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EFFECT OF CHANGES IN MEDIA COMPOSITION ON NITRILE 

HYDRATASE ACTIVITY AND STABILITY AND ON CELL ENVELOPE 

COMPONENTS OF RHODOCOCCUS SP DAP 96253 

by 

TRUDY-ANN TUCKER 

Under the Direction of George E. Pierce 

ABSTRACT 

      Rhodococcus is an important industrial organism that possesses diverse metabolic 

capabilities, it also has a unique cell envelope, composed of an outer layer of mycolic acids and 

glycolipids (free or bound lipids generally linked to the sugar trehalose).  Rhodococcus is able 

to transform nitriles to the corresponding amide by the enzyme Nitrile Hydratase (NHase), 

therefore rhodococcal cells can be utilized as biocatalysts in the detoxification of nitrile waste 

water or in the production of industrially important amides such as acrylamide. However, the 

NHase within the native cells must be stable with high activity. 

 This research examined how NHase activity and stability can be increased in native cells 

by changing growth media composition, the impact on the rhodococcal cell envelope was also 

studied.  

 Growth media composition was altered by supplementing different sugars such as 

fructose, maltose or maltodextrin to replace glucose in rich solid media containing cobalt and 

urea for induction of NHase. The supplementation of maltose or maltodextrin resulted in 

significantly higher NHase activities and greater NHase stability at 55°C. The supplementation 



  

 

of these different sugars was shown to alter cellular and lipid bound trehalose levels, a sugar 

known to stabilize proteins and a component of the rhodococcal cell envelope. Cells that had 

higher levels of cellular trehalose had significantly greater NHase stability at 55°C.  

      The effect of the different sugar supplements and inducers of NHase, such as cobalt, on 

cell envelope components such as mycolic acids and glycolipids were examined by High 

Performance Liquid Chromatography (HPLC) and Thin Layer Chromatography (TLC). The 

results showed that changes in mycolic acids and glycolipids occurred when the cells were 

grown in the presence of different sugar supplements and when the cells were induced for 

NHase.  

Susceptibility of Rhodococcus sp DAP 96253 to different antibiotics was examined to 

indicate if changes were occurring in the cell envelope. Differences in antibiotic susceptibility 

were observed when the cells were grown on media with different sugar supplements and when 

the cells were induced for NHase. In the presence of cobalt Rhodococcus sp DAP 96253 showed 

a significant increase in sensitivity to antibiotics. 

 Changes in growth media composition influences the cell envelope of Rhodococcus sp 

DAP 96253 and also affects NHase activity and stability. Therefore, achieving increased enzyme 

activity and stability is not entirely dependent on the actual enzyme, but is related to other 

aspects of the cell, such as the cell envelope and metabolites of the cell.  

 

INDEX WORDS:     Rhodococcus, Nitrile Hydratase, Cell envelope, Mycolic acids, 

Growth media, Trehalose 
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1

Introduction                                                                            

Background 
 Nitrile compounds are numerous and widespread in the environment, produced by 

selected plants as cyanoglycosides, cyanolipids, ricinine, and phenylacetonitrile, (Conn, 1981) 

and as a result of certain industrial processes. Acrylonitrile (AN) is an important industrial 

compound. The world capacity for AN was reported in 1996 to be 4.3 x 106 tons per year. The 

United States manufactures 1.4 x 106 tons per year of AN (Weissermel and Arpe, 1997). AN is 

used to produce acrylamide (AMD), acrylic acid (AA), acrylic fibers, copolymer resins and 

nitrile rubbers (Pierce, 1999); it is manufactured by the Sohio/BP process which involves the 

direct ammoxidation of propylene by ammonia vapors in air using uranyl antimonite as a 

catalyst. The waste water generated from the Sohio process contains different nitriles, 

including acetonitrile (ACN), succinonitrile (SN), fumaronitrile (FN) and AMD. In addition, 

free cyanide is also present at varying concentrations (Pierce, US Patent, 1998). Pollak et al. 

(1991) showed that many nitriles are mutagens or carcinogens. The mechanism for nitrile 

toxicity is the inactivation of the respiratory system by binding of cytochrome-c-oxidase 

(Solomonson and Spehar, 1981). Nitriles such as acrylonitrile, acetonitrile, succinonitrile and 

fumaronitrile are serious health hazards and their treatment should be a primary concern. 

  AMD is also an important nitrile compound as it is a monomer for synthetic fibers and 

flocculant agents; about 200,000 tons are produced each year. AMD is synthesized 

conventionally by the hydration of acrylonitrile in the presence of copper catalysts. This 

process produces unwanted by-products and requires high temperatures, which increases 



 

 

2

production costs. Furthermore, the catalyst is not easily regenerated (Nagasawa and Yamada, 

1990).  

Problems associated with the traditional manufacture of AN include high production 

costs and the generation of hazardous waste. The waste is not treated before disposal, this 

poses serious health hazard. The utilization of microorganisms to treat the waste 

(biodetoxification) is an alternative (Aiken, 1993). This would remove or lower concentrations 

of hazardous nitriles present in the waste. Employing microorganisms in transformation 

reactions (biotransformation) is also an alternative to the traditional synthesis of AMD 

(Yamada and Kobayashi, 1996). Rhodococcus was shown to be a nitrile utilizing bacterium 

(Watanabe, 1987; Wyatt and Knowles, 1995) and can be used in biodetoxification of nitrile 

waste wasters and in the biotransformation of AN to AMD. 

 

Metabolic diversity and uses of Rhodococcus 

 Members of the genus Rhodococcus are Gram-positive, non-motile, aerobic, 

chemoorganotrophic, pleomorphic rods which undergo oxidative metabolism and possess the 

capacity to form limited substrate mycelium (Goodfellow, 1989). Most rhodococci are capable 

of forming pigmented colonies that are red, orange or pink, in color due to the presence of 

carotenoids (Warhurst and Fewson, 1994). The rhodococci are widespread in nature; members 

can be found in soil, rocks, ground water, wastes and seawater (Goodfellow and Minniken, 

1981).  

Many members of the genus Rhodococcus possess diverse metabolic capabilities and are 

found in the microflora of many polluted environments where they play a vital role in natural 
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degradation, bioremediation and biotransformation (Finnerty, 1992). Biodegradation and 

biotransformation carried out by Rhodococcus is facilitated by the presence of a unique cell 

envelope and related secretions.  Table 1 summarizes some of the capabilities and applications 

of rhodococci. 

 

Table 1- Some uses and applications of Rhodococcus 

Species Hydrocarbon 
metabolisma 
 

Secretion of 
surface active 
lipidsb 

Environmental 
Applicationsc 

Industrial 
Applicationsd 

R. rhodochrous x x  x 

R. equi x    

R. erythropolis  x x  

R. ruber  x  x 

R. aurantiacus  x   

Rhodococcus sp 
P1 

  x  

R. 
chlorophenolicus 

  x  

a- hydrocarbons such as acetylene, acetaldehyde, alcohols, alkanes (German and Knowles, 1988; Sorkhoh et 
al., 1990, Leahy and Colwell, 1990). 

b- Surface active lipids (glycolipids, steroids, monoglyceride, phosphatidylcholine)and polysaccharide (Philp 
et al. 2002, Wolfaardt et al. 1994; Urai et al., 2006) 

c- degradation of recalcitrant compounds such as polychlorinated biphenyls (PCB’s), s-triazines, sulphonated 
azo dyes and n-methyl carbamates (Boyle et al., 1992; Heiss et al., 1992; Mulbry, 1994; Behki et al., 1994). 

d- acrylic polymer manufacture (Hughes et al., 1998) production of acrylamide. (Kobayashi and Yamada, 
1996), treatment of waste (Aitken, 1993; Ganguly and Pierce, unpublished), production of poly(3-
hydroxyalkanoic) acids (Pieper and Steinbuchel, 1992)  
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Biotransformation of Nitriles 

Biotransformation of nitriles is accomplished by hydrolysis reactions catalyzed by nitrile 

hydratase (NHase), amidase (Kobayashi and Shimazu, 1998). NHase is a soluble 

metalloenzyme that catalyses conversion of nitriles to amides. Amidase catalyses the formation 

of carboxylic acid from the corresponding amide.  

  NHase is a heteromer of equal amounts of α and β subunits, of molecular weight 23 kDa, 

a non heme iron or a non-corrinoid cobalt occupies the catalytic center (Sugiura et al, 1988; 

Kobayashi and Shimazu, 1998). Banerjee et al. (2002) suggested two reasons for the 

association with the metal. One being that metal ions are good catalysts for the hydration of the 

CN triple bond and that the metal is required for the folding of the enzyme. NHases associated 

with cobalt have theronine within a critical sequence whereas the ferric NHases have serine. 

The amino acid sequence of iron and cobalt NHases show significant homology, although there 

is variation in their conversion capability and substrate specificity (Payne et al., 1997). 

  Depending on the inducer used and in the presence of cobalt ions selected Rhodococcus 

species produce two NHases (Komeda et al., 1996). These two NHases are called heavy mass 

(H-NHase) and low mass (L-NHase) NHases depending on the number of subunits present; 4 

subunits: 2 of each α and β forL-NHase and 18-20 subunits: 9-10 of each α and β for H-

NHase. The H-NHase has a higher affinity for acrylonitrile and is currently employed in the 

commercial production of acrylamide (Kobayashi et al, 1992). Nagasawa et al. (1988) 

previously demonstrated that H-NHases have a higher affinity for aliphatic nitriles while  
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Komeda et al. (1996) subsequently demonstrated that the L-NHases have a higher affinity for 

aromatic nitriles. The presence of H-NHase and L-NHase enables the organism to use different 

nitrile compounds as substrates. This increases the substrate range.  

Watanabe et al. (1987) examined the effects of culture conditions on NHase activity. 

Selected nutrients such as meat extract, peptone, and casamino acid corn steep liquor, and yeast 

extract were evaluated for effects on NHase activity.  Yeast extract was shown to be the most 

favorable.  NHase activity can be further enhanced by the addition of inducers such as 

cyclohexanecarboximide used as an inducer for the Rhodococcus rhodochrous J1 strain 

(Kobayashi et al, 1992).  Rhodococcus sp DAP 96253 NHase activity is induced remarkably by 

the presence of cobalt ions in carbohydrate rich media supplemented with urea and selected 

inducers. Nitriles are not generally used as inducers, however, AN a substrate of the reaction 

has been shown to induce NHase activity in Rhodococcus DAP 96253. A cocktail consisting of 

ACN (150ppm), AN (150ppm), SN (50ppm), sodium cyanide(10ppm) and crotononitrile 

(150ppm) are inducers of NHase system (Pierce, US Patent, 1998).The amino acid asparagine 

(ASN) is similar in structure to acrylonitrile, also induces high levels of this enzyme (Ganguly 

and Pierce, unpublished). 

 

Stabilization of Nitrile Hydratase 

The large scale implementation of rhodococcal cells for the biological treatment of 

acrylonitrile production wastewater requires the stabilization of NHase.  This can be achieved 

by the immobilization of whole cells or purified enzymes (Bickerstaff, 1997).  Rhodococcus 

DAP 96253 was immobilized using calcium alginate or glutaraldehyde and stability of NHase 



 

 

6

assessed at 55°C. Glutaraldehyde was superior to calcium alginate in stabilizing NHase 

(Ganguly and Pierce, unpublished).  

Glutaraldehyde (HCO-(CH2)3-CHO), is one of the most effective protein crosslinking 

reagents (Russel and Hopwood, 1976).  Glutaraldehyde reacts, with free amino groups 

especially with that of lysine, with sulfhydryl groups, and with phenolic and imadazole rings of 

amino acids (Habeeb and Hiramoto, 1968).These reactions with proteins results in proteins in 

the cell becoming closely packed (Jearanaikoon and Abraham-Peskir, 2005). 

   The use of whole cell rhodococcal glutaraldehyde calalysts is very promising in the 

detoxification of waste water (Ganguly and Pierce, unpublished) however the immobilization 

and crosslinking process is harsh on the cell and results in loss of NHase activity. However, 

despite initial losses in activity, greatest stability (i.e long term) was achieved. Loss of enzyme 

activity due to immobilization of cells with glutaraldehyde can be due to cross-linking of 

polypeptide chains of a protein, “this limits the flexibility of a protein and produces stress that 

if not distributed uniformly along protein chains can lead to the structure of the polypeptide 

being destroyed,”(Tzanov et al., 2003).  Excessive crosslinking with glutaraldehyde can also 

lead to loss of enzyme activity due to distortion of the three dimensional structure. Costa et al. 

(2001) studied the effect of increasing glutaraldehyde concentrations from 0.2 to 0.6% v/v on 

catalase activity at pH 7 at 30°C. The catalase activity decreased with increasing concentration 

of glutaraldehyde, due to the promotion of cross linking of protein chains with glutaraldehyde.  

Improvements in NHase activity and stability, in native cells, can lead to greater activity 

and stability after immobilization with glutaraldehyde. The cell envelope plays a role, in 
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enzyme activity and stability, as it controls the type of compounds that enter and leave the cell 

and impacts the survival of the cell during different environmental conditions such as extremes 

in temperature and pH. Rhodococcus possesses a unique cell envelope, features of this 

envelope are examined in the next section. 

  

The Rhodococcus cell envelope 

Taxonomically, members of the genus Rhodococcus are placed within the nocardioform 

actinomycetes (Goodfellow, 1989), and are members of the well characterized suprageneric 

mycolata taxon. Other members of the mycolata include Corynebacterium, Dietzia, Gordonia, 

Mycobacterium, Nocardia, Skermania and Tsukamurella (Goodfellow, 1992) all of which 

possess a cell envelope which is of importance in determinative systematics. Table 2 shows the 

major cell envelope components of taxonomic importance found among mycolata. 

 

Structural components and arrangement 

 Within the mycolata the cell envelope of the pathogenic Mycobacteria such as M. leprae, 

M. tuberculosis, M. avium and M. intracellulare has been studied extensively. The current 

model of the Rhodococcus cell envelope is based upon the mycobacterial cell envelope initially 

proposed by Minniken (1991) and subsequently revised by Sutcliffe (1997) in relation to 

Rhodococcus equi.  While Gram-positive, the mycolata share a characteristic of Gram-negative 

bacteria, in that they have an outer barrier which is distinct from the cell membrane. An outer 

permeability barrier is formed as a result of a mono-layer of mycolic acids binding to the cell 

wall. Evidence of this outer barrier is the existence of cell envelope proteins that possess pore 



 

 

8

forming ability (Trias et al., 1992). Freeze fracture analyses indicate that the mycolata have 

two planes of weakness in their cell envelope in addition to the plasma membrane  (Benedetti 

et al., 1984; Chami et al., 1995) indicating the presence of an outer membrane barrier. Erosion 

of the cell envelope of mycobacteria and the use of selective lipophilic probes have indicated 

the presence of lipid domains, providing further evidence of an outer membrane barrier 

(Ortalo-Magné et al., 1996; Christensen et al., 1999).  
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Table 2. Characteristics of the cell envelope of mycolataa 

Characteristics Corynebacterium Dietzia Gordonia Mycobacterium Nocardia Rhodococcus Skermania Tsukamurella

Peptidoglycan 
typeb 

A1y A1y A1y A1y A1y A1y A1y A1y 

Acyl group of 
muramic acidc 

N-acetylated N-
acetylated

N- 
glycolated

N- glycolated N- 
glycolated

N- 
glycolated 

N- 
glycolated 

N- glycolated

Fatty acid 
typesd 

S, U, Te S, U, T S, U, T S, U, Tf S, U, T S, U, T S, U, T S, U, T 

Mycolic acid 
(MA) Typesg 

Single spot Single 
spot 

Single 
spot 

Multiple spots Single 
spot 

Single spot Single 
spot 

Single spot 

Number of 
carbons in 
MAh 

22-38 34-38 46-66 60-90 48-60 30-54 58-64 64-78 

Number of 
double bonds 

0-2 ND 1-4 1-3 0-3 0-2 2-6 1-6 

Fatty acid 
esters released 
on pyrolysis 
(Number of 
carbons) 

8-18 ND 16-18 22-26 12-18 12-16 16-20 20-22 

Phospholipid 
Typei 

1 2 2 2 2 2 2 2 

a- data taken from Goodfellow et al. (1998), Chun et al ( 1999), Goodfellow and Magee ( 1997) and Yassin et al. (1997) 
b- A, cross-linkage between positions 3 and 4 of adjacent peptide subunits, 1, peptide bridge absent; y, meso-A2p… at position 3 of the tetrapeptide subunits ( 
Schleifer and Kandler, 1972) 
c- Acyl group detected using simple glycolate test (Uchida and Aida, 1979) 
d- S, Straight chain; U, monounsaturated; T, tuberculostearic acid 
e- Corynebacterium bovis contains tuberculostearic acid (Lechevalier et al., 1977) 
f- Mycobacterium gordonae only contains traces of tuberculostearic acid (Minniken et al., 1985) 
g- Number of mycolic acids produced from whole organism methanolysates ( Minniken et al. 1975, 1984 a, b; Yassin et al., 1997) 
h- In mycobacterial mycolic acids, double bonds may be converted to cyclopropane rings; methyl branches and other oxygen functions maybe present ( 
Dobson et al.,1985; Minniken et al.,1984 a, b) 
i- Phospholipid types: 1, phosphatidylglycerol (variable) and phosphatidylinositol; 2, phosphatidylethanolamine (Lechevalier et al., 1977) 
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The rhodococcal outer layer is made up of cell wall linked fatty acids called 

mycolic acids (Minniken, 1991). The plasma membrane is covalently linked to a 

mycolic acid, arabinogalactan (AG), peptidoglycan complex. AG is composed of 

polymers of arabinose and galactose. The galactose residues form a linear galactan 

polymer which has attached side branches of arabinan (polymer of arabinose). Some 

muramic acid residues in the peptidoglycan are cross-linked to the galactan polymer in 

the AG by phosphoryl-N-acetylglucosaminosyl-rhamnosyl linkage units. The arabinan 

chains are attached to some of the galactose residues linked to the peptidoglycan. The 

peptidoglycan-arabinogalactan structure forms the cell wall skeleton to which mycolic 

acids are attached (Crick et al., 2001).  

The Sutcliffe model (1997) is depicted in Fig.1. The figure shows the arrangement 

of the mycolic acids according to their physical and chemical properties. The model of 

the cell envelope shows the bound mycolic acids attached to arabinogalactan wall 

polysaccharide through a conserved linkage unit, in a perpendicular orientation. 

Sutcliffe (1997) suggested that free mycolic acids are intercalated with bound mycolic 

acids since the free mycolic acids have similar sizes as the bound mycolic acids.  
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Fig. 1. Cell envelope organization in Rhodococcus. (Sutcliffe, 1998). 

 

Mycolic acids – a major component of the Rhodococcus cell envelope 

Mycolic acids are α-alkyl, β–hydroxy chain fatty acids, that contain a species-

dependent saturated α- branch (short arm), consisting of 10-14 carbon atoms and a 

meromycolate chain (long arm) (Fig 2) that can have varying number of double bonds. 

Minniken and O’Donnell (1984) sµggested that the unsaturated bonds may be located 
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in the distal regions of the meromycolate chain. There are three structural classes of 

mycolic acids found in  Mycobacterium tuberculosis, α, methoxy and keto mycolic 

acids. Mycolic acids of the α-subclass are the most prevalent, they are cis cis 

dicyclopropyl fatty acids (Takayama et al., 2005).   

 

 

Fig. 2. Generalized structure of a mycolic acid.  
  

   
Pyrolytic cleavage (300°C) of a mycolic acid, releases an intact fatty acid -the α-

alkyl branch (short arm) and an aldehyde (the meroaldehyde) (See Fig. 3).  

 

 

Fig. 3.  Pyrolytic cleavage of mycolic acid (I), II) meromycolate main branch or long arm, III)   α-alkyl 
branch (short arm) (Asselineau and Laneélle, 1998). 
 

 

      There are some differences between the arabinans of Rhodococcus and 

Mycobacterium that affect the amount of mycolic acids which can be bound to the 

arabinogalactan skeleton. Besra et al. (1995) showed that Mycobacterium arabinan 

contained a terminal pentarabinosyl branched motif, mycolic acids are esterified to the 
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termini of arabinan branches. Mycobacterium would be able to accommodate four 

mycolic acids (Fig. 4).  

 

 

Fig. 4. A typical arabinogalactan molecule from M. tuberculosis. The galactan (black) is made up of Galf residues in 

alternating 1 5, 1 6 linkage. Arabinan (red and blue) is attached to the 5-position of some of the Galf residues, 

probably near the reducing end of the galactan. The arabinan is composed of Araf residues in 1 5 linkage with 
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some branching at the 2 and 3 positions. Mycolic acids are attached in clusters on all four of the available five 

positions (blue arrows) of approximately two-thirds of the terminal hexa-arabinoside motif (blue) by ester linkages. 

The linker region (purple) is covalently bound to the peptidoglycan via a phosphodiester to the 6-position of a 

muramate residue.  (Crick et al. 2001) 

 

             

      Daffe et al. (1993) showed that the arabinan of Rhodococcus equi possessed a 

branched triarabinosyl motif rather than the branched pentarabinosyl motif present in 

Mycobacterium. Evidence suggests that as a result of the differences in the number of 

branched arabinosyl terminal motifs, the cell envelope of Rhodococcus carries fewer 

mycolic acids. Hence the cell envelope of Rhodococcus is less dense than 

Mycobacterium. 

  Mycolic acids can either be bound or ‘free’. The free mycolic acids are linked to a 

trehalose (trehalose monomycolates or trehalose dimycolates). The size of the free are 

thought to be similar to bound mycolates (Tomiyasu and Yano, 1984). Free mycolic 

acids act as plugs in the outer layer of the cell envelope (Sutcliffe, 1998) forming an 

outer lipid bilayer. Winder et al. (1967) showed that mycobacteria treated with 

isoniazid accumulated free trehalose. (Isoniazid is an antibiotic that inhibits mycolic 

acids biosynthesis. Without mycolic acids trehalose would no longer be able to become 

incorporated in the outer layer of the cell envelope hence it’s accumulation in the cell).  
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Lipoglycans 

  The rhodococcal cell envelope also contains lipoglycans (LG). These are 

macroamphiphilic molecules composed of a polysaccharide attached to lipid, where the 

lipid anchors the molecule in the cell membrane (Sutcliffe, 1994). Lipoteichnoic acids 

are well studied LGs that are prevalent in Gram-positive bacteria. LGs of Rhodococcus 

have not been intensively researched hence their physiological role and precise function 

is unknown. Research conducted on LGs from Mycobacteria, lipoarabinomannans 

(LAMs) and lipomannans (LM) show that LAMs and LMs have a membrane anchor 

based on phosphatidylinositol.  The polysaccharide portion of LAMs contains two 

homopolysaccharides, D- mannan composed of mannopyranose residues and D-

arabinan composed of arabinofuranose residues (Nigou et al., 2003).  

The location of the LG in Mycobacteria and Rhodococcus is subject to debate.  

LG and lipoteichnoic acids of other Gram-positive bacteria are anchored to the plasma 

membrane. Daffe and Draper (1998) showed that LG in mycobacteria was retained in 

the plasma membrane. However, Brennan and Nikaido (1995) suggested that LG also 

could interact with the mycolic acid layer. Hence LG also might be localized in the 

outer bilayer. Despite the location of LG in the cell envelope, LAM-like molecules 

have been identified in Rhodococcus ruber (Besra, unpublished). Flaherty et al (1996) 

isolated LAM-like and LM-like macromolecules from Rhodococcus rhodnii and similar 

fractions have been found in R. equi (Garton et al., unpublished). 
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Cell envelope proteins 

  There are many proteins located in the rhodococcal cell envelope. Isolated 

envelopes from rhodococci have been shown to be composed of approximately 10% 

protein by weight (Dufrene et al., 1997).  The ‘pseudoperiplasm’ of the mycolata 

contains many different proteins that are thought to function in the synthesis and 

assembly of cell envelope components. Proteins may be intimately associated with the 

outer lipid layer; an example of such a protein in Rhodococcus is cholesterol oxidase 

(Sutcliffe, 1998). Atart et al. (1992) showed that cholesterol oxidase (CO) was localized 

at a distance up to 80 nm above the cell surface where the CO belonged to a surface 

layer that had a high carbohydrate content, such as the outer layer made up of 

arabinose, galactose and trehalose, CO also was located within the cell wall, in the 

cytoplasmic membrane and in the peripheral cytoplasm.  

Porins represent a separate class of rhodococcal envelope proteins in the outer 

layer to transport hydrophilic molecules through the outer layer (Trias et al., 1998).  

Lipoproteins are widely distributed in rhodococcal cell envelopes. R. equi 

incorporates palmitic acid, into at least seven different proteins (Sutcliffe and Prescott, 

unpublished). Other lipoproteins may be plasma membrane associated. More studies 

need to be conducted to define the role of these lipoproteins in the cell envelope. 
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Surface layer proteins 

Some members of the mycolata possess a surface layer (S-layer) that is common 

to many bacteria such as Bacillus stearothermophilus, Lactobacillus helveticus, 

Corynebacterium glutamicum (Sara and Sleytr, 1994; Lortal et al., 1992, Chami et al., 

1995). The S-layer is composed of a crystalline array of proteinaceous subunits. These 

ordered arrays are due to the presence of a surface secreted protein. S-layers are mostly 

composed of a single protein or glycoprotein, 40,000-200,000 Daltons. (Sára and 

Sleytr, 1994). 

  Freeze fracture electron microscopy of Corynebacterium glutamicum has revealed 

an S-layer composed of two major proteins PS1 and PS2 (Peyret et al., 1993). Puech et 

al. (2000) reported the presence of mycolyl transferase activity in the PS1 of C. 

glutamicum. Presently the only other member of the mycolata known to have an S- 

layer is Mycobacterium bovis BCG (Lounatmaa and Brander, 1989).  

 
 

Changes in cell envelope composition 
  

Barry and Mdluli (1996) showed that the regulation of the mycolic acid content in 

the rhodococcal cell envelope is similar to the regulation of fatty acids present in the 

plasma membrane. There are different subclasses of mycolic acids and changes made to 

the structure of mycolic acids can affect the permeability of the cell wall, which can 

have a profound impact on the organism’s susceptibility to antibiotics and other 

chemotherapeutic agents (Brennan and Nikaido, 1995).  
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Takayama et al. (2005) commented that the strength of the cell wall of M. 

tuberculosis was related to cyclopropane rings. These rings offered protection from 

oxidative stress. Another class of mycolic acids, keto-mycolates was examined in M. 

tuberculosis. Deletion of keto-mycolates affected the survival of M. tuberculosis in 

macrophages.  Mycolic acids can contribute to the virulence of Mycobacterium.  

Mycolic acid composition and concentration can be affected by changes in growth 

phase, culture conditions and growth media. Startton et al. (2003) examined the effects 

of growth phase on mycolic acid composition and showed that the proportion of 

saturated mycolic acids and the length of carbon chains changed with the age of the 

culture.  

Increase in growth temperature also leads to changes in mycolic acids. There was 

an increase in the saturation of mycolic acids in a Rhodococcus strain (previously 

known as Nocardia rubra), and increased mean chain length in mycolic acid in M. 

phlei (Tomiyasu et al, 1981; Toriyama et al, 1980). Kremer et al. (2002) showed that 

growth of M. thermoresistable at 55ºC led to down regulation of KasA (an enzyme 

within FAS-11 system used in mycolic acid production). The decrease in the expression 

of KasA correlated with decreased production of mycolic acids in M. thermoresistable. 

Growth at 55ºC resulted in increased levels of unsaturated α-mycolates and 

methoxymycolates.  

Wick et al. (2002) showed that mycolic acid profiles were altered by changing the 

growth substrate. Sokolovska et al. (2003) also reported that the carbon source influenced 

mycolic acid composition and cell wall permeability. Growth on hydrophobic substrates 
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(e.g. alkanes and polycyclic aromatic hydrocarbons) led to a shift in more hydrophobic 

mycolic acids. Startton et al. (2003) observed significant differences between cells of 

Rhodococcus sp strain 11R grown on glucose or Tween® 80 using the technique 

selective ion monitoring (SIM) GC-MS. Cells grown on Tween® 80 exhibited less 

diversity in their mycolic acid composition, they also had carbon lengths of C32-C42 while 

glucose grown cells had C32-C44. Tween® 80 grown cells had mostly monounsaturated 

mycolic acids while glucose grown cells had saturated and monounsaturated mycolic 

acids.  

Hashimoto et al (2006) investigated the effect of glutamate overproduction on 

mycolic acid composition on Corynebacterium glutamicum. Glutamate overproduction 

is induced by biotin limitation and by treatment with detergents or antibiotics. The 

results showed that glutamate overproduction led to a decreased mycolic acid 

production with shorter mycolic acids being produced. Korenelli et al. (1990) showed 

an increase in the glycolipid trehalose dimycolate after Rhodococcus maris was grown 

on hydrophobic substrates as opposed to ethanol substrates. 

 

Trehalose and its role in protein stabilization 

Trehalose is a non-reducing disaccharide of D-glucose that is found in many 

plants, insects, and microorganisms. Trehalose, in solution has been shown to preserve 

the activity of proteins under stressful conditions such as dehydration, and heat (Colaco 

et al., 1992; Sola-Penna et al., 1997; Sun and Davidson, 1998; Xie and Timasheff, 
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1997). Sola-Penna et al. (1997) showed that trehalose was a superior sugar to sucrose, 

glucose and fructose in protecting enzymes.   Xie and Timasheff (1997) showed that 

trehalose, in solution, stabilized the protein ribonuclease A during exposure to high 

temperatures. Kaushik and Bhat (2003) by analyzing the thermal stability of five 

different proteins ribonuclease A, lysozyme, and cytochrome C in the presence of 

trehalose concluded that trehalose is an exceptional protein stabilizer. Trehalose was 

predicted to function as a universal protein stabilizer as it was able to stabilize a wide 

range of proteins used in the study. 

There are different opinions on how sugars offer protection to proteins. One such 

opinion is preferential hydration. This refers to the accumulation of water near the 

protein (Arakawa, 2002). Polar groups on the surface of proteins are bound to water 

molecules hence proteins are hydrated in aqueous solution. If this hydration is 

maintained in the presence of a sugar (cosolute), a difference in the concentration of the 

sugar develops between the bulk solution and the vicinity of the protein, resulting in 

preferential hydration where excess water accumulates near the protein. This is which 

leads to cosolute-induced stabilization (Arakawa, 2002). Timasheff (1992, 1993) 

explained protein stabilization due to sugars differently. It was shown that when sugar 

levels increase in bulk water with protein there is competition for available water, this 

competition leads to less water surrounding the protein. The solvation layer around the 

protein becomes reduced.  The protein becomes more compact and stabilized, being 

less susceptible to heat and dehydration. Whatever the mechanism involved, trehalose 

provides exceptional stability to a variety of proteins therefore there is a great demand 
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for this sugar. It is currently being mass produced from starch (Chaen, 1997) and is 

being used extensively in the cosmetic, pharmaceutical, medicinal and food industries. 

  Trehalose can be synthesized from glucose, maltodextrins (polymers of glucose) 

or maltose.These three routes for trehalose synthesis is present in Corynebacterium 

glutamicum and are shown in Fig.5.  

 

 

Fig. 5. The three routes for trehalose synthesis in C. glutamicum and M. tuberculosis (Padilla et al., 
2004). 
 
 

 Tzvetkov et al. (2003) analyzed the Corynebacterium  genome and located genes 

involved in all three pathways for trehalose synthesis (Fig 6). The genes otsA, otsb, 

treY, treZ and treS were knocked out, the cell wall lipid bilayer was affected due to the 

lack of trehalose production. 
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Fig. 5b. Organization of the trehalose (a, b, c) and glycogen (d) biosynthesis genes on the C. glutamicum 
chromosome. The genes directly involved in biosynthesis of trehalose [otsA/otsB (a), treY/treZ (b) and treS (c)] and 
of glycogen [glgA/glgC (d)] are drawn in black (Tzvetkov et al., 2003). 
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Determination of cell wall permeability 

  The lipid rich envelope of mycobacteria and other organisms of the mycolata act 

as a significant barrier. Hydrophilic chemicals and nutrients cannot easily diffuse across 

the hydrophobic layer and enter the cell through porins. Permeability of the membrane 

can be influenced by mycolic acid (composition and concentration) and other lipids 

present in the membrane. Cell wall permeability can be assessed by antibiotic 

susceptibility. Differences in susceptibilities to an antibiotic may be correlated to 

changes in the permeability of the cell envelope (Brennan and Nikaido, 1995).  

 

Rationale 

 NHase from Rhodococcus sp DAP 96253 has tremendous potential in 

becoming one of the most important industrial enzymes. However before the 

implementation of NHase in industrial processes the enzyme must demonstrate stability 

for prolonged periods of time with high activity. Previous work showed that NHase 

from Rhodococcus sp DAP 96253 can be stabilized when immobilized with 

glutaraldehyde. However a significant loss of activity occurs during the preparation of 

the glutaraldehyde catalyst. This problem can be addressed by using native cells with 

increased NHase activity and stability. This can lead to a more efficient catalyst which 

is of tremendous economic value during large scale operation.  

 Cell envelope components such as mycolic acids and glycolipids can influence 

the entry of many chemicals such as substrates and immobilizing agents into the cell. 
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Trehalose, a component of the cell wall, plays a role in the stability of proteins and 

might have an effect on NHase. This research was based on the following hypotheses: 

1) NHase activity in native cells can be increased through changes in growth 

 media composition. 

2) Growth media composition influences NHase stability as it affects 

 trehalose levels inside the cell. 

3) Changes in growth media composition (such as supplementation of different 

 sugars and inducers for NHase) elicits changes in the cell envelope of 

 Rhodococcus sp DAP 96253. 
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Materials and Methods 

Microbiological 

 Four media listed below were evaluated for their effect on the NHase activity of 

four rhodococcal species.  

1) Czapek-Dox medium- D-glucose (20g, MP Biochemicals, Aurora, OH), NaNO3 

(2g, Sigma-Aldrich, St Louis, MO), KH2 PO4 (1g, Sigma-Aldrich, St Louis, MO), KCl 

(1g, Sigma-Aldrich, St. Louis, MO), MgSO4.7H2O (0.5g, Fisher Scientific, Fairlawn, 

NJ), FeSO4.7H2O (0.01g, J.T. Baker Chemical Co, Phillipsburg, NJ) in 1 liter and made 

to a final pH of 4.5.  

2)  Glucose Malt Extract (GME)- D-glucose (40g), malt extract (20g, Becton 

Dickinson, Sparks, MD), NaNO3 (2g, Sigma, St. Louis, MO), KCl (1g, Sigma, St. 

Louis, MO), KH2 PO4 (1g, Sigma, St. Louis, MO), MgSO4.7H2O (1g, J.T. Baker 

Chemical Co, Phillipsburg, NJ), FeSO4.7H2O (0.02g, Fisher Scientific, Fairlawn, NJ,) 

in 1 liter.  

3) Yeast Extract Malt Extract (YEMEA) uninduced (UI)- 4g yeast extract 

(Becton Dickinson, Sparks, MD), 10g malt extract, 4g glucose in 1L.  

4) YEMEA induced (I)- 4g yeast extract, 10g malt extract, 4g glucose, cobalt 

(CoCl2.6H2O, 0.201g/l, J.T. Baker Chemical Co, Phillipsburg, NJ,) and urea (7.5g/l, 

Sigma, St Louis, MO) in 1L.. 

Plates were made by adding 20g agar (Difco laboratories, Sparks, MD).  
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The organisms screened were Rhodococcus sp DAP 96253, Rhodococcus sp. 21090, 

Rhodococcus erythropolis 4177, Rhodococcus rhodochrous 33278, Rhodococcus 

erythropolis 47072. All the organisms with exception of the DAP species were obtained 

from ATCC. 

 YEMEA and Rhodococcus sp DAP 96253 were chosen as the desired media and 

organism for this research. Glycerol stocks (1ml) of Rhodococcus sp DAP 96253 were 

revived by adding the 1ml to 50ml Nutrient Broth (Difco, Sparks MD).This was grown 

for 3 days at 30°C. Nutrient agar (Difco, Sparks MD) plates were streaked with the 

revived organism and grown for 3 days at 30°C.  These plates were used to inoculate 

YEMEA plates. YEMEA plates were incubated at 30ºC for about 7days. To investigate 

the effect of different sugars on NHase activity fructose, maltose and maltodextrin (all 

obtained from Sigma, St. Louis, MO) were substituted for glucose in YEMEA media.  
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Table 3. Media a 

Medium Components (g/L)  

 G ME YE NaNO3 KH2PO4 KCl MgSO4. 

7H2O 

FeSO4.7H2O CoCl2.6H2O Urea 

CDc 20 - - 2 1 1 0.5 0.01 - - 

GMEd 40 20 - 2 1 1 1 0.02 - - 

YEMEAe  

-NI 

4 b 10 4 - - - - - - - 

YEMEAe 

-I 

4b 10 4 - - - - - 0.201 7.5 

CD- Czapek Dox 
GME- Glucose malt extract 
YEMEA-NI- YEMEA non-induced 
YEMEA-I- YEMEA induced 
G- glucose 
ME- Malt extract 
YE- yeast extract 
a- 20 g of agar was added to all types of media 
b- modified YEMEA media- glucose was replaced with the same amount of fructose, maltose or  
maltodextrin. 
c- Ramachandran and Gottlieb (1963) 
d- Pickard (1981) 
e- Dietz and Thayer (1980) 
 
 

Mycobacteria intracellulare ATCC 13950, the control culture for mycolic acid 

patterns was grown on both Middlebrook agar plates (Difco, Sparks, MD) and 

Lowenstein Jenson slants (BBL, Sparks, MD) for a week at 37ºC as specified by CDC, 

Standardized method for HPLC identification of Mycobacteria and Butler et al., (1986). 

Candida albicans was used as the negative mycolic acid control, and was also grown 

on Middlebrook agar plates and Lowenstein Jenson slants for a week at 37ºC. 
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Enzyme Assays 

 NHase was quantified and substrate specificity examined using 1000ppm (v/v) 

standard solutions of acrylonitrile, propionitrile, butyronitrile and crotononitrile 

(Aldrich Chemical Company, Milwaukee,WI); individual standard solutions (9 ml) 

were pipetted into 15 ml centrifuge tubes. A YEMEA plate was scraped to obtain 40 

mg of cells (wet wt.), which was suspended into 1 ml of 50mM phosphate buffer (pH 

7.2) in an eppendorf tube and combined with 9 ml reaction solution. This suspension 

was mixed by hand for 2 min then the reaction stopped by reducing the pH by the 

addition of  200 µl of 2N sulfuric acid (Fisher Chemical, Fairlawn, NJ), this was mixed 

for 1 min, then 50 µl of 8N sodium hydroxide (Fisher Scientific, Fairlawn, NJ) was 

added to neutralize the acid. Duplicate 1ml samples were placed in separate 1.5 ml 

Eppendorf tubes and centrifuged (Beckman Microphage Lite, Palo Alto, CA) for 2 min 

at 13,000 rpm. The supernatant was pipetted into clean eppendorf tubes. 

  To ensure complete amide conversion to acid and ammonia, commercial amidase 

(1000 units/ 440 µl, stored at -20ºC) (Sigma-Aldrich Co., St. Louis, MO) was added. A 

working amidase solution was prepared by making a 1:50 dilution of the original 

amidase solution, 10 µl of this working solution was added to each sample for the 

amide conversion to acid and ammonia, followed by vortexing for 30 sec. These tubes 

were incubated at 37ºC for 30 min. 

Ammonia was determined by modification of the method by Fawcett and Scott 

(1960). The converted amide solution was transferred to 15 ml glass test tubes to which 
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2 ml of sodium phenate  was added followed by the addition of 3 ml 0.1% aqueous 

sodium nitroprusside (Sigma- Aldrich,  St. Louis, MO) and 3 ml 0.02N sodium 

hypochlorite (Clorox, 6.15%), this resulting solution was mixed by vortexing lightly. 

Color development was achieved by incubation of the tubes in the dark at 27ºC for 30 

min. After color development the tubes were vortexed again and the OD read at 630 nm 

for 10 sec using a microplate reader (Wallac Victor 1420 multilabel counter, Perkin 

Elmer Life Sciences, Shelton, CT). Each sample was read in triplicate and the data 

averaged. (See Appendix for reagent formulations). 

 

Stability Tests 

 Cells (50 mg, wet wt) were placed in 1 ml 50mM phosphate buffer and allowed to 

equilibrate at 10ºC, 20ºC, 37ºC and 55ºC for 1hr. An initial NHase activity was 

determined as described above by reacting the cells with 1000 ppm AN at room 

temperature. The stability of NHase was assessed by measuring activity at 20 hrs and 

45 hrs. 

  

Mycolic acid extraction 

Two loopfuls of Rhodococcus sp DAP 96253 were scraped from YEMEA plates 

and 2 ml of saponification reagent added. The tubes were covered, mixed vigorously 

for 30 sec, the tops wrapped in foil, and then autoclaved for 80 min at 121 psi. Upon 

cooling, 1.5 ml of acidification reagent as added,  to each tube and the tubes content 

mixed for 30 secs by shaking at room temperature after which the acidified mixture was 
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extracted 2 times with 1 ml of dichloromethane (DCM) (Sigma-Aldrich, St. Louis, 

MO). The pooled DCM extracts were dried under nitrogen in a standard heating block 

(VWR Scientific, Batavia, IL) at 85°C for 15 mins. After drying, 100 µl of potassium 

bicarbonate reagent was added to the dried extracts and the extracts redried under 

nitrogen in the heating blocking at 85˚C. After redrying, 1ml of DCM and 50 µl of p-

bromophenacyl-8 reagent (p-bromphenacyl bromide (0.1mmmol/ml) and dicyclohexyl-

18-crown-6 ether (0.005 mmol/ml) in acetonitrile (Pierce Chemical Company, 

Rockford, IL) were added to the samples. The samples were vortexed for 30 secs then 

placed in the heating block at 85˚C for 25 min. The tubes were cooled and 1 ml of 

clarification reagent (see appendix) added followed by vortexing for 20 sec. The 

organic layer was removed with a glass Pasteur pipette and transferred to a clean test 

tube then evaporated to dryness using the heating block at 85˚C under nitrogen for 10 

min. The samples were capped tightly and stored at 4ºC in the dark [CDC, Standardized 

method for HPLC identification of Mycobacteria; Butler et al., (1986); Durst et al., 

(1975)].  

For HPLC analysis samples were re-solubilized in 500 µl of a solution containing 

5 mg of a high molecular weight standard, C110 (Corixa Corporation, Hamilton, MT) 

in 100 ml DCM. Analysis was performed using a Series 200 HPLC instrument (Perkin 

Elmer, Shelton, CT) equipped with a UV detector. A Novapak® RP C18 column 

(Waters, Milford, MA) 3.9 mm by 300 mm, 4 um, 60A was used. The mobile phase 

used was methanol and dichloromethane, in a linear gradient of dichloromethane and 
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methanol from 0-13 min, 0-10%; from 13-17 min, 10-25%; from 17-34 min, 25-75%; 

from 34-41min, 30-70%; from 41-45 min, 100-0%. The flow rate was 1ml/min and the 

detector was set at 254nm (Sokolovska et al., 2003). (See Appendix for reagent 

formulations). 

 

Extraction of total lipids 

  Cells for lipid extraction were scraped from YEMEA plates then weighed. 

Approximately 50 mg of cells were suspended in 5 ml solution of 

chloroform:methanol::2:1in a 20 ml glass vial.  The suspension was incubated for 1 hr 

at room temperature on automatic shaker (B. Braun, Allentown, PA) set at 120 rpm. 

Residual bacteria were removed by centrifugation (IEC HN SII Centrifuge Needham 

Heights, MA, swinging bucket 158 rotor) at 3000 rpm for 15 mins. This was repeated 2 

more times using chloroform:methanol::1:2 followed by chloroform: methanol::1:1. 

The second and third extracts were pooled with the first extract in a 20ml glass vial.  

The three pooled extracts were dried using a standard heating block (VWR 

Scientific, Batavia, IL) under nitrogen at 65°C then resuspended in 100µl of 

chloroform. Multiple small aliquots (20 µl) were spotted on a TLC plate (Merck, silica 

gel 60, 10-20cm, 0.25mm thickness) until a total of 100 µl of each sample was spotted. 

Trehalose dimycolate (Sigma-Aldrich, St. Louis, MO) standard (30 µl total) was also 

spotted on the plate with the samples 
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The plates were developed in 90:10:6:1 (chloroform, methanol, acetone and acetic 

acid). Glycolipids spots were visualized by spraying with a 15% ethanolic solution of 

1-napthol (Aldrich, Milwaukee, WI) followed by heating at 100ºC for 3-6 min.  

 

Extraction of cell envelope proteins 

Two loopfuls of Rhodococcus sp DAP 96253 was scraped from YEMEA plates 

and added to 5 ml of 50mM phosphate buffer (pH 7.2) and mixed thoroughly by 

vortexing for 30 sec. A 1.5 ml of this suspension was transferred to a microcentrifuge 

tube (Eppendorf, 1.5 ml), and centrifuged at 13,000 rpm for 15 min at room 

temperature using a Beckman Microfuge Lite Centrifuge (Palo Alto, CA) equipped 

with a F1802B rotor. The supernatant was discarded, and 300 µl of 2% SDS (GE 

Healthcare Biosciences, Uppsala, Sweden) in 50 mM Tris-HCL (pH 6.8) (Sigma-

Aldrich, St Louis, MA) was added to the pellet, followed by vortexing and incubation 

at room temperature for 5 min.  

Other methods of incubation were investigated as follows: using a standard 

heating block (VWR Scientific, Batavia, IL) at 100ºC for 2 and 5 mins or a water bath 

(100ºC) for 2 and 5 mins. Following the incubation, the extracts, were centrifuged at 

room temperature using a Beckman Microfuge Lite (Palo Alto, CA) equipped with a 

F1802B rotor for 3 min at 11,400 rpm (Puech et al., 2001). The supernatant was 

removed and analyzed by 1-D gel electrophoresis. Electrophoresis was carried out 

using SE 600 Ruby (Ambersham Sciences, Piscataway, NJ) at 12.5 mA at 10°C. 
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Protein bands on a 150 mm x 145 mm gel were visualized using a silver stain according 

to the method of Switzer et al., (1979). Gels for MADI-TOF/TOF analysis were stained 

with Coomassie blue (Phastgel TM Blue R, Ambersham Biosciences, Piscataway, NJ) 

then subjected to protein digestion with trypsin ( Sigma-Aldrich, St Louis, MO) 

followed by Zip Tipping (uC18 ) onto a MALDI TOF/TOF plate. (See Appendix for 

gel preparation, staining procedures, protein digestion and Zip Tipping). 

 

Analysis of cellular trehalose  

Method 1 

 Cells [50 mg (wet wt.)] were scraped from YEMEA plates into 15ml test tubes 

containing 5 ml DI water (on ice for 15 min), followed by vortexing and centrifugation 

at 4°C (IEC HN SII Centrifuge, Needham Heights, MA, swinging bucket 158 rotor) at 

3000 rpm; The supernatant was discarded and 200 µl of 500mM trichloroacetic acid 

(TCA) (Sigma, St. Louis, MO) was added to the pellet and incubated for 1 hr at room 

temperature with moderate shaking using an automatic shaker (B. Braun, Allentown, 

PA).  A second extraction was performed as mentioned above (Lillie and Pringle, 

1980).  The extracts were pooled and analyzed for their trehalose content by the 

anthrone reaction by a modification of the method by Spiro (1966). In preparation for 

the anthrone reaction, the extracts were diluted (1:10) in glass screw cap test tubes and 

mixed by vortexing; 5 ml of anthrone reagent (See appendix) was added. A water bath 

was heated to 100˚C and test tubes added to the previously heated water bath at 100˚C, 
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the tubes were incubated for 3 min, cooled and 1ml dispensed in cuvettes to read the 

absorbance at 625nm using a Turner SP 830 spectrophotometer (Barnstead, Dubuque, 

IO). Prior to this a glucose (10µg-100µg/ml glucose in DI water) standard curve was 

prepared. 

 

Method 2 

Cellular trehalose was analyzed by adding 100 mg of cells (wet wt.) to 15 ml 10% 

aqueous TCA and incubating the suspension at room temperature on an automatic 

shaker (B. Braun, Allentown, PA) set at 120 rpm for 24 hrs. The cells were removed by 

centrifugation (IEC HN SII Centrifuge, Needham Heights, MA, swinging bucket 158 

rotor)) and the supernatant extracted with 30 ml of diethyl ether. The aqueous layer was 

dried under nitrogen at 65-70˚C using a standard heating block (VWR Scientific, 

Batavia, IL) followed by the addition of 1ml of Tri- Sil A® reagent (Pierce, Rockford, 

IL) (Tri Sil A® reagent contains hexamethyldisiloxane (HMDS), trimethylchlorosilane 

(TMCS) and pure pyridine in a 3:1:9 ratio) followed by vortexing for 30 sec and drying 

under nitrogen using standard heating block at 65-70˚C. Tri Sil A (70 µl) was added to 

the dried sample, and transferred to a glass vial, a 5 ul aliquot was analyzed by splitless 

injection using a Perkin Elmer Autosystem XL Gas Chromatograph (Perkin Elmer, 

Shelton, CT) equipped with an FID detector and an OV1701 capillary column (Ohio 

Valley, Marietta, OH; 14% cyanopropylphenyl methypolysiloxane, 30m x 0.25mm ID, 

0.25um). Helium was used as a carrier gas, the inlet and detector temperatures were 
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300˚C. The temperature program employed was a 100˚C for 2 min, followed by a 

gradient of 17.5°/min for 10 min, and a final hold at 275°C for 7 min based upon the 

methods outlined by Elbein and Mitchell (1973) and Caprioli et al. (2004). 

 

Analysis of bound trehalose 

  Cells (100 mg, wet wt) were scrapped from the plates and extracted overnight 

with 15 ml of chloroform-methanol (2:1).The precipitate was removed by filtration 

using glass wool and washed with chloroform:methanol:: 2:1.The filtrate and wash 

were combined and evaporated to dryness using a standard heating block (VWR 

Scientific, Batavia, IL) at 65°C. The residue was suspended in 5 ml methanol and 

treated with 5 ml 1N sodium methoxide for 4 hrs at 37˚C, DI water (5 ml) was added to 

destroy the sodium methoxide and the solution neutralized with 5 ml of 1N acetic acid. 

The solution was concentrated to dryness under nitrogen using a standard heating block 

at 65°C and the dried residue resuspended in 1ml water. The resuspended residue was 

extracted with 1 ml chloroform to remove lipids. The aqueous layer was dried under 

nitrogen at 65˚C using a standard heating block (VWR Scientific, Batavia, IL)   and the 

trehalose content analyzed by anthrone reaction  and by gas chromatography as 

outlined above.  
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Determining the permeability of the cell envelope by measuring susceptibility of 
Rhodococcus sp DAP 96253 to antibiotics 
 

The susceptibility of Rhodococcus sp DAP 96253 to Erythromycin and Rifampin 

was determined as an indicator for permeability of the cell envelope (Brennan and 

Nikaido, 1995). Susceptibility was determined by Etest®, this is a technique that 

directly quantifies antimicrobial susceptibility in discrete minimum inhibitory 

concentrations (MIC) values. Etest® was performed using Etest® strips (AB Biodisk, 

Piscataway, NJ) that consisted of an inert plastic strip with a MIC scale (µg/ml) on one 

side and an immobilized exponential gradient of antibiotic on the other side. The 

gradient covers a continuous concentration range across 15 two fold dilutions of a 

conventional MIC method. The Etest®strip was applied to the inoculated agar surface. 

After one week bacterial growth became visible and a symmetrical inhibition ellipse 

centered along the strip was observed. The MIC value was read from the scale where 

the ellipse edge intersected the strip.  

Rhodococcus sp DAP 96253 was grown on nutrient agar plates for 3 days,  the 

cells were scrapped and suspended into 5ml 50mM PBS. YEMEA (un-induced and 

induced with different sugars) spread plates were prepared and dried. The Etest® strips 

were added to the plates and incubated at 30˚C for a week. Antibiotic discs (Sensi-Disc, 

Becton Dickinson and Company, Sparks, MD) of Vancomycin (30 µg), Ampicillin (10 

µg) and Tetracycline (30 µg) were added to inoculated YEMEA plates, the plates were 

incubated at 30˚C for a week and the zone of inhibition measured.  
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Electron Microscopy 

 Rhodococcus sp DAP 96253 was scraped from plates and placed between thin 

copper holders and quenched in liquid propane. The frozen samples were fractured at -

125°C in a vacuum by removing the upper plate with a liquid nitrogen- cooled knife in 

a RMC-RFD 9010 (Baltech Institute, Tuscon, AZ). The fractured samples were etched 

at -100°C for 2mins at 1.3x 10-5 Pa and then a replica made with platinum-carbon 

backed with 20nm carbon. The replica was cleaned in sodium hypochlorite for 2hrs 

then washed with distilled water ( Puech et al., 2001) and observed with Leo 906e 

Transmission Electron Microscope (Carl Zeis SMT, Peabody, MA). 
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Results 

Propagation and induction of enzymes on different media 

Several solid media were used to cultivate selected species of Rhodococcus to 

evaluate the effect on NHase activity, to the substrate acrylonitrile (AN). The media 

evaluated included Czapek-Dox (pH 4.5), glucose malt extract agar (GME), and yeast 

extract malt extract agar (YEMEA) without cobalt and urea and with cobalt and urea 

inducers of NHase. The different species evaluated were Rhodococcus sp DAP 96253, 

Rhodococcus sp. 21090, Rhodococcus erythropolis 4277, Rhodococcus rhodochrous 

33278, Rhodococcus erythropolis 47072. Table 4 shows that three of the organisms did 

not grow on Czapek –Dox media. Rhodococcus sp DAP 96253 had the highest NHase 

activity on uninduced YEMEA supplemented with glucose (40 units/mg cdw) and 

induced YEMEA supplemented with glucose (104 units/mg cdw). NHase activity for 

Rhodococcus sp DAP 96253 was low (11 units/mg cdw) both on Czapek-Dox and 

GME. Rhodococcus erythropolis 4277 showed the second highest NHase activity of 34 

units/mg cdw on induced YEMEA. Growth on YEMEA media led to the highest 

NHase production with Rhodococcus sp DAP 96253, but growth on the other types of 

media did not produce such dramatic effects. Based upon this initial screening 

Rhodococcus sp DAP 96253 was the best candidate for NHase production among the 

species examined and that solid YEMEA was the best media to cultivate the organism, 

and Rhodococcus sp DAP 96253 was selected as the benchmark microorganism for this 

dissertation. 
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Table 4- NHase activities (units/mg cdw) of different rhodococcal species grown on 
different types of media. 
Organism NHase activity (unit/mg cdw) on different media 
 Czapek 

Dox 
GME YEMEA 

(NI) 
YEMEA 
(I) 

Rhodococcus sp DAP 
96253 

11 11 40 104 

R. rhodochrous 33278 no growth 14 8 28 
R. erythropolis 47072 no growth 10 16 29 
R. erythropolis 4277 7 8 12 34 
Rhodococcus sp. 21090 no growth 13 9 15 

NI-non induced, I – induced, unit- 1uM of acrylonitrile converted to 1 uM acrylamide in 1min, pH 7.2 at 
30˚C. Non induced YEMEA was supplemented with glucose (4g/L) and induced YEMEA was 
supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L). 
 

Effect media composition on NHase activity and substrate specificity 

Rhodococcus sp DAP 96253 was grown on solid YEMEA supplemented with 

different carbohydrates (glucose, fructose, maltose, maltodextrin) with and without 

inducers [cobalt (50mg/L) and urea (7.5g/L] and the NHase activity against selected 

nitriles was determined (Table 5, 6). Substrates used were acrylonitrile (AN), 

propionitrile (PN), butyronitrile (BN), and crotonitrile (CrN). 

NHase activities to BN and CrN were significantly lower than the NHase activity 

to AN and PN, with glucose grown cells having the lowest activity to BN and CrN. Un-

induced cells that were grown in the presence of maltodextrin had the highest NHase 

activity (against AN and PN ) (Table 5). Induced cells grown on maltose and 

maltodextrin had the highest NHase activity to PN out of all the substrates examined 

(Table 6). Supplementation of maltodextrin in the YEMEA produced cells that had the 

highest NHase activity to all the substrates except for CrN. Supplementation of 

maltose, produced cells with the second highest NHase activity to AN, PN and BN.                     
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Glucose supplementation produced cells with the lowest NHase activity to AN, PN and 

BN. The supplementation of various sugars in YEMEA does have an impact on NHase 

activity. Table 7 and 8 provides the statistical evaluation of the data using AN and PN 

as substrates. P-values higher than 0.05 were not statistically significant. NHase 

activities of un-induced cells grown on YEMEA supplemented with fructose or 

maltodextrin produced cells whose NHase activities were statistically different from the 

NHase activity of glucose grown cells. Cells induced and supplemented with fructose, 

maltose or maltodextrin, all had NHase activities that were shown to be statistically 

different from the NHase activity of cells grown on inducing media supplemented with 

glucose (p-values 0.001, 0.018, 0.012 for fructose, maltose and maltodextrin induced 

cells respectively, Table 7). Glucose, maltose and maltodextrin induced cells had 

NHase activities that were statistically different from the NHase activity of cells grown 

on inducing YEMEA supplemented with fructose. NHase activities of cells grown on 

YEMEA with cobalt and urea, supplemented with maltodextrin were also statistically 

different from cells grown on YEMEA supplemented with maltose, cobalt and urea. 

Similar trends were observed when the preferred substrate PN was used, with exception 

of induced fructose grown cells whose NHase activity was statistically insignificant 

compared to induced glucose grown cells (Table 8). These results showed that 

supplementation of different carbohydrates can affect the substrate specificity of NHase 

and lead to statistically significant differences in activity. 
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Table 5. NHase activity (units/mg cdw) against selected nitriles for Rhodococcus sp DAP 
96253 grown on YEMEA without inducers and with supplementation of different sugars 

Substrate Glucose  Fructose  Maltose  Maltodextrin 

AN 32 54 60 65 

PN 27 58 69 75 

BN 4 7 12 10 

CrN 3 7 11 12 

YEMEA was supplemented with different sugars such as glucose, fructose, maltose and maltodextrin at 
4g/L 
unit- 1µM of acrylonitrile converted to 1µM acrylamide in 1min, pH 7.2 at 30˚C 
AN- Acrylonitrile, PN-Propionitrile, BN-Butyronitrile, CrN- Crotononitrile. 

 

 
 
 

Table 6. NHase activity (units/mg cdw) against selected nitriles for Rhodococcus sp DAP 
96253 grown on YEMEA with inducers and supplementation of different sugars 

Substrate Glucose Fructose  Maltose  Maltodextrin 

AN 100 120 133 150 

PN 125 128 197 202 

BN 18 21 35 41 

CrN 13 9 12 9 

unit- 1µM of acrylonitrile converted to 1µM of  acrylamide in 1min, pH 7.2 at 30˚C 
YEMEA was supplemented with different sugars such as glucose, fructose, maltose, maltodextrin at 4g/L 
and inducers cobalt (50mg/L) and urea (7.5g/L) 
AN-Acrylonitrile, PN-Propionitrile, BN-Butyronitrile, CrN- Crotononitrile 
 
 
 
 
 
 

 



 

 

42

Table 7. Statistical evaluation of NHase activities (units/mg cdw) of Rhodococcus sp 
DAP 96253 grown on YEMEA supplemented with different sugars and inducers against 
acrylonitrile. 

Media Statistical  Evaluation 

 P value Stan. Dev. 

F (NI) a 0.04 11.27 

M(NI) a 0.07 11.31 

MD(NI) a 0.024 14.43 

F, Co, U (I) b 0.001 11.01 

M, Co, U (I) b 0.018 23.87 

MD, Co, U(I) b  0.012 33.55 

M, Co, U (I) c 0.024 13.60 

MD, Co, U(I) c 0.010 23.11 

MD, Co, U(I) d 0.002 12.91 

F- YEMEA supplemented with fructose (4g/L) 
M- YEMEA supplemented with maltose (4g/L) 
MD- YEMEA supplemented with maltodextrin (4g/L) 
G, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
F, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
M, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
MD, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
NI- non induced 
I- induced 
a- NHase activities compared with NHase activity of Rhodococcus sp DAP 96253 grown on 
YEMEA supplemented with glucose (4g/L) 
b- NHase activities compared with NHase activity of Rhodococcus sp DAP 96253 grown on 
YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L). 
c- NHase activities compared with NHase activity of Rhodococcus sp DAP 96253 grown on 
YEMEA supplemented with fructose (4g/L), cobalt (50mg/L) and urea (7.5g/L). 
d- NHase activities compared with NHase activity of Rhodococcus sp DAP 96253 grown on 
YEMEA supplemented with maltose (4g/L), cobalt (50mg/L) and urea (7.5g/L). 
unit- 1µM of acrylonitrile converted to 1µM acrylamide in 1min, pH 7.2 at 30˚C 
Stan. Dev. - Standard Deviation 
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Table 8. Statistical evaluation of NHase activities (units/mg cdw) of Rhodococcus sp 
DAP 96253 grown on YEMEA supplemented with different sugars and inducers against 
propionitrile. 

Media Statistical  Evaluation 

 P value Stan. Dev. 

F, Co, U (I) a 0.07 11.82 

M, Co, U (I) a 0.007 38.24 

MD, Co, U(I) a  0.004 43.83 

M, Co, U (I) b 0.010 31.04 

MD, Co, U(I) b 0.003 36.49 

MD, Co, U(I) c 0.030 9.70 

G, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
F, Co, U- YEMEA  supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
M, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
MD, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
I- induced 
a- NHase activities compared with NHase activity of Rhodococcus sp DAP 96253 grown on 
YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L). 
b- NHase activities compared with NHase activity of Rhodococcus sp DAP 96253 grown on 
YEMEA supplemented with fructose (4g/L), cobalt (50mg/L) and urea (7.5g/L). 
c- NHase activities compared with NHase activity of Rhodococcus sp DAP 96253 grown on 
YEMEA supplemented with maltose (4g/L), cobalt (50mg/L) and urea (7.5g/L). 
unit- 1µM of acrylonitrile converted to 1 µM acrylamide in 1min, pH 7.2 at 30˚C 
Stan. Dev. - Standard Deviation 
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Effect of temperature on NHase activity 
 
  AN specific NHase activity of Rhodococcus sp DAP 96253 was measured after 

incubation at different temperatures (10ºC, 23ºC, 37ºC, 55ºC) (Table 9). The cells were 

grown on YEMEA supplemented with different sugars and inducers. NHase activity 

was highest at all temperatures when cells were grown on YEMEA supplemented with 

maltose except for 10ºC where maltodextrin supplementation produced the highest 

activity. Cells grown on media supplemented with glucose, cobalt and urea had the 

lowest NHase activities at all the temperatures tested. Increasing the temperature for 

cells grown on YEMEA supplemented with fructose did not increase NHase activity, as 

observed with cells grown on media supplemented with glucose or maltose, fructose 

grown cells worked the best at 23ºC. This showed that supplementations of different 

carbohydrates in growth media can facilitate reactions at certain temperatures. 

 
 
Table 9. Effect of temperature on NHase activity (units/mg cdw) of Rhodococcus sp 
DAP 96253 grown on YEMEA supplemented with different sugars and inducers. 

 
 
 
 
 
 
 
 

G, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
F, Co, U- YEMEA supplemented with fructose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
M, Co, U- YEMEA supplemented with maltose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
MD, Co, U- YEMEA supplemented with maltodextrin (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
unit- 1µM of acrylonitrile converted to 1µM acrylamide in 1 min, pH 7.2, at 30ºC   
 
 
 
 

Supplement  NHase activity (units/mg cdw) at different temperatures  
 10ºC 23ºC 37ºC 55ºC 
G, Co, U 72 95 100 105 
F, Co, U 102 140 117 123 
M, Co, U 123 143 150 157 
MD, Co, U 142 120 128 132 
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Fig. 6- Effect of temperature (10°C, 23°C, 37°C, 55°C) on NHase activity. Rhodococcus sp  DAP 96253 
was grown on YEMEA supplemented with different glucose (4g/L), fructose (4g/L), maltose (4g/L), 
maltodextrin (4g/L),  cobalt (50mg/L) urea (7.5g/L) and ASN (1g/L) were added as inducers. 
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NHase stability 
 
 The stability of NHase in Rhodococcus sp DAP 96253 cells was assessed at 10ºC 

and at 55ºC after growth on YEMEA supplemented with different sugars and inducers. 

Table 10 shows NHase stability over a 40 hour period at 10ºC. Cells grown on YEMEA 

supplemented with fructose cobalt and urea lost the greatest percentage of activity 

(44%), while cells grown on YEMEA supplemented with maltose or maltodextrin 

retained the most activity with only a 16% loss. When cells were grown on maltose or 

maltodextrin supplemented YEMEA the NHase stability was statistically different from 

the NHase stability of the glucose grown cells,  p values were well below 0.05 (p values 

of 0.006 and 0.005 for maltose and maltodextrin grown cells respectively). Therefore 

growth of Rhodococcus sp DAP 96253 on YEMEA supplemented with different sugars 

affects the stability of the enzyme at low temperatures. 
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Table 10. NHase stability of Rhodococcus sp DAP 96253 at 10ºC after growth on 
YEMEA supplemented with different sugars and inducers 
Supplement NHase activity at 10 ºC at different 

time periods (hrs) 
% of  
NHase 
activity 
lost 

Statistical 
evaluation b 

 0 4 20 30  p 
value 

S. D. 

G, Co, U 72 79 80 53 26   
F, Co, U 102 70 61 57 44 0.234 6.344
M, Co, U 123 123 117 103 16 0.006 28.75
MD, Co, U 142 140 136 120 16 0.005 38.52
G, Co, U- YEMEA supplemented  with glucose (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
F, Co, U- YEMEA supplemented  with  fructose (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
M, Co, U- YEMEA supplemented  with maltose (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
MD, Co, U- YEMEA supplemented  with maltodextrin (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
unit- 1µM of acrylonitrile converted to 1 µM acrylamide in 1 min, pH 7.2, at 30ºC   
b- All data was compared with NHase activity of cells grown on YEMEA with glucose cobalt and urea 
after 40 hrs. at 10 ºC. 
S. D. – Standard deviation 
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Fig 7. NHase stability at 10ºC. Rhodococcus  sp DAP 96253 was grown on YEMEA supplemented  with 
glucose (4g/L), fructose(4g/L), maltose (4g/L), maltodextrin (4g/L) and inducers cobalt (50mg/L) and 
urea (7.5g/L). 
 
 
 

NHase stability at 55ºC was also influenced by changes in media composition. 

Additional media formulations were tested at 55ºC such as YEMEA with the various 

sugar supplementations, cobalt, urea and ASN. ASN is a non toxic inducer of NHase and 

its impact on stability of the native cell was assessed. Trehalose was added to media as a 

stabilizer for NHase. The effect of this sugar on the stability of NHase was examined.  

Table 11 and accompanying Fig 7a and 7b show the NHase activities over a 45 

hour period after growth on YEMEA with different supplementations. Cells grown on 

YEMEA supplemented with glucose, cobalt, urea and ASN lost the greatest percentage 
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of activity (98%) followed by cells grown on YEMEA supplemented with fructose, 

cobalt and urea (90%).  The addition of trehalose to induced YEMEA supplemented 

with different sugars resulted in an increased stability of NHase for example cells 

grown on YEMEA supplemented with fructose, cobalt and urea lost 90% of NHase 

activity within 45 hrs at 55ºC, but cells grown in the presence of trehalose lost only 

68% of NHase activity. Cells grown on YEMEA supplemented with maltose, cobalt, 

urea and trehalose lost the least activity after 45 hrs at 55ºC, retaining 41% of NHase 

activity. Cells grown on YEMEA supplemented with maltose, cobalt and urea lost 55% 

of their NHase activity after 45 hrs, this was the lowest percentage of NHase activity 

lost when cells were not grown on media supplemented with trehalose. 

 Differences observed in NHase stability after growth on YEMEA supplemented 

with different sugars and inducers were statistically significant. NHase activities for 

cells grown on YEMEA induced for NHase and supplemented with fructose, maltose or 

maltodextrin were statistically different from the NHase activities of cells grown on 

YEMEA induced with cobalt and urea with glucose supplementation, at the various 

time intervals as indicated by the p values in Table 11. Fig. 7-9 shows the NHase 

stability graphs for Rhodococcus sp DAP 96253 grown on YEMEA with various 

supplementations and inducers. Table 12 shows that the addition of trehalose to 

YEMEA supplemented with glucose or fructose made a statistical difference in NHase 

stability (p-value of 0.007 for glucose supplemented YEMEA and p-value of 0.037 for 

fructose supplemented YEMEA). The statistical evaluations revealed that addition of 
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trehalose to YEMEA already supplemented with maltose or maltodextrin did not result 

in any statistically significant difference in NHase stability.  

 

 
Table 11. NHase stability a at 55ºC after growth on YEMEA supplemented with different 
sugars and inducers. 

Supplements in 
YEMEA 

NHase activity ( units/mg 
cdw) at different time periods 

(hrs) 

% of  
NHase 
activity 

lost 

Statistical 
evaluation b 

 0 20 45  p-
value 

S. D. 

G, Co, U 101 32 19 81   
F, Co, U 120 22 12 90 0.035 4.14 
M, Co, U 133 82 60 55 0.030 18.71 

MD, Co, U 140 105 31 77 0.085 13.73 
G, Co, U, ASN 100 21 12 98 0.026 3.90 
F, Co, U, ASN 84 44 15 82 0.014 3.87 
M, Co, U, ASN 118 31 22 81 0.173 4.885 

MD, Co, U, 
ASN 

85 40 30 65 0.022 5.202 

G, Co, U, Tre 96 80 38 60 0.037 9.48 
F, Co, U, Tre 101 74 32 68 0.002 6.89 
M, Co, U, Tre 110 85 65 41 0.004 22.19 

MD, Co, U, Tre 112 90 52 54 0.003 17.81 
G, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
F, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
M, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
MD, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
G, Co, U, ASN- YEMEA supplemented  with glucose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and 
asparagine (1g/L) 
F, Co, U, ASN- YEMEA supplemented  with fructose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and 
asparagine (1g/L) 
M, Co, U, ASN- YEMEA supplemented  with maltose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and 
asparagine (1g/L) 
MD, Co, U, ASN- YEMEA supplemented  with maltodextrin (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and 
asparagine (1g/L) 
G, Co, U, Tre- YEMEA supplemented  with glucose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and 
trehalose (4g/L) 
F, Co, U, Tre- YEMEA supplemented  with fructose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and 
trehalose  (4g/L) 
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M, Co, U, Tre- YEMEA supplemented  with maltose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and  
trehalose (4g/L) 
MD, Co, U, Tre- YEMEA supplemented  with maltodextrin (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and 
trehalose (4g/L) 
a- stability was determined by measuring NHase activity (units/mg cdw) at time intervals 
b- All data was compared with the NHase activity of cells grown on YEMEA with glucose cobalt and 
urea after 45 hrs. incubation at 10 ºC. 
S. D. – Standard deviation 
 
 
 
 
 
 
 
 
 
Table 12. Statistical evaluation of the stabilizing effect of trehalose when added to 
YEMEA supplemented with different sugars. 

Media P value a S. D.a

G, Co, U, Tre 0.007 10.12 
F, Co, U, Tre 0.037 9.48 
M, Co, U, Tre 0.21 5.95 

MD, Co, U, Tre 0.20 8.19 
G, Co, U, Tre- YEMEA supplemented  with glucose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and 
trehalose (4g/L) 
F, Co, U, Tre- YEMEA supplemented  with fructose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and 
trehalose  (4g/L) 
M, Co, U, Tre- YEMEA supplemented  with maltose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and  
trehalose (4g/L) 
MD, Co, U, Tre- YEMEA supplemented  with maltodextrin (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and 
trehalose (4g/L) 
a- data compared with NHase activity obtained from cells grown on the corresponding media without 
trehalose added. 
 S. D. standard deviation. 
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Fig. 7a. NHase stability at 55 ºC. Rhodococcus sp DAP 96253 was grown on YEMEA supplemented 
with different glucose (4g/L), fructose (4g/L), maltose (4g/L), maltodextrin (4g/L), and inducers cobalt  
(50mg/L) and urea (7.5g/L). 
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Fig 7b. NHase stability at 55 ºC of cells grown on media supplemented with ASN. Rhodococcus sp DAP 
96253 was grown on YEMEA supplemented with different glucose (4g/L), fructose (4g/L), maltose 
(4g/L), maltodextrin (4g/L),  cobalt (50mg/L) urea (7.5g/L) and ASN (1g/L) were added as inducers. 
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Fig 8. NHase stability at 55 ºC of cells grown on media supplemented with trehalose. Rhodococcus sp 
DAP 96253 was grown on YEMEA supplemented with glucose (4g/L), fructose (4g/L), fructose (4g/L), 
maltodextrin (4g/L), cobalt and urea were added as inducers and trehalose (4g/L) as a stabilizer. 
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Analysis of mycolic acid profiles 
 
  Supplementation of basal medium (YEMEA) with sugars such as glucose, 

maltose, fructose and maltodextrin resulted not only in changes in the level and 

specificity of NHase but the stability as well. In order to evaluate if these observed 

differences in NHase activity and stability might be related to the rhodococcal cell 

envelope, mycolic acids content and the composition of the cell envelope were 

examined. Both as negative control for mycolic acid production (Candida albicans 

C30) (Fig. 9) and a positive control (Mycobacterium intracellulare 13950) (Fig. 10) 

were incorporated into the analysis. In addition both a low and a high molecular weight 

(LMW, HMW) internal standard were used. However, with the rhodococcal samples 

the LMW standard interfered with the mycolic acid analysis, therefore it was not used. 

Samples were analyzed in duplicate and results were reproducible. 

  Visual examination of the mycolic acids patterns, and examination of total 

mycolic acid content by peak areas showed that supplementation of different sugars and 

inducers affected the cell envelope mycolic acid composition (Fig. 11-18, Table 13a, 

Table 13b). The figures are labeled 1-5 to represent clusters. Cells grown on YEMEA 

supplemented with glucose only, had peak clusters 2, 3, 4, with prominent double peaks 

(Fig.11). Cells grown on YEMEA supplemented with fructose only, had a 

characteristically different pattern with clusters 2, 3, 4 no longer having the prominent 

double peaks but having an increase in certain peaks within the clusters (Fig. 12). Cells 

grown on YEMEA supplemented with maltose only, produced clusters 2, 3, 4 with a 

pattern similar to glucose grown cells however peak areas were significantly increased 
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(Fig. 13), there was a pattern of two dominant peaks within the clusters (2, 3, 4) as 

opposed to one prominent peak within the clusters when cells were grown on fructose 

supplemented media. YEMEA with maltodextrin only, showed a mycolic acid profile 

that was similar to the profile observed with cells grown on maltose supplemented 

media (Fig. 14). To better show differences in mycolic acid fingerprints Fig. 20 and 21 

shows chromatogram overlays of Fig. 11-14. Lower peak areas were observed for all 

peak clusters when cells were grown on glucose and fructose as opposed to maltose and 

maltodextrin. Also increase and decrease of peaks within the various clusters can be 

seen in the chromatogram overlays. 

 The effect of inducers (cobalt and urea) on the mycolic acid patterns of 

Rhodococcus DAP 96253 was examined. The addition of cobalt and urea changed the 

mycolic acid pattern significantly in the glucose supplemented media (Fig. 15); clusters 

2, 3 and 4 had a predominant single peak similar to the profile observed when cells 

were grown on un-induced media supplemented with fructose. Growth on induced 

media supplemented with fructose did not result in any significant changes to the 

mycolic acid profiles (Fig. 16). Clusters 2, 3 and 4 still had single predominant peaks, 

however peak areas had increased. Mycolic acid profiles produced when cells were 

grown on YEMEA supplemented with maltose or maltodextrin induced with cobalt and 

urea, changed significantly (Fig. 17 an 18); clusters 2, 3 and 4 had shown characteristic 

double peaks without cobalt and urea, however media induced with cobalt and urea 

produced profiles that had predominant single peaks within the clusters. Fig. 22 and 23 

shows chromatogram overlays of the mycolic acid profiles seen in Fig. 15-18. These 
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overlays show that fructose grown cells had the greatest peak areas for clusters 2, 3, 4 

while maltose had the least, these differences in peak areas represent differences in the 

amount of mycolic acid present in the cell envelope. The pattern observed with induced 

cells was different from the pattern observed in un-induced cells. Mycolic acid profile 

of un-induced cells showed that fructose or glucose supplementation led to decreased 

peak areas, while maltose or maltodextrin supplementation led to increased peak areas.  

Growth in the presence of cobalt and urea influenced mycolic acid profiles in 

Rhodococcus sp DAP 96253, however it was unclear whether it was the cobalt, urea or 

both that were eliciting the changes in mycolic acid profiles. This was investigated by 

growing Rhodococcus sp DAP 96253 on YEMEA supplemented with glucose only, 

YEMEA supplemented with glucose and cobalt and YEMEA supplemented with 

glucose, cobalt and urea (Fig. 19) and examining the mycolic acid profiles. Cobalt had 

induced changes in mycolic acid profiles as there were changes in clusters 2, 3, 4 when 

compared to the profile observed when YEMEA was only supplemented with glucose. 

Peaks within clusters 2, 3, 4, increased significantly, the same pattern observed when 

cells were grown on YEMEA supplemented with glucose, cobalt and urea.  This 

showed that the addition of cobalt without urea could lead to changes in mycolic acid 

profiles. The results indicate that carbohydrates and metals can affect the rhodococcal 

cell envelope, particularly the mycolic acids. 

 Percentage change in mycolic acid content was examined by comparing the 

summation of peak areas between RT 23 and 30 mins (Table 13a, 13b). Cells grown on 

YEMEA without cobalt and urea, supplemented with fructose, maltose, or maltodextrin 
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resulted in reduced mycolic acid content in the cell envelope. The addition of cobalt 

and urea to YEMEA supplemented with glucose or fructose resulted in a significant 

increase in mycolic acid content.  

  

 

 
Fig. 9. Chromatogram of mycolic acid extract from Candida albicans C30 (negative control) grown on 
Lowenstein Jenson slants, showing LMW and HMW standards,  no mycolic acids are observed between 
LMW and HMW. 
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 Fig. 10. Chromatogram of mycolic acid extract from Mycobacterium intracellulare 13950 (positive 
control) grown on Lowenstein Jenson slants, showing mycolic acids peaks and high molecular weight 
standard (HMW) . 
 
 
 

 
Fig. 11.  Chromatogram of mycolic acid extract from Rhodococcus sp DAP 96253 grown on YEMEA 
supplemented with glucose ( 4g/L) showing peaks clusters 1-5 and high molecular weight standard ( 
HMW). 
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Fig. 12.  Chromatogram of mycolic acid extract from Rhodococcus sp DAP 96253 grown on YEMEA 
supplemented with fructose (4g/L) showing peak clusters 1-5 and high molecular weight standard ( 
HMW). 
 
 
 
 
 

Fig. 13. Chromatogram of mycolic acid extract from Rhodococcus sp DAP 96253 grown on YEMEA 
supplemented with maltose (4g/L) showing peak clusters 1-5 and high molecular weight standard 
(HMW). 
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Fig. 14. Chromatogram of mycolic acid extract from Rhodococcus sp DAP 96253 grown on YEMEA 
supplemented with maltodextrin (4g/L) (dextrose equivalent =25) (4g/L) showing peak clusters 1-5 and 
high molecular weight standard (HMW). 
 
  

  
 Fig. 15.  Chromatogram of mycolic acid extract from Rhodococcus sp DAP 96253 grown on YEMEA 
supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) showing peak clusters 1-5 and 
high molecular weight standard  (HMW).  
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Fig. 16. Chromatogram of mycolic acid extract from Rhodococcus sp DAP 96253 grown on YEMEA 
supplemented with fructose (4g/L), cobalt (50mg/L) and urea (7.5g/L) showing peak clusters 1-5 and 
high molecular weight standard  (HMW). 
  
 
 
 

 
Fig. 17.  Chromatogram of mycolic acid extract from Rhodococcus sp  DAP 96253 grown on YEMEA 
supplemented with maltose (4g/L), cobalt (50mg/L) and urea (7.5g/L) showing peak clusters 1-5 and 
high molecular weight standard (HMW). 
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Fig. 18.  Chromatogram of mycolic acid extract from Rhodococcus sp DAP 96253 grown on YEMEA 
supplemented with maltodextrin (4g/L), cobalt (50mg/L) and urea (7.5g/L) showing peak clusters 1-5 
and high molecular weight standard  (HMW). 
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32

1

Fig. 19.  Chromatograms of mycolic acid extracts from Rhodococcus sp DAP 96253 grown on  YEMEA with 
different supplements . 1) YEMEA supplemented with glucose (4g/L) 2) YEMEA supplemented with glucose 
(4g/L) and cobalt (50mg/L) 3) YEMEA supplemented with glucose (4g/L) cobalt (50mg/L) and urea (7.5g/L). 
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Fig. 20.  Overlays of mycolic acid profiles of Rhodococcus sp  DAP 96253 grown on YEMEA with 
supplementation of different sugars[glucose, maltose, fructose and maltodextrin (4g/L)]. 
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Fig. 21. 3-D view of chromatogram overlays seen in Fig. 17 of mycolic acids profiles of Rhodococcus sp 
DAP 96253 grown on YEMEA supplemented with different sugars[glucose, fructose, maltose and 
maltodextrin 
 (4g/L )]  
HMW – high molecular weight standards 
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Fig 22.  Overlays of mycolic acid profiles of Rhodococcus sp DAP 96253 grown on YEMEA supplemented 
with different sugars[glucose, fructose, maltose, maltodextrin (4g/L)] and inducers, cobalt (50mg/L) and urea 
(7.5g/L).HMW- high molecular weight standard. 

 
 
 
 
 
 
 
 
 
 
 
 

HMW 



 

 

68

 
 
 
 
 
 
 
 
 
 
 

fructose
 maltose

glucose

16 18 20 22 24 26 28 30 32 34 36 38 40

maltodextrin

 
 
Fig. 23.  3-D view of chromatograms seen in Fig 19- overlays of mycolic profiles of Rhodococcus DAP 
96253 grown on YEMEA supplemented with different sugars[glucose, fructose, maltose, maltodextrin 
(4g/L)] and inducers, cobalt (50mg/L) and urea (7.5g/L), HMW- high molecular weight standard. 
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Table 13a.  Percentage change in total mycolic acida due to supplementation of different 
sugars in YEMEA non induced and induced for Nitrile Hydratase 
Media  % change in mycolic acid content

Fb 14% decrease 

Mb 210% increase 

MDb 235% increase 

F, Co, Uc 3% decrease 

M, Co. Uc 19% decrease 

MD, Co, Uc 34% decrease 

F- YEMEA supplemented with fructose (4g/L) 
M- YEMEA supplemented with maltose (4g/L) 
MD- YEMEA supplemented with maltodextrin (4g/L) 
G, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
F, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
M, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
MD, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
a- calculated by summing peak areas between retention times 23 and 30mins 
b- compared to mycolic acid content of cells grown on YEMEA supplemented with glucose(4g/L) 
c.- compared to mycolic acid content of cells grown on YEMEA supplemented with glucose (4g/L), cobalt 
(50mg/L) and urea (7.5g/L) 
 
Table 13b. Percentage change in total mycolic acida due to supplementation of cobalt and 
urea to YEMEA with different sugars for induction of Nitrile Hydratase 
Media  % change in mycolic acid content

G, Co, U 240% increase 

F, Co, U 280% increase 

M, Co, U 12% decrease 

MD, Co, U 34% decrease 

G, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
F, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
M, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
MD, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
a- calculated by summing peak areas between retention times 23 and 30min 
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Analysis of glycolipids 
While the addition of different sugars and/or inducers resulted in changes in cell 

envelope mycolic acids. It was further hypothesized that there also could be changes in 

the glycolipid content of the cell envelope. Total lipids were extracted from 

Rhodococcus sp DAP 96253 and separated on a silica gel plates. Glycolipids were 

visualized by spraying with 1-napthol followed by heating (Fig. 24). While none of the 

visualized spots from the extracts corresponded to the position the standard [trehalose 

dimycolate (TDM) purified from Mycobacterium tuberculosis] it could be inferred that 

they were different glycolipids present as the standard also turned purple upon spraying 

with 1- napthol. Cells that were un-induced and grown on YEMEA supplemented with 

maltose or maltodextrin did not show any glycolipid spots. However, cells grown on 

YEMEA supplemented with glucose or fructose showed a single glycolipid spot.   

Cells that were induced for NHase all had glycolipid spots that were close to the 

origin, a second spot was significantly increased in cells grown on glucose, fructose, or 

maltose. Cells induced and grown on maltodextrin also showed this second glycolipid 

spot, but it did not show up in the image. Extracts from cells that were induced and 

grown in the presence of fructose, had a third glycolipid spot that was not seen with any 

of the other extracts. Cells grown on YEMEA supplemented with fructose and induced 

with cobalt and urea showed the greatest diversity of glycolipids. The supplementation 

of different sugars and addition of inducers such as cobalt and urea to YEMEA also 

affected the type of glycolipids produced and the quantity present in the cell envelope 

of Rhodococcus sp DAP 96253. 
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Fig. 24. TLC of total lipid extracts sprayed with 1-napthol to visualize glycolipids. Rhodococcus sp DAP 
96253 was grown on YEMEA supplemented with, (lane 1) glucose (4g/L) only, (lane 2) maltose (4g/L) 
only, (lane 3) fructose (4g/L) only,(lane 4) maltodextrin (4g/L) only (25 DE), (lane 6) glucose (4g/L) cobalt 
(50mg/L), and urea (7.5g/L), (lane 7) maltose (4g/L)  cobalt (50mg/L) and urea (7.5g/L) , (lane 8) fructose 
(4g/L)  cobalt (50mg/L) and urea (7.5g/L), (lane 9) maltodextrin (4g/L)  cobalt (50mg/L) and urea (7.5g/L), 
lane 10 was empty and lane 11 contained trehalose dimycolate (TDM) purified from Mycobacterium 
tuberculosis. 
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Analysis of surface proteins 

S- layer proteins have been identified in Corynebacterium. Electron microscopy 

analysis of freeze fracture preparations was used to determine if such ordered 

arrangements of proteins existed on the surface of the Rhodococcus sp DAP 96253.  

 

Fig 25. Electron micrograph of the freeze fracture preparation of Rhodococcus sp DAP 96253 grown on 

YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L). 
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The surface of Rhodococcus sp DAP 96253 after growth on YEMEA supplemented 

with the different sugars(4g/L), cobalt (50mg/L) and urea (7.5g/L) did show many 

surface proteins however these surface proteins were not present in any particular 

structured array typical of S-layers (Fig 25 and 26). 
 

 

 
Fig. 26. Electron micrograph of freeze fracture preparation of Rhodococcus sp DAP 96253 grown on 
YEMEA supplemented with maltose (4g/L), cobalt (50mg/L ), and urea (7.5g/L).  
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 Rhodococcus sp DAP 96253 grown on YEMEA supplemented with maltose 

(4g/L), cobalt (50mg/L) and urea (7.5g/L) did not show the presence of a S- Layer, but 

the surface did have an arrangement of clumps that were not observed on the surface of 

the cells grown on YEMEA supplemented with the other sugars(Fig. 26). 

 A method for S-layer extraction for Corynebacterium glutamicum was used with 

Rhodococcus sp DAP 96253 grown on YEMEA with and without inducers for NHase 

and supplemented with glucose, fructose, maltose or maltodextrin. The extracted 

proteins were analyzed by SDS-PAGE (Fig. 27) and some were identified by MALDI 

TOF/TOF. Cellular proteins and cell envelope proteins were identified. NHase subunits 

α and β were identified as well as a lipopolysaccharide biosynthesis glycosyl 

transferase, and a 4- COG 1629 outer membrane receptor protein involved in metal 

transport. 
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Fig 27. Gel electrophoresis of cell envelope extracts of Rhodococcus sp DAP 96253 grown on lane 2- 
YEMEA supplemented with glucose (4g/L), lane 3- with maltose (4g/L), lane 4- with fructose (4g/L), 
lane 5-maltodextrin (4g/L), lane 7- glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L), lane 8- fructose 
(4g/L), cobalt (50mg/L)  and urea (7.5g/L), lane 9- maltose(4g/L), cobalt (50mg/L)  and urea(7.5g/L), 
lane 10-maltodextrin (4g/L) , cobalt (50mg/L)  and urea (7.5g/L), lane 11- Mycobacterium extract. Lane 
1 and 15- molecular weight markers. Arrows 1- 4 indicate protein bands that were cut out subjected to 
trypsin digest and identified by MALDI-TOF/TOF , 1- α NHase, 2- β NHase, 3-Lipopolysaccharide 
biosynthesis glycosyl transferase, 4- COG 1629 outer membrane receptor protein-metal transport 
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Analysis of trehalose 

  Initially trehalose within the cell and the cell envelope was measured by the 

anthrone reaction. Cellular trehalose levels were higher in un-induced cells than 

induced cells for all conditions except for fructose supplementation (Table 14), e.g. 

cells grown with supplemented glucose had a cellular trehalose concentration of 6000 

mg/g cdw, cells grown on media supplemented with glucose, cobalt and urea had 4500 

mg/g cdw of cellular trehalose. Cellular trehalose concentration was highest when 

YEMEA was supplemented with glucose or maltose [un-induced- 6000 mg/g cdw 

(glucose) and 6500 mg/g cdw (maltose), induced- 4500 mg/g cdw (glucose) and 5550 

mg/g cdw (maltose)]. Fructose supplemented media produced the lowest cellular 

trehalose concentration in un-induced cells and induced cells (4200 mg/g cdw and 2200 

mg/g cdw respectively). Cellular trehalose levels were higher than lipid bound trehalose 

levels except for induced YEMEA supplemented with fructose which had a trehalose 

concentration of 2200 mg/g cdw inside the cell and 4400 mg/g cdw in the cell 

envelope.  

 Gas Chromatography was used as an alternative method to the anthrone reaction 

for specific trehalose analysis. For GC analysis of trehalose more cells were used and 

larger extraction volumes were required. Cells grown on YEMEA induced with cobalt 

and urea and supplemented with different sugars (glucose, fructose, maltose, 

maltodextrin) were analyzed for their cellular trehalose and lipid bound trehalose 

content. Previous work had shown that asparagine (ASN) was an inducer of NHase. 

The effect of this amino acid on cellular trehalose and lipid bound trehalose was 
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investigated.  Trehalose is known as stabilizer of proteins (Sola-Penna et al., 1997) 

hence the effect of additional supplementation of trehalose on cellular trehalose and 

lipid bound trehalose was also assessed. Fig. 28 and 29 show the chromatograms of 

derivatized cellular and cell envelope extracts from Rhodococcus sp DAP 96253 grown 

on YEMEA supplemented with glucose, cobalt and urea, trehalose had a retention time 

of 15.9 min. shown by the arrows on the figures.  

GC analysis showed that cellular trehalose did change significantly with the 

supplementation of different sugars in YEMEA with cobalt and urea. Table 15 shows 

that supplementation of fructose and maltose made a statistical different in cellular 

trehalose levels compared to cells grown on YEMEA supplemented with glucose. 

When ASN was added to  growth media  trehalose levels increased significantly from 

595 mg/g cdw to 1523 mg/g cdw in maltose supplemented YEMEA and 2083 mg/g 

cdw in maltodextrin supplemented YEMEA. Supplementation of trehalose in the media 

increased cellular trehalose levels for glucose, fructose, maltose and maltodextrin 

grown cells.  

  Cells grown on media supplemented with fructose, maltose or maltodextrin, 

cobalt and urea had significantly higher levels of trehalose on the outside of the cell 

than on the inside, particularly the cells grown on media supplemented with fructose 

(280 mg/g cdw cellular trehalose level compared to 8050 mg/g cdw present in the cell 

envelope, Table 15). Cells grown on YEMEA supplemented with glucose or fructose 

with cobalt, urea and ASN also had slightly higher trehalose levels in the cell envelope 
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than inside the cells. The addition of trehalose to YEMEA supplemented with the 

different sugars did not lead to increased levels of trehalose in the cell envelope. 

 Table 15 also shows p values and standard deviations for trehalose cellular 

concentrations and lipid bound trehalose. These values were derived by comparing all 

trehalose concentrations with the trehalose concentration of cells grown on YEMEA 

supplemented with glucose, cobalt and urea. P-values greater than 0.05 were 

statistically insignificant. 

Cellular and lipid bound levels of trehalose measured by the anthrone reaction 

were higher than trehalose levels measured by GC analysis, however similar trends 

were observed  i.e. cells grown on fructose with or without inducers had the lowest 

levels of cellular trehalose, lipid  bound trehalose was increased when cells were grown 

on media supplemented with fructose, cobalt and urea. 
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Table 14– Cellular and lipid bound trehalose (mg/g cdw) in Rhodococcus sp DAP 
96253 grown on YEMEA supplemented with different sugars and inducers measured 
by the anthrone reaction 

Supplement Cellular Trehalose (mg/g 
cdw)  
 

Lipid Bound Trehalose 
(mg/g cdw) 

Glucose 6000 ND 

 Fructose 4200 ND 

 Maltose 6500 ND 

Maltodextrin 4600 ND 

Glucose, cobalt, urea 4500 3500 

Fructose, cobalt, urea 2200 4400 

Maltose, cobalt, urea 5600 3500 

Maltodextrin, cobalt, urea 4100 1600 

ND- not determined 
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Fig 28.  GC chromatogram of TCA extract from Rhodococcus DAP 96253 grown on YEMEA 
supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
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Fig 29.  GC chromatogram showing trehalose released from cell envelope lipids of Rhodococcus DAP 
96253 grown on YEMEA supplemented with glucose ( 4g/L) cobalt (50mg/L) and urea (7.5g/L) 
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Table 15. Statistical evaluation of cellular and lipid bound trehalose measured by GC in  
Rhodococcus sp DAP 96253 grown on YEMEA supplemented with different sugars and 
inducers 

Supplement Cellular 

trehalose 

 (mg/g 

cdw) 

P Value Stan. 

Dev. 

Lipid 

bound 

trehalose 

(mg/g 

cdw) 

P 

Value 

Stan. 

Dev. 

Initial 

NHase 

activity 

(units/mg 

cdw) 

G, Co, U 490 0 0 893 0 0 101 

F, Co, U 280 0.003 134 8050 0.012 3537 120 

M, Co, U 595 0.010 132 3220 0.030 1414 133 

MD, Co, U 595 0.140 129 4900 0.012 2112 140 

G, Co, U, 

ASN 

543 0.210 91 910 0.710 125 100 

F, Co, U, ASN 630 0.180 100 945 0.240 167 84 

M, Co, U, 

ASN 

1523 0.037 482 245 0.030 273 118 

MD, Co, U, 

ASN 

2083 0.004 806 1085 0.155 157 85 

G, Co, U, Tre 963 0.034 343 429 0.002 242 96 

F, Co, U, Tre 700 0.060 182 770 0.129 106 101 

M, Co, U, Tre 8435 0.0003 4264 4165 0.014 1511 110 

MD, Co, U, 

Tre 

8400 0.001 4083 1025 0.060 78 112 

continued on next page 
G- YEMEA supplemented with glucose (4g/L) 
F- YEMEA supplemented with fructose (4g/L) 
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M- YEMEA supplemented with maltose (4g/L) 
MD- YEMEA supplemented with maltodextrin (4g/L) 
G, Co, U- YEMEA supplemented  with glucose (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
F, Co, U- YEMEA supplemented  with glucose (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
M, Co, U- YEMEA supplemented  with glucose (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
MD, Co, U- YEMEA supplemented  with glucose (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
G, Co, U, ASN- YEMEA supplemented  with glucose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and asparagine (1g/L) 
F, Co, U, ASN- YEMEA supplemented  with fructose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and asparagine (1g/L) 
M, Co, U, ASN- YEMEA supplemented  with maltose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and asparagine (1g/L) 
MD, Co, U, ASN- YEMEA supplemented  with maltodextrin (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and 
asparagines (1g/L) 
G, Co, U, Tre- YEMEA supplemented  with glucose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and trehalose (4g/L) 
F, Co, U, Tre- YEMEA supplemented  with fructose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and trehalose  (4g/L) 
M, Co, U, Tre- YEMEA supplemented  with maltose (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and  trehalose (4g/L) 
MD, Co, U, Tre- YEMEA supplemented  with maltodextrin (4g/L), cobalt (50mg/L), urea ( 7.5g/L) and trehalose 
(4g/L) 
 
 
 
 
 
 
 
Antibiotic susceptibility 

The susceptibility of Rhodococcus sp DAP 96253 to various antibiotics 

(erythromycin, rifampin, tetracycline, ampicillin, vancomycin) after growth on un-

inducing and inducing YEMEA supplemented with different sugars was examined as 

an indication of changes in the cell envelope. MICs (µg/ml) were determined for 

erythromycin and rifampin by reading the value from the scale on the Etest strip where 

the ellipse edge intersected the strip (Fig. 30 and 31, Table 16). Zone of inhibitions 

(mm) were measured for vancomycin (30µg), ampicillin (10µg), tetracycline (30µg) 

(Fig. 33 and 34, Table 17).  

MIC for erythromycin and rifampin were higher when Rhodococcus sp DAP 

96253 was grown on un-inducing YEMEA supplemented with the different sugars as 

opposed to growth on inducing YEMEA supplemented with the different sugars. Cells 

that were grown on YEMEA containing cobalt and urea were more sensitive to the 
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antibiotics. There were also differences in the MIC when different sugars were used as 

supplements, for example cells grown on un-inducing YEMEA supplemented with 

fructose had a MIC of 4 µg /ml while the MIC for cells grown on YEMEA 

supplemented with the other sugars (fructose, maltose or maltodextrin) was 

significantly lower. This was also observed with induced cells. MIC values for rifampin 

were lower than erythromycin but similar trends were observed. Cells grown on 

induced plates with different sugars supplemented developed resistance to rifampin 

after 10 days (Fig. 32) while cells grown on un-induced plates did not develop 

resistance in the same time period. ZOI seen in Table 17 were measured at day 7. 
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Fig.  30- MIC determination for erythromycin using Etest strip. Rhodococcus sp DAP 96253 
grown on A)YEMEA supplemented with glucose (4g/L) B) YEMEA supplemented with glucose 
(4g/L), cobalt (50mg/L) and urea (7.5g/L). 

 
 

 
 
 
 
 
 
 
 
 

 
 

     A     B 
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 Fig.  31- MIC determination for rifampin using Etest strip. Rhodococcus sp DAP 96253 grown on 
A)YEMEA supplemented with glucose (4g/L) B) YEMEA supplemented with glucose (4g/L), cobalt 
(50mg/L) and urea (7.5g/L). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     A      B 
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Fig.  32- Developed resistance to rifampin in Rhodococcus DAP 96253 after growth on YEMEA 
supplemented with (A) fructose (4g/L) cobalt (50mg/L) and urea (7.5g/L), (B) glucose (4g/L), cobalt 
(50mg/L) and urea (7.5g/L).  
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Table 16. MIC (µg/ml) for erythromycin and rifampin against Rhodococcus sp DAP 
96253  

Media MIC of erythromycin (µg/ml) MIC of rifampin (µg/ml) 

G 1.5 0.064 

F 4 0.047 

M 0.75 0.094 

MD 2 0.023 

G, Co, U 0.75 0.004 

F, Co, U 0.5 0.004 

M, Co, U 0.38 0.023 

MD, Co, U 0.064 0.012 

G- YEMEA supplemented with glucose (4g/L) 
F- YEMEA supplemented with fructose (4g/L) 
M- YEMEA supplemented with maltose (4g/L) 
MD- YEMEA supplemented with maltodextrin (4g/L) 
G, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
F, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
M, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
MD, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea ( 7.5g/L) 
MIC- Minimum inhibitory concentration 

 

Zone of inhibition (ZOI, Fig.33 and 34, Table 17) to vancomycin and tetracycline were 

significantly lower when cells were grown on un-inducing YEMEA. These cells were 

more tolerant to the antibiotics, this was similar to the observation with erythromycin and 

rifampin. There were also significant differences in the ZOI when different sugars were 

used as supplements.  Cells grown on maltodextrin supplemented YEMEA were resistant 

to vancomycin and tetracycline at 30µg while glucose, fructose and maltodextrin grown 



 

 

89

cells grown cells had ZOI between 4 and 13 mm. Un-induced and induced cells were 

resistant to ampicillin at 10µg except for fructose grown cells which had a ZOI of 10 mm. 

 Changes in growth media composition have been shown to affect the rhodococcal 

cell envelope in different ways. Addition of inducers to growth media affects the cell 

envelope which causes the cells to become more sensitive to the antibiotics tested. 

Supplementation of different sugars also results in changes to the cell envelope as 

indicated by differences in antibiotic susceptibility.  
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Fig. 33-  ZOI for vancomycin (30µg). Rhodococcus sp DAP 96253 grown on A) YEMEA supplemented 
with fructose (4g/L) B) YEMEA supplemented with fructose (4g/L), cobalt (50mg/L) and urea (7.5g/L). 
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Fig.  34. ZOI for ampicillin (10µg), tetracycline (30µg). Rhodococcus sp DAP 96253 was grown on A) 
YEMEA supplemented with fructose (4g/L) with ampicillin and tetracycline sensi discs B) YEMEA 
supplemented with fructose (4g/L) ), cobalt (50mg/L) and urea (7.5g/L) with tetracycline (30µg) C) 
YEMEA supplemented with fructose (4g/L) ), cobalt (50mg/L) and urea (7.5g/L) with ampicillin (10µg) 
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Table 17. Zone of inhibition (mm) for vancomycin (30µg), ampicillin (10µg) and 
tetracycline (30µg) to Rhodococcus sp DAP 96253  

Media Vancomycin ZOI 
(mm) 

Ampicillin ZOI 
(mm) 

Tetracycline ZOI 
(mm) 

G 10 0 4 

F 8 10 10 

M 13 0 13 

MD 0 0 0 

G, Co, U 30 0 15 

F, Co, U 26 0 14 

M, Co, U 30 0 17 

MD, Co, 

U 

28 0 11 

G- YEMEA supplemented with glucose (4g/L) 
F- YEMEA supplemented with fructose (4g/L) 
M- YEMEA supplemented with maltose (4g/L) 
MD- YEMEA supplemented with maltodextrin (4g/L) 
G, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
F, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
M, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
MD, Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
ZOI- zone of inhibition 
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The increased sensitivity of Rhodococcus sp DAP 96253 to antibiotics after 

growth on YEMEA containing cobalt and urea could be due to the presence of cobalt or 

urea or both cobalt and urea. This was investigated by testing the susceptibility of 

Rhodococcus sp DAP 96253 to Vancomycin Sensi-discs (30µg) and Etest strips of 

Erythromycin and Rifampin after growth on YEMEA supplemented with glucose only, 

YEMEA supplemented with glucose and urea, YEMEA supplemented with glucose and 

cobalt and YEMEA supplemented with glucose, cobalt and urea (Table 18). The results 

showed that the addition of cobalt (50 ppm) significantly increased the sensitivity of the 

cells to all the antibiotics used. Sensitivity to vancomycin was increased almost three 

times. Urea did not affect the sensitivity of the cells to the antibiotics tested. 

 
Table 18. Susceptibility of Rhodococcus sp DAP 96253 to Vancomycin sensi-disc (30µg) 
and Erythromycin and Rifampin Etest strips. 
Media (YEMEA) Vancomycin ZOI 

(mm) 

Erythromycin MIC 

(µg/ml) 

Rifampin MIC 

(µg/ml) 

G 10 1.5 0.012 

G, U 10 1.5 0.032 

G, Co 28 0.25 0.003 

G, Co, U 26 0.25 0.004 

G- YEMEA supplemented with glucose (4g/L) 
G, U- YEMEA supplemented with glucose (4g/L) and urea (7.5g/L) 
G, Co- YEMEA supplemented with glucose (4g/L) and cobalt (50mg/L) 
G. Co, U- YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L) 
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Fig. 35- Rhodococcus sp DAP 96253 susceptibility to vancomycin (30µg) after growth on YEMEA with 
different supplements. A)YEMEA supplemented with glucose (4g/L) B) YEMEA supplemented with 
glucose (4g/L) and urea (7.5g/L) C) YEMEA supplemented with glucose (4g/L) and cobalt (50mg/L) D) 
YEMEA supplemented with glucose (4g/L), cobalt (50mg/L) and urea (7.5g/L). 
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Discussion 

Rhodococcus sp DAP 96253 was chosen as the selected strain to carry out these 

investigations due to its high NHase activity on un-inducing and inducing YEMEA 

compared to other rhodococcal species investigated. YEMEA is composed of yeast 

extract and malt extract both which have the primary carbon source, glucose. There was 

supplementation of glucose to YEMEA due to increased growth and increased NHase 

activity. Other sugars such as fructose (a monosaccharide), maltose (a disaccharide) and 

maltodextrin (a polymer of glucose, 25 DE) also were used as supplements in YEMEA to 

examine effects on NHase activity. Wang et al. (2006) reported that supplementation of 

glycerol in a complex medium for glucose and sucrose resulted in slightly slower growth 

rate and a significant increase in NHase production, these findings supported the results 

in this dissertation as supplementation of fructose, maltose or maltodextrin for glucose in 

rich solid media (YEMEA) also resulted in slight differences in growth rate and 

significant differences in NHase activity.  

Propionitrile (PN) was the best substrate for the NHase from Rhodococcus sp 

DAP 96253, followed by acrylonitrile (AN), butyronitrile (BN) and crotononitrile 

(CrN). There was a 32% difference in NHase activity between the substrates PN and 

AN when maltose was supplemented into YEMEA with cobalt and urea and a 26% 

difference in NHase activity when the cells were grown on YEMEA supplemented with 

maltodextrin, cobalt and urea (Table 6). The chemical formulas CH2CHCN, 

CH3CH2CN, CH3CH2CH2CN, CH3CHCHCN represent AN, PN, BN and CrN 
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respectively. AN and PN have three carbon atoms, these two compounds are very 

similar in structure except for the double bond in AN between carbon 1 and 2. CrN and 

BN have four carbon atoms, they are also similar in structure but CrN has a double 

bond between carbons 2 and 3. NHase works best for short chain nitriles with no 

double bonds like PN. Growth of Rhodococcus sp DAP 96253 on YEMEA 

supplemented with different carbohydrates resulted in statistically significant 

differences in NHase activity against AN and PN (Table 7 and 8). This shows that 

supplementation of different sugars or carbohydrates such as maltodextrin influences 

NHase activity therefore growth media selection can play a role in substrate specificity. 

The same cell can be tailored for different reactions by changing the carbohydrate 

supplementation in the growth media.  

Rhodococcus sp DAP 96253 can be grown in the presence of different sugars to 

facilitate reactions at different temperatures. The production of acrylamide is done at 

low temperatures in order to minimize conversion of acrylamide to acrylic acid by 

amidase (Nagasawa et al., 1993; Padmakumar and Oriel, 1999). Growth of 

Rhodococcus sp DAP 96253 on YEMEA supplemented with maltose or maltodextrin 

with cobalt and urea, had higher NHase activity at 10°C than cells grown on fructose or 

glucose. This data can applied in industries that employ NHase at lower temperatures 

such as acrylamide production.  

Supplementation of growth media with different primary sugars not only affected 

the NHase activity but also affected the stability of the enzyme. NHase in cells of 
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Rhodococcus sp DAP 96253 grown on maltose and maltodextrin was statistically more 

stable at 55°C than NHase in glucose or fructose grown cells. This was possibly due to 

differences in cellular trehalose levels within cells. Trehalose can be synthesized from 

glucose, maltose and maltodextrins in Corynebacterium through three pathways seen in 

Fig. 4. There are no reports that Rhodococcus possesses these three pathways, but 

growth on YEMEA supplemented with glucose, fructose, maltose or maltodextrin with 

and without cobalt and urea, resulted in changes in both cellular trehalose levels and 

lipid bound trehalose levels (Table 13 and 14).  

There have been reports on intracellular changes of trehalose content in bacteria 

and fungi. However, these changes have been induced by stress such as extremes in 

temperatures or exposure to chemicals or organic solvents (Joo et al., 2000; Tibbett et 

al., 2002). This work shows that significant changes in cellular trehalose levels can 

occur without stress on the cell. The addition of different carbohydrates and inducers 

(cobalt, urea and ASN) of NHase not only affected the NHase activity, but also 

influenced the cellular and lipid bound trehalose levels.  

Xie and Timasheff (1997) showed that when 0.5M trehalose was added to 

purified enzyme stability was enhanced. In this work improvement to NHase stability at 

55°C was achieved through the addition of trehalose to the growth media. Addition of 

trehalose to YEMEA increased thermostability of NHase in cells grown on YEMEA 

supplemented with glucose or fructose, cobalt and urea (Table 11). The three-

dimensional structure of proteins is maintained by polyols such as sugars during 
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heating and drying. They act as protein stabilizers by forming hydrogen bonds with the 

protein in place of water (Arakawa, 2002). The supplementation of different sugars in 

YEMEA resulted in varying levels of trehalose within the cells, that acted as a stabilizer 

of NHase, this accounted for differences observed in NHase stability at 10°C and 55°C. 

The addition of trehalose to YEMEA supplemented with maltose or maltodextrin did 

not achieve any additional enhancement of NHase stability. Cui et al. (2006) showed 

that maltodextrin was able to stabilize transglutaminase from Streptomyces 

hygroscopicus better than trehalose. It is possible that maltose and maltodextrin also 

provided some stabilizing effect in addition to trehalose that led to the increase stability 

of the NHase. 

Glutaraldehyde immobilization has been shown previously to be quite effective in 

stabilizing NHase in rhodococcal cells. However during the immobilization process a 

significant amount of NHase activity can be lost (20-60%, Ganguly, Dissertation). This 

work showed that NHase activity and stability of native cells grown on YEMEA 

supplemented with maltose or maltodextrin, cobalt and urea were significantly higher 

than cells grown on YEMEA supplemented with glucose, cobalt and urea. Changing 

the carbohydrate constituents in YEMEA might result in production of catalysts that 

retain more NHase activity. The data showed that supplementation of different sugars 

in the growth media affects cellular trehalose levels, this can impact the stability of 

NHase. 
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Changes in the carbohydrate supplement and the addition of inducers for NHase 

to YEMEA resulted in demonstrable changes in the cell envelope of Rhodococcus sp 

DAP 96253. Numerous researchers have shown that growth media can influence 

mycolic acid. Previously changes in HPLC profiles of mycolic acids were observed 

when hydrocarbons replaced glucose as the carbon source in growth media, or when 

hydrocarbons of various chain lengths were used (Sokolovska et al., 2003). However, 

analysis of the HPLC profiles of mycolic acids showed that supplementing fructose, 

maltose, or maltodextrin for glucose in YEMEA resulted in significant changes, 

therefore changes in carbon source does not have to be drastic as replacing a sugar for a 

hydrocarbon to see differences in mycolic acid profiles. The addition of NHase 

inducers such as cobalt and urea also resulted in changes in mycolic acid profiles 

suggesting that other components of growth media, such as metals and amides can have 

an impact on mycolic acids content of Rhodococcus sp DAP 96253.  

The examination of mycolic acid profiles is a powerful and relatively easy tool 

that has been used by the Center for Disease Control (CDC) in species identification of 

Mycobacterium, in differentiating Rhodococcus species and in distinguishing members 

of the mycolata taxon (CDC, 1996; Butler et al., 1986). Media selection would be 

extremely important when mycolic acid profiles are being used in the above 

applications as changes in sugars and metals in the media can affect mycolic acid 

profiles, which could lead to problems in identification, screening and classification of 

the mycolata. 
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Tropis et al. (2005) reported that a Corynebacterium glutamicum mutant defective 

in trehalose biosynthesis was unable to synthesize mycolic acids outside the cell. 

However, the addition of glucose, maltose, or maltotriose to the growth media of the 

trehalose defective mutant C. glutamicum restored mycolic acid synthesis by restoring 

trehalose synthesis. Gebhardt et al. (2007) showed that growth on minimal media 

supplemented with sucrose did not result in mycolic acid production, but with the 

addition of trehalose, mycolic acids were produced and found linked to trehalose in 

extractable lipids. Experimental evidence strongly links trehalose availability to 

mycolic acid production. The supplementation of glucose, fructose, maltose or 

maltodextrin in YEMEA resulted in significant changes in the levels of cellular 

trehalose. These changes in cellular trehalose may have contributed to the changes seen 

in mycolic acid content and composition in the cell envelope of Rhodococcus sp DAP 

96253.  

Susceptibility of Rhodococcus sp DAP 96253 to Erythromycin, Rifampin, 

Vancomycin, Ampicillin and Tetracycline was examined. The investigation showed 

that addition of cobalt and urea led to increased sensitivity to all the antibiotics tested 

except for Ampicillin (10µg). In addition, changes in carbohydrate supplements in 

YEMEA resulted in differences in minimum inhibitory concentrations (MICs) and zone 

of inhibitions (ZOIs). These results further supported the hypotheses that changes were 

occurring in the cell envelope of Rhodococcus sp. DAP 96253.  
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 Etest ® was used to for Erythromycin and Rifampicin. Both antibiotics target 

bacterial protein synthesis (Reese et al., 1994). Rhodococcus sp DAP 96253 was more 

susceptible to Rifampin than Erythromycin.  Cells of Rhodococcus sp. DAP 96253 

induced for NHase and then exposed to the Rifampin later developed resistance to 

rifampin. Delayed resistance to Rifampin did not occur with un-induced cells. Rifampin 

is used mostly with mycobacteria, which are known to develop resistance to this 

particular antibiotic (Inderlied, 1991). Resistance could be linked to cobalt acquisition 

in the media since growth in the presence of cobalt and urea led to resistance in 

Rhodococcus sp DAP 96253.  

Vancomycin, which inhibits cell wall synthesis in Gram-positive bacteria (Reese 

et al., 1994), was the most effective antibiotic used in the ZOI experiment. 

Rhodococcus sp DAP 96253 cells induced for NHase activity with cobalt, urea and 

glucose supplementation were approximately three times more sensitive to Vancomycin 

than cells un-induced for NHase (Table 16). Cells grown on YEMEA supplemented 

with fructose and maltodextrin were not as susceptible to Vancomycin as glucose and 

maltose grown cells. Maltodextrin induced cells were resistant to Vancomycin.  

Ampicillin is an inhibitor of cell wall synthesis (Reese et al., 1994). Rhodococcus 

sp DAP 96253 grown on YEMEA with glucose, maltose or maltodextrin with and 

without cobalt and urea were resistant to Ampicillin. Only cells grown on YEMEA 

with fructose un-induced for NHase showed sensitivity to Ampicillin (10µg). This 
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might indicate that growth on fructose resulted in changes in the cell envelope that 

allowed the antibiotic easier access to the cells.  

Sensitivity to antibiotics was increased significantly in cells induced for NHase, 

this increased sensitivity might be due to the changes occurring in the cell envelope of 

Rhodococcus sp DAP 96253. The results showed that the addition of cobalt, and sugars 

to the media affected the mycolic acid profiles, this indicated changes in the cell 

envelope. The addition of cobalt to growth media can affect other components of the 

cell besides the cell envelope. Guymon et al (1978) showed that increased resistance to 

multiple antibiotics in Neisseria gonorrhoeae was due to changes in the cell envelope 

accompanied by changes in outer membrane proteins. Increased sensitivity in induced 

cells of Rhodococcus sp DAP 96253 could be due to changes in mycolic acids and 

glycolipids possibly accompanied by the presence of outer membrane proteins induced 

by the presence of cobalt. Increased resistance to rifampin was also observed in induced 

rhodococcal cells this could also be due to the presence of outer membrane proteins 

induced by the presence of cobalt.  

Cobalt was shown to play a role in antibiotic susceptibility in Rhodococcus. This 

metal might also influence antibiotic susceptibility in other organisms within the 

mycolata taxon such as Mycobacterium and Corynebacterium. Rhodococcus, 

Mycobacterium and Corynebacterium have species that are pathogenic, using cobalt in 

conjunction with antibiotics could be a treatment option. Mycobacterium infections are 

generally harder to treat, utilizing cobalt in treatment might make the cells more 
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susceptible to antibiotics and result in shorter treatments, or the use of lower doses of 

toxic antibiotics.  

Overall the three hypotheses made in the rationale were supported. NHase activity 

was affect by changes in media composition. Supplementation of fructose, maltose, 

maltodextrin in growth media resulted in increased NHase activity. NHase stability was 

also affected by supplementation of different sugars, this could be related to changes in 

cellular and trehalose levels. The supplementation of different sugars and inducers of 

NHase elicited changes in cell envelope components such as mycolic acids and 

glycolipids.  
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Conclusions 

Supplementation of different carbohydrates and cobalt in YEMEA resulted in 

changes in the cell envelope of Rhodococcus sp DAP 96253. Changes in the cell 

envelope were observed by HPLC profiles of mycolic acids, by TLC of lipid extracts, 

and by differences in antibiotic susceptibility. 

Differences in NHase activity after Rhodococcus sp DAP 96253 was grown on 

YEMEA with different carbohydrate supplementations and inducers of NHase can be 

attributed to changes in cell envelope components such as mycolic acids, glycolipids 

and trehalose.  

Trehalose is a component of the cell and cell envelope had a significant impact on 

NHase stability. This information can be used in the preparation of whole cells as 

immobilized catalysts. Trehalose can be added to growth media or be used as storage 

solution for cells to maintain stability of NHase before and after the immobilization 

process. 

 Immobilization of rhodococcal whole cells that are stable with high activity is 

important in large scale treatment of waste or in the production of acrylamide. Any 

factor that affects the cell envelope such as growth media or culture conditions will 

have an effect on immobilization process as these reagents have to enter the cell, and 

crosslink proteins. There is loss of enzyme activity in the immobilization of 

Rhodococcus, therefore it is imperative that whole cells used in any immobilization 

process have high enzyme activity and are inherently stable, this can be achieved by 
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careful media selection. Media components and culture conditions can be manipulated 

to create a cell whose cell envelope would allow enzymes such as NHase to function at 

elevated or lower temperatures, also cells could be tailored for increased tolerance to 

substrates and products. The stabilization of the native cell through manipulation of its 

own metabolism without the addition of foreign/toxic chemicals is advantageous as 

more stable cells can be produced cheaper and safer. 

The isolation of enzymes from cells is an expensive process which usually 

results in significant loss of enzyme activity and stability. The use of whole cell 

catalysts is far more practical for industrial applications. This work provides significant 

background on how the entire cell impacts enzyme activity and stability. Improvement 

in NHase activity and stability is dependent upon on the components of the cell wall 

and other key metabolites of the cell such as trehalose.  
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Future Directions 

 Additional research is needed in order to identify specific changes occurring in 

mycolic acids, and to identify glycolipids produced after growth on YEMEA with 

different supplementations. The presence of other sugars in the cell and cell wall should 

be evaluated. Also investigations on the effect of immobilization with glutaraldehyde 

and other immobilization agents on the loss of NHase activity after growth on YEMEA 

supplemented with different sugar and inducers would be informative. Rhodococcal 

trehalose mutants would provide additional information on the role of trehalose in 

NHase activity, stability and cell envelope permeability. The effect of cobalt on 

antibiotic sensitivity in Rhodococcus and other members of mycolata should also be 

explored. 
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Appendix 
 
Ammonia Assay 
  
Sodium phenate solution 
 
25 g Phenol (Sigma- Aldrich Co., St. Louis, MO) added to 800 ml water and 78 ml 4N 
sodium hydroxide (Sigma- Aldrich Co., St. Louis, MO) solution. 
 
 
Sodium Nitroprusside Solution (0.1%) 
 
1 g of Sodium Nitroprusside (Sigma- Aldrich Co., St Louis, MO) added to 100 ml DI 
water (stock solution). 
1 ml of stock solution was added to 99ml DI water. 
 
Sodium hypochlorite (0.02N) 
2.44 ml of 6.15% Chlorox® made up to 100 ml with DI water 
 
 
 
 
Mycolic acid extraction 
 
Saponification reagent 
200 g of potassium hydroxide (Sigma, St. Louis, MO) was added to 400 ml DI water 
followed by the addition of 400 ml of methanol 
 
Acidification reagent 
50% solution of hydrochloric acid (Fisher Scientific, Fairlawn, NJ). 
 
Potassium bicarbonate reagent 
4 g of potassium bicarbonate (Sigma, St. Louis, MO) was added to 98 ml of DI water 
and 98 ml of methanol (Sigma-Aldrich, St. Louis, MO). 
 
Clarification Reagent 
100 ml of the acidification reagent added to100 ml of methanol (Sigma-Aldrich, St. 
Louis, MO). 
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SDS- PAGE Gel 
 
 
12% T ( Bottom) Gel  
 
20.8 ml of Protogel (30% (w/v) acrylamide and 0.8% (w/v) bisacrylamide stock 

solution, National Diagnostics, Atlanta, GA) was added to 16 ml ddH2O, 12.5 ml of 

1.5M Tris (Sigma, St. Louis, MO) pH 8.8, and 500 µl 10% SDS (GE Healthcare 

Biosciences, Uppsala, Sweden). The solution was de-aerated for 10 min followed by 

the addition of 25 µl TEMED (Sigma, St Louis, MO). 

 
4% T Stacking (Top) Gel 
 
2.6 ml of Protogel (30% (w/v) acrylamide and 0.8% (w/v) bisacrylamide stock solution, 

National Diagnostics, Atlanta, GA) was added to 12.12 ml ddH2O, 5 ml of 1.5M Tris 

(Sigma, St. Louis, MO) pH 6.8, and 200 ul 10% SDS (GE Healthcare Biosciences, 

Uppsala, Sweden). The solution was de-aerated for 5 min followed by the addition of 

10 µl TEMED (Sigma, St Louis, MO). 
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Protein Staining, Digestion and Zip Tipping 
 
Silver Staining Reagents 
 
Fixing Solution 
 250 ml DI water added to 200 ml ethanol (Sigma-Aldrich, St Louis, MO) and 50 ml 

acetic acid (Fisher Scientic, Fairlawn, New Jersey) 

 
 
Sensitizing solution 
200 ml DI water added to 10 ml 5% sodium thiosulfate (Fluka Chemie, Buchs, 

Switzerland) solution with 17 g sodium acetate (Sigma, St Louis, MO) made up to 250 

ml with DI water, 1.25 ml of glutaraldehyde (Fluka Chemie, Buchs, Switzerland) added 

immediately before use. 

 
 
 
Silver solution 
250 DI water added to 625 mg silver nitrate (Sigma, St Louis, MO), 100 µl of 

formaldehyde (Sigma, St Louis, MO) added immediately before use. 

 
Developing solution 
7 µl 5% sodium thiosulfate (Fluka Chemie, Buchs, Switzerland) and 6.25 g sodium 

carbonate (Sigma, St Louis, MO) added to 200 ml DI water and made up to 250 ml, 

100 µl of formaldehyde (Sigma, St Louis, MO) added immediately before use. 

 
Stopping solution 
3.65 g EDTA (Fisher Scientific, Fairlawn, New Jersey) added to 250ml of DI water 
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Preserving solution 
150 ml ethanol (Sigma, St Louis, MO) added to 327 ml of DI water with 23 ml of 
glycerol (Sigma, St Louis, MO). 
 
 

Gels for silver staining were placed in the fixing solution for two 15 min periods 

then placed in the sensitizing solution for 30 min. The gels were washed three times for 

5 min, then stained with silver for 20 min, followed by washing twice for 1 min. Bands 

were developed in the developing solution for 4-10 min and stopped by placing the gel 

in the stopping solution for 10 min. Gels were washed three times for 5 min in DI water 

then placed in the preserving solution. 

 

  

Hot Coomasie Blue Staining 

1.6 L of gel staining solution consisting of 1 PhastGel® (Ambersham 

Biosciences, Piscataway, NJ) tablet dissolved in 10% acetic acid (Fisher Scientific, 

Fairlawn, NJ) was heated and poured over the gels. The gel was incubated in the 

staining solution for 10 min. The gel was transferred to a separate tray and destained 

three times for 1 hr in 1.1 L of 10 % acetic acid with gentle agitation.  Gels were 

transferred to 500 ml of a preserving solution (87% glycerol, GE Healthcare 

Biosciences, Uppsala, Sweden ) for 30 min. 
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Protein Digestion 

Gel plugs were incubated for 20 min at room temperature in 100 µl of 50mM 

ammonium bicarbonate (Sigma, St. Louis, MO) in 50% acetonitrile  (Applied 

Biosystems, Warrington, UK) the solution was removed and the step was repeated, 100 

µl of 75% acetonitrile (Applied Biosystems, Warrington, UK) was added to the plugs 

and incubated for 20 min at room temperature. The plugs were dried using a speed 

vacuum for 30 min with no heat. The protein was digested by adding 7 µl of  20 µg/ml 

trypsin (Sigma, St. Louis, MO)  to the plugs and incubating them at 37°C overnight. 

The digested proteins were incubated for 20 mins with 60 µl of 50% acetonitrile/0.1% 

TFA, following incubation the solution was transferred into a new tube and an 

additional 40 µl of a 50% acetonitrile (Applied Biosystems, Warrington, UK)  with 

0.1% TFA (Applied Biosystems, Warrington, UK)  solution was added to the plugs and 

incubated again for 20 mins. The solution was removed and added to the tube 

containing the first extract, then dried in speed vacuum with no heat for 5hrs. 

 

Zip Tip (uC18) for MALDI TOF/TOF 

Dried samples from protein digestion were treated with neat formic acid (Sigma 

Aldrich, St. Louis, MO) and vortexed, 8.5µl of 0.1% TFA (Applied Biosystems, 

Warrington, UK) was added to the tube and the solution vortexed. Zip tips were 

prepared by aspirating the wetting solution (50% acetonitrile, Applied Biosystems, 

Warrington, UK) twice followed by aspirating and discarding 0.1% TFA ten times. The 
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sample was bound to the Zip Tip by aspirating and dispensing the sample inside the 

sample Eppendorf tube ten times. The sample was washed in 0.1% TFA ten times. A 

second pipette was used to dispense 0.7 µl of elution solution (0.1% TFA / 70% 

acetonitrile) in to the cap of the sample Eppendorf tube. The entire droplet was 

aspirated and eluted five times into the cap of the Eppendorf tube and on the final rinse 

the entire volume of the sample was aspirated and dispensed onto a desired space on a 

clean MALDI plate. The sample was allowed to dry and 0.3 µl of alpha matrix 

(Applied Biosystems, Warrington, UK) added onto the sample spot. 

 

 

Trehalose analysis 

Anthrone reagent 

200 mg of anthrone (Fisher Scientific, Fairlawn, NJ) in 5 ml absolute ethanol (Aaper 

Alcohol and Chemical Co., Shelbyville, KY) made up to 100 ml with 75% sulfuric acid 

(Fisher Scientific, Fairlawn, NJ). 
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