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MECHANISMS FOR CADMIUM LUMEN-TO-CELL TRANSPORT 

BY THE LUMINAL MEMBRANE OF THE RABBIT PROXIMAL 

TUBULE 

by 

YANHUA  WANG 

Under the Direction of Delon W. Barfuss 

 

ABSTRACT 

 

The lumen-to-cell transport, cellular accumulation, and toxicity of ionic cadmium 

(109Cd2+) and cadmium-cysteine conjugate (Cys-S-109Cd-S-Cys) were studied in isolated 

perfused S2 segments of the proximal tubule of the rabbit kidney. All perfusion solutions 

were HEPES buffered and contained 3H-L-glucose which functioned as a volume and 

leak marker along with 250 nM FD & C Green dye as a vital dye. When ionic cadmium, 

0.73µM Cd2+, or 0.73µM cadmium-cysteine conjugate (Cys-S-109Cd-S-Cys) containing 

solution was perfused through the lumen of the tubule there was no visual evidence of 

toxicity such as blebbing of the luminal membrane, cellular vital dye uptake, and cellular 

swelling.  Ionic Cd2+ transport was temperature dependent (87% reduction at 22°C and 

100% at 11°C) and inhibited by FeCl2 (42% reduction at 10µM) and ZnCl2 (48% 



 

reduction at 20µM), and high Ca2+ concentrations (27% reduction at 1.95mM and 69% at 

2.6mM). The ionic Cd2+ transport was not affected by verapamil and diltiazem. The 

cadmium conjugate (Cys-S-Cd-S-Cys) transport was also temperature dependent (76% 

reduction at 22°C and 100% at 11°C) and inhibited by the amino acids L-cystine and L-

arginine (55% and 50% respectively), stimulated by L-methionine (56%), but not 

affected by L-aspartate, L-glutamate and Gly-Sar. 2, 3-Dimercaptopropane-1-Sulfonate 

(DMPS) co-perfused with Cd2+ decreased absorption of 20µM Cd2+ (39% reduction at 30 

µM and 94.6% reduction at 200 µM), while DMPS added to the bathing solution has no 

effect on the luminal transport of Cd2+. DMPS co-perfused with 20 µM Cys-S-Cd-S-Cys 

substantially reduced Cd2+ transport (62% reduction at 30 µM). We conclude that 

cadmium can be transported at the luminal membrane of the S2 segment of the proximal 

tubule by multiple mechanisms, depending on the form which it is presented to 

membrane. Ionic cadmium appears to be transported by iron (DCT1), zinc (ZTL1) 

transporters and some kind of calcium-selective channel while cadmium conjugate of L-

cysteine appears to be transported by L-cystine transporters (system b0+). Dipeptide 

transporter is not involved in the transport of cadmium. DMPS appears to be a chelator 

for cadmium. 
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                                  Iron, Calcium, Zinc, Sulfhydryl-Containing Amino Acids, Cysteine,  
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CHAPTER I: INTRODUCTION 

 

Cadmium (Cd) is a highly toxic heavy metal, which is known as one of the 

commonest industrial and environmental metal poisons. After it is released into the 

environment, it can be absorbed by plants, seep into groundwater and enter the food chain. 

Humans are often exposed to cadmium by smoking cigarette, drinking tea or coffee, 

eating food with a relatively high level of cadmium such as shellfish, organ meat (liver, 

kidneys, etc), refined grain, cereal products, potatoes, leafy vegetables, and root 

vegetables and drinking tap water from cadmium-coated water pipes, etc. The kidney is 

one of the primary sites for cadmium toxicity, which is in line with the fact that the 

kidney is a main organ that collects, processes, and excretes a number of endogenous and 

exogenous toxic substances. Therefore, the current study will focus on the transport of 

cadmium by kidneys. 

The kidneys are both absorptive and excretory organs. In addition to absorption of 

certain valuable endogenous compounds, primarily glucose and amino acids, the kidneys 

also excrete a number of end products of metabolism that are no longer needed by the 

body, xenobiotics and exogenous toxic substances. To better understand the function of 

the kidneys, it is necessary to be familiar with their ana tomy. If a kidney were dissected 

coronally, two regions would be evident : an outer region called the cortex and an inner 
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region called the medulla (Figure 1). The cortex and medulla are composed of nephrons  

(Figure 2). Nephron is the functional unit of the kidney and all absorption and excretion 

occur in nephron. Each human kidney contains approximately 0.4 x 106 to 1.2 x 106 

nephrons. The nephron consists of a renal corpuscle and tubules. The renal corpuscle 

consists of glomerular capillaries and Bowman’s capsule. The tubules are composed of: 

 

Figure 1: Macroscopic anatomy of the kidney (Principles of Human Physiology, Second 
Edition, Figure 19.2a, The Urinary System: Renal Function  @2006 Pearson                  
Education, Inc, publishing at Benjamin Cumming Co.) 
 

(1) a proximal tubule, (2) a loop of Henle including a descending thin limb, an ascending 

thin limb, and a thick ascending limb, (3) a distal convoluted tubule, and (4) a collecting 

duct system (Figure 2). When blood passes through the glomerular capillaries, an 
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essentially protein-free fluid is filtered into Bowman’s space. Then the fluid passes 

through the tubules, and finally formed into urine. 

Based on the location of renal corpuscle, nephron is divided into two types: 

superficial and juxtamedullary. The renal corpuscle of each superficial nephron is located 

in the outer region of the cortex. Compared to the juxtamedullary nephron, its proximal 

straight tubule is long, its loop of Henle is short, and its efferent arteriole branches into 

peritubular capillaries that surround the nephron segments of its own and adjacent 

nephrons. The renal corpuscle of each juxtamedullary nephron is located in the region of 

 

 

Figure 2: Microscopic anatomy of nephron (Life: The Science of Biology, Seventh 
Edition, Figure 51.9, The Human Excretory System (Part 2) @ 2004 Sinauer Associates, 
Inc. and W. H. Freeman & Co.) 
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the cortex next to the medulla; its loop of Henle is long and extends deeper into the 

medulla. Its efferent arteriole forms not only a network of peritubular capillaries, but also 

a series of vascular loops called the vasa recta (Figure 2). Among the total amount of 

nephrons, superficial nephrons account for 80-85%, and juxtamedullary nephrons 

account for 15-20%. 

The proximal tubule is a direct continuation of the parietal epithelial cells of 

Bowman’s capsule. The length of the proximal tubule is about 10 mm in the rabbit, 8 mm 

in the rat and 14 mm in the human. The outside diameter of the proximal tubule is 

approximately 37.5-50 µm while the inside diameter of the proximal tubule is 

approximately 20-25 µm for the rabbit. The proximal tubule  is composed of proximal 

convoluted tubule (pars convoluta) and proximal straight tubule (pars recta). In humans 

and several animals, including the rat, the rabbit, and the mouse, three morphologically 

distinct segments, S1, S2, and S3, can be histologically distinguished in the proximal 

tubule. The S1 segment includes the initial portion of the proximal tubule; it begins at the 

glomerulus and constituents approximately two thirds of pars convoluta. The S2 segment 

comprises the remainder of the pars convoluta and most of the pars recta to the cortical-

medullary junction. The transition from S1 to S2 is gradual. The S3 segment represents the 

remaining portion of the pars recta; it is located from the cortical-medullary junction to 

the beginning of thin descending limb. The transition from S2 to S3 is either abrupt as 

found in rat or gradual as seen in rabbit. 

In keeping with its role in transport of many molecules, the morphology of the  

epithelial cells of the proximal tubule exhibits polarity of structure and function. In the 
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epithelial cells, as shown in figure 3, the basolateral (the blood side of the cell) and 

luminal (apical) (the urine side of the cell) domains of the plasma membrane begin and 

end at the tight junctions, structures that segregate the transport proteins of the basolateral 

and luminal membranes and restrict paracelluar transport movement. But in contrast to 

the tight junctions in distal tubules and collecting ducts, the tight junctions in proximal 

tubules are relatively leaky. For example, they are permeable to water and most ions. The 

basolateral membrane forms many deep invaginations that both increase surface area and 

place sites of active  transport in close proximity to mitochondria. The luminal membrane 

of proximal tubule epithelial cells is greatly amplified as a brush border containing a 

thick carpet of microvilli, which is unique to the proximal tubule of the nephron and also 

increases surface area. The brush border and the basolateral invaginations equally 

increase the surface area of the luminal and basolateral membranes by forty fold. 

Functional polarity of the proximal tubular cells is also evidenced by the asymmetric 

distribution of enzymes, receptors and membrane-bound transporters between the luminal 

membrane and basolateral membrane such as the exclusive expression of system b0+ in 

the luminal membrane and the exclusive expression of Na+-K+-ATPase in the basolateral 

membrane of the proximal tubule.  
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Figure 3: Proximal tubule epithelium (Principles of Human Physiology, Second                  
Edition, Figure 19.17a, The Urinary System: Renal Function  @2006 Pearson                  
Education, Inc, publishing at Benjamin Cumming Co.) 
 
 

The three segments of the proximal tubule have differences in morphology based 

on cellular histology. The S1 segment has a tall brush border, a well-developed vacuolar-

lysosomal system, and extensive invaginations of the basolateral plasma membrane. 

Compared to the S1 segment, the S2 segment has a shorter brush border, less prominent 

basolateral invaginations, fewer and smaller mitochondria. The epithelium of the S3 

segment  is simpler than that of the S1 and S2 segments. Basolateral invaginations of the 

plasma membrane are essentially absent, mitochondria are small and randomly 

distributed throughout the cytoplasm, and the intracellular spaces are smaller and less 

complex. These morphological characteristics suggested that the S3 segment may be less 

involved in the absorption of solute and water, which is evidenced by the findings that 

fluid absorption in the S3 segment is significantly less than in the S1 and S2 segments 
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(Clapp, Park et al. 1988), and Na+-K+-ATPase activity in the S3 segment is significantly 

lower than in the S1 and S2 segments (Katz, Doucet et al. 1979). The length of the brush 

border in the S3 segment varies among species. It is tall in the rat, fairly short in the rabbit, 

and intermediate in length in the human kidney.  

In the kidneys, the proximal tubule (PT) is a portion of the nephron that is often 

damaged by nephrotoxic compounds, including various drugs and heavy metals. Previous 

research experiments have shown that the proximal tubule is the major site where 

cadmium is absorbed and expresses its toxic effect (Felley-Bosco and Diezi 1987; 

Robinson, Barfuss et al. 1993; Brzoska, Kaminski et al. 2003; Barbier, Jacquillet et al. 

2004). However, very little data have been obtained concerning the transport systems 

involved in the uptake of Cd2+ across the basolateral membrane of the proximal tubule. 

Although a considerable amount  of information is known about uptake of Cd2+ across the 

luminal membrane of the proximal tubule, most of these findings were obtained from 

cultured epithelial cells and other in vitro techniques, in which bipolarity of epithelial 

cells is lost and dedifferentiation occurs. Thus, those techniques are not able to provide 

the conditions in which cadmium is presented to the target epithelial cells in vivo.  

In the current research project, using the isolated perfused tubule technique  

(Figure 4), the mechanisms for transport of cadmium across the apical membrane of 

isolated perfused segments of the proximal tubule of rabbit were investigated. In this 

technique, a proximal tubule segment is manually dissected and transferred into a special 

temperature-controlled bathing chamber. Both ends of the tubule were held in glass tube, 

and the tubule is perfused through a micropipette with its tip centered in the tubule lumen 
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while being viewed through a microscope. This technique provided a dynamic in vitro 

system in which intact segments of the nephron were perfused through the lumen under 

conditions similar to those found in vivo.  In contrast to some other in vitro renal systems 

(e.g. cell culture), in which bipolar orientation is lost and some dedifferentiation of the 

tubular epithelial cells occurs, the in vivo bipolarity of the epithelial cells and the 

electrochemical gradient across the apical membrane and basolateral membrane are 

maintained. This technique allows us to measure the rate at which a given solute is 

transported across the proximal tubule into the bathing solution from the luminal fluid 

(urine) (absorption) or transported across the proximal tubule into the luminal fluid from 

the bathing solution (secretion). This technique makes it possible to manipulate and 

control both the luminal environment (luminal fluid) and the basolateral environment 

(bathing solution) surrounding the perfused tubular segment. For example, ionic and 

osmotic composition, presence or absence of toxicants, presence or absence of amino 

acids, proteins, hormones and/or other plasma solutes, temperature, transepithelial 

hydrostatic pressure, and other factors can all be controlled. In addition, using this 

technique, the transport in all three segments of the proximal tubule (S1,  S2, and S3 

segments) can be studied, while S2 and S3 segments are not accessible to study by other 

techniques. The current experiments were done primarily using isolated S2 segments of 

rabbit renal proximal tubules to explore the mechanisms for cadmium lumen-to-cell 

transport and accumulation. The S2 segment was mostly used for the study because the 

epithelial cells in the S2 segment avidly absorb Cd2+ (Robinson, Barfuss et al. 1993), and 
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the S2 segment is straight, easier to dissect and perfuse than the S1 and S3 segments. The 

following hypotheses were developed for the study of luminal transport of cadmium. 

First Hypothesis: luminal transport of ionic cadmium (Cd2+) is mediated by a Fe2+ 

transporter (DCT1), a Zn2+ transporter (ZTL1), and a calcium channel. The rationale for 

testing this hypothesis is that Cd2+, being a divalent cation, could possibly share specific 

transport mechanism with Fe2+, Zn2+, and Ca2+.  Thus, these latter three cations are 

expected to inhibit luminal Cd2+ transport when co-perfused.  

Second Hypothesis: cadmium conjugated to sulfhydryl-containing amino acids is 

transported across the luminal membrane into the epithelial cells via an amino acid 

transporter (system b0+) and a dipeptide transporter (PepT2). The rationale for this 

hypothesis is that the molecular structure of the cadmium-sulfhydryl conjugate of L-

cysteine (Cys-S-Cd-S-Cys) is very similar to that of the amino acid L-cystine (Cys-S-S-

Cys) and the dipeptide Gly-Sar, thus being homologues in structure.  Therefore, it would 

be expected L-cystine and Gly-Sar will inhibit luminal transport of Cys-S-Cd-S-Cys 

when co-perfused through the renal tubule.   

Third Hypothesis: DMPS is an effective chelator for cadmium as an ion (Cd2+) 

and as an organic form (Cys-S-Cd-S-Cys). The rationale for this hypothesis is that DMPS 

has been reported to be a heavy metal chelator, but its efficacy for chelating cadmium in 

the kidney has not been determined. Therefore, DMPS is expected to inhibit the luminal 

transport of Cd2+ and Cys-S-Cd-S-Cys when they are co-perfused with DMPS. 
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Figure 4: Isolated perfused tubule 
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CHAPTER II: REVIEW OF THE LITERATURE 

 

Cadmium’s history and toxicity 

Cadmium (Cd) is a nonessential, soft, silver-white heavy metal, which was 

discovered in 1817 by the German chemist Friedrich Stromeyer (1776-1835). Cadmia is 

the ancient name for zinc oxide. This name reflects a close connection between cadmium 

and zinc. At that time, Stromeyer was studying a pharmaceutical project involving zinc 

carbonate (ZnCO3).  But, the zinc carbonate supplied by manufacturers turned yellow 

under some circumstances. The pharmacists refused to accept the shipment of this 

product because they thought it was not pure. Finally, Stromeyer discovered that this 

impurity was an as-yet-undentified element, cadmium. Actually, cadmium commonly 

occurs in zinc ores and is produced commercially as a by-product during the production 

of zinc from its ores. Cadmium is relatively rare in the earth’s crust with an estimated 

abundance of about 0.1-0.2 parts per million. The most sought-after ore of cadmium is 

greenockite [cadmium sulfide (CdS)].  

The close relationship between cadmium and zinc is also reflected by the 

locations of cadmium and zinc in the periodic chart of elements. In the periodic chart of 

elements, cadmium is found in Group IIB and located in the area of transition metals. 

Both cadmium and zinc belong to Group IIB. Cadmium has an atomic number of 48 and  

an atomic mass of 112.41. Its melting point is 610º F (321º C) and its boiling point is 

1410º F (765º C). When cadmium is used in alloys, it tends to lower the melting point of 

the alloy. Cadmium reacts slowly with oxygen in moist air at room temperature and 
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forms cadmium oxide (CdO). It does not react with water, but it does react with most 

acids. 

At one time, cadmium was widely used for the electroplating of steel. After it was 

found that cadmium is very toxic to humans and other animals, the use of cadmium for 

this purpose was reduced significantly. Today, the vast majority of cadmium (75% in the 

United States) is used in the production of nickel-cadmium batteries that can be 

recharged and reused many times. Such batteries are used in a large variety of appliances, 

including compact disc players, cellular telephones, pocket recorders, handheld power 

tools, cordless telephones, laptop computers, camcorders, and scanner radios. It is also a 

component of certain specialty alloys used in semiconductors (such as cadmium selenide 

and telluride), in dyes and pigments, as a stabilizer in plastics such as polyvinyl chloride, 

and as a neutron absorber in nuclear reactor control rods and shields. The United States is 

among the top ten largest producers including Canada, Japan, Belgium, China, 

Kazakhstan, and Germany. Every year, over 1000 metric tons of cadmium is refined in 

the United States.  

Currently, there is widespread environmental contamination with cadmium. The 

major air pollution of cadmium comes from zinc mining and smelting, oil and coal 

combustion, household waste incineration and the use of high phosphate and sewage 

sludge fertilizers. Approximately, 4,000 to 13,000 tons of cadmium is released into the 

environment from human activities annually.  Cadmium particles in air can travel a long 

distance before falling to the ground or water. After cadmium is released into the 

environment, cadmium may contaminate water and enter the food chain through plants 
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that readily absorb cadmium. When people eat food and drink water contaminated by 

cadmium, the ingested cadmium passes through the gastrointestinal tract into the 

systemic circulation. In the US, the average person consumes approximately 30µg of 

cadmium per day in food and absorbs 1-3µg from the gastrointestinal tract. In addition, 

because tobacco plants concentrate cadmium from soil, cigarette smoking is the largest 

source of cadmium exposure for human beings. Each cigarette may contain from 1 to 2 

µg of cadmium.  Consequently, smokers take in an additional 1-3µg per day from the 

respiratory tract because 40-60% of the inhaled cadmium enters the systemic circulation. 

The remaining cadmium in the cigarette smoke enters the atmosphere to be inhaled by 

others or to contaminate the environment. 

When cadmium is deposited in the various target organs via the systemic 

circulation, unlike organic toxicants, which can be degraded metabolically to less toxic 

derivatives in these organs, cadmium remains stored intact. Cadmium is stored in the 

body for a very long time (10-30 years) (Jarup, Berglund et al. 1998), and exerts an 

adverse effect on a number of organs and tissues such as the kidneys, liver, lung, 

pancreas, testis, placenta, and bone (Kamiyama, Miyakawa et al. 1995; Diamond and 

Zalups 1998; Habeebu, Liu et al. 1998; Jarup, Berglund et al. 1998; Sarkar, Yadav et al. 

1998; Oteiza, Adonaylo et al. 1999; Liu, Liu et al. 2000; Liu, Umino et al. 2000; Kanter, 

Yoruk et al. 2003). Excretion of cadmium into urine or feces is extremely limited. 

Therefore, cadmium builds up over time and causes toxicity in the target organs.  

Acute exposure to cadmium produces hepatic, pulmonary, stomach, and testicular 

injury, whereas chronic exposure results in renal and bone injury and cancer, as well as 
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toxicity to other organs such as cardiovascular system (Tzotzes, Tzilalis et al. 2007). 

Among the target organs of cadmium, the major portion of the body burden of cadmium 

is located in the kidneys and liver. Liver and kidney cadmium concentrations are 

comparable after short-term exposure, but the kidney concentration exceeds the liver 

concentration fo llowing chronic exposure (Vogiatzis and Loumbourdis 1998). The 

symptoms for acute cadmium toxicity have been reported. For instance, in low levels, 

eating food or drinking water with high levels of cadmium can severely irritate the 

stomach and cause vomiting, diarrhea and abdominal cramps; breathing high doses of 

cadmium can damage the lungs and cause accumulation of fluid in the lungs, dryness of 

the throat, coughing, and shortness of breath, headache, and pneumonia- like symptoms; 

The long-term effects of cadmium are not fully understood, but are thought to include 

heart and kidney problems, high blood pressure, calcium loss in bones and cancer. One of 

the most famous environmental diseases, itai- itai (Japanese for “ouch-ouch”) resulted 

from cadmium poisoning. The syndromes for this disease were bone and joint aches and 

pains, deformities of the spine, and more easily broken bones.  Interestingly, cadmium 

does not cross the placenta-fetal barrier nor the blood-brain barrier as lead and mercury 

do, so it is not toxic to fetuses, nor does it cause the mental symptoms similar to lead and 

mercury. Also, cadmium does not go to the breast milk with lactation. Therefore, 

cadmium is not transmitted to newborns. Cadmium levels in humans tend to increase 

with age due to chronic subtle exposure, usually peaking at around age 50 and then 

leveling off. However, what level of cadmium causes toxicity is not clear. Currently, 

below 2ppm in hair and 0.015ppm in whole blood are considered acceptable ranges for 
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body cadmium levels. Now, cadmium has been ranked as high as seventh on the Top 20 

Hazardous Substances Priority List by the Agency for Toxic Substances and Disease 

Registry and the US Environmental Protection Agency. Taken together, due to the wide 

distribution and high toxicity of cadmium, it is critical to elucidate the mechanisms by 

which cadmium is transported in vivo. 

 

Cadmium-induced nephrotoxicity 

Two forms have been suggested for in vivo cadmium: ionic cadmium (Cd2+) and 

cadmium-sulfhydryl conjugates. It is believed that cadmium has a propensity of bonding 

with sulfhydryl groups. Therefore, it is likely that the majority of cadmium in plasma is 

in amino acid and/or protein-bound forms because the plasma is rich in sulfhydryl-

containing amino acids such as L-cysteine (L-Cys),  L- homocysteine (L-Hcys), and N-

acetyl-cysteine (NAC), and low-molecular weight peptides and proteins such as 

glutathione (GSH), albumin and metallothionein (MT). But since there is a small fraction 

of cadmium that will escape from bonding with amino acids and/or proteins, free ionic 

form of cadmium (Cd2+) is considered as possible in vivo form of cadmium. Thus, 

luminal fluid of the proximal tubule could contain both the ionic form and protein-bound 

complex of cadmium. 

The toxic form of cadmium is ionic cadmium (Cd2+) (Erfurt, Roussa et al. 2003). 

The direct cytoplasmic effect of cadmium is to cause formation of reactive oxygen 

species (ROS) indirectly. ROS include oxygen ions, free radicals and peroxide, which are 

generally very small molecules. ROS are highly reactive because they have unpaired 

valence shell electron. ROS can damage cell membranes and break DNA by causing 
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oxidative stress, and finally lead to apoptosis (programmed cell death) (Erfurt, Roussa et 

al. 2003; Pulido and Parrish 2003). When free Cd2+ enters the cytosol of renal proximal 

tubular cells, ROS are generated (Thevenod and Friedmann 1999). Cd2+ has been shown 

to produce hydroxyl radicals in the presence of metallothioneins (MTs) containing 

Fenton metals, such as Fe2+ and Cu2+. This suggests that Cd2+-mediated production of 

ROS is a consequence of Cd2+ -induced displacement of endogenous redox active metals 

(Fe2+, Cu2+, Zn2+). The released endogenous redox active metals from metallothioneins 

produced ROS directly. For example, cadmium replaces Fe2+ from metallothioneins. The 

released Fe2+ produced ROS in the Fenton reaction: 

 

                H2O2
 +Fe2+ ----- HO. + OH- + Fe3+ 

The HO.  is able to oxidize all organic materials at close to diffusion-controlled rates. 

Cadmium may also compete to bind with GSH and protein sulfhydryls, endogenous 

intracellular radical scavengers, and deplete these scavengers, resulting in the formation 

of ROS. ROS causes DNA strand breaks, lipid and protein peroxidation (The oxidative 

process whereby free radicals “steal” electrons from the lipids or proteins in cell 

membranes, resulting in cell damage and increased production of free radicals.). This 

oxidative stress caused by cadmium-induced ROS formation can induce structural 

changes or misfolding of cellular proteins including vital membrane transporters, such as 

the Na+/K+-ATPase or Na+-dependent nutrient transporters, which is subsequently 

degraded by both the ubiquitin-proteasome complex and endo- lysosomal proteases 

(Thevenod and Friedmann 1999). The cadmium-induced ROS formation also can cause 
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an outer membrane rupture and an uncoupling of mitochondrial respiration, which 

inhibits electron transfer and oxidative phosphorylation, resulting in the release of 

numerous death signals like ROS and cytochrome c. If the repair processes do not 

balance the ROS-mediated stress events, the affected cells will undergo cell death via 

apoptosis  or necrosis. In addition to the direct cytotoxic effect, cadmium may also 

activate proto-oncogens in target cells. Acute administration of the free ionic form of 

cadmium will lead to acute toxicity. In the rat, an acute perfusion of Cd2+ caused 

hypercalciuria, hyperphosphaturia and hypokaliuria without modification of glomerular 

filtration rate. 

Protein-bound conjugates of cadmium are not toxic by themselves but the ionic 

form released from the complexes is responsible for the cellular toxicity, which results in 

chronic toxicity. The proximal tubules will undergo necrosis and the kidneys will express 

major features of Fanconi syndrome, which are proteinuria, aminoaciduria, glucosuria, 

phosphaturia and reduction in glomerular filtration rate. Repeated low exposures may 

also cause permanent kidney disease, leading to kidney stones and other health problems.  

Renal dysfunction will occur if the kidney Cd2+ concentration reaches about 200µg/g wet 

weight for long term exposure. 

Another toxic effect of cadmium is renal cancer. In rodents, cadmium causes 

cancer in the kidney and other organs (Waalkes, Anver et al. 1999; Waalkes 2003). The 

cellular and molecular mechanisms implicated in cadmium carcinogenicity include 

activation of proto-oncogenes, inactivation of tumor suppressor genes, disruption of cell 

adhesion, and inhibition of DNA repair (Waalkes 2003; Waisberg, Joseph et al. 2003). 
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Cadmium adversely affects all four major pathways of DNA repair: (i) base-excision, (ii) 

nucleotide-excision, (iii) double strand break, and (iv) mismatch repair (Hartwig and 

Schwerdtle 2002; Waisberg, Joseph et al. 2003). Several investigators have demonstrated 

that cadmium induced expression of pro-oncogenes in renal cancer cell lines: c-fos, c-Jun, 

c-myc, and egr-1 in LLC-PK1 proximal tubular cells (Matsuoka and Call 1995), c-fos, c-

myc, and c-Jun in rat kidney cell NRK 49F (Tang and Enger 1993), and c-fos in renal 

mesangial cells (Wang and Templeton 1998). In epithelial cell culture, cadmium disrupts 

cell junctions (Pearson and Prozialeck 2001) and may promote metastasis by disrupting 

cell-cell adhesion (Waisberg, Joseph et al. 2003). 

 

Transport of cadmium across the apical membrane  in the proximal tubule 

In the kidneys, the proximal tubule is known as the major site of cadmium-

induced toxicity. Using the isolated perfused tubule technique, Robinson, et al have 

indicated that all three segments (S1, S2 and S3 segments) of the rabbit proximal tubule 

adsorb Cd2+ avidly when cadmium ions were perfused through the lumen in the form of 

CdCl2. S1 segments of the proximal tubule accumulated cadmium more rapidly and 

developed a more severe form of tubular injury (at concentrations greater than 500 µM) 

than the other two segments. Transport data could be collected in S2 and S3 segments, but 

not in S1 segments due to the severe injury in S1 segments. Their findings also showed 

that only about 10% of the cadmium taken up from the lumen was transported across the 

basolateral membrane into the bathing solution, indicating that 90% of the absorbed 

cadmium was retained in the proximal tubular epithelial cells. In transport experiments, 



 19 

increasing the concentration of cadmium in the lumen caused an increase in the leak of 

the volume marker from the lumen into the bath. This is consistent with the finding that 

cadmium damaged tight junction by altering the localization of cadherin and catenin in 

the proximal tubule epithelium (Prozialeck, Lamar et al. 2003). Using free-flow 

micropuncture technique, Felley-Bosco E, et al studied the effect of Cd2+ on the 

superficial nephrons of Munich-Whistar type rats infused acutely with Cd acetate or Cd-

DTPA. They found that most of Cd2+ ultrafiltered during Cd2+ administration is taken up 

by the convoluted part of the proximal tubule. Malgorzata M. et al also contribute to the 

finding that the proximal tubule is the major site for cadmium toxicity. They intoxicated 

the rats with cadmium administered in drinking water. The degree of kidney damage was 

evaluated biochemically and histopathologically. Their results turned out to further 

support the finding that the main absorptive parts are proximal convoluted tubules and 

straight tubules. These studies provide some potential insights into the proximal tubular 

transport and handling of cadmium ions.  

Due to the deficiency in understanding of the transport of cadmium by target 

epithelial cells, several putative mechanisms for cadmium transport in the proximal 

tubule have been proposed. For the transport of Cd2+ at the luminal membrane of the  

epithelial cells of the renal proximal tubule, it is proposed that Cd2+may interact with and 

compete for binding sites on membrane proteins involved in the transport of essential 

elements such as Ca2+, Fe2+ and Zn2+. For the transport of cadmium-sulfhydryl conjugates, 

cadmium-sulfhydryl conjugates may serve as molecular homologues of some amino acids, 

dipeptides, or other important homeostatic molecules, and compete for the transporters 
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that are involved in the uptake of these useful molecules. A third hypothesis was also 

suggested for the transport of cadmium. Endocytosis of proteins containing cadmium 

may be another mechanism by which cadmium gains entry into the epithelial cells. For 

example, cadmium ions may bind to MT, albumin or other proteins, and the conjugates 

are taken up by receptor-mediated endocytosis.  

Since Cd2+ has a smaller ionic radius than Ca2+, and Cd2+ has been shown to be an 

open channel blocker for L-type Ca2+ channels in excitable cells, Cd2+ can be thought of 

as a functional homologue of Ca2+ at certain types of Ca channels. Experimental findings 

indicated that Cd2+ may cross the hepatocyte membranes through L-type Ca2+ channels 

(Blazka and Shaikh 1991). In a pituitary cell line, one route of cadmium uptake in these 

cells is via voltage-gated dihydropyridine-sensitive calcium channels (Hinkle, Kinsella et 

al. 1987). Receptor-activated calcium channels may also allow Cd2+ to enter the cells, as 

suggested by the observation that Cd2+ inhibited Ca2+ inflow through the receptor-

activated Ca2+ inflow system (Hughes and Barritt 1989). 

However, many of these findings were obtained from culture cells bathed in 

protein-free physiological salt solutions, which does not represents the conditions in 

which cadmium is presented to the target epithelial cells in vivo. A significant 

contribution to the accumulation of Cd2+ in the renal proximal tubular epithelial cells by 

Ca2+ channels is also doubted because the voltage-gated Ca2+ channe l blocker verapamil 

lacks any effect on accumulation of Cd2+ in cultured proximal tubular cells (Templeton 

1990). But this finding still leaves the possibility that Cd2+ may be transported by non-

voltage gated Ca2+ channel because the types of Ca2+ channels are variable in the kidneys. 
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The channels mediating Ca2+ entry across the plasma membrane of mesangial cells have 

been classified into three types: voltage-gated Ca2+ channels, receptor-mediated Ca2+ 

channels, and store-operated Ca2+ channels. In the distal tubules and collecting ducts of 

nephrons, the type of the channel mediating Ca2+ entry is a non-selective cation channel, 

TRPV5. In addition, the identity of calcium transport proteins in the renal proximal 

tubule remains unknown. Thus, the role of calcium channel in the uptake of Cd2+ at the 

apical and basolateral membranes of proximal tubule cells is a distinct possibility.        

The divalent cation transporter (DCT1; also known as DMT1 or NRAMP2) has 

recently emerged as a potential candidate for Cd2+ transport in the renal tubules. DCT1 is 

a proton-coupled metal- ion transporter that is localized along several regions of the 

nephron, including the proximal tubule. This transporter is a 561-amino-acid protein 

comprising 12 putative transmembrane domains  with intracellular NH3 and COOH 

termini. DCT1 has a much higher expression level in proximal intestine than in the 

kidney, and more so in kidney than in the brain and other organs (Gunshin, Mackenzie et 

al. 1997). Its has an unusually broad substrate range which includes Fe2+, Zn2+, Mn2+, 

Co2+, Cd2+, Cu2+, Ni2+ and Pb2+ as determined in Xenopus laevis oocytes designed to 

express this carrier protein (Gunshin, Mackenzie et al. 1997; Okubo, Yamada et al. 2003). 

Using specific affinity-purified anti-DCT1 polyclonal antibodies, Ferguson et al. 

discovered that DCT1 is located in the apical membrane of principle and intercalated 

cells of the collecting ducts, the thick ascending limbs of the loop of Henle, and the distal 

convoluted tubules (Ferguson, Wareing et al. 2001), suggesting that DCT1 mediates 

absorption of divalent metal ions in the distal nephron. The direct evidence for DCT1-
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mediated Cd2+ uptake by Madin-Derby canine kidney (MDCK) cells, which are derived 

from the distal nephron, has been provided (Olivi, Sisk et al. 2001). However, the cellular 

localization of DCT1 in the proximal tubule is somewhat controversial. DCT1 has been 

reported to be localized in the cytosol of the proximal tubular cells (Ferguson, Wareing et 

al. 2001; Abouhamed, Gburek et al. 2006). By contrast, using the same specific affinity-

purified anti-DCT1 polyclonal antibodies, Francois et al. found that DCT1 is expressed in 

the cortex and not in the medulla, and is present at the apical membrane of epithelial cells 

of the proximal tubule (Canonne-Hergaux and Gros 2002). In addition, most transport 

data for DCT1 have been obtained from Xenopus oocytes. Transport mediated by DCT1 

is pH-dependent and optimal at pH 5.5 to 6.0 in Xenopus oocytes (Gunshin, Mackenzie et 

al. 1997), which is more acidic than is usually found in the luminal environment of the 

proximal tubule. Therefore, the disparity between the findings and the lack of in vivo 

transport data suggest the role of DCT1 in Cd2+ transport remains to be determined.  

Cadmium and zinc are found together in natural deposits and both belong to the 

group IIB in the periodic chart, consequently they share some physico-chemical 

properties like charge and ionic radii. Therefore, they may behave antagonistically in 

biological system. Much of cadmium carcinogenicity may be due to its ability to 

substitute for zinc in biological reactions. Zinc is an essential metal required for the 

synthesis of DNA, RNA, and protein as well as for enzymatic activity of Zn-containing 

enzymes (Cousins, Blanchard et al. 2003). But cadmium is not required by any known 

biological reactions. A protective effect of Zn2+ on rat hepatocytes and porcine kidney 

LLC-PK(1) cells has been reported against the toxicity due to Cd2+  (Goering and 
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Klaassen 1984; Ishido, Suzuki et al. 1999; Jacquillet, Barbier et al. 2006). Using the 

microperfusion and cell culture technique, O. Barbier et al. found that injection of Zn2+ 

into the kidney increased Cd2+ recovery in urine (Barbier, Jacquillet et al. 2004), and Cd2+ 

uptake and Zn2+ uptake are competitively inhibited reciprocally (Barbier, Dauby et al. 

2005). In animal models, zinc has been shown to reduce the carcinogenic effect of 

cadmium (Waalkes 2003). All of these findings support the antagonistic relationship 

between cadmium and zinc. Recently, a zinc-regulated human zinc transporter, hZTL1 

(ZnT like transporter 1), has been identified in the kidney, brain, duodenum, jejunum, 

ileum, colon, mammary, spleen and liver of mice. The kidney has been shown to express 

hZTL1 mRNA at relatively high levels, and the liver expresses a relatively low level. 

hZTL1 is located in the apical membrane of enterocytes and the levels of hZTL1 

expression were increased in response to increased zinc availability from a rich diet 

supply (Cragg, Christie et al. 2002). Although the direct evidence for the expression of 

ZTL1 in the luminal membrane of renal proximal tubular cells is lacking, it remains  

possible that ZTL1 may be involved in the transport of Zn2+ and Cd2+ in the proximal 

tubule. Another zinc transporter, rZip10, has been purified from rat renal brush border 

membrane (luminal membrane) of the proximal tubule (Kumar and Prasad 1999).  

Functional characterization of rZip10 was carried out by reconstituting it into 

proteoliposomes. The findings indicated that the purified 40-kDa rZip10 is involved in 

the uptake of Zn2+ into proteoliposomes, and this uptake was competitively inhibited by 

Cd2+ (Kumar and Prasad 2000),  suggesting its role in Zn2+
 and Cd2+ influx across the 

renal apical membrane of the proximal tubule. 
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Although the precise chemical forms of cadmium that are filtered at the 

glomerulus are not known currently, it is highly unlikely that cadmium is filtered and 

delivered to the luminal compartment of proximal tubules mainly in its free ionic form, 

Cd2+.  Due to the high affinity of Cd2+ for sulfhydryl groups, the major form of cadmium 

in vivo may be cadmium conjugates with sulfhydryl-containing amino acids, peptides or 

proteins such as L-cysteine, L-homocysteine, N-acetylcysteine, glutathione, albumin and 

metallothionein in plasma. These cadmium-sulfhydryl conjugates are hypothesized to 

serve as molecular homologues of some amino acids or peptides for amino acid or 

peptide transporters. The cadmium conjugates of L-cysteine (Cys-S-Cd-S-Cys)  and L-

homocysteine (Hcy-S-Cd-S-Hcy) have been hypothesized to serve as molecular 

homologues of L-cystine (Cys-S-S-Cys)  and/or L-homocystine (Hcy-S-S-Hcy) and are 

transported by L-cystine and/or L-homocystine transport mechanisms (Zalups 2000). 

Some specific amino acid transporters have been reported to be the primary mechanisms 

for transporting mercuric conjugates of L-cysteine (i.e., Cys-S-Hg-S-Cys) across the 

luminal plasma membrane into proximal tubular epithelial cells (Cannon, Barfuss et al. 

2000; Cannon, Zalups et al. 2001; Bridges, Bauch et al. 2004). Since cadmium and 

mercury are both group IIB metals, it is possible that sulfhydryl conjugates of Cd2+ may 

utilize one or more of the same mechanisms involved in the proximal tubular uptake for 

transport of mercury-conjugates. The cystine transporters are highly suspected in playing 

an important role in the luminal uptake of cysteinyl mercury or cadmium complex.  

One heteromeric amino acid transporter, System b0+, is newly discovered in the 

apical membrane of the proximal tubule and has a high affinity for L-cystine and L-
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dibasic amino acids(Pfeiffer, Loffing et al. 1999; Fernandez, Carrascal et al. 2002). Thus, 

it is likely to be involved in the transport of cysteinyl mercury or cadmium complexes. 

System b0+ is composed of a heavy chain, rBAT, and a light chain, b0+AT. The heavy 

chain is a type II membrane  N-glycoprotein with a single transmembrane domain, and an 

intracellular NH2 terminus, and an extracellular COOH terminus. The light chain is an 

unglycosylated and highly hydrophobic membrane protein bearing 12 putative 

transmembrane domains. Both the NH2 and COOH terminals of the light chain are 

located inside the cell. The light chain and the heavy chain are linked by a disulfide 

bridge (Pfeiffer, Spindler et al. 1998). The light chain confers specific amino acid 

transport activity to the heteromeric complex (Reig, Chillaron et al. 2002). However, 

without association with the heavy chain, the light chain cannot reach the plasma 

membrane (Pfeiffer, Loffing et al. 1999). System b0+ is a tertiary active transport system 

that uses downhill efflux of the high intracellular concentration of neutral amino acids 

down their  chemical gradient to counter of transport L-dibasic amino acids and  L-cystine  

into the cell. To establish the high intracellular concentration of neutral amino acids, the 

function of the apical B0AT1 and basolateral y+LAT1-4F2hc and other undefined 

basolateral neutral amino acid transporters are required. L-cystine, once it enters the cell, 

is rapidly reduced to L-cysteine by cytosolic reducing systems. It has been reported that 

the absorption of L-cystine via system b0+ is facilitated by the intracellular reduction of 

cystine to cysteine (Busch, Herzer et al. 1994; Chillaron, Estevez et al. 1996; Pfeiffer, 

Loffing et al. 1999). Interestingly, the expression patterns of rBAT and b0+AT along the 

proximal tubule are opposite. The rBAT expression pattern is S3 > S2 > S1, while the 
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b0+AT expression pattern is S1 > S2 > S3 (Furriols, Chillaron et al. 1993; Chairoungdua, 

Segawa et al. 1999; Pfe iffer, Loffing et al. 1999; Mizoguchi, Cha et al. 2001). These 

findings suggested that there are two systems that mediate the apical transport of L-

cystine: system b0+ is a high affinity, Na+-independent L-cystine transporter. Another low 

affinity, Na+-dependent L-cystine transporter is also suggested to function in the proximal 

tubule. But the identity of the low affinity L-cystine transporter is unknown. This low 

affinity cystine transporter may also be a potential candidate for the transport of 

cadmium-cysteine complex. 

The L-cystine transport system may also be responsible for the uptake of 

cadmium conjugates with glutathione (GSH). Glutathione is a tripeptide consisting of 

glutamate, cysteine and glycine; therefore, it may form conjugate with cadmium (G-S-

Cd-S-G). But it is not likely that G-S-Cd-S-G is taken up as an intact complex due to the 

existence of brush-border enzymes, glutamyltransferase and cysteinylglycinase in the 

luminal membrane of proximal tubular cells. The function of glutamyltransferase is to 

cleave the glutamylcysteine bond in molecules of glutathione, while the function of 

cysteinylglycinase is to cleave cysteinylglycine bond in molecules of glutathione. When 

G-S-Cd-S-G is filtered into the proximal tubular lumen, it is most likely degraded rapidly 

in the tubular lumen to cysteinylglycine S-conjugate of cadmium (Gly-Cys-Cd-Cys-Gly) 

by ?-glutamyltransferase, and then to the cadmium-cysteine conjugate (Cys-S-Cd-S-Cys) 

by cysteinylglycinase. The resulting cadmium-cysteine conjugates are transported by the 

cystine transport system into the epithelial cells.  
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The structure of the cadmium-cysteine conjugate also resembles that of a 

dipeptide. In the proximal tubule, PepT2 mediates the high-affinity low capacity transport 

of small peptides (i.e., sequence- independent di- and tripeptides) as well as the various 

peptide- like drugs at the apical membrane. PepT2 is an electrogenic, sodium independent 

symporter that cotransports di- and tripeptides with protons. An inwardly directed 

electrochemical gradient of protons and the intracellular hydrolysis of di- and tripeptides 

to single amino acids drive more di- and tripeptides to be absorbed via PepT2 into the 

epithelial cells. Due to the structural similarity between cadmium-cysteine conjugate and 

dipeptide, cadmium-cysteine conjugates may compete for the transport via PepT2 in the 

proximal tubule. 

Endocytosis has been postulated as an important mechanism for the uptake of 

Cd2+-protein complexes such as Cd-MT and Cd-albumin. Metallothionein and albumin 

are low molecular weight proteins that contain multiple cys teine residues. However, only 

a small percentage of the cadmium in plasma that is bound to albumin is likely filtered 

into lumen of the proximal tubule, mainly because the glomerular-sieving coefficient for 

albumin is very low (Zalups and Ahmad 2003). Therefore, cadmium conjugate with 

albumin may not be presented to the apical membrane of the proximal tubule. Cd-MT 

conjugates are formed in hepatocytes in response to exposure to cadmium. Complexes of 

Cd-MT are released from necrotic hepatocytes and are delivered via systemic circulation 

to the kidney.  Cd-MT can be filtered freely at the glomerulus due to its small size (a 

molecular mass of approximately 6-7 kDa). Generally, the glomerular filtration barrier 

allows the molecules having a molecular weight of less than 66kDa to pass through. 
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Absorbed Cd2+ is initially taken up into the liver, where Cd2+ can bind to metallothionein 

and be stored. However, some of CD-MT complexes are released from necrotic/apoptotic 

hepatocytes into the plasma, from where Cd-MTs are easily filtered through the 

glomerulus into the lumen and subject to absorption by renal proximal tubular cells. 

Recent studies assume that Cd-MT is absorbed at the apical membrane of proximal 

tubular cells by receptor-mediated endocytosis and sorted to the lysosomal compartment. 

In the lysosomes, Cd-MT may be degraded by acidic proteases and the free Cd2+ is 

transported into the cytoplasmic compartment from the lysosomes via some kind of 

transporters which may be DCT1 transporters.  This model is supported by data 

demonstrating that acute uptake of Cd-MT by the kidney in rat is blocked by low 

molecular weight proteins, including ß2-microglobin, a ligand that binds the receptor 

protein, megalin (Bernard, Ouled Amor et al. 1987). However, the efficiency of Cd-MT 

absorption is controversial. Using the in vivo microperfusion technique, Felley-Bosco and 

Diezi reported that Cd-MT is not absorbed very efficiently along the proximal tubule in 

vivo (Felley-Bosco and Diezi 1987), but Dorian et al demonstrated that Cd-MT is rapidly 

and efficiently taken up by the S1 and S2 cells of the proximal tubule (Dorian, Gattone et 

al. 1992). While Barfuss and Zalups showed that Hg-MT was not absorbed at all in S1, S2, 

and S3 segments isolated and perfused in vitro (Zalups, Cherian et al. 1995). 

 

Transport of cadmium across the basolateral membrane in the proximal tubule 

Unfortunately, by far, very little attention has been given to the possibility of 

cadmium uptake across the basolateral membrane of the proximal tubule. Therefore, the 
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mechanisms for basolateral cadmium transport are poorly understood. Some findings 

demonstrated that accumulation of cadmium in the LLC-PK1 cells following basolateral 

exposure to cadmium occurred (Prozialeck and Lamar 1993; Liu, Liu et al. 1994; Kimura, 

Endo et al. 1996). However, although their findings tend to indicate that cadmium can 

interact with the basolateral membrane and be transported into the cultured cells, the 

findings could not reflect the manner by which cadmium is taken up at the basolateral 

membrane in vivo. Recently, using the stop-flow technique, Zalups has provided strong in 

vivo evidence for basolateral uptake in the kidneys, and this uptake is stimulated by co-

administration of cadmium with cysteine or glutathione. But they are not certain that 

what specific segments of nephron are involved in the process (Zalups 2000).  

Zalups’ findings suggested that Cd2+ present in the blood may be transported 

across the basolateral membrane as conjugates of cysteine or other non-protein 

sulfhydryl-containing molecules. However, the specific transport mechanisms have not 

been identified. One potential candidate for this transport is OAT1. OAT1 has been 

reported to function in the transport of Hg2+ in the form of Cys-S-Hg-S-Cys, Hcy-S-Hg-

S-Hcy, and NAC-S-Hg-S-NAC across the basolateral membrane  into the proximal 

tubular cells via a mechanism of molecular mimicry (Aslamkhan, Han et al. 2003; Zalups, 

Aslamkhan et al. 2004; Zalups and Ahmad 2005). Since cadmium-sulfhydryl conjugates 

are similar to those of Hg2+ in structure, it is hypothesized that OAT1 may be involved in 

the basolateral transport of cadmium conjugates into the epithelial cells. 

Kaur et al found that zinc transport across the renal basolateral membrane vesicles 

was time and concentration-dependent, and competitively inhibited by cadmium (Kaur, 
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Sharma et al. 2006). In addition, overexpression of a zinc transporter ZnT1 has been 

found in cultured baby hamster kidney cells (Palmiter and Findley 1995). These findings 

suggested that Cd2+ in the blood may gain entry into the renal cells via a Zn2+ transporter 

in the basolateral membrane.   

 

Adaptive and protective responses of proximal tubular cells to Cd2+ toxicity 

Robinson et al. has demonstrated that less than 10% of the Cd2+ absorbed at the 

luminal membrane of the proximal tubule is subsequently transported across the 

basolateral membrane, indicating that more than 90% of the transported Cd2+ is 

sequestered within the epithelial cells (Robinson, Barfuss et al. 1993). In the cytosol of 

the epithelial cells, Cd2+ binds to sulfhydryl-containing amino acids such as L-cysteine, 

peptides such as GSH, or to proteins such as metallothionein, which protects the 

intracellular environment from oxidative damage by Cd2+. Therefore, if a very low 

concentration (micromolar) of Cd2+ is applied to the cells, not all the cells are proned to 

damage by Cd2+ intoxication. In addition, the low concentration of Cd2+ will initiate 

repair processes to counterbalance the toxicity caused by cadmium. In other words, the 

cells  will make more intracellular scavengers for Cd2+. When the amount of cadmium 

exceeds the ability of the kidney cells to produce binding proteins that keep the cadmium 

biologically inactive, serious kidney damage may occur. 

Recent studies illustrate that an important adaptive and protective response to 

toxic cadmium exposure is induction of metallothionein synthesis. Under normal 

conditions, metallothioneins occur at a very low level in the circulation. When exposed to 
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chronic Cd2+ intoxication, production of metallothioneins is increased greatly. In the 

human body, large quantities of metallothioneins are synthesized primarily in the liver 

and kidneys. Metallothioneins are a group of low molecular weight (mammalian forms, 

6-7kD), intracellular metal-binding proteins that serve as a storage depot for Fenton 

metals, such as copper, zinc and iron. Metallothioneins contain numerous sulfhydryl 

groups due to their high L-cysteine content (20 cysteine residues), and have a high 

affinity for sulfhydryl-reactive metals such as mercury and cadmium. Metallothioneins 

even have higher affinities for mercury and cadmium than for Fenton metals such as zinc  

(Hamer 1986). Therefore, as mercury or cadmium binds to metallothionein, and is 

restricted from entering the mitochondria, zinc is released from metallothionein. The free, 

ionized zinc is toxic if permitted to accumulate and produce ROS. However, the released 

Zn2+ can bind to a metal regulatory element on the promoter region of the metallothionein 

gene and turn on the synthesis of metallothionein (Hamer 1986). The increased level of 

metallothionein provides increased binding capacity for both zinc and toxic cadmium, 

thereby protecting from cadmium toxicity and maintaining normal zinc function. The 

important role of metallothionein in cadmium cellular disposition and detoxification has 

been reported. Mammalian cell lines transfected with the greatest number of copies of the 

metallothionein gene expressed the highest levels of metallothionein. In the mean time, a 

relatively large number of those mammalian cells survived exposure to cadmium in 

culture media (Burnam, Palmiter et al. 1987). Metallothionein-null mice, genetically 

engineered to have inactivated metallothionein genes, died within three days of exposure 

to cadmium in drinking water, while control (normal) mice did not exhibit any symptoms 
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of cadmium toxicity (Masters, Kelly et al. 1994). Metallothionein also decreased 

cadmium elimination through the bile (Klaassen 1978), and increased cadmium 

sequestration in the liver (Liu, Liu et al. 1996), thus, reducing the amount of cadmium 

available to injure other critical organs. 

A second cadmium-induced protective response is induction of glutathione  

synthesis. Glutathione is the primary intracellular antioxidant and conjugating agent. It 

has been reported that short or long-term exposure to cadmium resulted in a significant 

increase in the activity of glutathione S-transferase and glutathione level (Vogiatzis and 

Loumbourdis 1998; Casalino, Sblano et al. 2004; Casalino, Sblano et al. 2006; Yannarelli, 

Fernandez-Alvarez et al. 2007). 

The other adaptive and protective responses induced by low concentration of Cd2+ 

include up-regulation of detoxifying proteins such as P-glycoprotein (Thevenod, 

Friedmann et al. 2000), multidrug resistance protein 2 (MRP2) (Terlouw, Graeff et al. 

2002), or stimulation of the expression of the tumor suppressor gene for p53 (Achanzar, 

Achanzar et al. 2000). The detoxifying multidrug resistance P-glycoprotein pump and 

MRP2 are members of the superfamily of ATP-binding cassette (ABC) transporters. 

They are expressed in the luminal membrane of proximal tubule cells, and export 

cytotoxic substances and a variety of drugs. The increase in expression of detoxifying 

proteins in the luminal membrane  in response to long term exposure to Cd2+ are expected 

to transport Cd2+ out of cells into urine. However, Frank Thevenod et al reported that 

although upregulation of P-glycoprotein is associated with anti-apoptotic protection for 

proximal tubular cells against Cd2+-mediated stress (Thevenod, Friedmann et al. 2000), 
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their results strongly argue against the hypothesis that P-glycoprotein is involved in Cd2+ 

transport out of the proximal tubular cells. Therefore, the function of detoxifying proteins 

in cadmium toxicity remains to be determined. p53 is also known as tumor protein 53. 

p53 is a transcription factor that regulates and guarantee  the correct cell cycle, thus 

suppressing cancer. Therefore, upregulation of p53 by low levels of cadmium can help 

reduce cadmium toxicity.  

 

Possible measures that protect against cadmium toxicity 

As discussed above, after being absorbed from the intestine and the pulmonary 

system, most cadmium accumulates and is retained in the body for a long time and very 

little is excreted via the urine or feces. Therefore, if we find ways to impair its absorption 

pathway, thereby favoring its renal clearance, its accumulation and toxicity may be 

reduced. Currently, some methods have been suggested or applied for the treatment of 

cadmium toxicity. 

Heavy metal chelators. Heavy metal chelators used to chelate Cd2+, Hg2+, and 

Pb2+ include ethylenediaminetetraacetic acid (EDTA), triethylenetetramine (TETA), 

deferoxamine, deferiprone, meso-2,3-dimercaptosuccinic acid, 2, 3-dimercaptopropane-

1-Sulfonate (DMPS) and diethyldithiocarbamate. A chelator is a molecule with two or 

more electronegative groups that can form stable co-ordinate covalent bonds with metal 

cations. The complexes are relatively large and difficult to absorb, and consequently are 

excreted by the body.  The chelator’s electronegative groups include -OH, -SH, or -NH. 

The efficacy of a chelator depends on the number of electronegative groups available for 
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metal binding. In general, the greater number of the electronegative groups, the more 

stable and huge the chelator-metal complex, and the more heavy metals are excreted. The 

efficacy of heavy metal chelator is enhanced by some amino acids such as methionine, 

but the mechanism is not known. In Europe, heavy metal chelators have been used as 

medical therapy for heavy metal toxicity. For example, DMPS (C3H7O3S3Na) has been 

used to cure acute and chronic toxicity caused by mercury, lead, arsenic, copper, 

antimony, chromium, and cobalt. However, since most chelators also complex essential 

divalent cations such as Ca2+, Mg2+, Zn2+, Cu2+, Fe2+ and increase their excretion, the use 

of heavy metal chelators is still considered experimental in U.S.A. 

D-Cysteine. Since the heavy metal chelators have side effects, it is better to find 

natural compounds to chelate Cd2+. It has been assumed that all D-amino acids except D-

aspartic acid cannot be transported by amino acid transport systems as their L-

counterparts. Therefore, the sulfhydryl-containing D-amino acids may be good natural 

chelators for Cd2+. Using in vivo 109Cd microinjection of the proximal tubule in the rat, 

Olivier Barbier et al found that D-cysteine was possible to increase the urinary excretion 

of 109Cd (unpublished). But the role of D-cysteine still needs to be further confirmed 

because recently, it is reported that some amino acid transporters can accept small neutral 

D-amino acids as substrates to a certain degree (Fukasawa, Segawa et al. 2000). 

Inhibitors and blockers of renal luminal transport of cadmium.  As discussed 

previously, Cd2+ may compete with essential metal (Fe2+, Zn2+ and Ca2+) transport, and 

cadmium-sulfhydryl conjugates may compete with amino acid (L-cystine) transport 

mutually. Therefore, if these hypotheses can be verified in vivo, cadmium toxicity could 



 35 

be countered by administering and these metals or amino acids and increase the renal 

clearance of cadmium. However, the efficiency of these treatment s needs to be 

determined and the side effects induced by the acute administration of high concentration 

of essential elements or amino acids need to be carefully analyzed. 
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CHAPTER III: MATERIALS AND METHODS 

 

Animals  

Female New Zealand rabbits (1-2kg) were used in the present study. All animals were 

allowed at least two days of acclimation prior to any experimentation. Water and a commercial 

laboratory diet for rabbits were provided ad libitum during all phases of the study. 

 

Composition of Bathing and Perfusing Solutions   

In all experiments, the solution bathing the perfused tubular segments consisted of simple 

electrolyte solutions. This bathing solution contained the following: 140 mM Na+, 140 mM Cl- , 

5 mM K+, 1.3 mM Ca+, 0.6 mM Mg2+, 0.6 mM SO4
2-, 2mM NaH2PO4, 1 mM D-glucose, and 0.5 

mM L-glutamine. The pH was adjusted to 7.4 by the addition of 1N NaOH solution. Final 

osmolality was adjusted to 290 mOsmol /kg of H2O by the addition of either doubly distilled and 

deionized water or NaCl. To evaluate the net absorption of cadmium or sulfhydryl conjugates of 

cadmium, 109Cd2+ (0.588Ci/mg, Amersham) was added to the perfusate.  The vital dye FD&C 

Green 3 (809Da) (NEELICERT) was placed in the perfusate at a concentration of 250nM to 

visually determine toxic effects of the Cd2+ or Cd-conjugates. [3H]-L-glucose (14.6 Ci/mmol; 

American Radiolabeled) was added to the perfusing solution as a volume marker and a leak 

indicator. [3H]-L-glucose is used as a leak indicator because it does not adhere to cell membrane, 

is not transported, does not penetrate tight junctions or cell membranes and is water soluble. The 

perfusing solution is identical to the bathing solution except the 2mM NaH2PO4 was replaced by 

2mM HEPES because it was found that HPO4
- or HPO4

2- precipitated 109Cd2+ in solution. For 
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experiments designed to determine if Fe2+ can compete with Cd2+ at the site of certain 

transporters,  10 µM FeCl2 along with 100 µM ascorbic acid (to prevent oxidation) were added to 

the perfusate. In addition, this latter perfusate was adjusted to a pH of 6.8 to assure maximum 

DCT1 activity. 

 

Tubular Dissection Solution  

The tubular dissection solution was a sucrose/phosphate buffer containing 125mM 

sucrose, 13.3mM anhydrous monosodium dihydrogen phosphate (NaH2PO4), and 56 mM 

anhydrous disodium monohydrogen phosphate (Na2HPO4). The pH was adjusted to 7.4 by the 

addition of either 1N NaOH or HCl. The osmolality was adjusted to 290 mOsm/Kg of water by 

the addition of either water or NaCl. 

 

Procedure for Obtaining Segments of Proximal Tubules  

On each day of experimentation, a rabbit was anesthetized with a combination of 

33mg/kg ketamine (FORT DODGE) and 33mg/kg xylazine (LLOYD). When the rabbit reached 

deep anesthesia (as determined by the corneal reflex) the abdominal wall was cut and the kidneys 

were rapidly removed and placed in the cold (4oC) aqueous sucrose-phosphate buffer solution 

(dissection solution). The kidneys were then quickly sliced into 1-2mm thick coronal sections, 

using a single-edge razor blade. The sections were stored in the same sucrose-phosphate buffer 

solution on ice for up to next 8 hours. The S1, S2, and S3 segments of the proximal tubule were 

dissected from the coronal sections. The S1 segments were identified as convoluted tubules 

dissected from the outer cortical regions of the kidney slice.  The S2 segments were identified as 
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straight portions of the proximal tubule spanning the entire thickness of the cortex, while the S3 

segments were identified as the last 1 mm of the proximal straight tubule which was attached to 

the easily identifiable thin descending limb of Henle’s loop and located in the outer stripe of the 

outer medulla. 

 

Method for Perfusing Segments of Proximal Tubules  

Each dissected tubule was transferred to a Lucite perfusion chamber and was suspended 

between two sets of pipettes. One set of pipettes including the holding pipette and the perfusion 

pipette was used to perfuse the suspended tubule, whereas the other set including the collection 

pipette and the constant volume pipette was used to collect the perfused fluid (Figure 4). Each 

tubular segment was warmed from room temperature to 37oC over 15 min prior to the beginning 

of an experiment. The perfusion rate was maintained, on average, at 7-10 nl/min, with constant 

hydrostatic pressure. Because of differences in tip diameters of the perfusion pipettes used in the 

present study, the hydrostatic pressure needed to perfuse the segments of proximal tubules at 7-

10 nl/min varied between 15 and 50mmHg. Each perfused tubule was monitored for any changes 

in tubular diameter resulting from abnormally high intraluminal pressure. The perfused fluid 

(perfusate) was collected from the lumen into a constant volume pipette (designed to accurately 

collect 30-50nl). The bathing fluid surrounding the outside basolateral surface of the perfused 

tubule was pumped into one end of the bathing chamber at a rate of approximately 0.3ml/min 

and was aspirated continually out of the other end, and collected into scintillation vials at 5-min 

intervals. The volume fluid held in the perfusion chamber was approximately 0.3ml, thus the 

bathing solution was exchanged about once per minute. 
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Collection of Samples  

The fluid exiting from each perfused tubular segment and corresponding bathing solution 

sample were collected for each perfused tubule to measure the rates of lumen-to-bath flux (fmol 

min-1 (mm tubule length)-1) of 109Cd and the volume marker, 3H-L-glucose. The constant-volume 

pipette was used to collect collectate samples, which were immediately added to 4 ml of 

scintillation fluid. The bathing solution was routinely collected and analyzed for the appearance 

of 109Cd and the volume marker (fmol min-1 (mm tubule length)-1). The aspirated bathing 

solution was collected in 8-ml scintillation vials that were configured with a vacuum trap. These 

scintillation vials were changed every 5 min during experiments. To each vial, 4 ml of 

scintillation fluid (Opti-Fluor; Packard Instrument Company, Downers Grove, IL) was added. 

The collectate and bathing fluid samples were then counted in a Beckman 5800 scintillation 

counter (Beckman Instruments, Fullerton, CA) to quantify of the amount 109 Cd and 3H present in 

each sample using standard isotopic separation  methods. 

 

Harvesting of Perfused Tubular Segments 

To calculate the cellular content of cadmium in the isolated perfused segments of 

proximal tubules, it is necessary to harvest the perfused tubule at the end of each experiment. 

The tubular segment was quickly harvested (about one second) with the aid of a pair of fine 

forceps by perfusing it at the perfusion end and pulling it free while it was being perfused. The 

tubule then was removed from the bathing solution and placed in 10 µl of 3% (W/V) TCA 

(trichloroacetic acid). The TCA precipitated the larger proteins leaving the tubule opaque-white 
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and rigid while releasing the cytosolic contents into the TCA solution. After a few minutes, the 

tubular segment (TCA-precipitable fraction) was removed from the TCA solution, placed into a 

vial with 4 ml of scintillation fluid and later analyzed by scintillation counting with standard 

isotopic methods for the contents of 109Cd and the volume marker, [3H]-L-glucose. Like wise the 

TCA solution (TCA-soluble fraction, presumably cytosolic content) data was obtained. The 

TCA-soluble fraction permitted the approximate calculation of the cellular content of 109Cd (µM). 

 

Calculations   

Lumen-to-cell disappearance flux. Transport of cadmium in lumen-to-cell transport 

experiments was determined by measuring the rate at which 109Cd disappeared from the luminal 

fluid. This disappearance flux (JD) (fmol min-1 (mm tubule length)-1) measurement was 

calculated by equation #1:          

                                  1)              JD= (VP[Cd2+]P – VC [Cd2+]C) /L 

 

Where [Cd2+]P and [Cd2+]C are the concentrations (fmol nl-1) of 109Cd in the perfusate and 

collectate, respectively. [Cd2+]P and [Cd2+]C were determined from the specific activity of  109Cd. 

L is the length (mm) of the perfused tubular segment. VC is the collectate collection rate            

(nl min-1), which was calculated from the time required to fill the constant volume pipette. VP is 

the perfusion rate (nl min-1) and was calculated by equation #2: 

                                   

                                                2:    VP = VC ([VM]C/[VM]P) 
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Where [VM]C and [VM]P are the concentrations (cpm nl-1) of the Volume Marker (3H-L-glucose) 

in the collectate and perfusate respectively. The final [VM]C was determined by adding the 

amount of [3H]-L-glucose (cpm min-1 x collectate collection time) that leaked into the bathing 

solution during the collection period to the collectate [3H]-L-glucose, and for intact tubular 

segments, this is very little. [3H]-L-glucose is not transported by the glucose transporters in the 

renal proximal tubules, therefore, the little leak is caused by the intercellular passage of [3H]-L-

glucose through the various junctional complexes. The generally accepted normal lumen-to-bath 

leak of the volume marker, [3H]-L-glucose, is about 1% of the total volume marker being 

perfused into the lumen. If the leak is greater than the normal rate, it can be assumed that the 

perfused tubular segment has been structurally compromised, and it becomes justifiable to 

discard the data from that experiment. 

Cell-to-Lumen ratio of 109Cd.  The cell/lumen concentration ratio of 109Cd was calculated 

using the following equations, 3, 4 and 5: 

                

            3:      [Cd]Tubule=cpmCd÷VCell 

           4:     VCell =0.7p (r0
2 –ri

2 ) x L 

           5:     Cell/Lumen = [Cd]Tubule/[109Cd]Lumen 

Where CdTubule (cpm/nl) is the intracellular content of 109Cd in perfused tubular segment; cpmCd 

is the amount (cpm) of 109Cd in the perfused tubular segment (only TCA-soluble fractions) while 

VCell (nl) is the volume of the perfuse segment and L is the length (µm) of the tubular segment; 

0.7 is the fraction of cellular volume that is water (Tune and Burg 1971); r is inside or outside 
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radii of the perfused segment; [109Cd]Lumen is the mean concentration of 109Cd in the luminal 

perfusing solution. 

 

Statistical Analysis 

A minimum of five tubules were perfused under each experimental condition. Moreover, 

data for each parameter assessed was obtained from tubular segments isolated from at least two 

animals. For each perfused tubule, the three JD measurements of 109Cd were averaged. These 

averaged values (5-10) for JD were used to compute the overall mean and standard error of the 

mean for each experimental condition. The same analysis sequence was use for the Cell/Lumen 

concentration ratios. After an analysis of variance (ANOVA), the mean values of the various 

groups were tested for differences using the conservative Bonferroni test. Values were assumed 

to be significantly different when P<0.05.  
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CHAPTER IV: RESULTS 

 

Effect of Fe2+ on the lumen-to-cell transport of Cd2+ 

To determine if Fe2+ has an effect on the luminal transport of Cd2+, 10µM FeCl2 

and 100µM ascorbic acid were added to the pH 6.8  perfusate with 0.73µM 109CdCl2, Fig. 

5. The disappearance flux (JD) and cell-to- lumen concentration ratio of 109Cd are 0.60 ± 

0.04 fmol min-1 (mm tubular length)-1 and 20 ± 2.15, respectively Comparative (control) 

studies were performed with 100µM ascorbic acid, pH 6.8 and no Fe2+. The 

disappearance flux (JD) and cell-to- lumen concentration ratio of 109Cd are 1.04 ± 0.06 

fmol min-1 (mm tubular length)-1 and 37.86 ± 1.47, respectively. Compared to the control 

group, the presence of Fe2+ significantly reduced the JD of Cd2+ by 42%, and cell- to-

lumen concentration ratio of Cd2+ by 49%.  

 

Effect of Zn2+ on the lumen-to-cell transport of Cd2+ 

To investigate whether Zn2+ can affect luminal absorption of Cd2+, 20µM ZnCl2 

was added to the perfusate with 0.73µM 109CdCl2. As shown in Fig 6, the JD of Cd2+ in 

the presence of Zn2+ is 1.62 ± 0.24 fmol min-1 (mm tubular length)-1 , and the cell- to-

lumen concentration ratio is 154.36 ± 23.26. The JD of Cd2+ in the control group is 3.13 ± 

0.14 fmol min-1 (mm tubular length)-1, and the cell- to-lumen concentration ratio is 223.8 

± 22.7. Compared to the control group, Zn2+ significantly decreased the JD of Cd2+ by 

48% and the cell- to- lumen concentration ratio by 31%. 
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Figure 5:  The effect of Fe2+ on the lumen-to-cell transport (A) and cell- to- lumen 
concentration ratio (B) of Cd2+ in isolated S2 segments of the proximal tubule of the 
rabbit perfused with 0.73 µM Cd2+ (at 37ºC). Each value represents the mean ± SE for a 
sample size of five or six. The “*” indicates a significant statistical difference, P< 0.05. 
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Figure 6:  The effect of Zn2+ on the lumen-to-cell transport (A) and cell- to- lumen 
concentration ratio (B) of Cd2+ in isolated S2 segment of the proximal tubule of the rabbit 
perfused with 0.73 µM Cd2+  (at 37ºC).   Each value represents the mean ± SE for a 
sample size of five or six. The “*” indicates a significant statistical difference, P< 0.05. 
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Effect of Ca2+ on the lumen-to-cell transport of Cd2+  

To determine whether a calcium channel is a mechanism for Cd2+ entry into the 

renal epithelial cells, the concentration of Ca2+ in perfusate was adjusted from 1.3mM 

(control perfusate) to1.95mM or 2.6mM. The JDs at these concentrations were 3.13 ± 

0.14, 2.28 ± 0.50 and 0.98 ± 0.17 fmol min-1 (mm tubular length)-1, respectively, Fig.7. 

The presence of high concentrations of Ca2+ in the perfusate decreased the JD of Cd2+ 

(27% reduction at 1.95mM and 69% at 2.6mM). The cell-to- lumen concentration ratios at 

these three concentrations were 223.8 ± 22.7, 179.8 ± 30.7 and 124.2 ± 25.9. High 

concentrations of Ca2+ in the perfusate decreased the cell-to- lumen concentration ratio of 

Cd2+ (19.7% reduction at 1.95mM and 45% at 2.6mM). When the concentration of Ca2+ 

in perfusate was adjusted to be less than that in control perfusate (1.3mM), the tubules 

expressed an acute visual toxicity, such as blebbing of the luminal membrane and cellular 

swelling (data not shown), consequently, transport data could not be obtained.  

 

Effect of calcium channel blockers  on the lumen-to-cell transport of Cd2+ 

L-type calcium channel blockers, 100µM verapamil or 100µM diltiazem, were 

used to test for any effect they might have on the absorption of Cd2+, Fig.8. The data 

showed that 100µM verapamil did not have any significant effect on Cd2+ transport, 

while diltiazem slightly reduced the JD of Cd2+ by 26.7%, from 1.05 ± 0.05 to 0.77 ± 0.02 

fmol min-1 (mm tubular length)-1, and the cell-to- lumen concentration ratio by 19%, from 

45.1 ± 5.29 to 36.5 ± 2.57.  
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Figure 7:  The effect of Ca2+ on the lumen-to-cell transport (A) and cell- to- lumen 
concentration ratio (B) of Cd2+ in isolated S2 segment of the proximal tubule of the rabbit 
perfused with 0.73 µM Cd2+ (at 37ºC).  Each value represents the mean ± SE for a sample 
size of five or six.  The “*” indicates a significant statistical difference, P< 0.05 compared 
to control, 1.3 mM Ca2+. 
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Figure 8:  The effects of verapamil and diltiazem on the lumen-to-cell transport (A) and 
cell-to- lumen concentration ratio (B) of Cd2+ in isolated S2 segment of the proximal 
tubule of the rabbit perfused with 0.73 µM Cd2+ (at 37ºC).   Each value represents the 
mean ± SE for a sample size of five or six. The “*” indicates a significant statistical 
difference from control, P< 0.05. 
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Effect of L-cystine on the lumen-to-cell transport of cadmium conjugates of 

sulfhydryl-containing molecules 

When 10µM L-cystine was added to the perfusate, it reduced the JD of cadmium-

homocysteine conjugate (HCys-S-Cd-S-HCys) by about 58%, from 1.59 ± 0.21 to 0.66 ± 

0.11 fmol min-1 (mm tubular length)-1, and the cell- to- lumen concentration ratio by 41%, 

from 157.3 ± 13.5 to 92.7 ± 15.8, Fig.9.  

When co-perfused with cadmium-N-acetylcysteine conjugate (NAC-S-Cd-S-

NAC), L-cystine reduced the JD of NAC-S-Cd-S-NAC by about 38%, from 0.96±0.06 to 

0.60±0.02 fmol min-1 (mm tubular length)-1, and the cell- to-lumen concentration ratio by 

10%, from 36.5 ± 1.65 to 33.05 ± 1.38, Fig. 10. 
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Figure 9:  The effect of L-cystine on the lumen-to-cell transport (A) and cell- to- lumen 
concentration ratio (B) of HCys-S-Cd-S-HCys in isolated S2 segment of the proximal 
tubule of the rabbit perfused with 0.73 µM HCys-S-Cd-S-HCys (at 37ºC).   Each value 
represents the mean ± SE for a sample size of five or six. The “*” indicates a significant 
statistical difference, P< 0.05. 
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Figure 10:  The effect of L-cystine on the lumen-to-cell transport (A) and cell- to- lumen 
concentration ratio (B) of NAC-S-Cd-S-NAC in isolated S2 segment of the proximal 
tubule of the rabbit perfused with 0.73 µM NAC-S-Cd-S-NAC (at 37ºC).   Each value 
represents the mean ± SE for a sample size of five or six. The “*” indicates a significant 
statistical difference, P< 0.05. 
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Effect of amino acids on the lumen-to-cell transport of cadmium-cysteine conjugate 

Figure 11 shows that 10µM L-cystine and 10µM L-arginine reduced the JD of 

cadmium-cysteine conjugate (Cys-S-Cd-S-Cys) by about 55% and 50%, and the cell- to-

lumen concentration ratio by about 64% and 20%, while 10µM L-aspartic acid or 10µM 

L-glutamate had no effect on the transport of cadmium-cysteine conjugate. When 0.73 

µM cadmium-cysteine conjugate was co-perfused with 10µM L-methionine, the JD of 

cadmium-cysteine conjugate was increased by about 56% and the cell- to- lumen 

concentration by about 129%. 

 

Effect of Gly-Sar on the lumen-to-cell transport of cadmium-cysteine conjugate 

To test the effect of dipeptide on lumen-to-cell transport of cadmium-cysteine 

conjugate, 10µM Gly-Sar (glycylsarcosine) was co-perfused with 0.73µM cadmium-

cysteine conjugate. Both the JD of the cadmium-cysteine conjugate and the cell- to- lumen 

concentration ratio were not significantly changed, Fig.12. 

 

Effect of Zn2+ on the lumen-to-cell transport of cadmium-cysteine conjugate 

To determine the stability of the cadmium-cysteine bond, 20µM Zn2+ was co-

perfused with 0.73µM cadmium-cysteine conjugate. There was no decrease in both the JD 

of the cadmium-cysteine conjugate and the cell-to- lumen concentration ratio, Fig. 13. 
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Figure 11:  The effects of relevant amino acids on the lumen-to-cell transport (A) and 
cell-to- lumen concentration ratio (B) of Cys-S-Cd-S-Cys in isolated S2 segment of the 
proximal tubule of the rabbit perfused with 0.73 µM Cys-S-Cd-S-Cys (at 37ºC).   Each 
value represents the mean ± SE for a sample size of five or six. The “*” indicates a 
significant statistical difference from control, P< 0.05. 
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Figure 12:  The effect of the dipeptide, gly-sar, on the lumen-to-cell transport (A) and 
cell-to- lumen concentration ratio (B) of  Cys-S-Cd-S-Cys in isolated S2 segment of the 
proximal tubule of the rabbit perfused with 0.73 µM Cys-S-Cd-S-Cys (at 37ºC).   Each 
value represents the mean ± SE for a sample size of five or six. 
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Figure 13:  The effect of zinc on the lumen-to-cell transport (A) and cell- to- lumen 
concentration ratio (B) of Cys-S-Cd-S-Cys in isolated S2 segment of the proximal tubule 
of the rabbit perfused with 0.73 µM Cys-S-Cd-S-Cys (at 37ºC).   Each value represents 
the mean ± SE for a sample size of five or six.  
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Effect of temperature on the lumen-to-cell transport of Cd2+  

To assess whether the transport of Cd2+ is modulated by temperature, the S2 

segments of the proximal tubules were perfused with Cd2+ at 37 ºC, 22 ºC and 11 ºC (Fig. 

14). The JDs of Cd2+ at these temperatures were 3.13 ± 0.14, 0.41 ± 0.11 and 0, fmol min-

1 (mm tubular length)-1. The corresponding cell- to-lumen concentration ratios of Cd2+ 

were 223.8 ± 22.7, 79.5 ± 5.46 and 12.27 ± 0.92.   Significant decreases in the JD (87% 

reduction at 22 ºC and 100% at 11 ºC) and cell- lumen concentration ratio (64.5% 

reduction at 22 ºC and 94.5% at 11 ºC) of Cd2+ were observed in response to these 

reduction in temperature.  

 

Effect of temperature on the lumen-to-cell transport of cadmium-cysteine conjugate  

To assess whether the transport of cadmium-cysteine conjugate is modulated by 

temperature, the S2 segments of the proximal tubules were perfused with 0.73µM Cys-S-

Cd-S-Cys at 37 ºC, 22 ºC and 11 ºC. The JDs of cadmium-cysteine conjugate at these 

temperatures were 2.92 ± 0.31, 0.70 ± 0.16 and 0, fmol min-1 (mm tubular length)-1 while 

the corresponding cell-to- lumen concentration ratios of cadmium-cysteine conjugate were 

282.3 ± 55, 52.5 ± 9.3 and 11.55 ± 2.46. Significant decreases in the JD (76% reduction at 

22 ºC and 100% at 11 ºC) and cell- lumen concentration ratio (81.4% reduction at 22 ºC 

and 95.9% at 11 ºC) of cadmium-cysteine conjugate were observed to the reduction in 

temperature, Fig. 15.  
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Figure 14: The effect of temperature on the lumen-to-cell transport (A) and cell-to- lumen 
concentration ratio (B) of Cd2+ in isolated S2 segment of the proximal tubule of the rabbit 
perfused with 0.73 µM Cd2+.   Each value represents the mean ± SE for a sample size of 
five or six. The “*” indicates a significant statistical difference from all other groups, P< 
0.05. 



 58 

A 
C

ys
-C

d
-C

ys
 L

u
m

in
al

 D
is

ap
p

ea
ra

n
ce

 R
at

e

fm
o

l m
in

-1
(m

m
 t

ub
ul

ar
 le

ng
th

)-1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

 37 oC  22 oC 11oC

*

*

 

 

B 

C
el

l/L
u

m
en

 C
ys

-C
d-

C
ys

 C
o

n
ce

n
tr

at
io

n

0

50

100

150

200

250

300

350

Control  22 oC 11oC

*

*

 

Figure 15: The effect of temperature on the lumen-to-cell transport (A) and cell-to- lumen 
ratio (B) of Cys-S-Cd-S-Cys in isolated S2 segment of the proximal tubule of the rabbit 
perfused with 0.73 µM Cys-S-Cd-S-Cys (at 37ºC).   Each value represents the mean ± SE 
for a sample size of five or six. The “*” indicates a significant statistical difference from 
all other groups, P< 0.05. 



 59 

Effect of DMPS on the lumen-to-cell transport of Cd2+ 

Addition of 200µM 2, 3-Dimercaptopropane-1-Sulfonate (DMPS) to the bathing 

solution caused no significant difference in the JD of Cd2+, but decreased the cell- to-

lumen concentration ratio by 80%, from 37.52 ± 5.48 to 7.47 ± 1.31, Fig.16.  Addition of 

30µM DMPS to the perfusate decreased the JD of Cd2+ by 39%, from 25.77 ± 1.80 to 

15.67 ± 0.77 fmol min-1 (mm tubular length)-1, and the cell-to- lumen concentration ratio 

by 61%, from 37.52 ± 5.48 to 14.7 ± 1.21. When the concentration of DMPS was 

increased to 200µM in the perfusate, the JD of Cd2+ was decreased by 94.6%, from 

25.77±1.80 to 1.4±0.76 fmol min-1 (mm tubular length)-1, and the cell- to- lumen 

concentration ratio by 95.2%, from 37.52 ± 5.48 to 1.81 ± 0.68. Either addition of DMPS 

to the bathing solution or to the perfusate abolished the slight toxicity resulting from the 

20µM luminal Cd2+. 

 

Effect of DMPS on the lumen-to-cell transport of cadmium-cysteine conjugates 

To examine whether DMPS can affect the transport of cadmium-cysteine 

conjugates, 30µM DMPS was added to the perfusate with 20µM Cys-S-Cd-S-Cys. The 

JD for Cys-S-Cd-S-Cys was reduced by 62%, from 29.84 ±1.78 to 11.37 ± 1.24 fmol min-

1(mm tubular length)-1and the cell- to-lumen concentration ratio by 68%, from 40.7 ± 5.36 

to 13 ± 1.76, Fig. 17.  When 20µM L-cystine was co-perfused with 30µM DMPS there 

was no reduction in the transport of the L-cystine. 
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Figure 16:  The effect of DMPS on the lumen-to-cell transport (A) and cell- to- lumen 
ratio (B)  of Cd2+ in isolated S2 segment of the proximal tubule of the rabbit perfused 
with 20 µM Cd2+ (at 37ºC).   Each value represents the mean ± SE for a sample size of 
five or six. The “*” indicates a significant statistical difference from all other groups, P< 
0.05. 
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Figure 17:  The effect of DMPS on the lumen-to-cell transport (A) and cell- to- lumen 
ratio (B) of Cys-S-Cd-S-Cys in isolated S2 segment of the proximal tubule of the rabbit 
perfused with 20 µM Cys-S-Cd-S-Cys (at 37ºC). Each value represents the mean ± SE 
for a sample size of five or six. The “*” indicates a significant statistical difference, P< 
0.05. 



 62 

Effect of D-cysteine on the lumen-to-cell transport of Cd2+ 

To determine whether D-cysteine can change lumen-to-cell transport of 109Cd, 

0.73µM Cd2+ was co-perfused with 2µM D-cysteine. As shown in Figure 18, The JD for 

D-Cys-S-Cd-D-S-Cys was 1.86 ± 0.07 fmol min-1(mm tubular length)-1 and the cell- to-

lumen concentration ratio was 125.6 ± 12.63, while the JD for Cd2+ was 1.05 ± 0.05 and 

the cell- to-lumen concentration ratio was 45.1± 5.29. Compared to the control group 

(Cd2+), D-cysteine significantly increased the disappearance flux of 109Cd by 77% and 

cell-to- lumen concentration ratio by 178%.  

 

Acute cellular toxicity of cadmium 

Cd2+ and cadmium-sulfhydryl conjugate were transported into the epithelial cells, 

which resulted in substantial cadmium accumulation in the cytosol of the epithelial cells 

as shown by the cell-to- lumen concentration ratios in all experiments when perfusate 

Cd2+ concentration was 0.73 µM. No visual evidence of acute cellular toxicity such as 

cellular swelling, blebbing of the luminal membrane, and cellular vital dye uptake, was 

noted in S2 segments. However, when it was necessary to perfuse with 20µM Cd2+ there 

was slight cellular swelling at the perfusion end of the tubule for approximately 40µm 

along the tubule but there was no vital dye uptake and only an occasional bleb from the 

luminal membrane of this affected region.  
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Figure 18:  The effect of D-Cysteine on the lumen-to-cell transport (A) and cell- to-
lumen ratio (B) of Cd2+ in isolated S2 segment of the proximal tubule of the rabbit 
perfused with 0.73 µM Cd2+ (at 37ºC). Each value represents the mean ± SE for a sample 
size of five or six. The “*” indicates a significant statistical difference, P< 0.05. 
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Comparison of transport of cadmium-cysteine conjugates in S1, S2 and S3 segments 

Perfusate containing 0.73µM Cys-S-Cd-S-Cys was perfused through the lumen of 

S1, S2, and S3 proximal tubular segments. In S1 segment, the JD of Cys-S-Cd-S-Cys was 

1.23 ± 0.08 fmol min-1 (mm tubular length)-1 and the cell-to- lumen concentration ratio 

was 76.83 ± 14.09. In S2 segment, the JD of Cys-S-Cd-S-Cys is 2.92 ± 0.31 fmol min-1 

(mm tubular length)-1while the cell- to-lumen concentration ratio was 282.3 ± 55.0. In S3 

segment, the JD of Cys-S-Cd-S-Cys was 3.09 ± 0.25 fmol min-1 (mm tubular length)-

1while the cell-to- lumen concentration ratio was 250.3 ± 25.3. The  JD of Cys-S-Cd-S-Cys 

in S2 segment was comparable to that in S3 segment, but significantly more than that in S1 

segment, Fig.19. 

 

Comparison of transport of L-cystine in S1, S2 and S3 segments 

Perfusate containing 20µM 14C-L-cystine was perfused through the lumen of S1, 

S2, and S3 proximal tubular segments. In S1 segment, the JD of was 112 ± 3.8 fmol min-1 

(mm tubular length)-1 while the cell- to- lumen concentration ratio was 53.2 ± 7.8. In S2 

segments, the JD of was 138 ± 4.0 fmol min-1 (mm tubular length)-1while the cell- to-

lumen concentration ratio was 232 ± 24. In S3 segment, the JD of -cystine was 248 ± 14.7 

fmol min-1 (mm tubular length)-1while the cell-to- lumen concentration ratio was 176 ± 

27.6. The JD of L-cystine progressively increased from the S1 to S3 segment, Fig.20.  
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Figure 19: The differences in the transport rate (A) and cell-to- lumen ratio (B) of Cys-S-
Cd-S-Cys in S1, S2 and S3 proximal tubular segments (at 37ºC).   Each value represents 
the mean ± SE for a sample size of five or six. . The “*” indicates a significant statistical 
difference, P< 0.05. 
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Figure 20: The differences in the transport rate (A) and cell-to- lumen ratio (B) of L-
Cystine in S1, S2 and S3 proximal tubular segments (at 37ºC).   Each value represents the 
mean ± SE for a sample size of five or six. The “*” indicates a statistical different  
compared to the other two groups, P<0.05 
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CHAPTER V:  DISCUSSION 

 

The purpose of the present study is to investigate the transport systems that are 

involved in the uptake of ionic cadmium and cadmium-sulfhydryl conjugate at the apical 

membrane of the rabbit renal proximal tubule. 

Ionic cadmium may share the membrane proteins involved in the transport of 

essential elements, such as iron, zinc and calcium, into target epithelial cells. DCT1, a 

newly discovered metal ion transporter, was recently described as a major mechanism for 

cellular uptake of Fe2+ and other divalent metals  (Gunshin, Mackenzie et al. 1997). DCT1 

accepts a broad range of metal ions, favoring the divalent cations Fe2+, Zn2+, Mn2+, Co2+, 

Cd2+, Cu2+, Ni2+, and Pb2+, but notably Ca2+ is not transported by this DCT1. However, 

the reports are not consistent concerning the cellular location of DCT1 in the proximal 

tubules. It has been reported that DCT1 is either located in the apical membrane or 

cytosol of the proximal tubule. In the present study, the role of DCT1 in luminal uptake 

of ionic cadmium is examined in the S2 segments of the proximal tubules. The data 

indicated that Fe2+ inhibited the uptake of cadmium across the apical membrane 

significantly [Fig.5]. This result agreed with the finding of Francois et al. that DCT1 may 

be involved in the translocation of divalent cations at the brush border of kidney proximal 

tubules (Canonne-Hergaux and Gros 2002). However, this did not agree the conclusion 

made by Ferguson et al that DCT1 is mainly expressed in the cytosol rather than at the 

apical membrane of the proximal tubule (Ferguson, Wareing et al. 2001). 
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As for the role of zinc transporters in Cd2+ transport, the data from the current 

study showed that Zn2+ caused an inhibition in cadmium transport [Fig.6]. In light of 

recent findings, it is likely that the ZTL1 transporter is involved in the luminal transport 

of cadmium. ZTL1 is a recently discovered Zn2+ transporter in the luminal membrane of 

epithelia (Cragg, Christie et al. 2002). Using RT-PCR, the highest expression level of 

ZTL1 was detected in kidney compared to all mouse tissue analyzed (Cragg, Christie et 

al. 2002). 

In order to test the possibility of Ca2+ transport systems being involved in Cd2+ 

transport, the S2 segments of the proximal   tubules were co-perfused with Cd2+ and with 

different concentrations of Ca2+. When the concentration of Ca2+ was increased from 

1.3mM (a physiological concentration of unbound ionic calcium) to 1.95mM and 2.6mM, 

respectively, 27% and 69% reduction in luminal disappearance transport rate of Cd2+ was 

observed [Fig.7]. These data showed that the transport of Cd2+ was inhibited by increased 

Ca2+ concentrations, which implied that the Ca2+ transport mechanism may also be 

involved in Cd2+ uptake in the proximal tubule. However, the molecular nature of the 

apical entry mechanism for Ca2+ in the proximal tubule has remained obscure to date.  

Some studies tend to support the hypothesis that Ca2+ diffuses from lumen to blood via 

paracellular pathway in the proximal tubule (Fromter and Gessner 1974).  But the 

temperature-dependent experiment in the present study indicated that the paracellular 

pathway did not play a significant role in Cd2+ uptake because practically no Cd2+ was 

absorbed at low temperatures [Fig.14]. The temperature-dependent experiments also 

suggests that some calcium channel may be involved in the transport of Cd2+ if one takes 
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in to account that it is now known that the TRP channel family is temperature-dependent  

and more specifically the Ca2+ transporting channels  TRPV5 and TRPV6 (Hoenderop, 

Nilius et al. 2005) Some studies reported DHP-sensitive calcium channels present in 

renal proximal tubule cells, and these channels express some characteristics of L-type 

calcium channels (Zhang and O'Neil 1996; Zhang and O'Neil 1996). To further determine 

whether voltage-activated, L-type calcium channels could account for the reduction in 

Cd2+ uptake in response to the high concentration of Ca2+, 100µM verapamil or diltiazem, 

voltage-gated calcium channel blockers, was co-perfused with Cd2+ through the lumen of 

the tubule. The data showed that verapamil had no effect on cadmium lumen-to-cell 

transport, which is consistent with the data obtained by Templeton (Templeton 1990). 

Though diltiazem caused a 26.7% reduction on cadmium lumen-to-cell transport [Fig. 8], 

the inhibition is not statistically significant. These data demonstrated that the Ca2+ 

transport proteins involved in Cd2+ lumen-to-cell transport in these experiments are not 

voltage-gated calc ium channels. These might be some TRP channels or calcium-selective 

channels that resemble the classified voltage-dependent calcium channels in part. In 

addition, the tubules were also perfused under the low calcium concentrations of less than 

1.3mM, however, the tubules couldn’t survive under the lower level of Ca2+, and the 

reasons are not certain. Possibly, the low levels of calcium compromised the tight 

junctions of epithelial cells. 

Since cadmium has a high propensity to bind to the sulfhydryl groups, the 

cadmium conjugates with sulfhydryl-containing amino acid molecules are considered the 

main form of cadmium in vivo in contrast to free Cd2+. In the present study, the lumen-to-



 70 

cell transport of cadmium-cysteine conjugate (Cys-S-Cd-S-Cys), cadmium-homocysteine 

conjugate (Hcys-S-Cd-S-Hcys) and cadmium-N-acetylcysteine conjugate (NAC-S-Cd-S-

NAC) was investigated. The molecular structure of these conjugates is very similar to 

that of the amino acid L-cystine (Cys-S-S-Cys). Therefore, due to the structural similarity, 

these cadmium-sulfhydryl conjugates may mimic L-cystine and compete for the transport 

via L-cystine transporters. The data from the current study confirmed this hypothesis. 

Addition of L-cystine to the perfusate with Cys-S-Cd-S-Cys, Hcys-S-Cd-S-Hcys or 

NAC-S-Cd-S-NAC reduced the transport of these conjugates significantly [Fig.9,10,11]. 

The transporter involved in the transport of these conjugates might be the amino acid 

transporter, system b0+. System b0+ is a heterodimeric amino acid transporter that is 

composed of a light chain, b0+AT, and a heavy chain, rBAT (Palacin, Estevez et al. 1998; 

Palacin, Fernandez et al. 2001). It is expressed in the luminal membrane of the epithelial 

cells in the proximal tubule  (Furriols, Chillaron et al. 1993; Pfeiffer, Loffing et al. 1999). 

System b0+ has a high affinity for L-cystine and is responsible for the uptake of L-cystine 

across the luminal membrane (Palacin, Estevez et al. 1998; Palacin, Fernandez et al. 

2001). The active absorption of L-cystine through System b0+ is a counter-transport that 

is driven by high intracellular concentration of neutral amino acids together with the 

membrane potential and intracellular reduction of L-cystine to L-cysteine. It has been 

reported that system b0+ is involved in the uptake of the mercury conjugates, Cys-S-Hg-

S-Cys (Bridges, Bauch et al. 2004). To examine whether system b0+ is involved in the 

transport of cadmium-sulfhydryl conjugates, L-arginine, L-aspartic acid, L-glutamate or 

L-methionine was co-perfused with Cys-S-Cd-S-Cys. L-arginine, a substrate for system 
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b0+, inhibited the transport of cadmium-sulfhydryl conjugates, whereas L-aspartic acid 

and L-glutamate which are not the substrates for system b0+ did not affect the uptake of 

this conjugate. The neutral amino acid, L-methionine, increased the transport of Cys-S-

Cd-S-Cys presumably because accumulation of L-methionine in the cell trans-stimulated 

the uptake of Cys-S-Cd-S-Cys into the cell through system b0+ [Fig.11]. These results 

further support the hypothesis that cadmium-sulfhydryl conjugates behave as a functional 

molecular homolog of L-cystine for system b0+. 

In addition to L-cystine, the molecular structure of Cys-S-Cd-S-Cys also 

resembles that of dipeptides. Peptide transporter 2 (PepT2) is localized in the apical 

membrane (Palacin, Nunes et al. 2005), and it has been reported to transport the 

conjugate of histidine-Zn-histidine (Piersol et al., 2006). In the present study, in order to 

investigate the role of PepT2 in cadmium transport, Gly-Sar, a non-metabolizable 

dipeptide substrate for PepT2, was added to the perfusate with Cys-S-Cd-S-Cys. The data 

demonstrated that Gly-Sar did not affect the disappearance flux of cadmium from the 

lumen [Fig.12], which suggested that PepT2 is not involved in the transport of Cys-S-Cd-

S-Cys.  

Although most agreed that cadmium has a high affinity for sulfhydryl groups, the 

stability of the bond between cadmium and sulfhydryl groups is still in doubt. In the 

present study, it was hypothesized that if the bond is weak, ionic cadmium will be 

released from the conjugates easily, and the transport of the released cadmium will be 

inhibited by Zn2+, as evidenced by the inhibition of Cd2+ transport by Zn2+ reported above 

in this study.  However, the data from the current experiment indicated that Zn2+ did not 
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significantly change the transport of Cys-S-Cd-S-Cys [Fig.13], which suggests that 

cadmium-sulfhydryl conjugates are formed with tight bonds to Cd2+. 

Additional evidence for transport mechanisms being involved in the uptake of 

ionic cadmium and conjugates was revealed by the effects of temperature on the transport 

of ionic cadmium and Cys-S-Cd-S-Cys. The transport of Cd2+ and Cys-S-Cd-S-Cys 

appears to be temperature-dependent processes [Fig.14, 15]. Reduction in temperature 

caused a significant decrease in the transport of Cd2+ and Cys-S-Cd-S-Cys, which 

excluded the possibility that the loss of cadmium from the lumen of the tubule was due to 

nonspecific binding. Thus temperature experiments further supported the conclusion that 

disappearance of either Cd2+ or cadmium-sulfhydryl conjugates from the luminal fluid 

was due to transport processes not to nonspecific binding to the luminal membrane. 

The toxicity caused by heavy metals can be reversed by heavy metal chelators, 

such as 2,3-Dimercaptopropane-1-sulfonate (DMPS). A DMPS molecule has two active 

sulfhydryl sites that can form complexes with cadmium. The cadmium-DMPS complex is 

large and difficult to be absorbed by the renal proximal tubules, thus DMPS may reduce 

the toxicity caused by cadmium. It has been reported that when DMPS is added to the 

bathing solution, it prevented the toxicity caused by mercury (Hg2+) in the lumen of the 

proximal tubules (Zalups, Parks et al. 1998). In the present study, the tubules were 

perfused with a high concentration (20µM) of Cd2+ in order to cause toxicity. Slight cell 

swelling at the perfusion end of the tubule was observed. When 200µM DMPS was 

added in the bathing solution, the toxicity was abolished, and the intracellular 

accumulation of Cd2+ was reduced, but the lumen-to-cell transport rate was not changed 
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significantly. The possible explanation for these results may be due to the secretion of 

Cd2+-DMPS conjugate from the cytoplasm across the luminal membrane into the lumen. 

While Cd2+ was being transported into the cell across the luminal membrane DMPS was 

simultaneously being transported into the cell across the basolateral membrane. Inside the 

cell, DMPS chelated Cd2+ and formed a conjugate. This conjugate might be exported into 

the lumen across the luminal membrane, thereby decreasing the intracellular 

accumulation and not changing luminal Cd2+ concentration. This evidence suggests the 

possibility of a secretary mechanism for the Cd2+-DMPS located at the luminal 

membrane. 

When 30µM DMPS was added in the perfusate with 20 µM Cd2+, the luminal 

transport of cadmium was reduced, but not eliminated. We had hypothesized that 30µM 

DMPS would have eliminated the transport of all Cd2+ because one DMPS molecule has 

two sulfhydryl groups, and could have bound all Cd2+. When the concentration of DMPS 

added in the perfusate was increased to 200µM, the luminal transport of cadmium was 

reduced to almost zero [Fig.16]. This data seemed to indicate that although DMPS 

appears to be an efficient chelator for Cd2+, its affinity for Cd2+ is not as high as that for 

Hg2+ (Zalups, Parks et al. 1998).  

Since most Cd2+ probably binds to sulfhydryl-containing proteins in vivo, the 

effect of DMPS on the transport of cadmium-sulfhydryl conjugate was investigated in the 

present study. 30µM DMPS significantly reduced the transport of Cys-Cd-Cys by 62% 

[Fig.17]. This inhibition was more pronounced than that of 30µM DMPS on the transport 

of Cd2+. The possible explanation lies in the size of the putative  complex. Due to the two 
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active sulfhydryl sites, DMPS may have an attraction to, and can bind, heavy metals 

stronger than proteins  that can bind heavy metals. It is likely that DMPS removed Cd2+ 

from L-cysteine and formed the conjugates with Cd2+ (DMPS-Cd2+) or with L-cysteine 

and Cd2+ (Cys-Cd-DMPS-Cys). Due to the addition of DMPS, the size and morphology 

of the conjugate was much bigger than the conjugate formed only by DMPS and 

cadmium (DMPS-Cd). The bigger size and shape made it more difficult for the tubule to 

absorb the conjugate. This result provided the evidence that DMPS can efficiently aid the 

body in getting rid of cadmium via urinary excretion even if Cd2+ is conjugated to 

sulfhydryl groups of various compounds. 

Theoretically, D-cysteine can act as a biological chelator for Cd2+. Like its 

counterpart, L-cysteine, D-cysteine has a sulfhydryl group available to bind Cd2+, and it 

has long been believed that D-amino acids can not be transported through the amino acid 

transporters. Therefore, it was expected that the cadmium complexed with D-cysteine 

probably would  not be absorbed by the renal epithelial cells. However, our data indicated 

that D-cysteine increased the absorption of Cd2+ significantly [Fig.18]. Although the 

reason for the increase is not certain, our data has ruled out the role of D-cysteine in 

being an effective chelator. Apparently, some amino acid transport systems can transport 

D-amino acids.  

Robinson et al. have demonstrated that Cd2+ is avidly taken up in the proximal 

tubule, especially in S1 segment. However, it was shown that S1 segments are very 

vulnerable to the toxic effects of Cd2+; consequently no transport data was obtained 

(Robinson, Barfuss et al. 1993). In addition, other reasons for using the S2 segments in 
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this study is the fact that the S2 segments are straight, easier to dissect and perfuse than S3 

segments, therefore, S2 segments were chosen for the current study of Cd2+ transport. But 

it was unknown which segment is most suitable for transport studies of cadmium-

sulfhydryl conjugates. In the current study, the transport rates of Cys-S-Cd-S-Cys in S1, 

S2, and S3 segment were compared at the same perfusate concentration, 0.73 µM. The 

transport rate of Cys-S-Cd-S-Cys in S2 segment was comparable to that in S3 segment, 

while the transport rate of Cys-S-Cd-S-Cys in S1 segment was about 58% less than that in 

S2 and S3 segments [Fig.19]. This pattern of transport axial heterogeneity of Cys-S-Cd-S-

Cys follows the distribution pattern of system b0, +-rBAT complex, it primarily being 

located in S2 and S3 segments rather than S1 segment.   In addition, the present study 

indicates the pattern of transport of L-cystine follows the same axial pattern as Cys-S-Cd-

S-Cys transport, greater transport in the latter S2 and S3 segments [Fig.20], adding 

credence to the hypothesis that cadmium conjugates are transported by the same transport 

mechanism as L-cystine. 

The current study clearly demonstrated that cadmium could be transported at the 

luminal membrane of the S2 segment of the proximal tubule by multiple mechanisms, 

depending on the form in which it is presented to membrane. Ionic cadmium, Cd2+, seems 

to utilize the zinc transporter, ZLT1, the iron transporter, DCT1 (?), and some type of 

calcium-selective channel to be transported into renal proximal tubular epithelial cells. 

Alternatively, cadmium conjugates of L-cysteine appear to be transported by L-cystine 

transporters (system b0+). Both the absorption of ionic cadmium and cadmium conjugates 

of L-cysteine can be reduced by the heavy metal chelator, DMPS [Fig.21]. This 
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knowledge permits the development of strategies for treatment against cadmium gaining 

access to the cytoplasm of the proximal tubular cells in order to prevent or minimize its 

nephrotoxic effects during conditions of cadmium exposure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21: Mechanisms proposed to be involved in the luminal uptake of cadmium by 
the proximal tubular cells. 
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