the nervous 

system. 

 

The gaseous messenger, nitric oxide, acts as an intercellular messenger during 

development. 

Nitric oxide (NO) is a gas that is produced through the conversion of L-arginine to L-

citrulline. The enzyme responsible for this conversion is nitric oxide synthase (NOS), and 

this enzyme requires the presence of calcium/calmodulin (for review see Alderton et al., 

2001). There are three known types of NOS: inducible NOS (iNOS), endothelial NOS 

(eNOS) and neuronal NOS (nNOS). iNOS is usually found in the immune system, 

whereas eNOS is found mainly in vascular epithelium, but now has also been found in a 

number of other cell types, including the nervous system (as reviewed in Li et al., 2002; 

Mungrue et al., 2003). nNOS is the major form found in the nervous system (as reviewed 

in Dawson et al., 1998; Alderton et al., 2001).  
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Modes of action of nitric oxide 

There are two widely accepted modes of action of NO, one, the activation of soluble 

guanylyl cyclase (sGC) and two, s-nitrosylation of proteins (Ahern et al., 2002). In the 

first mode, NO has been shown to directly bind to the heme group of sGC, which leads to 

its activation. sGC then converts GTP to cGMP. This pathway can then go on to regulate 

numerous cellular processes though three major players: phosphodiesterases (PDEs), 

cyclic nucleotide gated ion channels (CNG) and/or protein kinase G (PKG). In the second 

mode of action, NO can s-nitrosylate proteins. S-nitrosylation occurs when NO binds to 

the thiol group on a cysteine, and a s-nitrosothiol results (for review see Hess et al., 

2005). Recently, S-nitrosylation has been shown to be a common occurrence that can 

regulate the function of many proteins, including protein kinases, transcription factors 

and ion channels. In addition, s-nitrosylation has also been shown to affect filopodial 

motility of rat retinal ganglion cells (Cheung et al., 2000). 

 

Importance of nitric oxide during development 

NOS is essential to proper development of a variety of organisms. In mice, a double 

knockout of any two NOS isoforms results in significantly decreased viability (Tranguch 

& Huet-Hudson, 2003). A study in Drosophila demonstrates that knocking out NOS 

(there is only a single isoform of NOS in this species) results in death early in 

development (Regulski et al., 2004). It is thought that in mammals, NOS knockouts do 

not reveal the true deficiencies that would follow from total loss of NOS because the 
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isoform that remains after knockout is upregulated and can compensate somewhat for the 

loss of the other isoforms. 

NO has been shown to have a variety of effects on growth cone and neurite 

motility in vitro, which emphasizes its importance during development. In salamander 

cone photoreceptors, exogenous application of NO results in an increase of neuritic 

sprouting, whereas in rod photoreceptors, NO inhibits this sprouting (Zhang et al., 2005). 

In relation to growth cones, exogenous application of nitric oxide causes collapse of rat 

dorsal root ganglion neurons, Xenopus retinal ganglion neurons, and chick dorsal root 

ganglion neurons (Hess et al., 1993; Renteria & Constantine-Paton, 1996; Ernst et al., 

2000). NO has also been shown to be involved in eliminating a transient ipsilateral 

retinotectal projection and refining the contralateral retinotectal projection in the chick 

visual system (Wu et al., 1994; Wu et al., 2001). The importance of NO for proper 

connectivity has been shown in Drosophila and in grasshoppers. If the production of NO 

is inhibited in Drosophila photoreceptors, retinal patterning is disrupted (Gibbs & 

Truman, 1998). In the grasshopper, inhibition of NOS blocks the migration of a 

population of midgut neurons (Haase & Bicker, 2003). Overall, these studies demonstrate 

the importance of NO for regulating a number of essential processes during development.  

Previous studies from the Rehder lab have laid the foundation for the current set 

of experiments. In Helisoma, global application of NO donors to B5 neurons results in an 

increase in filopodial length, a decrease in filopodial number, a decrease in the neurite 

outgrowth rate and an increase in the intracellular calcium concentration (Van Wagenen 

& Rehder, 1999; Trimm & Rehder, 2004). In addition, these effects were shown to be 
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mediated via sGC. Furthermore, it was demonstrated that these effects were specific to 

the B5 neuron, because the application of NO donors to another Helisoma neuron, B19, 

had no effect on filopodial motility or the intracellular calcium concentration (Van 

Wagenen & Rehder, 2001). This disparity is due to differences in receptors for NO within 

these neurons. Using immunocytochemistry, this study demonstrated that the B5 neuron 

stains for one of the major targets of NO, sGC, whereas the B19 neuron does not.  

A study in Helisoma has also demonstrated that global application of nitric oxide 

leads to a slow-down in neurite outgrowth of B5 neurons, showing that NO is a “stop and 

search” signal for pathfinding growth cones (Trimm & Rehder, 2004). In Helisoma B5 

neurons, NO binds to sGC and this results in the production of cGMP. Interestingly, the 

Trimm & Rehder study demonstrated that growth cone dynamics can be correlated with 

the amount of cGMP within the growth cone. That is, there is an optimal concentration of 

cGMP within the growth cone that leads to normal outgrowth, whereas decreases from 

that level slow outgrowth and increases lead to the “stop and search” signal. This “stop 

and search” behavior may be essential to obtaining appropriate connectivity in Helisoma, 

because it could regulate growth cone morphology in vivo when the growth cone is either 

at a decision point or within the target region.  

 

Helisoma trivolvis as a model system for studying processes that occur during 

development and regeneration. 

Molluscan model systems have helped shape our understanding of nervous system 

development and function. For example, the squid giant axon provided the first 
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intracellular recordings from neurons and allowed for an understanding of the ionic basis 

of the action potential (Sattelle & Buckingham, 2006). The neural basis for a variety of 

behaviors, as well as information on learning and memory, has come from studies in 

Aplysia (Elliott & Susswein, 2002; Sattelle & Buckingham, 2006). This dissertation 

employs the pond snail, Helisoma trivolvis, as a model system for studying growth cone 

behavior. Molluscan nervous systems are composed of ganglia, which are collections of 

neurons that control various functions. In Helisoma, the major ganglion of interest for the 

present investigation is the buccal ganglion, which controls feeding in these animals 

(Figure 1.2). There are two neurons in particular that have been well-studied, termed B5 

and B19. The B5 neuron has two projections, both of which exit out of the esophageal 

nerve trunk (for review see Berdan et al., 1989). From there, the major projection exits 

out of the gastric nerve to innervate the muscle of the esophagus whereas the minor 

projection exits the dorsobuccal nerve to innervate the buccal mass (Murphy & Kater, 

1980a; Berdan et al., 1990). The buccal mass is a muscle structure involved in many 

feeding-related behaviors. The B5 neuron is a cholinergic motorneuron and is responsive 

to exogenous application of glutamate (Haydon, 1988; Berdan et al., 1989; Haydon & 

Zoran, 1989). The major projection of the B19 neuron innervates the buccal mass, 

specifically the supralateral radular tensor muscles within that structure (Kater, 1974; 

Berdan et al., 1989). The B19 neuron is a cholinergic motorneuron that shows changes in 

growth cone morphology in response to serotonin and dopamine (Haydon et al., 1984; 

McCobb et al., 1988; Berdan et al., 1989; Zoran et al., 1989). Additionally, when B5 and  
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Figure 1.2: The buccal ganglion of Helisoma trivolvis. The projection of the B5 neuron 
exits the buccal ganglion (BG) through the esophageal nerve trunk (ET) and splits into 
two projections. The major projection exits the gastric nerve (GN) to innervate the 
esophagus and the minor projection exits the dorsobuccal nerve (DBN) to innervate the 
buccal mass. The buccal mass is a muscle structure that controls many feeding-related 
behaviors. Modified from Kruk and Bulloch 1992. SG: salivary gland; SN: salivary nerve 
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B19 neurons are placed into isolated cell culture, they differ in growth cone dynamics 

and morphology (Haydon et al., 1985). B5 neurons have more filopodia per growth cone, 

advance faster over the substrate, and show more extensive outgrowth than B19 neurons. 

However, the filopodia on B19 neurons are significantly longer than those on B5 

neurons. The varied dynamics and morphology displayed by these two neurons may be 

due to differences in their intracellular composition, as well as the behavior they would 

display on their trajectory to reach their respective targets in vivo.   

Molluscan nervous systems lend themselves to our line of research for a number 

of reasons. First of all, the neurons found in these ganglia are quite large: the soma of the 

B5 neuron is around 50-75 µm in diameter (Berdan et al., 1989). In addition, these 

neurons are easily identifiable, based on their size, coloring and placement within the 

ganglion. Therefore, repeated experimentation can be done on an identified neuron, 

which reduces variability between experiments and assures that the neuron will always 

have the same properties (i.e. neurotransmitters, second messengers). Additionally, these 

neurons of interest can be removed individually from the ganglion and placed into cell 

culture, which allows for complete control over the neuron’s environment. 

Another advantageous feature of molluscan nervous systems is that the central 

nervous system will regenerate following injury. This has been demonstrated quite 

clearly in Helisoma, because when the esophageal trunk nerve is crushed, both the B4 

and the B5 neurons will reinnervate their original targets within 5-7 days (Murphy & 

Kater, 1978; 1980b; a). Although this functional regeneration has been demonstrated to 

take place both in vivo and in organ culture, regeneration of growth cones is also seen in 
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vitro. If growth cones in culture are transected, they will reform growth cones within 10 

to 45 minutes, providing an in vitro model system with which to study regeneration 

(Rehder et al., 1992). Overall, Helisoma is a beneficial model system for studying 

processes that take place during permissive regeneration because this regeneration will 

take place both in vivo and in vitro following injury. Furthermore, the processes that take 

place during permissive regeneration in Helisoma can be contrasted with and applied to 

research performed within the mammalian central nervous system, which does not 

regenerate following injury.  

Perhaps most importantly, the size and morphology of the growth cones formed 

from Helisoma neurons lend themselves to a detailed study of growth cone behavior. 

Importantly, the growth cones that form at the tips of neurites from Helisoma neurons 

cultured in conditioned medium are large (ranging in size from 10-50 microns) and 

contain many filopodia, allowing for exceptional visualization of changes in growth cone 

morphology, and particularly, filopodial behavior. Furthermore, invertebrate and 

vertebrate growth cones are similar in terms of the effects of guidance molecules on 

motility, some of the intracellular signaling pathways that control motility, and their 

cytoskeletal composition. Growth factors are molecules found in both invertebrates and 

vertebrates and are necessary for neurite outgrowth. Growth cones from Helisoma will 

form without the presence of growth factors (at the tip of an axon stump), but they will 

not exhibit outgrowth (Williams & Cohan, 1994). Outgrowth in Helisoma neurons 

requires conditioned medium, created by incubating the central ganglia from Helisoma in 

defined medium (Leibovitz’s L-15 medium), to extend multiple neurites and exhibit 
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neurite outgrowth (Wong et al., 1981; Wong et al., 1984). However, the specific factors 

that are released by the central ganglia and promote outgrowth are not well-defined. The 

only factor yet identified as playing a role in promoting neurite outgrowth from Helisoma 

neurons is a described as a “laminin-like” 300 kD protein (Miller & Hadley, 1991). Due 

to its overall simplicity, regenerative ability, and growth cone characteristics, Helisoma 

lends itself to the study of developmental processes that take place during the wiring and 

rewiring of the nervous system.    

 

Specific aims of dissertation 

This dissertation employs Helisoma trivolvis as a model system to examine the effects of 

a gaseous messenger, nitric oxide, on growth cone dynamics. Furthermore, this 

dissertation identifies the intracellular signaling cascade that mediates the effects of nitric 

oxide on growth cone motility. Three major questions are addressed in these studies.  

 

Specific Aim 1: How does a spatially- and temporally-restricted application of nitric 

oxide affect growth cone morphology and calcium? 

Global application of NO to Helisoma B5 neurons results in an increase in filopodial 

length, a decrease in filopodial number, an increase in the intracellular calcium 

concentration and a decrease in the neurite outgrowth rate (Van Wagenen & Rehder, 

1999; Trimm & Rehder, 2004). These data suggest that NO can cause changes in growth 

cone morphology and in the intracellular calcium concentration, but do not provide 

information about the location of the action of NO or to the amount of NO required to 
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cause changes in growth cone morphology. Therefore, the present study tests the 

hypothesis that NO is acting at the growth cone proper and that a very spatially- and 

temporally-limited application of NO can affect growth cone morphology and the 

intracellular calcium concentration.  

 

Specific Aim 2: What is the downstream pathway through which nitric oxide exerts its 

effects on growth cone morphology? 

Global application of NO acts via sGC to result in changes in growth cone morphology 

and outgrowth rates of Helisoma B5 neurons (Van Wagenen & Rehder, 1999; 2001; 

Trimm & Rehder, 2004). These data suggest the NO directly binds to and activates sGC, 

initiating a second messenger cascade that results in the changes in growth cone 

morphology and the intracellular calcium concentration. However, the NO-activated 

second messengers involved in the regulation of Helisoma B5 growth cone morphology 

have not been characterized. Therefore, the present study tests the hypothesis that local 

application of NO mediates its effects on growth cone morphology and calcium via a 

second messenger cascade involving cGMP, PKG and cADPR.  

 

Specific Aim 3: How do intracellular and extracellular calcium cascades contribute to 

the nitric oxide-induced calcium dynamics? 

Global application of NO is known to cause an increase in the intracellular calcium 

concentration in Helisoma B5 growth cones (Van Wagenen & Rehder, 1999; 2001; 

Trimm & Rehder, 2004). However, it not known whether the increase in the intracellular 
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calcium concentration results from release from intracellular stores, influx across the 

plasma membrane or a combination of both of these processes. Therefore, the present 

study tests the hypothesis that local application of NO results in increase in the 

intracellular calcium concentration via release from intracellular calcium stores, as well 

as calcium influx across the plasma membrane. 

 

Overall, this dissertation addresses the location of action of NO that results in changes in 

growth cone morphology; the spatial and temporal requirements for NO to exert its 

effects on growth cone morphology and calcium; the downstream pathways through 

which local application of NO exerts its effects on growth cone morphology and calcium; 

and the intracellular and extracellular calcium cascades that are activated by local NO 

application. Therefore, these experiments provide a mechanism whereby NO can directly 

and locally affect the motility of a pathfinding growth cone. Furthermore, this dissertation 

implicates nitric oxide as an integral player in the formation of the connectivity of the 

nervous system during development.     
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Chapter 2: Local activation of the nitric oxide/cyclic guanosine monophosphate 

pathway in growth cones regulates filopodial length via protein kinase G, cyclic 

adenosine diphosphate ribose, and intracellular calcium release. 
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Abstract 

Nitric oxide (NO) is a gaseous messenger that has been shown to affect growth cone 

motility and neurite outgrowth in several model systems, but how NO brings about its 

effects is not understood. We have previously demonstrated that global and long-term 

application of NO to Helisoma trivolvis B5 neurons results in a transient increase in 

filopodial length, a decrease in filopodial number and a decrease in neurite outgrowth, all 

of which is mediated via soluble guanylyl cyclase (sGC) and involves an increase in the 

intracellular calcium concentration (Van Wagenen and Rehder (1999) J. Neurobiol., 39, 

168-185 and Trimm and Rehder (2004) Eur. J. Neurosci., 19, 809-818). The goal of the 

current study was twofold: to investigate the effects of short-term NO exposure on 

individual growth cones and to further elucidate the downstream pathway through which 

NO exerts its effects. Local application of the NO donor, NOC-7, for 10-20 ms via puffer 

micropipette resulted in a transient increase in filopodial length and a small decrease in 

filopodial number. We show evidence that these effects of NO are mediated via sGC, 

protein kinase G (PKG), and cyclic ADP ribose (cADPR), resulting in the release of 

calcium from intracellular stores, most likely of the ryanodine-sensitive type. These 

results suggest that growth cones expressing sGC are highly sensitive to local and short-

term exposure to NO, which they may experience during pathfinding, and that the 

stereotyped response of transient filopodial elongation seen in B5 neurons in response to 

NO requires intracellular calcium release.  
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Introduction 

Nitric oxide (NO) is a gaseous signaling molecule that has been reported to regulate a 

number of processes during neuronal development, including differentiation, cell 

motility, neuronal pathfinding, and synaptic pruning (Peunova & Enikolopov, 1995; Ball 

& Truman, 1998; Gibbs & Truman, 1998; Cramer & Sur, 1999; Ernst et al., 1999; Phung 

et al., 1999; Ernst et al., 2000; Rialas et al., 2000; Wu et al., 2001; Bicker, 2005). 

Neuronal growth cones, which form the motile tips of advancing neurites, are important 

for neurite outgrowth and the fan of filopodia extending from the growth cone has been 

shown to be necessary for neuronal pathfinding (Marsh & Letourneau, 1984; Bentley & 

Toroian-Raymond, 1986; McCaig, 1989; Chien et al., 1993; Kater & Rehder, 1995). 

Several studies have reported that NO affects neurite outgrowth and growth cone 

motility. As demonstrated in experiments in vitro, growth cones of several neuronal 

types, such as from rat dorsal root ganglion, Xenopus and chick retinal ganglion cells, and 

Helisoma buccal ganglion collapse in response to high concentrations of NO (Hess et al., 

1993; Renteria & Constantine-Paton, 1996; Ernst et al., 2000; Trimm & Rehder, 2004). 

In addition, NO has been reported to cause both increases (Hindley et al., 1997; 

Yamazaki et al., 2001) and decreases (Hess et al., 1993; Ernst et al., 2000; Trimm & 

Rehder, 2004) in neurite outgrowth in various cell types. Such experiments are typically 

performed by adding NO donors to the neuronal cultures and by monitoring growth cone 

motility over time. A disadvantage of this approach is that the entire neuron is exposed to 

NO and that the exposure is often maintained for considerable amounts of time. To more 

clearly determine whether the effects of NO observed on growth cone motility were 
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mediated by NO acting at the growth cone proper or elsewhere, and to determine the 

temporal requirements of NO stimulation necessary to affect growth cone morphology, 

we administered NO locally to growth cones and varied the duration of stimulation.  

The canonical target of NO is the enzyme soluble guanylyl cyclase (sGC), whose 

activation leads to an increase in cyclic guanosine monophosphate (cGMP). Experiments 

on identified B5 neurons from the buccal ganglion of the gastropod Helisoma trivolvis 

suggest that NO acts via sGC, cGMP, and an increase in the intracellular Ca2+ 

concentration ([Ca2+]i). This increase in [Ca2+]i results in an increase in filopodial length, 

a decrease in filopodial number and a reduction in neurite outgrowth rate (Van Wagenen 

& Rehder, 1999; Trimm & Rehder, 2004). How the increase in cGMP is linked to the 

increase in [Ca2+]i is presently unclear.   

We now report that NO acts locally at the growth cone and provide evidence that 

the NO-induced changes in growth cone morphology are produced via the activation of 

sGC, cGMP, PKG, cADPR, and calcium release from intracellular stores. The results 

support the hypothesis that sGC expressing growth cones can be influenced by transient 

NO release along their path and that NO might influence pathfinding by regulating the 

growth cone’s sensory radius and its rate of advance.  

 

 



  28  

Materials and Methods 

Helisoma neuronal culture 

Identified B5 and B19 neurons were individually removed from the buccal ganglion of 

Helisoma trivolvis and plated into 35mm culture dishes (Falcon 1008) that have the 

bottoms removed and replaced with poly-L-lysine (hydrobromide, MW 70,000-150,000; 

Sigma, St. Louis, MO) coated glass coverslips. Each dish contained 2 ml of conditioned 

medium, which was created by incubating Helisoma brains (2 brains per 1 ml) for 3-4 

days in Leibovitz L-15 (L-15). L-15 is made by dilution and supplementation of standard 

L-15 (Invitrogen; Carlsbad,CA) to result in the following concentrations: 46 mM NaCl, 

1.8 mM KCl, 1.5 mM MgCl2, 4.1 mM CaCl2, 10 mM HEPES, 50 µg gentamycin/ml, 

0.15 mg glutamate/ml in distilled water (pH = 7.3). Following plating, neurons were 

allowed to grow at room temperature for 24-72 hours. Neurons were used for 

experimentation when they had extended neurites that were tipped with motile growth 

cones that had extended at least one cell body diameter away from the soma.   

 

Image acquisition and analysis 

Growth cones were viewed using the 100x oil immersion objective on either a Zeiss 

Axiovert 135 microsope (Thornwood, NY) or an ausJENA Sedival microscope. Images 

were acquired using a cooled CCD camera (CH250, Photometrics, Tucson, AZ) or a 

CCD C72 camera (MIT Dage, Michigan City, IN), digitized on a frame grabber (Scion 

LG-3; Scanalytics, Fairfax, VA) and stored on Macintosh computers (Apple Computer 

Inc.; Cupertino, CA). Phase contrast- and fluorescent images were captured before (-5 
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and 0 min) and at defined times after (2, 5, 10, 15, 20, and 30 minutes) NOC-7 

application. If pharmacological inhibitors were used in combination with NOC-7 

application, the inhibitor was bath-applied by removing 200 µl of conditioned medium, 

dissolving the inhibitor in it, adding the solution back to the dish and then incubating 

neurons for 20 minutes prior to the start of the experiment.   

Filopodial length and number were analyzed with “Scion Image” software (Scion 

Corporation; Frederick, Maryland) on a Dell Inspiron 600m computer (Round Rock, TX). 

Filopodial length was measured from the base of a filopodium (the location where the 

end of the filopodium meets the central domain) to its distal tip. This assessment of 

filopodial length has the advantage of being independent of extensions and retractions of 

the overlying lamellipodium, which could otherwise result in the erroneous measurement 

of filopodial length. In the figures, changes in filopodial length and number are expressed 

as a percent change normalized to the time point t = 0 (just before drug addition). This 

normalization step is necessary because individual growth cone vary in size and overall 

filopodial length and number. Statistical analysis was performed with the software 

package SuperANOVA (Abacus Concepts; Cary, NC). Significance between conditions 

was determined by using a repeated measures ANOVA. Fisher’s protected LSD test was 

employed as the post-hoc test of statistical significance. Growth cones were excluded 

from statistical analysis if they deviated more than two standard deviations from the 

mean. Significance between conditions is designated as follows: *p ≤ 0.05; **p ≤ 0.01; 

***p ≤ 0.001. 
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Local nitric oxide application 

The NO donor, NOC-7 (Calbiochem; San Diego, CA), was made up in sodium hydroxide 

(100 mM) at a stock concentration of 100 mM. In order to locally apply NOC-7, 

micropipettes were pulled on a microelectrode puller (Fredrick Haer and Co., 

Bowdinham, ME). They were then filled with fast green and NOC-7, diluted in L-15, to 

result in final concentrations of 2% and 100 µM respectively. The micropipette was then 

placed approximately 15-20 µm away from the growth cone and NOC-7 was applied with 

a Picospritzer (General Valve Corp., Fairfield, NJ) delivering pulses of 8-10 psi. In the 

standard stimulation protocol, NOC-7 (100 µM in the pipette) was applied locally to a 

single growth cone for 10 ms. This event was repeated once with 1 second in between 

puffs. This stimulation paradigm (10 ms, 2 puffs) was used throughout the paper except 

where indicated otherwise. Typically, cultured neurons extend several neurites that are 

tipped by growth cones. One growth cone was chosen randomly to be exposed to NO 

(experimental condition), whereas the other growth cones on the cell were used as 

controls (not exposed to NO) and labeled as “Control” in the figures. In cases where an 

inhibitor was used in combination with NOC-7 application, the control is labeled 

“(Inhibitor Name) Control” (e.g. “ODQ Control”). An additional control group (labeled 

as “NaOH Control”) involved the administration of vehicle alone (a diluted sodium 

hydroxide solution (100 µM) and fast green) onto individual growth cones.   
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Pharmacological agents 

1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; sGC inhibitor), KT5823 (specific 

PKG inhibitor), and 8-Br-cADPR (cADPR inhibitor) were dissolved in dimethylsulfoxide 

(DMSO; Sigma) to result in stock concentrations of 20 mM, 2 mM, and 10 mM, 

respectively. Nicotinamide (Nic; ADP-ribosyl cyclase inhibitor) was dissolved in water 

to result in a stock concentration of 5 M. Thapsigargin (TG; a Ca2+/ATPase inhibitor) 

was dissolved in ethanol to result in a stock concentration of 10 mM. All 

pharmacological agents were obtained from Calbiochem, except for 8-Br-cADPR, which 

was obtained from Sigma. Pharmacological agents were added to the medium 20 minutes 

prior to the start of the experiment, by removing 200 µl of conditioned medium from the 

dish, mixing the drug in this volume, and then adding it back to the dish. These drugs 

were tested by themselves for effects on filopodia length and number (in figures as 

“Inhibitor Name”, e.g. “5 mM Nic”) before being used in combination with NOC-7 

application (for controls also see (Van Wagenen & Rehder, 1999). 

 

Calcium imaging 

Cells were injected with 10 mM fura-2 pentapotassium salt (Molecular Probes; Eugene, 

OR) and allowed to sit for 20-35 minutes to give the dye time to diffuse. Images were 

acquired using 340 ± 10nm and 380 ± 10nm excitation filters (Chroma Technology; 

Rockingham, VT) mounted in a filter wheel (Empix Imaging; Mississauga, ON, Canada) 

and a 495 nm emission filter. The system was calibrated using the Calcium Calibration 

buffer Kit II (Molecular Probes) and intracellular calcium concentrations were calculated 
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using the Ratio software program (developed by and a gift of S.B. Kater). The 

intracellular calcium concentration within a growth cone was determined by placing a 

box into the center of each growth cone and by calculating the ratio of emission signals at 

340 and 380 nm after background subtraction according to Grynkiewicz et al. (1985) 

using the formula: [Ca2+] = Kd[(R-Rmin)/(Rmax- R)] x [Fo/Fs] as described previously 

(Rehder & Cheng, 1998). Growth cones were excluded from analysis if their baseline 

levels of [Ca2+]i exceeded 200 nM.   
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Results 

We have previously demonstrated that bath application of NOC-7 (100 µM) results in a 

decrease in neurite outgrowth, increase in filopodial length and decrease in filopodial 

number (Trimm & Rehder, 2004). In the present experiments, NOC-7 application was 

spatially restricted to a single growth cone to directly test the effect of nitric oxide (NO) 

on this structure. NOC-7 (50 or 100 µM) was applied through a micropipette and driven 

by a picospritzer that delivered pressure pulses of 10 ms duration. This approach allowed 

us to not only spatially restrict our application to a single growth cone, but also allowed 

for various amounts of NOC-7 to be applied by varying either the concentration of NOC-

7 in the pipette or the pulse duration on the picospritzer. In these experiments, we directly 

test the effects of local application of NO on filopodial behavior and elucidate the 

pathway through which these effects are mediated. 

 

Local application of NOC-7 to B5 neurons, but not B19 neurons, results in a dose-

dependent, spatially-restricted increase in filopodial length and intracellular calcium 

Our first experiment tested the ability to spatially restrict the application of drugs to 

single growth cones. To determine the region that would be reached by pressure ejection, 

a micropipette was loaded with a concentrated solution of fast green (2%). The tip of a 

micropipette was placed 15-20 µm from the growth cone and the duration of the pressure 

‘puff’ was varied until the resulting plume of the dye would reach the growth cone to be 

stimulated. We next examined the effects of a local application of the NO donor, NOC-7, 

on filopodial length and number in Helisoma B5 neurons. In these experiments, 
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pretreatment images were acquired at -5 and 0 minutes prior to application of the NO 

donor. Immediately following t = 0 min, NOC-7 (100 µM in the pipette) was locally 

applied to a single growth cone (standard stimulus paradigm, see ‘Methods’ for details). 

Local NOC-7 application using this stimulation paradigm resulted in an increase in 

filopodial length, which was evident in phase contrast images when comparing the time 

point prior to application (Figure 2.1A) to 10 minutes following NOC-7 application 

(Figure 2.1B). In fact, this effect was already evident in the first image taken at 2 minutes 

after NOC-7 addition (Figure 2.1C). Filopodial elongation was transient, in that filopodial 

length reached a maximum of 23 ± 6% at 10 minutes following NOC-7 application and 

returned to pre-treatment values within 30 minutes of application (p ≤ 0.001 as compared 

to control; Figure 2.1C). This response was spatially restricted to the stimulated growth 

cone, as evidenced by the fact that control growth cones (growth cones on the same cell, 

but not puffed with NOC-7) did not show a change in filopodial length. In addition, local 

NOC-7 application resulted in a small, significant decrease in filopodial number, which 

reached -13 ± 6% at 10 minutes following NOC-7 application and returned to 

pretreatment values within 30 minutes of application (p ≤ 0.05 as compared to control; 

Figure 2.1D). A vehicle control in which growth cones were puffed with the NOC-7 

solvent (NaOH) had no significant effect on filopodial length or number (data not 

shown), demonstrating that the filopodial effects observed were caused by NOC-7 and 

not by the solvent or the pressure pulse of the puff.   

In order to test whether the effects of NO were dose-dependent, a lower 

concentration  of  NOC-7  (50 µM)  was  employed.   When  50  µM  NOC-7  was locally 
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Figure 2.1: Local application of the NO donor, NOC-7, results in a dose-dependent 
increase in filopodial length and a transient increase in [Ca2+]i.  (A, B) Phase contrast 
images of a B5 growth cone prior to (A) and 10 minutes following local application of 
100 µM NOC-7 (B). Note filopodial elongation and some retraction of the 
lamellipodium. Scale: 10 µm.  (C) Local application of 100 µM NOC-7 resulted in 
transient filopodial elongation, which reached a maximum of 23 ± 6% at 10 minutes 
following application and returned to pretreatment values within 30 minutes. Control 
growth cones (growth cones on the same cell, but not puffed with NOC-7) showed no 
change in filopodial length over time, demonstrating that application of NOC-7 was 
localized. Growth cones that were treated with 100 µM NOC-7 showed a significant 
increase in filopodial length as compared to control growth cones (ANOVA repeated 
measures, p ≤ 0.001). Local application of a lower concentration of NOC-7 (50 µM) 
resulted in transient filopodial elongation, which reached a maximum of 14 ± 3% at 5 
minutes following treatment and returned to pre-treatment values by 20 minutes (p ≤ 0.05 
as compared to control).  (D) Local application of 100 µM NOC-7 resulted in a small 
decrease in filopodial number, as compared to control growth cones (p ≤ 0.05). Local 
application of a lower concentration of NOC-7 (50 µM) did not result in a change in 
filopodial number (p = 0.65 as compared to control).  (E) Local application of 100 µM 
NOC-7 to B5 growth cones resulted in a transient increase in intracellular calcium that 
reached a maximum of 168 ± 16 nM at 2 minutes following application, and returned to 
pretreatment values within 20 minutes (p ≤ 0.01 as compared to control). The number of 
growth cones studied per condition is given as ‘n’ and the level of significance compared 
to the control group is indicated in parentheses following the experimental condition as 
described in ‘Methods’.  
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applied, a transient increase in filopodial length resulted, reaching a maximum of 14 ± 

3% at 5 minutes following NOC-7 application and returning to pre-treatment values 

within 20 minutes of application (p ≤ 0.05 as compared to control; Figure 2.1C). 

However, local NOC-7 (50 µM) application had no effect on filopodial number (p = 0.65 

as compared to control; Figure 2.1D). To further investigate the dose-dependency of NO, 

the concentration of NO in the pipette was doubled (to 200 µM) or the duration of 

individual pressure pulses was doubled or quadrupled. These stimulation conditions 

resulted in an increase in filopodial length and decrease in filopodial number (data not 

shown) that was similar to that seen with the standard stimulation protocol used above 

(Figure 2.1C, D). Therefore, there may be a ‘ceiling’ effect that is reached with a single, 

local NOC-7 application by micropipette and all experiments from here on employ the 

standard stimulation paradigm (100 µM NOC-7).  

Previous work has also demonstrated that growth cones respond with an increase 

in intracellular calcium ([Ca2+]i) to a global and sustained application of NO (Van 

Wagenen et al., 1999; Van Wagenen & Rehder, 2001; Trimm & Rehder, 2004). 

Therefore, we tested next whether the short-term stimulation of individual growth cones 

would result in [Ca2+]i changes in the exposed cell. When 100 µM NOC-7 was locally 

applied to B5 growth cones, [Ca2+]i increased significantly, reaching a maximum of 168 

± 16 nM at 2 minutes following NOC-7 application, and returning to pretreatment levels 

within 20 minutes (p ≤ 0.01; Figure 2.1E). Control growth cones (located on other 

neurites of the same cell but not exposed to NO) did not show a change in [Ca2+]i, 

suggesting that the increase in [Ca2+]i remained local to the stimulated growth cone. 
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 We next tested whether local application of NO to another identified neuron, B19, 

would have a similar effect on filopodial length and number. When B19 growth cones 

were exposed to 100 µM NOC-7, they did not respond with a change in filopodial length 

or number (Figure 2.2A, B; p = 0.10 for length and p = 0.59 for number). This result 

supported previous findings that NO was acting through sGC to bring about changes in 

filopodial length. As demonstrated previously, B5 neurons show immunoreactivity to 

soluble guanylyl cyclase (sGC), the target of NO, whereas B19 neurons show little to no 

staining for sGC (Van Wagenen & Rehder, 2001). Accordingly, when B19 growth 

cones were exposed to 100 µM NOC-7, there was also no change in [Ca2+]i (p = 0.83; 

Figure 2.2C). 

 

The effects of NO on filopodial dynamics are mediated via the sGC/PKG pathway 

NO binds to the heme group of sGC and directly activates the enzyme (Craven & 

DeRubertis, 1978) to produce cGMP (Arnold et al., 1977). To test more directly whether 

sGC was involved in the pathway mediating the effects of NO on filopodial dynamics, 

we next employed a specific inhibitor of sGC, ODQ. Whereas ODQ (20 µM) had no 

significant effect on filopodial length and number when applied by itself, preincubation 

with 20 µM ODQ for 25 minutes completely blocked the effect on filopodial length 

normally seen when 100 µM NOC-7 was applied onto B5 growth cones (p ≤ 0.01 as 

compared to 100 µM NOC-7 alone; Figure 2.3A). In addition, preincubation with ODQ 

also eliminated the small NO-induced decrease in filopodial number (p ≤ 0.01 as 

compared to 100 µM NOC-7 alone; Figure 2.3B). 
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Figure 2.2: Local application of 100 µM NOC-7 to B19 neurons has no effect on 
filopodial dynamics or [Ca2+]i.  (A, B) Local application of 100 µM NOC-7 did not 
result in a change in filopodial length or number of B19 neurons. Neither control growth 
cones (on the same cell as treated growth cones, but not puffed with NOC-7) nor NaOH 
control growth cones (puffed with NaOH as a solvent control) showed a significant 
change in filopodial length or number.  (C) Local application of 100 µM NOC-7 to B19 
growth cones did not result in a significant change in intracellular calcium (p = 0.83).   
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Figure 2.3: The NO-induced increase in filopodial length on B5 neurons occurs via 
sGC and PKG.  (A) Pretreatment for 25 minutes with a sGC inhibitor (20 µM ODQ) 
followed by local application of 100 µM NOC-7 abolished the NO-induced increase in 
filopodial length (p ≤ 0.01 as compared to 100 µM NOC-7 alone), whereas ODQ by itself 
had no effect. Note that in this figure, the NOC-7 data from Figure 1C & 1D have been 
overlaid in each graph for ease of comparison.  (B) Pretreatment with 20 µM ODQ, 
followed by local 100 µM NOC-7 treatment also abolished the small decrease in 
filopodial number that is usually seen following NO application (p ≤ 0.01 as compared to 
100 µM NOC-7 alone).  (C) Pretreatment with a specific PKG inhibitor, 2 µM KT5823, 
for 25 minutes, followed by 100 µM NOC-7 application significantly reduced the NO-
induced increase in filopodial length (p ≤ 0.01 as compared to 100 µM NOC-7 alone).  
(D) Pretreatment with 2 µM KT5823 for 25 minutes, followed by 100 µM NOC-7 
application abolished the NO-induced decrease in filopodial number (p ≤ 0.01 as 
compared to 100 µM NOC-7 alone). 
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After having determined that NO exerts its effects via sGC, we next investigated 

how cGMP might bring about its effects on filopodial length and number by investigating 

a major target of cGMP, namely protein kinase G (PKG). To investigate a potential role 

of PKG in NO signaling, we tested the effects of NO on filopodial parameters in the 

presence of a PKG inhibitor. Interestingly, a 25 minute preincubation with the specific 

PKG inhibitor KT5823 (2 µM) significantly inhibited the filopodial elongation normally 

seen when single growth cones were exposed to 100 µM NOC-7 (p ≤ 0.01 as compared 

to 100 µM NOC-7 alone; Figure 2.3C). In addition, preincubation with 2 µM KT5823 

followed by local 100 µM NOC-7 application also abolished the NO-induced decrease in 

filopodial number (p ≤ 0.01 as compared to 100 µM NOC-7 alone; Figure 2.3D). These 

results suggest that NO affects filopodial length and number through a pathway involving 

sGC and PKG. 

 

NO exerts its effects on filopodial dynamics via cADPR and intracellular calcium release 

One downstream target of PKG is cyclic adenosine diphosphate ribose (cADPR), which 

is known to cause release of Ca2+ from ryanodine receptor (RyR) sensitive internal stores 

(Higashida et al., 2001; Lee, 2001). Because we have shown that an increase in [Ca2+]i is 

involved in the NO signaling pathway (Figure 2.1E and Van Wagenen & Rehder, 1999; 

Trimm & Rehder, 2004), we next used an inhibitor of the production of cADPR, 

nicotinamide (Nic), in combination with NOC-7 application. Nicotinamide has been 

shown to inhibit the production of cADPR through inhibition of the enzyme necessary for 

its synthesis, ADP-ribosyl cyclase (Sethi et al., 1996). Pretreatment for 25 minutes with 
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the cADPR inhibitor, 5 mM Nic, followed by 100 µM NOC-7 application significantly 

reduced the NO-induced filopodial elongation (p ≤ 0.05 as compared to 100 µM NOC-7 

alone; Figure 2.4A). In addition, pretreatment with 5 mM Nic, followed by 100 µM 

NOC-7 application slightly reduced the NO-induced decrease in filopodial number (p = 

0.31; Figure 2.4B). These results suggest that the NO-induced increase in filopodial 

length involves cADPR. 

In order to confirm these results, we employed a second inhibitor of cADPR, 8-

Br-cADPR. 8-Br-cADPR is a competitive inhibitor of cADPR that acts by occupying the 

binding site on the receptor (Walseth & Lee, 1993). Pretreatment for 25 minutes with 8-

Br-cADPR (10 µM) followed by local 100 µM NOC-7 application abolished the NO-

induced filopodial elongation (p ≤ 0.01 as compared to 100 µM NOC-7 alone; Figure 

2.4C). Additionally, 8-Br-cADPR blocked the NO-induced decrease in filopodial number 

(p ≤ 0.001 as compared to 100 µM NOC-7 alone; Figure 2.4D). The finding that both 

inhibitors of cADPR blocked the NO induced effects on filopodial length and number 

suggests that NO acted through cADPR.  

Because cADPR is known to activate calcium release from intracellular stores, we 

next tested whether the NO-induced increase in [Ca2+]i was also blocked by pretreatment 

with the cADPR inhibitor, nicotinamide (Nic). Indeed, pretreatment with 5 mM Nic, 

followed by the application of 100 µM NOC-7 abolished the NO-induced transient 

increase in [Ca2+]i (Figure 2.5; p ≤ 0.05 when comparing the first 20 minutes of Nic & 

NOC-7  treatment  to  100 µM  NOC-7  alone),  strongly suggesting that the NO-induced 
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Figure 2.4: The NO-induced increase in filopodial length is mediated via cADPR.  
(A) Pretreatment with a cADPR inhibitor, 5 mM nicotinamide (Nic), for 25 minutes, 
followed by local application of 100 µM NOC-7 significantly reduced the NO-induced 
increase in filopodial length (p ≤ 0.05 as compared to 100 µM NOC-7 alone). Note that 5 
mM Nic by itself did not have an effect on filopodial length. The NOC-7 data from 
Figure 1C & 1D has been overlaid in each graph for ease of comparison. (B) Pretreatment 
with 5 mM Nic followed by local 100 µM NOC-7 application nominally reduced the NO-
induced decrease in filopodial number but this effect was not statistically significant (p = 
0.31 as compared to 100 µM NOC-7 alone). Note that 5 mM Nic alone did not have an 
effect on filopodial number.  (C) Pretreatment with another cADPR inhibitor, 10 µM 8-
Br-cADPR, for 25 minutes, followed by local application of 100 µM NOC-7 significantly 
reduced the NO-induced increase in filopodial length (p ≤ 0.01 as compared to 100 µM 
NOC-7 alone). 10 µM 8-Br-cADPR alone had no effect on filopodial length.  (D) 
Pretreatment with 10 µM 8-Br-cADPR followed by local 100 µM NOC-7 application 
abolished the NO-induced decrease in filopodial number (p ≤ 0.001 as compared to 100 
µM NOC-7 alone).   



  45  

 
 

 
 
 

 

Figure 2.5: The NO-induced increase in [Ca2+]i is mediated via cADPR.  
Pretreatment with the cADPR inhibitor, 5 mM nicotinamide (Nic), for 25 minutes, 
followed by local application of 100 µM NOC-7 significantly reduced the NO-
induced increase in intracellular calcium (p ≤ 0.05 when comparing the first 20 
minutes of Nic & NOC-7 treatment to 100 µM NOC-7 alone). Pretreatment with 
another cADPR inhibitor, 10 µM 8-Br-cADPR, followed by local application of 
100 µM NOC-7 abolished the NO-induced increase in intracellular calcium (p ≤ 
0.01 as compared to 100 µM NOC-7 alone). 
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transient increase in [Ca2+]i is mediated through cADPR. Although growth cones treated 

with Nic & NOC-7 displayed a slow increase in calcium (Figure 2.5), there was no 

significant difference between any post treatment time point when compared to the pre (0 

minute) time point. In order to confirm that cADPR was responsible for the NO-induced 

increase in calcium, a second cADPR inhibitor was employed, 10 µM 8-Br-cADPR, 

which also blocked the NO-induced increase in [Ca2+]i (Figure 2.5; p ≤ 0.01 as compared 

to NOC-7 alone). Taken together, these results suggest that the NO-induced increase in 

[Ca2+]i is linked to a release mechanism involving cADPR.  

If the release of [Ca2+]i from intracellular stores was necessary for NO to affect 

filopodial length and number, it would be expected that NO should not be able to exert its 

effects when intracellular stores of calcium are depleted. Thapsigargin blocks the Ca2+-

ATPases in the endoplasmic reticulum (Thastrup et al., 1990) and thereby assists in the 

emptying of ryanodine-sensitive stores. Whereas 100 nM thapsigargin (TG) by itself had 

no significant effect on either filopodial parameters or levels of [Ca2+]i, pretreatment with 

TG significantly inhibited the NO-induced increase in filopodial length (Figure 2.6A; p ≤ 

0.05 when comparing NOC-7 alone to the combined TG and NOC-7 treatment). 

Although pretreatment with TG did slightly reduce the NO-induced decrease in filopodial 

number, this effect was not significant (Figure 2.6B; p = 0.19 when comparing NOC-7 

alone to the combined TG and NOC-7 treatment). Preincubation with TG also abolished 

the NO-induced increase in [Ca2+]i (Figure 2.6C; p ≤ 0.001 when comparing NOC-7 

alone to the combined TG and NOC-7 treatment). These results suggest that intracellular 

calcium stores are necessary for the NO-induced changes in filopodial length. 
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Figure 2.6: Depleting intracellular calcium stores with thapsigargin blocks the NO-
induced increase in filopodial length and [Ca2+]i.  (A) Intracellular calcium stores were 
depleted by treating cells for 30 minutes with a Ca2+/ATPase inhibitor, 100 nM 
thapsigargin (TG). Pretreatment with 100 nM TG abolished the NO-induced (100 µM 
NOC-7) increase in filopodial length (p ≤ 0.05 when comparing 100 µM NOC-7 alone to 
the combined 100 nM TG & NOC-7 treatment). Note that this treatment by itself had no 
effect on filopodial length.  (B) Pretreatment with 100 nM TG, followed by local 
application of 100 µM NOC-7 nominally reduced the NO-induced decrease in filopodial 
number (p = 0.19 when comparing 100 µM NOC-7 alone to the combined 100 nM TG & 
NOC-7 treatment). Treatment with 100 nM TG by itself had no effect on filopodial 
number.  (C) Pretreatment for 30 minutes with 100 nM TG blocked the NO-induced 
increase in [Ca2+]i that is normally seen following local NOC-7 application (p ≤ 0.001 
when comparing 100 µM NOC-7 alone to the combined 100 nM & NOC-7 treatment). 
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Discussion 

Nitric oxide serves a wide range of functions, including the regulation of neuronal 

differentiation, proliferation and survival (Peunova & Enikolopov, 1995; Ball & Truman, 

1998; Gibbs & Truman, 1998; Cramer & Sur, 1999; Ernst et al., 1999; Phung et al., 

1999; Ernst et al., 2000; Rialas et al., 2000; Wu et al., 2001; Contestabile & Ciani, 2004; 

Bicker, 2005). The importance of NO for development was demonstrated most clearly in 

Drosophila, where knocking out the only NO producing isoform of the enzyme NO 

synthase (NOS) resulted in a lethal phenotype early in development (Regulski et al., 

2004). Less dramatic effects are seen in other systems in response to knockouts or 

pharmacological blockade of particular NOS isoforms, presumably due to the presence of 

other isoforms that might compensate for the absence or blockade of one isoform (Huang 

et al., 1993; Mashimo & Goyal, 1999; Packer et al., 2003). 

During neural development axons elongate and are guided by growth cones to 

their target areas, where they synapse onto appropriate postsynaptic cells. Although NO 

has been shown to affect neuritogenesis and neuronal outgrowth both in vivo and in vitro 

(Truman et al., 1996; Hindley et al., 1997; Mize & Lo, 2000; Rialas et al., 2000; Seidel 

& Bicker, 2000; Tsukada et al., 2002; Trimm & Rehder, 2004; Yamazaki et al., 2004; 

Bicker, 2005; Zhang et al., 2005), its role is best established as a retrograde signaling 

molecule at synapses, where it appears to be involved in synaptogenesis as well as in 

synaptic plasticity in the adult (Garthwaite et al., 1988; Garthwaite & Boulton, 1995; 

Contestabile, 2000; Bon & Garthwaite, 2002; Nikonenko et al., 2003). Less is known 

about a role for NO during cell migration and axonal pathfinding, although there is good 
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evidence that NOS is expressed early enough in development to overlap with axon 

pathfinding and synaptogenesis in several model systems (Truman et al., 1996; Bicker, 

1998; Grueber & Truman, 1999; Villani, 1999; Gibson & Nighorn, 2000; Bicker, 2005). 

Recent evidence from the enteric nervous system of the embryonic grasshopper suggests 

that NO is produced in a subset of midgut cells. These cells line the path of neurons that 

migrate along the gut and inhibition of NOS in this system results in a slow down in the 

migration rates of these neurons (Haase & Bicker, 2003). This finding suggests that NO 

production along the path of migrating neurons can modulate their rate of advance. NO 

has also been shown to regulate cell migration in cerebellar granule cells in slice culture, 

because inhibition of NOS was shown to block migration (Tanaka et al., 1994). 

Moreover, simulation of NO release by applying the NO donor NOC-7 to migrating 

Helisoma B5 neurons in vitro resulted in a slow down of neurite advance, which was 

dose-dependent and mediated via sGC (Trimm & Rehder, 2004). In other neuronal cell 

types, NO has been reported to cause both increases (Hindley et al., 1997; Yamazaki et 

al., 2001) and decreases (Hess et al., 1993; Ernst et al., 2000; Trimm & Rehder, 2004) in 

neurite outgrowth. Addition of high concentrations of NO-donors to neuronal cultures 

from rat dorsal root ganglion, Xenopus retinal ganglion cells, chick retinal ganglion cells, 

and Helisoma buccal ganglion was shown to result in growth cone collapse (Hess et al., 

1993; Renteria & Constantine-Paton, 1996; Ernst et al., 2000; Trimm & Rehder, 2004). 

Although these differences in cellular responses may reflect cell type specificity, it is also 

possible that they are due to differences in the concentrations and types of NO donors 

used. A study on Helisoma neurons indeed suggests that NO can have dose-dependent 
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effects and proposes a view that outgrowth is regulated by the concentration of cGMP in 

the cell (Trimm & Rehder, 2004). In B5 neurons, high concentrations of cGMP shift a 

growth cone from an ‘optimal’ growth rate to slower growth or even collapse, whereas 

lowered concentrations of cGMP also result in slower outgrowth.  

 

NO acts at the growth cone proper 

Effects of NO on physiological processes are often tested by adding NO donors to an 

entire preparation, which has the disadvantage that the location of NO action is difficult 

to discern. Moreover, temporal and spatial information provided in a NO signal cannot be 

investigated. Studies on single cells in culture have the advantage that effects of NO can 

be investigated on a single cell level, but addition of NO donors to the culture medium 

still gives NO access to the entire neuron. We reported previously that filopodia of B5 

neurons start to elongate their filopodia within a minute of exposure to NO (Van 

Wagenen & Rehder, 1999). This rapid response supported the interpretation that NO 

acted locally at the growth cone. We have now confirmed this notion by applying small 

amounts of NO directly to single growth cones. Whereas growth cones stimulated 

directly responded with a stereotypical elongation of filopodia and a small reduction in 

filopodial numbers, other growth cones from the same cell and growing in the vicinity of 

the stimulated growth cone showed no response. Thus, not only was the application of 

NO-donor localized and NO did not spread to other growth cones, we could also rule out 

an indirect effect of NO communicated from the stimulated growth cone to other growth 

cones throughout the cell. Interestingly, the effects of NO were less pronounced and 
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shorter in duration when compared to earlier studies in which NO donors were applied to 

the entire dish for 30 minutes or more (Van Wagenen & Rehder, 1999; 2001). The 

finding that 10 ms puffs of NO donor caused a significant effect on filopodial length and 

number in B5 but not B19 neurons, suggests that neurons can be sensitive to short 

transients of NO release. The finding that the effects on [Ca2+]i and filopodial elongation 

in response to NO exposure in the range of seconds lasted for about 20 minutes suggests 

that NO initiates intracellular signaling events that long outlast the initial stimulus. 

Moreover, the similarity in time courses of the Ca2+ and filopodial responses (compare 

Figures 2.1C and 2.1E) indicate that calcium levels have to be restored to baseline levels 

for filopodial elongation to return to pretreatment levels. Although we do not know the 

maximal concentration of NO donor at the growth cone, nor the effective time course of 

NO release from NOC-7, modeling studies suggest that the presence of NO at the growth 

cone will be very limited due to rapid diffusion and short half life (Wood & Garthwaite, 

1994; Philippides et al., 2000).  

NOC-7 application led to a dose-dependent response on filopodial length and 

number. Interestingly we noticed an apparent ‘ceiling effect’ such that longer exposures 

and exposures using higher concentrations of NOC-7 did not lead to stronger effects. The 

reason for this upper limit on filopodial elongation is presently unclear, but might reside 

in limiting amounts of g-actin available for addition at filopodial tips. The stronger 

elongation observed after long-term exposure to NO seen in earlier experiments (Van 

Wagenen et al., 1999; Van Wagenen & Rehder, 1999) was paralleled by a larger 

reduction in the number of filopodia, and the breakdown of f-actin resulting from 
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reabsorbing filopodia into the growth cone may be required to provide additional g-actin 

for further polymerization.  

 

NO acts through the sGC/PKG/cADPR pathway 

The main target of NO is the enzyme soluble guanylyl cyclase (sGC) (Pyriochou & 

Papapetropoulos, 2005) and effects of NO signaling through cGMP on neurite outgrowth 

and pathfinding have been reported in several model systems (Hindley et al., 1997; Gibbs 

& Truman, 1998; Seidel & Bicker, 2000; Haase & Bicker, 2003; Bicker, 2005). We 

suggest that NO affects growth cone motility via sGC, because the effects of the NO-

donor are blocked when this enzyme is inhibited with ODQ. Moreover, the fact that NO 

did not affect growth cone motility in B19 neurons further supports this notion. This use 

of B19 neurons as a ‘negative control’ resulted from a previous report in which we 

demonstrated immunohistochemically that growth cones of B5 neurons are sGC-positive, 

whereas those of B19 neurons are sGC-negative (Van Wagenen & Rehder, 2001). The 

expression of sGC has been shown to be developmentally regulated in other systems 

(Truman et al., 1996; Gibbs et al., 2001; Haase & Bicker, 2003; Ding et al., 2005), 

providing for a mechanism that would allow a cell to change its sensitivity to NO or ‘tune 

in’ or ‘tune out’ of NO signaling altogether. Whether such changes in expression levels 

of sGC are found during different developmental stages in B5 and B19 neurons, and 

whether they are correlated with neuronal pathfinding is presently unknown. The activity 

of sGC can also be controlled by other mechanisms, including elevations in [Ca2+]i that 

have been shown to desensitize sGC (Bellamy et al., 2000; Garthwaite, 2005). Thus, the 
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increase in [Ca2+]i seen upon long term exposure to NO donors could have desensitized 

the enzyme and thereby resulted in a reduction in cGMP production in growth cones, 

potentially explaining the observation that levels of [Ca2+]i and filopodial responses 

returned towards baseline during prolonged stimulation with NO donors in previous 

studies (Van Wagenen & Rehder, 1999; 2001). 

The enzyme sGC produces cGMP, which has been previously identified in 

regulating neurite outgrowth and growth cone turning (Gundersen & Barrett, 1980; 

Hindley et al., 1997; Song et al., 1998; Mizuhashi et al., 2001; Trimm & Rehder, 2004; 

Bicker, 2005). cGMP is known to act through three major targets: it activates or inhibits 

several phosphodiesterases (PDEs), activates cyclic nucleotide gated (CNG) ion 

channels, and activates protein kinase G (PKG) (Fain et al., 2001; Barnstable et al., 2004; 

Contestabile & Ciani, 2004). Here we provide evidence that cGMP regulates filopodial 

length and number through PKG, because the effect of NO was fully inhibited in the 

presence of the PKG inhibitor KT5823. Moreover, we show that the effect of NO was 

blocked when cADP ribose was inhibited with either nicotinamide or 8-Br-cADPR. 

These findings suggest that cGMP activates PKG, and that PKG, by activating ADP 

ribosyl cyclase directly or indirectly, leads to an increase in the concentration of cADP 

ribose (Figure 2.7). According to our model, cADP ribose would then trigger the release 

of Ca2+ from ryanodine–sensitive Ca2+ stores, identifying the ER as an important source 

of the Ca2+ increase seen in response to NO. This conclusion was further supported by 

our results that the effects of NO on both [Ca2+]i and filopodial motility were blocked by 
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Figure 2.7: Summary of the pathway by which NO is suggested to affect filopodial 
dynamics.  NO is produced by isoforms of nitric oxide synthases (NOS) but is here 
applied externally via the NO donor, NOC-7. NO binds to the heme group of sGC and 
activates it to produce cGMP. cGMP then activates PKG, which activates ADP-ribosyl 
cyclase to produce cyclic adenosine diphosphate ribose (cADPR). cADPR in turn causes 
release of Ca2+ from ryanodine-sensitive Ca2+-stores located in the endoplasmic 
reticulum. The following pharmacological agents were employed in this study: ODQ 
(sGC inhibitor), KT5823 (PKG inhibitor), Nic (ADP-ribosyl cyclase inhibitor), 8-Br-
cADPR (cADPR inhibitor), and thapsigargin (ER Ca2+/ATPase inhibitor). 
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thapsigargin, an inhibitor of Ca2+-ATPases located in the ER membrane (Lytton et al., 

1991). Thus, when Ca2+ re-uptake into the ER was prevented and stores became depleted 

of Ca2+, the effects of NO on filopodial length were abolished.  

NO has been demonstrated to increase [Ca2+]i via cADPR in sea urchin eggs 

(Dargie et al., 1990) and this release was later shown to be mediated by the ryanodine 

receptor (Willmott et al., 1996a). cADPR has also been demonstrated to increase [Ca2+]i 

via the ryanodine receptor in neurons (Hua et al., 1994; Verkhratsky & Shmigol, 1996; 

Guse, 2004) and in addition, has also been described to modulate the interaction of Ca2+ 

release and Ca2+ influx (Empson & Galione, 1997; Hashii et al., 2000). Ca2+ release from 

intracellular stores can result in calcium-induced calcium release (CICR) which is 

thought to explain the regenerative Ca2+ transients seen in many cell types, and both the 

ryanodine and IP3 receptors have been shown to undergo CICR (Endo et al., 1970; Finch 

et al., 1991). The long-lasting elevation of [Ca2+]i in B5 growth cones in response to 

stimulation with NO could be a result of CICR, but may also require Ca2+ influx across 

the plasma membrane. The importance of Ca2+ influx for filopodial regulation has been 

reported previously for B5 neurons (Van Wagenen & Rehder, 1999) and possible 

interactions between Ca2+ release channels in the ER and Ca2+ influx will be the focus of 

future studies. Because the degree of store filling is important for the resulting Ca2+ 

signal (Berridge, 1995; 2005), one might expect that the effect of NO will depend on this 

parameter and thereby might reflect the cell’s recent stimulation ‘history’. 
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Role of filopodial length and number in determining the growth cone ‘action radius’ 

Filopodia are undergoing continued cycles of extension and retraction and are important 

for growth cone steering (Marsh & Letourneau, 1984; Bentley & Toroian-Raymond, 

1986; McCaig, 1989; Chien et al., 1993; Kater & Rehder, 1995). With receptors 

embedded in their membranes, filopodia serve to survey the environment ahead of the 

growth cone and changes in their length or number will alter the radius of the survey 

area. Our results of rapid filopodial elongation coupled with modest reduction in 

filopodial number support previous findings that suggest that NO could serve as a ‘slow 

down and search’ signal for a navigating growth cone (Trimm & Rehder, 2004). 

 As mentioned above, the short application of 100 µM NOC-7 caused a smaller 

effect on filopodial elongation and number as compared to long-term addition used in 

earlier experiments. This was especially true for the number of filopodia, which was 

reduced by 13 ± 6% in this report, but saw maximal reduction of up to 28 ± 6% in earlier 

studies (Van Wagenen & Rehder, 1999; 2001). Interestingly, lower concentrations of 

NOC-7 (50 µM) had no effect on number, while still causing significant elongation. Thus 

localized stimulation by NO for short periods can cause filopodial elongation without 

concomitant filopodial loss, resulting in a transient enlargement of the growth cone’s 

sensory span. It is presently unknown whether this mechanism is used for axonal 

guidance in the developing nervous system in situ, but there is good evidence for a role of 

NO during synaptogenesis and synaptic remodeling, events during which growth cones 

undergo changes in their rate of advance and/or remodel their shape to adjust to new 

functions (Williams et al., 1994; Wu et al., 1994; Cogen & Cohen-Cory, 2000; 



  58  

Contestabile, 2000; Godfrey & Schwarte, 2003; Nikonenko et al., 2003; Sunico et al., 

2005). 

 

Conclusions 

In this paper we provide evidence that NO affects the neuronal cytoskeleton of identified 

Helisoma neurons in a stereotypical fashion by acting via sGC, PKG, and cADP ribose to 

release Ca2+ from ryanodine sensitive stores. To our knowledge, this is the first report on 

primary neurons in which NO is demonstrated to cause the release of Ca2+ from 

intracellular stores via this pathway. Moreover, by stimulating single growth cones and 

by limiting the exposure to NO donors to fractions of seconds, we demonstrate that NO 

can act at the growth cone locally and that very brief exposures to NO are effective in 

regulating growth cone morphology. These results suggest that transient release of NO by 

cells lining the path of a navigating growth cone or its target region would have a 

significant effect on growth cone shape and could function as a signal to affect growth 

cone motility during pathfinding.  
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Chapter 3.1: Nitric oxide regulates filopodial dynamics via ryanodine receptor-

mediated calcium release 
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Abstract 

Nitric oxide (NO) is a gaseous intercellular messenger involved in numerous processes 

during development, including wiring of the nervous system. Neuronal growth cones are 

responsible for establishing the correct connectivity in the nervous system, but how NO 

might affect neuronal pathfinding is not fully understood. We have demonstrated in a 

previous study that local application of a nitric oxide donor, NOC-7, via micropipette 

onto individual growth cones from Helisoma trivolvis B5 neurons results in an increase in 

filopodial length, decrease in filopodial number and an increase in the intracellular 

calcium concentration ([Ca2+]i). Moreover, these NO-induced effects were demonstrated 

to be mediated via an intracellular cascade involving soluble guanylyl cyclase, protein 

kinase G (PKG), and cyclic adenosine diphosphate ribose (cADPR). We now 

demonstrate that the increase in the [Ca2+]i that results from local NO application is 

mediated via release from ryanodine receptor (RyR)-sensitive intracellular stores. We 

also show that PKG and RyRs are localized within growth cones and microinjection of 

cADPR mimics the effects of NO, providing further support that the NO-induced effects 

are mediated via cADPR. Lastly, we provide evidence that calcium influx across the 

plasma membrane is a necessary component of the NO-induced calcium increase, 

however, this calcium influx is secondary to the RyR-induced calcium release from 

intracellular stores. This study details a signaling pathway by which NO can cause 

changes in growth cone morphology and thus provides a mechanism by which NO could 

affect neuronal wiring by acting locally on individual growth cones during the 

pathfinding process. 



  61  

Introduction 

Nitric oxide (NO) is a gaseous messenger that has multiple functions during 

development, including regulation of proliferation, differentiation, pathfinding and 

synaptic pruning (Ernst et al., 1999; Cogen & Cohen-Cory, 2000; Contestabile & Ciani, 

2004; Matarredona et al., 2005; Bicker, 2006; Villalobo, 2006). The signaling pathways 

through which NO brings about these various effects are only partially understood. We 

are employing a cell culture approach, using identified neurons from the pond snail 

Helisoma trivolvis, to study how NO affects neuronal motility, with a particular focus on 

the effects of NO on growth cone dynamics. Growth cones are the motile tips of 

advancing neuronal processes, such as axons and dendrites, and play a crucial role in 

neuronal pathfinding and synaptogenesis. NO affects several aspects of neurite outgrowth 

and targeting (Cheung et al., 2000; Ernst et al., 2000; Haase & Bicker, 2003; Zhang et 

al., 2005; Bicker, 2006), making the growth cone a highly sensitive assay system to 

investigate NO signaling. Previous studies from this lab demonstrated that the application 

of NO donors, such as SIN-1 and NOC-7, to a particular type of neuron (B5) grown in 

cell culture resulted in a transient increase in filopodial length, a decrease in filopodial 

number and a slow down in neurite outgrowth (Van Wagenen & Rehder, 1999; Trimm & 

Rehder, 2004; Welshhans & Rehder, 2005). These effects are elicited by an NO-induced 

transient increase in the intracellular calcium concentration ([Ca2+]i) and amount to what 

we have termed growth cone “slow down and search behavior.” Using a puffer-pipette 

approach we subsequently demonstrated that the effects on growth cone morphology and 

calcium were mediated at and limited to the stimulated growth cone (Welshhans & 
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Rehder, 2005). Using pharmacological tools, we determined that NO causes these 

changes in growth cone morphology via an intracellular cascade involving soluble 

guanylyl cyclase (sGC), cyclic guanosine monophosphate (cGMP), protein kinase G 

(PKG), and cyclic adenosine diphosphate ribose (cADPR).  

The goal of the present study was to further extend the investigation of the NO 

signaling pathway downstream of cADPR in order to link the effect of NO to the increase 

in [Ca2+]i, which is a necessary step in the NO-induced changes in growth cone motility. 

We here report that NO acts via cADPR and ryanodine receptor-mediated intracellular 

calcium release to cause the transient increase in [Ca2+]i and changes in growth cone 

morphology. The calcium release from intracellular stores then results in calcium influx 

across the plasma membrane, which contributes to the transient intracellular calcium 

increase seen after stimulation of growth cones with NO. Taken together, this study 

demonstrates that NO can directly affect growth cone motility of sGC-containing neurons 

through a transient elevation of [Ca2+]i from ryanodine sensitive stores, making NO an 

effective signaling molecule at the growth cone level. Thus, growth cones from NO-

sensitive neurons could be affected during neuronal pathfinding or synaptogenesis by 

individual cells or tissues that release NO in the vicinity of a growth cone’s migratory 

path.  
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Materials & Methods 

Helisoma trivolvis neuronal culture 

Identified, individual B5 neurons from the buccal ganglion of Helisoma trivolvis were 

removed and plated into Falcon petri dishes (1008; Becton Dickinson Labware, Franklin 

Lakes NJ) as previously described (Rehder & Kater, 1992; Rehder & Cheng, 1998). To 

prepare these dishes for plating, a hole was drilled out of the bottom and replaced with a 

poly-L-lysine (hydrobromide, MW 70,000-150,000; Sigma, St. Louis MO) coated glass 

coverslip. Conditioned medium (2 mL) was placed into each dish, which was created by 

incubating 2 brains per 1 mL of L-15 medium (Leibovitz L-15; Invitrogen, Carlsbad CA) 

for 3-4 days (Wong et al., 1981; Wong et al., 1984). L-15 for Helisoma cell culture was 

made by using standard L-15 and then diluting and supplementing it in distilled water to 

result in the following final concentrations: 46 mM NaCl; 1.8 mM KCl; 1.5 mM MgCl2; 

4.1 mM CaCl2; 10 mM HEPES; 50 µg/mL gentamycin; 0.15 mg/mL L-glutamine. The 

final solution was adjusted to pH 7.3. Once neurons were plated, they were allowed 24-

48 hours to extend growth cones. In order for a neuron to be used for experimentation, 

the growth cone had to have extended a distance equal to at least one cell body away 

from the neuronal soma. 

 

Image acquisition and analysis 

Growth cones were viewed using a 100x oil immersion objective (UPlan Fl N; Olympus, 

Melville NY) on an Olympus IX70 inverted microscope equipped with phase contrast 

optics. Fluorescent images were acquired using illumination from a high pressure 
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mercury (HBO) burner (Olympus) that was controlled by a Lamba 10-2 programmable 

filterwheel (Sutter Instrument Corporation, Novato CA). Images were acquired using a 

Photometrics C350 cooled CCD camera (Tucson AZ) in combination with MetaMorph 

software (Universal Imaging Corporation, Dowington PA) and stored on a Universal 

Imaging Corporation PC. This setup was located on a vibration isolation table (TMC, 

Peabody MA).  

Phase contrast and fluorescent images were acquired at defined time points both 

before (-5 and 0 minutes) and after (2, 5, 10, 15, 20, 30 minutes) treatment with 

pharmacological agents. Filopodial length and number were analyzed with ImageJ (NIH) 

software on a Dell Inspiron 600m computer (Round Rock TX). Filopodial length was 

analyzed by measuring from the filopodial tip to the central domain of the growth cone. 

This measuring procedure allows for accurate measurement of filopodial length, 

independent of changes in lamellipodial size. Changes in filopodial length and number 

were normalized to t = 0 minutes and expressed as a percent change from that value.  

Fluorescent images were analyzed with MetaMorph software. Fluorescence 

values for each growth cone were determined by placing a box over the growth cone at 

each time point and recording the averaged fluorescent value over that area. Background 

values were also taken for each image by placing a box outside, but near, the growth cone 

and recording the averaged fluorescence value over this area. Final values of fluorescence 

for each growth cone were determined by subtracting the background value from the 

growth cone value. Data is expressed in the graphs as growth cone fluorescence minus 
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background fluorescence divided by the fluorescence at t = 0 minutes (which is also 

background subtracted). 

A repeated measures analysis of variance (ANOVA) was used for testing for 

overall statistical significance between conditions (SuperANOVA software; Abacus 

Concepts, Cary NC). Fisher’s protected LSD was employed as the post-hoc test for 

determining statistical significance. A Student’s t-test was employed for testing for 

statistical significance between individual time points with the software program Excel 

(Microsoft, Redmond WA). Significance between conditions is designated as follows: * p 

≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.   

 

Local application of nitric oxide 

Nitric oxide was locally applied with a micropipette that was pulled on a micropipette 

puller (Fredrick Haer and Company, Bowdinham ME). The NO donor, NOC-7 

(Calbiochem, San Diego CA), was dissolved in sodium hydroxide (100 mM) at a stock 

concentration of 100 mM. When NOC-7 was to be locally applied, this solution was 

mixed and diluted with L-15 and fast green to result in a final concentrations of 2% fast 

green and 100 µM NOC-7. Local application of NOC-7 was performed with a 

Picospritzer (General Valve Corporation, Fairfield NJ). NOC-7 was applied to each 

growth cone immediately following the t = 0 minute time point with a single burst for a 

duration of either 80 or 400 ms. All experiments were performed with an 80 ms burst 

duration, except the lanthanum experiment that used a 400 ms burst duration. The burst 

duration was modified between experiments to accommodate a variation in the size of the 
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micropipette tip that resulted from the reconfiguration of the micropipette puller. 

However, both burst durations produced a similar size cloud of NOC-7, as well as 

producing results that were not significantly different from one another. In order to 

control for any potential mechanical effect that fluid movement or the solvent may have 

on growth cone motility or [Ca2+]i, sodium hydroxide and fast green alone were locally 

applied in appropriate concentrations. These treatments had no effect on filopodial 

length, number or the intracellular calcium concentration. 

 Because a single cell normally extends many neurites and growth cones, some 

growth cones could be exposed to the pharmacological agent and NO donor, whereas 

others on the same cell could be exposed to only the pharmacological agent. Therefore, in 

the figures, the growth cones that were exposed to both NOC-7 and the pharmacological 

agent are labeled “Inhibitor Name & NOC-7” (e.g. Ryanodine & NOC-7). Other growth 

cones on the same cell were exposed to the pharmacological agent, but not NOC-7, and 

are thus labeled “Inhibitor Name Control” (e.g. Ryanodine Control).   

 

Pharmacological agents 

3-(2-Hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-propanamine (NOC-7, NO 

donor), cyclic Adenosine Diphosphate Ribose (cADPR), Ryanodine (9,21-dehydro, 

inhibitor of ryanodine receptor-mediated calcium release), and Dantrolene (sodium salt, 

inhibitor of ryanodine receptor-mediated calcium release) were all purchased from 

Calbiochem (San Diego CA). Lanthanum chloride heptahydrate was purchased from 

Sigma. NOC-7 and Dantrolene were made up in 100 mM sodium hydroxide to result in 
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stock concentrations of 100 mM and 40 mM, respectively. cADPR and lanthanum 

chloride were made up in water at stock concentration of 1 mM and 50 mM, respectively. 

Ryanodine was made up in dimethylsulfoxide (Sigma) at a stock concentration of 100 

mM. 

When pharmacological agents were used in combination with local NOC-7 

application, they were added to the dish 30 minutes prior to the start of the experiment,   

except for lanthanum chloride that was added to the dish 2 minutes prior to NOC-7 

application. Pharmacological agents were added by removing 200 µl of the conditioned 

medium from the dish, mixing the drug in that volume and then adding it back to the 

dish. All pharmacological agents were tested by themselves for possible effects on 

growth cone morphology or [Ca2+]i before being used in the NOC-7 paradigm. 

 

Calcium Imaging 

Growth cone calcium imaging was done by injecting B5 neurons with the cell 

impermeant calcium indicator dye, Oregon Green 488 BAPTA-1, hexapotassium salt 

(Molecular Probes, Carlsbad CA). Oregon Green was made up at a stock concentration of 

10 mM in 40 mM HEPES. Prior to injection, this solution was diluted in distilled water 

and resulted in a final concentration of 2.5 mM (10 mM HEPES) in the pipette. Images 

were acquired with a filter wheel, at an excitation of 490 nm and emission of 528 ± 25 

nm. Following injection, cells were allowed 20-30 minutes for the dye to diffuse prior to 

the start of the experiment. 
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Immunocytochemistry for PKG and RyR 

Once Helisoma B5 neurons had extended neurites tipped with growth cones, they were 

fixed and stained for either PKG or RyR, based on a protocol described in Cohan et al. 

(2001). Briefly, neurons were fixed in 0.1% Glutaraldehyde and 4% Paraformaldehyde 

(Electron Microscopy Sciences, Hatfield PA; in Small’s buffer) for 5 minutes, washed 

twice with Small’s buffer (5 min each), lysed in 0.1% Triton-X 100 (Sigma) for 5 

minutes, washed twice with Small’s buffer (5 min each), incubated in 100 mM glycine 

for 10 minutes, washed twice with Small’s buffer (5 min each), and then blocked with 

Blotto (nonfat instant dry milk, 0.05% Tween in PBS) for 30 minutes. They were then 

incubated in primary antibody for 1 hour at 37º, washed 3 times in PBS-BSA buffer (PBS 

and 0.05% BSA; 5 min each wash), incubated in secondary antibody for 30 minutes at 

37º, washed twice in PBS-BSA buffer (5 min each) and then coverslipped with Slow 

Fade (Molecular Probes). 

PKG was localized with a polyclonal antibody for PKG-1α (Assay Designs, Ann 

Arbor, MI) at a dilution of 1:500, and the secondary antibody employed was Alexa Fluor 

488 goat-anti-rabbit (Invitrogen) at a dilution of 1:400. RyR was localized with a 

monoclonal antibody for the RyR (Clone 34C; Affinity BioReagents, Golden, CO) at a 

dilution of 1:20 and the secondary antibody employed was Alexa Fluor 488 goat-anti-

mouse (Invitrogen) at a dilution of 1:100. Images were acquired using the Olympus 

microscope setup as described above in combination with a filter set that had an 

excitation of 490 nm and emission of 528 ± 25 nm. No staining was observed in control 

experiments in which the primary antibody was omitted. Experimental and control dishes 
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were run in parallel during the immunocytochemistry procedure and identical camera 

parameters were used to capture the fluorescence images of experimental and control 

growth cones.  Immunostaining experiments were repeated a minimum of three times and 

similar results were obtained in all dishes.  
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Results 

We have previously demonstrated that local application of NOC-7 (100 µM) to 

individual B5 growth cones causes an elevation in the intracellular calcium concentration 

([Ca2+]i) that results in an increase in filopodial length and a decrease in filopodial 

number (Welshhans & Rehder, 2005). We have further shown that these effects are 

mediated via a NO-activated second messenger pathway involving soluble guanylyl 

cyclase (sGC), protein kinase G (PKG), and cyclic adenosine diphosphate ribose 

(cADPR). In the present set of experiments, we have determined the signaling pathway 

activated downstream of cADPR and investigated how intracellular calcium stores and 

calcium influx across the plasma membrane contribute to the regulation of filopodial 

dynamics. 

 

Local application of NOC-7 to B5 growth cones results in an increase in filopodial length 

and [Ca2+]i 

To apply NO to individual growth cones, a micropipette was loaded with 100 µM NOC-7 

and 2% fast green and this solution was locally applied to growth cones through the use 

of a Picospritzer (see Welshhans and Rehder, 2005 and Materials & Methods for details). 

Local application of 100 µM NOC-7 resulted in a transient increase in filopodial length, 

reaching a maximum of 26 ± 6% at 2 minutes following treatment (Figure 3.1B & 3.1C). 

This effect was significant (p ≤ 0.001) when compared to two types of controls. In each 

experiment, some growth cones were randomly chosen as ‘experimental’ growth cones,  
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Figure 3.1: Local application of 100 µM NOC-7 results in a transient increase in 
filopodial length, decrease in filopodial number and increase in the [Ca2+]i. (A,B) 
Phase contrast images of a growth cone immediately prior to (A) and 5 minutes following 
(B) local 100 µM NOC-7 application. Note the filopodial elongation around the entire 
growth cone. Scale bar: 10 µm. (C) Local application of 100 µM NOC-7 in a puff lasting 
80 ms resulted in a transient increase in filopodial length that reached a maximum of 26 ± 
6% 2 minutes following treatment and returned to pretreatment values within 30 minutes. 
Control growth cones (growth cones on the same cell, but not exposed to NOC-7) did not 
show an increase in filopodial length. Growth cones exposed to a vehicle control (NaOH 
Control) also did not shown a change in filopodial length. The increase in filopodial 
length resulting from the 100 µM NOC-7 application was significantly different as 
compared to both controls (p ≤ 0.001 each). (D) Local application of 100 µM NOC-7 
resulted in a decrease in filopodial number that was significantly different from control 
growth cones (p ≤ 0.001). (E) Local application of 100 µM NOC-7 resulted in a transient 
increase in the [Ca2+]i that was significantly different from control growth cones (p ≤ 
0.001). Note that application of a vehicle control (NaOH control) did not result in a 
change in the [Ca2+]i. 
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whereas other growth cones on the same neuron were designated as ‘control’ growth 

cones. ‘Control’ growth cones, which were located at distances greater than six to seven 

growth cone diameters from the ‘experimental’ growth cones, were used to assess 

whether the effect of a local NOC-7 application would remain confined to the stimulated 

growth cone. The second type of control was a ‘vehicle only’ control that tested for the 

effect of fluid application onto growth cones and contained the vehicle (sodium 

hydroxide (NaOH) and fast green in appropriate concentrations) without NOC-7 (termed 

“NaOH Control”). These experiments demonstrated that the local application of NOC-7 

had an effect that was restricted to the stimulated growth cone and that the effect was 

NO-specific. Local application of 100 µM NOC-7 also resulted in a significant decrease 

in filopodial number, reaching -13 ± 3% at 5 minutes following treatment (p ≤ 0.001 as 

compared to Control & NaOH Control; Figure 3.1D). Local application of NOC-7 (100 

µM) also had effects on the [Ca2+]i, as determined by calcium imaging using the calcium 

indicator dye Oregon Green. Note that the calcium concentration is expressed as a 

relative percent change of fluorescence, normalized to t = 0 minutes (see Materials & 

Methods for further details). Following NOC-7 application, the Oregon Green 

fluorescence significantly increased by 64 ± 8% as compared to pre-treatment values (p ≤ 

0.001 as compared to Control & NaOH Control; Figure 3.1E). Note that the increase in 

[Ca2+]i was limited to the stimulated growth cone and that other growth cones on the 

same cell that were not exposed to NO were unaffected (“Control”). In addition, the 

vehicle only control (“NaOH Control”) also had no effect on [Ca2+]i. 
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Injection of cADPR mimics the effects of local NOC-7 application 

We had suggested previously that the effect of NO on filopodial dynamics might involve 

release of calcium from intracellular stores by demonstrating that inhibition of the 

intracellular messenger cADPR blocked the NO-induced effects on filopodial length and 

[Ca2+]i (Welshhans & Rehder, 2005). cADPR is an intracellular messenger that is known 

to act downstream of PKG and affect the release of calcium from intracellular stores 

(Galione et al., 1993; Willmott et al., 1996a; Lee, 2001). To extend our previous findings 

and further investigate the signaling pathway employed by NO to cause changes in the 

growth cone cytoskeleton, we next tested the hypothesis that if cADPR is activated 

downstream of NO application, then an experimental elevation of cADPR should mimic 

the effect of NO itself. The concentration of cADPR in B5 neurons was elevated by 

pressure-injection of cADPR (100 µM in the pipette) into the soma through a 

micropipette. Injection of cADPR resulted in an increase in filopodial length, reaching 44 

± 6% at 5 minutes following treatment (Figure 3.2A). This effect was significant (p ≤ 

0.001) when compared to a control injection of vehicle (water) alone. 100 µM cADPR 

injections also resulted in a significant decrease in filopodial number (p ≤ 0.01 as 

compared to water control; Figure 3.2B). In addition to the effects on morphology, the 

[Ca2+]i was also affected by cADPR. Injection of cADPR resulted in a significant (82 ± 

19%) increase in Oregon Green fluorescence (p ≤ 0.001 as compared to water control; 

Figure 3.2C). Our findings that injection of cADPR reproduced the effects of NO 

application, together with previous results demonstrating that inhibition of cADPR 
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Figure 3.2: Injection of cADPR into B5 neurons results in an increase in filopodial 
length, decrease in filopodial number, and increase in the [Ca2+]i. (A) Injection of 100 
µM cADPR resulted in a significant increase in filopodial length, reaching a maximum of 
44 ± 6% 5 minutes following injection (p ≤ 0.001 as compared to water control). 
Injection of a vehicle control (Water Control) did not have an effect on filopodial length. 
(B) Injection of 100 µM cADPR resulted in a transient, significant decrease in filopodial 
number (p ≤ 0.01 as compared to water control). (C) Injection of 100 µM cADPR 
resulted in a significant increase in the [Ca2+]i (p ≤ 0.001 as compared to water control). 
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negates the effect of NO, thus supported our hypothesis that NO acts via cADPR to cause 

changes in growth cone morphology and [Ca2+]i. 

 

Localization of PKG and ryanodine receptors in Helisoma B5 growth cones 

We had demonstrated in a previous report (Van Wagenen & Rehder, 2001) that Helisoma 

B5 growth cones stain strongly for sGC, the immediate target of NO. Because we 

determined previously that NO was acting via sGC and PKG to mediate these NO-

induced effects (Welshhans & Rehder, 2005), we sought to confirm these findings by 

localizing PKG in Helisoma B5 neurons. We performed immunocytochemistry with a 

polyclonal antibody against PKG-1α and examined staining within B5 growth cones. 

PKG has been cloned in another mollusc, Aplysia, and this antibody recognizes PKG in 

the nervous system of that species (Sung et al., 2004). In the current study, PKG staining 

was seen in B5 neurons within the central domain of the growth cone (Figure 3.3B). 

Additionally, there was light staining for PKG within the lamellipodial region of the 

growth cone, but no staining was detectable in filopodia.  

 Because we had demonstrated that cADPR was a necessary component of this 

NO-induced pathway and its known function is to mediate release of calcium through the 

ryanodine receptor (RyR), we next employed immunocytochemistry to determine if RyRs 

were present within B5 growth cones as well. We employed a monoclonal antibody 

against the RyR (Clone 34C) and found that B5 growth cones stain heavily for RyRs 

(Figure 3.3E). Similar to that seen with the PKG antibody, and as expected, punctate 

staining  was  heaviest  within the central domain of the growth cone,  lighter  within  the 
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Figure 3.3: Protein Kinase G (PKG) and Ryanodine Receptors (RyRs) are localized 
in Helisoma B5 growth cones. Representative immunostained images of B5 growth 
cones show localization of staining for PKG (B) and RyRs (E). The corresponding phase 
contrast images are shown in A & D, respectively. Note that the immunostaining for both 
PKG and RyRs is highest within the central domain of the growth cone, reduced within 
the lamellipodial region and not visible within filopodia. Omission of the primary 
antibody resulted in a loss of staining (C, F). Scale bar: 10 µm. 
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lamellipodial region and not seen in filopodia. Note that omission of the primary antibody 

in both of these experiments (PKG and RyR) resulted in a loss of staining (Figure 3.3C & 

3.3F).  

 

Effects of nitric oxide on filopodial dynamics and [Ca2+]i require ryanodine receptor-

mediated intracellular calcium release 

With the demonstration that RyRs are present in B5 growth cones and the knowledge that 

cADPR can cause intracellular calcium release through the RyR (Lee, 2001; Guse, 2005), 

we employed a pharmacological approach to determine if the RyR was involved in the 

NO-induced pathway that results in changes in growth cone morphology and [Ca2+]i. To 

test if the NO donor, NOC-7, indeed acted by releasing calcium via the RyR, neurons 

were preincubated with the ryanodine receptor blocker, ryanodine, and subsequently 

stimulated with NOC-7. We chose to use a high concentration (100 µM) of ryanodine 

(Ry) at which it has been shown to keep the channel in a closed state (Xu et al., 1998; 

Verkhratsky, 2005). Following a 30 minute pretreatment with ryanodine, NOC-7 was 

locally applied onto individual growth cones. Pretreatment with ryanodine significantly 

blocked the NO-induced increase in filopodial length (p ≤ 0.001 as compared to 100 µM 

NOC-7 alone; Figure 3.4A), strongly suggesting that the NO-induced increase in 

filopodial length was mediated via calcium release through the ryanodine receptor. In 

addition, pretreatment with ryanodine blocked the NO-induced decrease in filopodial 

number (p ≤ 0.01 as compared to 100 µM NOC-7 alone; Figure 3.4B). Pretreatment with 

ryanodine  also  fully  blocked  the  NO-induced  increase  in  the  [Ca2+]i  (p  ≤  0.001  as 
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Figure 3.4: Inhibition of the ryanodine receptor with ryanodine blocks the NO-
induced increase in filopodial length, decrease in filopodial number and increase in 
the [Ca2+]i. (A) Pretreatment with 100 µM ryanodine (Ry) blocked the NOC-7-induced 
increase in filopodial length (p ≤ 0.001 as compared to 100 µM NOC-7 alone). Treatment 
with 100 µM ryanodine alone had no effect on filopodial length. (B) The NOC-7 induced 
decrease in filopodial number was significantly inhibited by pretreatment with 100 µM 
ryanodine (p ≤ 0.01 as compared to 100 µM NOC-7 alone). (C) Pretreatment with 100 
µM ryanodine significantly inhibited the NOC-7-induced increase in [Ca2+]i (p ≤ 0.001 as 
compared to 100 µM NOC-7 alone). However, treatment with ryanodine at this 
concentration caused a slow decrease in calcium over the 30 minute time course (see 100 
µM Ry & NOC-7 and Ry Control). 
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compared to 100 µM NOC-7 alone; Figure 3.4C). We noted, however, that the [Ca2+]i 

slowly decreased in all ryanodine-treated growth cones (control and treated) over the 30 

minute time course of this experiment, indicating a potential side effect of the drug.   

Therefore, we next wanted to independently confirm our results obtained with 

ryanodine by using a second pharmacological inhibitor of ryanodine receptor-mediated 

calcium release, dantrolene. Dantrolene is thought to act as an inhibitor of the ryanodine 

receptor by decreasing the open-time probability of the RyR channel (Verkhratsky, 

2005). Pretreatment with dantrolene (40 µM) significantly blocked the NO-induced 

increase in filopodial length and decrease in filopodial number (p ≤ 0.001 as compared to 

100 µM NOC-7 alone for both length and number; Figure 3.5A,B). Additionally, 

dantrolene pretreatment blocked the NO-induced increase in the [Ca2+]i (p ≤ 0.001; 

Figure 3.5C). Importantly, in these experiments we did not observe a slow decrease in 

[Ca2+]i, as was seen with ryanodine treatment (Figure 3.4C & 3.5C). The fact that we 

obtained the same results using two different ryanodine receptor blockers strongly 

supported the hypothesis that the NO-induced increase in the [Ca2+]i occurs via RyR-

mediated intracellular calcium release. 

 

Nitric oxide’s effect on the [Ca2+]i requires calcium influx across the plasma membrane 

Because application of NOC-7 resulted in a relative large increase in the [Ca2+]i that 

outlasts the initial application of the NO donor, we next sought to investigate whether the 

increase in [Ca2+]i was solely due to release from intracellular stores of calcium, or if 

influx  of  calcium  across  the  plasma  membrane  might  contribute  to  the  long-lasting 
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Figure 3.5: RyR-mediated calcium release is necessary for the NO-induced increase 
in filopodial length, decrease in filopodial number and increase in the [Ca2+]i. (A,B) 
Pretreatment with 40 µM dantrolene blocked the NOC-7-induced increase in filopodial 
length (p ≤ 0.001 as compared to 100 µM NOC-7 alone) as well as the decrease in 
filopodial number (p ≤ 0.001 as compared to 100 µM NOC-7 alone). Treatment with 40 
µM dantrolene alone did not have an effect on filopodial length or number. (C) The 
NOC-7-induced increase in [Ca2+]i was significantly inhibited by pretreatment with 40 
µM dantrolene (p ≤ 0.001 as compared to 100 µM NOC-7 alone). Note that treatment 
with dantrolene alone (Dantrolene Control) did not have an effect on the [Ca2+]i. 
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increase in [Ca2+]i elicited by NO. Due to the absence of specific calcium channel 

blockers for this preparation, lanthanum chloride, a general blocker of calcium influx 

across the plasma membrane, was employed to test this possibility (Weiss, 1974; 

Hagiwara & Byerly, 1981). Lanthanum chloride blocks calcium permeable channels 

through competitive binding to calcium binding sites and then does not dissociate as 

easily from those sites as calcium (Weiss, 1974; Lansman, 1990). We used 50 µM 

lanthanum chloride, a concentration that has been employed previously in the Helisoma 

model system to block calcium transients and that was shown not to affect the 

distribution of f-actin within the growth cone (Williams & Cohan, 1995). When cells 

were treated with 50 µM lanthanum chloride (LaCl3) immediately prior to local NO 

application, the NO-induced increase in [Ca2+]i was significantly reduced (p ≤ 0.05 as 

compared to NOC-7 alone; Figure 3.6A). This result suggested that influx of calcium 

through plasma membrane channels does contribute significantly to the NO-induced 

increase in [Ca2+]i. Interestingly, there was no overall significant difference between the 

LaCl3 & NOC-7 and the LaCl3 Control conditions, suggesting that LaCl3 at this 

concentration was inhibiting calcium influx efficiently. Comparing individual time points 

between the LaCl3 & NOC-7 and the LaCl3 Control conditions, the [Ca2+]i was only 

significantly different at the earliest time point measured (2 minutes; p ≤ 0.05) suggesting 

that the underlying increase in [Ca2+]i is likely due to release of calcium from intracellular 

stores that is not blocked by LaCl3.  

 We next investigated the effect of the calcium channel blocker LaCl3 on the NO-

induced changes in growth cone morphology. When B5 neurons were treated with a local 



  86  

 

 

 
 
Figure 3.6: Calcium influx across the plasma membrane is a necessary component 
of the NO-induced increase in [Ca2+]i. (A) Addition of 50 µM lanthanum chloride 
(LaCl3), followed by local NOC-7 application, significantly reduced the increase in the 
[Ca2+]i seen upon local NOC-7 application alone (p ≤ 0.05). There was no overall 
significant effect between LaCl3 and NOC-7 versus LaCl3 Control using ANOVA (p = 
0.10), suggesting that calcium influx is responsible for a significant part of the increase in 
the [Ca2+]i in response to NOC-7. However, in comparing individual time points, there 
was a significant difference in the [Ca2+]i between the LaCl3 and NOC-7 and the LaCl3 
Control conditions at the 2 minute time point only (p ≤ 0.05), suggesting that this 
remaining increase in the [Ca2+]i in the presence of LaCl3 could be the calcium release 
from intracellular stores. (B) Inhibition of calcium influx across the plasma membrane 
with 50 µM LaCl3 immediately followed by local NOC-7 application, resulted in only a 
small, non-significant reduction in the increase in filopodial length, as compared to NOC-
7 treatment alone (p = 0.54). Note that treatment with LaCl3 alone (LaCl3 Control) also 
resulted in a small, but significant increase in filopodial length at t = 2 min (p ≤ 0.05, 
LaCl3 Control at t = 2 min as compared to LaCl3 Control at t = 0 min). 
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NOC-7 application in the presence of 50 µM lanthanum chloride, the filopodial 

elongation normally seen with NOC-7 treatment was only nominally, but not 

significantly reduced (Figure 3.6B). Even taking into account that LaCl3 by itself resulted 

in an increase in filopodial length at the 2 minute time point, and correcting for it in the 

NOC-7 & LaCl3 condition (data not shown), it appeared that the LaCl3 blockade of 

calcium influx had little effect on overall filopodial elongation beyond a possible delay 

for the first 5 minutes of exposure to NO. The finding that the rise in [Ca2+]i was 

significantly inhibited in response to NO when calcium influx was blocked by LaCl3, yet 

filopodial elongation appeared almost unaffected, suggested that relatively small 

elevations in calcium are sufficient to elicit significant filopodial elongation. 
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Discussion 

Nitric oxide (NO) plays an essential role in the development of the nervous system in 

numerous species including molluscs, insects, chicks and mice (Wu et al., 2001; Haase & 

Bicker, 2003; Chen et al., 2004; Bicker, 2006; Currie et al., 2006; Gifondorwa & Leise, 

2006; Mejia-Garcia & Paes-de-Carvalho, 2007). Specifically, NO has been shown to 

regulate the developmental processes of neuronal proliferation, survival, and 

differentiation (Peunova & Enikolopov, 1995; Cheng et al., 2003; Contestabile & Ciani, 

2004; Zhang et al., 2004). Experiments resulting in the loss of the enzyme responsible for 

NO synthesis, nitric oxide synthase (NOS), have demonstrated the essential role of NO 

for proper development. Knocking out NOS results in deleterious effects, ranging from 

premature death in Drosophila, in which there is only one isoform of NOS, to decreased 

viability in mice (when two isoforms were knocked out) (Tranguch & Huet-Hudson, 

2003; Regulski et al., 2004).  

During development, NO is important in the formation of neuronal connections, 

including the processes of both neuritogenesis and neuronal migration. There are multiple 

in vitro studies that have demonstrated the importance of NO for growth cone motility 

and pathfinding. For example, in the pond snail Helisoma, application of exogenous NO 

to B5 neurons results in an increase in filopodial length and a dose-dependent decrease in 

the neurite outgrowth rate (Van Wagenen & Rehder, 1999; Trimm & Rehder, 2004). In 

chick retinal neurons, application of exogenous NO results in growth cone collapse (Ernst 

et al., 2000). Additionally, in salamander photoreceptors, NO has been shown to regulate 

neuritic growth differentially in cone and rod cells (Zhang et al., 2005). In cone cells, 
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exogenous NO results in an increase in the sprouting of neurites, whereas in rod cells, 

NO inhibits this growth. NO has also been shown to be an essential regulator of 

migration in vivo. In the grasshopper, a group of neurons in the midgut follow a specific 

migration route that is dependent on the presence of endogenous NO (Haase & Bicker, 

2003). Collectively, these studies suggest a fundamental role for nitric oxide in the 

regulation of neuronal pathfinding. 

NO is produced by nitric oxide synthases, which catalyze the conversion of L-

arginine and oxygen to L-citrulline and NO. There are now 2 major pathways through 

which NO is thought to act, S-nitrosylation and/or binding to and activation of soluble 

guanylyl cyclase (sGC). In the former pathway, proteins are S-nitrosylated when NO 

binds to the thiol group of cysteine, resulting in an S-nitrosothiol (Stamler et al., 1992; 

Hess et al., 2005). Many proteins, including some ion channels and transcription factors, 

are subject to S-nitrosylation, which can result in a change in their functional activity 

(Hess et al., 2005). In the latter pathway, NO binds directly to the heme group of sGC 

and activates it, resulting in the conversion of guanosine triphosphate to cyclic guanosine 

monophosphate (cGMP). There are then 3 major targets of cGMP: protein kinase G 

(PKG), phosphodiesterases and cyclic nucleotide gated ion channels. In a previous study, 

we were able to inhibit all effects of NO described in this study by inhibiting either sGC 

or PKG, indicating that, at least in Helisoma B5 neurons, NO acts via sGC and PKG to 

affect filopodial motility (Welshhans & Rehder, 2005).   
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Nitric oxide acts via cADPR and ryanodine receptor-mediated intracellular calcium 

release 

One target of PKG is ADP-ribosyl cyclase, which is the enzyme responsible for the 

production of cyclic adenosine diphosphate ribose (cADPR) (Galione et al., 1993; 

Willmott et al., 1996a; Lee, 2001). We have demonstrated in a previous study that 

pharmacological inhibition of either ADP-ribosyl cyclase or cADPR significantly blocks 

the NO-induced increase in filopodial length as well as the increase in intracellular 

calcium (Welshhans & Rehder, 2005). We have now further extended this study to 

demonstrate that injection of cADPR directly into the B5 neuron also results in an 

increase in filopodial length and [Ca2+]i, mimicking the effect of NO treatment. There are 

multiple studies in which cADPR has been injected into various neuronal cell types, but 

the outcomes have been variable. Injection of cADPR into Aplysia buccal neurons results 

in an increase in the intracellular calcium concentration in both the soma as well as the 

neurites (Mothet et al., 1998). However, injection into various mammalian neurons 

usually does not cause an increase in calcium on its own, but it does potentiate calcium 

release initiated by other methods (De Flora et al., 1996; Hashii et al., 2000). Therefore, a 

species-specific difference may exist in the response of neurons to direct injection of 

cADPR, suggesting that cADPR may serve a different role in different neurons. 

The pathway of NO that leads to the downstream activation of PKG, cADPR and 

intracellular calcium release has been well-documented in sea urchin eggs, but little is 

known about this pathway in neurons. Exogenous application of NO or cADPR onto sea 

urchin egg homogenates results in an increase in [Ca2+]i (Willmott et al., 1996a) and there 
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is evidence that PC12-16A cells also respond to exogenous application of NO or cADPR 

with an increase in [Ca2+]i (Clementi et al., 1996). A more recent report has indicated that 

this pathway also exists in the vertebrate brain, specifically involving GABAergic 

neurons within the rat nucleus tractus solitarii (Wang et al., 2006). We here report that 

NO affects growth cone morphology in Helisoma B5 neurons via a pathway involving 

sGC, cADPR, and ryanodine receptor-mediated intracellular calcium release, suggesting 

that this pathway may exist in neurons in a more widespread fashion than previously 

realized. It is important to note that this is, to our knowledge, the first report of the 

presence of this signaling pathway in growth cones.  

cADPR has been linked to the modulation of the ryanodine receptor, however, it 

is unknown whether cADPR exerts its action on the ryanodine receptor directly and/or 

via an intermediate binding protein (Higashida et al., 2001; Guse, 2005). It is interesting 

to note that a study employing sea urchin egg homogenates demonstrated that calmodulin 

was necessary for the binding of cADPR to its receptor (Thomas et al., 2001). This is in 

line with a previous finding from our lab that NO’s action on growth cone morphology 

required the presence of calmodulin (Van Wagenen & Rehder, 1999). In the current 

study, inhibition of the ryanodine receptor prior to NOC-7 application significantly 

blocked the NO-induced changes in growth cone morphology and [Ca2+]i, supporting the 

following pathway for the action of NO: NO, sGC, cGMP, PKG, cADPR, calcium 

release from ryanodine receptor controlled calcium stores (Figure 3.7). These results 

suggest, for the first time, that nitric oxide activates the sGC-PKG-cADPR-RyR pathway 
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Figure 3.7: Summary of the pathway by which NO causes an increase in [Ca2+]i that 
results in changes in growth cone morphology. NO produced in the vicinity of a 
migrating growth cone causes filopodial elongation and a reduction in filopodial number 
by stimulating the enzyme sGC that in turn increases the production of cGMP. cGMP 
activates protein kinase G (PKG) that in turn leads to the production of cADPR. cADPR 
causes the release of calcium from intracellular stores via the ryanodine receptor. The 
calcium release from intracellular stores is amplified by influx of calcium across the 
plasma membrane. The mechanism(s) by which the intracellular calcium release in B5 
neurons triggers calcium influx is presently unknown. 
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in growth cones, and that the subsequent calcium release can directly modulate growth 

cone motility and thereby could affect pathfinding.  

We further demonstrate immunocytochemically that PKG and the RyR, two 

important players in the NO-mediated pathway leading to changes in growth cone 

dynamics, are localized to Helisoma B5 growth cones. Previous studies have 

demonstrated immunocytochemically that both PKG and RyRs are found within growth 

cones of other species. A study employing the same primary antibody used in this 

experiment demonstrated the presence of PKG within growth cones of E7 chick dorsal 

root ganglion neurons (Dontchev & Letourneau, 2002). Growth cones from mouse dorsal 

root ganglion neurons stain for RyRs (Ooashi et al., 2005). These growth cones show a 

staining pattern that is punctuate in nature, as would be expected for a protein located in 

the endoplasmic reticulum membrane, and closely resembles the pattern of staining we 

see within Helisoma B5 growth cones. Therefore, the current study demonstrates that 

PKG and RyRs are localized in Helisoma B5 growth cones, thereby further supporting 

the presence of this NO-induced signaling pathway as a regulator of growth cone 

morphology. 

 

Nitric oxide results in a secondary influx of calcium across the plasma membrane 

Our findings that any increase in [Ca2+]i in response to stimulation with NO could be 

blocked when calcium release from ryanodine-sensitive stores was inhibited through the 

application of either a high concentration of ryanodine or dantrolene clearly suggested 

that calcium release from intracellular stores serves as a necessary step in this NO 
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signaling pathway. In an attempt to determine whether the increase in [Ca2+]i was solely 

derived from intracellular stores, or whether calcium influx contributed to the overall 

increase in [Ca2+]i, we provide evidence that calcium influx across the plasma membrane 

contributes to the overall increase in [Ca2+]i seen upon NO stimulation. This was 

demonstrated by the blockage of a significant amount of the calcium increase normally 

seen with NO stimulation upon treatment with the calcium channel blocker LaCl3. We 

used 50 µM LaCl3, because lanthanum chloride at this concentration had been shown to 

completely block calcium transients in a buccal neuron from Helisoma, but had no effect 

on the distribution of f-actin within the growth cone (Williams & Cohan, 1995). 

However, we do not know whether 50 µM LaCl3 completely blocked all calcium influx 

in our experiments. Unfortunately, the use of higher concentrations of LaCl3, such as 100 

µM, has been reported to have adverse effects on growth cone shape and motility 

(Mattson & Kater, 1987) and could not be pursued. In their report, treatment of Helisoma 

B5 neurons with 100 µM LaCl3 (double the concentration employed in our experiments) 

resulted in a highly significant decrease in filopodial number (Mattson & Kater, 1987). 

We noticed a similar effect when growth cones were treated with 50 µM LaCl3, 

preventing us from examining the effect of blocking calcium influx on NO-induced 

changes in filopodial number. Although the use of LaCl3 clearly indicated that calcium 

influx plays a significant part in the overall increase in [Ca2+]i seen in B5 neurons in 

response to NO stimulation, the lack of specific calcium channel blockers for this 

preparation severely hampers immediate progress in determining the different calcium 

entry mechanisms that may contribute to the general calcium signal.  
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A number of different types of plasma membrane calcium channels have been 

shown to be present in growth cones, including voltage gated calcium channels and 

transient receptor potential (TRP) channels. L-type voltage gated calcium channels are 

present in growth cones from many species and are involved in the regulation of growth 

cone motility, including the axon outgrowth rate and growth cone turning (Ohbayashi et 

al., 1998; Hong et al., 2000; Nishiyama et al., 2003; Tang et al., 2003). There are two 

types of TRP channels that may regulate growth cone motility. TRPC channels have been 

demonstrated to play roles in growth cone turning and morphology (Greka et al., 2003; Li 

et al., 2005; Shim et al., 2005; Wang & Poo, 2005) and a recent report demonstrated that 

TRPV channels may also regulate growth cone morphology (Goswami et al., 2007). 

There is evidence, although still inconclusive and highly debated, that certain types of 

TRP channels may actually be the little-understood store-refilling channels, and 

therefore, may also be activated in the pathway described here, as a mechanism of 

refilling the stores that would be depleted by stimulation with NO (Ramsey et al., 2006). 

Despite the uncertainty regarding the contribution of calcium influx to the total 

increase in [Ca2+]i observed upon treatment with NOC-7, it is clear that this calcium 

influx is secondary to the release of calcium from ryanodine-sensitive stores. It is 

presently unclear which mechanism might be responsible for translating the initial (and 

presumably short-term) release of calcium from intracellular stores into the calcium 

influx that ultimately results in the longer-term calcium elevation seen in response to NO. 

Future experiments will be directed to determine whether the initial release from 

intracellular stores serves as a short-term signal that results in signal amplification 
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mediated via calcium influx, and if this amplification is responsible for turning the brief 

NOC-7 stimulus, which lasts for less than one second, into a calcium signal that lasts 20-

30 minutes.  

 

Changes in [Ca2+]i and their translation into cytoskeletal changes 

It is apparent from our results that elevations in [Ca2+]i do not need to be large to result in 

significant changes in filopodial parameters. Even after the increase in [Ca2+]i has been 

reduced significantly in the presence of LaCl3, compared to treatment with NOC-7 alone, 

filopodial elongation was still strong (Figure 3.6B). Although we do not know the 

absolute levels of [Ca2+]i in these experiments, the general conclusion that small increases 

in [Ca2+]i are sufficient to change filopodial length is supported by an earlier report that 

demonstrated that an increase as small as 50 nM in growth cones of the same neuron is 

sufficient to result in a significant elongation of filopodia (Rehder & Kater, 1992). 

Interestingly, the duration of cytoskeletal changes observed matched the time-course of 

elevation in [Ca2+]i, an observation we had also made in previous studies and that 

suggested that the elevation in [Ca2+]i and filopodial elongation are causally related. The 

finding that filopodial responses were very similar between growth cones treated with 

NOC-7 alone versus NOC-7 and LaCl3, despite a significant reduction in the [Ca2+]i in 

the presence of LaCl3, indicates that the growth cone may not be able to differentiate 

between the two levels of [Ca2+]i, or alternatively, that a ceiling has been reached beyond 

which further increases in [Ca2+]i do not result in further increases in filopodial length. It 

is also possible that the calcium entering the cytosol from different sources, such as from 
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intracellular stores versus the extracellular space, while causing different overall calcium 

increases within a growth cone as measured with Oregon Green, could result in similar 

changes in [Ca2+]i in microdomains that contain the signaling machinery responsible for 

regulating filopodial dynamics. In this case, the same local increase in [Ca2+]i in response 

to different treatments (not detectable with our imaging system due to limited spatial and 

temporal resolution) could explain how a growth cone-wide difference in [Ca2+]i could 

result in the same filopodial response. 

 

Conclusions 

This study identifies a NO signaling pathway in identified B5 neurons from the buccal 

ganglion of the fresh water snail Helisoma trivolvis that has been demonstrated so far 

mainly in non-neuronal cells. This pathway, by which NO acts via sGC to activate PKG 

and cADPR, which in turn causes the release of calcium from ryanodine-sensitive stores, 

directly affects growth cone motility, thus placing NO in a prominent position to act as an 

effective regulator of neuronal development.  
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Chapter 3.2: Additional experiments examining the role of the NO/cGMP pathway 

in the regulation of growth cone filopodia 

 

Activation of neuronal nitric oxide synthase is not a major contributor to the NO-donor 

induced changes in filopodial dynamics 

Although nitric oxide can be made by the reduction of nitrites and nitrates, it is most 

commonly produced through the conversion of L-arginine and oxygen to L-citrulline and 

NO. The enzyme responsible for this conversion is nitric oxide synthase (NOS), which is 

stimulated by the presence of calcium/calmodulin (Ca2+/CaM). Because B5 Helisoma 

neurons are known to contain NOS (Van Wagenen & Rehder, 2001), we wanted to test 

the possibility that the local exogenous application of NO donor could be activating a 

feedback loop that would result in a changed production of NO within the B5 neuron. 

Theoretically, such a feedback loop could function to either amplify (positive feedback) 

or inhibit (negative feedback) intrinsic NO production. In the current experiment, we 

investigated the possibility of a positive feedback loop in which cGMP, produced by sGC 

in response to NO, would activate calcium, which would in turn activate Ca2+/CaM, 

resulting in the activation of neuronal nitric oxide synthase (nNOS).  

To test whether such a feedback loop might exist in B5 neurons, this hypothetical 

loop was broken by employing a specific intracellular inhibitor of nNOS, 7-Ni. Growth 

cones were preincubated with 10 µM 7-Ni for 25 minutes, and then 100 µM NOC-7 was 

applied using the standard paradigm. This treatment did not result in a significant 

difference in filopodial length or number, when comparing the 7-Ni and NOC-7 
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treatment to NOC-7 alone (Figure 3.8A & 3.8B; p = 0.68 as compared to 100 µM NOC-7 

alone for length; p = 0.22 as compared to 100 µM NOC-7 alone for number). This result 

suggests that a feedback loop involving NOS does not add measurably to the 

concentration of NO already produced by the NO donor. It does not rule out the 

possibility that a feedback loop may be involved; the contribution of a feedback loop 

might be uncovered at lower concentrations or shorter application times of the NO donor.  

An independent test of this hypothesis would be to simply activate NOS through 

an elevation in calcium and examine subsequent changes in growth cone morphology. In 

this hypothetical experiment, the intracellular calcium concentration would be elevated 

via depolarization of the neurons with potassium chloride. However, this experiment is 

not feasible because an increase in the intracellular calcium concentration (irrelevant of 

the source) leads to an increase in filopodial length and a decrease in filopodial number, 

which confounds the dependent variable. Additionally, there are no other known 

stimulators of NOS available, thus it is currently not possible to test this hypothesis in an 

independent fashion. 

 

Inhibition of all phosphodiesterases does not result in a change in filopodial length, but 

does cause a decrease in filopodial number 

cGMP acts on three major targets: phosphodiesterases (PDEs), cyclic nucleotide gated 

(CNG) ion channels, and protein kinase G (PKG). As demonstrated above, NO was 

shown to act through PKG, but the following experiments were performed to test whether  
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Figure 3.8: Inhibition of nNOS does not block the NO-induced changes in growth 
cone morphology. (A) Growth cones were pretreated with the nNOS inhibitor, 10 µM 7-
Ni, for 25 minutes and then 100 µM NOC-7 was locally applied. Filopodial length 
transiently and significantly increased on these growth cones, as compared to control 
growth cones (p ≤ 0.01). This transient increase in filopodial length was not significantly 
different from growth cones that were treated with NOC-7 alone (p = 0.68), suggesting 
that the NO-induced increase in filopodial length is due to the NOC-7 application and is 
not significantly amplified through a feedback loop involving NOS. (B) Pretreatment 
with 10 µM 7-Ni, followed by local 100 µM NOC-7 application, results in a small, non-
significant decrease in filopodial number (p = 0.16 as compared to 10 µM 7-Ni Control).  
This decrease is not significant when compared to treatment with 100 µM NOC-7 alone 
(p = 0.22).   
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PDEs might play any role in the effects of NO described above. There are 9 different 

types of PDEs, which hydrolyze cAMP and/or cGMP. We were interested in 

investigating PDEs because of a previous study that demonstrated that the effects of NO 

on growth cone morphology were mediated via PDEIII (Tsukada et al., 2002). In the 

initial experiment, a general inhibitor, IBMX, was employed to inhibit all types of PDEs. 

It was expected that if NO was acting via PDEIII, then its inhibition should mimic the 

results that are seen with local NO stimulation (i.e. increase in filopodial length and a 

decrease in filopodial number).  

 Application of the general phosphodiesterase inhibitor, 100 µM IBMX, to growth 

cones did not result in a significant change in filopodial length as compared to DMSO 

control growth cones (Figure 3.9A; p = 0.13 as compared to DMSO control growth 

cones; p ≤ 0.05 as compared to NOC-7 alone). However, application of IBMX did result 

in a significant, transient decrease in filopodial number (Figure 3.9B; p ≤ 0.05 as 

compared to DMSO control growth cones; p = 0.42 as compared to NOC-7 alone). 

Although phosphodiesterase inhibition did change filopodial number in a manner similar 

to NO application, filopodial length was not affected. As such, these results were 

inconclusive, especially in light of the fact that inhibiting all PDEs would have 

nonspecific effects on other phosphodiesterases besides the one in which we were 

specifically interested (PDEIII). Therefore, the next experiment employs a specific 

inhibitor of PDEIII to test if it specifically was involved in the NO-mediated changes in 

filopodial length and number.  
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Figure 3.9: Inhibition of phosphodiesterases does not result in a change in filopodial 
length, but does cause a decrease in filopodial number. (A) Application of the general 
phosphodiesterase inhibitor, 100 µM IBMX, does not result in a significant change in 
filopodial length, as compared to DMSO control growth cones (p = 0.13 as compared to 
DMSO control; p ≤ 0.05 as compared to 100 µM NOC-7). (B) Application of 100 µM 
IBMX does result in a significant decrease in filopodial number, as compared to DMSO 
control growth cones (p ≤ 0.05 as compared to DMSO control growth cones; p = 0.42 as 
compared to NOC-7 alone). 
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Nitric oxide’s effects on filopodial dynamics are not dependent on phosphodiesterase III 

and protein kinase A 

A study in rat dorsal root ganglion neurons demonstrated that application of a NO-donor 

results in changes in neurite and growth cone morphology via inhibition of  PDEIII and 

subsequent elevation of protein kinase A (PKA) (Tsukada et al., 2002). Because PDEIII 

is inhibited by cGMP, if NO is acting via this pathway, then mimicking that inhibition 

pharmacologically should produce the same filopodial elongation that is seen with NO 

treatment. Therefore, PDEIII was inhibited with 1 µM milrinone, which resulted in a 

transient increase in filopodial length, reaching a maximum of 14.5 ± 3.0% five minutes 

following treatment and returning to pretreatment values within 15 minutes of application 

(Figure 3.10A; p = 0.05 as compared to 100 µM NOC-7, p = 0.08 as compared to DMSO 

control). However, 1 µM milrinone had no effect on filopodial number (Figure 3.10B; p 

= 0.62 as compared to DMSO control; p ≤ 0.05 as compared to NOC-7 alone). Although 

inhibition of PDEIII resulted in a transient increase in filopodial length, it was not as 

large as that which is seen with 100 µM NOC-7 application. In addition, PDEIII 

inhibition did not result in a decrease in filopodial number. The effects of milrinone on 

filopodial dynamics may have been due to a concentration-dependent effect of this 

pharmacological inhibitor, and a higher concentration of milrinone may result in a larger 

increase in filopodial length and a decrease in filopodial number. However, a 

concentration-dependent effect of the drug was not investigated; instead a downstream 

target of PDEIII was inhibited to determine whether this pathway was involved in the 

NO-induced increase in filopodial length.   
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Figure 3.10: Inhibition of phosphodiesterase III (PDEIII) causes an increase in 
filopodial length, but does not change filopodial number. (A) Inhibition of PDEIII 
with 1 µM milrinone results in a transient increase in filopodial length, reaching a 
maximum of 14.5 ± 3.0% within 5 minutes of application, and returns to pretreatment 
values within 20 minutes.  This increase was not significant overall as compared to 
DMSO control (p = 0.08), but was significant as compared to 100 µM NOC-7 alone (p = 
0.05). However, analysis of individual time points did reveal significance at the 5 minute 
time point when comparing the 1 µM milrinone treatment to DMSO control (Student’s t-
test, p ≤ 0.001). (B) Inhibition of PDEIII with 1 µM milrinone has no effect on filopodial 
number (p = 0.62 as compared to DMSO control). 
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PKA, which is a downstream target of PDEIII, was inhibited in order to determine 

if this pathway is involved in the NO-induced increase in filopodial length. In this 

pathway, if PDEIII is inhibited by cGMP, this would lead to an increase in cAMP, which  

would thereby lead to an increase in PKA. Therefore, we inhibited PKA and puffed on 

NOC-7 to determine if this would block the NO-induced filopodial elongation. When 

PKA was specifically inhibited with 1 µM Myristoylated PKA Inhibitor 14-22 (PKI) for 

25 minutes and then 100 µM NOC-7 was locally applied onto growth cones, there was 

still a transient increase in filopodial elongation that was not significantly different from 

100 µM NOC-7 treatment alone (Figure 3.11A; p = 0.68). Filopodial number also 

showed a small decrease from control values, which was not significantly different from 

100 µM NOC-7 treatment alone (Figure 3.11B; p = 0.06). These results demonstrate that 

NO is not acting via PKA to result in the changes in filopodial length or number. Overall, 

in Helisoma B5 neurons, it appears that NO is not causing the changes in growth cone 

morphology via a pathway involving PDEIII and/or PKA. In addition, currently there are 

no acceptable pharmacological tools with which to study the contribution of CNG ion 

channels to this pathway; thus at present we conclude that local application of NO to B5 

neurons is mainly leading to activation of PKG.  

  

NO-induced changes in filopodial dynamics are mediated, at least in part, by plus-end 

actin addition 

Although NO is acting via multiple second messengers to exert its effects on the 

cytoskeleton, it is unknown whether the final effects are mainly on actin. It would be 
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Figure 3.11: The NO-induced changes in filopodial length and number are not 
mediated via PKA. (A) Pretreatment with a PKA inhibitor (1 µM PKI; Myristoylated 
PKA Inhibitor 14-22) for 25 minutes before local application of 100 µM NOC-7 has no 
effect on the transient NO-induced filopodial elongation. This transient increase in 
filopodial length was not significantly different from growth cones that were treated with 
100 µM NOC-7 alone (p = 0.68), indicating that the NO-induced increase in filopodial 
length does not involve PKA. Neither control growth cones (1µM PKI Control) nor 1 µM 
PKI by itself result in a change in filopodial length over the experimental period. (B) 
Pretreatment with 1 µM PKI followed by local NOC-7 application results in a small 
decrease in filopodial number (p ≤ 0.05 as compared to 1 µM PKI Control). This 
decrease in filopodial number is not significantly different from 100 µM NOC-7 
application alone (p = 0.06).   
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expected that NO would ultimately be acting on actin because it is the major cytoskeletal 

component within filopodia. Therefore, we employed cytochalasin B, which is an 

inhibitor of actin plus-end addition. At high concentrations, cytochalasin B is known to  

cause f-actin depolymerization, however we applied this drug at a concentration that is 

known to decrease the amount of plus-end actin addition to the point at which there is no 

net change in filopodial length (Geddis et al., 2004; Tornieri et al., 2006). This 

concentration also has been shown not to affect the total amount of f-actin present in the 

growth cone (Tornieri et al., 2006). When growth cones were pretreated with 30 nM 

cytochalasin B (CytoB) and then NOC-7 was locally applied, the NO-induced increase in 

filopodial length was significantly decreased (Figure 3.12A; p = 0.05 as compared to 

NOC-7 alone). Additionally, the NO-induced decrease in filopodial number was 

abolished by pretreatment with 30 nM cytochalasin B (Figure 3.12B; p ≤ 0.01 as 

compared to NOC-7 alone). This result demonstrates that the NO-induced increase in 

filopodial length is mediated, at least in part, via actin plus-end addition.  



  108  

 

 

 
 

 
 
Figure 3.12: The NO-induced change in filopodial length is mediated, at least in 
part, via plus-end actin addition. (A) Pretreatment with an inhibitor of actin plus-end 
addition, 30 nM cytochalasin B (CytoB), before local application of 100 µM NOC-7 
significantly reduces the NO-induced increase in filopodial length (p = 0.05 as compared 
to NOC-7 alone). (B) Pretreatment with 30 nM CytoB prior to local application of 100 
µM NOC-7 eliminates the NO-induced decrease in filopodial number (p ≤ 0.01 as 
compared to NOC-7 alone). 
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Chapter 4: Additional experiments published in collaboration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter has been published as: 

Tornieri K, Welshhans K, Geddis MS, and Rehder V. (2006) Control of neurite 

outgrowth and growth cone motility by phosphatidylinositol-3-kinase. Cell Motility and 

the Cytoskeleton 63:173-192. 

 

K. Welshhans provided the original research for Figures 5 and 10 in the original 

publication. Moreover, K. Welshhans contributed significantly to the writing of the entire 

manuscript. However, only the contributions to which K. Welshhans provided the 

original research are presented here. 
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Introduction 

During development growth cones play an important role in guiding neuronal processes 

to their targets. Growth cones function by integrating intracellular signals that are elicited 

by the binding of extracellular cues to membrane-bound or intracellularly located 

receptors, and by translating these signals into a coordinated motor output that results in 

directed neurite advance. The filopodia on growth cones undergo continuous cycles of 

extension and retraction, thereby placing their receptors at varying distances from the 

growth cone proper and resulting in changes in the ‘sensory radius’ of the growth cone. 

Filopodial length and neurite outgrowth are under the control of extracellular cues, and 

several treatments, mainly acting through an increase in the intracellular calcium 

concentration, have been demonstrated to cause a transient increase in filopodial length 

(Davenport & Kater, 1992; Rehder & Kater, 1992; Cheng et al., 2002) and a decrease in 

neurite extension (Cohan et al., 1987; Mattson & Kater, 1987; Lankford & Letourneau, 

1989; Kater & Mills, 1991; Neely, 1993). 

Phosphatidylinositol-3-kinase (PI-3K) has been implicated in a variety of cellular 

activities, including cell survival, mitogenesis, and differentiation (Krasilnikov, 2000; 

Rodgers & Theibert, 2002). PI-3K is activated by binding to receptor- and non-receptor 

tyrosine kinases, as well as by G-protein coupled receptors, and its activation is known to 

affect multiple targets (Raffioni & Bradshaw, 1992; Soltoff et al., 1992a; Soltoff et al., 

1992b; Duronio et al., 1998; Wymann & Pirola, 1998; Virdee et al., 1999; Krasilnikov, 

2000; Cantrell, 2001). In addition to its involvement in mediating cell survival, PI-3K has 

been reported to stimulate neurite outgrowth in PC12 cells (Kita et al., 1998), to mediate 
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ephrin A5 and slit-2 induced growth cone collapse in chick retinal ganglion cells (Wong 

et al., 2004), and to be required for the NCAM-mediated neurite outgrowth of primary 

neurons (Ditlevsen et al., 2003). In addition, PI-3K has been shown to play a role in 

lamellipodial formation of PC12 cells (Posern et al., 2000) and in the regulation of 

neuronal polarity (Shi et al., 2003; Menager et al., 2004). These effects are likely 

mediated by changes at the level of the neuronal cytoskeleton. The mechanism by which 

PI-3K affects neurite outgrowth is presently unclear, but prominent targets downstream 

of PI-3K include Akt (PKB), regulators of Rho-GTPase family members, and the 

RAS/RAF/ERK pathway (Corvera & Czech, 1998; Duronio et al., 1998; Vanhaesebroeck 

& Waterfield, 1999; Bishop & Hall, 2000; Krasilnikov, 2000; Cantrell, 2001). To 

determine whether the effect of PI-3K activity on neurite outgrowth might be explained 

by PI-3K affecting growth cone motility through its effects on the neuronal cytoskeleton, 

we here studied several key targets within the larger PI-3K signaling cascade to 

investigate the signaling pathway by which PI-3K affects the actin cytoskeleton of 

neuronal growth cones.   

PI-3K has a double-enzymatic activity, that of a lipid kinase and a protein kinase 

(Dhand et al., 1994; Krasilnikov, 2000). The protein kinase activity regulates the PKC, 

Ras/ERK, and Rac/JNKK/JNK signaling pathways, whereas the lipid kinase activity 

controls the Akt anti-apoptotic signaling pathway and the activity of Rho kinase (ROCK) 

(Krasilnikov, 2000; Cantley, 2002). By using two inhibitors of PI-3K, wortmannin and 

LY 294002, we show that PI-3K activity is involved in regulating both neurite outgrowth 

and filopodial dynamics. We further show that this regulation involved members of the 
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lipid kinase (ROCK or Akt) and the protein kinase (MEK) pathways of PI-3K signaling. 

Fast time course studies of filopodial dynamics showed that the rapid filopodial 

elongation seen after different treatments was achieved mainly by changes in two 

parameters of filopodial motility: increases in the extension rate and in the time that 

individual filopodia spend extending. By employing drugs that interfere with actin 

polymerization and myosin II activity, we further provide evidence that filopodial 

elongation seen after inhibition of PI-3K is mainly due to an increase in actin 

polymerization at the barbed end, and not through inhibition of retrograde actin flow. 

Because filopodial elongation and a decrease in the rate of neurite outgrowth seen after 

inhibition of PI-3K in this study are similar to growth cone behavior observed at 

“decision points” during pathfinding in vivo (Taghert et al., 1982; Tosney & Landmesser, 

1985; Holt, 1989), these data suggest that signaling through PI-3K could be of critical 

importance for growth cone motility, and that a lack of stimulation or inhibition of the PI-

3K pathway could result in slow-down and search behavior in advancing neurites. 
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Materials & Methods 

Neuronal culture and image acquisition 

Identified B5 neurons were dissected from Helisoma trivolvis buccal ganglia and plated 

for neuronal culture. Neurons used for filopodial experiments were plated on poly-L-

lysine (hydrobromide, MW 70,000-150,000, 0.25mg/ml; Sigma, St. Louis, MO) coated 

glass cover slips that were glued to the bottom of 35 mm cell culture dishes (Falcon 

1008). Neurons used for outgrowth experiments were plated onto either the same glass 

dishes described above, or onto poly-L-lysine coated plastic cell culture dishes as 

described in Trimm and Rehder (2004). Cells were kept at room temperature and used 

24-48 hours after plating. Neurons were grown in conditioned medium (CM) prepared by 

incubating two snail brains per milliliter in defined medium (DM) for 3-4 days. DM was 

produced by dilution of Leibovitz L-15 medium (Gibco #41300, Grand Island, NY) with 

distilled water to obtain the appropriate ionic composition and contained final 

concentrations of: 46 mM NaCl, 1.8 mM KCl, 1.5 mM MgCl2, 4.1 mM CaCl2, 10 mM 

HEPES, 50 µg gentamycin/ml, 0.15 mg glutamate/ml in distilled water (pH=7.3). Growth 

cones were viewed through 100x oil immersion objectives on either an Axiovert (Carl 

Zeiss, Thornwood, NY) or a Sedival (aus Jena, Germany) microscope. Neurite outgrowth 

was imaged through a 40x objective on a Sedival microscope. Images were captured with 

a cooled CCD camera (CH250, Photometrics, Tucson AZ) or a regular CCD camera 

(Model: C-72, MIT Dage, Michigan City, IN). Images were digitized on a frame grabber 

(Scion LG-3, Scanalytics, Fairfax, VA) and analyzed with “Scion Image” software (Scion 
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Corporation; Frederick, Maryland) on a Power Macintosh (Apple Computer, Cupertino, 

CA) or a Compaq Presario (Hewlett-Packard Company, Palo Alto, CA). 

 

Pharmacological agents 

Akt inhibitor and cytochalasin B (actin polymerization inhibitor) were dissolved in 

DMSO to obtain stock concentrations of 45 mM and 60 µM respectively. The Rho-kinase 

inhibitor Y27632 was dissolved in water to a stock concentration of 10 mM. All agents 

were purchased from Calbiochem (San Diego, CA). 

 

Design and analysis of neurite outgrowth experiments 

Images of neurons were taken at 20 minute intervals for a total of 3 hours per experiment 

as previously described (Trimm & Rehder, 2004). Neurite outgrowth was determined by 

measuring neurite length starting from a fixed point in the dish (e.g. soma) and measuring 

the distance to the growth cone’s central domain using the software package “Scion 

Image.” Neurites that advanced less than 6 µm during the control period (one hour before 

treatment) or that fasciculated with other neurites during the experiment were excluded 

from analysis. Outgrowth during the first hour of treatment following drug addition was 

measured by subtracting neurite length at t = 0 from t = 60. Outgrowth during the second 

hour of treatment following drug addition was measured by subtracting neurite length at t 

= 60 from t = 120. In order to introduce the experimental condition, 0.2 mL of 

conditioned medium was removed from the dish, a drug was premixed in this volume, 

and the 0.2 mL was subsequently added back to the dish to obtain the final concentration. 



  115  

Solvents used in the reconstitution of pharmacological agents were tested by themselves 

in control experiments and had no significant effect on neurite outgrowth.  

   

Actin labeling and analysis of actin fluorescence  

Growth cones were fixed and stained according to Cohan et al. (2001) with the variation 

that rhodamine phalloidin was used (Molecular Probes) at a concentration of 0.165 µM. 

Growth cones were viewed through a 100x oil immersion objective on a Zeiss Axiovert 

inverted microscope equipped with a rhodamine filter set (Omega Optical, Brattleboro, 

VT). Images were acquired using a cooled Photometrics CCD camera, and stored on a 

Macintosh computer. A camera exposure time of 200 ms was used for all images. Image 

intensity was analyzed with Scion Image software (Scion Corporation) and two 

measurements were taken to quantify f-actin content in growth cones. To calculate the 

mean fluorescent intensity of f-actin in the growth cone’s p-region, a line was drawn 

outlining the lamellipodial region and the measured fluorescence averaged. The 

fluorescent intensity of actin bundles forming the core of filopodia was analyzed 

according to Cohan et al. (2001). Briefly, a line was drawn across individual actin 

bundles within the middle of the lamellipodium. The peak intensities for each bundle (the 

average of 3 pixels for each bundle) were determined and this procedure repeated for at 

least 5 filopodia per growth cone, except when that was impossible due to loss of 

filopodia (condition with 500 nM Cytochalasin B). These values were then expressed as 

an average peak intensity for each growth cone. Staining was done in parallel for 
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different experimental conditions (Control, 30 nM Cytochalasin B, and 500 nM 

Cytochalasin B) to minimize differences in staining intensity between dishes. 

 

Statistical analysis 

For filopodial experiments, statistical comparisons between conditions was determined 

by performing an analysis of variance (1-way ANOVA or ANOVA with time as repeated 

measures), and with a t-test for dependent and independent samples, with SuperANOVA 

(Abacus Concepts, Berkeley, CA). Fisher’s protected least significant difference (PLSD) 

test was used for post-hoc tests of statistical significance. For neurite outgrowth, fast 

time-course and actin labeling experiments, significance between conditions was 

determined by performing a Student’s t-test (for unpaired or paired samples) with Excel 

(Microsoft; Redmond, WA). Significant differences are indicated as: *p ≤ 0.05, **p ≤ 

0.01, ***p ≤ 0.001. 
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Results 

Inhibition of Akt or ROCK slows neuronal outgrowth 

To investigate the pathway by which PI-3K might regulate growth cone motility, we 

pharmacologically inhibited major targets downstream of PI-3K with the assumption that 

their inhibition should mimic the effect of PI-3K inhibition and result in filopodial 

elongation and/or a slow down in neurite outgrowth. PI-3K has a double enzymatic 

activity, acting as a protein kinase and a lipid kinase (Krasilnikov, 2000; Cantley, 2002) 

(Fig. 4.1). Therefore, we wanted to investigate which of the two activities might be 

involved in controlling neurite outgrowth. 

In these experiments, the effect of inhibition of Akt and ROCK on neurite 

outgrowth was studied. When Akt was inhibited, neurite outgrowth was not affected in 

the first hour following drug addition (16.2 ± 2.8 µm in the hour prior to drug addition 

and 13.6 ± 3.2 µm in first hour following drug addition; Fig. 4.2A). However, in the 

second hour following drug addition, neurite outgrowth was significantly slowed to 6.7 ± 

3.0 µm (p ≤ 0.001 as compared to the hour prior to drug addition). When ROCK was 

inhibited with Y27362 - neurite outgrowth also was not affected in the first hour 

following drug addition (20.5 ± 2.1 µm in the hour prior to drug addition and 18.8 ± 2.6 

µm in first hour following drug addition; Fig. 4.2B). However, in the second hour 

following drug addition, neurite outgrowth was significantly decreased to 12.0 ± 2.6 µm 

(p ≤ 0.01 as compared to the hour prior to drug addition). Taken together, these results 

are consistent with the idea that the lipid kinase activity of PI-3K is involved in 

controlling neurite outgrowth through Akt and ROCK. 
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Figure 4.1: PI-3K may regulate growth cone dynamics through multiple signaling 
pathways. PI-3K is activated by multiple effectors. The PI-3K signaling pathway is 
bifurcated and has two branches, resulting from its lipid- and protein kinase activities. 
Through its lipid kinase activity, PI-3K phosphorylates phosphatidylinositol (PI) and its 
phosphorylated derivatives. Then phosphoinositides activate the RhoA/ROCK pathway, 
and the phosphoinositide-dependent kinase (PDK), which in turn activates Akt. Through 
its protein kinase activity (in gray), PI-3K binds directly to Ras and Rac-Cdc42, leading 
to the activation of MEK. Kinases investigated in this study are in bold typeface and 
underlined. Inhibitors are indicated in italics. 
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Figure 4.2: Regulation of neurite outgrowth by Akt and ROCK. (A) Inhibition of Akt 
with Akt inhibitor (80 µM) did not significantly affect neurite outgrowth in the first hour 
following drug addition. However, neurite outgrowth was slowed significantly in the 
second hour following drug addition (p ≤ 0.001). (B) Inhibition of ROCK with 10 µM 
Y27362 did not significantly affect neurite outgrowth in the first hour after drug addition.  
However, neurite outgrowth was slowed significantly in the second hour following drug 
addition (Student’s t-test, **p ≤ 0.01).   
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30 nM Cytochalasin B does not change total actin content within the growth cone 

Filopodia are composed of bundles of filamentous (f-) actin (Gordon-Weeks, 1987) and 

the barbed ends, where net addition of monomeric actin occurs, are located towards the 

filopodial tip. Theoretically, filopodial elongation could result from: (i) an increase in 

actin polymerization at the barbed end, (ii) a decrease in retrograde flow of f-actin 

without affecting the normal net addition of monomeric actin at the barbed end, or (iii) a 

combination of both (Figure 4.3). In initial experiments we wanted to obtain a qualitative 

assessment of the contribution of these mechanisms to filopodial length changes in 

untreated growth cones. In these experiments, the pharmacological agent, cytochalasin B 

(CytoB), was employed to interfere with the addition of monomeric actin to the barbed 

end of f-actin. Although CytoB has been shown to result in the depolymerization of f-

actin (Forscher & Smith, 1988), we used CytoB at a concentration (30 nM) that had no 

net effect on overall filopodial length (Geddis et al., 2004). However, because CytoB has 

been shown to depolymerize f-actin at higher concentrations, it was important to confirm 

that overall f-actin content within the growth cone was not affected by the concentration 

at which we were employing it.  

 To confirm that the total f-actin content was not affected by the treatment with 30 

nM CytoB, we employed a fluorescently labeled mushroom toxin, rhodamine phalloidin, 

which binds to f-actin. Overall, growth cones treated with 30 nM CytoB for 30 minutes 

appeared no different from control growth cones (Fig. 4.4A). However, treatment with a 

higher concentration of CytoB (500 nM) resulted in an obvious decrease in f-actin  
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Figure 4.3: Filopodial elongation resulting from PI-3K inhibition requires actin 
polymerization. Model of filopodial length changes. Filopodial length is mainly 
regulated by actin polymerization/depolymerization events at the barbed end and the 
retrograde flow by which f-actin is transported centrally (left). The curved arrow 
indicates actin polymerization onto the barbed (+) end of f- actin, which would result in 
filopodial elongation. Arrows pointing to the right symbolize actin polymerization and 
arrows pointing to the left symbolize retrograde flow. The middle panel shows the net 
effect of various experimental treatments on overall filopodial length. The right panel 
shows the hypothesized relative contributions (indicated by the length of the arrows) of 
actin polymerization and retrograde flow on filopodial length under these experimental 
conditions.  
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Figure 4.4: A low concentration of cytochalasin B (30 nM) does not affect filopodial 
actin bundles, but slightly reduces overall f-actin staining intensity within the p-
region. Growth cones received one of three treatments (L-15 medium exchange 
(Control), 30 nM Cyto B in L-15, or 500 nM Cyto B in L-15) for 30 minutes and were 
subsequently fixed in parformaldehyde/glutaraldehyde and reacted with rhodamine 
phalloidin. (A) Growth cones that received the 30 nM Cyto B treatment look 
indistinguishable from control growth cones regarding overall morphology, as well as 
number and intensity of fluorescent F-actin bundles visible in the growth cone. Note the 
noticeable loss of f-actin staining and filopodia in growth cones treated with 500 nM 
Cyto B.  Scale: 10 µm.  (B) Intensity of f-actin staining in the p-region was significantly 
reduced (from 79.4 ± 4.8 to 65.1 ± 4.4) by treatment with 30 nM Cyto B (p ≤ 0.05 as 
compared to Control).  Treatment with 500 nM Cyto B reduced the intensity of f-actin 
staining within the p-region to an even greater extent (to 37.7 ± 3.0; p ≤ 0.001 as 
compared to Control).  (C) Actin bundle intensity was not affected by treatment with 30 
nM Cyto B (p = 0.23 as compared to Control).  However, treatment with 500 nM Cyto B 
significantly reduced actin bundle intensity from 110.0 ± 4.4 to 58.2 ± 3.9 (p ≤ 0.001 as 
compared to Control). 
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staining and a loss of filopodia (Fig. 4.4A). Quantification of the intensity of f-actin 

staining within the lamellipodial P-region of growth cones (see methods for details), 

however, revealed a small decrease in the intensity of staining in growth cones treated 

with 30 nM CytoB when compared to control growth cones (from 79.4 ± 4.8 to 65.1 ± 

4.4 fluorescence units; Fig. 4.4B; p ≤ 0.05, t-test). Treatment with 500 nM CytoB showed 

a large reduction in f-actin staining in the P-region (to 37.7 ± 3.0) (Fig. 4.4A and B; p ≤ 

0.001, t-test). When f-actin content of individual f-actin bundles (forming the core of 

filopodia) was measured (see Methods for details), no difference between control growth 

cones and those treated with 30 nM CytoB was found (Fig. 4.4C; p = 0.23, t-test).  

Growth cones treated with 500 nM CytoB, however, showed a significant loss in actin 

bundle intensity (from 110.0 ± 4.4 to 58.2 ± 3.9; Fig. 4.4C; p ≤ 0.001, t-test). These 

results suggested that although 30 nM Cyto B slightly reduced the amount of f-actin 

within the P-region of the growth cone, the f-actin content within filopodia was not 

measurably affected.  
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Discussion 

Phosphatidylinositol-3-kinase (PI-3K) is central to many signaling pathways and has 

been shown to function in cellular events such as cell survival, mitogenesis, 

differentiation and motility (Duronio et al., 1998; Krasilnikov, 2000; Cantrell, 2001; 

Rodgers & Theibert, 2002). PI-3K can be activated by receptor tyrosine kinases, non-

receptor tyrosine kinases, and G-protein coupled receptors (Stephens et al., 1994; 

Stoyanov et al., 1995; Lopez-Ilasaca et al., 1997; Duronio et al., 1998; Vanhaesebroeck 

& Waterfield, 1999; Cantrell, 2001) but the mechanism by which PI-3K affects neurite 

outgrowth is not well understood. Here we set out to investigate whether the effect of PI-

3K on neurite outgrowth might be explained by its action on the actin cytoskeleton in 

neuronal growth cones.  

 

ROCK, Akt, and MEK regulate filopodial dynamics and neurite outgrowth  

PI-3K can be activated by receptor- and non-receptor tyrosine kinases, as well as by G-

protein coupled receptors (Stephens et al., 1994; Stoyanov et al., 1995; Lopez-Ilasaca et 

al., 1997; Duronio et al., 1998; Vanhaesebroeck & Waterfield, 1999; Cantrell, 2001). PI-

3K, in turn, has two modes of action. It functions as a lipid kinase by phosphorylating the 

3’-OH position on the inositol ring of several phosphoinositides, thereby producing 

inositol lipid products, which are important mediators of intracellular signaling (Duronio 

et al., 1998; Vanhaesebroeck & Waterfield, 1999; Cantrell, 2001). This signaling 

pathway leads to the stimulation of guanine nucleotide exchange factors for Rho-

GTPases, as well as to the activation of the PH-domain containing kinase, PDK-1, which 
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in turn activates Akt (Alessi et al., 1997; Downward, 1998; Meier & Hemmings, 1999; 

Vanhaesebroeck & Alessi, 2000) (Fig. 4.1). Secondly, PI-3K functions as a protein 

kinase resulting in the activation of the Ras/Raf/Erk pathway (Bondeva et al., 1998; 

Vanhaesebroeck & Waterfield, 1999; Krasilnikov, 2000).  

We found that inhibition of two of the downstream targets of the lipid kinase 

pathway, Akt or ROCK, resulted in a decrease in neurite outgrowth in the second hour 

following drug addition (Fig. 4.2A and B). This late onset of an effect on neurite 

outgrowth, compared to an effect on filopodial elongation observed within minutes, 

suggested that filopodial elongation could occur without a concomitant decrease in 

neurite outgrowth. As such, the slow-down and search behavior seen in this study can be 

divided into two behaviors: “slow-down” and “search” (Fig. 4.5). As observed with both 

ROCK and Akt inhibition, it is possible for a growth cone to elongate its filopodia over a 

short time course (the “search” behavior) while maintaining a constant outgrowth speed. 

Yet, at other times these behaviors can be coupled into the “slow-down and search” 

behavior that is seen with PI-3K inhibition in the first hour of drug addition. Given that 

the treatments in this study were long-term and may not reflect shorter and probably more 

physiologically relevant episodes of kinase activation/inhibition, one could envision 

scenarios in which changes in filopodial length and neurite outgrowth rates could either 

be regulated independently or in conjunction, depending on the signaling cues received 

by the pathfinding growth cone.  
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Figure 4.5: Model of regulation of neurite outgrowth and filopodial motility by PI-
3K. (A) Baseline PI-3K activity leads to downstream signaling events that result in 
growth cones advancing with ‘baseline’ speed and having filopodia of certain lengths. 
(B) When PI-3K or key kinases in the proposed pathway downstream of PI-3K are 
inhibited or otherwise reduced in their activity, growth cones can undergo either a “slow-
down and search” behavior, characterized by filopodial elongation and a concomitant 
decrease in the rate of neurite advance, or a “search” behavior, characterized by 
filopodial elongation alone.  
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RhoA, an activator of ROCK, has been shown to have opposite effects on neurite 

outgrowth depending on the cell type and the stage of outgrowth studied (Kranenburg et 

al., 1997; Threadgill et al., 1997; Kuhn et al., 1999; Sebok et al., 1999). In agreement 

with ROCK promoting neurite outgrowth, inactivation of RhoA has been shown to slow 

the rate of neurite outgrowth in NGF-primed differentiating PC12 cells (Sebok et al., 

1999).  

Although we found that inhibition of Akt resulted in a slowing of neurite 

outgrowth, other recent studies reported the opposite effect, namely that expression of a 

dominant inhibitory form of Akt increased NGF induced neurite outgrowth in PC12 cells 

(Bang et al., 2001; Piiper et al., 2002). This difference in results may be explained by the 

fact that while we investigated neurite outgrowth on already extended neurites, the other 

studies focused on neurite initiation. It is, thus, possible that Akt may affect neurite 

initiation and neurite maintenance differently, as has been reported for RhoA (Sebok et 

al., 1999). The results from the Sebok et al. study suggest that RhoA holds different roles 

in the regulation of neurite growth, depending on the developmental stage. RhoA may 

affect neurite growth differently during various developmental stages due to activation of 

different signaling cascades. This mechanism that allows for RhoA to affect neurite 

outgrowth in multiple ways during development may also hold true for Akt, but has yet to 

be discovered. 
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Conclusions 

Taken together, our results demonstrate that signaling events leading to the inhibition of 

PI-3K resulted in an increase in filopodial length and a decrease in neurite outgrowth, and 

as such could act as a signal for a slow-down and search behavior (Fig. 4.5). Inhibition of 

key kinases located downstream of PI-3K activity also resulted in filopodial elongation 

(ROCK, Akt, and MEK) and in a decrease in neurite advance (ROCK and Akt), 

consistent with the notion that PI-3K might act through these kinases to affect growth 

cone motility. In extension, other signaling pathways converging on these kinases are 

expected to have predictable effects on neurite outgrowth and filopodial behavior. 

Filopodial elongation in response to PI-3K inhibition was shown to result largely from an 

increase in actin polymerization, and not from an inhibition of the retrograde flow. Future 

studies will investigate the growth factors that bind to receptors (e.g. receptor tyrosine 

kinases) and activate PI-3K, leading to the currently described signaling pathway. The 

detailed pathways that link the activity of these kinases to changes in the growth cone 

cytoskeleton will also have to be investigated in future studies.  

 

 



  129  

Chapter 5: Additional experiments using Helisoma trivolvis as a model system 
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5.1 Regeneration of the Helisoma B5 neuron in vivo 

 

Introduction 

Spinal cord injury affects around 250,000 to 400,000 people in the United States alone. 

Because the central nervous system (CNS) of humans does not regenerate, this is a 

devastating type of injury for which we do not have an effective treatment. Interestingly, 

when the nerves from a mollusc, Helisoma trivolvis, are crushed, the axons of neurons 

contained in these nerves will regenerate and make connections with their original 

appropriate targets. Therefore, this provides us with an excellent model system in which 

to study the process of permissive regeneration.  

This project examined the in vivo regeneration of the B5 neuron from Helisoma 

trivolvis. Normally, the axon of the B5 neuron exits the esophageal nerve trunk (ET) and 

then divides into two projections (Figure 5.1) (Berdan et al., 1989). The major projection 

exits through the gastric nerve to innervate the gut. It is known that this axon of the B5 

neuron extends into the muscle of the esophagus, however the specific type and location 

of its innervation is unknown. The minor projection exits through the dorsobuccal nerve 

to innervate the buccal mass (Murphy & Kater, 1980a; Berdan et al., 1990). If the ET is 

crushed, the B5 neuron will regenerate its axons and almost always follow the “correct” 

paths to reinnervate its appropriate targets (Murphy & Kater, 1980a). Previous studies 

have begun to examine this neuron in vivo, under nerve crush conditions. However, these 

studies crushed the ET nerve, allowed a specific amount of regeneration time and then 

injected the B5 neuron with Lucifer yellow and fixed  the tissue.   Therefore,  this  project 



  131  

 

 

 
Figure 5.1: The Helisoma buccal ganglion and B5 projection.  The projection of the 
B5 neuron exits the buccal ganglion (BG) through the esophageal nerve trunk (ET) and 
splits into two projections. The major projection exits the gastric nerve (GN) to innervate 
the esophagus and the minor projection exits the dorsobuccal nerve (DBN) to innervate 
the buccal mass. Modified from Kruk and Bulloch 1992. SG: salivary gland; SN: salivary 
nerve 
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had 2 main foci: one, to watch this regeneration as it occurred in vivo, and two, to 

monitor calcium levels throughout the regeneration process. 

 

Materials and Methods 

Dissection and Organ Culture 

Adult freshwater snails (Helisoma trivolvis) are removed from their shell and placed into 

HEPES-buffered Helisoma saline (51.3 mM NaCl, 1.7 mM KCl, 4.1 mM CaCl2, 1.5 mM 

MgCl2; buffered to pH 7.55 with HEPES). They are then placed into a 25% solution of 

Listerine™ in Helisoma saline for 10 minutes, followed by 10 minutes in antibiotic (AB) 

Helisoma saline (gentamycin, 150 µg/ml). The snail was placed with the dorsal side up 

and a small incision was made in the dorsal body wall. The esophagus was cut, pulled 

through the brain and pinned above the head. The esophageal nerve trunk (ET) was then 

crushed using fine forceps and firm pressure for 5 seconds. These nerves were crushed a 

little more than halfway between their insertion into the buccal ganglion and the split into 

the gastric nerve and the salivary nerve (toward the split). 

Following nerve crush, the entire CNS, including the buccal ganglion, was 

removed and placed either in AB Helisoma saline or in conditioned medium with extra 

antibiotics (gentamycin 150 µg/ml). In order to remove the CNS, the nerves were cut as 

close as possible to their insertion points into various targets. In addition, the salivary 

gland, the buccal mass, and a portion of the esophagus were retained.  The CNS with 

attached structures was placed into AB saline or conditioned medium and kept in a 

darkened box until it was ready to be used.   
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In Vivo Regeneration 

As an alternative to organ culture, a protocol was designed (based on Kruk & Bulloch, 

1992) that allowed for a true in vivo situation. Snails were anesthetized with a solution of 

increasing concentrations of menthol in pond water over 90 minutes. The snails were then 

clamped into position under a dissecting microscope by their shells and the head was 

gently pulled out of its shell by forceps. A small incision was made between the tentacles 

and the esophagus and salivary gland were pulled out through the incision until the ET 

could be seen. The ET was then crushed and the esophagus and salivary gland were 

placed back into the cavity. The incision was flushed with AB saline and the snails were 

placed back into normal pond water to recover. After a defined amount of time to allow 

for regeneration to occur, the buccal ganglion was removed as described above.   

 

Injection of Indicator Dyes and Imaging 

Prior to pressure injection of calcium green, the ganglia were placed into protease (0.1%; 

Sigma) for 5 minutes and then pinned down in a Sylgard coated dish containing Helisoma 

AB saline. Calcium green (10 mM, in HEPES buffer; Molecular Probes), fluo-4 

(Molecular Probes) or FITC dextran (10 mM, in HEPES buffer; Molecular Probes) was 

pressure injected, using a Picospritzer (General Valve Corp., Fairfield, NJ), into the B5 

neurons 1 to 7 days following nerve crush. Before confocal imaging, the dye was given 

15-30 minutes diffusion time. In order to keep the ganglion in place for confocal imaging, 

a drop of agar mixture was placed over the ganglion (Hadley et al., 1982). Bacto agar 

(0.6%) and gelatin (0.6%) was combined in Helisoma AB saline. This mixture was 
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heated with a stir bar until clear. Then, it was removed from the hot plate and allowed to 

cool to 37°C. Meanwhile, the ganglion was positioned with its dorsal side up on a glass 

coverslip glued to the bottom of a drilled Falcon dish. Once the temperature of the agar 

reached 37°C, one to two drops were placed over the ganglion. The mixture was given 

30-45 seconds to solidify and then AB saline was added to the dish. All ganglia were 

imaged using either a LSM 510 laser confocal microscope (Carl Zeiss, Thornwood, NY) 

or a Zeiss Axiovert 135 microscope in combination with a cooled CCD camera (CH250, 

Photometrics; Tuscon, AZ) and stored on a Macintosh Quadra 800 (Apple Computer Inc.; 

Cubertino, CA). 

 

Results 

In order to examine the regeneration process, injury is induced by crushing the right 

esophageal trunk nerve of the buccal ganglion with forceps. Following nerve crush, the 

entire ganglion is placed in organ culture. This procedure allows for an internal control 

because a buccal ganglion contains two B5 neurons, each exiting out of its own 

esophageal trunk nerve.  Therefore, one nerve was crushed and the other remained intact 

and served as an internal control. Following 1-7 days of regeneration time, the B5 neuron 

was injected with calcium green and the regenerating projection visualized. Although 

many iterations of this experiment were completed, with various protocols, ultimately, 

regeneration halted upon injection of the imaging dye. Some of the various techniques 

employed and difficulties encountered during this project will be outlined here. 
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Originally, calcium green was employed as the injection dye of choice. One of the 

immediate aims of this project was not only to image changes in calcium throughout the 

regeneration process, but also to alter the levels via uncaging calcium within regenerating 

growth cones and examine how that may alter regeneration rates. The success rate of 

injecting the B5 neuron and being able to visualize its projections became acceptable 

over time (about 50% success rate); however, one of the major limitations of this project 

was that after injection, there was usually not just one growth cone evident, rather there 

were multiple projections extending out from the regenerating axon. Therefore, it was 

difficult to determine which may be the major projection to follow. The second major 

limitation was that regeneration halted following injection of any calcium indicator dye. 

Although injecting the B5 neuron at various time points following crush (e.g. 2, 3, 4, 5 

days) demonstrated that the B5 neuron was regenerating, when a growth cone was chosen 

to follow after injection, it did not advance at all during the imaging session (a time 

period of 3 to 7 hours). However, it was possible to uncage calcium within growth cones 

of regenerating axons, evident from the increase in fluorescence of the calcium indicator 

dye, calcium green (Figure 5.2 A&B), which indicates an increase in the intracellular 

calcium concentration. Yet, it was impossible to determine if this had an effect on 

regeneration because these axons were not regenerating following injection of the 

calcium indicator dye. 

As mentioned previously, the axons were not regenerating following injection 

with the calcium indicator dye, calcium green. We thought that this might be due to the 

large amount of calcium green that needed to be injected in order to visualize the axon 
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Figure 5.2: Calcium can be uncaged within a regenerating B5 growth cone. (A) In 
vivo calcium uncaging in the growth cone. Caged calcium was injected into the growth 
cone, in combination with the calcium indicator dye calcium green, and then uncaged 
with a flash of UV light for 0.7s. The left column is a set of false color images created for 
improved visualization of the calcium intensity present in the confocal images (right 
column). (B) Intensity of calcium fluorescence in the growth cone prior to and following 
uncaging. Following uncaging (which takes places immediately following the image 
acquired at t = 0.33 seconds), calcium increases within the growth cone. 

A 

B 
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and growth cones. Because calcium indicator dyes bind calcium, they can act as calcium 

buffers within the cytosol and interfere with the maintenance of a normal intracellular 

calcium concentration. Subsequently, this could lead to an inhibition of regeneration. 

Therefore, we employed a different calcium indicator dye, fluo-4, that has a stronger 

fluorescence signal. This property allows us to inject less dye, thereby reducing the 

possibility of calcium buffering. Unfortunately, although the axons were regenerating 

following crush, once again, the regeneration halted following dye injection of fluo-4 

(Figure 5.3).  

The next stage of this project used DiI in various protocols in order to label the 

neurite and growth cone in vivo. Since DiI is a lipophilic dye that inserts itself into the 

outer membrane, it should accurately label the neuron along with its projection, including 

the growth cone and its filopodia. The first method for labeling involved simply putting 

DiI crystals on top of the B5 neuron. Although this did work on individual cells in cell 

culture, it was difficult to accurately place the crystals only on the B5 neuron when the 

whole ganglion was in organ culture. Therefore, crystals were sprinkled on that entire 

side of the ganglion, which might result in labeling of the B5 neuron, but most likely in 

combination with other neurons. Although projections were seen with this labeling 

technique (Figure 5.4), especially across the ganglia (Figure 5.4 A-C), and some 

projections exiting other nerves (Figure 5.4 D-F), no projections were seen exiting the 

ET. Additionally, many cells were labeled in the vicinity of the B5, which made it 

difficult to determine exactly which projections belonged to the B5 neuron. 
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Figure 5.3: Fluo-4 labeling of the regenerating B5 neuron in organ culture. (A) 10x 
fluorescent image of a B5 neuron that has been injected with the calcium indicator dye 
fluo-4. (B) 10x phase contrast image of the buccal ganglia. The hemiganglion containing 
the injected neuron is outlined in red for easier visualization. (C) 10x combined 
(fluorescent and phase contrast) image of the injected B5 neuron and its projection. Note 
the projection emanating out of the buccal ganglion from the B5 neuron and into the 
esophageal trunk nerve. 
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Figure 5.4: DiI labeling of the regenerating B5 neuron in organ culture. (A) 20x 
fluorescent image of DiI labeled neurons in the buccal ganglion. Note the projection 
traveling across the hemisphere of the ganglion. This is possibly a B5-B5 connection that 
occurs transiently following ET crush. (B) 20x phase contrast image of the buccal 
ganglion. The hemiganglion containing the DiI labeled neurons is outlined in green for 
easier visualization. (C) 20x combined (fluorescent and phase contrast) image of the 
labeled neurons. (D) 20x fluorescent image of a DiI labeled neuron and its projection. 
Although this neuron is not a B5, this demonstrates that it is possible to label neurons and 
their projections in the buccal ganglion. (E) 20x phase contrast image of the buccal 
ganglion. The hemiganglion containing the DiI labeled neurons is outlined in green for 
easier visualization. (F) 20x combined (fluorescent and phase contrast) image of the 
labeled neuron. 
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Another protocol, based on a model in Drosphila (Bossing & Technau, 1994), 

dissolved DiI in oil and placed a drop of that oil onto the neuron of interest. Using this 

method, no labeling of any neurons or projections was seen. An additional method 

attempted involved labeling the B5 neuron by touching the neuron overnight with a 

micropipette coated with DiI (Gelperin & Flores, 1997). There was no labeling visualized 

with this method either.  

Because we thought that perhaps injection of the calcium indicator dyes was 

buffering calcium within our cells and halting regeneration, two fluorescent dyes that are 

not calcium indicators were investigated, FITC-dextran and Lucifer Yellow. Injection of 

these dyes would allow regeneration to be followed; however, changes in the intracellular 

calcium concentration could not be recorded. FITC-dextran did allow visualization of the 

axon, but once again, regeneration was not evident after cells were injected with this dye. 

Lucifer Yellow injections were also investigated. However, this method was abandoned 

once it was determined that cells injected with Lucifer yellow died following an 

extremely brief exposure to light (Figure 5.5).  

One final issue in imaging growth cones was that often it was impossible to image 

the regenerating growth cones because they would be above the focal plane. Agar was 

used to hold the ganglia in place against the coverslip; however, if the nerve did not lie 

completely flat against the cover glass when the agar was added, imaging was 

impossible.   
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Figure 5.5: Lucifer yellow labeling of the regenerating B5 neuron in organ culture. 
(A) 10x fluorescent image of a B5 neuron that has been injected with Lucifer yellow. (B) 
10x phase contrast image of the buccal ganglia. The entire buccal ganglion has been 
outlined in red for easier visualization. (C) 10x combined (fluorescent and phase 
contrast) image of the injected B5 neuron and its small projection. 
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Discussion 

The major difficulty with this project was that when neurons were injected with a calcium 

indicator dye, and imaged over hours, no regeneration was apparent. This could be due 

either to damage to the cell upon injection or to the calcium indicator dyes’ property as a 

calcium buffer. However, it appears that the buffering property was not the issue because 

regeneration also did not occur in the presence of a non-calcium indicator dye, FITC-

dextran. Therefore, it appears that the injury resulting simply from injection of the dye 

into the cell caused the neuron to stop regenerating. It is important to note that a large 

amount of dye was required to completely fill the neuron and its projection and the injury 

caused by injecting this amount of dye may have halted regeneration. It is also possible 

that although regeneration was halted during the imaging period following regeneration 

(around 7 hours), if the neuron was allowed to sit and recover, it might begin its 

regeneration process again. However, the dye usually had faded (or been removed from 

the cell) within 12-15 hours, making it impossible to know if regeneration had begun 

again. It is not possible to inject these cells a second time because following injection 

they are encased in agar, from which it is impossible to remove them without severe 

damage to the ganglion. Therefore, the set of DiI experiments were attempted to allow 

visualization of regeneration over a much longer time course, but this also had many 

difficulties. 

Although the protocol with DiI coated electrodes has worked in the snail, Limax, 

there are a number of reasons why it may not be working in the current preparation 

(Gelperin & Flores, 1997). First of all, in the Limax study, the procerebral lobe of the 
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cerebral ganglion was labeled through a tear in the connective tissue sheath. Cutting the 

sheath on the buccal ganglia in Helisoma does not work, because the cells die from being 

exposed to saline for the length of time it takes to label the cells. To account for the 

sheath, however, the Helisoma ganglia were exposed to 0.1% protease for 5 minutes 

before DiI application. Additionally, DiI C12 was used in the Limax study, and the current 

study employed DiI C18. The authors of the Limax study stated that using DiI C12 resulted 

in much improved staining compared to DiI C18. In the future, the DiI experiment could 

be attempted again, perhaps using DiI C12 and/or using a higher concentration of 

protease, but for a shorter period of time. 

An additional important issue that is critical to the effectiveness of regeneration 

involved the site of the crush.  Previous studies have shown that the site of axotomy plays 

a vital role in whether the B4 neuron will regenerate and also in the extent of its 

regeneration (Kruk & Bulloch, 1992). Therefore, the ET nerves were crushed more than 

midway between the insertion into the buccal ganglia and the split into the salivary nerve 

and the gastric nerve (closer to the nerves’ Y-split point). Not only does regeneration not 

always occur if the crush is too close to the insertion of the ET nerve into the buccal 

ganglion, but sprouting is also usually more pronounced in this situation.   

The other major issue with the regeneration project was the extensive sprouting 

that was evident following dye injection into the B5 neuron. Because the neuron had so 

many projections emanating out of the regenerating stump, it was often difficult to 

determine which branch to image. Interestingly, the tips of these branches or growth 

cones had no filopodia, only a growth cone “stump.” This could be due to a number of 
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factors. One possibility is that perhaps there are few to no filopodia on this growth cone 

when it is growing in vivo. If this is true, it may be due to the growth cone being 

fasciculated or following a “known” track. However, another possibility is simply that the 

filopodia are not loaded well enough or are too small to resolve in the ganglia using these 

dyes and confocal imaging. Alternatively, it could be that there are normally filopodia on 

the regenerating growth cone, but they retract following dye injection. Therefore, 

although this study confirms earlier findings that B5 neurons do regenerate in vivo, and 

that calcium uncaging within regenerating growth cones is possible, the simple fact that 

the regeneration process halted following dye injection did not allow this project to 

succeed. 
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5.2 Transfection of Helisoma neurons 

 

Introduction 

The current set of experiments explored the feasibility of transfecting either whole buccal 

ganglia or mass dissociated neuronal cultures from Helisoma with plasmids that have 

relatively standard promoters. If Helisoma neurons could be transfected with a plasmid 

containing a standard promoter, this would be advantageous because we could use this 

protocol to transfect Helisoma neurons with plasmids encoding calcium sensor proteins 

or other proteins related to the nitric oxide pathway. The major promoters that were 

employed were cytomegalovirus (CMV) and baculovirus. The plasmid was potentially 

introduced into the neurons with one of two methods, a lipid-based reagent, 

lipofectamine, which forms a complex with the DNA and delivers it to the interior of the 

cell, or direct microinjection of the plasmid into the soma of the neuron. In order to 

determine whether the cells were expressing these plasmids, two methods of detection 

were employed: either fluorescence or β-galactosidase (β-gal) staining. 

There were a number of plasmids investigated in this project, including EGFP 

(enhanced green fluorescent protein), a potential calcium sensor (ER2), a cloned 

serotonin receptor from a crustacean, the spiny lobster (5-HT2βPan; Clark et al., 2004), 

CREB-EGFP, or pcDNA3.1/His/lacz (Invitrogen).   
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Materials & Methods 

Lipofection of Mass Dissociated Neurons 

Mass dissociated cultures of neurons from the buccal ganglion were plated and allowed 3 

hours to adhere before transfection. Mass dissociated cultures were prepared by 

dissociating entire buccal ganglia with a micropipette and placing all cells into a culture 

dish. If whole ganglia were used, they were placed into a 24 well plate (3 ganglia per 

well) and transfected immediately following removal. Following removal, these cultures 

were transfected using lipofectamine (Invitrogen; Carlsbad, CA) in combination with 

either Opti-MEM I Reduced Serum Medium or L-15 (Invitrogen).  

To transfect mass dissociated cultures or whole ganglia, first the DNA was diluted 

in Opti-MEM I Reduced Serum Medium or L-15 medium (DNA concentrations range 

from 0.8 µg to 5 µg per well/dish). Next, lipofectamine was diluted in Opti-MEM or L-15 

in appropriate amounts to allow for ratios of 1:1 to 1:5 of DNA to lipofectamine. This 

mixture was allowed to sit at room temperature for 5 minutes. Then, the lipofectamine 

and DNA mixtures were combined and allowed to sit for 20 minutes. The cells or ganglia 

were rinsed twice with Opti-MEM or L-15 and then the cells/ganglia were incubated in 

the lipofectamine/DNA mixture for 4 to 48 hours. The cells and ganglia were incubated 

for various time periods to determine if it may have an effect on transfection efficacy. 

Following this time period, the cells or ganglia were rinsed with L-15 and then incubated 

in conditioned medium.  
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Microinjection of Plasmids 

Micropipettes were pulled from glass capillaries (A-M System, Everett, WA) on a 

microelectrode puller (Fredrick Haer and Co., Bowdinham, ME) and filled with a 

combination of plasmid (from 0.1-1 µg/µl) and fast green (from 0.1-2%).  Neurons were 

injected, allowed three days for expression and then fixed and stained using a β-Gal 

staining kit (Invitrogen) to check for expression. 

 

Plasmids and Visualization 

The following plasmids were used: EGFP (enhanced green fluorescent protein; Clontech; 

Palo Alto, CA), GFP (green fluorescent protein; Invitrogen; Carlsbad, CA), a potential 

calcium sensor (gift from laboratory of Jenny Yang), a cloned serotonin receptor from a 

spiny lobster (5-HT2βPan; Clark et al., 2004), CREB-EGFP (Clontech), or 

pcDNA3.1/His/lacZ (Invitrogen, Carlsbad, CA). Expression of plasmids was determined 

either by visualization of fluorescence within the soma or growth cones (EGFP plasmids) 

or a β-galactosidase (β-Gal) staining kit (lacZ plasmid; Invitrogen).  

 

Results 

In the first set of experiments, either mass dissociated primary neuronal cultures or whole 

ganglia were lipid transfected with a number of different plasmids. Neuronal cultures 

were transfected with EGFP (employing a CMV promoter) or GFP (employing a 

baculovirus promoter). With both of these plasmids, however, it was apparent that 

autofluorescence is prominent in Helisoma neurons because fluorescence was apparent in 
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the soma of untransfected cells when imaged with the appropriate filter sets for either of 

these proteins. This autofluorescence is quite prominent in the soma of Helisoma 

neurons, but is not present in the growth cones, and thus is not a factor for fluorescent 

imaging experiments employing growth cones.  

Because some autofluorescence was evident in all wavelengths examined 

(although it was greatest in the FITC range), we employed a plasmid that would produce 

a protein that would increase its fluorescence upon stimulation, under the idea that this 

stimulated fluorescence would be brighter than the autofluorescence seen under normal 

conditions. Therefore, Helisoma neurons were transfected with CREB-EGFP that 

increases in fluorescence when CREB is phosphorylated. To these cultures, 10 µM 

forskolin was added (forskolin activates PKA that phosphorylates CREB), and an 

increase in fluorescence was seen. This initially seemed promising, but control (non-

transfected) cultures also showed an increase in fluorescence in response to forskolin 

(Figure 5.6). This means that the autofluorescence in the soma of untransfected Helisoma 

neurons increases with standard FITC excitation. Although autofluorescence is known to 

be prominent in the soma of these neurons, we hoped to avoid this issue by examining 

fluorescence in growth cones. Growth cones did not exhibit autofluorescence, however 

no fluorescence was ever present in growth cones following transfection. 

An additional set of experiments involved lipid transfection of mass dissociated 

neuronal cultures with the 5-HT2βPan receptor from spiny lobster (Clark et al., 2004), 

followed by loading the cells with fura-2 (a calcium indicator dye) and then applying 50 

µM serotonin. Because it has been shown that around 50% percent of cells in the buccal  
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Figure 5.6:  Absolute fluorescence in the soma increases following addition of 10 µM 
forskolin to CREB-EGFP transfected neurons and control neurons. Following 
addition of 10 µM forskolin to CREB-EGFP transfected neurons and control neurons, 
absolute fluorescence increases within the soma of both types of neurons. This suggests 
that autofluorescence increases in the soma of control neurons following repeated light 
exposure with a standard FITC filter set. 0 minutes represents the time point immediately 
prior to forskolin addition.  Forkskolin was then added between time 0 and 1 minute (n = 
1). 
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ganglion usually respond to serotonin with an increase in calcium (Goldberg et al., 1992), 

it was thought that if this receptor was active in these neurons, then we should see an 

increase in that percentage. However, an increase from reported values was not seen; in 

fact, even fewer neurons responded to serotonin with an increase in calcium. 

In the next set of experiments mass dissociated neurons were lipid transfected 

with a 5-HT2βPan receptor from spiny lobster (Clark et al., 2004) and then subsequently 

stained with an antibody to this receptor. The goal of this experiment was to determine if 

the neurons were able to express the plasmid encoding the 5-HT2βPAN receptor. Following 

transfection, the neurons sat for 3 days to allow time for plasmid expression, and then 

were fixed and stained with a fluorescent antibody to this receptor. Because 

autofluorescence is a problem in Helisoma neurons, control dishes were made at the same 

time by transfecting neurons with an empty vector (PIRESneo). These dishes were fixed 

and stained at the same time and then the fluorescence level between the control and 5-

HT2βPAN receptor dishes were compared. In this experiment, a higher level of 

fluorescence was seen in the dishes that were transfected with the 5-HT2βPAN receptor as 

compared to the control empty vector transfected dishes (Figure 5.7, p≤0.001). This result 

suggested that Helisoma neurons were expressing the 5-HT2βPAN receptor. 

Because autofluorescence is quite prominent and variant in our neuronal cultures, 

in order to conclusively determine if our neurons were actually expressing the plasmid, 

the cultures were lipid transfected with a pcDNA3.1/His/lacZ plasmid. Through the use 

of a β-Gal staining kit, it would be easy to determine visually if the neurons were 

expressing the plasmid, and eliminate the confounding factor of autofluorescence.  
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Figure 5.7: 5-HT2βPAN transfected neurons are more fluorescent than empty vector 
transfected neurons. Neurons that are transfected with a plasmid containing the 5-
HT2βPAN receptor are more fluorescent than neurons that are transfected with an empty 
vector (n = 30 cells, 1 dish per condition). Three days following transfection, cells were 
fixed and stained with an antibody to the 5-HT2βPAN receptor. Neurons that are transfected 
with the serotonin receptor are significantly more fluorescent than those that are 
transfected with an empty vector (p ≤ 0.001).   
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Therefore, neuronal cultures were transfected with the pcDNA3.1/His/lacZ plasmid and 

then stained with the β-Gal staining kit. However, staining was not apparent (n = 6 

dishes).    

In the final set of experiments, Helisoma neurons were plated and allowed 1-2 

days to adhere to the substrate. They were then directly microinjected with a combination 

of pcDNA3.1/His/lacZ plasmid (from 0.1-1µg/µl) and fast green (from 0.1-2%). After the 

neurons were injected, three days were allowed for expression. Then, the neurons 

werefixed and stained using a β-Gal staining kit to check for expression. Unfortunately, 

expression was not evident in any cell (n = 4 dishes).   

 

Discussion 

In this set of experiments, both whole ganglia and mass dissociated neuronal cultures 

were transfected with a number of different plasmids. The first step in this set of 

experiments was to determine if the plasmids were actually being expressed. Initially, it 

appeared that Helisoma neurons were expressing these proteins, but upon closer 

examination it was observed that the soma of Helisoma neurons have a great deal of 

autofluorescence. Therefore, it is impossible to separate out the autofluorescence from 

the possible EGFP expression. This autofluorescence may be due to a number of factors. 

First of all, it has been reported that transfecting cells with lipofectamine does cause 

vacuole type autofluorescence, which also has been observed in Helisoma neurons 

(personal observations). Secondly, many of the neurons from the buccal ganglion are 

pigmented, which also causes autofluorescence. In another snail, this problem was 
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addressed by raising snails from birth on a diet entirely of lettuce. This study reported 

that doing such reduced the pigmentation in the soma of these neurons (Elliott & 

Kleindienst, 1990). However, preliminary studies conducted in Helisoma did not seem to 

give the same result (personal observations). 

Mass dissociated neurons were also lipid transfected with either EGFP, GFP, 5-

HT2βPan, or CREB-EGFP. Although results with a number of these probes initially 

appeared promising, it has also been determined that the autofluorescence in Helisoma 

buccal neurons increases with repeated imaging (excitation with the FITC filter set). It is 

also important to note that it has been reported that autofluorescence can emit even more 

green light than what is emitted by EGFP (Doyle et al., 2003). Therefore, distinguishing 

transfected cells by looking for an increase in fluorescence could be misleading because 

it may just mean that there an increased amount of autofluorescence in that cell.  

Autofluorescence in the central nervous system is usually due to the presence of 

lipofuscin, which increases in amount with age (Doyle et al., 2003). However, it is 

unknown if this is the cause of the autofluorescence seen in Helisoma neurons.     

Because autofluorescence is very prominent and variant in Helisoma neurons, in 

order to confirm that our neurons were expressing these plasmids, they were lipid 

transfected or injected with the pcDNA3.1/His/lacZ plasmid and then stained with a β-

Gal staining kit. However, staining was not evident in these experiments. In order to 

determine whether perhaps the lipid based transfection reagent was not in fact delivering 

the plasmid to the interior of the cell, direct microinjection of the plasmids was 
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performed. However, expression of this plasmid was not evident following direct 

microinjection either. 

The major downfall to this project may have been the type of promoter chosen. 

Most of the plasmids used thus far employ either a CMV or a baculovirus promoter. 

Although there are two previous papers that demonstrate the successful use of a CMV 

promoter in mollusks, these studies were not using neuronal cultures. One study used 

liposomes to successfully express a plasmid with a CMV promoter in oyster heart 

primary cell cultures (Boulo et al., 1996). Another study employed a lipofectamine-type 

reagent (DOTAP) to express a plasmid with a CMV promoter in a snail (Biomphalaria 

glabrata) embryonic cell line (Lardans et al., 1996). However, these cell types may be 

quite unlike neurons, and as such, a different promoter type may be required for 

Helisoma neuronal expression.   

Previous studies in Aplysia have observed plasmid expression in primary neurons 

via microinjection of plasmids with particular promoters (Kaang, 1996b; a). In these 

studies, when a plasmid that had a CMV promoter was injected, expression was not seen. 

Because a CMV promoter was employed in the current set of experiments, this may be 

the major issue. Promoters that have been shown to work in Aplysia include RSV, AP-1 

RSV, VIP, and c-fos (Kaang, 1996a). Although many of these promoters are not 

commercially available in a plasmid, a future study would most likely benefit greatly 

from obtaining the most successful of these plasmids, the pNEX vector, which employs 

the AP-1 RSV promoter.   
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5.3 Turning of Helisoma neuronal growth cones 

 

Introduction 

When growth cones are migrating to their point of synaptic connection, the migration 

usually does not occur in a straight line. Therefore, turning of growth cones during 

development is an important process, which has recently begun to be studied in depth. 

There are multiple studies that have demonstrated that growth cones in vitro will turn in 

response to an extracellular gradient of a variety of chemotropic molecules, including 

netrin-1, retinoic acid and glutamate (Zheng et al., 1996; Ming et al., 1997; Dmetrichuk 

et al., 2006). Interestingly, work employing Xenopus spinal neuron growth cones has 

shown that netrin-1 can serve as either an attractive or repellant cue, depending on the 

concentration of specific second messengers within those growth cones (Nishiyama et al., 

2003). Turning has also been exhibited by growth cones from invertebrate neurons. In the 

pond snail, Lymnaea, a gradient of retinoic acid results in attractive turning of growth 

cones (Dmetrichuk et al., 2006). Additionally, Helisoma growth cones exhibit repulsive 

turning in response to a gradient of a myosin light chain kinase inhibitor, ML-7, that 

disrupts actin bundles within growth cones (Zhou et al., 2002). Because previous studies 

had demonstrated that nitric oxide causes a slow down in neurite outgrowth at lower 

concentrations and growth cone collapse at high concentrations, we thought that it might 

serve as a chemorepellant factor in growth cone migration (Trimm & Rehder, 2004). In 

Helisoma, the migration route of the B5 neuron contains multiple branch points and nitric 

oxide could act as a repellant factor at those branch points to mediate growth cone 



  156  

migration away from the inappropriate nerve branch. Therefore, in the current study, we 

sought to determine if growth cone turning could be initiated by an extracellularly 

applied gradient of nitric oxide. 

 

Materials & Methods 

Individual B5 neurons from Helisoma trivolvis were plated onto poly-L-lysine coated 

glass coverslips and allowed 1-2 days to extend projections tipped with growth cones. 

NOC-7 or NOC-5 (Calbiochem) were employed at various concentrations as the nitric 

oxide donor. NOC-7 or NOC-5 were locally applied to one side of a growth cone via 

micropipette, in combination with a Picospritzer (General Valve Corporation, Fairfield 

NJ) and stimulator. The concentration of NOC-7 within the pipette, as well as the 

duration and frequency of application were varied to determine the parameters that would 

result in growth cone turning.  

 

Results 

Although this experiment was performed numerous times, with variations in the 

concentration of the nitric oxide donor, the micropipette distance from the growth cone, 

frequency of application and burst duration, turning was never definitively observed (see 

Table 5.1 for representative parameters tested). In all experiments conducted, growth 

cones either collapsed or continued growing in their initial direction, and turning was 

never observed. 

 



      
      
      

 
 
 
Table 5.1: Growth cone turning parameters tested. 
 

Date Drug & 
Concentration 

Angle to 
Growth Cone

Distance from 
Growth Cone 

Duration of 
Puff 

Frequency of 
Application 

Result 

7.13.05 100 µM NOC-5 45° 50 µm 40 ms 5 puffs/20 seconds No turning 
7.13.05 500 nM CytoB 45° 50 µm 35 ms 5 puffs/20 seconds No turning 
7.14.05 100 µM ML-7 45° 75-100 µm 10 ms 5 puffs/20 seconds No turning 
8.17.05 100 µM NOC-5 45° 75-100 µm 10 ms 1 puff/second No turning 
8.18.05 100 µM NOC-5 45° 75-100 µm 10 ms 1 puff/second No turning 
9.14.05 200 µM NOC-5 45° 100 µm 5 ms 2 puffs/second No turning 
9.16.05 200 µM NOC-5 45° 100 µm 20 ms 2 puffs/second No turning 
9.21.05 200 µM NOC-5 45° 50 µm 20 ms 2 puffs/second No turning 
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Discussion 

In vitro studies suggest that nitric oxide can act as a “stop and search” signal for 

migrating Helisoma B5 growth cones (Trimm & Rehder, 2004). In vivo, it may be that 

nitric oxide released from cells along a growth cone’s migration route mediates 

appropriate motility. In order to investigate the possibility of NO acting as a guidance 

cue, the current set of experiments addressed in vitro turning of B5 growth cones as a 

result of repeated local NO application. The concentration of the nitric oxide donor, 

micropipette distance from the growth cone, frequency of application, and burst duration 

were varied in these experiments to find parameters that would cause growth cone 

turning. However, in all experiments attempted, growth cones either collapsed or 

continued growing in their initial direction, and turning was never observed.  

A previous study employing Helisoma B5 neurons demonstrated that an 

extracellular applied gradient of a myosin light chain kinase inhibitor, ML-7, to growth 

cones results in repulsive turning away from the gradient (Zhou et al., 2002). It is thought 

that this application of ML-7 resulted in local actin bundle loss on one side of the growth 

cone, resulting in turning away from the gradient. Therefore, that study demonstrated the 

ability of Helisoma growth cones to exhibit turning in vitro, suggesting that there may be 

a narrow range of parameters that result in turning. However, it is also possible that nitric 

oxide is not a cue that initiates turning of Helisoma B5 growth cones. 
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5.4 Vesicle movement within Helisoma growth cones 

 

Introduction 

Vesicle trafficking is important for neurite extension and growth cone steering during 

development, because vesicles serve as membrane donors and transport needed proteins 

to the growth cone (Craig et al., 1995; Henley & Poo, 2004). Until recently, it was 

thought that vesicles were found in the central domain of the growth cone, but were not 

present in filopodia (Rees et al., 1976; Cheng & Reese, 1985; Diefenbach et al., 1999). 

However, a recent study suggests the presence of vesicles in filopodia of rat visual 

cortical neurons (Sabo & McAllister, 2003). Additionally, an earlier study using chick 

ciliary ganglion neurons demonstrated that there are two types of endocytotic vesicles 

(endosomes) within growth cones: evoked endosomes and constitutive endosomes 

(Diefenbach et al., 1999). Evoked endosomes are dependent on depolarization for their 

formation and release, whereas constitutive endosomes are not. Therefore, vesicles are a 

prominent structure within the growth cone. 

Because the two aforementioned studies found opposing results on the 

localization of vesicles within filopodia (Diefenbach et al., 1999; Sabo & McAllister, 

2003), we sought to determine if vesicles were localized within filopodia of Helisoma 

growth cones. Helisoma growth cones lend themselves to this type of study because in 

comparison to chick and rat growth cones, Helisoma growth cones are quite large and the 

filopodia are numerous and well-defined. Therefore, the current experiment examined 

vesicle placement and movement within Helisoma neuronal growth cones, by employing 
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a fluorescence dye that stains vesicles, termed FM 1-43. Helisoma B5 neurons were 

loaded with the vesicular marker, FM 1-43. The vesicles in the neurons were then 

“unloaded” through the use of a depolarizing stimulus, potassium chloride (KCl). In this 

experiment, vesicle placement within specific regions of the growth cone prior to and 

following unloading were examined.   

 

Materials and Methods 

FM 1-43 Loading and Unloading 

B5 neurons were removed from the buccal ganglion and plated on poly-L-lysine coated 

glass coverslips. They were used for experimentation once they had extended neurites 

tipped with growth cones (1-2 days following plating). Once growth cones were apparent, 

B5 neurons were loaded with 4 µM FM 1-43 and 34 mM KCl in L-15 (2ml total) for 1 

minute. Following loading, the cells were rinsed 3 times with L-15. The neurons were 

unloaded using 34 mM KCl in L-15. Growth cones were imaged using a Zeiss Axiovert 

135 microscope in combination with a cooled CCD camera (CH250, Photometrics; 

Tuscon, AZ) and stored on a Macintosh Quadra 800 (Apple Computer Inc.; Cubertino, 

CA). 

 

Results 

Vesicular placement and movement was examined using FM 1-43, a fluorescent dye that 

specifically labels vesicular membranes. In order to load B5 neurons with this dye, they 

were exposed to 4 µM FM 1-43 and 34 mM KCl in L-15 for 1 minute. Following 
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loading, the cells were rinsed 3 times with L-15. The neurons were then unloaded using 

34 mM KCl in L-15. Vesicle placement and movement within the growth cone was 

examined after loading and unloading. Immediately following loading, vesicle counts 

were highest in the central domain of the growth cone (34.5 ± 6.1 vesicles per growth 

cone) and much lower in the lamellipodia (8 ± 2.6 vesicles per growth cone; Figure 5.8). 

Few to no vesicles were seen in the filopodia (0.2 ± 0.1). One minute following 

unloading with 34 mM KCl, the average number of vesicles in the central domain 

dropped to 24.9 ± 5.5. By five minutes, this was reduced further to 11.5 ± 2.7 vesicles in 

the central domain.   

 

Discussion 

With the use of FM 1-43, it was possible to determine that most vesicles in the Helisoma 

B5 growth cone lie in its central domain. There are a few vesicles present in the 

lamellipodia, but almost none are found in filopodia. Although a previous study using 

FM 1-43 in chick ciliary neuronal growth cones demonstrated that vesicles are found 

throughout the growth cone, they were rarely seen in filopodia (Diefenbach et al., 1999). 

However, this is in contrast to a recently published paper that suggests that vesicles are 

commonly found in filopodia of rat cortical neurons (Sabo & McAllister, 2003). This 

difference that is seen could be due to the type of neurons used in each study (Helisoma 

buccal neurons and chick ciliary neurons versus rat cortical neurons). However, it is also 

possible that the technique used with the rat cortical neurons (Sabo & McAllister, 2003)  
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Figure 5.8: Vesicles are most prominent in the central domain of growth cones, 
lower in the lamellipodial region, and few to no vesicles are seen within filopodia. 
Helisoma B5 growth cones were loaded with the vesicular marker dye, FM 1-43 (t = 0 
minutes) and then unloaded with 34 mM KCl (immediately following t = 0 minutes). 
Immediately following loading, vesicle counts were highest in the central domain of the 
growth cone, much lower in the lamellipodial region, and few to no vesicles were seen in 
filopodia. Five minutes following unloading with 34 mM KCl, the average number of 
vesicles within the central domain was reduced by more than 50%, in comparison to 
pretreatment values. 
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allowed for the visualization of vesicles in filopodia because they used a different 

vesicular dye (FM 4-64) than in the present study and the one employing chick ciliary 

neurons (Diefenbach et al., 1999). Therefore, the results of this study are inconclusive 

and further studies should be conducted to further investigate the localization of vesicles 

within the filopodia of Helisoma growth cones. 
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5.5 Protein kinase inhibition slows neurite outgrowth  

 

Introduction 

Growth factors are molecules that promote neuritogenesis and neurite outgrowth. Neurite 

outgrowth from Helisoma neurons will not occur unless they are cultured in conditioned 

medium, which is made by incubating Helisoma ganglia in Leibovitz’s L-15 medium (L-

15) for 3-4 days (Wong et al., 1981). During this period, the ganglia will release growth 

factors, mostly unidentified, that are required for neurite extension. Previous experiments 

in the Rehder lab demonstrated that removal of growth factors from the medium (by 

replacing conditioned medium with standard L-15 once neurite outgrowth has been 

initiated) results in filopodial elongation and a decrease in neurite outgrowth (K. Tornieri, 

personal communication). Because many growth factors act via protein tyrosine kinases, 

we sought to examine whether inhibition of protein tyrosine kinases would result in 

similar effects on growth cone morphology and outgrowth. If the inhibition of these 

protein tyrosine kinases resulted in similar effects on growth cone morphology and 

outgrowth, it is likely that they may mediate effects of growth factors on the 

cytoskeleton. Furthermore, knowledge about the particular protein tyrosine kinases that 

are involved in growth cone motility may provide us with clues about the particular 

growth factors that mediate outgrowth in Helisoma.  
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Materials & Methods 

Genistein and Lavendustin A, two tyrosine kinase inhibitors, were made up in 

dimethylsulfoxide (DMSO, Sigma) to obtain stock concentrations of 100 mM and 20 

mM, respectively. Genistein was added to conditioned medium to result in final 

concentrations of 50 µM, 100 µM, and 200 µM. Lavendustin A was added to conditioned 

medium to result in final concentrations of 10 µM and 20 µM. Control experiments were 

also performed in which growth cones were exposed only to the vehicle (DMSO) in 

appropriate concentrations. Growth cones exposed to vehicle only showed no change in 

neurite outgrowth over the 2 hour time period (data not shown). 

In this set of experiments, B5 neurons were removed from the buccal ganglion, 

plated into conditioned medium and allowed to grow for 1-2 days. For outgrowth 

experiments, growth cones were imaged through the 40X objective of an ausJENA 

Sedival microscope. The images were captured with a CCD C72 camera (MIT Dage, 

Michigan City, IN), digitized on a frame grabber (Scion LG-3; Scanalytics, Fairfax, VA) 

and stored on an Apple Macintosh G3 (Apple Computer Inc.; Cupertino, CA). Images 

were obtained every 20 minutes, for 1 hour prior to drug addition (t = -60, -40, -20, and 

0min) and two hours after drug addition (t = +20, +40, +60, +80, +100, +120min). Drugs 

were added immediately following image acquisition at t = 0min. To add the drug to the 

medium, 0.2 ml of conditioned medium was removed from the dish and the drug was 

added into this medium and then replaced in the dish. Outgrowth length was determined 

by measuring from a fixed point in the dish to the central domain of the growth cone at 
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each time point through the use of “Scion Image” software (Scion Corporation; 

Frederick, Maryland).   

 

Results 

Inhibition of protein tyrosine kinases results in a slowing/stoppage of neurite outgrowth  

In the current set of experiments, Helisoma B5 neurons were exposed to genistein, a 

general protein tyrosine kinase inhibitor, to examine its effects on neurite outgrowth. At 

the 50 and 100 µM concentrations of genistein, neurite outgrowth was significantly 

slowed in the first hour and further decreased in the second hour (Figure 5.9, both effects 

p ≤ 0.001). At the 200 µM concentration, neurite outgrowth was stopped in the first hour 

(from 17.0 ± 1.3 µm/h to 0.43 ± 1.9 µm/h; Figure 5.9) and did not recover in the second 

hour (-2.2 ± 0.96 µm/h; both effects p ≤ 0.001). In addition, the stoppage of outgrowth 

occurred within the first 20 minutes after addition of 200 µM genistein (data not shown).  

 

Inhibition of EGF RTK results in a slowing/stoppage of neurite outgrowth 

Genistein is a general protein tyrosine kinase inhibitor. Therefore, we employed a more 

specific receptor tyrosine kinase inhibitor, Lavendustin A, to determine its effects on 

filopodial length and neurite outgrowth. Lavendustin A specifically inhibits epidermal 

growth factor receptor tyrosine kinases (EGF RTK). Addition of Lavendustin A had a 

dose-dependent effect on neurite outgrowth (Figure 5.10). At the 10 µM concentration, 

neurite outgrowth slowed significantly in the second hour of drug addition (from 20.4 ±  
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Figure 5.9: Inhibition of protein tyrosine kinases results in a dose-dependent 
decrease in neurite outgrowth. Inhibition of protein tyrosine kinases with 50 µM (n = 
18) and 100 µM (n = 13) genistein causes a slow-down in the rate of neurite outgrowth in 
the first and second hour following drug addition. Two hundred µM Genistein (n = 14) 
results in a complete stoppage of outgrowth in the first hour following drug addition and 
a slight retraction in the second hour. All of these effects were highly significant 
(student’s t-test, p ≤ 0.001) when comparing the growth rates in the hour before treatment 
to the growth rates in the first and second hour following drug addition.   
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Figure 5.10: Inhibition of EGF RTK results in a slowing of neurite outgrowth. 
Inhibition of EGF RTK with 10 µM Lavendustin A (n = 14) has no effect on neurite 
outgrowth in the first hour following drug addition, but causes a significant slow-down in 
outgrowth in the second hour following drug addition (as compared to the hour before 
treatment, p ≤ 0.001). Twenty µM Lavendustin A (n = 11) results in a significant slow-
down in neurite outgrowth in the first and second hours following drug addition (as 
compared to the hour before treatment, p ≤ 0.01 for 1 hr Post and p ≤ 0.001 for 2 hr Post). 
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1.3 µm in the hour prior to drug addition to 8.5 ± 2.3 µm; p ≤ 0.001). Twenty µM 

Lavendustin A caused neurite outgrowth to be slowed more rapidly and strongly, and 

completely halted outgrowth in the second hour following drug addition (from 13.2 ± 1.7 

µm in the hour prior to drug addition to -0.2 ± 1.4 µm in the second hour following drug 

addition). However, it is also important to note that neurite outgrowth rates in the hour 

prior to Lavendustin A addition are different between the 10 µM and the 20 µM 

conditions. This is common when measuring Helisoma neurite outgrowth rates, which 

usually range from 10-20 µm per hour, but can vary from dish to dish. In the current 

study, both 1 hour pretreatment groups fall into this common range of outgrowth rates, 

but do appear to be different from one another. 

 

Discussion 

The current experiments demonstrate that inhibition of protein tyrosine kinases, and 

specifically, EGF RTK, results in a slow-down of neurite outgrowth. These findings 

complement a previous study from this lab that demonstrated that 200 µM genistein 

results in significant filopodial elongation, but has no effect on filopodial number (Cheng 

et al., 2000). Therefore, inhibiting protein tyrosine kinases in Helisoma B5 neurons 

results in a slow down and search behavior that is characterized by a reduction in neurite 

outgrowth along with filopodial elongation. Additionally, these changes in growth cone 

dynamics mimic the effect of removing growth factors.  

Another study from this lab demonstrated that inhibition of members of the PI-3K 

pathway results in a slow down and search behavior, which is characterized by an 
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increase in filopodial length and a decrease in the rate of neurite outgrowth (Tornieri et 

al., 2006). This behavior also mimics that which is seen when growth factors are depleted 

from the medium. Specifically, growth factors are thought to act via RTKs, and if RTKs 

are inhibited with genistein or Lavendustin A, the result is similar to that which is seen 

when growth factors are depleted. This suggests that when a growth cone is pathfinding 

where concentrations of growth factors may be low, a growth cone would slow its 

outgrowth rate and increase its filopodial length, in order to sample a larger portion of the 

environment, thereby allowing for appropriate pathfinding.   

Examination of targets of the lipid kinase activity of PI-3K (ROCK and Akt) 

demonstrated that filopodial dynamics can be regulated independently of neurite 

outgrowth (Tornieri et al., 2006). In these experiments, filopodial dynamics were affected 

in the first 30 minutes following drug addition, but an effect on neurite outgrowth was not 

seen until the second hour following drug addition. This means that the “slow-down and 

search” behavior that is seen can actually be divided into two parts: “slow-down” and 

“search.” This would be useful for a growth cone that may need to maintain a constant 

speed, while increasing its action radius. This is what is seen with inhibition of Akt or 

ROCK. However, if a growth cone needs to sample its environment more closely, the 

behaviors can be coupled into the entire “slow-down and search” behavior that is seen 

with inhibition of RTKs. 
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5.6 NGF or BDNF alone are not sufficient to result in sprouting of Helisoma neurons 

 

Introduction 

Helisoma buccal neurons are cultured in conditioned medium, which is made by 

incubating the central ring ganglia from Helisoma in Leibovitz’s medium for 3 to 4 days. 

During this process, these ganglia release growth factors into the medium that are 

necessary for neurite outgrowth (Wong et al., 1981). Although attempts have been made 

to characterize the factors present in this conditioned medium, only one factor has been 

identified, which is a laminin-like ~300 kD extracellular matrix protein (Miller & Hadley, 

1991). Therefore, a study was conducted to determine if two of the well-described growth 

factors would be sufficient to allow for neurite outgrowth of Helisoma neurons. In these 

experiments, neurons were mass dissociated in Leibovitz’s medium containing nerve 

growth factor (NGF) or brain derived neurotrophic factor (BDNF). Following plating, 

neurite sprouting was counted in each culture for three days. However, in Helisoma mass 

dissociated cultures neither NGF nor BDNF had any effect on sprouting.  

 

Materials and Methods 

Mass dissociated cultures were prepared by incubating the entire central ring ganglia 

(includes cerebral, pleural, pedal, parietal, and visceral ganglia) in 0.3% collagenase (type 

XI, Sigma) for 90 minutes at 37°, followed by an incubation in trypsin (0.15%) for 60 

minutes, and then trypsin inhibitor (0.2%) for 30 minutes. Ganglia were then placed in 

cell extraction medium (2µl of 1M CaCl2 in 1 ml L-15) for 15 minutes. Neurons were 
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then dissociated and plated in defined medium (L-15) with the addition of either NGF 

(concentrations of 100, 200, 300, or 400 ng/ml) or BDNF (at concentrations of 50 or 100 

ng/ml). Outgrowth was scored 1, 2, and 3 days following plating.   

 

Results 

In these experiments, mass dissociated central ring ganglia were plated into dishes 

containing L-15 with various concentrations of NGF (100, 200, 300, or 400 ng/ml) or 

BDNF (50 or 100 ng/ml).  These dishes were monitored for evidence of neurite sprouting 

for each of 3 days following plating. Sprouting was not evident on any cell in any dish. 

 

Discussion 

A previous study in Lymnaea stagnalis demonstrated that plated motorneurons and 

interneurons show a sprouting response when they are plated in defined medium with 

added NGF (Ridgway et al., 1991). However, in our related species (Helisoma trivolvis), 

when mass dissociated central ring ganglia were plated in defined medium with added 

NGF (100, 200, 300, 400 ng/ml), no sprouting was seen. Interestingly, the Lymnaea 

paper had tested one concentration (400ng/ml) of NGF on Helisoma pedal A cluster 

motorneurons and also observed no sprouting. Thus, our results are in line with previous 

data and with a report in Aplysia that demonstrates that NGF causes a reduction in neurite 

outgrowth in bag cell neurons (Gruenbaum & Carew, 1999). In reference to BDNF, this 

study in Aplysia also demonstrated that neurite outgrowth was increased when bag cells 

were plated on laminin and fibronectin, but was reduced when cells were plated on poly-
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L-lysine. In our system, mass dissociated central ring ganglia from Helisoma plated in 

defined medium with added BDNF (50 or 100 ng/ml) showed no sprouting. Therefore, a 

NGF or BDNF-like factor does not appear to modulate sprouting in Helisoma. This 

project could be continued further by investigating other growth factors that may possibly 

be involved, such as EGF. An additional study could examine the possible effect of 

substrate-dependence on sprouting with various growth factors. It is also likely that all 

Helisoma neurons would not respond in the same manner to an individual growth factor. 

An individual growth factor may affect one population of neurons, but not others. It is 

also possible that there is a specific combination of growth factors that would be required 

to initiate neurite outgrowth in Helisoma neurons. 
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Chapter 6: General Discussion and Conclusions 
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During development, neurons must find their way to, and make connections with their 

appropriate targets. This process of neuronal pathfinding is one that is multi-faceted 

involving extracellular cues, intracellular signaling pathways, and cytoskeletal changes. 

Although many guidance cues and a few key intracellular signaling pathways have been 

well-defined, there is still much unknown about the regulation of growth cone behavior 

during the pathfinding process. This dissertation focuses in large part on the effect that a 

gaseous molecule, nitric oxide, can have on growth cone behavior, and defines the 

intracellular pathway though which its effects are mediated. 

 The current studies demonstrate that exogenous, local application of nitric oxide 

to an individual Helisoma B5 growth cone results in an increase in filopodial length, a 

decrease in filopodial number and an increase in the [Ca2+]i. Furthermore, the effects of 

nitric oxide on growth cone dynamics and calcium are transient and limited only to the 

stimulated growth cone. Nitric oxide mediates its effects via an intracellular signaling 

cascade that involves sGC, PKG, cADPR, and RyR-mediated intracellular calcium 

release. Calcium influx across the plasma membrane is also a contributor to the nitric 

oxide-induced increase in the [Ca2+]i. Taken together, these studies suggest that nitric 

oxide can regulate growth cone morphology via a signaling cascade that involves an 

important second messenger, calcium.  

 

Nitric oxide is a gaseous messenger that can regulate growth cone dynamics. 

Although not commonly viewed as a conventional guidance cue, nitric oxide (NO) has 

recently been regarded as an important regulator of growth cone morphology and 
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migration during development (Hess et al., 1993; Renteria & Constantine-Paton, 1996; 

Gibbs & Truman, 1998; Van Wagenen & Rehder, 1999; Ernst et al., 2000; Haase & 

Bicker, 2003; Trimm & Rehder, 2004; Zhang et al., 2005). In the nervous system, NO is 

formed by the conversion of L-arginine and oxygen to L-citrulline and NO. This reaction 

is catalyzed by the enzyme neuronal nitric oxide synthase (nNOS), which requires the 

presence of calcium/calmodulin (Ca2+/CaM) (for review see Alderton et al., 2001). 

Staining for NOS or NADPH (a cofactor required for the production of NOS) has 

demonstrated that NOS is localized at the correct place and time in parts of the 

developing nervous system to act as a regulator of neuronal migration, neurite outgrowth 

and synaptogenesis (Williams et al., 1994; Gibbs & Truman, 1998; Santacana et al., 

1998; Haase & Bicker, 2003). 

 

Nitric oxide as a gaseous messenger 

Perhaps one of the most striking aspects of NO is that it is a gas, which allows it to 

diffuse across cell membranes and affect intracellular targets. Yet, because NO is a gas, 

this also limits the scope of its action radius. The half-life of NO was originally thought 

to be approximately 5 seconds (Wood & Garthwaite, 1994), because in aqueous solutions 

nitric oxide reacts with oxygen to be converted to nitrites and nitrates (Moncada & Higgs, 

1993; Kelm, 1999). However, a recent study, employing more physiologically-relevant 

concentrations of NO, instead suggests that the half-life of NO is approximately 10 ms 

(Hall & Garthwaite, 2006). The area of influence that NO could affect has been modeled 

in a number of studies. One study suggests that a point source of NO, released for 1-10 
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seconds, has a sphere of influence of about 200 µm (Wood & Garthwaite, 1994). A more 

recent study that has modeled the diffusion of NO from a variety of cell sizes suggests 

that a cell with a radius of 100 µm (similar to the size of the B5 neuron) would affect an 

area 2.8 times the size of its radius (Philippides et al., 2000). Therefore, NO’s limited 

diffusion restricts its action radius, but highlights its role as a detailed regulator of 

developmental processes.  

Because NO is a gas, it is possible that NO could act as both an intra- and inter-

cellular messenger during development. It is easier to imagine the role of NO as an 

intercellular messenger, because NO could be released by cells along a growth cone’s 

migratory path or by cells within the target region of a neuron. However, NO could also 

act as an intracellular messenger. For instance, B5 neurons from Helisoma trivolvis not 

only respond to NO, they also demonstrate staining for its synthetic enzyme, NOS (Van 

Wagenen & Rehder, 2001). In addition, NO released from a B5 neuron can affect a 

migrating growth cone on another B5 neuron in vitro (K. Tornieri and V. Rehder, 

personal communication). Moreover, inhibition of endogenous NOS in B5 neurons 

results in a decrease in their own neurite outgrowth rate (Trimm & Rehder, 2004). This 

study suggests that B5 neurons require an intrinsic production of NO in order to maintain 

an optimal outgrowth speed and departures from this optimal level result in a slowing of 

neurite outgrowth. The production of NO within a neuron can be modified by a number 

of factors. For example, stimulation of Helisoma neurons with electrical activity leads to 

an increase in the intracellular calcium concentration (Cohan et al., 1987). Increased 

intracellular calcium concentrations could then lead to activation of NOS, via Ca2+/CaM. 



  178  

It is important to note that any signaling event that results in an increase in the 

intracellular calcium concentration could lead to an increase in NO production because 

the activity of NOS is stimulated by Ca2+/CaM. 

It is possible that NO is an intracellular messenger and can act upon itself via a 

positive feedback loop. In the current set of experiments, we investigated whether 

exogenous application of an NO donor could result in the activation of an intracellular 

feedback loop (through cGMP, Ca2+/CaM, and NOS) that would ultimately lead to an 

increased production of NO. In the current study, exogenous application of NO resulted 

in an increase in filopodial length and a decrease in filopodial number. Inhibiting NOS 

(to break this hypothesized feedback loop) before applying exogenous NO resulted in the 

same changes in filopodial length and number that are seen with NO application alone. 

Therefore, exogenous NO application does not appear to be activating a feedback loop 

that affects filopodial dynamics in the current study. However, it could be that in vivo the 

B5 neuron produces NO that activates this feedback loop, resulting in a continued 

production of NO. This scenario describes a role for NO as an intracellular messenger in 

B5 neurons, allowing NO to regulate its own growth cone morphology and neurite 

outgrowth rate. This has been demonstrated previously in Helisoma, because inhibition of 

endogenous NOS in B5 growth cones results in a reduction in its neurite outgrowth rate 

(Trimm & Rehder, 2004). Therefore, NO’s action as an intracellular messenger could be 

essential to the pathfinding process in vivo.  
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Nitric oxide acts locally at the growth cone  

Previous studies have demonstrated that global application of NO results in changes in 

growth cone morphology and the neurite outgrowth rate (Van Wagenen & Rehder, 1999; 

Trimm & Rehder, 2004). However, these studies did not provide information about the 

site of action of NO. In the current study, by locally applying NO to growth cones using a 

micropipette, and employing a millisecond burst duration, the results suggest that NO 

acts directly at the growth cone proper. A previous study from the Rehder lab has also 

demonstrated immunocytochemically that the immediate target of NO, sGC, is present 

within B5 growth cones (Van Wagenen & Rehder, 2001). The current study extends 

these findings to demonstrate that two downstream targets of NO signaling, protein 

kinase G (PKG) and ryanodine receptors (RyR), are also localized to Helisoma B5 

growth cones. Therefore, because the radius of NO’s action is limited by the application 

method and the half-life of NO, and because the machinery necessary to transduce NO’s 

signal into cytoskeletal changes is localized within the growth cone, it is probable that the 

complete signaling action of NO takes place within the growth cone proper. These data 

suggest that if NO is released either by cells lining the migratory path of the growth cone 

or by the target tissue in vivo, it could initiate the second messenger signaling cascade 

described here within the growth cone proper and lead to the formation of appropriate 

connectivity within the nervous system of Helisoma. 

 The radius of action of nitric oxide is limited both spatially and temporally. This 

property of nitric oxide can be considered advantageous and disadvantageous. On the 

beneficial side, NO has a very limited half-life, thereby allowing for specific regulation 
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of a single growth cone or synapse. It may be that NO would need to act on the motility 

of only an individual growth cone or a subset of neurites. Therefore, the spatial and 

temporal limitations of NO would allow for specific regulation of the motility of certain 

processes, but not others. An example of this has been demonstrated in cortical pyramidal 

neurons, because the dendrites of these neurons grow toward the pial surface and the 

axons grow toward the white matter (Polleux et al., 2000). This process of directed 

outgrowth is mediated by differing reactions of dendrites and axons to semaphorin 3A 

(Polleux et al., 2000). Interestingly, the dendrites of these neurons contain high levels of 

sGC, whereas the axons do not, and this allows for a mechanism via which nitric oxide 

could have precise control over a region of a cell (e.g. dendrites versus axons). However, 

it is also known that NO can diffuse far enough to act on multiple cells, thus making the 

sGC receptor an integral part of the signaling system. sGC is found only in certain cells 

or certain compartments of an individual cell, thereby allowing only the cells that should 

be affected by NO to have the ability to sense and respond to its presence. Therefore, 

sGC allows a larger diffusion radius of NO to still result in target specificity. On the 

negative side, nitric oxide is removed quickly from the system and thus requires tissues 

or cells to continuously produce NO, which may be energetically costly. Furthermore, 

depending on the “sinks” for NO in the surrounding environment, nitric oxide may not 

always reach its intended target or may reach too many targets, resulting in inappropriate 

effects on the nervous system. Although there are some detriments to the NO-sGC 

signaling system, the specificity of NO for sGC allows for precise regulation of 
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individual cells, neuritic processes and growth cones, resulting in the appropriate 

development of the nervous system. 

 

Very low concentrations of nitric oxide can have large effects on growth cone 

morphology 

In the current study, NO is applied in a very temporally-restricted fashion. To apply NO 

locally, a picospritzer was employed to allow for a millisecond burst of NO that would 

cover the growth cone in a cloud, but then dissipate within 2 to 3 seconds. Although the 

exact concentration of NO released by this puff is not known, it is reasonable to assume 

that the concentration is much lower than that occurring during global application. 

Importantly, very spatially- and temporally-restricted applications of NO had effects on 

growth cone morphology that lasted on a timescale of minutes. In addition, low 

concentrations of NO appear to be amplified through the signaling cascade, resulting in a 

25% increase in filopodial length and approximately a 65 nM increase in the intracellular 

calcium concentration ([Ca2+]i). It may be that such a small concentration of NO could 

have such large effects, because the half-maximal effective concentration of NO that 

activates sGC in cells has been estimated to be 45 nM (Bellamy & Garthwaite, 2001; 

2002). Additionally, studies have demonstrated that NO’s binding to the heme group of 

sGC results in up to a 200-fold activation of the enzyme (for review see Koesling et al., 

2004). Overall, this suggests that a very short-lived application of NO activates a 

signaling cascade that results in much longer and larger changes in growth cone 

morphology.  
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Physiological concentrations of NO in the brain from a variety of species are 

thought to be in the low nanomolar range (for review see Hall & Garthwaite, 2005). 

There are a few studies that have estimated the NO concentration specifically within 

molluscan nervous systems. A study in Lymnaea demonstrated that the buccal ganglion 

endogenously produces NO at concentrations ranging from 30-100 nM (Moroz et al., 

1995). Another study in Lymnaea found a peak NO concentration of 21 nM released from 

the buccal ganglion following sucrose stimulation (Kobayashi et al., 2000). The 

discrepancies between these studies may result from a few factors. First, the meters and 

microelectrodes employed in these studies are known to be inaccurate, especially when 

measuring low concentrations of NO. Additionally, it has been demonstrated that the 

concentration range of NO can vary a great amount, depending on the location of the 

microelectrode over the tissue (i.e. different regions may have more or less NO-

producing cells); this explains why the first study mentioned above found a large range of 

NO concentrations produced by the buccal ganglion (Moroz et al., 1995). It is important 

to note that these studies are limited because they measure NO release from an entire 

ganglion, which typically contains only a few NO-producing neurons. Moreover, as 

mentioned previously, NO has a very short half-life and its diffusion is severely limited 

by the surrounding environment. Therefore, the concentrations measured may only be a 

fraction of what is actually released. Current studies have begun to address these issues 

using a special microelectrode and state that it is possible to measure NO release from a 

single neuron (Patel et al., 2006). Presently, measuring NO release accurately is difficult, 

however future improvements in equipment should allow for quantification of NO release 
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from a single neuron, thereby allowing for more accurate measurements of physiological 

concentrations of NO.  

 

The role of nitric oxide during the developmental period of neuronal outgrowth 

NOS, the enzyme that produces NO, is present at the proper developmental time and 

location to regulate processes such as migration,  outgrowth and synaptogenesis in a 

variety of species (Williams et al., 1994; Gibbs & Truman, 1998; Santacana et al., 1998; 

Haase & Bicker, 2003). For example, in the chick visual system, NADPH staining 

correlates temporally to the point at which retinal axons innervate the tectum (NADPH is 

a cofactor required for the production of NO) (Williams et al., 1994). In grasshoppers, the 

migration of a population of midgut neurons is dependent on the presence of NOS that is 

produced by the cells lining the gut (Haase & Bicker, 2003). 

In Helisoma trivolvis, preliminary data on staining for NADPH demonstrates 

heavy staining for NADPH in the salivary gland and lighter bands of staining within the 

esophagus (K.Welshhans, personal observations). The B5 neuron has two projections 

emanating out from the esophageal nerve trunk. The major projection makes a connection 

in the esophagus whereas the minor projection terminates within the buccal mass 

(Murphy & Kater, 1980a; Berdan et al., 1989; Berdan et al., 1990). Because the 

esophagus demonstrates staining for a cofactor of NO production, NO may be produced 

within the esophageal region. Therefore, NO could act as a regulator of B5 growth cone 

motility during the point when it is approaching and/or forming a synapse on the 

esophageal muscle. Because there are many branching nerves radiating out from the 
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buccal ganglion, and because NO acts as a “stop and search” signal (Trimm & Rehder, 

2004), it is also possible that NO is acting as a regulator of growth cone motility at these 

branching points in vivo; however, we do not see any staining for NADPH in these 

branch points in vivo. 

It has been hypothesized that NO acts as a “stop and search” signal within the 

developing nervous system (Trimm & Rehder, 2004). An increase in filopodial length 

coupled with a decrease in filopodial number and a decrease in the neurite outgrowth rate 

defines this “stop and search” behavior. In vivo, growth cones may “stop and search” in 

response to release of NO at either a choice point or within a target region, thereby 

increasing their action radius and allowing them to search for the cue that will direct them 

either down the proper nerve or to the correct portion of their target. However, one can 

also visualize a situation in which graded release of NO could have very different effects 

on growth cone behavior. In the current study, we demonstrated that a millisecond release 

of NO affects growth cone dynamics for a time span of approximately 20 minutes. 

Previous studies have found that a prolonged release of NO results in changes in growth 

cone morphology and outgrowth lasting for a longer time span (Van Wagenen & Rehder, 

1999; Trimm & Rehder, 2004). Therefore, NO may hold multiple roles. For instance, 

NO’s release on a migrating growth cone could range from a shorter “search” signal that 

would affect filopodial dynamics on a short time scale, as demonstrated in the current 

study, to a much longer “stop and search” signal that affects filopodia and outgrowth for 

an extended period of time, as demonstrated previously (Trimm & Rehder, 2004). 

However, we need to investigate the effect of a spatially- and temporally-restricted 
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application of NO on the neurite outgrowth rate before this determination can be made. In 

any case, growth cones can display a variety of behaviors that are involved in achieving 

appropriate pathfinding and synaptogenesis. In Helisoma, the variety of behaviors that 

the B5 growth cone displays may hold an integral role in allowing appropriate 

pathfinding to and synapse formation on the esophageal muscle wall.  

The wiring of the nervous system is a process that is essential during the overall 

developmental period. There are a number of human diseases that can result when growth 

cones do not pathfind correctly or make appropriate connections with their targets. For 

example, L1 is a cell adhesion molecule that is involved in neuritogenesis, fasciculation, 

and neurite outgrowth (as reviewed in Kenwrick et al., 2000; Kiryushko et al., 2004; 

Maness & Schachner, 2007). Mutations in the L1 gene result in disease characterized by 

mental retardation and hydrocephalus. Another disease that results in mental retardation 

is Fragile X syndrome. Fragile X syndrome is characterized by the loss of an mRNA 

binding protein that is localized to growth cones. The loss of this protein results in 

reduced growth cone motility, contributing to the pathology of this disease (Antar et al., 

2006). One additional disease resulting from a lack of and/or inappropriate connectivity 

is spinal muscular atrophy, a neuromuscular disorder that results from deficiencies in 

neurite outgrowth and improper development of the neuromuscular junction (Fan & 

Simard, 2002). Spinal muscular atrophy results from the loss of the Survival of Motor 

Neuron (SMN) protein, which is localized to growth cones. Overall, these studies suggest 

that the correct wiring and patterning of the nervous system is a delicate process that can 

be easily disrupted through the mutation or loss of a single molecule or protein.  
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 The current finding that nitric oxide can regulate growth cone motility via a multi-

tiered second messenger cascade also has implications for human health and disease. 

Because nitric oxide regulates the motility of B5 growth cones in vitro and because NOS 

is produced within Helisoma in vivo, particularly within the target area of this neuron, 

these data suggest that nitric oxide may act as a guidance cue or target recognition factor 

in vivo. Nitric oxide is expressed during the development of the nervous system in many 

animals. Furthermore, nitric oxide acts to regulate a number of processes during this 

period when the connectivity of the nervous system is established (for review see Hall & 

Garthwaite, 2005). If this connectivity is not established properly, a diseased state can 

result. Therefore, understanding how nitric oxide acts on growth cone motility in vitro in 

a simple system will help us understand how it functions to regulate the development of a 

more complicated system, such as the mammalian nervous system. The development of 

the nervous system is easily affected by the loss of certain molecules and proteins, 

resulting in a diseased state. Thus, these data allow for further understanding of how one 

of these cues, NO, may regulate the proper wiring of the nervous system. 

 

Nitric oxide activates a signaling cascade that results in calcium release. 

Nitric oxide acts via sGC, PKG, and cADPR 

Nitric oxide has been demonstrated to affect filopodial motility via the s-nitrosylation 

pathway (Cheung et al., 2000), as well as through sGC (current report and Van Wagenen 

& Rehder, 1999; 2001; Trimm & Rehder, 2004). Although NO has been demonstrated to 

affect filopodial motility via s-nitrosylation in rat retinal ganglion cells (Cheung et al., 
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2000), NO does not appear to act via this pathway to regulate filopodial dynamics in the 

current report. Because the effects of NO on filopodial motility and [Ca2+]i can be 

completely blocked via inhibition of sGC, PKG, or the ryanodine receptor, it is unlikely 

that nitric oxide also acts via s-nitrosylation to affect these parameters. However, it is 

possible that s-nitrosylation mediates additional effects of NO that were not studied in the 

current report, such as a NO-induced depolarization. Overall, it appears that NO acts via 

sGC, and not s-nitrosylation, to initiate a change in filopodial dynamics and [Ca2+]i 

within Helisoma B5 growth cones. 

There are numerous developmental processes that have been shown to signal 

through the NO - sGC pathway (Gibbs et al., 2001; Leamey et al., 2001; Haase & Bicker, 

2003; Zhang et al., 2005; Mejia-Garcia & Paes-de-Carvalho, 2007). sGC converts GTP to 

cGMP and subsequently, cGMP acts on three major targets: cyclic nucleotide gated 

(CNG) ion channels, phosphodiesterases (PDEs), and PKG. The experiments in this 

dissertation demonstrate that exogenous local application of NO to B5 neurons activates a 

second-messenger pathway involving sGC, PKG, cADPR and RyR-induced calcium 

release. This is supported by immunocytochemical evidence that demonstrates the 

presence of sGC, PKG and RyRs within Helisoma B5 growth cones (current report and 

Van Wagenen & Rehder, 2001). 

Application of NO acts via the sGC pathway to result in an increase in filopodial 

length and the intracellular calcium concentration in B5 neurons, but when NO is applied 

to the B19 neuron, there is no change in filopodial motility or calcium. In addition, a 

previous report demonstrated that B19 neurons show little to no staining for sGC and 



  188  

addition of a sGC activator has no effect on these neurons (Van Wagenen & Rehder, 

2001). However, application of a cGMP analog or direct injection of cGMP into B19 

neurons does result in an increase in filopodial length. This suggests that the level of 

convergence for different signaling pathways on filopodial motility, at least for B5 and 

B19 neurons, is at the level of cGMP. It is currently unknown whether the filopodial 

effects of cGMP on B19 neurons are mediated via activation of PKG and cADPR-

modulated release of calcium through the RyR. However, because cADPR and RyRs are 

known to be relatively well-conserved molecules (Tunwell et al., 1996; Quinn et al., 

1998; Bultynck et al., 2001; Vazquez-Martinez et al., 2003; Guse, 2004), it is expected 

that B19 neurons would respond to injection of cADPR in the same manner as B5 

neurons.  

As mentioned previously, there are three major targets of cGMP: CNG ion 

channels, PDEs and PKG. In the current set of experiments, we were unable to examine 

the possible contribution of CNG ion channels, due to limitations in the available 

pharmacological tools. However, it is unlikely that the local application of NO employed 

in the current study led to activation of CNG ion channels because the effects of NO 

could be completely eliminated via pharmacological inhibition of PKG. In addition, the 

possibility of the phosphodiesterase pathway leading to regulation of growth cone 

morphology was eliminated by the results obtained from pharmacological experiments. A 

previous study demonstrated that NO can signal via the phosphodiesterase pathway in rat 

dorsal root ganglion neurons to regulate neurite and growth cone morphology (Tsukada et 

al., 2002). However, taken in combination with the current findings, these results 
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highlight the diversity of signaling that can be activated by NO. It is currently unknown 

why NO activates different signaling pathways to regulate growth cone morphology. One 

possibility, although currently unsupported, is divergent evolution in a variety of species. 

Alternatively, it is possible that during different development periods, there may be 

differential activation of signaling pathways by the same signaling molecule. This occurs 

in neural stem cells, where application of bone morphogenic protein to stem cells taken 

from periods early in development leads to a neuronal fate, whereas later in development, 

the same molecule leads to an astrocytic fate (as reviewed in Temple, 2001; Chen & 

Panchision, 2007). Another possibility is that the same signaling molecule may need to 

activate different pathways in different neurons. For example, in the cortex, ephrinA5 is a 

repulsive cue for layer 2/3 axons, yet promotes branching of layer 6 pyramidal cell axons 

(for review see Bolz et al., 2004). Different NO donors, concentrations of donors and 

application methods may also lead to activation of different signaling pathways. Evidence 

for this also comes from neural stem cells; application of a low concentration of 

epidermal growth factor leads to their continued proliferation into multipotential cells, 

whereas higher concentrations lead to differentiation into astrocytes (Burrows et al., 

1997; Temple, 2001). It is important to note that in Xenopus growth cones, the 

concentration ratio of cAMP to cGMP determines whether netrin-1 acts as an attractive 

or repellant cue, and this differential behavior occurs via activation of different second 

messengers (Nishiyama et al., 2003). These data suggest that there is a diversity of 

signaling that can be achieved by a single signaling molecule.  
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In the current study, we have demonstrated the NO is mediating its effects on 

filopodial dynamics via PKG. One target of PKG is ADP-ribosyl cyclase, which is the 

enzyme necessary for the formation of cyclic adenosine diphosphate ribose (cADPR) 

(Galione et al., 1993; Willmott et al., 1996b; Lee, 2001). cADPR is a second messenger 

that modulates calcium release from RyR-gated intracellular stores (as reviewed in Lee, 

2001; Guse, 2005). cADPR was originally discovered in sea urchin eggs (Lee et al., 

1989), however, its importance and universality as a second messenger has only recently 

been discovered (Higashida et al., 2001; Lee, 2001; Guse, 2005). cADPR modulates 

RyR-induced calcium release, however, whether this modulation is direct or through an 

intermediate binding protein is still unknown (as reviewed in Higashida et al., 2001; 

Guse, 2005). In addition, cADPR’s function is varied, depending on the species. In 

Aplysia and Helisoma, injection of cADPR results directly in an increase in the [Ca2+]i 

(Mothet et al., 1998 and Chapter 3 of current study). cADPR also causes calcium release 

in permeabilized rat pituitary cells and mouse pancreatic acinar cells directly (Koshiyama 

et al., 1991; Thorn et al., 1994). However, in other types of neurons, such as rat 

cerebellar granule cells and NG108-15 neuroblastoma cells, cADPR does not directly 

cause an increase in the [Ca2+]i, but instead potentiates calcium release initiated by other 

factors (De Flora et al., 1996; Hashii et al., 2000). 

cADPR was originally discovered as a downstream signaling molecule of NO in 

sea urchin eggs (Willmott et al., 1996a). However, more recent reports have 

demonstrated that the NO-cADPR pathway also functions in the regulation of other 

cellular functions. NO signaling via cADPR is necessary for the induction of long-term 
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depression within the hippocampus, but not in the cerebellum (Linden et al., 1995; 

Reyes-Harde et al., 1999a; Reyes-Harde et al., 1999b). Additionally, in PC12-16A cells, 

exogenous application of NO results in an increase in the [Ca2+]i that is mediated through 

cADPR (Clementi et al., 1996). Finally, a recent study demonstrated that NO potentiates 

inhibitory GABA release via cADPR in the rat nucleus tractus solitarii (Wang et al., 

2006). Thus, NO has a variety of cellular functions, however, this dissertation is the first 

report of NO acting via cADPR in a regenerative function, as a modulator of growth cone 

motility. 

 

Exogenous application of nitric oxide results in calcium release from intracellular stores 

It is well-known that calcium signaling is essential to everyday cellular processes 

(Berridge et al., 2003). In the current studies, we demonstrate that intracellular calcium 

release, mediated through RyRs, is necessary for the NO-induced changes in growth cone 

morphology. RyRs are usually viewed as mediators of calcium-induced calcium release; 

but their modulation by cADPR has been suggested in a variety of cell types (Empson & 

Galione, 1997; Noguchi et al., 1997; Lee, 2001; Thomas et al., 2001; Franco et al., 2006; 

Morita et al., 2006). Here, we demonstrated that calcium release through the RyR, most 

likely from endoplasmic reticulum calcium stores, is necessary for the NO-induced 

changes in growth cone morphology and [Ca2+]i, because inhibition of the RyR before 

NO application completely eliminates these effects. However, it is important to note that 

in these experiments a burst of NO lasting milliseconds results in an increase in the 

[Ca2+]i that lasts for approximately 20 minutes, and this prolonged increase in calcium 
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may possibly have excitotoxic effects on the cell. We do not currently know the 

mechanism through which this calcium increase remains elevated for such a lengthy 

period of time. However, it is likely that influx of calcium across the plasma membrane 

contributes to this prolonged increase in calcium.  

 In the current studies, we provide evidence that extracellular calcium influx across 

the plasma membrane is a component of the NO-induced increase in [Ca2+]i. However, 

we currently do not know how the release of calcium from intracellular stores activates 

the extracellular calcium influx. It is possible that the depletion of calcium from 

intracellular stores activates store-operated channels that serve to refill the intracellular 

calcium stores (Verkhratsky, 2005). Unfortunately, very little is known about the 

existence of store-operated channels in neurons, and currently there are no acceptable 

pharmacological tools available to study their contribution to the NO-induced signaling 

pathway. There is some evidence, although highly debated, that store-operated channels 

may actually be a type of transient receptor potential (TRP) channel (as reviewed in 

Minke, 2006; Ramsey et al., 2006). Release of calcium from intracellular stores in 

growth cones, albeit through inositol triphosphate receptors, has been shown to lead to 

the activation of TRPC channels and calcium influx, thereby allowing for a mechanism 

by which intracellular calcium release could lead to calcium influx across the plasma 

membrane (Li et al., 2005). Although there are some pharmacological tools available to 

study the contribution of TRP channels to the NO-induced calcium increase, their 

specificity, both for TRP channels and within our system, is questionable. 
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 We are still unaware of the mechanism by which calcium remains elevated for the 

extended period following a millisecond application of NO. One possible mechanism is 

through inhibition of the machinery that reduces the intracellular calcium concentration, 

such as Na+/Ca2+ exchangers, plasma membrane Ca2+/ATPase pumps, and/or 

sarcoendoplasmic reticulum Ca2+-ATPase pumps (for review see Berridge et al., 2003). 

Future experiments could employ pharmacological tools to test the contribution of these 

various pumps and exchangers to the prolonged calcium increase. There is preliminary 

evidence suggesting that exogenous application of NO results in a depolarization of B5 

neurons (L. Artinian, personal communication). It is possible that this depolarization 

results in calcium influx and a prolonged calcium increase. Electrophysiological studies 

are currently underway to investigate the particular ion channels that contribute to the 

NO-induced calcium increase and depolarization. However, another possibility is that the 

signaling cascade remains activated for an extended period of time. There is some 

evidence, although disputed, that are two binding sites on sGC for NO; one of these sites 

allows for a reduced (10-20% of maximal stimulation) but prolonged activation of this 

enzyme (Cary et al., 2005; Roy & Garthwaite, 2006). If this is the case, it is a mechanism 

that could allow for a low-level prolonged activation of the NO-induced signaling 

cascade, perhaps leading to a long-lasting increase in the [Ca2+]i. Two final mechanisms 

through which NO may cause a prolonged increase in calcium are via continuous release 

of calcium from intracellular stores or maintenance of a continuous influx of calcium. 

These mechanisms may involve some of the same channels that are involved in the initial 

calcium increase, such as ryanodine receptor mediated channels. In order to test the 
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contribution of these channels to the prolonged calcium increase, and dissociate their 

contribution to the initial calcium increase from the prolonged increase, specific 

pharmacological inhibitors of intracellular calcium release or calcium influx would need 

to be added following NO application. These experiments would still allow the initial 

calcium increase to occur, but block the contribution of the channels, if any, to the 

prolonged calcium increase. Overall, these experiments would shed light on the possible 

contributions of various channels, pumps, and exchangers to the prolonged calcium 

increase induced by NO. 

 

Changes in the intracellular calcium concentration within growth cones lead to 

changes in the cytoskeleton. 

Correlation between the intracellular calcium concentration and growth cone dynamics 

There are numerous studies that have demonstrated that growth cone morphology and the 

neurite outgrowth rate are dependent on the [Ca2+]i (Mattson & Kater, 1987; Davenport & 

Kater, 1992; Rehder & Kater, 1992; Bandtlow et al., 1993; Gomez et al., 1995; Kuhn et 

al., 1998; Bird & Owen, 2000; Cheng et al., 2002; Tang et al., 2003). In the current 

study, NO-induced changes in the [Ca2+]i are correlated with changes in growth cone 

morphology. Specifically, an increase in the [Ca2+]i results in an increase in the length of 

filopodia, as well as a decrease in filopodial number. The coupling of these two 

parameters (changes in length and number) has also been demonstrated in previous 

studies (Bonsall & Rehder, 1999; Geddis et al., 2004; Lebrand et al., 2004; Chen et al., 

2006). However, it has also been demonstrated that growth cones may change filopodial 
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length, without an accompanying change in filopodial number (Cheng et al., 2002; 

Tornieri et al., 2006). Taken together, these studies suggest that the regulation of 

filopodial length and number can take place in a coupled or independent fashion, and 

might be dependent on the demands for appropriate pathfinding behavior. In the context 

of Helisoma, it is likely that a pathfinding growth cone may need to display a variety of 

morphologies during its journey to the appropriate target. Calcium may directly regulate 

many of these behaviors, to ensure proper pathfinding, target identification and 

innervation. 

Calcium dependent regulation of growth cone dynamics, and specifically 

filopodial dynamics, appears to be a wide-spread phenomenon. Examination of filopodia 

on growth cones has demonstrated that calcium regulates even the smallest part of the 

growth cone. For example, in Helisoma neurons, there is a direct correlation between the   

[Ca2+]i within growth cones and the amount of filopodial elongation (Rehder & Kater, 

1992). Studies in Helisoma have also demonstrated that local increases in calcium within 

a single filopodium result in elongation of only that filopodium (Cheng et al., 2002). In 

rat hippocampal neurons, calcium influx through TRPC5 channels are essential for 

regulating filopodial length; as such, a dominant-negative inhibition of TRPC5 channels 

results in a significant increase in filopodial length (Greka et al., 2003). In addition, 

spontaneous calcium transients have been shown to occur within Xenopus spinal neurons 

(Gomez et al., 2001). Interestingly, when these calcium transients are artificially imposed 

within a filopodium, they lead to filopodial stabilization (Robles et al., 2003). It is 

important to note that in the current study, the change in the [Ca2+]i closely parallels the 
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changes in filopodial dynamics, that is, when the calcium concentration returns to pre-

treatment values, the filopodial dynamics return as well. These data suggest that there is 

tight coupling between the [Ca2+]i and growth cone morphology in the NO-induced 

signaling pathway. Furthermore, data from the present study and previous studies 

highlights the essential role of calcium in regulating the motility of growth cones and 

subsequently, the connectivity of the nervous system.  

 

Calcium and its effectors can mediate growth cone cytoskeletal changes 

A change in the intracellular calcium concentration can affect the cytoskeleton through a 

number of calcium-mediated effectors such as Ca2+/CaM, Ca2+/CaM-dependent protein 

kinase II (CAMKII), and calcineurin (for review see Henley & Poo, 2004). In Helisoma, 

we do not know which effectors of calcium act on the cytoskeleton; however, there is 

good evidence that the changes in the cytoskeleton are due mainly to changes in actin. 

Filopodia are composed of bundled f-actin and inhibition of actin polymerization with 

cytochalasin B significantly reduced the NO-induced increase in filopodial length. Thus, 

we are relatively confident that the calcium increase resulting from exogenous NO 

application further activates calcium effectors that subsequently act on the actin 

cytoskeleton. There are three mechanisms by which an increase in filopodial length can 

result: one, a decrease in the retrograde flow of actin; two, an increase in the addition of 

actin monomers to the barbed end of the actin filament; or three, a combination of these 

two factors. A study in Helisoma has demonstrated that a prolonged increase in calcium 

can lead to a decrease in the retrograde flow of actin (Welnhofer et al., 1999). In the 
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current study, we do not know whether the rate of retrograde flow is affected by the NO-

induced calcium increase, although this possibility is suggested by the findings of 

Welnhofer et al. However, we do know that global application of a NO donor to 

Helisoma B5 neurons results in an increase in filopodial length by increasing the rate of 

filopodial extension, as well as increasing the time the filopodia spend extending (Van 

Wagenen et al., 1999). Yet, NO did not affect the retraction of filopodia in this study 

(retraction rate is thought to be driven by retrograde flow), arguing against the possibility 

that NO alters retrograde flow, as suggested by the Welnhofer et al. study. Additionally, 

the Van Wagenen et al. study demonstrated that the decrease in filopodial number was 

due to a decrease in the insertion frequency of new filopodia and again, not due to a 

retraction of existing filopodia. 

 There are a few known actin-binding proteins that are calcium-dependent, 

including gelsolin, myosin II and ADF/cofilin (for review see Henley & Poo, 2004). 

Gelsolin is activated in a calcium-dependent fashion and is involved in the severance of f-

actin filaments and the initiation of the filopodial retraction (for review see Henley & 

Poo, 2004). Additionally, gelsolin has been localized to growth cones and gelsolin null 

mice exhibit delayed retraction of filopodia in their growth cones, which leads to an 

increase in filopodial number (Lu et al., 1997). Myosin II, which is activated by 

Ca2+/CaM-dependent myosin light chain kinase (MLCK), is involved in the regulation of 

many aspects of growth cone morphology and motility (for review see Henley & Poo, 

2004). In Helisoma growth cones, indirectly inhibiting myosin II (by inhibiting MLCK) 

leads to growth cone collapse and f-actin bundle loss at high concentrations (Zhou & 
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Cohan, 2001) and a decrease in filopodial number at lower concentrations (Cheng et al., 

2000). Additionally, a recent study has shown the importance of myosin II for actin 

dynamics. When myosin II is directly inhibited, retrograde flow and actin bundle 

severing is significantly decreased in growth cones from Aplysia neurons (Medeiros et 

al., 2006). ADF/cofilin is involved in the severance of f-actin filaments and increasing 

the dissociation rate of actin monomers from the pointed end (for review see Sarmiere & 

Bamburg, 2004). In addition, ADF/cofilin is dephosphorylated and activated by 

Ca2+/CaM-dependent protein phosphatase 2B (calcineurin) (for review see Flynn et al., 

2007). Interestingly, calcineurin is necessary for the calcium-mediated increases in 

filopodial length in Helisoma B5 neurons (Cheng et al., 2002). Therefore, it is possible 

that the NO-induced calcium release leads to dephosphorylation and activation of 

ADF/cofilin by calcineurin. This might then lead to filopodial elongation. Support for this 

hypothesis is provided by another study in chick retinal neurons, where exogenous 

application of BDNF resulted in an increase in filopodial length that was mediated via 

activation of ADF/cofilin (Gehler et al., 2004a; Gehler et al., 2004b). Although much is 

still unknown about many calcium-binding proteins within growth cones, and the current 

studies were unable to address which actin-binding proteins may be directly involved in 

the changes in growth cone morphology, potential candidates have been identified due to 

their calcium-sensitivity. 
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Conclusions 

Overall, this dissertation addresses three major specific aims that answer questions about 

the regulation of growth cone motility by the gaseous messenger, nitric oxide. 

 

Specific Aim 1: How does a spatially- and temporally-restricted application of nitric 

oxide affect growth cone morphology and calcium? 

Local application of NO in a spatially- and temporally-restricted fashion results in an 

increase in filopodial length, a decrease in filopodial number and an increase in the 

[Ca2+]i. These effects are transient, lasting for approximately 20 minutes, and are limited 

to the stimulated growth cone. In addition, these experiments place the location of action 

of NO at the growth cone proper. Therefore, these experiments demonstrate that a very 

spatially- and temporally-restricted application of nitric oxide can have long-lasting 

effects on growth cone morphology and the intracellular calcium concentration.  

 

Specific Aim 2: What is the downstream pathway through which nitric oxide exerts its 

effects on growth cone morphology? 

NO exerts its effects on growth cone morphology through a pathway involving sGC, 

cGMP, PKG, and cADPR. This has been demonstrated using pharmacological tools and 

is further supported by immunocytochemical evidence that sGC and PKG are localized 

within Helisoma B5 neuronal growth cones. Therefore, these experiments demonstrate 

that NO exerts its effects on growth cone morphology through activation of a multi-tiered 

intracellular signaling cascade that results in the production of cADPR. 
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Specific Aim 3: How do intracellular and extracellular calcium cascades contribute to 

the nitric oxide-induced calcium dynamics? 

Exogenous NO application initiates a pathway that results in calcium release from 

intracellular stores, via the ryanodine receptor. However, calcium influx across the 

plasma membrane is also a necessary secondary component of the NO-induced increase 

in the intracellular calcium concentration. Therefore, these experiments demonstrate that 

exogenous application of nitric oxide results in an increase in the intracellular calcium 

concentration via initial release from ryanodine receptor-mediated intracellular stores and 

secondary calcium influx across the plasma membrane. 

 

Overall, these studies demonstrate that NO can activate an intracellular signaling cascade 

that affects growth cone morphology. Additionally, these studies have implications for 

processes that take place during growth cone pathfinding in vivo. Nitric oxide may have a 

larger role than previously suspected in guiding neuronal growth cones to their 

appropriate targets. At the most minimal, nitric oxide is an intercellular messenger that 

regulates growth cone morphology and neurite outgrowth. However, it is likely, based on 

the localization of nitric oxide production within the nervous system, that it is a regulator 

of growth cone pathfinding in vivo. In the current studies, we have identified a nitric 

oxide-induced second messenger pathway that leads to an increase in the intracellular 

calcium concentration and subsequently results in changes in the cytoskeleton of a 

migrating growth cone. These studies provide a mechanism through which nitric oxide 

can directly and locally affect growth cone morphology and implicate nitric oxide as a 
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regulator of neuronal pathfinding during the regeneration of the nervous system. 

Understanding the intricacies of neuronal growth cone pathfinding and the cues that 

allow for proper wiring will further allow us to understand clinical disorders that result 

from misguidance or inappropriate connectivity. 
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