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ABSTRACT 
 

Nosocomial infections associated with implanted medical- devices are on the rise due to a growing 

immunocompromised patient population. The organisms of interest in this study are 

Pseudomonas aeruginosa and Candida albicans.  These organisms are opportunistic pathogens 

and are frequently implicated as the cause of infection and colonization of medical devices.  P. 

aeruginosa is a motile gram-negative bacterium that is able to suppress the growth of C. albicans.  

Quourm sensing mimicry and biofilm formation on the hyphal surface of C. albicans by P. 

aeruginosa aids in suppression.  C. albicans is a dimorphic fungus capable of quorum sensing 

with E,E-farnesol and is a central focus in this work.  The goal of this project is to determine 

changes in protein expression when P. aeruginosa is exposed to E,E,-farnesol using 2D DIGE®.  

Changes in the cytosolic proteome of P. aeruginosa expose metabolic shifts that result in 

suppression of C. albicans.  This work summarizes the effect of growth phase and concentration 

of E,E-farnesol on P. aeruginosa PAO1 and GSU3.  Preliminary results reveal a general response 

of P. aeruginosa to C. albicans as changes in relevant metabolic nodes that affect pyocyanin 

production and the induction of virulence factors that lead to the killing of C. albicans.  The 

overall goal of this study was to generate a profile of protein expression where a variety of 

conditions to further characterize the response could be easily assayed.   

INDEX WORDS:    P. aeruginosa, C. albicans, Proteomics,      
                                 Nosocomial infections, Quorum Sensing, Attachment, Medical  
                                 Devices 
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 1 

Introduction 

 The goal of this dissertation was to explore through the use of expression proteomics the 

dynamic interplay that occurs between P. aeruginosa and C. albicans.  Both of these organisms 

are important opportunistic pathogens in the health-care setting.  P. aeruginosa is most notably 

associated with Cystic Fibrosis patients, in whom it is one of the leading causes of chronic lung 

infections and death due to damage to the lung tissue (Gilligan, 1991). Infections caused by C. 

albicans are most notably associated with patients undergoing cancer treatment, diabetes 

mellitus, or infection with human immunodeficiency virus (Kao, et al., 1991).  Both of these 

microorganisms warrant study due to the significant roles they play in device associated 

nosocomial infections. The variety of infections attributed to these two organisms are linked to 

the type of indwelling medical- device in place within the patient.  Device types such as central-

venous catheters, urinary catheters, and mechanical ventilators are commonly colonized and the 

type of disease they cause is directly linked to the insertion site of the device.   For example, 

blood-stream infections resulting from the colonization of central-venous catheters to ventilator- 

associated pneumonia in patients requiring mechanical respiration (Pierce, 2005).   

   A third compelling reason to study the interplay of these organisms is based on clinical 

data that suggests that P. aeruginosa and C. albicans may suppress the growth and virulence of 

one another through a variety of mechanisms (Kerr, 1994; Burns, 1999).   A thorough 

understanding of this complex relationship has the potential to better prevent infections by 

exploiting the well-developed tactics used by Pseudomonas and Candida for controlling growth 

and virulence of competing microorganisms 
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Background 

 

Nosocomial medical-device associated infections:  

 Approximately two million nosocomial infections occur each year (Halye, 1985; Bunting, 

2005), accounting for roughly 5% of all patients admitted into a hospital resulting in 90,000 to 

100,000 deaths annually in the United States (Buntin, 1999; Starfield, 2000). Antibiotic resistant 

organisms cause approximately 70% of nosocomial infections and the remaining 30% are caused 

by infections associated with indwelling medical devices (Safdor, 2001; Burke, 2003). 

Installation of a urinary catheter, composed of medical grade materials including silicone and 

latex, is inserted into the urethra until the tip of the catheter reaches the bladder. Upon insertion it 

is possible to introduce microorganisms from the external surface of the urethra into the deeper 

and sterile regions of the urinary tract.  If there is a urinary tract infection already in progress at 

the time of insertion, the catheter surface may allow the organisms to penetrate further into the 

urinary tract or provide a substrate for biofilm formation. Approximately 40% of nosocomial 

infections are catheter associated urinary tract infections (CAUTI). In the United States, one 

million cases of UTI were reported, of which 80% were classed as CAUTI.  

 The Edmond M. SCOPE project (1995-2002)  (Wisplinghoff, et al., 2004) identified the 

causative agents of blood-stream infections (BSI) and ranked them according to rate of 

incidence.  Candida species were the fourth most common isolate, responsible for 9% of total 

patients and P. aeruginosa was the seventh most common isolate, responsible for 4.3% of total 



 

 3 

patients with a sample size in this study of 20,000 patients.  The prevalence of these two 

organisms in association with multiple device types and a robust ability to form biofilm on 

medical grade materials are two major reasons for the focus of this study. 

 Historically, the medical community has viewed hospital- acquired infections as a normal 

part of medical practice. The perception pervaded that infections of this type were inevitable 

resulting from immunologically suppressed patients with non-communicable diseases. 

Innovative medical technology has lead to increased reliance on the use of medical devices and 

treatment strategies that suppress the immune system.  The rate of nosocomial infections and 

deaths related to these infections increased to the point that questions were asked as to their 

source.  This drew a great deal of scrutiny on the health care delivery system from government 

regulators, the CDC, private insurance companies, and the general public.    

  Epidemiological data has provided information about how non-communicable diseases are 

commonly spread by the health care worker among immunologically suppressed patient 

populations.  This data has transformed the perception that non-communicable infections among 

hospital patient populations are inevitable into one where nosocomial infections are preventable.  

Gerberding reported this shift in attitude in 2002 as one of many papers aimed determining the 

suspected origins of this infection type and approaches towards mitigating the incidence of 

nosocomial infections.    

 Nosocomial infections, or health-care setting acquired infections, are the fourth leading 

cause of death in the United States, following stroke, cancer, and heart disease. Adding to the 

staggering death toll related to nosocomial infections is the high financial cost.  In 2002, $6.5 
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billion dollars were spent to treat nosocomial infections and were paid in large part by third party 

payers, such as Medicare or private insurance companies. (Weinstein, 1998; Jarvis, 2001) In 

Pennsylvania, the treatment of nosocomial infections cost Medicaid and the State Employee’s 

Benefits plan $125 million dollars and private insurance companies $1 billion dollars (Buntin, 

2005).   In 2007, the New York Times reported that Medicare would no longer pay for the 

treatment of nosocomial infections after October 2008, as a part of the pay for performance 

policy that makes health care facilities responsible for the delivery of good health care 

(Glickman, et al., 2007). In a statement to congress by Mike E. Miller, Ph.D. on behalf of the 

Medicare Payment Advisory Commission in July 2005, he states the ultimate goal of the pay for 

performance program is to remove the inequity of equal payment to physicians that provide 

inadequate care to those who meet or exceed patient needs.   

 Research has shown that simple changes, like hand washing, improved cleaning protocols 

of common-use equipment, and improved environmental controls within the health-care 

environment can play a drastic role at reducing the incidence of nosocomial infections.  

Professional organizations such as the Association for Professionals in Infection Control and the 

Society for Healthcare Epidemiology of America include as a part of their mission statement to 

educate medical professionals and collect accurate data on the incidence of nosocomial infection.  

  It is crucial to posses a thorough understanding of the biology of the microorganisms that 

cause device-associated nosocomial infections in order to design effective treatment strategies.  

In an early study by Elek and Conen published in 1957, it was shown that the inoculum size of a 

pathogen required to cause infection was much lower when a foreign body, such as a medical 

device, was present.  This work suggested that the presence of the medical device compromises 



 

 5 

the primary and secondary defenses of the immune system so that fewer invading organisms are 

needed to cause an infection.  Treatment strategies designed for traditional infections, that do not 

include the presence of a foreign body, are highly ineffective when an implanted medical-device 

is present.  

 Indwelling medical devices present an ecological niche that may be exploited by 

microorganisms. Major factors that play a role in the incidence of medical -device associated 

infections include the materials used in the device’s construction, the breach of anatomical 

barriers at the point of placement within the patient, and the type of coatings applied to the 

device surface (Stone, et al., 1999; Ramage, et al., 2006; Backovic, et al., 2007).  The materials 

used in the construction of medical devices are commonly medical grade latex or silicone.  These 

materials provide a prime substrate that is permissive for the adhesion of host proteins and in the 

primary attachment of microorganisms that lead to biofilm development.  It has been 

documented that the initial deposition of host proteins on the device surface plays an important 

role in facilitating the attachment of microorganisms to the device surface (Denstedt, 1998; 

Trautner, 2004).  A second significant factor in the role that medical devices play in the 

incidence of infection is the breach in primary anatomical barriers that normally prevent entry of 

microorganisms into sterile regions of the body such as the blood stream, lungs, or bladder 

(Trautner, et al., 2004). 

  Shortages in medical staff have been implicated as one possible reason for the 

oversight of urinary catheters left in place for extended periods of time.  A vicious cycle is 

created where more patients become critically ill from devices left in place beyond the 

recommended period of use thus, requiring more care and more attention from the medical staff 
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when the infection could have been prevented. Once an infection has developed in association 

with the abiotic surface of the medical device these colonizing organisms become extremely 

difficult to treat with traditional antibiotics.  In fact, antibiotics are regarded as one of the least 

effective methods to treat all types of devices associated infections (Trautner, et al., 2004).  The 

method, recommended by the Centers for Disease Control, to treat these infections involve the 

removal of the medical devices at regular intervals after 72 hours of use. Due to the refractory 

nature of microorganisms within a biofilm on the surface of an implanted medical-device to 

antibiotic therapy the device must be removed and replaced if medically necessary to aid is one 

major reason to remove the device.  It was reported by Kojic et al. in 2004 that if a device is not 

removed it is possible for the infection to reoccur once antibiotic therapy is complete. 

 Timely removal is another essential element to tackling the problem associated with 

nosocomial medical-device associated infections.  Astonishingly, in a study by Saint et al., 2000, 

that was directed at identifying the number of non-essential urinary catheters it was reported that 

23% of doctors involved in the project did not accurately report which of their patients had 

urinary catheters in place and how long they were in use. To obtain this data medical students, 

residents, and attending physicians were each asked which of their patients did or did not have 

urinary catheters in place.  It was possible to quantify how many urinary catheters were 

inaccurately reported by comparing the response of the doctor to a computer database that 

tracked the status of each patient. 

 In summary, medical-device associated nosocomial infections present a high cost both 

financially and for patient mortality.  It has been shown with epidemiological data that a wide 

variety of microorganisms play a role in causing these infections that can originate from the 
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normal flora of the patient or can be carried by the health care facility or health care worker.  

Multiple approaches have been taken to mitigate the incidence of these infections by improving 

maintenance of the health care facility, procedures for installing and maintaining the medical 

devices, and improved surveillance of susceptible patient populations.     

Quorum sensing  

 Quourm sensing is the process by which bacteria and some fungi detect how many 

microorganisms are present in the surrounding environment. Then dependent on the number of 

surrounding microorganisms gene expression is altered in order to coordinate gene expression 

among the microbial community. Known quorum-sensing compounds are chemical compounds 

such as acylated homoserine lactones (acyl-HSLs), oligopeptides, butyrolactones, furanosyl 

diester autoinducer-2 (AI-2), and the quinolone signal in P. aeruginosa known as PQS (Calfee, 

et al., 2001; Diggle, et al., 2003; Smith, et al., 2003).   

 The concentration of the quorum- sensing molecule in the external environment is directly 

proportional to the number and density of the group at large within a given space.  As the 

population density increases so too does the concentration of the quorum- sensing compound.  

The central theme of quorum sensing is based on the secretion of signaling molecules by 

multiple producing organisms into the external environment.  Once the signaling molecule 

reaches a threshold concentration at the point of the effector cells, which can be the same or a 

different species from the producing organisms.  The effector cells then alter their gene 

expression resulting in community wide alterations in phenotype.  Generally, the phenotypic 

traits altered are involved in virulence and biofilm development.  
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 The processes by which the quorum- sensing compound can interact with the target cell are 

diverse among different species of microorganisms.  The three major mechanisms identified are 

passive diffusion, active transport (Smith, et al., 2003; Hogan, 2006) and a sensor kinase 

cascade, as is the case with Vibrio harveyi and Vibrio cholerae (Taga, et al., 2001).  Once these 

compounds reach a threshold level, regardless of their mechanism of entry, within the cell they 

influence gene expression. 

   Initially, quorum sensing was thought to only occur between single species; however, it 

has been shown that in mixed-species populations quorum- sensing signaling molecules exhibit 

cross talk (Vlamakis, et al., 2005).  Experiments have shown that concentrations are altered 

resulting in one bacterial species affecting the gene expression in a different species.  This was 

shown to be the case in co-cultures of E. coli and V. cholerae, two organisms that both utilize 

autoinducer 2 (AI-2) signals.  V. cholerae would produce the signal and E. coli would uptake the 

AI-2 molecule causing a change in concentration of AI-2 in the external environment and 

altering gene expression in V. cholerae (Xaiver, et al., 2005).  Interestingly, P. aeruginosa 

produces virulence factors in response to AI-2 when it does not produce AI-2 itself (Vlamakis, et 

al., 2005).   Quorum sensing cross-talk increases the complexity of interactions between mixed-

species populations.  The ability of one microorganism to alter the gene expression of another 

through quorum sensing presents potential targets for mitigating pathogenesis in organisms that 

rely on quourm sensing to regulate the expression of virulence factors.  The ability to jam the 

signals and prevent the expression of virulence factors may be another approach to combat 

difficult to treat or antibiotic resistant infections.   
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Interaction between P. aeruginosa and C. albicans     

 The selection of P. aeruginosa and C. albicans as the central focus of this work was based 

on patterns of microbiological colonization of the lungs of Cystic Fibrosis patients.  Cystic 

Fibrosis is a genetic disorder that affects approximately 30,000 Caucasian Americans (Lau, et 

al., 2004).  Cystic Fibrosis is characterized by a defect in the CFTR transport system that is 

normally responsible for the secretion of chloride ions across the apical surface of secretory cells 

throughout the body.  In individuals that have a defective CFTR channel the amount of chloride 

ions secreted by the cell is low (Hassett, et al., 2002).  The osmotic pressure created by this 

defect in ion transport induces the formation of thick mucous within the lumen of the airway. 

Water is retained within the cell and is not properly secreted with the secreted mucous.  This has 

the effect of disrupting one of the primary defense barriers in the lung to capture invading 

microorganisms and clear them.  The cilia that normally remove airway mucous are unable to 

properly function in clearance because the thick, viscous mucous prevents their movement. 

  Historically, CF patients have had digestive problems where viscous mucous also 

accumulated within the secretory ducts and lumen of the small intestine of the digestive tract 

resulting in poor adsorption of nutrients, in addition to lung infections.   Changes in diet that 

restricted salt were able to mitigate the effects of CF on digestion, improving the ability of 

patients to obtain nutrients and increased the life expectancy of many CF patients.  Also, 

antibiotics to prevent bacterial infections from progressing within in the lung prolonged the life 

of most CF patients from an average of 10 years to 25 years of age (Govan, et al., 1993).   

 The primary cause of death in Cystic Fibrosis patients remains to be lung damage resulting 
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from chronic infections caused by P. aeruginosa.  This organism remains to be responsible for 

80% of the premature deaths in this patient population due to a progressive loss of pulmonary 

function.  Chronic lung damage is caused by repeated inflammation events in response to 

bacterial antigens released from chronic biofilms of predominantly mucoid P. aeruginosa 

colonies (Gilligan, 1991; Lau, et al., 2004).  Current therapy for P. aeruginosa infections in CF 

patients relies on the combination of different classes of antibiotics.  These combinations are 

typically an aminoglycoside and anti-Pseudomonal Beta-lactams or the use of an aminoglycoside 

with fluroquinolone.  Tobramycin inhaled directly into the lung has been extremely effective in 

delivering high doses of the drug to the infected areas while keeping the incidence of side-effects 

low (Hassett, et al., 2002). 

 Regular monitoring of the microbiological profile of CF sputum has been an important 

clinical tool to best improve the administration of antibiotics to control rates of infection.  From 

these patient profiles it has been possible to collect statistical data on the rate of clearance of 

significant pathogens from the lung.  This information has revealed an interesting trend in the 

patterns of colonization by fungal organisms.  Typically, in non-CF patients with compromised 

lung tissue that receive antibiotic therapy an upsurge in the number of isolates of fungal species, 

most commonly C. albicans occur. Interestingly, in Cystic Fibrosis patients where the tissue is 

compromised and should be favorable for colonization by fungal species this trend is lower than 

expected.   

 Data that C. albicans is the second most common organism isolated from sputum in adult 

CF patients suggests that it is not adept at persisting in the CF lung (Table 1).  C. albicans 

isolates demonstrate patterns of appearance and disappearance.  This suggests that C. albicans 
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repeatedly enters the lung but is cleared before a persistent colonization can occur.  An upsurge 

in C. albicans colonization is only apparent when the CF patients with chronic P. aeruginosa 

infections undergo anti-pseudomonal antibiotic therapy. In a study by Burns, et al. in 1999 the 

sputum of CF patients was tested before, during, and after antibiotic therapy.   It was found that 

while the number of P. aeruginosa isolates decreased the number of C. albicans isolates 

increased.  This finding suggests P. aeruginosa is modifying the environment in the CF airway 

to inhibit of growth in C. albicans.  In a study by Kerr in 1994 it was found that P. aeruginosa 

and Burkholderia cepacia were able to inhibit the growth of C. albicans and various fungal 

species, including Aspergillus niger, Cryptococcus neoformans, and Histoplasma capsulatum.  

These fungal species were not inhibited by the commonly isolated lung pathogens Escherichia 

coli NCTC 10418, Staphylococcus aureus NCTC 6571, and Haemophilus influenzae NCTC 

11931 (Tripathi, et al., 1969). 
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Table 1: Microbiological profile of adult Cystic Fibrosis patients 

Table 1: Bauernfeind, et al., 1987 Infection vol. 15.  The persistence rate is determined by how 
frequently isolates are verified from consecutive analyses of sputum. 

 

 

P. aeruginosa and C. albicans represent an interesting model system for antagonistic 

bacterial-fungal polymicrobial biofilms (Hogan, et al., 2002; Semighini, et al., 2006). Clinical 

data has revealed that infections by these organisms tend not to occur concurrently but 

sequentially. In the host, P. aeruginosa is able to suppress the outgrowth of C. albicans and 

allow for clearance of the fungi by the immune system.  However, if anti-pseudomonal 

antibiotics are administered the number of P. aeruginosa isolates decline and isolates of C. 

albicans increase (Kerr, 1994; Burns, et al., 1999).  

 

 

 
 
 
 
 
 
 

per ml aspirate 
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Figure 1:  Interaction between C. albicans and P. aeruginosa 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  (Source Hogan, et al., 2002) The interactions that occur between C. albicans 

and P. aeruginosa according to the morphological properties of Candida. 
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Candida and Medical-Devices 

 

C. albicans is a dimorphic yeast that is a member of the normal flora of humans that is 

acquired early in life commonly during the passage through the birth canal or from close contact 

with family members (Odds, 1988). The ability of C. albicans to colonize mucosal surfaces and 

penetrate epithelial tissue is dependent on dimorphic shifts. The dimorphism of C. albicans can 

be defined as an environmentally controlled reversible transition between yeast and a mycelial 

form.  Dimorphism has been shown to rely on initial cell density; this phenomenon is defined as 

the inoculum size effect and is one of eleven factors that lead to dimorphic shifts (Kulkarni, et 

al., 1981).  

Biofilm formation is a major factor in the pathogenic process for this organism that 

allows for the colonization of mucosal surfaces, dentures, and medical devices. The initial stages 

of biofilm formation rely on the ability of C. albicans to regulate its morphology. What makes C. 

albicans of special concern is its ability to exhibit dimorphism during the biofilm formation 

process (Jabra-Rizk, et al., 2004). Physiological regions of the human body where C. albicans 

commonly colonize include the mouth, vagina, lungs, intestine, bronchi, skin, heart, meninges, 

bones, and joints.  The biofilm of C. albicans begins on the mucosal surface in the yeast form 

and once dimorphism has initiated hyphae are formed and this organism is able to penetrate into 

tissues and gain access to virtually any physiological region of the body, resulting in systemic 

candidiasis.  
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Figure 2: Stages of biofilm formation in C. albicans 

 

 

(Source: Jabra-Rizk, et al., 2006 FEMS Yeast Res vol. 6)  
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P. aeruginosa is thought to inhibit growth and the ability of C. albicans to cause a 

nosocomial infection in patients with a medically implanted device.  The exact mechanism of 

this inhibition is unclear although quorum-sensing molecules are thought to play a role (Pierce, 

2005).  Supported by data that shows when an antibiotic to suppress a Pseudomonas infection is 

given, a Candida infection soon follows (Burns, et al., 1999).  This report states that with the use 

of inhaled antibiotics the number of P. aeruginosa isolates decrease and the number of isolates of 

C. albicans increases.  The author does not consider C. albicans to be a concern for CF patients 

as a pulmonary pathogen.  However, in the NNIS report from May 1999, C. albicans is 

responsible for 4.7% of nosocomial pneumonias. 

 Candida infections are difficult to diagnose definitively to the species level when 

associated with an implanted medical device.  As more standardized and sophisticated diagnostic 

tests emerge it is possible to better identify Candida species as the causative agent of a device-

associated infection.  The resultant trend of the use of more accurate diagnostic tools is an 

increasing incidence of Candida species as the cause of device-associated nosocomial infections 

(Kojic, et al., 2004).  Data reported in a NNIS study period from 1986 to 1989 reported the 

isolation of Candida species from urinary isolates of patients in the ICU at 22.1%.  In the study 

period from 1992 to 1997 the rate of urinary isolates from ICU patients was at 31%.  The 

presence of the urinary catheter is a significant factor in the occurrence of this type of infection.  

It was also reported in the NNIS study that in ICU patients with a urinary catheter 21% of the 

infections were caused by Candida species.  In ICU patients without a urinary catheter in place 

only 13% of patients had urinary tract infections caused by Candida species.  Other risk factors 

that play a role in Candida growth in the urine include diabetes mellitus, urinary tract 
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abnormalities, malignancy, and antibiotic use (Kojic, et al., 2004). 

Farnesol is secreted by C. albicans continuously and functions to control of the 

morphological state of the entire cell population.  The trans, trans conformation was shown to be 

biologically relevant.  P. aeruginosa also secretes an analog of farnesol, 3-oxo-C12-HSL 

(Hogan, et al., 2004).  This compound is biologically active in C. albicans and is able to inhibit 

hyphal formation and further biofilm development.  The ability of P. aeruginosa to mimic this 

signal causes the morphology of C. albicans to remain in the yeast form.  This has the effect of 

reduced efficiency in forming a biofilm on a variety of surfaces including medically implanted 

devices (Nickerson, et al., 2006).  Based on this mechanism the goal of P. aeruginosa is to not 

kill the C. albicans cell but to inhibit its ability to form biofilms.  However, P. aeruginosa does 

have the ability to kill hyphal form C. albicans by physically attaching to the hyphal element and 

using enzymatic methods to lyse and kill the cell (Hogan, et al., 2002). 

 

P. aeruginosa and Pyocyanin 

 

P. aeruginosa is a ubiquitous gram-negative bacterium and is a member of the normal 

human microbial flora.  Pseudomonas aeruginosa does not become a serious threat as a pathogen 

until the host immune system is suppressed or if a biofilm has the opportunity to develop.  

Suppression of the host immune system can be due to multiple factors including infection with 

Human Immuno-Deficiency virus (HIV), chemotherapy, burns, transplants, implanted medical 

devices, and neutropenia.  In the compromised host P. aeruginosa is commonly associated with 

infections of the mucosa and respiratory tract that are difficult to treat and frequently lead to 



 

 18 

death (Dickinson, et al., 1989). Once in a biofilm, this organism becomes highly resistant to 

chemothereputic agents due to phenotypic and environmental changes related to the biofilm 

including reduced growth rate, reduced oxygen tension, and the initiation of membrane efflux 

pumps that are genetically regulated.   

Pyocyanin (PCN) is a secondary metabolite that is produced by P. aeruginosa.  This 

compound is a zwitterion that easily penetrates biological membranes and has been found in 

large concentrations from the sputum and ear-secretions of patients infected with P. aeruginosa.  

PCN is a compound that is a very important virulence factor and is regulated by the Las/Rhl 

quorum-sensing system.  In infected human host tissue, PCN causes cellular damage, inhibition 

of respiration, inhibition of ciliary function, epidermal cell growth, procyclin release, calcium 

homeostasis, and the inactivation of alpha-1-protease inhibitor.  The inactivation of this inhibitor 

adds to the imbalance of protease-antiprotease activity that is common in the CF lung.  PCN and 

the precursor phenazine-1-carboxylic acid have also been found to alter the host immune 

response by modulating levels of RANTES and IL-8 (Lau, et al., 2004).   

The antimicrobial action of PCN is dependent on the presence of oxygen (Hassan, et al., 

1980).  The first stage of PCN antimicrobial activity requires the reduction of PCN to its 

monovalent or divalent form.  PCN must then auto-oxidize in order to continue the process.  

Interestingly, PCN is able to inactivate the anti-oxidative stress mechanisms catalase and the 

GSH redox cycle in human epithelial cells (Lau, et al., 2004).  In the report by Westwater, et al. 

in 2005, the ability of C. albicans to protect itself from oxidative stress by secreting E,E-farnesol 

into the surrounding environment was established.  The protective mechanisms of farnesol 

against oxidative damage could potentially be one mechanism to resist attack by P. aeruginosa 
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and mitigate the harmful effects of PCN. 

P. aeruginosa is able to infect a variety of hosts from different phylogenetic backgrounds 

including humans, plants, nematodes, and insects.  Interestingly, the virulence mechanism 

utilized by P. aeruginosa in such divergent hosts is largely the same.  The benefit of this broad 

range of host susceptibility with similar virulence mechanisms is the availability of model 

organisms that are relevant to the human host.  PCN is one of the major virulence mechanisms 

used in all of the hosts that P. aeruginosa is known to infect.  The nematode Caenorhabditis 

elegans virulence assay is very useful to better understand the virulence mechanisms used by P. 

aeruginosa.  The main mechanism used by P. aeruginosa to kill C. elegans is through the 

generation of reactive oxygen species by PCN (Tan, 2000).  The C. elegans assay can be used to 

assess two different virulence mechanisms.  The fast killing assay is based on the activity of 

PCN.  This assay is based on an accumulation of PCN and requires eight hours to kill the 

animals.  The slow killing assay is based on the ingestion and growth of P. aeruginosa in the 

lumen of the gut of C. elegans.  Killing occurs after several days when P. aeruginosa is able to 

penetrate the epithelium and kill the worm (Tan, 2000).     

The mechanism used by PCN to induce cellular damage has lead to the development of 

new treatment strategies for CF patients chronically infected with P. aeruginosa.  It has been 

found that treatment regimens that utilize GSH aerosols and anti-oxidant supplements have 

improved CF lung functions.  Another potential clinical application is to prevent the production 

of PCN by targeting the enzymes that are a part of the enzymatic pathway that lead to its 

production.  P. aeruginosa synthesizes PCN from the shikimate pathway (aro pathway).  The 

shikimate pathway is used to synthesize aromatic amino acids, para-aminobenzoic acid, vitamin 
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K, folic acid, and ubiquinone.  This pathway is found in bacteria, yeasts, filamentous fungi, 

apicomplexan parasites, plastids of plants, and alge. Vertebrates do not possess the enzymes used 

in this biosynthetic pathway and must acquire the nutrients synthesized through diet (Lau, et al., 

2004).  The enzymes of the shikimate biosynthetic pathway are a potential target for 

antimicrobial drugs and also a vaccine target to prevent production of PCN.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Regulatory pathway for the biosynthesis of pyocyanin  
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Figure 3: (Source: Lau, et al., 2004 Trends in Molecular Medicine vol. 10) 
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Figure 4: Molecular structure of E, E-farnesol 

 

 

Figure 4: Molecular structure 

 

Farnesol, a sesquiterterpenoid, is present in essential oils such as citronella, neroli, 

cyclamen, lemon grass, tuberose, rose, musk, and balsam.  Trans, trans-farnesol (E,E-farnesol) is 

synthesized through the ergesterol biosynthetic pathway in Candida albicans.  E,E-farnesol is 

derived from farnesyl pyrophosphate, a compound integral to the lipid biosynthetic pathway.  

Four isomers of farnesol are produced but only trans, trans isomer is biologically active 

(Shchepin, et al., 2003).  E,E- farnesol has been isolated from the spent medium of C. albicans 

by extraction with organic solvents and identified using gas chromatography-mass spectrometry 

as 1-hydroxy3,7,11-trimethyl-2,6,10-dodecatriene (Hornby, et al., 2001) 

The synthesis of farnesol begins at the generation of the isoprene unit isopentenyl-PP and 

deimethylal-PP.  These two compounds are oriented in a head to tail fashion to generate farnesyl 

pyrophosphate.  The enzymes that are responsible for the synthesis of E,E-farnesol from farnesyl 

pyrophosphate are a Mg+2-independent phosphatidate phosphatase and diacylglycerol 

pyrophosphate phosphatase.  These enzymes are encoded by the gene Lpp1p and Dpp1p 

respectively in Saccaromyces cereviseae and by the genes Dpp2 and Dpp3 in Candida (Toke, et 

al., 1998). Assays to determine the activity of these enzymes were based on cytosolic extracts 
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where farnesyl pyrophosphate was added as a substrate and the amount of farnesol created was 

measured. 

  Farnesol is characterized as a head-to-tail linear sesquiterpene.  Isoprenoid compounds 

have been identified in plants and fungi that yield distinctive odors and flavors.  For example, 

farnesol yields the characteristic odor of Channel No.5 and the original source of purified 

farnesol was from C. albicans (Hornby, et al., 2001).  E,E-farnesol has also been isolated from 

the anal scent glands of Nutria, a rodent that is an invasive species in the wetlands of Louisiana.  

Nutria use scent to establish territory and attract mates.  E,E-farnesol is thought to be a useful 

bait compound to improve the efficiency of traps (Lee, et al., 2007).  E,E,-farnesol is also a 

major constituent of secretions from the temporal gland of male Asian and African Elephants.  

These scent glands are located on the face lateral to the eye.  When male elephants are preparing 

to become aggressive the secretions of the temporal gland increase and the substance is rubbed 

on trees to indicate to other males territorial boundaries and to attract potential mates.  E,E-

farnesol has also been isolated from the Nasonov gland of honeybees.  This secretion is used to 

indicate sources of food sources to nestmates (Granero, A.M. et al., 2005).    

 The fate of farnesyl pyrophosphate, if it is not converted into farnesol, is to form subunits 

for cell membrane material generated in the lipid synthesis pathway.  The mode of action of a 

majority of anti-fungal chemotherapeutic agents that have been effectively used against C. 

albicans target the enzymes of the lipid biosynthetic pathway that are responsible for 

synthesizing lanosterol, Zymosterol, and Ergosterol (Carrillo-Munoz, et al., 2006).  The 

blockages of these enzymes lead to an increase in membrane permeability and an increase in 

farnesol production.  As a result, invasive C. albicans is no longer able to maintain intracellular 
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concentration gradients of potassium and other important ions and osmotic pressure leads to lysis 

of the cell.  It is the goal of most anti-Candidal drugs to target the lipid pathway and results in a 

reduction of cell wall integrity.  A second effect of the disruption of the lipid biosynthetic 

pathway is the increase in the production of farnesol.  Increased farnesol production causes 

newly forming cells to remain as yeast and do not readily enter the hyphal form. 

 E,E- farnesol is synthesized in virtually all eukaryotic cells ranging from fungi to humans.  

The general interest here is farnesol that is synthesized by the opportunistic fungal pathogen C. 

albicans.  It has been demonstrated that farnesol is released continuously from the cell in the 

amount of approximately 0.13mg/g (dry weight) by the two C. albicans strains A72 and CAI-4 

(laboratory strains) (Hornby, et al., 2004).  It also has quorum sensing capabilities (Hornby, et 

al., 2001) that have a significant impact on biofilm development and architecture.  When levels 

of farnesol reach a threshold level the ability of the fungus to transition from a yeast form cell 

into a hyphal form cell is inhibited. This morphological shift, defined as dimorphism, is a 

significant virulence factor for C. albicans infections.  When this organism is in the hyphal state, 

biofilm formation is robust and tissue invasion is possible.   

 The ability of farnesol to inhibit the hyphal state and lead to more yeast-form cells to 

develop results in a less robust biofilm and reduced tissue invasion.  This inhibition occurs at the 

genetic level where there is a repressor that is activated that leads to the blockage of transcription 

factors that lead to the synthesis of genes responsible for triggering hyphal differentiation.  It has 

been shown that, in a developing biofilm, cells that have already committed to the hyphal state 

are resistant to the effects of farnesol.  Only newly developing cells will be susceptible to the 

hyphal-inhibiting effects of farnesol (Mosel, et al., 2005; Ramage, et al., 2002) In general, 
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morphological transition from the yeast to hyphal form is triggered by increased concentrations 

of carbon dioxide, increased temperature, alkaline pH, serum, or the presence of N-

acetylglucosamine (Hornby, et al., 2004).  It has been shown that three independent signal 

transduction pathways mediate the transition into the hyphal state.  Each pathway depends on 

specific environmental triggers.  It has been shown that farnesol is able to inhibit all three of 

these pathways.  It is still unclear if the inhibition is general or specific for each trigger. 
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Figure 5: Molecular regulatory pathways to control dimorphism in C. albicans 

 

 

 

 The importance of farnesol in the microbial world is becoming increasingly apparent.  It 

has been demonstrated that farnesol is instrumental in controlling dimorphism in the fungus 

Candida albicans.  E,E-farnesol has also been shown to aid C. albicans in competition with other  

fungal species that may attempt to occupy the same niche.  In a study with Aspergillus nidulans 

Figure 5: 
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it was shown that E,E-farnesol induced apoptosis (Seminghini, et al., 2006).  It was also shown 

that E,E-farnesol protected C. albicans from attack by reactive oxygen species (Westwater, et al., 

2005). Preliminary 2D DIGE results indicate that farnesol secreted by C. albicans influences the 

expression of virulence factors in P. aeruginosa and alters quorum sensing systems by 

suppressing homoserine lactone production and increasing PQS quorum sensing.  The strains P. 

aeruginosa PAO1 and C. albicans SC5314 were chosen for use in this study because their 

genomes have been completely sequenced and annotated. 

 

Quorum sensing disruption in nature and the potential use in the clinic  

 

 Traditional antibiotics that inhibit the ability of bacteria to grow within the human body has 

historically been an effective strategy in preventing infectious disease.  However, the emergence 

of resistant organisms has caused treatable diseases to become a more formidable challenge to 

the medical community.  The extreme pressure that growth-suppressing drugs has on bacteria has 

an equally strong ability to create resistance through active selection, thus increasing the 

incidence of resistance.  The development of an anti-pathogenic drug is an emerging area that is 

based on knowledge of the regulation of virulence factors by quorum sensing mechanisms.  

According to the anti-pathogenic drug principle drugs that target quorum sensing systems will 

prevent the ability of bacteria to adapt to the human environment and block virulence and 

pathogenic traits (Hentzer, et al., 2003).  Quroum sensing virulence factors in P. aeruginosa 

include the secreted compounds elastase, alkaline protease, rhamnolipids, phenazines, cyanide, 

lectins, and chitinases.  The response of the immune system, when challenged with quorum 
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sensing deficient mutants of P. aeruginosa, has been shown to be faster overall exhibiting 

increased strength of oxidative bursts from PMN and faster accumulation of antibodies 

(Givskov, et al., 2006).  Virulence studies with C. elegans and quorum sensing deficient mutants 

of P. aeruginosa have also demonstrated increased rates of survival in the animals challenged 

with the mutant strains.  The mechanisms used to kill the animals are quorum sensing regulated 

compounds.   

 Potential targets for anti-pathogenicity drugs involve three components of the quorum 

sensing system: the signal generator, the signal molecule, and the signal receptor.  In nature, the 

use of quourum sensing disruptors has been found to be an effective strategy to prevent infection 

and competitive advantage.  A plant infected with the tissue degrading plant pathogen E. 

carotovora will increase the pH surrounding the wound site.  The alkaline pH causes the lactone 

ring of AHL to open and degrades the signal.  The end result of the blockade of quorum sensing 

signal is the reduction in tissue damage (Byers, et al., 2002).  The marine alga Laminaria 

digitata produces and secretes hypochlorous and hypobromous acids.  These compounds are 

used industrially to prevent biofouling, act as the active sanitizer in swimming pool products, and 

are generated by activated neutrophils.  These compounds react with oxidized acyl-homoserine 

lactones and provide a competitive advantage to the alga.  There are enzymes that degrade AHL 

by catalyzing lactonolysis and reduce the concentration of active AHL.  These enzymes, called 

AiiA, have been isolated from Bacillus species.  Homologues of these enzymes have also been 

found in Agrobacterium tumefaciens, Arthrobacter sp., Klebsiella pneumoniae, Comamonas sp., 

and Rhodococcus sp (Givskov, et al., 2006).  
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 The development and maintenance of the biofilm and the induction of most virulence 

factors are both under the control of quourm sensing regulated genes in some organisms such as 

P. aeruginosa.  Quorum sensing mutants have been shown to be deficient in biofilm formation 

and the establishment of a robust infection.  A growing area of research to develop novel ways to 

prevent infection by pathogenic microorganisms is to take advantage of quorum- sensing systems 

and the potential disruption of these systems (Bjarnsholt, 2007).   

 A drawback in the further development of this form of therapeutic is the uncertainty in 

establishing protocols for clinical trials and gaining FDA approval.  There is concern about 

denying patients in clinical trials antibiotics with infectious disease in order to test the efficacy of 

quorum-sensing inhibitor drugs.  The pharmaceutical industry, scientists, and government 

regulators are at a critical cross-roads that could decide the fate of this form of treatment for 

infectious disease (ASM Cell-Cell Communication in Bacteria meeting, Austin TX Oct. 7-10 

2007). The science behind this developing area of therapy for infectious disease is based on 

stemming the lines of communication among pathogens to derail the pathogenic process and 

dampen the virulence of the invading pathogen.   

 With the use of quorum sensing disruptors it may be possible to prevent the formation of 

biofilms on biotic and abiotic surfaces or to prevent the production of toxins and virulence 

factors that are quourm-sensing regulated.  A major focus of this study was to look at the ability 

of a cell-signaling compound produced by C. albicans, E,E-farnesol to interfere with the 

quorum- sensing ability of P. aeruginosa. 
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Objectives of this work 

 The goal of this study was to identify proteins that are differentially expressed under 

different growth conditions in P. aeruginosa when exposed to E,E-farnesol or whole cells of C. 

albicans.  2D DIGE® based proteomics was used to explore the effects that varying doses of E,E-

farnesol had on planktonic P. aeruginosa strains PAO1 and GSU3. Several proteins of interest 

were identified in this study that can be grouped into the categories Membrane-associated, 

Motility associated, Metabolism associated, and Stress associated.  Subsequent studies that were 

based on 2D SDS PAGE proteomics found proteins that grouped within the same categories as in 

the DIGE® based study.  These studies altered the growth conditions and method of exposure to 

elements of C. albicans.  This project provided a launch-point to design further studies to dissect 

the intricacies of the relationship between P. aeruginosa and C. albicans.         
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Materials and Methods 

 

 

Strains and Cultivation 

 The strains of P. aeruginosa used were PAO1 and GSU3 obtained from 50 % glycerol 

stocks maintained at Georgia State University.  P. aeruginosa PAO1 is a sequenced laboratory 

strain and P. aeruginosa GSU3 is a clinical isolate from a case of bilateral keratitis that was 

identified and named at Georgia State University.  The strain of C. albicans used was SC5314 

and is a sequenced strain that was obtained from ATCC.  All strains were maintained in 1 ml 

aliquots of 50 % glycerol: standardized cell suspension at -80°C in cryovials (Nalgene catalog 

no. EF6835A). The cell suspension stocks were made in order to insure fresh cultures for each 

experiment.  In order to revive the cells for use, the cryovial was defrosted at room temperature 

and then mixed by vortexing until the cells were evenly suspended.  Then 100 µl of the stock was 

added to 10 ml of sterile LB- Miller medium in a sterile 15 ml Falcon tube and vortexed to mix 

thoroughly.  The cells were first grown on LB-Miller agar (15% w/v).  The plates were 

inoculated with a 10 µl disposable loop using the quadrant streak technique and incubated 

overnight at 37°C. The volume of working liquid culture depended on the total volume of the 

flask.  Typically, a 250 ml baffled flask was used with 100 ml of fresh sterile LB-Miller broth.  

Two to three isolated colonies from the LB-Miller plate were used as inoculum to start the 

working liquid flask cultures. These liquid cultures were grown at 37°C and shaking at 130 RPM 
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in an Innova 4080 (New Brunswick Scientific) environmental rotary shaker. After growth for 16 

hours the optical density was recorded (absorbance at 600 nm) and this was used to inoculate 

experimental conditions with a known density of cells. The flasks employed in the farnesol 

experiments were 50 ml flasks containing 10 ml of pre-warmed (to 37°C) LB-Miller broth.  

These flasks were shaken in the environmental shaker at 300 RPM.   

 Growth Phase:  Growth phase was determined by measuring OD600 of 1 ml samples using 

the Turner spectrophotometer (model SP-830).  The growth phase in the farnesol experiments 

were based on values provide by [personal communication] Dr. Jayne Robinson at the University 

of Dayton (Dayton, Ohio) to determine mid-logarithmic growth.  The starting OD600 was 0.05 

and the ending OD600 was 0.7.  The optical density was adjusted as required by adjusting the 

volume of culture added to fresh media.   

 Preparation of farnesol:  E,E-farnesol was stored at -20°C until need. Once the bottle was 

opened, the bottle was flushed with nitrogen to purge any air /oxygen. Due to the hydrophobic 

nature of E,E-farnesol it was necessary to add methanol to increase its solubility.  The 3.8 M 

stock of E,E-farnesol was diluted into 100% methanol according to the concentration needed in 

each experiment.  (In the experiments reported here, 25 µM and 250 µM concentration of E,E-

farnesol were utilized).  The following volumes were based on the total volume of media used in 

the experiment.  A 38 mM stock was made by adding 10 µl of the 3.8 M straight from the bottle 

into 990 µl of methanol.  Then 66 µl of this was added to 10 ml of the culture media to yield a 

final volume of 25 µM.  In the 250 µM experiment, 100 µl of stock E,E-farnesol was added to 

900 µl of methanol.  Then 66 µl of this solution was added to 10 ml of culture media.  It was 

important to note that the final volume of the E,E-farnesol: methanol ratio was the same although 
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the concentration was different.  DMSO was also used to solubilize E,E-farnesol and was used in 

the same proportions as described in the previous section with methanol.  DMSO was used for 

the biofilm experiment and the antibiotic susceptibility experiment.   

Cell cultivation and harvest  

 The appropriate cell stock were removed from glycerol stocks and grown overnight on agar 

plates (see previous section on strains and cultivation).  Isolated colonies were then selected with 

a disposable loop and added to 250 ml flasks containing 100 ml of fresh pre-warmed (37°C) LB-

Miller media and shaken overnight at 130 RPM.  The optical density was recorded and the 

volume of culture necessary to inoculate a culture of 0.05 OD600 was then added to six 50 ml 

flasks containing 10 ml of fresh pre-warmed LB-Miller.  The cultures were incubated until they 

reached an OD600 of 0.7 at 37°C and 300 RPM.  The appropriate volume of cell suspension from 

the first set of six 50 ml flasks was then added to a second set of six flasks containing either 25 

µM or 250 µM of E,E-farnesol in 10 ml of pre-warmed LB broth, and these flasks were 

incubated at 37°C and 300 RPM. These cultures were allowed to grow until they reached an 

OD600 of 0.7.  

 Once the cells reached the appropriate OD600  (approximately 6 hours following 

inoculation) they were transferred into sterile 15 ml conical tubes (Falcon®) and placed on ice.  

Once chilled, the samples were placed into a tabletop centrifuge (Beckman Coulter Allegra 64R 

Centrifuge, Fullerton, CA.) that was cooled to 4°C.  The cell suspension was spun at 10,000 x 

rpm for 10 minutes. The supernatant was removed and the cells were washed in a wash buffer 

appropriate for proteomics (see appendix for magnesium based wash buffer).  This cycle was 
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repeated three times. At the end of the third centrifugation, the supernatant was removed and the 

cell pellet was resuspended in 1 ml of wash buffer and transferred into a sterile 1.5 ml 

Eppendorf® tube.  The cells were again centrifuged at 10,000 X G for 10 minutes in an 

Eppendorf Microfuge® unit.  Then the supernatant was removed and the cell pellet was flash 

frozen in an acetone and dry ice bath and placed in the -80°C freezer until disruption. The packed 

cell weight of each pellet was recorded to insure thorough disruption.   

Cell Disruption 

 The packed cell pellet was removed from the -80°C freezer and allowed to thaw at room 

temperature.  Once the pellet began to thaw, the appropriate lysis buffer for proteomics (see 

appendix) was added to the pellet with a sterile pipette tip.  The pellet was vortexed to disperse it 

into the lysis buffer.  If the pellet was difficult to disperse, a pipette was used to aspirate the 

liquid until the cell pellet was not longer visible.  Once the pellet was dispersed, the entire 

contents were transferred to a sterile, 15 ml conical tube (Falcon®) and placed on ice.  Once the 

liquid was chilled, the Falcon® tube was placed under the sonicator tip.  The tip of the sonicator 

was placed in the center of the liquid as closely as possible in all directions.  It is important to 

note that the tip was not too close to the surface as foaming would occur.  The level of the tip 

was as close to the center of the total volume as possible with careful attention paid that the tip 

does not touch the walls of the tube.  The Falcon® tube was then placed in a beaker of ice water 

on top of a stir plate.  A stir bar in the bottom of the beaker allowed for the ice water to stir and 

most effectively remove heat from the cell lysate.  
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Figure 6: Schematic diagram for set-up of microtip sonication of packed cell pellet of P. 

aeruginosa 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Diagram depicting the setup for protein pellet lysis by micro-tip sonication.   
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Sonication was used to disrupt the cell membrane and liberate the protein containing cytosol.  

The sonicator used was the Misonix Sonicator Ultrasonic Processor XL 2020.  The microtip was 

a 1.5 cm tip and the maximum power level reached was 3.  The cycle used was a total run of 

three minutes with one-second power on and 0.5 seconds power off.  The optimum power for 

sonication was reached when the liquid visibly cavitated around the microtip when the peak 

power was reached during the pulse.  The pitch was very important for this step also; the sound 

was not sharp, it was a smooth grinding sound.  Early indications that air was getting into the 

liquid was a “sucking” sound if this did occur the power should be reduced to prevent foaming.  

In the event that foaming did occur, the Falcon® tube was removed from the sonicator tip and 

placed in a centrifuge and spun at a low speed for less than five minutes to get the foam out.  

Then the sample was recorded in the lab notebook and then sonication completed.   Once 

sonication was complete, the lysate was transferred to a lo-bind® Eppendorf tube and centrifuged 

at 10,000 x g to sediment any cell membrane materials or whole cells.  Then the protein 

containing lysate was removed and aliquoted into 50 to 100 µl fractions. Once labeled and 

aliquoted, the lysate was stored in the -80°C freezer until ready for use.   

 The same procedure was used to disrupt the membrane for C. albicans with the exception 

that the time for sonication was extended to 20 minutes and glass beads (approximately 200 mg 

per cell pellet) (Sigma G1277- acid washed) was added.  During the sonication optimization 

process the lysate was sampled periodically throughout the soncation and centrifuged to 

determine if cells were lysing properly and efficiently.  A quick and easy way used to determine 

if cells were lysed properly is that the color of the supernatant following centrifugation appears 
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amber in color.  If the supernatant appeared clear then more sonication was necessary.     

Protein Quantification 

 To quantify protein present in the sonicated lysate, a frozen sample was removed from the  

-80°C freezer, and allowed to thaw at room temperature.  Once defrosted, the supernatant was 

ready for quantification.  Quantification was a critical step in the proteomics workflow and a 

great deal of attention was paid to accurately quantitate all samples (biological replicates) to be 

studied.  The lysis buffer used for proteomics presents some challenges in quantification so a 

modified Lowry protein quantification kit was used (2D Quant Kit- GE Healthcare Piscataway, 

NJ.)  

Protein assay for 2D proteomics 

  Traditional protein assays such as the Bradford based assays utilize Coomassie Brilliant 

blue binding by the protein.  The CHAPS present in the lysis buffer will also bind to the 

Coomassie and provide an inaccurate result.  The traditional Lowry assay, which relies on the 

reduction of cupric ions to cuprous ions, cannot be used due to dithiothreitol (DTT) and thiourea 

present in the lysis buffer that will form complexes with the cupric ions and provide inaccurate 

results.  The modified Lowry assay takes advantage of the binding of cupric ions that bind to the 

polypeptide backbone following precipitation and resuspension in an appropriate alkaline buffer.  

Once the ions have bound to the protein in the sample, a colorimetric agent is used that binds to 

unbound cupric ions.  This assay creates an inverse relationship between the degree of color 

change and the concentration of protein present.  This assay employs a 0-50 µg BSA standard 

curve and is linear in the range of zero to 50 µg of protein and the volume range of one to 50 µl 
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of sample can be used.  It is important to test multiple volumes of sample in order to most 

accurately quantify the amount of protein present in the sample lysate.  It is important to perform 

the standard curve at the same time and every time a sample lysate is quantified.  Environmental 

conditions in the room can affect the optical densities, thus the most accurate standard curve 

should reflect the conditions in the lab at the exact time the sample is also quantified.  Once the 

standard curve is completed, the curve should be entered into an Excel® spreadsheet (Microsoft, 

Seattle Wa.) and a regression line should be placed on the graph.  The equation for the regression 

line is then used to determine how much protein is present in the sample.  The optical density of 

the sample is placed in the y value.  The total volume of the sample assayed was divided by x 

(the protein concentration in µg/µl) to give the total amount of protein present in the sample in 

units of µg/µl.  It is imperative that a minimum concentration of 5 µg/µl be used in order to have 

a sufficient quantity of sample for labeling with CyDyes® and identification by mass-

spectrometry.  If this protein quantity is not met it is necessary to revisit the disruption method 

used and possibly consider concentration of the sample lysate prior to quantification.   

CyDye® labeling 

  The goal of this stage is to label each sample with a CyDye® fluor and create the pool of 

samples that will act as the internal standard.  Several steps are necessary in this stage.  The first 

is the randomization of the samples.  This can be accomplished by drawing a circle that has 

smaller circles that make up its circumference.  There should be one smaller circle for each 

sample in the experiment. A sample label for each sample should be placed in the small circles 

randomly.  The next step is to pair each of the small circles randomly.  Drawing an arrow is 

useful.  The base of the arrow can act as the Cy3 labeled sample and the point of the arrow can 
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act as the Cy5 labeled sample.  It is important that each sample have one Cy3 and one Cy5 

pairing.   

Figure 7: Diagram sample for randomization of CyDye® labels 

 

Figure 7: Schematic diagram for method of randomization of samples to organize CyDye® labeling and pairing on 

2D SDS PAGE gels. Concept adapted from Tracy Ashcroft from the University of Georgia Core Proteomics Facility 

Athens, GA. 
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The next step is to create a table for which samples will be on which gel and what dye will be 

used.  Once again it is important that each of these samples are labeled with both dyes and they 

are randomly paired on each gel.   

 

Table 2:  Matrix of pairing of samples for randomization 

Samples Gel 1 Gel 2 Gel 3 Gel 4 Gel 5 Gel 6 

Control 1 Cy3   Cy5   

Control 2  Cy3   Cy5  

Control 3   Cy3   Cy5 

Test 1 Cy5    Cy3  

Test 2  Cy5  Cy3   

Test 3   Cy5   Cy3 

Table 2: Method to graphically represent cross-labeling and randomization of all samples for a robust 2D DIGE 

based study. 
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The next step is to determine how much protein is available for labeling and how much total 

protein will be loaded onto each gel. The more concentrated the CyDyes® used to label the 

samples the more signal the low abundance proteins will receive.  The suggested range is 

between 200 and 1000 pM CyDye®/ µg of protein.  The most limiting factor in determining how 

much total protein to load onto the gel is your least concentrated sample.  This least concentrated 

sample will determine the maximum amount of protein that is available for the three gels that 

must be present.  There are two analytical gels and one preparative gel.  It is important that a 

sufficient amount of protein is present on the preparative gel so that each spot, even the low 

abundance ones, have enough protein present to be identified positively by mass-spectral 

analysis.   

 The labeling process itself is not difficult but great attention must be paid to accurate 

pipetting.  It is important that the samples are kept on ice and in the dark.  Each of the samples is 

labeled individually in their own lo-bind® Eppendorf tube.  However, the standard should be 

created at this step by combining equal concentrations of each sample that will be present in the 

study.  This pooled sample will contain all replicates and the control and experimental samples in 

one lo-bind tube and will be labeled at the same time.  The protocol should be closely adhered to 

in order to ensure that appropriate labeling has occurred.  Once labeling is complete, the Cy3, 

Cy5, and Cy2 samples are combined according to the randomized scheme designed above. 
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Figure 8: Workflow for CyDye®labeling 

 

 

Figure 8: Depiction of workflow scheme to label samples and combine into one single gel.  Source: GE Healthcare- 

Proteomics revision 3, 2006. 
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First dimension isoelectric focusing (IEF) 

 Isoelectric Focusing (IEF) is based on the separation of proteins according to pI.  This 

value is determined by the net electronegativity of the side chain of each amino acid in a peptide 

chain.  As the pH of a peptide increases so to does its pI.  Strip gels are utilized that have a pre-

formed immobilized pH gradient and when sample is added to the strip and with an electric 

current, the peptides will migrate until they reach a neutral point this neutral point coincides with 

that peptide’s pI.  The graph below depicts how the protein’s pH coincides with the pI (Figure 9). 
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 Figure 9: Isoelectric Point of Peptides 

 

 

 

 

Figure 9: Graphical depiction of pH where peptides reach their respective pI, or the isoelectric point where no 

electrical force is able to cause movement of the peptide.  Graph generated by Shelby L. Jones-Dozier adapted from 

2-D Electrophoresis: Principles and Methods (GE Healthcare, Piscataway NJ) 

 

This technique is useful in a 2D SDS PAGE because it allows for separation of peptides on a 

physical property distinctly from the different peptide’s molecular weight.  The presence of 

CyDyes® does not significantly change the pH of a peptide so it is possible to label the protein 

prior to any separation.  
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 This step is very sensitive to salts, contaminants, and detergents that may be present in the 

sample lysate.  The first step in Isoelectric focusing (IEF) is to rehydrate the first dimension 

strips.  The first dimension strips are rehydrated in a buffer that contains IPG ampholites 

appropriate for the strip pI.  The rehydration buffer also contains urea and thiourea to keep the 

proteins in solution.  It is important to note that the urea is present at 8 M.  In order to prevent 

crystallization, it is important to keep the strips out of contact with the air.  This is accomplished 

with the application of the mineral-oil based DryStrip® cover fluid.  There are several options in 

IEF concerning how the sample is applied.  Typically, analytical gels utilize the cup-loading 

method to introduce the proteins into the gel following strip rehydration.  Preparative gels 

typically utilize in-gel rehydration in order to load more protein in to the gel itself.  The cup-

loading method produces fewer streaks, in highly abundant proteins, and allows for better 

resolution of low-abundant spots that may be near high abundant proteins.  The in-gel 

rehydration method is used for preparative gels because the higher protein loads that are 

necessary for a preparative gel can clog the cup.   

 The protein samples were first reduced with dithiothreitol (DTT) containing solubilization 

buffer at 4°C for 30 minutes.  The samples were then combined with the appropriate amount of 

Destreak® solution (GE Healthcare, Piscataway NJ.)  for each strip.  The samples were added to 

each well for each dried strip.  The strips were applied to the well face down so that the protein 

samples could be absorbed into the gel as it reswelled.  The strips were then covered with 

DryStrip® Cover Fluid (GE Healthcare, Piscataway, NJ) and allowed to sit for approximately 24 

hours at room temperature.  Once the samples had been adsorbed into the gel, the gel strips were 

placed into the ceramic gel-boats.  The strips were placed face up so that the wicks and 
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electrodes came into direct contact with the gel surface.  The amount of current applied depends 

on the length of the strip and the pI range of the strip.  In this study, 24-cm strips were used and 

the amount of power applied was altered depending on the pI range of the strip.  

Table 3: Isoelectric focusing protocol for a 24 centimeter Imoboline® pH 3-11 range strip, 

at 50 µA per strip  

Step Voltage mode Voltage Time (h:min) 

Step and Hold 500 1:00 

Gradient 1000 8:00 

Gradient 8000 3:00 

Step and Hold 8000 3:45 

Table 3: Protocol adapted from GE Healthcare Handbook for 2D Electrophoresis, revision 2007. 
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Table 4: Isoelectric focusing protocol for a 24 centimeter Imoboline® pH 4.5-5.5 range strip, 

at 50 µA per strip 

Step Voltage mode Voltage Time (h:min) 

Step and Hold 500 2:00 

Gradient 1000 5:00 

Gradient 8000 3:00 

Step and Hold 8000 10:30 

Table 4: Protocol adapted from GE Healthcare Handbook for 2D Electrophoresis, revision 2007. 

 

Following IEF, the gel strips were individually placed into equilibration tubes, wrapped in foil to 

protect from light, and stored at -80°C until ready for use.   

Equilibration of IEF gel strips 

Two solutions are made in order to equilibrate the 1D strips following IEF and prior to SDS 

PAGE at room temperature.  The strips are first exposed to 0.5% DTT for 15 minutes with 

shaking.  The strips are laid on their side on a shaker at 85 RPM.  The speed should be adjusted 

so that the solution fully covers the strip.  The DTT solution is then discarded and placed into 

hazardous waste containers and the strips are then covered with a 4.5% iodoacetamide solution 

and incubated for 15 minutes at 85 RPM at room temperature.  The strips are then washed with 
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1X SDS electrophoresis buffer and attached to the surface of the SDS PAGE gel with agarose gel 

(see appendix).  The IEF gel is placed on the top of the SDS PAGE gel so that no bubbles are 

present.  The agarose is then allowed to solidify before the gels are placed into the 

electrophoresis tank.     

Second dimension SDS PAGE 

Second dimension sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) is 

based on the separation of proteins by their molecular weight.  This is a commonly used 

technique to separate proteins and when coupled with IEF can be a highly robust tool to separate 

a high quantity of proteins from a sample.  The degree of resolution in SDS PAGE can be 

controlled by the percentage of acrylamide in the gel.  For this study, a 1-mm thickness gel was 

used with a single percentage of 12% that is effective for separating proteins in the molecular 

weight range of 14- 200 kilo-daltons (KDa).   

Casting SDS PAGE gels 

The gels were prepared in the lab for each run.  The protocol for plate washing was critical to 

ensure that mass-spec analysis was not contaminated with keratin, dust, or residue from other 

studies.  The plates were first scraped with a plastic Wonder-Wedge® tool to remove any residual 

gel.  The plates were then soaked for no more than 6 hours in Contrad 70 (Decon labs catalog no. 

1003) detergent.  The plates were then scrubbed with a soft plastic scrubber sponge to ensure any 

material and debris is removed.  The plates are then rinsed with deionized water, washed with 

Decon® a second time, rinsed with deionized water and rinsed a final time with double-deionized 

water. The plates are then soaked in 1 % Hydrochloric acid for 2 hours at 25 RPM on a shaker 
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Innova Platform Shaker (New Brunswick).  The plates are then rinsed again with deionized 

water and double-deionized water. The plates are then allowed to dry on the Ettan® plate holders 

and covered to protect from dust as the gels air dry. The face of the plate that is to be used to 

attach the gel to should be determined.  It is possible to attach the gel to the top plate or the 

bottom plate (with spacers).  However, consideration must be made at the time of scanning to 

ensure that the robotic picker picks the proper region of the plate. The gel face that the gel is 

adhered to is placed on a Lab-Soaker face up and is covered with 4 ml of Bind-Silane® solution 

(see appendix).  The solution is spread with a dust-free KimTech® Crew Pure CL4 wipes 

(Kimberly Clark, 7605) and allowed to air dry.  The solution is allowed to cure for one hour then 

the reference markers are placed on the plate.  They should be approximately 10.5 cm from the 

bottom of the plate and 1.5 cm from the outside edge of the plate.  The plate is allowed to sit for 

an additional hour before use.  The acrylamide gel solution was prepared and allowed to de-gas 

for 10 minutes before use.  The gel solution was prepared in a vessel that has a pour spout or a 

bottle with an easy pour ring.  Once the plates have cured for two hours they are wiped with 200 

proof ethanol with a crew wipe and allowed to sit for 10 minutes to allow complete removal of 

all volatile components.  The gel sandwiches were then assembled in the gel caster.  The 

assembly protocol for the Ettan Dalt® six or the twelve gel caster is the same.  First a thin plastic 

spacer is placed at the back of the caster unit.  Then a back plate is placed and firmly pushed to 

the bottom left hand corner.  Then the top plate is placed and firmly pushed to the bottom left 

hand corner and the wonder wedge is used to ensure that the plates are as far as they can go to 

the bottom left.  Then a second thin plastic spacer is put on top of the top plate.  This process is 

repeated until all six or twelve gel sandwiches are assembled.  The thick plastic spacers were 
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then used to fill in the remaining space to ensure a tight fit once the cover plate for the caster was 

put into place.  The gel solution was then poured slowly into the gel caster to ensure that no 

excess bubbles were formed.  The gel solution was poured until the top level was 1 cm above the 

desired level of the gel.  Then 1 ml of water saturated butanol solution (see appendix) was placed 

on top of each gel with a 1 ml pipette.  The pipette tip was run along the entire length while the 

butanol solution was slowly released in even volumes.  The gel caster was then covered with a 

piece of cellophane until the gels solidified.  This took approximately two hours.  The gels were 

then removed from the caster, inspected for defect, and the butanol solution on top of the gel was 

washed off with double-deionized water and then placed on its side in the gel rack to allow all of 

the water to drain from the top of the gel.  Then the gels were covered in gel-storage solution 

(see appendix) taking special care to cover the top of the gel where the IEF gel will seat).  The 

gels were laid horizontally at room temperature to allow complete polymerization to occur.  Prior 

to running the second dimension the top of the gels was washed again to remove any residual gel 

storage solution and allowed to sit on its side in the gel storage rack. The power used for most 

gel runs was based on an overnight run where 1.5 watts per gel was applied with the Ettan Dalt® 

six or twelve system.  A 2X electrophoresis buffer (see appendix) was used in the upper cathodic 

buffer chamber and a 1X electrophoresis buffer (see appendix) was used in the lower anodic 

buffer chamber.   

 After the gel run was complete the gels were prepared according to the dyes used for 

imaging.  If the CyDyes® were used, the gels were washed with water to remove any excess 

electrophoresis buffer and placed into a light-protected box with water and transported 

immediately to the Typhoon® Variable-Mode Imager 4900 for imaging.  In the event that a 



 

 51 

saturation dye was used, the top plate was carefully removed from the gel sandwich and the gels 

were placed into individual containers with fixing solution (see appendix) and allowed to sit for 

2-24 hours at 4°C.  The protocol for each saturation stain should be followed.  Post-staining of 

CyDye® gels also followed the saturation stain protocol.      

Imaging and analysis 

Gels were imaged with the Typhoon Variable Mode Imager model no. 4900.  ImageQuant® 

(Molecular Dynamics, version 5) was used to view the gel images. This software was used to 

crop the gel images and convert them to the correct electronic format for the downstream 

analysis software.  Gels that were stained with CyDyes® were analyzed using DeCyder® version 

10.  Gels that were saturation stained with Coomassie, Deep Purple®, or silver were analyzed 

using ImageMaster Platinum version 6. Both of these software programs follow the same 

guidelines to generate a list of significant proteins.  
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Figure 10: Overview of approach to identify proteins of interest in DeCyder®  version 6.5 

and ImageMaster Platinum version 6 

 

 

 

 

 

 

 

 

Figure 10: Graphical depiction of workflow for the detection of proteins of interest in 2D DIGE projects.   
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Spot excision  

A pick-list is generated within the analysis software that creates a text (.txt) file that is moved to 

the computer that operates the Ettan Dalt® Spot Picker (GE Healthcare, Piscataway NJ) that is 

depicted below in Figure 10. 

 

Figure 11:  Ettan Dalt® Spot Picker 

 

 

Figure 11: Image obtained from GE Healthcare product catalog 2008 

 

 

After the text file is imported into the Spot Picker control software, the location of the reference 

markers, the thickness of the gel, and the location of the microtiter plate that will hold the gel 

plug are determined.  Once these parameters were set, the program was initiated and the protein 
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spots were excised.  Stains that were visible with the naked eye were inspected to ensure that the 

desired spots were excised.  Stains that emitted only a fluorescent signal were imaged again with 

the Typhoon imager to ensure that the correct spots were excised.  After this was verified, the 

protocol to proteolytically degrade the peptides and extract them from the gel was initiated. 

Protein digestion (Trypsinization)   

 Proteins immobilized within the acrylamide gel matrix are exposed to trypsin that causes 

proteolytic degradation.  Trypsin is a serine protease that degrades peptides at the carboxyl side 

chains of the amino acids lysine and arginine.  Porcine trypsin from Promega was used in this 

study.  The sample gel plugs are exposed to 100 µl of a 50 mM ammonium bicarbonate/ 50% 

acetonitrile solution for 20 minutes at room temperature.  The solution is then removed by 

careful pipetting so as not to disturb the gel plug then fresh 50 mM ammonium bicarbonate/ 50% 

acetonitrile is allowed to sit for an additional 20 minutes.  The 50 mM ammonium bicarbonate/ 

50% acetonitrile is again carefully removed by pipetting then replaced with 75% acetonitrile.  

The 96-well plate is then placed in the Eppendorf Vacufuge® (Model no. 22331 Hamburg, 

Germany) unit for 30 minutes with no heat.  The dried and dehydrated gel plugs were then 

exposed to approximately 7 µl of a 20 µg/ ml solution of trypsin.  Sufficient volume of the 

trypsin solution is added to cover the entire gel plug.  The trypsin is kept at 4°C until added to 

the gel plug.  The 96- well plate was placed on ice for 30 minutes once the trypsin was added to 

allow the trypsin to become adsorbed into the gel before proteolytic digestion began.  After 30 

minutes, the plate was wrapped thoroughly with Parafilm to prevent drying prior to placing into 

the 37°C incubator overnight.  Following the overnight incubation, 100 µl of a 50% acetonitrile/ 
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0.1% trifluoroacetic acid (TFA) solution is added to the gel plug in order to extract the peptides 

from the gel matrix.  The extraction solution was added in two fractions.  First 60 µl of the 50% 

acetonitrile/ 0.1% TFA solution was added to the gel plug and allowed to sit for 20 minutes at 

room temperature.  Then the solution was removed by pipette and placed into a fresh Lo-Bind 

Eppendorf® tube and 40 µl of the 50% acetonitrile/ 0.1% TFA was added to the gel plug.  This 

solution was allowed to sit for 20 minutes at room temperature.  Following incubation, the 40 µl 

was combined in the same Eppendorf ®tube with the original 60 µl that was removed in the first 

set.  The Eppendorf ®tubes were then placed in the Eppendorf  Vacufuge® for 2 hours or until the 

liquid was completely evaporated. The samples were then stored at -20°C until ready for use.  

The maximum storage time is one week. 

Zip-Tipping® and MALDI TOF-TOF 

 Samples were removed from the -20°C and allowed to come up to room temperature for 5 

minutes.  Then 1.5 µl of neat formic acid was pipetted into each sample tube and vortexed 

briefly.  Then 8.5 µl of 0.1% trifluoracetic acid (TFA) was pipetted into each sample tube and 

the sample was vortexed at low speed for five minutes at room temperature.  The samples were 

then centrifuged briefly to bring all of the liquid down into the bottom of the Eppendorf® tube.  

The Zip-Tip® (Millipore) was then prepared by first wetting and then aspirating with 0.1% TFA.  

The sample was then bound to the C-18 column and washed with 0.1% TFA.  The sample was 

released from the column with the elution solution and spotted onto the MALDI plate.  Once the 

sample dried, the alpha-cyano-4-hydroxycinnamic acid matrix was applied (Agilent 

Technologies, catalog no. G2037A). The MALDI plate was then placed at 4°C until ready for 
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analysis.  The samples were analyzed at the Emory Microchemical Facility, Atlanta GA.  

Proteomics experimental set-up 

Overview: Each experiment varied in the experimental treatment with farnesol.  The growth of 

working cultures, downstream harvest, and preparation for 2D proteomics followed the methods 

described in the previous sections. 

Experiment 1: P. aeruginosa PAO1 exposed to 30 µM racemic farnesol, IPG range 3-11 

 The protocol to initiate this experiment followed the procedure introduced in the cell 

cultivation and harvest section found earlier in the Materials and Methods section.  The 

concentration of the farnesol stock solution was altered so that 66 µl of racemic farnesol at a 

final concentration of 30 µM was added to the culture media.   

Experiment 2: P. aeruginosa PAO1 and GSU3 exposed to 25 µM and 250 µM E,E-farnesol, IPG 

range 3-11 

 The protocol to initiate this experiment followed the procedure introduced in the cell 

cultivation and harvest section found earlier in the Materials and Methods section.  The 

concentration of the farnesol stock solution was made exactly as indicated in this section so that 

only 66 µl of farnesol and methanol was added.  The concentration of the stock solution varied 

so that the final concentration was either 25 µM or 250 µM in the culture media. 

 Experiment 3: P. aeruginosa PAO1 exposed to 25 µM E,E-farnesol, IPG range 4.5-5.5 

 The protocol to initiate this experiment followed the procedure introduced in the cell 
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cultivation and harvest section found earlier in the Materials and Methods section.  The 

concentration of the farnesol stock solution was made exactly as indicated in this section so that 

only 66 µl of farnesol and methanol was added and the final concentration of farnesol was 25 

µM.   

Experiment 4:  P. aeruginosa PAO1 catheter lumen biofilm exposed to 250 µM E,E-farnesol, 

IPG range 3-7 

 The initial cultivation of cells followed the method outlined in the materials and methods 

section however no farnesol was added at this stage.  A flow-through system was setup up where 

fresh LB Miller media maintained at 37°C and was passed through the lumen of a Bard Bardex® 

Foley All-Silicone 16 French urinary catheter.  A schematic of the experimental setup is 

presented in figure 10.  First the lumen was inoculated with 5 ml of mid-log phase cells of P. 

aeruginosa PAO1 with an approximate OD600 nm of 0.7 with a sterile syringe.  A sterility check 

was performed of the effluent to ensure that only P. aeruginosa was present in the lumen. 

Following seeding, fresh sterile media was passed in one direction through the lumen.  The flow 

rate was adjusted so that the cells were unable to grow upstream of the catheter segment with a 

Masterflex® pump (Cole Parmer model 7518-10) set at a flow rate of 20 ml/min with Masterflex® 

Tygon tubing (06409-15).  All connections were maintained with tubing clamps that insured no 

liquid media leaked.  The urinary catheter was allowed to sit for two days to allow the cells to 

develop a mat along the lumen of the catheter before exposure to farnesol occurred.  Once the 

biofilm had fully developed the catheter containing the biofilm was removed from the flow- 

through system and was connected to two sterile 10 ml syringes that contained 250 µM E,E-
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farnesol.  One of the syringes was completely filled with medium and the other was completely 

empty.  In order to expose the cells to the farnesol without disturbing the biofilm, the media was 

slowly released from the full syringe and equal pressure was used to suction the media into the 

empty syring. Once the previously empty syringe was full with approximately 10 ml of media 

the process was repeated in the other direction.  This process was repeated once every 10 

minutes for two hours.  At the completion of the two-hour exposure the media was forcefully 

pushed from the syringe through the catheter and the cells were expelled into a 50 ml falcon 

tube.  The media was then drawn up again and was used to forcefully wash the cells from the 

lumen of the catheter.  The cells that remained in the lumen were removed by placing the 

catheter segment into a fresh 15 ml falcon tube with 11 ml of sterile PBS and vortexing until the 

thin layer of cells were removed.  The lumen segment was removed and the tube was centrifuged 

at 10,000 RPM for 10 minutes to pellet the cell material that was washed from the lumen.  This 

pellet was then combined with the previously aquired aspirate from the lumen.  The protocol for 

cell harvesting, as outlined previously in the materials and methods section, was followed to 

prepare the cells for lysis and proteomic study.   
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Figure 12: Diagram of experimental set-up for flow-through biofilm 

 

 

 

 

 

 

 

 

 

 

 

     Figure 12: Graphical depiction of the experimental set up for the flow through biofilm model.  
The flow of media was in a single direction to ensure that fresh media was continuously provided 
to the developing biofilm.  
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Experiment 5: P. aeruginosa PAO1 co-cultivation with C. albicans whole cells, IPG range 3-7 

 The cells used in this experiment were removed from glycerol stock and initial cultures 

were established according to the procedures outlined previously in the Materials and Methods 

section.  Both organisms used, P. aeruginosa PAO1 and C. albicans SC5314, were initially 

grown in LB Miller broth at 37°C and 130 RPM.  First both strains were grown to mid-log phase 

(an OD600 of 0.7 for PA and an OD600 of 1 for CA) and 1 ml was removed from each culture.  

This sub-sample was centrifuged at 10,000 RPM for 10 minutes at 4°C.  Following 

centrifugation the supernatant was discarded and was replaced with fresh PBS, at which time the 

pellet was dispersed with vortexing. This process was repeated three times to remove any 

residual medium.  The cell pellets were resuspended in 500 µl of sterile PBS.  250 µl of each 

organism was used to inoculate a common flask with 100 ml of pre-warmed sterile LB Miller 

media that contained both P. aeruginosa and C. albicans after inculation.  Then the remaining 

250 µl was used to inoculate a second flask, which also contained 100 ml of pre-warmed sterile 

LB Miller media that was only P. aeruginosa or C. albicans after inoculation. These flasks were 

allowed to grow for 8 hours at 37°C and 130 RPM and were then immediately put on ice 

following the 8 hour incubation.  The cells were then harvested according to the harvesting 

protocol described previously and the resulting cell pellets were placed on ice for one hour to 

ensure thorough chilling.  After one hour, the individual pellets of P. aeruginosa and C. albicans 

were combined by first resuspending the pellet in 2 ml of chilled sterile PBS and then the slurry 
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was combined into one centrifuge bottle and centrifuged at 4°C at 10,000 RPM for 10 minutes.  

The supernatant was removed and the wet weight of each pellet from the combined cultures was 

measured.  The cells were then lysed according to the procedure outlined previously in the 

Materials and Methods section to prepare the samples for proteomic analysis.  The sonication 

was optimized to preferentially lyse the bacterial cells without complete lysis of the yeast cells.  

In order to fully lyse yeast cells extended sonication times with the presence of glass beads are 

required.    

Growth on E,E-farnesol and alternative carbon sources: 

 Two experiments were performed to determine the ability of P. aeruginosa to grow on 

E,E-farnesol as a sole carbon source.  Second to determine the ability of different long chain 

carbon compounds to prime the metabolism of P. aeruginosa to utilize E,E-farnesol as a carbon 

source.  Liquid media and solid media were prepared with Stanier’s minimal medium to which 

alternate carbon and nitrogen sources were added.  The carbon sources assayed for growth were: 

glucose, sorbitol, sodium- acetate, hexanoic acid, hexanoamide, and octanoic acid.  The nitrogen 

source used was ammonium sulfate.  Both plates and liquid media were made with 1000 ppm 

carbon source and 1000 ppm nitrogen source.  P. aeruginosa PAO1 was tested for the 

appearance of colonies for plates and turbidity for liquid media.  PAO1 cells were removed from 

glycerol stocks and allowed to thaw.  Once thawed, 10 µl was removed and placed into 10 ml of 

sterile LB Miller media.  The media was vortexed to allow even dispersion of cells in the liquid 

media.  10 µl was then pipetted into LB Miller plates and spread with a sterile glass spreader.  

The plates were allowed to incubate at 37°C overnight.  The following morning the plates were 

checked for sterility, scraped, and used to inoculate liquid Stanier’s medium with glucose as the 
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carbon source.  200 ml of liquid Stanier’s medium was inoculated with one loop full of P. 

aeruginosa PAO1 and allowed to shake at 150 RPM and 37°C for 8 hours or to an OD600 of 0.8 

to create a working culture.  For the solid media experiments 10 µl was removed from the 

working culture and spread on the surface of each medium type.  The plates were allowed to 

incubate overnight at 37°C.  They were rated according to the density and number of colonies 

present on the plate surface present following overnight growth.  For the liquid media 

experiments, 10 µl was removed from the working culture and was inoculated into 990 ml of test 

media.  Three replicates were made of each media type.  The baffled flasks were allowed to 

incubate overnight at 37°C and 150 RPM for approximately 16 hours.  The flasks were assayed 

for turbidity and the OD600 was determined using with 1 ml samples.  The 16 hour culture was 

diluted into fresh test medium and the OD600 was measured hourly to generate a growth curve.  

Each flask was inoculated with a starting OD600 of 0.02 and was allowed to incubate at 37°C and 

150 RPM.    

Low-osmolarity growth: 

 P. aeruginosa PAO1 was inoculated from glycerol stocks with 10 µl into 10 ml of sterile 

LB Miller media.  The media was vortexed until the cells were fully dispersed.  10 µl of the first 

past stock was used to inoculate 99 ml of LB Miller media.  The baffled flask was allowed to 

incubate at 37°C and 150 RPM overnight for approximately 16 hours.  The low osmolarity 

medium was based on LB medium and contained tryptone and yeast extract but no sodium 

chloride.  After 16 hours the P. aeruginosa cells were exposed to 250 µM farnesol or to the 

methanol only as a control for 8 hours.  The cultures were then split where half of the cells in 
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each condition were exposed to high osmolarity LB and low osmolarity LB.  There were three 

replicates for each media condition.     

C. elegans virulence assay  

 The assay for fast killing of C. elegans by P. aeruginosa requires a high salt growth 

medium.  The high osmolarity PGS media was used (see appendix), and fast killing was scored 

after 8 hours. E. coli 0P50 that does not kill C. elegans, was used as a control.  Glycerol stocks of 

E. coli 0P50 were obtained from Dr. W.W. Walthall’s collection at Georgia State University and 

were grown according to the method described in the strains and cultivation section.  P. 

aeruginosa and E.coli cultures were first grown overnight in 100 ml of LB-Miller broth at 130 

RPM and 37°C.  A 10 µl disposable inoculating loop was used to create a lawn of bacterial cells 

on the high osmolarity PGS agar plates.  The plates were allowed to incubate at 37°C for 16 

hours and 24 hours at 25°C.  Then the plates were seeded with 20-30 L4 stage C. elegans 

(provided by Dr. W.W. Walthall, Georgia State University).  The plates were observed under a 

dissection scope to quantify the exact number of C. elegans present on each plate.  The plates 

were then allowed to incubate at 25°C for eight hours in the dark.  After eight hours the number 

of live C. elegans were quantified.  Live C. elegans were defined as exhibiting movement across 

the bacterial lawn or movement once touched with a hair-thin metal probe.  C. elegans were 

counted as dead if they exhibited no movement upon stimulus.  The number of survivors at the 

end of eight hours was used to determine the percent mortality when compared to deceased.   
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MIC assay- Tobramycin 

 A stock solution of Tobramycin (Sigma T-1783) with a concentration of 100 mM was 

made in 50 ml of sterile water.  The stock solution was then aliquoted into 5 ml volumes and 

stored at -20°C until thawed for use.  A working solution of 50 mM was made just before use in 

the assay with sterile water.  Cells of P. aeruginosa GSU3 were removed from glycerol stock 

and inoculated into 100 ml of sterile LB Miller media and allowed to incubate for 16 hours at 

37°C and 150 RPM.  The MIC assay was performed in Costar® (catalog no. 3473) 24 flat bottom 

microtiter plates.  The total volume for each well was 1 ml.  In each well the final volume was 

adjusted with sterile LB Miller media.  The volume of DMSO + E,E-farnesol working solution 

was made by making a 1:10 dilution of 3.8 M stock E,E-farnesol solution (100 µl into 900 µl of 

DMSO).  The two conditions tested were, GSU3 cells exposed to 250 µM E,E-farnesol 

solubilized in DMSO and GSU3 cells that were only exposed to DMSO (66 µl) .  Each condition 

was exposed to a range of Tobramycin concentrations that were shown in the literature to be 

effective in inhibiting the growth of GSU3.  The concentrations tested were 0.5 µg/ml, 0.75 

µg/ml, 1 µg/ml, 1.5 µg/ml.  One row was used to test the effects on growth of no Tobramycin on 

each condition.  One row was used to determine the changes in OD that may be caused by 

compositional changes in the culture medium for each condition.  All components were present 

without any cell culture.  The wells were set-up as reported in the following table: 
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Table 5: Sample organization for MIC assay 

Row Dilution 

µg Tobramycin / 

ml 

Volume 

Tobramycin 

µl working solution 

Volume DMSO 

+ E,E-farnesol: 

250 µM stock 

(µl) 

Volume blank 

media 

(ml) 

Volume inoculum 

(µl) 

1 0 0 6.6 990 5 

2 0.5 5 6.6 984 5 

3 0.75 7.5 6.6 981 5 

4 1 10 6.6 978 5 

5 1.5 15 6.6 974 5 

 

Table 5: Organization of samples in a 24 well microtiter plate for incubation and growth in the Tobramycin MIC 
assay.  Each row had different concentrations of Tobramycin while the volume for farnesol and inoculum remained 

the same.   
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Imaging cell morphology  

 Cells from the tobramycin MIC assay were imaged to better capture observed changes in 

morphology that occurred during the assay.  The cells (P. aeruginosa GSU3) were imaged in 24- 

well microtiter plates.  These plates were imaged by Dr. Simmons (Georgia State University) 

using the DeltaVision® microscope system, (Applied Precision, LLC., Issaquah, WA.)  

Pyruvate dehydrogenase activity assay  

 Cells of P. aeruginosa were lysed according to the proteomics protocol with the exception 

that the lysis buffer used was sterile 50 mM phosphate buffered saline and were stored at -80°C.  

The cells were thawed at room temperature and kept on ice once completely thawed.  The 

concentration of total protein was quantified using the 2D Quant Kit (GE Healthcare, Piscataway 

NJ) following manufacturers protocol and the final concentration was adjusted to 1 µg/µl with 50 

mM PBS for each sample.  500 µg of total protein was used for each sample that was tested.  

Three conditions were set up to establish adequate controls: reaction mixture without pyruvate 

and 500 µg sample protein, reaction mixture with 50 mM pyruvate and 500 µg sample protein, 

reaction mixture with 100 mM pyruvate and 500 µg sample protein.  The reaction mixture was 

composed of 2.5 mM NAD, 0.2 mM thiamine pyrophosphate, 0.1 mM Coenzyme A (Sigma 

Aldrich), 0.3 mM DTT, 1 mM Magnesium chloride (Sigma Aldrich), .6 mM INT 

(Iodonitrotetrazolium violet) (Sigma Aldrich).  This solution was made up in 10X solution to 

accommodate small masses of additives and the solution was stored at 4°C until ready for use. A 

stock solution of 5 mM pyruvate was also made and stored at 4°C until ready for use. The same 

volume of crude enzyme extract was added into each reaction vial (3 replicates per sample).  



 

 67 

Then a base line absorbance at OD500 was recorded before the pyruvate was added.  This value 

was subtracted from each sample to determine the difference in slope between the control and 

experimental conditions. To start the reaction an appropriate volume of 5 mM pyruvate was 

added. In order to get the correct concentration of the reaction mixture, pyruvate solution, and 

protein concentration the solutions were made up in the following manner.  Total working 

volume in each reaction vial was 1.5 ml.  A sterile clean 5 ml test tube was used.  First 150 µl of 

the 10X reaction mixture was added to the test tube.  Then 375 µl of the 4X pyruvate solution 

was added to the test tube.  Then the volume of crude sample needed to add the same 

concentration of total protein to each vial was calculated and added.  The total volume of 

reaction mixture, pyruvate solution, and crude protein solution used was added together and this 

value was subtracted from 1.5 to determine the volume of water to add to make the total volume 

of each sample 1.5 ml. Before the pyruvate solution was added the optical density was recorded 

of one of the samples to obtain a blank base-line value.  Once the reaction was started, 300 µl 

was removed and placed into a 96-well plate the absorbance was read at OD490 in the Victor 

(Perkin-Elmer, Wellesley, MA) and 1 ml was assayed for absorbance in the Turner at OD500. The 

Victor was programmed to take an OD reading every second for three minutes for each 

individual well.   The reading in the Turner was taken every 10 seconds for three minutes.  All 

timing for reactions began once the reaction mixture was added.  
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Results 

 

Overview 

 The goal of this project was to determine the effects exposure to E,E-farnesol had on the 

expression proteome of P. aeruginosa.  The approach taken was to utilize two-dimensional gel 

electrophoresis based proteomics to identify proteins which showed significant differences in 

abundance as a result of exposure to E,E-farnesol within the cytosol of P. aeruginosa. Two 

studies employed Differential In-Gel Electrophoresis (DIGE) techniques while the remainder 

were based on a two-dimensional Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

(SDS-PAGE).  Once proteins of interest (those proteins that showed a significant change {P- 

value ≤ 0.05} in abundance  {average ratio +/- ≤ 0.05}) were found, assays to validate the 

findings were used to put the results from the proteomics data into physiological context.  In 

each of the proteomics studies, the goal was to identify spots that corresponded to proteins that 

exhibited a statistically significant and biologically relevant change in abundance. Protein spots 

that exhibited an average value of +/- .05 and a p-value of .05 or less were considered to be 

statistically significant.   

 The statistical tests to obtain an average value and a p-value were performed using the 

statistical tool function provided in ImageMaster or in DeCyder.  The p-value was employed to 

establish statistical significance of the change in abundance across all of the biological and 

experimental replicates.  The average value is a measure of the change in abundance of a 
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particular protein spot.  A positive average value indicates an increase in abundance while a 

negative average value indicates a decrease in abundance.  

 The results reported from the image analysis software were in the form of 3D 

topographical images. The graphical image of the gel was generated by DeCyder® version 5. 

(The 3-D graphical image is a topographical representation of pixel intensity present in the gels 

that were excited by the specific wavelengths for the particular CyDye® label used. The 3D 

images are provided to better visualize the differences in abundance as peak height and volume, 

and to provide a visual comparison of adjacent protein spots.  Also included in the data report 

from the spots identified with DeCyder® version 6.5 was the distribution graph that displayed the 

change in abundance in all of the samples within the data set.  The x-axis of the distribution 

graph reports the particular condition that was tested, and the y-axis reports the standardized log 

abundance.  The standardized log abundance is calculated from the Cy2 standard that is present 

in each DIGE study. With the 3D topographical image and distribution graph it is then possible 

to easily visualize the relationship between each individual gel.  The mean is also present in the 

distribution graph to highlight the overall trends present in the data for a particular condition to 

more easily visualize increases or decreases in abundance.   
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Experiment 1: Exposure of P. aeruginosa PAO1 to mixed isomers of 30 µM farnesol in the 

pI range of 3-11 

 Figure 13 reports a protein of significance from the initial proteomics study with farnesol.  

This study focused on the effect of P. aeruginosa PAO1 exposed to 30 µM farnesol.  The 

farnesol used was a racemic mixture and was not solubilized in a solvent prior to addition to the 

broth culture of P. aeruginosa.  Protein peak C2 shows a significant decrease in abundance even 

though the nearest neighbors show an increase in abundance (A2 and B2) when compared to the 

control that was not treated with farnesol. Peak C2 decreased in peak height as well as peak 

volume as compared to peak C1. This protein was selected for MS analysis because its average 

ratio was > +/- 2.0 and exhibited a p-value less than .05. MALDI TOF-TOF analysis identified 

peak C2 as Flagellin type B from P. aeruginosa.  
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Figure 13: DeCyder image of Flagellin B as subsuquently identified by proteomic analysis 

of P. aeruginosa PAO1 with 30 µM racemic farnesol in the pI range of 3-11  

 

 

 

 

 

 

 

 

 

Figure 13:  3D image from DeCyder that displays a decrease in abundance in P. aeruginosa PAO1 exposed to 30 
µM racemic farnesol. 
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Experiment 2: P. aeruginosa PAO1 and GSU3 exposed to 25 µM and 250 µM E,E-farnesol, 

pI 3-11 

The results presented in figure 14 were generated in the DIGE study where two different 

concentrations of farnesol (25 µM and 250 µM) and two different strains of P. aeruginosa  

(PAO1 and GSU3) were analyzed.  Peak A2 demonstrates an increase in abundance in peak 

height and in peak volume.  The most evident chance in abundance is the peak base area.  The 

increase in A2 is evident despite the decrease in abundance of the near neighbor peak B2 as 

compared to the control B1. The protein spot (identified by MS analysis to be GMP synthase) 

exhibited an increase in abundance (1.62) in the cells of both strains that were exposed to 

farnesol, at both doses.  There was no statistically significant difference in GMP synthase 

abundance levels between the two different strains when exposed to either 25 or 250 µM E,E-

farnesol. At 250 µM levels of E,E-farnesol the mean lines for both strains cross indicating no 

significant difference in abundance between the two strains.  
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Figure 14:  DeCyder image of GMP synthase as subsequently identified by proteomic 

analysis of P. aeruginosa PAO1 and GSU3, pI 3-11. 

 

Figure 14: Results from DeCyder®version 5 to determine the effects that 250 µM E,E-farnesol has on two strains of 
P. aeruginosa PAO1 and GSU3.   These results show that there is a statistically significant increase in both strains 
for GMP synthase as compared to cells of the same type that were not exposed to E,E-farnesol.  The average ratio 

was 1.62 and the p-value was .002. 

 

 

 The results presented in figure 15, which are also from experiment 2, show the change in 

abundance for the protein spot (that was later identified by MS analysis to be dihyrolipoamide 

dehydrogenase).  This protein exhibited an average value of -1.19 and a p-value of .007.  

Interestingly, the trend appears when observing the distribution graph that a closer grouping of 
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decrease in abundance is present in the cells of PAO1 and GSU3 that were exposed to 25 µM 

E,E-farnesol seen when the cells were exposed to 250 µM E,E-farnesol do not present as 

condensed results and some of the biological replicates show a less marked decrease in 

abundance when compared to the control.   

Figure 15: DeCyder image of Dihydrolipoamide dehydrogenase identified by proteomic 

analysis of P. aeruginosa PAO1 and GSU3. 

 

Figure 14: Results from DeCyder®version 5 to determine the effects that 250 µM E,E-farnesol has on two strains of 
P. aeruginosa PA01 and GSU3.   These results show that there is a statistically significant decrease in both strains as 
compared to cells of the same type that were not exposed to E,E-farnesol.  The average ratio was -1.19 and had a p-

value of .007.  

  

control E,E-farnesol exposed 

A1 

B1 

C1 
D1 

A2 

B2 
C2 

D2 



 

 75 

Experiment 3: Planktonic P. aeruginosa PAO1 exposed to 25 µM E,E-farnesol, pI range 

4.5-5.5 

 The data presented in table 6 are a summary of all protein spots that were identified as 

proteins of interest in the DIGE study that focused on the pI range of 4.5-5.5 for the effects of 

E,E-farnesol on P. aeruginosa and which were subsequently identified through MS.   Table 6 

reports the name and accession number for each protein along with the p-value, average ratio, 

theoretical pI, theoretical molecular weight, and a summary of its function within the cell. 

Statistical graphs and 3D topographical views of these proteins of interest identified through MS 

analysis were a) ATPase PilB, b) major porin and structural outer membrane porin OprF 

precursor, c) Aconitase B, d) amidase, e) NAD-dependent glutamate dehydrogenase, f) Chain A, 

structure of Arginine Deiminase, g) outer membrane protein and related peptidoglycan-

associated (lipo)proteins and are shown in Figures 1-5 respectively.   

 In each of the graphical images, the 3D image shown on the left is from the control 

samples and the 3D image on the right was from the E,E-farnesol exposed cells.  The statistical 

graph provides the experimental conditions on the x- axis and the standardized log abundance on 

the y-axis.  Also present on the graph is the mean of standardized log abundance of each of the 

samples in the study.  Each individual circle on the graph represents one gel and the standardized 

log abundance of the matched spot.  
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Table 6: Summary of identified proteins by proteomic analysis of P. aeruginosa PAO1 

exposed to 25 µM E,E-farnesol in IPG range of 4.5 to 5.5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Table summarizing proteins identified by DeCyder and MS analysis that was statistically significant.  This table 
reports the MS identity, average ratio, p-value, pI, molecular weight, and summarized function. Shaded rows indicate 
proteins that are presented more in-depth in Figures 1-5. 
 

MS ID p-value Average ratio pI MW (Da) FXN 
ATPase PilB, Type II secratory pathway, 

ATPase PulE/Tfp pilus assembly 
 

ZP_00972151 
 

.0099 -2.50 4.85 56424.28 Cell motility and 
secretion 

Pyruvate dehydrogenase complex, 
dehydrogenase component E1 

 
ZP_00971965 

.0049 -1.83 5.72 41629 Metabolism 

Major porin and structural outer 
membrane porin OprF precursor  

 
COG2885 

gi|84321510 

.0083 -1.97 5.0 37640 Secretion and 
membrane 

stability 

COG1049: Aconitase B  
ZP_0097612 

 

.024* 1.78 5.37 94185.43 Central 
metabolism 
TCA cycle 

peptidoglycan-associated (lipo)proteins  
gi|84321510   

 
COG2885   

      
 

.016* -1.63 4.42 23594.86 Membrane 
spanning region 

of OprF 

hypothetical protein PaerPA_01001051 
[Pseudomonas aeruginosa PACS2]  

 
 

.014* -1.65 Unk Unk Unk 

 amidase  
gi|15599358 

 

.0023 1.52 5.8 38000 metabolism 

hypothetical protein PaerP_01000692 
[Pseudomonas aeruginosa PA7] 

 

.0048 1.50 Unk Unk Unk 

ABC-type multi-drug transport system, 
ATPase and permease components 

 
ZP_00968441 

.0039 -1.51 5.25 67620 Defense 
mechanism 

NAD-dependent glutamate 
dehydrogenase[Pseudomonas aeruginosa 

PAO1] 
 

gi|15598264 

.0023 -1.53 4.8 48000 Amino acid 
metabolism 

Chain A, Structure Of Arginine Deiminase 
 

gi|42543632 

.039* 
 
 

-1.53 5.08 46069.98 Metabolism of 
amino acids and 

related molecules 
COG2885: Outer membrane protein and 

related peptidoglycan-associated 
(lipo)proteins [Pseudomonasaeruginosa 

C3719] 
 

gi|84321510 

.015* -1.54 4.42 23594.86 Membrane 
spanning region 

of OprF 

hypothetical protein PaerPA_01000945 
[Pseudomonasaeruginosa PACS2] 

.0023 -1.59 Unk Unk Unk 
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Figure 16:DeCyder image of  ATPase PilB identified by proteomic analysis of P. aeruginosa 

PAO1 exposed to 25 µM E,E-farnesol. 

 

 

 
 Figure 16: 3D topographical image and standardized log abundance generated by DeCyder®version 6  

 Result show that 25 µM E,E-farnesol affected planktonic P. aeruginosa PAO1. These results 

showed a statistically significant decrease (p-value .0099) and (fold change -2.5) in ATPase PilB 

as compared to PAO1 cells that were not exposed to E,E-farnesol.  The mean of the experimental 

values is approximately -0.3 while the mean of the control values is approximately 0.2. 

control 25 µM E,E-farnesol 
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Figure 17: DeCyder image of Major porin and structural outer membrane porin OprF 

precursor as identified by proteomic analysis of P. aeruginosa PAO1 exposed to 25 µM 

E,E-farnesol. 

 

Figure 17: 3D topographical image and standardized log abundance generated by DeCyder®version 6  

 

Result show that 25 µM E,E-farnesol affected the abundance of OprF precursors within the 

cytosol in planktonic P. aeruginosa PAO1. These results showed that there is a statistically 

significant decrease (p-value .0083 and fold change of -1.97) in OprF precursor as compared to 

cells of the same type that were not exposed to E,E-farnesol. 

control 25 µM E,E-farnesol 
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Figure 18: DeCyder image of Amidase as identified by proteomic analysis of P. aeruginosa 

PAO1 exposed to 25 µM E,E-farnesol 

 

Figure 18: 3D topographical image and standardized log abundance generated by DeCyder® version 6  

Result show that 25 µM E,E-farnesol affected the abundance of amidase within the cytosol in 

planktonic P. aeruginosa PAO1. These results showed that there is a statistically significant 

increase (p-value .0023) and fold change (+ 1.52) in amidase as compared to cells of the same 

type that were not exposed to E,E-farnesol. 

control 25 µM E,E-farnesol 
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Figure 19: DeCyder image of Arginine diminase as identified by proteomic analysis of P. 

aeruginosa PAO1 exposed to 25 µM E,E-farnesol  

 

Figure 19: 3D topographical image and standardized log abundance generated by DeCyder® version 6  

 

Result show that 25 µM E,E-farnesol affected the abundance of arginine diminase within the 

cytosol in planktonic P. aeruginosa PAO1. These results showed that there is a statistically 

significant decrease (p-value .039) and fold change ( -1.53) in arginine diminase as compared to 

cells of the same type that were not exposed to E,E-farnesol. 

control 25 µM E,E-farnesol 



 

 81 

 

Figure 20: DeCyder image of NAD-dependent glutamate dehydrogenase as identified by 

proteomic analysis of P. aeruginosa PAO1 exposed to 25 µM E,E-farnesol  

 

Figure 20: 3D topographical image and standardized log abundance generated by DeCyder®version 6  

Result show that 25 µM E,E-farnesol affected the abundance of NAD-dependent glutamate 

dehydrogenase within the cytosol in planktonic P. aeruginosa PAO1. These results showed that 

there is a statistically significant decrease (p-value .0023) and fold change (-1.53) in NAD-

dependent glutamate dehydrogenase as compared to cells of the same type that were not exposed 

to E,E-farnesol. 

control 25 µM E,E-farnesol 
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 Figure 21: DeCyder image of Pore region OprF (Outer membrane protein and 

related peptidoglycan-associated (lipo)proteins as identified by proteomic analysis of P. 

aeruginosa PAO1 exposed to 25 µM E,E-farnesol 

 

Figure 21: 3D topographical image and standardized log abundance generated by DeCyder®version 6  

Result show that 25 µM E,E-farnesol affected the abundance of pore region of OprF within the 

cytosol in planktonic P. aeruginosa PAO1. These results showed that there is a statistically 

significant decrease (p-value .015) and fold change (-1.54) in pore region OprF as compared to 

cells of the same type that were not exposed to E,E-farnesol. 

 

control 25 µM E,E-farnesol 
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Figure 22: DeCyder image of Aconitase as identified by proteomic analysis of P. aeruginosa 

PAO1 exposed to 25 µM E,E-farnesol  

 

Figure 22: 3D topographical image and standardized log abundance generated by DeCyder®version 6  

 

Result shows that 25 µM E,E-farnesol affected the abundance of aconitase within the cytosol in 

planktonic P. aeruginosa PAO1. These results showed that there is a statistically significant 

decrease (p-value .015) and fold change (-1.54) in aconitase as compared to cells of the same 

type that were not exposed to E,E-farnesol. 

control 25 µM E,E-farnesol 
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Experiment 4: Exposure of Biofilm P. aeruginosa PAO1 to 250 mM farnesol in the pI range 

of 3-11 

 

Table 7 presents the results from the proteomics experiment where P. aeruginosa PAO1 

cells were grown as a biofilm in the lumen of a Bard Bardex® All-Silicone Urinary Foley 

catheter.  The fully developed biofilm, as defined by a consistent blanket of cell growth on all 

sides of the lumen, was exposed to fresh media containing 250 µM E,E-farnesol.  The proteins 

were extracted using the proteomics protocols detailed in the materials and methods section and 

were analyzed for abundance changes using 2D SDS PAGE gels. The gels were analyzed using 

ImageMaster® Platinum (GE Healthcare).  The proteins of interest were identified using the 

histogram function to identify proteins that exhibited an increase or decrease in pixel intensity as 

compared to the control gels.  A limited number of gels were available for analysis due to sample 

loss from gel structural integrity failure.  Full statistical data was not available due to the limited 

number of samples (< 6).  The histogram function allowed for a general comparison between the 

control and experimental conditions. The 3D topographical image was used to assist in the 

determination that the match was accurate and that the reported fold change was accurate.  

Proteins of interest were removed from the gel and identified by mass-spectrometry.   

In table 7 the identity of each protein of interest is reported in the left column with the 

header MS Identity.  Identities were determined using MASCOT to search matches from the 

identified amino acid sequence.  The relative change in abundance is reported in the right hand 

column and the respective fold change is reported as a downward green arrow or an upward 
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orange arrow. A total of six proteins of interest were positively identified and are reported in 

table 7.   

 

Table 7: Mass-spectrometry identified proteins from proteomics project with P. aeruginosa PAO1 

biofilm exposed to 250 µM E,E-farnesol.  

MS Identity Relative change in abundance exhibited 
in cells exposed to 25 µM E,E-farnesol as 

compared to the control  
E3 subunit dihydrolipoamide 
dehydrogenase 
 
 

 

Arginine deiminase 
 
 

 

Succinyl-CoA synthetase beta-chain 
 
 

 

GroEL 
 
 

 

Elongation factor Tu (GTPase) 
 
 
 

 

Outer Membrane porin OprE 
 
 
 

 

Table 7: Proteins identified by MALDI-TOF-TOF MS and MASCOT database search.  Protein spots of interest identified 
with ImageMaster Platinum analysis software.   
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Experiment 5: Proteomic analysis of Co-culture of P. aeruginosa PAO1 with Candida 

albicans in the pI range of 3-11 

 

Table 8 presents results from the proteomics experiment where P. aeruginosa PAO1 cells 

were grown in co-culture with C. albicans. Pure cultures of both microorganisms were grown to 

a specific OD600 nm (see materials and methods section for details) then the cultures were mixed 

in fresh medium.  The co-cultured cells were harvested and their proteins extracted according to 

the proteomics protocol and were analyzed for abundance changes using 2D SDS PAGE gels. 

The gels were analyzed using ImageMaster® Platinum (GE Healthcare).  The proteins of interest 

were identified using the histogram function to identify proteins that exhibited an increase or 

decrease in pixel intensity as compared to the control gels. The 3D topographical image was used 

to determine that the match was accurate and that the reported fold change was accurate.  

Proteins of interest were removed from the gel and identified by mass-spectrometry.  The name 

of the protein is reported in the left column with the header MS Identity.  This was determined 

using MASCOT to search matches from the identified amino acid sequence.  The relative change 

in abundance is reported in the right hand column and the respective fold change is reported as a 

downward green arrow or an upward orange arrow.  The proteins that exhibited a decrease in 

abundance in the experimental condition have a downward green arrow.  The proteins that 

exhibited an increase in abundance in the experimental condition have an upward orange arrow.  

A total of four proteins of interest were positively identified and are shown in table 8.   
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Table 8: Mass-spectrometry identified proteins from proteomic analysis of co-culture 

between P. aeruginosa PAO1 and C. albicans SC5314.  

 
 

 
Table 8: Proteins identified by MALDI-TOF-TOF MS and MASCOT database search.  Protein spots of interest identified 

with ImageMaster Platinum analysis software.   
 

 

 

 

 

 

 

 

 

 

 

Putative copper transport outer membrane 
porin OprC precursor 

 
 

 

COG2235: Arginine deiminase 
 
 

 

COG1064: Zn-dependent alcohol 
dehydrogenase 

 
 

 

Conserved hypothetical protein 
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Figure 23: Illustration of proteins found in common in Biofilm, Co-culture, and Planktonic  

experimental conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Proteins identified that were present in two or more physiological conditions.  The direction of the black arrow indicated the change in 

abundance.  

 

Planktonic 

Co-culture Biofilm 

Arginine  
Deiminase 

OprC OprE 

OprF 

DLDH 
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Physiological tests to validate proteomics findings 

 

Osmotic Stress Assay 

 

To place the proteomics findings in a physiological context the effect that E,E-farnesol 

had on the ability of the cell to withstand osmotic stress was assayed.  The purpose of this assay 

was to determine if the decrease in abundance of porin precursors in the cytosol could lead to a 

destabilization of the outer cell membrane and structural integrity of the cell wall.  This test was 

based on placing logarithmic growth phase P. aeruginosa cells into low osmolarity LB medium.  

The ability of the cells to withstand stress was assayed using optical density at 600 nm.  A 

growth curve was recorded on samples in triplicate for each condition for six hours.  Over the 

course of the assay there was not a significant difference in growth patterns in the control cells 

that were not exposed to 250 µM E,E-farnesol.    
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Table 9: Growth curve of P. aeruginosa PAO1 exposed to 250 µM E,E-farnesol under low 

osmolarity conditions 

 

 

 

Table 9:  Growth curve of P. aeruginosa PAO1 exposed to 250 mM E,E-farnesol.  The change in turbidity was 
determined using a spectrophotometer at 600 nm. 
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Fast killing virulence assay in C. elegans 

 

 

The effect of exposure to farnesol on the virulence of P. aeruginosa was assayed using 

the C. elegans plate virulence assay. The two plate types used were those made with spent 

medium from C. albicans and those without.   In order to determine the percent mortality from 

the C. elegans plate assay the number of animals that survived was subtracted from the initial 

inoculum value.  Then the percentage of those that did not survive was determined from the 

number of survivors.  The results presented in table 30 represent the percent mortality for the 

assay.  P. aeruginosa PAO1 cells that were grown without any components from C. albicans 

caused a mortality rate in C. elegans of 56 %.  When P. aeruginosa was grown on plates that did 

have components from C. albicans the mortality rate was slightly higher than the control but was 

significantly lower than the P. aeruginosa cells alone.  The mortality rate for the control strain E. 

coli cells was on average 18.5 % this was due to the animals sticking to the edge of the plate.  

Based on these results the presence of farnesol containing spend medium from C. albicans does 

have a role in reducing the virulence of P. aeruginosa in the fast killing C. elegans assay. 
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Table 10:  Effect of E,E-farnesol on P. aeruginosa PAO1 virulence in C. elegans fast killing 

assay 

 

 

 
 
Table 10: Results from fast killing assay with C. elegans.  Agar plates were made that were spiked with spent 
medium from C. albicans or were only LB Miller agar.  C. elegans animals were inoculated and counted.  After 
eight hours the animals were counted again and the number of live and dead animals were quantified.  The plates 
that were spiked with spent medium from C. albicans did decrease the mortality of P. aeruginosa in the fast killing 
assay.  
 
 
 
 
 
 
 
 
 
 
 
 

E. coli OP50 P. aeruginosa PAO1 

 
spent medium spent medium 
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Validation of activity of Dihydrolipoamide dehydrogenase  

In order to validate the proteomics results for dihydrolipoamide dehydrogenase, a 

component of the pyruvate dehydrogenase enzyme complex.  The activity of pyruvate 

dehdrogenase was quantitated using a colormetric assay to detect enzyme kinetics (Table 11).  

The activity of pyruvate dehdrogenase was detected at the rate that iodonitrotetrazolium violet 

was reduced and caused a color change.  The slope of the line was used to determine if the 

kinetics for cells exposed to 25 µM E, E- farnesol were significantly lower than those cells that 

were not.  The results show that there was not a significant difference in the slope of the line for 

the to conditions. 
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Table 11: Enzyme Activity of Pyruvate Dehydrogenase 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 11: This table reports the data from the Pyruvate dehydrogenase activity assay.  The enzyme kinetics is based 
on the slope of the line.  The absorbance of this assay is measured at 37 degrees Celsius and pH 7 at 490 nm using 
the Victor spectrophotometer. The assay begins colorless and as NADH is produced tetrazolium purple is reduced 
and causes a darker color change that can be measured.  The greater the degree of color change in less time is the 
greater the speed of the enzyme.  The slope of both lines was determined to be .0008 using Excel’s regression tool.  
The similarity in slope of both conditions does not show any difference in the enzyme activity of Pyruvate 
Dehydrogenase in either condition.   
 
 

 

Antibiotic susceptibility to tobramycin in P. aeruginosa cells exposed to E,E-farnesol  

 

In order to validate the results for a decrease in abundance of OprF the ability of E, E-

farnesol to affect the susceptibility of P. aeruginosa GSU3 to Tobramycin was assayed.  This 

assay tested P. aeruginosa against a range of concentrations from .2 to 1.5 µg/ ml of 
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Tobramycin.  The red line represents the control where cells were not spiked with E, E-farnesol 

during the experiment.  The blue line represents the experimental condition where cells were 

exposed to 250 µM E,E-farnesol.  The ability of the cells to survive was determined by turbidity 

measurements at 600 nm using the Victor spectrophotometer.  It appears that at lower 

concentrations the turbidity of the cultures exposed to E,E-farnesol is higher than the control.  

However, at approximately 0.8 µg/ ml the turbidity experiences a dramatic drop and the cells that 

were exposed to farnesol are more susceptible to Tobramycin than the control.   
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Table 12:  The effect of exposure to 250 µM E,E-farnesol on antibiotic susceptibility in P. 
aeruginosa PAO1 

 

 

Table 12: Minimum inhibitory concentration assay to test level of susceptibility of P. aeruginosa GSU3 to 

Tobramycin. 

 

Microscopy of P. aeruginosa cells exposed to tobramycin with or without E,E-farnesol 

 

At the completion of the MIC assay it was apparent that the colonal morphology of the 

cells in the two different treatment conditions exhibited distinct differences.  The colonies 

floating on the surface were imaged by microscopy by Dr. Robert Simmons at Georgia State 

University.  The cells exposed to 250 µM E,E-farnesol exhibited a very diffuse morphology 

while the control cells had a very condensed group of cells at the center of the broth.    

E,E-farnesol 
control 
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Figure 24: Image of P. aeruginosa GSU3 exposed to 250 µM E,E-farnesol and 0.8 µg/ ml 
Tobramycin 

 
 

 

Figure 24: Microscopic image of colonal morphology of cells in broth containing 250 µM E,E-farnesol and 0.8 
µg/ ml Tobramycin 
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Figure 25: Image of P. aeruginosa GSU3 exposed 0.8 µg/ ml Tobramycin 
 

 

Figure 25: Microscopic image of colonal morphology of cells in broth 0.8 µg/ ml Tobramycin 
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Discussion 

Overall proteomics results 

 The expression proteome data for proteins with a pI range of 3-11 in P. aeruginosa cells 

exposed to E,E-farnesol at 25 and 250 µM E,E-farnesol did not show a highly robust change 

(fold change in average ratio > 3) in abundance.  This outcome was seen in all of the experiments 

in this study, regardless of the mode of exposure to E,E-farnesol or whole cells of C. albicans.  

However, proteins of interest were identified that showed a statistically significant change in 

abundance (a fold change in average ratio greater or equal to 2). Proteomics techniques have the 

power to identify modest changes in protein abundance. This is possible due to the rigor of 

experimental design when taking full advantage of CyDyes® to stain the samples and DeCyder® 

software to image the gels.  To determine the validity of the average ratio, in terms of statistical 

significance, the p-value provided a test to demonstrate the relevance of the observed results.  

This made it possible to identify proteins that exhibited a modest change in abundance but 

potentially had greater physiological implications within the biological system. A great deal of 

effort was placed in regulating the cell lysis and downstream protein isolation procedure in order 

to reliably compare results between experiments. 

 In the third proteomics project, the IPG range of 4.5 to 5.5 was studied several proteins 

identified had a theoretical pI that fell just outside the IPG range of the strip.  Proteins that were 

acidic had a pI of 4.4 (peptidoglycan –associated lipoprotein and outer membrane protein and 

related peptidoglycan- associated protein). The identification of these proteins in the mass-spec 

analysis could be due to modifications within the cell that shifted the experimental pI of the 
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protein closer to 4.5.  Although these proteins were picked from two distinct protein spots on the 

gel they were identified with the same MS ID.  Upon inspection of the gel the two resolvable 

spots have the same molecular weight but exhibit a shift in pI, thus suggesting modifications 

made to the protein while still present within the cytosol.  The function of peptidoglycan –

associated lipoprotein within the cell is to form the channel region within one of the porins, most 

commonly OprF, which is discussed in further detail later.   Two proteins were also identified 

that had a theoretical pI that was higher than the IPG range of the strip used in the experiment, 

suggesting modifications that made the proteins more acidic in the experimental condition.  With 

a pI of 5.7, pyruvate dehydrogenase subunit E1 was identified and with a pI of 5.8, amidase was 

identified.  Both of these proteins are important to metabolism within the cell and modifications 

were made to the protein that altered the experimentally the pI of these proteins was below the 

theoretical pI.  

 A potential reason for the modest change in abundance of the proteins of interest may have 

been the proportion of cells that were able to come into contact with E,E-farnesol directly.  E,E-

farnesol is a hydrophobic compound and was very difficult to effectively solubilize without a 

solvent present in the solution. Methanol and DMSO were used to increase the solubility of E,E-

farnesol. Numerous discrete and easily visible micelles were noted upon addition of the E,E-

farnesol and solvent mixture to liquids, indicating the inability to fully solubilize E,E-farnesol 

into the broth even in the presence of a solvent.  Therefore, the proportion of cells within the 

sample culture that had physical contact with E,E-farnesol may have been reduced as compared 

to a compound that would easily solubilized and evenly diffuse throughout the sample medium.   
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Individual proteins showing statistically relevant change 

 In order to put the results into a context that could begin to explain the response that cells 

of P. aeruginosa has when exposed to E,E-farnesol a literature search was performed to 

determine the role that each protein has been documented to play in normal physiology of the 

cell and in virulence.  Each protein of interest is introduced in terms of its function within the 

cell, any significant roles in virulence, and how the findings in this study fit into the overall story 

of the interaction between Pseudomonas and Candida. 

 

GMP Synthase 

Guanine Monophosphate synthase (GMP synthase) belongs to the functional class of 

enzymes for amino acid biosynthesis and metabolism and for purine biosynthesis and 

metabolism. In this study this protein exhibited an increase in abundance (+ 1.62) (Figure 14). 

The overall function of anthranilate synthase is to act as the first biosynthetic step in tryptophan 

biosynthesis.  GMP synthase can be found in plants, fungi, and bacteria.  In plants, anthranilate 

synthase is important for the production of secondary metabolites that provide the plant 

protection through the production of metabolically derived compounds such as endogenous 

auxin (Niyogi, et al., 1992). 

 A second anthranilate synthase gene has been found in P. aeruginosa (Calfee, et al., 

2001).  This second anthranilate synthase has been shown to be the first step in phenazine 
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production. The role of GMP synthase in anthranilate synthase activity is very intriguing because 

anthranilate synthase is very important in the production of phenazine compounds.  The function 

of anthranilate synthase is to convert chorismate into anthranilate. The mechanism of GMP 

synthase, as a subunit of anthranilate synthase component II, acts as a potential phenazine 

modifying enzyme converting phenazine-1 carboxylate → phenazine 1-carboxamide (Farrow, et 

al., 2007).  Anthranilate can then go on to feed the need for either tryptophan synthesis or 

phenazine production.  

In order to better understand the role of this enzyme in amino acid metabolism, purine 

synthesis and metabolism, or even phenazine production physiological tests will be utilized to 

pinpoint the exact node of action for this enzyme and how E,E-farnesol could influence its 

abundance within the cytosol.  It was demonstrated by Cugini et al. in 2007 that exposure to 

farnesol can inhibit PQS signaling and prevents the production of pyocyanin.  The data presented 

here suggests a potential pathway by which farnesol could be influencing the metabolic shifts 

within the cell to influence the production of pyocyanin.  It is possible that the cell is increasing 

the abundance of GMP synthase in order to overcome suppression lower in the metabolic 

pathway that leads to the production of pyocyanin in an attempt to continue production.  Future 

work to better understand the relationship between exposure to E,E-farnesol and abundance of 

GMP synthase to the production of pyocyanin would be to determine if GMP synthase is a 

regulatory check point that can be regulated at the level of the gene, RNA transcripts, or at the 

protein.  
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Dihydrolipoamide dehydrogenase 

 Data from MS analysis of statistically significant spots in 2D DIGE SDS-PAGE gels 

revealed a decrease in the enzyme dihydrolipoamide dehydrogenase in cells exposed to 25 and 

250 µM E,E-farnesol in both PAO1 and GSU3 as compared to control cells that were not 

exposed (Figure 15).  Dihydrolipoamide dehydrogenase (DLDH) is a homodimeric flavoprotein 

that reoxidizes dihydrolipoamide via NAD reduction, catalyzing the electron transfer between 

pyridine nucleotides and disulfide compounds (Carothers, et al., 1989). DLDH has been found to 

be an integral part of many multi-enzyme processes to fulfill the aerobic and anaerobic metabolic 

needs of the cell.  DLDH is present in several multi-enzyme complexes responsible for the 

conversion of 2-oxo acids to acyl-coA derivative. DLDH containing multi-enzyme complexes 

include: pyruvate dehydrogenase as the E3 subunit where its function is to oxidize pyruvate, 2-

oxo glutarate dehydrogenase where its function is to oxidize alpha-ketoglutarate, 2-oxo acid 

dehydrogenase complexes where its function is to oxidize branched-chain alpha-ketoacids, 

glycine clevage multienzyme complex as the L protein, acetonin dehydrogenase complex. This 

system, although not present in Pseudomonas, is found in gram-positive organisms such as 

Bacillus subtilis, and Clostridium magnum (Weiland, 1983; Deitrich, 1990; Kruger, et al., 1994; 

Oppermann, 1994; Berg, 1997; Aevarsson, et al., 1999; Huang, et al., 1999). 

 DLDH is present in organisms that lack 2-oxo acid dehydrogenase complexes such as 

Trypanosoma burcei and archeabacteria (Danson, et al., 1987; Danson, 1988b) but the function 

is still not fully understood. Richarme and Heine reported in 1986, and Richarme reported in 
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1989, that organisms that possess 2-oxo acid dehydrogenases, such as E. coli, also utilize DLDH 

in the metabolism and transport of sugars such as galactose, maltose, and ribose across the 

membrane.  In S. pneumoniae, defective DLDH was linked to decreased capsule production that 

was thought to be due to disrupted alpha-galactoside metabolism and galactose transport (Smith, 

et al., 2002) cell cycle progression in fission yeast (Jang, et al., 1997), and acts as a highly 

immunogenic surface antigen in Neisseria meningitidis (de la Sierra, et al., 1997; Exposito, et 

al., 1999). 

 One goal of the project was to validate a decrease in Pyruvate dehydrogenase (PD) activity 

in PAO1 cells grown in the presence of 25 µM E,E-farnesol. The PD enzyme is composed of 

three subunits: E1 pyruvate decarboxylase, E2 lipoyl reductase, and E3 dihydrolipoyl 

dehydrogenase. Physiological tests to evaluate the role of dihydrolipoamide dehydrogenase were 

performed by measuring the overall activity of the intact enzyme complex pyruvate 

dehydrogenase. The results from the assay indicated that there was no difference in the enzyme 

kinetics in cells that were exposed to 25 µM E,E-farnesol as compared to cells that were not 

exposed. The conclusion can be made that the change in abundance of the E3 subunit caused by 

exposure to 25 µM E,E-farnesol does not have an impact on the overall activity of pyruvate 

dehydrogenase. According to the literature, dihydrolipoamide dehydrogenase does play an 

important role in alpha-ketoglutarate, 2-oxoglutarate dehydrogenase, and branched chain alpha-

keto acid degradation.  It is possible to exclude the role that DLDH plays in pyruvate 

dehydrogenase as a point where a decrease in abundance of DLDH in response to exposure to 

E,E-farnesol would have an affect.  This finding is also supported in the literature because it has 

been demonstrated that exposure to farnesol does not affect the survivability or growth rate of P. 
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aeruginosa.  If there were a decrease in pyruvate dehydrogenase activity this would severely 

impact the ability of cells to utilize glucose as a source of carbon.  If this enzyme were affected 

there should be measurable shifts in growth rate as the cell had to adjust its metabolism to obtain 

carbon from other sources than glucose.    

 Future directions to determine the role of a decrease in abundance of DLDH are to explore 

the functionality of other enzymes that rely on DLDH as a subunit.  A strong candidate is 2-

oxoglutarate dehydrogenase that is important in the degradation of phenylalanine.  2-

oxoglutarate dehydrogenase is responsible for converting L-tyrosine into p-

hydroxyphenylpyruvate.  This metabolic pathway is significant for the production of phenazine 

compounds.  The aromatic portion of phenylalanine is utilized in the phenazine backbone.  A 

possible explanation for the decrease in abundance in DLDH in the cells exposed to E,E-farnesol 

may be that two isoenzymes for DLDH are found in Pseudomonas species where one is 

responsible for activity in central metabolism and the second plays a role in phenazine 

production (Carothers, et al., 1989).  An enzyme assay, such as the one performed to determine 

activity of PD, would not reflect the global effects of the enzyme subunit as it functions in 

multiple distinct pathways within the cell in both central and secondary metabolism. 

Dacheux et al. identified pyruvate dehydrogenase as an important player in the Type III 

secretion system (TTSS) in P. aeruginosa.  P. aeruginosa relies on export systems to secrete 

virulence factors that aid in defense against the host immune system and for the infection 

process.  The TTSS is activated by a depletion of calcium in vitro.  The role of PD in the TTSS 

was first determined by creating mutants that were deficient in Type III secretion and identifying 

genes that were disrupted.  Based on the results of this assay it was found that in 14 out of the 25 
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isolated TTSS-mutants the operon for pyruvate dehydrogenase (aceAB operon) was affected.  It 

was determined from this result that the role of PD in the induction of the TTSS was to allow 

expression of the operon exsA, which is a part of the operon for the Type III secretion system.  

This relationship was validated with a plasmid that fused the exsCBA promoter to the gfp gene.  

If exsAB is expressed there will be detectable fluorescence.  In PD mutants the exsCBA 

promoter was not activated in response to calcium depletion.  Virulence of PD mutants was 

tested using rat models of pneumonia to compare the mutant’s virulence with that of wild-type 

PA with intact pyruvate dehydrogenase complexes.  Wild type strains resulted in 100% mortality 

while mutants in both PD and other operons of the TTSS had a 0% mortality rate.  A future 

direction for this project in this area would be to determine if exposure to E,E-farnesol could 

affect the expression of the TTSS genes and the production of secretion products.   

 

ATPase PilB 

This protein demonstrated a decrease in abundance (-2.5 fold change) (Figure 16) in 

planktonic cells of P. aeruginosa PAO1 exposed to 25 µM E,E-farnesol.  The significance of this 

finding is based on ATPase’s role in facilitating pili assembly by providing the energy required 

for movement after assembly.  Research on P. aeruginosa motility in the literature has shown 

that the presence of E,E-farnesol inhibits swarming motility.  If the cell is less capable of 

extending and moving pili twitching motility is not possible because the engine that is essential 

for movement has run out of gas (O’Toole, 1998; Kohler, 2000; Chiang, 2005).  

The importance of a decrease in twitching motility is its role in biofilm formation.  

O’Toole and Kolter found in a study in 1998 that flagella and pili are very important for the 
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ability of P.aeruginosa to form a biofilm.  This finding is interesting in that if exposure to 

farnesol is able to decrease the ability of P. aeruginosa to form functional pili and result in a 

decreased ability to form a robust biofilm.  In light of the data present in the literature and the 

findings in this study farnesol affects the ability of P. aeruginosa to extend and retract pili, thus 

decreasing motility.   

 

OprF 

 The proteomics data from the exposure of P. aeruginosa to 25 µM of E,E-farnesol did 

result in the decreased abundance of OprF precursors within the cytosol and also the 

peptidoglycan-associated proteins that form the channel within the membrane.  This finding 

suggests that the entire complex that forms the OprF porin was present at a lower abundance.  

The major physiological role of OprF in P. aeruginosa is as a major non-specific surface porin.  

This porin is homologous to the major porin OmpF in Escherichia coli.  Interestingly, this 

protein is larger than that of OmpF however diffusion rates through this porin in P. aeruginosa 

are much slower.  This is due to the ability of this protein to exist in two different conformations 

that are temperature sensitive (Sugawara, 2006).   

 There could be several implications for how and why E,E-farnesol would influence the 

abundance of OprF.  One major theory is that by decreasing the abundance of OprF it is possible 

to make the cell membrane and cell-wall less stable.  The physiological experiment performed in 

this study to test the effect of growth under osmotic stress (Table 9) was performed to determine 

if a decreased abundance of OprF could impact the ability of the cell to resist osmotic stress and 
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undergo lysis.  The results indicated that there was no significant difference in the ability of P. 

aeruginosa cells grown in the presence or absence of 250 µM E,E-farnesol to have growth 

affected by osmotic stress.  In the literature farnesol has not been shown to impact the growth or 

survivability of P. aeruginosa, so even under osmotic stress the cells are still viable.  In 2002, 

Hassett, et al reported that OprF mutants that completely lacked OprF did show susceptibility to 

osmotic stress when grown in low osmolarity medium.  This finding suggests that although E,E-

farnesol was shown to decrease the abundance of OprF did not affect the ability to withstand 

osmotic stress.   

 The ability of E,E-farnesol to influence the cell membrane in gram-positive bacteria has 

been shown in studies performed with Staphylococcus aureus.  Figure 25A demonstrates the 

ability of E,E-farnesol to inhibit the formation of biofilm in S. aureus that is proportionally 

related to the dose of E,E -farnesol.  Figure 25B demonstrates the ability of E,E -farnesol to 

disrupt the cell membrane.  Increased uptake of ethidium bromide under exposure to greater 

concentrations of E,E -farnesol suggests a destabilization of the cell membrane.  Figure 26 

demonstrates the ability of E,E -farnesol to non-specifically enhance a broad range of antibiotic 

classes partially thought to be due to the destabilization of the membrane and a disruption of the 

transport mechanisms used to export antibiotics once they have entered the cell or the ability of 

large antibiotic molecules to better permeate inside the cell.   
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Figure 26:  Biofilm formation of S. aureus and uptake of ethidium bromide when exposed 

to E,E -farnesol. 

 

Figure 26:  Uptake of ethidium bromide and biofilm formation of S. aureus when grown in the presence of 
varying concentrations of E,E-farnesol.  (Source: Jabra-Rizk, et al., 2006) 
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Figure 27: Antibiotic susceptibility patterns when S. aureus grown in presence of E,E-

farnesol 

 

Figure 27:  Patterns of antibiotic susceptibility when S. aureus is grown in the presence of varying 
concentrations of tt-farnesol.  (Source: Jabra-Rizk, et al., 2006) 

 

 To test if exposure to E,E-farnesol could affect antibiotic susceptibility in P. aeruginosa a 

minimum inhibitory concentration assay was performed with Tobramycin (Table 12).  The 

parameters of the assay tested whether the presence of farnesol in the growth medium and 

antibiotic could decrease the dose necessary to prevent growth of Pseudomonas.  The results 

presented in this study did show that exposure to 250 µM E,E-farnesol did decrease the dose 

necessary for Tobramycin to inhibit growth, as determined by optical density.  This assay also 

showed interesting in colonal morphology in doses of Tobramycin just before complete 

inhibition.  In Figure 24, the cells of P. aeruginosa that were exposed to farnesol demonstrated 

string like structures and were not condensed.  One potential reason for this finding is that 

communication was disrupted and the cells could not orient themselves in a more defensive 

position.  With the cells in a more diffuse orientation it would be possible for more Tobramycin 

to reach more cells and exhibit an effect.  The role that farnesol played in increasing antibiotic 
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susceptibility could be due to two reasons.  The first would be an alteration in permeability of the 

membrane allowing more of the antibiotic to enter the cell and exert an effect.  The second 

possibility would be that the ability of the cells to communicate were altered so that it was not 

possible to form a condensed morphology and the number of cells that were exposed to the 

antibiotic was greater.  In Figure 25, there was not farnesol present and the cells formed a tight 

cluster that would allow fewer cells to be in contact with the tobramycin.    

 OprF has also been shown in the literature to affect the ability of P. aeruginosa to perform 

surveillance of the activation status of the host immune system. This protein is able to bind to 

interferon-gamma located outside the cell that is secreted by activated T-cells. Wu et al. reported 

this finding in 2005 where it was shown that OprF in P. aeruginosa has a role in binding 

Interferon gamma (IFN-γ) that is secreted by activated T-cells in the human host.  Once OprF 

binds IFN-γ, a currently undetermined signaling cascade occurs that leads to the induction of 

genes resulting in production of proteins and secondary metabolites critical to the infection 

process, for example pyocyanin (Figure 28). A hypothesis to explore based on the results of this 

study is to test the ability of E,E-farnesol to prevent the response of P. aeruginosa to IFN-γ by 

measuring quorum- sensing related gene expression and pyocyanin production.  

 The significance of a reduction in OprF in P. aeruginosa exposed to a fungal quorum 

sensing compound is the potential to reduce the ability of P. aeruginosa to prepare itself for 

attack by the human host.  It is possible to hypothesize that exposure to farnesol has the ability to 

diminish the virulence of P. aeruginosa by decreasing its ability to sense activation of the host 

immune system and response by secreting pyocyanin. 
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Figure 28:  Schematic for proposed role of OprF in sensing activation of t-cells by the 

detection of IFN-gamma. 

 

Figure 28: Source (Wagner, et al., 2006) Quorum sensing system and possible role of OprF in 
the detection of IFN-gamma released from activated T-cells.   

 

  The role of OprF within the anaerobic biofilm, which is of great importance to the CF lung 

infection model, is believed to play a role as a redundant transporter of nitrate and nitrite that 

does not fall into the classical nitrate transporter category.  A second possible function of OprF 

within the CF lung infection model that was determined using OprF mutants was its role in 

stabilizing the cell wall.  It was found that OprF mutants did not form a biofilm within CF 
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mucous that was as robust as the wild-type.  One theory was that the lack of OprF allowed for 

the peptidoglycan to become unstable.  This was further illustrated by the reduced growth in low 

salt environments where the cell wall would have been placed under osmotic pressures that lead 

to cell lysis (Hassett, et al., 2002). Data from the osmotic stress assay (Table 9) did not 

demonstrate any delay in growth or decrease in growth rate in P. aeruginosa cells exposed to 

E,E-farnesol as compared to the control which did not have exposure to E,E-farnesol.  

 It was also shown that the OprF mutant exhibited poor NIR activity, which is thought to 

recruit normal OprF in the anaerobic biofilm. Although not fully characterized, it is believed that 

OprF may play a role in denitrification and the maintenance of the global nitrogen cycle (Hassett, 

et al., 2002). The importance of OprF to the ability of PA to form biofilms under anaerobic 

conditions was determined using proteomic analysis that revealed in an anaerobic biofilm model 

the abundance of OprF increased approximately 40 fold as compared to the aerobic biofilm.  It 

was also found that in chronically infected CF patients there was an increase in the titer of OprF 

antibodies.  OprF is a surface-exposed protein that holds great promise as a viable drug target to 

affect difficult to treat anaerobically growing P. aeruginosa cells. 

 The protein OprF has been implicated in several physiological functions in P. aeruginosa 

that relates to virulence and attachment.  This protein holds much promise for future areas of 

research to identify new methods to combat infection with this organism.  One major important 

factor of OprF is its candidate as a vaccine target for P. aeruginosa infections (Price, et al., 

2001). This protein is continually presented on the outer surface of the cell and does not exhibit a 

great deal of variation between strains.  OprF has also been implicated in its role for allowing P. 

aeruginosa to adhere to lung epithelial surfaces (Azghani, et al., 2002).  This is a significant 
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finding because the ability of farnesol to influence attachment to inanimate surfaces has been 

tested in multiple studies and the result has consistently been that no effect was seen.  A model 

system could be used to mimic an epithelium and the ability of farnesol to affect attachment to 

this surface could be tested.  The results presented in this study provide evidence that farnesol 

could decrease the ability of P. aeruginosa to attach to an epithelial surface since it decreases the 

abundance of OprF.   

 

Summary and Future Directions 

 The proteins that were identified in this study from P. aeruginosa showed a change in 

abundance in response to exposure to E,E-farnesol. ATPase PilB and Flagellin B have a clear 

role in motility.  The importance of motility mediated by the flagella and the pili have 

documented roles in initiating biofilm formation. The results in this study suggest that there is a 

decrease in both of these proteins and could potentially affect the ability of P. aeruginosa to 

form a biofilm when in contact with a variety of surfaces.  One future direction will be to 

determine the ability of P. aeruginosa exposed to E,E-farnesol to attach to different surfaces 

including medical devices and epithelial surfaces as mediated by the pili and flagella.   

    The direct role of porins in moderating quourm sensing and the ability of bacteria to 

detect activation of the host immune system in P. aeruginosa is a developing area of research 

that is gaining greater understanding.  Documented interactions between OprF and interferon-

gamma produced by the human adaptive immune system illustrate the complexity of the 

interaction between bacteria and the human host.  Future directions to better determine the role 
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that exposure to E,E-farnesol could have include performing assays where P. aeruginosa is 

exposed to both E,E-farnesol and interferon-gamma to measure the level of activation of quorum 

sensing regulated genes and measure the degree of production of virulence factors that are 

regulated by those genes.    

 Proteins identified in this study that were shown to change in abundance upon exposure to 

E,E-farnesol have not been directly linked to biofilm formation and quorum sensing as 

documented in the scientific literature.  However, additional experiments are needed to confirm 

their peripheral role in these processes.  Potential experiments include constructing mutants that 

lack enzymes such as GMP synthase and dihydrolipoamide dehydrogenase to determine if 

production of quorum sensing regulated virulence factors are affected.  These experiments could 

potentially provide a targeted approach to find the role that these enzymes play, since they are 

members of larger enzymatic complexes that play multiple roles in the cell for central and 

secondary metabolism.   
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Protocol:  Buffers and Reagents for 2D DIGE proteomics 

Protocol: Cell Lysis and Crude Protein Extract 

Protocol: First-dimension strip reswelling for cup or paper bridge loading 

Protocol: First-dimension strip reswelling for in-gel rehydration 

Protocol: Casting Analytical Gels 

Protocol: Casting Preparative Gels 

Protocol: Pyruvate Dehydrogenase Assay 

Protocol: C. elegans Virulence Assay 

 

 

 

Protocol : Buffers and Reagents 

 

Stock solutions 

0.75% acetic acid – 4L 

 ____4L ddH2) 

 ____30ml acetic acid 
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1% Contrad 70 – 20L 

 ____200ml Contrad 70 

 ____20L ddH2O 

 

1.0M magnesium acetate – 50ml 

 ____add 10.73g MgAcetate to 30ml ddH20 

 ____make up to 50ml and filter into autoclaved cent bottle 

 

10% SDS – 250ml 

 ____25g SDS to 200ml ddH2O 

 ____make up to 250ml and filter into clean, rinsed bottle 

 

1.0M Tris, not pH’d – 100ml 

 ____add 12.1g Tris to 80ml ddH2O 

 ____make up to 100ml and filter into clean, rinsed bottle 

 ____store at 4°C 

 

1.0M Tris, pH 8.0 – 500ml  

 ____add 60.6g Tris to 400ml ddH20 

 ____pH to 8.0 with concentrated HCl 

____make up to 500ml and filter into clean, rinsed bottle 

 ____store at 4°C 
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1.5M TrisCl, pH 8.8 – 2L 

 ____1.5L ddH2O into rinsed flask 

 ____363g Tris 

 ____pH to 8.8 with concentrated HCl 

 ____make up to 2L and filter into clean, rinsed 2L bottle 

 ____store at 4°C 

 

Sample preparation 

10mM Lysine – 10ml 

 ____10ml ddH2O 

 ____18mg lysine (MW 182.6) 

 ____filter into sterile tube and store at 4°C. 

 

 

Lysis buffer #1 (30mM Tris, 7M urea, 2M thiourea, 4% CHAPS, Complete) – 25ml 

 ____make 50ml 8M urea, 2.3M thiourea 

  ____24ml ddH20 

  ____24g urea 

  ____9g thiourea 

  ____make up to 50ml with ddH2O 

  ____add 500mg amberlite and stir for 1 h 
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  ____filter into clean, rinsed bottle 

 ____22 ml deionized urea/thiourea solution 

 ____750 ul 1M Tris, not pH’d 

 ____150 ul protector reagent (or 250 ul nuclease mix for #2) 

 ____3 min-Complete tablets (or 500 ul protease inhibitor for #2) 

 ____1g CHAPS 

 ____pH to 8.6 with HCL 

 ____make up to 25 ml 

 ____1ml aliquots and store at -70°C 

 

2X Lysis buffer (7M urea, 2M thiourea, 4% CHAPS, 2% DTT, 2% IPG) – 5 ml 

 ____4.4 ml urea/thiourea solution 

____200 mg CHAPS 

 ____100 mg DTT (or 8 mg for Destreak rehydration solution) 

 ____100 µl IPG 3-11NL 

 ____make up to 5 ml, aliquot 500 ul, and store at -70°C 

 

Up to 150 ul diluent for cup loading and destreak (7M urea, 2M thiourea, 4% CHAPS, 0.1% 

DTT, 1% IPG 3-11NL) 

 ____4.4 ml urea/thiourea solution 

 ____200 mg CHAPS 

 ____4 mg DTT 
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 ____50 ul IPG 3-11NL 

 ____make up to 5 ml, aliquot 500 ul, store at -70°C 

  

1st dimension 

Rehydration buffer (7M urea, 2M thiourea, 4% CHAPS, 0.4% DTT, 1% IPG) 

 ____22 ml urea/thiourea solution 

 ____1g CHAPS 

 ____100 mg DTT 

 ____ 250 ul IPG 3-11NL 

 ____make up to 25 ml and store 1 ml aliquots at -70°C. 

 

Casting 

Bind–silane working solution (prepare fresh) – 10 ml 

 ____8 ml 200 proof ethanol 

 ____1.8 ml ddH2O 

 ____200 ul glacial acetic acid 

 ____12.5 ul bind-silane  

 

Monomer solution (40% T, 3% C) – 1L 

 ____add 12 g Bis to 1L 40% acrylamide in the supplied bottle 

 ____dissolve and store at 4°C 
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Gel solution (12.5%) – 900ml 

 ____280 ml 40% monomer solution (12% 270ml) 

 ____225 ml 1.5M TrisCl pH8.8 

 ____382 ml ddH2O (12% 392)  

 ____9 ml 10% SDS 

 ____450 ul TEMED 

 ____mix and degas for at least 10 min 

 ____add 3.6 ml 10% APS 

 

Gel solution (12.5%) – 450 ml 

 ____140 ml 40% monomer solution 

 ____113 ml 1.5M TrisCl, pH8.8 

 ____191 ml ddH2O 

 ____4.5 ml 10% SDS 

 ____225 ul TEMED 

 ____mix and degas for 20 min 

 ____1.8 ml 10% APS 

 

Gel solution (12.5%, Protogel) – 450 ml 

 ____188 ml Protogel monomer solution 

 ____113 ml TrisCl pH 8.8 

 ____142 ml ddH2O 
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 ____4.5 ml SDS 

 ____225 ul TEMED 

 ____mix and make 10% APS (2ml ddH20 and 200mg APS) 

 ____add 1.8 ml 10% APS prior to pouring 

 

Displacing solution (0.375M TrisCl pH 8.8, 50% glycerol, 0.002% bromophenol blue) – 120 ml 

____20 ml ddH20 

____30 ml 1.5M TrisCl pH 8.8 

____70 ml glycerol 

____240 ul 1% bromophenol blue 

 

Water saturated butanol – 110 ml 

 ____100 ml butanol 

 ____10 ml ddH20 

 

2nd dimension 

Agarose sealing solution (0.5% agarose and 0.01% bromophenol blue in electrophoresis buffer) 

– 50ml 

 ____50 ml 1X electrophoresis 

 ____250 mg 

 ____5 mg bromophenol blue 
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2X SDS running buffer ([final] 15mM Tris, 192mM glycine, 0.2% SDS) – 10L 

 ____transfer 1.5L ddH20 to flask 

 ____add 60.5 g Tris 

 ____add 288 g glycine 

 ____add 40 g SDS 

 ____dissolve and make up to 2 L 

 ____add 2 L concentrate to 8 L ddH2O in 15 L carboy and store at room temp 

 

Equilibration stock solution (50mM TrisCl pH 8.8, 6M urea, 30% glycerol, 2% SDS, 0.01% 

bromophenol blue – 1L 

 ____250 ml ddH2O 

 ____352 ml glycerol 

 ____34 ml 1.5M TrisCl pH 8.8 

 ____360 g urea 

 ____dissolve and make up to 1L 

 ____20 g SDS and dissolve 

 ____100 mg bromophenol blue 

 ____50 ml aliquots in 50ml centrifuge tubes and store at -20C 

 

 

Protocol: Cell Lysis and Crude Protein Extract 
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Crude protein extract 

 

 

1) Remove cell pellets and solubilization buffer (1 tube per pellet) from -80°C and allow 

solubilization buffer to thaw at room temperature. Solubilization buffer should be 

vorrtexed until all components are fully in solution.  No precipitated urea should be 

visible.  The cell pellets should be placed in an ice bucket until ready for use. 

 

 

2) Remove one cell pellet from ice bucket and add one aliquot of solubilization buffer to the 

cell pellet tube.  

 

 

3) Vortex the slurry until the pellet is fully in suspension.  

 

  

4) Transfer slurry to sonication vessel, such as 15ml sterile Falcon tube, and incubate on ice 

for five minutes. 

 

 

5) Clean sonication tip with three rounds of ethanol and water.  Set up beaker on a stir plate 

with ice water to submerge the sonication vessel into. 
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6) Fix probe into sonication vessel.  The tip should be at the center of the vessel and at the 

midpoint of the sample slurry.  

 

 

7) Sonicate sample for a total process time of two minutes.  The cycle should be one second 

pulse on and .5 seconds pulse off time.  Pause the sonication every 30 seconds to allow 

the sample to cool on ice for approximately one minute.  Replace ice to the ice bath 

beaker as needed.   

 

 

8) Transfer lysate to a low-bind Eppendorf tube and place the tube on ice until all samples 

have been processed.  

 

 

9) Place samples into an Eppendorf centrifuge and spin at maximum speed (13,500 RPM) 

for ten minutes. 

 

 

10) Transfer clarified lysate to fresh low-bind Eppendorf tube. 
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Protocol: First-dimension Strip Reswelling for Cup or Paper-bridge Loading 

 

IPG strip rehydration with reswelling tray for cup or paper-bridge loading 

only 

 

1) Using a toothbrush, clean the reswelling tray with IPG detergent (or other non-ionic 

detergent). Rinse thoroughly with ddH20 and air dry (if needed, use crewipes to dry). 

 

2) Remove appropriate amount of Destreak rehydration solution from -20°C. Bottle contains 

3 ml of solution and should be thawed at room temperature. A total of 450 µl is required 

per well per strip. Once thawed, vortex vigorously until white solid urea dissolves. 

 

3) Add IPG buffer (or other ampholytes) to 0.5% v/v (15ul to 3ml, 60ul to 6ml). 

Note: Ampholyte range should match that of the strip. However, many prefer 3-11NL 

ampholytes when using 3-7NL or 4-7 strips. 

 

4) For right –handed persons, orient the reswelling tray so that the acidic (+) end is to the 

left. Acidic end has the little circular well. Pipet 450 ul of rehydration solution along the 

length of the channel.  Do no go beyond the length of the strip. 

 

5) Remove one strip at a time from the packaging.  Place the remaining strips in the freezer 

until ready for use.   Once the packaging is opened remove the strip with curved forceps.  
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Then use fingers to separate the protective plastic strip from the gel.  Once the two have 

separated use the forceps to grasp the cover strip.  Hold onto the back strip with fingers.  

Once protective strip is removed grasp the back strip (with the gel) with the forcepts.  

Ensure that the gel side of the strip is facing down when placed in the reswelling tray.  

Introduce the basic end first into the channel at the furthest point where the Destreak 

solution was added.  Then gradually introduce the strip into the channel making sure that 

the Destreak solution is evenly distributed along the strip.  The acidic end should be over 

the small well holes.  

 

6) Cover each strip with 3.4 ml of Drystrip cover fluid (mineral oil). 

 

7) Insert cover and balance with black knobs and balance indicator in the reswelling tray. 

 

8) Incubate strips for 20-30 hours at room temp. 

 

 

 

Protocol: Casting Analytical Gels 

 

(Analytical: gels not bound to plate; used for imaging only) 

 

14 gels in large gel box: for smaller gel box (6 gels) use volumes in parenthesis.  
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Reagent prep: 

 

Gel solution (12.5%) – 900ml; mix in flask with spout for vacuum tube 

 ____280 ml (147ml) 40% monomer solution 

 ____225 ml  (117.5ml) 1.5M TrisCl pH8.8 

 ____382 ml  (196ml) ddH2O  

 ____9 ml  (4.7ml) 10% SDS 

 ____450 µl  (188µl) TEMED 

 ____mix and degas for at least 10 min ( place clean mouse pad over mouth, attach 

vacuum tube to spout and turn on.  Vacuum is adequate when mouse pad dimples into mouth of 

flask) 

 

 

 

10% APS – 4ml 

 ____add 1g APS to 9.6ml ddH2O 

 ____add 9.4 ml (4.7 ml)  fresh 10% APS (add immediately prior to pouring) 

 

Displacement solution – 120 ml 

____20 ml ddH20 

____30 ml 1.5M TrisCl pH 8.8 
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____70 ml glycerol 

____240 ul 1% bromophenol blue 

 

Protocol 

1) Clean plates and dry with Kimwipes or allow to air dry 

2) Prepare solutions  

3) Load gel box and level.  Place thin spacer first in the box, push as far as possible to the 

left of the box with the “wonder wedge.”  Then place the back plate with the spacer and 

push to the left.  Finally, place the top plate and push as far to the left.  Place another thin 

spacer.  Repeat this until six complete sandwiches are in place.  Then fill the remainder of 

the box with the thick spacers until they are flush with the edge of the box.  Place gel-seal 

around the perimeter of the caster on the grey gasket.  Gently smear with single gloved 

finger.  Place the front of the caster onto the back.  Gently tighten the screws on the 

bottom of the caster.  Place the red and black clamps, and then fully tighten the screws on 

the bottom.  Ensure that the seal is tight (the gel-seal will spread). 

4) Add 10% APS to gel solution and mix gently; prevent formation of bubbles (There is 

SDS in this solution!!!) 

5) Pour gel solution directly from the flask slowly until 1cm below top of front plate Add 

displacement solution to large gel caster only 

6) Overlay each gel with 1ml water saturated butanol with a 1ml pipette.  Be sure to 

introduce between the plates of the gel sandwich.  Drag pipette smoothly from one end of 

the sandwich to the other.  Be consistent in application for each sandwich! 
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7)  Allow to polymerize for at least 1.5 hours 

8)  Remove sandwiches, trim excess acrylamide, rinse thoroughly with double deionized 

water, and lay clean gels on plastic wrap.  Fold plastic wrap over the bottom half of the 

gel to create a pocket.  Then add gel storage solution (approximately 10 ml total) to the 

bottom, the notch on the top and the sides.   Fold plastic wrap to enclose all of the gel 

solution. 

9) Allow to polymerize overnight at room temperature lying horizontally.  Then in the 

morning place at 4°C until ready for use.  Make sure that the gel is moist and that the gel 

storage solution was not lost.  If they gels dry out they are useless. 

 

 

 

 

 

 

Protocol: Casting Preparative Gels 

 

(preparative: gels bound to plate.  To be used for spot picking and MS 

analysis) 

 

1) Prepare 2L of 1% HCL 

2) Pour 1.5L  1% HCL into staining bucket 
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3) Insert plates to have gels bound to (decide if top or back plate.  Must be consistent!!!) 

stack carefully on top of each other 

4) Incubate at 30 rpm for 2h 

5) Wash top plates with 1% Decon Labs detergent (Do not use excessive detergent or time- 

the plates will become etched and ruined).  Rinse with deionized water, then double 

deionized water and shake off excess water and leave to dry protected from dust 

contamination 

6) Repeat (5) with acid-treated plates 

7) Prepare  4 ml bind solution per gel 

Bind–silane working solution  – 10 ml 

  ____8 ml 200 proof ethanol 

  ____1.8 ml ddH2O 

  ____200 ul glacial acetic acid  

  ____12.5 ul bind-silane  

8) Place dried plate on clean surface with face to have gel attached facing up. 

9) Evenly spread 4 ml bind solution over each plate and allow Bind solution to cure before 

covering.  Then cover to protect from dust and let sit for one hour. 

10) Place markers two cm away from spacers and 10.5 cm from bottom and allow plates to 

sit for an additional hour.  When placing the markers be sure to be consistent on each 

plate.  If placing markers on the top plate make sure to accommodate for the space that 

the spacers on the back plate will take up.  Make a template to follow to ensure that the 

markers are placed consistently.  
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11)  Prepare solutions according to Casting (analytical) protocol 

12) Wipe treated plates with 200 proof ethanol before loading caster and let them sit several 

minutes before placing in the caster.  The bind solution will volatize and stick to the 

opposite plate if not allowed to vent properly.  If binding to the top plate make sure that 

the face with the bind solution is placed on the inside of the gel sandwich (facing the 

back plate). 

Protocol: Pyruvate Dehydrogenase Assay 

Read absorption at 500 nm at 25℃ 

Reagents: 

Reaction solution:  (2.5 mM NAD, 0.2 mM thiamine pyrophosphate, 0.1 mM Coenzyme A, 0.3 

mM DTT, 1 mM Magnesium chloride, .6 mM INT) Make up in 10X solution to accommodate 

small masses of additives. Make reaction solution up to a total volume of 10 ml 

First add 7 ml of double deionized water then add the following components 

17 mg of NAD (MW 685.41) 

.9 mg of Thiamine Pyrophosphate (MW 460.77)   

.767 mg of Coenzyme A (MW 767.53) 

.462 mg of DTT (MW 154.25) 

.952 mg of Magnesium Chloride (MW 95.21) 

3.03 mg of INT (MW 505.70) 
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Then store the reaction solution a 4℃ until ready for use. 

Make up fresh pyruvate (MW 110.04) prior to use.  Start with a 4X solution of 5mM pyruvate by 

adding .55 mg into 10 ml of double deionized water. 

Cell prep: 

Disrupt the cells to be assayed into appropriate lysis buffer (50 mM PBS) and centrifuge at 

10,000 x g for 10 minutes to pellet any cellular debris. Collect the supernatant and discard the 

pellet.  Remove 10 µl to use in quantification of the amount of protein present in the lysate.  

Adjust the final concentration of all samples to 1 µg/µl with 50 mM PBS.   

Add the same volume of crude enzyme extract into each reaction vial (3 replicates per sample).  

Then take a base line OD before the pyruvate is added.  This value will be subtracted from each 

sample to determine the difference in slope between the control and experimental conditions.  

To start the reaction mixture add an appropriate volume of 5 mM pyruvate (MW 110.04) to start 

the reaction.  Then read the OD at 500 nm at 25℃ 

 

In order to obtain the correct concentration of reaction mixture, pyruvate solution, and protein 

concentration make up the solution in the following manor: 

Total volume in each reaction vial 1.5 ml 

Make up a 10x solution of the reaction mixture and add 150 µl  
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Then make up a 4x solution of pyruvate and add 375 µl 

Then calculate the volume of crude sample needed to add the same concentration to each vial x 

and subtract from (150 + 375 = 525).  Take that value and add that volume of water 

       525 - (X µl of crude lysate)= vol. of water  

* This gives you 975 ml to work with 

The goal is to have the total volume in the vial at 1.5 ml 

Then remove 300 µl and assay in the Victor at 490nm and take 1 ml and assay in the Turner at 

500nm. 

Protocol overview: 

     1. disrupt cells 

     2. quantify and adjust concentration to 1 µg/µl with 50 mM PBS 

     3. Add lysate and reaction mixture without pyruvate and take OD 

    4. Add pyruvate and measure color change 

    5.  Calculate the difference between the two slopes (with and without pyruvate) to de termine 

the rate of activity 
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Protocol: C. elegans Virulence Assay 

Assay for fast killing (based on high salt medium use high osmolarity PGS media). The fast 

killing assay should be scored 8 hours post inoculation. 

Grow P. aeruginosa and E. coli 0P50 control overnight in LB medium to an approximate OD600 

nm of 1. 

Inoculate assay Petri plates (5.5 cm) with 10 µl of cell suspension and spread over plate with 

glass spreader incubate for 16 hours at 37℃ and 24 hours at 25℃ 

Seed plate with 20-30 L4 stage C. elegans once seeded incubate at 25℃ 

Score after 8 hours (% live organisms compared to survival on the E. coli 0P50 control strain. 

Considered dead when touched by a metal probe and no response) 

Assay for slow killing (based on low salt medium use NG medium) follow protocol above but 

score after 3 days. 

 

Media 

NG: Nematode growth medium source US biologicals 

Agar 17.5 g/L 

Sodium Chloride 3.0 g/L 

Peptone 2.5 g/L 
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Cholesterol 0.005 g/L 

Total: 

23.005g/L 

 

500g makes 21.7 liters 

Directions per Liter: 

Dissolve 23.005 grams per liter of distilled/deionized (DDI) water. Heat with stirring 

until completely solubilized. Adjust pH as necessary. Dispense into appropriate 

containers. Loosen caps or cover with foil. Autoclave for 15 minutes at 121ºC (15psi). 

Cooling the N1000 solution: 

Place the sterile N1000 solution into the water bath 

N1000 solution needs 31 hour to cool to the desired temperature (58°C). If the media is 

not properly cooled when the CaCl2, MgSO4 and K2PO4 are added, crystals will form in 

the agar. 

Further preparing the media: 

Once the N1000 solution has cooled to 58°C, place flask(s) onto stir plate(s). Maintain 

temperature at 58°C Add the following: 

a) 1M K2PO4, pH 6.0: 25ml/liter N1000 solution 

b) 1M CaCl2: 1ml/liter N1000 solution 

c) 1M MgSO4: 1ml/liter N1000solution 

Allow the solution to mix for five minutes before starting to pour plates to ensure that a 
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homogeneous mixture has been achieved. 

Storage and Stability: 

Store powdered media at RT. Opened bottles should be capped tightly and kept in a dark, 

low humidity environment. Prepared media should be kept at 4°C and used within a short 

period of time 

PGS medium per Liter 

 

1% Bacto peptone 

1% NaCl 

1% glucose 

0.15M sorbitol 

1.7% Bacto agar 

 

LB medium 

* grow on 5 g NaCl in place of 10 g NaCl 
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