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THE ROLE OF ECOLOGICAL INTERACTIONS IN POLYMICROBIAL BIOFILMS 
AND THEIR CONTRIBUTION TO MULTIPLE ANTIBIOTIC RESISTANCE 

by 

HEATHER O’CONNELL 

Under the direction of Eric Gilbert 

ABSTRACT 

 

The primary objectives of this research were to demonstrate that: 1.) antibiotic 

resistant bacteria can promote the survival of antibiotic sensitive organisms when grown 

simultaneously as biofilms in antibiotics, 2.) community- level multiple antibiotic 

resistance of polymicrobial consortia can lead to biofilm formation despite the presence 

of multiple antibiotics, and 3.) biofilms may benefit plasmid retention and heterologous 

protein production in the absence of selective pressure.  Quantitative analyses of confocal 

data showed that ampicillin resistant organisms supported populations of ampicillin 

sensitive organisms in steady state ampicillin concentrations 13 times greater than that 

which would inhibit sensitive cells inoculated alone.  The rate of reaction of the 

resistance mechanism influenced the degree of protection.  Spectinomycin resistant 

organisms did not support their sensitive counterparts, although flow cytometry indicated 

that GFP production by the sensitive strain was improved.  When both organisms were 

grown in both antibiotics, larger numbers of substratum-attached pairs at 2 hours resulted 

in greater biofilm formation at 48 hours.  For biofilms grown in both antibiotics, a benefit 

to spectinomycin resistant organism’s population size was detectable, but the only benefit 

to ampicillin resistant organisms was in terms of GFP production.  Additionally, an initial 



 

 

attachment ratio of 5 spectinomycin resistant organisms to 1 ampicillin resistant organism 

resulted in optimal biofilm formation at 48 hours.  Biofilms also enhanced the stability of 

high-copy number plasmids and heterologous protein production.  In the absence of 

antibiotic selective pressure, plasmid DNA was not detected after 48 hours in chemostats, 

where the faster growth rate of plasmid-free cells contributed to the washout of plasmid 

retaining cells.  The plasmid copy number per cell in biofilms grown without antibiotic 

selective pressure steadily increased over a six day period.  Flow cytometric monitoring 

of bacteria grown in biofilms indicated that 95 percent of the population was producing 

GFP at 48 hours.  This research supports the idea that ecological interactions between 

bacteria contribute to biofilm development in the presence of antibiotics, and 

demonstrates that community- level multiple antibiotic resistance is a factor in biofilm 

recalcitrance against antibiotics.  Additionally, biofilms may provide an additional tool 

for stabilizing high copy number plasmids used for heterologous protein production. 

 

INDEX WORDS:    Biofilm, Escherichia coli, Heterologous protein production, 

Microbial ecology, Multiple antibiotic resistance, Mutualism, Commensalism, Plasmid 

maintenance 
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CHAPTER 1 INTRODUCTION 

 

1.1 BIOFILMS, NOSOCOMIAL INFECTION AND MULTIPLE ANTIBIOTIC 

RESISTANCE 

1.1.1 Biofilms may have a negative impact on human health.   

 Biofilms are microbial communities adhered to a substratum, encased in 

expolysaccharide (EPS), and possessing altered gene expression relative to their 

planktonic counterparts (Donlan & Costerton, 2002).  Biofilms may have a negative 

impact on human health.  For example, biofilm associated bacteria cause diseases such 

kidney stones, endocarditis, and cystic fibrosis (Parsek & Singh, 2003).  Nosocomial 

infections, those acquired by patients due to hospital stays, can arise from biofilms in 

several ways, and biofilm growth in drinking water and dental unit systems can act as a 

reservoir of infection (Parsek & Singh, 2003).  Medical device infections involving 

biofilms are of particular concern.  Indwelling devices such as artificial joints, artificial 

heart valves, venous and urinary catheters, and ventilators all become potential sources of 

recurrent infections once biofilms have been established (Adair et al., 1999; Donlan & 

Costerton 2002; Puri et al., 2002; Ronald, 2003; Triandafillu et al.,  2003).  

Consequently, understanding biofilm development could lead to their control, benefiting 

human health. 

 Biofilms increase the difficulties of treating infections with antibiotics.  The 

nature of multispecies biofilm communities compound these difficulties for several 

reasons, described in the following sections.  The contribution of ecological interactions 
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in multispecies, or polymicrobial, biofilm-based infections and their role in multiple 

antibiotic resistance, is currently limited.  This research was designed to increase 

knowledge  of the initial interactions between organisms in the early development of 

polymicrobial, antibiotic resistant biofilms. 

 

1.1.2 The problem of multiple antibiotic resistance. 

 Antibiotics were discovered and rapidly developed in the first half of the 

twentieth century, and hailed as a major advancement in the health care field.  This 

golden age was short- lived, however, with the rise of antibiotic resistance.  There are 

many mechanisms of antibiotic resistance, such as target site modification, antibiotic 

modification, and efflux pumps (Jana & Deb, 2006; Piddock, 2006; Wilke et al., 2005). 

Organisms resistant to multiple antibiotics are becoming a greater problem in hospitals, 

and some pathogens touting ‘panresistant’ traits have been identified (Paterson, 2006).  In 

addition to these genetic elements, bacteria growing in biofilm environments enjoy a 

gamut of physiological advantages relative to those cells growing in the planktonic state. 

 

1.1.3 Biofilm development. 

A community of microbes attached to a surface is referred to as a biofilm.  

Biofilms typically form wherever a non-sterile fluid contacts a solid surface  et al., 2003).  

Biofilm formation begins when cells attach to a surface preconditioned with nutrients or 

electrostatic charges.  The initial attachment to a substratum is reversible.  Further growth 

and accumulation results in microcolony formation, and is accompanied by significant 
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physiological changes (Schembri et al.,  2003) such as flagella loss, fimbriation, reduced 

growth rate, exopolysaccharide (EPS) production, and signaling molecule production 

related to quorum sensing (Reisner et al., 2003).  Mature biofilms feature structures such 

as channels, void spaces, and streamers.  Individual cells can detach from the biofilm in 

response to changing nutrient needs or dispersal signals, or entire sections of biomass can 

be sloughed off and then colonize other areas (Stoodley et al., 2002).  

 

1.1.4 Benefits to cells growing in biofilms . 

Several key features of biofilms benefit the component bacteria.  

Exopolysaccharide formation, diffusion gradients of electron acceptors and nutrients, the 

community metagenome, high cell dens ity, antibiotic resistance exchange, and quorum 

sensing, all combine to enhance the chances of survival of individual cells (Kreft, 2004).  

The EPS serves as a water and nutrient reservoir, and can present an additional 

barrier to immune system clearing.   Most non-mucoid, non-pseudomonad biofilms used 

in research do not greatly delay physical diffusion of molecules into the biofilm.  

Molecules of approximately 400 g mol-1, such as antibiotics or stains, can penetrate E. 

coli biofilms in the span of 10 minutes (Stone, 2002).  The portions of biofilms closest to 

the bulk fluid, such as those on microcolony exteriors and channels, are the most 

metabolically active. Not only are these outer cells are the first to encounter nutrients and 

dissolved oxygen, but they are also the first to be exposed to toxins in their environment.  

In biofilm infections, antibiotic treatment and subsequent clearing by the immune system 

targets this more active, outer subpopulation.  The bacteria deeper within the biofilm, 
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which had been dormant due to nutrient starvation, are protected by these ablative 

portions of the biofilm (Donlan & Costerton, 2002).  Metabolically inactive bacteria may 

also further differentiate into persister cells, which can shift back into vegetative growth 

to repopulate the niche space and create new biofilm (Lewis, 2005).  

Most biofilms found in nature are polymicrobial, meaning that they support 

multiple species of bacteria, fungi, and protozoa (Stoodley et al., 2002). This diversity 

results in a much larger array of genetic tools, referred to as the metagenome, that are 

available to the community than would be at any single organism’s disposal.  The 

persistence of chronic infections is attributed to the persistence of polymicrobial biofilms 

(Ehrlich, 2005). Diversity allows survival during adversity (Brook, 2002; Von Canstein, 

2002).  In the event that a member organism dies off, polymicrobial biofilms may endure, 

due to possessing organisms whose metabolic pathways or other functions are redundant 

to the missing member.  

 

1.2 BIOFILMS AND ANTIBIOTIC RESISTANCE 

1.2.1 Biofilm infections  are more difficult to eradicate than planktonic infections . 

Biofilms contribute to the survival of bacteria despite antibiotic treatment, and 

bioilm related infections frequently require repeated courses of treatment (Costerton, 

1999).  Elimination of established biofilms may require up to 1000 times the MIC, the 

amount of antibiotic required to stop the growth of planktonic cells (Donlan & Costerton, 

2002).  Attached cells can tolerate antibiotic concentrations three to five times higher 

than their MIC (O’Connell et al., 2006; Das et al., 1998). Additionally, planktonic cells 
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that had been previously attached in a biofilm show a greater resistance to antibiotics 

(Mateus et al., 2004; Pickering et al., 2003), reflecting the large number of physiological 

changes that take place once the organisms attach to a surface.   

 

1.2.2 Effect of diffusion gradients on antibiotic resistance in biofilms . 

Antibiotic permeability does not appear to be constrained by diffusion gradients.  

The molecular weight of most antibiotics and their amphiphilic structure allows them to 

permeate most biofilms in the span of 10 minutes (Stone  et al., 2002).  Instead, the 

metabolically active regions on the exterior of the biofilms may inactivate the antibiotic, 

particularly with enzymes with high turnover rates, like catalase in Pseudomonas 

biofilms (Stewart et al., 2000).  Thus, the effective antibiotic dose is sublethal, giving the 

bacteria time for induction and expression of other resistance phenotypes, such as the 

multidrug resistance operan mar (Maira-Littan et al., 2000; Gilbert et al., 2002). 

 Redox gradients also contribute to antibiotic resistance in biofilms.  Even in well-

aerated fluids, the oxygen concentrations approach zero near the substratum of biofilms 

more than 50 microns thick (Rasmussen & Lewandowski, 1998).  This redox gradient 

reduces the efficacy of antibiotics such as phenazines and some glycopeptides.  Reduced 

oxygen and nutrient concentrations within biofilms slow the growth rates of the interior 

organisms.  A slower growth rate reduces the efficiency of antibiotics that target the cell 

wall, such as penicillins (Gilbert et al., 1990). 
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1.2.3 Horizontal gene transfer in biofilms. 

Antibiotic resistance genes are also more likely to be transferred between cells 

growing in biofilms relative to their planktonic counterparts (Fux et al., 2005). In 

biofilms, the likelihood of plasmid exchange is increased (Molin, 2003) by two factors: 

higher cell density and pili production.  Biofilms typically host more cells per mL than 

liquid suspensions of cells, increasing the chance that some member organisms possess 

plasmids.  Additionally, the proximity of cells, and their fixed locations relative to each 

other, ensures that there will be a longer timeframe, and a more stable connection over a 

shorter distance, in which plasmid exchange can occur.  Cell attachment to surfaces, and 

biofilm formation, has also been linked to pili formation (O'Toole & Kolter, 1998).  Type 

IV pili production is a prerequisite for plasmid exchange (Molin, 2003), so increased 

production simultaneous with the presence of a large number of recipients, greatly 

enhances the potential for rapid dissemination of a plasmid in the biofilm.  

 

1.3 ECOLOGICAL INTERACTIONS IN BIOFILMS 

1.3.1 Biofilms are diverse ecosystems.  

 There is growing interest in the interactions between different species within 

biofilm communities.  Most biofilms found in nature are polymicrobial, such as the 

microbial flora of oral biofilms (Li et al., 2005). The large number of potential 

interactions between member species of polymicrobial biofilms has been likened to that 

people living in a city (Watnick & Kolter, 2000).   
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1.3.2 Commensalism. 

An ecological interaction between two organisms in which one benefits, but the 

other is neither harmed nor helped, is known as commensalism, such as the ability of 

Pseudomonas to utilize the benzoate leaking from Acinetobacter cells (Christensen et al., 

2002).   Biofilm commensalism was also described in wastewater treatment, where a 

strain of p-cresol degrading Pseudomonas  was able to reduce the inhibitory effects of p-

cresol on a second pseudomonad (Cowan et al., 2000).  A geneitically modified 

pseudomonad was able to aid other biofilm members by degrading toxic phenols (Erb et 

al., 1997).  The spatial organization of cells in biofilms results in the protection of at least 

one member species from disinfection by a chlorinated alkaline solution (Leriche et al., 

2003). 

Another case involves beta-lactamase production of Branhamella catarrhalis, 

which can cause antibiotic treatment failure in inner-ear infections caused by streptococci 

(Budhani, 1998).  This process, in which a non-target organism destroys antibiotics 

intended for a different, target pathogen is referred to as indirect pathogenesis (Brook, 

1994; Kaieda et al., 2005).   

 

1.3.3 Mutualism. 

Mutualism is an ecological interaction where both organisms benefit from each 

other’s presence, such as in oral biofilms, where Streptococcus and Actinomyces aided 

each other in colonizing tooth surfaces (Palmer et al., 2001).  The degree to which an 

organism contributes to either a commensal or mutualistic relationship may vary.  A 
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mutualism in which both organisms are essential, but do not contribute equally, could 

result in large numbers of the lesser contributor being supported by a smaller numbers of 

the greater contributor. 

 

1.3.4. Competition.  

 Limited space and nutrients in biofilms can lead to competition between 

microorganisms.  An example of this is the interaction between Pseudomonas and 

Agrobacterium, in which growth rate and motility impacted the fitness of each competitor 

(An et al., 2006).    Other factors, such as substrate concentration, can impact the ability 

of an organism to claim niche space in biofilms (Bollmann et al., 2002). 

 

1.3.5. Antagonism. 

 Bacteria, even when growing in biofilms, may behave antagonistically against 

other microorganisms.  This type of interaction is typified by one organism’s direct, 

deleterious impact on another.  Temporal and spatial factors weigh heavily in these 

interactions.  Typically, the first organism to colonize a surface inhibits potential 

competitors via compounds like bacteriocins (Kreth et al., 2005; Rao et al., 2005).  

Simultaneous colonization of a surface by the same organisms results in a longer 

interplay between the two, unlike the eventual out-competition that occurs in planktonic 

cultures (Riley & Gordon, 1999). Despite bacteriocin production that allows enteric 

organisms to successfully invade already established biofilms, the heterogeneity of the 
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biofilm environment allows the retention of bacteriocin-sensitive competitors (Tait & 

Sutherland, 2002).   

 

1.4 PLASMIDS AND THEIR IMPACT ON THE BIOFILM LIFESTYLE 

1.4.1 Economic significance of plasmids . 

Several factors associa ted with biofilm growth enhance plasmid transmission and 

maintenance.  Plasmids represent mobile genetic elements that can be exchanged between 

individual bacteria, even across species, genus, and families. This flexibility is a 

contributing factor to the rise of community-acquired antibiotic resistance in nosocomial 

infections (Wei et al., 2005).  In addition to their putative role in biofilm formation and 

their contribution to the proliferation of antibiotic resistance, plasmids are used 

extensively in industrial processes.  Bioremediation, as well as fermentation and 

manufacturing precursors rely on organisms containing plasmids (Binnie et al., 1997; 

Shintani et al., 2006).  These plasmids contain exogenous genes for production of 

enzymes, including operons that encode for entire metabolic pathways (Burlage et al., 

1989). 

  

1.4.2 Role of biofilms in reducing plasmid loss. 

The metabolic and resistance advantages that plasmids confer to their host are 

conditional, however. Many industrial applications involve high density, batch-fed 

systems (Baneyx, 1999; Belanger et al., 2004).  The microorganism receives no benefit 

from this, as energy typically invested in growth and division is diverted to 
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overexpression.  Accumulation of waste products such as acetate also increases the stress 

placed on the cells (Kirkpatrick et al., 2001).  If there is no selective pressure to maintain 

the plasmid, the metabolic burden imposed by their maintenance makes the host less fit, 

causing it to be outcompeted.  The slower growth rate of biofilm cells compared to their 

planktonic counterparts could aid plasmid retention in the absence of selective pressure 

(Bryers & Huang, 1995).  Partitioning events, where one daughter cell may receive no 

plasmid during division, are less likely for a given amount of time.  Partitioning is further 

reduced by slower growth of biofilm cells because the plasmids have more time to 

replicate per cell division, resulting in a larger plasmid dosage per daughter cell.  Also, 

biofilm cells are attached to their substratum, preventing the washout of less quickly 

dividing, plasmid-bearing cells that would occur in chemostats. 

 

1.5 HYPOTHESES 

1.5.1 Statements of hypotheses regarding commensalism in antibiotic-exposed 

biofilms. 

1.5.1.1 Rationale. 

Thus far, the only observed examples of commensalism in biofilms via antibiotic 

detoxification have been in beta- lactamase producing bacteria.  In a steady state 

chemostat culture, cells are well-mixed, minimizing any prolonged contact that one 

organism may have with another.  Compared to planktonic culture, cells adjacent to each 

other in a biofilm experience fixed, long-term spatial interactions.  In biofilms, a small 

number of antibiotic resistant organisms may be able to reduce the antibiotic 
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concentrations in their immediate area, even with resistance mechanisms that have lower 

rates of antibiotic modification.  

 

1.5.1.2 Statements of hypotheses. 

The objective of this work is to determine whether spectinomycin-sensitive 

bacteria will be able to establish and maintain a population despite inhibitory 

spectinomycin concentrations when cultivated with spectinomycin-resistant bacteria as a 

biofilm.  Similarly, ampicillin-sensitive bacteria will be able to establish and maintain a 

population despite inhibitory ampicillin concentrations when cultivated with ampicillin-

resistant organisms as a biofilm.  This commensal interaction is hypothesized to be better 

supported in biofilms versus planktonic growth in chemostats, due to the prolonged, fixed 

positions of antibiotic sensitive organisms relative to their antibiotic resistant 

counterparts. 

 

1.5.2 Statements of hypotheses regarding mutualism in biofilms exposed to multiple 

antibiotics. 

1.5.2.1 Rationale. 

 Biofilm infections are often polymicrobial (Palmer, 2001; Stoodley et al., 2002; 

Watnick & Kolter 2000).  Each of the member organisms may possess separate antibiotic 

resistance mechanisms that inactivate the antibiotic.  Colonization of the substratum by 

two reciprocally antibiotic resistant organisms in a close enough proximity to each other 
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could cause the local antibiotic concentrations to be reduced for a long enough time 

period to allow microcolony formation. 

 

1.5.2.2 Statements of hypotheses. 

The objective of this work is determine if the simultaneous detoxification of 

inhibitory concentrations of ampicillin and spectinomycin by two individual strains of 

bacteria will be sufficient to form a biofilm.  A population equilibrium other than a one 

spectinomycin-resistant cell to one ampicillin-resistant cell may be necessary for optimal 

growth of biofilms that contain organisms with unequal detoxification rates. 

 

1.5.3 Statements of hypotheses regarding plasmid maintenance and heterologous 

protein production in biofilms. 

1.5.3.1 Rationale. 

Heterologous protein production (HPP) has typically been carried out in 

chemostats, using plasmids as tools for gene overexpression.  The metabolically 

demanding environment of the chemostat can promote to plasmid loss.  Biofilm cells 

undergo fewer cell divisions per unit of time, and retain plasmid-containing member cells 

that might otherwise be washed out due to their slower growth rate. Biofilms have been 

used in the continuous production of ethanol (Kunduru & Pometto, 1996) and lactic acid 

(Cotton et al., 2001). 
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1.5.3.2 Statements of hypotheses. 

The objective of this work is to determine if the decreased growth rate of biofilm-

attached Escherichia coli ATCC 33456 pEGFP cells will decrease the loss of the green 

fluorescent protein-encoding plasmid pEGFP in the absence of ampicillin selective 

pressure relative to planktonic growth. 



14 

 

CHAPTER 2 

Applied and Environmental Microbiology, 2006, Jul. 72(7) p. 5013–5019  

Copyright © 2006, American Society for Microbiology.  

INFLUENCES OF BIOFILM STRUCTURE AND ANTIBIOTIC RESISTANCE 

MECHANISMS ON INDIRECT PATHOGENICITY IN A MODEL 

POLYMICROBIAL BIOFILM 

Heather A. O’Connell, Greg S. Kottkamp, James L. Eppelbaum,  Bryan A. Stubblefield, 

Sarah E. Gilbert, and Eric S. Gilbert 

 

2.1 ABSTRACT 

Indirect pathogenicity (IP), the commensal protection of antibiotic-sensitive 

pathogens by resistant microorganisms of low intrinsic virulence, can prevent the 

eradication of polymicrobial infections. The contributions of antibiotic resistance 

mechanisms and biofilm structure to IP within polymicrobial biofilms were investigated 

using a model two-member consortium. Escherichia coli ATCC 33456 was transformed 

with vectors conferring either ampicillin or spectinomycin resistance, creating two 

distinct populations with different resistance mechanisms.  Each strain alone or the 

consortium was grown as biofilms in flow cells and planktonically in chemostats. 

Comparisons in survival and activity were made on the basis of MICs and minimum 

biofilm preventative concentrations, a newly introduced descriptor. In ampicillin-

containing medium, commensal interactions were evident during both modes of 

cultivation, but the sensitive strain experienced a greater benefit in the chemostat, 
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indicating that the biofilm environment limited the commensal interaction between the 

Ampr and Sptr strains. In spectinomycin-containing medium, growth of the sensitive 

strain in chemostats and biofilms was not aided by the resistant strain. However, green 

fluorescent protein expression by the sensitive strain was greater in mixed-population 

biofilms (9% ± 1%) than when the strain was grown alone  (2% ± 0%). No comparable  

benefit was evident during growth in the chemostat, indicating that the biofilm structure 

contributed to enhanced activity of the sensitive strain. 

 

 

2.2 MATERIALS AND METHODS 

2.2.1 Bacterial strains and plasmids.  

Two antibiotic-resistant populations of E. coli ATCC 33456 (Shen, 1993) were 

prepared. One population was transformed with the plasmid pEGFP (Clontech, Palo Alto, 

CA), a pUC19-based vector conferring ampicillin resistance by the bla gene and green 

fluorescent protein (GFP) production via the egfp gene under control of the constitutive 

Plac promoter. The second population was transformed with the vector pUCSpec, a 

pUC18-derived plasmid that confers spectinomycin resistance via the AAD(9) 

determinant (Husmann et al., 1997). In this research, E. coli ATCC 33456 pEGFP is 

referred to as the “Ampr” strain and is resistant to ampicillin and sensitive to 

spectinomycin. E. coli ATCC 33456pUCSpec is referred to as the “Sptr” strain and is 

resistant to spectinomycin and sensitive to ampicillin. Inocula were prepared from clonal 

populations that were stored at -82°C. Prior to use in flow cell experiments, the Ampr 

strain was grown overnight at 37°C on Luria-Bertani (LB) agar plates containing 400 
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ppm ampicillin, and the Sptr strain was grown on LB agar plates containing 100 ppm 

spectinomycin. For chemostat experiments, inocula of the Ampr or Sptr strain were grown 

overnight in a shaking incubator at 37°C and 200 rpm in LB broth containing either 400 

ppm ampicillin or 100 ppm spectinomycin, respectively. 

 

2.2.2 Chemicals.  

Ampicillin and spectinomycin were obtained from Sigma (St. Louis, MO). 

Antibiotics were dissolved in ultrapure water, sterilized with 0.20µm-pore filters to create 

stock solutions, and stored at -20°C. Nitrocefin was obtained from Calbiochem (San 

Diego, CA). SYTO 59 was purchased from Molecular Probes, Inc. (Eugene, OR). 

 

2.2.3 Biofilm cultivation.  

Biofilms were cultivated using parallel-plate flow cells according to a previously 

described technique (Gilbert & Keasling, 2004). Briefly, cells were inoculated into 

medium reservoirs containing 200 ml LB broth to an optical density at 600 nm (OD600) of 

0.03 (0.015 of each strain in mixed-population biofilms) and were recirculated through 

the flow cell at 0.84 ml min-1 for 2 h to allow surface colonization. Ant ibiotics were 

present during recirculation at the same concentrations that were used for continuous 

(steady-state) flow, described below. After recirculation, the system was switched to 

continuous flow for 46 h (medium flow rate of 0.35 ml min-1), introducing LB broth with 

antibiotics as required to the flow cell. The selected medium flow rate replaced the 

volume of the flow cell approximately once per minute and was chosen such that the 
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antibiotic concentration in the bulk fluid approximated steady-state conditions. Biofilms 

were grown for 48 h in order to allow GFP fluorescence to develop and the biofilm 

structure to mature and also to permit the cultivation of a large number of biofilms. Each 

growth condition was repeated at least in triplicate. Biofilms were imaged by confocal 

laser scanning microscopy (CLSM) as described below. Following CLSM imaging, 

biofilm cells were displaced from flow cells by introducing air into the channels and were 

resuspended in 1 ml sterile 50 mM phosphate buffer (pH = 7.2) using a pipette. Visual 

inspection of flow cells by microscopy following biofilm displacement indicated that 

greater than 99 percent of the cells not directly adhered to the glass substratum were 

recovered. 

 

2.2.4 Confocal laser scanning microscopy.  

Prior to imaging, biofilms were rinsed with sterile 50 mM potassium phosphate 

buffer (pH = 7.2; no autofluorescence detected) for 10 min and then stained with 20 µM 

SYTO 59 for 15 min and subsequently rinsed with sterile 50 mM potassium phosphate 

buffer for another 10 min. Intact biofilms were imaged nondestructively using a Zeiss 

LSM 510 confocal laser scanning microscope (Zeiss, Thornwood, NY) equipped with a 

Fluor 40× oil immersion lens. Samples were excited simultaneously at wavelengths of 

488 nm and 523 nm. Four image stacks of each biofilm were taken at different locations 

throughout the flow cell, using a 1-µm z-step increment. 
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2.2.5 COMSTAT analysis.  

Quantitative analysis of CLSM images of biofilms was conducted using the 

digital image analysis program COMSTAT (Heydorn et al., 2000). For COMSTAT 

analysis, the following settings were used: pixel intensity threshold of 30; minimum 

colony size of 100 pixels, representing a cluster of five cells. 

 

2.2.6 Chemostat experiments.  

Chemostats were made from 250-ml sidearm flasks. Flasks were sealed with a 

rubber stopper containing a 3.2-mm-inside-diameter Pharmed tube that extended to the 

bottom of the flask for influent media and another tube for the intake of air, which passed 

through a 0.20-µm-pore-size filter. Sterile LB broth with antibiotics as required was 

contained in 2- liter Pyrex bottles incubated in a 37°C water bath and pumped into the 

chemostat using a peristaltic pump (Cole Parmer) through autoclaved 3.2-mm-inside-

diameter Pharmed tubing. The sidearm flask was located on a heated magnetic stir plate 

at a setting that maintained a temperature of 37°C ± 0.5°C. A magnetic stir bar kept the 

flask contents well mixed, and effluent flowed out of the sidearm into a sterile, hooded 

funnel leading to a waste vessel. Samples were collected by extending a sterile 

microcentrifuge tube held by flame-sterilized tweezers into the sterile hood to collect 

effluent. A Bunsen burner was stationed next to the chemostat to maintain aseptic 

conditions. At each time point, a sample was collected to measure turbidity and a second 

sample was collected, centrifuged, resuspended in 10% glycerol, and stored at -82°C for 

analysis by plate count. The cell densities of cultures that were stored frozen at -82°C 
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prior to dilution plate counting were 83% ± 6% of those of cultures that were not frozen 

prior to plating. Freezer storage did not alter the specific fluorescence of GFP-containing 

cells. Dilution rates were set to maintain the sensitive strain at 55 percent (Sptr strain) or 

60 percent (Ampr strain) of its maximum growth rate in LB medium. With ampicillin in 

the medium, the pump flow was maintained at 4.5 ml min-1,corresponding to a complete 

reactor displacement every 64 min. With spectinomycin in the medium, the pump flow 

was maintained at 3.8 ml min-1, corresponding to a complete reactor displacement every 

76 min. The inoculum concentration of the resistant strain was always an OD600 of 0.40, 

corresponding to 2 ×108 CFU ml-1. The inoculum concentration of the sensitive strain 

was always 0.04. Preliminary work with ampicillin-containing medium indicated that 

when the sensitive strain was inoculated at higher initial optical densities, the population 

size declined and stabilized at an OD600 of approximately 0.04. Chemostats were run in at 

least duplicate for each condition. 

 

2.2.7 Determination of MIC and MBPC.  

Antibiotic MIC determinations were performed as described by Jorgensen and 

Turnidge (Jorgensen & Turnidge, 2003). The concentration of antibiotic required to 

prevent the formation of biofilm by viable cells adhering to the flow cell substratum 

during the recirculation phase was designated the minimum biofilm preventative 

concentration (MBPC). MBPCs were determined by measuring the concentration at 

which biofilm biomass as calculated by COMSTAT equaled 0 µm3 µm-2, indicating that 
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only cells which adhered to the flow cell substratum during its inoculation were present. 

At the MBPC, the areal cell density was 3.5 × 103 CFU mm2. 

 

2.2.8 Nitrocefin assay.  

The beta- lactamase potential of the Ampr strain during growth in biofilms and 

chemostats was measured using the chromogenic substrate nitrocefin (O'Callaghan et al., 

1972). Briefly, Ampr cells were resuspended in sterile 50 mM phosphate buffer, adjusted 

to an OD600 of 0.40, and incubated with 0.1 mM nitrocefin for 5 min at 37°C. Activity 

was measured by using a spectrophotometer (486 nm, as per the manufacturer’s 

recommendation) at 0 and 5 min. All assays were carried out in at least triplicate, and 

statistical significance was determined using Student’s t test. 

 

2.2.9 Flow cytometry.  

Flow cytometry was performed with a Becton-Dickinson FACSCalibur flow 

cytometer (BD Biosciences, San Jose, CA). Cells were washed and resuspended in sterile 

50 mM phosphate buffer to an OD600 of 0.03 prior to analysis. Samples were excited at a 

wavelength of 488 nm with an argon laser, and 10,000 events were collected. 

Fluorescence was measured using logarithmic gain, and side scatter (SSC) was measured 

using linear gain. Six-micrometer-diameter beads (BD Biosciences, San Jose, CA) were 

used as size controls. 
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2.2.10 Plate counts.  

Cells recovered from biofilms or chemostats were resuspended in sterile 50 mM 

phosphate buffer, serially diluted, and plated on LB agar plates supplemented with 

antibiotics as necessary. Plates were incubated overnight at 37°C. Biofilms resuspended 

to an OD600 of 1.0 corresponded to an average cell density of 7.7 × 108 CFU ml-1 (n = 8), 

whereas the average cell density of suspensions of chemostat cells with an OD600 of 1.0 

corresponded to 6.4 × 108 CFU ml-1 (n = 10). 

 

2.2.11 Growth kinetics.  

Specific growth rates were determined from hourly measurements of optical 

densities (600 nm) during growth of each strain in LB broth in batch culture. Triplicate 

test tubes were inoculated to an initial OD600 of 0.03 from liquid cultures in mid- log-

phase growth. 

 
2.3 RESULTS 

2.3.1 Growth kinetics.  

The specific growth rates of the Sptr and Ampr strains growing exponentially in 

LB broth without antibiotics were 1.7 h-1 and 1.3 h-1, respectively. The measured MIC for 

the Sptr strain exposed to ampicillin was 16 ppm (Figure 2.1A), and the measured MIC 

for the Ampr strain exposed to spectinomycin was 30 ppm (Figure 2.1B). These values 

were similar to MICs of 8 to 16 ppm reported elsewhere for ampicillin (Butler et al., 

1999; Lorian, 1996) and 12.5 to 50 ppm for spectinomycin (Kucers, 1979). 
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2.3.2 Phenotype stability. 

In order to assess the stability of the relevant phenotypes, single-strain biofilms 

were grown for 48 h in the absence of antibiotic selective pressure. Biofilm-grown cells 

of the Ampr strain were estimated by flow cytometry to be 97% ± 1% fluorescent. 

Biofilm-grown cells of the Sptr strain were plated on LB agar with and without 

spectinomycin and were determined to be 103% ± 16% resistant to spectinomycin (n = 

7). 

 

2.3.3 Exchange of antibiotic resistance determinants in biofilms. 

To check if antibiotic resistance determinants were exchanged between the Ampr 

and Sptr strains during growth in biofilms, cells from resuspended mixed-population 

biofilms were cultured on plates containing either ampicillin or spectinomycin.  Eight 

biofilms cultivated in ampicillin-containing medium and eight biofilms cultivated in 

spectinomycin-containing medium were tested. Cells that grew were inoculated into LB 

broth containing twice the MIC of the reciprocal antibiotic. Out of 16 biofilms that were 

screened, only 1 spontaneous mutant, originally grown in ampicillin, was found to be 

resistant to both antibiotics. 

 

2.3.4 Nitrocefin assay of beta-lactamase potential. The beta- lactamase potential of 

Ampr cells grown in chemostats or 48-h biofilms were compared. Cells from chemostats 

showed a greater potential (P = 0.042) to cleave nitrocefin than biofilms cells (per 1 × 108 

cells): 0.75 ± 0.17 ppm min-1 in the chemostat and 0.49 ± 0.08 ppm min-1 in biofilms. 
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2.3.5 Commensal protection in biofilms.  

The MBPC for the Sptr strain was 50 ppm ampicillin (Fig. 1A), and the MBPC for 

the Ampr strain was 40 ppm spectinomycin (Fig. 1B). In the absence of ampicillin, the 

Sptr strain developed robust biofilms with an overall spongiform morphology, with 

individual cells exhibiting the typical coccobacillus shape (Figure 2.2A). The average  

thickness of these biofilms was 50 µm. Exposure to sublethal concentrations of ampicillin 

caused the formation of filamentous structures (Figure  2.2B), and these biofilms had a 

maximum height of approximately 6 µm at ampicillin concentrations greater than 13 

ppm. The Ampr strain formed an extensive biofilm of fluorescent cells in the absence of 

antibiotics (Figure 2.2D). Concentrations of spectinomycin greater than 20 ppm caused 

deformation of cells into filaments and a reduction in GFP expression (Figure 2.2E, 

Figure 2.3). Ampr biofilms were approximately 35 µm thick through 35 ppm 

spectinomycin but then decreased in size until the MBPC of 40 ppm was reached. The 

ability of the resistant strain to prevent morphological damage to the sensitive strain in 

mixed-population biofilms was considered. In the presence of 8 ppm ampicillin, no 

abnormally shaped Sptr cells were evident in mixed biofilms (Figure 2.2C), in contrast 

to results with their growth alone. In the  presence of 20 ppm spectinomycin, 

morphological damage was minimal in mixed biofilms (Figure 2.2F). The sensitive-cell 

population size decreased substantially with increasing antibiotic concentration (Figure 

2.4); thus, comparisons were made at low antibiotic concentrations where the sensitive 

population was adequately represented. 
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In biofilms exposed to ampicillin, the growth of the Sptr population was aided by 

growth with the Ampr strain. By 33 ppm ampicillin, the number of viable Sptr cells in 

single-strain biofilms was an order of magnitude lower than in mixed population 

biofilms, and no viable Sptr cells were recovered following continuous exposure to 

ampicillin concentrations  greater than 100 ppm (Figure 2.4A). In contrast, populations of 

the Sptr strain with cell densities greater than 103 CFU mL-1 were present in mixed-

population biofilms exposed to 625 ppm ampicillin, 12.5 times greater than the Sptr strain 

MBPC. In biofilms exposed to spectinomycin, there was no evidence of commensal 

protection based on Ampr cell numbers (Figure 2.4B). However, a higher percentage of 

Ampr cells producing GFP were evident in mixed-population biofilms than in single-

strain Ampr biofilms (Figure 2.5). Analysis by flow cytometry indicated a decrease in the 

size and brightness of the fluorescent subpopulation within single-strain Ampr biofilms as 

a function of increasing spectinomycin concentration, with a substantial loss of 

fluorescence at spectinomycin concentrations greater than 33.3 ppm (Figure 2.5; Figure  

2.6, middle row). In contrast, the fluorescent  Ampr strain subpopulation in mixed-

population biofilms stabilized at approximately 9% ± 1% of the total biofilm population 

by 33.3 ppm spectinomycin and was significantly larger than the fluorescent population 

in single-strain Ampr biofilms (2% ± 0% fluorescent) for spectinomycin concentrations 

of 33.3 ppm and higher (Figure  2.5; Figure 2.6, bottom row). 
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2.3.6 Commensal protection in chemostats.  

The survival of the sensitive Sptr strain was enhanced by the presence of the 

resistant Ampr strain in the chemostat (Figure 2.7A). In the absence of the Ampr strain, 

the Sptr strain was almost completely displaced from the chemostat in 64 min, 

corresponding to a single reactor volume replacement. In contrast, with the Ampr strain 

present, the Sptr strain population was approximately 3 orders of magnitude larger than 

the Sptr strain population grown alone after 3 h, a period of time corresponding to more 

than two reactor volume replacements (Figure  2.7A). The Sptr strain survived in 

chemostats containing 625 ppm ampicillin, corresponding to 39 times the MIC. In mixed 

culture, the decline in the Sptr population as a function of increasing ampicillin 

concentration was nearly 2 orders of magnitude greater in biofilms than in the chemostat 

(Figure 2.8). There was no evidence of enhanced survival of the Ampr strain in coculture 

with the Sptr strain in spectinomycin-containing medium (Figure  2.7B), nor was there 

any beneficial effect on GFP fluorescence (data not shown). Populations of the Ampr 

strain declined steadily over a 3-h period to approximately 2 to 3% of their initial 

concentration. This behavior was observed in both 100 and 150 ppm spectinomycin, 

corresponding to 3.3 and 5 times the MIC, respectively. 

 

2.4 DISCUSSION 

In well-mixed planktonic cultures, cells that cannot coaggregate move past one 

another and do not establish interactions that have a spatial component. In contrast, in 

biofilms, cells are primarily fixed in space and must contend with intercellular 
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relationships in three dimensions. During growth in either ampicillin- or spectinomycin-

containing medium, biofilm structure influenced the extent of commensal interactions 

between the consortium members. In ampicillin-containing medium, the biofilm 

environment reduced the commensal benefit to the Sptr strain in two ways. First, the cells 

competed for space. In the biofilm setting, the Ampr strain outcompeted the Sptr strain by 

accumulating in the limited available space, whereas in the chemostat the size of the 

Ampr population was restricted by washout, allowing a substantial population of the Sptr 

strain to persist (due to its faster specific growth rate). The faster initial growth of the 

Ampr strain in the biofilm also could have established a gradient of nutrients favoring its 

own growth (Kreft, 2004). Second, the beta- lactamase activity was greater in the  

chemostat than in the biofilm. The difference in average beta- lactamase activity most 

likely occurred because the population in the chemostat was in the exponential growth 

phase, whereas the biofilm contained a subpopulation of older, less-active  cells. Thus, 

while these data support the observations of others that IP occurs in biofilms (Budhani, 

1998), they demonstrate that the biofilm environment limited the commensal interaction 

between the Ampr and Sptr strains in the presence of ampicillin. In spectinomycin-

containing medium, no protection was afforded to the sensitive Ampr strain in the 

chemostat with respect to population size or GFP expression. Similarly, in terms of 

population size, the Ampr strain received no benefit from the Sptr strain in biofilms. 

However, a commensal interaction was evident in biofilms in terms of enhanced GFP 

expression in the Ampr strain. The commensal interaction likely resulted from the 

development of microenvironments with reduced spectinomycin concentrations resulting 
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from the enzyme-catalyzed detoxification of spectinomycin by the Sptr strain. The 

reduction in Ampr cells with abnormal morphology in the commensal environment that 

was observed by CLSM also supports the concept of spectinomycin-reduced 

microenvironments within the mixed biofilm. Alternatively, the greater biomass that 

formed in the mixed biofilms may have also contributed to enhanced Ampr strain 

resistance to spectinomycin.  

Two methods-related aspects of this work warrant discussion. First, the concept of 

MBPC, the concentration of antibiotic required to prevent biofilm formation, was 

introduced. Existing parameters emphasize the concentration of chemical required to 

eliminate biofilms already attached to a surface. For example, the minimum biofilm 

eradication concentration measures the concentration of antibiotic required to kill an 

already-established biofilm (Ceri et al., 1999), and the minimum biofilm inhibitory 

concentration measures the antibiotic concentration required to inhibit growth of 

individual cells shed from an established biofilm (Pickering et al., 2003). In contrast, the 

MBPC describes the concentration of an agent required to keep a surface free of biofilm. 

Second, GFP fluorescence was used to characterize the quality of the biofilm 

environment for E. coli activity. GFP fluorescence requires low levels of oxygen (Hansen 

et al., 2001; Tsien, 1998), is pH dependent (Patterson et al., 1997), and may be inhibited 

when cells are challenged with antibiotics. Thus, a decrease in GFP fluorescence may 

indicate suboptimal conditions for an aerobic neutrophile like E. coli. Conversely, the 

persistence of localized GFP fluorescence under inhibitory conditions, as was detected in 
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mixed biofilms exposed to spectinomycin, indicated the presence of microenvironments 

with suitable conditions for Ampr strain fluorescence.  

The mechanism of antibiotic resistance substantially influenced the extent of the 

commensal interaction between the Ampr and Sptr strains. In the case of ampicillin, 

detoxification by the TEM-1 beta- lactamase produced by the Ampr strain facilitated the 

growth of a significant population of sensitive bacteria. TEM-1 beta- lactamase has a high 

affinity for ampicillin (Km = 14 µM [~5 ppm]) (Livermore et al., 1986) and hydrolyzes 

ampicillin without an energy input, leading to efficient antibiotic inactivation. In contrast, 

the inactivation of spectinomycin by the Sptr strain provided a small benefit to 

spectinomycin-sensitive cells. The spectinomycin adenyltransferase AAD(9) determinant  

inactivates spectinomycin by adenylation at the 9-OH position in an ATP-consuming 

reaction (LeBlanc et al., 1991), and the associated energy cost most likely inhibited 

extensive antibiotic detoxification.  The potential for commensal interactions to cause IP 

in response to other antibiotics is largely uninvestigated to date. Antibiotics that are 

enzymatically degraded or modified could potentially be susceptible, inc luding 

aminoglycosides, macrolides, chloramphenicol, and rifamycin (Wright, 2005). In the case 

of IP caused by beta- lactamase-producing bacteria, administration of amoxicillin and the 

beta-lactamase inhibitor clavulanic acid reduced the extent of treatment failure (Brook, 

2002) and helped eliminate penicillin-sensitive pneumococci in a model biofilm 

(Budhani, 1998). Understanding the factors that give rise to IP in polymicrobial biofilms 

could facilitate narrow-spectrum antibiotic therapies and help reduce incidences of 

treatment failure. 
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TABLE 2.1 Survival of E. coli ATCC 33456 pUCSpec (SpecR) in mixed culture exposed to 

ampicillin 

 

Percent SpecR in total population 

Mode of 
cultivation 

Maximum 
ampicillin 

concentration with 
commensal 

protectiona , ppm 

 
Relative amount 
of commensal 

protection  b 

Low ampicillin 
concentration 
(2 × MIC or 

MBPC) 

High ampicillin 
concentration 
(10 × MIC or 

MBPC) 
Biofilm 625 12.5 0.08 ± 0.07 0.002 ± 0.001 

Chemostatc >625 d 39 17.7 ± 1.5 3.2 ± 2.2 

Batch 32 2 0.002 ± 0.000 NGe 
aFor comparative purposes, commensal protection was defined as the survival of >104 CFU mL-1 of SpecR 

bRelative commensal protection was calculated using the following formula: the maximum antibiotic 

concentration with commensal protection was divided by either the MIC for batch- and chemostat-grown 

cells or the MBPC for biofilm-grown cells. See text for definitions. 
cConcentration where SpecR density was stable at least one reactor volume following first reactor volume 

replacement 
d625 ppm ampicillin was the highest tested concentration in the chemostat. The SpecR cell density was 5 × 

105 CFU mL-1 at this concentration. See Figure 7A. 
eNG = no growth 
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Figure 2.1. Antibiotic concentrations required to prevent planktonic or biofilm 
growth.  MICs for each strain were determined in batch culture.  The antibiotic 
concentration at which attached cells were unable to form a biofilm within 48 h was 
termed the minimum biofilm preventative concentration, MBPC.  A:  Sptr in ampicillin-
containing medium.  B: Ampr in spectinomycin-containing medium.  Closed symbols, 
MIC.  Open symbols, MBPC. 
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Figure 2.2. Prevention of morphological damage to antibiotic sensitive bacteria 
during growth with a resistant strain.  Biofilms of each strain alone or the two strains 
grown together were imaged by CLSM.  Representative images of the substratum are 
shown. A: Sptr in LB broth. B: Sptr in LB broth + 8 ppm ampicillin.  C: Ampr and Sptr in 
LB broth + 8 ppm ampicillin.  D: Ampr in LB broth.  E: Ampr in LB broth + 20 ppm 
spectinomycin.  F: Ampr and Sptr in LB broth + 20 ppm spectinomycin.  Magnification: 
400X. 
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Figure 2.3. Flow cytometry scatter plots of Ampr biofilms grown in spectinomycin-
containing media. Representative flow cytometry scatter plots showing the distribution 
of fluorescent events in Ampr biofilms grown alone in media containing subinhibitory 
concentrations of spectinomycin.  X-axis: Side scatter (SSC).  Y-axis: GFP fluorescence 
(FL1-H). 
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Figure 2.4. Commensal protection  in biofilms. Antibiotic sensitive organisms grown 
in biofilms either alone (closed symbols) or with the resistant strain (open symbols) were 
enumerated by plate counts.  A:  Sptr in ampicillin-containing medium.  B: Ampr in 
spectinomycin-containing medium.  
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Figure 2.5. Flow cytometry analyses of Ampr populations grown alone or together 
with Sptr in spectinomycin-containing medium. Ampr grown alone, (closed circles). 
Ampr  and Sptr grown together, (open circles). 
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Figure 2.6. Representative scatter plots of biofilms grown in media containing 33.3 
to 40 ppm spectinomycin.  Top row: Sptr alone.  Middle row: Ampr alone. Bottom row: 
mixed biofilms, with fluorescent populations indicated by the R1 region. X-axis: Side 
scatter (SSC).  Y-axis: GFP fluorescence (FL1-H). 
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Figure 2.7. Commensal protection in chemostats. Antibiotic sensitive organisms 
grown in chemostats either alone (closed symbols) or with the resistant strain (open 
symbols) were enumerated by plate counts.  A: Sptr in ampicillin-containing medium.  B: 
Ampr in spectinomycin-containing medium. 
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Figure 2.8.  Commensal protection in batch culture. Antibiotic sensitive organisms 
grown in batch culture either alone (closed symbols) or with the resistant strain (open 
symbols) were enumerated by plate counts after 5 h of growth.  A:  Sptr in ampicillin-
containing medium.  B: Ampr in spectinomycin-containing medium. 
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CHAPTER 3 
COMMUNITY-DEPENDENT MULTIPLE ANTIBIOTIC RESISTANCE IN A 
POLYMICROBIAL BIOFILM 
 
3.1 INTRODUCTION 

Multidrug resistant bacteria have been widely recognized for increasing the 

severity and frequency of nosocomial infections (Karlowsky et al., 2006; Naiemi et al., 

2005, Obritsch et al., 2004). Recently, antibiotic treatment regimens involving two or 

more antibiotics, referred to as combination therapies, have been employed for treatment 

of polymicrobial infections (LaPlante et al., 2006; Lin et al., 2006; Matthaiou et al., 

2006) and antibiotic resistant strains (Rahal, 2006; Sader & Jones, 2005). The use of 

novel antibiotic combinations and antibiotic cycling may prolong the effectiveness of 

antibiotic therapies (Kollef, 2006; Rossolini & Mantengoli, 2005). Alternatively, 

combination therapies could create conditions that select for novel types of antibiotic 

resistance. We hypothesized that two populations of microorganisms, each with a 

different antibiotic resistance, could cooperate to resist the effects of two simultaneously 

administered antibiotics selected to target each population. This kind of mutualistic 

interaction would constitute a community-dependent mode of multiple antibiotic 

resistance (CMAR). 

To investigate the possibility of mutualistic interactions facilitating multiple 

antibiotic resistance, a two-member model consortium based on Escherichia coli ATCC 

33456 was used. The two-member model was used previously to analyze commensal 

interactions that enhanced antibiotic resistance, an interaction known as indirect 

pathogenicity (O'Connell et al., 2006). The model was comprised of one strain harboring 



39 

 

a plasmid encoding beta-lactamase and thus resistant to ampicillin, and a second strain 

with a plasmid carrying spectinomycin adenyltransferase, enabling resistance to 

spectinomycin. Ampicillin and spectinomycin were selected for use in the model because 

of (a) the sensitivity of E. coli ATCC 33456 to both in the absence of a heterologous 

resistance gene, and (b) the ability of these antibiotics to be permanently inactiva ted by 

the encoded resistance genes. Both plasmids belonged to the same incompatibility group, 

preventing their exchange between the two populations. Additionally, the ampicillin 

resistant strain expressed green fluorescent protein, allowing it to be distinguished from 

the other strain following counterstaining with a red dye. 

Many nosocomial infections involve microbial biofilms, or communities of 

microorganisms attached to surfaces (Manago et al., 2006; Amaral et al., 2005; Braxton 

et al., 2005; O'Donnell et al., 2005). We hypothesized that biofilms would be likely 

environments to observe CMAR development because the fixed positions of cells within 

the biofilm would potentially foster mutually beneficial antibiotic detoxification. To 

determine whether biofilm structure contributed to the development of mutualistic 

interactions, the two-member consortium was grown in the presence of steady state 

antibiotic concentrations in flow cells (sessile growth) or chemostats (planktonic growth). 

The occurrence of any mutualistic interactions was identified by comparing the growth of 

each consortium member alone with its growth in the mixed population. By considering 

the two types of cultivation, it was possible to determine whether the biofilm 

environment contributed to multiple antibiotic resistance by the mixed population. 

 



40 

 

3.2. MATERIALS AND METHODS 

3.2.1. Bacterial strains and plasmids.  

Two populations of E. coli ATCC 33456 were transformed with pUC family 

vectors bearing antibiotic resistance determinants. The first population contained the 

plasmid pEGFP (Clontech, Palo Alto, CA), which encodes ampicillin resistance and a 

red-shifted green fluorescent protein (GFP).  E. coli ATCC 33456 pEGFP is designated 

as “AmpR. The second population was transformed with the plasmid pUCSpec, which 

confers spectinomycin resistance via the AAD(9) determinant (Husmann et al., 1997). E. 

coli ATCC 33456 pUCSpec is referred to as “SpecR”.  For biofilm experiments, AmpR 

was grown overnight at 37°C on Luria-Bertani (LB) agar plates containing 400 ppm 

ampicillin, and SpecR was grown on LB agar plates containing 100 ppm spectinomycin.  

For chemostat experiments, AmpR or SpecR were grown overnight in a shaking incubator 

at 37°C and 200 rpm in LB broth containing either 400 ppm ampicillin or 100 ppm 

spectinomycin, respectively.  

Several controls were performed to ensure plasmid stability, and are elaborated 

upon in O’Connell et al. (2006).  The specific growth rates of SpecR and AmpR growing 

exponentially in LB broth without antibiotics were 1.7 hr-1 and 1.3 hr-1 respectively.  The 

AmpR and SpecR phenotypes were stable over a period of 48 h with no antibiotic 

selective pressure when grown in biofilms, and no exchange of antibiotic determinants 

when AmpR and SpecR were cocultured in biofilms was detected. 
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3.2.2. Antibiotics. 

Ampicillin and spectinomycin were purchased from Sigma (St. Louis, MO).  

Stock solutions were created by dissolving the antibiotic powder in double deionized 

water, and passed through 0.20 µm pore filters for sterilization, and stored at -20°C.  

 

3.2.3. Biofilm cultivation.   

Biofilms were grown in flow cells according to a previously described technique 

(Gilbert & Keasling, 2004). Briefly, cells were inoculated into media reservoirs 

containing 200 mL LB broth to the desired OD600 and were recirculated through the flow 

cell at 0.84 mL min-1 for 2 hours to allow surface attachment. For experiments involving 

antibiotics, 80 ppm spectinomycin and 100 ppm ampicillin were present for both 

recirculation and continuous (steady state) flow. At 2 h, initial attachment studies were 

imaged by confocal laser scanning microscope, as described below.  For biofilm growth 

studies, the system was then switched to continuous flow for 46 h, maintaining steady 

state concentrations by replacing the flow cell volume at a rate of approximately one 

volume per minute (media flow rate of 0.35 mL min-1). Each growth condition was 

repeated at least in triplicate. Following CLSM imaging, biofilm cells were displaced 

from flow cells by introducing air into the channels and were resuspended in sterile 50 

mM phosphate buffer (pH = 7.2) using a pipette for plate counting. 
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3.2.4. Confocal laser scanning microscopy.  

Sterile 50 mM potassium phosphate buffer (pH = 7.2) was used to rinse biofilms 

for 5 min.  Subsquently, biofilms were stained with 20 µM SYTO 59 (Molecular Probes, 

Eugene, OR) for 15 min, and rinsed a second time with sterile 50 mM potassium 

phosphate buffer for 5 min.  A Zeiss LSM 510 confocal laser scanning microscope 

(Zeiss, Thornwood, NY) was used to image the flow cells without disrupting the biofilm 

structures.  Imaging took place with dual excitation at wavelengths of 488 nm and 523 

nm, using a Fluor 40X oil immersion lens.  Four image stacks of each biofilm were taken 

at the middle of the flow cell’s length, using a 1 µm vertical step increment.   

 

3.2.5. Biofilm Image Segmentation Software  analysis.   

Biofilm Image Segmentation Software (BISS) was developed in conjuction with 

the Department of Computer Sciences, Georgia State University (Belkasim et al., 2004). 

Briefly, each image was segmented into discrete red, green, or black pixels.  By selecting 

how many AmpR (green) and SpecR (red) cells are in a group, and the radius in pixels to 

search, users can calculate the number of cells of each strain attached to the glass, the 

distance between individual attached AmpR and SpecR cells, and the number of AmpR 

and SpecR interactions in each 2 hour CLSM image.   
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3.2.6. COMSTAT analysis.  

CLSM images of biofilms were analyzed quantitatively using the digital image 

analysis program COMSTAT (Heydorn et al., 2000) with a user-defined pixel intensity 

threshold of 30. 

 

3.2.7. Chemostat experiments.  

Chemostats were made from 250 mL sidearm flasks sealed with a rubber stopper. 

Two 3.2 mm i.d. Pharmed tubes extended to the bottom of the flask, one for influent 

media, and another for the intake of air, which passed through a 0.20 µm pore size filter. 

Sterile media were contained in 2 L Pyrex bottles, and were pumped into the chemostat 

using a peristaltic pump (Cole Parmer, USA) through autoclaved 3.2 mm i.d. Pharmed 

tubing. A magnetic stir bar kept the flask contents well mixed, and effluent flowed out of 

the sidearm into a sterile, hooded funnel leading to a waste vessel. The entire setup fit 

into an incubator that was maintained at a temperature of 37°C ± 0.5°C. At each time 

point, a sample was collected to measure turbidity and a second sample was collected, 

centrifuged, resuspended in 10% glycerol and stored at -80°C for analysis by plate count. 

Dilution rates were set to maintain the sensitive strain at 55 percent (SpecR) or 60 percent 

(AmpR) of its maximum growth rate in LB medium. The pump flow was maintained at 

3.8 mL min-1, corresponding to a complete reactor displacement every 76 minutes. The 

total inoculum concentration of the cells was either OD600 = 0.50, corresponding to 3 × 

108 CFU mL-1, or OD600 = 0.05, corresponding to 3 × 107 CFU mL-1.  Chemostats were 

run in at least duplicate for each condition. 
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3.2.8. Plate counts.  

Cells recovered from biofilms or chemostats were resuspended in sterile 50 mM 

phosphate buffer, serially diluted, and plated on LB agar plates containing either 400 ppm 

ampicillin or 100 ppm spectinomycin.  Plates were incubated overnight at 37°C.  

 

3.3. RESULTS 

We hypothesized that it was possible to affect the number and proportions of 

AmpR and SpecR cells colonizing the substratum by manipulating their concentrations in 

the liquid medium during the recirculation phase (e.g. the first two hours of the 

experiment). First we investigated the ability of each strain alone to attach to the flow cell 

substratum. Confocal microscopy determined that there was an increase in cells attached 

to the substratum as a function of the cell density during recirculation (Figures 3.1, 3.2). 

We also found that SpecR adhered twice as effectively as AmpR. Next we considered 

whether synergism or antagonism between the two strains might alter their abilities to 

attach to the flow cell surface when these two strains were recirculated concurrently. We 

found that SpecR adhered to the flow cell substratum nearly three times more efficiently 

in the presence of Amp R relative to its growth alone (Figures 3.1, 3.2). On the other 

hand, SpecR did not affect the adhesion of AmpR relative to its growth alone. Thus, in 

order to establish populations of cells attached to the substratum with specific ratios of 

cell types, inoculum conditions were worked out empirically (Table 3.1). BISS analysis 

of the number of pairs formed by cocultures correlated with increasing inoculum density.  

When a maximum distance of 5 pixels (2 µm) was used, an OD600 of 0.01 yielded 1.4 ±  
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0.9 pairs, 0.03 yielded 5.0 ± 1.3 pairs, and 0.06 yielded 11.7 ± 2.3 pairs.   Increasing the 

maximum distance to 10 pixels (4 µm) resulted in 5.3 ± 1.7 pairs for OD600 of 0.01, 33.8 

± 4.8 pairs for OD600 of 0.03, and 43.6 ± 5.2 pairs for OD600 of 0.06. The basis of the 

beneficial interaction between SpecR and AmpR leading to enhanced surface adhesion by 

SpecR is presently unknown. 

To determine whether areal cell density was an important factor for the initiation 

of biofilm development in the presence of two antibiotics, we compared biofilm 

development at the 10 SpecR : 1 AmpR attachment ratio using OD600 values ranging from 

0.01 to 0.06. In no case could either of the two strains form a biofilm if they were 

inoculated into the flow cell alone (Figure 3.3A). Quantitative digital image analysis of 

coculture biofilm structure visualized by CLSM revealed that in the presence of both 

antibiotics, at areal cell densities greater than 150 cells per field (0.053 mm2; 2000 – 3000 

cells per mm2), microcolonies were consistently observed and confluent biofilm began to 

form (Figure 3.3B). In contrast, at areal cell densities of 40 cells per 0.053 mm2 (800 

cells per mm2) or less, few microcolonies developed and no confluent biofilm was 

observed.  

We hypothesized that the greater biofilm formation in flow cells with initial areal 

cell densities greater than 150 cells per field occurred because AmpR and SpecR cells 

attached to the substratum after the recirculation phase were more likely to be in close 

spatial proximity to one another, due to the greater number of attached cells, in 

comparison to flow cells with initial areal cell densities less than 40 cells per field. To 

test this hypothesis, we used the biofilm image analysis program BISS to measure the 



46 

 

average intercellular distance between AmpR and SpecR cells attached to the substratum 

after 2 h for the three tested initial cell densities. At least eight fields, representing two or 

more replicates, were tested by selecting an area containing a single AmpR cell (green 

cell) and the six closest surrounding SpecR cells (red cells).  The average distance 

between a green cell and its surrounding red cells decreased with increasing inoculation 

density.  An OD600 of 0.01 resulted in an average green to red intercellular distance to be 

18.4 ± 7.9 microns, OD600 0.03 yielding 15.3 ± 5.6 microns, and OD600 of 0.06 resulting 

in 9.8 ± 3.9 microns. 

To evaluate whether the greater biofilm formation in flow cells with initial areal 

cell densities greater than 150 cells per field occurred simply because more AmpR and 

SpecR cells were attached to the substratum after the recirculation phase compared to 

flow cells initially seeded with 40 cells per field, we examined biofilms cultivated in 

antibiotic- free LB medium under identical conditions to those used for cultivation of 

biofilms in the presence of both ampicillin and spectinomycin. We found that during 

growth in antibiotic- free media, biofilm formation was independent of initial areal cell 

density (p = 0.454) (Table 3.2), in contrast to the behavior of the model polymicrobial 

biofilm in the presence of antibiotics (p = 0.004).  

To determine whether the ratio of microorganisms was important for the initiation 

of biofilm development in the presence of two antibiotics, we compared biofilm 

development under conditions where the initial areal cell density was constant, but the 

ratio of resistant to sensitive organisms varied. In the presence of both antibiotics, it was 

essential that there be more SpecR cells than AmpR cells at the substratum in order for 
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biofilm development to occur (Figure 3.3C). AmpR growth in coculture was similar to 

AmpR growth alone in terms of biomass (p = 0.462) and substratum coverage (p = 0.667) 

(Table 3.3).  The 5 SpecR to 1 AmpR ratio benefited AmpR in terms of maximum height 

(p = 0.002) and the number of green colonies growing above the substratum, indicating 

that AmpR growth occurred after the initial cell attachment phase. During growth in 

antibiotic- free media, the increasing ratio of SpecR to AmpR cells correlated with larger 

SpecR maximum height (p = 0.00008), AmpR maximum height  (p = 0.0324), and AmpR 

substratum coverage (p = 0.002).  For both organisms, growth alone in LB yielded values 

greater than or similar to the largest values from coculture. 

To determine whether the biofilm environment was important for the growth of 

the co-culture in the presence of two antibiotics, we compared growth of the two strains 

in chemostats (planktonic growth) with growth in flow cells (biofilm growth). In the 

presence of two antibiotics, and at a ratio of 1:1, the two strains could not establish a 

stable relationship at cell densities ranging from 2.1 × 107 CFU mL-1 (OD600 = .03) to 3.5 

× 107 CFU mL-1 (OD600 = 0.50). For chemostats inoculated at an OD600 of 0.5, SpecR 

populations declined less than 3 orders of magnitude in coculture for all tested 

inoculation ratios (Figure 3.4A).  Only the 5 SpecR to 1 AmpR ratio resulted in a less than 

3 log reduction in AmpR populations (Figure 3.4B). At lower inoculation densities, both 

AmpR and SpecR populations declined 3.5 orders of magnitude over the course of the 

experiment. 
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3.4. DISCUSSION 

In this research, two strains were able to attach to a surface and produce biofilms, 

despite simultaneous exposure to two antibiotics at concentrations twice that which 

prevented the growth of the sensitive strains alone in a single antibiotic. All events that 

contributed to this survival had to be established in the first two hours, because the 

biofilms were treated identically after that point. Also, neither strain alone was able to 

grow in the presence of both antibiotics. This result indicates that an interaction between 

the strains was necessary to foster biofilm development. 

An essential feature for establishing the growth of the biofilm is the number of 

cells attached to the substratum in the first two hours. At low initial cell density, only a 

small number of microcolonies were detected at 48 hours. This is most likely because the 

two strains did not attach within a suitable proximity to one another to detoxify the 

antibiotics for one another. Simultaneous detoxification of both antibiotics by both 

organisms was a requirement for biofilm development. Thus, it is reasonable to assume 

that the two strains must be in some physical proximity to one another on the substratum 

at the beginning of the experiment in order for this to happen. Several pieces of data 

support this concept. First, the amount of biofilm that formed was greater when more 

cells were attached to the substratum. Second, analysis by BISS determined that the 

average intercellular distance was smaller at high cell density, and there were 

correspondingly more pairs within the user defined intercellular distances of 5 and 10 

pixels. At this time, the greatest possible physical intercellular distance that can result in 

mutual detoxification is unknown.  Enumeration of other groupings (e.g. two of one 
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strain and one of another) at different intercellular distances showed a similar trend 

relative to the number of cells attached to the substratum. An alternative hypothesis that 

the amount of biofilm formed by 48 h could simply be a function of the total number of 

cells attached to the substratum at 2 h was rejected because in the absence of antibiotics 

the amount of biofilm that formed was similar under all tested conditions (Table 3.3).  

Cell number alone was not sufficient to explain the observed growth; the ratio of 

the two strains influenced whether biofilm formed. A ratio of 5:1 SpecR to AmpR was 

superior to the other tested ratios. This result was consistent with previously observed 

behavior where the antibiotic detoxification activity of SpecR was significantly less than 

that of AmpR, most likely because of the difference in the energetics of the two 

detoxification mechanisms (O'Connell et al., 2006). The importance of cell ratio was 

underscored by work with the chemostat, which also showed that a ratio of 5:1 could 

enhance the growth of the co-culture, even in planktonic culture, compared to other ratios 

of strains. However, while this work showed that biofilm structure was not essential for 

the survival and establishment of the co-culture, a comparison of growth in biofilms 

versus chemostat showed that orders of magnitude fewer cells were required to establish 

a successfully growing co-culture in flow cells. This result demonstrates that an 

important function of surfaces in the formation of polymicrobial biofilms is to nucleate 

the interacting populations, which can subsequently self-propogate. 

The significance of this work is that a single cell resistant to one antibiotic could 

hypothetically attach to a surface colonized by a different species resistant to another 

antibiotic and establish a multiple antibiotic resistant infection. This could be significant 
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in terms of treatment failure of combination therapies.  Early attachment can cause 

decreases in cell susceptibility to biocide concentrations greater than the minimum 

inhibitory concentration, or MIC (Das et al., 1998).  From a bacterial perspective, this 

now sublethal concentration could allow time for the induction of resistance phenotypes 

such as the multiresistance operon mar (Maira-Litran et al., 2000; Gilbert et al., 2002).  

We propose that in infections treated by multiple antibiotics, the attachment of 

reciprocally resistant organisms can reduce of antibiotic concentrations enough to create 

a similar window of opportunity.   

A requirement for the CMAR biofilm to become established is that both strains 

must inactivate their respective antibiotics enzymatically, such that the partner strain can 

experience a benefit. Antibiotics in common use as combination therapies, such as beta-

lactams and aminoglycosides, are inactivated by resistance mechanisms that are 

commonly found (Aslangul et al., 2006; Jana & Deb 2006; Ramphal & Ambrose 2006; 

Brook, 2004); thus, the proposed model does not have extreme requirements. Many 

commons surfaces on the body are coated with a coating of cells, e.g. the ear, the GI tract. 

In these environments, if the surface is colonized by a strain resistant to one antibiotic, in 

principle a cell of a second strain resistant to a different antibiotic could join the 

established biofilm and form a CMAR biofilm infection. At present, whether this type of 

mutualistic interaction forms in the clinic contributing to nosocomial infections is 

unknown. However, because it can easily be demonstrated in the laboratory suggests that 

it is plausible.   
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TABLE 3.1.  BISS-directed inoculum engineering to obtain specific attachment ratios 
 
 

Desired cell 
attachment ratio 

SpecR OD or 
volume 

AmpR OD or 
volume 

Required liquid ratio 

 
10 SpecR : 1 AmpR 

 
0.015a 0.015 1 SpecR : 1 AmpR 

5 SpecR : 1 AmpR 
 0.006 0.024 1 SpecR : 4 AmpR 

1 SpecR : 1 AmpR 
 

0.003 0.027 1 SpecR : 9 AmpR 

1 SpecR : 5 AmpR 
25 µL of 1/10b 

dilution of 
0.10 OD600 

0.04 1 SpecR : 800 AmpR 

a  OD600 of 200 mL used in recirculation phase of biofilm growth 
b  volume added to 200 mL used in recirculation phase of biofilm growth 
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TABLE 3.2. SpecR and AmpR cell behavior alone and in coculture based on cell numbers 
attached to the substratum 

 

biomass, µm3/µm2 
maximum height, 

µm 
percent substratum 

coverage 
Cell 

number at 
substratum AB LB AB LB AB LB 

SpecR 
alonea 

 
0.0002 ± 0.0001 5.74 ± 0.66 2 ± 1 32 ± 2 

0.02 ± 
0.01 84 ± 3 

SpecR in 
40 cells 
mixed 

 

0.15 ± 0.12 1.91 ± 1.57 13 ± 3 30 ± 10 2 ± 1 38 ± 15 

SpecR in 
150 cells 

mixed 
 

0.38 ± 0.15 2.20 ± 1.38 15 ± 4 30 ± 4 4 ± 3 40 ± 5 

SpecR in 
400 cells 

mixed 
0.36 ± 0.36 6.78 ± 3.40 23 ± 6 26 ± 7 6 ± 4 71 ± 7 

AmpR alonea 

 
0.014 ± 0.002 1.22 ± 0.88 6 ± 1 22 ± 4 0.4 ± 0.0 19 ± 10 

AmpR in 40 
cells mixed 

 
0.02 ± 0.02 0.60 ± 0.50 4 ± 3 22 ± 9 0.5 ± 

0.41 21 ± 10 

AmpR in 150 
cells mixed 

 
0.01 ± 0.01 0.21 ± 0.20 7 ± 2 25 ± 4 0.2 ± 0.1 10 ± 6 

AmpR in 400 
cells mixed 0.01 ± 0.01 0.98 ± 1.10 9 ± 3 27 ± 7 0.4 ± 0.3 20 ± 8 

a approximately 300 cells attached to the substratum 
b standard error of the mean used   
c standard deviation used 
   
 



53 

 

 TABLE 3.3. SpecR and AmpR cell behavior alone and in coculture, 150 cells at 
substratum, different cell type ratios. 
 
  

biomass, µm3/µm2 
maximum height, 

µm 
percent substratum 

coverage SpecR 
to 

AmpR 
ratios AB LB AB LB AB LB 

number of 
green 

colonies 
above 

substratu
m 

SpecR 
alonea 

0.0002 ± 
0.0001 

5.74 ± 
0.66 2 ± 1 32 ± 2 

0.02 ± 
0.01 84 ± 3 NA 

5 : 1 
mixed 0.39 ± 0.32 

4.60 ± 
2.62 

25 ± 
11 40 ± 10 4.8 ± 2.7 

49 ± 
23 NA 

1 : 1 
mixed 

0.04 ± 0.03 
2.99 ± 
1.76 

20 ± 7 27 ± 10 1.7 ± 1.0 
46 ± 
22 

NA 

1 : 5 
mixed 0.13 ± 0.13 

2.64 ± 
0.55 5 ± 2 26 ± 2 0.6 ± 0.2 52 ± 7 NA 

AmpR 
alonea 0.01 ± 0.00 

1.22 ± 
0.88 6 ± 1 22 ± 4 0.4 ± 0.0 

19 ± 
10 0 ± 0 

 
5 : 1 

mixed 0.01 ± 0.01 
0.37 ± 
0.27 11 ± 0 22 ± 8 0.4 ± 0.5 15 ± 9 12 ± 4 

 
1 : 1 

mixed 
0.01 ± 0.01 

0.45 ± 
0.45 

8 ± 3 21 ± 13 0.3 ± 0.3 6 ± 1 2 ± 2 

 
1 : 5 

mixed 0.02 ± 0.02 
0.14 ± 
0.05 5 ± 2 14 ± 3 0.3 ± 0.1 2 ± 0 1 ± 1 

a approximately 300 cells attached to the substratum         

NA = not applicable        
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Figure 3.1. Initial attachment of AmpR and SpecR cells grown in both antibiotics.  
attachment of AmpR (green series) or SpecR (red series) based on optical density (OD600).   
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Figure 3.2. Substratum images of initial attachment of mixed cultures in 80 ppm 
spectinomycin and 100 ampicillin at 2H. 400× magnification, all images to scale.  Top 
row: Inoculum consisting of equal cell numbers of AmpR and SpecR.  Total OD600 values: 
0.01, 0.03, or 0.06.  Bottom row: OD600 0.03 inoculum with varying cell attachment 
ratios: 5 SpecR to 1 AmpR, 1 SpecR to 1 AmpR, 1 SpecR to 5 AmpR.  Representative 
images shown. 

0.01 0.03 0.06 

5 : 1 1 : 1 1 : 5 
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Figure 3.3. Cross-section images of 48 hour growth of single or mixed cultures 80 ppm 
spectinomycin and 100 ampicillin.  400× magnification, all images to scale and imaged to 
36 microns above the substratum. A: Single-organism controls, with approximately 300 
cells attached to the substratum. B: Equal cell numbers of Amp R and SpecR in liquid 
inocula, with varying cell numbers attached to the substratum after 2 h recirculation. C: 
Approximately 150 cells attached to the substratum, with varying cell attachment ratios. 
Representative images shown. 
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Figure 3.4. Chemostats: A: Amp R grown alone or in differing ratios with SpecR. B: 
SpecR grown alone or in differing ratios with AmpR. 
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CHAPTER 4 

ENHANCED HIGH COPY NUMBER PLASMID MAINTENANCE AND 

HETEROLOGOUS PROTEIN PRODUCTION IN AN ESCHERICHIA COLI 

BIOFILM 

Heather A. O’Connell, Chen Niu and Eric S. Gilbert 

 

4.1 ABSTRACT 

Escherichia coli has been widely used for heterologous protein production (HPP). 

To determine whether a biofilm environment could benefit E. coli HPP using high copy 

number plasmids, we compared plasmid maintenance and HPP by E. coli ATCC 33456 

containing plasmid pEGFP (a pUC family vector) cultivated in biofilms and in suspended 

culture. Cells were grown with or without antibiotic selective pressure in flow cells or 

chemostats for up to six days. In biofilms, antibiotic selective pressure increased the 

plasmid copy number (PCN), but by 144 h, biofilms grown in antibiotic- free media had 

comparable plasmid concentrations. In the chemostat, the PCN declined steadily, 

although 100 ppm ampicillin in the medium slowed the rate of plasmid loss. Production 

of green fluorescent protein (GFP), a representative heterologous protein, was quantified 

by flow cytometry. In biofilms, at ampicillin concentrations = 33 ppm, strongly 

fluorescent cells comprised more than half of the population by 48 h. In the chemostat, 

more than 50 percent of the population was non-fluorescent by 48 h in media containing 

100 ppm ampicillin, and strongly fluorescent cells were < 10 percent of the population. 

Biofilm structure was determined by confocal microscopy. Maximum biofilm thickness 
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ranged from 30 to 45 microns, with no significant changes in biofilm structure after 48 h. 

Plasmid multimer percentages were similar to inocula for cells cultivated in either 

biofilms or the chemostat. The results indicate that the biofilm environment enhanced 

both plasmid maintenance and cellular GFP concentrations, and that low levels of 

antibiotic increased the beneficial effect.  

 

4.2 METHODS 

4.2.1 Strains and plasmids:  

E. coli ATCC 33456 pEGFP contained the plasmid pEGFP, a pUC19-based 

vector encoding ampicillin resistance and a red-shifted egfp gene (Clontech, Mountain 

View, CA). Cells were cultured at 37°C in Luria-Bertani (LB) medium. E. coli ATCC 

33456 pEGFP was maintained in medium containing 400 ppm ampicillin. No IPTG was 

added to the medium to avoid suppression of HPP, previously reported in cells containing 

high copy number plasmids (Jones et al., 2000). The minimum inhibitory concentration 

(MIC) of ampicillin for E. coli ATCC 33456 was 16 ppm, as determined by the method 

of Jorgensen and Turnidge (Jorgensen & Turnidge, 2003). 16 ppm ampicillin was not 

lethal to attached cells, but reduced biofilm formation by 90 percent relative to growth in 

the absence of ampicillin (O'Connell et al., 2006). Inocula for biofilm experiments were 

prepared by growing overnight cultures on antibiotic-containing plates with cells taken 

from clonal populations stored at -80°C. Inocula for chemostat experiments were 

prepared by growing frozen stock overnight at 37°C in 150 mL of LB containing 400 

ppm ampicillin. 
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4.2.2 Chemostat experiments.  

Chemostats were made from 250 mL sidearm flasks. Flasks were sealed with a 

rubber stopper containing a 3.2 mm i.d. Pharmed tube that extended to the bottom of the 

flask for influent media and another tube for the intake of air, which passed through a 0.2 

µm pore size filter. Sterile media were contained in 5 L Pyrex bottles and were pumped 

into the chemostat using a peristaltic pump (Cole Parmer, USA) through autoclaved 3.2 

mm i.d. Pharmed tubing. The sidearm flask was located on a magnetic stir plate that kept 

the flask contents well mixed, effluent flowed out of the sidearm into a sterile, hooded 

funnel leading to a waste vessel. The entire system was contained within an incubator 

with a maintained internal temperature of 37° C ± 0.5° C. Samples were collected by 

reaching a sterile microcentrifuge tube held by flame-sterilized tweezers into the sterile 

hood to collect effluent. Surfaces were sprayed with ethanol before and after handling to 

maintain sterility. At each time point, samples were collected to measure turbidity, to 

enumerate colonies by plate count, or to extract plasmid. Dilution rates were selected to 

maintain E. coli ATCC 33456 pEGFP in an active physiological state without risking 

washout, and thus were set to maintain the doubling time for the population at 75 percent 

of its maximum growth rate in LB medium (µmax = 1.3 h-1). This corresponded to a 

pump flow of 4.7 mL min-1, resulting in a complete reactor displacement every 62 

minutes. The inoculum concentration was always OD600 = 0.40 (measured with an 

Ultrospec 2000 spectrophotometer; Pharmacia Biotech, UK), corresponding to 2 × 108 
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CFU mL-1. Chemostats were run in at least duplicate for each condition that was 

investigated. 

 

4.2.3 Biofilm growth and analysis.  

Biofilms were cultivated using a parallel plate flow cell according to a previously 

described technique (Gilbert & Keasling, 2004). Briefly, cells were inoculated into media 

reservoirs to an OD600 of 0.03 and were recirculated through the flow cell at 0.84 mL 

min-1 for 2.5 hours to allow surface colonization. Subsequently, the system was switched 

to continuous (one-way) flow for the duration of the experiment (media flow rate of 0.35 

mL min-1). The selected media flow rate replaced the volume of the flow cell 

approximately once per minute, and was chosen such that the antibiotic concentration in 

the bulk fluid approximated steady state conditions, nutrients were not limiting and 

planktonic cells were removed from the flow cell. Liquid flow in the flow cell was 

laminar (Re = 32). Biofilms were grown at least in triplicate for all experiments. 

Quantitative analysis of CLSM images of biofilms was conducted using the digital image 

analysis program COMSTAT (Heydorn et al., 2000). A constant pixel intensity threshold 

value of 30 and a minimum colony size of 100 pixels was used. To determine viability of 

E. coli ATCC 33456 cultivated in ampicillin-containing media, biofilms were stained 

with LIVE/DEAD BacLight bacterial viability stain (Invitrogen, USA) per 

manufacturer’s instructions. 
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4.2.4 Confocal laser scanning microscopy.  

Confocal laser scanning microscopy (CLSM) was performed with a Zeiss LSM 

510 confocal laser scanning microscope (Carl Zeiss, Thornwood, NY) using a 40X oil 

immersion lens. An argon laser operating at 488 nm was used for excitation of cells. 

Eight image stacks were taken for each biofilm.  

 

4.2.5 Flow cytometry.  

Following imaging by CLSM, air was introduced into the flow cells to displace 

the biofilms. Visual inspection of flow cells by microscopy following biofilm 

displacement indicated that greater than 99 percent of the cells not directly adhered to the 

glass substratum were recovered. Displaced biofilms were resuspended by pipetting and 

were subsequently centrifuged at 9.8 × g for 2 min. The supernatant was discarded, the 

samples were resuspended in 50 mM sterile potassium phosphate buffer, and then diluted 

to an optical density (600 nm; OD600) of 0.03 (approximately 2 × 107 cells mL-1). Prior to 

analysis, cells were resuspended in 50 mM sterile potassium phosphate buffer, and were 

injected within 10 minutes into a Becton-Dickinson FACSCalibur flow cytometer (BD 

Biosciences, USA). Fluorescence intensity was determined by excitation at 488 nm. 

Forward scatter (FSC) and side scatter (SSC) were processed in linear gain, while 

fluorescence emissions (FL1-H) of between 515-545 nm were processed in logarithmic 

gain. Forward scatter data indicated that 85 percent of counted events for the resuspended 

biofilms were in the same range as for planktonic cells, indicating little to no clumping of 

resuspended cells. 10,000 events were collected for each biofilm. 
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4.2.6 Plasmid analysis.  

Cells for plasmid extraction were normalized in 50 mM sterile potassium 

phosphate buffer to approximately 1.5 × 109 cells. Plasmid DNA was extracted from each 

resuspended sample using a kit (Qiagen, Valencia, CA). DNA was separated on 0.7% 

agarose gels containing 0.5 µg mL-1 ethidium bromide at 85V for 120 minutes. Band 

intensity was evaluated densitometrically using digital image analysis software 

(LabWorks v. 4.0.0.8; Upland, CA), using the method of Asaka et al (Asaka et al. 1994) 

with minor modifications. Briefly, DNA concentrations were determined using a 2 – 10 

kbp supercoiled plasmid marker containing 30 ng DNA µL-1 per band, which served as 

both a molecular weight marker and an internal standard for normalizing DNA 

concentrations between gels (Promega, Madison, WI). DNA concentrations were divided 

by the number of cells in the extracted sample and the molecular weight of the pEGFP 

plasmid to obtain the number of plasmid copies per cell.  The mean of triplicate samples 

was used to calculate PCN. 

 

4.2.7 GFP concentration.  

GFP concentrations were determined by correlating fluorometry values of cell 

lysates prepared by sonication with an rGFP standard (Roche Applied Biosciences, USA) 

using a Bio-Rad VersaFluor fluorometer (Bio-Rad, Inc., Hercules, CA) after the method 

of Remans et al. (Remans et al., 1999). GFP concentrations for biofilm cells were 

determined from cell suspensions with OD600 = 1.0. Total protein was determined using 
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the BCA assay (Pierce Biotechnology, Inc., Rockford, IL). Monitoring GFP production 

by flow cytometry and fluorometry is linear in relation to the amount of protein produced 

down to µL-1 concentrations (Hedhammar et al., 2005; Remans et al., 1999), is non-

destructive to GFP-producing cells, can measure GFP production in single cells, and can 

differentiate cells based on the degree of their GFP expression. 

 

4.3 RESULTS 

4.3.1 Effect of ampicillin on biofilm cells.  

Biofilms of E. coli ATCC 33456 pEGFP grown in LB broth plus 16 ppm 

ampicillin had typical coccobacillus morphology. In contrast, E. coli ATCC 33456 cells 

grown under the same conditions failed to produce a confluent biofilm, and were 

comprised of cells with filamentous and bulbous morphologies. Viability staining 

indicated that 65 percent of the attached biomass was either damaged or dead. 

 

4.3.2 Plasmid copy number and multimer analysis.  

In the chemostat, the plasmid copy number of E. coli ATCC pEGFP grown in LB 

broth only fell below detectable levels by 72 h (Figure 4.1A). Plasmid loss occurred at a 

slower rate in LB broth containing ampicillin.  In biofilms, there was an initial decrease 

in the band intensity of plasmid extracted from biofilms grown without ampicillin relative 

to the inoculum (Figure 4.1B), but subsequently band intensity increased over the course 

of the experiment. At 24 h, band intensity for biofilms cultivated in media containing 16 

ppm ampicillin was greater than in biofilms cultivated in LB broth only, and increased 
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over the duration of the 144 h experiment (Figure 4.1B). Biofilms grown in media 

containing concentrations of up to 200 ppm ampicillin showed similar band patterns and 

intensities (data not shown). Proportions of monomers and multimers remained similar in 

both biofilms and chemostats, with monomers accounting for 52 to 65 percent of plasmid 

DNA.  

In the chemostat, densitometry measurements indicated that 100 ppm ampicillin 

led to increased PCN (Figure 4.2, closed circles), but that 16 ppm ampicillin did not. In 

contrast, in the biofilm, 16 ppm ampicillin fostered a significant increase in PCN which 

did not increase at higher ampicillin concentrations (Figure  4.2, open circles). In the 

chemostat, the PCN declined steadily as a function of time (Figure 4.3A). In LB broth 

only or media containing 16 ppm ampicillin, the PCN decreased by nearly 90 percent 

relative to inoculum levels by 57 h. In LB broth containing 100 ppm ampicillin, a decline 

in PCN was still evident, but the rate was slower than at 16 ppm. In the biofilm, 

following an initial decrease in PCN relative to the inoculum, the PCN increased for both 

growth conditions over the course of the experiment (Figure 4.3B). The PCN was 

significantly higher in biofilms grown with ampicillin present compared to biofilms 

grown without ampicillin at 24 h (p = 0.035), 48 h (p = 0.000036), and 96 h (p = 0.016). 

The PCN at 144 h was the same for both growth conditions (p = 0.60).  

 

4.3.3 Analysis of biofilm structure and growth.  

All biofilms showed well-established structures at 24 h with a loose “sponge- like” 

arrangement, punctuated with densely populated clusters. At 48 h, there was a confluent 
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bottom layer several cells thick, larger clusters and well-defined channels. The 

accumulation of strain pEGFP biomass by 48 h was similar to E. coli ATCC 33456 over 

the same time period (Niu & Gilbert, 2004). Biomass continued to increase in height and 

cell density through 144 h. The effect of antibiotic selective pressure on the biofilm 

structure was modest (Table 4.1). With respect to time, there was also a significant 

increase in percent substratum coverage and maximum diffusion distance after 24 h. In 

contrast, the surface area to volume ratio decreased significantly between 24 and 144 h. 

The average biofilm doubling time was estimated using data collected from COMSTAT 

analyses. Doubling times based on biomass and substratum coverage parameters were 8.7 

h and 9.6 h, respectively. This was approximately nine times slower than the growth of 

strain pEGFP in the chemostat. 

 

4.3.4 HPP dynamics.  

Visual inspection under UV light of colonies cultured from resuspended biofilms 

identified three distinct populations: one which fluoresced strongly, a second which 

fluoresced moderately and a non-fluorescent population. Each of the populations could be 

distinguished from the others by flow cytometry (Figure 4.4). Cells with an FL1-H value 

of 40 - 9910 were considered strongly fluorescent, those from 3 - 40 were designated as 

moderately fluorescent, and cells with FL1-H values of less than 3 were considered non-

fluorescent. The average GFP production of the strongly fluorescent population was 0.16 

mg GFP mL-1, accounting for 17 percent of total cell protein, and the average GFP 

production by the moderately fluorescent population corresponded to 0.01 mg GFP mL-1, 
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approximately 1 percent of total cell protein. The dynamics of the three populations in 

chemostats and biofilms were monitored as a function of time.  

The effect of ampicillin concentration on cell fluorescence was considered. In the 

chemostat, the majority of cells grown in media containing 0 or 16 ppm ampicillin were 

non-fluorescent by 48 h, (Figure 4.5A), and for 100 ppm ampicillin, a small strongly 

fluorescent population was detectable. In biofilms grown in media containing 0 ppm 

ampicillin, the population split into distinct non-fluorescent and fluorescent populations. 

A shift to the right indicating increased average fluorescence was visible in biofilms 

grown in media containing 16 and 100 ppm ampicillin. In the chemostat, non-fluorescent 

events accounted for 50 – 55 percent of the total events collected, and fewer than 10 

percent of events were strongly fluorescent by 48 h (Figure 4.5B). In the biofilm, a 

decrease in the moderately fluorescent population occurred with increasing ampicillin 

concentration with a corresponding increase in the size of the strongly fluorescent 

population.  

The dynamics of fluorescence during growth in biofilms and chemostats was 

compared. In the chemostat, the strongly fluorescent population accounted for less than 3 

percent of the total counts by 48 h (Figures 4.6A, 4.6B). Non-fluorescent and moderately 

fluorescent populations stabilized by 48 h and accounted for approximately half each of 

the total events. In biofilms grown in the absence of ampicillin, fluorescent cells 

comprised approximately 85 percent of the population for all time points (Figure  4.6C). 

With ampicillin present, the strongly fluorescent population was less than 1 percent at 24 

h, but steadily increased in size to 50 percent at 144 h. The non-fluorescent population 
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was largest at 24 h, but dropped to less than 3 percent for all other time points (Figure 

4.6D).  

 

 4.4 DISCUSSION 

Recombinant protein production based on E. coli is advantageous for reasons that 

include its ability to grow using inexpensive substrates, rapid high-density growth, high 

level gene expression, and the potential to control protein folding (Baneyx, 1999; Baneyx 

& Mujacic, 2004). The presented research supports the concept that E. coli growing in 

biofilms could benefit HPP. First, a low concentration of antibiotics enhanced plasmid 

maintenance and HPP in biofilms, whereas no comparable benefit was detected in the 

chemostat. Second, high plasmid copy number was maintained in biofilms over extended 

periods in the absence of antibiotic selective pressure. A factor that may have contributed 

to this result was the slower average doubling time for E. coli ATCC 33456 in the biofilm 

environment. Third, the presence of plasmid multimers did not lead to plasmid loss over 

time. Although plasmid multimerization is sometimes a prelude to the heterogeneous 

distribution of plasmids within a population, direct measurement s of plasmid copy 

number and multimer percentages supported the conclusion that plasmids were 

maintained. Moreover, the non-fluorescent population of cells within the biofilm either 

remained stable in size or declined over time, augmenting this point of view. Fourth, 90 

percent or more of cells in the biofilms contained significant levels of heterologous 

protein by 6 days, even in the absence of selective pressure. This behavior could have 

been promoted by the larger gene dosage that resulted from enhanced plasmid retention. 
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The high percentage of cells containing GFP suggests that heterologous enzymes 

produced within E. coli biofilms could serve as an effective catalyst.  

Continuous biofilm cultures for HPP have advantages with respect to chemostats 

for retention of plasmid-bearing cells. Significant loss of plasmid from cells cultured in 

the chemostat occurred, similar to the findings of other investigators (Lu-Chau et al., 

2004; Ryan & Parulekar, 1991; Yazdani & Mukherjee, 2002) In contrast, high-density 

fed-batch cultures have been effectively managed for HPP with minimal loss of plasmid 

(Hu et al., 2003; Lau et al., 2004).  However, maintaining optimal operation of fed-batch 

reactors is challenging for reasons that include substrate solubility limitations, dissolved 

oxygen delivery limitations, and toxic metabolite accumulation (Lee, 1996; Riesenberg & 

Guthke, 1999). A continuous biofilm culture may represent a compromise between the 

comparative ease of operating a continuous flow system and the high yield and plasmid 

stability that can be achieved in fed-batch culture. It should be noted that Sharp  et al., 

1998) saw comparable rates of plasmid loss in both biofilms and planktonic culture. We 

think that the difference between our results and theirs is attributable to the significantly 

larger size of the TOM31C plasmid (108 kbp), a pGEM family vector, relative to plasmid 

pEGFP (3.5 kbp), which may have placed a greater metabolic burden on Burkholderia 

cepacia 17616 (Sharp et al., 1998). 

The stable maintenance of high copy number vectors for HPP by E. coli biofilms 

could benefit metabolic engineering processes.  For example, E. coli biofilms comprised 

of multiple subpopulations and each carrying requisite genes on different vectors, could 

be used to assemble composite metabolic pathways. This approach could be 
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advantageous in cases where recruitment of the genes of a pathway into a single organism 

proved to be unfeasible due to gene instability, metabolic burden or kinetic limitations. A 

related approach could involve multiple bacterial species, each with different metabolic 

capabilities. These constructed multispecies biofilms could take advantage of 

microenvironments within biofilms to support diverse populations of bacteria. The 

rational design of multispecies biofilms has been proposed, based on the E. coli surface 

adhesin antigen 43 (Kjaergaard et al., 2000), and could potentially incorporate cells 

harboring high copy number vectors. Recent work with high resolution spatial patterning 

of bacteria on surfaces could foster efforts in this area (Cowan et al., 2001; Xu et al., 

2004). In general, the ability of biofilms to maintain high copy number vectors in the 

absence of selective pressure or a plasmid addiction system should continue to be 

evaluated for industrial applications. 
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TABLE 4.1. COMSTAT analysis of biofilm structure. 
 
 

Growth period, h 
24  48  96  144 Parameter 

LB 
only 

LB + 
ampa  

LB 
only 

LB + 
amp  

LB 
only 

LB + 
amp  LB only 

LB + 
amp 

Maximum 
thickness 

(µm) 
12 ± 0 22 ± 2  

19 ± 
4 15 ± 4  

16 ± 
2 45 ± 4  23 ± 3 30 ± 5 

Biomass 
(µm3/µm2) 

0.04 ± 
0.01 

0.17 ± 
0.05 

 
1.7 ± 
0.9 

0.72 ± 
0.32 

 
0.14 

± 
0.13 

4.03 ± 
2.91 

 
0.92 ± 
0.36 

1.14 ± 
0.48 

Percent 
substratum 
coverage 

1 ± 0 4 ± 1  
23 ± 
11 

17 ± 8  1 ± 1 
27 ± 
19 

 7 ± 3 9 ± 2 

Roughness 
coefficientb,c 

2.0 ± 
0.008 

1.9 ± 
0.04 

 
1.5 ± 
0.2 

1.3 ± 
0.3 

 
1.9 ± 
0.00 

1.2 ± 
0.1 

 
1.8 ± 
0.07 

1.7 ± 
0.1 

Maximum 
diffusion 
distance 

(µm) 

1.8 ± 
0.2 

1.9 ± 
0.1 

 
3.8 ± 
1.2 

3.7 ± 
0.5 

 
3.3 ± 
0.5 

6.3 ± 
0.9 

 
5.2 ± 
0.9 

7.5 ± 
1.2 

Surface area 
to volume 

ratio 
(µm2/µm3) 

4.4 ± 
0.3 

4.4 ± 
0.4  

3.9 ± 
0.6 

5.1 ± 
0.7  

3.8 ± 
0.4 

2.6 ± 
0.2  

3.3 ± 
0.3 

2.5 ± 
0.4 

a LB broth + 16 ppm ampicillin         
b Unitless measurement        
c Area of microcolony at the substratum        
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Figure 4.1. Gel electrophoresis of pEGFP DNA extracted from time-course experiments 
with (A) chemostats and (B) biofilms. MW: Supercoiled plasmid marker, 2 – 10 kbp. I: 
Inoculum. LB: Cultures grown in LB broth only. 16 and 100: Cultures grown in LB broth 
and either 16 ppm ampicillin or 100 ppm ampicillin. Plasmid DNA collected at 24 h 
intervals. Representative lanes shown. 
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Figure 4.2. Plasmid copy number at 48 h for cells cultured in either chemostats or 
biofilms (n = 4 to 7) versus ampicillin concentration.  Closed squares: chemostat, open 
squares: biofilm. 
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Figure 4.3. Change in PCN versus time in chemostats and biofilms. Plasmid DNA 
concentrations are reported as the percentage of the inoculum PCN. Closed circles: 
Cultures grown in LB broth only. Open circles: Cultures grown in LB containing 16 ppm 
ampicillin. Open triangles: Cultures grown in LB containing 100 ppm ampicillin.  (A) 
Chemostats, (B) biofilms.  
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Figure 4.4. Three populations of cells with differing levels of GFP expression detected 
by flow cytometry. M1: non-fluorescent control cells. M2: moderately fluorescent E. coli 
ATCC 33456 pEGFP. M3: strongly fluorescent E. coli ATCC 33456 pEGFP.  
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Figure 4.5. Distribution of fluorescent populations versus ampicillin concentration in 
chemostats and biofilms. Analysis by flow cytometry after 48 h growth. (A) 
Representative histograms of chemostats and biofilms grown in media containing either 
0, 16, or 100 ppm ampicillin. FL1-H: GFP fluorescence. B: Percent distribution of non-
fluorescent, moderately fluorescent, and strongly fluorescent cells. Ampicillin 
concentrations of culture media and cultivation mode are indicated on the x-axis. 
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Figure 4.6. Changes in the distribution of fluorescent populations versus time in 
chemostats and biofilms. Analysis by flow cytometry. (A) Chemostats grown in LB broth 
only. (B) Chemostats grown in LB broth containing 16 ppm ampicillin. (C) Biofilms 
grown in LB broth only. (D) Biofilms grown in LB broth containing 16 ppm ampicillin. 
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CHAPTER 5 CONCLUSION 

 

5.1 Introduction of two techniques. 

A chemostat cultivation technique and an image analysis program were developed 

during this research. The chemostat system (Figure. 5.1) was developed using items such 

as sidearm flasks and Pyrex bottles that are available in most microbiology laboratories.  

This setup features simple construction, modular sterilization, and ease of operation 

relative to commercially available systems.  Additionally, this system can be used with 

minimal training, making steady-state liquid culture experiments for comparison to 

biofilms more feasible. 

A software program was developed in conjunction with the Georgia State 

University Department of Computer Sciences, the details of which are in Appendices A 

and B.  Simultaneous counts of differently labeled cells, measurements of the centroid to 

centroid distance between cells, and counts of user-defined cell groups lend a better 

understanding of attachment events that shape later biofilm growth. 

 

5.2 The novelty and significance of each chapter in this work. 

Prior to this research, commensal protection of an antibiotic sensitive organism by 

a resistant organism, a phenomenon referred to as indirect pathogenesis, had only been 

observed in beta-lactamase producing bacteria (Brook, 1994; Brook, 2004; Budhani, 

1998). This dissertation research demonstrated similar protection to a nonpathogenic 

target in a model system, laying the foundation for applications using clinically relevant 
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organisms.  The commensal detoxification of spectinomycin by attached cells is novel 

because aminoglycoside inactivation in the biofilm setting is sufficient to support a 

sensitive organism, whereas no protection is observed in comparable liquid 

environments.  Many previous studies have focused on antibiotic resistance in established 

biofilms, instead of examining attachment and early growth (Costerton, 1999; Donlan & 

Costerton, 2002; Fux et al., 2005).  Many infections involve multiple species growing 

attached to surfaces as biofilms, as opposed planktonic growth (Brook 2002; Gilbert et 

al., 2002).  This inactivation of antibiotics by non-target resistant organisms is 

significant, and should be factored into antibiotic treatment of infections. 

Previous research has created a wealth of knowledge in the areas of combination 

therapies of pure culture biofilms (Rossolini & Mantengoli 2005; Rahal, 2006), and 

single-antibiotic treatment of polymicrobial biofilms (Lin et al., 2006; Brook 2002).  The 

research in Chapter 3 is novel because it demonstrates the ability of two organisms to 

produce biofilm in media containing inhibitory concentrations of two antibiotics.  This 

community dependent resistance to multiple antibiotics requires a minimum number of 

individual cells of both strains to attach in proximity to each other. 

This research demonstrated that biofilms stabilize high copy number plasmids in 

the absence of antibiotic selective pressure.  Traditionally, biofilms have been viewed as 

a source of biofouling, a nuisance in high-density chemostat cultures.  However, the 

attached nature of biofilms prevents the washout of the cells which have slower growth 

rates due to the metabolic demands imposed by the maintenance of high copy plasmids 

and their associated heterologous protein production (Reisner et al., 2006; Bathe et al., 
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2004).  Using biofilms for heterologous protein production may be useful because it 

would increase yield per cell, and  could reduce the costs associated with purchasing 

exogenous compounds (such as antibiotics) required to apply selective pressure.  

Overall, this body of research underscores the contributions that biofilms make to 

plasmid maintenance and non- inherited mechanisms of antibiotic resistance.  First, by 

providing a nidus of attachment for cells containing high copy number plasmids, biofilms 

can aid industrial processes.  Second, understanding the interactions between the 

members of antibiotic resistant polymicrobial biofilms lays the foundation for developing 

therapies that will better eradicate infections, or prevent their formation. 
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Figure 5.1. A diagram of the chemostat used for this project.  A: Reservoir bottle 
containing sterile media.  B: 0.2 micron pore size filter, sterile air intake. C: Adjustable 
flow pump. D. Stir plate with sidearm flask reactor. E: Hooded waste container. F: Chest 
incubator. 
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A.1. ABSTRACT 

Mutualistic interactions among microorganisms in multispecies biofilms 

contribute to economically relevant processes, ranging from tooth decay to wastewater 

treatment. Understanding interactions in multispecies biofilms may contribute to 

treatment of polymicrobial biofilm infections as well as rational design of engineered 

biofilms. Multi resolution image segmentation offers many powerful tools for the 

analysis of such interactions. The Biofilm Image Segmentation (BIS) algorithm has been 

developed to assist in quantifying the spatial heterogeneity of microbial populations 

within biofilms. The algorithm deploys multi resolution clustering and segmentation tools 

to measure the distance between clusters of homogeneous microbial populations within 

two-dimensional sections of biofilms visualized by confocal laser scanning microscopy. 

The concept underlying multi resolution image segmentation is that the number of 

clusters will be larger for higher resolution image and smaller for lower resolution image. 

This hierarchical structure analysis can be used to simplify the problem in well-mixed 
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populations.  The algorithm combines Fuzzy C-Means, SOM and LVQ Neural networks 

to segment and identify clusters. The outcome of the segmentation is quantified by the 

number of clusters of each kind of microorganism within sections of the biofilm, and the 

centroid distances between the identified clusters. Initial experimental evaluations of the 

algorithm showed its effectiveness in analyzing the distribution of microbial populations 

in the substratum layer of a model two-member biofilm comprised of an ampicillin 

resistant and an ampicillin sensitive strain of Escherichia coli, each with a distinct red or 

green fluorescent label.   

A.2. INTRODUCTION 

Biofilms are communities of microorganisms attached to surfaces and develop a 

complex heterogeneous three-dimensional structure. Multispecies biofilms occur in 

diverse environments, and may foster commensal and mutualistic (beneficial) 

interactions, often by processes of nutrient exchange or detoxification (Chen & Li 1999; 

Costerton et al., 1995; Gilbert et al., 2003). Understanding interactions in multispecies 

biofilms may contribute to treatment of polymicrobial biofilm infections as well as 

rational design of engineered biofilms (Rachid et al., 1997; Umesh & Chaudhuri, 1998).  

Analysis of microbial biofilms by confocal laser scanning microscopy (CLSM) yields a 

stack of digital images that can be combined to give a three-dimensional view of the 

biofilm, and that are also amenable to quantitative analysis. Information on the 

relationships among bacteria in multispecies biofilms can be obtained from CLSM image 

stacks by combining pattern recognition and image processing techniques such as 

clustering and segmentation. Multi-dimensional clustering methods are simple and 
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powerful tools for classifying and segmenting pixels. Although most of the clustering 

methods require the number of clusters be known, that requirement does not represent 

any burden for this work since the maximum number of clusters in all biofilm bacteria 

images is always three (Gauch & Hsia, 1992; Gordan et al., 2002). The k-means 

clustering algorithm and fuzzy c-means clustering algorithm are the most popular 

techniques applied in image processing (Zhong & Yan, 2000). Other techniques such as 

artificial neural networks are extensively used for pattern recognition. Their extended 

parallel structure is particularly useful for classification and clustering (Ahmed et al., 

2002; Ji & Park, 1998; Kanungo et al., 2002; Littmann & Ritter 1997; Peietikainen, 1996; 

Zhang & Wang, 2000). Neural ne tworks can be used to represent a very complex 

nonlinear system. Some self-organizing neural networks such as Self Organizing Maps 

(SOM) and Learning Vector Quantization Neural Networks (LVQNN) have been applied 

for image segmentation and their results are satisfying (Kamel et al.,2001; Lescure et al., 

1999). The Self-Organizing Map neural network is a powerful classifier for data 

clustering. The most interesting feature of SOM is its ability of unsupervised learning, 

which means the training of the network is entirely data driven and the target outputs are 

not needed which is a very useful feature when the amount of training data is limited or 

not available. Multi resolution image segmentation offers many powerful tools for 

simplifying the biofilm data clustering and segmentation. Biofilm Image Segmentation 

can be used to assist in quantifying the spatial heterogeneity of microbial populations 

within biofilms. Multi resolution clustering combined with image segmentation can be 

used to measure the distance between clusters of homogeneous microbial populations 
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within two-dimensional sections of biofilms visualized by confocal laser scanning 

microscopy. The concept underlying multi resolution image segmentation is that the 

number of clusters will be larger for higher resolution image and smaller for lower 

resolution image. This hierarchical structure analysis can be used to simplify the problem 

in well-mixed populations of biofilm bacteria images. Capitalizing on the features of each 

of the previous techniques we developed an algorithm named BISS (Biofilm Image 

Segmentation Software) that combines FCM, LVQ and SOM methods to perform image 

clustering and segmentation. The algorithm initiates an analysis by segmenting images 

using a Fuzzy C-Means approach followed by two stage SOM or LVQ Neural network to 

identify clusters. The outcome of the segmentation is quantified by the number of clusters 

of each kind of microorganism within sections of the biofilm, and the centroid distances 

between the identified clusters. Initial experimental evaluations of the algorithm showed 

its effectiveness in analyzing the distribution of microbial populations in the substratum 

layer of a model two-member biofilm comprised of an ampicillin resistant and an 

ampicillin sensitive strain of Escherichia coli, each with a distinct red or green 

fluorescent label.  Section 2 of this paper describes the multi resolution border extraction. 

Performance evaluation is given in section 3, followed by experimental results and 

conclusions in sections 4 and 5. 

A.3. IMAGE ANALYSIS BASED ON MULTI RESOLUTION BORDER 

EXTRACTION 

The analysis of all objects in the image can be very tedious and time consuming 

particularly if all the details small or large are considered. In this section we outline a 
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scheme that selects the amount of details to be considered based on their size. Larger 

objects are normally more visible and dominate the image while smaller or finer details 

are less visible and may be overshadowed by larger objects. 

This multiresolut ion image analysis scheme is based on extracting all objects in 

the image using their borders or contours. The size of contour can be used to define the 

level of resolution and hence the analysis. Fine details are represented by small size 

contours while coarser details are represented by larger contours or borders. The simplest 

way to extract the borders in an image is to binarize the image using optimum 

thresholding and perform contour tracking or border following procedure (Belkasim et 

al., 1995). The optimum thresholding procedure is needed to efficiently segment the 

image into objects and background (Belkasim et al., 2003). 

The methodology for the segmentation procedure can be outlined in the following: 

1- Optimally threshold the image to transform it to binary level image. 

2- Perform edge detection and border following routines to produce the borders of 

each object. 

3- Label the objects; starting with top left pixel, traversing from left to right and top 

to bottom. 

4- Build a tree structure for the traced object borders as shown in Fig.1 and Fig. 2 

(Figures A.1 and A.2). 

5- The root of the tree represents the large bordered objects.  

6- The leaves represent the smallest contours or borders of objects. 

7- Borders can be used to extract objects using their labels. 
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The object extraction procedure is based on matching the inner space of the closed contour 

to the corresponding space in the original image and copying it to a new object array. This 

can be easily achieved by filling the border inner space with pixel values of unity and the 

outer pixels with zero values. The multiplication of the two image arrays pixel by pixel will 

result of an object extraction of non-zero values. 

 

A.4. PERFORMANCE EVALUATION  

An image segmentation problem is basically one of psychophysical perception 

(Cheng et al., 2001). The psycho-visual response in judging the accuracy of segmentation 

results may be quite different from person to person, even for those experts who have a 

priori knowledge about the original image. Many researchers used reference images to 

evaluate different segmentation results. However, an ideally segmented reference image 

may not be available in many cases. An evaluation criterion based on the sum of the pair-

wise inter-cluster distance is very appropriate for judging the success of the segmentation 

of bacteria images (Basu et al.,2004; Ong et al.,2002).  

The degree of “mixedness” of populations is one of many important parameters 

that need to be analyzed to study the behavior of biofilms. The different states of 

“mixedness” or patchiness among populations are categorized by labeling regions or 

segments of bacteria in mixed population biofilms. 

The basic analysis is based on the assumption that the degree of “mixedness” of 

two populations can be described by the average distance between neighboring clusters of 

different color. Less mixed populations will have larger clusters, and thus longer inter-



98 

 

cluster distances.  Measuring the centroids of each cluster is needed to determine the inter 

cluster distances. 

 

A.5. EXPERIMENTAL RESULTS 

The image segmentation algorithms described in the previous sections have been 

implemented using Matlab for the segmentation and analysis of several bacteria images. 

The results from the segmentation stage are used for identifying the various levels of 

mixedness among each patch of biofilm data. The developed image segmentation 

software package (BISS) measures the distance between clusters of homogeneous 

microbial populations within two-dimensional sections of biofilms visualized by confocal 

laser scanning microscopy. A screen shot of the main window of BISS is displayed in 

Figure.6. The concept underlying BISS is that the intercluster distance will be larger for 

“patchy” biofilms and smaller for well-mixed populations. BISS initiates an analysis by 

segmenting images using a Fuzzy C-Means approach, followed by training a neural 

network to identify clusters. BISS calculates the centroid distances between the identified 

clusters which can then be used to analyze the image. The cluster identification process is 

preceded with the multi resolution analysis scheme outlined in section 3. The benefit of 

the multi resolution border extraction step can be seen from Table 1 where the number of 

clusters is decreasing as the resolution level is decreased. Figure 3 (Figure A.3) shows 

the three resolution levels that relates to the data in Table 1 (Table A.1). The smaller 

number of cluster results in shorter training period for the neural network. 
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Several color biofilm bacteria images were extracted from slices of 512×512 color 

scans obtained by confocal scanning laser microscope (CSLMs).  Each image, as shown 

in Fig.3, contains three parts; the red part (E. coli ATCC 33446 pUCSpec), the green part 

(E. coli ATCC 33446 pEGFP) and the dark background. The first major step is to 

separate these parts with the minimum overlap or error. The process starts by selecting a 

suitable color space, then applying the multi resolution segmentation technique.   

In an initial study, BISS was used to evaluate the distribution of microbial 

populations in the substratum layer of a model two-member biofilm comprised of an 

ampicillin resistant and an ampicillin sensitive strain of Escherichia coli, each with a 

distinct red or green fluorescent label. The analysis indicated the presence of smaller 

clusters (centroid distance, 5 ± 1 microns) for biofilms cultivated in Luria-Bertani (LB) 

broth containing 51 ppm ampicillin, and larger clusters (centroid distance, 21 ± 12 

microns) for biofilms grown in LB broth only. Sample images are shown in Fig. 4 and 5 

(Figures A.4, A.5). The average intercluster distances were calculated and are shown 

below superimposed on the images used for the analysis.An algorithm has been designed 

and implemented to perform the biofilm analysis  A 2D confocal microscope image of a 

biofilm is imported into the Biofilm Image Segmentation Software (BISS).  The image 

segmentation program which is based on combining several clustering techniques, 

defines each pixel in terms of red, green or black color. This process differentiates 

biomass and empty space. BISS identifies clusters of each population based on patterns 

developed during the neural network training stage. BISS segment the image into 

separate black, red and green populations. The multi resolution border selection stage 
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simplifies the clustering problem by reducing the number of clusters present for each 

population. Upon identifying the required clusters, the cluster centroids and intercluster 

distances can be computed.   

The number of clustered pixels and the coordinates of the centroids for red, green 

and black pixels are listed in Table 2 (Table A.2). This table also lists the summation of 

the Euclidean distances between the cluster centroids obtained by different segmentation 

methods. These results are based on the assumption that better separation between cluster 

centroids leads to better segmentation, which means a high value will indicate the 

superiority of a method.   Table 3 (Table A.3) represents the misclassified pixels error 

rate in comparison to the optimal case which represents supervised assignments of pixels. 

The table shows the LVQ neural network achieved the lowest misclassification rate. 

A.6. CONCLUSIONS 

A multi resolution image analysis utilizing image contours as boundaries for 

extracting objects at multi resolution levels has been successfully implemented. The 

scheme reduced the complexity of the segmentation problem considerably and simplified 

the clustering process. 

Several clustering algorithms have been tested in RGB and HSV color spaces for 

segmenting the bacteria biofilm images. Extensive and rigorous testing of the various 

algorithms in several combinations of color components was used to evaluate their 

effectiveness. A two-stage SOM/LVQ clustering algorithm was introduced and 

evaluated. The test results indicate that the two stage neural network is very effective in 

clustering the biofilm images. The neural network LVQ/SOM has very close results for 
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both the HV or RG color planes. The RG plane is more effective than the HV plane for 

the FCM method. 

A possible future improvement of this research is to combine the present 

segmentation model with image retrieval and other database query systems to efficiently 

build a biofilm bacteria database to be used in testing and analyzing larger amount of 

biofilm data. Another useful extension is to implement an algorithm to extract and 

analyze spatial features. These features can be used to categorize and retrieve the 

different clusters of biofilms. This step involves the selection of best features for cluster 

recognition, the automation of cluster enumeration, reduction of background noise, the 

exclusion of individual cells not associated with clusters. Development of three 

dimensional analysis utilizing multiple image stacks or frames is also among the future 

aims of this research. 
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Table A.1. The effect of changing the resolution level on the number of detected clusters. 
 

Resolution level Image size in pixels Number of clusters 
1 512x512 654 
2 256x256 349 
3 128x128 155 
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Table A.2. Number of pixels, centroids and sum of distances  with an optimally clustered 
image. 
 
 

 
 

Red Channel Green Channel Background 
Method 

Color 
Space pixels  centroid pixels  centroid pixels  centroid 

Total 
distance 

RG 28360 (0.181,0.334) 13874 (0.130,0.723) 219910 (0.167,0.029) 1.39 
FCM 

HV 89518 (0.086,0.037) 26709 (0.154,0.587) 145917 (0.218,0.047)  1.23 
RG 17918 (0.092,0.510) 13582 (0.241,0.542) 230644 (0.168,0.041) 1.13 LVQ 
HV 15779 (0.085,0.547) 14919 (0.241,0.521) 231446 (0.167,0.041) 1.16 
RG 16640 (0.072,0.504) 21897 (0.225,0.476) 223607 (0.168,0.032) 1.08 

SOM 
 HV 11268 (0.070,0.615) 12899 (0.222,0.609) 237977 (0.168,0.047) 1.29 
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Table A.3. Misclassification  percentages compared. 
 
 
  
 
 
 
 

LVQ 
(RGB) 

FCM(HS
V) 

SOM (RGB) 

6.94 % 8.59 % 14.14 % 
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Figure A.1. The multi resolution border segmentation process      
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Figure A.2.  The tree structure of the segmented image. 
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Figure A.3. Image sizes corresponding to 512x512, 256x256 and 128x128 for three 
resolution levels 1,2 and 3 respectively.  Level 1 represents an original slice of a biofilm 
bacteria image taken by CSLM.  



108 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig A.4. The result of initial segmentation of biofilm bacteria image containing 0 ppm 
ampicillin; cluster centroids of 21 ± 12 micron. 
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Figure A.5. The result of initial segmentation of biofilm bacteria image containing 50.8 
ppm ampicillin; cluster centroids of 5 ± 1 micron. 
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Figure A.6. Screen shot of BISS window interface. 
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FOR MEASURING SPATIAL HETEROGENEITY IN MIXED POPULATION 

BIOFILMS 

S. Belkasim, G. Derado, E. Gilbert and H. O’Connell 

 
B.1 ABSTRACT 

Multi resolution image segmentation offers many powerful tools for the analysis 

of interactions in mixed populations of biofilms. Multi resolution clustering and 

segmentation tools has been developed to measure the distance between clusters of 

homogeneous microbial populations within two-dimensional sections of biofilms 

visualized by confocal laser scanning microscopy. The concept underlying multi 

resolution image segmentation is that the number of clusters will be larger for higher 

resolution image and smaller for lower resolution image. This hierarchical structure 

analysis can be used to simplify the problem in well-mixed populations.  The algorithm 

combines Fuzzy C-Means, SOM and LVQ Neural networks to segment and identify 

clusters. The outcome of the segmentation is quantified by the number of clusters of each 

kind of microorganism within sections of the biofilm, and the centroid distances between 
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the identified clusters. Experimental evaluations of the algorithm showed its effectiveness 

in analyzing mixed populations of biofilms 

B.2 INTRODUCTION 

Biofilms are biological communities of microorganisms attached to surfaces and 

develop a complex heterogeneous three-dimensional structure. Understanding 

interactions in multispecies biofilms may contribute to treatment of polymicrobial biofilm 

infections as well as rational design of engineered biofilms (Chen & Li, 1999; Costerton 

et al.,1995; Gauch & Hsia, 1992; Gilbert et al.,2003; Rachid et al.,1997; Umesh & 

Chaudhuri, 1998).  Analysis of microbial biofilms by confocal laser scanning microscopy 

(CLSM) yields a stack of digital images that can be combined to give a three-dimensional 

view of the biofilm. Information on the relationships among bacteria in multispecies 

biofilms can be obtained from CLSM image stacks by combining pattern recognition and 

image processing techniques such as clustering and segmentation. Multi-dimensional 

clustering methods are simple and powerful tools for classifying and segmenting pixels. 

Although most of the clustering methods require the number of clusters be known, that 

requirement does not represent any burden for this work since the maximum number of 

clusters in all biofilm bacteria images is always three (Gordan et al.,2002). The k-means 

clustering algorithm and fuzzy c-means clustering algorithm are the most popular 

techniques applied in image processing (Zhong & Yan, 2000). Other techniques such as 

artificial neural networks are extensively used for pattern recognition. Their extended 

parallel structure is particularly useful for classification and clustering (Littmann & Ritter 

1997; Peietikainen, 1996). Neural networks can be used to represent a very complex 
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nonlinear system. Some self-organizing neural networks such as Self Organizing Maps 

(SOM) and Learning Vector Quantization Neural Networks (LVQNN) have been applied 

for image segmentation and their results are satisfying (Kamel et al., 2001; Lescure et al., 

1999). The Self-Organizing Map neural network is a powerful classifier for data 

clustering. The most interesting feature of SOM is its ability of unsupervised learning, 

which means the training of the network is entirely data driven and the target outputs are 

not needed which is a very useful feature when the amount of training data is limited or 

not available. Multi resolution image segmentation offers many powerful tools for 

simplifying the biofilm data clustering and segmentation. Biofilm Image Segmentation 

can be used to assist in quantifying the spatial heterogeneity of microbial populations 

within biofilms. Multi resolution clustering combined with image segmentation can be 

used to measure the distance between clusters of homogeneous microbial populations 

within two-dimensional sections of biofilms visualized by confocal laser scanning 

microscopy. The concept underlying multi resolution image segmentation is that the 

number of clusters will be larger for higher resolution image and smaller for lower 

resolution image. This hierarchical structure analysis can be used to simplify the problem 

in well-mixed populations of biofilm bacteria images. Capitalizing on the features of each 

of the previous techniques we developed an algorithm named BISS (Biofilm Image 

Segmentation Software) that combines FCM, LVQ and SOM methods to perform image 

clustering and segmentation. The algorithm initiates an analysis by segmenting images 

using a Fuzzy C-Means approach followed by two stage SOM or LVQ Neural network to 

identify clusters. The outcome of the segmentation is quantified by the number of clusters 
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of each kind of microorganism within sections of the biofilm, and the centroid distances 

between the identified clusters. Initial experimental evaluations of the algorithm showed 

its effectiveness in analyzing the distribution of microbial populations in a model two-

member biofilm comprised of an ampicillin resistant and an ampicillin sensitive strain of 

Escherichia coli, each with a distinct red or green fluorescent label.  Section 2 of this 

paper describes the multi resolution border extraction. Performance evaluation is given in 

section 3, followed by experimental results and conclusions in sections 4 and 5. 

B.3.  MULTI RESOLUTION BORDER EXTRACTION 

The analysis of all objects in the image can be very tedious and time consuming 

particularly if all the details small or large are considered. In this section we outline a 

scheme that selects the amount of details to be considered based on their size. Larger 

objects are normally more visible and dominate the image while smaller or finer details 

are less visible and may be overshadowed by larger objects. 

This multiresolution image analysis scheme is based on extracting all objects in 

the image using their borders or contours. The size of contour can be used to define the 

level of resolution and hence the analysis. Fine details are represented by small size 

contours while coarser details are represented by larger contours or borders. The simplest 

way to extract the borders in an image is to binarize the image using optimum 

thresholding and perform contour tracking or border following procedure (Belkasim et 

al., 1995). The optimum thresholding procedure is needed to efficiently segment the 

image into objects and background (Belkasim et al., 2003). 
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The methodology for the segmentation procedure can be outlined in the 

following: 

1. Optimally threshold the image to transform it to binary level image. 

2. Perform edge detection and border following routines to produce the borders of 

each object. 

3. Label the objects; starting with top left pixel, traversing from left to right and top 

to bottom. 

4. Build a tree structure for the traced object borders as shown in Fig.1 (Figure B.1) 

and Fig. 2 (Figure B.2). 

5. The root of the tree represents the large bordered objects.  

6. The leaves represent the smallest contours or borders of objects. 

7. Borders can be used to extract objects using their labels (Figure B.3). 

The object extraction procedure is based on matching the inner space of the 

closed contour to the corresponding space in the original image and copying it to a new 

object array. This can be easily achieved by filling the border inner space with pixel 

values of unity and the outer pixels with zero values. The multiplication of the two image 

arrays pixel by pixel will result of an object extraction of non-zero values. 

 

B.4 BIOFILM IMAGE SEGMENTATION AND CLUSTERING 

  In this section we explain our edge based technique for the biofilm images 

segmentation and clustering. We use the pixel neighbourhood elements for determining 

the pixel connectivity and performing image segmentation. 
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The basic algorithm consists of the following steps: 

 

1. The original image is converted into RGB color space and processed to include only 

red, green (bacteria) and black (background) color (Figure B.4.). 

2. Smoothing of the image is preformed first, followed by a statistical analysis of the  

3x3 window of each image pixel. Each pixel is assigned the value of the dominant 

color (red, green, or black) in its 3x3 neighborhood  

3. Borders (contours) of the “potential clusters” are detected for the red or green image 

component by extracting all contours using the contour tracking (border following) 

procedure outlined in (Belkasim et al. 1995).  

4. After the borders are detected and border pixels for each detected “cluster” 

registered, a step in which interiors of the clusters are registered is preformed. In 

this step some of the “potential” clusters, which normally represent holes or voids 

inside bigger clusters are also detected and removed.  

5. Once all clusters are detected, they are categorized into “small”, “large”, and 

“medium” size clusters based on their size (not the border size, but the total size). 

The category is determined in comparison with the largest cluster detected (Figure 

B.6, Figure B.7, Figure B.8). 

6. The centroids and the distances of the centroids among the clusters in each of the 

categories are calculated. 
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Step two is performed to reduce the number of “too mixed” areas. Some areas 

consist of two many individual bacteria and are not of much interest in studying the 

“global” behavior and level of “mixedness” of the two species of bacteria. This step also 

reduces the small gaps which allow merging of dissimilar regions (i.e. clusters of 

different color). Another important reason for this step is to reduce the complexity of the 

computations to be performed later.   

Step three is the most computationally expensive step. Parallelization of this step 

would contribute the most to speeding of the algorithm. However, it is not easy to 

parallelize it.  

The procedure is repeated for each bacteria (color) on the same (original) image, 

and is used to calculate the average distances between the clusters of “opposite” colors. 

This distance is used in the analysis of the level of “mixedness” and the behaviour of the 

two mixed bacteria under different treatment conditions. 

The evaluation stage is quite complex and difficult in particular the part that deals 

with evaluating the clustering and segmentation success. This is due to the fact that an 

image segmentation problem is basically one of psychophysical perception (Cheng et al., 

2001). The psycho-visual response in judging the accuracy of segmentation results may 

be quite different from person to person, even for those experts who have a priori 

knowledge about the original image. Many researchers used reference images to evaluate 

different segmentation results. However, an ideally segmented reference image may not 

be available in many cases. An evaluation criterion based on the sum of the pair-wise 
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inter-cluster distance is very appropriate for judging the success of the segmentation of 

bacteria images (Basu et al., 2004; Ong et al., 2002).  

The degree of “mixedness” of populations is one of many important parameters 

that need to be analyzed to study the behavior of biofilms. The different states of 

“mixedness” or patchiness among populations are categorized by labeling regions or 

segments of bacteria in mixed population biofilms. 

The basic analysis is based on the assumption that the degree of “mixedness” of 

two populations can be described by the average distance between neighboring clusters of 

different color. Less mixed populations will have larger clusters, and thus longer inter-

cluster distances.  Measuring the centroids of each cluster is needed to determine the inter 

cluster distances. 

B.5 EXPERIMENTAL RESULTS 

The image segmentation algorithms described in the previous sections have been 

implemented using Matlab for the segmentation and analysis of several bacteria images. 

The results from the segmentation stage are used for identifying the various levels of 

mixedness among each patch of biofilm data.  The cluster identification process is 

preceded with the multi resolution analysis scheme outlined in section 3. The benefit of 

the multi resolution border extraction step can be seen from Table.1 where the number of 

clusters is decreasing as the resolution level is decreased. Figure 3 shows the three 

resolution levels that relates to the data in Table 1 (Table B.1). The smaller number of 

cluster results in shorter training period for the neural network. 
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Several color biofilm bacteria images were extracted from slices of 512×512 color 

scans obtained by confocal scanning laser microscope (CSLMs).  Each image, as shown 

in Fig.3 (Figure B.3), contains three parts; the red part (E. coli ATCC 33456 pUCSpec), 

the green part (E. coli ATCC 33456 pEGFP) and the dark background. The first major 

step is to separate these parts with the minimum overlap or error. The process starts by 

selecting a suitable color space, then applying the multi resolution segmentation 

technique.   

The distribution of microbial populations in the substratum layer of a model two-

member biofilm comprised of an ampicillin resistant and an ampicillin sensitive strain of 

Escherichia coli, each with a distinct red or green fluorescent label has been analyzed. 

The image segmentation process which is based on combining several clustering 

techniques, defines each pixel in terms of red, green or black color. This process 

differentiates biomass and empty space.  The multi resolution border selection stage 

simplifies the clustering problem by reducing the number of clusters present for each 

population. Upon identifying the required clusters, the cluster centroids and intercluster 

distances can be computed.    

The number of clustered pixels and the coordinates of the centroids for red, green 

and black pixels are listed in Table 2 (Table B.2). This table also lists the summation of 

the Euclidean distances between the cluster centroids obtained by different segmentation 

methods. These results are based on the assumption that better separation between cluster 

centroids leads to better segmentation, which means a high value will indicate the 

superiority of a method.   The results of this table indicate that FCM is the one that gives 
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a higher separation and leads to better segmentation over the other two methods. The 

drawback is the in the complexity of the method and the processing time needed for this 

method. Using this method in a multistage clustering process may be a good choice that 

will use the benefits of both methods. 

 

B.6 CONCLUSIONS 

A multi resolution image analysis utilizing image contours as boundaries for 

extracting objects at multi resolution levels has been successfully implemented. The 

scheme reduced the complexity of the segmentation problem considerably and simplified 

the clustering process. 

This research is at a preliminary stage. The next stage is to combine the present 

segmentation model with image retrieval and other database query systems to efficiently 

build a biofilm bacteria database to be used in testing and analyzing larger amount of 

biofilm data. Another useful extension is to implement an algorithm to extract and 

analyze spatial features. These features can be used to categorize and retrieve the 

different clusters of biofilms. This step involves the selection of best features for cluster 

recognition, the automation of cluster enumeration, reduction of background noise, the 

exclusion of individual cells not associated with clusters. Development of three 

dimensional analysis utilizing multiple image stacks or frames is also among the future 

aims of this research. 
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Table B.1. The effect of changing the resolution level on the number of detected clusters.  
 
Resolution level Image size in pixels Number of clusters 
1  512x512 654 
2 256x256 349 
3 128x128 155 
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Table B.2. Number of pixels, centroids and cluster separation distance 
 

Red Clusters Green Clusters Method Color 
Space pixels centroid pixels centroid 

Euclidean 
distance 

RG 28360 (0.181,0.334) 13874 (0.130,0.723) 0.392 FCM 
HV 89518 (0.086,0.037) 26709 (0.154,0.587) 0.436 
RG 17918 (0.092,0.510) 13582 (0.241,0.542) 0.149 LVQ 
HV 15779 (0.085,0.547) 14919 (0.241,0.521) 0.158 
RG 16640 (0.072,0.504) 21897 (0.225,0.476) 0.156 SOM 
HV 11268 (0.070,0.615) 12899 (0.222,0.609) 0.152 
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Figure B.1. The multi resolution border segmentation process. 
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Figure B.2. The tree structure of the segmented image. 
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Figure B.3. Image sizes corresponding to 512x512, 256x256 and 128x128 for three 
resolution levels 1,2 and 3 respectively.  Level 1 represents an original slice of a biofilm 
bacteria image taken by CSLM         
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Figure B.4. An original biofilm bacteria image   
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Figure B.5. The result of initial segmentation with the object contours highlighted with 
black color. 
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Figure B.6. Green bacteria small contours. 
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Figure B.7. Green bacteria medium contours. 
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Figure B.8. Green bacteria large contours. 
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