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ESTROGEN-INDUCED MODULATION OF INNATE AND ADAPTIVE IMMUNE 

FUNCTION 

by 

FEDA N. MASSEOUD 

 

Under the advisement of Dr. Roberta Attanasio 

 

 

ABSTRACT 
 

 
Host defense against infection and disease relies on the reciprocal communication between the 

immune and neuroendocrine systems where sex hormones exert negative and positive feedback 

actions on immune functions. Indeed, sex hormones have been implicated in gender dimorphic 

immune response and in the potentiation of immune-related disorders. The female hormone 

estrogen plays a role as an immunomodulator and may exert immunosuppressive and 

immunostimulatory effects. Though many studies focus on estrogen’s role in immunity within 

the female reproductive tract and autoimmunity, the modulatory effects of estrogen on vaccine 

responses are largely unexplored.  The insufficient efficacy of some vaccines in certain target 

populations, as for example the elderly population, is well recognized. Hormones fluctuate 

throughout an individual’s life, and females in particular undergo several necessary reproductive 

(pregnancy and menopause) and lifestyle (oral contraceptive use) changes which involve sex 

hormones. Vaccine efficacy might be influenced by endogenous estrogen levels or by exogenous 

estrogen administration. Therefore, in the pursuit of improved vaccine efficacy, it is necessary to 

 



consider such hormonal factors and their contribution to immune status. We have studied 

estrogen’s role in modulation of vaccine responses using a mouse ovariectomy model where 

exogenous estrogen delivery can be controlled. Our studies included two different types of 

vaccines, a bacterial toxoid formulation and a bacterial secreted protein formulation. Results 

from these studies indicate that estrogen enhances vaccine-specific antibody production by likely 

supporting a general T 2 pathway and also modulates expression of genes encoding molecules 

critical in innate immune signaling and required for development of proper adaptive immune 

responses and antigen clearance through antibody-mediated mechanisms. The level at which 

estrogen modulates antibody responses appears to be dependent on the route of vaccine 

administration. The enhancement of specific humoral responses may involve mechanisms 

involving TLR2 and antibody Fc receptor expression on macrophages, cells that link innate and 

adaptive immune responses. Advances in our understanding of the relationship between sex 

hormones and the immune system may provide new insights into the mechanisms by which 

hormones act and thus may be exploited to guide the design of future vaccine strategies.  
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CHAPTER 1 

Introduction and Study Objectives 
 
 

The primary function of the immune system is to protect the host from invasion of foreign 

organisms by distinguishing “self” from “non-self”.  While there is a high degree of 

interconnectivity between its components, the immune system is generally divided into two 

subsystems, the innate and the adaptive immune systems (Kuby 2007).  Innate immunity 

provides the first line of defense against infection. Its disease-resistant mechanisms are non-

specific and though the response is immediate in action, it is short-lived.  In contrast, adaptive 

immunity is much more specific and takes longer to activate.  It results in immunological 

memory which can augment itself to respond more quickly and with greater specificity to future 

encounters with the same pathogens. To some extent, the distinction between innate and adaptive 

immunity is vague, because it is now evident that innate immune signaling is required for 

activation of adaptive immunity (Delves and Roitt 2000). Both systems are highly interactive and 

cooperative, producing a combined response more effective than either branch could produce on 

its own, and one that provides protection against a diverse and rapidly-evolving array of 

pathogens.   

The innate immune system consists of molecules and cells that distinguish host components from 

those of infectious agents, in part by recognizing conserved constituents of microorganisms. 

Innate immune activation occurs within hours of contact and its efficacy is not influenced by 

previous exposure. Phagocytes play a pivotal role in the innate immune response. Upon 

activation by microbial detection, they release cytokines and chemokines which go on to signal a 
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wide array of functions and responses, including inflammation. The major phagocytic cells 

include neutrophils and macrophages, which are specialized to internalize and destroy 

microorganisms, and dendritic cells (DC). DC act as dedicated antigen-presenting cells (APC) 

that display antigen for recognition by naïve lymphocytes of the adaptive immune system and 

activate their differentiation into effector cells. Proper activation requires specialized co-

stimulatory signals along with antigen recognition; in this way DC provide a crucial link between 

the recognition of microbial components and activation of adaptive immune responses. Other 

cells of the innate immune system, such as basophils, mast cells and natural killer (NK) cells, are 

not phagocytic, and use other mechanisms to kill bacteria. For example, NK cells, which play a 

role in the host-rejection of both tumors and virally infected cells, kill cells by signaling them to 

undergo apoptotic cell death.  

The interaction between phagocytes and pathogens or foreign substances is facilitated in several 

ways. Pathogens may be coated with molecules known as opsonins which facilitate 

phagocytosis. Opsonins include complement proteins of the innate immune system and 

antibodies, or immunoglobulins, of the adaptive immune system. Another way that phagocytes 

interact with pathogenic molecules is through direct binding of pattern-recognition molecules to 

conserved structures on the pathogen. A number of these molecules have been identified, but 

perhaps the most important of these are the molecules known as toll-like receptors (TLR). TLR 

are membrane-spanning proteins expressed on a variety of different cell types, including DC and 

monocytes/macrophages as well as B cells and epithelial and endothelial cells (van Duin and 

Shaw 2007). They recognize and bind conserved structures on microbial pathogens. The 

microbial structures, termed pathogen-associated-molecular-patterns (PAMPs), are repetitive 

structures that include extracellular bacterial structures and nucleic acids. TLR are considered 
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pattern recognition receptors that, by their recognition and interaction with PAMPs, result in cell 

activation and thus cytokine secretion and phagocytosis.  

Currently, 11 human TLRs and 13 murine TLRs have been described (Table 1.1). Common 

microbial and synthetic ligands for TLRs 1-9 have been identified in both humans and mice (van 

Duin and Shaw 2007). Ligands for TLR1 and 2, and 2 and 6, are Gram-positive bacteria and 

yeast cell wall components, while the predominant Gram-negative bacterial product, LPS, is a 

ligand for TLR4. Other products such as dsRNA (poly I:C), bacterial flagellin, immiquimod, and 

CpG oligodeoxynucleotides (ODN) have been identified as ligands for TLR 3, 5, 7, and 9, 

respectively. The interaction between a TLR and its ligand results in the secretion of anti-

bacterial peptides, defensins, and pro-inflammatory cytokines such as TNF-α and IL-6, which 

initiate an inflammatory response to clear the invading organism. Furthermore, the inflammatory 

response results in the recruitment of cells of the adaptive immune system, including B and T 

cells, to initiate clearance of the pathogens by generating a specific immune response. Therefore, 

TLR-dependent activation of antigen presenting cells represents a crucial step not only for the 

innate response, but also for ensuing mobilization of the adaptive immune system. Indeed, 

inherent defects in TLR signaling have been described in humans and are associated with greater 

susceptibility to bacterial infections (Ku, Yang et al. 2005).  

The adaptive immune system is triggered when a pathogen evades the innate immune barriers of 

protection. As opposed to the innate response, the adaptive immune response is not present prior 

to encounter with a specific pathogen. Taking several days to develop, it antigen receptor 

molecule from a pre-existing repertoire recognizing a diverse array of distinct antigen 

specificities that arises from a recombinant gene rearrangement process (Delves and Roitt 2000). 
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Table 1.1. Toll-like receptors, their ligands, the pathogens from which they are derived and the 

phenotype displayed by TLR knockout studies (Carpenter and O'Neill 2007). 

TLR Ligand Target Pathogen 
 
Phenotypes of knockout mice 
 

 
TLR1 

 
Triacylated lipoproteins 

 
Mycobacteria 

 
 Cytokine production 

 
TLR2 Peptidoglycan, lipoproteins, 

zymosan 
Gram-positive bacteria  
S. aureus, S. pneumoniae, yeast 
and other fungi 
 

 Cytokine production 

TLR3 Double stranded RNA 
(dsRNA) 

Viruses 
  Cytokine production,   

 Resistance 
 

TLR4 LPS Gram-negative bacteria,   Pro-inflammatory cytokines 
(TNF-α, IL-6, IL-1),  
Proliferation of splenic B cells, 
hypo-responsive  
 

TLR5 Flagellin S. typhimurium, P. aeruginosa 
 

No obvious phenotype because 
of TLR4 redundancy 

TLR6  Diacylated lipoproteins, 
zymosan 

Mycobacteria, yeast and fungi 
  Cytokine production 

 
TLR7/8 Single-stranded RNA 

(ssRNA) 
Viruses, HIV, Denge virus 
influenza 
 

 Cytokine release from 
dendritic cells, CD40 not up-
regulated 
 

TLR9 CpG DNA Bacterial DNA Dendritic cell maturation,       
Splenocyte proliferation,     

 Inflammatory cytokines 
 

TLR10 Unknown Unknown Unknown 
 

TLR11 Profilin, uropathogenic 
bacteria 

T. gondii  Uropathogenic bacteria 
  Survival 

TLR12 Unknown Unknown Unknown 
 

TLR13 
 

Unknown Unknown Unknown 
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The adaptive immune response has several unique and critical functions. First of all, it has the 

ability to recognize specific “non-self” antigens in the presence of “self”, within the context of 

antigen presentation. Second, it is designed to generate responses that are tailored to maximally 

eliminate specific pathogens or pathogen-infected cells, a process achieved by clonal selection. 

Finally, an additional hallmark of the adaptive immune system is its ability to develop 

immunological “memory”, which results in the mounting of a stronger and much more rapid 

response to the same pathogen upon subsequent infection. 

Adaptive immunity is mediated by lymphocytes, which fall into two major classes: T 

lymphocytes and B lymphocytes (Kuby 2007). Lymphocytes constitute 20-40% of the body’s 

white blood cells and 99% of the cells in the lymph. B lymphocytes, or B cells, originate and 

mature in the bone marrow and are responsible for the production of antibodies, the major 

effector molecules of humoral immunity. T lymphocytes, or T cells, originate in the bone 

marrow and mature in the thymus and are the effector cells of cell-mediated immunity. These 

circulate in the blood and lymph and carry out their respective functions in the tissues and 

lymphoid organs. 

T cells are further divided into 2 subsets, which are each responsible for distinct roles within the 

immune system: T helper (TH) lymphocytes and cytotoxic T (CTL) lymphocytes, distinguished 

from each other by the restricted surface expression of either CD4 or CD8 molecules, 

respectively. TH cells orchestrate the activity of a number of other cells and processes of the 

immune system depending on the type of cytokine profile that they secrete. There are two main 

functional categories: T helper 1 (TH1) cells and T helper 2 (TH2) cells. TH1 cells secrete 

cytokines that stimulate an immune response against intracellular pathogens or tumors, resulting 
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in an activation pathway that favors a strong cell-mediated response. The cytokines secreted by 

TH1 cells include IL-2, IL-12 IFN-γ and TNF-α (Salem 2004). TH2 cells secrete cytokines that 

stimulate an immune response against extracellular pathogens, resulting in an activation pathway 

that favors a strong humoral response. Cytokines secreted by TH2 cells include IL-4, IL-5, IL-10 

and IL-13 (Salem 2004). The type of TH cell response generated (cellular vs. humoral) is dictated 

by the cytokine milieu produced in response to the signal received upon infection. A third subset 

of T helper cells, termed TH17 cells, also exists and is thought to play a role in inflammation, 

autoimmunity and allergy (Mangan, Harrington et al. 2006; Schmidt-Weber, Akdis et al. 2007). 

These cells are characterized by expression of IL-17, IL-6, TNF-a and IL-22 (Harrington, Hatton 

et al. 2005; Park, Li et al. 2005; Chung, Yang et al. 2006; Mangan, Harrington et al. 2006; 

Zheng, Danilenko et al. 2007). Because of their role in tissue inflammation by supporting 

neutrophil infiltration and survival, matrix degradation and induction of pro-inflammatory 

cytokines in structural cells leading to pathology, there is currently a complex topic of 

controversy regarding whether TH17 cells are beneficial or harmful to the host (Schmidt-Weber, 

Akdis et al. 2007). 

The other type of effector T cell is the CTL. Pathogenic microorganisms whose proteins gain 

access to the cell cytoplasm are considered “endogenous” antigens, which stimulate CTLs. 

Activation of CTLs involves the recognition of antigenic peptides in association with MHC class 

I molecules on APCs (Kuby 2007). MHC class I molecules are expressed by all somatic cells, 

excluding red blood cells. Two major mechanisms for target cell killing by CTLs have been 

described. One mechanism involves the secretion of perforin and its insertion in the plasma 

membrane of target cells leading to osmotic lysis. Alternatively, CTLs may express Fas ligand 

on their surface which binds to Fas on the target cell membrane to induce apoptosis. In addition 
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to killing infected cells directly, CTLs can elaborate a number of cytokines including TNF-alpha 

and lymphotoxin (Shames 2002). 

Humoral immunity is another major component of the adaptive immune system. B cells and 

immunoglobulins are the main mediators of the humoral response during infection. 

Immunoglobulins, or antibodies, are proteins present on the B-cell membrane, and can be 

secreted once the B cell becomes activated or matures into a plasma cell. Specific interaction of 

membrane-bound antibody with antigen necessarily results in proliferation of antigen-specific B-

cell clones with the capability of secreting antibodies which interact with antigen in the blood 

and tissues. While in circulation, antibodies seek out and neutralize pathogens, thus eliminating 

them. All immunoglobulins share certain structural features, participate in specific binding to 

antigen and carry out an array of effector functions that contribute to pathogen clearance. They 

are composed of 82-96% protein and 4-18% carbohydrate (Spiegelberg 1974). The 

immunoglobulin protein “backbone” consists of two identical heavy and two identical light 

chains, linked together by disulfide bonds. Each chain is further divided into domains that make 

up the variable and constant regions of the molecule. At the amino terminal of the molecule, one 

variable domain from a light chain and one variable domain from a heavy chain make up the 

antigen-binding portion. The highly diverse amino acid sequences at these regions confer unique 

antigen binding properties to the antibody. The rest of the antibody molecule has much less 

variation than the variable domains and therefore the immunoglobulin domains that comprise 

these parts of the molecule are called constant domains. Light chains have one constant domain 

whereas heavy chains have either 3 or four, depending on the type of heavy chain. The COOH-

terminal of the constant domains of the heavy chains (CH) contain what is known as the Fc 

portions. It is through the Fc portion that other immune system components bind 
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immunoglobulins to initiate immune effector functions. For this reason, receptors that bind this 

portion of the immunoglobulin are called Fc receptors (FcR) (Ravetch and Kinet 1991).  

While the variable regions of antibody are responsible for binding to antigen, the CH regions are 

responsible for a variety of interactions with other proteins, cells and tissues that result in the 

effector functions of the humoral response. The major effector functions of antibodies include 

opsonization, which promotes antigen phagocytosis by macrophages and neutrophils; 

complement activation, which activates a pathway that leads to the generation of a collection of 

proteins that can perforate cell membranes; and antibody-dependent cell-mediated cytotoxicity 

(ADCC), which leads to killing of antibody-bound target cells. These effector functions rely on 

the interaction between CH regions and other immune cells/molecules. The various antibody 

classes differ in their CH regions and therefore not all classes of immunoglobulins have the same 

functional properties.  

The binding of IgG to FcR on leukocytes is important for many of the effector functions of IgG. 

There are four classes of FcγR identified in mammals: FcγRI (CD64), FcγRII (CD32), FcγRIII 

(CD16) (Siberil, Dutertre et al. 2007). Recently, a new member of the mouse FcγR family was 

identified, known as FcγRIV, however no human counterpart has yet been identified 

(Nimmerjahn, Bruhns et al. 2005; Nimmerjahn and Ravetch 2006). Binding of IgG to activating 

FcγR (FcγRI and FcγRIII) induce antibody-dependent cell cytotoxicity (ADCC), endocytosis of 

immune complexes followed by antigen presentation, phagocytosis and release of pro-

inflammatory cytokines. By contract, IgG binding to inhibitory FcγR (FcγRII) regulate immune 

responses by inhibiting the activation of B lymphocytes, monocytes, mast cells and basophils, 

induced through activating receptors(Nimmerjahn and Ravetch 2006). The activating and 
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inhibitory receptors transmit their signals via immunoreceptor tyrosine-based activation (ITAM) 

or inhibitory motifs (ITIM), respectively (Ravetch and Lanier 2000). Besides differences in 

function, the different classes of FcγR vary in cellular distribution and display different affinities 

for IgG along with characteristic isotype specificities (Figure 1.1). IgG/FcγR immune complex 

formation and the resulting effects are therefore well-regulated processes that provide a means 

by which antibodies, products of the adaptive immune system, can recruit key cellular elements 

of innate immunity such as macrophages and NK cells. 

Five classes of immunoglobulins present in both humans and mice (IgG, IgA, IgM, IgD, and 

IgE) have been distinguished on the basis of non-cross-reacting antigenic determinants in regions 

of highly conserved amino acid sequences in the constant regions of their heavy chains 

(Ballieux, Bernier et al. 1964; Terry and Fahey 1964; Schur 1972).  

IgG is the most abundant class found in serum, constituting about 80% of the total serum 

immunoglobulin. The IgG molecule is a monomer consisting of 2 gamma heavy chains and 2 

kappa or two lambda light chains. This molecule is further broken down into 4 subclasses in 

humans, designated as IgG1, IgG2, IgG3 and IgG4, based on their relative concentration in 

normal serum and their frequency of occurrence as myeloma proteins (Kunkel, Fahey et al. 

1966). Though mice produce IgG1, IgG2 and IgG3,the presence of IgG4 is strain-dependent 

(Martin and Lew 1998). Immunoglobulin subclasses are encoded by different germline constant 

heavy (CH) chain genes whose DNA sequences are 90-95% homologous. The structural 

characteristics that distinguish these subclasses from each other are the amino acid sequence and 

size of the hinge region as well as the number and position of the inter-chain disulfide bonds 
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Figure 1.1. Human leukocyte Fc receptors.  

Relative affinities of various ligands for receptors are indicated in decreasing order, starting with 

the isotype with the highest affinity. The Ig domains are color-coded according to their subunit 

homology. Whereas some receptors signal directly through activation (green rectangles) or 

inhibition motifs (orange rectangles) in their ligand-binding α-chain, others depend on 

membrane association with the Fc γ-chain to allow signaling through the γ-chain ITAM. Basos, 

basophils; Eos, eosinophils; Langs, Langerhans cells; Macs, macrophages; Monos, monocytes; 

Neuts, neutrophils; GPI, glycosylphosphatidylinositol; ND, not determined; S-IgA, secretory IgA 

(Woof and Burton 2004; Shi, McIntosh et al. 2006). 
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between the two heavy chains. Though subtle, these differences affect the biological activity of 

the molecule (Table 1.2).  

IgM accounts for 5-10% of total serum immunoglobulin. Monomeric IgM is expressed as 

membrane-bound antibody on B cells. IgM is secreted by B cells in a pentameric form consisting 

of five monomeric units held together by disulfide bonds. IgM is the first immunoglobulin class 

produced in a primary response to antigen and is the first immunoglobulin to be synthesized by 

the neonate. Because of its high valency, IgM is more efficient than IgG in viral neutralization 

and complement activation.  

IgA constitutes 10-15% of total immunoglobulin in serum, however it is the predominant class 

present in external secretions such as breast milk, saliva, tears and mucus of the bronchial, 

genitourinary and digestive tracts. In serum, IgA exists primarily as a monomer although 

polymeric forms are sometimes seen. The IgA of external secretions is known as secretory IgA 

because it contains a secretory component that is responsible for transporting polymeric IgA 

across cell membranes. IgA-secreting plasma cells are present in the mucous membrane surfaces, 

which are the primary entry way for most pathogenic organisms. Therefore, because of its 

localization at these sites, IgA can bind such pathogens and prevent attachment to mucosal cells, 

thereby inhibiting colonization.  

IgE exists in extremely low average serum concentration (0.3%), however it plays an important 

role in mediating the immediate hypersensitivity reactions that are responsible for the symptoms 

of hay fever, asthma, hives and anaphylactic shock. IgE binds to Fc receptors on the surface of 

blood basophils and tissue mast cells. Cross-linkage of receptor-bound IgE molecules to antigen 
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Table 1.2. Immunoglobulin classes/subclasses differ in structure and function (Kuby 2007). 

 Immunoglobulin Class/Subclass 

 IgM IgG1 IgG2 IgG3 IgG4 IgA IgE IgD 

Structure Pentamer Monomer Monomer Monomer Dimer Dimer Monomer 
 

Monomer 
 

Serum 
Concentration 
(mg/ml) 

1.5 9 3 1 0.5 3.5 0.0003 0.03 

Complement 
Activation ++ + +/- ++ - - - - 

Placental 
Transfer - + +/- + + - - - 

Phagocyte 
Fc Receptor 
Binding 

? ++ +/- ++ + - - - 

Neutralization + ++ ++ ++ ++ ++ - - 
 

Opsonization + +++ - ++ + + - - 
 

Presence in 
External 
Secretions 

Mucus 
etc. Milk Milk Milk Milk Mucus 

etc. - - 

 

++ = high; + = moderate; +/- = minimal; - = none; ? = questionable
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induces degranulation of these cells, resulting in the release of granules and molecules, 

manifesting in an allergic response.  

IgD is the most recently identified immunoglobulin present in serum, constituting about 0.2% of 

total immunoglobulin in serum. IgD, along with IgM, is the major membrane bound 

immunoglobulin expressed by naïve B cells. Although its function has not been completely 

understood, it is thought to play an important role in affinity maturation (Roes and Rajewsky 

1993) and B cell activation (Kim and Reth 1995).  

Immunoglobulins are made as both secreted antibodies and membrane-bound receptors for 

antigen displayed on the surface of B cells. The membrane-bound immunoglobulin is one part of 

a complex that forms the B cell antigen receptor (BCR). The BCR also contains a disulfide-

linked heterodimer of two other polypeptides, Igα and Igβ, which are made only in B-lineage 

cells. Each of these polypeptides contains a signaling function in their cytoplasmic domains. All 

five antibody isotypes can be expressed as membrane-bound that also form BCR in this way. 

 

Lymphocyte activation and effector mechanisms 
 

The activation of B and T lymphocytes is mediated by antigen-presenting DC in the B and T cell 

zones of the secondary lymphoid organs (spleen and lymph nodes) (DeFranco 2007). DC capture 

antigen at the site of infection or antigen entering the lymphoid tissue by blood or lymph, and 

then mature and display antigen as peptide fragments bound to surface molecules for recognition 

by T cells. In the case of B cells, intact antigen is displayed in complexes with complement 

components or antibodies that bind to receptors on follicular DC surface. These cells play a 
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central part in stimulating the production of antibodies with increased affinity for antigen 

(affinity maturation) and reflects a process in which the immunoglobulin genes undergo mutation 

and B cells with higher affinity immunoglobulin resulting from these mutations are selectively 

induced to proliferate (clonal selection). IgM and IgD are co-expressed on the surface of mature 

B cells, possess single antigenic specificity, and act as the initial BCR that binds antigen. After 

antigenic stimulation, B cells can differentiate into IgM-secreting plasma cells, which is the case 

in a primary immune response. Other activated B cells undergo a further process of 

recombination known as isotype switching. This occurs at the immunoglobulin heavy chain gene 

locus and results in the expression of different classes of antibodies (IgG, IgA or IgE) with the 

same antigenic specificity, yet able to perform unique effector functions (Kuby 2007). 

Differentiation into effector cells requires interaction of naïve lymphocytes with antigen. This 

recognition occurs via receptors generated through a unique mechanism of genetic 

recombination that confers virtually unlimited diversity in antigen binding specificity. The major 

receptors involved are BCR and T cell receptors (TCR). Structurally, each of these receptors 

contains a highly variable antigen-binding region (V region) and an invariant region known as 

the constant region (C region), both of which are separately encoded in the germ-line DNA. 

During lymphocyte ontogeny, the DNA encoding these receptors undergoes programmed 

rearrangement to generate different segments which recombine to generate a receptor repertoire 

of vast diversity. After gene rearrangement and receptor expression, but before maturation, 

antigen binding initiates one of two processes: clonal deletion of cells which bear receptors for 

self antigens and clonal expansion of lymphocytes with receptors specific for the inducing 

antigen. This distinction is the basis for antigen-specific adaptive immune responses.  
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While B cells are capable of recognizing antigen alone, T cells recognize and interact only with 

antigen that has been processed and presented in association with MHC molecules. MHC 

molecules (also called human leukocyte antigens [HLA] in humans) are subdivided into class I 

molecules, which are found on all nucleated cells and class II molecules, which are found on 

specialized antigen-presenting cells (APCs) such as dendritic cells, macrophages, B cells, and 

selected activated endothelial or epithelial cells. TH (CD4+) cells only recognize antigen 

presented by class II MHC molecules and CTLs (CD8+) only recognize antigen presented by 

class I MHC molecules. T-cell activation requires 2 signals. The first signal occurs through 

antigen/MHC binding to the TCR and is known as “signal 1”. An additional signal, “signal 2”, is 

provided by interaction between the co-stimulatory molecule CD28 on the T cell and CD80 or 

CD86 (also designated B7.1 and B7.2 respectively) on the APC. Activation of B cells requires 

signaling through the BCR and co-receptors such as CD19, CD21, or CD22. The combined 

antigen receptor- and co-receptor-derived signals define the degree of B cell activation and the 

strength of humoral immune responses. Activation of naïve T and B cells through this 

recognition and the subsequent up-regulation of appropriate co-stimulatory molecules is a 

requirement for differentiation into effector cells and successful pathogen elimination through 

the adaptive immune response.  

T cell activation by recognition of the antigen on the target cell surface triggers the release of 

soluble mediators that act on the target cell. In the case of CD8+ CTL, these are cytotoxic 

mediators that kill cells infected with intracellular pathogens (e.g. viruses). Activation of naïve B 

cells occurs when antigen binds to surface immunoglobulin. The antigen is then internalized and 

presented on the surface where it is recognized by antigen-specific T helper cells which activate 

the B cell to proliferate and differentiate into antibody-secreting plasma cells. Cytokines secreted 
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by T helper cells influence not only the antigen binding regions of the antibodies, resulting in 

affinity maturation, but also direct the effector functions of the antibodies produced by plasma 

cells, resulting in production of antibodies of classes determined by their constant regions 

(isotypes). Following activation of naïve B and T cells, specific humoral and cell-mediated 

immune responses ensue.   

B cells need two signals to initiate activation. Most antigens are T-dependent, requiring T cell 

help for maximal antibody production. With a T-dependent antigen, the first signal comes from 

antigen cross linking BCR and the second from its interaction with a T cell. When the antigen is 

first recognized and bound by the BCR, it becomes internalized, processed and presented as a 

peptide on MHC class II molecules. Recognition of this processed antigen by TH (CD4+) 

lymphocytes and the subsequent activation of these cells constitute the critical events in the 

humoral (antibody-mediated) response. The antigen-MHC II complex forms the epitope that is 

recognized by antigen-specific T cell receptors on the surface of the CD4+ cells. T helper cells 

become activated and provide co-stimulatory signals and secrete cytokines (predominantly IL-4, 

IL-5 and IL-6) that lead to B cell proliferation and differentiation into effector memory cells and 

antibody-secreting plasma cells.  

The ability of the immune system to respond rapidly upon re-exposure to a given antigen relies 

on long-lived plasma cells and the differentiation of memory cells. Memory responses differ 

from the primary response to antigen is several ways. First, because the population of antigen-

specific cells has already undergone expansion and most of the changes required for effector 

function, they are much quicker. Second, in the case of B cells, the antibodies have undergone 

affinity maturation and are more effective than those produced in a primary response (Pulendran 
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and Ahmed 2006). For these reasons, a subsequent infection with a given antigen usually does 

not lead to disease. The development of vaccines that safely and efficiently induce immune 

memory is one of the most important goals of immunological research. 

 

Immune Response to Vaccination 
 

Immunity to a particular pathogen relies on the host’s ability to mount a specific response against 

that pathogen. Immunity can be achieved through passive or active immunization. Passive 

immunization can occur by the transfer of preformed antibodies to a recipient through natural or 

artificial means. The goal of active immunization is to elicit protective immunity and 

immunologic memory so that subsequent exposure will induce a heightened immune response as 

well elimination of the pathogen (DeFranco 2007). An example of active immunization is 

vaccination. Vaccines are designed to direct the immune system towards preventing infection 

and/or disease by mimicking the immune pathway elicited by a natural infection. Achieving this 

requires the activation of adequate innate as well as adaptive immune signals.  

Mimicking the natural primary response to infection, initiation of a vaccine response relies on 

neutrophils, macrophages and DC of the innate immune system. These cells coordinate 

downstream activation of the adaptive response by secreting a variety of inflammatory mediators 

and cytokines. Upon activation, these cells become potent activators of T cells by virtue of up-

regulation of MHC and co-stimulatory molecules on their surface. Activated, or mature, DC are 

the only APC capable of activating naïve T cells. After antigen processing and presentation 

through the exogenous pathway by APC, expressing MHC II molecules, CD4+ T cells can 
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specifically recognize the antigen. CD4+ cells then become activated and differentiate into either 

TH1 or TH2 subsets.  

Immunization also activates the humoral response. The primary humoral response is 

characterized by the production of antibody-secreting plasma cells and memory B cells. The 

kinetics of this response varies depending on the nature of the antigen, the route of 

administration, the dose and the presence of immune enhancers. In general, this response is 

characterized by a lag phase, during which naïve B cells undergo clonal selection and 

differentiation into plasma and memory cells (Figure 1.2). Following this is the logarithmic 

phase, in which  serum antibody levels increase until they reach a peak, which then they plateau 

and then eventually decline. Generally occurring within the first two weeks of immunization, 

IgM is secreted initially, followed by IgG. The subsequent development of a secondary response 

relies on the existence of a population of memory B cells and memory T cells. Antigenic 

activation of these cells generates a secondary antibody response which is characterized by a 

shorter lag period, more rapid recognition, greater magnitude and longer lasting response as 

compared with the primary response. In addition, the antibodies secreted in the secondary 

response have a higher affinity for the antigen and as a result of isotype switching, classes other 

than IgM predominate. The population of memory B cells in a secondary response is larger and 

more easily activated as compared with naïve B cells. Upon activation, this memory response 

continues to increase, reaching maximal levels around six months and persisting for years. 

Immunization activates a primary response. If an immunized individual is later exposed to the 

pathogen, the immune system behaves as a secondary response to infection, where plasma cells 

are already primed to produce high levels specific antibodies. Both activated T cells and 
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Figure 1.2. Primary and secondary immune responses.  

Following initial exposure to an antigen the antibody response develops gradually over a period 

of days, reaches a low plateau within 2-3 weeks, and usually begins to decline in a relatively 

short period of time. When the antigen is encountered a second time, a secondary (memory) 

response causes a rapid rise in the concentration and increased affinity of antibody. The high 

levels of antibody in the serum may persist for a relatively long period of time.  
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antibody-secreting plasma memory cells are necessary to achieve an overall response is 

heightened and more rapid, thus efficiently protecting the body from infection and illness.  

Immunization programs have led to the elimination and/or control of several different infectious 

diseases, including smallpox, polio, measles, mumps, rubella, Haemophilus influenzae type B 

disease, pertussis, tetanus and diphtheria (Rosenthal and Zimmerman 2006). The most successful 

vaccines are ones mediated through the induction of protective antibodies (Plotkin 2001). 

Current targets for vaccine development include more challenging infectious agents which 

require induction of CD4+ and CD8+ cellular responses (Plotkin 2005). These include viral 

agents such as human immunodeficiency virus (HIV), cytomegalovirus and severe acute 

respiratory syndrome coronavirus; bacteria such as Pseudomonas aeruginosa, Neisseria 

gonorrhea and Mycobacterium tuberculosis; and parasitic diseases such as malaria (O'Hagan, 

MacKichan et al. 2001; Rosenthal and Zimmerman 2006).  

There are currently four types of vaccine formulations that are licensed for humans, including 

live attenuated, killed, purified subunit and recombinant subunit vaccines (Table 1.3). A live 

attenuated vaccine relies on decoupling virulence from induction of protective immunity. These 

are usually effective because they contain the three main elements needed for potent immune 

induction, the target antigen for induction of specific responses, PAMPs for induction of innate 

immunity and efficient delivery resulting from the natural invasiveness of the original organism 

(Ulmer, Valley et al. 2006). The organism is rendered attenuated by being subjected to serial 

passage in broth or cell culture, followed by selection for reduction of virulence and maintenance 

of immunogenicity in animal models. One important limitation of live attenuated organism-based 

vaccines is the risk of the organism reverting to virulence. In a killed vaccine, all of the antigens 
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Table 1.3. Examples of types of vaccines (Kuby 2007). 

Type of vaccine Disease target 

Live attenuated Mumps, Measles, Polio (Sabin vaccine),  Rubella, 
Rotavirus, Tuberculosis, Varicella, Yellow fever 

Inactivated or killed Cholera, Influenza, Hepatitis A, Polio (Salk 
vaccine), Rabies 

Subunit Hepatitis B, Pertussis, Streptococcal pneumonia 

Conjugate Haemophilus influenzae type B, Streptococcal 
pneumonia, Neisseria Meningitidis 

Recombinant Hepatitis A, B 

DNA Tuberculosis, Hepatitis B, HIV (experimental) 
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of the organisms are available to the immune system, but the organism itself is rendered 

harmless, usually by treating it with formaldehyde. Because of their inability to replicate in vivo, 

these are generally less immunogenic than live vaccines, and therefore are often administered 

with adjuvants to increase their potency. Because of lack of exogenously-administered antigen 

accessibility to endogenous MHC-I antigen presentation pathways, killed vaccines do not 

effectively elicit cell-mediated immunity. Therefore, killed vaccines are mostly used for eliciting 

antibody-mediated protection.  

Recombinant vaccines are those in which genes for desired antigens are inserted into a vector, 

usually a virus. The vector expressing the antigen may be used as the vaccine, or the antigen may 

be purified and injected as a subunit vaccine. Antigens which do not elicit protective immunity 

or those which are too toxic can be eliminated from the vaccine, and proteins expressed in a 

virus, even if it is not the original pathogen, are more likely to preserve their native 

conformation.  

Since the natural immune response has evolved to provide optimal protection against infectious 

disease, the ideal vaccine should elicit the steps and processes of natural immunity. While the 

current vaccine approaches are relatively safe and have several protective advantages, a general 

problem is that the vaccines alone are often poorly immunogenic. Unlike attenuated live 

vaccines, killed whole organism or subunit vaccines generally require the addition of an adjuvant 

to be effective (Petrovsky and Aguilar 2004). Adjuvants were originally described as substances 

used in combination with a specific antigen that produced a more robust immune response than 

the antigen alone (Ramon 1924). Adjuvants can be used to boost the immunogenicity of vaccines 

in several different ways. They can (1) increase the immunogenicity of weak antigens; (2) 
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enhance the speed and duration of the immune response; (3) modulate antibody avidity, 

specificity, isotype or subclass distribution; (4) stimulate cell mediated immunity, (5) promote 

the induction of mucosal immunity; (6) enhance immune responses in immunologically 

immature, or senescent individuals; (7) decrease the dose of antigen in the vaccine and reduce 

costs; or (8) help to overcome antigen competition in combination vaccines (O'Hagan, 

MacKichan et al. 2001). 

The goal of a vaccine is to trigger the host immune system and mount adaptive immune 

responses of sufficient magnitude and duration, including B-cell-mediated antibody protection 

and/or specific T-cell-mediated cellular responses to a protective antigen in order to prevent 

infection or reduce severity of disease. It is now well-known that to achieve this, a vaccine 

should contain an adjuvant that efficiently activates the innate immune system to elicit such 

antigen-specific immune responses. A variety of immuno-stimulatory compounds appear to be 

TLR ligands and are currently being used experimentally or in clinical trials within vaccine 

formulations as an adjuvant (Ishii and Akira 2007). However, recent evidence has shown that 

some conventional adjuvants (Alum, Incomplete Freund’s Adjuvant [IFA] and Complete 

Freund’s Adjuvant [CFA]) as well as unconventional adjuvant-containing vehicle activate the 

innate immune system in a TLR-independent manner (Gavin, Hoebe et al. 2006; Janssen, Tabeta 

et al. 2006). Such alternative pathways that have been demonstrated to mediate adjuvant-induced 

innate and adaptive immune responses in a TLR-independent manner include intracellular innate 

receptors such as NOD-like receptors (NLR) and RIG-like receptors (RLR) (Creagh and O'Neill 

2006; Meylan, Tschopp et al. 2006; Ishii and Akira 2007). 
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Adjuvants ultimately enhance antigen delivery by directly or indirectly facilitating uptake by 

APC, especially DC. Since these cells have the unique capacity to present antigen to naïve T 

cells in the lymph nodes, the principal mode of action of many particulate adjuvants (e.g. 

micoparticles, emulsions, liposomes, Iscoms etc.) are to promote uptake of the antigen by DC at 

the site of injection. Successful delivery of antigen to the lymph nodes and will not ensure the 

induction of an immune response because the presence of antigen alone constitutes only ‘signal 

1’. Induction of a successful immune response requires the co-presence of ‘signal 2’. Signal 2 is 

represented by co-stimulatory molecules and cytokines, which are provided by APC and 

contribute to the priming of T helper cells.  

A key issue in adjuvant development is toxicity. Safety concerns have restricted the development 

of adjuvants since alum was first introduced more than 50 years ago (Edelman 1997). Many 

experimental adjuvants have advanced to clinical trials but most have proven unsuitable for 

human use due to local and systemic toxicity (Table 1.4), Despite extensive evaluation of a large 

number of candidates over many years, the only adjuvants currently approved by the U.S. Food 

and Drug Administration are aluminum based mineral salts (generally referred to as alum) 

(Allison and Byars 1991; Brewer 2006; Rosenthal and Zimmerman 2006). Alum up-regulates 

co-stimulatory signals on human monocytes and promotes the release of IL-4 (Ulanova, 

Tarkowski et al. 2001) and is thought to act by forming an antigen depot at the site of inoculation 

(O'Hagan, MacKichan et al. 2001).  Alum adsorption may also contribute to a reduction in 

toxicity for some vaccines, due to the adsorption of contaminating endotoxin (Shi, HogenEsch et 

al. 2001). Despite these attributes, alum is considered a relatively poor adjuvant in many 

situations, particularly for antibody induction to protein subunits (Gupta 1998) and for inducing 
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Table 1.4. Selected examples of vaccine adjuvants  (O'Hagan, MacKichan et al. 2001) 
 
Adjuvant System Example 

Mineral Salts Aluminum hydroxide*, Aluminum phosphate, 
Calcium phosphate* 

Immuno-stimulatory adjuvants Cytokines (e.g. IL-2, IL-12, GM-CSF) 

Microorganism-derived adjuvants MDP derivatives, Bacterial DNA (CpG oligo’s), 
LPS, MPL and synthetic derivatives 

Lipid particles Emulsions (e.g. Freund’s, SAF, MF59*) 

Particulate adjuvants Iscom’s, Liposomes, polymeric microspheres, 
nano-beads, virus-like particles 

Mucosal adjuvants Heat labile enterotoxin (LT), Choler toxin (CT), 
Mutant toxins (e.g. LTK63 and LTR72) 

Nucleic acid-based adjuvants  

* Currently included in approved vaccines  
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Many factors may influence the immune response to vaccination. These include the presence of 

maternal antibody, nature and dose of antigen, route of administration, and the presence of 

adjuvants. In addition, host factors such as age, nutritional status, genetics, coexisting disease 

factors and immune status, may also affect the response. 

 

Gender and Hormonal Influences on Immune Function 
 

As mentioned earlier, proper immune function and maintenance of homeostasis relies on the 

immune system’s ability to discriminate between self and non-self as well as the ability to 

regulate inflammation and therefore tissue damage and pathogenesis. Any malfunction in this 

regulation may lead to immune dysfunction and, ultimately, disease. One manifestation of 

immune dysfunction is immunodeficiency. This results when the immune system’s ability to 

fight off disease is either compromised or entirely absent, rendering the host particularly 

vulnerable to opportunistic infections. Thus, the individual is considered to be “immuno-

compromised”. In a healthy immune state, self-reactive lymphocytes are deleted via the process 

of negative selection or made unresponsive to self ligands/antigens through tolerance during 

development of the immune system. Autoimmunity, another form of immune dysfunction, 

results from the inability to discriminate “self” from “non-self”, which leads to a pathologic 

inflammatory response and ultimate development of autoimmune disease (Shames 2002). 

Gender is one of the most important epidemiological risk factors for the development of 

autoimmune diseases (Da Silva 1999), where the risk is 2.7 times higher in females as compared 

to males (Jacobson, Gange et al. 1997). Table 1.5 lists data on the prevalence of autoimmune 

diseases in females as compared to males. 
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Consistent with differences in prevalence of autoimmune diseases, evidence indicates that even 

basic immune responses differ between males and females. In response to immunization, females 

mount more vigorous T cell responses, have higher levels of serum immunoglobulins (Eidinger 

and Garrett 1972; Weinstein, Ran et al. 1984) and shorter skin allograft rejection time (Grossman 

1984; Olsen and Kovacs 1996). Females have higher CD4+ T cell numbers than men (Amadori, 

Zamarchi et al. 1995) and also mount consistently higher Th2 responses than men (Giron-

Gonzalez, Moral et al. 2000).  

There is now a large body of evidence suggesting that sex hormones in males and females are 

significant factors responsible for this gender dimorphism. Since sex hormones differ between 

males and females as well as within different reproductive stages in females, a lot of research has 

focused on the detailed effects of sex hormones on immune function. Sex hormones modulate a 

variety of immune mechanisms including thymocyte maturation and selection, cell trafficking, 

cytokine and chemokine production, lymphocyte proliferation, and expression of adhesion 

molecules and HLA class I molecules (Wilder 1995; Olsen and Kovacs 1996). Estrogens have 

stimulating effects on B cell functions which may be dependent on inhibition of suppressor T 

cells.  Cumulative data follows the general trend that estrogen enhances B cell activity and B-cell 

mediated diseases but suppresses T cell activity and T-dependent conditions. Testosterone, on 

the other hand, appears to suppress both B cell and T cell-mediated responses and virtually 

always suppresses expression of the disease (Da Silva 1999). Physiological levels of estrogens 

tend to enhance B cell mediated responses and antibody production both in vivo and in vitro, as 

well as cellular responses such as transplant rejection and tumor-associated immunity, whereas 

progesterone and testosterone tend to depress these processes (Sthoeger, Chiorazzi et al. 1988).  

Additionally, both the incidence and severity of many autoimmune diseases have been found to 
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Table 1.5.  Gender differences in autoimmune disease prevalence 

Disorder Female: Male ratio 

Hashimoto's disease/ hypo-thyroiditis 50:1 
Systemic lupus erythematosus 9:1 
Sjogren's syndrome 9:1 
Antiphospholipid syndrome 9:1 
Primary biliary cirrhosis 9:1 
Mixed connective tissue disease 8:1 
Chronic active hepatitis 8:1 
Graves' disease/hyperthyroiditis  7:1 
Rheumatoid arthritis  4:1 
Scleroderma  3:1 
Myasthenia gravis  2:1 
Multiple sclerosis  2:1 
Chronic idiopathic thrombo-cytopenic purpura  2:1 
Type 1 diabetes mellitus 2:1 

 American Autoimmune Related Diseases Association 
(www.aarda.org) 
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be influenced by a range of female-related endocrinological changes involving sex steroids, such 

as puberty, pregnancy, menopause, use of oral contraceptives and aging (Da Silva 1999). In 

conditions such as multiple sclerosis (MS) and rheumatoid arthritis (RA), severity of the disease 

decreases during pregnancy, particularly during the third trimester, when progesterone and 

estradiol levels peak. Interestingly, disease severity flares up again during the post-partum, when 

hormone levels drop (Nelson and Ostensen 1997; Confavreux, Hutchinson et al. 1998). On the 

other hand, patients with systemic lupus erythematosus (SLE) may worsen or remain unchanged 

throughout pregnancy (Petri 1994).  This is explained by the fact that in pregnancy there is a shift 

towards TH2 pathways leading to increased activation of the humoral response and a decreased 

cellular response. In SLE, humoral responses are a significant pathogenic factor thus disease 

exacerbation, whereas RA and MS are disorders related to cellular TH1 pathways (Lahita 1986; 

Holmdahl 1989).  

In human and animal experimental models, the female sex hormones estrogen and progesterone 

have been shown to regulate both innate and adaptive immunity. Much of the existing data is 

based on studies which examine immunity within the female reproductive tract (FRT), mainly 

because this serves as the first site of immunological contact with pathogens such as Chlamydia, 

HIV and human papillomavirus (HPV) and site of diseases such as gonorrhea and syphilis. The 

vagina, cervix and uterus contain the necessary immune cells responsible for both innate and 

specific immunity, although the numbers and functions of these cells vary significantly 

throughout the phases of the reproductive cycle. This phenomenon is believed to be correlated 

with and controlled by changes in the levels of estrogen and progesterone, hence the role of these 

hormones in susceptibility to infection, gender differences in immune function and development 

in autoimmune disease. 
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Primarily due to the female dominance in the incidence of autoimmune disease, estrogen, in 

particular has attracted significant interest as an immunomodulator. Murine models of 

autoimmunity have supported this role. Estrogen acts on multiple immune processes including 

lymphocyte and monocyte development, dendritic cell function, T cell responses, cytokine 

regulation, B cell expansion and survival, antibody responses, and NK cell activity (Reviewed in 

(Lang 2004). There is a wealth of clinical and laboratory data generated over the past 20 years 

demonstrating that sex hormones, particularly estrogen, affect the immune system. However, the 

mechanisms by which estrogen modulates such processes as well as how its effects are regulated 

is complex and requires the understanding of the interactions between the immune system with 

the neuro-endocrine system. 

 

Interaction between the Immune and Neuroendocrine Systems 
 

Hormonal influences on immune function occur through the necessary interaction of the immune 

system with the neuroendocrine system through common receptors to neurotransmitters, 

hormones and cytokines. The hypothalamus-pituitary-adrenal (HPA) serves as a key element of 

this communication pathway. Activation of the HPA axis is known to serve the body’s response 

to stress, which can be defined as any physical or psychological stimulus that disrupts the body’s 

homeostasis.  

There are three main glands that comprise the anatomy of the HPA axis. The hypothalamus, 

located in the lower central part of the brain, functions to regulate metabolism and body 

temperature. It secretes hormones that regulate the release of hormones in the pituitary gland. 
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Referred to as releasing hormones, these include corticotrophin releasing hormone (CRH) and 

gonadotropin-releasing hormone (GnRH) which are secreted and carried directly to the pituitary 

gland to signal secretion of stimulating hormones. The pituitary gland, located at the base of the 

brain beneath the hypothalamus, is considered to be the "master gland" of the body because it 

secretes a range of hormones that control the functions of virtually all physiologic processes in 

the body. The main hormone secreted by the pituitary is adreno-corticotropin hormone (ACTH), 

which stimulates the adrenal glands to produce glucocorticoids. Every nucleated cell in the body 

expresses glucocorticoid receptors; hence the widespread effects of glucocorticoids on most 

systems of the body, including metabolic, endocrine, nervous, cardiovascular and immune 

systems. The pituitary also secreted the stimulating hormones, follicle stimulating hormone 

(FSH) and luteinizing hormone (LH) which stimulate the gonads to produce and release the male 

and female sex hormones. 

Inflammation resulting from immune aggression during the innate or adaptive immune response 

involves the release of pro-inflammatory cytokines. These cytokines can activate the HPA axis, 

resulting in the release of glucocorticoids. In turn, the glucocorticoids exert negative feedback 

onto immune cells to suppress further synthesis and release of cytokines, thereby protecting the 

host from detrimental consequence of an overactive immune response (e.g. tissue damage, 

autoimmunity, septic shock) (Figure 1.3). Cytokine receptors have been detected at all levels of 

the HPA axis, and therefore, each level can serve as an integration point for immune and 

neuroendocrine signals. In addition, cytokines are synthesized in the brain, the anterior pituitary 

and the adrenal gland. The major cytokines that are known to be involved in HPA activation are 

IL-1, IL-2, IL-6, TNF-alpha and interferon (IFN) (Bumiller, Gotz et al. 1999). 
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Figure 1.3. Interactions between the immune system and the HPA axis in an inflammatory 

reaction.  

Activation of the immune system through bacterial aggression induced the production of pro-

inflammatory cytokines that stimulate the HPA axis, producing the release of 

immunosuppressive GC, which negatively regulate further pro-inflammatory cytokine 

production. Gonadal stimulation by pituitary hormones, LH and FSH, results in sex steroid 

hormone secretion, which can also directly stimulate immune cells by acting on specific 

hormone receptors in these cell types. GC, glucocorticoids. CRH, corticotropin release hormone; 

ACTH, adrenocorticotrpin release hormone; LH, luteinizing hormone; FSH, follicular 

stimulating hormone.  
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Glucocorticoids regulate a wide range of immunological processes, such as cell proliferation, 

inflammation, and inhibition of trafficking of T, B, and NK cells, eosinophils, basophils, 

macrophages, and monocytes and induction of apoptosis in mature T and B cells and peripheral 

blood lymphocytes. In addition, glucocorticoids may alter downstream adaptive immune 

responses by causing a shift from cellular  (TH1/inflammatory) to humoral (TH2/anti-

inflammatory) type immune responses (Chrousos 2000). These events could partially explain the 

immuno-suppression that is associated with stress. Therefore, glucocorticoids can modulate 

immune/inflammatory processes by stimulating as well as suppressing immune function, 

depending on the type of immune response, the immune compartment, and the cell type involved 

(Silverman, Pearce et al. 2005). HPA-activated release of glucocorticoids represents a potent 

negative feedback mechanism which allows the body to have tight control of the local immune 

response, inhibiting this defense mechanism from endangering the body’s integrity (Gaillard and 

Spinedi 1998). In addition to suppressing HPA axis activating-immune processes, 

glucocorticoids act on specific receptors within the hypothalamus and pituitary to regulate its 

own production (Buckingham, Loxley et al. 1996; Da Silva 1999).  

In the HPA response to immune stimuli, a gender dimorphism exists (Da Silva 1999). Female 

rats have higher basal levels of plasma corticosterone compared to males and lower levels of 

pituitary glucocorticoids receptors, with their expressions being estrogen dependent (Turner 

1990). In experimental animals, females also have higher and more prolonged ACTH or stress-

induced plasma corticosterone levels than males. Estrogens generally increase HPA responses, 

whereas androgens suppress it (Da Silva 1999). Gonadectomy in both male and female mice 

leads to enhanced HPA axis and immune responses to endotoxin, which can be reversed by 

androgen treatment in both sexes (Spinedi, Suescun et al. 1992). Sex steroid receptors are present 
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in the adrenals (Gaillard and Spinedi 1998). These observations clearly indicate that sex steroids 

modulate both immune and HPA axis activities.  

 

Estrogen Mechanism of Action 

The major estrogens include estradiol, estrone and estriol. Their effects are mediated through 

interaction with specific intracellular receptors. These receptors are members of the nuclear 

receptor super-family of transcription factors. The estrogen receptor (ER) is present in two 

subtypes, ER-α and ER-β, encoded by two distinct genes (Kuiper, Enmark et al. 1996; 

Mosselman, Polman et al. 1996; Couse and Korach 1999). They share a high degree of amino 

acid conservation in their DNA binding domains (97%) and exhibit a significant, but lesser 

degree of homology in their ligand binding domains (58%).  Both receptors are localized in 

reproductive tissues, as well as non-reproductive tissues including cells of the immune system, 

cardiovascular system, central nervous system and bone (Lubahn, Tan et al. 1989; Krege, 

Hodgin et al. 1998; Couse and Korach 1999; Dupont, Krust et al. 2000; Mendelsohn 2000). 

Within the immune system, ERs are present in B lymphocytes (Suenaga, Evans et al. 1998; 

Benten, Stephan et al. 2002), T lymphocytes (Cohen, Danel et al. 1983; Suenaga, Evans et al. 

1998; Benten, Stephan et al. 2002), monocytes (Weusten, Blankenstein et al. 1986; Suenaga, 

Mitamura et al. 1996; Suenaga, Evans et al. 1998; Stefano, Prevot et al. 1999), neutrophils 

(Molero, Garcia-Duran et al. 2002) and NK cells (Curran, Berghaus et al. 2001; Henderson, 

Saunders et al. 2003).  
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ER-α is the dominant subtype expressed throughout the FRT and its ablation results in infertility 

due to defects in sexual behavioral expression, neuro-endocrine gonadotropin regulation, 

ovulation, uterine function, and post-pubertal mammary gland morphogenesis. The ER-α subtype 

also plays an essential role in male fertility and mediates many non-reproductive activities of 

estrogen including regulation of bone-resorption, post-natal bone growth, cardiovascular 

endothelial regeneration, adipogenesis and sexual behavior (Couse and Korach 1999). In 

contrast, ER-β ablation results in less severe phenotypic consequences with regard to estrogen 

signaling. ER-β is expressed in both the male and female reproductive tracts in a pattern which 

differs from that of ER-α and its ablation results in a sub-fertile phenotype restricted to impaired 

female ovarian function (Krege, Hodgin et al. 1998). Expression of ER-β has also been detected 

in non-reproductive tissues including bone-forming osteoblasts, epiphyseal chondrocytes and 

cardiovascular and central nervous systems (Mendelsohn 2000; Wang, Andersson et al. 2001). 

Estrogenic effects are mediated by genomic or non-genomic mechanisms (Figure 1.4). In a 

genomic mechanism of action, estrogenic ligands activate ER as a transcription factor by 

inducing a conformational change(s) that leads to nuclear translocation, dimerization, and 

binding to specific steroid receptor response elements (SRE) in promoters of primary target 

genes. Activated ER recruits co-activators that are essential for assembly of a productive 

transcription complex at the promoter. In a non-genomic action of ER, ER associates with 

cytoplasmic- and/or cell membrane–signaling molecules in an estrogen-dependent manner. This 

extra-nuclear interaction promotes the Shc-Src-Raf–MAPK kinase (MEK)–MAP kinase 

phosphorylation cascade. Because MAPK can directly or indirectly activate other transcription 

factors, this pathway can potentially regulate distinct or complementary sets of genes from those 

regulated by nuclear ER pathways. As mentioned, ER acts on cells of the immune system as well 
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Figure 1.4. Estrogen receptor mechanism of action.  

In a genomic mechanism of action, ligands (triangles) activate ER as a transcription factor by 

inducing a conformational change(s) that leads to nuclear translocation, dimerization, and 

binding to specific steroid receptor response elements (SRE) the target gene promoter. In a non-

genomic action of ER, ER associates with cytoplasmic- and/or cell membrane–signaling 

molecules in an estrogen-dependent manner. This promotes the Shc-Src-Raf–MAPK kinase 

(MEK)–MAP kinase phosphorylation cascade. MAPK can directly (solid arrows) or indirectly 

(dashed arrows) activate other transcription factors (TF). Adapted from (Edwards and 

Boonyaratanakornkit 2003). 
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as breast, bone, brain and uterus, where ligand-bound ER functions as a key transcription factor 

in various molecular estrogen-mediated activities in these tissues. Therefore, modulation of ER 

expression levels is important in determining tissue-selective action of estrogen. Indeed, despite 

its localization is several cell types, levels of ER expression is regulated by several factors, 

which act as ER modulators. Effectors of chromatin structure, hormones,growth factors and a 

variety of other agents have implicated multiple cellular mechanisms of regulation of ER 

expression. For example, methylation of the ER gene down-regulates its expression, as does 

MAPK kinase (MAPKK MEK), a downstream effector of growth factor signaling, and other 

hormones such as androgens and progesterone (Pinzone, Stevenson et al. 2004). 

 

Animal Models in Immune-Endocrine Studies 
 
 
Experimental models for human diseases are of crucial importance not only to understand the 

biological and genetic factors that influence the phenotypic characteristics of the disease but to 

utilize as a basis for developing rational intervention strategies. Human use in biomedical studies 

is limited by technical and ethical considerations. And although they have been instrumental in 

increasing the understanding of the human immune system, studies in nonhuman primates are 

constrained by high cost, limited availability, paucity of genetic models for human diseases, and 

lack of genetically inbred strains suitable for stem cell or tissue transplantation. Over the past 

century, the mouse has developed into the premier mammalian model system for genetic 

research. Scientists from a wide range of biomedical fields have gravitated to the mouse because 

of its close genetic and physiological similarities to humans, as well as the ease with which its 
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genome can be manipulated and analyzed. Mice are suitable models for immunological studies, 

as they demonstrate immunological similarities to humans. They display strong humoral and 

cellular immune responses to experimental immunization (Gaines, Currie et al. 1965; Pinchuck 

and Maurer 1965; Braley and Freeman 1971; Cerny, McAlack et al. 1971; Amsbaugh, Hansen et 

al. 1972; Blomberg, Geckeler et al. 1972; Hellman, Fowler et al. 1972; Ghaffar and James 1973; 

Heiniger, Taylor et al. 1975).  Mice are extensively used in hormone-related studies, and are the 

most common animal species used for immunological studies. Their immune systems are 

extremely well-characterized, and biological reagents necessary to perform immunological 

experiments are commercially readily available.  

 

The use of rodent models in immune-endocrine studies is particularly advantageous because they 

are short-lived and because of the availability of homogenous laboratory strains which permit 

controlled research experiments. In addition, rodent transgenic models using genetic 

manipulation of specific genes such as ERα and ERβ as well as gonadectomy models, have 

contributed greatly to the current general understanding of endocrine function. 

 

 

Summary and Study Objectives 
 

Estrogen has been shown to play an important role in protection against osteoporosis in post-

menopausal women (Turner, Riggs et al. 1994), in the prevention of coronary heart disease 

(Iafrati, Karas et al. 1997), and in the maintenance of cognitive function (Tang, Jacobs et al. 

1996). In addition to the positive effects reproductive and non reproductive tissues, estrogen 
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plays an important role in the development of uterine cancers and has been implicated in the 

development of breast cancer (Jordan and Murphy 1990; McKenna, Xu et al. 1999; Peto, 

Boreham et al. 2000).  

The conflict between the positive and negative effects of estrogen has fueled a search for 

selective estrogen receptor modulators (SERMs) for use in hormone replacement therapies 

(HRT) that possess the capability of harnessing the tissue-selective beneficial effects of estrogen 

while lacking adverse activities in breast and uterus. In addition to their use in HRT, SERMs 

have been studied for their potential therapeutic advances in other areas of clinical practice.  

In males, estrogen is produced in small quantities as result of biosynthetic conversion from 

testosterone and a byproduct of other pathways. In females, estrogen levels fluctuate over a 

lifetime, from birth, through puberty, pregnancy, and finally menopause. These varying levels 

have a dramatic impact on health and immunity at a cellular level.  

The aim of the present dissertation is to further characterize the immunomodulatory role of 

estrogen using an in vivo vaccine model. This model is designed to determine the influence of 

estrogen on vaccine responses to commonly administered human vaccine formulations in mice. 

We have shown that (1) estrogen influences not only specific antibody responses in vaccinated 

mice, but (2) the mechanism of this effect may occur at the level of innate immunity during 

initial antigen encounter by macrophage TLR2 and (3) that estrogen influences other important 

macrophage functions that lead to specific adaptive response by modulating FcγR gene 

expression and function. Therefore, we show that estrogen manipulation in mice impacts both 

the innate and adaptive immune functions.  
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Though estrogen’s immunomodulatory role has been documented in many different systems, it is 

still unclear how estrogen may influence induction of immunity through vaccination. Beginning 

to understand the gender differences and the general role of sex hormones in vaccine responses 

in human and experimental animal models may be the basis for achieving improved vaccine 

efficacy in certain target populations based on sex, age and immune status as well as provide 

new perspectives with which to design future vaccines against infectious diseases. 
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CHAPTER 2 
 

Experimental Methods 
 
 
 
Animals 
 
Female Balb/c mice were housed in standard conditions with food and water provided ad libitum 

and a constant light cycle of 12 hours (lights on from 8:00 to 20:00). Male mice were co-housed 

and served as controls. Female and male mice were fed isoflavone-free, soy-free casein diet (Lab 

Diet, Richmond, IN). All animals were housed and subjected to experimental procedures in 

accordance to protocols approved by the appropriate institutional review committee.    

 

Ovariectomy 

At 6-8 weeks of age, mice were anesthetized with 5% isoflurane gas in 100% oxygen. Ovaries, 

oviducts and tips of the uterine horns were bilaterally removed via two dorsal intraperitoneal 

incisions. The incisions were repaired with suture and skin staples. Sham ovariectomies were 

performed identically except the ovaries were not removed.  

 

Estrogen replacement 

Estrogen replacement by subcutaneous implantation of 17-β estradiol (E2) pellets was performed 

as follows:  sterile E2 pellets were inserted through a subcutaneous tunnel made between the 

scapulae.  Mice were given a single (5 mm) subscapular Silastic implant (1.02 mm ID×2.16 mm 

OD) containing either E2 diluted 1:1 with cholesterol (Sigma- Aldrich Corp., St. Louis, MO) or 

cholesterol only. This pellet size yields E2 concentrations of 85–100 pg/ml, similar to that of 

intact mice in proestrus (Wersinger, Haisenleder et al. 1999). 
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Estrogen replacement through the drinking water was performed as follows: treated water was 

prepared as previously described (Wersinger, Haisenleder et al. 1999), by diluting stock 

solutions of E2 in 100% ethanol to solubilize. Solubilized estrogen was added to drinking water 

to produce a final concentration of 1000 nM, as previously described (Mobbs, Cheyney et al. 

1985; Wersinger, Haisenleder et al. 1999). The final concentration of ethanol was 0.1%. No 

adverse effects of this concentration of ethanol or estrogen were reported (Wersinger, 

Haisenleder et al. 1999).   

 

Isolation of peritoneal macrophages 

Prior to euthanization, mice were each injected intraperitoneally with 1 ml 3% sterile Brewer’s 

thioglycollate medium. Five days later, mice were killed by exsanguination under isofluorane as 

well as by cervical dislocation and a midline incision was made with a pair of sterile scissors. 

After retraction of abdominal skin, 10 ml sterile cold PBS was injected through peritoneal wall. 

Mice were gently agitated to dislodge cells bound within the peritoneal cavity. Peritoneal fluid 

was then taken slowly with a yield of 8-10 ml total volume. Cell suspension was washed twice 

with PBS, counted, suspended (1 x 106 cells/ml) in complete DMEM media and cultured for 2 h 

at 37°C and 5% CO2. Non-adherent cells were rinsed with PBS and the adherent cells were kept 

in wells to be directly lysed for RNA extraction (see below). 

 

Splenocyte and splenic macrophage isolation 

Spleens were removed aseptically and placed into 50-ml conical tube containing cold DMEM 

medium. The spleens were then gently pressed through a 70 um cell strainer (BD Falcon) using a 
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10 ml syringe plunger to produce single-cell suspension, and centrifuged at 2000 RPM, at 4°C 

for 10 min. The erythrocytes were lysed with RBC lysis buffer (Sigma). The remaining cells 

were then washed, counted, and suspended (1 × 107 cells/ ml) in DMEM medium and incubated 

in 24-well plates. After 2 h of incubation (37°C at 5% CO2), non-adherent cells were removed, 

and the adherent cells were kept in wells to be directly lysed for RNA extraction (see below). 

 

Detection of specific antibody responses 

Enzyme-linked immunosorbant assay (ELISA) was used to detect specific antibody responses. 

Micro-titer wells were coated with the antigen, diluted in coating buffer (KPL, Inc., 

Gaithersburg, MD), in a volume of 50ul/well. Coated plates were incubated overnight at 4ºC. To 

block nonspecific binding sites, wells were incubated for 30 min at 37ºC with 200ul/well PBS 

containing 5% fetal calf serum (FCS-PBS) (Atlanta Biologicals, Lawrenceville, GA). Plates were 

washed three times with PBS containing 0.05% Tween-20. To generate titration curves, serum 

samples were tested by preparing two-fold serial dilutions (1:50-1:25600). Samples were added 

to triplicate wells in a volume of 50ul/well, and incubated overnight at 4ºC. After washing three 

times with PBS containing 0.05% Tween-20, wells were incubated with HRP-labeled anti-mouse 

IgG or IgG+A+M (KPL) for 1 hr and 15 min at 37ºC. Wells were washed and then incubated 

with 50ul/well ABTS/H O2 2 (KPL) substrate for 10 min at room temperature, followed by 

addition of 50ul/well stop solution (KPL). Optical density (OD) values were assessed at 405 nm 

using a PowerWave HT plate reader (BioTek Instruments, Inc., Winooski, VT).   
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Detection of total immunoglobulin production 

Total immunoglobulin (Ig) production was assessed by ELISA according to methods similar to 

those described above, with the following exceptions. Micro-titer plates were coated with 

unlabeled goat anti-mouse IgG+IgA+IgM (KPL).  Individual serum samples were titrated by 

preparing 4-fold serial dilutions and added to triplicate wells. Plates were incubated overnight at 

4 ˚C, washed as described above and incubated with HRP-labeled goat anti-mouse 

IgG+IgA+IgM (KPL) for 1 h at 37 ˚C.  

 

Detection of IgG1/ IgG2a responses    
 
To determine the effects of estrogen on IgG1/IgG2a production, ELISA was used according to 

methods similar to those described above, with the following exceptions. Plates were coated with 

purified antigen depending on the vaccine administered. Individual serum samples were diluted 

at 1:100 and added to triplicate wells. Plates were incubated overnight at 4 ºC, washed and 

incubated with HRP-labeled goat anti-mouse IgG1 or HRP-labeled goat anti-mouse IgG2a 

(KPL) for 1 h at 37 ˚C. 

 

RNA extraction, RT-PCR and real time PCR  

Total RNA was isolated using the RNeasy MiniKit (Qiagen, Valencia CA) from splenic 

macrophages and thioglycollate-elicited peritoneal macrophages according to manufacturer’s 

instructions. For plate-adhered macrophages, cells were lysed directly in wells of microplate. 

RNA samples were quantified by spectrophotometric analysis and/or quantification by gel 

electrophoresis prior to cDNA synthesis. Total RNA was reverse transcribed into cDNA using 

the First Strand cDNA Synthesis Kit for RT-PCR where AMV reverse transcriptase synthesizes 
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the new cDNA using random primers according to conditions provided by the manufacturer 

(Roche Molecular Biochemicals, Indianapolis, IN). cDNA synthesis reactions were performed 

with approximately 1ug of total RNA using 4 ug (0.08 A260 units) Random Primer p(dN)6, 

10mM of each dNTP, 20 units AMV reverse transcriptase, 50 units RNase Inhibitor and 1 X 

reaction buffer in a final volume of 20ul. cDNA reactions were incubated at 25° C for 10 min, 

then at 42° C for 60 min, according to manufacturer’s instructions.  

Amplification of the following target genes were performed by real time PCR using TaqMan 

Gene Expression Assays (Applied Biosystems): TLR2, TLR4, FcγRI, FcγRIIB, FcγRIIIA, ER-α.  

Realtime PCR was performed in a total volume of 25 ul with the following components:  1 X 

TaqMan Gene Expression Master Mix, 1 X target gene primer/probe mix and 1 X endogenous β-

actin gene primer/probe mix (Applied Biosystems). Realtime PCR was performed in an ABI 

PRISM 7700 Sequence Detection System thermal cycler (PE Applied Biosystems, Foster City, 

CA) to quantify target genes. Cycle parameters were 50° C for 2 min to activate UNG, 95° C for 

10 min to activate Taq, followed by 40 cycles of 95° C for 15 sec and 60° C for 1 min. The fold 

change of target gene mRNA was expressed as 2 –ΔΔCt (ΔCt = the difference in threshold cycles 

for the test gene and β-actin, ΔΔCt = the difference between the experimental and control mice, 

or as indicated). 
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CHAPTER 3 

Estrogen-Induced Modulation of Anti-Tetanus Toxoid Antibody Responses in a Murine 
Model 

 

 
SUMMARY 
 

It is well established that sex hormones influence the immune response. Estrogen modulates 

lymphocyte activity and cytokine production and enhances the antibody response to several 

immunogens. Therefore, estrogen may influence the antibody response to specific vaccine 

preparations. To test this hypothesis, we used a model consisting of female mice subjected to 

ovariectomy and immunized with tetanus toxoid (TT) in two experimental protocols, differing 

for modality of estrogen replacement (either subcutaneous pellet administration or administration 

in drinking water). In each protocol, mice were assigned to one of three experimental groups. 

The first group of mice, designated OVEX-E2, was ovariectomized and subjected to estrogen 

(E2) replacement. The second group, designated OVEX group, was ovariectomized but received 

no estrogen replacement. The third group remained intact. In the first experimental protocol 

(pellet-E2), mice were either immunized subcutaneously (SC), or were unvaccinated.  In the 

second immunization protocol (drinking water-E2), mice were immunized either subcutaneously 

(SC) or intramuscularly (IM) or were unvaccinated. Results from both studies show that, in 

general, E2 replacement results in higher anti-TT antibody responses. In the drinking water-E2 

groups, mice vaccinated by the IM route produced significantly higher anti-TT IgG levels than 

mice vaccinated by the SC route after the third vaccination dose. OVEX-E2 mice produced 

significantly higher anti-TT IgG levels than OVEX and intact mice when vaccinated either IM or 

SC. The anti-TT IgG responses were predominantly of the IgG1 isotype in all groups of mice. 
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Together, these results show that estrogens may influence the murine antibody response to 

vaccines routinely administered to human populations.  

 

INTRODUCTION 
 

The major functions of sex hormones relate to sexual differentiation and reproduction. Sex 

hormones can also interact with the immune system, thus causing a gender dimorphism in 

immune function.  This dimorphism was initially demonstrated by the observation that females 

produce higher immunoglobulin levels and mount stronger immune responses to immunization 

or infection than males (Verthelyi 2001; Wierman 2007). Females are also known to show 

increased susceptibility to autoimmune diseases (Da Silva 1999; Whitacre, Reingold et al. 1999; 

Verthelyi 2001; Whitacre 2001). 

 

Estrogens can modulate the immune system through direct interaction with estrogen receptors 

present in immune cells, including lymphocytes, macrophages, dendritic cells (DCs) and natural 

killer cells (Tornwall, Carey et al. 1999; Curran, Berghaus et al. 2001; Benten, Stephan et al. 

2002; Phiel, Henderson et al. 2005) and enhance differentiation and antigen presentation by 

macrophages and DCs (Tornwall, Carey et al. 1999). Elevated levels of estrogen promote 

polyclonal B cell activation (Weetman, McGregor et al. 1981; Grimaldi, Michael et al. 2001) and 

increase production of IgG, including IgG anti-dsDNA by lymphocytes from patients with 

systemic lupus erythematosus (Kanda and Tamaki 1999). In pregnancy, lymphopoeisis is 

reduced, as demonstrated by a reduction in the number of B cell precursors in the bone marrow. 

This reduction appears to be the result of elevated estrogen levels, which impair progression 

from the pro-B cell stage to the early pre-B cell stage (Smithson, Beamer et al. 1994; Medina, 
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Garrett et al. 2001). Estrogen may affect humoral immunity via a thymic route of action. For 

example, in vitro stimulation of B cells with ovarian steroid hormones enhances antibody 

secretion only in the presence of CD8+ T cells (Lu, Abel et al. 2002). 

 

Estrogen has modulatory effects on both TH1 and TH2 type cells. Estrogen is shown to inhibit the 

production of TH1 pro-inflammatory cytokines, such as IL-12, TNF-α and IFN-γ, whereas it 

enhances the production of TH2 anti-inflammatory cytokines, such as IL-10, IL-4, and TGF-β 

(Giltay, Fonk et al. 2000; Harris, Feldberg et al. 2000; Angele, Knoferl et al. 2001; Karpuzoglu-

Sahin, Zhi-Jun et al. 2001; Kovacs, Duffner et al. 2004; Salem 2004; Gourdy, Araujo et al. 

2005). These modulatory effects may partially explain why estrogen suppresses TH1-mediated 

autoimmune diseases, such as rheumatoid arthritis, experimental autoimmune encephalomyelitis 

and multiple sclerosis (Josefsson and Tarkowski 1997; Bebo, Schuster et al. 1999; Ostensen 

1999; Matejuk, Adlard et al. 2001; Voskuhl and Palaszynski 2001; Matejuk, Dwyer et al. 2002; 

Fu, Jiang et al. 2005; Janssen, Tabeta et al. 2006), and exacerbates TH2-mediated diseases, such 

as systemic lupus erythematosus and Sjorgen’s syndrome (Roubinian, Talal et al. 1978; Ralston, 

Russell et al. 1990; Buyon 1998; Ostensen 1999; Bynoe, Grimaldi et al. 2000; Elenkov, Wilder 

et al. 2001). 

 

Further evidence of estrogen-mediated effects on TH1/TH2 cells is provided by results from 

studies carried out with pregnancy and menopause models. During the luteal phase of the ovarian 

cycle, when estrogen levels peak, the immune response shifts to favor a TH2-type response, as 

reflected by increased IL-4 and TGF-β levels (Faas, Bouman et al. 2000; Ayatollahi, 

Geramizadeh et al. 2007). Pregnancy is considered to be a TH2-type phenomenon, which might 
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play a critical role in maternal acceptance of the fetus (Lin, Mosmann et al. 1993; Wegmann, Lin 

et al. 1993; Piccinni, Scaletti et al. 2000; Laird, Tuckerman et al. 2003). Pregnancy results in 

suppression of TH1-type responses, which may partially explain the spontaneous remission and 

post-partum relapse of T-cell-mediated autoimmune diseases, such as multiple sclerosis and 

rheumatoid arthritis, observed in women (Fu, Jiang et al. 2005). In menopausal women, there is 

an increase of TH1 cytokines relative to TH2 cytokines. Hormone replacement therapy prevents 

the TH1 cytokines increase, thus restoring the TH1/ TH2 balance (Kamada, Irahara et al. 2001). 

 

Due to the well-established role that estrogen plays in modulating the immune system, it is 

reasonable to postulate that estrogen influences the immune response to vaccines. To test this 

hypothesis, we have compared the murine antibody responses produced in presence or absence 

of estrogen against the currently available TT vaccine.  

 
 
MATERIALS & METHODS 

Animals 
 
For the entire study, female BALB/c mice (Charles River Laboratories, Inc., Wilmington, MA) 

were used. The study consisted of two experimental protocols. In the first protocol, animals 

received E2 as pellet implantation (pellet-E2 replacement). In the second protocol, animals 

received E2 in the drinking water (oral-E2 replacement). For both experimental protocols, mice 

were divided into 3 groups. The first group of mice, designated OVEX-E2 group, was 

ovariectomized and subjected to estrogen replacement. The second group, designated OVEX 

group, received no estrogen replacement. The third group remained intact. Table 3.1 and 3.2 

show the experimental designs for both protocols. Mice were ovariectomized at 8 weeks of age. 
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Designated mice were anesthetized with 5% isoflurane gas in 100% oxygen, and their ovaries, 

oviducts and tips of the uterine horns were bilaterally removed via two dorsal incisions. 

Immediately following surgery, mice in the OVEX-E2 group started E2 replacement. Seven days 

following surgery, mice were given the first vaccine injection. Blood was collected from each 

mouse prior to and following hormone manipulation and immunization. To test for uterotrophic 

responses, uteri were removed and weighed at termination. All animals were housed and 

subjected to experimental procedures in accordance to protocols approved by the appropriate 

institutional review committee.   

 

Pellet-E2 replacement and immunization 

Sterile E2 pellets were inserted during ovariectomy through a subcutaneous tunnel made between 

the scapulae.  Mice were given a single (5 mm) subscapular Silastic implant (1.02 mm ID×2.16 

mm OD) containing either E2 diluted 1:1 with cholesterol (Sigma-Aldrich Corp., St. Louis, MO) 

or cholesterol only. This pellet size yields E2 concentrations of 85–100 pg/ml, similar to that of 

intact mice in pro-estrus (Wersinger, Haisenleder et al. 1999). Mice were immunized with a 

primary (day 0) and secondary (day 28) dose of human TT vaccine, alum adsorbed (Sanofi-

Aventis, Bridgewater, NJ). The OVEX and control groups received a third dose at day 125.  All 

injections were given subcutaneously on the dorsal side of the mice. They received 0.05 ml, 

equal to one tenth the human immunizing dose, given in 0.2 ml saline (0.15 M NaCl), for a total 

dose volume of 0.250 ml. The immunization and blood collection schedule is shown 

schematically in Figure 3.1 A. 
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Table 3.1. Pellet- E2 Study: Experimental Design 

Hormone group Treatment Vaccine group No. of mice 

OVEX Placebo pellet TT 11 

 Placebo pellet Unvaccinated 11 

    
OVEX + E2 E2 pellet TT 11 

 E2 pellet Unvaccinated 11 

    
Sham OVEX (intact) none TT 11 

  none Unvaccinated 11 

 

Table 3.2. Oral-E2 Study: Experimental Design 

Vaccine 
group 

Route of 
administration 

No. of 
mice Hormone group Treatment 

OVEX none TT IM 11 

  TT SC 11 

  Unvaccinated none 10 

OVEX + E2 TT IM 11 1000 nM E2 

  TT SC 11 

  Unvaccinated none 10 

Sham OVEX (intact) none TT IM 11 

  TT SC 11 

   Unvaccinated none 10 

 
TT, tetanus toxoid; SC, subcutaneous; IM, intramuscular 
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Oral-E2 replacement and immunization 

E2 was administered in the drinking water. E2-treated water was prepared as previously 

described by diluting stock solutions of E2 (Sigma- Aldrich Corp., St. Louis, MO) in 100% 

ethanol to solubilize. Solubilized estrogen was added to drinking water to produce a final 

concentration of 1000 nM, as previously described (Levin-Allerhand, Sokol et al. 2003; 

Fernandez and Frick 2004). The final concentration of ethanol was 0.1%. No adverse effects of 

this concentration of ethanol or estrogen were reported. The concentration administered results in 

an ingested dose of approximately 50-70 kg/ug per day, corresponding to about 15 pg/m (Levin-

Allerhand, Sokol et al. 2003; Fernandez and Frick 2004). Estrogen levels during the estrus cycle 

in mice typically range from 10-40 pg/ml (Nelson, Karelus et al. 1995). A 1000 nM dose in the 

drinking water was previously shown to result in uterine weights that were significantly higher 

than those of control mice, yet not significantly different from those of mice given either 1500 

nM or 2500 nM doses, implying a uterotrophic response that plateaus with increasing E2 doses 

(Fernandez and Frick 2004). Mice were immunized with a primary (day 0), secondary (day 28) 

and tertiary (day 84) dose of human TT vaccine. Similarly to animals in the pellet-E2 protocols, 

mice receiving subcutaneous injections were given  0.05 ml in 0.2 ml saline (0.15 M NaCl), for a 

total dose volume of 0.250 ml, injected on the dorsal side of the mouse. In mice receiving 

intramuscular injections, 0.025 ml was injected into each calf muscle for a total dose volume of 

0.05 ml. The doses administered are equal to one tenth the human immunizing dose. The 

immunization and blood collection schedule is shown schematically in Figure 3.1 B. 

 

52 



 

A 

 

B OVX/ E2 
treatment
OVX/ E2 
treatment

 
 

Figure 3.1. E2-TT Study: Hormone treatment and vaccination schedule.  

Mice were ovariectomized and mice designated to receive E2 replacement were A, implanted 

with pellets containing E2 or B, given E2 orally through the drinking water. Mice were 

vaccinated on Day 0 with TT. Booster doses are indicated by large arrows. On the days of 

sacrifice, uteri were removed and weights measured to confirm uterotrophic activity. The small 

arrows indicate days of blood collection for determination of CFP-specific antibody responses. 
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Detection of anti-TT toxoid antibody responses 

Anti-TT antibody responses were assessed by ELISA. Micro-titer wells were coated with 

purified TT antigen (Sanofi-Aventis) diluted in coating buffer (KPL, Inc., Gaithersburg, MD). 

Negative control wells were coated with purified baculovirus-recombinant glycoprotein I from 

herpes B virus (kindly provided by Dr. Ludmilla Perelygina). To block nonspecific binding sites, 

wells were incubated for 30 min at 37ºC with PBS containing 5% fetal calf serum (FCS-PBS,  

 Atlanta Biologicals, Lawrenceville, GA).  Serum samples were diluted in two-fold serial 

dilutions (1:50-1:25600), added to triplicate wells, and incubated overnight at 4ºC. After washing 

with PBS containing 0.05% Tween-20, wells were incubated with either HRP-labeled goat anti-

mouse IgM (KPL) or HRP-labeled goat anti-mouse IgG (KPL) for 1 hr and 15 min at 37ºC. 

Wells were washed and then incubated with ABTS/H O2 2 (KPL) substrate for 10 min at room 

temperature, followed by addition of stop solution (KPL). Optical density (OD) values were 

assessed at 405 nm using a PowerWave HT plate reader (BioTek Instruments, Inc., Winooski, 

VT). Endpoint titers were defined as the highest serum dilution that yielded an OD value greater 

than or equal to 3 times the mean values of the same serum samples tested against the negative 

control coat protein at a 1:50 dilution.  

 

Determination of total immunoglobulin production 

Total immunoglobulin (Ig) production was assessed by ELISA according to methods similar to 

those described above, with the following exceptions. Micro-titer plates were coated with 

unlabeled goat anti-mouse IgG+IgA+IgM (KPL). Individual serum samples were added to 

triplicate wells. Plates were incubated overnight at 4 ˚C, washed and incubated with HRP-labeled 

goat anti-mouse IgG+IgA+IgM (KPL) for 1 h at 37 ˚C.  
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Determination of IgG1/IgG2a responses    

To determine the effect of estrogen on IgG1/IgG2a production, ELISA was used according to 

methods similar to those described above, with the following exceptions.  Briefly, plates were 

coated with purified TT antigen (Sanofi-Aventis). Individual serum samples were diluted at 

1:100 and added to triplicate wells.  Plates were incubated overnight at 4 ºC, washed and 

incubated with HRP-labeled goat anti-mouse IgG1 or HRP-labeled goat anti-mouse IgG2a 

(KPL) for 1 h at 37 ˚C. 

 
 
Determination of natural autoantibody (NAA) production 
 

ELISAs were done to assess NAA levels in mice according to methods described above.  Briefly, 

plates were coated with 4 ug/ml calf thymus extract (CTE) (Immunovision). Individual and 

pooled serum samples were diluted at 1:200 and added to triplicate wells.  Plates were incubated 

overnight at 4 ºC. Wells were incubated with HRP-labeled goat anti-mouse IgG+A+M (KPL) for 

1 h at 37 ˚C. 

 
 
Statistical analysis  

The SPSS program (SPSS Inc, Chicago, Illinois) version 12 was used for statistical analysis. 

Independent t-test was used to analyze group differences by immunization route. Analysis 

among multi-group data was carried out using ANOVA, followed by Turkey's significant 

difference test, or Tamhane's T2 test when the test of homogeneity of variances (Levene 

Statistic) indicated that the variance between the groups was not equal. Differences among 

groups were considered significant if p <0.05.  
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RESULTS 

As mentioned above, we used two different experimental protocols for this study. In the first 

protocol, mice received pellet-E2 replacement, whereas in the second protocol animals received 

oral-E2 replacement. Continuous release hormone pellets have been used and described 

extensively in the literature. In the present study, we used silastic pellets containing amounts of 

E2 previously shown to result in physiological levels of plasma E2 in balb/c mice (Wersinger, 

Haisenleder et al. 1999). However, we observed that within the third week of our study, mice 

receiving pellet-E2 delivery began to develop reddening and swelling of the vulva and perineum, 

eventually developing urinary retention and subsequent dribbling which resulted in scalding 

around the genital area.  Therefore, OVEX-E2 mice were sacrificed at day 42. Continuous 

release of the E2 may not be suitable for chronic treatment.  Indeed, urinary retention leading to 

subsequent death is documented in ovariectomized mice receiving chronic, subcutaneous 

estrogen replacement, which is not documented in hamsters or rats (Levin-Allerhand, Sokol et al. 

2003).   

 

In the second experimental protocol, we used oral administration through the drinking water as 

method of delivery. This method of E2 replacement was chosen for various reasons. First of all, 

it is safer because it results in uterotrophic responses, yet does not cause urine retention as seen 

with continuous release E2 capsules (Gordon, Osterburg et al. 1986; Levin-Allerhand, Sokol et 

al. 2003). Therefore, it is a more appropriate method for long-term delivery, as needed for 

measuring vaccine responses. Second, oral E2 delivery has been demonstrated to induce 

physiological responses in three different target tissues, including the vagina, uterus and pituitary 
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(Gordon, Osterburg et al. 1986). Finally, as a result of circadian patterns in drinking behavior, 

oral E2 administration does not produce chronically elevated levels of circulating E2. Rather, 

elevations occur during peak nocturnal drinking periods, and levels return to baseline 

approximately 15 hours later (Gordon, Osterburg et al. 1986). Therefore, this method results in 

cyclic estrogen levels that mimic natural E2 fluctuations during the estrus cycle. 

 

Uterine weight 

Uterine weights were measured and compared between the groups to determine the uterotrophic 

response to E2 delivery. As expected, in the pellet-E2 delivery group, OVEX-E2 mice had 

uterine weights approximately 3.1 and 1.3 times higher than OVEX and intact mice respectively. 

The uterine weights of OVEX mice were 2.4 times lower than those of the intact mice (p < 

0.001) (Table 3.2). Similarly, in the oral E2-delivery group, OVEX-E2 mice had uterine weights 

approximately 2.5 and 1.4 times higher than the OVEX and intact mice, respectively (p < 0.001). 

The uterine weights of OVEX mice were 1.7 times lower than those of the intact mice (p < 

0.001).   

 

Pellet-E2 Experimental Protocol 

 

Anti-TT antibody responses 

To test the hypothesis that estrogen influences the antibody response to vaccines, groups of mice 

were ovariectomized, subjected to estrogen replacement and immunized with the TT vaccine. 

The IgM and IgG or IgG+A+M anti-TT responses produced by these groups of mice (OVEX-

E2) were compared to the same response generated in OVEX mice and in control mice. OVEX-
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E2 mice received a total of two immunizations (day 0 and 28), whereas OVEX and control mice 

received a total of three immunizations (day 0, 28 and 125). Serum samples obtained from all 

mice on day 42 were tested for IgM, IgG and IgG+A+M anti-TT responses by ELISA. Serum 

samples obtained from the OVEX and control groups on day 139 were tested for anti-TT 

responses. At day 42, the IgM anti-TT responses did not differ significantly between the OVEX-

E2 and the other two groups of mice (data not shown), whereas OVEX-E2 mice produced 

significantly higher IgG and IgG+A+M TT-specific antibody levels than OVEX and control 

mice (p > 0.05) (Figure 3.2 and Figure 3.3). Antibody responses did not differ significantly 

between the OVEX and control groups. Even after receiving a third dose of TT vaccine on day 

125, OVEX and control mice showed no significant differences in long-term specific IgG 

antibody response (p > 0.05) (Figure 3.4). Sera from OVEX-E2 mice were not available for 

comparison due to termination of this group after the second immunization dose.  All samples 

were also tested against herpes B virus glycoprotein I as a negative control, which resulted in 

IgG OD values that were below 0.1. These were used to generate endpoint titers for the same 

data. 

 

Anti-TT IgG1 antibody responses 

To assess whether or not E2 treatment influenced expression of the IgG1 subclass, which is 

known to be the predominant subclass produced by mice in response to TT vaccination (Gupta 

and Siber 1994), TT-specific IgG1 and IgG2a responses were determined. Figure 3.5 shows that, 

according to what observed for overall IgG responses, OVEX-E2 mice produced the highest 

levels of TT-specific IgG1 following vaccination (p < 0.01), thus confirming that E2 replacement 
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Table 3.3. Uterotrophic responses in OVEX-E2, OVEX and intact mice.  

Mice were sacrificed at day 227 and uteri were removed and weighed. Weights represent mean 

values of 32 mice ± SD (OVEX-E2 and OVEX) or 30 mice ± SD (intact). 1significant difference 

in weight from intact and OVEX-E2 mice (p < 0.001). 2Significant difference in weight from 

OVEX and OVEX-E2 mice (p < 0.001).  

 

Hormone group Uterine weight (g) 

Pellet E2 Delivery Oral E2 Delivery   
1 1 OVEX 0.044 ± 0.03 0.055 ± 0.02 

   
2 2 INTACT 0.105 ± 0.08 0.096 ± 0.06 

   
OVEX-E2 0.138 ± 0.02 0.136 ± 0.04 
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Figure 3.2.  The effect of estrogen on TT-specific IgG and IgG+A+M antibody responses. 

A, IgG+A+M and B, IgG (γ) responses against tetanus toxoid vaccination in mice 14 days after 

the second immunization (day 42).  Binding curves represent 2-fold serial dilutions of sera. 

Curves represent mean values obtained from 11 mice per group. Curves represent data from the 

vaccinated groups, bars represent data from the unvaccinated groups to show background 

binding.  
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Figure 3.3. Anti-TT IgG and IgG+A+M titers in OVEX-E2, OVEX and intact mice. 

A, IgG+A+M and B, IgG (γ) responses against tetanus toxoid vaccination in mice 14 days after 

the second immunization (day 42). Endpoint titers were calculated as 3 times the mean of the 

average OD of the negative control at a 1:50 dilution. Data shown represents the mean titers of 

11 mice per group. * p < 0.05, ** p < 0.01. 
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Figure 3.4. Longterm antibody responses. 

Sera from OVEX and intact mice were tested for anti-TT IgG (γ) the day of (day 125) and 14 

days after (day 139) the third immunization was administered to determine longterm responses. 

Endpoint titers were calculated as 3 times the mean of the average OD of the negative control at 

a 1:50 dilution. Data shown represents the mean titers of 11 mice per group ± SEM. 
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Figure 3.5.  The effect of estrogen on TT-specific IgG1 production. 

Individual mouse samples at day 42 were tested at 1:200 dilution. The concentration of IgG1 in 

serum was determined against a standard curve using purified mouse myeloma IgG1. OVEX-E2 

mice have higher levels of anti-TT IgG1 compared to OVEX and intact mice (p < 0.01).  
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leads to production of higher TT-specific responses. TT-specific IgG1 levels did not differ 

between OVEX and intact mice, indicating the presence of a stronger Th2 response in the 

OVEX-E2 mice. TT-specific IgG2a was not detected in any of the mice (data not shown). 

 

 

 Oral-E2 Experimental Protocol 

 

Anti-TT IgG responses 

To test the hypothesis that estrogen influences the antibody response to vaccines, groups of mice 

were ovariectomized, subjected to estrogen replacement and immunized with the TT vaccine.  

The anti-TT response produced by this group of mice (OVEX-E2) was compared to the same 

response generated in OVEX and in intact mice. All mice received a total of three immunizations 

(day 0, 21 and 84). Serum samples obtained from all mice at day 0 as well as 14 days after the 

second and third immunizations (days 35 and 98, respectively) were tested for anti-TT IgG 

responses by ELISA. At day 35, OVEX-E2 and intact mice produced significantly higher anti-

TT IgG levels than OVEX mice (p <0.05) when vaccinated SC (Figure 3.6 and Figure 3.7). 

OVEX-E2 mice produced significantly higher anti-TT IgG levels than OVEX and intact mice 

when vaccinated IM (p < 0.01) (Figure 3.6 A). At day 98, OVEX-E2 produced significantly 

higher anti-TT IgG levels than the OVEX and intact mice when vaccinated either IM or SC (p < 

0.05) (Figures 3.6 B and Figure 3.7). For both day 35 and 98, mice vaccinated IM produced 

significantly higher anti-TT IgG levels than mice vaccinated SC (p < 0.05). All samples were 

also tested against herpes B virus glycoprotein I as a negative control, which resulted in IgG OD 

values that were below 0.1. These were used to generate endpoint titer values for the same data, 
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shown in Figure 3.7. Unvaccinated animals showed similar low OD values compared with 

vaccinated animals (Figure 3.6).  

 

Total Ig and IgG1/IgG2a responses 

As already mentioned, it is known that estrogen may increase polyclonal B cell activation 

(Kanda and Tamaki 1999). To determine whether or not the increased anti-TT antibody levels 

detected in the OVEX-E2 mice as compared to the OVEX and intact mice were due to specific 

anti-TT responses and not just to increased total Ig production, total Ig levels were tested in 

serum samples from all mice. These levels are not significantly different between groups (p > 

0.05) (Figure 3.8). These results confirm that OVEX-E2 mice produce higher levels of specific 

anti-TT antibody responses. To assess whether or not E2 treatment influenced expression of the 

IgG1 subclass, TT-specific IgG1 and IgG2a responses were determined. Figure 3.9 shows that, 

according to what observed for overall IgG responses, OVEX-E2 mice produced the highest 

levels of TT-specific IgG1 following vaccination (p < 0.05), thus confirming that E2 replacement 

leads to production of higher TT-specific responses. This effect was consistent whether mice 

were vaccinated SC or IM. TT-specific IgG1 Levels did not differ between OVEX and intact 

mice, indicating the presence of a stronger Th2 response in the OVEX-E2 mice. TT-specific 

IgG2a was not detected in any of the mice (data not shown). 

 

Natural autoantibody (NAA) levels 

NAA are found in the serum of healthy individuals in the absence of infection or immunization. 

Unlike specific, they do not undergo somatic hypermutation. As a result, they possess germline 

specificity and are polyreactive to conserved structures. Although their function is not clear,
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Sera obtained 14 days after the second immunization (day 35) and 14 days after the third 

immunization (day 98) were tested fot anti-TT IgG. Binding curves and bars represent 2-fold 

serial dilutions of sera from TT-vaccinated and unvaccinated mice, respectively. Data shown 

represents the mean ± SEM of 11 mice per group. At day 35, OVEX-E2 and intact mice had 

significantly higher anti-TT IgG levels than OVEX mice when vaccinated SC (p < 0.05) (A). 

OVEX-E2 mice have significantly higher anti-TT IgG levels than the OVEX and intact mice 

when vaccinated IM (p < 0.01) (C). At day 98, OVEX-E2 mice have significantly higher anti-TT 

IgG levels than the OVEX and intact mice when vaccinated either IM or SC (p < 0.05). Mice 

vaccinated IM had significantly higher anti-TT IgG levels than mice vaccinated SC (p < 0.05). 

Figure 3.6. The effect of estrogen and route of administration on TT-specific IgG responses 

(next page). 
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Figure 3.7. Anti-TT IgG titers in OVEX-E2, OVEX and intact mice. 

Mice were vaccinated with TT either IM or SC and sera from days 0, 35 (14 days after the 

second dose) and 98 (14 days after the third dose) were tested for anti-TT IgG (γ). Endpoint titer 

was defined as 3 times the mean of the average OD of the negative control at 1:50 dilution.  Data 

shown represents the mean ± SD of 11 mice per group.  * p < 0.05, ** p < 0.01 compared to 

intact mice. 
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Figure 3.8. The effect of estrogen on total immunoglobulin levels.  

 

Mice were vaccinated with TT by A, SC, B, IM routes or were C, unvaccinated. Individual 

mouse samples from day 98 were 2-fold serially-diluted to generate titration curves, and tested 

for levels of serum IgG+A+M by ELISA. Data shown represents the mean ± SEM of 11 mice 

per group. There are no significant differences between the 3 groups (p > 0.05).  

69 



 

 

0.20 

0.18 

0.16 

0.14 

0.12 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 

0.20 

0.18 

0.16 

0.14 

0.12 

0.10 

0.08 

0.06 

0.04 

0.02 

0.00 

OVEX-E2 OVEX INTACT OVEX-E2 OVEX INTACT 

IM SC 
 

 

C
on

ce
nt

ra
tio

n 
Ig

G
1 

(u
g/

m
l) 

 
  
 

Figure 3.9.  The effect of estrogen on TT-specific IgG1 production. 

 Individual mouse samples obtained at day 98 were diluted at 1:200 and tested for production of 

anti-TT IgG1 by ELISA. The concentration of IgG1 in serum was determined against a standard 

curve using purified mouse myeloma IgG1.  OVEX-E2 mice have higher levels of anti-TT IgG1 

compared to OVEX and intact mice when vaccinated either IM or SC (p < 0.01).  
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 NAA constitute a large fraction of serum immunoglobulin. Immuno-adsorption studies show 

that up to 66% of IgG from healthy individual sera are auto-reactive. One theory is that NAA are 

may play a role in the initial response to infection.  To test whether vaccination or estrogen 

influences NAA levels, sera from day 98 were tested for reactivity against CTE. CTE was used 

to its high content of phylogenetically conserved structures and because of the nonspecific 

binding property of the NAAs. E2-treated mice had significantly higher NAA levels as compared 

to the OVEX and control mice.  

 

To test whether vaccination or estrogen influences NAA levels, sera from day 98 were tested for 

reactivity against CTE. CTE was used to its high content of phylogenetically conserved 

structures and because of the nonspecific binding property of the NAAs. E2-treated mice had 

significantly higher NAA levels as compared to the OVEX and control groups (p < 0.01), 

whereas the OVEX and control groups did not differ (Fig. 3.10). This was consistent irrespective 

of vaccination. When sera taken prior to OVEX and E2-delivery were tested, there were no 

significant differences between any of the 3 groups (data not shown).  Vaccination alone did not 

influence NAA levels in any of the three groups. 
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Figure 3.10. The effect of estrogen and vaccination on natural autoantibody levels.  

Sera from TT-vaccinated and unvaccinated OVEX-E2, OVEX and intact mice at day 98 were 

diluted at 1:200 and tested for levels of IgG+A+M against 4 ug/ml CTE. Bars represent mean ± 

SD of 11 mice per group. * p < 0.05, ** p < 0.01 compared to intact mice.
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DISCUSSION 

 

Results from several studies indicate that estrogen influences the immune response generated 

against a variety of immunogens. However, no information is available on the effects of 

estrogens on the immune response to specific vaccine preparations currently used in human 

populations. Therefore, the present study was carried out to assess whether or not estrogen may 

affect the antibody response to one of the currently available vaccines, i.e., the TT vaccine.  TT 

represents one component of combination vaccines that include other components, i.e., tetanus 

toxoid, reduced diphtheria toxoid, acellular pertussis vaccine (Tdap); tetanus toxoid and 

diphtheria toxoids vaccine (Td); and diphtheria toxoid, tetanus toxoid and acellular pertussis 

vaccine (DTaP). These vaccines are recommended and routinely administered to humans for 

either childhood or adolescent and adult immunization.   Our results show that E2 replacement 

results in the generation of higher anti-TT IgG responses for both routes of administration, SC 

and IM.  However, for all groups, IM-vaccinated mice produced overall higher anti-TT IgG 

levels than did SC-vaccinated mice. In humans, these two routes of vaccine administration do not 

appear to result in different immunogenicity profiles (Mark, Carlsson et al. 1999; Ruben, 

Froeschle et al. 2001). 

 

We used a uterine weight bioassay to confirm the efficacy of hormone treatment due to its well-

described high sensitivity to low levels of estrogen treatment (Mobbs, Cheyney et al. 1985). 

Results obtained by measurement of uterine weight confirmed the efficacy of hormone 

replacement.  The finding that no significant differences were detected in anti-TT antibody 

responses between OVEX and intact mice after a third immunization dose, indicates that 
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endogenously cycling estrogen levels may not ultimately be sufficient to enhance humoral 

responses to TT vaccination. 

 

Consistent with the finding of increased anti-TT IgG production in the OVEX-E2 mice, 

significantly increased levels of anti-TT IgG1 were observed in the OVEX-E2 mice as compared 

to OVEX and intact mice. IgG2a and IgG1 are often used as indicators for the induction of 

murine Th1 and Th2 responses, respectively, and the IgG1/IgG2a ratio can help to define the T-

cell phenotype induced by vaccination(Coffman, Seymour et al. 1988).  Indeed, bacterial protein 

antigens administered in alum adjuvant, such as TT, are known to induce mostly IgG1 responses 

(van der Giessen and Groenboer-Kempers 1976; Stevens, Dichek et al. 1983; Seppala and 

Makela 1984; Rubin, Tang et al. 1986; Watt, Zardis et al. 1986; Grun and Maurer 1989; Comoy, 

Capron et al. 1997; Cox 1997). Production of Th1 cytokines is augmented in women after 

menopause.  HRT prevents this increase, thereby restoring the Th1/Th2 balance that is 

implicated in inadequate immune responses and pathological conditions (Kamada, Irahara et al. 

2001).  However, in mice, E2 treatment results in increased IFN-gamma and decreased IL-4 

production from in vitro antigen stimulated CD4+ T cells (Maret, Coudert et al. 2003).  These 

differences might be explained on the basis of a biphasic effect of E2, resulting in enhanced IFN-

gamma production at low E2 concentrations, but enhanced IL-10 production at higher E2 

concentrations (Gilmore, Weiner et al. 1997; Correale, Arias et al. 1998; Beagley and Gockel 

2003).  Indeed, the dose of E2 replacement used in our study results in E2 levels that are 

significantly higher than in the OVEX and intact mice, as demonstrated by significantly 

increased uterine weights. 
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Several recent studies have examined immune responses in different compartments of female 

reproductive tract in response to immunization. Results from these studies show that E2 either 

alone or in combination with progesterone not only influence immune responses in the female 

reproductive tract, but also regulate susceptibility to infections (Crowley, Horner et al. 1997; 

Martin, Nyange et al. 1998; Sonnex 1998; Kaushic, Zhou et al. 2000; Gillgrass, Fernandez et al. 

2005; Gillgrass, Tang et al. 2005). 

   

Little information exists regarding the role that estrogen plays in the systemic immune responses. 

Results from earlier studies indicates that immunization with various T-dependent and T-

independent antigens, such as horse or goat erythrocytes and polyvinylpyrrolidone, respectively, 

results in enhanced IgG and IgM titers in female mice as compared to male mice (Eidinger and 

Garrett 1972). Others have demonstrated that females have stronger and longer lasting humoral 

responses to bovine serum albumin compared to males (Terres, Morrison et al. 1968). Given the 

hormonal differences between males and females, these observations are consistent with the 

hypothesis that physiological levels of E2 enhance humoral immune responses to antigens. 

Indeed, results from additional earlier studies show that female rats produce higher anti-

fluorescein antibody titers than male rats and that, in OVEX rats, primary and secondary anti-

fluorescein antibody responses are significantly reduced compared to sham OVEX controls 

(Trawick and Bahr 1986; Erbach and Bahr 1991). Results from our study are in agreement with 

the majority of these earlier findings, with the possible exception of the latter mentioned study. 

Indeed, our results show no significant longterm differences between OVEX and intact mice at 

day 98, with increased responses present only in the OVEX-E2 mice. Differences in animal 

models (rats versus mice) and immunogen used may explain this discrepancy.   
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Clearly, additional studies are required to assess the influence of type, dose of antigen, adjuvant, 

and additional routes of administration on the immune response elicited in presence or absence 

of estrogen. Similarly, additional studies should include different doses of estrogens and different 

times of estrogen treatment.   In conclusion, the results from our preliminary study show that 

estrogen may enhance the antibody response to a commonly used vaccine and suggests 

intriguing possibilities regarding the potential use of sex hormones as immunomodulators of the 

immune response to specific vaccines.  In addition, our results emphasize the importance of 

taking into account the effects of estrogens in evaluating vaccine efficacy, especially in 

menopausal women (subjected or not to hormone replacement therapy) which represent a major 

subset of elderly individuals, a population known to exhibit a decreased response to vaccine 

administration. The future understanding of the specific mechanisms at the basis of the estrogen-

induced modulation of the immune response might lead to the design of novel prevention 

strategies based on the use of vaccines. 
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CHAPTER 4 
 

Estrogen-Induced Modulation of Murine Macrophage Genes Involved in Innate and 

Adaptive Immune Responses  

 

SUMMARY 
 
Macrophages play important roles in the immune response, as they are capable of not only 

phagocytosis and destruction of foreign cells and debris but also acting as antigen presenting 

cells. Thus they stand at the crossroads of innate and adaptive immunity. The key mechanisms 

by which macrophages exert their effects depend on the expression and function of different 

types of receptors. Toll-like receptors (TLRs) detect and bind directly to pathogenic ligands in 

the microenvironment and are critical in the first line of defense against infection. Antibody-Fc 

gamma receptors bind to antibodies-antigen complexes and are therefore involved in activation 

of the adaptive immune response. We have examined the effects of estrogen on TLR2 and FcγR 

gene expression from primary splenic and thioglycollate-elicited macrophages isolated from 

female mice either ovariectomized only or overiectomized and given estrogen (E2) replacement 

and intact mice. We found that TLR2, FcγRI and FcγRIII but not FcγRIIB gene expression is 

greatly down-regulated in estrogen-replaced mice. When we compared intact female mice to 

male mice, we found a clear gender dimorphism in expression of these genes. When immunized 

with M. tuberculosis culture filtrate proteins containing TLR-inducing LAM, E2-replacement 

enhanced specific antibody responses. On the other hand, E2-replacement down-regulated gene 

expression while ovariectomy up-regulated expression. TLR and FcγR are co-expressed on 

macrophages, where co-ligation leads to increased pro-inflammatory cytokine release. Since 
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FcγRIIB gene expression was not affected by estrogen–replacement, this indicates that estrogen 

enhances macrophage genes encoding receptors involved in activation of the immune system, 

but not receptors involved in inhibition of the immune system. Altogether, our results suggest 

that gender differences as well as varying levels of estrogen in females may differentially 

influence immune function at the level of B cells and macrophages and that these differences 

should be considered when designing vaccine strategies for different target populations subject to 

endogenous or exogenous estrogen fluctuations. 

 
 

INTRODUCTION 
 
 
Macrophages play a significant role in host defense against infection. In innate immunty, 

macrophages are phagocytic cells involved in the activation of the inflammatory response. In 

adaptive immunity, macrophages are professional antigen-presenting cells which allow antigen 

recognition by T lymphocytes resulting in the activation and specific effector functions that lead 

to maximum antigen clearance. The critical functions of macrophages are mediated by various 

types of receptors, whose expression and function contribute to pathogen clearance as well as 

activation of adaptive responses necessary for long-term immunity. Macrophages express toll 

like receptors (TLRs), which are considered to be the principal membrane signaling molecules 

through which mammals sense infection. The innate immune response to bacterial infection is 

triggered when TLRs located on the cell surface recognize bacterial components, as for example 

lipopolysaccharide (LPS) and peptidoglycan (PGN), the major constituents of gram-negative and 

gram-positive bacterial cell walls, respectively. Ligation of TLRs leads to signaling mediated by 

the adaptor protein MyD88 and subsequent NF-κB activation, ultimately resulting in expression 
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of co-stimulatory molecules as well as pro-inflammatory cytokines including IL-6, IL-12 and 

TNF-α, which are important in activation of B and T cells and differentiation of T helper 

subsets.  

 

Macrophages also express opsonic phagocytic receptors, including receptors for the Fc portion of 

immunoglobulin G (IgG), the Fcγ receptors (FcγR), which allow effector cells to recognize and 

bind immune IgG complexes rapidly and efficiently. FcγR cross-linking results in internalization 

of immune complexes by phagocytosis/endocytosis, antigen presentation, antibody-dependent 

cellular cytotoxicity (ADCC) and the release of inflammatory mediators. Thus, the functions of 

TLRs and FcγR are the most critical for macrophages, as they are necessary for not only for 

activation during the initial response to infection but also for antigen presentation and signaling 

to activate the adaptive immune response. 

  

Macrophage functions may be regulated to a large extent by sex hormones. Estrogen, a known 

immunomodulator, can act directly on monocytes and macrophages, decreasing the production 

of proinflammatory cytokines such as IL-1, IL-6 and TNF-α. Evidence for estrogen modulation 

of TLRs has been documented within the female reproductive tract (FRT). TLRs and estrogen 

receptors (ER) are co-expressed abundantly in uterine and vaginal mouse epithelial cells (Soboll, 

Shen et al. 2006). In endometrial epithelial and stromal cells, TLR2, 3, 4, and 9 exhibit 

differential spatio-temporal expression patterns according to menstrual cycle changes, where 

there is a general increase in expression of all four TLRs around menstruation and a decrease in 

expression around ovulation (Hirata, Osuga et al. 2007). Estrogen suppresses TLR3-dependent 

proinflammatory and anti-viral cytokine and chemokine production in endometrial epithelial cell 
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lines (Schaefer, Fahey et al. 2005; Lesmeister, Bothwell et al. 2006). Female peripheral blood 

lymphocytes (PBLs) produce significantly higher IFN-α levels in response to TLR7 stimulation 

compared with male PBLs (Berghofer, Frommer et al. 2006). 

 

Estrogen also modulates FcγR expression. Pregnancy levels of estrogen enhance clearance of 

IgG-sensitized erythrocytes by increasing splenic FcγR1 and FcγR2 expression in guinea pigs 

(Friedman, Netti et al. 1985; Gomez, Ruiz et al. 2001) while androgens, including testosterone, 

have the opposite effect (Gomez, Ruiz et al. 2000). In human PBLs and monocytic cell lines, 

removal of estrogen results in increased FcγR transcripts as well as increased TNF-α, IL-1β and 

IL-6 production upon receptor cross-linking (Kramer, Kramer et al. 2004; Kramer, Winger et al. 

2007).  

 

Mycobacterium tuberculosis, the causative agent of tuberculosis, is an intracellular pathogen 

capable of surviving and persisting within host mononuclear cells, such as macrophages 

(Quesniaux, Fremond et al. 2004). The mediators that are essential for control of M. tuberculosis 

infection are secreted by macrophages and activated lymphocytes and include IFN-γ, IL-12, 

TNF, lymphotoxins, CD40 and nitric oxide (Garcia, Guler et al. 2000; Jacobs, Marino et al. 

2000; Holscher, Atkinson et al. 2001; Lazarevic, Myers et al. 2003). One way that mycobacteria 

have evolved to resist clearance by macrophages is by inhibition of phogosome-lysosome fusion. 

Another way is by neutralization of some of these mediators (TNF and IFN-γ), inhibition of 

iNOS and T cell depletion (Flynn and Chan 2003). Therefore, continuous activation of 

macrophages in concert with activated T cells is necessary to control infection.  
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When studying resistance against M. tuberculosis infection and pathogenesis, much of the focus 

has been on the proteins actively secreted from the bacteria during their growth in culture. These 

secreted proteins, termed culture filtrate proteins (CFP) are released into the medium of 

mycobacterial cultures and are the primary targets for the immune response in mice and humans 

with active tuberculosis. Furthermore, they are the major proteins involved in M. tuberculosis 

pathogenesis. CFP have been extensively characterized and employed in experimental vaccine 

studies using mice. They have been studied as single proteins, or in pools of several proteins. To 

date, there have not been any studies that have specifically addressed the influence of sex 

hormones on M. tuberculosis vaccine responses. Because CFP is well-studied and safe to 

administer to animals, we used M. tuberculosis CFP as a model vaccine to a ssess how estrogen 

modulates the immune response to immunization. We have previously shown that estrogen 

enhances humoral immune responses to vaccination. The enhancement mechanism is not fully 

understood. We carried out this study to determine whether estrogen influences macrophage 

function, which is necessary for response to pathogens and for activation of downstream adaptive 

responses. To activate the immune system, female mice that were intact, ovariectomized 

(OVEX), or ovariectomized and received estrogen replacement (OVEX-E2) were subjected to 

immunization with M. tuberculosis CFP. We then measured TLR2 as well as FcγRI, FcγRIIB 

and FcγRIIIA gene expression in primary splenic and thioglycollate-elicited macrophages to 

determine if these genes are hormonally regulated in the immune response to vaccination. In 

addition, TLR2, FcγRI, FcγRIIB and FcγRIIIA gene expression was measured in a group of non-

immunized male mice. 
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TLR2 and FcγR are critical for proper activation of the immune response. Indeed, vaccination 

relies on such functions in order to effectively trigger immunity during secondary infection. 

Therefore, hormonal modulation of these receptors could be an important pathway which 

directly influences not only autoimmune disease states in females, but also by which immune 

responses to vaccination can be manipulated.  

 

MATERIALS & METHODS 
 
Animals 
 
Eight week-old female Balb/c mice (Charles River Laboratories, Inc., Wilmington, MA) were 

divided into 3 experimental groups. The first group, designated OVEX-E2 group, was 

ovariectomized and subjected to estrogen replacement. The second group, designated OVEX 

group, received no estrogen replacement (Table 4.1). The third group remained intact. All 

animals were housed and subjected to experimental procedures in accordance to protocols 

approved by the appropriate institutional review committee.  

 

Ovariectomy, E2 replacement, and uterotrophic responses 

Mice were anesthetized with 5% isoflurane gas in 100% oxygen, and their ovaries, oviducts and 

tips of the uterine horns were bilaterally removed via two dorsal incisions. Immediately 

following surgery, mice in the OVEX-E2 group started E2 replacement. E2 was administered in 

the drinking water. E2-treated water was prepared as previously described by diluting stock 

solutions of E2 (Sigma- Aldrich Corp., St. Louis, MO) in 100% ethanol to solubilize (Levin-

Allerhand, Sokol et al. 2003). Solubilized estrogen was added to drinking water to produce a 

final concentration of 1000 nM, as previously described  

82 



 

Table 4.1. Experimental  design for E2-CFP study. 

Mice were divided into 3 groups, where the first group was ovariectomized (OVEX), the second 

group was ovarietomized and was given 1000 nM 17β-estradiol (E2) replacement in the drinking 

water (OVEX-E2), and the third group underwent sham ovariectomy (intact). Mice were then 

vaccinated with M. tuberculosis CFP. Within each of these groups, one third of mice were 

vaccinated with 10 ug CFP (CFP-10), one third received 50 ug CFP (CFP-50) and the final third 

received saline (unvaccinated).  

   
  

Hormone group Vaccine group Group Designation No. of mice 

    
   

OVEX 10 ug CFP OVEX, CFP-10 11 

 50 ug CFP OVEX, CFP-50 11 

 Unvaccinated OVEX, UNVAX 10 

OVEX-E2 10 ug CFP OVEX-E2, CFP-10 11 

 50 ug CFP OVEX-E2, CFP-50 11 

 Unvaccinated OVEX-E2, UNVAX 10 

Sham OVEX 10 ug CFP Intact, CFP-10 11 

 50 ug CFP Intact, CFP-50 11 

 Unvaccinated Intact, UNVAX 10 

Untreated males Unvaccinated Male 6 
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(Levin-Allerhand, Sokol et al. 2003; Fernandez and Frick 2004). The final concentration of 

ethanol was 0.1%. No adverse effects of this concentration of ethanol or estrogen were reported 

(Levin-Allerhand, Sokol et al. 2003). The selected concentration of E2 results in an ingested 

dose of approximately 50-70 kg/ug per day, corresponding to about 15 pg/ml (Stone, Rozovsky 

et al. 1998; Levin-Allerhand, Sokol et al. 2003). Estrogen levels during the estrus cycle in mice 

typically range from 10-40 pg/ml (Nelson, Karelus et al. 1995). A 1000 nM dose in the drinking 

water was previously shown to result in uterine weights that were significantly higher than 

control mice, yet not significantly different from those of mice given either 1500 nM or 2500 nM 

doses, implying a uterotrophic response that plateaus with increasing E2 doses (Levin-Allerhand, 

Sokol et al. 2003). To test for uterotrophic responses, uteri were removed and weighed at 

termination. 

 

Immunization 

Mice were immunized with a primary (day 0), secondary (day 21) and tertiary (day 49) dose of 

M. tuberculosis CFP (Provided by J. T. Belisle, Colorado State University, Fort Collins, CO, 

under the National Institutes of Health, National Institute of Allergy and Infectious Diseases 

Contract NO1-AI-75320, titled Tuberculosis Research Materials and Vaccine Testing) (Figure 

4.1). Mice received subcutaneous injections of either 10 ug or 50 ug of CFP, mixed with Imject 

Alum (Pierce, Rockford, IL) at a 2 to 1 ratio of CFP to Alum. Formulations were made in a final 

volume of 200ul, yielding a final dose of either 50 ug/ml or 250 ug/ml.   
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Isolation of splenic and thioglycollate-elicited macrophages 

Splenic macrophages were isolated by passing cells through a 70um nylon mesh (BD-Falcon, 

Bedford, MA), and blood cells were removed using Red Blood Cell Lysis Buffer (Sigma Aldrich 

Corp., St. Louis, MO). Cells were adjusted to 3x106 cells/ml in complete medium (DMEM 

containing 100 U/ml penicillin, 100 ug/ml streptomycin, 1 mM glutamine and 5% FBS) in 6-well 

plates in a final volume of 2.5 ml/well for 60 min at 37C with 5% CO2. Wells were rinsed with 

media to remove non-adherent cells. Remaining cells were used for RNA extraction. To induce 

activated peritoneal macrophages, 1 ml of 3% thioglycollate was injected i.p. into mice. Five 

days later, peritoneal exudates cells were collected in 10 ml of cold PBS. Cells were washed and 

incubated at 1x106 cells/ml in 2.5ml complete medium for 60 min and non-adherent cells were 

removed.  

 

Macrophage stimulation 

Thioglycollate-elicited and splenic macrophages (1x10^6 cells/ml) were stimulated in 12-well 

plates in a final volume of 2.5 ml/well with 1ug/ml LAM (CSU), 5ug/ml LAM, 10 ug/ml LAM, 

10 ug/ml peptidoglycan (PGN, Sigma), 100 ug/ml PGN or media alone. Cultures were incubated 

for 4 hr and 48 hr at 37C with 5% CO2. Media was then removed and RNA was extracted from 

cells and used to determine TLR2 and FcγR expression by real-time PCR.  

 

TLR2 expression detected by real-time PCR 

Total RNA was isolated using Qiagen RNeasy Mini Kit (Qiagen, Valencia, CA) according to 

manufacturer’s instructions. RNA samples were quantified and used for cDNA synthesis using 

First Strand cDNA Synthesis Kit for RT-PCR (AMV) (Roche Diagnostics Corp., Indianapolis, 
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Figure 4.1.  E2-CFP Study: Hormone treatment and vaccination schedule. 

Mice were ovariectomized and mice designated to receive E2 replacement were immediately 

given E2 (1000 nM) orally in their drinking water. Mice were vaccinated on Day 0 with M. 

tuberculosis CFP, and then received subsequent booster doses on Days 21 and 49. All mice were 

sacrificed on day 63 for uterine weight measurements as well as macrophage isolation from the 

peritoneal cavity and the spleen. The large arrows indicate dates of vaccine administration. The 

small arrows indicate days of blood collection for determination of CFP-specific antibody 

responses. 
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IN) using approximately 1ug of total RNA. Real-time PCR was performed using TaqMan Gene 

Expression Assays pre-developed primers and probes for TLR2 at a 1 X concentration, 10ul of 

cDNA and 1 X TaqMan Gene Expression Master Mix (all supplied by Applied Biosystems, 

Foster City, CA). Relative quantification was determined by normalizing TLR2 expression to 

endogenous β-actin expression. ΔΔCt values were calculated by calibrating average ΔCt values 

of the OVEX-E2 and OVEX mice to those of the intact mice. 

 

Detection of CFP-specific antibody responses 

Anti-CFP antibody responses were assessed by ELISA.  Micro-titer wells were coated with CFP 

at 4 ug/ml diluted in coating buffer (KPL, Inc., Gaithersburg, MD). To block nonspecific binding 

sites, wells were incubated for 30 min at 37ºC with PBS containing 5% fetal calf serum (FCS-

PBS) (Atlanta Biologicals, Lawrenceville, GA). Two-fold serial dilutions were performed on 

serum samples which were then added to triplicate wells and incubated overnight at 4º C. After 

washing with PBS containing 0.05% Tween-20, wells were incubated with HRP-labeled goat 

anti-mouse IgG (γ) (KPL, Gaithersberg, MD) for 1 hr and 15 min at 37º C. Wells were washed 

and then incubated with ABTS/ H O2 2 (KPL) substrate for 10 min at room temperature, followed 

by addition of stop solution (KPL).  Optical density (OD) values were assessed at 405 nm using a 

PowerWave HT plate reader (BioTek Instruments, Inc., Winooski, VT). 

   

Statistical analysis 

The SPSS program (SPSS Inc, Chicago, Illinois) version 12 was used for statistical analysis. 

Analysis among multi-group data was carried out using ANOVA, followed by Turkey's 
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significant difference test, or Tamhane's T2 test when the test of homogeneity of variances 

(Levene Statistic) indicated that the variance between the groups was not equal. Differences 

among groups were considered significant if p < 0.05.  

 

RESULTS 
 
Uterotrophic responses  

Mice were sacrificed after being subjected to approximately 3.5 months of ovariectomy with or 

without E2 replacement. At termination, uteri from each mouse were collected and weighed in 

order to test for uterotrophic responses to E2 delivery. This bioassay was chosen because of its 

high sensitivity to low amounts of E2 treatment (Mobbs, Cheyney et al. 1985). The mean uterine 

weights were compared between the groups. As expected, OVEX-E2 mice had uterine weights 

significantly higher than the OVEX and intact mice (p < 0.001).  The uterine weights of OVEX 

mice were significantly lower than those of the intact mice (p < 0.001) (Figure 4.2). This 

confirms the desired effect of a supra-physiological level of E2 as a result of our method of 

delivering 1000 nM of E2 in the drinking water of OVEX mice.  

 

Estrogen manipulation modulates TLR2 and FcγIIIA mRNA expression in macrophages 

isolated from non-vaccinated mice 

To determine the effect of estrogen manipulation alone on macrophage gene expression, we 

measured and compared TLR2 and FcγR mRNA in unvaccinated OVEX-E2, OVEX and intact 

mice. Our results show that E2-replacement correlated with a reduction in TLR2 mRNA 

expression. Compared with intact mice, TLR2 expression in OVEX-E2 mice was 42% reduced 

in peritoneal macrophages and 60% reduced in splenic macrophages (Figure 4.3).  On the other 
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Figure 4.2. Uterotrophic responses to hormone treatment.  

Approximately 3.5 months after hormone manipulation, female mice were sacrificed and uteri 

were removed and weighed to compare uterotrophic responses between groups. *p < 0.001 

compared to intact and OVEX-E2, ** p < 0.001 compared to OVEX and OVEX-E2. 
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Figure 4.3. The effect of estrogen manipulation on macrophage gene expression.  

 

Splenic and thioglycollate-elicited macrophages from OVEX-E2, OVEX and intact mice were 

isolated and total RNA was extracted and used for cDNA generation and real time PCR to 

measure leavels of TLR2, FcγRI, FcγRIIB and FcγRIIIA mRNA expression. Data are expressed 

as fold difference (2 -ΔΔCt) of OVEX-E2 and OVEX mice compared with intact mice (set to 1).  

90 



 

hand, OVEX mice showed a 17% increase in TLR2 mRNA expression compared to intact mice 

in peritoneal macrophages. In splenic macrophages, a lesser increase in TLR2 mRNA expression 

of only 6% in the OVEX mice was seen. OVEX mice expressed 139% more FcγRIIIA mRNA in 

peritoneal macrophages compared to intact mice. These patterns of E2-induced down-regulation 

were not observed when we measured FcγRI and FcγRIIB.  

 

M. tuberculosis CFP-specific antibody responses 

To test the effect of hormone treatment on specific response to vaccination, we measured serum 

levels of anti-CFP IgG in OVEX-E2, OVEX and intact mice. Mice were vaccinated with a total 

of three doses of 10 ug or 50 ug CFP, designated CFP-10 and CFP-50, respectively. Blood was 

collected according to the schedule indicated above (Figure 4.1) and serum was diluted and used 

for determination of specific antibody responses. After the third dose, OVEX mice in the CFP-10 

group had significantly lower CFP-specific IgG levels compared to OVEX-E2 mice and reduced, 

although not significantly, lower anti-CFP IgG levels compared with the intact mice (Figure 4.4 

A). These differences were more dramatic in the CFP-10 vaccination group than the CFP-50 

group. Overall, CFP-50 mice showed higher responses than did the CFP-50 mice, likely due to 

the higher dose administered. These mice showed differences at higher serum dilutions of 1:800, 

where OVEX mice had reduced anti-CFP antibody responses compared to the OVEX-E2 and 

intact mice (p < 0.05 compared to intact mice) (Figure 4.4 B). 
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Figure 4.4. CFP-specific antibody responses.  

 

Mice were vaccinated with a total of three doses of either A, 10 ug or B, 50 ug M. tuberculosis 

CFP. Blood was collected two weeks after the third dose was administered and serum was used 

for determination of anti-CFP IgG (γ) levels. Data expressed as OD values of the average of 10 

or 11 mice per group ± SEM.   * p < 0.05, ** p < 0.01. 
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Macrophage TLR2 expression is enhanced in OVEX mice and reduced in E2-treated mice 

following vaccination 

It is well-known that LAM from M. tuberculosis, also present in CFP, activates macrophages 

through TLR2. Our data shows that in normal intact female mice, vaccination with M. 

tuberculosis CFP results in up-regulation of TLR2 expression in thioglycollate-elicited 

macrophages. In both CFP-10 and CFP-50-vaccinated OVEX mice, this increase was more 

pronounced after vaccination when compared with the increase seen in the intact mice (Figure 

4.5). In OVEX-E2 mice, vaccination caused reduced TLR2 mRNA expression compared to the 

response seen in the OVEX and intact mice. Interestingly, in CFP-10-vaccinated OVEX-E2 

mice, TLR2 expression was down-regulated when compared with the unvaccinated OVEX-E2 

mice. These data suggest that in the absence of E2, TLR2 mRNA expression in response to CFP 

is enhanced, whereas high levels of E2 cause a reduction of TLR2 mRNA expression in response 

to CFP. Such a pattern was most pronounced in the in CFP-10 vaccinated mice, thus indicating a 

possible dose-response effect. Similar vaccine-induced changes in TLR2 mRNA expression were 

not seen with the FcγR mRNA expression in the same mice (data not shown). 

 

Vaccination and/or estrogen manipulation differentially effect TLR2 and FcγR gene 

expression in mice 

Thioglycollate-elicited macrophages were isolated from OVEX-E2, OVEX and intact mice that 

were either unvaccinated or vaccinated with CFP-10 or CFP-50. To determine the effects of 

these treatments, alone or in combination, on macrophage gene expression, RNA from these cells 

was used for cDNA synthesis and real time PCR determination of TLR2 and FcγR mRNA
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Figure 4.5. The effect of vaccination on TLR2 gene expression.  

Real time PCR was used to determine TLR2 mRNA expression in thioglycollate-elicited 

peritoneal macrophages from unvaccinated mice and mice vaccinated with 10 ug (CFP-10) or 50 

ug (CFP-50) M. tuberculosis CFP. Data are expressed as fold difference (2 -ΔΔCt) of vaccinated 

mice compared with unvaccinated mice (set to 1).  
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Figure 4.6. The effect of vaccination and/or estrogen on TLR2 and FcγR gene expression 

(next page).  

 

Thioglycollate-elicited macrophages were isolated from mice and RNA was extracted and cDNA 

used for real time PCR determination of levels of A, TLR2, B, FcγRI, C, FcγRIIB and D, 

FcγRIIIA mRNA expression. Bars represent the average values of individual mice per group (n= 

10 or 11). Bars depict mRNA levels of the indicated gene for each group in response to the 

indicated treatment. Data are expressed as fold difference (2 -ΔΔCt) of treated mice (filled bars) 

compared to those of the untreated intact mice (empty bars, set to 1) for each gene indicated. 
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expression. Figure 4.6 shows the expression patterns of each receptor according to the indicated 

treatment. These results indicate that gene expression patterns may vary with vaccination and/or 

estrogen manipulation (OVEX or OVEX-E2) (Figure 4.6 A, B). The most dramatic difference in 

gene expression related to estrogen manipulation but not vaccination was seen with FcγRIIIA 

(Figure 4.6 D). No difference in gene expression caused by such treatments was seen with 

FcγRIIB (Figure 4.6 C). Comparison of treated mice with untreated mice (unvax, intact mice) 

shows that macrophage gene expression levels are responsive and differentially affected 

depending on the receptor and type of treatment. 

 

To determine the effect of estrogen on TLR2 and FcγR expression, within independent vaccine 

treatment, the data generated from the same mice was reanalyzed to compare gene expression 

levels of OVEX-E2 and OVEX mice with those of intact mice within each vaccine group. Our 

data show that TLR2 mRNA expression is significantly reduced in OVEX-E2 mice, irrespective 

of vaccination (Figure 4.7 A). Furthermore, there was a slight up-regulation of TLR2 mRNA 

expression in OVEX mice compared with intact mice. FcγR mRNA expression patterns varied 

greatly between the three types. FcγRI mRNA expression was significantly enhanced in OVEX 

and reduced in OVEX-E2 mice compared with intact mice in the CFP-10 vaccine group, whereas 

there were no differences in the CFP-50 vaccine group (Figure 4.7 B). FcγRIIIA mRNA 

expression was up-regulated in OVEX mice compared with intact mice irrespective of 

vaccination. However OVEX-E2 mice showed reduced FcγRIIIA mRNA levels only in the CFP-

10 vaccine group (Figure 4.7 D). 
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Thioglycollate-elicited peritoneal macrophages were isolated from mice, RNA was extracted and 

cDNA was used for real time PCR determination of levels of A, TLR2, B, FcγRI, C, FcγRIIB 

and D, FcγRIIIA mRNA expression. Bars represent the average values of individual mice per 

group (n= 10 or 11). Bars depict mRNA levels of the indicated gene for each group in response 

to the indicated treatment.  Data are expressed as fold differences (2 

 

Figure 4.7. The effect of estrogen on TLR2 and FcγR gene expression (next page).  

 

-ΔΔCt) of OVEX-E2, OVEX 

mice compared to intact mice (set to 1 for each gene indicated. * p < 0.05, ** p < 0.01. 
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In vitro stimulation of macrophages with TLR2 ligands differentially up-regulates 

macrophage TLR2 mRNA expression in vaccinated and/or estrogen-manipulated mice 

Our data so far show similar estrogen-modulated patterns of TLR2 and FcγR mRNA expression, 

where E2 generally reduces and OVEX enhances mRNA expression, with the exception of 

FcγRIIB, where no changes are seen. Common TLR2 ligands include gram-positive bacterial 

products such as peptidoglycoan (PGN). Lipoarabinomannan (LAM) is a mycobacterial cell wall 

component that is also known to activate and unpregulate TLR2 (Tapping and Tobias 2003; 

Quesniaux, Nicolle et al. 2004) and is present in mycobacterial culture filtrate preparations. Mice 

that are vaccinated with CFP have an advantage when encountering mycobacterial proteins 

because they have been primed to respond to secondary encounter. Therefore, we next 

determined whether estrogen manipulation affects macrophage responsiveness to in vitro 

stimulation with known TLR2 ligands in CFP-vaccinated and in unvaccinated mice.  

 

Thioglycollate-elicited peritoneal macrophages were cultured for 48 hr in the presence of TLR2 

ligands LAM (1 ug/ml and 10 ug/ml) and PGN (100 ug/ml). Total RNA was extracted and used 

for cDNA generation followed by real time PCR for detection of TLR2 transcripts. In 

unvaccinated mice, stimulation with PGN resulted in increased expression compared to the 

unstimulated controls, and these levels varied with respect to estrogen manipulation, where 

OVEX mice had up-regulated, and OVEX-E2 had down- regulated TLR2 expression compared 

with the intact mice (Figure 4.8 A). Very little differences in TLR2 mRNA expression were seen 

in response to stimulation with LAM when compared with the unstimulated control. This was 

not surprising since these mice were unvaccinated and therefore were not primed with CFP to 

respond as in a secondary encounter to LAM.  
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When mice were vaccinated with CFP, macrophage stimulation with LAM resulted in increased 

TLR2 expression in a dose-dependent manner. Stimulation with PGN in these groups served as a 

positive control for TLR2 expression based on the results from the unvaccinated group. In the 

CFP-10 vaccine group, there was a significant reduction in TLR2 mRNA expression in the 

OVEX-E2 mice compared to both the OVEX and intact, indicating a strong down-regulatory 

effect of estrogen (Figure 4.8 B). In the CFP-50 group, this reduction was apparent yet more 

subtle (Figure 4.8 C). Overall, TLR2 mRNA expression in stimulated macrophages was down-

regulated in OVEX-E2 mice when compared with intact mice. OVEX mice showed equal or 

slightly up-regulated expression when compared to intact mice (Figure 4.8 B and C). Though 

both groups responded in a similar pattern to stimulation, mice vaccinated with CFP-10 showed 

higher TLR2 levels as compared with CFP-50. Furthermore, differences between OVEX-E2 

mice and OVEX/intact mice were more pronounced in the CFP-10 group, indicating a CFP-

vaccine dose response. This pattern of TLR2 mRNA expression was identical in splenic 

macrophages (data not shown). 

 

The data discussed above focuses on TLR2 expression patterns of stimulated cells compared 

with un-stimulated control cells and show how treatment (vaccination and/or estrogen 

manipulation) affects TLR2 expression. Additional analysis was performed to compare TLR2 

mRNA expression in the three hormone groups for each independent in vitro stimulation 

conditions.  These data show consistent up-regulation of TLR2 mRNA expression in OVEX 

mice compared with intact mice, irrespective of vaccine dose and in vitro stimulation conditions 

(Figure 4.9). TLR2 mRNA expression was up-regulated from 36% up to 200% depending on the 
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Figure 4.8. The effects of estrogen on TLR2 gene expression in response to in vitro 

stimulation with TLR2 ligands (next page). 

 

Thioglycollate-elicited peritoneal macrophages from A, unvaccinated mice or mice vaccinated 

with B, 10 ug CFP (CFP-50) or C, 50 ug CFP (CFP-10) were pooled according to group (n = 10 

or 11 mice per group) and cultured for 48 hrs in the presence of 1 ug/ml and 10 ug/ml 

mycobacterial lipoarabinomannan (LAM) and 100 ug/ml peptidoglycan (PGN). RNA extracted 

from these cells was used for real time PCR determination of levels of TLR2 transcripts. Bars 

depict TLR2 mRNA levels of each group in response to the indicated stimulator. Data are 

expressed as fold difference (2-ΔΔCt) of the stimulated cells (filled bars) compared to those of the 

unstimulated controls (empty bars, set to 1) for each hormone and vaccine treatment.  
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Figure 4.8. 
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Thioglycollate-elicited peritoneal macrophages from mice vaccinated with A, 10 ug CFP (CFP-50) or B, 50 ug CFP (CFP-10) were 

pooled (n= 11) and stimulated for 48 hrs with LAM or PGN and RNA was used for real time PCR detection of TLR2 expression. Data 

expressed as fold difference (2 
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Figure 4.9. OVEX up-regulates TLR2 mRNA expression after stimulation with TLR2 ligands.  

-ΔΔCt) of OVEX-E2 and OVEX mice (filled bars) compared to intact mice (empty bars, set to 1). 

Percent increase of TLR2 expression in the OVEX compared with the intact mice is indicated for each group. 
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type of stimulation and vaccine dose group. These data further indicate that in the absence of 

estrogen, CFP-primed macrophages express increased TLR2 transcripts in response to LAM and 

PGN compared to OVEX-E2 and intact control mice. TLR2 mRNA expression did not differ 

between OVEX-E2 and intact mice in response to in vitro stimulation with LAM or PGN.  

 

Macrophage TLR2 and FcγR mRNA expression differs between male and female mice 

Based on the observed differences between OVEX-E2, OVEX and intact mice, it is thus far clear 

that absence of estrogen results in up-regulated expression of TLR2, FcγRI and FcγRIIIA, 

whereas in presence of high levels of estrogen (OVEX-E2 mice), gene expression levels are 

down-regulated. Since estrogen levels differ greatly between males and females, we next 

compared baseline TLR2 and FcγR mRNA expression of intact female mice with those of male 

mice. For this comparison, we used thioglycollate-elicited peritoneal macrophages (all receptors) 

as well as splenic macrophages (TLR2 and FcγRIIIA only) to determine if expression differs 

within different tissues and compartments. Macrophages were obtained from individual female 

and male mice and total RNA was extracted and used for cDNA generation and realtime PCR to 

detect levels of TLR2 mRNA expression. In splenic macrophages, males expressed significantly 

higher levels of TLR2 and FcγRIIIA mRNA compared to females (p < 0.01) (Figure 4.10). In 

thioglycollate-elicited peritoneal macrophages, levels of TLR2, FcγRI and FcγRIIIA were 

significantly higher in the male mice compared with the female mice (p < 0.05 for TLR2 and p < 

0.01 for FcγRI and FcγRIIIA). No gender-related differences in FcγRIIB mRNA expression were 

observed. 
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Figure 4.10. Sex differences in TLR2 and FcγR gene expression.  

Thioglycollate-elicited peritoneal macrophages and splenic macrophages were isolated from 

female and male mice. RNA was extracted and reverse-transcribed, and cDNA was used for real 

time PCR determination of transcript levels of TLR2, FcγRI, FcγRIIB, FcγRIIIA. Bars represent 

the average of individual mice (n=10 females, n=6 males). Data are expressed as fold difference 

(2 -ΔΔCt) of transcript levels in males compared to females (set to 1). * p < 0.05, ** p < 0.01. 
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Figure 4.11. The effects of estrogen and sex on TLR2 and FcγR gene expression.  

A, TLR2 mRNA expression in thioglycollate-elicited peritoneal and splenic macrophages and B, 

FcγRI, FcγRIIB and FcγRIIIA mRNA expression in thioglycollate-elicited peritoneal 

macrophages from individual non-vaccinated male (n=5) and female (n=10) mice. Data are 

expressed as fold differences (2 -ΔΔCt) of OVEX-E2, OVEX and male mice compared to intact 

female mice (set to 1). Error bars represent the SD converted to 2 -ΔΔCt. * p < 0.05, ** p < 0.01. 
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To compare differences in expression under all hormone conditions TLR2 and FcγR, data were 

re-analyzed to include the unvaccinated female OVEX-E2, OVEX and intact mice along with 

male mice. In peritoneal macrophages, TLR2 mRNA expression in male mice was up regulated 

compared to OVEX-E2, OVEX and intact female mice, although statistical significance was only 

observed when compared with the OVEX-E2 mice (p < 0.05). In splenic macrophages, male 

mice expressed significantly higher levels of TLR2 mRNA compared with all groups of females 

(p < 0.01) (Figure 4.11 A). FcγR mRNA levels were determined in peritoneal macrophages. 

FcγRI and FcγRIIIA mRNA expression levels were higher in males compared with females (p < 

0.01) (Figure 4.11 B). No gender differences were observed in FcγRIIB mRNA expression. 

 

DISCUSSION 
 

To study the effects of estrogen on macrophage gene expression, female Balb/c mice were 

ovariectomized to remove endogenously-produced E2. A group of these mice was then given E2 

replacement in supra-physiological levels. E2 was diluted in the drinking water of designated 

mice. This administration method is a common and safer alternative to other methods of 

hormone delivery based on osmotic pumps, silastic implants or injections. This method resulted 

in significantly different uterotrophic responses when compared to OVEX and intact mice, 

confirming sufficient E2 delivery.   

 

In studying the effects of estrogen on macrophage function, we focused on TLR2 and FcγR gene 

expression, as these receptors are involved in innate and adaptive immune responses, 

respectively. Therefore, estrogen-induced changes in receptor expression are expected to result 
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in significant alterations in immune function. Our data suggest a general up-regulation of 

macrophage gene expression in the absence of estrogen. OVEX mice expressed higher levels, 

whereas OVEX-E2 mice expressed lower levels, of TLR2, FcγRI and FcγIIIA. These results 

indicate that E2 down-regulates expression of these genes, as even intact mice, which produce 

physiological levels E2 showed slightly lower expression than did OVEX mice. When these 

groups were compared with male mice of identical age and subjected to the same housing and 

diet conditions, male mice expressed significantly higher levels of mRNA of these genes. 

Although males do endogenously produce estrogen through conversion of testosterone and other 

biosynthetic pathways, it is implied that this effect involves a more complex regulation of 

macrophage gene expression by sex hormones, as even differences between males and OVEX 

mice were drastically different. FcγRIIB consistently showed no change in mRNA expression 

between the groups, nor between males and females.  

 

FcγRI and FcγRIIIA are both expressed on myeloid cells (monocytes and macrophages) and both 

require the presence of associated subunits (γ or ζ) to be expressed on the cell surface and to 

transduce cell-activating signals (Nimmerjahn and Ravetch 2006; Kuby 2007). These two 

receptors are considered activating FcγR because they induce ADCC, endocytosis of immune 

complexes followed by antigen presentation, phagocytosis and release of cytokines or pro-

inflammatory mediators. FcγRIIB, on the other hand, transduces inhibitory signals that down-

regulate immune functions triggered by activating receptors, and is therefore considered an 

inhibitory FcγR. Differential patterns of FcγR expression induced by estrogen, therefore, is not 

surprising given the distinct functions of these receptors.  
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FcγRIIB is the only classic Fc receptor present on B cells where it regulates activating signals 

resulting from immune complex binding to the B cell receptor (BCR) (Phillips and Parker 1983). 

Normally, B cell signaling results in proliferation, class-switching and maturation into antibody-

secreting plasma cells. FcγRIIB-deficient mice who display elevated levels of Ig. FcγRIIB also 

plays a role in peripheral tolerance, where deficient mice spontaneously develop lupus-like 

disease with high autoantibody production (Bolland and Ravetch 2000). Additionally, 

polymorphisms in the FcgRIIB gene leading to decreased transcription and surface expression on 

B cells of lupus patients have been identified (Blank, Stefanescu et al. 2005). Interestingly, when 

studied in equivalent animal models, the monocytic compartment still expressed FcγRIIB, while 

it was absent from peripheral B cells (Bolland and Ravetch 2000). Therefore, the present study, 

where estrogen treatment up-regulated specific antibody responses to vaccination, is consistent 

with the finding that although the activating Fc receptors were downregulated by estrogen, the 

inhibiting receptor which acts mostly on B cells, was not similarly affected by estrogen.  

 

It is important to consider that hormonally-influenced immune modulation often times may not 

be apparent until activation of the immune system occurs, such as of immune cells during a 

vaccine response or during infection. During immune activation, the response to estrogen may be 

different than in an absence of activation. To test this hypothesis, we used a vaccine model 

consisting of M. tuberculosis CFP administered to mice in one of two dose concentrations (CFP-

10 and CFP-50).  In order to determine macrophage gene expression changes in response to 

antigenic stimulation under such hormonal conditions, OVEX-E2, OVEX and intact mice were 

vaccinated with M. tuberculosis CFP to induce immune activation. In the unvaccinated groups, 

we observed significantly increased TLR2 mRNA expression in peritoneal macrophages from 
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OVEX mice compared with intact and OVEX-E2 female mice, with the fold difference in 

expression most pronounced in OVEX mice. On the other hand, in the vaccinated groups, 

OVEX-E2 mice, there was a vaccine-induced decrease in TLR2 mRNA expression when 

compared with unvaccinated mice. These results support the hypothesis of an estrogen-related 

difference in macrophage activation and gene regulation in response to vaccination. Indeed, 

TLR2 gene expression post-vaccination was significantly higher in OVEX mice than prior to 

vaccination and was also significantly higher than both the intact and OVEX-E2 mice.  

 

We have previously shown that estrogen enhances vaccine-specific antibody responses in mice 

(Chapter 3). We tested anti-CFP antibody responses to confirm the presence of a specific 

immune response, and therefore, immune activation. Patterns of antibody responses were 

negatively correlated with patterns observed for TLR2 and FcγR expression. CFP-vaccinated 

OVEX mice showed reductions anti-CFP IgG levels when compared with OVEX-E2 and intact 

mice. Unlike macrophage TLR2 and FcγR mRNA expression, we did not observe a difference in 

antibody responses between OVEX-E2 and intact mice, indicating that in the absence of 

estrogen, the immune response is more sensitive to humoral CFP vaccine responses than in 

presence of supra-physiological estrogen levels. This reduced antibody response negatively 

correlates with the observed increases in TLR2 and FcγRI and FcgIIIA gene expression in 

OVEX mice compared to the intact mice. CFP-10 and CFP-50-vaccinated OVEX-E2 mice 

showed decreased TLR2 and I and FcγRIIIA expression, whereas OVEX mice showed slight up-

regulation of expression. Therefore, in an activated immune system, in this case during a vaccine 

response, estrogen manipulation may not significantly alter the observed patterns of estrogen-

induced modulation of macrophage gene expression, as seen in the unvaccinated mice. 
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M. tuberculosis is a gram-positive bacillus that, when sequestered, releases mycobacterial 

products (glycolipids, lipoproteins, secreted factors, etc.) that contribute to continued 

macrophage activation through TLR and MyD88-mediated signaling (Quesniaux, Fremond et al. 

2004). An identified vilrulence factor of M. tuberculosis is the cell wall component 

lipoarabinomannan (LAM). Present in CFP, this has been shown to modulate a variety of 

immune activities including inhibition of phagosome maturation, apoptosis and IFN-γ signaling 

in macrophages and IL-12 secretion from decdritic cells (DC) (Pathak, Basu et al. 2007). It has 

been shown that that mycobacterial glycolipids such as LAM and its biosynthetic precursor 

lipomannan (LM) activate cells through TLR2 signaling (Rock, Hardiman et al. 1998). 

Therefore, it was not surprising that vaccination of mice with CFP up-regulated TLR2. The 

observed differences in TLR2 expression between the OVEX-E2 and OVEX mice compared to 

the intact mice implies that estrogen modulates CFP-induced TLR2 mRNA expression. The 

general pattern of E2-mediated down-regulation of TLR2 and FcγRIII appeared to be more 

pronounced in mice vaccinated with low-dose CFP, as a high-dose CFP appears to mask this 

effect.  

 

Macrophages are critical components of innate immunity. Variability in TLR expression patterns 

may influence initial pathogen recognition and the subsequent response elicited. Indeed, results 

from our stimulation experiments show that splenic and thioglycollate-elicited peritoneal 

macrophages isolated from OVEX-E2, OVEX and intact mice respond differently to in vitro 

stimulation with TLR2 ligands, LAM and PGN. Although there are variations depending on the 

cell type and the dose of stimulator used, the general trend supports that OVEX mice appear to 

112 



 

have up-regulated levels of TLR2, and OVEX-E2 mice showed down-regulated levels of TLR2. 

In general, the differences seen between the groups were greater in CFP-10-vaccinated compared 

with those vaccinated with CFP-50-vaccinated mice. Splenic macrophages from CFP-50-

vaccinated OVEX-E2, OVEX and intact mice did not show differences in TLR2 expression in 

response to stimulation. Comparison of the three hormone groups at each stimulator highlights a 

pattern in which OVEX mice appear to up-regulate TLR2 mRNA compared to OVEX-E2 and 

intact mice, although OVEX-E2 and intact mice do appear to differ in this respect.  

 

Our results are consistent with studies which have shown that FcγRIIIA transcript increases in 

the human monocytic cell line THP-1 and primary macrophages in the absence of E2 (Kramer, 

Kramer et al. 2004). The finding that FcγRIIIA cross-linking stimulates production of TNF-α, 

IL-1β and IL-6 in the absence of E2 indicates that the modulation of proinflammatory cytokine 

release from activated monocytes/macrophages occurs in part through modulation of FcγRIIA 

gene expression. Other studies using a guinea pig model show results contrary to ours. In these 

studies, estrogens enhanced, and androgens impaired, clearance of IgG-sensitized erythrocytes 

by increasing FcγRIIIA expression on splenic macrophages (Gomez, Ruiz et al. 2000; Gomez, 

Ruiz et al. 2001). While guinea pigs express two forms of this receptor, known as FcγΡ1 and 

FcγR2, they have no form of FcγRIIIA as do humans and mice. Therefore, expression patterns 

may vary with the type of receptor and thus these two species cannot be compared.   

 

Besides differences in gene expression with respect to estrogen levels, our data show sex-related 

differences in levels of TLR2, FcγRI and FcγRIIIA in splenic and thioglycollate-elicited 

macrophages, with male mice expressing higher levels compared to normal intact female mice. 
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This finding is in contrast with results from other studies showing that TLR2 and CD16 surface 

expression on PBMCs is significantly higher in women than in men, as is LPS-stimulated TNF-α 

and IL-10 cytokine secretion (Ono, Tsujimoto et al. 2005). In the same study, the population of 

monocytes bearing FcγRIIIA was significantly higher in females than in males, which may have 

contributed to the observed differences in the levels of pro-inflammatory cytokine production.  

 

FcγRIIIA expression on granulocytes appears to differ from the sex-related pattern seen on 

moncyctes/macrophages. Indeed, gender seems to have no impact on FcγRIIIA expression on 

granulocytes (Moxey-Mims, Frank et al. 1993). Yet, pregnancy has shown to be associated with 

a lower intensity of granulocyte expression of FcγRIIIA (Naccasha, Gervasi et al. 2001).  

Absence of FcγRIIIA has been reported in some patients with higher prevalence of autoimmune 

diseases, although this absence was not associated with an increased risk of infection (de Haas, 

Kleijer et al. 1995).  

 

The overall functional state of monocytes is reflected in the expression of surface antigens such 

as MHC class II, TLR and FcγR (Ono, Tsujimoto et al. 2005). FcγRIIIA-bearing monocytes 

express higher levels of  class II MHC molecules, adhesion molecules and chemokine receptors 

and are able to more efficiently produce proinflammatory cytokines  as compared with 

monocytes not expressing the receptor (Ziegler-Heitbrock, Fingerle et al. 1993). It has been 

found that FcγRIIIA-bearing monocytes more strongly express TLR2 levels and TNF-α in 

response to the TLR ligand lipopeptide (Iwahashi, Yamamura et al. 2004). This indicates that 

TLR2 is relevant to FcγRIIIA-bearing monocyte activation. Moreover, these two receptors 

appear to interact and regulate each other during inflammation. IL-12 is a pro-inflammatory 
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cytokine secreted by macrophages in response to TLR2 stimulation and is MyD88-dependent. It 

is important for both cell-mediated immune responses and to bias TH cells to a TH1 phenotype 

(Trinchieri 1998; Underhill 2003). Down-regulation of IL-12 by macrophages is attributed to the 

anti-inflammatory cytokines IL-4, IL-10 and TGF-β from T cells. Stimulation of macrophages 

with bacterial products such as LPS (TLR2 agonist) induces high IL-12 production and low IL-

10 production (D'Andrea, Aste-Amezaga et al. 1993; Seki, Tsutsui et al. 2001). Co-ligation of 

TLR2 and FcγRIII abrogates IL-12 production and increases IL-10 production (D'Andrea, Ma et 

al. 1995; Gerber and Mosser 2001). FcγRIII ligation on macrophages thus seems to activate an 

anti-inflammatory cell program that has a dampening effect on TLR-mediated pro-inflammatory 

signals, possibly mediating inflammation.  

 

Based on what we know of estrogen’s immunomodulatory role in the FRT, it is possible to 

speculate that E2 plays a similar immunomodulatory role in helping to shape innate immunity 

during systemic infection as well as to shape adaptive immune activation in response to 

vaccination. Our results so far imply that ovariectomy consistently up-regulates TLR2, FcγRI 

and FcγRIIIA gene expression, and that E2 treatment results in down-regulation of these genes in 

macrophages. Furthermore, our data shows that the extent of modulation of gene expression in 

response to CFP may be vaccine dose-dependent. The data obtained from this study will provide 

some insight on how hormones, particularly estrogen, modulate macrophage gene expression 

which may influence both the innate and adaptive immune response to M. tuberculosis. Studies 

which address the interactions of the immune-endocrine systems in animal models are scarce. 

These studies are important in order to gain a better understanding of the complex interactions 

that determine the immune system’s response to stressors (e.g. bacterial aggression, vaccination, 
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etc.) and how certain response may be modulated to either enhance or suppress a given response 

for clinical purposes such as disease treatment or vaccine development. 
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CHAPTER 6 

Conclusions  
 
 
 
There are many hormonal factors that collectively result in indirect modulation of the immune 

response. These factors include those related to the production of estrogen, progesterone, 

testosterone and their metabolites. Most of the research results currently available have implied 

an immunosuppressive effect of estrogen. Pregnancy, a state of elevated estrogen and 

progesterone, is associated with immunosuppression (Thong, Steele et al. 1973; Kovacs, 

Messingham et al. 2002). However, it must be considered that in in vivo models, these results 

may reflect a net effect of more complicated pathways. The influence of sex hormones on 

immune responses has been studied by the administration or blockade of various hormones and 

their metabolites. Results have uncovered important pro- and anti- inflammatory actions for sex 

hormones. For example, estradiol is metabolized to several hydroxyestrogens (Mueck, Seeger et 

al. 2002), and 4- and 16a-hydroxyestrogens are considered to be pro-inflammatory, while 2-

hydroxyestrogens are considered to be anti-inflammatory (Janele, Lang et al. 2006). 

Progesterone is also considered to be anti-inflammatory under some circumstances, such as 

during pregnancy, where along with estrogen, contributes to fetal tolerance. Within the context 

of this complicated system, we have studied the effects of estrogen on the immune response 

using an in vivo mouse model.  

 

We have shown that estrogen acts indirectly and differentially on various components of the 

immune system. Administration of proestrus levels of estrogen to ovariectomized mice results in 

maximal vaccine-specific antibody responses in vivo, implying a net activating effect on B cell 
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function. A similar effect was seen in intact mice producing physiological levels of estrogen, 

where their antibody responses were higher than those of ovariectomized mice, although this 

may or may not be statistically significant, depending on the route of vaccine administration and 

the type of vaccine formulation administered. Similar patterns of responses were seen when 

examining the predominant T helper type response, where estrogen-replaced ovariectomized 

mice produced maximal levels of vaccine-specific IgG1, indicating that estrogen imposes signals 

that favor a predominant TH2 response, further confirming estrogen’s activating effect on B cell 

function. 

 

While specific antibody responses are important indicators of induction of immunity by 

vaccination, there are several other cell types that are critically involved in the development of 

this response. Macrophages lie at the crossroads of innate and adaptive immunity by virtue of 

their many functions and signaling abilities. Thus, alterations in macrophage function can greatly 

influence immune responses. We have shown that macrophage genes involved in innate and 

adaptive immune function are differentially expressed depending on estrogen levels. Toll-like 

receptor 2 (TLR2) is important in recognition and signaling in response to gram-positive and 

gram-negative pathogen-derived molecules in the microenvironment as a fist line of defense. Our 

results show that, in the absence of estrogen, macrophage TLR2 gene expression is greatly 

enhanced, whereas in the presence of proestrus levels of estrogen, TLR2 gene expression is 

greatly reduced. Furthermore, we found a strong sex-based correlation, where macrophages 

isolated from male mice expressed significantly higher levels of TLR2.  
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Another critical function of macrophages is to bind IgG molecules through surface receptors 

known as FcγR. Upon binding, immune complex internalization results in signaling and antigen 

presentation of antigenic epitopes to naïve T cells and therefore activation of the cellular immune 

response. FcγR knockout mice display compromised cellular and humoral immune responses.  

We have shown that in the absence of estrogen, there is an increase in FcγRI and FcγRIIIA gene 

expression, whereas there is a reduction in expression of these genes in the presence of proestrus 

estrogen levels. These genes are involved in signaling events that activate the immune system 

and are therefore referred to as activating Fc receptors. Interestingly, we saw different patterns of 

expression of FcγRIIB, which is involved in immune regulation by inhibiting overactivation of 

the immune system, and is thus referred to as the inhibiting Fc receptor. We showed that 

FcγRIIB gene expression is not influenced by estrogen. Similar to TLR2, we identified a strong 

correlation between sex and FcγRI and FcγRIIIA gene expression where male mice expressed 

higher levels compared to females. Consistent with the effects of estrogen, FcγRIIB gene 

expression was not different with respect to sex. 

 

It is important to note that FcγRIIB is the only FcγR expressed on B cells and therefore exerts 

inbibitory signals when co-ligated with the BCR. FcγRIIB knockout mice display a phenotype 

consistent with increased polyclonal Ig production and also spontaneously develop 

autoantibodies in susceptible mouse strains. The finding that estrogen enhances B cell function 

by increasing vaccine-specific antibody responses and promotes a strong TH2 response is 

consistent with the modulation of FcγR gene expression in macrophages. Estrogen decreased 

activating FcγR gene expression but did not interfere with FcγRIIB gene expression. Therefore, 

estrogen may enhance the humoral immune response not only at the level of B cells, but also 
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perhaps indirectly at the level of macrophages. Further studies should be carried out to assess the 

effects of estrogen on surface expression of these receptors. 

 

Public Health Implications 
 
 
As we have discussed, estrogen regulates a plethora of biological activities. The implications of 

this are important, particularly from a clinical standpoint. The ability to acutely change the 

outcome of autoimmunity and/or improve responses to vaccination has eluded investigators for 

over a century. Understanding the mechanisms that allow estrogen to accomplish rapid and 

dramatic effects will allow the development of refined therapeutics that may or may not require 

the broad-ranging effects of a sex steroid such as estrogen. This goal of this section is to discuss 

some of the physiological factors that influence the hormonal balance in humans and animals 

with an emphasis on the application of estrogen as an immunomodulator as well the need to 

consider these factors within the context of immunological research.  

 

Infectious diseases remain an important cause of morbidity and mortality in the elderly 

population, who are more susceptible to severe infections and frequently respond poorly to 

vaccination. This is partially a consequence of immunosenescence, or the functional 

deterioration of the immune system with age (Grubeck-Loebenstein and Wick 2002). Some of 

the effects of immunosenescence on immune function as it relates to vaccine responses have 

been identified. These age-related alterations may partially result from hormonal changes in both 

males and females.  
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During menopause in females, ovarian function declines, resulting in serum estradiol levels 

lower than in younger females (Chahal and Drake 2007). In males, there is a conversion of 

dihydortestosterone to either testosterone or estradiol. The pathway resulting in testosterone 

declines is potent in young males, but declines with age, whereas the pathway that results in 

estradiol is maintained with age. Thus, males are not excluded from the potential age-related 

changes of sex hormones, particularly estrogen.  

 

A large percentage of post-menopausal females is under hormone replacement therapy (HRT) in 

the United States. The importance of understanding the effects of estrogen and other 

reproductive hormones on the body is exemplified in the results from the Women’s Health 

Initiative (WHI) study. This study consisted of two parallel randomized, double-blind, placebo 

controlled clinical trials of hormone therapy to determine whether conjugated equine estrogen 

alone or in combination with progestin would reduce cardiovascular events in healthy post-

menopausal women. The combined component of the WHI study was prematurely halted, as 

women taking this treatment were determined to have increased risk of breast cancer as well as 

heart disease and stroke (Rossouw, Anderson et al. 2002). The unopposed estrogen treatment 

was continued to find that similar results were discovered in terms of heart disease and stroke, 

but a striking decrease was seen with the incidence of breast cancer (Anderson, Limacher et al. 

2004). Thus, there is a balance between the beneficial and harmful effects of estrogen on health. 

 

Pregnancy is another reproductive phenomenon in which hormonal changes dictate immune 

status for both the mother and fetus. The maintenance of pregnancy requires suppression of the 

maternal immune system which would naturally recognize the developing fetus as a foreign 
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allograft and mount a TH1 regulated cytotoxic immune response against it (Buyon 1998). During 

pregnancy, many soluble factors are produced by the placenta which collectively skew maternal 

immune regulation towards a protective TH2 phenotype. Therefore, based on the relative 

contributions of sex hormones, vaccine responses during pregnancy may be greatly influenced. 

 

The maternal immune status resulting from hormonal regulation also influences the developing 

fetal immune system. Indeed, all newborns initially have an immunological milieu based on a 

TH2 phenotype. Vaccination during the neonatal period must therefore overcome the dual 

challenge of the inhibitory effect of maternally derived antibody and the natural TH2 regulatory 

environment. Thus, it could be possible to redirect the neonatal immune response towards an 

appropriate TH1 regulated reaction that confers protection. Understanding the contribution of 

maternal and fetal hormones to immune status can aid in strategies to induce immune responses 

with balanced TH1 and TH2 regulation in neonates (Morein, Blomqvist et al. 2007). 

 
 
As mentioned previously, females are considerably more susceptible to developing autoimmune 

diseases than males, and their symptoms are more severe than in males. Physiological changes in 

estrogen contribute to this phenomenon. Animal models of autoimmune diseases have taught us 

that low estrogen concentrations lead to exacerbation of symptoms in certain models (rheumatoid 

arthritis and multiple sclerosis), while low estrogen ameliorates symptoms in other models 

(systemic lupus erythematosus) (Da Silva 1999). Epidemiological evidence in humans confirms 

this effect, where during pregnancy (high levels of estrogen), and post-partum and at menopause 

(low levels of estrogen), onset and symptoms follow the same patterns. It is thought that 

estrogen-dependent alteration of macrophage gene expression is one factor that contributes to 
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autoimmune disease states, possibly through modulation of receptor gene expression and 

function. These events are expected to have significant manifestations in immune responses in 

these patients. 

 

From our studies and others, there is currently a substantial amount of evidence implicating 

estrogen as an immunomodulator, and based on such evidence, several applications should be 

considered. The use of laboratory animals in immunological research is an invaluable tool for 

human disease models. However, much of the studies that are conducted do not account for 

possible gender and hormonal influences on the experimental immunological endpoints. Besides 

just the direct effects of estrogen or sex hormones on immune parameters, it must also be 

considered that conditions of stress may also influence immunity in humans and animal models 

of research. As previously mentioned, the HPA axis, when activated, results in glucocorticoid 

release. It is found that there is a gender dimorphism in the HPA axis itself, where females 

produce higher levels of glucocorticoids in response to activation by immune aggression (Da 

Silva 1999). Removal of testosterone in male mice results in higher production of 

glucocorticoids, further confirming this effect. An imbalance in this pathway due to any number 

of factors including that of sex hormones can have important consequences. On one hand, 

excessive glucocorticoid production may lead to immunosuppression resulting in increased 

infection or cancer. On the other hand, insufficient glucocorticoid production may lead to 

increased vulnerability to autoimmune, inflammatory, or allergic disorders. Therefore, it is 

important to consider environmental and stress factors that may strongly influence 

immunological outcomes when conducting animal studies. 
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One of the primary aims of vaccine research is to provide scientific evidence leading to 

development of an agent that is capable of sufficiently stimulating the immune response in an 

effort to protect against infectious disease. Therefore, in vaccine research it is imperative to 

consider that the vaccine being tested may affect certain target populations and subpopulations 

differently. To this end, biomedical research involving human subjects should be carried out in a 

manner sufficient to elicit data from individuals from diverse groups and, in the case of clinical 

trials, to examine differential effects on such groups.  In March of 1994, NIH issued a policy on 

the inclusion of women and minorities as subjects in clinical research 

(http://grants.nih.gov/grants/guide/notice-files/not94-100.html). Given the hormonal fluctuations 

in women and their resulting variations in immune status, it may be necessary to give increased 

attention to the division of subpopulations of women, especially at the Phase III clinical trial 

stage. Based on what we know of the effects of estrogen in particular, appropriate groups of 

women subjects should be included based on hormonal status. 

 
 
Hormonal effects on classical endocrine target organs such as the female reproductive tract, 

mammary gland, ovary, and neuroendocrine system have been thoroughly studied, with 

significant advancements in our understanding of estrogen actions and disease conditions. 

Knowledge of the effects of estrogen in nonclassical endocrine organ systems, particularly the 

immune system, arising from epidemiological and clinical data, is only now becoming available 

based on the development and use of knock-out or transgenic animal models for the study of 

both estrogen and ER activities. By expanding this field of research, it is reasonable to expect 

that several important advancements will be made in the areas of vaccination against infectious 

disease as well as treatment of immune disorders. 
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