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FUNCTIONAL ROLE OF DEAD-BOX p68 RNA HELICASE IN GENE EXPRESSION 

by 

CHUNRU LIN 

Under the Direction of Zhi-ren Liu 

ABSTRACT 

How tumor cells migrate and metastasize from primary sites requires four major 

steps: invasion, intravasation, extravasation and proliferation from micrometastases to 

malignant tumor. The initiation of tumor cell invasion requires Epithelial-Mesenchymal 

Transition (EMT), by which tumor cells lose cell-cell interactions and gain the ability of 

migration.  The gene expression profile during the EMT process has been extensively 

investigated to study the initiation of EMT.  In our studies, we indicated that tyrosine 

phosphorylation of human p68 RNA helicase positively associated with the malignant 

status of tumor tissue or cells. Studying of this relationship revealed that p68 RNA 

helicase played a critical role in EMT progression by repression of E-cadherin as an 

epithelial marker and upregulation of Vimentin as a mesenchymal marker. Insight into 

the mechanism of how p68 RNA helicase represses E-cadherin expression indicated that 

p68 RNA helicase initiated EMT by transcriptional upregulation of Snail. Human p68 

RNA helicase has been documented as an RNA-dependent ATPase. The protein is an 

essential factor in the pre-mRNA splicing procedure.  Some examples show that p68 

RNA helicase functions as a transcriptional coactivator in ATPase dependent or 

independent manner.  Here we indicated that p68 RNA helicase unwound protein 

complexes to modulate protein-protein interactions by using protein-dependent ATPase 



  
 

activity. The phosphorylated p68 RNA helicase displaced HDAC1 from the chromatin 

remodeling MBD3:Mi2/NuRD complex at the Snail promoter.  Thus, our data 

demonstrated an example of protein-dependent ATPase which modulates protein-protein 

interactions within the chromatin remodeling machine.  

 
 

INDEX WORDS: DEAD-box, p68, phosphorylation, EMT, Snail, HDAC1, NuRD, 

ATPase, transcriptional regulation, protein-protein interaction 
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CHAPTER I 

GENERAL INTRODUCTION 

 

It is crucial for eukaryotic cells to respond to extracellular signals rapidly and 

precisely through regulation of protein expression, in order to survive in the living 

environment.  Three major routines control the protein expression levels: genetic 

modulation of gene or DNA sequence, including homologous recombination and 

transposable element; epigenetic chromatin modification via methylation and acetylation 

and transcriptional regulation through recruitment of transcriptional activators or 

repressors.  Post-translational modifications can alter protein stability and activity via 

ubiquitination, phosphorylation, methylation, acetylation, sulfation, prenylation and 

glycosylation etc. These modifications play decisive roles in cell signaling pathways in 

response to immense intracellular and extracellular signals.  In this thesis, I will focus on 

protein phosphorylation in the signaling transduction pathway(s) and the mechanisms of 

gene transcriptional regulation.  

 

1.1 Regulation of Gene Transcription 

Purification of bacterial transcriptional repressors and activators helps to elucidate 

how transcriptional machinery is being regulated in the eukaryotic system (Jacob and 

Monod 1961; Englesberg, Irr et al. 1965).  In eukaryotes, repressors control transcription 

of genes through interactions with particular DNA sequences upstream of transcriptional 

start point by preventing binding of RNA polymerase II. Positive regulation by activators
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occurs via binding with the cis-element of transcription − the promoter (Ippen, Miller et 

al. 1968). Protein-protein interactions between the activators and the general 

transcriptional machinery facilitate the assembly of a stable and catalytically activated 

transcription-initiation complex (Chen, Ebright et al. 1994; Li, Moyle et al. 1994).  

Sequence-specific DNA-binding transcription factors are one of the most important 

elements ensuring that genes are transcribed in a highly regulated fashion (Tjian 1978; 

McKnight and Kingsbury 1982). More importantly, signaling pathways modulate gene 

expression patterns predominantly by controlling the activities of the transcription 

factors.  

Epigenetic modification of chromatin acts as another important method to 

regulate gene transcription.  Gene expression has been shown to be primarily repressed 

by DNA methylation (Holliday and Pugh 1975).  DNA methylation is known to repress 

gene expression by recruiting histone deacetylase complex to methylated DNA to alter 

chromatin structure (Nan, Ng et al. 1998).  Nucleosomes, the basic building block of 

chromatin, consist of DNA string enwrapped around a histone octamer.  Acetylation of 

histone tails prevents the interaction of histone with transcription regulatory proteins 

(Hecht, Laroche et al. 1995). These interactions are also required for promoter-dependent 

specific gene transcription (Durrin, Mann et al. 1991) and for changing chromatin to a 

more open conformation (Tsukiyama, Becker et al. 1994).  Multi-proteins chromatin 

remodeling complexes, termed SWI/SNF (mating-type switch/sucrose non-fermenting) 

(Cote, Quinn et al. 1994; Kwon, Imbalzano et al. 1994), NURF (nucleosome remodeling 

factor) (Tsukiyama, Daniel et al. 1995; Tsukiyama and Wu 1995) and NuRD 
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(Nucleosomes remodeling and histone deacetylase) (Tsukiyama, Daniel et al. 1995; 

Zhang, Ng et al. 1999) have been described to alter chromatin architecture and stimulate 

transcription factor binding to promoter in an adenosine triphosphate (ATP)-dependent 

manner.  Furthermore, the two antagonistic enzymatic activities of histone 

acetyltransferases and deacetylases either activate or repress gene transcription, thus 

functioning as transcriptional regulators.  

 

1.2 The Pre-mRNA Splicing and the Spliceosome Assembly 

For most eukaryotic genes, the precise exclusion of pre-mRNA introns from 

mRNA precursor transcripts through the process of pre-mRNA splicing is an important 

step in gene expression.  The splicing apparatus must identify and remove introns to 

ensure the correct protein production.  Furthermore, certain genes must be alternatively 

spliced to generate appropriate protein isoforms in a strictly regulated manner (Collins 

and Guthrie 2000; Smith and Valcarcel 2000). The splicing reaction is accompanied by 

ATP hydrolysis.  The spliceosome, a multi-protein complex contains five small nuclear 

ribonucleoprotein particles (snRNPs) (U1, U2, U4, U5 and U6) and a large number of 

non-snRNP proteins.   By acting through complicated RNA-RNA, protein-protein and 

RNA-protein interactions, the spliceosome precisely excises each intron and ligates exons 

together in a correct order to form a mature mRNA (Sharp 1994; Jurica and Moore 2003).  

Most introns have a consensus 5’ splice site (5’ss) and a consensus branchpoint 

sequence followed by a 3’ splicing site (3’ss).  During the splicing process, the 

spliceosome is assembled on the pre-mRNA in a dynamic manner with several discrete 
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intermediates (Figure I-1) (Klein Gunnewiek, van de Putte et al. 1997). Firstly, 

recognition of the 5’ss by the U1 snRNP, along with the binding of the polypyrimidine 

tract and the branch point by U2 auxiliary factor (U2AF) and splicing factor1 (SF1) 

results in the formation of the commitment complex.  Secondly, recruitment of the U2 

snRNP to the commitment complex leads to the formation of complex A or the pre-

spliceosome. At this point, a pre-formed U4/U6•U5 tri-snRNP joins the pre-spliceosome 

complex, leading to the formation of the spliceosome complex B (Hodges and Beggs 

1994; Madhani and Guthrie 1994; Abovich and Rosbash 1997). Next, by remodeling 

RNA-protein and RNA-RNA interactions, catalytically competent complex C is formed.  

Finally, a two step chemical reaction is catalyzed by the spliceosome to remove the 

introns from the pre-mRNA and join the exons (Madhani and Guthrie 1994).  

The splicing process is characterized by a series of changes of snRNA-pre-mRNA 

and snRNA-snRNA interactions. Previous base-pair interactions are later dissociated and 

new base-pairing interactions are formed via remodeling of secondary and tertiary 

structures of snRNP molecules (Hamm and Lamond 1998).  Recognition of the 5’ss is an 

early event in the pre-mRNA splicing process. The 5’ss is recognized by 5 – 7 base pair 

interactions between the 5’ss and 5’-end of the U1 snRNA (Staley and Guthrie 1998). 

The U1:5'ss duplex is unwound to expose the same 5’ss sequence for pairing with the U6 

snRNA prior to the first step chemical reaction of splicing (Liu, Wilkie et al. 1996; Singh 

2002). However, before the U1:5’ss unwinding, the U4/U6•U5 tri-snRNP must be added 

to the pre-spliceosome. Presumably, addition of the tri-snRNP, unwinding of the U1:5’ss 

duplex and formation of the U6:5’ss duplex must be tightly coupled.  Therefore, the 
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multiple steps of recognition of a splice site in the spliceosome involve the formation and 

the remodeling of a number of RNA-RNA and RNA-protein interactions (Staley and 

Guthrie 1998; Singh 2002; Jurica and Moore 2003). 

 

1.3 DEAD-Box Protein Family 

It is generally believed that the remodeling the complex RNA-RNA and RNA-

protein interactions in the spliceosome is catalyzed by a family of DEAD/DExH (refer as 

DEAD: Asp-Glu-Ala-Asp) box putative RNA helicases (Schwer 2001; Will and 

Luhrmann 2001). This RNA helicase family, together with DNA helicase belongs to a 

helicase superfamily. According to the conserved amino acid motifs of the so-called 

“helicase motifs”, all putative helicases are grouped into four super families. The DEAD-

box proteins are members of superfamily II (Hall and Matson 1999).  The DEAD-box 

proteins have eight conserved motifs within the helicase core across the different species 

(Figure I-2). Mutational analyses and structural studies suggest that these conserved 

motifs are related to ATP hydrolysis, substrate binding or helicase activity.  A new motif, 

Q motif, was identified referring to a glutamine residue rich motif (Tanner 2003; Tanner, 

Cordin et al. 2003).  This Q motif is believed to bind and hydrolyze ATP.   

The x-ray crystal structures of a few members of DEAD-box proteins have been 

solved, including eIF4A (Benz, Trachsel et al. 1999; Caruthers, Johnson et al. 2000), the 

DEAD-box protein of Methanococcus jannaschii (Story, Li et al. 2001), Bacillus 

stearothermophilus (Carmel and Matthews 2004) and Drosophila Vasa (Sengoku, Nureki 

et al. 2006).  According to the biochemical data, the Q motif, motif I, motif II of domain I 
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and motif VI of domain II constitute part of the ATP-binding site, whereas motifs Ia, Ib, 

IV and V are involved in the process of RNA binding. To illustrate how a DEAD-box 

protein unwinds RNA duplex, biochemical analyses from Drosophila Vasa demonstrate 

that motifs Ia, Ib, VI and V form a cleft on the substrate binding site.  There is a strict 

bend in the RNA substrate.  This sharp bend of RNA facilitates the separation of the 

RNA duplex (Sengoku, Nureki et al. 2006).  

DEAD-box proteins have been reported to be involved in most RNA-related 

metabolism, including transcription, translational initiation, pre-mRNA splicing, mRNA 

decay, mRNA export and rRNA biogenesis. Although DEAD-box proteins function in 

different cellular processes, they act through similar enzymatic activities to modulate 

RNA-RNA or RNA-protein interactions to rearrange or assemble complex machinery.  In 

vitro studies demonstrate that many members of DEAD-box protein family have RNA-

dependent ATPase activities and RNA unwinding activities. Despite the high similarity 

of DEAD-box proteins with DNA helicase, DEAD-box proteins are not processive and 

only unwind short RNA-RNA duplex locally.  

A large body of evidence has shown that RNA helicase eIF4A is required for 

translation initiation (Rogers, Komar et al. 2002). Eukaryotic translation initiation factor 

(eIF4F) is a large protein complex recruiting the ribosome to mRNA. The DEAD-box 

protein eIF4A is proposed to form part of the cap-binding complex with the requirement 

for ATPase/helicase activity (Gingras, Raught et al. 1999). So far, two models are 

suggested to illustrate the role of eIF4A in translation initiation.  One is that eIF4A 

prepares for small ribosomal subunit scanning along 5’ eukaryotic mRNA by unwinding 
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or rearranging RNA-RNA duplex and tertiary structure of mRNA.  The second model is 

that eIF4A removes the coating proteins from the mRNA through the energy-driven 

motor (Svitkin, Ovchinnikov et al. 1996; Rogers, Komar et al. 2002). Another DEAD-

box protein Ded1 is demonstrated to be involved in eukaryotic translation initiation via a 

distinct mechanism (Chuang, Weaver et al. 1997; Noueiry, Chen et al. 2000). 

It has been long known that ATP hydrolysis is required for the pre-mRNA 

splicing. Extensive RNA structure rearrangement is necessary during the pre-mRNA 

splicing process, which is achieved by the putative RNA helicases to modulate short 

RNA-RNA duplex formed between snRNA-snRNA and snRNA-pre-mRNA molecules. 

The RNA helicases unwind RNA-RNA base-pairing (Staley and Guthrie 1998) and 

rearrange RNA-protein interactions (Singh 2002) at the expense of the energy derived 

from ATP hydrolysis. To date, eight yeast splicing factors and six mammalian proteins 

that are homologous to the RNA helicase superfamily have been implicated in the pre-

mRNA splicing process (Hamm and Lamond 1998; Luking, Stahl et al. 1998; Schwer 

2001; Will and Luhrmann 2001). Many of these proteins exhibits RNA unwinding 

activities in vitro (Laggerbauer, Achsel et al. 1998; Raghunathan and Guthrie 1998; 

Wang, Wagner et al. 1998; Schwer and Meszaros 2000). These putative RNA helicases 

are involved in every step of the pre-mRNA splicing process, including unwinding of the 

U1:5’ss duplex and the U4/U6 RNA helixes, dissociation of the protein-RNA interactions 

at the branch point to promote U2–branch point interactions and dissociation of the 

spliced mRNA from the spliceosome. 
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1.4 DEAD-Box Protein p68 RNA Helicase 

Human p68 RNA helicase is the gene product of DEAD-box polypeptide 5 

(DDX5) located at chromosome 17q21. Translation product of this gene is 614 amino 

acids long and characterized by the conserved DEAD motif as the putative RNA helicase.  

Human p68 RNA helicase was first identified by anti-SV40 large T antigen monoclonal 

antibody DL3C4 (PAB204) because of the cross-reaction with DNA tumor virus 

oncogene SV40 large T antigen (Crawford, Leppard et al. 1982; Ford, Anton et al. 1988).  

Sequence analyses reveal similarities between p68 and eukaryotic initiation factor eIF-

4A, suggesting that p68 may act as an ATP-dependent RNA helicase.  Protein p68 shows 

a distinct nuclear distribution and is thought to be important for cells division and 

proliferation with the observation of its high expression in dividing cells (Ford, Anton et 

al. 1988). In 1989, p68 RNA helicase was purified from human HEK cells and the 

purified protein exhibited RNA-dependent ATPase activity and helicase activity in vitro 

(Hirling, Scheffner et al. 1989).  Family members of DEAD-box proteins share conserved 

sequence, express ubiquitously in living cells and are considered to be involved in 

multiple RNA metabolism, including splicing, translation, RNA processing, RNA 

transport and rRNA biosynthesis/assembly (Iggo and Lane 1989; Chuang, Weaver et al. 

1997; Pugh, Nicol et al. 1999).  

The human p68 RNA helicase gene consists of 13 exons (Iggo and Lane 1989). 

Protein sequence contains 614 amino acids with a core region of 305 amino acids that 

consists of eight conserved sequence motifs (Figure I-3).  The motifs I, III and VI have 

been reported to be functioning as the ATP binding and hydrolysis sites. Motif IV is 
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proposed to harbor the helicase activity.  The motif V within helicase core is believed to 

be the RNA binding site (de la Cruz, Kressler et al. 1999). The functions of other motifs 

are still not very clear. p68 has a number of important sequence motifs located at the N- 

and C-terminus.  An RGG (Arg-Gly-Gly) repeat and an IQ motif located within the C-

terminus are suggested as the regulatory motifs by interacting with co-factors or 

harboring post-translational modification (Yang and Liu 2004; Yang, Yang et al. 2004; 

Yang, Lin et al. 2005; Yang, Lin et al. 2005).   

The role of p68 RNA helicase in regulating cell growth and proliferation was first 

discerned by the observation that p68 RNA helicase was barely detectable in quiescent 

cells and its expression was induced by serum (Stevenson, Hamilton et al. 1998).  

Comparing the levels of p68 mRNA and protein in tissue samples suggests that p68 

expression is developmentally regulated (Stevenson, Hamilton et al. 1998). Higher 

expression level of p68 is observed in developing brain and spinal cord of chick, frog and 

ascidians embryos, suggesting the important role of p68 in neural crest development 

(Seufert, Kos et al. 2000). An elevated p68 expression level was detected in tissue 

samples of colorectal adenoma patients in comparison to corresponding normal tissues. 

Furthermore, accumulated p68 protein is poly-ubiquitinated due to dysfunction of the 

proteasome-mediated degradation (Causevic, Hislop et al. 2001).  The dysfunctional 

regulation of p68 expression may cause tumor development and growth (Dubey, 

Hendrickson et al. 1997; Causevic, Hislop et al. 2001).   

Screening a cDNA library from nitric oxide (NO)-induced differential 

keratinocytes identified p68 RNA helicase, an important factor being upregulated upon 
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NO induction.  Expression studies in wound-healing process revealed that despite the 

down-regulated expression level in wounded tissue, p68 RNA helicase is exclusively 

localized within the nucleus and enhances the serum-induced keratinocyte proliferation 

and vascular endothelial growth factor (VEGF) expression, which is very important 

during the wound-healing process (Kahlina, Goren et al. 2004).  The studies suggest the 

fundamental role of p68 RNA helicase in cell proliferation, angiogenesis and wound-

healing process through upregulation of VEGF. The molecular mechanism by which p68 

regulates VEGF expression is not known.   

Taken together, p68 RNA helicase plays a role in the whole spectrum of 

biological processes.  Emerging evidences suggest a vital role of p68 in tumor growth 

and cell proliferation and differentiation programs.  

 

1.4.1 p68 RNA Helicase is an Essential Splicing Factor 

Protein p68 was speculated to be involved in the mRNA processing processes due 

to the unique nuclear localization. Nevertheless, solid evidence for the involvement of 

p68 RNA helicase in the pre-mRNA splicing was only documented recently. The 

experiments carried out in our laboratory demonstrated that p68 RNA helicase is an 

essential human splicing factor in vitro that plays a role in unwinding the transient U1:5’ 

ss duplex (Liu, Sargueil et al. 1998; Liu 2002). Consistently, by large-scale proteomic 

analyses of human spliceosome, other research laboratories also suggested the existence 

of p68 RNA helicase in the human spliceosome (Rappsilber, Ryder et al. 2002; Zhou, 

Licklider et al. 2002; Guil, Gattoni et al. 2003). 
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During the pre-mRNA splicing process and the assembly of the spliceosome, a 

number of intramolecular RNA-RNA duplexes are formed and modulated by ATP-

dependent helicases (Nilsen 2003).   Dissociation of base pairs between 5’splicing site 

and U1 snRNP is critical for transformation from the pre-spliceosome to the spliceosome 

(Staley and Guthrie 1998).  DEAD-box protein p68 RNA helicase was detected to 

crosslink with the U1 snRNA-5’ss duplex (Liu, Sargueil et al. 1998). Depletion of 

endogenous p68 RNA helicase from HeLa cell nuclear extract diminished the pre-mRNA 

splicing activity in vitro (Liu 2002).  Moreover, although the deletion of p68 does not 

affect the loading of U1 snRNP to 5’ss, the dissociation of this duplex is impeded 

followed by the prohibition of the spliceosome assembly.  These data established the 

essential role of p68 RNA helicase in the pre-mRNA splicing process in vitro.  

Although the essential role of p68 RNA helicase in the pre-mRNA splicing 

process in vitro has been documented, the molecular basis by which p68 RNA helicase 

supports the pre-mRNA splicing in vitro remains unclear. Whether p68 RNA helicase 

also supports splicing process in vivo is unknown.  

 

1.4.2 p68 RNA Helicase in Transcriptional Regulation 

In addition to the essential role in the pre-mRNA splicing process (Liu 2002; Lin, 

Yang et al. 2005), p68 RNA helicase has been implicated in the transcription as 

transcriptional coactivator (Fujita, Kobayashi et al. 2003; Rossow and Janknecht 2003), 

or corepressor (Wilson, Bates et al. 2004).   
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The first example elucidating p68 as a transcriptional coactivator is the study of 

estrogen-receptor alpha (ERα) signaling pathway (Endoh, Maruyama et al. 1999; Kato 

1999; Watanabe, Yanagisawa et al. 2001; Rossow and Janknecht 2003).  ER belongs to a 

superfamily of ligand-inducible transcription factors with five or six conserved functional 

domains (termed A to F) (Mangelsdorf, Thummel et al. 1995). Both A/B (autonomous 

activation function/AF-1) and E/F (autonomous activation function/AF-2) regions contain 

transcription activation function upon ligand binding (Tora, White et al. 1989).  The A/B 

and E/F regions have synergistic and transcriptional interference/squelching properties 

(Tasset, Tora et al. 1990).  It is estimated that AF-1 function of the N-terminal (AB) 

domain of ER has a weak constitutive transcriptional activation function.  AF-2 function 

of the ER ligand-binding domain (LBD) has a stronger estrogen-dependent 

transcriptional activation function (Kumar, Green et al. 1987; Tora, White et al. 1989). 

AF-1 and AF-2 synergize to present the overall level of estrogen activation. Putative 

cofactors mediate or activate AF-2 have recently been identified, including steroid 

receptor coactivator (TIF2/SRC-1) (Voegel, Heine et al. 1996; Anzick, Kononen et al. 

1997), CREB binding protein (CBP)/p300 family (Chen, Lin et al. 1997), TIF1 (Le 

Douarin, Zechel et al. 1995), ARA70 (Yeh and Chang 1996) and others (Onate, Tsai et 

al. 1995; Xu and Li 2003).  

p68 RNA helicase is isolated as coactivator of AF-1, but not AF-2, to enhance 

AF-1 transcription activity function in a cell-type specific manner. Interactions between 

p68 RNA helicase and A/B domain of ERα are essential for the activation of AF-1 with 
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dispensable helicase activity of p68 RNA helicase (Endoh, Maruyama et al. 1999; 

Watanabe, Yanagisawa et al. 2001; Fujita, Kobayashi et al. 2003). These studies also 

provide evidence for the interactions between p68 RNA helicase and CBP in vitro 

(Endoh, Maruyama et al. 1999).  Studies from an independent group confirmed the 

association between p68 CBP/p300 and RNA polymerase II in vivo and in vitro (Rossow 

and Janknecht 2003). In vitro pull-down assays mapped the binding site of p68 with 

CBP/p300 at the N-terminus.  Furthermore, p68 stimulated CBP transcription activity 

with p300 in a synergic manner (Rossow and Janknecht 2003). This interaction is 

confirmed by studies on n-butylbenzyl phthalate (BBP), an ERα agonist, which 

specifically induces ER binding with the coactivator complex.  The estrogen receptor 

transcriptional activity is modulated by recruitment of coactivator complex or corepressor 

complex (N-CoR/SMAT) (Fujita, Kobayashi et al. 2003). Yeast two-hybrid screening 

demonstrated that the heterodimer p72/p68 associates with both AD2 domain of SRC-

1/TIF2 and human ER A/B domain (Watanabe, Yanagisawa et al. 2001). Upon E2 

stimulation, p72/68 co-immunoprecipitates with SRC-1 and SRA, an RNA coactivator to 

form complex, which activates ER-targeted gene pS2 expression.    These findings 

suggest that DEAD-box protein RNA helicases, p72/p68, act as ER coactivators through 

binding with SRC-1 and other cofactors to form a multi-protein complex (Watanabe, 

Yanagisawa et al. 2001).  

Studies of DNA damage-induced and p53-mediated apoptosis revealed that p68 

RNA helicase is required for p53-responsive gene expression (Bates and Jones 2003).  
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p68 RNA helicase particularly associates with p53 and stimulates p53 induced gene 

expression with synergism.  Examining the interactions between p68 and chromatin 

further evidences that p68 participates on the promoter of p53-responsive gene, p21 

(Bates and Jones 2003).  p68 RNA helicase also functions as transcription corepressor in 

a promoter-specific manner (Wilson, Bates et al. 2004).  In addition, p68 associates with 

5-MeC-DNA glycosylase, which removes the methyl group from hemimethylated DNA 

(Jost, Schwarz et al. 1999).  It was suggested that RNA molecules are present in the 5-

MeC-DNA glycosylase complex and guide the demethylation complex to the 

hemimethylated DNA sites (Jost, Schwarz et al. 1999). DEAD-box protein p68 resembles 

one of the components of the DNA demethylation complex. Furthermore, Drosophila 

homologue of the mammalian p68 RNA helicase is suggested to play a potential role in 

RNA export and gene suppression. P68 may be needed for rapid removal of transcripts 

from the transcription bulb and allows chromatin reset to quiescent state (Buszczak and 

Spradling 2006). 

In summary, p68 RNA helicase functions as a transcriptional regulator.  The 

protein may act at the gene promoter to modulate the multi-protein and nucleic acid 

complex of the promoter.  Interestingly, whether p68 acts as transcription coactivator or 

corepressor is depended on the context of promoter and transcription complex. Although 

the role of p68 in transcriptional regulation is well-documented, the molecular basis by 

which p68 regulates gene transcription remains elusive. 
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1.4.3 The Cellular p68 Interacting Proteins 

A number of interacting partners of p68 have been uncovered by previous studies.  

Calmodulin is reported to interact with p68 at the N-terminus and the interaction affects 

ATPase activity of p68 (Buelt, Glidden et al. 1994).  p72, the highly related homolog of 

p68, is shown to tightly bind with p68 to form a heterodimer. The dimer is potentially 

involved in mRNA processing (Ogilvie, Wilson et al. 2003). p68/p72 interacts with 

histone deacetylase 1 (HDAC1) to repress gene expression through chromatin remodeling 

(Wilson, Bates et al. 2004).  Extensive studies on TNF-α (Tumor necrosis factor α) /NF-

κB (Nuclear factor kappa B) signaling pathway demonstrate the interaction between 

MAP3K7 and p68.  This interaction is a component of a complex consisting of over 80 

previous unknown integrators (Bouwmeester, Bauch et al. 2004).  In ERα signaling 

pathways, p68 interacts with CBP/p300 and RNA polymerase II to form a multi-protein 

complex (Endoh, Maruyama et al. 1999; Rossow and Janknecht 2003; Fujita, Jaye et al. 

2004).  The cyclic AMP (cAMP)-dependent protein kinase-anchoring protein AKAP95 is 

shown as the binding partner of p68 in nuclear matrix isolated from rat brain 

(Akileswaran, Taraska et al. 2001).   

 

1.5 Kinase and Phosphatase 

Phosphorylation by a particular kinase is the key event in the general cell 

signaling pathways. Modification of proteins by phosphor groups provides a fast and 

reversible method to turn on/off protein activity and function.  ATP is the source of 
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phosphor group.  Kinases and corresponding phosphatases regulate protein 

phosphorylation by attaching (phosphorylation) or removing phosphor group(s) 

(dephosphorylation). One example of the important role of phosphorylation is the multi-

phosphorylation of the N-terminus of beta-catenin at multiple sites.  Beta-catenin is a 

transcription coactivator promoting cell proliferation and growth.  Phosphorylation of the 

N-terminal domain on serine and threonine residues induces beta-catenin ubiquitination 

and subsequential degradation.  In contrast, unphosphorylated beta-catenin translocates to 

the nucleus and activates a number of targeted genes.  Therefore, the level of beta-catenin 

within cytoplasm is tightly controlled by phosphorylation.  

Serine, threonine and tyrosine are the common amino acid residues for protein 

phosphorylation. Antibodies specifically against phosphoserine, phosphothreonine and 

phosphotyrosine provide magnificent tools for studying phosphorylation.  It is estimated 

that about 30% of total cellular proteins are potentially modified by phosphorylation. 

Proximately 2% of human genes encode about 500 different protein kinases.  Protein 

kinases are known as major regulators for transmitting signals within cells. Because of 

the vital role of protein kinases, their activities are often tightly regulated by 

phosphorylation. Dysregulation of protein kinase activity that controls cell proliferation 

or death may lead to diseases.  An example is BCR-Abl kinase, whose overactivation 

usually leads to uncontrolled cell growth and survival resulting in leukemia. 
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1.6 p68 RNA Helicase can be Phosphorylated at Ser/Thr/Tyr Residues 

Early immunological studies and sequence comparisons discern a potential 

protein kinase C (PKC) phosphorylation site and a calmodulin binding site (termed IQ 

motif) at the C-terminus of p68 (Buelt, Glidden et al. 1994).  In vitro studies indicate p68 

can be phosphorylated by PKC and binds to calmodulin in a Ca2+-dependent manner. The 

consequences are the loss of the ATPase activity of p68 RNA helicase, suggesting a 

possibility that the function and activity of p68 may be regulated by phosphorylation and 

protein-protein interactions (Buelt, Glidden et al. 1994).   The possibility that p68 may be 

regulated by diverse signaling pathways is further supported by screening of substrates of 

Tlk1, a protein kinase down-regulated upon exposure to ionized radiation. Tlk1 

phosphorylated p68 RNA helicase both in vitro and in vivo, suggesting p68 as the 

potential physiological substrate of Tlk1 (Kodym, Henockl et al. 2005).  

Results from our lab revealed that the recombinant p68 protein expressed and 

purified from E. coli is phosphorylated on serine, threonine and tyrosine residues (Yang 

and Liu 2004). Tyrosine and threonine phosphorylations of p68 are also observed in 

HeLa nuclear extracts (Yang, Lin et al. 2005; Yang, Lin et al. 2005).  Strikingly, p68 is 

tyrosine phosphorylated in six cancer cell lines derived from different tissue types, but 

not in cells derived from the corresponding normal tissues (Yang, Lin et al. 2005).  

Comparison of p68 phosphorylation in tumor tissue samples and corresponding normal 

tissue samples further support this pattern (Yang, 2006, in preparation).  Moreover, the 

level of tyrosine phosphorylation of p68 correlates with tumor malignancy. p68 was 

tyrosyl phosphorylated at higher levels in more aggressive and invasive cancer cell lines. 
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These observations bring enormous interests in studying the biological role of tyrosine-

phosphorylated p68 in tumor progression. The tyrosine phosphorylation of p68 RNA 

helicase seems to affect the ATPase and RNA unwinding activities of the protein (Yang, 

Lin et al. 2005).  More importantly, tyrosine-phosphorylated p68 diminishes the activity 

of the protein in the pre-mRNA splicing process (unpublished data) (Yang, Lin et al. 

2005).  However, what signaling molecule(s) induce the tyrosyl phosphorylation of p68? 

What is the functional role of tyrosyl phosphorylated p68 in cancer cell lines and 

metastatic tissues?  The research work in our lab investigating the tyrosine 

phosphorylation of p68 will be described in the following sections. 

 

1.7 Signaling to DEAD-Box Protein p68 

In an effort to identify the signaling pathways that stimulate the phosphorylation 

of p68, various growth factors and cytokines have been examined.  TNF-α carries on 

dual effects on the phosphorylation of p68 in HeLa cells.  p68 acquires threonine 

phosphorylation in a short time window upon TNF-α treatment. On the contrary, tyrosine 

residue(s) of p68 is dephosphorylated to undetectable level after 15 min treatment of 

TNF-α  (Yang, Lin et al. 2005).  Platelet-derived growth factor (PDGF) and Interleukin-2 

(IL-2) treatments also affect the tyrosine phosphorylation of p68. Both of these signaling 

molecules induce significant tyrosine phosphorylation of p68 in a dose- and time-

dependent manner (Yang, Lin et al. 2005). Tumor necrosis factor-related ligand 

(TRAIL), like TNF-α, stimulates dephosphorylation of p68 on tyrosine residue(s) and 
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phosphorylation on threonine residue(s). However, other anti-cancer drugs/apoptosis 

inducers, such as piceatannol, etoposide and taxol do not influence the tyrosyl 

phosphorylation of p68 (Yang, Lin et al. 2005). These results shed light on the close 

correlation between p68 phosphorylation and tumor development, which potentially 

provide a biological marker for cancer diagnosis and therapy.  The phosphorylation status 

of p68 upon anti-cancer drugs treatment makes p68 RNA helicase a prospective 

prognostic marker.   

p68 exclusively localizes in the nucleus (Ford, Anton et al. 1988; Iggo and Lane 

1989).  The candidate kinase(s) that phosphorylates p68 may be also located within the 

nucleus.  Moreover, treatment of cancer cells with STI-571, a PDGF receptor and c-Abl 

tyrosine kinase specific inhibitor, inhibits the tyrosyl phosphorylation of p68, indicating 

that c-Abl is a possible candidate (Yang, Lin et al. 2005). The c-Abl kinase is a proto-

oncogene non-receptor tyrosine kinase. The kinase localizes in the plasma membrane, the 

cytoplasm, as well as the cell nucleus (Zhu and Wang 2004).  In vitro and in vivo studies 

identified c-Abl as the kinase that phosphorylates p68 upon PDGF stimulation (Yang, 

2006, in preparation).  Mass spectrum and mutation analyses indicated that Y593 residue 

is the phosphorylation site (Yang, 2006, in preparation).   

 

1.8 Epithelial-Mesenchymal Transition (EMT) 

Epithelial-mesenchymal transition (EMT) was first noted in epithelial tissues 

(Greenburg and Hay 1982). Scatter factor (identified as hepatocyte growth factor, HGF) 

was later been described as a stimulus that was able to convert Madin–Darby canine 
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kidney (MDCK) cells to fibroblast-like mesenchymal cells (Stoker and Perryman 1985). 

EMT is characterized by the loss of cell adhesion molecules and by the upregulation of 

mesenchymal markers, breakdown of epithelial contact and cell rearrangement or 

migration in extracellular matrix (Shook and Keller 2003).  Epithelial cells may 

transiently lose their polarity and gain cell spreading in many developmental processes. 

These processes include mesoderm formation during gastrulation and immigration of 

neural-crest cells from neural tube (Duband, Monier et al. 1995; Sun, Baur et al. 2000).  

In mature organs, transcriptional loss of epithelial markers (i.e. E-cadherin) and induction 

of mesenchymal markers (i.e. Vimentin) in epithelial cells are necessary for the processes 

including tubulogenesis, tissue reorganization, wound healing and mammary gland 

branching (Viebahn 1995; Thiery 2002).  Epithelial plasticity changes also occur in a 

variety of pathological processes.  For instance, progression of benign tumors toward 

invasive, malignant carcinoma alters epithelial plasticity to migratory fibroblast 

phenotype (Hay 1995).   

 

1.8.1 EMT is Critical for Tumor Metastasis 

Tumor cells spread to distant organs, the process being called metastasis.  Both 

genetic and epigenetic changes contribute to the metastatic ability of tumor cells.  Recent 

gene expression analyses revealed that tumor subclones raised from the primary site 

probably already have progressed to invasive stage (Hynes 2003).  Several sequential and 

obligated steps must be completed in order for tumor cells to migrate to distant organs 

(Fidler 2003).  First, tumor cells have to disrupt cell-cell adhesion, break down basement 
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membrane and penetrate into neighborhood stroma, which allows them to dissociate from 

the primary site. EMT is critical for tumor cells to lose epithelial adhesions and gain the 

ability of migration.  The second step is “intravasation”. During this process, tumor cells 

penetrate into the blood or the lymphatic vessels to allow them to be transported by 

circulation.  Next, tumor cells circulate along with bloodstream until they reach the 

targeted organs. The tumor cells are stopped by microcirculation.  Finally, after survival 

from the bloodstream, metastatic cells depart away from the bloodstream by a process 

termed “extravasation” and grow expediently from micro-metastasis to malignant tumor 

mass. For tumor cells to accomplish this deadly process, the first and the most important 

phenomenon is that tumor cells have to gain mobility and then invade into neighboring 

tissues (Vincent-Salomon and Thiery 2003; Guo and Giancotti 2004). 

 

1.8.2 Downregulation of E-cadherin is a Hallmark of EMT 

To break away from primary site, invasive tumor cells suppress expression of 

adhesion molecules to disrupt cell-cell interactions, degrade or remodel extracellular 

matrix and acquire migratory phenotype. Intensive studies indicate that the transition 

from non-metastatic adenoma (epithelial phenotype) to invasive carcinoma 

(mesenchymal phenotype) is driven by a distinct series of changes of adhesion proteins.  

These changes include loss of epithelial adhesion and catenin-dependent junction.  The 

tumor cells also increase expression of proteins involved in cell migration and 

interactions with cell-extracellular matrix (ECM).  
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There are three types of cell junctions: tight junction, adherens junction and gap 

junction. E-cadherin plays a critical role in epithelial cell-cell adherens junction. The 

cytoplasmic domains of cadherin proteins interact with beta-catenin and other catenin 

molecules at different sites (Takeichi 1995; Tepass, Truong et al. 2000).  Actin filaments 

bind with beta-catenin through alpha-catenin.  Recent studies have shown that alpha-

catenin may act as an actin kinetics regulator instead of a stable link between beta-catenin 

and actin (Drees, Pokutta et al. 2005; Yamada, Pokutta et al. 2005).  Loss of epithelial 

polarity through downregulation of E-cadherin, mutations on E-cadherin gene or other 

mechanisms of preventing the adhesions junctions from formation are observed in 

malignant carcinoma cells.  In human cancer patients, the loss of E-cadherin expression 

correlates with the advanced stage of tumor development and poor prognosis 

(Riethmacher, Brinkmann et al. 1995). In a transgenic mouse model, depletion of E-

cadherin promotes the non-metastatic adenoma developing to invasive carcinoma 

(Christofori and Semb 1999).  In this regard, E-cadherin gene is proposed as a tumor 

suppressor gene. During the transformation of invasiveness, the loss of E-cadherin 

appears to be critical for the development of migratory mesenchymal cells from non-

invasive epithelial cells.  De novo expression of E-cadherin promotes formation of 

adhesions junction between transformed mesenchymal cells. Disruption of the E-

cadherins interactions by anti-E-cadherin antibody can interrupt adhesions junctions and 

promote mesenchymal phenotype (Imhof, Vollmers et al. 1983). Therefore, molecular 

analyses based in part on studying transgenic mouse model and cell phenotype reveal E-

cadherin as the hallmark of EMT process and a potential tumor suppressor. 
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1.9 Mechanisms of E-cadherin Downregulation during EMT 

Various mechanisms contribute to the disruption of adherens junction and 

cadherin-catenin complex of cancer cells.  Loss-of-function mutant of E-cadherin is one 

of the factors for epithelial plasticity changes (Thiery 2002). In some tumor cells, a 

family of transcription factors, Snail/Slug, down-regulate E-cadherin gene transcription 

(Nieto 2002).  Upon stimulation with growth factors, these stimulation signals from 

receptor tyrosine kinase (RTK) can disrupt adherens junction by repression of junction 

protein expression (Thiery 2002).  Therefore, downregulation of E-cadherin in cancer 

progression is mediated through mechanisms including transcriptional suppression, 

chromatin silencing mediated by methylation or genetic mutation leading to absence or 

non-functional protein expression (Berx, Cleton-Jansen et al. 1995; Yoshiura, Kanai et al. 

1995; Hennig, Lowrick et al. 1996).  

E-cadherin expression is regulated by multiple mechanisms, including genetic, 

epigenetic and transcriptional modification.  Although genetic changes in E-cadherin loci 

have been found infrequently, the loci of E-cadherin are intact in the majority of E-

cadherin down-regulated carcinomas (Guilford, Hopkins et al. 1998).  Chromatin 

modifications and transcription alteration emerge as the major mechanisms of E-cadherin 

repression (Yoshiura, Kanai et al. 1995).  A decreased E-cadherin mRNA level correlates 

with reduced E-cadherin level, suggesting that suppression of E-cadherin protein is 

probably due to the decline in gene transcripts (Brabant, Hoang-Vu et al. 1993).  Further 

insight into the promoter of the E-cadherin gene reveals the mechanism of transcriptional 
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regulation of the E-cadherin gene. The promoter of the E-cadherin gene has a short 81bp 

conserved region that is the main cis-regulatory element as revealed by depletion 

experiments. E-box 1 and E-box 2, within the conserved region uncovered by mutation 

analyses are involved in the suppression of the E-cadherin promoter activity in cancer 

cells (Giroldi, Bringuier et al. 1997).  In addition, E-box 3 that is located within the first 

intron is identified to regulate the E-cadherin gene expression.   The E-box elements have 

been proposed as the DNA targeting sequence of the basic helix-loop-helix (bHLH) 

family of transcription factors (Jan and Jan 1993; Weintraub 1993; Voronova and Lee 

1994). Association of AP-2 with E1, E2 boxes and E3 box is sufficient and necessary for 

the E-cadherin promoter activity (Hennig, Lowrick et al. 1996).  Recent studies have 

identified a number of transcription factors aiming at E-boxes to regulate the E-cadherin 

gene expression. Transcription factors including Snail/Slug, E12/E47, ZEB-1, ZEB-2 and 

Twist-1 will be discussed below. 

 

1.10 Snail is a Strong Repressor of E-cadherin 

Members of the Snail family are zinc-finger transcription factors that play the 

fundamental role in mesoderm formation in different species (Alberga, Boulay et al. 

1991; Nieto, Sargent et al. 1994; Erives, Corbo et al. 1998; Carver, Jiang et al. 2001). The 

key role of Snail in triggering EMT has been illustrated by two experiments: Snail has 

been shown to convert epithelial cells to mesenchymal cells by repressing the E-cadherin 

gene expression directly (Batlle, Sancho et al. 2000; Cano, Perez-Moreno et al. 2000). In 

mouse embryo, downregulation of E-cadherin is essential for progression of mesodermal 
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cells at gastrulation stage (Burdsal, Damsky et al. 1993). On the other hand, animals with 

knockout Snai1 retain E-cadherin expression, fail to undergo EMT and die at gastrulation 

stage (Carver, Jiang et al. 2001).  Studies on tumor progression in carcinoma cells 

demonstrate the essential role of Snail in migration and invasion.  Snail is present in 

fibroblast cells and some invasive E-cadherin-negative carcinoma cell lines. In several 

melanoma cell lines, Snail is upregulated when E-cadherin is down-regulated (Poser, 

Dominguez et al. 2001). Expression of Snail induces epithelial cells to acquire 

fibroblastic phenotype and invasive properties. More importantly, inhibition of Snail 

function restores E-cadherin expression in epithelial cancer cells in which E-cadherin is 

repressed (Batlle, Sancho et al. 2000; Cano, Perez-Moreno et al. 2000). Gene analyses 

indicate a list of candidate targets that are regulated directly or indirectly by Snail.  Snail 

transfectants also suppress other epithelial markers, such as desmoplakin (Cano, Perez-

Moreno et al. 2000) and upregulate mesenchymal markers, including Vimentin and 

Fibronectin (Cano, Perez-Moreno et al. 2000), suggesting the central role of Snail in 

promoting EMT process.  

Although Snail is a strong repressor of the E-cadherin gene (Batlle, Sancho et al. 

2000; Cano, Perez-Moreno et al. 2000; Poser, Dominguez et al. 2001) through direct 

interactions with three E-boxes located within the E-cadherin promoter (Batlle, Sancho et 

al. 2000), the molecular mechanism by which Snail represses the E-cadherin gene 

through E-box is not understood.  It was reported that Snail modulates the E-cadherin 

gene expression through recruiting chromatin-modification activity, such as forming a 
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multi-protein complex with HDACs and corepressor mSin3A (Peinado, Ballestar et al. 

2004).   

Other members of the Snail family, such as Slug, also contribute to EMT process 

and E-cadherin downregulation.  Slug binds to E-boxes of the E-cadherin promoter. The 

protein not only is expressed in E-cadherin-negative breast cancer cells (Hajra, Chen et 

al. 2002), but also promotes epithelial-mesenchymal transition in MDCK cells (Bolos, 

Peinado et al. 2003).  More specifically, Slug binds to the E-box elements of the E-

cadherin promoter, independent of Snail (Bolos, Peinado et al. 2003).  The discrepant 

role of Snail and its family members may be due to tissue specificity or their involvement 

in distinct signaling pathways.  

 

1.11 Other Transcription Factors Involved in E-cadherin Repression 

Other transcriptional factors that have been implicated in repressing the E-

cadherin promoter include E12/E47, ZEB-1 (EF-1), SIP-1 (ZEB-2) and Twist-1 

(Grooteclaes and Frisch 2000; Comijn, Berx et al. 2001; Perez-Moreno, Locascio et al. 

2001; Yang, Mani et al. 2004).  E12/E47 is a basic helix-loop-helix transcription factor. 

The protein is isolated from one-hybrid screen as an E-cadherin repressor. Mouse E47 is 

not expressed in epithelial cells and highly expressed in invasive E-cadherin-negative cell 

lines. This is consistent with the observation that E47 is expressed during mesoderm 

formation.  Stable or inducible E47 expression promotes fibroblastic and migratory 

phenotype through repression of E-cadherin expression by binding to E-boxes at the E-

cadherin promoter (Perez-Moreno, Locascio et al. 2001; Bolos, Peinado et al. 2003).   
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ZEB-1 repressor is identified by Madeleine L Grooteclaes and co-workers 

(Grooteclaes and Frisch 2000).  Adenovirus prototypical oncoproteins E1a protein 

induces expression of a set of epithelial genes, whose products interact with nuclear 

acetylases p300, CBP and corepressor protein CtBP.  The CtBP-interacting protein 

δEF1/ZEB-1 binds with the E-boxes of the E-cadherin promoter and the promoters of at 

least three other adhesion genes, suggesting the potential role of ZEB-1 in virus-induced 

cell junction downregulation (Grooteclaes and Frisch 2000).   

Another transcription factor repressing the E-cadherin promoter is Smad-

interacting protein (SIP1/ZEB-2), a zinc finger protein with specific DNA binding 

affinity.  SIP1 downregulates the E-cadherin gene through interactions with conserved E-

boxes of the minimal E-cadherin promoter.  Interaction sites of SIP1 with E-boxes are 

partially overlapped with Snail binding sequence.  Treatment of cells with TGF-β 

(Transforming growth factor β) induces SIP1 expression and subsequent E-cadherin 

silencing.  SIP1 is also observed to abrogate E-cadherin-mediated cell adhesion and 

simultaneously promotes MDCK cells to transform into mesenchymal phenotype 

(Comijn, Berx et al. 2001).   

Recently, another transcription factor Twist, is identified from DNA microarray 

analyses. Twist is essential for tumor metastasis and repression of the E-cadherin gene 

(Yang, Mani et al. 2004).  Expression of Twist in both MDCK cells and human 

mammary epithelial cells (HMEC) promotes cell morphology change to fibroblast, 

migratory phenotype, which may contribute to tumor malignant transformation.  Twist 
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directly or indirectly represses E-cadherin expression through E-boxes of the E-cadherin 

promoter (Yang, Mani et al. 2004).  However, HMEC cells, which are exogenously 

expressed of mouse E-cadherin, retain spindle-like morphology and mesenchymal 

markers, suggesting that Twist modulates other targets in addition to E-cadherin to 

promote EMT.  

 

1.12 Signaling to Snail 

Snail is one of the major repressors of E-cadherin expression by targeting E-

boxes during embryo development and carcinogenesis (Batlle, Sancho et al. 2000). 

Various cell signaling pathways that activate Snail gene subsequently initiate changes in 

epithelial plasticity and conversions from epithelial cells toward mesenchymal cells.  

TGF-β activates Snai1 gene transcription and subsequently triggers EMT through 

activation of Ras-Mitogen activated protein kinase (MAPK) pathway in both MDCK 

cells and in the bud formation of hair follicle morphogenesis (Peinado, Quintanilla et al. 

2003; Jamora, Lee et al. 2005).  Upon TGF-β1 stimulation, MDCK cells express Snail, 

which repress the E-cadherin transcription and promotes fibroblastic phenotype. Unlike 

transcription factor signaling mother against decapentaplegic (Smad4), the induction of 

Snail is apparently dependent on mitogen-activated protein kinase kinase (MEK1/2) 

activity (Peinado, Quintanilla et al. 2003).  The expression of Slug, a Snail family 

member is an important target of TGF-β2 signaling during EMT in the developing 

chicken heart (Romano and Runyan 2000). The upregulation of Slug during 
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differentiation of dorsal cell types from neural plate cells is proposed to be induced by 

bone morphogenetic proteins (BMP), which is a member of TGF family (Liem, Tremml 

et al. 1995). 

Given the observation that E-cadherin is suppressed upon activation of Wnt/β-

catenin signaling cascade (Garcia-Castro, Marcelle et al. 2002; Jamora, DasGupta et al. 

2003; Suzuki, Watkins et al. 2004), it is speculated that Snail is regulated by Wnt 

signaling pathway.  Although the mechanism of regulation of Snail by the Wnt is still not 

understood, Snail has a β-catenin-like canonical motif and can be phosphorylated by 

Glycogen Synthase Kinase-3 beta (GSK-3β).  The phosphorylation of Snail is 

subsequently ubiquitinated and degraded by the 21S proteasome.  Wnt signaling inhibits 

Snail phosphorylation, resulting in stabilization of Snail.  The consequence is promotion 

of EMT (Yook, Li et al. 2005).  Whether Wnt signal-stabilized Snail/Slug regulates β-

catenin signaling (Arias 2001) or augmented cytoplasmic β-catenin influences Snail 

expression and EMT remains to be a question. 

Other factors that activate Snail/Slug gene expression includes parathyroid-

hormone-related peptide, (PTH(rP)) (Veltmaat, Orelio et al. 2000), integrin-linked kinase 

(ILK) (Tan, Costello et al. 2001) and MMP-3 (stromelysin-1/matrix metalloproteinase-3) 

(Radisky, Levy et al. 2005).  The Snai1 gene is an early target of PTH(rP), which is 

upregulated during differentiation of parietal endoderm (PE) of mice embryo.  Expression 

of Snail is detected in the PE cells and is the first marker of EMT in mice embryonic 

development (Veltmaat, Orelio et al. 2000).  In addition, the ILK pathway activates β-
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catenin/Lymphoid enhancer binding factor 1 (LEF-1) mediated gene transcription and the 

E-cadherin gene downregulation. Interestingly, inhibition of ILK results in suppression 

of Snai1 gene transcription, which correlates with the stimulation of the E-cadherin 

expression.  In contrast, overexpression of ILK leads to an increased Snail expression, 

which is β-catenin/LEF-independent (Tan, Costello et al. 2001). These data suggest a 

novel signaling pathway in regulation of Snai1 gene expression.  Recently, MMP-3 is 

implicated in upregulation of Snail expression by inducing Rac1 and cellular reactive 

oxygen species (ROS).  MMP-3 is previously observed to induce tumor formation, EMT 

and malignant cells transformation in mammary carcinoma (Lochter, Sternlicht et al. 

1998; Vincent-Salomon and Thiery 2003).  MMP-3 induces expression of alternative 

spliced form of Rac1 on mice mammary epithelial cells. Rac1 increases the cellular ROS 

level, which stimulates Snai1 gene expression and result in EMT and DNA damage 

(Radisky, Levy et al. 2005).  These findings reveal a novel pathway for the effect of 

microenvironment on tumor cell EMT.  

 

1.13 Regulation of Snail Expression 

Snail is demonstrated to mediate EMT process both in embryonic development 

and tumor malignancy transformation. However, the molecular mechanism of regulation 

of the Snail expression remains elusive.   Studies suggest that Snail may be regulated 

through chromatin remodeling, transcription regulation and post-translational 

modifications (Erives, Corbo et al. 1998; Dominguez, Montserrat-Sentis et al. 2003; 
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Fujita, Jaye et al. 2004; Zhou, Deng et al. 2004). A nucleus export sequence (NES) is 

identified that locates in the regulatory domain of Snail.  Cytosolic distribution of Snail is 

dependent on the NES sequence (Dominguez, Montserrat-Sentis et al. 2003).  

Phosphorylation on a serine-rich sequence adjacent NES allows export of Snail from the 

nucleus to cytosol (Dominguez, Montserrat-Sentis et al. 2003). Another example of non-

transcriptional mechanisms to regulate Snail is that because Snail is an unstable protein 

with a half-life of about 25 min (Zhou, Deng et al. 2004), Snail can be phosphorylated by 

GSK-3β at two conserved motifs.  Phosphorylation of Snail controls its stability by a dual 

mechanism. Phosphorylation on the first motif facilitates transduction repeat containing 

protein (β-Trcp)-medicated ubiquitination. Phosphorylation on the second motif regulates 

its subcellular localization (Zhou, Deng et al. 2004).  Mutations that abolish these two 

phosphorylation sites stabilize Snail and lead to an exclusive nuclear localization. The 

consequence is promotion of EMT (Zhou, Deng et al. 2004).   

Transcriptional regulation is the major mechanism to regulate the Snai1 gene 

expression.  In the ascidian, Ciana intestinalis, Snail (ci-Sna) is expressed at 32-cell stage 

through a minimal 504bp B4.1 enhancer located at the Snail promoter.  The homologue 

of Twist in the ascidian may be the major activator for the Snai1 gene expression (Erives, 

Corbo et al. 1998).  In breast cancer, the product of human metastasis-associated protein 

3 (MTA3) gene is identified as a component of Mi-2/NuRD transcription corepressor 

complex that associates with Snai1 promoter and selectively represses the Snai1 gene 

expression.  Absence of MTA3 results in aberrant expression of Snail, leading to 
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epithelial cells transformation toward mesenchymal cells (Fujita, Jaye et al. 2004). The 

NuRD complex regulates gene expression through chromatin remodeling and histone 

deacetylation; however, the molecular mechanism by which the NuRD complex represses 

Snail transcription is not fully understood.  

 

1.14 Chromatin Remodeling and Histone Deacetylation 

Chromatin remodeling and histone deacetylation is emerging as one of the major 

mechanisms to regulate gene expression. The tails of histone proteins can be modified by 

different ways, particularly methylation and acetylation. Histone methylation is often 

accompanied by DNA methylation. DNA methylation is one of the major apparatus to 

silence gene transcription; however, the mechanism of methylation-mediated DNA 

silencing remains ambiguous (Holliday and Pugh 1975; Jones and Taylor 1980). The 

SWI/SNF complex,  known as ATP-dependent chromatin remodeling complex (Wang, 

Cote et al. 1996; Wang, Xue et al. 1996), is able to stimulate the binding of DNA 

sequence-specific transcription factors, probably through directly interactions with DNA 

and changes on DNA topology (Cote, Quinn et al. 1994; Tsukiyama, Becker et al. 1994; 

Zhang, Ng et al. 1999; Dobosy and Selker 2001).  The SWI/SNF complex is 

propositioned to cooperate with transcription activators to pinpoint the region targeted for 

nucleosome interruption. The complex subsequently disrupts the contact between DNA 

and histones to enhance accessibility for transcription factors (Tsukiyama and Wu 1995).  

Two classes of multi-protein chromatin remodeling complex include histone 

acetyltransferases (HAT)/histone deacetylases (HDAC) and histone methyltransferases 
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(HMT)/histone demethylases (HDMC) are discovered to modify histone tails (Taunton, 

Hassig et al. 1996; Gray and Teh 2001; Neely and Workman 2002; Kurdistani and 

Grunstein 2003; Bannister and Kouzarides 2005; Martin and Zhang 2005). Intensive 

studies demonstrate the function of histone modifications in gene transcription regulation. 

HDAC1 or 2 is assisted by corepressors, such as silencing mediator of retinoid acid and 

thyroid hormone receptor (SMRT), nuclear receptor corepressor (N-CoR), Sin3 and other 

polypeptides to form large protein complexes that target to the promoter region (Alland, 

Muhle et al. 1997; Hassig, Fleischer et al. 1997; Heinzel, Lavinsky et al. 1997; Nagy, 

Kao et al. 1997).  Therefore, histone modifications and chromatin remodeling complexes 

are important regulation apparatus of gene expression. Methylation and acetylation of 

histone proteins are pivotal epigenetic markers in transcriptional regulation. 

 
 
1.14.1 The NuRD Complex 
 

A series of studies demonstrate that the SWI/SNF chromatin remodeling complex 

and their mammalian homologue BRG1-or hbrm-associated factors (BAFs) disrupts 

nucleosomes and facilitates transcription factor accessibility via ATP-dependent 

chromatin remodeling activities. Searching for additional mammalian chromatin 

remodeling complex identified the NuRD complex, which has an ATP-dependent 

chromatin remodeling activity similar to the SWI/SNF complex. Furthermore, this 

complex also has histone deacetylase activity distinct from previously described 

SMAT/N-CoR/Sin3/HDAC1 complex.  Antibody against the NuRD complex alleviated 

transcriptional repression (Xue, Wong et al. 1998).  The deacetylase activity is stimulated 
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by ATP, suggesting that chromatin remodeling can contribute to transcriptional 

repression by facilitating transcription repressors gaining access to chromatin structure.  

The NuRD complex is a multi-protein complex containing 8 components. The 

histone deacetylases HDAC1 and HDAC2 and the histone binding proteins, RbAp48 and 

RbAp46, form a core complex. The core complex is shared between Sin3-histone 

deacetylase complexes and the NuRD complex (Zhang, Ng et al. 1999). It is believed that 

the histone deacetylase activity of the core complex is tightly regulated by other 

polypeptide members, metastasis-associated protein 2 (MTA2) and the highly related 

polypeptides, MTA3. Mi-2 and methyl-CpG-binding domain-containing protein 3 

(MBD3) are also subunits of the NuRD complex (Zhang, Ng et al. 1999; Fujita, Jaye et 

al. 2004). MTA2 is highly related to MTA1, whose expression level is elevated in 

metastatic breast cancer cell lines and tissues (Toh, Pencil et al. 1994; Toh, Oki et al. 

1997). Although MTA2 does not affect the histone deacetylase activity, it promotes the 

assembly of the NuRD complex and is required for the formation of the functional 

complex (Yao and Yang 2003). Mi-2 is a member of the SWI/SNF helicase/ATPase 

family, which is proposed to remodel chromatin structure in an ATP-dependent manner 

(Wang and Zhang 2001). In addition, studies on Drosophila Mi-2 demonstrate that dMi-2 

recognizes specific DNA sequence (Kehle, Beuchle et al. 1998), suggesting that Mi-2 

potentially recruits the NuRD complex to specific genes (Zhang, Ng et al. 1999). Another 

important component of the NuRD complex is MBD3.  Although MBD3 is unlikely to 

associate with methylated DNA (Saito and Ishikawa 2002), this protein is a splice variant 

of MBD2, which has been shown to bind to methylated DNA and possess demethylase 
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activity.  Furthermore, MBD3 is demonstrated to link the NuRD complex with MBD2 

(Zhang, Ng et al. 1999).  It is likely that the DNA binding protein potentially directs the 

NuRD complex to interact with specific methylated DNA sequences.  The novel member 

of the NuRD complex, MTA3 is proposed as estrogen-dependent component of this gene 

repressor complex.  The bona fide function of MTA3 in the complex is unclear (Fujita, 

Jaye et al. 2004).  

Given the functional role of individual components of the NuRD complex, it is 

likely that the chromatin remodeling and histone deacetylase activities of the NuRD are 

functionally related. The NuRD complex can be directed to sequence specific methylated 

DNA and provides gene silencing (Zhang, LeRoy et al. 1998).  Thus, the repressed genes 

targeted by the NuRD are rather general. The cellular function of the NuRD complex is 

unclear.  Based on the observation that MTA2 is vastly expressed in dividing cells, the 

NuRD complex is proposed to play a role in cell proliferation (Xue, Wong et al. 1998).  

Data collected from Caenorhabditis elegans suggest that the NuRD complex participates 

in vulval development (Solari and Ahringer 2000).  Along with newly identified member 

of the NuRD complex, MTA3, the NuRD complex is proposed to be recruited to 

estrogen-dependent genes and suppresses the Snai1 gene expression, which contributes to 

breast tumor cell invasion and metastasis (Fujita, Jaye et al. 2004). The cellular functions 

of the NuRD complex are also linked to DNA methylation-mediated gene silencing 

(Wade, Gegonne et al. 1999).  However, the defined gene targets of the NuRD complex 

are beyond fully understood. 
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1.15 The ATPase Activity in Modulating RNA-RNA, RNA-Protein Interactions. 

Most cellular processes, such as biosynthesis of nucleic acid require energy input.  

ATP is one of the most important energy currencies of the cell.  ATPase is a type of 

enzyme that hydrolyze cellular ATP into adenosine diphosphate (ADP) and a free 

phosphor group.  The energy released from this chemical reaction can be coupled to 

wide-range cellular processes.  For instance, trans-membrane ATPases import metabolic 

nutrients and export wastes to maintain cell metabolism.  Na, K-ATPase (sodium pump) 

that balances Na+ and K+ ions across the plasma membrane belongs to P-type ATPase. 

Another type of ATPase in eukaryote is F-type that pumps H+ out of mitochondria using 

the energy of ATP decomposition.  

Another large family of ATPase is helicase. DNA helicases and RNA helicases 

play important roles in DNA and RNA metabolism, including DNA replication, 

recombination, transcription, DNA repair, translation and pre-mRNA splicing. The 

common features of helicase are NTP-binding and hydrolysis, nucleic acid-binding and 

energy-dependent nucleic acid unwinding (Hall and Matson 1999). Structure-function 

analyses reveal that there are a set of highly conserved helicase motifs clustered together 

to form ATP hydrolyzing pocket and nucleic acid-binding site (Luking, Stahl et al. 1998).  

Using energy derived form ATP hydrolysis, these conserved motifs create an energy-

driven motor to unwind nucleic acids duplex or to modulate nucleic acid-protein 

interactions during multiple cellular process. These motifs are probably shared by the 

ATPases participating in chromatin remodeling and provide essential energy to modulate 

protein-DNA interactions and chromatin structure (Hall and Matson 1999).  
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Although the chemical reaction of the pre-mRNA splicing catalyzed by the 

spliceosome dose not require energy consumption (Moore and Sharp 1993), the ATPase 

activity is crucial for moderating the extensive RNA-RNA and RNA-protein interactions 

rearrangement during the pre-mRNA splicing.  Several spliceosome-associated DEAD-

box proteins exhibit single-stranded RNA-stimulated ATPase activity and are required 

for distinct steps of splicing (Hamm and Lamond 1998). The yeast proteins Prp16 and 

Prp22 have been described to disrupt RNA base pairs in vitro and induce RNA 

conformational change.  The Prp22 is shown to be able to mediate the dissociation of 

splicing factor from mRNA substrate in an ATP-dependent reaction (Schwer and Gross 

1998).  

Because many RNA-RNA duplex in the spliceosome complex are short and may 

require proteins binding for stabilization, the substrate of some RNA helicases may be 

protein(s) that binds to RNA (Mount, Pettersson et al. 1983; Auble, Wang et al. 1997; 

Staley and Guthrie 1998). It is possible that the RNA-RNA unwinding during the splicing 

process is an indirect consequence of disruption of RNA-protein interactions. Members 

of DEAD-box proteins that have weak or non-detectable RNA-stimulated ATPase are 

plausible candidates as protein-stimulated ATPases (Staley and Guthrie 1998).  Recent 

reports evidence that DEAD-box proteins rearrange RNA-protein interactions and 

catalyze protein displacement independent of RNA-RNA duplex (Chen, Stands et al. 

2001; Jankowsky, Gross et al. 2001; Kistler and Guthrie 2001; Fairman, Maroney et al. 

2004).  Prp28p is demonstrated to counteract the effect of spliceosomal protein U1-C 

protein in stabilizing U1 snRNA-5’ss duplex, thereby, promoting the dissociation of these 
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RNA-RNA base pairs (Chen, Stands et al. 2001).   Vaccina virus DEAD-box protein 

NPH-II displaces U1A from RNA in an ATP-dependent manner, supporting a model of 

coupling ATP hydrolysis to ribonucleoprotein assembly and reorganization (Jankowsky, 

Gross et al. 2001). Studies from two different model systems demonstrate that DEAD-

box proteins work on single-stranded RNA and displace the complementary nucleic acid 

or protein in an ATP-dependent fashion (Fairman, Maroney et al. 2004).  Therefore, the 

functions of DEAD-box proteins are not restricted to RNA-RNA duplex, but can act on 

wide range of substrates.  

Chromatin remodeling mediated by yeast SWI/SNF, Drosophila NURF and their 

mammalian homologue complexes has been proposed as an important device to regulate 

DNA replication, DNA repair and gene transcription.  Most of these complexes contain 

subunits that are closely related to the SWI2/SNF2 proteins, which belong to a family of 

NTP-binding proteins (Eisen, Sweder et al. 1995).  Thus, the NTP-binding subunits are 

proposed to act as energy-driven motors to alter DNA-histone interactions and chromatin 

structure. Although SWI2/SNF2 and related proteins belong to the same family of DNA 

and RNA helicase, they are unlikely to unwind nucleic acid duplex. However, DNA-

stimulated ATPase activity is required for their chromatin remodeling activities in vivo 

and in vitro (Cote, Quinn et al. 1994).  Similar to superfamily II helicases, the 

SWI2/SNF2-like proteins harbor a set of seven conserved motifs, in which motif I, Ia, II 

and III are required for ATP binding and hydrolysis (Eisen, Sweder et al. 1995). The 

remodeling activity of the SWI/SNF complex can be directed to specific promoter 

sequence by interacting with a variety of gene-specific transcriptional activators. 
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Nevertheless, how the SWI/SNF complex utilizes energy derived from ATP 

hydrolyzation to alter chromatin conformation is still unknown.  Motif V has been 

suggested to couple ATP hydrolysis to chromatin-remodeling activities in recent studies 

(Smith and Peterson 2005). Mi-2 is responsible for the chromatin remodeling activity 

processed by the NuRD complex (Zhang, LeRoy et al. 1998).  Sequence analyses suggest 

that Mi-2 belongs to the SWI2/SNF2 helicase family and has potential ATPase-

dependent nucleosomes remodeling activity (Seelig, Moosbrugger et al. 1995).  

Supporting this prediction, recombinant Mi-2 exhibits DNA-dependent ATPase activity.  

More importantly, recombinant Mi-2 disrupts the interactions of DNA and histone in an 

ATP-dependent fashion (Wang and Zhang 2001).  

In general, ATPases participate in a number of cellular processes.  The ATPase 

activities of this family of proteins are utilized to unwind or disrupt DNA/RNA duplex, 

RNA-protein and histone-DNA interactions.  Given the highly conserved motif structure 

between the DNA/RNA helicase and the SWI2/SNF2 type ATPase, it is possible that one 

energy-driven motor is employed on different substrates.  However, to select the specific 

substrate, on which the ATPase enzyme works, requires regulatory domains or additional 

adaptor proteins. Epigenetic modifications, such as phosphorylation, or ubiquitination 

will be remarkably important to regulate the activities of ATPases and ATPase containing 

complexes.  
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1.16 Tyrosine Phosphorylated p68 Promotes EMT 

The human p68 is tyrosine phosphorylated exclusively in tumor tissue samples 

and the phosphorylation is undetectable in extracts of normal tissue samples (Yang, Lin 

et al. 2005).  The exclusively tyrosine phosphorylation of p68 in tumor tissue and cell 

lines is intriguing. p68 RNA helicase is ubiquitously expressed (Heinlein 1998) and 

essential for maintaining normal cell growth (Ford, Anton et al. 1988).  The protein is 

suggested to be required for tissue differentiation and maturation in fetus (Stevenson, 

Hamilton et al. 1998). In consistency, experiments in our laboratory demonstrated that 

p68 expresses at a higher level in embryonic cell lines HEK293 (human embryonic 

kidney 293) and HEL299 (human embryonic lung 299) (Yang, Lin et al. 2005). 

Therefore, it is speculated that tyrosyl phosphorylation of p68 is not associated with 

normal cell growth and maintenance. Tyrosyl phosphorylation of p68 affects the function 

of p68 RNA helicase in the pre-mRNA splicing process (Yang, Lin et al. 2005), 

suggesting that the biological function of p68 may be altered in cancer cells by tyrosyl 

phosphorylation.  

Cellular signals that induce tyrosyl phosphorylation of p68 remain elusive.  c-Abl 

tyrosine kinase is considered as aberrantly activated in leukemia and other cancer types 

(Konopka, Watanabe et al. 1984).  Activated c-Abl is in part responsible for abnormal 

tyrosyl phosphorylation of p68 in cancer cells based on the evidence that c-Abl is one of 

the kinase to phosphorylate p68.  PDGF stimulation activates the cellular c-Abl (Plattner, 

Kadlec et al. 1999).  Thus, experimental data and those from other research laboratories 

suggest that PDGF maybe one of the signal molecules to induce tyrosyl phosphorylation 
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of p68.  Further studies are necessary for an in depth understanding on regulation of p68 

phosphorylation.  In addition, p68 has been reported to be poly-ubiquitinated in colorectal 

tumors (Causevic, Hislop et al. 2001).  Thus, it is possible that other types of post-

translational modifications, such as methylation, acetylation and ubiquitination affect the 

biological roles of DEAD-box protein p68.   

Although p68 RNA helicase is indicated to be essential for the pre-mRNA 

splicing both in vitro (Liu 2002) and in vivo (Lin, Yang et al. 2005), how phosphorylation 

influences the functional role of p68 is not understood. PDGF treatment of HT-29 cells, a 

human colorectal tumor cell line, in which p68 is not phosphorylated, induces changes on 

cell morphology from typical cobble-stone shape to fibroblast like phenotype. This 

observation sheds light on the possibility that phosphorylated p68 RNA helicase may 

play a role in epithelial-mesenchymal transition.  Examinations on epithelial markers and 

mesenchymal markers expression in HT-29 cells before and after PDGF treatment 

confirm the PDGF-induced EMT.  Strikingly, overexpression of unphosphorylatable 

mutant Y593F (Tyrosine → Phenylalanine) abolishes this transition, suggesting the 

essential role of phosphorylated p68 in EMT.  Experiments from our laboratory also 

confirmed the fundamental position of c-Abl in promotion of EMT process.  Treatment of 

STI-571, a c-Abl inhibitor, abolishes the PDGF-induced p68-mediated tumor cell EMT.  

 

1.17 The Molecular Basis of p68-mediated EMT 

Although p68 has been suggested acting as a transcriptional coactivator/ 

corepressor (Endoh, Maruyama et al. 1999; Rossow and Janknecht 2003; Wilson, Bates 
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et al. 2004; Bates, Nicol et al. 2005), the detailed function of p68 in transcriptional 

regulation is not known. Due to tyrosyl phosphorylation of p68 in tumor cells, great 

efforts are made to identify interacting partners of phosphorylated p68 RNA helicase.  

Both co-immunoprecipitation and His-tag pull down assays demonstrated that β-catenin 

(a membrane-binding protein) bound p68 directly (Yang, 2006, in preparation).  p68 

RNA helicase was further demonstrated to be indispensable for β-catenin-dependent gene 

transcription and cell proliferation.  These data lead to a conclusion that p68 promotes 

cell proliferation and tissue growth, which is consistent with  previous studies (Ford, 

Anton et al. 1988).  It is known that β-catenin disassociates from cadherin-dependent 

junction complex and subsequentially translocates into nucleus during EMT (Thiery 

2002).  The experiments from our laboratory further showed that the tyrosyl 

phosphorylated p68 interacted with β-catenin in nucleus and the phosphorylated p68 

promoted β-catenin translocation.  There are two possible explanations for the observed 

phenomena: (1) the β-catenin nuclear localization is due to p68-mediated downregulation 

of cadherin proteins; (2) p68 promoted β-catenin nuclear translocation induces EMT and 

represses E-cadherin expression.  Experiments by overexpression/knockdown E-cadherin 

indicated that decrease in E-cadherin did not significantly enhance β-catenin nuclear 

translocation.  Interestingly, β-catenin was required for p68-mediated E-cadherin 

downregulation.  Furthermore, nuclear β-catenin was obligatory for this E-cadherin 

repression. Taken together, a novel signaling axis by which phosphorylated p68 RNA 

helicase promoted β-catenin nuclear translocation was discovered. The nuclear β-catenin 
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was subsequently engaged in transcriptional programs that control EMT.   Nevertheless, 

the molecular mechanism by which tyrosyl phosphorylated p68 promoting EMT is far 

away from fully understood. 

 

1.18 Aims of Dissertation  

The purpose of this dissertation is to study the molecular basis of cellular 

processes and transcriptional regulation by p68 and phosphorylation of p68. 

I investigated the effects of mutations in conserved helicase core regions of p68 

RNA helicase, which abolished the ATPase and helicase activities of p68 in the pre-

mRNA splicing process. These p68 mutants abolished the pre-mRNA splicing in vitro 

and in vivo. p68 RNA helicase was demonstrated to unwind the U1 snRNA-5’ss RNA 

duplex and promote the spliceosome assembly.  Furthermore, my studies showed that 

structure role of p68 RNA helicase in bridging the load of U4/U6•U5 tri-snRNP to the 

pre-spliceosome to form the spliceosome independent of ATPase activity.  These findings 

highlighted the essential role of p68 in the pre-mRNA splicing.  

I demonstrated the central role of p68 in downregulation of E-cadherin in 

colorectal tumor cells; explored the potential signal molecules that induce tyrosyl 

phosphorylation of p68 in aggressive tumor cell lines; pursued the target of p68 in 

transcription modulation; and identified a multi-protein complex associated with p68 to 

direct the downregulation of E-cadherin and initiation of EMT.   Most importantly, I 

discovered an innovative mechanism to modulate protein-protein interactions in an 

energy-driven fashion.  Phosphorylation of p68 RNA helicase at Y593 activated the 
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transcription of the Snail gene by displacing HDAC1 from the nuclear remodeling and 

deacetylation complex at the Snail promoter using its protein-dependent ATPase motor. 

Thus, my data demonstrated an example that a DEAD-box RNA helicases can function as 

a protein “unwindase” to modulate protein-protein interactions in a bio-macromolecular 

machinery. 

The studies within this dissertation not only highlighted the essential and structure 

role of p68 RNA helicase in the pre-mRNA splicing process in vitro and in vivo, but also 

provided insight in the molecular basis of p68 as transcription coactivator, which has 

been long thought.  Most importantly, I discovered the first example of RNA helicase 

modulating protein-protein interactions through an energy driven motor to direct 

transcriptional machinery. Discovery of this novel apparatus situated DEAD-box RNA 

helicase in the central position of multiple cellular processes and opened up new 

deliberation on every step of signaling transduction pathways.   
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Figure I-1 The pre-mRNA splicing process. 

The dynamic model represents the pre-mRNA splicing process. The 5’ss is first 

recognized by the U1 snRNP.  Recruitment of the U2 snRNP to the branch point leads to 

the formation of complex A, or the pre-spliceosome. At this point, a pre-formed 

U4/U6•U5 tri-snRNPs will join into the pre-spliceosome, leading to the formation of the 

spliceosome complex B. Next, by remodeling RNA-protein and RNA-RNA interactions, 

U1 and U4 snRNP are released from the spliceosome complex and catalytically 

competent complex C is formed.  Finally, a two step chemical reaction is catalyzed by the 

spliceosome to remove the introns from the pre-mRNA and join the exons.  
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Figure I-1 
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Figure I-2. The conserved domain structure of DEAD-box protein. 

The DEAD-box proteins are highly conserved in eight conserved motifs within helicase 

core.  These conserved motifs are related to ATP hydrolysis, substrate binding or helicase 

activity.  Motif I, II of domain I and motif VI of domain II consist part of the ATP-

binding site, whereas motifs Ia, Ib, IV, and V are in the process of RNA binding.  
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Figure I-2 
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Figure I-3. Schematic illustration of domain structure of p68 RNA helicase.  

The lower panel represents the helicase-core region of DEAD-box proteins. Motifs 

AXXGXGKT, TPGR and DEAD comprise the nucleotide triphosphate (NTP)-binding 

and hydrolysis domains.  SAT motif links NTP hydrolysis with unwinding activity.  

RGXD represents the substrate-binding motif.  HRIGRXXR motif binds RNA.  
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Figure I-3 
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CHAPTER II 

ATPASE/HELICASE ACTIVITIES OF p68 RNA HELICASE ARE REQUIRED 

FOR THE PRE-MRNA SPLICING BUT NOT FOR ASSEMLBY OF THE 

SPLICEOSOME 

 

2.1 Abstract 

We have previously demonstrated that p68 RNA helicase as an essential human 

splicing factor acts at the U1 snRNA and 5’splicing site duplex (5’ss) in the pre-mRNA 

splicing process. To further analyze the function of p68 in the spliceosome, we generated 

two p68 mutants (Motif III, RGLD → LGLD and Motif VI, HRIG → HLIGR). ATPase 

and RNA unwinding assays demonstrated that the mutations abolished the RNA-

dependent ATPase activity and RNA unwinding activity. The function of p68 in the 

spliceosome was abolished by the mutations and the mutations also inhibited the 

dissociation of the U1 from the 5’ss, while the mutants still interacted with the U1:5’ss 

duplex. Interestingly, the non-active p68 mutants did not prevent the transition from the 

pre-spliceosome to the spliceosome. The data suggested that p68 RNA helicase might 

actively unwind the U1:5’ss duplex. The protein might also play a role in the U4/U6•U5 

addition, which did not require the ATPase and RNA unwinding activities of p68. In 

addition, we presented evidence here to demonstrate the functional role of p68 RNA 

helicase in the pre-mRNA splicing process in vivo. Our experiments also showed that p68 

interacted with unspliced but not spliced mRNA in vivo.  
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2.2 Introduction 

Messenger RNA precursors (pre-mRNA) are spliced in a large RNA-protein 

complex, the spliceosome (Moore and Sharp 1993; Sharp 1994). The spliceosome 

assembly requires precise recognition each of the splice site, namely the 5’ splice site 

(5’ss), branch point (BP) and 3’ splice site (3’ss). Assembly of a functional spliceosome 

proceeds through an ordered addition of four small nuclear ribonucleoprotein particles 

(snRNPs) (U1, U2, U4/U6 and U5) as well as many non-snRNP proteins. This pathway 

leads to the formation of several intermediate spliceosome complexes. Recognition of the 

5’ss by the U1 snRNP, along with binding of the polypyrimidine tract and the branch 

point by U2AF and SF1 results in the formation of the commitment complex. 

Recruitment of the U2 snRNP to the commitment complex leads to the formation of 

complex A, or the pre-spliceosome. At this point, the pre-formed U4/U6•U5 tri-snRNP 

will join into the pre-spliceosome, leading to the formation of the spliceosome (Hodges 

and Beggs 1994; Madhani and Guthrie 1994; Abovich and Rosbash 1997). After an 

extensive rearrangement, a two step chemical reaction is catalyzed by the spliceosome to 

remove the intron from the pre-mRNA.  

The pre-mRNA splicing is remarkably accurate. The splicing accuracy is 

achieved by inspection of the individual splice site multiple times by multiple factors 

(Nasim, Chowdhury et al. 2002). Recognition of the 5’ splice site is an early event in the 

pre-mRNA splicing process. The 5’ss is recognized by 5 – 7 base pair interactions 

between the 5’ss and 5’-end of the U1 snRNA (Staley and Guthrie 1998). Recent studies 

suggest that prior to the recognition of the 5’ss by the U1:5’ss RNA-RNA base pair 
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interactions the 5’ss is recognized by a protein factor, the U1 snRNP protein U1C. It is 

believed that binding of U1C to the 5’ss helps the base pair interactions between the U1 

and the 5’ss (Will, Rumpler et al. 1996; Chen, Stands et al. 2001). The U1:5'ss duplex is 

unwound to expose the same 5’ss sequence for pairing with the U6 snRNA prior to the 

first step chemical reaction of splicing (Madhani and Guthrie 1994; Madhani and Guthrie 

1994). However, before the U1:5’ss unwinding, the U4/U6•U5 tri-snRNP must be added 

to the pre-spliceosome. Presumably, addition of the tri-snRNP, unwinding the U1:5’ss 

duplex and the formation of the U6:5’ss duplex must be tightly coupled.  

The multiple step procedure of recognition of a splice site in the spliceosome 

involves the formation and remodeling of a number of RNA-RNA and RNA-protein 

interactions (Staley and Guthrie 1998; Singh 2002; Jurica and Moore 2003). It is 

generally believed that remodeling the complex RNA-RNA and RNA-protein 

interactions in the spliceosome is catalyzed by a family of DEAD/DExH box putative 

RNA helicases (Schwer 2001; Will and Luhrmann 2001). The RNA helicases unwind 

RNA-RNA base pairing (Staley and Guthrie 1998) and RNA-protein interactions (Staley 

and Guthrie 1998; Singh 2002) at the expense of the energy derived from ATP 

hydrolysis.  To date, eight yeast splicing factors and six mammalian proteins that are 

homologous to the superfamily of RNA helicases have been implicated in the pre-mRNA 

splicing (Hamm and Lamond 1998; Luking, Stahl et al. 1998; Schwer 2001; Will and 

Luhrmann 2001). Many of these proteins have demonstrated RNA unwinding activities in 

vitro (Laggerbauer, Achsel et al. 1998; Raghunathan and Guthrie 1998; Wang, Wagner et 

al. 1998; Schwer and Meszaros 2000).  These putative RNA helicases are involved in 
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every step of the pre-mRNA splicing process, including unwinding the U1:5’ss duplex, 

unwinding the U4/U6 RNA helixes, dissociation of the protein-RNA interactions at the 

branch point to promote the U2 – Branch point interactions and dissociation of the 

spliced mRNA from the spliceosome. 

The nuclear p68 RNA helicase was first identified by cross-reaction with a 

monoclonal antibody PAb204 that was originally raised against SV40 large T-antigen 

two decades ago (Crawford, Leppard et al. 1982, Lane, 1980 #81). The protein is a 

prototypical member of the DEAD-box family of RNA helicases. As an early example of 

a cellular RNA helicase, the ATPase and the RNA unwinding activities of p68 RNA 

helicase were documented with the protein that was purified from human 293 cells (Iggo 

and Lane 1989, Ford, 1988 #66, Hirling, 1989 #73). It has been suggested that p68 RNA 

helicase might be involved in transcription regulation (Endoh, Maruyama et al. 1999; 

Watanabe, Yanagisawa et al. 2001; Fujita, Kobayashi et al. 2003; Rossow and Janknecht 

2003) and DNA damage-repair pathways (Jost, Schwarz et al. 1999). Most recently, the 

experiments carried out in our laboratory demonstrated that p68 RNA helicase is an 

essential human splicing factor in vitro that plays a role in unwinding the transient U1:5’ 

splice site duplex (Liu, Sargueil et al. 1998; Liu 2002) Consistently, by large-scale 

proteomic analyses of human spliceosome, other research laboratories also suggested the 

existence of p68 RNA helicase in the human spliceosome (Hartmuth, Urlaub et al. 2002; 

Honig, Auboeuf et al. 2002; Jurica, Licklider et al. 2002; Rappsilber, Ryder et al. 2002; 

Zhou, Licklider et al. 2002; Guil, Gattoni et al. 2003).  
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In this report, we used two p68 mutants that lack ATPase and RNA unwinding 

activities. The in vitro splicing assays show that the function of p68 in the spliceosome is 

abolished by the mutations. Our experiments also show that the mutations inhibit the 

dissociation of the U1 from the 5’ss, while the mutants still interact with the U1:5’ss 

duplex.  Our results strongly suggest that p68 RNA helicase unwinds the transient 

U1:5’ss duplex during the spliceosome assembly process. Interestingly, the non-active 

p68 mutants do not prevent the transition from pre-spliceosome to the spliceosome. The 

mutants are also successfully assembled into both the pre-spliceosome and the 

spliceosome. Given our previous observation that depletion of p68 RNA helicase from 

HeLa nuclear extracts inhibited the pre-spliceosome to the spliceosome transition, our 

data indicated that p68 RNA helicase may play a role in the U4/U6•U5 addition, which 

does not require the ATPase and RNA unwinding activities of p68. Although previous 

data demonstrated the functional role of p68 in the in vitro pre-mRNA splicing process, 

whether p68 also plays a role in the pre-mRNA splicing process in vivo remains a 

question. We examined the pre-mRNA splicing efficiency in HeLa cells where p68 RNA 

helicase was knocked down by RNA interference (RNAi). Our data demonstrated that 

p68 RNA helicase plays a role in the pre-mRNA splicing in vivo. 

 

2.3 Results 

2.3.1 p68 Mutants Lack ATPase and RNA Unwinding Activities. 

p68 RNA helicase is an essential human splicing factor in HeLa nuclear extracts 

(Liu 2002). The protein was detected interacting with the transient U1:5’ splice site 
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duplex (Liu, Sargueil et al. 1998). It is thus suggested that p68 RNA helicase functions to 

unwind the RNA duplex during the spliceosome assembly process. If p68 actively 

unwinds the U1:5’ss duplex, we reasoned that ATPase and RNA unwinding activities 

must be essential for the function of the protein in the spliceosome. To test this 

conjecture, two p68 RNA helicase mutants were generated (Figure II-1A). The first 

mutant carried a mutation at the consensus sequence motif IV RGLD in the helicase-core 

region. The first R was changed to an L (ref to as LGLD). The second mutant carried a 

mutation at the conserved sequence motif VI HRIGRXXR. The second R was changed to 

an L (ref to as HLIGR). The wild type p68 and two mutants were expressed in bacteria E. 

coli. Three recombinant proteins were purified by a two column procedure (materials and 

methods) (Figure II-1B). ATP crosslinking, ATPase and RNA unwinding assays were 

carried out to characterize the expressed wild type and p68 mutants. Since the bacterially 

expressed recombinant p68 and mutants were phosphorylated at serine/threonine and 

tyrosine residues (Yang, Yang et al. 2004), the proteins were dephosphorylated by PP2A 

and PTP1B prior to the ATP crosslinking, ATPase and RNA unwinding analyses. 

Western blot with antibodies against specific phosphor-amino acids, phosphoserine, 

phosphothreonine and phosphotyrosine, showed that dephosphorylation of p68 was 

complete to an undetectable level (data not shown). ATP crosslinking with 

dephosphorylated p68 wild type and mutant showed that ATP binding was not affected 

by the mutations (Figure II-1C).  ATPase assays demonstrated that these two mutations 

completely abolished the ATPase activity of p68 RNA helicase (Figure II-1E).  RNA 

unwinding activity of wild type p68 and mutants was examined with a partial double-
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stranded RNA (dsRNA) containing a short RNA duplex (~22 bp in length) and long 186 

nt and 88 nt 3’ overhangs on both sides (Huang and Liu 2002). The experiments indicated 

that the wild type p68 unwound the dsRNA. However, the two mutants were unable to 

unwind the dsRNA (Figure II-1D). 

 

2.3.2 p68 Mutants that Lack ATPase and Helicase Activities do not Support the Pre-

mRNA Splicing. 

Next, we examined the effects of the mutations on the function of p68 in the pre-

mRNA splicing process. We previously demonstrated that the bacterially expressed 

recombinant p68 RNA helicase was phosphorylated at serine/threonine and tyrosine 

residues (Yang, Yang et al. 2004). We observed that only the tyrosyl phosphorylation 

affected the function of p68 in the pre-mRNA splicing (Yang, In-press 2005). To obtain 

the recombinant p68 and mutants without tyrosine phosphorylations, the bacterially 

expressed recombinant proteins were dephosphorylated by PTP1B. Dephosphorylation of 

p68 was complete as indicated by western blot with a monoclonal antibody PY20 (data 

not shown). The dephosphorylated proteins were separated from the added protein 

phosphatase by Ni-NTA micro column. After elution and micro-dialysis, the 

dephosphorylated proteins were added to HeLa nuclear extracts in which p68 was 

immunodepleted. Splicing activity of the reconstituted HeLa nuclear extracts was 

examined with splicing substrate pPIP10A. It was evident that the splicing activity of the 

p68 depleted HeLa nuclear extracts was restored by addition of wild type recombinant 

p68 (Figure II-2, lane 3).  On the other hand, the splicing activity was not recovered by 
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addition of the two p68 mutants to the HeLa extracts (Figure II-2, lanes 4 & 5). The 

results indicated that the mutations that abolished the ATPase and RNA unwinding 

activities of p68 also abolished the function of the protein in the pre-mRNA splicing 

process. 

 

2.3.3 p68 Mutants that Lack ATPase and RNA Unwinding Activities Interact with 

the U1:5’ss Duplex but do not Support the Dissociation of the U1 from the 5’ Splice 

Site. 

In a previous report, we demonstrated that depletion of p68 RNA helicase from 

HeLa nuclear extracts inhibited the dissociation of the U1 from the 5’ss (Liu 2002). We 

reasoned that, if p68 RNA helicase is involved in unwinding the U1:5’ss duplex, the 

ATPase and RNA unwinding activities of the protein must be required for this action. To 

test this conjecture, we monitored the U1 – 5’ss RNA-RNA interactions in the p68 

depleted HeLa nuclear extracts supplemented with p68 wild type or the two mutants. The 

trioxsalen crosslinking experiment similar to that described in our previous report was 

employed to analyze the U1 – 5’ss interactions (Liu 2002). The splicing substrate 

pPIP10A was used for our in vitro splicing.  Crosslinks of the U1 snRNA to the pre-

mRNA occurred in the intact HeLa nuclear extracts at 15 minutes time point (Figure II-

3A, lane 3). The crosslinking signal completely disappeared after 180 minutes splicing 

(Figure II-3A, lane 2). When the p68 depleted HeLa nuclear extracts were supplemented 

with wild type recombinant p68 RNA helicase, the U1 – 5’ss crosslinks signal was very 

weak, even at the 5 minutes time point (Figure II-3A, lane 11) and almost completely 
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disappeared after 90 minutes (Figure II-3A, lane 14). In contrast, the pre-mRNA:U1 

snRNA crosslinks remained almost constant in the same splicing time course in the HeLa 

nuclear extracts that were supplemented with the p68 mutants (Figure II-3A, lane 6 - 10 

and 16 - 20). The data suggested that the dissociation of U1 from the 5’ss was inhibited 

by the mutations of p68 RNA helicase that abolished the ATPase and RNA unwinding 

activities of the protein. 

p68 RNA helicase was first detected interacting with the transient U1:5’ss duplex 

by a methylene blue mediated RNA-protein crosslinking method (Liu, Wilkie et al. 1996; 

Liu 2002). The recombinant protein was also crosslinked to this short RNA duplex during 

the spliceosome assembly process (Liu 2002). We questioned whether these two p68 

mutants that did not support splicing would interact with the U1:5’ss duplex during the 

spliceosome assembly. To this end, we employed the same MB crosslinking method to 

examine the interactions of the p68 mutants with the U1:5’ss duplex. Since the strongest 

p68 crosslinking signals were obtained with the splicing substrate GC+DX (a derivative 

from α-tropomyosin), the splicing substrate GC+DX was used in our experiments. 

Similar to our previous observations, a crosslinking band that co-migrated at about 65 

kDa was detected in the p68 depleted HeLa nuclear extracts supplemented with p68 wild 

type or mutants (Figure II-4A). The crosslinks to the wt p68 reached maximum at about 

10 minutes and decreased thereafter (Figure II-4A, left panel). However, the crosslinks 

to two mutants did not decrease over a 180 minutes time course (Figure II-4A, middle 

and right panels). Since the crosslinking band was precipitated by Ni-NTA column, this 
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indicated that recombinant p68 crosslinked to the U1:5’ss duplex (data not shown). The 

identity of this crosslinking band was further verified by immunoprecipitation of this 

crosslinking band with an antibody against 6xhis-tag (data not shown). To exclude the 

possibility that the different MB crosslinks was due the different amount of recombinant 

p68s (wt/mutant) added to the extracts, we immunobloted the same MB crosslinking 

SDS-PAGE using anti-p68 antibody. The results showed that roughly the same amount of 

p68 (wt/mutant) was added to the crosslinking extracts (Figure II-4B). 

 

2.3.4 The ATPase and RNA Unwinding Activities of p68 are not Required for the 

Assembly of the Spliceosome. 

In the spliceosome assembly pathway, unwinding the U1:5’ss duplex must be 

tightly coupled with the addition of the U4/U6•U5 tri-snRNP. In our previous report, we 

demonstrated that depletion of p68 RNA helicase from HeLa nuclear extracts blocked the 

transition from the pre-spliceosome to the spliceosome (Liu 2002). In this study, we 

endeavored to examine the effects of p68 mutations on the spliceosome assembly. We 

employed native-gel electrophoresis to analyze the spliceosome complex formation in the 

p68 depleted HeLa nuclear extracts supplemented with recombinant p68 wt/mutant. The 

spliceosome complexes were assembled on the splicing substrate pPIP10A. It was 

evident that the spliceosome complexes A and B/C were assembled normally in intact 

HeLa nuclear extracts (Figure II-5A, lane 1). Consistent with our previous report, the 

formation of B/C complex was inhibited by p68 depletion (Figure II-5A, lane 2). 

Addition of wt p68 to the p68 depleted extracts restored the spliceosome complexes 
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assembly (Figure II-5A, lane 3).  Interestingly, assembly of A and B/C complexes was 

not affected in the presence of p68 mutants that lacked ATPase and RNA unwinding 

activities (Figure II-5A, lane 4 & 5). To further elucidate the effects of mutation of p68 

on the spliceosome assembly, we probed the assembly of the recombinant p68 wt/mutant 

in the spliceosome complexes by immunoblot. Since the recombinant proteins carried a 

His-tag, a commercially available monoclonal antibody against 6xhis was used in the 

immunoblot experiments. Our experiments showed that the recombinant wild type p68 

and mutants were assembled into the A and B/C complexes (Figure II-5B, lanes 2, 3, 4).  

To further analyze the effects of the mutations of p68 on the spliceosome 

complexes assembly, we monitored the complexes assembly in p68 depleted HeLa 

nuclear extracts.  The p68, wt or mutants, was added to the p68 depleted extracts. The 

spliceosome complexes were assembled on the PIP10A in a time course and analyzed by 

native PAGE. It was evident that the assembly of the A and B complexes was not 

significantly affected in the presence p68, wt or mutant, in the time course of 30 minutes 

(Figure II-5C) with a slightly faster kinetics in the presence of p68 wild-type compared 

to that in the presence of mutant (data not shown, Figure II-5C). However, it was clear 

that there were significant decreases in the E/H and A, B/C complexes in the presence of 

wild-type p68 compared to that in the presence of mutant at 120 minutes time point 

(Figure II-5C).  A decrease in E/H complex but not A, B/C complexes was observed in 

the presence of mutant (Figure II-5C).  The data again indicated that the mutations of 

p68 did not affect the assembly of the spliceosome but affected the subsequent steps of 

the pre-mRNA splicing process. 
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2.3.5 P68 RNA helicase affected the pre-mRNA splicing in vivo. 

p68 was shown to be an essential splicing factor in HeLa nuclear extracts. To 

analyze the functional role of p68 RNA helicase in the pre-mRNA splicing process in 

vivo, we employed RNA interference (RNAi) technique to knock down the endogenous 

p68 in HT-29 cells, a colon cancer cell line. Immunoblot demonstrated that the cellular 

level of p68 was reduced by over 90% by the RNAi knock down (Figure II-6A). The 

pre-mRNA splicing activity in p68 knock down cells was examined. We used a construct 

developed by Nasim, Md.T. and colleagues (Nasim, Chowdhury et al. 2002). This 

construct used a double reporter system to assay the changes in the ratio of spliced and 

total mRNA in the mammalian cells. It was evident that the ratio of spliced/total mRNA 

was dramatically reduced in p68 knock down cells (Figure II-6B). Exogenous expression 

of p68 wild-type in the p68 knock down HT-29 cells completely recovered the splicing 

(Figure II-6B). However, expression of HLIGR or LGLD mutant did not result in any 

splicing activity recovery (Figure II-6B). 

The effects of p68 RNA helicase on the pre-mRNA splicing process in cells were 

further examined by probing the spliced or unspliced mRNA of endogenous Actin-β and 

GAPDH genes in HT-29 cells where the p68 RNA helicase was knocked down and p68 

wt/mutant was expressed. The spliced or unspliced mRNA was probed by RT-PCR using 

primer targeting exon 4 and intron 4 or exon 4 and exon 5 of both genes. To eliminate the 

effects other than the pre-mRNA splicing, we used intronless histone H2A gene as a 
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control to normalize the RT-PCR products under different conditions. It was clear that 

knock down p68 RNA helicase led to accumulation of large amounts of unspliced mRNA 

of both Actin-β and GAPDH genes (Figure II-6, C & D). Under over-exposure 

conditions, a very faint band corresponding to spliced mRNA could be visualized in the 

p68 knock down cells (Data not shown). There was a larger accumulation of unspliced 

mRNA in HT-29 cells in which the non-active p68 mutant LGLD or HLIGR was 

expressed in p68 knock down cells (Figure II-6, C & D). However, the accumulation of 

unspliced mRNA disappeared in the p68 knock down cells in which the p68 wild-type 

was expressed. In fact, expression of wild-type p68 in the p68 knock down cells 

promoted the pre-mRNA splicing to some degree (Figure II-6, C & D). The result was 

consistent with the observations of the above double reporter assay.  

Furthermore, we analyzed the effects of p68 RNA helicase on the pre-mRNA 

splicing process by RNA immunoprecipitation (RNA-IP) (Gilbert, Kristjuhan et al. 

2004). The HA-p68, wild-type or HLIGR mutant, was expressed in HT-29 cells. The 

RNAs were precipitated by HA-antibody. It was clear that significant amounts of 

unspliced mRNA (both Actin-β and GAPDH) co-precipitated with the non-active p68 

mutant HLIGR, while no detectable unspliced mRNA precipitated with wild-type HA-

p68 in both the Actin-β and GAPDH cases (Figure II-7C). On the other hand, the p68, 

wt or HLIGR, did not interact with spliced mRNA as demonstrated by RT-PCR of RNA-

IP using primers cross exon 4 and exon 5 of both genes (Figure II-7C). The results 
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provided the in vivo evidence that p68 RNA helicase interacted with pre-mRNA in both 

Actin-β and GAPDH cases.  

Interestingly, we repeatedly observed the co-precipitation of p68 wild-type and 

mutant with histone mRNA in the RNA-IP experiments (Figure II-7D). There was no 

significant difference in the precipitation of histone mRNA by HA-p68, wild-type or 

mutant. To determine whether the co-precipitation of p68 with histone mRNA was 

histone mRNA specific, we carried out the RNA-IP experiments with another intronless 

gene CEBP with pair of RT-PCR primers (described in Table 2 in Material and Method). 

The same experimental procedure was employed. It was clear that the CEBP mRNA was 

also precipitated with p68 RNA helicase, wt and HLIGR mutant (Figure II-7E).   

 

2.4 Discussion 

p68 RNA helicase was shown to be an essential splicing factor in vitro that acted 

at the U1:5’ss duplex (Liu 2002). In this report, we further demonstrated the functional 

role of p68 RNA helicase in vivo. We showed that the ATPase activity were required for 

the function of the protein in the spliceosome. We showed here that the p68 mutants that 

lacked ATPase and RNA unwinding activities still interacted with the U1:5’ss duplex. 

Nevertheless, the U1:5’ss duplex was not unwound in the HeLa nuclear extracts 

supplemented with the p68 mutants. The requirement of the ATPase activity for the 

function of p68 in the spliceosome and for the dissociation of the U1:5’ss duplex strongly 

argued that p68 RNA helicase actively unwound the transient RNA duplex in the 
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spliceosome. P68 RNA helicase could directly unwind the U1:5’ss duplex RNA. 

Alternatively, p68 could also actively act on the protein factor(s) which stabilize the 

duplex. Given that p68 itself crosslinked to the RNA duplex and that the mutants also 

interacted with the RNA, it is most likely that the RNA helicase unwinds the RNA 

duplex. Interactions of p68 with the U1:5’ss duplex and assembly of p68 to the 

spliceosome complexes do not require ATPase/helicase activities, indicating that the 

ATPase/helicase activities of p68 is not required for the interactions of the helicase with 

the spliceosome machinery. We have generated specific p68 mutants that lack dsRNA or 

ssRNA binding properties (data not shown). It will be interesting to test whether or not 

these p68 mutants will be assembled to the spliceosome and interact with the U1:5’ss 

duplex. 

During the spliceosome assembly process, the dissociation of the U1 from the 5’ 

splice site is tightly coupled to the addition of the U4/U6•U5 tri-snRNP to the pre-

spliceosome. In our experiments, assembly of the spliceosome B/C complex was not 

affected by the p68 mutations that abolished ATPase/helicase activities. Further, the 

U1:5’ss duplex was not unwound in the spliceosome containing p68 mutants. The 

experiments demonstrated an excellent example that the addition of the U4/U6•U5 tri-

snRNP was uncoupled with the unwinding the U1:5’ss duplex in the spliceosome 

assembly process. Uncoupling of these two events by disrupting the biochemical 

activities of p68 certainly suggested a role of p68 in the communication between addition 

of the tri-snRNP to the pre-spliceosome and the U1:5’ss duplex unwinding. This is 

consistent with our previous observations that depletion of p68 inhibited the pre-
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spliceosome to the spliceosome transition (Liu 2002). Taking together all of our 

experimental observations (Liu, Sargueil et al. 1998; Liu 2002), we propose a 

hypothetical model for the function of p68 RNA helicase in the pre-mRNA splicing 

process. p68 actively unwinds the U1:5’ss duplex by direct strand displacement of the 

RNA duplex or by destabilizing the protein factor(s) that stabilize the duplex. The protein 

also plays a role in the addition of the tri-snRNP to the pre-spliceosome. P68 may fulfill 

the role by interacting with both the 5’ss and the U4/U6•U5 tri-snRNP. The interactions 

may be direct or may act through other proteins (Kuhn, Li et al. 1999). The ATPase 

activity of p68 is not required for the interactions. This model is consistent with the 

observations of other laboratories that p68 RNA helicase is detected in the pre-

spliceosome as well as the matured spliceosome (Neubauer, King et al. 1998; Hartmuth, 

Urlaub et al. 2002; Jurica, Licklider et al. 2002). The dual functions of p68 RNA helicase 

in the human spliceosome are reminiscent of the case of Prp22 in the yeast spliceosome. 

It was demonstrated that Prp22 plays two distinct roles. The protein plays an important 

role in second catalytic step of the pre-mRNA splicing. Prp22 is essential for releasing 

the matured mRNA from the spliceosome (Schwer and Gross 1998). Thus, it may be a 

general phenomenon that some DEAD/DExH box RNA helicases not only function in 

unwinding the target but also coordinate the events upstream and/or downstream.  

The function(s) of p68 RNA helicase in the pre-mRNA splicing process remains 

to be an intriguing question. Our previous experiments demonstrated an essential role of 

the protein in the in vitro pre-mRNA splicing in HeLa nuclear extracts (Liu, Sargueil et 

al. 1998; Liu 2002). Consistently, other research laboratories have detected p68 RNA 
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helicase in the mammalian spliceosome that is assembled in HeLa nuclear extracts as a 

constitutive component (Neubauer, King et al. 1998; Hartmuth, Urlaub et al. 2002; 

Jurica, Licklider et al. 2002). On the other hand, Bach-Elias and colleagues observed that 

p68 helicase plays a role in regulating c-H-ras alternative splicing (Guil, Gattoni et al. 

2003). All these experiments suggested a functional role of p68 in the pre-mRNA 

splicing process. However, these experiments also raised an important question. Is p68 a 

general human pre-mRNA splicing factor in vivo or does the protein only function in 

splicing a subset of pre-mRNA? We presented experimental results here to show that p68 

RNA helicase functioned in splicing of two house-keeping genes, Actin-β and GAPDH, 

in HT-29 cells. In addition, the intron that was tested in the double reporter was derived 

from late transcripts of adenovirus. It would be expected that efficiency of splicing of 

these introns should reflect the efficiency of the general pre-mRNA splicing process in 

cells. Thus, we believe that p68 RNA helicase is a general splicing factor. In supporting 

our conclusion, we observed that the growth rate of p68 knock down cells was reduced 

by over three fold (data not shown). The growth of the cells in which the endogenous p68 

was knocked down and the HLIGR/LGLD mutant was exogenously expressed was 

almost completely inhibited and the cells were eventually dead after several days (data 

not shown). It is also possible that, although p68 is an essential splicing factor, its 

function could be replaced by another RNA helicase in cells when p68 is absent. P72 

could be a candidate for this redundant function. It is recently demonstrated that p68 and 

p72 exist as a heterodimer in cells (Ogilvie, Wilson et al. 2003). Furthermore, p72 was 
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shown to associate with the U1 snRNP (Lee 2002) and the protein plays a role in 

regulating the alternative 5’ss selection in xxx gene splicing (Honig, Auboeuf et al. 

2002).  

Co-precipitation of p68 RNA helicase (mutant) with pre-mRNA in the RNA-IP 

experiments demonstrated another evidence for the functional role of the protein in the 

pre-mRNA splicing process. The experiments also suggested the interactions of p68 with 

pre-mRNA in vivo, which is consistent with our previous observations with HeLa nuclear 

extracts (Liu, Sargueil et al. 1998),  (Liu 2002). Co-precipitation of mRNAs of intronless 

genes, histone H2A and CEBP, with p68 RNA helicase, both wild-type and mutant, is an 

interesting observation. At the current stage, we do not know whether the precipitated 

RNAs are the mRNA precursor, matured mRNA, or both. It will be interesting to 

determine any differences in the RNAs precipitated by p68 wild-type or mutant. Unlike 

many mRNA precursors, the intronless histone or CEBP mRNA precursors are not 

spliced. Therefore, one potential explanation for the observation is that p68 RNA helicase 

is associated with all mRNA precursors. P68 participates the pre-mRNA splicing. After 

the splicing, the protein is removed from mRNA with the disassociation of components 

of the spliceosome. Without the splicing, p68 may ‘stay’ with the transcripts. However, 

this explanation opens several interesting questions. (1) How p68 is deposited at all 

mRNA precursors? (2) Whether p68 plays a potential role in the processing of the 

intronless mRNA precursors. How does p68 eventually dissociate from the intronless 

mRNAs before the mRNA exporting? 

 



69 

 

Figure II-1. p68 mutants lack ATPase and RNA unwinding activities. 

(A) Schematically illustration of the sequence motifs in the helicase core of DEAD-box 

RNA helicase and the p68 LGLD and HLIGR mutants.  

(B) Coomassie staining of SDS-PAGE of recombinant p68 wt (lane 1), LGLD mutant 

(lane 2), or HILGR mutant (lane 3) that were expressed and purified from bacterial E. 

coli.  

(C)  Crosslinks of p68 wt (lane 1), LGLD mutant (lane 2), or HILGR mutant (lane 3) to 

[γ-32P]-ATP are analyzed by SDS-PAGE followed by autoradiography.  

(D) RNA unwinding by p68 wt (lane 3), LGLD mutant (lane 4), or HILGR mutant (lane 

5) is analyzed by SDS-PAGE followed by autoradiography. Lane 1 is duplex RNA 

denatured by heating to 95oC. Lane 2 is the duplex RNA.  

(E) ATPase activities of p68 wt/mutant (indicated) are measured by colorimetric assay. 

The ATPase activity (y-axis) is expressed as µM Pi/mg of p68 or mutants. 
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Figure II-1 
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Figure II-2. p68 mutants that lack ATPase and helicase activities do not support the 

pre-mRNA splicing.  

Splicing of transcript pIP10A in HeLa nuclear extracts in which the endogenous p68 is 

mock depleted (lane 2) or depleted by antibody against p68 (lane 3 & 4). The 

dephosphorylated recombinant p68 (Dp), protein buffer (lane 2), wild type (lane 3), 

mutant HLGR (lane 4), or mutant LGLD (lane 4), is added to the p68 depleted extracts. 

Lane 1 is the pre-mRNA (pPIP10A) without splicing. 
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Figure  II-2 
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Figure II-3. p68 mutants that lack ATPase and RNA unwinding activities interact 

with the U1:5’ss duplex but do not support the dissociation of the U1 from the 5’ 

splice site.  

Trioxsalen crosslinking of the U1 snRNA to pre-mRNA in HeLa nuclear extracts. The 

U1:pre-mRNA crosslinking band is indicated in figure. The crosslinking reactions are 

carried out in the intact extracts (lane 2 – 5), p68 depleted extracts (lane 6 – 20) and in the 

p68 depleted extracts P68 wild-type (lane 11 – 15), mutant HLIGR (lane 6 -10), or 

mutant LGLD (lane 16 – 20) is added. The splicing are carried out for the indicated times 

before the trioxsalen is added to the splicing reactions. Lane 4 is crosslinked RNAs that 

are further treated with RNase H in the presence of DNA oligonucleotide αU1 that is 

complementary to U1 64-75 (αU164-75). Lane 5 is the crosslinked RNAs that are further 

treated with RNase H in the presence of random sequence DNA oligonucleotide Act1. 
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Figure II-3 
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Figure II-4. p68 mutants that lack ATPase and RNA unwinding activities interact 

with the U1:5’ss duplex during splicing.  

(A) MB crosslinking of His-p68, wild-type (left panel), mutant LGLD (middle panel), or 

mutant HLIGR (right panel), to the radio-labeled transcript pGC+DX in endogenous p68 

depleted HeLa nuclear extracts. The splicing are carried out for the indicated times before 

the methylene blue is added to the splicing reactions. The lane marked p68 is the MB 

crosslinking carried out in intact HeLa nuclear extracts without addition of recombinant 

p68.  

(B) The amount of p68 in the each crosslinking reactions are determined by immunoblot 

of the same MB crosslink SDS-PAGE with anti-His antibody. 
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Figure II-4 
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Figure II-5. The ATPase and RNA unwinding activities of p68 are not required for 

the assembly of the spliceosome.  

(A) Electrophoretic separation of the spliceosome complexes. Splicing reactions were 

carried out with splicing substrate pPIP10A in the extracts: untreated (lane 1), p68 was 

depleted with antibody against p68 (lane 2), p68 was depleted and recombinant wt p68 

was added (lane 3), p68 was depleted and recombinant LGLD mutant was added (lane 4) 

and p68 was depleted and recombinant HLIGR mutant was added (lane 5). All of the 

splicing reactions were incubated at 30°C for 30 min.  

(B) Assembly of wt p68 (lane 2), the LGLD mutant (lane 3), or the HLIGR mutant (lane 

4) into the spliceosome complexes in p68 depleted extracts was detected by 

immunoblotting of recombinant p68 using antibody against His6 tag. The recombinant 

p68s are dephosphorylated before adding to the splicing reactions. Lane 1 is the 

complexes assembled in the extracts without addition of recombinant p68.  

(C) The spliceosome complex assembly in p68-depleted HeLa nuclear extracts to which 

wt p68 was added (lanes 2 to 4 and 11 and 12), mutant LGLD was added (lanes 5 to 7 

and 13 and 14), or mutant HLIGR was added (lanes 8 to 10 and 15 and 16). The splicing 

reactions were carried out for the time indicated. 
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Figure II-5 
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Figure II-6. p68 RNA helicase affected the pre-mRNA splicing in vivo.  

(A) Knock down of p68 by RNA interference and exogenous expression of HA-p68 

wt/mutant in HT-29 cells are analyzed by immunoblot using anti-p68 antibody (upper 

panel) or anti-HA antibody (bottom panel). NT means the cells were treated with non-

specific siRNA duplex (control).  

(B) Double reporter assays for the ratio of spliced/total pre-mRNA in HT-29 cells in 

which p68 is knocked down and p68 wt or mutant (indicated) is expressed. The 

spliced/total pre-mRNA ratio is expressed as the luciferase activity divided by �-Gal 

activity (Nasim, Chowdhury et al. 2002).  

(C) & (D) RT-PCR probe the spliced/unspliced mRNA of Actin-� and GAPDH genes in 

HT-29 cells in which p68 is knocked down and p68 wt or mutant (indicated) is expressed. 

A pair of primers spans exon 4 and exon 5 (C) or exon 4 and intron 4 (D) are used in the 

RT-PCR reactions. In (D), the bottom two panels were the quantization of the results in 

the upper panel by densitometer scanning. The band intensity of each RT-PCR product is 

normalized to the intensity of histone mRNA RT-PCR band. 
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Figure II-6 
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Figure II-7. p68 RNA helicase associates with pre-mRNA in vivo.  

(A) RNA-IP of spliced/unspliced β-actin and GAPDH mRNA in HT-29 cells in which wt 

or mutant HA-p68 (indicated) is expressed. RNAs were precipitated by anti-HA 

antibody. Expression of HA-p68 wt/mutant was detected by immunoblotting with anti-

HA antibody.  

(B) The immunoprecipitated RNAs were detected by RT-PCR or PCR using the same 

primers as in panel C or D. 

(C) The immunoprecipitated RNAs were detected by RT-PCR using a pair of primers 

crossing exon 4 and intron 4 of β-actin (upper panel) or GAPDH (bottom panel) genes.  

(D) The immunoprecipitated RNAs were detected by RT-PCR using primers crossing 

both exon 4 and intron 4 or exon 4 and exon 5 (indicated) of β-actin (upper panel) or 

GAPDH (bottom panel) genes.  

(E) The immunoprecipitated RNAs were detected by RT-PCR using a pair of primers 

annealed to histone 2B or CEBP (Table 1) genes. IN indicates input, where the RT-PCRs 

were performed with total RNA extracts without IP. IP indicates that the RT-PCRs were 

performed with the RNAs that were c-precipitated with anti-HA antibody. RN indicates 

the immunoprecipitated mixtures were treated with RNase before performing RT-PCRs.  
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Figure II-7 
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CHAPTER III 

PDGF/c-ABL SIGNALING AXIS INDUCES TYROSINE PHOSPHORYLATION 

OF DEAD-BOX p68 RNA HELICASE 

 

3.1 Abstract 

Experiments from our laboratory have previously demonstrated that DEAD-box 

p68 RNA helicase can be Ser/Thr/Tyr phosphorylated in HeLa cells. Screening of patient 

tissue samples and cultured cell lines indicated that tyrosine phosphorylation of p68 

correlated with tumor progression.  The experiments of this dissertation demonstrated 

that PDGF autocrine induced the tyrosine phosphorylation of p68 in SW620 cells. 

Tyrosine kinase c-Abl was required for the tyrosine phosphorylation of p68.  

Furthermore, the tyrosine phosphorylated p68 was required for tumor cell epithelial-

mesenchymal transitions. The phosphorylated p68 repressed the expression of E-cadherin 

and upregulated the expression of Vimentin.  The tyrosine phosphorylated p68 also 

promoted cell invasion.   

 

 3.2 Introduction 

Human p68 RNA helicase is the gene product of DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 5 (DDX5). The translation product of this gene is 614 amino acids long and 

is characterized by the conserved DEAD motif as a putative RNA helicase.  Human p68 

RNA helicase was first detected by the monoclonal antibody DL3C4 (anti-SV40 large T 

antigen) (PAB204) due to cross-reaction (Crawford, Leppard et al. 1982; Ford, Anton et 
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al. 1988). Sequence analyses revealed the similarity between p68 with eukaryotic 

initiation factor eIF-4A, suggesting p68 may act as an ATP-dependent RNA helicase.  

Protein p68 shows a distinct nuclear distribution and is thought to be important for cell 

division and proliferation (Ford, Anton et al. 1988). Recombinant p68 RNA helicase was 

purified and exhibited RNA-dependent ATPase activity and helicase activity in vitro 

(Hirling, Scheffner et al. 1989).  Family members of DEAD-box proteins share conserved 

sequences. They express ubiquitously in living cells and are considered to be involved in 

multiple RNA-related metabolism, including splicing, translation, RNA processing, RNA 

transport and rRNA biosynthesis (Iggo and Lane 1989).  

In spite of its essential role in the pre-mRNA splicing process (Liu 2002; Lin, 

Yang et al. 2005), p68 RNA helicase has been shown to engage in diverse signaling 

pathways as a transcriptional coactivator or corepressor. The protein plays important 

roles in various cellular processes including cell proliferation, wound healing, apoptosis 

and tumor development (Stevenson, Hamilton et al. 1998; Causevic, Hislop et al. 2001; 

Guil, Gattoni et al. 2003; Rossow and Janknecht 2003; Kahlina, Goren et al. 2004; 

Wilson, Bates et al. 2004; Bates, Nicol et al. 2005; Kodym, Henockl et al. 2005).  In 

human colon cancer tissue, accumulated p68 protein is poly-ubiquitinated. This accretion 

is apparently due to the dysfunction of proteasome-mediated degradation (Causevic, 

Hislop et al. 2001).   

PDGF regulates wide-ranging cellular processes. There are four different isoforms 

in the PDGF family (Fredriksson, Li et al. 2004). These polypeptide isoforms assemble 

into five different dimers, PDGF AA, AB, BB, CC and DD. The ligands bind two 
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receptor tyrosine kinases, PDGF receptor α (PDGFR α) and β (PDGFR β). Unlike PDGF 

AA that exclusively binds to PDGFR α, PDGF BB interacts with both PDGFR α and β. 

The conventional PDGF ligands, AA and BB and their tyrosine kinase receptors are 

implicated in multiple processes associated with tumors, including autocrine-stimulated 

tumor cell growth, tumor angiogenesis, regulation and recruitment of stroma cells. The 

PDGF autocrine loop occurs in certain malignant tumors characterized by abnormal 

secretion of PDGF or mutational activation of PDGF receptors (Guha, Dashner et al. 

1995; Lokker, Sullivan et al. 2002). The PDGF autocrine loop likely occurs in most solid 

tumors. Both PDGFs and the receptors play important roles in tumor progression.  

The gene product of proto-oncogene c-Abl is a non-receptor tyrosine kinase.  c-

Abl localizes at the cytoplasma membrane, the cytosol and the nucleus. c-Abl has a 

catalytic domain, polyproline rich regions, and SH2 and SH3 domains that are involved 

in protein-protein interactions. The C-terminal domain of c-Abl has nuclear localization 

signals (NLS) and nuclear export signals (Van Etten, Jackson et al. 1994; Wen, Jackson 

et al. 1996).  Notably, the BCR-ABL plays significant roles in the development of human 

leukemia, including acute lymphocytic (ALL), chronic myelocytic (CML) and chronic 

neutrophilic (CNL) leukemia (Melo 1996). The nucleus pool of c-Abl is generally 

believed to be activated by DNA-damage or cell cycle signaling (Kipreos and Wang 

1990; Kipreos and Wang 1992; Yuan, Huang et al. 1996; Shafman, Khanna et al. 1997; 

Yuan, Huang et al. 1997). The non-receptor tyrosine kinase Src is suggested to be active 
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upon PDGF treatment in fibroblasts and subsequently phosphorylates and activates c-Abl 

kinase (Plattner, Kadlec et al. 1999). 

Epithelial-mesenchymal transition (EMT) was first noticed in epithelial tissues 

(Greenburg and Hay 1982). EMT was characterized by the loss of cell adhesion and 

upregulation of mesenchymal markers, breakdown of epithelial contact and cell 

rearrangement or migration in the extracellular matrix (Shook and Keller 2003).  

Epithelial cells may transiently lose their polarity and gain the ability to spread in many 

developmental processes. These processes include mesoderm formation during 

gastrulation and immigration of neural-crest cells from the neural tube (Duband, Monier 

et al. 1995; Sun, Baur et al. 2000).  In mature organs, processes such as tubulogenesis, 

tissue reorganization, wound healing and mammary gland branching may cause the 

transcriptional loss of epithelial markers (i.e. E-cadherin) and the induction of 

mesenchymal markers (i.e. Vimentin) in epithelial cells (Viebahn 1995; Thiery 2002).  

Epithelial plasticity changes also occur in a variety of pathological processes.  For 

instance, progression of benign tumors toward invasive and malignant carcinomas alters 

epithelial plasticity to migratory fibroblast phenotype (Hay 1995).   

Intensive studies indicate that the transition from non-metastatic adenoma 

(epithelial phenotype) to invasive carcinoma (mesenchymal phenotype) is driven by a 

distinct series of changes in adhesion proteins.  These changes include the loss of 

epithelial adhesion and catenin-dependent junctions, as well as expression of 

mesenchymal genes and expansion of proteins involved in cell migration and cell-ECM 

interactions.  Loss of epithelial polarity by downregulation of E-cadherin, mutations in 
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the E-cadherin gene or other mechanisms that prevent the adhesions junction formation 

are observed in malignant carcinoma cells.  In human cancer patients, the loss of E-

cadherin expression correlates with advanced stages of tumor development and poor 

prognosis (Riethmacher, Brinkmann et al. 1995). In this regard, the E-cadherin gene is 

proposed as a tumor suppressor gene. Molecular analyses have identified the repression 

of the E-cadherin gene as the major mechanism of EMT.  

Previous studies demonstrate that p68 is a potential substrate for protein kinase C 

(PKC) (Buelt, Glidden et al. 1994) and Tlk1 (Kodym, Henockl et al. 2005). Tyrosine and 

threonine phosphorylation of p68 has been observed in HeLa cell nuclear extracts in our 

lab (Yang, Lin et al. 2005; Yang, Lin et al. 2005).  Strikingly, p68 has been shown to be 

tyrosine phosphorylated in six cancer cell lines derived from different tissues, but not in 

cells derived from the corresponding normal tissues (Yang, Lin et al. 2005).  Comparison 

of p68 phosphorylation in cell lysates obtained from tumor cell lines and corresponding 

normal cell lines confirms the same observation.  Moreover, tyrosine phosphorylation 

levels of p68 apparently correlate with tumor cell malignancy. These discoveries generate 

enormous interest in studying signaling pathways that induce the phosphorylation of p68. 

Our studies demonstrate that the PDGF autocrine loop induced the tyrosine 

phosphorylation of p68 in SW620 cells. Tyrosine kinase c-Abl acted as the kinase to 

phosphorylate p68 at the Y593 site. The PDGF-induced tyrosine phosphorylation of p68 

is required for tumor cell EMT and invasion. These studies suggest the important role of 

the PDGF autocrine loop for tyrosine phosphorylation of p68 and, subsequently 

promoting tumor cell malignancy.  
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3.3 Results 

3.3.1 The Tyrosine Phosphorylation Status of p68 Correlates with Tumor 

Malignancy. 

Studies in our lab have previously characterized the role of tyrosine-

phosphorylated p68 in β-catenin nuclear translocation and epithelial-mesenchymal 

transition (Yang, 2006, in preparation). To gain a comprehensive understanding of the 

role that p68 may play in tumorigenesis, patient tissue samples obtained from Southern 

Division, Cooperative Human Tissue Network (Birmingham, AL) were screened by 

immunoprecipitation using anti-p68 polyclonal antibody (PAbp68).  The precipitated p68 

was examined by immunoblotting using antibodies against p68 (p68-rgg) or 

phosphotyrosine residue (P-Tyr-100).  The experiments were also carried out with 

corresponding normal tissue samples. p68 precipitated from tissue samples of 

adenocarcinoma (non-metastatic tissue) or carcinoma (metastatic tissue) of three different 

organ types (colon, ovary and lung) exhibited a unique pattern of tyrosine 

phosphorylation.  The p68 phosphorylation closely correlated with tumor progression 

(Figure III-1A upper panel & lower panel).  An elevated tyrosine phosphorylation level 

was observed in tumor tissue samples compared to that in corresponding normal tissue 

samples collected from same patients (Figure III-1A upper panel & lower panel). 

Furthermore, even higher tyrosine phosphorylation levels were detected in metastatic 

tissue samples, indicating that p68 may play potential roles in tumor metastasis.   
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The tyrosine phosphorylation status of p68 was also examined in three cell line 

pairs. H460 and H146 are derived from lung carcinoma.  SW480 and SW620 are derived 

from colon carcinoma of the same patient.  WM115 and SW266 are derived from 

melanoma. Among them, H460, SW480 and WM115 are derived from primary sites, 

where H146, SW620 and WM266 are derived from metastatic sites.  p68 was 

immunoprecipitated from the cell extracts. The precipitated p68s were examined by 

immunoblotting using p68-rgg and P-Tyr-100.  It is clear that a higher tyrosyl 

phosphorylation level of p68 was observed in lysates made from metastatic cell lines 

(Figure III-1B).  In contrast, p68 immunoprecipitated from extract made from non-

metastatic cell lines showed a lower or undetectable tyrosine phosphorylation level.   

p68 was phosphorylated at higher levels on tyrosine residues in metastatic tissue 

samples and cell lines. To understand the functional role of p68 in tumor invasion and 

metastasis, we decided to probe the cellular signaling pathways that induce p68 

phosphorylation. A cell line pair, SW480/SW620 derived from primary site (SW480) and 

metastatic lymph node (SW620) of colon tumor from same patient was chosen as the 

study system.  As indicated in figure III-1, p68 displayed significant tyrosine 

phosphorylation level in SW620 cells, while this phosphorylation is undetectable in 

SW480 cells.  
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3.3.2 PDGF/c-Abl Signaling Pathway Induces the Tyrosine Phosphorylation of p68 

in SW620 cells. 

In the effort to address the question of which cell signal pathway induces tyrosine 

phosphorylation of p68 in metastatic cell lines, we examined the phosphorylation status 

of four different cell lines.  Endogenous p68 was immunoprecipitated from extract made 

from four human colorectal cell lines (HT-29, HCT-116, SW480 and SW620). The 

precipitated p68s were examined by immunoblotting using antibodies against either p68 

or phosphotyrosine residues.  Comparison of tyrosine phosphorylation levels of p68 in 

these four cell lines confirmed that p68 was phosphorylated in the metastatic SW620 

cells, but not in other three non-metastatic cell lines (Figure III-2A).  

Previous studies in our lab demonstrated that PDGF molecules could stimulate 

tyrosine phosphorylation of p68 in human colorectal tumor cell line, HT-29.  A PDGF/c-

Abl/p68 signaling axis promotes cell proliferation and migration (Yang, 2006, in 

preparation).  In this signaling axis, upon ligand PDGF binding the PDGF receptor, the 

receptors activate downstream c-Abl tyrosine kinase, which subsequently phosphorylates 

p68 at tyrosine residue Y593.  To test whether the same signaling pathway also acts in 

SW620 cells, tyrosine phosphorylation of p68 was examined in SW620 cells. We 

employed the RNA interface (RNAi) strategy to transiently knock down the PDGF 

receptor and c-Abl kinase. Tyrosine phosphorylation of p68 was examined by the same 

experimental strategy.  Upon treatment of SW620 cells with small interfering RNA 

(siRNA) that targets PDGF receptor β (PDGFRβ) or c-Abl (Smartpool™, Dharmacon), 
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the tyrosine phosphorylation of p68 was abolished and the expression level of p68 was 

unaffected (Figure III-2B first and second panel from top). Upon RNAi knockdown of 

either PDGFR β or c-Abl, immunoblotting against PDGF receptor β or c-Abl from cell 

lysate indicated that the protein expression of PDGFRβ and c-Abl were diminished upon 

siRNA treatment (Figure III-2B third and fourth panel from top).  As a negative control, 

a non-targeting siRNA pool purchased from Dharmacon was used.   The tyrosine 

phosphorylation of p68 was not affected by the treatment of SW620 cells with non-

targeting siRNA. These results suggested that the signaling pathway of PDGF and 

subsequent activation of c-Abl kinase were required for the tyrosine phosphorylation of 

p68 in SW620 cells.  The data is consistent with previous observations in HT-29 cells, 

which suggest that p68 is the downstream target of c-Abl (Yang, 2006, in preparation).   

 

3.3.3 PDGF Autocrine is one of the Mechanisms to Phosphorylate p68 in SW620 

Cells.  

In some tumor cases, the PDGF autocrine loop pivotally drives tumorigenesis and 

metastasis, especially in astrocytomas and gliomas (Hermanson, Funa et al. 1992; Guha, 

Dashner et al. 1995; Lokker, Sullivan et al. 2002).  We have demonstrated that in SW620 

cells, PDGF stimulation is required for p68 tyrosine phosphorylation.  In SW620 cells, 

the PDGF signaling pathway may be constitutively activated in order to maintain the 

invasive and aggressive behavior of SW620 cells.  It is possible that the PDGF autocrine 

loop may acts in SW620 cells and controls the tyrosine phosphorylation of p68. To probe 
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whether the PDGF autocrine loop plays a role in tyrosine phosphorylation of p68 in 

SW620 cells, antibodies targeting either PDGF AA or PDGF BB were supplemented to 

cell culture media to neutralize the potential secreted PDGF molecules.  Tyrosine 

phosphorylation of p68 was analyzed by the same strategy to test whether antibody 

neutralization could block the tyrosine phosphorylation of p68.  Upon neutralization of 

PDGF BB, but not AA, the tyrosine phosphorylation of p68 was abolished in SW620 

cells (Figure III-3A). The PDGF antibody treatments did not alter the expression level of 

p68. These findings argued that the PDGF autocrine loop presents in colorectal tumor cell 

line and the PDGF autocrine loop may be responsible for the induction of p68 tyrosine 

phosphorylation.   

Unlike SW620 cells, SW480 cells are derived from the primary cancer site of the 

same patient. The cells are non-metastatic and non-invasive. We observed that p68 is 

phosphorylated to much lesser extent in SW480 cells (see figure III-2A).   To test 

whether PDGF treatment is also able to induce p68 tyrosine phosphorylation in SW480 

cells, the SW480 cells were treated with PDGF AA or BB.  The p68 tyrosine 

phosphorylation was examined in the treated cells (Figure III-3B).  It is evident that the 

PDGF AA, but not PDGF BB, induced tyrosine phosphorylation of p68 in SW480 cells.  

Although the PDGF signaling pathway is necessary to induce tyrosine phosphorylation of 

p68 both in SW620 and SW480 cells, different members of PDGF are required in 

different cell lines.  This may be due to the expression of different isoforms of PDGF 

receptors in different cells.  The observed potential PDGF autocrine loop in SW620 cells 

may be due to the upregulation of PDGF expression and secretion by unknown 
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mechanisms. Taken together, these data confirmed the important role of PDGF in 

induction of p68 phosphorylation and linked PDGF signaling pathway with colon cancer 

metastasis. It is proposed that the PDGF autocrine loop may be one of the mechanisms 

which promote colon tumor metastasis and anti-PDGF drugs may be applied to wider 

range of tumor therapy. 

 

3.3.4 Y593 is the Tyrosine Phosphorylation Site of p68. 

We next probed the phosphorylation site of p68 in SW620 cells. Experiments 

from our laboratory have suggested that Tyrosine 593 at the C-terminus of p68 was 

phosphorylated in HT-29 cells upon PDGF stimulation. To test whether p68 is 

phosphorylated at Y593 in SW620 cells, we generated Y593 → F mutant by site-directed 

mutagenesis.   We utilized RNAi to knock down endogenous p68.  Exogenous HA-

tagged p68 (wild type p68 or Y593F mutant) were expressed in the p68-knockdown cells 

(refer as SW620-p68/+wt or SW620-p68/+Y593F).  To avoid targeting of exogenous HA-p68s 

by RNAi, four nucleotides within the siRNA targeting sequence of p68 were mutated.  

The amino acid sequence of exogenously expressed HA-p68s was not changed (Figure 

III-4A).  The SW620 cells were transfected with non-targeting siRNA or siRNA 

targeting p68.  Subsequently, the HA-tagged p68s (wt or Y593F) were expressed.  

Immunoblotting of p68 using antibody against p68 indicated that endogenous expression 

of p68 was greatly reduced by p68 siRNA (Figure III-4B first panel).  HA-tagged p68s 

were expressed as revealed by immunoblotting using antibody against HA epitope 

(Figure III-4B second panel).  p68 phosphorylation was examined by immunoblotting of 
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HA-tag immunoprecipitates using P-Tyr-100. The results demonstrated that, unlike wild 

type HA-p68, the exogenously expressed Y593F protein was not tyrosine-phosphorylated 

(Figure III-4B third panel). These results suggested that Y593 was the phosphorylation 

site of p68 in SW620 cells. The results were in agreement with other experiments in our 

laboratory.  

 

3.3.5 Tyrosine Phosphorylation of p68 Promotes Tumor cell EMT. 

We investigated the biological role of tyrosyl phosphorylated p68.  The 

experiments from our laboratory previously demonstrated that phosphorylation of p68 at 

Y593 mediated PDGF induced epithelial-mesenchymal transition in HT-29 cells. We 

questioned whether phosphor-p68 also mediates the EMT and the invasive behavior of 

SW620 cells.   

During the EMT process, a number of epithelial markers are down-regulated and 

certain mesenchymal markers are upregulated. We tested the role of phosphor-p68 in 

regulating the expression of epithelial markers and mesenchymal markers. E-cadherin 

and Vimentin were probed as examples.  The E-cadherin expression was probed in 

SW620 cells in which the endogenous p68 was knocked down and the HA-p68s (wild-

type or Y593F) were exogenously expressed. Immunoblotting of p68 and HA from cell 

lysates revealed that p68 was knocked down by RNAi and the exogenous HA-p68s were 

expressed (Figure III-5A first and second panel from top).  Immunoblotting using P-Tyr-

100 of the HA-tagged immunoprecipitates confirmed the exogenously expressed HA-p68 

wt was phosphorylated and HA-Y593F mutant was not phosphorylated (Figure III-5A 
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third panel from top).  E-cadherin was expressed in a very low level in SW620 cells 

reflecting the fact that the SW620 cell line is a metastatic cancer cell line. The E-cadherin 

level was not dramatically affected by p68-knockdown (Figure III-5A fourth panel from 

top). However, expression of E-cadherin was further repressed in SW620-p68/+wt cells. In 

contrast, the expression of E-cadherin was significantly increased in SW620-p68/+Y593F 

cells (Figure III-5A fourth panel form top). The cellular level of Vimentin, a 

mesenchymal marker, was not significantly affected by p68 knock down (Figure III-5A 

fifth panel from top). However, expression of Vimentin was upregulated in SW620-p68/+wt 

cells, while expression of Vimentin was almost completely inhibited in SW620-p68/+Y593F 

cells (Figure III-5A fifth panel from top).  

Upon the same treatment as described above, SW620-p68/+wt cells and SW620-

p68/+Y593F cells cultured on microslides were fixed and stained by primary antibodies 

against E-cadherin or Vimentin. Immunostaining of E-cadherin and Vimentin in SW620-

p68/+wt or SW620-p68/+Y593F cells confirmed the results of the immunoblotting (Figure III-

5B).  These findings suggested that tyrosine phosphorylation of p68 at Y593 residue is 

required for the repression of epithelial markers and the upregulation of mesenchymal 

markers. Furthermore, mutation of phosphorylation site Y593 not only abolished the 

tyrosine phosphorylation of p68, but also prevented the EMT by relieving E-cadherin 

repression and repressing expression of Vimentin.  

Another important property of mesenchymal cells compared to epithelial cells is 

their mobility.   To further test whether phosphorylated p68 promotes epithelial cell 

changes toward mesenchymal cells, we examined cell invasion of SW620 cells.  HA-
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tagged p68s, (wt or Y593F mutant) were stably expressed in SW620 cells using a 

lentivirus gene expression system. The cells with or without exogenous expression of p68 

were examined for cell invasion.  The treated cells were pre-labeled with fluorescence 

and seeded into the upper chamber of 24-well plates with the bottom sealed by 

extracellular matrix gel. After incubation, the bottom chambers were scanned by a micro 

plate reader to detect the migrated cells by fluorescence.  Without HA-p68 wt expression, 

SW620 cells showed a moderate level of invasiveness, whereas expression of wild type 

p68 dramatically increased cell invasiveness (Figure III-5C).  In contrast, expression of 

Y593F mutant significantly reduced the cell invasion, indicating the tumor cell mobility 

and invasiveness were affected by tyrosine phosphorylation of p68 (Figure III-5C).  On 

the other hand, the cell invasion of SW480 cells in which p68 wt or mutant were 

expressed was also monitored under PDGF treatment.  HA-tagged p68s, wild type or 

Y593F mutant were stably expressed in SW480 cells using the same lentivirus gene 

expression system. The stable cell lines with or without PDGF treatment were examined 

for cell invasion.  Exogenous expression of HA-p68 wt greatly increased PDGF-

stimulated cell invasiveness.  However, expression of Y593F mutant inhibited the PDGF-

stimulated SW480 cell invasion and migration (Figure III-5D).  Interestingly, 

overexpression of p68 wild type alone did not affect cell mobility. Thus, PDGF-induced 

phosphorylated-p68 is required to promote cell invasion.  
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3.4 Discussion 

In this chapter, we observed that p68 acquired tyrosine phosphorylation at the 

Y593 residue in metastatic cancer cells.  The PDGF autocrine loop induced the tyrosine 

phosphorylation of p68. Tyrosine kinase c-Abl phosphorylated p68 upon PDGF 

stimulation. The phosphorylated p68 repressed the expression of E-cadherin and 

upregulated the expression of Vimentin. The phosphorylated p68 also promoted cell 

invasion. These mechanisms illustrate the promising role of phosphorylated p68 in tumor 

cell migration and metastasis. 

Treatment of SW480 cells with PDGF AA stimulates tyrosine phosphorylation of 

p68. It is likely that PDGF receptors alpha are expressed in SW480 cells. However, in 

SW620 cells, PDGFR β is required for the phosphorylation of p68.  One possibility to 

explain this observation is that different isoforms of PDGF receptor are expressed in 

different cell lines.  The upregulation of specific PDGF BB molecule in SW620 cells is 

possibly due to transcription dysregulation, or genetic mutation on PDGF promoter.  It 

will be interesting to investigate the molecular devices that control the expression of 

PDGF, which will strengthen the understanding of the role of PDGF in tumor formation 

and metastasis.   

Tyrosine 593 that located at the C-terminus of p68 and the flanking sequence 

contains the consensus sequence of tyrosine kinase c-Abl (YXXP) (Wu, Afar et al. 2002).  

Studies in our lab indicated that c-Abl phosphorylates p68 at Y593. The cytoplasmic 

membrane and cytosolic pool of c-Abl is activated upon PDGF and other growth factor 
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stimulation. The nuclear pool of c-Abl is activated by DNA-damage (Kipreos and Wang 

1990; Kipreos and Wang 1992; Yuan, Huang et al. 1996; Shafman, Khanna et al. 1997; 

Yuan, Huang et al. 1997).  On the other hand, p68 is localized to the cell nucleus. It is 

surprising that c-Abl mediates the effect of PDGF and induces the tyrosine 

phosphorylation of p68.  c-Abl has been shown to shuttle between the cytoplasm and the 

nucleus (Lewis, Baskaran et al. 1996; Taagepera, McDonald et al. 1998).  Therefore, it is 

possible that, upon PDGF stimulation, the activated cytoplasmic c-Abl translocates to the 

nucleus and phosphorylates p68.  Alternatively, nuclear p68 may translocate to the 

cytoplasm, where p68 is phosphorylated.  After phosphorylation, p68 translocates back to 

the nucleus.   

Tumor metastasis is a remarkably complicated process, manipulated by many 

mechanisms. Although it is very difficult to observe the bona fide EMT process during 

tumor metastasis, EMT is proposed to play a central role in tumor progression. The 

tyrosine phosphorylation of p68 promotes tumor cell EMT and invasion.  Therefore, we 

speculate that phosphorylated p68 promotes tumor metastasis in vivo.  Mutation of the 

tyrosine phosphorylation site of p68 is thought to abrogate orthopedic tumor development 

and progression.  

 

 

 

 

 



102 

 

Figure III-1.  Tyrosine phosphorylation of p68 correlates with tumor malignancy. 

(A) Tyrosine phosphorylation of p68 RNA helicase in nine tissue samples. Patient tissue 

samples were obtained from Southern Division, Cooperative Human Tissue Network 

(Birmingham, AL).  The tissue samples were collected from three organs, colon, ovary 

and lung; each organ group contains samples from normal tissue (normal), 

adenocarcinoma (adenoca) and metastases.  Upper panel, the p68 protein was 

immunoprecipitated (IP) from tissue lysates with antibody against p68 and followed by 

immunoblotting (IB) with appropriate antibody (indicated). The immunoblotting using 

antibody p68-rgg was the loading control.  Lower panel is the quantitively scanning of 

immunoblotting signal using UVP BioImaging and analysis System (Upland). The 

scanning densities of blots are shown as indicated.   

(B)  Examination of p68 tyrosine phosphorylation in three cell line pairs established from 

primary tumor site (P) or metastatic site (M).  Immunoprecipitates of p68 was detected by 

immunoblotting using appropriate antibodies as indicated.  The immunoblotting using 

p68-rgg antibody was the loading control.  
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Figure III-1 
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Figure III-2. PDGF/c-Abl signaling pathway induces tyrosine phosphorylation of 

p68 in SW620 cells. 

(A)  p68 RNA helicase is tyrosyl phosphorylated in four cell lines established from 

human colorectal tumors.  Tyrosine phosphorylations of p68s in these cells were 

analyzed by immunoblotting of anti-p68 immunoprecipitates using antibody p-Tyr-100 

(second panel from top). The immunoblotting using p68-rgg antibody was the loading 

control.  

(B) PDGF/c-Abl signaling pathways induce tyrosine phosphorylation of p68 in SW620 

cells.  SW620 cells were treated with siRNA targeting PDGF receptor β or c-Abl kinases. 

Immunoprecipitates of p68 were examined by immunoblotting using P-Tyr-100.  Protein 

levels of PDGFR β and c-Abl from cell lysates were examined by immunoblotting using 

appropriate antibodies as indicated. The immunoblotting using p68-rgg antibody was the 

loading control.  
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Figure III-2 
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Figure III-3 PDGF autocrine loop induces phosphorylation of p68 in SW620 cells. 

(A) PDGF autocrine loop in SW620 cells.  Anti-PDGF AA or BB antibodies (1 µg/ml) 

were added to SW620 cell culture media. The cells were incubated for overnight.  p68s 

were immunoprecipitated from cell lysates and the immunoprecipitates were examined 

by immunoblotting using antibody P-Tyr-100. The immunoblotting using p68-rgg 

antibody is loading control.  

(B) PDGF induces p68 tyrosine phosphorylation in SW480 cells.  SW480 cells were 

treated with PDGF AA or BB (20 ng/ml) for overnight.  The tyrosine phosphorylation 

levels of p68 were detected by immunoblotting of anti-p68 immunoprecipitates as 

indicated.  Immunoblotting using p68-rgg antibody was loading control. 

 

 

 

 

 

 

 

 

 

 

 



108 

 

Figure III-3 
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Figure III-4 Y593 is the tyrosine phosphorylation site of p68. 

(A) RNAi resistant p68 expression vectors.  Small interference RNA sequence targets 

open reading frame of p68 as shown.  Exogenous HA-tagged p68 expression vector 

coding WT or Y593F mutant are mutated at four nucleotides to avoid RNAi-mediated 

degradation. 

 (B) Y593 is the tyrosine phosphorylation site of p68 in SW620 cells.  SW620 cells were 

treated with siRNA to knockdown endogenous p68. The exogenous HA-tagged p68s (wt 

or Y593F) were expressed in the p68-knockdown cells. Immunoprecipitated p68 were 

detected by immunoblotting using antibodies against HA or P-Tyr-100. Immunoblotting 

using p68-rgg antibody indicates the knockdown efficiency by RNAi (First panel). 
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Figure III-4 
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Figure III-5. Tyrosine phosphorylation of p68 promotes EMT. 

(A) Phosphor-p68 down-regulates epithelial marker and upregulates mesenchymal 

marker.  HA-p68s (wt or Y593F) were expressed in p68-knockdown cells.  

Immunoblotting using antibodies against E-cadherin or Vimentin in cell lysates were 

shown as indicated. HA Immunoprecipitates were examined by immunoblotting using 

antibody against HA or P-Tyr-100 as indicated.  Immunoblotting using p68-rgg antibody 

was expression control.  

(B) SW620 cells were cultured on chambered microslides (BD Biosciences) and 

transfected with siRNA to knockdown endogenous p68. HA-p68s (wt or Y593F) were 

expressed in p68-knockdown cells. The treated SW620 cells were fixed with 3.7% 

formaldehyde.  After permeabilization and blocking, cells were stained by proper primary 

and secondary antibodies and viewed using Zeiss LSM510 Confocal Microscope. 

 (C) SW620 cells that stably expressed HA-tagged p68s (wt or Y593F mutant) were 

analyzed by invasive assay (BD Bioscience, Ja Jolla).  Relative invasive activity is 

presented as percentage of total cell numbers pass through collagen matrix. The results 

were the average of three independent experiments.  

(D) SW480 cells that stably express LacZ (control) and HA-p68s (wt or Y593F) were 

treated/untreated with PDGF (20 ng/ml) for overnight before performing invasive assay 

(BD Bioscience, Ja Jolla).  Relative invasive activity is presented as percentage of total 

cell numbers pass through collagen matrix. The result presents three independent 

experiments. 
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Figure III-5 
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CHAPTER IV 

PHOSPHORYLATION OF p68 RNA HELICASE ACTIVATES SNAIL 

TRANSCRIPTION BY DISSOCIATING HDAC1 FROM THE MBD3:MI-2/NURD 

COMPLEX AT THE PROMOTER 

 

4.1 Abstract 

The initiation of tumor cell invasion requires Epithelial-Mesenchymal Transition 

(EMT), by which tumor cells lose cell-cell interactions and gain the ability of migration.  

The gene expression profile during the EMT process has been extensively investigated to 

study the initiation of EMT.  In our studies, we indicated that tyrosine phosphorylation of 

human p68 RNA helicase positively associated with the malignant status of tumor tissue 

or cells. Studying of this relationship revealed that p68 RNA helicase played a critical 

role in EMT progression by repression of E-cadherin as an epithelial marker and 

upregulation of Vimentin as a mesenchymal marker. Insight into the mechanism of how 

p68 RNA helicase represses E-cadherin expression indicated that p68 RNA helicase 

initiated EMT by transcriptional upregulation of Snail. Human p68 RNA helicase has 

been documented as an RNA-dependent ATPase. The protein is an essential factor in the 

pre-mRNA splicing procedure.  Some examples show that p68 RNA helicase functions as 

a transcriptional coactivator in ATPase dependent or independent manner.  Here we 

indicated that p68 RNA helicase unwound protein complexes to modulate protein-protein 

interactions by using protein-dependent ATPase activity. The phosphorylated p68 RNA 

helicase displaced HDAC1 from the chromatin remodeling MBD3:Mi2/NuRD complex 
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at the Snail promoter.  Thus, our data demonstrated an example of protein-dependent 

ATPase which modulates protein-protein interactions within the chromatin remodeling 

machine.  

 

4.2 Introduction 

Tumor cells spread out to distance organs of human body through metastasis.   

For tumor cells to perform this deadly behavior, invasive cells suppress adhesion protein 

expression to escape from cell-cell interactions, degrade or remodel extracellular matrix 

which blocks tumor cells destination and acquire migratory phenotype. Intensive studies 

indicated that the transition from non-metastatic adenoma to invasive carcinoma is driven 

by a distinct series of changes of adhesion proteins.  These changes include loss of 

epithelial adhesion and catenin-dependent junction, as well as expression of 

mesenchymal gene and expansion of migratory, invasive phenotype. This process is 

generally termed as Epithelial-mesenchymal transition (EMT).  EMT is characterized by 

the loss of cell adhesions and upregulation of mesenchymal markers, breakdown of 

epithelial contact and cell rearrangement or migration in extracellular matrix (Shook and 

Keller 2003).  Epithelial cells may transiently lose their polarized phenotype and achieve 

cell spreading in many developmental and pathological processes (Duband, Monier et al. 

1995; Hay 1995; Viebahn 1995; Sun, Baur et al. 2000; Thiery 2002).  Various 

mechanisms contribute to the disruption of adhesions junction and cadherin-catenin 

complex of cancer cells.  For some tumors, a family of transcription factors, Snail/Slug, 

down-regulate the E-cadherin gene transcription (Nieto 2002).    
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Members of Snail family are indicated to be involved into EMT and epithelial 

cells transformation toward mesenchymal cells (Alberga, Boulay et al. 1991; Burdsal, 

Damsky et al. 1993; Nieto, Sargent et al. 1994).  Expression of Snail induces epithelial 

cell acquire fibroblastic phenotype and invasiveness properties. Inhibition of Snail 

function restores E-cadherin expression in epithelial cancer cell line in which E-cadherin 

has been lost (Batlle, Sancho et al. 2000; Cano, Perez-Moreno et al. 2000). Furthermore, 

Snail is indicated to bind three E-boxes located on the E-cadherin promoter and represses 

transcription of the E-cadherin gene directly (Batlle, Sancho et al. 2000). Therefore, Snail 

may be considered as malignancy marker and plays a central role of EMT.   

Multiple signal molecules have been investigated to trigger Snail mediated EMT 

both in embryonic development and tumor malignancy transformation; however, the 

mechanism that regulate Snail remains uncertain.   Several research groups have 

indicated that Snail can be regulated probably through chromatin remodeling/ 

transcription and post-translational modification pathways (Erives, Corbo et al. 1998; 

Dominguez, Montserrat-Sentis et al. 2003; Fujita, Jaye et al. 2004; Zhou, Deng et al. 

2004). Transcriptional regulation is one of the major mechanisms to regulate Snail 

expression, which has been studied in both embryonic development and tumor 

transformation.  ER has been long thought as a critical marker of prognosis and therapy 

in breast cancer (Masood 1992). Product of human MTA3 gene is identified as a 

component of Mi2/NuRD transcription corepressor in epithelial breast cancer. MTA3 and 

MBD3, a known component of the NuRD complex associates with the Snai1 promoter 

upstream of transcription start site and selectively repress the Snail gene expression.  
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Absence of MTA3 results in aberrant expression of Snail, leading to epithelial cells 

transformation toward mesenchymal cells (Fujita, Jaye et al. 2004). The elusive 

mechanism by which the NuRD complex represses Snail transcription is intriguing and 

remains discussion.  

Human p68 RNA helicase is the gene product of DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 5 (DDX5). Translation product of this gene is 614 amino acids long and 

characterized by the conserved DEAD motif as a putative RNA helicase.  Human p68 

RNA helicase was first detected by anti-SV40 large T monoclonal antibody DL3C4 

(PAB204) due to the specifically cross-reaction (Crawford, Leppard et al. 1982; Ford, 

Anton et al. 1988).    Protein p68 shows a distinct nuclear distribution and is thought to be 

important for cell division and proliferation (Ford, Anton et al. 1988). Recombinant p68 

RNA helicase was purified and exhibited RNA-dependent ATPase activity and helicase 

activity in vitro (Hirling, Scheffner et al. 1989).  Family members of DEAD-box proteins 

share conserved sequence, express ubiquitously in living cells and being considered to be 

involved in multiple RNA metabolism, including splicing, translation, RNA processing, 

RNA transport and rRNA biosynthesis/assembly (Iggo and Lane 1989). p68 RNA 

helicase has been indicated to engage in diverse signaling pathways as transcriptional 

coactivator or corepressor and play important role in various cellular processes including 

cell proliferation, wound healing, apoptosis and tumor development (Stevenson, 

Hamilton et al. 1998; Causevic, Hislop et al. 2001; Guil, Gattoni et al. 2003; Rossow and 

Janknecht 2003; Kahlina, Goren et al. 2004; Wilson, Bates et al. 2004; Bates, Nicol et al. 

2005; Kodym, Henockl et al. 2005).  In human colon cancer tissue, accumulated p68 
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protein is poly-ubiquitinated and this accretion is apparently due to the unction of 

proteasome-mediated degradation (Causevic, Hislop et al. 2001).   

In our studies, we indicated that tyrosine phosphorylation level of human p68 

RNA helicase is positively associated to malignant status of tumor tissue or cells. 

Previous studies revealed that p68 RNA helicase plays a critical role in EMT progression 

by repression the expression of E-cadherin and upregulation Vimentin. Insight into the 

mechanism of how p68 RNA helicase represses E-cadherin expression indicated that p68 

RNA helicase initiated EMT by transcriptional upregulation of Snail, a regulator of EMT. 

Human p68 RNA helicase has been documented as a RNA-dependent ATPase, which is 

an essential factor in the pre-mRNA splicing process.  Some examples showed that p68 

RNA helicase functions as a transcriptional coactivator in ATPase dependent or 

independent manner.  Here we indicated that p68 RNA helicase unwinds protein complex 

to modulate protein-protein interactions by using protein-dependent ATPase activity. The 

phosphorylated p68 RNA helicase disassociated HDAC1 from chromatin remodeling 

complex MBD3:Mi2/NuRD complex at the Snai1 promoter.  Thus, our data 

demonstrated an example of protein-dependent ATPase which modulates protein-protein 

interactions in chromatin remodeling machine.  

 

4.3 Results 

4.3.1 The Phosphor-p68 Repressed E-cadherin Expression by Indirect Mechanisms. 

Our experiments demonstrated that tyrosine phosphorylation of p68 at Y593 

suppresses E-cadherin expression. Several mechanisms control the repression of E-
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cadherin during EMT process, such as gene mutation and transcription repression 

(Yoshiura, Kanai et al. 1995; Guilford, Hopkins et al. 1998; Poser, Dominguez et al. 

2001; Peinado, Ballestar et al. 2004). Suppression of E-cadherin on transcriptional 

regulation is a main mechanism for regulation of cell adhesions protein expression during 

EMT (Berx, Cleton-Jansen et al. 1995; Christofori and Semb 1999).  To understand the 

role of the phosphorylated p68 in EMT, we tested the transcription activity of E-cadherin 

promoter in SW620 cells using a luciferase reporter, fused to the E-cadherin promoter 

containing three E-boxes (Hajra, Ji et al. 1999).  We utilized RNAi to knockdown 

endogenous p68.  Exogenous HA-tagged p68s (wt or mutant Y593F) was expressed in 

p68-knockdown cells. E-cadherin reporter and Renilla reporter vectors were 

cotransfected. After incubation, the cells were harvested for dual reporter assay.  The 

luciferase activities of Renilla were used as internal control.  E-cadherin transcription 

activity was not significantly affected by p68-knockdown but was substantially down-

regulated in SW620 cells in which wild type p68 was exogenously expressed (Figure IV-

1A).  Interestingly, the E-cadherin transcription was significantly upregulated in SW620–

p68/+Y593F cells, suggesting that tyrosine phosphorylation of p68 is required for suppression 

of the E-cadherin gene expression.  These data supported the assumption that 

downregulation of E-cadherin in p68 phosphorylated cells may due to inhibition of the E-

cadherin gene transcription. 

We asked whether the phosphor-p68 regulated the E-cadherin transcription 

directly or the regulatory effects are mediated through other cellular factors.  We 

reasoned that if p68 regulates E-cadherin transcription directly, p68 might participate into 
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transcriptional complex assembled at the E-cadherin promoter.  Therefore, we examined 

whether the phosphor-p68 interacted with the E-cadherin promoter by chromatin 

immunoprecipitation (ChIP) experiments. In the ChIP experiments, proteins that interact 

with DNA will be crosslinked by formaldehyde. After DNA fragmentation, a target 

protein will be immunoprecipitated. DNA fragments that co-immunoprecipitated with the 

target protein will be analyzed by a PCR reaction with a pair of primers targeted to 

specific DNA element(s). The ChIP experiments will argue whether the target protein 

directly participate the protein complex that assembled on a specific DNA element(s), 

such as a transcriptional promoter. 

The -108 to +49 region of E-cadherin promoter has been intensively studied. The 

region harbors three E-box elements that are bound by regulatory transcription factors.  

The ChIP experiment was designed to targeting this region of E-cadherin promoter.  The 

SW620-p68/+wt or SW620-p68/+Y593F cells were fixed by formaldehyde. DNA and DNA 

bound proteins were crosslinked. After sonication to break down chromatin to small 

fragments (~500 bp), HA-tagged proteins were immunoprecipitated by antibody against 

HA epitope. The immunoprecipitates were extensively washed and de-crosslinked. After 

clearance and concentration, co-immunoprecipitated DNA fragment were detected by 

PCR reaction using primers targeting -108 to +49 region of E-cadherin promoter.  It was 

clear from the ChIP experiment that neither p68 wild-type nor the Y593F mutant 

interacted with the E-cadherin promoter (Figure IV-1B). A small fraction of chromatin 

as input (without immunoprecipitation) was used as positive control. We concluded that 
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the phosphor-p68 might regulate the E-cadherin expression through other regulatory 

molecules. 

 

4.3.2 Snail Mediates the Effect of Phosphor-p68 on E-cadherin Suppression. 

Snail/Slug and SIP1 are the master regulators that regulate E-cadherin 

transcription (Comijn, Berx et al. 2001; Poser, Dominguez et al. 2001; Bolos, Peinado et 

al. 2003). Snail is also suggested to promote EMT during tumor metastasis (Batlle, 

Sancho et al. 2000; Cano, Perez-Moreno et al. 2000).  It is possible that Snail or other 

transcription factors mediate the effect of phosphor-p68 in controlling E-cadherin 

transcription during EMT process.  Thus, we examined the effects of the p68 

phosphorylation on the expression of Snail. HA-p68s (wt or Y593F) were expressed in 

p68-knockdown SW620 cells. Immunoblotting using antibody against Snail from cell 

lysate showed that cellular levels of Snail were increased in the SW620-p68/+wt cells and 

decreased in the SW620-p68/+Y593F cells (Figure IV-2A fourth panel from top). The Snail 

upregulation correlated with the p68 phosphorylation at Y593 (Figure IV-2A third and 

fourth panel from top). Interestingly, knockdown of endogenous p68 reduced Snail 

protein expression to undetectable level, suggesting a direct role of p68 in controlling 

Snail expression.   

The cellular level of Snail can be regulated through transcriptional regulation or 

post-translational modification.  To determine whether the regulation of cellular level of 

Snail was due to transcriptional regulation, we carried out luciferase reporter assays in 

SW620-p68/+wt or SW620-p68/+Y593F cells, using a luciferase reporter fused with Snail 
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promoter (Fujita, Jaye et al. 2004).  Snail reporter and Renilla reporter vectors were 

expressed in SW620-p68/+wt or SW620-p68/+Y593F cells. After incubation, the cells were 

harvested for dual reporter gene assay.  The luciferase activities of Renilla were used as 

internal control.  The transcription activity of the reporter in untreated cells was defined 

as 100.  Consistent with immunoblotting data, knockdown of endogenous p68 inhibited 

the Snail gene transcription (Figure IV-2B).  It was evident that the transcription activity 

of Snail promoter was activated in SW620-p68/+wt cells, while the transcriptional activity 

of the Snail promoter was repressed in SW620-p68/+Y593F cells (Figure IV-2B). These 

results indicated that phosphorylation of p68 at Y593 regulated the transcriptional 

activity of the Snail gene.  

We then tested whether the phosphor-p68 regulated the Snail transcription 

directly or indirectly by performing the same ChIP experiments with the Snail promoter. 

Previous studies demonstrated that Snail gene transcription is regulated through binding 

of transcription factor at a region from -700 to -300 of the Snai1 promoter. ChIP 

experiments were carried out to examine the association of p68 with the Snai1 promoter.  

The ChIP experiments were performed by precipitation of exogenously expressed HA-

p68s (wt or Y593F mutant) in SW620 cells, in which endogenous p68 were knocked 

down. The DNA fragments precipitated with HA-tagged p68s were examined by PCR 

with primers targeting to the region from -700 to -500. Both p68 wild-type and Y593F 

mutant precipitated with the Snail promoter (Figure IV-2C), indicating that p68 was 

directly involved in the transcriptional regulation of the Snai1 gene.  Surprisingly, both 

phosphorylated p68 (wt) and unphosphorylatable p68 (Y593F) interacted with the 
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promoter region of the Snai1 gene by ChIP experiment.  This observation was not agreed 

with our previous immunoblotting and reporter gene experiments that demonstrated that 

phosphorylation of p68 regulated the Snai1 gene transcription. One explanation is that 

tyrosine phosphorylation of p68 modulates the interactions of p68 with other potential 

cofactors or transcriptional machinery. Thus, it is highly likely that phosphorylated p68 

cooperate with unidentified transcriptional regulatory complex to regulate the 

transcription of Snai1 gene. 

We reasoned: if the phosphor-p68 repressed E-cadherin through regulation of 

transcription of Snail, the Snail expression must be required for the effects of the Y593 

phosphorylation on the E-cadherin repression.  To test this conjecture, we examined the 

effects of the p68 phosphorylation on the cellular levels of E-cadherin in SW620 cells in 

which Snail was knocked down by RNAi.  SW620 cells were first transfected with 

siRNA targeting Snail and subsequently transfected with HA-p68s, (wt or mutant). 

Immunoblotting of Snail using antibodies against Snail indicated that Snail expression 

was efficiently knocked down (Figure IV-2D first panel from top).  The expression of E-

cadherin and Vimentin were examined by immunoblotting using antibodies against E-

cadherin and Vimentin. Firstly, E-cadherin was repressed and Vimentin was upregulated 

by expression of p68 wild-type in SW620 cells without knocking down Snail. By 

expression of Y593F mutant, E-cadherin was up regulated and Vimentin was suppressed 

(Figure IV-2D second and third panel from top).   However, knockdown of Snail 

abolished the effects of exogenous expression of p68s on cellular levels of E-cadherin 

and Vimentin (Figure IV-2D second and third panel from top).   The results supported 
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the conclusion that the phosphorylated p68 represses E-cadherin through regulation of 

Snail transcription. Knockdown of the Snail gene does not affect expression level or 

tyrosine phosphorylation level of p68 in SW620 cells (Figure IV-2D fourth and fifth 

panel from top). These findings supported the perception that Snail is downstream target 

of the phosphorylated p68.   

To further confirm the essential role of Snail in EMT process promoted by 

phosphorylated p68, the invasive capability of SW620 cells that stably expressed HA-

p68s (wt, Y593F mutant) was examined. The Snail gene was knocked down in the cell 

expressing HA-p68s.  The cells were labeled by fluorescence and seeded into upper 

camber of invasion assay plates. Fluorescence signals were detected by micro plate 

reader after incubation for appropriate time.  Consistently, overexpression of p68 in 

SW620 cells induced very high cell invasion activity, whereas knockdown of Snail 

abolished the effect of phosphor-p68 in promoting cell invasion (Figure IV-2E).  

Moreover, in SW620 cells, in which HA-Y593F were expressed, Snail knockdown did 

not affect the cells invasive capability.    

Our experiments suggested that phosphor-p68 played a role in repression of E-

cadherin expression through the regulation of transcription factor Snail.  The 

phosphorylated p68 directly participated into the protein complex assembled at the 

promoter of Snai1. The phosphorylated p68 may regulate Snail transcription probably 

through modulating interactions of p68 with other transcriptional regulatory factors.  It is 

possible that other transcription factors, such as TWIST or Slug, may contribute to the 

phosphor-p68-mediated EMT and cell migration.  However, knockdown of Snail 



125 

 

abolished the cell phenotype transformation and invasion capability.  Furthermore, 

knockdown of Snail exhibited similar effect compared with expression of Y593F mutant 

on cellular markers expression and cell mobility, ruling out the possibilities of diverse 

signaling pathways.   Thus, it is highly likely that Snail specifically mediates the PDGF-

induced, phosphor-p68-mediated tumor cell EMT and invasion. 

 

4.3.3 p68 Associates with MBD3: Mi-2/NuRD Complex. 

 The preceding experiments suggested the role of the phosphor-p68 in repression 

of E-cadherin through the regulation of transcription of the Snai1 gene. To further 

understand the molecular mechanism by which the phosphor-p68 regulated transcription 

of the Snai1 gene, we attempted to probe the protein or protein complex that interacted 

with the phosphor-p68 at the Snail promoter. Recently, Fujita and co-workers 

demonstrated that MTA3 targeted the nuclear remodeling and deacetylation complex Mi-

2/NuRD to the Snail promoter and directly regulated the Snail gene transcription (Fujita, 

Jaye et al. 2004). Thus, we asked whether the phosphor-p68 interacted with the MBD3: 

Mi-2/NuRD complex in SW620 cells. To this end, we carried out co-

immunoprecipitation with the nuclear extracts made from SW620 cells using an antibody 

against p68. As a comparison, the co-immunoprecipitation experiments were also 

performed with nuclear extracts made from SW480, a cell line derived from the tissue of 

the same patient from whom SW620 was derived. SW480, however, was derived from 

tissue of non-metastatic adenocarcinoma. The tyrosine phosphorylation of p68 was 

almost undetectable in SW480 cells (see Figure III-2A). The immunoprecipitates of p68 
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from cell lysates made from SW480 and SW620 were examined by immunoblotting 

using antibodies as indicated.  It was clear that the antibody of p68 precipitated MBD3, 

Mi-2 and HDAC1 in the extracts made from SW480 cells (Figure IV-3A second to 

fourth panel, left part). The antibody also precipitated MBD3 and Mi-2 in the extracts 

made from SW620 cells. Interestingly, the p68 antibody did not precipitate HDAC1 in 

the nuclear extracts made from SW620 cell (Figure IV-3A fourth panel, right part). It 

was clearly that the interactions observed by co-immunoprecipitation experiment were 

not due to non-specific binding, because immunoprecipitation without anti-p68 

polyclonal antibody (IgG) did not detect these interactions. Immunoblotting using p68-

rgg suggested that similar amount of p68 were participated in this experiment.  A portion 

of cell lysates were examined by immunoblotting to detect the endogenous expression of 

MBD3, Mi-2 and HDAC1.  Given that MBD2, Mi-2 and HDAC1 are core components of 

the NuRD complex, this experiment suggested that p68 might associate with this 

complex. 

To confirm the co-immunoprecipitation results, we performed additional set of 

co-immunoprecipitation experiments using antibodies against MBD3, Mi-2 and HDAC1. 

The immunoprecipitates of MBD3, Mi-2 and HDAC1 were examined by immunoblotting 

using p68-rgg. The co-precipitation of p68 with MBD3, Mi-2 and HDAC1 in the extracts 

made from SW480 cells was clearly evident. P68 also co-precipitated with MBD3 and 

Mi-2 in the co-immunoprecipitation experiments with the extracts made from SW620 

cells (Figure IV-3B upper panel). Nevertheless, p68 did not precipitate with HDAC1 in 

the extracts made from SW620 cells using antibody against HDAC1 (Figure IV-3B 
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upper panel).  The immunoprecipitates of p68 were also inspected by immunoblotting 

using P-Tyr-100. It is evident that p68 is tyrosine phosphorylated in SW620 cells. The 

experiments suggested that unphosphorylated p68, but not tyrosyl-phosphorylated p68 

associated with HDAC1.  The protein-protein interaction studies indicated that p68 

associated with MBD3: Mi-2/NuRD complex in both SW480 and SW620 cells except 

that the interactions between HDAC1 and other components of the NuRD complex are 

regulated by the tyrosine phosphorylation of p68. 

We further tested the role of the phosphorylation of p68 at Y593 in the association 

of p68 with the MBD3: Mi-2/NuRD complex.  p68 was knocked down in SW620 cells by 

RNAi and the HA-p68s (wt or Y593F mutant) were exogenously expressed. We then 

carried out co-immunoprecipitation with the nuclear extracts made from the cells using 

anti-HA antibody. Immunoblotting of the immunoprecipitates using antibodies against 

MBD3 and Mi-2 demonstrated that MBD3 and Mi-2 co-immunoprecipitated with the 

HA-p68s (wt and Y593F mutant) (Figure IV-3C third and fourth panel, right part). 

However, this experiment suggested that HDAC1 only interacted with the Y593F mutant 

but not with the wild type p68 (Figure IV-3C second panel, right part). Immunoblotting 

of cell lysate verified the expression of HA-p68s, endogenous MBD3, Mi-2 and HDAC1 

(Figure IV-3C first to fourth panel, left part).  The results indicated that p68 associated 

with the MBD3: Mi-2/NuRD complex. However, only the unphosphorylated p68 

facilitated the MBD3/Mi-2-HDAC1 complex formation. HDAC1 was not able to 

associate with MBD3: Mi-2/NuRD in the presence of the phosphor-p68. 
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4.3.4 MBD3 Mediates the Loading of p68 on the Snail Promoter 

 We next asked whether the interactions between p68 and MBD3: Mi-2/NuRD is 

required for the association of p68 and/or MBD3: Mi-2/NuRD with the Snai1 promoter. 

We performed the chromatin immunoprecipitation experiments in SW620 cells in which 

either p68 or MBD3 was knocked down by RNAi. Immunoblotting demonstrated an 

efficient knock down of MBD (over 90%) and p68 (Figure IV-4A first panel and see 

figure III-5A). We then exogenously expressed HA-p68s (wt or Y593F mutant) in MBD3 

knockdown cells. The knockdown of MBD3 did not affect cellular house-keeping gene, 

Actin-beta expression (Figure IV-4A second and third panel from top). The chromatin 

fragments immunoprecipitated with HA or MBD3 were examined by PCR using primers 

targeting -700 to -500 region of the Snai1 promoter.  Anti-HA antibody did precipitate 

the Snai1 promoter in control knockdown cells (Figure IV-4B second lane). However, 

knockdown of MBD3 blocked the association of HA-tagged p68s with Snail promoter in 

the presence of wild type p68 or Y593F mutant (Figure IV-4B).  On the contrary, 

antibody against MBD3 did precipitate the Snai1 promoter in the p68-knockdown cells 

(Figure IV-4C third lane). Expression of HA-p68s (wt or Y593F mutant) also did not 

affect the MBD3-Snail promoter precipitation (Figure IV-4C fourth and fifth lanes). The 

data suggested that association of p68 with the MBD3: Mi-2/NuRD is not required for the 

association of MBD3: Mi-2/NuRD complex with the Snai1 promoter. In contrast, MBD3 

was required for association of p68 with Mi-3/NuRD complex at the Snai1 promoter.  

p68 has been demonstrated to act as a transcriptional coactivator or corepressor in 

different gene promoters (Endoh, Maruyama et al. 1999; Rossow and Janknecht 2003; 
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Kahlina, Goren et al. 2004; Bates, Nicol et al. 2005).  It is speculated that p68 may 

associate with various transcription regulatory machineries to regulate the expression of 

targeted genes. 

  

4.3.5 The phosphor-p68 displaces HDAC1 from the Snail promoter. 

There were two possible explanations for the observation that HDAC1 did not co-

precipitate with p68 in SW620 cells. (1) The unphosphorylated p68 recruited HDAC1 to 

the MBD3: Mi-2/NuRD complex. The phosphor-p68 could not function as a recruiter. (2) 

The phosphor-p68 ‘unwound’ HDAC1 from the complex. The unphosphorylated p68 

could not function as a protein ‘unwindase’. To determine the mechanism, we first 

probed association of HDAC1 with the Snail1promoter in SW620-p68, SW620-p68/+wt and 

SW620-p68/+Y593F cells by chromatin immunoprecipitation experiments. 

Immunoprecipitates using antibody against HDAC1 were examined by PCR reaction to 

detect the promoter of Snail.  Chromatins extracted from SW480 and SW620 cells 

transfected with non-targeting siRNA were also immunoprecipitated using anti-HDAC1 

antibody. It was clear that knockdown of p68 dramatically enhanced the association 

HDAC1 with the Snail promoter (Figure IV-5A fourth lane). However, expression of 

HA-p68 wt in the p68-knockdown cells diminished the association of HDAC1 with the 

Snai1 promoter. The HDAC1 associated with the Snai1 promoter in the cells expressing 

Y593F mutant (Figure IV-5A the fifth and sixth lanes).  In non-treated SW620 cells, 

HDAC1 associated with Snail promoter in a very low level. In the case that p68 was 

knocked down, the interactions of HDAC1 with Snail promoter were greatly enhanced, 
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suggesting that more HDAC1 were loaded to the Snail promoter.  The results ruled out 

the possibility that p68 might recruit HDAC1 to Snail promoter.  It is more likely that 

phosphorylated p68 displaces HDAC1 from Snail promoter by unknown mechanisms. 

When p68 was knocked down or mutated at phosphorylation site, HDAC1 was not 

displaced from Snail promoter.  Histone deacetylases remove acetyl group modification 

from histone tails of nucleosomes, which is believed to condense chromatin architecture 

and prevent the access of transcription factor (Kimura, Matsubara et al. 2005; Verdone, 

Caserta et al. 2005).  Therefore, the ChIP experiments suggested that the phosphor-p68 

displaced HDAC1 from the Snail promoter and subsequently upregulated the Snail 

expression. 

We questioned whether the p68 phosphorylation affected the HDAC1 activity at 

the Snai1 promoter. To this end, the HA-p68s (wt or Y593F mutant) were stably 

expressed in SW620 cells using the commercially available lentiviral gene expression 

system. The expression levels of HA-p68s (wt or mutant) was revealed by the 

immunoblotting using anti-HA antibody (Figure IV-5B).  The exogenously expressed 

p68s were immunoprecipitated from the nuclear extracts by anti-HA antibody. The 

deacetylase activity of the immunoprecipitates was analyzed by HDAC Activity 

Colorimetric Assay kit (BioVision). Briefly, the immunoprecipitates with or without a 

general histone deacetylase inhibitor, trichostatin A (TSA), were incubated with artificial 

substrates. After incubation, the products were labeled with dye and analyzed by micro 

plate reader. It was evident that overexpression of wt HA-p68 suppressed the deacetylase 

activities by 2 folds (Figure IV-5C). In contrast, overexpression of Y593F mutant led to 
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the increase of deacetylase activities by over 4 fold (Figure IV-5C).  The enhancement 

of deacetylase activity was verified by the treatment of TSA.  Since p68 does not have 

known deacetylase activity, the detected changes in deacetylase activity were due to 

deacetylase that co-immunoprecipitated with p68.  

To further investigate whether the p68 phosphorylation affected the HDAC 

activity at the Snail promoter, we measured the Snail promoter activity in the presence 

and absence of HDAC inhibitor TSA in SW620 cells, in which HA-p68s (wt or mutant) 

was overexpressed. The SW620 cells that stably express HA-p68s (wt or Y593F mutant) 

were transfected by Snail reporter and Renilla reporter.  Before harvesting, the cells were 

treated with TSA (100 ng/ml) overnight. The cells were harvest in the next day and 

performed dual reporter gene assay. The data indicated that the phosphor-p68 indeed 

enhanced the Snai1 gene transcription (Figure IV-5D). Overexpression of 

unphosphorylatable Y593F mutant suppressed the expression of Snail. This suppression 

effect could be relieved by treatment of cells with TSA (Figure IV-5D).  On the other 

hand, TSA treatment did not affect the Snail transcription in the presence of phosphor-

p68.  This observation was consistent with our findings that HDAC1 did not presented at 

Snai1 promoter in the presence of the phosphorylated p68.  We previous ruled out the 

possibility that unphosphorylated p68 recruits HDAC1 to the NuRD complex and the 

Snai1 promoter.  Thus, it is highly likely that phosphor-p68 displaced HDAC1 from the 

complex and consequently relieved the Snai1 gene from suppression.  This may explain 

the invasive behavior of SW620 cells.  In contrast, in certain cell lines that p68 are not 
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tyrosine phosphorylated, such as SW480 cells, it is speculated that unphosphorylated p68 

associates HDAC1 and inhibits Snail transcription.   

 

4.3.6 The Phosphor-p68 has Protein-dependent ATPase Activities.  

 Since p68 is a DEAD-box RNA helicase, to test whether the function of 

displacement of HDAC1 from the Snail promoter by the phosphor-p68 was due to a 

DNA/RNA dependent ATPase or unwindase activity, we carried out co-

immunoprecipitation with nuclear extracts that were treated with DNase I and RNase. 

Cell lyates extracted made from SW480 or SW620 were incubated with DNase I (40 

U/50 µl lysate) or RNase mix (3 U/50 µl lysate).  p68 were immunoprecipitated from 

treated cell lysates by polyclonal antibody of p68. The immunoprecipitates were 

examined by immunoblotting of antibodies against p68, HDAC1 and MBD3.  It was 

evident that p68 co-immunoprecipitated with MBD3 and HDAC1 in DNase/RNase 

treated extracts made from SW480 cells (Figure IV-6A second and third panel). 

However, p68 did not co-immunoprecipitate with HDAC1 in DNase/RNase treated 

extracts made from SW620 cells (Figure IV-6B second and third panel). p68 were 

precipitated at similar amount by the antibody in each samples as indicated by 

immunoblotting of anti-p68 antibody (Figure IV-6 A & B first panel). Immunoblotting 

of Actinβ verified that the DNase/RNase treatment did not cause protein degradation.  

The experiments suggested that the HDAC1 displacement was not DNA/RNA dependent.  
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It was intriguing that the phosphor-p68 was able to displace HDAC1 from the 

MBD3: Mi-2/NuRD complex in a DNA/RNA independent manner. We also observed 

that the phosphor-p68 was able to ‘unwind’ Axin from cytoplasmic β-catenin (Yang et al, 

in preparation). We speculated that phosphorylation of p68 at Y593 might change the 

enzymatic activities of the protein. To test this conjecture, we generated a p68 mutant that 

carried a mutation at the DEAD motif (Ref to as EEAD), which located at the highly 

conserved motif II within helicases core (Rocak and Linder 2004).  This mutation has 

been shown to abolish the ATPase activity of p68 (Huang and Liu 2002; Lin, Yang et al. 

2005). We expressed and purified recombinant His-p68s (wt, Y593F or EEAD mutant) in 

E. coli. The His-tagged p68s were dephosphorylated by PP2A and PTP to remove the 

potential phosphor group attached to p68s.  The dephosphorylated proteins were purified 

and concentrated and further re-phosphorylated by the recombinant c-Abl kinase (Yang, 

Lin et al. 2005). After clearance, the ATPase activity of the phosphor-p68 (wt or mutant) 

was examined. The recombinant p68s, phosphorylated or non-phosphorylated were 

incubated with 4 mM ATP and different potential substrates (dsDNA, ssDNA, dsRNA, 

ssRNA, BSA or β-catenin).  Consistent with our previous observation, the ATPase 

activity of p68 was RNA-dependent (Huang and Liu 2002; Lin, Yang et al. 2005; Yang, 

Lin et al. 2005). There was a sharp decrease in dsRNA dependent ATPase activity upon 

Y593 phosphorylation. Double strand DNA (dsDNA) stimulated minor ATPase activity 

of the protein and single-stranded DNA (ssDNA) did not stimulate ATP hydrolysis 

(Figure IV-6C). Interestingly, a strong ATPase activity of the phosphor-p68 was 
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detected in the presence of β-catenin, a protein interacting with the phosphor-p68 (Yang 

et. al, in preparation) (Figure IV-6C). Similarly, a strong ATPase activity of the 

phosphor-p68 was detected in the presence of recombinant MBD3. This ATPase activity 

was not detected with unphosphorylated p68 or with the Y593F mutant (Figure IV-6D). 

This protein-dependent ATPase activity was also undetectable in the presence of BSA, a 

non-specific protein that does not interact with p68.  Furthermore, in vitro phosphorylated 

His-EEAD mutant abolished the ATPase activity  including the protein-dependent 

ATPase activity, confirming that phosphor-p68 did hydrolyze ATP in the presence of β-

catenin or MBD3 (Figure IV-6D). Hence, we concluded that the phosphor-p68 gained a 

protein-dependent ATPase activity upon the Y593 phosphorylation.  

 

4.3.7 Displacement of HDAC1 from Snail Promoter Requires ATPase Activity of 

p68. 

 To further test the active displacement of HDAC1 from the MBD3: Mi-2/NuRD 

complex at the Snail promoter complex, the HA-P68s, wt, Y593F or EEAD were 

expressed in p68-knockdown cells. The expression of HA-p68s were revealed by 

immunoblotting using anti-HA antibody (Figure IV-7A). We then examined the 

association of HDAC1 with the Snai1 promoter in p68-knockdown SW620 cells in which 

The HA-P68s, wt, Y593F or EEAD mutant were expressed by chromatin 

immunoprecipitation assays using the antibody against HDAC1. It was clear that the 

mutation that abolished the ATPase activity also abolished the displacement of HDAC1 
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from the MBD3: Mi-2/NuRD complex at the Snai1 promoter (Figure IV-7B), indicating 

that the ATPase activity of p68 was required for the displacement of HDAC1 from the 

MBD3: Mi-2/NuRD complex at the Snai1 promoter. The observation provided additional 

evidence that the protein-dependent ATPase activity of the phosphor-p68 displaces 

HDAC1 from the MBD3: Mi-2/NuRD complex.  Thus, our data demonstrated that 

tyrosine phosphorylation of DEAD-box protein p68 regulated Snail transcription via 

remodeling the interactions of components of a multi-protein complex.  

 

4.4 discussions 

In this chapter, an important role of p68 in tumor cell EMT was investigated. We 

observed that p68 acquired tyrosine phosphorylation at Y593 in metastatic cancer cells.  

Tyrosine kinase c-Abl phosphorylated p68 upon PDGF stimulation. The phosphorylated 

p68 repressed E-cadherin through upregulation of the Snai1 gene expression. The 

phosphorylated p68 activates transcription of the Snai1 gene by displacing HDAC1 from 

the nuclear remodeling and deacetylation complex MBD3: Mi-2/NuRD using its protein-

dependent ATPase activity. p68 RNA helicase has been implicated in transcriptional 

regulation of a number of genes. However, it is not known how a DEAD-box RNA 

helicase functions in transcriptional regulation. Our studies may provide a good model to 

explain the functional role of p68 or other DEAD-box RNA helicases in the 

transcriptional process.   

Active dissociation of HDACs from the NuRD complex at the Snai1 promoter by 

the phosphor-p68 is unique. Histone deacetylases are enzymes that modify chromatin 
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structure and subsequently regulate gene expression. HDACs are usually recruited to a 

particular regulatory site with their associated multi-protein complexes, such as the 

NuRD or the Sin3 complex (Knoepfler and Eisenman 1999; Narlikar, Fan et al. 2002). 

While most studies concentrated on the mechanism by which the HDAC activity and its 

associated complex is recruited to a specific gene promoter (Forsberg and Bresnick 2001; 

Kurdistani and Grunstein 2003), our studies demonstrated an example that HDACs can 

also be displaced from their associated complex by a DEAD-box helicase. Given that 

tyrosine phosphorylations of p68 were closely associated with cancer development 

(Yang, Lin et al. 2005), it is tempting to speculate that displacement of HDACs by the 

phosphor-p68 is a dysregulated route for tumor progression through activation of specific 

genes. The functional role of the unphosphorylated p68 in the NuRD complex remains to 

be elucidated. Our data demonstrated that the unphosphorylated p68 did not function as a 

recruiter nor as an “unwindase” at the Snail promoter. One possibility is that the 

unphosphorylated p68 may function similarly as the phosphor-p68 (as a protein-

dependent “unwindase”) at different promoters. Whether p68 is a constitutive member of 

the NuRD complex is another question. p68 was not identified in the originally isolated 

the NuRD complex (Xue, Wong et al. 1998; Zhang, Ng et al. 1999; Bowen, Fujita et al. 

2004). Our data showed that the association of p68 with the NuRD complex was 

DNA/RNA independent. This seems to argue that association of p68 with the NuRD 

complex is not determined by DNA contents and p68 is a part of protein components of 

the NuRD complex.  
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 The protein-dependent ATPase activity of the phosphor-p68 is intriguing. The 

DEAD/DExD/H box of RNA helicases were originally defined as a family of enzymes 

that unwound double-stranded RNA (dsRNA) using the energy derived from NTP (ATP 

in most cases) hydrolysis (Tanner and Linder 2001). Lately, it has been suggested that the 

RNA-dependent ATPase can also be used to dissociate RNA-protein interactions 

(Jankowsky, Gross et al. 2001; Fairman, Maroney et al. 2004). Our observations further 

expand the view for the functions of DEAD/DExD/H box of RNA helicases as a 

modulator for protein-protein interactions independent of RNA/DNA. The detailed 

mechanism by which the phosphor-p68 hydrolyzes ATP in binding to its substrate protein 

is not clear. A well known example of protein-dependent ATPase motor is SecA, the 

preprotein translocase (Schekman 1994). Although the motor actions of the phosphor-p68 

apparently differ from that of SecA, the mechanism by which protein substrates stimulate 

ATP hydrolysis may resemble each other. One question is whether the same set of 

sequence motifs that are used in RNA-dependent ATP hydrolysis are required for the 

protein-dependent activity. One would speculate that sequence motifs that are involved in 

RNA binding in coupling to ATP hydrolysis may not be necessary for the protein-

dependent ATPase activity. Another interesting question is whether the Y593 

phosphorylation of p68 is required for the protein-dependent ‘unwinding’ activity. It is 

possible that p68 RNA helicase may gain a ‘protein-dependent ATPase’ activity after the 

tyrosine phosphorylation. Alternatively, appropriate substrate may also stimulate the 

protein-dependent ATPase activity of unphosphorylated p68. In this regard, it will be 

interesting to identify the substrate protein.  
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Taken together, these findings provide the first example that DEAD-box proteins 

modulate protein-protein interactions in an ATP-dependent fashion. The novel function 

of p68 fine-tunes the mechanism by which p68 regulates gene transcriptional regulation 

as a coactivator or corepressor.  It might be general that DEAD-box proteins or ATPases 

control transcriptional regulatory machinery by altering the protein-protein interactions 

within multi-protein complex. In addition, it is potentially possible that the protein-

protein interactions which contribute to most cellular processes are dynamically 

manipulated by wide-ranging ATPases. Therefore, our findings extend the understanding 

of the functional role of DEAD-box proteins in gene transcriptional regulation.  
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Figure IV-1. The phosphor-p68 represses E-cadherin by indirect mechanism. 

(A) p68 represses E-cadherin through transcription regulation. Luciferase reporter gene 

construct of E-cadherin promoter fused with luciferase was co-transfected along with 

0.01 µg of pRL null into p68-knockdown SW620 cells expressing HA-p68s, wt or mutant 

(indicated). The luciferase activity was expressed as relative luciferase activity (numbers 

on top of bars) by compared to the luciferase activity of SW620 cells without p68-

knockdown (NT) (define as 100) and without HA-p68s expression. The values plotted 

were the average ± S.E. of triplicate samples from typical experiments. 

(B) Protein p68 does not load on the promoter of E-cadherin. Chromatin 

immunoprecipitation (ChIP) of the E-cadherin promoter by anti-HA antibody in SW620 

cells with/without (NT/p68) p68-knockdown. The HA-p68s (WT or Y593F mutant) were 

exogenously expressed in p68-knockdown cells. The primers positions for PCRs were 

indicated. ChIP by mouse IgG and antibody against TFIIB were used as positive and 

negative controls. Inputs were PCR products from DNA extracts without anti-HA 

immunoprecipitation. 
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Figure IV-1 
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Figure IV-2. Snail mediates the effect of phosphor-p68 on E-cadherin transcription.  

(A) Phosphorylation of p68 correlates with Snail expression. Immunoblotting analyzes 

the cellular levels of Snail (the fourth panel from top) and exogenously expressed HA-

p68s plus endogenous p68 (the first panel). Tyrosine phosphorylation of HA-p68s was 

analyzed by immunoblotting of anti-HA immunoprecipitates via antibody P-Tyr-100 

(third panel from top). SW620 cells were treated with p68 siRNA (p68) or non-specific 

siRNA (NT). Immunoblotting of histone 2A (H2A) was a loading control.   

(B) Luciferase reporter of Snail promoter was cotransfected into p68-knockdown SW620 

cells along with HA-p68s, wt or mutant (indicated). The luciferase activity was expressed 

as relative luciferase activity (numbers on top of bars) by compared to the luciferase 

activity of SW620 cells without p68-knockdown (NT) and without HA-p68s expression 

(define as 100).  The values plotted were the average ± S.E. of triplicate samples from 

typical experiments. 

(C) Chromatin immunoprecipitation (ChIP) of the Snail promoter by anti-HA antibody in 

SW620 cells with/without (NT/p68) p68-knockdown. The HA-p68s (wt or Y593F 

mutant) were exogenously expressed. The primers positions for PCRs were indicated. 

Inputs were PCR products from DNA extracts without ChIP.  

 (D) Cellular levels of E-cadherin (second panel from top) and Vimentin (third panel 

from top) were detected by immunoblotting of cellular extracts made from SW620 cells 

with/without (Snail/NT) Snail siRNA knockdown and exogenous expression of HA-p68s 

(wt or Y593F mutant). Tyrosine phosphorylation of HA-p68s was analyzed by 
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immunoblotting of anti-HA immunoprecipitates vusing antibody P-Tyr-100 (fifth panel 

from top).   

(E) Cell invasive assays were performed for SW620 stable cells with or without Snail 

siRNA knockdown (NT/Snail).  SW620 stable cells were derived from SW620 parental 

cells with stable overexpression of p68s, WT, Y593F or YIH.  72 hours post siRNA 

transfection, 2X105 SW620 stable cells were labeled by fluorescence, seeded into up-

chamber of 24-cell plates and performed cell invasion assay (BD Bioscience).  2X105 

cells migrating into lower-chamber were defined as 100%.  The values plotted were the 

average ± S.E. of triplicate samples from typical experiments. 
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Figure IV-2 
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Figure IV-3. p68 associates with MBD3:Mi2/NuRD complex. 

(A) Co-immunoprecipitates of MBD3, Mi-2 and HDAC1 with p68 in SW480 and SW620 

cells were detected by immunoblotting of p68 co-immunoprecipitates using appropriate 

antibodies (indicated). p68 was precipitated by polyclonal antibody PAbp68. Rabbit IgG 

was used as a negative control antibody. Inputs were the immunoblottings of extracts 

without immunoprecipitation. 

(B) Co-immunoprecipitation of p68 with MBD3, Mi-2 and HDAC1 in SW620 (620) and 

SW480 (480) cells were detected by immunoblottings of co-immunoprecipitates of 

antibodies (anti-MBD3, anti-Mi-2, anti-HDAC1) using monoclonal antibody p68-rgg. 

Mouse IgG was used as control IP antibody. The inputs were the immunoblottings of 

extracts without immunoprecipitation. The tyrosine phosphorylation of p68 was detected 

by immunoblotting of PAbp68 immunoprecipitated p68 using antibody P-Tyr-100. 

(C) Co- immunoprecipitation s of MBD3, Mi-2 and HDAC1 with exogenously expressed 

HA-p68s (wt or Y593F mutant) in SW620 cells were detected by immunoblottings of 

anti-HA co-immunoprecipitates (IP:HA) using appropriate antibodies (indicated). SW620 

cells were treated with p68 siRNA (P68) or non-specific siRNA (NT). Inputs were the 

immunoblottings of extracts without immunoprecipitation. 
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Figure IV-3 
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Figure IV-4. MBD3 mediated the loading of p68 on the Snail promoter. 

(A) Cellular levels of MBD3 and exogenously expressed HA-p68s (wt or Y593F mutant) 

were analyzed via immunoblotting using appropriate antibodies (indicated). The 

immunoblottings were performed with cellular extracts made from SW620 cells that were 

treated with MBD3 siRNA (MBD3) or non-targeting siRNA (NT). Immunoblotting of 

Actin was a loading control. 

(B) ChIP of Snail promoter by using anti-HA antibody in SW620 cells with/without 

(MBD3/NT) MBD3 siRNA knockdown. HA-p68s (wt or mutant) was exogenously 

expressed in MBD3 knockdown cells or control siRNA treated cells. The primers 

positions for PCRs were indicated. ChIP by mouse IgG and antibody against TFIIB were 

used as positive and negative controls. Inputs were PCR products from DNA extracts 

without anti-p68 immunoprecipitation. 

(C) ChIP of Snail promoter by anti-MBD3 antibody in SW620 cells with/without 

(p68/NT) p68-knockdown. HA-p68s (WT or Y593F mutant) was exogenously expressed 

in p68-knockdown cells. The primers positions for PCRs were indicated. ChIP by mouse 

IgG and antibody against TFIIB were used as positive and negative controls. Inputs were 

PCR products from DNA extracts without anti-p68 immunoprecipitation. 
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Figure IV-4 
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Figure IV-5. The phosphor-p68 displaces HDAC1 from the Snail promoter. 

(A) ChIP of the Snail promoter by anti-HDAC1 antibody in SW620 cells. SW620 cells 

were treated with p68 siRNA (p68) or non-targeting siRNA (NT). HA-p68s (wt or Y593F 

mutant) was exogenously expressed. ChIP in SW480 cells was a control. ChIP by mouse 

IgG and antibody against TFIIB were used as controls. The primers positions for PCRs 

were indicated. 

(B) Cellular levels of exogenous expressed HA-p68s (wt or Y593F mutant) were 

analyzed by immunoblotting using appropriate antibodies (indicated). The 

immunoblottings were performed with cellular extracts made from SW620 cells that were 

stably expressed HA-p68s using Lentiviral gene expression system. Immunoblotting of 

Histone 2A was a loading control. 

(C) Deacetylase activities of co-immunoprecipitates by mouse IgG (IgG) and anti-HA 

antibody (HA) from cellular extracts made from SW620 cells were analyzed. HA-p68s 

(wt or Y593F mutant) were stably expressed using Lentiviral gene expression system. 

The immunoprecipitates were treated/untreated with 100 ng/ml of TSA. The deacetylase 

activity was expressed as relative deacetylase activity by define the activity of co-

immunoprecipitation by mouse IgG without TSA treatment without HA-p68 expression 

as 100.  

(D) Luciferase reporter of Snail promoter was transfected into SW620 cells in which HA-

p68, wt or mutant (indicated) was stably expressed. Twenty four hours post transfection, 

cells were treated/untreated (filled bars/open bars) with TSA (100 ng/ml) overnight. 

Luciferase activities were then analyzed. The luciferase activity was expressed as relative 
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luciferase activity (numbers on top of bars) by compared to the luciferase activity of 

SW620 cells without HA-p68s expression and TSA treatment (define as 100). 
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Figure IV-5 
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Figure IV-6. The phosphor-p68 has a protein-dependent ATPase activity. 

(A) DNase and RNase treatment in SW480 cells.  Anti-HA immunoprecipitates were 

treated with DNase (50 U/500 µl lysate) or RNase (3 U/500 µl lysate) and incubated at 

37°C for 30 min. The treated immunoprecipitates were examined by immunoblotting 

using proper antibodies as indicated. Rabbit IgG was used as a negative control antibody. 

Inputs were the immunoblottings of extracts without immunoprecipitation. 

(B) DNase and RNase treatment in SW620 cells.  Anti-HA immunoprecipitates were 

treated with DNase or RNase as described above.  The treated immunoprecipitates were 

examined by immunoblotting using proper antibodies as indicated. Rabbit IgG was used 

as a negative control antibody. Inputs were the immunoblottings of extracts without 

immunoprecipitation. 

 (C) ATPase activities of recombinant phosphorylated/unphosphorylated His-p68s (wt or 

mutants) in the presence different substrates. The recombinant his-p68s (wt or mutant) 

were phosphorylated by recombinant c-Abl by in vitro kinase assay. After separate His-

p68s from c-Abl kinase, the recombinant proteins or BSA were incubated with different 

substrates (indicated) in the presence of 4mM ATP.  Reaction products were mixed with 

Malachite green solution and read under OD 630. ATPase activity was expressed as µM 

of hydrolyzed inorganic phosphate in the ATPase assay reactions.  

(D) ATPase activities of recombinant phosphorylated/unphosphorylated His-p68s (WT, 

Y593F or EEAD mutants) in the presence MBD3. The recombinant his-p68s (wt or 

mutants) were phosphorylated by recombinant c-Abl by in vitro kinase assay. After 
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separate His-p68s from c-Abl kinase, the recombinant proteins or BSA were incubated 

with different substrates (BSA, β-catenin or MBD3 recombinant protein) in the presence 

of 4mM ATP.  Reaction products were mixed with Malachite green solution and read 

under OD 630. ATPase activity was expressed as µM of hydrolyzed inorganic phosphate 

in the ATPase assay reactions.  
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Figure IV-6 
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Figure IV-7. Displacement of HDAC1 from Snail promoter requires ATPase activity 

of p68. 

(A) Cellular levels of exogenously expressed HA-p68s (WT, Y593F or EEAD mutant) 

were analyzed by immunoblotting using appropriate antibodies (indicated). 

Immunoblotting of Histone 2A was loading control. 

(B) ChIP of Snail promoter by anti-HDAC1 antibody in SW620 cells. The SW620 cells 

were treated with p68 siRNA (p68) or non-targeting siRNA (NT). HA-p68s (wt or 

EEAD, Y593F mutant) was exogenously expressed. Inputs were PCR products from 

SW620 DNA extracts without ChIP. ChIP by mouse IgG and antibody against TFIIB 

were used as controls. The primers positions for PCRs were indicated.  
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Figure IV-7 
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CHAPTER V 

EXAMINE THE POTENTIAL ROLE OF PHOSPHORYLATED p68 IN CANCER 

METASTASIS 

 

5.1 Introduction 

Cancer metastasis is characterized by tumor cells spread from a primary site and 

formation of new tumors in distance organs. It is believed that the actions of multiple 

genes are required for the conversion of metastatic tumor through multistep processes. 

Key signaling pathways and regulators allow certain tumor cells pass through basement 

membrane barrier, survive in blood circulation and proliferate at distant organs 

(Chambers, Groom et al. 2002). Since the cancer metastases are responsible for the most 

cancer deaths, it is vital to study the molecular basis of cancer metastasis and develop 

novel approach for cancer therapy. 

Some types of cancer show an organ-specific metastasis pattern, such as breast 

cancer often metastasize to bone, lung and brains; prostate cancer usually metastasize to 

bone; and colorectal cancer frequently spread to liver.  Two theories have been proposed 

to illustrate the organ-specific tumor metastasis. One is “seed and soil” theory, suggesting 

that organs preferentially support the specific tumor grow. Another proposal claims that 

the circulatory connections between primary tumor and secondary sites are responsive to 

the tumor metastasis pattern (Weiss 1992).   Experimental data from laboratory mice 

support both of these theories.  
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To study the mechanism of cancer metastasis, the ultimate approach is to use 

animal model to identify the genes and examine the roles of key molecules. In 

experimentally modeled assays, tumor cells will be injected into the modeled animals, 

orthotopically or directly into the blood circulation.  These assays are spontaneous or 

experimental metastasis models respectively.  The experimental metastasis model only 

can be used to study the later phases of metastasis by which tumor calls have penetrated 

into blood stream. By the end of both types of assays, visible secondary site metastases 

are formed.  Coupe of mice model with genome-wide gene profile technology allows the 

identification and characterization of genes and signaling molecules that contribute to 

cancer metastasis. On the other hand, the animal models can be used to study particular 

gene products or specific signaling pathways in cancer metastasis.  

A number of spontaneous mice tumor models have been established. For 

mammary tumor, a set of subpopulation of marine tumor cell lines (67NR, 168FARN, 

4TO7 and 4T1) were isolated from a single mammary tumor. While these cell lines grow 

neoplasm spontaneously in mammary fatpad with no difference, these cell lines differ 

from the ability of metastasis.  67NR cells grow in primary site, but no tumor cells are 

detectable in blood, neighboring lymph nodes and lung.  For cell line 168FARN, the 

tumor cells spread out from primary site to lymph node. However, the cells are rarely 

isolated from blood and lung. 4TO7 cell lines can be cultured from lung tissue, 

suggesting that this cell line is able to invade to lung. Nevertheless, no visible metastatic 

node can be observed in lung, indicating that this cell line fails to colonies in distant 

organ. Cells of 4T1 complete all steps of metastasis and spontaneously metastasize to 
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brain, lung, bone and liver (Aslakson and Miller 1992).  The properties of these cell lines 

reveal the progression of cancer metastasis. Comparison of gene expression profiles of 

these four cell lines will dissect the processes of cancer metastasis and identify genes 

associated with their invasion ability.  

To study colorectal tumor metastasis, metastatic colorectal tumor cells can be 

injected into the cecal wall of BALB/c mice. Spontaneously metastasizing tumor colonies 

are formed in liver (Bresalier, Hujanen et al. 1987). Using this model, gene products 

supporting or repressing tumor metastasis can be examined.  Human colorectal tumor cell 

line SW480 and SW620 are isolated from the same patient. SW480 is derived from the 

primary site, while SW620 is derived from metastatic lymph node (Leibovitz, Stinson et 

al. 1976).  Injection of SW620 cells into the cecal wall of BALB/c mice leads to 

metastasis of liver. On the contrary, injection of SW480 cells does not reproduce the 

invasion (Witty, McDonnell et al. 1994).  This model can be used to study the 

mechanisms of colon tumor metastasis. This model may also be useful to develop 

strategies for colon cancer therapy.  

Prostate cancer is another leading cause of cancer death.  Orthotopic inoculation 

of androgen-independent and androgen-sensitive human prostate cancer cells into male 

nude mice induces tumor growth. However, the tumor cells often spread to lung and 

lymph nodes (Sato, Gleave et al. 1997; An, Wang et al. 1998).  Injection of one of 

sublines of human prostate tumor cell line LNCaP induces the osseous metastasis with an 

incidence of 11%-50% (Thalmann, Anezinis et al. 1994).   Androgen-independent PC-3 

human prostate tumor cell line expressing green fluorescent protein (GFP) is 
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orthotopically inoculated in the prostate (Yang, Jiang et al. 1999). The subsequent 

micrometastasis and metastasis are visualized through out the skeleton and nerve system 

by fluorescence. The metastasis colonies were also observed in lung, liver, kidney and 

other systemic organs.  

The tyrosine phosphorylation of DEAD-box p68 RNA helicase closely correlates 

with tumor malignancy and metastasis. Studies from our laboratory indicated that the 

tyrosyl phosphorylated p68 promotes tumor cell EMT and invasion in vitro. It is likely 

that the tyrosine phosphorylated p68 supports tumor metastasize in vivo.  In this chapter, 

an orthotopical human colorectal tumor nude mice model is tested.  The preliminary data 

investigating the potential role of phosphorylated p68 in tumor metastasis and further 

direction are also included.  

 

5.2 Results 

5.2.1 The Tyrosine-to-glutamic acid Substitution of p68 Functions Similar to the 

Tyrosine Phosphorylated p68.  

The phosphorylation at Y593 has been suggested to promote tumor cell EMT in 

vitro.  The phosphorylation of p68 regulates gene transcription through recruitment of β-

catenin nuclear localization and displacement of HDAC1 from NuRD complex.  We 

reasoned that if the phosphorylation of p68 at Y593 positively modulate tumor cell EMT, 

the introduction of negatively charged amino acid residues, such as aspartic acid or 

glutamic acid in the same position may enhance tumor cells invasion and migration.  The 
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substitution of tyrosine with glutamic acid has been successfully used to study the roles 

of amino acid residues in mediating protein-protein interactions (Lock, Frigault et al. 

2003) or cellular function (Zhang, Izaguirre et al. 2004).  To test this conjecture, we 

introduced glutamic acid to tyrosine 593 to generate Y593E mutant. To test the 

expression of exogenous proteins, the HA-tagged p68s (wt or Y593E) were expressed in 

HT-29 cells. The cell lysates were examined by immunoblotting using antibodies against 

HA epitope (Figure V-1 A).  To generate the cells stably expressing Y593E mutant, 

SW480 cells were transfected with Y593E mutant with Lentiviral gene expression 

system.  The transfected cells were selected using Blasticidin S (6 µg/ml) for two weeks. 

The colonies were isolated and amplified under the same selection condition. Three 

colonies were examined (#4, 21 and 41), comparing with parental cells SW480 and 

SW620. Immunoblotting using anti-HA antibody indicated the expression of HA-tagged 

Y593E in these colonies (Figure V-1 B first panel). The cell lysates were examined by 

immunoblotting using antibodies against E-cadherin and Snail as indicated. SW620 cells 

express lower level of E-cadherin and higher level of Snail compared to cell lysates made 

from SW480 cells (Figure V-1 B second and third panel).  Immunoblotting of Actin is 

loading control.  It evidenced that Y593E-41 derived from SW480 cells upregulated Snail 

expression and repressed E-cadherin expression.  The morphology of Y593E-41 also 

altered from parental cells under microscope. The SW480 cells exhibited an epithelial 

appearance and tended to form multicellular aggregates.  The SW480 cells stably 

expressing Y593E cells exhibited a round, elongated-fibroblast-like and dispersed 



166 

 

morphology (Figure V-1 C).  The molecular and morphorlogical changes suggested that 

substitution of tyrosine with glutamic acid transformed SW480 cells to mesenchymal-like 

cells.  These phenomena consist with the observation that tyrosine phosphorylated p68 

promotes tumor cell EMT.   

Solid evidence suggested that tyrosine phosphorylated p68 associates with β-

catenin which is important for growth factor induced cell proliferation and EMT.  The 

phosphorylated p68 also displaces HDAC1 from the NuRD complex at the promoter of 

Snail. Thus, one would reason that if the negative charge of Y593E reproduces the 

function of phosphorylated p68, the Y593E mutant should be able to interact with β-

catenin and exhibit HDAC1/MBD3-dependent ATPase activity. Cell lysate made from 

SW480 cells stably expressing Y593E mutant (refer as SW480-Y593E), or SW620 cells 

stably expressed p68-wt (refer as SW620-WT) were immunoprecipitated using antibody 

against β-catenin.  The β-catenin immunoprecipitates were detected by immunoblotting 

using antibodies against p68 (Figure V-1 D).  The result clearly evidenced that in SW480 

cells, the interaction of β-catenin with p68 is barely detectable. In contrast, expression of 

Y593E mutant enhanced this interaction, suggesting that the negative charge of glutamic 

acid promotes the interaction of p68 with β-catenin (Figure V-1 D, second panel).   

Expression of wild type p68 in SW620 cells further increased the bound β-catenin with 

p68.  Moreover, the association level of p68 with β-catenin correlated with the expression 

level of E-cadherin (Figure V-1 D, third panel).  Taken together, these findings 
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suggested that the expression of Y593E has similar role compared with tyrosine 

phosphorylation of p68.  

 

5.2.2 Expression of Y593E Promotes Tumor Cell Migration. 

Previous studies from our laboratory suggested the tyrosine phosphorylation of 

p68 supports cell invasion. It is possible that the expression of Y593E mutant in SW480 

cells may promote cell migration similarly.  To test this hypothesis, SW480 cells and 

SW480-Y593E were examined by cell culture wound assay.  The two sublines of cells 

were cultured in a monolayer at 6-well plates till proximately 80% confluence.  Wounds 

were created by pipette tips.  After rinsed by PBS thoroughly to remove any free-floating 

cells, the cells were incubated with serum-free medium at 37°C for indicated time points.  

Photomicrographs were obtained at 0, 4, 8, 16 and 24 hours after standard scrape 

wounding. The parental SW480 cells almost showed no migration. In contrast, the 

SW480-Y593E migrated significantly toward the scrapes (Figure V-2).  These data 

suggested that expression of Y593E promotes cell migration. Comprehensive 

experiments including invasion assay and MMP activity assay will validate the role of 

p68 in regulating cell migration and invasion.  

 

5.2.3 In vivo Assessment of Tumor Growth and Potential Metastasis. 

Based on our cell culture data, we speculated that expression of p68-Y593E 

would affect tumor metastasis in vivo.  To develop an appropriate animal model of 

metastasis, the tumorigenesis of SW480 and SW620 cells were tested. SW480 or SW620 
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cells (1 X 107) were injected subcutaneously into the flanks of CD-1 nude mice (n = 3 for 

each group).  The flank xenografts were monitored for SW480 and SW620 cells (Figure 

V-3 A and B).  In the mice injected with SW620 cells, measurable tumor appeared 

within one week and grown to an average volume of 860 mm3 by 4 weeks after injection.  

In the mice injected with SW480 cells, the tumor grew in similar pattern with an average 

volume of 400 mm3 by 4 weeks after injection (Figure V-3C).  These data suggested that 

both SW480 and SW620 cells are able to develop tumors subcutaneously in nude mice.  

Histochemistry and Immunostaining of antibodies against human gene products will 

validate the homo sapiens-derived tumor.   

In order to determine the impact of phosphorylated p68 in tumor metastasis, a 

spontaneous human colorectal tumor mice model is intended to be generated.  We 

injected SW620 and SW480 cells (1 X 107) into the cecal wall of nude mice (n = 5).  8 

weeks after injection, the xenograft growth and the potential metastasis were examined.  

The mice were euthanized and subjected to autopsy. The SW620 cells has 60% incidence 

for primary tumor grow with 0% liver metastasis.  SW480 cells has 20% incidence of 

primary tumor grow and 0% liver metastasis (Table 3).   For a typical SW620 injection, 

tumor growth is visible on the injection side (Figure V-4A). A tumor mass grew inside of 

the muscular layer (Figure V-4B).  Large tumor loci on the surface of cecum and one 

tumor locus on the surface of liver were observed (Figure V-4 B-D).   The tumor cells 

were injected into the cecal wall of nude mice, however, the major tumor mass grew on 

the inside of muscular layer.  It is possible that the injected cells invade though the 

basement membrane of the cecal wall and spread to the muscular layer.  The tumor 
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growth on the surface of the cecum suggested the success of orthotopical tumor growth. 

The liver metastatic of SW620 cells requires validation of histochemistry. 

We suspected that the low incidence of liver metastasis for aggressive cell line 

SW620 cells may due to the relative short incubation after injection. SW480, SW480-

Y593E, SW620 and SW620-WT sublines (1 X 107) were injected into the cecal wall of 

nude mice (n = 5).  12 weeks after injection, the xenograft growth and the potential 

metastasis were examined (Table 4). The SW480 cells has 0% incidence for primary 

tumor grow with 0% liver metastasis.  The SW480-Y593E cells has 20% incidence of 

primary tumor grow and 0% liver metastasis.  The incidence of SW620 cells grew at 

primary site was 60% with no liver metastasis.  Expression of wild type p68 in SW620 

cells had 40% tumor growth with 0% liver metastasis.  These data suggested that 

expression of Y593E slightly increased the tumor growth in situ. However, the potential 

metastasis ability of SW480 cells was not obviously enhanced by expression of Y593E.  

 

5.3 Discussion 

In this chapter, we aimed to investigate the potential role of phosphorylated p68 in 

tumor metastasis.  Stably expression of Y593E mutant in SW480 cells correlated with the 

upregulation of Snail and downregulation of E-cadherin. The interaction of p68-Y593E 

and β-catenin is likely to be enhanced.  Furthermore, expression of Y593E mutant of p68 

greatly promoted cell migration.  In the animal model experiments, the SW620 cells grew 

orthotopically in a relative low incidence with no liver metastasis observe. Expression of 
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Y593E in SW480 cells slightly enhanced the incidence of tumor growth. However, no 

liver metastasis observed in our animal model experiments.   These date suggested that 

the negative charge of glutamic acid probably mechanically and functionally similar to 

the tyrosyl phosphorylation of p68 in vitro.  More research works are need to generate the 

spontaneously metastasis model in vivo.  

For the purpose to study the role of phosphorylated p68 in tumor metastasis, 

expression of unphosphorylatable mutant of p68 (Y593F) to inhibit the metastasis 

tendency of metastatic cell line SW620 will provide solid evidence.  A great effort has 

been made to generate the sublines of SW620 cells in which Y593F of p68 is stably 

expressed. However, stable expression of Y593F in SW620 cells probably greatly 

suppresses the cell proliferation.  Alternatively, the tyrosine-to-glutamic acid substitution 

provides a possibility to imitate the function of tyrosyl phosphorylation of p68. 

Biochemical and molecular studies suggested that the negative charges provided by 

phosphor-group of p68 may play an important role in promoting tumor invasion and 

metastasis.  The stable expression of unphosphorylatable mutant of p68, Y593F in 

metastatic cell lines will certainly validate the role of phosphorylated p68 in tumor 

invasion.  

The spontaneously colorectal tumor model injecting SW620 cells into the cecal 

wall of nude mice has been used successfully to study the mechanism of tumor metastasis 

(Morikawa, Walker et al. 1988; Bresalier, Byrd et al. 1998; Minard, Herynk et al. 2005).  

Our previous studies are based on the human colorectal tumor cell lines (HT-29, SW480, 

and SW620). Molecular studies have demonstrated that in SW620 cells, phosphorylated 
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p68 promote tumor EMT and invasion. It will be appropriate to study the role of p68 in 

tumor metastasis by the spontaneous colon tumor metastasis model.  The low incidence 

of SW620 cells grows orthotopically and liver metastasis is unexpected.  It was suggested 

that injection of SW480 and SW620 cells orthotopically, the incidence of tumor growth is 

14/15 and 9/13 respectively.  Although the SW480 cells have not been observed to 

metastasize to liver, the SW620 cells have a 50% incidence of liver metastasis (6/13) 

(Witty, McDonnell et al. 1994).  One of the reason would be the vitality of cells was 

affected due to the long-standing detachment (5 – 7 hours) during operation. 

Improvement of cell storage using operation may retain cell vitality and increase the 

incidence of tumor growth and liver metastasis.  On the other hand, experimental tumor 

metastasis modeling using tail vein injection or in spleen injection may be useful to 

examine the role of phosphorylated p68 in tumor metastasis.  
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Table 1. In vivo incidence of tumor growth and liver metastasis.  
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Table 2. Effect of expression of Y593E and wt-p68 in liver metastasis. 
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Figure V-1 The tyrosine-to-glutamic acid substitution of p68 functions similar to the 

tyrosine phosphorylation. 

(A) The HT-29 cells were expressed HA-tagged p68s (wt or Y593E).  the expression of 

exogenous proteins were examined by immunoblotting using antibody against HA 

epitope. The immunoblotting of actin is loading control. 

(B) The cell lysates made from colonized SW480 cells stably expressing Y593E of p68 

and cell lysates made from SW620 and SW480 cells were examined by immunoblotting 

using antibodies against HA, E-cadherin, Snail and Acin as indicated.  

(C) Representative phase-contrast images of monolayer cultures of SW480 and SW480 

stably expressing Y593E.  

 (D) The cell lysates made from SW480, SW480-Y593E, SW620 and SW620-wt sublines 

were immunoprecipitated using antibody against β-catenin.  The β-catenin immuno-

precipitates were examined by immunoblotting using antibodies against p68-rgg.  

Immunoblotting using antibodies against E-cadherin and Actin were indicated. 
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Figure V-1 
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Figure V-2 Expression of Y593E promotes tumor cell migration. 

SW480 cells and SW480-Y593E were examined by cell culture wound assay.  The two 

sublines of cells were cultured in a monolayer at 6-well plates till proximately 80% 

confluence.  Wounds were created by pipette tips.  After rinsed by PBS thoroughly to 

remove any free-floating cells, the cells were incubated with serum-free medium at 37°C 

for indicated time points.  Photomicrographs were obtained at 0, 4, 8, 16 and 24 hours 

after standard scrape wounding. Representative photomicrographs of cell migration were 

obtained. 
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Figure V-2 
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Figure V-3. In vivo tumor assessment of growth. 

(A) and (B) SW480 (A) or SW620 (B) cells (1 X 107) were injected subcutaneously into 

the flanks of CD-1 nude mice (n = 3 for each group).  The flank xgenographs were 

examined 4 weeks after injection. 

(C) SW480 or SW620 cells (1 X 107) were injected subcutaneously into the flanks of 

CD-1 nude mice. The volumes of flank xgenographs were monitored after injection for 

each group.  Each bar represents average of 3 mice.  
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Figure V-3 
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Figure V-4. Generation of spontaneous colon tumor metastasis.  

(A) to (D) The SW620 cells (1 X 107) were injected into the cecal wall of CD-1 nude 

mice. 12 weeks after injection, the mice were euthanized and subjected to autopsy.   
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Figure V-4 
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CHAPTER VI 

CONCLUSION 

 
In the first part of this dissertation, we demonstrated that p68 acted as an RNA 

helicase to recognize and dissociate the U1 snRNA-5’ splice site duplex using energy 

derived from ATP hydrolysis during the early stage of splicing process (Liu 2002); (Lin, 

Yang et al. 2005). We showed that the ATPase and helicase activities of p68 were 

indispensable for the pre-mRNA splicing.  Furthermore, p68 also plays a role in the 

spliceosome assembly without requirement of the ATPase activity. Most importantly, in 

vivo experiments elucidated that p68 acted as a general splicing factor. Consistent with 

our in vitro data, p68 interacts with the unspliced, but not spliced form of mRNA 

precursor in vivo.  

An important role of p68 in tumor cell EMT was illustrated in this dissertation. 

We observed that p68 acquired tyrosine phosphorylation at Y593 residue in metastatic 

cancer cells.  Tyrosine kinase c-Abl phosphorylated p68 upon PDGF stimulation. The 

phosphorylated p68 repressed E-cadherin gene expression through up-regulation of the 

Snai1 gene. The phosphorylated p68 activated transcription of the Snail gene by 

displacing HDAC1 from the nuclear remodeling and deacetylation complex MBD3: Mi-

2/NuRD complex using its protein-dependent ATPase activity. P68 RNA helicase has 

been implicated in transcriptional regulation of a number of genes. However, it is not 

known how a DEAD-box RNA helicase functions in transcriptional regulation. Our 
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studies may provide a good model to explain the functional role of p68 or other DEAD-

box RNA helicases in the transcriptional process. 

Taken together, this dissertation study provides insight into the essential roles of 

p68 RNA helicase in the pre-mRNA splicing process in vitro and in vivo. This 

dissertation also investigated the molecular basis of phosphorylated p68 as transcriptional 

coactivator. Furthermore, this dissertation demonstrated the first example of RNA 

helicases modulating protein-protein interactions through an energy driven motor to 

direct transcription regulation. 

 

6.1 p68 is an essential splicing factor 

Combining the data from the previous studies of our laboratory and from this 

dissertation(Liu, Sargueil et al. 1998; Liu 2002), a hypothetical model for the function of 

p68 RNA helicase in the pre-mRNA splicing process is proposed (Figure VI-1). P68 

actively unwinds the U1:5’ss duplex by direct displacement of the RNA duplex or by 

destabilizing the protein factor(s) that stabilize the duplex. The protein also plays a role in 

the addition of the tri-snRNP to the pre-spliceosome. P68 may fulfill the role by 

interacting with both the 5’ss and the U4/U6•U5 tri-snRNP. The interactions may act 

directly or through other proteins (Kuhn, Li et al. 1999). The ATPase activity of p68 is 

not required for these interactions. This model is consistent with the observations of other 

laboratories that p68 RNA helicase is detected in the pre-spliceosome as well as the 

matured spliceosome (Neubauer, King et al. 1998; Hartmuth, Urlaub et al. 2002; Jurica, 

Licklider et al. 2002). The dual functions of p68 RNA helicase in the human spliceosome 
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are reminiscent of the case of Prp22 in the yeast spliceosome. It was demonstrated that 

Prp22 plays two distinct roles. The protein plays an important role in the second catalytic 

step of the pre-mRNA splicing. Prp22 is also essential for releasing the matured mRNA 

from the spliceosome (Schwer and Gross 1998). Thus, it may be a general phenomenon 

that some DEAD/DExH box RNA helicases not only function in unwinding the target, 

but also coordinate the events upstream and/or downstream.  

Co-precipitation of p68 with intronless mRNA is intriguing. The function of p68 

in intronless mRNA processing is unclear. The dual role of p68 in spliced and unspliced 

mRNA is reminiscent another DEAD-box protein Sub2p. The yeast DEAD-box protein 

RNA helicase Sub2p is an ortholog of splicing factor UAP56.  Sub2p is required for the 

pre-mRNA splicing process and the spliceosome assembly (Libri, Graziani et al. 2001; 

Zhang and Green 2001). Sub2p has also been implicated in mRNA surveillance (Jensen, 

Boulay et al. 2001; Strasser and Hurt 2001).  Sub2p associates with active genes during 

transcription elongation and facilitates the recruitment of the export receptor to the 

messenger ribonucleoprotein (mRNP) complex (Zenklusen, Vinciguerra et al. 2002). 

Therefore, transcription and mRNA exportation are probably functionally linked. P68 

may be an important protein factor that is involved in general pre-mRNA processing. One 

would reason that p68 participates the pre-mRNA splicing. After the splicing, the protein 

is removed from mRNA with the disassociation of components of the spliceosome. 

Without the splicing, p68 may ‘stay’ with the transcripts. The association of p68 with 

unspliced mRNA may be part of the exosome-dependent surveillance mechanism 

targeting improperly assembled mRNPs for degradation. 
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6.2 p68 regulates Snail transcription through protein-dependent ATPase activity. 

Histone acetylation and chromatin remodeling are targets of phosphor-p68 in 

regulating Snail expression. Experiments from our laboratory proposed a minimal model 

to illustrate the functional role of p68 in gene transcription regulation (Figure VI-2). P68 

associates with one of the mammalian histone deacetylases (HDAC1) in the contents of 

the chromatin remodeling the NuRD complex.  Tyrosine phosphorylated p68 modulates 

the interactions of HDAC1 with the NuRD complex at the Snai1 promoter.  HDAC1 

associates with the NuRD complex at the Snai1 promoter and represses Snai1 expression 

in the presence of unphosphorylated p68. The interaction is functional as 

unphosphorylated p68-associated HDAC1 exhibits histone deacetylase activity in vitro.  

The phosphorylated p68 dissociates HDAC1 from the NuRD complex at the Snai1 

promoter in an ATP-dependent fashion.  Consequently, the Snai1 gene is activated. 

P68 has been reported to be involved in multiple signaling pathways and acts as 

transcriptional coactivator (Endoh, Maruyama et al. 1999; Rossow and Janknecht 2003) 

or corepressor (Wilson, Bates et al. 2004; Bates, Nicol et al. 2005). However, how a 

DEAD-box protein facilitates or represses gene transcription is unknown. Four 

mechanisms have been proposed. One possibility is that p68 acts as an adaptor protein for 

recruitment of transcriptional factors. For ER responsive genes, the ATPase activity of 

p68 is not required for E2-induced gene expression (Endoh, Maruyama et al. 1999).  It is 

possible that p68 facilitates the assembly of the transcription coactivator complex 

containing p68, CBP/p300 and RNA polymerase II (Rossow and Janknecht 2003). 
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Secondly, ATPase-dependent chromatin remodeling factors, such as SWI2/SNF2 are 

structurally related to DEAD-box RNA helicase. DEAD-box RNA helicase DP97 has 

been reported to repress gene expression through a similar mechanism of repressor 

protein N-CoR and SMAT (Rajendran, Nye et al. 2003). It is possible that DEAD-box 

p68 alters chromatin structure via the ATPase motor.  Subsequently, DEAD-box p68 

activates or represses gene expression. Another possibility is that p68 regulates gene 

transcription though the recruitment of HDAC1. P68 interacts with HDAC1 and targets 

to sequence-specific promoters. The recruitment of HDAC1 to the promoter represses the 

gene transcription (Wilson, Bates et al. 2004). Finally, our studies provide a mechanism 

by which p68 regulates gene expression by modulating the interactions of components of 

transcriptional regulatory complex.  P68 actively displaces HDAC1 from the promoter 

and consequently activates gene transcription.  Therefore, the actions of p68 in regulating 

gene expression are probably dependent on the context of promoter and transcriptional 

regulatory complex.  

It is probable that more genes are regulated by p68 and the p68-associated the 

NuRD complex. The promoter specificity is probably mediated by other components of 

the complex. For example, MBD3 has been suggested to direct the NuRD complex to 

methylated chromatin sites.  Although p68 does not associate with DNA, which rules out 

the possibility that p68 recognizes promoter sequences; it is possible that p68 or 

phosphorylated p68 associates with the protein factor(s) that directly or indirectly 

recognize specific promoter sequences.  By recognizing promoter sequences, p68 might 

guide the transcriptional complex to the particular gene promoter regions.  
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DEAD-box RNA helicases are involved in most RNA metabolism.  The 

functional relationship between phosphorylated/unphosphorylated p68 is an interesting 

issue. One speculation is that unphosphorylated p68 serves as the “default” function of 

p68 to maintain normal cellular processes for cell growth and life span, including the pre-

mRNA splicing. However, tyrosine phosphorylation of p68 alters the function of p68.  

The consequence is that the phosphorylated p68 promotes abnormal cell growth and 

EMT. The phosphorylation of p68 may change the substrate binding of p68.  Therefore, 

the phosphor-p68 targets different sets of genes due to the altered substrate recognition. It 

is also possible that the phosphorylation changes the enzymatic activity of p68.  As 

demonstrated in this dissertation study, phosphorylated p68 becomes a protein 

“unwindase” to displace HDAC1 from the NuRD complex at the Snail promoter.   

Whether p68 is a constitutive member of the NuRD complex is unknown. p68 

was not identified in the originally isolated the NuRD complex. One possibility is that the 

association of p68 with the NuRD complex is tissue or cell specific. Alternatively, p68 

may only associate with a sub-family of the complex. We have shown that the 

phosphorylated p68 displaces HDAC1 from the NuRD complex using the unique protein-

dependent ATPase activity. The functional role of the unphosphorylated p68 in the 

NuRD complex remains elusive. It is possible that unphosphorylated p68 plays a 

structural role in facilitating the assembly of the NuRD complex. 

The notion of protein-dependent ATPase activity of p68 RNA helicae is 

intriguing. The DEAD-box RNA helicases were originally defined as a family of 

enzymes that unwind dsRNA using the energy derived from ATP (in most cases) 
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hydrolysis (Tanner, 2001). Lately, it has been suggested that the RNA-dependent ATPase 

can also be used to dissociate RNA-protein interactions (Jankowsky, 2001; Fairman, 

2004). Although, the detailed mechanism by which the phosphorylated p68 RNA helicase 

hydrolyzes ATP in binding to protein substrate is not clear, certain proteins such as β-

catenin and MBD3 dramatically stimulated ATPase activity of Y593 phosphorylated p68 

RNA helicase but not the unphosphorylated protein. These results further expand the 

view for the function of DEAD-box RNA helicase as a modulator for protein-protein 

interactions independent of RNA/DNA.  One question is: how the ATPase activity of p68 

RNA helicase is activated in the NuRD complex. The answer to this question leads to an 

important speculation that tyrosine phosphorylation at Y593 may trigger a 

conformational change in C-terminal domain of p68 RNA helicase. This conformational 

change allows substrates binding switches from RNAs to proteins. Consistent with this, 

tyrosine phosphorylation of p68 RNA helicase inhibited RNA substrate stimulated 

ATPase activity of the protein.  

 It will be important to verify the protein–dependent ATPase activity in another 

protein-protein context. Defining the target protein or multi-protein complexes for p68 

remains a decisive point for further understanding the function of phosphorylated p68.  

Another crucial question is whether this protein-dependent ATPase activity is a general 

phenomenon for most DEAD-box proteins. Two DEAD-box proteins have been 

suggested to modulate RNA-protein interactions without unwinding double stranded 

RNA duplex.  The DEAD-box proteins containing protein-binding domains, such as SH2 

and SH3 domains will be possible candidates to have protein-dependent ATPase activity. 
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An additional concern is the kinetics of the protein-dependent ATPase activity. The half-

life of tyrosine phosphorylated p68 is more than six hours. Cofactors that regulate the 

protein-dependent ATPase activity and facilitate p68 substrate binding need to be 

identified. How DEAD-box protein p68 are inactivated or directed to targets in a timely 

fashion is also a challenging question. 

 

6.3 Implications in cancer. 

Tumor metastasis is a remarkably complicated process that is controlled by a 

number of mechanisms. Although, it is very difficult to observe the bona fide EMT 

process during tumor metastasis, strong evidences support that EMT is an essential step 

during epithelial derived tumor metastasis. Our data demonstrated that PDGF autocrine 

loop and c-Abl is required for tyrosine phosphorylation of p68.  The phosphorylated p68 

subsequently promotes EMT in SW620 cells. The PDGF-induced phosphorylated p68 

also promoted tumor cells migration and invasion, which is critical for tumor metastasis. 

Our observations are supported by studies of other groups. The expression of p68 is 

critical for the wound healing process (Kahlina, Goren et al. 2004).  P68 is suggested to 

participate in the partial EMT and tissue remodeling processes.  Molecular studies 

indicate that p68 directly associates with Smad3 upon TGF-β stimulation (Warner, 

Bhattacherjee et al. 2004), suggesting the potential role of p68 in EMT (Oft, Heider et al. 

1998). Therefore, we suspect that phosphorylated p68 is a new molecular factor that 

promotes tumor metastasis. The best system to ultimately test our speculation is to 
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examine the metastasis of xenograft models of human cancer cell lines. Mutations that 

abolish the tyrosine phosphorylation site of p68 should abrogate tumor development and 

progression.  

For tumor metastasis to occur, signaling pathways promoting cell survival and 

proliferation are also critical (Barcellos-Hoff 2001; Hynes 2003). Tumor cells must be 

able to survival in blood circulation without anchorage and under surveillance of immune 

cells untill they are arrested by a second organ.  In secondary sites, it is critical for tumor 

cell to be able to proliferate from micro-metastasis to metastatic tumor. From our data, 

phosphorylated p68 is demonstrated to promote cell proliferation and anti-ligand-induced 

apoptosis (Yang, 2006, in preparation). Therefore, it is likely that phosphorylated p68 

causes tumor metastasis through multiple mechanisms of promoting tumor cell EMT, cell 

proliferation and anti-apoptosis.   

Our data indicated that tyrosine phosphorylation of p68 closely correlates to 

tumor development and progression. These findings suggested that p68 may be used as 

potential tumor marker for monitoring tumorigenesis and metastasis. An ideal tumor 

marker can be used for tumor screening, diagnosis and prognosis. Although, it is unlikely 

that a tumor marker will be applicable to every type of malignant tumor, our data 

demonstrated that the tyrosine phosphorylation of p68 exhibits strong correlations with 

tumor malignancies of different organs, including colon, liver, ovary and lung. More 

importantly, dephosphorylation at tyrosine residues respond to treatment of certain anti-

tumor drugs. Thus, it is possible that monitoring the level of tyrosine phosphorylation of 
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p68 can be a cancer marker for several types of tumor. Additional tests are required for 

the application of the tyrosine phosphorylation of p68 as a cancer marker.  

Experiments in our laboratory demonstrated that the PDGF autocrine loop 

induced tyrosine phosphorylation of p68 in metastatic cell lines, suggesting the 

significant role of PDGF in tumor invasion and metastasis. The function of PDGF 

regulates a wide-range of cellular processes such as tumor angiogenesis.  The PDGF 

autocrine loop likely occurs in most solid tumors.  Our observation gave another example 

that PDGF may promote tumor malignancy and invasion. Designed drugs targeting 

PDGF receptors, such as Gleevec may be applied to solid tumors for cancer treatment. 

Indeed, Gleevec has been used for the treatment of breast cancer (Thiery and Sleeman 

2006).  To inhibit the function of tyrosine phosphorylation of p68, small peptide chains 

containing Y593 phosphorylation sites can be designed to compete with endogenous 

phosphorylated p68. This strategy may lead to blocking Snail transcription and 

subsequent EMT genes. Such therapeutic strategies might prevent tumor invasion and 

metastasis in vivo.  
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Figure VI-1 The hypothetical model of DEAD-box RNA helicase in the pre-mRNA 

splicing.  

DEAD-box p68 RNA helicase recognizes and actively unwinds the U1 snRNP-5’ splice 

site duplex in an ATP-dependent manner. p68 RNA helicase also bridges the addition of 

U4/U6•U5 tri-snRNP and subsequently promotes the assembly of the spliceosome.  The 

ATPase activity of p68 RNA helicase is not required for these interactions.  
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Figure VI-1 
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Figure VI-2. The minimal model of protein-dependent ATPase activity of p68. 

P68 associates with one of the mammalian histone deacetylases (HDAC1) in the contents 

of chromatin remodeling the NuRD complex.  Tyrosine phosphorylated p68 modulates 

the interactions of HDAC1 with the NuRD complex at the Snail promoter.  HDAC1 

associates with the NuRD complex at the Snail promoter and represses Snail expression 

in the presence of unphosphorylated p68. The interaction is functional as 

unphosphorylated p68-associated HDAC1 exhibits histone deacetylase activity in vitro.  

The phosphorylated p68 dissociates HDAC1 from the NuRD complex at the Snail 

promoter in an ATP-dependent fashion.  Consequently, the Snail gene is activated.   
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Figure VI-2 
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CHAPTER VII 

MATERIAL AND METHODS 

7.1 Material 

7.1.1 Chemicals 

[α-32P]ATP Amersham Biosciences Corp, Piscataway 
[γ-32P]ATP Amersham Biosciences Corp, Piscataway 
Alcohol VWR international, West Chester 
Acetone VWR international, West Chester 
Acetic Acid VWR International, West Chester 
Acrylamide Fisher BioReagent, Fairlawn 
Adenosine triphosphate solution Fermentas, Hanover 
Agar Sigma Aldrich, St. Louis 
Agarose National diagnostics, Atlanta 
Ammonium Persulfate Sigma Aldrich, St. Louis 
Ampicillin Sigma Aldrich, St. Louis 
Ascorbic Acid Sigma Aldrich, St. Louis 
Bacto Yeast Extract BD Bioscience, Spark 
Bacto Tryptone BD Bioscience, Spark 
β-Mercaptoethanol Sigma Aldrich, St. Louis 
Bromophenol Blue EMD, San Diego 
Cell culture media Cellgro, Herndon 
Coomassie blue Sigma Aldrich, St. Louis 
DL-Dithiothreitol Sigma Aldrich, St. Louis 
Dissolve methyl sulfoxide EMD, San Diego 
Ethidium Bromide Sigma Aldrich, St. Louis 
Ethylenedinitrilo-tetraacetic acid Sigma Aldrich, St. Louis 
Formaldehyde Calbiochem, San Diego 
Formalin VWR International, West Chester 
Glycerin VWR International, West Chester 
Glycine VWR International, West Chester 
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HEPES Sigma Aldrich, St. Louis 
Hydrochloric acid VWR International, West Chester 
Igepal Sigma Aldrich, St. Louis 
Imidazole Sigma Aldrich, St. Louis 
Isopropyl-ß-D-thiogalactopyranosid Sigma Aldrich, St. Louis 
Kanamycin Sigma Aldrich, St. Louis 
Malachite Green Oxalate salt Sigma Aldrich, St. Louis 
Magnesium Chloride Fisher Biotech, Fairlawn 
Methanol VWR International, West Chester 
Ni-NTA agarose Qiagen, Hilden 
N,N-Methylene Bis-Arylamide Fisher Biotech, Fairlawn 
Penicillin-Streptomycin solution Cellgro, Herndon 
Perchloric Acid Sigma Aldrich, St. Louis 
Phenol/Chloroform  Promega, Madison 
Phenylmethylsulfonyl-Fluoride Fluka, Sigma Aldrich, St. Louis 
2-[4-(2-sulfoethyl)piperazine-1-
yl]ethanesulfonic acid Sigma Aldrich, St. Louis 

Ponceau solution Sigma Aldrich, St. Louis 
Phenol/Chloroform  Promega, Madison 
Polyvinyl Alcohol VWR International, West Chester 
Polyvinylpyrolidone Sigma Aldrich, St. Louis 
2-Propanol VWR International, West Chester 
Protein G agarose Upstate, Charlottesville 
Protein inhibitor cocktail Sigma Aldrich, St. Louis 
n-Propyl Alcohol  Sigma Aldrich, St. Louis 
sephadexG-50 Sigma Aldrich, St. Louis 
Sodium Acetate solution Promega, Madison 
Sodium Chloride Fisher Biotech, Fairlawn 
Sodium Bicarbonate Sigma Aldrich, St. Louis 
Sodium Dodecyl Sulfate Fisher Biotech, Fairlawn 
Sodium Fluoride Sigma Aldrich, St. Louis 
Sodium Hydroxide Fisher Biotech, Fairlawn 
Sodium Orthovanadate Sigma Aldrich, St. Louis 
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Sodium Pyruvate solution Cellgro, Herndon 
D-sorbitol Sigma Aldrich, St. Louis 
N,N,N,N -TetramethylEthylenediamine Fluka, Sigma Aldrich, St. Louis 
trichostatin A Sigma Aldrich, St. Louis 
Tris base Fisher Biotech, Fairlawn 
Triton X-100 Sigma Aldrich, St. Louis 
Trioxsalen Sigma Aldrich, St. Louis 
Trypan Blue Sigma Aldrich, St. Louis 
0.25% Trypsin-EDTA Cellgro, Herndon 
Tween-20 Sigma Aldrich, St. Louis 
Urea Fisher Biotech, Fairlawn 

 

7.1.2 Other Material and Kits 

Bio-Rad Protein Assay Bio-Rad Laboratories, Hercules 
Biocoat Tumor Invasion System BD Bioscience, Rockville 
Chariot Protein Delivery Kit Active Motif Carlsbad 
Dual-Luciferase  Reporter Assay Promega, Madison 
Dual-light® System Applied Biosystem, Foster city 
Nuclear Extraction Kit Active Motif Carlsbad 
HDAC Activity Colorimetric Assay Kit BioVision, Mountain view 

Mammalian Cell Transfection Kit Cell & Molecular Technologies, 
Phillipsburg 

RNeasy® Mini Kit Qiagen, Valencia 
QIAprep Spin Miniprep Kit Qiagen, Valencia 
QIAquick Gel Extraction Kit Qiagen, Valencia 
QuikChange® II Site-Directed Mutagenesis 
Kit Stratagene, La Jolla 

Titan One Tube RT-PCR System Roche Applied Science, Indianapolis 
TOPO Cloning Kit Invitrogen, Carlsbad 
Wizard® plus DNA purification System Promega, Madison 
Virapower® Lentiviral Expression System Invitrogen, Carlsbad 
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7.1.3 Laboratory Equipments 

AllegraTM 6R Centrifuge Beckman Coulter, Fullerton 

BioChemi System UVP BioImaging and analysis System, 
Upland 

C25 Incubator shaker New Brunswick Scientific, Edison 
Purifier Class II Biosafety Cabinet Labconco, Kansas City 
Sirius Luminometer Berthold Detection System, Oak Ridge 
UnicornTM 4.11 HPLC Amersham Bioscience, Piscataway 
UV-1700 Spectrophotometer Shimadzu Corporation, Columbia 
Victor3V 1420 Multilabel Counter Perkin Elmer, Wellesley 
Zeiss LSN 510 META Zeiss, Jena 

 

7.1.4 Enzymes and Recombinant Proteins 

Alkaline phosphatase, Shrimp Promega, Madison 
DNAase  Promega, Madison 
GSK-aPKC active/inactive Dr. Jorge Moscat, Madrid, Spain 
HDAC1  Panomics, Redwood 
His/Myc mPLK/IRAK  Dr. Maureen Harrington 
IRAK kinase Tularik, San Francisco 
MBD3  BioClone, San Diego 
2.5S NGF Bioproducts for Science, Indianapolis 
Pfu-DNA polymerase Stratagene 
Protein Kinase C-iota Calbiochem, San Diego 
Proteinase K  Sigma Aldrich, St. Louis 
PDGF-BB Pepre Tech, Rocky Hill 
RNase A and T1 Fermantas, Hanover 
Restriction enzymes Fermantas, Hanover 
RNA polymerase T7 and Sp6 Promega, Madison 
T4 Polynucleotide Kinase Promega, Madison 
T4-DNA ligase Fermantas, Hanover 
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7.1.5 Antibodies 

Anti Actin-β antibody (mouse monoclonal) Santa Cruz Biotechnology, Santa Cruz 
Anti-E-cadherin (mouse, monoclonal) BD Bioscience, Rockville 
Anti-HA antibody (mouse monoclonal) Roche Applied Science, Indianapolis 
Anti-HA antibody (rabbit polyclonal) Upstate, Charlottesville 
Anti-His antibody (rabbit polyclonal) Santa Cruz Biotechnology, Santa Cruz 
Anti-Histone 2A (rabbit polyclonal) Cell Signaling Technology, Beverly 
Anti-HDAC1 antibody (rabbit polyclonal) Cell Signaling Technology, Beverly 
Anti-HDAC1 antibody (mouse monoclonal) Santa Cruz Biotechnology, Santa Cruz 
Anti-IRAK antibody (mouse monoclonal) BD Transduction Laboratories, San Diego 
Anti-IRAK antibody (rabbit polyclonal) Santa Cruz Biotechnology, Santa Cruz 
Anti Mi-2 antibody (goat polyclonal) Santa Cruz Biotechnology, Santa Cruz 
Anti-MBD3 antibody (rabbit polyclonal) ABGENT, San Diego 
Anti-MBD3 antibody (mouse monoclonal) Imgenex Corporation, San Diego 
Anti-MyD88 antibody (mouse monoclonal) Santa Cruz Biotechnology, Santa Cruz 
Anti-Myc antibody (rabbit polyclonal) Santa Cruz Biotechnology, Santa Cruz 
Anti-p68 RNA helicase(C-termini) antibody 
(rabbit polyclonal) Invitrogen, Carlsbad 

Anti-P68-rgg (C-termini) antibody (mouse 
monoclonal) Auburn University Hybridoma Facility 

Anti-SNAI 1 antibody (Goat polyclonal) Santa Cruz Biotechnology, Santa Cruz 
Anti-p75 antibody (rabbit, polyclonal) Promega, Madison 
Anti-P-Tyr-100 antibody (mouse 
monoclonal) Cell Signaling Technology, Beverly 

Anti-PKC-iota antibody (mouse 
monoclonal) BD Laboratories, San Diego 

Anti-TRAF6 antibody (rabbit polyclonal) Santa Cruz Biotechnology, Santa Cruz 
Anti-Vimentin antibody (mouse 
monoclonal) BD Laboratories, San Diego 

  

7.1.6 Vectors and siRNA Sequence 

pBluescript® II Phagemid Vectors Stratagene, La Jolla 
pHM6 mammalian expression vector Roche Applied Science, Indianapolis 
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pLenti6/V5-D-TOPO Invitrogen, Carlsbad 
pLenti6/V5-DEST Invitrogen, Carlsbad 
Snail-pGL2 Fujita, et al. (2003) 
Human c-Abl  Smart Pool, Dharmacon, Lafayette 

Human DDX5 NM_004396 GCAAGUAGCUGCUGAAUAUUU, 
Dharmacon, Lafayette  

Human MBD3 NM_003926 Smart Pool, Dharmacon, Lafayette 

Human PDGFRB, NM_002609 GAAAGGAGACGUCAAAUAUUU, 
Dharmacon, Lafayette 

 

7.1.7 Bacteria Stains 

BL21-CodonPlus®(DE3)-RIL Stratagene, La Jolla 
JM109 Promega, Madison 
One shot Stbl3 Invitrogen, Carlsbad 
XL1-Blue supercompetent cells Stratagene, La Jolla 

 

7.1.8 The Mammalian Cell Lines 

Cell line ATCC No.  Medium Source 
HeLa CRL-2.2 F-12K Cervix  
HEK 293 CRL-1573 DMEM Kidney 
HT-29 HTB-38 Mccoy's 5A Colon 
HCT-116 CRL-247 Mccoy's 5A Colon  
SW480 CCL-228 L-15 Colon  
SW620 CCL-227 L-15 Colon  
WM115 CRL-1675 MEM Melanoma 
WM266 CRL-1676 MEM Melanoma 
H460 HTB-177 RPMI 1640 LUNG 
H146 HTB-173 RPMI 1640 LUNG 
686LN N/A F12K/DMEM 50/50 H & N 
M4c1 N/A F12K/DMEM 50/50 H & N 
M4d4 N/A F12K/DMEM 50/50 H & N 



203 

 

M4e N/A F12K/DMEM 50/50 H & N 
HCT-116 CRL-247 Mccoy's 5A Colon 
4T1 CRL-2539 RPMI 1640 Breast 
PC12 CRL-1721 DMEM Adrenal gland 

 

7.1.9 Buffers 

Coomassie Blue Stain Buffer 0.025% Coomassie Blue, 50% Methanol, 
10% Acetic Acid 

Destain Buffer 7% Acetic Acid, 5% Methanol 
PBS-buffer 10X 1.5M NaCl, 30mM KCl, 15mM KH2PO4, 

60mM Na2HPO4 
RIPA buffer, 10X Upstate, Charlottesville 
SDS Running Buffer 25 mM Tris, 200 mM Glycine, 0.1% SDS 
TBE-buffer 10X 900mM Tris-HCl, 440 mM Boric Acid, 

20mM EDTA 
TBS-buffer 10X 200 mM Tris-HCl (pH 7.5), 1.37 M NaCl,  
TE Buffer 10 mM Tris-HCl (pH 8.0), 1 mM EDTA 
Transfer Buffer 25 mM Tris, 200 mM Glycine, 20% 

Methanol 
 

7.1.10 Computer Software 

DNA/protein homology search BLAST search (National Center of 
Biotechnology) 

Gel Imaging 
LabWorks™ Image Acquisition and 
Analysis Software, UVP BioImaging 
Systems 

Graphic Processing  Corel Draw 12.0 

Micro plate Reader Wallac 1420 Software Version 3.00 

Presentations PowerPoint 2003 

Protein Purification Unicorn 4.11, Amersham Bioscience 
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Statistical Analysis  Excel 2003 

Text Processing  Microsoft Word 2000 
 

7.2 Bacteria Culture 

All E. coli strains BL-21 (Stratagene), JM109 (Promega), One shot Stl3 

(Invitrogen) and XL1-blue (Stratagene) were used for amplification of plasmid DNA or 

expression of recombinant protein. Bacteria were grown in liquid LB (Lauria-Bertani) 

medium (1% bacto-tryptone w/v, 0.5% bacto-yeast-extract w/v and 1% NaCl w/v). For 

selection, the media contained ampicillin (50 µg/ml), kanamycin (50 µg/ml) or 

Blasticidine (50 µg/ml). Agar-plates were generated with LB-ampicillin, - kanamycin or - 

blasticidine medium supplemented with agar (15 g/L). For long-term preservation of 

transformed bacteria (2.2.2), cells were mixed with sterile glycerol [30% (v/v)] and 

stored at –80°C. 

 

7.2.1 Transformation 

100 µl of a competent bacteria suspension (2.1.7) were thawed on ice and 10 µl of 

the ligation reaction (2.3.7) was added. The bacteria/DNA mixture was remained on ice 

for additional 30 min followed by incubation at 42°C for 45 sec. The bacteria were 

chilled on ice again for 2 min, before 300 µl of LB-medium were added. For initial 

expression of the plasmid encoded ampicillin resistance, bacteria were incubated for 45 

min at 37°C on a circular shaker. Subsequently, 100 µl of this transformation solution 
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were plated on ampicillin containing agar plates. The plates were incubated overnight at 

37°C. 

 

7.3 Deoxyribonucleic Acid Techniques 

7.3.1 Preparation of plasmid DNA 

Plasmids have been routinely isolated from bacterial cultures using a modified 

protocol originally described by Birnboim and Doly (Birnboim and Doly 1979). Small 

quality of DNA plasmids were purified by using QIAprep® Spin Miniprep Kit as 

described by Manufacture. High amounts of pure plasmid DNA (up to 100 µg) were 

prepared using the Wizard® plus DNA purification System. Generally, 2ml of medium 

containing appropriate antibiotic(s) were inoculated with a single bacterial colony from a 

selective agar plate and incubated overnight (16 to 18 hours) by vigorous shaking at 

37ºC.  1.5ml of the cell suspension was centrifuged for 1 min at 10,000rpm and the 

medium was removed by aspiration.  The bacterial pellets were suspended by 250µl of 

suspension buffer supplemented with RNase A.  Bacterial were lysed under alkaline 

condition and the lysates is subsequently neutralized and adjusted to high-salt binding 

conditions.  After lysates clearing, the sample was applied to silica column. Endonuclease 

was efficiently removed by a brief wash step, to ensure that plasmid DNA was not 

degraded.  Salts were also being removed by another wash step.  High-quality plasmid 

DNA was then eluted from the QIAprep column with 50µl of elution buffer or water.   
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For high amount of plasmid DNA, 100ml of antibiotic(s)-selected LB medium 

was inoculated with 100µl of small culture and incubated overnight (16 to 18 hours) by 

vigorous shaking at 37ºC.  Bacteria culture was centrifuged 6,000rpm for 10 min at 4ºC 

and purified by Wizard® plus DNA purification System using similar principle. 

 

7.3.2 Quantification of Nucleic Acid Concentration 

Concentrations of nucleic acids were determined photometrically using a 

wavelength of 260 nm (UV-1700 Spectrophotometer, Shimadzu Corporation, Columbia). 

An optical density (OD) of 1 corresponds to approximately 50 µg/ml double-stranded 

DNA or 40 µg/ml for single stranded DNA and RNA ((Sambrook and Gething 1989)). 

The ratio between the readings at 260 nm and 280 nm (OD260/OD280) provides an 

estimation of the purity of the nucleic acid preparation. Highly pure DNA or RNA is 

characterized by ratios between 1.8 and 2.0.  

 

7.3.3 Agarose Gel Electrophoresis of Nucleic Acids 

Nucleic acids were separated by electrophoresis, which using agarose gel to 

separate and sometimes purify nucleic acid that differs in size.  Unlike proteins, nucleic 

acids have a consistent negative charge imparted by their phosphate backbone and 

migrate toward the anode. For separation of DNA molecules from 0.5 to 2 kbp usually 

1% agarose gels (w/v) were used. Smaller DNA fragments (100-500 bp) were separated 

in high density gels (1.5-2% agarose gels) (Sambrook and Gething 1989). Agarose 
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(National Diagnostics) was dissolved in 1x TBE gel electrophoresis buffer. Ethidium 

bromide was added to a final concentration of 500 ng/ml.  Ethidium bromide intercalates 

between DNA base pairs and enables an ultraviolet fluorescence illumination of nucleic 

acids. The DNA/RNA probes were diluted with loading buffer (6X loading dye, MBI 

Fermentas) and transferred into the appropriate gel wells. Electrophoresis was performed 

in 1x TBE buffer with a voltage of 5-10 V/cm gel. DNA fragment sizes were estimated 

using molecular weight markers (MBI Fermentas). 

 

7.3.4 DNA Extraction from Agarose Gel 

QIAquick Gel Extraction Kit (Qiagen) was used for extraction and purification of 

DNA from agarose gel according to instruction of manufacture.  This system use 

uniquely designed silica membrane which is able to isolate DNA from both aqueous 

solutions and agarose gels without binding with unwanted primers and impurities.  Buffer 

QG in the QIAquick Gel Extraction Kit solubilizes the agarose gel slice and provides the 

appropriate conditions for binding of DNA to the silica membrane. Buffer QG also 

contains a pH indicator, allowing easy determination of the optimal pH for DNA binding.  

The followed washing step by ethanol-containing buffer removes salts, agarose and dyes. 

Contrary to adsorption, elution is most efficient under basic conditions and low salt 

concentrations. DNA is eluted with 50 or 30 µl of the provided Buffer EB (10 mM Tris-

HCl, pH 8.5), or water. 
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7.3.5 Polymerase Chain Reaction (PCR) 

PCR can characterize, analyze and synthesize any specific piece of DNA by 

exploiting the remarkable natural function of enzymes known as polymerases. For all 

PCR reaction, PfuUltra™ High-Fidelity DNA Polymerase (Stratagene) was used.  There 

are three basic steps in PCR. First, the target genetic material must be denatured-that is, 

the strands of its helix must be unwound and separated-by heating to 90-96°C. The 

second step is hybridization or annealing, in which the primers bind to their 

complementary bases on the now single-stranded DNA. The third is DNA synthesis by a 

polymerase. Starting from the primer, the polymerase can read a template strand and 

match it with complementary nucleotides. The result is two new helixes in place of the 

first, each composed of one of the original strands plus it’s newly assembled 

complementary strand (Mullis and Faloona 1987). The components containing in PCR 

reaction mixture is list below. 

Polymerase Chain 
Reaction: 10X Pfu Buffer 5 µl 

 10mM dNTP 1 µl 
 DNA template 1 µl (100 ng) 
 Primer 5’ 1 µl (100 ng) 
 Primer 3’ 1 µl (100 ng) 
 Pfu 1 µl 
 Total Volume 50 µl 
 H2O Add to 50 µl 

 
The reaction was performed in a thermocycler (Mastercycler Gradient, 

Eppendorf) with 28-32 cycles of following steps: 30 sec 94ºC, 30 sec 55ºC and 2 min 

72ºC.  The amplification was completed with the final step of 10 min incubation at 72ºC.  
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PCR products were either storage at 4ºC or directly analyzed and purified by gel 

extraction (2.3.4).   

 

7.3.6 Restricted Endonuclease Digestion 

Restriction endonucleases, due to their high specificity and ease of use, are important 

tools in studies of DNA primary structure, recombinant DNA technology and other fields 

of molecular genetics and molecular biology. A restriction enzyme which recognizes 

specific DNA sequences and is able to cleave the foreign invading DNA upon entering 

the bacterial cell and a modification enzyme (methylase) responsible for protecting host 

DNA against the action of its own restriction endonuclease (Arber and Dussoix 1962). 

Most restricted endonucleases are type II enzymes, which recognize asymmetric base 

sequences and cleave DNA at a specified position up to 20 base pairs outside of the 

recognition site.  The standard digestion reaction is list below.  After 2 hours of 

incubation, digestion products were either analyzed by gel electrophoresis (2.3.3) or 

purified by gel extraction (2.3.4). For ligation purpose, scaled up reactions were 

incubated overnight with digestion of up to 10 µg of DNA.  All reactions were incubated 

in 37ºC. 

DNA restriction 
digestion: 10X buffer 1 µl 

 DNA 5 µl 
 Restricted endonuclease 0.5 µl 
 Total Volume 10 µl 
 H2O Add to 10 µl 
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7.3.7 Ligation 

Joining linear DNA fragments between the 5´-phosphate and the 3´-OH of DNA 

fragments together with covalent bonds is called ligation. The enzyme used to ligate 

DNA fragments is T4 DNA ligase, which originates from the T4 bacteriophage. This 

enzyme will ligate DNA fragments having overhanging, cohesive ends that are annealed 

together. In order to avoid self circularization and/or formation of tandem oligomers of 

insert and linearized vector, ligation reaction mixture should contain >1-3 fold molar 

excess of foreign DNA to vector DNA. Restricted and purified DNA plasmids and PCR 

products were directly ligated by ligation reaction. The ligation reaction will be incubated 

at 4°C for overnight, followed by transformation (2.1.1) or storage at 4°C. 

Ligation:  5X Ligation Buffer 1 µl 
 Vector 1 µl ( ~500 ng) 
 PCR product 3 µl ( ~300 ng) 
 H2O Add to 10 µl 
 Total Volume 10 µl 

 

7.3.8 Dephosphorylation and insert DNA phosphorylation 

In the instance of single restricted enzyme cloning, alkaline phosphatases are used 

to prevent recircularization and religation of linearized cloning vehicle DNA by 

removing phosphate groups from both 5´-termini. Shrimp Alkaline Phosphatase (SAP) 

catalyzes the dephosphorylation of 5´ phosphates from DNA. Unlike Calf Intestinal 

Alkaline Phosphatase, SAP is completely and irreversibly inactivated by heating at 65°C 

for 15 minutes. To this end, the restricted DNA was incubated with SAP for 30 min at 
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37°C.  Afterwards, reaction products were heated at 65°C for 15 min to deactivate the 

phosphatase.   

Dephosphorylation: 10X Buffer 1 µl 
 Restricted Vector 2 µl ( ~1 µg) 
 SAP 1 µl 
 H2O Add to 10 µl 
 Total Volume 10 µl 

 

Phosphorylation of insert DNA may be required for ligation with a dephosphorylated 

vector.  T4 Polynucleotide Kinase (T4 PNK) catalyzes the transfer of the γ-phosphate 

from ATP to the 5´-terminus of polynucleotides or to mononucleotides bearing a 3´ 

phosphate group. T4 PNK is widely used to end-label short oligonucleotide probes.  The 

following reaction was used for non-radioactive phosphorylation of insert DNA. 

Dephosphorylated and phosphorylated products were cleared up by phenol/chloroform 

extraction and ethanol precipitation. Resuspended DNAs were performed ligation, 

described in (2.3.7). 

Phosphorylation: 10X Buffer 1 µl 
 PCR product 5 µl ( ~1 µg) 
 T4 PNK 1 µl 
 H2O Add to 10 µl 
 Total Volume 10 µl 

 

7.3.9 Cloning of pET-30a-p68 

The open reading frame (ORF) of human p68 RNA helicase was amplified 

according to the GenBankTM sequence (GenBankTM accession number AF015812), by 

using a pair of primers, 5'GCGGATCCTCGAGTGACCGAGACCGC3' as 5’ primer and 
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5'ATTGGGAATATCCTGTTG3' as 3’ primer from a cDNA library (Stratagene). The 

PCR products were cloned into pBluescript SK (+) vector. The obtained DNA clones 

were examined by auto-DNA sequencing and the sequences of resultant DNA completely 

match the DNA sequences of p68 RNA helicase retrieved from GenBankTM. The ORF of 

p68 RNA helicase was subcloned into an expression vector pET-30a by BamHI/HindIII 

sites with 6xHis tag on the N-terminus. 

 

7.3.10 Cloning of pHM6-p68 

To express p68 RNA helicase in the mammalian cell lines, p68 ORF were 

subcloned into the mammalian expression vector pHM6 (Roche) by HindIII site, starting 

without start codon and ending with downstream stop codon TAA. Subcloned p68 has 

HA tag at the N-terminus of protein sequence. To verify the correct sequence, cloned 

plasmid was amplified and sent to auto-sequence.  

 

7.3.11 Cloning of Lenti6-p68 and Generation of Lentiviral Expression System 

The lentiviruses, including HIV-1, are unique in their ability to infect non-

dividing cells. They can accommodate long sequences, the products of which will be 

stably expressed due to integration into the cell chromosome. Use of the ViraPower™ 

Lentiviral Expression System Efficiently delivers the gene of interest to the mammalian 

cells in culture or in vivo (Dull et al., 1998).  This system also provides stable, long-term 

expression of a target gene.  
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To generate Lentiviral expression construct with p68 gene, the ORF of p68 with 

HA tag in the 5’-terminus and additional 3’ stop codon TAA was subcloned into an entry 

vector V5/TOPO via TOPO technique.  The HA-tagged p68 gene was transferred to 

Lenti6/DEST gateway vector via homologous recombination.  The expression plasmid 

that contains p68 gene and elements that allow packaging of the construct into virion was 

transfected into 293FT cells together with packaging plasmids (pLP1, pLP2 and 

pLP/VSVG).  Harvest and titer-determined virus stocks were stored at -80°C. 

 

7.3.12 Site-directed Mutagenesis 

In vitro site-directed mutagenesis is an invaluable technique for characterizing the 

dynamic, complex relationships between protein structure and function, for studying gene 

expression elements and for carrying out vector modification.  Stratagene’s 

QuikChange® II site-directed mutagenesis kit was used to make point mutations, replace 

amino acids and delete or insert single or multiple adjacent amino acids. The general 

procedure utilizes a double strand DNA plasmid with an insert of interest and two 

synthesized oligonucleotide primers both containing the desired mutations.  The 

oligonucleotide primers, each complementary to opposite strand of DNA vector were 

extended by PfuUltra™ high-fidelity (HF) DNA polymerase.  Extension of the 

oligonucleotide primers generated a mutated plasmid containing staggered nicks. 

Following temperature cycling, the product was treated with Dpn I. The Dpn I 

endonuclease (target sequence: 5´-Gm6ATC-3´) is specific for methylated and 

hemimethylated DNA used to digest the parental DNA template and to select for 
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mutation-containing synthesized DNA. (DNA isolated from almost all E. coli strains is 

dam methylated and therefore susceptible to DpnI digestion.) The nicked vector DNA 

containing the desired mutations is then transformed into XL1-Blue supercompetent cells 

for nick repair.  To verify the correct mutations, manipulated DNA plasmids were auto-

sequenced.   

 

7.4 Protein Techniques 

7.4.1 Recombinant Protein Purification 

The expression and purification of recombinant proteins facilitates production and 

detailed characterization of virtually any protein. Purification procedures construct fusion 

proteins in which specific affinity tags are added to the protein sequence of interest; the 

use of these affinity tags simplifies the purification of the recombinant fusion proteins by 

employing affinity chromatography methods.  Nickel-nitrilotriacetic acid (Ni-NTA) 

metal-affinity chromatography matrices for biomolecules which have been tagged with 6 

consecutive histidine (6xHis) residues were used to purify all recombinant proteins.  The 

6xHis affinity tag facilities binding to Ni-NTA beads.  In most cases, the 6xHis tag does 

not interfere with structure or function of recombinant protein.  

In E coli strains, pET-30a vector confers kanamycin resistance and constitutively 

expresses the lac repressor protein encoded by the lac I gene. Expression of recombinant 

proteins encoded by pET-30a vectors is rapidly induced by the addition of isopropyl-β-D-

thiogalactoside (IPTG) which binds to the lac repressor protein and inactivates it. Once 

the lac repressor is inactivated, the host cell’s RNA polymerase can transcribe the 
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sequences downstream from the promoter.  The transcript product will be further 

translated to recombinant protein.  

ORF of human p68 RNA helicase was subcloned in pET-30a+ vector (Novagen) 

by BamHI/HindIII sites with 6xHis tag on the N-terminus (2.3.9). Single amino acid were 

mutated as DEAD → EEAD, RGLD → LGLD, HRIGR → HLIGR and Y593 → F as 

described in 2.3.12.  Expression vectors verified by sequence were transformed in BL21-

CodonPlus® (DE3)-RIL competent cells.  Five individual colonies were cultured in small 

volume of LB media (2 ml) with 50 µM kanamycin for shaking at 37°C overnight. On the 

second day, 100 µl of bacteria culture were transferred to 2ml fresh media for further 

incubation of 1.5hr. 1mM final concentration of IPTG was added to culture media for 

induction for 4hrs at 37°C.  20 µl of bacteria culture before and after IPTG induction 

were collected and lyzed by protein loading dye. After remove derbies by brief 

centrifuge, clear lysates were analyzed by SDS-PAGE gel followed by coomassie blue 

staining (2.4.6.1).  

Colony with best induction ratio was selected for large amount of protein 

purification. 200 µl of same small bacteria culture was inoculated into 100 ml LB media 

for vicious shaking at 37°C overnight. The second day, 100 ml bacteria culture was 

transferred to 1 liter pre-warmed media with proper antibiotics. Until an absorbance of 

0.8 at 600nm was obtained, 1 mM IPTG was added to culture for another 4hrs incubation. 

Bacteria were centrifuged 10,000rpm at 4°C for10min.  After washing with PBS, cell 

pellets were either stored at -80°C or continue performed protein purification.  
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Wet cell pellets were weighted suspended by lysis buffer (10 ml/1 g wet weight).  

Cell suspensions were supplemented with lysozyme (Novagen) to final concentration of 

1mg/ml for incubation 30 min at 4°C. Brief sonication 6 x 20 s with 30 s pause at 200-

300 W was used to break down DNA. The solution should be translucent after lysis.  

Clear the lysates by centrifuge at 10,000 x g at 4°C for 20–30 min.   

All recombinant proteins were purified under naïve conditions by using 

imidazole.  The imidazole ring is part of the structure of histidine in the 6xHis tag bind to 

the nickel ions immobilized by the NTA groups on the matrix.   Endogenous proteins 

with histidine residues that interact with the Ni-NTA groups can be washed out of the 

matrix with stringent conditions achieved by adding imidazole at a 10–50 mM 

concentration. If the imidazole concentration is increased to 100–250 mM, the 6xHis-

tagged proteins will also dissociate because they can no longer compete for binding sites 

on the Ni-NTA resin.  

To binding tagged protein into Ni-NTA agarose column, Ni-NTA agarose was 

first packaged into disposable column and equilibrate by lysis buffer.  Cleared cell lysates 

were applied to pre-equilibrated column and allow lysates pass through column by 

gravity.  Columns were subsequently washed by wash buffer 4 ml for three times. For 

elution, 500 µl of elution buffer was applied to each column and collect the elute in five 

tubes and analyzed by SDS-PAGE (2.4.6.1). 

Lysis buffer: 
 

50 mM Tris-HCl (pH 7.5)  
300 mM NaCl  
10 mM imidazole  
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Wash buffer: 
 

50 mM Tris-HCl (pH 7.5)  
300 mM NaCl  
20 mM imidazole  
 

Elution buffer: 
 

50 mM Tris-HCl (pH 7.5) 
300 mM NaCl  
250 mM imidazole  
 

 

7.4.2 Determination of protein concentration 

The amount of protein in cellular and tissue lysates was determined using Bio-

Rad Protein Assay (Bio-Rad). 1 µl of the samples diluted in 799 µl of distilled water were 

combined with 200 µl Bio-Rad 5x dye solution. Different BSA concentrations (2.0-10.0 

µg/ml) were used to generate a standard curve. After 5 min of incubation, the optical 

density was measured at a wavelength of 595 nm using a spectrophotometer (Shimadzu). 

The absorption values were calculated according standard curve. 

 

7.4.3 Recombinant Protein Modification 

7.4.3.1 Dephosphorylation 

Bacterially expressed human p68 RNA helicase recombinant protein was 

discovered as phosphorylated on both serine/threonine and tyrosine residues (Yang and 

Liu 2004).  To study the potential role of p68 phosphorylation in the mammalian cells, 

recombinant protein with phosphate group need to be removed.  Protein phosphatases are 

enzymes that remove phosphate groups that have been attached to amino acid residues of 

proteins by protein kinases.  There are two major groups of protein phosphatases, 
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serine/threonine specific protein phosphatases and tyrosine specific protein phosphatases, 

which remove phosphate group from relative amino acids.  

Recombinant p68 was dephosphorylated by both Protein Phosphatase 2A (PP2A, 

serine/threonine specific protein phosphatase) and Protein Tyrosine Phosphatase 1B 

(PTP1B, tyrosine specific protein phosphatase). About 5 µg recombinant protein was 

incubated with 4 U of phosphatase in the manufacture suggested condition buffer at 37°C 

for 90 min.  The dephosphorylated protein was separated from the added protein 

phosphatases by Ni- NTA beads spin column (Active Motif). After extensive washes, the 

dephosphorylated protein was eluted with Elution Buffer. The protein was then micro- 

dialyzed against the Dialysis Buffer with 100 mM of imidazole (Piece).  After dialysis, 

dephosphorylated protein was concentrated by VIVAspin 500 (VIVAScience) for 

experiment or in vitro kinase assay to add phosphate group on tyrosine residues.  

Dephosphorylation: 10X buffer 3 µl 
 Recombinant protein 5 µg ~ 20 µl 
 PP2A/PTP1B 3 µl 
 Total volume 30 µl 
 H2O Add to 30 µl 

 

Elution buffer: 
 

50 mM Tris-HCl (pH 7.5)  
300 mM NaCl  
250 mM imidazole  
 

Dialysis buffer: 
 

50 mM Tris-HCl (pH 7.5)  
300 mM NaCl  
20 mM imidazole  
10% Glycerol 
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7.4.3.2 Phosphorylation by c-Abl kinase 

Exploring of cellular function of phosphor-p68 in the mammalian cells revealed 

that tyrosine phosphorylation of p68 plays a critical role in cell proliferation and tumor 

cells Epithelial-Mesenchymal Transition (EMT) (unpublished data).  The tyrosine 

phosphorylation of p68 was added by tyrosine kinase c-Abl on residue Y593 

(unpublished data). To generate Y593 tyrosine phosphorylated p68, dephosphorylated 

recombinant p68 was further incubated with recombinant active c-Abl protein kinase 

(Upstate) to gain phosphate group on tyrosine residue Y593.  About 5 µg of recombinant 

p68 was incubated with c-Abl at 37°C for 30 min with 1 mM non-radioactive ATP. After 

the incubation, the reaction mixture underwent Ni- NTA beads spin column (Active 

Motif) to divide recombinant p68 with c-Abl. After extensive washes, the phosphorylated 

protein was eluted with Elution Buffer as described above. The protein was then micro-

dialyzed against the Dialysis Buffer with 100 mM of imidazole (Piece).  After dialysis, 

phosphorylated protein was concentrated by VIVAspin 500 (VIVAScience) for either 

SDS-PAGE (2.4.6.1) to confirm tyrosine phosphorylation or further experiments.  

Phosphorylation: 10X buffer 1 µl 
 Recombinant protein 5 µg ~ 5 µl 
 c-Abl 1 µl 
 Total volume 10 µl 
 H2O Add to 10 µl 

 

7.4.4 Generation of anti-p68 antibody 

Recombinant C-terminal domain (a.a.437-614) of human p68 RNA helicase 

(GenBankTM/EBI Data Bank accession number NM_004396) purified from E. coli by 
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6xHis tag was used to immunize either rabbits (Invitrogen) or mouse (Auburn hypoderma 

facility).  

 

7.4.5 Preparation of Lysates 

7.4.5.1 Whole Cell Lysates 

Cell were grown and transfected as described (2.6 & 2.7).  For harvesting, cells 

were washed twice with ice-cold PBS. PBS was removed by a pipette tip attached to a 

vacuum line. Cells were scraped off from the culture dishes using a rubber policeman and 

PBS (1 ml/10 cm dish) supplemented with protease inhibitor cocktail (1:1000 dilutions, 

Sigma). Subsequently, cells were spin down at 4°C for 3000 rpm for 5 min.  Cell pellets 

were resuspended by 1XRIPA buffer (Upstate, supplemented with 1mM NaF, 1mM 

PMSF, 1mM NaSOV3 and 1:100 dilution of protease inhibitor cocktail) and rotate at 4°C 

for 60 min. To remove cellular debris, probes were centrifuged (15,000 x g, 10 min at 

4°C) and the supernatants were stored at –80°C until use. Protein concentrations were 

determined Bio-Rad protein assay (2.4.2). 

 

7.4.5.2 Tissue Lysates 

Frozen patient tissue specimens were obtained from Southern Division, 

Cooperative Human Tissue Network (Birmingham, AL).  Tissue specimens (200 ~ 

300mg) were weighted and diced into very small pieces using a clean razor blade. 

Collected pieces in a pre-chilled 1.5 ml micro-centrifuge tube were disrupted and 

homogenized in 3 ml ice-cold 1XRIPA buffer (as described above) per gram of tissue 
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with a dounce homogenizer. After gently homogenize for 10 stroke, the mixture were 

further rotated at 4°C for 60 min. Temperature was maintained at 4°C throughout all 

procedures. To remove debris, probes were centrifuged at 10,000 x g for 10 minutes at 

4°C. Clear supernatants were transferred to new pre-chilled tubes and stored at -80°C till 

use.  

 
7.4.4.3 Preparation of Nucleic Extraction 

Nucleic Extraction Kit (Active Motif) was used to prepare nucleic extraction for 

all experiments according to manufacture’s instruction. Cells were treated as described 

(2.6 & 2.7) in a 100 mm tissue culture dish. First, the cells were collected in ice-cold PBS 

in the presence of phosphatase inhibitors (Sigma) to limit further protein modifications 

(expression, proteolysis, dephosphorylation, etc.). Then, the cells were resuspended in 

hypotonic buffer to swell the cell membrane and make it fragile. Addition of the 

Detergent caused leakage of the cytoplasmic proteins into the supernatant. After 

collection of the cytoplasmic fraction by brief centrifuge (5000 rpm for 10 min at 4°C), 

the nuclei were lysed by Complete Lysis Buffer (supplemented with 1mM DTT and 

1:100 dilution of protease inhibitor) and the nuclear proteins were stored at -80°C till use. 

 

7.4.6 Western Blotting Analysis 

7.4.6.1 SDS gel electrophoresis 

Electrophoretic separation of proteins was carried out in the discontinuous buffer 

system for SDS polyacrylamide gels as originally described by Laemmli (1970).  SDS-
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PAGE stands for sodium dodecyl (lauryl) sulfate-polyacrylamide gel electrophoresis.  

SDS is an anionic detergent that binds quantitatively to proteins, giving them linearity 

and uniform charge, so that they can be separated solely on the basis if their size. The 

polyacrylamide gel electrophoresis works in a similar fashion to an agarose gel, 

separating protein molecules according to their size. 50 µg of total protein sample were 

denatured in 2x SDS loading buffer (MBI Fermentas). After heating for 5 min at 95°C, 

samples were loaded on the gel. Subsequently, the gel was run at a current of 30 mA for a 

period of 2-3 hours.  To observe protein bands on the polyacrylamide gel, the gel was 

either transferred to nitrocellulose (2.4.5.2) or fixed and stain by coomassie brilliant blue 

Staining buffer for 5 min under gentle shaking, followed by washing with destain buffer 

overnight. The destained gels were analyzed by UVP BioImaging and Analysis System 

(Upland). 

Coomassie Stain buffer: 
(500 ml) 

0.5 g Coomassie Blue 
225 ml Methanol 
225 ml ddH2O 
50 ml Acetic Acid 
 

Destain buffer: 
(1 Liter) 

70 ml Acetic Acid 
50 ml Methanol 
880 ml ddH2O 
 

 

7.4.6.2 Transfer to Nitrocellulose 

Transferring protein from SDS gel to nitrocellulose facilitates exposing probes to 

antibodies for detection. After electrophoresis, gel was removed from electrophoresis 

apparatus and rinsed in transfer buffer. Gel was placed on a sheet of Whatman 3MM 
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paper pre-wetted in transfer buffer. A layer of nitrocellulose membrane (Piece, first 

wetted in transfer buffer) was applied on the top of the gel. Air bubbles were squeezed 

out by a roller apparatus. Membrane was with another layer of pre-wetted Whatman 

3MM paper and placed in a blotting sandwich assembly (Owl). The assembly was 

immersed in a blot cell filled with transfer buffer, making certain that the membrane side 

faces the positive electrode and the gel faces the negative electrode.  Transfer of proteins 

was carried out at 120 mA current at room temperature and terminated after 120 min. 

After blotting, the membrane was checked by Ponceau S staining for correct 

electrophoretic transfer and equal loading. 

0.192 M Glycine 
25 mM Tris 

Transfer Buffer:  

20% Methanol 
 

7.4.6.3 Immunoblotting 

The transferred nitrocellulose membrane was rinsed in 1x TBST (1x TBS + 0.1% 

Tween-20) buffer briefly. Non-specific binding sites were blocked by shaking the 

membrane in a 1x TBST-buffered 5% BSA for 1 h at room temperature or overnight at 

4°C. The membrane was subsequently exposed to primary antibodies 

(diluted1:500−1:2000 in 1x TBST buffer) specific for the protein of interest for 

incubation at 4°C for overnight.  The blot was washed three times for 5 min in 1x TBST. 

The primary antibody was detected by incubation of the membrane with a specific 

secondary antibody coupled to horseradish peroxidase (diluted 1:5000 in 1x TBST) for 

90 min at room temperature. For detection of the corresponding bands, SuperSignal® 
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West Dura Extended Duration Substrate (Piece) was used according to the instructions of 

the manufacturer. The membrane was exposed and analyzed using the UVP BioImaging 

and analysis System (Upland). 

 

7.4.7 Immunoprecipitation 

Immunoprecipitation (IP) followed by SDS-PAGE and immunoblotting, is 

routinely used in a variety of applications: to determine the molecular weights of protein 

antigens, to study protein-protein interactions, to determine specific enzymatic activity, 

to monitor protein post-translational modifications and to determine the presence and 

quantity of proteins. In the IP method, the protein from the cell or tissue homogenate is 

precipitated in an appropriate lysis buffer by means of an immune complex which 

includes the antigen (protein), primary antibody and Protein A-, G-, or L-agarose 

conjugate or a secondary antibody-agarose conjugate. The choice of agarose conjugate 

depends on the species origin and isotypes of the primary antibody.  

500 ng to 1 mg whole cell lysates, tissue lysates or nucleic extracts were diluted 

by 1x RIPA buffer supplemented as described above (2.4.5) to 500 µl.  1-3 µg of 

primary antibody were used to capture interesting protein. After gentle rotation at 4°C 

for overnight, 40 µl of 50 % protein G agarose conjugate slurry was added to the mixture 

for further incubation of 1.5hr. After extensive wash, proteins captured by agarose were 

eluted and denatured by SDS loading dye (MBI Fermentas) followed by SDS-PAGE and 

western blotting (2.4.6) to detect precipitated and co-immunoprecipitated proteins.  
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7.4.8 Kinase Assay 

7.4.8.1 Peptide Kinase Assay 

To examine phosphorylation site of interesting protein by specific kinase, peptide 

including potential phosphorylation site(s) were generated and peptide kinase assay were 

used to study the possibility of phosphorylation by identified kinase. To examine 

phosphorylation of IRAK peptides (synthesized by the Macromolecular Structure 

Facility, University of Kentucky) by aPKC, a peptide kinase assay was employed. Each 

reaction contained 1 µg of synthesized IRAK peptide control or mutant in 50 µl peptide 

kinase buffer (list below) with or without 100 ng purified aPKC (CalbioChem) and 1 

µCi of [γ-32P] ATP for 10 min at 30°C.  The reaction was stopped by adding 280 mM 

H3PO4 and spotted onto P81 paper followed by washing in 75 mM H3PO4 three times.  

Radioactivity was counted using Cerenkov.  

15 mM PIPES pH 7.5 
1 mM EDTA 
20 mM MgCl2 

Peptide Kinase Buffer:  

0.04 mg/ml phosphatidylserine 

  

7.4.8.2 In Vitro Kinase Assay 

To further confirm the phosphorylation site(s) of IRAK phosphorylated by aPKC, 

an in vitro kinase assay were performed. Purified IRAK protein (50 ng) and purified 

aPKC (CalbioChem) (1, 100, 200, 300 ng) were incubated in 20 µl of kinase buffer with 

5 µCi of [γ-32P] ATP for 20 min at 30°C.  Reactions were stopped by adding of 20 µl of 
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SDS loading dye and boiling for 2 min followed by 10% SDS-PAGE and 

autoradiography.  The program QuantiScan was used to scan and analyze the blots.  

Kinase Buffer:   20 mM Tris, pH 7.6 
1 mM DTT 
20 mM MgCl2 
20 mM p- nitrophenyl 
phosphate 
1 mM EDTA 
1 mM NaOV3 
1 mM PMSF 

 

7.4.8.3 Endogenous Kinase Assay 

To examine IRAK auto-phosphorylation and trans-phosphorylation ability by co-

expressed aPKC, an endogenous kinase assay was employed. Transfected HEK cells 

were lysed in PD buffer (list below) and IRAK was captured by immunoprecipitation of 

750 µg cell lysates with anti-Myc polyclonal antibody.  The beads were washed three 

times in PD buffer followed by the addition of 30 µl of kinase buffer (as described 

above) and 5 µCi of [γ-32P] ATP for 20 min at 30°C.  20 µl of SDS loading buffer was 

added to the samples to stop the reaction and the reaction was separated by 10% SDS-

PAGE and exposed to x-ray film.  Aliquots of the whole cell lysates were blotted with 

anti-GST and anti-Myc to validate expression of iota PKC and IRAK.  

40 mM Tris, pH 7.6 
500 mM NaCl 
0.1% Nonidet P-40 
6 mM EDTA 
6 mM EGTA 

PD Buffer:  

10 mM β-glycerophosphate 
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10 mM NaF 
10 mM p- nitrophenyl phosphate 
300 µM NaOV3 
1 mM DTT 
2 µM PMSF 
10 µg/ml aprotinin 

 

1 µg/ml leupeptin 
 

7.4.8.4 Immune Complex Kinase Assay 

To detect the activity of IRAK enzyme, anti-Myc immunoprecipitates (capturing 

expressed His/Myc-tagged IRAK) was incubated with 20 µl of kinase buffer (as 

described above) with 5 µCi of [γ-32P] ATP and 5 mg of MBP for 10 min at 37°C.  20 µl 

of SDS loading buffer was added to the samples to stop the reaction.  Phosphorylated 

MBP was analyzed by 10% SDS-PAGE and autoradiography.  Changes in IRAK activity 

were monitored as a function of the enzyme’s ability to phosphorylated MBP as 

determined by phosphorimaging analysis.  

 

7.4.9 Chromatin Immunoprecipitation (ChIP) 

Chromatin Immunoprecipitation (ChIP) is a powerful tool for the study of 

protein-DNA interactions (Solomon, Larsen et al. 1988). In this method, intact cells are 

fixed using formaldehyde, which cross-links and preserves protein-DNA interactions. 

The DNA is then sheared into small, uniform fragments using either sonication or 

enzymatic digestion and specific protein/DNA complexes are immunoprecipitated using 

an antibody directed against the DNA-binding protein of interest. Following 

immunoprecipitation, cross-linking is reversed, the proteins are removed by treatment 
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with proteinase K and the DNA is purified. The DNA is then analyzed to determine 

which DNA fragments were bound by the protein of interest. 

HT-29 or SW620 cells were treated as indicated (2.7) in 6-well plates. Post 48 to 

72 hr transfection, cell media were removed and cells were fixed with 3.7% 

formaldehyde in complete culture media at room temperature for 10 min. after washing 

briefly with ice-cold PBS, fixation was stopped by 1x glycine stop buffer at room 

temperature for 5 min. cells were collected in micro-centrifuge tube by scrapping 

followed by centrifuge at 4°C for 10 min. cell pellets were either frozen at -80°C or 

resuspended with 200 µl ice-cold 1x lysis buffer supplemented with 1 µl protease 

inhibitor cocktail and 1 µl PMSF. After incubate on ice for 30 min, the swollen cells were 

gently dounced 10 stroke by homogenizer to help release of nuclei.  Nuclei were 

collected by spin at 4°C 5000 rpm for 10 min and resuspended with 350 µl shearing 

buffer. Chromatins were broken down to small pieced by sonication in ice at 25% output 

for 10 X 10 sec pulse and 20 sec off.  After centrifuge at 4°C for 10 min to remove 

debris, 50 µl of chromatin were aliquoted for pre-clear to remove background. Other 

aliquots were stored at -80°C for future experiments. 50 µl chromatins were combined 

with ChIP buffer and protein G beads for incubate at 4C for 1.5hr to remove non-specific 

binding. After brief spin to remove beads, supernatants were incubated with primary 

antibody of interest at 4°C for overnight. 100 µl of protein G agarose were used to 

capture protein/DNA complex. After extensive wash, protein/DNA complexes were 

eluted from agarose by 1% SDS. The crosslinks were reversed by incubation with 200 
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mM NaCl at 65°C for overnight. Protein and RNA molecule were removed by RNase A 

and Protease K treatment. After clean-up and concentrate, chromatins were amplified by 

PCR using primers targeting interesting regions.   

 

7.5 Ribonucleic Acid Techniques 

7.5.1 In Vitro Transcription 

Radio-labeled and non-isotopically labeled RNA probes, generated in small scale 

transcription reactions, can be used in blot hybridizations and nuclease protection assays. 

Small scale reactions may also be used for structure analysis (protein-RNA binding), 

function analysis (exon splicing) and mechanistic studies (spliceosome analyses). The 

common RNA polymerases used in in vitro transcription reactions are SP6, T7 and T3 

polymerases, named for the bacteriophages from which they were cloned. RNA 

polymerases are DNA template-dependent with distinct and very specific promoter 

sequence requirements. Depending on the orientation of cDNA sequence relative to the 

promoter, the template may be designed to produce sense strand or anti-sense strand 

RNA.  

RNAs were synthesized by run-off transcriptions of the linearized transcription 

vectors that carry appropriate DNA inserts in the transcription region using T7 or SP6 

RNA polymerase. The recombinant plasmids (see table below) were linearized with 

restriction enzymes, phenol/chloroform extracted, precipitated and dissolved in RNase 

free H2O to a final concentration of 1 µg/µl.  The RNAs were uniformed labeled with [α-



230 

 

32P] UTP. For the reaction, ~1 µg of DNA template were incubated with transcription 

buffer containing 20 mM Tris-HCl, pH 7.5, 200 mM NaCl, 1 mM MgCl2, 5 mM DTT, 

RNA polymerase, NTP and [α-32P]UTP at 30°C for 90 min.  Reaction products were 

passed through Sephadex® G-50 column to remove uncoupled UTP. Synthesized RNA 

concentration was determined by scintillation counting. The DNA vectors for 

transcribing each RNA substrate are listed in Table 3. 

In Vitro Transcription: 5x transcription buffer 4 µl 

 NTPs (ATP, CTP, GTP; each 3 
mM) 2 µl 

 100 mM DTT 1 µl 
 Cap-analog  1.4 µl 
 RNasein (40 U/µl) 0.4 µl 
 [α-32P]UTP (800 Ci/mM) 2 µl 
 Linerized template (1 µg/µl) 6 µl 
 RNA polymerase 2.5 µl 
 RNase Free H2O Add to 20 µl 

 

7.5.2 Formation of Double-Strand RNA 

The partial dsRNAs were prepared by annealing each pair of complementary 

transcripts at a 3-fold excess of unlabeled strand over labeled strand. The dsRNA 

substrate for both ATPase assays and RNA binding assays is the hybridization of equal 

molar amounts of two complementary strands. Annealing solution contained 30 mM Tris-

HCl, pH 7.5, 100 mM NaCl and 80% formamide. The RNA annealing mixture was 

heated to 85 °C for 10 min and was then slowly cooled down to room temperature. The 

RNA hybrids were used without further treatments. 
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7.5.3 ATPase Assay 

ATPase activities were determined by measuring the released inorganic phosphate 

during ATP hydrolysis using a direct colorimetric assay (Chan, Delfert et al. 1986) (Pugh, 

Nicol et al. 1999). The method is based on the change in absorbance (A623 nm) of 

malachite green-molybdenum complex in the presence and absence of inorganic 

phosphate. An improved procedure for phosphate determination based on a highly 

colored complex of phosphomolybdate and malachite green in the presence of 6 N acid.  

The time of color development at 25°C is about 3 min. A typical ATPase assay was 

carried out in 50-µl reaction volumes, containing 20 mM Tris-HCl, pH 7.5, 200 mM 

NaCl, 1 mM MgCl2, 5 mM DTT, ~1-2 µg of appropriate RNA, 40 units of RNasin 

(Fisher Scientific), 4 mM NTP and 10 µl of recombinant helicase protein. The ATPase 

reactions were incubated at 37 °C for 30 min. After incubation, 1 ml of malachite green-

molybdenum reagent was added to the reaction mixture and reactions were further 

incubated at room temperature for exactly 5 min. The absorption (A) at 630 nm was then 

measured. The concentrations of inorganic phosphate were determined by matching the 

A630 nm in a standard curve of A630 nm versus known phosphate concentrations. 

ATPase assay: 2 M Tris, pH 7.6 0.5 µl 
 3 M NaCl 3.3 µl 
 25 mM DTT 2.5 µl 
 100 mM DTT  1 µl 
 RNasein (40 U/µl) 0.7 µl 
 100 mM ATP 1 µl 
 ssRNA 2.2 µl 
 Recombinant p68 (~1 µg) 10 µl 
 RNase Free H2O Add to 50 µl 
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7.5.4 RNA Binding Assay 

RNA bindings were analyzed by gel-mobility shift assays and Methylene Blue 

(MB)-mediated dsRNA-protein cross-linking (Liu, Wilkie et al. 1996) (Liu, Laggerbauer 

et al. 1997). In a typical gel mobility shift assay, 100 ng of recombinant proteins were 

mixed with 5 fmol of appropriate RNA in buffer solution containing 30 mM Tris-HCl, pH 

7.5, 100 mM NaCl, 2 mM MgCl2, 1 mM DTT and 20 units of RNasin with or without 

ATP as indicated. After 15 min of incubation at room temperature, the reaction mixtures 

were loaded on to 6% native-PAGE (acrylamide:bis = 40:1). The methylene blue 

mediated cross-linkings were carried out as described previously (Liu, Wilkie et al. 1996) 

(Liu, Sargueil et al. 1998). The same protein:RNA reaction mixtures used in the gel 

mobility shift assays were used in the cross-linking experiments. After RNase mixture 

(RNase A, T1 and V1) digestion, the cross-linking mixture was separated by the 

appropriate percentage of SDS-PAGE and subjected to autoradiography.  

RNA Binding Assay: 5x binding buffer 4 µl 
 dsRNA (5 ng) 8 µl 
 Recombinant p68 (~20 ng) 5 µl 
 2 mM ATP  2 µl 
 RNasein (40 U/µl) 0.2 µl 
 RNase Free H2O Add to 20 µl 

 

7.5.5 RNA Unwinding Assay 

RNA unwinding activities were determined by the method similar to that 

described by Rozen and co-workers (Rozen, Edery et al. 1990).  Briefly, the RNA 

unwinding reactions were carried out in a 20 µl reaction volume containing 70 mM Tris-
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HCl, pH 7.5, 200 mM NaCl, 1 mM MgCl2, 5 mM DTT, 2.5 fmol of partial dsRNA, 

40 units of RNasin, 16 mM ATP and 2-4 µl of helicase. Reactions were incubated at 

37 °C for 60 min. The reaction mixtures were directly loaded onto the appropriate 

percentage of SDS-PAGE and the gel was subjected to autoradiography.  

In Vitro Transcription: 2 M Tris, pH 7.6 0.7 µl 
 3 M NaCl 1.3 µl 
 25 mM MgCl2 0.8 µl 
 100 mM DTT  1 µl 
 RNasein (40 U/µl) 1 µl 
 100 mM ATP 3.2 µl 
 dsRNA (~2.5 fmol) 6 µl 
 Recombinant p68 (100 ng) 4 µl 
 RNase Free H2O Add to 20 µl 

 
 

7.5.6 The Pre-mRNA Splicing Assay 
 

Extract from nuclei is required in studying the pre-mRNA splicing and 

spliceocome complex assembly in vitro. HeLa nuclear extract was prepared as described 

in previous reports (Dignam, Lebovitz et al. 1983; Krainer, Maniatis et al. 1984; Liu, 

Sargueil et al. 1998) with modification (Abmayr, Workman et al. 1988). The procedure 

for the nuclear protein extraction method is to allow cells to swell with hypotonic buffer.  

The cells are then disrupted, the cytoplasmic faction is removed and the nuclear proteins 

are released from the nuclei by a high salt buffer. Briefly, 1 liter of HeLa cell suspension 

culture was collected by spin down and washed twice by PBS. Cell pellets were 

resuspended by hypotonic lysis buffer (10mM HEPES, pH 7.9, 15 mM MgCl2 and 100 

mM KCl2) on ice for 15 min to allow cell swell. To the swollen cells in lysis buffer, 10% 
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IGEPAL CA-620 solution was added to a final concentration of 0.6%.  The mixture was 

vortex vigorously for 10 sec and centrifuged immediately at 10,000g for 30 sec to collect 

nuclei. The supernatant was transferred to fresh tube as cytoplasmic fraction. Nuclei 

pellets were resuspended with extraction buffer (20mM HEPES, pH 7.9, 1.5mM MgCl2, 

0.42 M NaCl, 0.2 mM EDTA and 25% Glycerol) for incubation at 4°C for 60 min. After 

removing debris, the nucleic extract was aliquot and stored at -80°C.  

The antibody, PAb204 or PAbN1, was used to remove endogenous p68 from 

HeLa nuclear extract. To gain better depletion results, the salt concentration of the HeLa 

nuclear extracts was raised to 600 mM NaCl before addition of antibody. After 3 h of 

incubation at 4°C, the mixtures were passed through a protein G or protein A agarose 

bead column. The column fractions were analyzed by SDS-PAGE. The fractions that 

contained the most proteins were collected together and dialyzed against buffer E (20 mM 

Tris-HCl pH 7.5, 50 mM NaCl, 0.3 mM EDTA pH 8.0 and 15% glycerol) twice for six 

hours. The recovered p68-depleted HeLa nuclear extracts were used in other in vitro 

assays.   

Splicing reactions were carried out with pPIP10A in 40% HeLa nuclear extracts 

or p68 depleted-HeLa nuclear   p68 RNA helicase was depleted from the nuclear extracts 

by the experimental procedure that was described in our previous report (Liu 2002). To 

reconstitute the splicing activity, the phosphorylated/dephosphorylated his-tag protein 

was added to the p68-depleted nuclear extracts to a final concentration of ~20 ng/µl. The 

mixture was incubated at 30°C for 15 min. About 25 fmol of pre-mRNA pPIP10A was 
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then added to the 10 µl of pre-incubated extracts and the splicing reaction was incubated 

at 30°C for an additional 150 min or time points as indicated. The splicing products were 

analyzed by 12% urea-PAGE. 

Pre-mRNA  Splicing 
Assay: 100 mMATP 0.8 µl 

 Creatine Phosphate 0.8 µl 
 100 mM DTT 1 µl 
 RNasin (40 U/ml)  0.2 µl 
 Pre-labeled RNA (~25 fmol) 1.2 µl 
 HeLa nucleic extract 8 µl 
 RNase Free H2O Add to 20 µl 

 

7.5.7 Trioxsalen Crosslinking Assay 

For the trioxsalen cross-linking, splicing reactions were performed with pPIP10A 

in 30% HeLa nuclear extracts for the indicated times. The stock solution of trioxsalen (5 

mg/ml dissolved in dimethyl sulfoxide) was added to the reactions to a final concentration 

of 15 µg/ml. The reaction mixtures were placed on ice and photolyzed with a UV cross-

linker containing four 15 W, 282-nm (maximum) UV bulbs for 12 min. The reaction 

mixtures were then treated with proteinase K and phenol-chloroform extraction. The 

RNAs were precipitated by ethanol. To identify the trioxsalen cross-linked RNA species, 

the precipitated RNAs were redissolved in 40 µl of RNase H reaction buffer. Five 

micromoles of the DNA oligonucleotide αU164-75 or unspecific oligonucleotide Actin-β 

and RNase H were added to the solution. The mixture was incubated at 30°C for 30 min. 

The products were treated with phenol-chloroform extraction and subsequent ethanol 
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precipitation. The final RNAs were analyzed by denatured urea-6% PAGE and subjected 

to autoradiography. 

 

7.5.8 Methylene Blue Crosslinking Assay 

To study RNA-protein interactions, an alternative RNA-protein photo-

crosslinking method was developed to efficiently induces RNA-protein crosslinks in 

double-stranded regions of RNA (Liu, Wilkie et al. 1996). Recombinant human p68 RNA 

helicase and dsRNA binding substrate were crosslinked by methylene blue (MB).  

Methylene blue crosslinking experiments were carried out as described in the 

previous report (Liu, Sargueil et al. 1998). Appropriate amounts of RNAs (~5 ng) were 

mixed with 100-150 ng of proteins (or appropriate percentage of HeLa nuclear extract 

and protein mixture) in a total volume of 10 µl. Methylene blue was added into the 

solution to 0.2-1 ng/µl. after a short incubation at room temperature, the mixture was 

placed in a micro-titer plate.  The plates was then placed 4-5 cm below a 60 W 

fluorescent tube light. The crosslinking was conducted on ice for 20 min.  The mixture 

was then digested with RNase A (1 mg/ml), RNase T1 (0.3 U/ml) and RNase V1 (0.035 

U/ml), at 37C for 20 min.  Crosslinking results were analyzed by electrophoresis on 10% 

SDS gel followed by autoradiography and coomassie blue staining.  
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7.5.9 The Spliceosome Complex Assembly 

For assembly of the spliceosome complexes, splicing reactions were performed 

with pPIP10A in 20 − 25% intact HeLa nuclear extracts or the reconstituted nuclear 

extracts (described in the above 2.5.6). After incubation for 30 minutes, heparin was 

added to the reaction mixture to a final concentration of 0.5 mg/ml. The reactions were 

incubated at 30°C for an additional 5 minutes. The reaction products were analyzed by 

4% (80:1 acrylamide:bis-acrylamide) native PAGE. The gel was subjected to 

autoradiography. 

 

7.5.10 RNA Isolation 

Total RNA from mammalian cell culture was isolated by using RNeasy® Mini kit 

(Qiagen) according to manufacture’s instruction. To isolate RNA, mammalian cells were 

grown to 80-90% confluence in 100 mm cell-culture dish. Cells were directly lyzed and 

homogenized in the presence of a highly denaturing guanidine isothiocyanate (GITC)-

containing buffer, which immediately inactivates RNases to ensure isolation of intact 

RNA. Cell lysates were applied to mini column for binding. RNAs were bound to a 

selective binding silica-gel-based membrane. Contaminants were efficiently washed 

away by high-salt buffer.  After remove extra ethanol, high-quality RNA is then eluted in 

30 µl of DEPC-treated water. 
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7.5.11 Reverse Transcriptase PCR (RT-PCR) 

RT-PCR is the most sensitive technique to determine the mere presence or 

relative quantity of specific RNA templates, e.g. in gene expression studies. In two-step 

RT-PCR, reverse transcription of RNA into cDNA is performed prior to amplification of 

cDNA by PCR in a separate reaction.  RT-PCR reactions were performed with 1 µg of 

total RNA using One Step RT-PCR kit (Roche, Titan kit) by following the 

manufacturer’s instruction. RT-PCR results were analyzed on a 2% agarose gel. 

Quantization of RT-PCR products were carried out by scanning the image of the agarose 

gel using LabWork Image Acquisition and Analysis System. The primers for all RT-PCR 

or PCR reactions are listed in Table 4.  

 

7.5.12 RNA Immunoprecipitation  

RNA immunoprecipitation (RNA-IP) was performed using essentially the same 

procedure as described by Gilbert and colleagues (Gilbert, Kristjuhan et al. 2004). 

Briefly, 48 hours post transfection (indicated), HT-29 cells were fixed in 1% 

formaldehyde for 30 minutes at room temperature. The cells were lysed in ChIP lysis 

buffer (Active motif) containing RNase inhibitor (50 U/500 µl). The cell nuclei were 

released by homogenization. The collected nuclei were further lysed by FA buffer (50 

mM HEPES-KOH [pH 7.5], 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% 

sodium deoxycholate, protease inhibitors) containing RNase inhibitor. The resultant 

samples were treated by extensive sonication followed by treatment with RNase-free 
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DNase I at 37°C for 30 minutes. Immunoprecipitation using anti-HA antibody (Upstate) 

was carried out with the samples. The immunoprecipitates were adjusted to 200 mM 

NaCl and incubated at 65 °C overnight. The samples were further treated with 20 µg 

protease K and phenol: chloroform extraction followed by ethanol precipitation at −80°C. 

RT-PCR (as described above) was performed using 1/100 RNA of precipitates or 1/2000 

RNA of input. RT-PCR results were analyzed on a 2% agarose gel.   

 

7.6 Cell Culture 

PC12, HEK, HeLa S3, HT-29, SW480 cells and SW620 cells were purchased 

from ATCC and were grown in Dulbecco’s modified Eagle’s medium, McCoy's 5A 

modified medium and Leibovitz's L-15 Medium respectively supplemented with 10% 

Fetal Bovine Serum, penicillin (100 U/ml) and streptomycin (100 µg/ml).  IRAK-

deficient I1A cells were obtained as a gift from Dr. Xiaoxia Li, Lerner Research Institute 

and cultured in Dulbecco’s modified Eagle’s medium.  

 

7.7 Transfection 

7.7.1 Plasmid Transfection 

Subconfluent IRAK-deficient I1A cells were transfected with His/Myc 

mPLK/IRAK and/or GST-aPKC active/inactive plasmids employing the Mammalian Cell 

Transfection kit (Cell & Molecular Technologies).  All other plasmids and cells lines 

were transfected with LipofectamineTM 2000 (Invitrogen) according to manufacture’s 
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instruction.  A typical transfection was performed using the following procedure to 

transfect DNA into the mammalian cells in a 6-well format.  For other formats, 

transfection mixture was prepared as scaled up or down.  One day before transfection, 

cells were plated 2-5 x 105 cells in 2 ml of growth medium without antibiotics so that 

cells will be 90-95% confluent at the time of transfection. DNA was diluted in 250 µl of 

pre-warmed Opti-MEM® I Reduced Serum Medium without serum (or other medium 

without serum) and mixed gently. Lipofectamine™ 2000 was diluted in 250 µl of Opti-

MEM® I Medium for incubation for 5 minutes at room temperature. After the 5 minute 

incubation, diluted DNA was combined with diluted Lipofectamine™ 2000 (total volume 

= 500 µl) for gently mix and incubation for 20 minutes at room temperature. After 

incubation, the 500 µl of complex was added to each well containing cells and complete 

medium.  Fresh medium were changed after incubating cells at 37°C in a CO2 incubator 

for 4-6 hours. Post transfection 48-72 hours, cells were treated or harvest for analysis.  

 

7.7.2 siRNA Transfection 

For all siRNA experiment, Lipofectamine™ 2000 was used as transfection 

reagent employing similar procedure. Cells were grown to 50% confluence and 

transfected with siRNA (100 pM) mixed with 5 µl of Lipofectamine™ 2000. The duplex 

RNA oligonucleotides for targeting p68 RNA helicase were purchased from Dharmacon 

siGENOME™ and SMARTpool®.  For transient expression of p68 wild-type or mutants 

in p68 knock down cells, four nucleotides in the siRNA targeting sequence were mutated 
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to avoid RNAi targeting. The mutations did not change the amino acid sequence. The 

cells were transfected with the indicated plasmid DNA 24 hours after the cells were 

transfected with duplex siRNA and harvested after additional 48 hours incubation. The 

cell extracts were prepared immediately after harvest. 

 

7.7.3 Protein Transfection 

Chariot™ was used as transfection reagent to deliver proteins, peptides and 

antibodies into cultured mammalian cells. Chariot form a non-covalent complex with the 

protein, peptide or antibody of interest. The Chariot-macromolecule complex stabilizes 

the macromolecule and helps to protect it from degradation during the transfection 

process. Upon internalization, the complex dissociates and the macromolecule is free to 

proceed to its target organelle.  

To transfect protein, 40-50% confluent cells were seeded into 6-well plates with 

complete medium before the day of transfection.  0.5-1 µg of protein or 1/1000 dilution 

of antibodies were mixed with PBS. 6 µl of Chariot™ was diluted by sterile water. The 

two dilutions were combined and incubated at room temperature for 30 min.  After 

incubation, the mixture was applied to cells with 400 µl of serum-free media. 1 ml of 

complete media was added to cells after 1 hr.  Post transfection 2 hrs, cells were 

harvested and analyzed.  
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7.8 Establish Stable Cell lines 

Stable overexpression of HA-tag p68 wild-type or Y593F mutant was carried out 

using the ViralPower lentiviral expression system (Invitrogen) by following the 

manufacturer's instructions. The ORFs of p68 wild type or Y593F mutant with N-

terminal HA-tag were cloned into pLenti6/TOPO (Invitrogen) plasmid. The infections of 

SW620/SW480 cells with the lentiviruses that carry pLenti6-p68 were carried out in the 

presence of 6 µg/mL of polybrene and 10 mM HEPES. Following transduction, the 

SW620/SW480 cells were selected by 8 µg/ml of Blasticidin (Invitrogen). Individual 

colonies were picked up and cultured separately.  Cultured colonies were screened by 

western blotting using anti-HA antibody to detect exogenous p68 expression.  The colony 

with highest expression level was amplified and used for experiments.  

 

7.9 Reporter Gene Assay 

7.9.1 Dual Reporter Gene Assay 

Before cells were appropriately treated (indicated in figures), cells were 

transfected with 1 µg of the indicated reporter plasmid and 0.01 µg of pRL null, which 

expresses Renilla luciferase from Renilla reniformis as an internal control. The total 

amount of plasmid DNA was adjusted with pcDNA3-β-Galactosidase. Firefly and Renilla 

luciferase activities present in cellular lysates were assayed using the Dual-Luciferase 

Reporter System (Promega). Light emission was measured using a Sirius Luminometer 

(Berthold Technologies). Data were represented as Firefly luciferase activity normalized 
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by Renilla luciferase activity.  The values plotted were the average ± S.E. of triplicate 

samples from typical experiments. 

 

7.9.2 Splicing Reporter Gene Assay 

HT-29 cells were appropriately treated (indicated in figures). The cells were 

transfected with 0.5 µg of reporter plasmid pTN23 (Nasim, Chowdhury et al. 2002) and 

0.5 µg of pHM6-p68 wt/mutant. The total amount of plasmid DNA was adjusted with 

pHM6-blank vector. Firefly luciferase and β-galactosidase activities present in cellular 

lysates were assayed using a Dual-light Reporter System (Biosystem). Light emission 

was measured using a Sirius Luminometer (Berthold Technologies). Data were 

represented as Firefly luciferase activity divided by β-galactosidase activity. The values 

plotted were the average ± S.E. of triplicate samples from typical experiment. 

 

7.10 HDAC Activity Assay 

Inhibition of histone deacetylases (HDACs) has been implicated to modulate 

transcription and to induce apoptosis or differentiation in cancer cells. The First, the 

HDAC colorimetric substrate, which comprises an acetylated lysine side chain, is 

incubated with a sample containing HDAC activity. Deacetylation sensitizes the substrate 

and thus in the second step, treatment with the Lysine Developer produces a 

chromophore, which can be analyzed using a colorimetric plate reader.  
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SW620 cells were lysed in RIPA buffer (Upstate) 48 hr after transfection as 

described above. The lysate was then diluted in RIPA buffer and HA-tagged proteins 

immunoprecipitated with anti-HA polyclonal antibody (Upstate). HDAC activities were 

determined by HDAC Activity Colorimetric Assay Kit (BioVision) according to 

manufacturer’s instructions. Antibody-bound beads were washed in HDAC assay buffer 

prior to being added to the 96-well plate, to remove immunoprecipitation buffer. 

Reactions were incubated for 30 min at 37°C with or without the addition of 1 µM TSA. 

Samples were read in a VICTOR3™ plate reader (PerkinElmer) at 405 nm. Typically 

each assay was performed 3 times. 

 

7.11 Immunostaining 

The cells were seeded on chambered microslides (BD Biosciences) and treated as 

indicated. The cells were washed, fixed and permeabilized with 4% formaldehyde and 

0.1% Triton X-100 in 1× PBS. The cells were then blocked with Image-iT™ FX signal 

enhancer (Molecular Probes) and subsequently incubated with appropriate antibodies for 

1 hour. After extensive wash, the samples were incubated with Alexa Fluor 488 or 555 

goat anti–mouse IgG (Molecular Probes) (1:1000) to stain primary antibodies. 

Microslides were washed and mounted in ProLong® Gold antifade reagent with DAPI 

(Molecular Probes) and viewed using a Zeiss LSM510 Confocal Microscop. 
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7.12 Invasive Assay 

The cell invasion assays were performed with HT-29 cells expressing p68 wild-

type or mutant using a BioCoat tumor invasion system by following the manufacturer's 

instructions (BD Biosciences). The invasion assays were carried out with cells 

with/without PDGF treatment (20 ng/ml). The invaded cells were stained with 4µg/ml 

Calcein, AM (Molecular Probes). The fluorescence of invaded cells was read in 

VICTOR3™ plate reader (PerkinElmer). 
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Table 3. Transcription Vectors Used in This Study. 

RN
A Length nt 

RNA 
polymeras

e 
Vector Modifications Digestio

n 

1 167 SP6 pGEM-
3Z 

Delete the sequence 
between 
EcoRI/HindIII 

PvuII 

2 222 T7 pGEM-
3Z 

Delete the sequence 
between 
EcoRI/HindIII 

PvuII 
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Table 4: The RT-PCR Primers Used in this Study 

Name Sequence Location 
ActinF CACGGCCGAGCGGGAAAT Exon 4 

Actin4R CGGGAGACAGTCTCCAC Intron 4 
Actin5R TGCATCCTGTCGGCAATGC Exon 5 

GAPDHF TGTTCCAATATGATTCCACCC Exon 4 
GAPDH4R AAGGGAGCCACACCATCCT Intron 4 
GAPDH5R CTTCTCCATGGTGGTGAAGA Exon 5 

CEBPF AGCACCACGACTTCCTCTC  
CEBPR GGGTGCAGGGGCGCGAA  
HistoneF CCAGTGTACCTGGCGGCA  
HistoneR GTACTCCTGGGAGGCCTG  
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GENOME-WIDE GENE EXPRESSION PROFILES AFFECTED BY TYROSINE 

PHOSPHORYLATED DEAD-BOX p68 RNA HELICASE 

 

9.1.1 Abstract 

DEAD-box protein p68 RNA helicase has been suggested to act as an essential 

splicing factor and plays central roles in tumor cell EMT. We have analyzed genome-

wide gene expression profiles affected by DEAD-box protein p68 in the mammalian cell 

lines, HEK and SW620 by means of large scale of DNA microarray technique. 

Overexpression of exogenous p68s, wild type, Y593F, Y595F and HLIGR showed a 

dramatic change of global gene expression pattern.  Gene cluster analysis has grouped 

these genes into distinct clusters that appear to correlate with major cellular processes. 

These processes include cell proliferation, ant-programmed cell apoptosis, cell adhesion, 

cell cycle and cell migration. These data should provide valuable molecular and genetic 

understanding of the cellular function of DEAD-box protein p68. 

 

9.1.2 Introduction 

The proto-type DEAD-box protein p68 is documented as a putative RNA 

helicase. Studies from our laboratory have established p68 RNA helicase as an essential 

factor in the general pre-mRNA splicing process {Lin, 2005 #43; Liu, 2002 #48; Liu, 

1998 #56}.  Depletion or non-functional mutations of p68 abolished the splicing reaction 

in vitro and in vivo.  The protein is also suggested to act as a transcription coactivator or 

corepressor in particular signaling pathways {Bates, 2005 #174; Endoh, 1999 #65; 
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Kahlina, 2004 #172; Rossow, 2003 #90}. It has been suggested that p68 RNA helicase 

regulates gene expression in sequence-specific manner {Wilson, 2004 #173}. However, 

the genes targeted by p68 and the cellular function of p68 are not known 

The breakthrough of DNA microarray technology has become a powerful method 

to globally identify gene expression profiles. Instead of studying single genes in 

biological experiments, microarray technology allows identification of thousands of gene 

simultaneously. With the completion of human genome project, DNA microarray can be 

applied for identifying disease-related genes, examining drug effects and classifying gene 

regulation by certain proteins.  

There are two types of microarrays: cDNA array and oligonucleotide array. We 

used the oligonucleotide microarray (Affymetrix) in our experiments. DNA microarray 

assay has been performed by inspecting the gene expression profile change among the 

total RNA extraction of HEK cells transfected with blank vector as control, or HA-tagged 

p68 wild type, or transiently expression of wild type or ATPase mutant in the p68-

knockdown SW620 cells. HGU133 2.0plus chips were utilized to be hybridized and 

scanned in Morehouse Medical School. Subfamilies of genes related to cellular processes 

were identified.  Further confirmation will be performed by RT-PCR and western 

targeting to three to six examples.  
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9.1.3 Material and method 

9.1.3.1 Total RNA isolation 

HEK cells were transfected with control siRNA or siRNA targeting p68. SW620 

cells were expressed HA-tagged p68s, (wt, Y593F or Y595F) in p68-knockdown cells. 

Total RNA were isolated using Qiagen RNeasy Mini Kit spin columns.  The 

concentration of total RNA was determined by spectrometer at OD 280 nm. The isolated 

RNA samples were stored at -80°C. 

 

9.3.2 Target labeling 

Double stranded cDNA were synthesized from total RNA for each sample with 

SuperScript™ II Reverse Transcriptase (Invitrogen).  Briefly, 10 µg of total RNA was 

used for reverse transcription to synthesiz the (−) strand cDNA using a primer containing 

poly T and T7 RNA polymerase promoter sequence.  The second strand of cDNA was 

synthesized with incubation of T4 DNA polymerase I. The double stranded cDNA were 

cleaned up by phenol-chloroform extraction and ethanol-precipitation. The cDNA was 

resuspended in 10 µl of RNase-free water. 5 µl of resuspended cDNA were used as 

template for in vitro transcription in the presence of biotinylated CTP to generate labeled 

RNA.  The in vitro transcription reaction was performed by using the GeneChip® IVT 

Labeling Kit (Affymetrix). Purification of the labeled RNA was carried out with the 

Qiagen RNeasy Mini Kit spin columns.  
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9.1.3.3 Array Hybridization and Scanning.  

The labeled cRNA was fragmented in fragmentation buffer (200 mM Tris pH 8.1, 

50 mM KOAc, 150 mM MgOAc) and hybridized to the microarrays (U133 or U133 2.0 

plus GeneChip®) (Affymetrix) in 200 µl of hybridization solution containing 20 µg 

labeled target in 13Mes buffer [0.1MMesy1.0 M NaCly0.01% Triton X-100 (pH 6.7)] 

and 0.1 mgyml herring sperm DNA. Arrays were placed on a rotisserie and rotated at 60 

rpm for 16 h at 45°C. Following hybridization, the arrays were washed with 63 SSPE-T 

(0.9 M NaCl, 60 mM NaH2PO4, 6 mM EDTA, 0.005% Triton X-100) at 22°C on a 

fluidics station (Affymetrix) for 10 3 2 cycles, and subsequently with 0.1 Mes at 45°C for 

30 min. The arrays were then stained with a streptavidin-phycoerythrin conjugate 

(Molecular Probes), followed by 10 3 2 wash cycles. After 10 3 2 additional wash cycles, 

the arrays were scanned at a resolution of 3 mm, using the High Resolution GCS3000 

scanner (Affymetrix).  

 

9.1.3.4 Data Analysis 

The image data were analyzed by Affymetrix GeneChip Operating Software 

(GCOS) Version 1.0.  
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Figure IX-1. The schematic illustration of targeting labeling and array 

hybridization. 

The total RNA isolated from treated mammalian cells was used for reversely 

transcription in the presence of poly T oligonucleotide T7 primer. The synthesized cDNA 

were further used as temple for in vitro transcription in the presence of biotinylated CTP 

for RNA labeling. The labeled cRNA was hybridized to Genechip® oligonucleotide 

assays. After incubation with streptavidin-phycoerythrin conjugate and extensive wash, 

the arrays were scanned by GCS3000 scanner.  
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Figure IX-1 
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Figure IX-2. The expression of HA-tagged p68s in HEK 293 and SW620 cells.  

(A) HEK cells were transfected with blank vector (pHM6) or HA-tagged p68s (wt, or 

HLIGR).  The cell lysates were immunoblotted using antibody against HA epitope.  

(B) HA-tagged p68s (wt or HLIGR) were expressed in p68-knockdown SW620 cells. 

The expression of endogenous p68 and exogenously expressed HA-tagged p68s were 

examined by immunoblotting using antibodies against p68-rgg and HA epitope.  

(C) HA-tagged p68s (wt, Y593F and Y593/595F) were expressed in p68-knockdown 

SW620 cells. The expression of endogenous p68 and exogenously expressed HA-tagged 

p68s were examined by immunoblotting using antibodies against p68-rgg and HA 

epitope.  
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Figure IX-2 
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Figure IX-3. Reproducibility of the genes identified by the microarray technology. 

The red dots represent the genes detected in both P1 samples, an estimated 34% of the 

genes on a single chip. The yellow or blue dots represent the genes detected only in one 

of the samples, and thus these signals only constitute about 0.25–0.3% of the genes on the 

chip. An intensity of 400 to 500 corresponds to approximately one copy per cell. The 

axes represent gene expression intensity. Five percent of probe sets showed more than 3-

fold changes. 
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Figure IX-3 
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Table 5. Identification of genes affected by p68 RNA helicase. 

Gene Bank No. Description NTsiRNA P68siRNA wild type HLIGR 
NM_004893 Histone 2a 292 261 265 269 
NM_001101 Actin beta 634 638 899 877 

M55643 NF-kB 18.1 30.9 33.5 52.8 
X60188 ERK1 10.6 10.8 1.4 19.7 

NM_006270 R-RAS 28.4 50 26.7 54.6 
NM_007315 STAT1 114 174 256.6 180.1 
AL039831 JAK1 17.5 16.8 47.4 88 
AL121758 Snail 48.6 33.8 97 54.4 

NM_001904 CTNND1 36.5 35 100 24.9 
NM_004360 E-cadherin 113 98 140 53 
NM_003376 VEGF 30 37 41.6 98.6 
NM_005902 SMAD3 16.8 26.8 90 60.6 

U19599 BAX delta 29.8 10.5 26.8 26.1 
NM_000546 P53 18.9 18.1 34.8 56 
NM_006186 Nuclear receptor 7.3 5 80.7 8.9 
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Table 6. Identification of genes affected by phosphorylation of p68. 

Gene Bank No. Gene description WT Y593F Y593-5F 
NM_016527 HAO2 10.9 130.5 39.2 
NM_012267 hsp70-interacting protein 72.5 226.2 214 
NM_002875 RAD51 85.1 207.1 125 
NM_014623 male-enhanced antigen 448.2 221.7 295.9 
NM_005224 dead ringer-like 1 239.5 114.4 393.7 
NM_001610 acid phosphatase 2 252.1 115.4 167 
NM_017450 BAI1-associated protein 2 243.9 110.4 276.2 
NM_004223 ubiquitin-conjugating E2L 6 303.5 128.5 175 
NM_006763 BTG family, member 2 240.2 101.4 189 
NM_002502 NFKB2 211.8 87.8 192.4 
NM_001616 activin A receptor, type II 310.1 124.7 308.7 
NM_00140 EDG2 339.2 136.2 309.6 
NM_002623 prefoldin 4 (PFDN4), 224.4 82.5 224 
NM_024501 homeo box D1 (HOXD1) 11.7 92.3 133.4 
NM_000014 alpha-2-macroglobulin 11.3 110.5 123.2 
NM_003377 VEGFB 15.9 93.7 144.3 
NM_001738 carbonic anhydrase I 67.8 129.1 286.5 
NM_006180 NTKR 115.1 88.1 330.2 
NM_016195 M-phase phosphoprotein 1 84.8 119.5 203.9 
NM_021077 neuromedin B 131.8 133.4 307.8 
NM_005228 EGFR 96.6 109.9 212.4 
NM_012125 cholinergic receptor, muscarinic 5 123.4 149.5 269.4 
NM_003243 TGFBR3 200.4 159.6 98.3 
NM_003177 SYK 264.3 240.4 129.3 
NM_003825 synaptosomal-associated protein 226.5 219 110.2 
NM_000610 CD44 245.7 154.7 117.9 
NM_012177 F-box only protein 5 (FBXO5) 475.8 349.3 226.7 
NM_001432 epiregulin (EREG), 746.4 633.7 355.2 

NM_003095 small nuclear ribonucleoprotein 
polypeptide F 1144.8 1041.4 498.8 

NM_012225 nucleotide binding protein 2 
(NUBP2), 381.8 193 164.7 
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