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ABSTRACT 

 

 Pseudomonas aeruginosa is an opportunistic, nosocomial pathogen for which antibiotic 

resistance and biofilm development is common.  Quorum sensing communication is known to be 

a major controlling factor in virulence gene expression, biofilm development, antibiotic 

resistance factors, and specifically MexAB-OprM multi-drug efflux pump expression in 

P.aeruginosa.  MexAB-OprM efflux pumps contribute to antibiotic resistance of tetracycline and 

other antibiotics in pseudomonads and other organisms. P.aeruginosa infections are problematic 

in cystic fibrosis and burn patients; it is also the number one causative agent of respiratory 

infections for intensive care unit patients.  Present day antibiotics are losing the battle against 

these infections. In theory, quorum sensing inhibitors (QSI) reduce pathogencity of the organism; 

making it less virulent, thus allowing either the host immune system to clear the infection or use 

of a QSI in combination with an antibiotic to clear more persistent pathogens. For these reasons 



 

 

 
 

two alternative modes of treatment were explored in this study: quorum sensing inhibition by 

folk-medicinal plant extracts and an example of combination drug therapy, the ―thyme-

tetracycline effect‖.   

 Fifty folk-medicinal plant extracts were screened for potential anti-quorum sensing 

activity using two quorum sensing inhibition (QSI) reporter strains, Pseudomonas aeruginosa 

QSIS2 and Chromobacterium violaceum 12725. These were used to test specifically for C4-C6 

and C12 HSL quorum sensing inhibition.  Of the fifty plants tested, thirty plant families were 

represented.  Eleven plant extracts (basil, chaparral, clove, cranberry, oregano, pomegranate, 

rosemary, sage, sassafras, thyme and witch hazel) showed C4 HSL quorum sensing inhibition as 

determined by both assays.  Interestingly, five of the plants were from the Lamiaceae family.   

Thymus vulgaris (thyme), also from the Lamiaceae family, was chosen for further assessment.   

Previous research has shown that thyme extract can synergistically augment tetracycline 

activity against tetracycline-resistant Pseudomonas aeruginosa, creating the ―thyme-tetracycline 

effect.‖  Disc diffusion assay, thin layer chromatography (TLC), and TLC bioassay techniques 

were used to show that thymol is the active component in the thyme extract that augments 

tetracycline activity against resistant Pseudomonas.  This study also showed that thymol is a 

potent C4 HSL quorum sensing inhibitor.  The collective data suggests a potential mode of action 

for the thyme-tetracycline effect: thymol appears to prevent MexAB-OprM efflux pump gene 

expression.  By blocking MexAB-OprM expression, tetracycline antibiotic accumulation can 

occur within the cell, thus allowing cellular damage.  

 

INDEX WORDS:  Thymus vulgaris, Quorum sensing inhibition, Medicinal plants,  

Pseudomonas aeruginosa 

 



 

 

 
 

QUORUM SENSING INHIBITORY ACTIVITIES OF VARIOUS FOLK MEDICINAL 

PLANTS AND THE ELUCIDATION OF THE THYME-TETRACYCLINE EFFECT 

 

 

 

 

 

by 

 

 

 

 

MARIA M. NAGY 

 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment of Requirements for the Degree of 

Doctor of Philosophy 

in the College of Arts and Sciences 

Georgia State University 

2010 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Maria M. Nagy 

2010 



 

 

 
 

 

QUORUM SENSING INHIBITORY ACTIVITIES OF VARIOUS FOLK MEDICINAL 

PLANTS AND THE ELUCIDATION OF THE THYME-TETRACYCLINE EFFECT  

 

  

 

by 

 

 

 

 

 

 

MARIA M NAGY 

 

 

 

 

 

 

 

    Committee Chair:  Dr. Sidney Crow 

 

  

   Committee:       Dr. Keith Pascoe 

           Dr. George Pierce 

Dr. Eric Gilbert 

 

 

 

 

 

Electronic Version Approved: 

 

 

 

 

Office of Graduate Studies 

 

College of Arts and Science 

 

Georgia State University       

 

December 2010



iv 

 

 
 

ACKNOWLEDGEMENTS 

 

 

Thank you God! 

 

 

 

Thank you! Dr. Crow and Dr. Pascoe.  I‘d like to thank Dr. Crow for forever being the 

stern disciplinarian in this process, and Dr. Pascoe for believing in me since day one. I‘d also like 

to thank Dr. Gilbert and Dr. Peirce for participating on my committee.  

Thanks of course to my family Mom, Dad, Kati, Peti, Paul, and everyone else that stood 

by me and supported me emotionally and intellectually on this long arduous journey. Thank you 

so much for never giving up on me, especially during those times I wanted to give up on myself. 

I am very blessed.  

Thank you! 

*** 

I‘d also like to acknowledge others that have been critical to my success.  First, the 4905 

Biology classes at Georgia State University that helped pick, prepare and test many of the 

medicinal plant extracts discussed in this study.  Without them I wouldn‘t have the samples.  I‘d 

also like to thank Brandi and Jeannie for proof reading my work, and Bryan Stubblefield and 

Amro for constantly giving me great ideas at various wee hours of the night. 

 

 

 

 

 

 

 

 

 

 

 



v 

 

 
 

 

TABLE OF CONTENTS 

 

 

 

ACKNOWLEDGEMENTS iv 

 

LIST OF TABLES vi 

 

LIST OF FIGURES viii 

 

ABBREVIATIONS x 

  

INTRODUCTION 1 

 

MATERIALS AND METHODS 30 

    

     RESULTS: SCREENING OF FIFTY FOLK-MEDICINAL EXTRACTS  

     FOR QSI ACTIVITY      38 

   

     RESULTS: THE THYME-TETRACYCLINE EFFECT 61 

      

     RESULTS: QSI ACTIVITY OF THYME AND ITS MAJOR CONSITUENTS 79 

 

DISCUSSION       88 

 

REFERENCES 97 

 

      

  



vi 

 

 
 

LIST OF TABLES 

 

 

Table 1:  Folklore and Published Test Results Pertaining to the Folk-Medicinal Plants 

Tested. 38 

 

Table 2: QSI Screening of Various Folk-Medicinal Extracts using the QSIS2 Assay.   49 

 

Table 3: Glucose Concentration and pH Readings of the Folk-Medicinal Extracts.  54 

 

Table 4: QSI Results of the Folk-Medicinal Extracts using the Chromobacterial QSI 

Assay. 57 

 

Table 5: DDA of Ethanol Extract of Thymus vulgaris Leaves. 62 

 

Table 6: Percentage Yield of Crude Extracts Produced by Extraction of Thyme Leaves in 

Various Solvents.  64 

 

Table 7: Percent Yield from Gradient extraction of Thyme Leaves using Recycled and 

Nonrecycled (Fresh) Hexane. 66 

 

Table 8: Disc Diffusion Assay Results of the Crude Extracts made with Non-recycled 

Solvent for each Extraction in Hexane, Methanol, and Ethanol of Thymus vulgaris Leaves. 67 

 

Table 9:  Percentage Yield of Crude Extracts made with Non-recycled Solvent. 67 

 

Table 10:  Disc Diffusion Assay of Hexane, Methanol, and Ethanol Resoaks using 

Recycled Solvent (300-303). 69 

 

Table 11: Percentage Yield of Samples 300-303. 69 

 

Table 12:  Percentage Yield of Crude Samples (304-311) Comparing Three Soaks Versus 

One Soak. 71 

 

Table 13:  Disc Diffusion Assay of Crude Samples (304-311) Comparing Three Soaks 

Versus One Soak. 71 

 

Table 14:  DDA Results of the Methanol Crude Extract and its Corresponding Fraction. 73 

 

Table 15:  DDA of Major Constituents at Low Concentrations. 77 

 

Table 16: DDA of Thymol and Carvacrol constituents at Higher Concentrations. 78 

 

Table 17: QSI Activity of Crude Extracts with the QSIS2 Assay. 79 

 

Table 18: QSI Activity of Baicalein Using the QSIS2 Assay. 81 



vii 

 

 
 

 

Table 19: QSI Activity of Thymol at Various Concentrations Using the QSIS2 Assay. 82 

 

Table 20: Activity of Rosmarinic Acid at Various Concentrations using the QSIS2 Assay. 83 

 

Table 21: QSI Activity of Carvacrol at Various Concentrations with the QSIS2 Assay. 84 

 

Table 22: Chromobacterium QSI Assay of the Thyme Extract and its Main Constituents. 86 

 

 



viii 

 

 
 

LIST OF FIGURES 

 

Figure 1: Life magazine--Advertisement for penicillin (1944). 2 

 

Figure 2: Scanning electron micrograph of Pseudomonas aeruginosa-(CDC). 4 

 

Figure 3: Biofilms. 7 

 

Figure 4: Quorum Sensing cascading system in Pseudomonas aeruginosa. 11 

 

Figure 5: N-(3-oxododecanoyl) homoserine lactone (3-oxo-C12-HSL). 11 

 

Figure 6: N-(butanoyl)-L-homoserine lactone (C4-HSL). 11 

 

Figure 7: Tetracycline structures. 14 

 

Figure 8: MexAB-OprM multidrug efflux pump. 16 

 

Figure 9: QSI molecules. 21 

 

Figure 10: Thymus vulgaris. 24 

 

Figure 11: Baicalein. 26 

 

Figure 12: Rosmarinic acid. 26 

 

Figure 13: A) Thymol and B) Carvacrol. 27 

 

Figure 14: QSI results screened with the QSIS2 assay. 51 

 

Figure 15: QSI results screened with the QSIS2 assay. 52 

 

Figure 16: QSI results screened with the QSIS2 assay. 52 

 

Figure 17: QSI results screened with the QSIS2 assay 53 

 

Figure 18: QSI results of crude samples screened with the Chromobacterial QSI 

assay. 59 

 

Figure 19: QSI results of crude samples screened with the Chromobacterial QSI 

assay. 60 

 

Figure 20: QSI results of crude samples screened with the Chromobacterial QSI 

assay. 60 

  



ix 

 

 
 

Figure 21: DDA of ethanol thyme leaf extract at a 500 mg/mL concentration. 61 

 

Figure 22: 2D-TBA of the thyme leaf extract. 63 

 

Figure 23: TLC comparison of thyme leaves extracted with various solvents. 

 

64 

 

Figure 24: TLC results of graduated extraction of thyme leaves using recycled and 

non-recycled hexane. 65 

 

Figure 25:  TLC of extracts samples 270-275 (thyme leaves) extracted in hexane, 

methanol, and ethanol, prepared using non-recycled solvent with each of three soaks. 67 

 

Figure 26: TLC of thyme leaf extracts. (Sample 300-303) extracted in hexane, 

methanol, and ethanol resoaks using recycled solvent with each soak. 68 

 

Figure 27: TLC comparison of three soaks verses one soak. 70 

 

Figure 28: TLC of the methanol crude (307) and its corresponding fractions. 72 

 

Figure 29: TLC of four major constituents. 74 

 

Figure 30: TLC diagram and TBA of hexane crude, thymol, and control. 75 

 

Figure 31: This is a close up photo of the rows of the above TBA. 75 

 

Figure 32: Disc Diffusion Assay of thymol. 78 

 

Figure 33: QSI activity of various thyme crude extracts with the QSIS2 assay. 80 

 

Figure 34: QSI activity of baicalein at various concentrations with the QSIS2 assay. 81 

 

Figure 35: QSI activity of thymol at various concentrations with the QSIS2 assay. 82 

 

Figure 36: QSI activity of Rosmarinic acid at various concentrations with the QSIS2 

assay 83 

 

Figure 37: QSI activity of carvacrol at various concentrations with the QSIS2 assay. 85 

 

Figure 38: QSI Chromobacterial QSI assay results of the thyme extract and its 

various constituents. 87 

 

Figure 39: QSI Chromobacterial QSI assay results of the thyme constituents. 87 

 

 

 

 



x 

 

 
 

LIST OF ABBREVIATIONS 

 

 

Acyl homoserine lactone AHL 

 

Disc diffusion assay DDA 

 

Infectious Disease Society of America IDSA 

 

Luria-Bertani LB 

 

Methicillin resistant Staphylococcus aureus MRSA 

 

Mueller Hinton II MH 

 

N-(butanoyl)--L-homoserine lactone C4 HSL 

 

N-(3-oxododecanyoyl)-L-homoserine lactone C12 HSL 

 

N-hexanoyl-L-homoserine lactone C6 HSL 

 

Nutrient broth NB 

 

Office of Technical Assessment OTA 

                                                                                                                                                                                                   

Quorum sensing  QS 

 

Quorum-sensing inhibition QSI  

 

QSIS2 reporter strain QSIS2     

 

Reference factor RF 

 

Rosmarinic acid RA 

 

Thin-layer chromatography TLC 

 

TLC bioassay TSA 

 

Tetracycline TET 

 

Tryptic soy agar TSA 

 

World Health Organization WHO 

 



1 

 

 
 

INTRODUCTION 

Infectious Disease 

Infectious diseases are defined by the World Health Organization (WHO) as diseases 

caused by microbes; these microbes may include bacteria, fungi, protozoa, and viruses (WHO, 

2010).  These organisms may be found in either the environment or participate in normal 

commensal flora for humans, plants, or animals.  When in their natural environment, these 

microbes are typically kept in balance by the surrounding flora. Thus, many of these organisms 

can be beneficial to their environment by providing nutrient turnover; but when certain bacteria 

are introduced into a foreign niche within the human body, they may cause disease.  Diseases 

caused by bacterial infections can range from severe to mild and may include wound infections, 

pneumonia, septicemia, endocarditis, colds, and eye and ear infections (Todar, 2008). 

Prior to the discovery of penicillin antibiotics, doctors were unable to treat even relatively 

simple bacterial infections such as otitis media (inner ear infection) and streptococcal infection 

of the throat (Office of Technical Assessment [OTA], 1995).  Doctors were instructed to keep 

the infected patient clean and comfortable until the immune system could clear the infection; 

more serious infections, however, were incurable (OTA, 1995).  The treatment of bacterial 

infections was revolutionized in 1929, when Alexander Fleming discovered penicillin.  For 

several years, antibiotics were thought to be the ―end-all‖ curative agent for many bacterial 

infections and were considered to be the wonder drug of the era.   Penicillin was used to treat 

infections caused by Staphylococci, Streptococci and other Gram-positive organisms (OTA, 

1995).    On August 14, 1944, Schenley Laboratories unveiled an advertisement campaign in Life 

magazine (Figure 1) that suggested the revolutionary usefulness of penicillin on the battle field 

(Levy, 2002).   
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Figure 1: Life magazine--Advertisement for penicillin (1944). 
ncmuseumofhistory.org/.../topic/16/ 
 

 
 

 However, by 1945 penicillin-resistant strains of Staphylococcus aureus were being 

isolated in hospitals.  Methicillin, a semi-synthetic version of penicillin, was introduced in 1959 

in hopes of combating these resistant strains.  Only one year later, the first isolates of methicillin-

resistant strains of S. aureus (MRSA) were being found in hospitals in the United States.  

Vancomycin was introduced in 1956 to treat MRSA (OTA, 1995).    The first case of 

vancomycin resistance was seen in Japan in 1996 (CDC, 2002). 

 In 2001, WHO officially deemed antibiotic resistance the number three public health 

concern of the 21
st
 century (Levy, 2002).  In April of 2010, the ―10 x‘20‖ initiative was launched 

by the Infectious Disease Society of America (IDSA) to assist in the development of 10 new 

antibiotic drugs by the end of 2020.  The focus of this drug development initiative is to target 

specific infectious agents deemed ―ESKAPE‖ pathogens.  These organisms include:  

Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 

baumamnii, Pseudomonas aeruginosa and Enterobacter species, and represent the most 

http://ncmuseumofhistory.org/exhibits/healthandhealing/topic/16/
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prominent causes of hospital-acquired infections today.  ―ESKAPE‖ also refers to the ability of 

these organisms to ―escape‖ present-day antimicrobial treatments (IDSA, 2010).  Clearly, 

exploration of new and alternative drug treatments for infectious diseases is vital. 

 One particularly troubling organism is Pseudomonas aeruginosa; it is a nosocomial, or 

hospital-acquired, opportunistic pathogen.  It is the number one infectious agent causing 

respiratory infections in people with extended hospital stays (Driscoll et al., 2007).   

 

Pseudomonas aeruginosa 

 Pseudomonas aeruginosa (Figure 2) is a Gram-negative rod that is propelled by a single 

flagellum (Todar, 2008).  Pseudomonas is a genus within the medically-relevant class of 

Gammaproteobacteria, and belongs to the family Pseudomonadaceae.  There are eight genera in 

the family Pseudomonadaceae and twelve species in the genus Pseudomonas.   P. aeruginosa, 

native to both soil and water, is also a well-known plant pathogen (Todar, 2008).  As a human 

pathogen, opportunistic infections by this organism can occur when the host immune system is 

previously weakened due to a prior ailment-such as AIDS, cancer, cystic fibrosis, 

transplantation, or substantial burns (Driscoll et al., 2007).  In these scenarios, pseudomonad‘s 

have the ability to infect any tissue where the defenses of the host have been compromised 

(Todar, 2008).  While P. aeruginosa infections are most commonly associated with pneumonia 

in cystic fibrosis patients and wound infections of burn patients, it is also the causative agent of 

several other illnesses including urinary tract infections, endocarditis, bactermia (Todar, 2008), 

ulcerative keratitis (in contact lens wearers) and otitis externa (in diabetics) (Driscoll et al., 

2007).  P. aeruginosa is also estimated to be the causative agent in 11%-13% of all nosocomial 

infections, in 13%-22% of infections in intensive care units (ICUs), and in 16% of all surgical 
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site infections (Driscoll et al., 2007).  Furthermore, it is the second-most common cause of 

health-associated and ventilator-associated pneumonia (Driscoll et al., 2007).   

 

 

                                                            
Figure 2: Scanning electron micrograph of Pseudomonas aeruginosa-(CDC). 

(Todar, 2008) 

 

 

Virulence 

 When P. aeruginosa infects the host, it expresses a myriad of virulence factors that allow 

it to attack the host immune system while evading treatment.  An intrinsic defensive feature of 

this organism is its outer phospholipid membrane which has limited permeability for most 

molecules. 

 Pseudomonads also secrete a number of compounds that interfere with host defenses 

including enzymes, exotoxins, and pyocyanin.  Enzymes, such as alkaline protease, elastase, and 

other proteases, aid in degrading host proteins Exotoxins, including Exotoxin A, interfere with 
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protein synthesis and can even cause cellular death.  Pyocyanin is a blue-green pigment which is 

bactericidal against competing organisms. In the lungs, pyocyanin can also disrupt ciliary action 

and cause inflammation (Driscoll et al., 2007).   

 Another virulence factor that can be expressed in Pseudomonas is the type III secretion 

apparatus.  Expression of the genes encoding the various parts of the secretion system is seen 

predominantly in acute or invasive infections more than in chronic infections (Driscoll et al., 

2007).  This mechanism is a ―contact-dependent‖ system that is triggered by the interaction of P. 

aeruginosa with the host cell.  The secretion apparatus allows the cell to inject exoenzymes 

directly into the host cell.  There are four known exoenzymes that are typically expressed by P. 

aeruginosa: Exo S, Exo T, Exo U, and Exo Y (Driscoll et al., 2007).  These exoenzymes can 

damage the host‘s cellular machinery and even cause cell death (Driscoll et al., 2007).    

In addition to the impermeability of the cellular membrane and the secretion apparatus, 

Pseudomonas also has another mechanism of protection.  If a damaging molecule does gain 

entry into the cell, then unique pumps quickly expel the compounds from the cell before any 

damage can occur. These efflux pumps can remove antibiotics, dyes, detergents, solvents and 

other compounds from the cell before they can cause harm (Driscoll et al., 2007).   There are two 

types of efflux pumps that are seen in bacteria: those which are encoded in the chromosome and 

those which are plasmid borne.   For example, the MexAB-OmpM efflux pumps found in P. 

aeruginosa are intrinsic to the genome. Plasmid-borne antibiotic resistance genes that code for 

efflux pumps can be located on specialty plasmids, such as tetracycline-resistant (Tc) plasmids.  

These plasmids are typically transferred through conjugation between bacteria and can encode 

for multi-drug resistance pumps (Chopra and Roberts, 2001). 
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Biofilms 

A final mechanism for protection from the host immune system may be incurred through 

biofilm formation. It well known that bacteria grow and develop into ―tight-knit‖ communities 

on biotic and abiotic surfaces. The innate features of a biofilm can protect bacteria from 

antibiotic damage.  Biofilms are so efficient in preventing antibiotic damage that concentrations 

of antibiotics must be increased by 100-1000--fold to be effective (Costerton et al., 1994). 

 Biofilms (Figure 3-A) typically consist of microbial communities that secrete and are 

encased in a thick exopolysaccharide matrix.  There are special features associated with most 

biofilms that allow for increased efficiency of these communities.  These particular morphological 

characteristics include:  an attachment surface, mushroom-like clusters of bacterial cells, a thick 

polysaccharide matrix encasing the bacterial communities; extensive well-hydrated channels that 

allow for directed liquid flow (providing delivery and removal of nutrients and waste products); 

and swarmer cells (Figure 3-B).  Swarmer cells are cells that easily break off from the mushroom 

structure, and are thus able to relocate and re-populate a new location (Costerton et al., 1994). 
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Figure 3: Biofilms. A) Mixed colony biofilm from Bow River Alberta, Canada; B) Diagram of a 

biofilm: Notice the following features:  mushroom structures, thick polysaccharide matrix, 

excessive channels, well hydrated channels, directed flow (allowing for delivery of nutrients and 

removal of waste products and swarmer cells. (Costerton et al., 1994) 

 

 

 Medical devices, such as internal catheters, artificial joints, and heart value replacement 

units, have become commonplace in medicine.  While these advances have extended the lives of 

many, they have also ironically brought about subsequent problems.  The number of people that 

are in extended ―immuno-compromised‖ states has greatly increased.  Unfortunately, medical 

devices provide the perfect breeding ground for the development of opportunistic bacterial and 

biofilm infections, and for the proliferation of resistant bacteria (Reid, 1999).   

 As of 1999, catheter and urinary stent usage occurred in over 100 million patients per 

year (Reid, 1999).  Sixty percent of all hospital-acquired microbial infections are caused by 

biofilms (Lewis, 2001).  Without the use of prophylactic antibiotic treatments, the infection rate 

for urethral stents is 28% and is nearly 100% with catheter usage.  For this reason, prophylactic 

antibiotic treatments are administered to patients to reduce infection rates (Reid, 1999).     

   There are many features of a catheter that promote bacterial growth.  These features 

include liquid flow, nutrient access, attachment surface, and the occasional planktonic organism, all 

A B 
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of which are readily associated with biofilm development.  Because of this, biofilm infections are 

prominent in catheter-type environments. If a biofilm does develop, then it requires an antibiotic 

dosage of a 100-1000 times greater concentration of antibiotics than with non-biofilm bacterial 

infections.  The excessive use of these antibiotic treatments increases the development of resistant 

bacteria, thus reducing the overall effectiveness of available antibiotics (Costerton, 1999).  

Many characteristics of biofilms contribute to the difficulty in treating these types of 

infections with normal antibiotic doses.  First, the exopolysaccharide matrix produces a physical 

barrier, which reduces the amount of antibiotic that can enter into this microbial community.  

Second, even if antibiotic treatments infiltrate the exopolysaccharide matrix, the antibiotic may 

still have difficultly accessing the internal cells of the mushroom-like structures.  Third, during the 

formation of a biofilm, specialized virulence gene expression can occur.  These virulence factors 

include the expression of antibiotic denaturing enzymes, efflux pump, and increased plasmid 

exchange.    The development and expression of many of these virulence features is typically under 

quorum sensing control (Bassler, 1999; Camara et al., 2002; Costerton, 1999; Lewis, 2001). 

   

 
Quorum Sensing 

  Quorum sensing (QS) is a population-dependent expression of genes that influences 

biofilm development, efflux pump expression, toxin production, and many other virulence factors.  

Quorum sensing occurs through chemical signaling and has been observed in bacteria, fungi, and 

even plants.  Individual cells in an environment constantly express and expel low levels of quorum 

sensing molecules.  It is only when the cell population reaches a certain concentration that the 

threshold gradient is achieved; these signal molecules diffuse back into the cell and bind to a 

transcription regulator.  This binding triggers the expression of QS-mediated genes, and the entire 
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population thus responds in a joint expression or repression of a multitude of genes.  It has been 

shown that many organisms have variations on this quorum sensing theme (Bassler, 1999; Camara 

et al., 2002; Hogan et al., 2004; Otto, 2004).  Quorum sensing responses may result from intra-

species or interspecies communication. In this way, bacteria within a given area can attack the host 

as unified army (Bassler, 1999).    

  While the basics are similar, there are some differences with Gram-positive quorum 

sensing.  First Gram-positive organisms use small peptide units called pheromones as their QS 

molecules.  They also use transmembrane proteins and they utilize a two- component signal 

transduction system in order to trigger QS-mediated gene expression.  For example, in 

Staphylococcus aureus QS communication is encoded on the agrACDB operon. First the Agr D 

gene product produces a nonreactive oligopeptide, which later becomes cleaved and a small peptide 

unit is exported from the cell by the AgrB ATP binding cassette transmembrane protein.    When the 

concentration of these newly expelled pheromone units reach quorum levels, they eventually bind to 

a second transmembrane protein, AgrC.  Next, the AgrC protein; can autophophorylate the 

transcription regulator, AgrA.  Lastly, the phosphorylated AgrA will bind to the P3 promoter sites 

of the agrACDB operon triggering the expression of RNA III.  RNA III will up regulate or down 

regulate the expression of many quorum sensing mediated genes such as  surface proteins-

fibronectin-binding protein, coagulase, toxin expression-enteroxin (TSS), and toxic shock syndrome 

toxin (TSST-1) (Camara et al., 2002; Otto, 2004).   

 One of the QS motifs found in Gram-negative bacteria is the Lux I/R system.    An 

autoinducer synthase, Lux I, is responsible for manufacturing QS molecules called acyl homoserine 

lactone (AHL) derivatives.  Acyl homoserine lactones are lactone rings with a carbonyl tail (C4-C16) 

with varying functional lengths.  QS molecules are excreted into the extra-cellular environment.  
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When the organisms grow to sufficient density, the concentration of the AHL reaches a critical 

value; these compounds diffuse back down their concentration gradient and into the cell, binding to 

an autoinducer regulator compound, Lux R. This triggers the expression of quorum sensing 

controlled genes.  One main difference between the Lux R/I system and other QS systems is that 

transmembrane proteins are not used predominantly because acyl homoserine lactone units tend to 

be small carbon (C4-C6) units (Bassler, 1999).    

 In Pseudomonas, the quorum sensing mechanism consists of two main cascading 

regulatory systems Las I/R and Rhl I/R (Figure 4) and varying size acyl-homoserine lactone units 

(Bassler, 1999).  There is a low level constitutive expression of the Las I gene product, N-(3-

oxododecanoyl) homoserine lactone (3-oxo-C12-HSL) (Figure 5).  When the 3-oxo-C12-HSL signal 

molecule binds to the Las R regulator protein, two functions are carried out.  First, it triggers 

modulation of QS-regulated genes including genes associated with exoenzymes- elastase, alkaline 

and acid proteases, exotoxin A, secretion apparatus (Xcp) and biofilm development.  Second, it also 

triggers the cascading regulatory expression of Rhl I/R genes.  Rhl I/R gene products control the 

expression of a number of secondary genes including regions that code for: elastase, lectins, 

hydrogen cyanide, rhamnolipids and siderophores.  Expression of these genes occurs when the gene 

product of Rhl I, N-(butanoyl)-L- homoserine lactone (C4-HSL) (Figure 6) is excreted into the 

environment; also reaching sufficient levels, and diffusing back into the cell thus binding to the Rhl 

R regulatory protein (Camara et al., 2002). 
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Figure 4: Quorum Sensing cascading system in Pseudomonas aeruginosa. 

 (Camara et al., 2002) 
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Figure 5:  N-(3-oxododecanoyl) homoserine lactone. (3-oxo-C12-HSL). 
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Figure 6:  N-(butanoyl)-L-homoserine lactone. (C4-HSL). 
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Prevention and Treatment 

 Complete eradication of P. aeruginosa in hospitals is likely unattainable, since 

Pseudomonas species can be found growing in every conceivable reservoir in the hospital 

environment. Reduction is the first line of defense when it comes to infections in hospitals. 

Reducing nosocomial infection rates can be achieved thru methods such as: proper disinfecting, 

aseptic techniques and monitoring of patient respirators, ventilators, and other equipment 

(Driscoll et al., 2007).   However if an infection does occur, antibiotic treatment is needed.        

P. aeruginosa infections are typically treated with aminoglycosides antibiotics such as: 

gentamicin, tobramycin, monobactams, and some flouroquinolones antibiotics. 

 

Antibiotics 

 In general there are five major groups of antibiotics used to treat most bacterial 

infections: β-lactams, sulfonamides, streptomycin, chloramphenicol, and tetracyclines.  There are 

three major sources from which these well known antibiotics are derived.  These are the molds 

Penicillium and Cephalosporium, the Actinomycetes, such as Streptomyces spp., and the Gram-

positive Bacillus spp.  Penicillium and Cephalosporium molds produce the β-lactam antibiotics 

such as: penicillin, cephalosporin; semi-synthetic versions such as amoxicillin and ampicillin are 

also available.  These drugs interfere with cell wall development. 

 Actinomycetes, such as Streptomyces, are the source for: the aminoglycosides, 

macrolides, tetracyclines and chloramphenicol.  These antibiotics interfere with ribosome or 

protein synthesis in the target bacteria.  Bacillus spp. produces polypeptide antibiotics such as 

polymixins, and bacitracin.  Polymixin disrupts phospholipid membrane function, while 

bacitracin affects cell wall growth (Todar, 2008). 
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Antibiotic Resistance 

 Antibiotic resistance is a major problem encountered by physicians treating bacterial 

infections.  There are some antibiotics to which pseudomonads are naturally resistant. These 

include: macrolides, β-lactams, tetracyclines and some fluoroquinolones (Driscoll et al., 2007).  

Pseudomonads, as well as other Gram-negative organisms‘ posse several mechanisms which 

promote antimicrobial resistance to common antibiotics.  First, they have an outer phospholipid 

membrane that creates a selective barrier, which limits uptake into the cell.  Next, many bacteria 

can express a number of proteins that can either degrade or expel the antibiotic from the cell.  

For instance, efflux pumps can quickly expel a number of compounds from the cell before they 

can cause injury to the cell‘s machinery.  Third, many bacteria quickly develop into biofilm 

communities.  These biofilms are quite resistant to antibiotic treatment.  Lastly, resistance by 

bacteria is also easily gained by conjugation and plasmid transfer of antibiotic resistance genes 

between organisms.   It is through these mechanisms that many bacteria can circumvent 

antibiotic treatments.  For instance, Pseudomonas aeruginosa is naturally resistant to tetracycline 

antibiotics. 

 

Tetracycline 

 The tetracycline family of antibiotics was first discovered in the 1940‘s and originally 

isolated from Streptomyces.  They are broad-spectrum antibiotics that are effective against both 

Gram-positive and Gram-negative bacteria.  They are also used to treat chlamydia, rickettsia, 

mycoplasms and some protozoa.  Tetracycline (Figure 7-A) disables protein synthesis in a cell 

by binding to the ribosomal acceptor (A) site of the aminoacyl t-RNA (Chopra and Roberts, 
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2001).  The family of tetracycline antibiotics includes: chlorotetracycline, oxytetracycline, 

tetracycline, demethylchlorotetracycline, and minocycline.  

 The tetracycline scaffolding (Figure 7-B) has four 6-carbon rings designated as A, B, C 

and D, with varying functional groups.  6-deoxy-6-demethyltetracycline (Figure 7-C) is the 

simplest known tetracycline to show antimicrobial activity.  From this scaffolding, functional 

side groups may be added and removed to augment activity and reduce toxicity (Chopra and 

Roberts, 2001). 
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Figure 7: Tetracycline structures. A) Tetracycline B) Tetracycline Scaffolding, R indicates 

locations where functional groups can be added and removed to augment activity, C) 6-deoxy-6-

demethyltetracycline, the minimum tetracycline structure which shows antibiotic activity, 
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In Gram-negative organisms, tetracyclines are strong chelating agents; prior to entering 

the cell they bind to positively charged cations such as magnesium (Mg
+
).  This tetracycline 

complex gains entry into the cell via OmpC porin channels and accumulates in the periplasmic 

space where it dissociates from the cation.  Tetracycline is mildly lipophilic so it can easily 

diffuse through the bi-lipid membrane and gain entry into the cytoplasm of the cell.  In Gram-

positive organisms, tetracycline takes advantage of the proton motive force and it is thrust 

through the cytoplasmic membrane, where it will bind another magnesium ion.  The complex 

then settles into the A site of the of the 30S ribosomal subunit.  This binding of tetracycline 

prevents normal binding of aminoacyl t-RNA to the A site of the ribosome and thus disrupting 

normal protein synthesis within the cell (Chopra and Roberts, 2001). 

 

Intrinsic Expression of Efflux Pumps 

 Bacteria can intrinsically express a number of multidrug resistant (MDR) efflux pumps.   

These efflux pumps are made up of three protein subunits, which each function to bridge 

different sections of the phospholipid bilayer of the bacterial membrane.    In Gram-negative 

organisms; there are two phospholipid bilayers (outer and inner membranes) that are located on 

either side of the periplasmic space.  The outer membrane factor (OMP) crosses the outer 

membrane; the periplasmic membrane fusion protein (MFP) covers the periplasmic space.  

Lastly, proteins called the Resistance–Nodulation-Division proteins (RND); transverse the inner 

membrane of the cells.  Nomenclatures for these complexes are written as: RND-MFP-OMP 

types.  

 P. aeruginosa has four well known tripartate efflux systems.  These are the MexAB-

OprM, MexCD-OprJ, MexEF-OprN and MexXY-OprM (Poole, 2001).  While MexAB-OprM 
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(Figure 8) is heavily involved in tetracycline resistance, it is also involved in the removal of 

other substrates including:  β-lactams, fluoroquinolones, chloramphenicol, novobiocin, 

macrolides, ethidium bromide, crystal violet, sodium dodecanoyl sulfate, toluene, aromatic 

hydrocarbons, and homoserine lactones (Poole, 2001). 

 

 

Figure 8: MexAB-OprM multidrug efflux pump. OM: outer membrane, CM: cytoplasmic or 

inner membrane. © 2009 University of Cambridge Department of Pharmacology 

 

 Expressions of these complexes are under multi-level control.  For, the MexAB-OprM 

pump, Mex R is the auto-regulating negative repressor for the MexAB-OprM operon.  MexAB-

OprM is also under quorum sensing control.   

 In Pseudomonas aeruginosa, the MexAB-OprM pump, releases the C12HSL QS 

molecule.  After quorum levels are reached, this molecule diffuses back into the cell, after which 

a second QS signal molecule, C4HSL, is expressed.  It is this second signal molecule which 

greatly up-regulates the expression of MexAB-OprM and other MDR efflux pumps.  Maximum 

transcription expression of these pumps is typically achieved during the mid-stationary growth 

phase of the cells.  Lastly, down-regulation of MexAB-OprM is under the control of Mex T.  
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Mex T is the positive regulator protein of a second efflux pump system MexEF-OprM. It is this 

protein which represses further transcription of the MexAB-OprM gene transcription (Maseda et 

al., 2004). 

 

Plasmid Gene Expression Efflux Pumps 

 Tetracycline resistance genes can be found on Tetracycline-resistant (Tc) plasmids 

(Chopra and Roberts, 2001).  There have been up to 29 tetracycline resistance genes (tet) that 

have been identified and at least 3 oxytetracycline resistance genes (orp) that have been 

characterized in both Gram-positive and Gram-negative organisms.  P. aeruginosa is known to 

express four ―tet” genes:  tet(A), tet(C), tet(E) and tet(G).  These genes code for multi-drug 

resistant efflux pumps which function to expel the antibiotic from the cell.  These ―tet‖ genes 

typically code for two proteins: a repressor and the efflux pump complex.  Expression of these 

genes is partially regulated by the absence or presence of the antibiotic.  For instance, in the 

absence of tetracycline in the cell, a repressor protein prevents the exposure of the ―tet‖ gene 

promoter binding site.  At the appearance of even nanomolar concentrations of tetracycline in the 

cell, the Tetracycline-Mg+ complex binds to the repressor, it to change conformation and release 

the binding site.  This binding of the Tetracycline-Mg+ complex thus allows for transcription of 

the efflux pump genes (Chopra and Roberts, 2001). 

 

Statistical Data about P. aeruginosa Resistance Found in Hospitals 

 A 2003 study (Driscoll et al., 2007) of P. aeruginosa resistance in ICU units showed that 

approximately 22% percent of isolates were resistant to imipenem.  There was almost a 30% 

resistance to flouroquinolones and a 32% resistance for cephalosporins.  Within a 5 year span 
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there was a 15% surge (from 1% to 16%) of multi-drug resistance pseudomonad strains that are 

resistant to three or more antibiotics (Driscoll et al., 2007).  For these reasons, alternate 

therapeutic leads are being explored.   

 

 

Folk-Medicinal Leads 

 According to the WHO, 70-80% of the world‘s population still relies on folk-medicinal 

medicine as part of their main form of medical treatments (WHO, 2008).  The pharmaceutical 

community has taken this knowledge to heart.  Ethnopharmacology as this concept is called is the 

theory of looking at folk medicinal treatments and assessing then as potential leads in drug 

development.  Twenty-five percent of all drugs on the market have at least one compound derived 

from a plant source.  If fungal and animal sources are included, the number jumps to 40% 

(Houghton, 2001).  There are several successful drugs that have been derived from plant or fungal 

sources.  For instance, Taxol isolated from the Pacific yew tree, is one of the most successful 

anticancer treatments to date, with over 11 billion in revenue the first few years on the market 

(Stephenson, 2004).  Ephedrine, a popular bronchodilator, was derived from the folk-medicinal 

plant Ma Hung, which demonstrates medicinal properties that were first recorded in China 5,000 

years ago (Abourashed et al., 2003).  Because of their history of medicinal properties, many folk-

medicinal plants have been screened for antibacterial (Cowen, 1999) and anti-quorum sensing 

activities (Adonizio et al., 2006; Rasmussen et al., 2005b). 
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Quorum Sensing Inhibitors 

  Studies have found that one method of defense used by many organisms to protect 

themselves from invading microbes is the production of compounds called quorum sensing 

inhibitors (QSI).  Bacteria, fungi and plants have all been shown to produce these compounds, 

which interfere with the QS-regulated gene expression in the invading organism (Hogan et al., 

2004; Manefield et al., 2001; Persson et al., 2005; Rasmussen et al., 2005b).  Acyl-homo serine 

lactone analogs and other quorum sensing inhibitors (QSI) have been investigated to determine their 

ability to prevent expression of quorum sensing controlled genes.  QSIs may also reduce microbial 

virulence by interrupting quorum communication thus preventing microbes to attack the host as a 

unified army, by prevent the expression of pathogenic and virulence gene expression, and by 

reducing or preventing the development of biofilm formation.  Several compounds have been 

identified  that have the ability to interfere with QS-mediated gene expression (Manefield et al., 

2001) through competitive inhibition, thus reducing biofilm thickness (Hentzer et al., 2002).    

 

      

QSI compounds produced by Fungi    

Rasmussen et al. (2005a) studied 100 extracts from 50 Penicillium species and found that 

33 produced QSI compounds.  From these 100 extracts, penicillic acid and patulin (Figure 9–A, B) 

proved to be inhibitory against P. aeruginosa QS-controlled gene expression.  Further tests showed 

that 3-day-old biofilms which were grown on patulin-treated media were more susceptible to 

tobramycin treatment compared to untreated media, as indicated by a higher degree of cell death.  

Secondly, studies in a mouse model of chronic pulmonary infections showed that after 3 days of 

treatment with patulin, there was a 20-fold decrease of bacterial count compared to untreated mice.  
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These investigators showed that when QS communication is blocked, the host immune system is 

better able to combat infection.  One way that host-derived polymorphonuclear leukocytes 

neutrophils (PMNs) can clear infection within a host is by production of hydrogen peroxide (H2O2).  

This activity is blocked by rhamnolipids, which are P. aeruginosa QS-expressed compounds.  

Rasmussen‘s group (2005a) demonstrated that if the QS communication can be blocked by a 

quorum sensing inhibitor, PMNs could function normally.  The compound patulin interrupts 

pseudomad QS-mediated gene expression; thus PMNs are able to combat biofilm infections by the 

production of H2O2 during oxidative burst.  

 

QSI Compounds Produced by an Alga  

Halogenated furanones (Figure 9-C) are QSI molecules that are produced by the micro alga 

Delisea pulchra.  These compounds have been shown to prevent quorum sensing gene expression in 

various organisms. For example, Hentzer et al. (2002) showed that synthesized furanone 56, a 

halogenated furanone of Delisea pulchra is able to block Las I/R quorum sensing system of P. 

aeruginosa and prevent expression of elastase and chitinase.  Confocal microscopy demonstrated 

that this furanone helped reduced biofilm thickness (after 7 days) from 61 + 6 m (untreated) to 23 

+ 4 m (treated), and it lowered QS-mediated gene expression, as measured using fluorescent 

markers.  The appearance of bioluminescence in Vibrio fischeri and swarming motility in Serratia 

liquefaciens are also affected (Manefield et al., 2001).  The furanone (4-bromo-5-

(bromomethylene)-3-(1‘-hydroxybutyl)-2-(5H)-furanone) has been shown to inhibit antibiotic 

production and many extracellular degradative enzymes (pectate lyases, cellulases and proteases) in 

the plant pathogen Erwinia carotovora. 
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QSI Compounds Produced by Plants  

Plant extracts have also been examined for QSI activity (Adonizio et al., 2006; Rasmussen 

et al., 2005b).  Because of its extensive antifungal reputation in medicinal folklore, Allium sativum 

L., commonly known as garlic, has been examined for this type of activity. Persson et al. (2005) 

reported that toluene extracts of garlic contained several compounds with varying levels of quorum 

sensing inhibition against Gram-negative transcriptional regulators Lux R or Las R.  Specifically, 

N-heptysulfanylacetyl–L-homoserine lactone, a synthetic derivative, showed QSI activity against 

both  Lux I/R and Las I/R QS mediated systems.  Collectively, the evidence presented here suggests 

that QSIs may be useful in the treatment and/or prevention of biofilm infections. 

 

 
 

Figure 9: QSI molecules. A) Penicillic acid, B) Patulin and C) Halogenated Furanone 

(Rasmussen et al., 2005b) 

 

 

Combination Therapy 

 

  Since biofilm infections and antibiotic resistance are on the rise (Lewis, 2001), research 

has begun to explore the effects of combination therapy to treat these types of infections 

(Nascimento et al., 2000; Rasmussen et al., 2005b).  The term ―synergistic activity‖ is often used to 

describe various herbal remedies in reference to the fact that their antimicrobial activity is 

dependent on several compounds working in combination with one another within the whole plant 

extract.  A synergistic effect can be described where the combined resultant activity is greater that 
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the ―sum of its parts,‖ compared to an additive effect that is equal to the ―sum of its parts.‖  Many 

studies have shown that a synergistic effect may be occurring between crude plant extracts and 

antibiotic compounds against various resistant organisms (Nascimento et al., 2000; Rasmussen et 

al., 2005b). 

 Betoni et al. (2006) looked at the effects of sub-inhibitory levels of eight plant extracts 

(1/4 of MIC 90%) combined with 13 antibiotics against 32 strains of Staphylococcus aureus.  Each 

extract was able to produce a synergistic effect (synergy was defined as values p<0.05 of the 

Wilcox nonparametric test) with at least two antibiotics.  The highest level of synergy occurred 

with antibiotics that worked by inhibiting protein synthesis (with five extracts/drug).   

Tetracycline produced a synergistic activity with all eight of the extracts tested.  Finally, the 

weakest and the most potent extracts, from Cymbopogon citratus-lemongrass (MIC 90% --17.84 

mg/mL) and Syzygium aromaticum-clove (MIC 90% --0.36 mg/mL) both showed synergistic 

activity with 11 of the 13 antibiotics tested.  This suggests that synergy maybe an important 

aspect in antimicrobial treatment against resistant S. aureus.   

 Aburjai et al. (2001) surveyed nineteen methanolic extracts of Jordanian plants.  Extracts 

were combined with seven antibiotics to determine effectiveness against both an antibiotic-

resistant strain and a non-resistant strain of P. aeruginosa.  Individual extracts increased activity 

of some antibiotics while decreasing the activity of others.  For instance, the methanolic plant 

extracts from Euphorbia macroclada antagonized penicillin G and nalidixic acid activity, 

allowing over 100% percent bacterial growth.  In contrast, tetracycline inhibition was augmented 

and only 26.9 % bacterial growth was observed.   The extract of Mentha piperita L. prevented 

gentamicin and erythromycin activity allowing over 100% growth activity compared to the 

control, but in converse it augmented tetracycline inhibition, allowing only 26.1 % overall 
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bacterial growth.  Thea sinensis L. extract had the most significant effect increasing tetracycline 

inhibitory activity thus only allowing 13.0 % percentage growth.  Of the seven antibiotics tested, 

tetracycline was the most easily augmented, with five of the nineteen plants that were tested 

against the resistant Pseudomonas strain.   

 Nascimento et al. (2000) demonstrated that a number of crude plant extracts, including 

thyme, showed an increased killing effect against Pseudomonas species when combined with 

ineffective dosages of commercial antibiotics.  For example, the plant extract of Thymus vulgaris 

can inhibit Pseudomonas growth at 70 g/mL; but when combined with ineffective doses (50 

g/mL) of tetracycline, the amount of thyme needed to produce growth inhibition was reduced to 

10 g/mL.   

 

Thymus vulgaris 

 Thymus vulgaris, (Figure 10) is a well-known plant that has been regarded as a potent 

medicinal herb for thousands of years. Thyme belongs to the family Lamiaceae, and is an 

aromatic perennial, that grows to 20-30 cm in height.  The stems are long-slender, woody and 

quadrangular, and they grow from a basal center.  The leaves are typically grayish-green in color, 

smooth oblong-lanceolate in shape, and with little or no petioles which connect the leaves to the 

woody stems.  Set in pairs, the flowers grow at the top of these slightly twisting foot-stalks in a 

whorl-like pattern.  The petals grow in together in a form that creates a closed-corolla tube, and 

they are typically pinkish-white in color with green sepals at the base of the corolla (Grieves, 

1995; WHO, 1999) 
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Figure 10:  Thymus vulgaris. 

(Grieve, 1995) 

 

 

 The word ―thyme‖ originated from the Greek word thymus, which means brave or 

courageous.  During ancient times it was used a fumigant, as it's aroma was meant to inspire 

courage and bravery, and to invigorate and energize those who smelled it.  During the middle 

ages, people believed that the scent of thyme could keep away venomous creatures (Grieve, 

1995).  The flower and leaves were also used to treat a number of ailments.  More recently, 

thyme is a well-known and potent antiseptic, and useful for oral hygiene (WHO, 1999).  The 

plant has often been dried and made into an infusion, sweetened with honey and used to treat 

sore throats.  Syrup made out of the fresh herb was used to treat whooping coughs; it has also 

been dried and added to tobacco "to promote good digestion" (Grieve, 1995).  Other folk-

medicinal uses include the treatment of coughs which stem from bronchitis, laryngitis, pertussis, 

or tonsillitis (WHO, 1999).  Present day uses include cooking, cosmetics, food preservation, and 

antiseptic (Torras et al., 2007). 
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 Many of thyme's medicinal activities can be attributed to its essential oil.  Essential oils 

of plants are typically extracted from the plant leaves and flowers through steam distillation.  

Constituents of essential oils include terpenes, monoterpenes, sequesterpines and phenols (Torras 

et al., 2007).  The major constituents of the essential oil thyme include: phenols, thymol and 

carvacrol, which make up about 20-25% of the essential oils.  The other constituents include 

linaalool, p-cymol, cymeme, thymeme, pinene, apigenin, leteolin and geraniol (Grieves, 1995; 

Torras et al., 2007; WHO, 1999).  Fabio et al. (2007) found potent antibacterial activity of the 

essential oil against seven various bacteria at a minimum concentration of 0.0002 mL/mL.  Four 

major constituents were chosen for further assessment due to strong scientific evidence of their 

effectiveness against resistant bacteria and biofilm formations. 

 

Four Main Constituents of Thyme 

 

Baicalein (Figure 11) is a flavone compound that can be isolated from the methanolic 

extract of Thymus vulgaris leaves; it has been shown to produce synergistic activities with 

tetracycline and various β-lactam antibiotics against methicillin-resistant Staphylococcus aureus 

(MRSA).  It appears that the mode of action for this synergistic antibiotic effect varies, 

dependent upon the resistant features of the organism, such as whether or not the MRSA 

possesses the tetracycline-resistant efflux pump tet(K) (Fujita, 2005). 
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Figure 11: Baicalein. 

 

Rosmarinic acid (Figure 12) is a caffeic acid ester that is excreted naturally by roots of 

the plant sweet basil when challenged by Pseudomonas aeruginosa (Walker et al., 2004).  It is 

also produced by several other aromatic herbs including Thymus vulgaris (Wang et al., 2004).  

Rosmarinic acid has been shown to inhibit planktonic growth of some Pseudomonas spp., and 

interferes with quorum sensing activities and biofilm development (Walker et al., 2004). 
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Figure 12: Rosmarinic acid. 

 

Thymol (2-isopropyl-5-methylphenol) (Figure 13.A) and Carvacrol (2 methyl-5-(1-

methylethylphenol) (Figure 13.B) are phenolic compounds both isolated from thyme and are 
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known for their antimicrobial activity against many organisms, including MRSA.  These 

compounds have also been shown to interfere with staphylococcal biofilm growth (Nostro et al., 

2007).   
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Figure 13: A) Thymol and B) Carvacrol. 

 

 

Purpose 

  The purpose of this dissertation was to perform preliminary investigations on two 

alternative treatment avenues against Pseudomonas aeruginosa infections: quorum sensing 

inhibition and combination therapy.    First, fifty folk medicinal plant extracts were screened for 

anti- quorum sensing properties.  Next, specific attention was placed on the thyme extract, a folk- 

medicinal plant shown to possess anti-quorum sensing properties (Vattam et al., 2007) but also 

first shown by Nascimento et al., 2000 to have synergism when combined with tetracycline 

against resistant Pseudomonas aeruginosa.  Furthermore, this study pursued the isolation and 

identification of the active component in thyme involved in the thyme-tetracycline effect, and the 

elucidation of its mode of action. 

 

A B 
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Rationale 

 

 There are many clues indicating that ethanolic thyme extract may act as a quorum sensing 

inhibitor, thus augmenting tetracycline activity.  First, the thyme extract has been shown to 

augment activity of various antibiotics, such as ampicillin, tetracycline and chloramphenicol 

(Nascimento et al., 2000).   Interestingly, these three antibiotics work through different modes of 

action (Mims et al., 1998).  This indicates a more general mode of action for the plant extract.  

Aburjai et al. (2001) demonstrated that while the activity of tetracycline (typically active against 

Gram-negative organisms) is augmented by various plant extracts, activity is greatly reduced 

with other antibiotics such as penicillin G (typically active against Gram-positive bacteria).  This 

suggests that the mechanism involved may be type-specific.  Next, tetracycline resistance occurs 

by either expression of efflux pumps and/or ribosome protection expressed via the tet R protein 

(Rosen and Mobashery, 1998).  It has been shown that quorum sensing can modulate many 

virulence genes including efflux pump expression (Lewis, 2001).  Thus, control of quorum 

sensing activity by an inhibitor would present a logical explanation of these observations.   

 More evidence suggesting that the thyme extract may include a QSI comes to light upon 

examination of various green tea studies.  Yam et al. (1997) studied the activity of Camellia 

sinensis, green tea, against various bacteria.  They discovered that ‗cup of tea‘ concentrations 

showed considerable activity against many pathogenic bacteria including 18 strains of 

methicillin resistant Staphylococcus aureus (MRSA).  Tiwari et al. (2005) demonstrated that 

epicatechin gallate (ECGC), a compound found in Camellia sinensis, can produce an amplified 

effect when combined with the commercial antibiotic chloramphenicol against various strains of 

Salmonella typhimurium.  In this study, supplementation with ECGC reduced the amount of 

antibiotic needed to cause growth inhibition.  Tiwari suggested that this phenomenon occurred 
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because of ―dual binding sites‖ which were triggered by the plant extract on the bacterial cell 

membrane of the pathogen.  A different study demonstrated that a possible synergistic interaction 

between ECGC and oxacillin might be occurring during treatment of various methicillin-resistant 

Staphylococcus aureus (MRSA), that would, in effect, reverse the resistance of the strains 

(Hamilton-Miller and Shah, 2000).  In 2003, epigallocatechin gallate (ECGC) was shown to 

interfere with quorum sensing activities in E. coli and Pseudomonas reporter organisms (Huber 

et al., 2003).  Mode of action experiments can be used to determine if this is indeed the case with 

the thyme extract.   

 

Specific Aims  

1.  Screen fifty folk-medicinal plant extracts for QSI activity. 

2. Examine specifically the extract of Thymus vulgaris and the ―thyme-tetracycline‖   

 effect: 

a) Isolate and identify the active compound in the thyme extract that augments   

 tetracycline activity against resistant Pseudomonas aeruginosa. 

b) Determine the most efficient way to extract the active compound from the    

 plant material. 

c) Determine if quorum sensing inhibition is involved in the mode of action. 
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MATERIALS AND METHODS 

 

Chemicals and Reagents  

The reagents used for this project—acetone, chloroform, dichloromethane, ethanol, 

hexane, and methanol—were histological grade and purchased from Sigma-Aldrich, which is 

located in St. Louis, Missouri. Media used for propagating bacterial cultures included Luria-

Bertani (LB), Mueller Hinton II (MH), Tryptic soy agar (TSA), and Nutrient broth (NB) and 

came from Difco, located in Sparks, Maryland. Antibiotics—tetracycline free-base (purchased 

from MP Biomedical, Inc. in Solon, Ohio) and tobramycin sulfate salt, gentamicin sulfate salt, 

and kanamycin sulfate (all purchased from Sigma-Aldrich in St. Louis, Missouri). Thymol was 

purchased from Fisher Scientific in Fair Lawn, New Jersey. Baicalein (98%), rosmarinic acid 

(97%), and liquid carvacrol (98%) were purchased from Sigma-Aldrich in Steinheim, Germany. 

The QSIS2 assay also required the following additives: N-butanoyl-L-homoserine lactone, C4 

HSL (both from Cayman Chemical Company in Ann Arbor, Michigan), N-(3-oxododecanoyl)-L-

homoserine lactone, C12 HSL, and 2, 3, 5-triphenyltetrazolium chloride (from Sigma-Aldrich in 

St. Louis, Missouri); concentrations were listed below where appropriate.  

 

Bacterial Cultures 

 The QSIS2 reporter strain, Pseudomonas aeruginosa pLasB-SacB1, was graciously 

provided by Dr. Michael Givskov of BioCentrum-DTU, Technical University of Denmark, and 

the Chromobacterium violaceum ATCC 12472 used for the Chromobacterium QSI assay was 

obtained from the American Type Culture Collection in Manassas, Virginia.  P. aeruginosa 
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ATCC 10145, obtained from the Department of Biology at Georgia State University, was used 

for the antibacterial studies.  

 

Plant Samples 

 Plant material was either purchased from local area farmers‘ markets or hand-picked 

from surrounding fields in Atlanta, Georgia. Thymus vulgaris samples were purchased from a 

local farmers‘ market. Boneset, pokeweed, and yellow root were purchased from Golden Valley 

Herbs-Hendersonville as a 40% ethanol extract. Taxonomic identification of all plant samples 

was made using a minimum of two sources per specimen, including the United States 

Department of Agriculture Natural Resources Conservation Services website 

(www.plants.usda.gov) and a dichotomous key, such as Plant Families and How to Identify 

Them (Jacques, 1949). 

 

Extraction 

 Fresh thyme (10 g) was cut into ½-inch pieces and allowed to dry in an aerated incubator 

at 55 C for 48 hrs. The plant material was extracted with 200 mL of ethanol in a covered flask 

for 24-48 hours. The resultant liquid was filtered through a cotton ball filter into a round-bottom 

flask and concentrated using a Buchi R-200 rotary evaporator, thus removing all the ethanol and 

resulting in a viscous crude plant extract. All other plant extracts were prepared as described 

above and tested at a concentration of 0.5 g/mL- solvent, respectively, except for ginger, 

sassafras, rattlesnake master, and red root, which were tested at a concentration of 0.25 g/mL. 

Subsequent extractions were made with slight modifications. For instance, thyme plant material 
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was also extracted with solvents including acetone, chloroform, ethyl acetate, hexane, methanol, 

methylene chloride, and petroleum ether. 

 Comparative studies of the extraction of the thyme plant material were also made with 

fresh, nonrecycled solvent and recycled solvent, or solvent collected after evaporation of a 

previous sample. Fresh solvent extractions were made by soaking the bulk plant material in 

previously unused solvent aliquots for each soak within the extraction process.  For all recycled 

solvent extractions, minimal amounts of fresh solvent were added only if necessary to 

compensate for any solvent that may have been lost to evaporation during the extraction process.  

 

 

Percentage Yield 

 The percentage yield of crude plant extracts was calculated as follows: 

 Weight of crude plant extract           x   100 = Percentage yield 

    Weight of starting bulk dried plant material         

 

 

Disc Diffusion Assay (DDA)  

 Disc diffusion assay, as previously described by Mims et al. (1998) was used for all 

antimicrobial studies.  A pure culture of P. aeruginosa was prepared onto a nutrient agar plates 

and incubated aerobically at 37˚C for 24 hours. Next, sterile saline tubes (pH 9.9) were 

inoculated with the fresh overnight culture of organisms producing a turbidity equivalent to 0.5 

McFarland Standard (BD diagnostic systems).  Turbidity was matched through visual 

comparison. Mueller Hinton II Agar plates, with 50 g/mL tetracycline, were swabbed 

thoroughly using sterile cotton swabs saturated with the diluted bacterial suspensions. Next, 6-
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millimeter test discs (BD diagnostic systems) were prepared with 20 L of the diluted plant 

extract (500 mg/mL) and allowed to air dry for a minimum of three hours.  The impregnated 

discs were placed aseptically in a radial fashion onto the inoculated plates. After 24 hours of 

incubation at 37˚C, active plant samples will inhibit bacterial growth, thus resulting in a ―zone of 

inhibition‖ around the disc. The diameter of these zones was measured in millimeters. Positive 

control discs (10 L per disc) were prepared with tobramycin sulfate/water solution (1000 g/L). 

The negative control discs were treated with straight ethanol. 

 

Thin-Layer Chromatography (TLC) 

 Crude plant extracts and constituents were analyzed by thin-layer chromatography 

(TLC). Samples were diluted in ethanol (100 mg/mL) and spotted on a 250 m 10 x 10 mm 

silica gel 60 F254 plates (EMD Chemicals).  Next, the plates were developed in 8:4:1 hexane, 

dichloromethane, acetone system and allowed to air-dry in a fume hood. Plates were then 

analyzed under an ultraviolet light for separation of compounds based on polarity. 

 

Thin-Layer Chromatography Bioassay  

 Thin-Layer Chromatography Bioassay (TBA) adapted from Slusarenko et al. (1989) was 

used for identification of the active antimicrobial components in the thyme extract. Plant extracts 

and constituents were analyzed by thin-layer chromatography (TLC). Samples were diluted in 

ethanol (100 mg/mL) and spotted on a 250 m 10 x 10 mm silica gel 60 F254 plate (EMD 

Chemicals). Next, the plates were developed in 8:4:1 hexane, dichloromethane, acetone solvent 

system and allowed to air-dry in a fume hood.  An aliquot (25 mL) of nutrient broth with 1% 

glycerol as added to 250 mL Erlenmeyer flasks. Next, one 10 L loopful of P. aeruginosa 
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(grown aerobically overnight on nutrient agar at 37  C) was diluted into nutrient broth and grown 

at 37  C in an orbital shaker (150-200 rpm) for 24 hours. Second aliquots (25 mL) of nutrient 

broth were prepared with 1.5% (w/v) agar, 0.25 mL of 1% glycerol and 50 g/mL tetracycline 

and referred to as TBA agar. They were later cooled to 45  C. The dye 2, 3, 5-

triphenyltetrazolium chloride was added to the agar, gently agitated, and set aside.  The diluted 

culture (1 mL) was added to the 25 mL TBA agar tubes and agitated. Finally, 50 mL of the agar 

(2 tubes) were carefully poured into large Petri plates containing the thin-layer chromatography 

plates. After 24 hours of incubation at 37 C, active compounds were identified by zones of 

inhibition of microbial growth. The positive control was tobramycin, and it was spotted on the 

TLC plate after the plate was developed; the negative control was any area of the TLC plate 

without extract. The experiment was run in triplicate. 

 

Activity-Driven Fractionation 

 The concentrated crude extracts were separated, based on polarity, into fractional 

constituents, using an appropriate gradient solvent system on a solid-phase extraction (SPE)  

product silica 5 g/20 mL column (Fisher Scientific, Fair Lawn, New Jersey) using a twelve-port 

vacuum chromatography manifold.  

First, the column was washed with pure hexane to prepare the silica. Next, the crude 

extract was dissolved into methanol (~5 mL) added to the column. Then, the column was washed 

with a minimal volume of hexane to allow the extract to saturate the top 5% of silica in the tube. 

The column was then washed with hexane, totaling approximately 90 mL of hexane, until no 

color was seen in the collected solvent.  The first fraction was the combined hexane tubes. This 

process was repeated with dichloromethane, acetone, and methanol. Tubes generated from the 
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same solvent were recombined and roto-evaporated to remove eluting solvent from the fraction.  

Fractions were re-diluted as needed for used for further testing. 

 

QSIS2 Assay  

The QSIS2 assay, adapted from Rasmussen et al. (2005b), with slight modifications as 

described below, was used to screen plant extracts for C4 HSL and C12 HLS analogues.  LB Agar 

was made with the addition of 15.5 g sucrose (total volume 250 mL). The pH was adjusted to 5.0 

with the addition of hydrochloric acid.   Gentamicin (0.0247 g), kanamycin (0.0215 g), 1.1 mL of 

each C4 HSL (0.00595 g/L of ethanol), and C12 HSL (0.00342 g/L of ethanol) plus 0.20 g of 2, 3, 

5-triphenyltetrazolium chloride dye was added into 25 mL of phosphate-buffered saline (PBS). 

The augmented PBS (25 mL) plus 2.5 mL of overnight QSIS2 reporter strain, grown in ABT 

media (Rasmussen et al., 2005b), was added to the tempered LB agar and poured into Petri 

plates. Next, the plates were allowed to solidify for 25 minutes. Wells (7 mm) were bored into 

the solidified agar. Various dilutions of the plant extracts and major constituents were (50 µL per 

well) were added to the wells. Agar plates were allowed to sit at room temperature for one hour 

prior to incubation to allow the test solution ample time to diffuse into the agar. Plates were 

incubated at 37ºC for 12-16 hours.  

When QS-mediated gene expression is activated in the QSIS2 reporter strain, sucrose 

mediated cell death occurs, but if QSI compounds are present in the test sample, QS-mediated 

cell death is blocked and the reporter strain is able to grow.  When cellular growth is achieved, a 

zone of dark red growth is visible around the test well in only the areas where QSI molecule 

concentration offsets QS signal concentration. The red color is caused by the metabolism of 

triphenyltetrazolium chloride by the bacteria.  This dye is used only to augment the bacterial 
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zone of growth.  Antimicrobial activity was detected by a transparent clearing around the well, 

referred to as a ―zone of inhibition.‖ A second zone, referred to as a ―zone of growth,‖ consisted 

of a bright red halo around the well, which indicated QSI activity. Experiments were run in 

triplicate unless otherwise specified and zone diameters were measured in millimeters.  All 

diameter measurements were recorded in millimeters. 

 

Chromobacterial QSI Assay  

The Chromobacterial QSI assay protocol was adapted from Bosgelmez-Tinaz et al. 

(2007) and was used for scanning samples for C4- C6 HSL analogues. Chromobacterium 

violaceum ATCC 12472 was propagated in 5 mL of nutrient broth and incubated in a shaker 

incubator for 24 hours at 30º C. LB Agar (250 mL) and LB broth with 0.3 % agar (250 mL) were 

used to prepare an overlay assay. First, a Petri plate was filled halfway to capacity with LB Agar 

and allowed to solidify for 30 minutes. Next, LB Agar (0.3%) was inoculated with 1 mL of 

overnight culture. The tempered agar was poured over the LB Agar base and allowed to solidify 

at room temperature. Wells (7 mm) were bored into the solidified agar. The test solution (50 µL 

per well) was added into wells. Plates were left at room temperature for another hour to allow 

test samples to diffuse into the agar. The plates were incubated for 16 hours at 30ºC. Violaceum 

color production is under QS-mediated control.  If the plant extract contains a QSI activity then 

cellular growth will occur but pigment production will be prevented. Wells with zones of 

inhibited color (opaque) were considered QSI active (zone of growth), and clear zones around 

the well (transparent) were considered antimicrobial (zones of inhibition). Experiments were run 

in triplicate and zone diameters were measured in millimeters. 
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Garlic as the Positive Control for QSI Testing  

A toluene garlic extract, adapted from Rasmussen et al. (2005b) was used as a positive 

control for all QSI studies.  Garlic (150 g) was shredded with a commercial blender and 

extracted in 300 mL of toluene for 24 hours. After 24 hours, the sample was filtered through a 

Whatman No. 1 filter. Next, the collected material was combined with 150 mL of sterile water 

and mixed for 24 hours at room temperature. A separatory funnel was used to collect the toluene 

extract (top layer), which was subsequently used as a QSI-positive control. 

 

Glucose and pH Testing 

Glucose concentrations of the crude plant extracts were measured using True Test gold 

sensor strips with a True Test to-go blood/glucose meter (Home Diagnostics, Fort Lauderdale, 

Florida). Crude extracts were first prepared by diluting the sample to a 0.2 g/mL into deionized 

water. One drop of the extract was placed into a makeshift aluminum foil bowl.  The meter strip 

was then dipped into the solution. The solution travels up the strip by capillary action. Glucose 

concentrations were read of the off the digital screen and recorded in dg/mL.  

The pH of the samples was determined using colorpHast pH strips (EDM Chemicals). 

The strips were submerged in the above 0.2 g/mL extract/water samples. Results were compared 

to the pH scale on the package. 
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RESULTS: SCREENING OF FIFTY FOLK-MEDICINAL EXTRACTS FOR QSI ACTIVITY 

 

Folklore and Scientific Data 

 Table 1 describes the fifty bio-ethnically relevant plant extracts that were chosen to 

screen for QSI activity. Bio-ethnical importance is based on either folkloric uses and/or previous 

scientific data. 

Table 1: Folklore and Published Test Results Pertaining to the Folk-Medicinal Plants 

Tested. 

 Common name Scientific name Family name Folklore Published test 

results 

1 American 

dandelion 

Taraxacum 

officinale 

Asteraceae Diuretic, tonic, 

urinary organs, 

kidneys and 

liver disorder 

(Grieve, 1995) 

Active against 

C. albicans, S. 

cerevisiae 

(Cowan, 1999) 

2 American 

spikenard 

Aralia racemosa Asteraceae Used as a 

blood purifier, 

and as a 

treatment for 

other ailments 

including:  

asthma, cough, 

diarrhea, 

hemorrhoids, 

leucorrhoea 

and hay fever  

(Hutchens,
 

1973) 

Previously 

investigated for 

its terpenoid 

components 

(Hanson and 

White, 1973) 

 

 

 

 

 

 

3 Bamboo Phyllostachys 

aurea 

Poaceae  Rich source of 

hydrocyanic, 

benzoic acid, 

and tricin; 

isolated from 

bamboo is 

considered 

relatively safe 

compound for 

development as 

a cancer chemo-

preventative 
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 Common name Scientific name Family name Folklore Published test 

results 

agent (Jiao et 

al., 2007)
 

4 Basil leaves Ocimum 

basilicum 

Lamiaceae  Rosmarinic acid 

produced by 

sweet basil has 

been shown to 

be antibacterial 

against 

planktonic P. 

aeruginosa cells 

(Walker et al., 

2004)
 

5 Bay leaves Laurus nobilis Lauraceae Brazilian uses:  

stomach aches, 

headaches, 

hepatic 

complaints (Di 

Stasi et al., 

2002) 

 

6 Bitter leaf Vernonia  

amygdalina 

Asteraceae Tonic, 

antibacterial, 

anti-tumor, 

anti-parasitic  

(Grieve,
 
1995) 

 

7 Brown seaweed Undaria 

pinnatifida 

Alariaceae  Delisea pulchra,  

a
 
marine algae, 

has been shown 

to produce 

several 

halogenated 

furanones that 

are highly 

effective QSI‘s 

(Manefield et 

al., 2001)
 

8 Boneset Eupatorium 

perfoliatum 

Asteraceae Used to treat 

acute 

bronchitis and 

nasopharyngeal 

catarrh
 

(Habtermariam 

and 

Macpherson, 

2000)
 

Showed to have 

a weak 

antimicrobial 

activity against 

Gram-positives 

such as S. 

aureus and  B. 

megaterium
 

(Habtermariam 
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 Common name Scientific name Family name Folklore Published test 

results 

and 

Macpherson, 

2000)
 

9 Chaparral Larrea 

tridentata 

Zygophyllaceae Used in a 

Sonoran region 

as a vermifuge; 

external uses: 

rheumatic 

arthritis, and 

tooth aches 

internal uses:  

inducing 

abortion, and 

menstruation 

and expelling 

afterbirth 

(Grant et al., 

1998). 

Antiviral, 

antifungal and 

anti-tutor but it 

also causes 

hepatotoxicity 

with prolonged 

use (Grant et al., 

1998). 

10 Chinese  

dandelion 

Taraxacum 

mongolium 

Asteraceae Chinese 

folkloric uses 

include: 

inflammatory 

diseases and 

antiviral 

activity (Shi et 

al., 2008) 

 

 

 

 

 

 

 

 

11 Chinese 

wolfberry 

Lycium chinense 

P. Mill  

Solanaceae  Chinese 

traditional 

uses: as a tonic, 

and long life 

and anti-aging 

(Yeh et al., 

2008). 

 

12 Chrysanthemum Chrysanthemum 

indicum 

Asteraceae Oriental 

folkloric uses 

include fever, 

pneumonia, 

stomatitis, and 

colitis; the 

flowers were 

used to treat 

eye infections
 

(Sassi et al., 

2008) 

Antimicrobial 

activity was 

found by 

Chrysanthemum 

species against 

P. aeruginosa 

(Sassi et al., 

2008); 

Chlorogenic 

acid found in 

some 
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 Common name Scientific name Family name Folklore Published test 

results 

Chrysanthemum 

species may 

play a role in 

QSI activities
 

(Singh et al., 

2009)
 

13 Cinnamon Cinnamomum 

verum 

Lauraceae Astringent, 

antiseptic, 

diarrhea, 

hemorrhaging 

of the womb 

(Grieve, 1995) 

Cinnamaldehyde 

a main 

component in 

the essential oil 

has been shown 

to decrease E. 

coli biofilm 

formations
 
(Niu 

and Gilbert, 

2004), and it 

interferes with 

C4HSL and 

C6HSL QS 

communication 

(Niu et al., 

2006)
 

14 Clove Syzygium 

aromaticum 

Myrtaceae Antiseptic, 

used to treat 

tooth decay 

(Grieve, 1995) 

Active against 

C. albicans 

biofilm 

formation, 

(Agarwal et al., 

2008); Eugenol 

a main 

component in 

cloves also 

showed activity 

against C. 

albicans 

biofilms (Hu et 

al., 2007) but no 

activity against 

E. coli biofilm 

development  

(Niu and 

Gilbert, 2004)
 

15 Cranberry Vaccinium 

macrocarpon 

Ericaceae 
 

Antibacterial 

(Cowan, 1999)
  

and has shown 
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 Common name Scientific name Family name Folklore Published test 

results 

to inhibit 

biofilm 

formation on 

uroepithelial 

cells (Reid et al., 

2001)
 

16 Dogwood Cornus 

sanguinea 

Cornaceae Powdered bark 

was made into 

toothpaste and 

the root bark 

can be made 

into a scarlet 

dye 

(Wu et al., 

2008) 

Fruit from 

Cornus 

officinalis when 

combined with 

apple juice 

shown affect 

against E. coli 

O157H7;
 

antimicrobial  

(Wu et al., 

2008)
 

17 Elder berry Sambucus nigra Caprifoliaceae Brazilian uses:  

muscular pain, 

measles, 

varicella, fever, 

cough, bad 

colds, 

hoarseness 

(Di Stasi et al., 

2002) 

Fruit contains 

anthocyanins, 

vitamins A and 

C, calcium, iron, 

and vitamin B6
  

(Charlesbois, 

2007)
 

18 Fennel Foeniculum 

vulgare Mill 

Apiaceae Used as a 

purgative, and 

to treat 

stomach 

bloating 

(Grieve, 1995) 

 

 

 

 

 

 

19 Fenugreek Trigonella 

foenum-

graecum 

Fabaceae  Lactoferrin 

extracted from 

sprouts showed 

activity against  

Helicobacter 

pylori (Randhir 

et al., 2004) 

20 Garlic Allium sativum Liliaceae Brazilian uses:  

Hypertension, 

colds, topically 

used to treat 

headaches 

Effective 

quorum-sensing 

inhibitor  

(Rasmussen et 

al., 2005b) 
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 Common name Scientific name Family name Folklore Published test 

results 

(Di Stasi et al., 

2002) 

21 Ginger Zingiber 

officinale 

Zingiberaceae Brazilian uses:  

stomach aches, 

bad cold, and 

cough 

(Di Stasi et al., 

2002) 

Showed no 

growth 

inhibition 

against E. coli 

ATCC 33456 

(Niu and 

Gilbert, 2004) 

22 Grapefruit rind Citrus paradisi Rutaceae Rind and seeds 

used for fungal 

infections, loss, 

treatment for 

cellulite
 
and 

weight loss 

(Annie‘s, 

2005)
 

Ascorbic acid 

showed QSI 

activity against  

C. perfringens 

(Novak and 

Fratamico, 

2004)
 

23 Heath aster Symphyotrichum 

ericoides  

Asteraceae Native 

American uses:  

used in sweat 

baths and to 

revive 

unconscious 

patients 

(USDA, 2004) 

 

24 Holly berries Ilex opaca Aquifoliaceae Berries are 

mildly toxic 

and will cause 

vomiting 

and/or diarrhea 

(Grieve, 1995)
 

 

25 Holly leaves Ilex opaca Aquifoliaceae Leaves are 

used to treat 

fevers and 

rheumatism  

(Grieve, 1995)  

 

26 Hymenocrater Hymenocrater 

sessilifolius 

Lamiaceae Fever, 

headache 

wounds, heart 

disease
 
(Zaidi 

and Crow, 

2005) 

 
 

Active against 

C. albicans and 

Gram-negative 

bacteria (Zaidi 

and Crow, 2005) 
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 Common name Scientific name Family name Folklore Published test 

results 

27 Hyssop Hyssopus 

officinalis 

Lamiaceae Tea used for 

rheumatism, 

paste used to 

treat bruises  

(Grieve, 1995)
 

Essential oil was 

shown to be 

bacteriostatic 

against E. coli 

O157H7 

(Marino et al., 

2001)
 

28 Leather leaf 

mahonia 

Mahonia bealei Berberidaceae  Active against S. 

aureus,              

B. subtilis,        

B. thuringiensis 

(Li et al., 2008)
 

29 Lemon rind Citrus Limon Rutaceae Lemons were 

used in the 18
th

 

century to 

prevent scurvy
 

(Baron, 2009)
 

 

30 Lobelia Lobelia inflata Campanulaceae Bronchitis, 

diaphoretic, 

exportant, anti-

asmathic  

(Grieve, 1995) 

A piperidine 

alkaloid has 

been shown to 

be active against  

multidrug-

resistant tumor 

cells  

(Ma and Wink, 

2008)
 

31 Lo Han Kuo  Siraitia 

grosvenori 

Cucurbitaceae Emollient used 

to treat dry 

coughs, dire 

thirst and 

constipation 

(Li eta l., 2006) 

Two novel 

cucurbitane 

glycosides were 

isolated and 

characterized 

from the unripe 

fruit (Li et al., 

2006) 

32 Mint Mentha piperita Lamiaceae Brazilian uses:  

topical 

analgesic, 

worms, 

stomach pain, 

bronchitis, 

cough  

(Di Stasi et al., 

2002) 

Species from the 

Lamiaceae 

family is 

antimicrobial 

against P. 

syringae B728a 

(Karamanoli and 

Lindow, 2006) 

but no QS 

inhibition or 
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 Common name Scientific name Family name Folklore Published test 

results 

stimulation  

against A. 

tumefaciens 

NT1 and C. 

violaceum 

CV0blu;  active 

against C. 

albicans 

biofilms 

(Agarwal et al., 

2008)
 

33 Mustard seed Brassica nigra Brassicaceae Brazilian uses: 

anti-

inflammatory 

used both 

internally and 

topically (Di 

Stasi et al., 

2002) 

 

34 Neem tree Azadirachta 

indica 

Meliaceae Used to treat 

measles (Lans, 

2007) 

Shown to be 

affective as a 

mouthwash 

reducing 

gingivitis and 

cariogenic 

bacteria 

(Botelho et al., 

2008) 

35 Olive leaves Olea europaea Oleaceae Astringent and 

antiseptic, oil 

is used as a 

laxative and 

hair tonic
 

(Grieve, 1995) 

Inhibits bacterial 

and fungal 

growth
  

(Pereira et al., 

2007) 

36 Oregano Origanum 

vulgare 

Lamiaceae Brazilian uses:  

bronchitis and 

coughs
  

(Di Stasi et al.,  

2002) 

Essential oil 

inhibits growth 

against E. coli 

O157:H7
  

(Marino et al., 

2001)
 

37 Pokeweed Phytolacca 

americana 

Phytolaccaceae Extract was 

used to treat 

rheumatism 

and 
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 Common name Scientific name Family name Folklore Published test 

results 

hemorrhoids 

(Grieve, 1995) 

 

38 Pomegranate Punica 

granatum 

Lythraceae Brazilian uses:  

stomach
 
aches,  

inflammation 

(Di Stasi et al., 

2002) 

Effectively 

reduced plaque 

when used as a 

mouthwash  

(Palombo,
 
2009) 

39 Rattlesnake 

master 

Eryngium 

aquaticum 

Apiaceae Dropsy, 

syphilis, liver 

problems 

resulting from 

uric acid build-

up, treatment 

of infected 

wounds 

(Hutchens,
 

1973) 

 

40 Red ginseng Panax japonicus Araliaceae Improves 

metabolism 

and regulates 

stomach and 

intestine 

functions 

(Xiaoguang et 

al., 1998) 

Shown to be 

anti-

carcinogenic  

(Xiaoguang et 

al., 1998) 

41 Red root Ceanothus 

americanus 

Rhamnaceae Astringent, 

mouthwash, 

chronic 

bronchitis, 

whooping 

cough, 

dysentery, 

injected as  a 

treatment for 

gonorrhea 

(Grieve, 1995) 

Ceanothic acid 

was found to be 

active against 

oral pathogens 

(Charlesbois, 

2007)
 

42 Rosemary Rosmarinus 

officinalis 

Lamiaceae Chinese uses: 

arthritis and 

snakebites
  

(Lans, 2007) 

 

43 Sage Salvia 

officinalis 

Lamiaceae Restores 

mental 

function and 

Salvia apiana 

was found to be 

antimicrobially 
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 Common name Scientific name Family name Folklore Published test 

results 

improves 

memory 

(Errickson and 

Sedia, 2005)
 

active 

(Errickson
 
and 

Sedia, 2005), 

essential oil was 

found to be 

bacteriostatic 

against 15 

different 

organisms 

(Marino et al., 

2001)
 

44 Sassafras Sassafras 

albidum 

Lauraceae Syphilis, skin 

diseases, and 

chronic 

rheumatism 

(Grieve, 1995) 

Active against 

helminthes
 

(Duke, 1994)
 

45 Silver berry 

leaves 

Elaeagnus 

commutata 

Elaeagnaceae Combined with 

sumac roots to 

treat syphilis
 

(Palombo, 

2009) 

 

46 Sweet gum fruit Liquidambar 

stryaciflua 

Hamamelidaceae Used to treat 

coughs, colds, 

diarrhea, 

dysentery, and 

ring worm
 

(Duke, 1994) 

 

47 Thyme Thymus vulgaris Lamiaceae Whooping 

cough, sore 

throat, colic 

fever, cold 

(Grieve, 1995) 

Active against 

viruses, bacteria, 

and fungi
 

(Cowan, 1999), 

Thymol has 

been shown to 

be active against 

C. albicans 

biofilms (Braga 

et al., 2008)
 

48 Toxicanum Vincetoxicum 

stocksii 

Asclepiadaceae  Injuries, 

wounds, and 

topical skin 

cancers (Zaidi 

and Crow, 

2005)
 

Highly active 

against C. 

albicans and 

various bacteria
  

(Zaidi and 

Crow, 2005)
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 Common name Scientific name Family name Folklore Published test 

results 

49 Yellow root Xanthorhiza 

simplicissima 

Ranunculaceae Anti-

inflammatory, 

astringent, 

antimicrobial, 

uterotonic, 

immuno-

stimulant 

(Fetler and 

Lloyd, 1898) 

 

50 Witch hazel Hamamelis 

virginiana L. 

Hamamelidaceae Astringent, 

tonic, sedative, 

external 

hemorrhaging, 

painful 

swelling and 

tumors 

(Grieve, 1995) 

Crude plant 

extract has been 

shown to be 

highly effective 

against 

periodontal 

bacteria 

(Palombo, 2009)
 

 

 

 

QSIS2 Assay Results of the Folk-Medicinal Extracts 

 

 Table 2 shows the QSIS2 assay results for both zones of inhibition, and zones of growth, 

recorded in millimeters. Out of fifty crude extracts tested, thirty showed a transparent clearing, or 

zone of inhibition, around the test well, suggesting antimicrobial activity.  Thirty out of fifty 

crude extracts also showed a QSI zone of growth. This can be recognized by a bright red halo 

around the test well (Figures 14-17) at the location where the concentration of QSI molecule 

offsets the concentration of the signal molecule. The largest QSI values were produced by the 

extracts of clove (30 mm), cranberry (33 mm), chaparral (32 mm), ginger (30 mm), heath aster 

(37 mm), pomegranate (36 mm), oregano (31 mm) sage (37 mm), and witch hazel (33 mm).    
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Table 2: QSI Screening of Various Folk-Medicinal Plant Extracts using the QSIS2 Assay. 

Samples 

Zone of 

diffusion 

(mm) 

Zone of 

inhibition 

(mm) 

QSI  

zone of growth 

(mm) 

1.  
American dandelion 0 0 0 

2.  
American spikenard 0 10 18 

3.  
Bamboo 0 0 27 

4.  
Basil leaves 8 0 13, 31* 

5.  
Bay leaves 8 10 23 

6.  
Bitter leaf 0 0 29 

7.  
Boneset 0 0 0 

8.  
Brown seaweed  0 0 0 

9.  
Chaparral 12 21 32 

10.  
Chinese dandelion 8 42

 
0 

11.  
Chinese wolfberry 0 0 0 

12.  
Chrysanthemum 0 15 23 

13.  
Cinnamon 0 10 20 

14.  
Clove 0 19 30 

15.  
Cranberry 0 24 33 

16.  
Dogwood 0 0 0 

17.  
Elder berry 0 13 26 

18.  
Fennel 0 0 0 

19.  
Fenugreek 0 11 18 
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Samples 

Zone of 

diffusion 

(mm) 

Zone of 

inhibition 

(mm) 

QSI  

zone of growth 

(mm) 

20.  
Garlic (positive control) 0 10 14 

21.  
Ginger 0 16 30 

22.  
Grapefruit Rind 0 18 0 

23.  
Heath aster 10 21 37 

24.  
Holly berry 0 0 0 

25.  
Holly leaves 8 0 0 

26.  
Hymenocrater  0 12 0 

27.  
Hyssop 0 15 26 

28.  
Leather leaf mahonia 0 10 0 

29.  
Lemon Rind 0 15 23 

30.  
Lobelia 0 0 0 

31.  
Lo han kuo 0 0

 
22 

32.  
Mint 0 14 21 

33.  
Mustard seed 0 0 0 

34.  
Neem tree 0 0 0 

35.  
Olive leaves 0 14 0 

36.  
Oregano 12 16 31 

37.  
Poke weed 0 0 0 

38.  
Pomegranate 12 24 36 

39.  
Rattlesnake master 0 15 23 

40.  
Red ginseng 0 0 15 
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Samples 

Zone of 

diffusion 

(mm) 

Zone of 

inhibition 

(mm) 

QSI  

zone of growth 

(mm) 

41.  
Red root 11 14 23 

42.  
Rosemary 8 0 22 

43.  
Sage 9 12 37 

44.  
Sassafras 0 17 24

 

45.  
Silver berry leaves 8 0 0 

46.  
Sweet gum fruit 0 15 17 

47.  
Thyme 0 16 25 

48.  
Toxicanum 0 10 0 

49.  
Yellow root 0 0 0 

50.  
Witch hazel 18 24 33 

Zone of diffusion = refers to the physical diffusion of the plant extract. Typically, this appears as 

a color change in the agar that cannot be attributed to zone of inhibition or QSI activity.  

*Sample has two QSI zones. 

 

 

 

Images of QSIS2 Results of the Folk-Medicinal Crude Extracts 

 

 
Figure 14: QSI results samples screened with the QSIS2 assay. 

(A) (1) sassafras, (2) red root, (3) ginger, (4) rattlesnake master.  

(B) (5) hyssop herb, (6) hymenocrator, (7) crysanthumum, (8) mint and  9) cinnamon   

(C) (9) lemon rind, (10) grapefruit rind, and (11) olive leaf, (2+) garlic (positive control),  

B A C 
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(5) internal standard. 

 

                                                                      
Figure 15: QSI results of crude extracts screened with the QSIS2 assay.  

(A) (11) olive leaf, (12) toxicanum, (13) bamboo leaves, (14) clove, and (15) cranberry.                                                                  
(B) (14) clove, (15) cranberry, (18) silverberry leaves, (19) holly leaves and (20) bay leaves.  

(C) (21) rosemary, (23) pomegranate, (24) neem, and (25) mustard seed. 

 

 

 
Figure 16: QSI results of crude extracts screened with the QSIS2 assay.  

(A) (26) elder berry, (27) sweet gum fruit, (28) leather leaf mahonia, (29) sage, and (30) 

dogwood bark.  

(B) (31) chaparral, (33) Chinese wolfberry, (34) boneset, (35) heath aster, and (36) fenugreek 

(C) (37) oregano, (38) fennel, and (40) lobelia.   

 

 
 
 

B C A 

B C A 
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Figure 17: QSI results samples of crude extracts screened with the QSIS2 assay. 

(42) witch hazel, (43) red ginseng, (44) Chinese dandelion, (45) lo han kuo, (47) thyme, (48) 

cinnamon, (49) holly berry, (51) yellow root, (52) American dandelion, and (53) American 

spikenard. 

 

Glucose and pH levels of the Crude Extracts 

 Forty-two out of fifty samples were tested for pH as shown in Table 3. All samples had 

an acidic pH with the exception of the yellow root extract (pH 7.0).  Yellow root did not show 

any QSI activity with the QSIS2 assay. Therefore, the pH did not seem to affect the QSIS2 assay 

results for this sample. 

 Thirty-six extracts were tested for glucose concentration, as seen below in Table 3. 

Preliminary sugar investigations consisting of analysis of various sugar dilutions (glucose, 

fructose, dextrose and sucrose) were preformed to determine which concentrations yielded false 

positive results with the QSIS2 assay.  Glucose and dextrose did yield false positive zones of 

growth halos with the QSIS2 assay. Interestingly, fructose and sucrose did not affect the assay 

results (data not shown).  This data suggested that samples with glucose reading of 254 mg/dL 
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would produce false positive halo rings of 14 mm in diameter, with the QSIS2 assay. Thirteen of 

the samples had a total glucose concentration of 254 mg/mL or below. 

 

Table 3: Glucose Concentration and pH Readings of the Folk-Medicinal Extracts.  

Sample Name pH 

Glucose 

Concentration 

(mg/dL) 

Average glucose 

value             

(mg/dL) 

QSI assay 

equivalent  

concentrations 

 (mg/dL) 

American dandelion 4.5 169, 188, 173 176.7 441.7 

Bamboo 5 479, 600,  599 599 1398.3 

Basil Leaves 5.0 94, 89, 87 90 225 

Bay leaves 4.5 275, 276, 276 275.5 689.2 

Bitter leaf 4.0    

Boneset 4.5    

Chaparral 4.0 59, 65, 58 60.7 151.7 

Chinese dandelion 4.0 348, 350, 414 370.7 926.7 

Chinese wolfberry 4.5 Hi, Hi, Hi >660 >1650 

Chrysanthemum 4 Hi, Hi, Hi > 660 > 1650 

Clove 2.5 85, 103, 88 92 230 

Cranberry  Lo, Lo, Lo > 20 > 50 

Dogwood 4.0 Lo, Lo, Lo >20 >50 

Elder berry 4.5    

Fennel 5 211, 279, 223 237.6 594 

Ginger 5 84, 76, 81 80.3 200.8 

Grapefruit rind  78, 70, 71 73 182.5 
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Sample Name pH 

Glucose 

Concentration 

(mg/dL) 

Average glucose 

value             

(mg/dL) 

QSI assay 

equivalent  

concentrations 

 (mg/dL) 

Heath aster 4.5 505, 533,  519 1297.5 

Holly berry 4.0 Hi, Hi, Hi > 660 > 1650 

Holly leaves 3.5 Hi, Hi, Hi > 660 > 1650 

Hymenocrater 5 Hi, Hi, Hi > 660 > 1650 

Hyssop 4.5 218, 175, Hi   

Leather leaf mahonia 5.0 482, 435, 485 467.3 1168 

Lemon rind 3 259, 258, 293 270 675 

Lobelia 5   __ 

Lo han kuo 3.0 139, 128, 148 138 345.8 

Mint 4 30, 30, 30 30 75 

Mustard seed 6.0    

Neem tree 4.0    

Olive leaf 3 78, 70, 71 421 1053 

Oregano 4 70,50,58 59.3 148 

Pomegranate 2.0 115, 118, 117 116.7 291.7 

Rattlesnake master 3 21, ,  21 52.5 

Red ginseng 4.0 Hi, Hi, Hi > 660 > 1650 

Red root 4 203, 242, 245 230 575 

Rosemary 4.5 46, 48, 45 139 347.5 

Sage 4.0 125, 119, 120 121.3 357.9 
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Sample Name pH 

Glucose 

Concentration 

(mg/dL) 

Average glucose 

value             

(mg/dL) 

QSI assay 

equivalent  

concentrations 

 (mg/dL) 

Sassafras 4 Lo, Lo, Lo > 20 > 50 

Silver berry leaves 6.0 38, 39, 38 39 97.5 

Sweet gum fruit 3.0    

Thyme 4.0 56, 76, 52 61.3 153.5 

T toxicanum 5 366, 318, 339 341 852.5 

Yellow root 7    

Witch hazel 2.5 91, 51, 45 62.3 155.8 

Crudes extracts were dissolved in water for both glucose and pH assessments at a concentration 

of 200 mg/mL. Lo = indicates glucose concentration below 20 mg/dl; Hi= glucose concentration 

content above 660 mg/dl.   

 

 

Chromobacterial QSI Assay Results of the Folk-Medicinal Extracts 

 

 Table 4 lists the Chromobacterial QSI assay results of the extracts tested.  Extracts were 

tested in triplicate and recorded as trials A, B, and C. Nineteen out of the forty-five extracts 

produced QSI zones of 10 mm or greater.  QSI zones can be seen as opaque zones of growth 

with inhibited pigment production in the corresponding photos (Figures 18-20).  The largest zone 

of activity (39 mm) was seen with the clove extract.  Nine of the samples also produced a second 

zone which appeared to have increased pigment production.   
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Table 4: QSI Results of the Folk-Medicinal Plants Extracts using the Chromobacterial QSI 

Assay. 

Samples 
Zone of QSI activity 

(mm) 

 

 

 

A 

 

B 

 

C 

 

Average 

American dandelion 8 8 8 8 

American spikenard 14 10* 18* 14* 

Bamboo 10 10 11 10 

Basil leaves 14* 15* 12 14* 

Bay leaves 21* 15* 18* 18* 

Boneset 10 8 8 9 

Brown seaweed 8 8 8 8 

Chaparral 18 18* 25 20 

Chinese dandelion 
10 

10 8 9 

Chinese wolfberry 10 8 8 9 

Chrysanthemum 10 9 10 10 

Clove 40 43 32 39 

Cranberry 19* 15* 12* 15* 

Dogwood bark 8 8 8 8 

Elder berry 12* 8 10 10 

Fennel 12* 28* 25* 22* 

Fenugreek 8 10 9 9 

Garlic (positive control) 18 20 20 19 

Ginger 11 10 10 10 
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Samples 
Zone of QSI activity 

(mm) 

 

 

 

A 

 

B 

 

C 

 

Average 

Grapefruit rind 9 9 10 9 

Heath aster 12 16 10* 13 

Holly berry 12 8 8 9 

Holly leaves 8 8 8 

 

8 

 

Hymenocrater 9 9 10 9 

Hyssop 12 12 11 12 

Leather leaf mahonia 8, 30* 8, 30* 8, 30* 8, 30* 

Lemon rind 9 9 10 9 

Lo han kuo 
10 8 9 9 

Mint 10 9 10 10 

Mustard seed 10 8 8 9 

Neem tree 10 8 12 10 

Olive leaves 8 8 8 8 

Oregano 20 20 25 22 

Pomegranate 23* 25* 27* 25* 

Red ginseng 
12 

8 8 9 

Red root 12 11 12 12 

Rosemary 14* 12* 10 12* 

Sage 19 20 21 20 

Sassafras 20 22 20 21 
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Samples 
Zone of QSI activity 

(mm) 

 

 

 

A 

 

B 

 

C 

 

Average 

Silverberry leaves 8 8 8 8 

Sweet gum fruit 8 8, 20* 8 8, 20* 

Thyme 12 15 11 13 

Toxicanum 10 * 10 12 11 

Yellow root 12 8 11 10 

Witch hazel 22 25 25 24 

* Indicates a second darker purple zone was present around the well.   

 

 

 

 

 

Images of Chromobacterial QSI Assay Results of the Folk-Medicinal Extracts 

 

 

 
Figure 18: QSI results of crude samples screened with the Chromobacterial QSI assay.  

(1) Sassafras, (2) red root, (3) ginger, (5) hyssop, (6) hymenocrater, (7) chrysanthemum, (8) 

mint, (9) lemon rind, (10) grapefruit rind, (11) olive leaf, (12) toxicanum, (13) bamboo, (14) 

clove, (15) cranberry, and (+) positive control toluene garlic extract.  
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Figure 19: QSI results of the crude extracts screened with the Chromobacterial QSI assay.  

(17) Brown sea weed, (18) silverberry leaves, (19) holly leaves, (20) bay leaves, (21) rosemary, 

(23) pomegranate, (24) neem, (25) mustard seed, (26) elder berry, (27) sweet gum fruit, (28) 

leather leaf mahonia, (29) sage, (30) dogwood bark, and (31) chaparral. 

 

 

 

 
Figure 20: QSI results from crude extracts screened with the Chromobacterial QSI assay. 

(33) Chinese wolfberry, (34) boneset, (35) heath aster, (36) fenugreek, (37) oregano, (38) fennel, 

(42) witch hazel, (43) red ginseng, (44) Chinese dandelion, (45) lo han kuo, (47) thyme,  

(49) holly berry, (51) yellow root, (52) American dandelion, and (53) American spikenard. 
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RESULTS: THE THYME-TETRACYCLINE EFFECT 

 

Disc Diffusion Assay of Ethanol Extract of the Thyme Leaves 

 Table 5 shows the DDA results of the ethanolic extract of the thyme leaves demonstrating 

the lowest concentration of the extract which would exhibit inhibition activity against P. 

aeruginosa ATCC 10145. The lowest usable concentration of this extract was a dilution of 250 

mg/mL (262), showing zone sizes of 8 mm and 7 mm with cultures grown on both the Mueller 

Hinton II (MH) and Tryptic soy agar (TSA), respectively. Activity was only seen with the 

addition of tetracycline in the agar at this concentration. At a higher concentration of 500 mg/mL 

(Figure 21) zone of inhibition diameters were increased from 8 mm to 11 mm with the addition 

of tetracycline.  Overall observations included: (1) Tetracycline in either of the agars augments 

activity of the extract. (2) Larger zones of inhibition were observed in those cultures grown on 

MH as compared to those grown on TSA. (3) Concentrations of 500 mg/mL at 20 μL per disc 

produced the most consistent results on the MH agar.   

 

 
Figure 21: DDA of ethanol extract of Thymus vulgaris leaves at a 500 mg/mL concentration.  

Plate on left is Mueller Hinton II without tetracycline; plate on right is Mueller Hinton II with 

tetracycline.  
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Table 5: DDA of Ethanol Extract of Thymus vulgaris Leaves. 

Sample description 
Concentration 

(mg/mL) 

MH 

(mm) 

MH with 

tetracycline* 

(mm) 

TSA 

(mm) 

TSA with 

tetracycline* 

(mm) 

261 500 8 11  0  7  

262 250  0 8  0 7  

263 125  0 0 0 0 

264 62.5  0 0 0 0 

Positive control 

(Tobramycin) 
1 μg/mL 27  27  23  22  

Negative control  

(Blank disc) 
 0 0 0 0 

Inhibition values are an average of 4 replicates. Diameter of disc 6 mm, 20 μL of plant extract 

per disc, and 10 μL of tobramycin per disc.  

*50 μg/mL of tetracycline was used. 

 

 

 

 

Identification of Active Compound(s) by Thin-Layer Chromatography Bioassay.   

Figure 22 show the results of an overlay assay on a 2D thin-layer chromatography (TLC) 

plate which was used to separate the ethanolic leaf extract into its individual components. 

Activity appeared to be isolated to a single zone of inhibition located at the top third of the plate.  

In Figure 22, the arrow indicates the probable location of the active component(s). This 

compound is later referred to as compound #2. The zone of inhibition is seen regardless of the 

addition of tetracycline to the agar.   

 



63 

 

 
 

  
Figure 22: 2D-TBA of the thyme leaf extract.  

(A) Without tetracycline in the agar.  

(B) This agar contains 50 µg/mL of tetracycline; a clear zone of inhibition is seen around the 

active component, which is located on the top third of the plate.   

 

 

 

Extraction of the Thyme Plant 

Comparison of thyme leaves extracted in various solvents.  

Figure 23 show the TLC results of thyme leaves extracted with various solvents (acetone, 

chloroform, ethanol, ethyl acetate, hexane, methanol, methylene chloride, and petroleum ether).  

Table 6 shows the corresponding percentage yield. Based on TLC results, it appears that the 

active component can be extracted in all the solvents tested, but the hexane extract contained the 

least number of inactive compounds. Hexane was also an easier solvent to work with based on its 

innate properties such as boiling point and hexane‘s ability to remove the least amount of 

undesirable compounds.  This extract was used in several subsequent experiments. 

 

]location      

      of active    

     compound 
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Figure 23: TLC comparison of crude extracts of thyme leaves prepared with various 

solvents. Thyme leaves extracted in (by row): (1) ethanol, (2) hexane, (3) petroleum ether, (4) 

methylene chloride, (5) chloroform, (6) ethyl acetate, (7) acetone, (8) ethanol, (9) methanol, and  

(10) ethanol and (11) stems extracted in ethanol. 

 

 

 

Table 6: Percentage Yield of Crude Extracts Produced by Extraction of Thyme Leaves in 

Various Solvents. 

Sample description 
Starting material dry 

weight (g) 

Crude weight 

(g) 

Yield 

(%) 

Hexane 8.0  0.25  3.13  

Petroleum ether 8.0  0.20  2.50 

Methylene chloride 8.0  0.60  7.50  

Chloroform 8.0  0.95  11.88  

Ethyl acetate* 8.0  0.90 11.25  

Acetone 8.0  1.00  12.50  

Ethanol* 8.0  0.90  11.25  

Methanol 8.0  0.75  9.38  

Most extracts were prepared in duplicate values and are an average of two aliquots.   

* Extracts not made in duplicate. 

 

 

 

Gradient extraction of thyme leaves using recycled and non-recycled hexane.  

Figure 24 shows the TLC of eight consecutive hexane filtrates. TLC results were taken of 

each hexane filtrate prior to combining with the previous days filtrate. Table 7 shows the 

]location      

      of active    

      compound 



65 

 

 
 

corresponding percentage yields. Based on TLC results, it appeared that the active compound(s) 

could be collected by three consecutive hexane filtrations 163 and 164. By the forth filtration, a 

second group of compounds were being extracted, those possessing a more polar nature. 

Graduated extraction of the thyme leaves in hexane showed that there are definite increases in 

the polarity of compounds removed from the bulk material as subsequent filtrates were collected. 

Thin-layer chromatography results (Figure 24) also revealed that by the forth extraction, the all-

similar nonpolar compounds have been removed. In addition, it was interesting that there was a 

definite difference in the compounds when extracted with non-recycled solvent (left rows) verses 

recycled solvent (right rows) (Figure 24).  

 

 
Figure 24: TLC results of graduated extraction of thyme leaves using recycled and non-

recycled hexane.  
Rows left to right are samples 152-166, ethanol leaf extract, plus thymol and carvacrol standards.  
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Table 7: Percent Yield from Gradient extraction of Thyme Leaves using Recycled and 

Non-recycled (Fresh) Hexane. 

Sample Description 
Days 

soaked 

Starting 

material dry 

weight (g) 

Crude weight 

(g) 

Yield 

(%) 

152 Fresh hexane filtrate 1 
24-hour 

soak 
8.0 0.1  1.25 

161 Fresh hexane filtrate 2 9 days 8.0 0.2* 2.5* 

163 Fresh hexane filtrate 3 4 days 8.0 0.5  6.25 

165 Fresh hexane filtrate 4 2 days 8.0 0.1  1.25 

160 Recycled hexane filtrate 1 24 hrs 8.0  0.1  1.25 

162 Recycled hexane filtrate 2 9 days 8.0  0.2* 2.5* 

164 Recycled hexane filtrate 3 4 days 8.0  0.05 0.625 

166 Recycled hexane filtrate 4 2 days 8.0  0.05  0.625 

*Approximate values 

 

 

 

Hexane, methanol, ethanol extractions using non-recycled solvent each of three soaks.  

 Figure 25 depicts TLC results of Thymus vulgaris leaves were consecutively extracted a 

total of three 24-hour soaks with non-recycled hexane, methanol, or ethanol. Figure 25 depicts 

the thin-layer chromatography results of these fractions. Table 8 shows the DDA results of the 

combined crude extracts for each solvent: ethanol aliquots (270 and 271), methanol (272 and 

273), and hexane (274 and 275) using MH agar. Table 9 shows the percentage yield of all 

extracts.  Disc diffusion assay results revealed that both methanol aliquots (272 and 273) showed 

an increase in inhibition activity. Zone values increased from 8 mm to 13 mm with the addition 

of tetracycline in the MH agar. 
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Figure 25: TLC of extracts samples 270-275 (thyme leaves) extracted in hexane, methanol, 

and ethanol, prepared using non-recycled solvent with each of three soaks.   

 

 

 

Table 8: Disc Diffusion Assay Results of the Crude Extracts made with Non-recycled 

Solvent for each Extraction in Hexane, Methanol, and Ethanol of Thymus vulgaris Leaves. 

Sample Description 
Mueller Hinton II  

(mm) 

Mueller Hinton II with 

tetracycline 

(mm) 

270 Ethanol crude A 7 10 

271 Ethanol crude B  7 

272 Methanol crude A 8 13 

273 Methanol crude B 7 13 

274 Hexane crude A 0 0 

275 Hexane crude B 0 0 

Experiment run in duplicate, values are an average of two runs. Two aliquots of plant material (A 

and B) were extracted and tested. Each extract was tested at a 333 mg/mL concentration. 

 

 

 

Table 9: Percentage Yield of Crude Extracts made with Non-recycled Solvent. 

Sample Description 

Starting material 

dry weight 

(g) 

Crude weight 

(g) 

Yield 

 (%) 

270 Ethanol crude A 10.0 0.6 6.0 

271 Ethanol crude B 10.0 2.3 23.0 

272 Methanol crude A 10.0 1.0 10.0 

273 Methanol crude B 10.0 1.6 16.0 

274 Hexane crude A 10.0 0.2 2.0 

275 Hexane crude B 10.0 0.4 4.0 

Two aliquots of plant material (A and B) were extracted and tested.  
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Hexane, methanol, and ethanol resoaks using recycled solvent each of three soaks.  

 Figure 26-A shows TLC results of extractions of thyme leaf samples extracted several 

times using recycled solvent for each of three 24-hour soak each time. Figure 26-B shows the 

corresponding TBA. Tables 10 and 11 (respectively) show DDA and percentage yield results for 

the samples tested.  Disc diffusion assay results (Table 10) showed that increased inhibition 

activity was seen with the addition of tetracycline to the agar in all samples that were tested, 

while the methanol leaf extract (301) showed the greatest increase in activity with the addition of 

tetracycline to the MH agar. Zone values of the methanol leaf extract showed increases in 

activity from 9 mm to 21 mm.  

 

 
Figure 26: TLC of thyme leaf extracts (Samples 300-303, 272) extracted with hexane, 

methanol, and ethanol resoaks using recycled solvents with each soak. (A) TLC (B) TBA 

 

 

]location of    

     activity 

B A 



69 

 

 
 

Table 10: Disc Diffusion Assay of Hexane, Methanol, and Ethanol Resoaks using Recycled 

Solvent (300-303).     

Sample Description 
Mueller Hinton II 

(mm) 

Mueller Hinton II with 

tetracycline (mm) 

300 Ethanol crude 8 17 

301 Methanol crude 9 21 

302 Hexane crude 0 10 

303 Methanol stem crude 0 14 

Positive control Tobramycin (20 µl) 35 37 

Negative control Empty 60 0 

Concentration of sample on disc (20 µl) was 333 mg/mL.  

Experiment was run in duplicate; zone values are an average of two runs. 

 

 

Table 11: Percentage Yield of Samples 300-303. 

Sample Description 
Starting material  

dry weight (g) 

Crude weight 

(g) 

Yield 

 (%) 

300 Ethanol crude 10.0 1.2 12.0 

301 Methanol crude 10.0 1.6 16.0 

302 Hexane crude 10.0 1.7 17.0 

303 Methanol stem crude 10.0 0.7 6.8 

 

 

 

Comparison of extractions of three soaks verses one soak using non-recycled solvent each 

time.  

Figure 27 depicts the TLC results of the thyme leaves extracted in non-recycled solvents 

comparing the three 24-hour soaks versus the one 24-hour soak of the bulk material. Table 12 

shows the corresponding percentage yield. Disc diffusion assay results (shown in Table 13) 

showed that inhibition activity was seen in the E3 (305) sample and the M1, M3 (306, 307) 

samples for the MH without tetracycline in the agar. The results are quite different when 

tetracycline is in the agar. Inhibition zones greatly increase.  The greatest increase in zone 

diameters can be seen with sample M1 (306) sample, producing zones of 18 mm. After the third 

soak, the inhibitive quality of the crude was reduced to 15 mm. This suggested that the most 
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active components are most readily removed using methanol during a single 24-hour extraction 

of the thyme leaves. The third soak of E3 (305) showed a higher activity than the E1 (304) 

single-soak sample.  Zone diameters can be seen increasing from 12 mm to 15 mm. Minimal 

zone differences can be seen between the H1 (308) and the H3 (309) samples. Interestingly,   

with the methanol stem single soak (MS1) and the stem three soak (MS3).  There is no activity in 

the MH without tetracycline but there is considerable activity with the MH with tetracycline.  

Also there is a considerable decrease in activity between the single soak and the three soak 

samples.  MS1 produced zones of 16 mm while MS3 produced zones of 11 mm. 

For maximum extraction of the active component(s) based on DDA results, a single 24-

hour methanol soak of the leaves is sufficient to remove the active components from the plant.  

Therefore, while the hexane solvent is easier to handle based on innate solvent properties, the 

most potent crude is produced with methanol. 

 

 
Figure 27: TLC comparison of three soaks verses one soak.  Rows (Samples 304-311) are 

thyme samples extracted in non-recycled solvent (ethanol, methanol, hexane, methanol stem 

extracts). 
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Table 12: Percentage Yield of Crude Samples (304-311) Comparing Three Soaks Verses 

One Soak. 

Sample Description 

Starting 

material dry 

weight (g) 

Crude 

weight 

(g) 

Yield  

(%) 

304 Ethanol single soak (E1) 10.0  0.28 2.8 

305 Ethanol three soaks (E3) 10.0  1.82 18.2 

306 Methanol single soak (M1) 10.0  0.52 5.2 

307 Methanol three soaks (M3) 10.0  1.16 11.6 

308 Hexane single soak (H1) 10.0 0.14 1.4 

309 Hexane three soaks (H3) 10.0 0.38 3.8 

310 Methanol stem single soak (MS1) 10.0 0.21 2.1 

311 Methanol stem three soaks (MS3) 10.0 0.34 3.4 

 

 Table 13: Disc Diffusion Assay of Crude Samples (304-311) Comparing Three Soaks 

Verses One Soak. 

Sample Description 

Mueller Hinton 

II 

(mm) 

Mueller Hinton II 

with tetracycline 

(mm) 

304 Ethanol single soak (E1) 0 12 

305 Ethanol three soaks (E3) 8 15 

306 Methanol single soak (M1) 9 18 

307 Methanol three soaks (M3) 8 15 

308 Hexane single soak (H1) 0 11 

309 Hexane three soaks (H3) 0 12 

310 Methanol stem single soak (MS1) 0 16 

311 Methanol stem three soaks (MS3) 0 11 

Positive 

control 
Tobramycin (20 µL per disc) 36 37 

Negative 

control 
Empty 0 0 

Zone values are from an average of two experiments.    

 

 

 

Column Chromatography of the Methanol Crude Extract  

Column chromatography of the methanol single-soak crude extract (sample 307) 

produced four fractions. These fractions are the hexane (312), the methylene chloride (313), the 

acetone (314) and the methanol (315) fractions. Table 14 shows the DDA results of the methanol 
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crude of leaves and the four corresponding fractions. The greatest amount of activity was seen 

with the methylene chloride fraction (313), which showed an increase in zone sizes from 12 mm 

to 16 mm with the addition of tetracycline. The methanol fraction also showed an increase in 

zone size but only with the addition of tetracycline in the agar. Figure 28-B is a sketch of TBA 

results performed on the methylene chloride fraction (313), and a significant zone of inhibition 

was observed in the middle of the fraction lane on the TLC plate (Figure 28). This zone encircled 

the dark green, green, and yellow and green spots on the plate. TBA and DDA results both 

indicated that the highest concentration of the active component can be isolated in the center of 

the methylene chloride fraction of the methanol crude on the TLC plate. 

 

 

 
Figure 28: TLC of the methanol crude (307) and the corresponding fractions. 
(A) hexane (312), methylene chloride fraction (313), acetone fraction (314), methanol fraction 

(315). (B) Sketch of TBA results for the Methylene chloride fraction (313).  

The circled region in sketch B indicates the zone of inhibition seen on the TBA. 
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Table 14: DDA Results of the Methanol Crude Extract and its Four Corresponding 

Fractions. 

Sample  Description 
Mueller Hinton II 

(mm) 

Mueller Hinton II 

with tetracycline 

(mm) 

307 Methanol crude 14 18 

312 Hexane fraction 0 0 

313 
Methylene chloride 

fraction 
12 16 

314 Acetone fraction 11 12 

315 Methanol fraction 0 10 

Positive control 
Tobramycin 

 (20 µl per disc) 
33 35 

Negative control Blank disc 0 0 

 Fractions were re-diluted into their corresponding elution solvent at a concentration of 500 

g/mL. Experiments ran in duplicate, values are an average of these experiments.  

  

 

 

 

Examination of the Four Major Constituents of the Thyme Plant. 

Examination of the four major constituents by thin-layer chromatography. 

(Figure 29) of the four constituents revealed that rosmarinic acid and baicalein did not 

show any migration distance. This suggests that baicalein and rosmarinic acid samples are 

probably not the active component, since they did not travel up the TLC plate in the 8:4:1 

hexane, methylene chloride, acetone solvent system. Thymol and carvacrol both traveled two-

thirds up the plate. This was the approximate distance traveled by the active compound #2. 
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Figure 29: TLC of four major constituents.  
This is the TLC plate of the ethanol and hexane crude extracts of thyme plus the four major 

constituents. Rows: (1) ethanol crude of thyme leaves, (2) thymol, (3) rosmarinic acid,  

(4) baicalein, (5) carvacrol, (6) internal control, and (7) hexane leaf extract. 

 

 

Comparisons of the Four Fractions and the Four Major Constituents 

 

Comparisons of the fractions and the four major constituents by TLC and TBA 

 Figure 30-A is a sketch of the TLC plate seen in the subsequent, TBA (Figure 30-B). 

Zones of inhibition were seen around active samples. The three inhibition zones seen from left to 

right were located on the hexane crude, the thymol standard, and on the bottom-right tobramycin. 

The hexane crude was chosen for two reasons: (1) during a previous DDA (Table 11), this 

sample showed an increase in inhibition activity but only with the addition of tetracycline in the 

agar and (2) There are a minimum number of undesirable compounds in the sample.  Figure 31 is 

a close-up of the hexane sample and the thymol standard.  Clearly, the brightest area of the 

hexane inhibition zone was located in the center of the spot, which was in direct alignment with 

the thymol standard. These results (Figure 31) suggest that thymol may be the active component, 

]location 

of activity  
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but that carvacrol was also in direct alignment with thymol on the TLC plate (Figure 29). This 

suggested that the active component was either thymol or carvacrol. 

 

 
Figure 30: TLC diagram and TBA of hexane crude, thymol, and control. 

(A) This is a diagram of the thin-layer chromatography plate featured in the thin-layer 

chromatography bioassay (TBA).  

(B) Zones of inhibition can be seen around hexane crude extract (128), the thymol standard, and 

the tetracycline-positive control.    

 

 

 

 

 
Figure 31: A close-up of rows of the above TBA. 
Rows: hexane crude and thymol standard. Notice the spot on the left is brightest on the second of 

three spots this spot is in direct alignment with the spot on the right, the thymol standard. 

B A 
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Disc diffusion assay of major constituents at various concentrations 

 Table 15 shows the results from a DDA of the thyme plant four major constituents. 

Rosmarinic acid and baicalein showed no antimicrobial activity at the concentrations tested. 

Much higher concentrations were also tested without any activity (data not shown). Activity was 

seen with both thymol at concentrations of (4800 µg/mL) and carvacrol at concentrations of 

(480, 48, and 24 µg/mL) in both tetracycline and non-tetracycline samples. During a second 

DDA (Table 16), thymol and carvacrol standards were run at much higher concentrations. These 

experiments revealed that while both compounds showed antimicrobial activity, thymol showed 

an increase in antimicrobial activity with the addition of tetracycline to the agar. Zone size 

increased on average by 6 mm in diameter. Figure 32 visually depicts the increased thyme 

activity at 2 concentrations, 500 mg/mL and 250 mg/mL. Therefore, these results along with 

previous TLC (Figure 29) and TBA (Figures 30 and 31) suggested that thymol is the active 

component in thyme, involved in the thyme-tetracycline effect. 
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Table 15: DDA of Major Constituents at Low Concentrations.                

Sample description 

 

Mueller Hinton II 

(mm) 

Mueller Hinton II  

with tetracycline (mm) 

Baicalein ( g/mL)   

480 0 0 

44 0 0 

22 0 0 

11 0 0 

5.5 0 0 

3.0 0 0 

1.5 0 0 

0.75 0 0 

Thymol ( g/mL)   

4800 (in dark)  10 

4800  10 

480 0 0 

48 0 0 

24 0 0 

12 0 0 

6  0 

3.0 0 0 

1.5 0  

0.75 0 0 

Carvacrol ( l/mL)   

480 12 12 

48 9 10 

24 7 7 

12 0 0 

6 0 0 

3 0 0 

3.0 8 9 

1.5 0  

0.75 0 0 

Rosmarinic acid 

( g/mL) 
  

3.0 0 0 

1.5 0  

0.75 0 0 

Positive control 

(Tobramycin) 
26 25 

Negative control 

(Blank disc) 
0 0 

Experiment run in triplicate; zone vales are average values of three experiments. 
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Table 16: Disc Diffusion Assay of Thymol and Carvacrol Constituents at Higher 

Concentrations. 

Sample description/concentration Mueller Hinton II 
Mueller Hinton II with 

tetracycline 

Carvacrol 

(mg/mL) 

  

1000 10* 10 

500 10 10 

15.6 8* 8 

Thymol 

(mg/mL) 

  

500  11 15 

250 9 14 

125 8 8 

31.25 8 9 

Positive control 

(Ethanol leaf extract [500 mg/mL]) 

8 12 

Negative control 

(Blank disc) 

0 0 

Experiment run in triplicate; zone vales are average values of three experiments 

*Values are from an average of 2 experimental values instead of 3 replicates. 

 

 

 

 

  
Figure 32: Disc Diffusion assay of thymol. Plate on the left is Mueller Hinton II agar       

without tetracycline, and plate on the right is Mueller Hinton II with tetracycline in the agar. 

 Thymol tested at a concentration of (A) 500 mg/mL [4], (B) 250 mg/mL [5].  

 

 

 

 

 

 

 

A 
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RESULTS: QSI ACTIVITY OF THYME AND ITS MAJOR CONSTITUENTS 

 

QSI Activity of the Thyme Crude Extracts with the QSIS2 Assay 

 The results for the four crude thyme extracts chosen to assess potential anti quorum-

sensing activity with the QSIS2 assay are summarized in Table 17.  The measurements are QSI 

zones of growth (red halos) and antimicrobial zones of inhibition (clear zones). Figure 33 is a 

compilation of images of representative samples demonstrating the visible activity. 

The three polar extracts (ethanol signal soak crude [301], methanol single-soak crude 

[306], and methanol stem three-soak crude [311]), all showed considerable QSI activity. Bright 

red halos (seen in Figure 33 can be seen in photos B, C, and D.  The most potent level of activity 

was seen with the methanol-stem three-soak crude extract, which produced a QSI zone of growth 

of 39 mm. The nonpolar hexane single-soak crude extract (308) shown in photo A of Figure 33 

showed no activity at the concentration tested (0.0733 g/mL).     

 

Table 17: QSI Activity of Crude Extracts with the QSIS2 Assay. 

Sample 

number 

Sample description 

(concentration) 

Antimicrobial zones 

of inhibition (mm) 

QSI zones of growth 

(mm) 

A B C A B C 

301 
Ethanol single-soak crude 

(1.000 g/mL) 301 
22 17 + 27 30 + 

306 
Methanol single-soak crude 

(0.164 g/mL) 306 
14 20 14 35 + + 

308 
Hexane  single-soak crude 

(0.0733 g/mL) 308 
0 0 0 0 0 0 

311 
Methanol-stem three-soak crude 

(0.157 g/mL) 311 
14 + + 39 +* + 

 Positive control (Garlic) 15   25   

 Negative control (Empty well) 0   0   

* Indicates zones were present but very faint in color. 

+ Indicates that a zone of growth was detected although a measurement was not recorded. 
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Figure 33: QSI results of various thyme extracts with the QSIS2 assay. 

(A) Ethanol single-soak crude (301). (B) Methanol single-soak crude (306). (C) Hexane single-

soak crude (308). (D) Methanol-stem three-soak crude (311).  

* A dark red halo indicates QSI activity, and a clear zone indicates antimicrobial activity. Halos 

can be seen around A, B, and D (samples 301, 306, and 311). 

 

 

A B 

C D 
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QSI Activity of the Major Constituents Using the QSIS2 Assay  

 All four of the major constituents showed QSI activity with the QSIS2 reporter strain. 

 

Baicalein -- Table 18 shows corresponding values of zones of inhibition and zones of growth. 

Figure 34 (A-C) depicts the results of baicalein tested at three concentrations: (A) 1µL/ mL, (B) 

0.5 µL/mL, and (C) 0.125 µL/mL.  

 

Table 18: QSI Activity of Baicalein Using the QSIS2 Assay. 

Concentration (µg/mL) 
Antimicrobial zone of 

inhibition (mm) 
QSI zone of growth (mm) 

4 0 20 

1 0 17 

0.5 0 18 

0.125 0 14 
Positive control (garlic) 15 25 

Negative control (empty wells) 0 0 

Baicalein was dissolved in methanol. This constituent was tested at various concentrations, one 

plate per concentration. These dilutions were not tested in triplicate. 

 

 
Figure 34: QSI activity of baicalein at various concentrations with the QSIS2 assay. 
(A) 1 µg/mL. (B) 0.5 µg/mL. (C) 0.125 µg/mL.  

Baicalein appears to produce QSI zones of growth at all three concentrations.  

 

 

 

 

A B C 
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Thymol -- Table 19 shows the corresponding zone of inhibition and growth at concentrations of 

500 mg/mL -3.9 mg/mL, constituent to solvent. Thymol showed potent antimicrobial and 

anti quorum sensing activity at all the concentrations tested.  Photos A and B in Figure 35 depict 

QSI results of thymol dissolved in methanol at concentrations 500 mg/mL and 7.8 mg/mL, 

respectively.  

 

Table 19:  QSI Activity of Thymol at Various Concentrations Using the QSIS2 Assay. 

Concentrations (mg/mL) 
Antimicrobial zone of 

inhibition (mm) 
QSI zone of growth  (mm) 

500 45 + 

250 46 + 

125 42 + 

62.5 31 + 
31.3 21 + 

15.6 17 26 

7.8 15 22 

3.9 11 12 

Positive control (Garlic) 16 + 

Negative control (Empty well) 0 0 

+ Indicates that a zone of growth was detected although a measurement was not recorded. This 

constituent was tested at various concentrations, one plate per concentration. These dilutions 

were not tested in triplicate. 

 

 

 

                   
Figure 35: QSI activity of thymol at various concentrations with the QSIS2 assay.  

(A) 500 mg/mL. (B) 7.8 mg/mL.  Both of these concentrations showed potent zones of growth.  

  A 
B 
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 Rosmarinic acid -- Table 20 depicts the zones of inhibition and zones of growth at various 

concentrations (200-25 mg/mL). Faint QSI zones of growth were seen at the concentrations 

(200-50 mg/mL) of the samples tested.  However, no activity was observed below the 25 mg/mL 

concentration.  Photos A-C in Figure 36 depicts QSI results of rosmarinic acid seen with the 

QSIS2 assay tested at various concentrations: (A) 200 mg/mL, (B) 100 mg/mL, and (C) 50 

mg/mL. 

 

Table 20: QSI Activity of Rosmarinic Acid at Various Concentrations using the QSIS2 

Assay. 

Concentrations 

(mg/mL) 

Antimicrobial zones of 

Inhibition (mm) 

QSI zones of 

growth (mm) 

200 20 * + 

100 18 * + 

50 16 * 25 

25 0 0 

Positive control (Garlic) 15 25 

Negative control  (Empty well) 0 0 

Zone measurements are an average of three replicate experiments.    

* Indicates zones were very faint in color.  

+ Indicates that a zone of growth was detected although a measurement was not recorded.  

 

      
Figure 36: QSI of Rosmarinic acid at various concentrations with the QSIS2 assay.  
(A) 200 mg/mL. (B) 100 mg/mL. (C) 50 mg/mL.  

Faint zones of growth can be seen at all three concentrations. 

 

 

A B C 
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Carvacrol -- Table 21 presents a more extensive analysis of liquid carvacrol samples tested at 

varying concentrations (1000-7.8 µL/mL). Both antimicrobial activity and anti-quorum sensing 

activity was seen at all concentrations, with definitive measurements recorded at 62.5-15.6 

µL/mL. Photos A-C of Figure 37 depicts QSI activity of carvacrol at various concentrations: (A) 

62.5 µL/mL, (B) 31.3 µL/mL, and (C) 15.6 µL/mL, respectively.  Notice the red halo around the 

31.3 µL/mL carvacrol well. 

 

Table 21: QSI Activity of Carvacrol at Various Concentrations with the QSIS2 Assay. 

Concentrations  

(µL/mL) 

Antimicrobial zones of 

inhibition (mm) 

QSI zones of growth                            

(mm) 

1000 39 + 

500 40 + 

250 38 + 

125 30 + 

62.5 27 36 

31.3 18 22 

15.6 16 14 

7.8 11 ? 

Positive control (Garlic) 16 + 

Negative control (Empty well) 0 0 

+ Indicates a zone of growth was detected although a measurement was not recorded. This 

constituent was tested at various concentrations, one plate per concentration.               
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Figure 37: QSI activity of carvacrol at various concentrations with the QSIS2 assay.  
(A) 62.5 µL/mL. (B) 31.3 µL/mL. (C) 15.6 µL/mL. 

 

 

Chromobacterial QSI Assay 

 

 Figure 38 (photos A and B) depicts the QSI assay results for samples of the thyme 

extract, baicalein, and garlic. Figure 39 (photos A and B) depicts Chromobacterial QSI assay 

results for rosmarinic acid, carvacrol, and thymol.  Table 22 shows the corresponding 

antimicrobial and anti-quorum zone values. QSI zones can be seen around the thyme extract (21 

mm) and the baicalein sample (18 mm). In addition, the second darker purple zone seen around 

the baicalein well (Figure 38-B) may suggest an increase in violacein production, thus suggesting 

an increase in QS activity. However, further assessment is needed.  

 QSI activity for three volumes (10 µL, 25 µL, and 50 µL) of the toluene garlic extract  

were demonstrated zone diameters 10 mm and 13 mm respectively only for volumes of 25 µL 

and 50 µL. This could be due to the softness of 0.3% LB agar, which can cause irregular zone 

sizes. Therefore, only samples with zones of greater than 10 mm were considered active. Thus, 

50 µL was determined to be the optimum volume for the garlic tested.  

 Rosmarinic acid (50 mg/mL) showed a QSI zone diameter of 10 mm, while thymol (7.8 

mg/mL) and carvacrol (31.3 mg/mL) both showed significant antimicrobial and QSI activity.  

Figure 39-B clearly depicts the difference between the antimicrobial activity (clear zone) and 

A 
B 

C 
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QSI activity (opaque zone). Antimicrobial zone diameters measured 15 mm for thymol and 26 

mm for carvacrol. Thymol QSI zone diameters measured 22 mm, while carvacrol had zones of 

34 mm.   

 

 

Table 22: Chromobacterium QSI Assay of the Thyme Extract and its Main Constituents. 

Sample descriptions 

(concentrations) 

Antimicrobial 

 Zone of inhibition 

 (mm) 

QSI  

Zone of inhibited color           

(mm) 

1 
Thyme methanol leaf extract   

500 mg/mL (50 µL per well) 
? 21 

2 
Baicalein, 4µL/mL                                   

(50 µL per well) 
? 18 

3 
Toluene garlic extract           

(10 µL per well) 
0 0 

4 
Toluene garlic extract                      

(25 µL per well) 
0 10 

5 
Toluene garlic extract                                                                          

(50 µL per well) 
8 13 

6 
Rosmarinic acid, 50 mg/mL                               

(50 µL per well) 
8 10 

7 
Thymol, 7.8 mg/mL                              

(50 µL per well) 
15 22 

8 
Carvacrol, 31.3 µl/mL                               

(50 µL per well) 
26 34 

9 Internal standard 0 12 

10 Negative control (empty well) 0 0 

Zone measurements are an average of three replicate experiments. The toluene garlic extract was 

considered to be the positive control for this experiment.  
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Figures 38: Chromobacterial QSI assay results of the thyme extract and its various 

constituents. (A) The top side of the plate: (1) Thyme methanol leaf extract (500 mg/mL);       

(2) baicilein (4 µg/mL); (3) toluene garlic extract (50 µL per well); (4) toluene garlic extract    

(25 µL per well); and (5) toluene garlic extract (10 µL per well).  (B) The bottom side of the 

plate. (From top to bottom, left to right, the samples are 1, 2, 3, 4, and 5.   

 

   
Figure 39: Chromobacterial QSI assay results of the thyme constituents. (A) The top 

side of the plate: (6) Rosmarinic acid (50 mg/mL); (7) thymol (7.8 mg/mL); (8) carvacrol 

(31.3 µl/mL); (9) internal standard; and (10) negative control (empty).  

(B) The bottom side of the plate. In this view, the difference between the zones of 

inhibition (antimicrobial) versus the zone of inhibited color (QSI) is clear. Samples, 

appearing from left to right, correspond to 6, 7, 8, 9, and 10 as mentioned above. (Notice 

the zones of inhibition as completely clear versus the zones of growth [QSI] as opaque 

zone around samples 7 and 8, thymol and carvacrol, respectively.) 

 

A B 

  

aBBAB

B B  
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DISCUSSION AND CONCLUSION 

  

The purpose of this dissertation was to perform preliminary exploration of two potential 

alternative modes of treatment against Pseudomonas aeruginosa infections: quorum sensing 

inhibition of folk-medicinal plant extracts and a specific example of combination drug therapy, 

the thyme-tetracycline effect. 

   Because the prevalence of multidrug-resistant Pseudomonas is relatively high, many 

researchers have begun exploring different options such as quorum sensing inhibition and 

combination therapy as single drug treatment options have become less and less effective.  Since 

QSIs do not kill the pathogen, the selection pressure for development of resistance strains is 

greatly diminished.   To date, many known QSI‘s such as patulin and penicillic acid, have been 

shown to be too toxic for human use (Rasmussen and Givskov, 2006).  

 

Screening of Fifty Folk-Medicinal Extracts for QSI Activity 

QSIS2 Assay 

 The first part of this study focused on screening fifty folk-medicinal plants for quorum 

sensing inhibitory activity.  Out of 50 plants tested, thirty plant families were represented.  Thirty 

samples showed QSI zones of growth as presented as a bright red halo. This assay detects C4 or 

C12 HSL signaling inference.  The QSIS2 assay works as such:  The QSIS2 reporter stain harbors 

a plasmid which contains a QS promoter gene attached to the levansucrase gene encoding cell 

death. In the presence of sucrose and exogenous C4 and C12 HSL signal molecules, QS-mediated 

cell death is triggered (Rasmussen et al., 2005b; Rasmussen and Givskov, 2006).  When QS-

mediated gene expression is activated in the QSIS2 reporter strain, sucrose mediated cell death 
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occurs, but if QSI compounds are present in the test sample, QS-mediated cell death is blocked 

and the reporter strain is able to grow.  Cellular growth is achieved and a zone of dark red growth 

is visible around the test well in only the areas where QSI molecule concentration offsets QS 

signal concentration. The red color is caused by the metabolism of triphenyltetrazolium chloride 

by the bacteria, used only to augment the bacterial zone of growth.    If the concentration of the 

QSI is too low or a compound in the sample has antibacterial effects then any cellular growth 

and or erroneous background growth will be inhibited and a ―clear zone‖ will be seen around the 

test well. 

 Thirty samples showed a transparent or clear zone inhibited growth suggesting 

antimicrobial activity while twenty-four samples showed both types of activity.  The plants 

tested which showed a transparent or clear zone around the test well these values were recorded 

as zones of inhibition.  This lack of growth however, can be attributed to a number of factors: (1) 

antimicrobial activity (transparent zone) provided by a component in the plant extract, (2) a lack 

of a QSI compound in the extract (clear zone with the possibility of some background growth), 

(3) concentration of a potential QSI compound is too low in a particular region of the agar (clear 

zone with the possibility of some background growth).  If a QSI is either not present or the 

concentration is too low to offset signal molecules, than QS-mediated cell death will be induced.  

All three scenarios produce cell death and a lack of growth around the test well.   

 Two variables that may lead to false positive results with the use of this QSIS2 reporter 

strain are test samples with high sugar content or an alkaline pH.  Rasmussen et al. (2005b) 

stated that plant extracts with high sugar content can produce false positives with this QSIS2 

reporter strain. Excess sugar content of a test sample may interfere with the sucrose mediated cell 

death. Krisitis and Parsek (2006) suggested that alkaline solutions of pH 8.0 or greater can cause 
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the acyl-homoserine lactone rings of the signal molecule to break open deeming them inactive. 

Both of these variables were examined for the majority of the extracts.   

 Preliminary investigations of various sugar concentrations (dextrose, fructose, glucose, 

and sucrose) and their effect on the assay were preformed to determine which concentrations 

would yield false positive results with the QSIS2 assay.  Interestingly, fructose and sucrose did 

not affect the assay results.  Glucose and dextrose, however, did yield false positive zones of 

growth halos with the QSIS2 assay. This data showed that samples with glucose concentration of 

254 mg/dL produce false positive halo rings of 14 mm in diameter with the QSIS2 assay (data 

not shown). So, special care must be taken with when assessing samples with glucose 

concentrations of 254 mg/dL or greater.  High glucose concentrations in a plant extract do not 

indicate lack of QSI activity just that the particular extract cannot be properly assessed with this 

QSIS2 assay. 

 Another factor that may affect QSI results is pH of the samples. The AHL molecules are 

very susceptible to pH changes. These molecules have been shown to have a half-life of several 

hours at a pH of 7.0 and several minutes at a pH of 8.0 (Krisitis and Parsek, 2006). For this 

reason, the pH of each extract was tested.  All samples tested registered a pH of 6.0 or below 

with the exception of yellow root which had a pH of 7.0.  Disruption of a signal molecule would 

prevent binding of the receptor thus allowing cellular growth and producing a false positive halo.   

However, pH did not affect the assay results and no QSI activity was seen with this sample. 

 

Chromobacterial QSI assay 

 Nineteen of the forty-one samples showed QSI activity with the Chromobacterial QSI 

assay.  QSI activity is observed as lack of violaceum pigment production in the assay.  Samples 
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showing this activity most likely contain compounds which act as C4-C6 HSL analogues.  Seven 

samples produced zones of increased color pigmentation. One explanation for this is that the 

extract might contain a second compound that augments QS-mediated pigment production.  

 There were a total of eleven crude extracts that had an acidic pH, low glucose content 

(under 360 mg/dL), and showed anti-quorum sensing activity in both of the assays.  These 

extracts were: basil, chaparral, clove, cranberry, oregano, pomegranate, rosemary, sage, 

sassafras, thyme and witch hazel. The results suggest that these extracts contain compounds 

which interfere with C4 HSL bacterial communication.  Interestingly, five of plants were from 

the Lamiaceae family.  Ginger and mint extracts also showed activity with the QSIS2 assay and 

showed little to no activity with the Chromobacterial QSI assay. These results suggest analogous 

interference with C12 HSL QS communication. 

 Rasmussen et al. (2005b) also screened many of these same plant extracts, and some 

inconsistency has been determined in comparing the two studies. Their findings showed no QSI 

activity for the extracts of clove, cranberry, ginseng (though this study used red ginseng) and 

mint.  However they used a different report strain. Their QSIS1 reporter strain screens 

specifically for C6 HSL analogues. 

 Rasmussen et al. (2005b) reported a lack of activity with their C6 HSL analogue 

screening assay for ginseng, clove and mint extracts.  No activity was found for the 

Chromobacterial QSI assay of red ginseng in this study, but we found activity with the QSIS2 

assay.  These results suggest that red ginseng may produce a C12 HSL analogue.  Rasmussen et 

al. (2005b) also reported that the clove extract did not have QSI activity; in contrast, the assays 

carried out in this study showed considerable activity.  One possible explanation is that the clove 

produces C4 HSL analogues, compounds that may have not been identifiable with the assay used 
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in Rasmussen‘s study.     The mint extract showed activity with the QSIS2 assay, which suggests 

C12 HSL communication interference as well. 

 Vattem et al. (2007) also screened basil, ginger, oregano, rosemary and thyme extracts 

with a similar Chromobacterial QSI assay type assay utilizing the Chromobacterium violaceum 

CV026 strain.  This strain requires the addition of exogenous signal molecules for activity.  Their 

findings were similar and consistent with those of this project. 

 Combination treatments such as antibiotic-antibiotic treatments have been discussed by 

many researchers (Driscoll et al., 2007).  Plant extract-antibiotic combination studies have been 

explored by others including: Aburjai et al., 2001; Betoni et al., 2006; Nascimento et al., 2000.  

Several researchers (Hamilton-Miller and Shah, 2002; Rasmussen et al., 2005b) have also shown 

great promise using quorum sensing inhibitor-antibiotic combinations against biofilm and other 

types of infections.   

 

The Thyme-Tetracycline Effect 

 The second part of this study focused on the medicinal folklore plant Thymus vulgaris.  

Several researchers have shown that thyme has antimicrobial (Cowen, 1999) and anti-quorum 

sensing activities (Vattem et al., 2007).  This study demonstrates that the thyme extract can 

specifically interfere with Pseudomonas aeruginosa C4 HSL signaling. Previous researchers 

(Nascimento et al., 2000) have also shown thyme has the ability to augment antimicrobial 

activity against resistant Pseudomonas aeruginosa. The combination of thyme and tetracycline is 

more effective at killing tetracycline resistant P. aeruginosa than the either of the individual 

components.  Thus, this study set out to determine the active compound in the thyme extract that 

causes this effect, and to present a potential mode of action.   
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 While thymol, a major constituent in thyme, is also well known for its antimicrobial 

activity, this study appears to be the first to identify thymol as the active component in the 

thyme-tetracycline effect.  

 

QSI Activity of Thyme 

 In order to elucidate a mode of action for thyme in the thyme-tetracycline effect, various 

extracts of thyme and its four major constituents were assessed for QSI activity.  

Thyme -- A recent report (Vatten et al., 2007) found that a water extract of thyme 

showed QSI activity with the Chromobacterium violaceum CV026. This wild type strain requires 

the addition of exogenous C6 HSL signal molecules. They found that the thyme-water extract 

reduced QS-mediated violacein production by 60%. This study also found QSI activity with the 

Chromobacterium plate assay, producing QSI zones of 13 mm. This activity was substantiated 

by the QSIS2 assay.  Four extracts of varying polarity ethanolic leaf crude, methanolic leaf 

crude, methanolic stem crude, and the hexane leaf crude were analyzed. Out of the four extracts, 

the polar extracts (methanol and ethanol leaf extracts and a methanol stem extracts) showed 

activity with the QSIS2 assay. However, the hexane nonpolar leaf crude extract showed no 

activity.  Next, the four main constituents (baicalein, rosmarinic acid, thymol and carvacrol) 

were also examined for QSI activity using both the QSIS2 assay and the chromobacterial QSI 

assay. 

Baicalein -- Zeng et al. (2008) reported that baicalein showed potential QSI activity 

against Pseudomonas aeruginosa using a computer-docking program. They also showed that 

baicalein can augment ampicillin activity against resistant Pseudomonas sp. Cheng et al. (2007) 

found synergy between baicalein and gentamicin against Gram-positive vancomycin-resistant 
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Enterococcus sp. The data presented herein validates their findings. Bacilien produced a strong 

red halo, which suggests QSI activity at all concentrations tested (Figure 3.2). The 

Chromobacterium plate assay also validated QSI activity.  Baicalein showed QSI activity with 

both of the assays, but it did not show any antimicrobial activity in the DDA assays, and also it 

did not augment tetracycline activity. 

Rosmarinic acid -- Walker et al. (2004) performed studies on the root stems of sweet 

basil, which produces rosmarinic acid in response to pseudomonad infections. These studies 

found that rosmarinic acid does effect cell growth and Rhl I/R gene expression, and can prevent 

biofilm formation. The QSIS2 assay showed faint zones of QSI activity at various concentrations 

(200-25 mg/mL). Chromobacterium studies also substantiate these results producing QSI activity 

at a 50 mg/mL concentration.  Rosmarinic acid did show QSI activity but it did not augment 

tetracycline activity in the DDA assays. 

Thymol and Carvacrol -- Studies have shown that thymol and carvacrol can effect 

biofilm formation in Staphylococcus (Nostro et al., 2007) and C.albicans (Braga et al., 2007; 

Braga et al., 2008).  Prior to this study, thymol and carvacrol had not been tested specifically for 

QSI activity against Pseudomonas aeruginosa. This study appears to be the first to identify that 

thymol and carvacrol can act as potent quorum sensing inhibitory agents as demonstrated by both 

QSI assays.  This study showed specifically that QS-mediated gene expression can be effected 

by both compounds.  Thymol and carvacrol showed QSI activity even at minimal concentrations 

of 3.9 µg/mL and 7.8 µl/mL, respectively.  While both compounds showed potent QSI activity, 

only thymol could augment tetracycline activity against Pseudomonas aeruginosa ATCC 10145. 

 These two QSI assays also indicate that the thyme extract and its four main constituents 

all show potential QSI activity. QSIS2 assay suggests that these compounds probably interfere 
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with either C4 HSL of C12 HSL QS-mediated communication. The Chromobacterium QSI assay, 

which can be used to screen for C4-C6 HSL analogues, further substantiates these results by 

showing that the extract, along with the four main constituents, can all interfere with the C4 HSL 

signaling in C. violaceum. This assay also shows that these compounds can repress the 

expression of violacein, a pigment under QS-mediated control. The significance of a compound 

that is able to prevent the QS-mediated gene expression of violaceum indicates that these four 

major constituents should also be able to prevent other QS-mediated genes from being expressed, 

and that other QS-mediated genes may down regulated including QS-mediated efflux pump 

expression.  Conclusively, all of the data suggests that the thyme extract does have the ability to 

interfere with Pseudomonas aeruginosa QS-mediated gene expression. This evidence supports 

the idea that the thyme extract and its major constituents are all potent QSIs; hence it may be 

possible that the thyme extract and specifically thymol can provide tetracycline efficiency 

against resistant pseudomonads. 

  

Potential Mode of Action for the Thyme-Tetracycline Effect 

 The collective evidence herein may be used to devise a possible mode of action that can 

explain the action of the thyme-tetracycline effect.  Thymol was shown to be the active 

component in the thyme-tetracycline effect.  A mode of action that may explain this effect may 

be that thymol is working as a C4 HSL analogue.  The Chromobacterial QSI assay shows two 

things. First, thymol can act as a C4-C6 HSL analogue at appropriate concentrations.  Second, it 

shows that gene expression (pigmentation) can be repressed by this compound.  The second 

assay QSIS2 reinforces the idea that thymol can act as a C4 HSL analogue.  In Pseudomonas 

aeruginosa ATCC 10145, thymol probably acts as an analogue and a competitive inhibitor for 
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the Rhl R transcription receptor which is under C4 HSL control.  In Pseudomonas aeruginosa, if 

Rhl-R QS-mediated gene expression is repressed then increased MexAB-OprM efflux pump 

gene expression is also repressed.   

 Sugimura et al. (2008) showed that if MexAB-OprM is suppressed by about 70 %, the 

cell becomes 2-4 times more susceptible to tetracycline antibiotic.  MexAB-OprM expression is 

under QS-mediated C4 HSL-Rhl R binding control.  If C4 HSL binding is prevented by a 

competitive inhibitor such as thymol, for example, tetracycline can not be expelled from the cell 

and concentrations increase as the molecules accumulate within the cell.  Thus, efflux of 

tetracycline would be greatly reduced, allowing accumulation of tetracycline in the cell to levels 

which cause protein synthesis disruption. This would occur as tetracycline binds to the A site of 

the T-RNA binding site, eventually causing cell death (Poole, 2001). 

 The conclusion of this investigation yielded that thymol, a well known antimicrobial 

active constituent of Thymus vulgaris, and other Lamiaceae plants, can work in a synergistic 

fashion with ineffective doses of tetracycline to augment antimicrobial activity against 

tetracycline-resistant Pseudomonas aeruginosa ATCC 10145.  A proposed mode of action for 

the thyme-tetracycline effect is that thymol acts as a QSI inhibitor of C4 HSL communication,  

preventing MexAB-OprM efflux pump expression, thus allowing tetracycline to accumulate in 

the cell and cause cellular damage.  

 Collectively, these experiments show that quorum sensing inhibitors and maybe an 

important component in treating P. aeruginosa infections. The screening of the fifty plant 

extracts yielded several new QSI leads many from plant sources that have already been shown 

safe for human consumption.  Further testing would allow researchers to explore and develop 

some of these leads into potential new treatments against Pseudomonas aeruginosa infections. 
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