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DEVELOPMENT AND PLASTICITY OF THE RETINOCOLLICULAR PROJECTION 
 

by 

 

MARIA MAGDALENA CARRASCO 

 

Under the Direction of Sarah L. Pallas 

  

ABSTRACT 

 

Brain development and function depend on intrinsic and extrinsic factors.  In particular, 

the proper functioning of sensory systems can be altered according to the quality of extrinsic 

sensory information received during life.  In this context, questions concerning neuroplasticity 

take on special relevance when considering that sensory experience has a big impact on the 

degree of plasticity of the brain.  In this thesis, we have sought to understand how visual 

deprivation affects the development and maintenance of visual centers in the brain and the role 

of visual deprivation on plasticity throughout life.  We have addressed this question by studying 

the retinocollicular projection, which is the neuronal pathway that connects the retina with a 

visual input processing center, the superior colliculus (SC).  Unexpectedly, we found that in 

Syrian hamsters (Mesocricetus auratus) the size of receptive fields (RFs) of neurons in the SC is 

plastic in adult animals if they have been deprived of a minimum of visual experience when 

juveniles.  Specifically, dark-reared (DR) hamsters refine SC RFs as do their normally-reared 

counterparts, but they lose RF refinement if they remain in the dark after their RFs get refined.  

We found that a well defined period and duration of visual experience can stabilize RF size in 



adulthood.  Furthermore, we sought to investigate the mechanisms by which RF size is increased 

in adult DR hamsters.  By testing the strength of intracollicular inhibition using 

electrophysiological and molecular techniques, we have found that visually-deprived animals 

have weaker inhibitory circuitry in their SC than normal animals.  The quantity of GABA 

receptors and GABA containing neurons is decreased in the SC of adult DR animals.  We 

propose that these results explain at least in part the RF enlargement we find in visually-deprived 

animals.  Knowledge from this study provides general insight into sensory system plasticity in 

adulthood and new information about visual system development that is relevant for treatments 

of diseases.  

 

INDEX WORDS: Neural plasticity, Superior colliculus, Visual deprivation, GABA, Inhibitory 
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CHAPTER 1:  Introduction 

Although the basic plan of the vertebrate brain is highly conserved across species, its fine 

tuning depends in part on the actual conditions present during its development.  Thus, the brain is 

a dynamic structure and the environment plays an important role in modifying it.  Although brain 

plasticity has mostly been linked with early stages of the development of an organism, recent 

discoveries suggest that plasticity can be extended throughout life and that it is part of the normal 

aging process.  Understanding how the brain changes according to the rearing environment and 

the relevant factors in that plasticity is a major challenge in neuroscience. 

One of the major questions in the field of developmental neuroscience concerns the role 

of intrinsic and extrinsic factors in the development and plasticity of the nervous system.  In the 

realm of sensory systems, it is clear now that both the quality and quantity of sensory experience 

have important effects on brain physiology and connectivity.  Moreover, early sensory 

experience may have long-lasting consequences, altering brain function in adult life. What is not 

fully known, however, is how those changes take place and the mechanisms involved.  The 

relevance of that knowledge becomes evident when examining cases of patients deprived of the 

normal functioning of a sensory system.  It is only by understanding the mechanisms involved in 

brain plasticity that we can understand and learn how to alleviate the effects of anomalous 

sensory experience on the brain. 

In this project, we have studied the role of visual experience in development and 

plasticity of the retinocollicular visual pathway that projects from the retina to the superior 

colliculus (SC) in the midbrain, using the Syrian hamster (Mesocricetus auratus).  This model 

system allows us to test the effect of manipulating visual experience on a part of the brain that 

receives direct input from the eye, the SC.  Research on the hamster’s retinocollicular projection 
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has the advantage that neuronal properties of the SC are well described and several plasticity 

studies have been performed on this pathway.  We investigated the mechanisms by which a lack 

of visual experience produces changes in the properties of neurons in the SC from different 

perspectives and levels of analysis.  Our results provide interesting insights into the ways in 

which sensory experience influences the brain that can be extended to other sensory systems. 

 

1.  Activity-dependent and -independent factors in brain development and plasticity 

The development and maturation of the brain is a fascinating process.  In spite of the 

number of attempts directed toward obtaining a comprehensive understanding of how the brain 

develops and changes throughout an organism’s life and experiences, numerous questions remain 

unanswered.  Several events take place during brain maturation, such as refinement of neuronal 

morphology, synapse elimination, and modification of the quantity and composition of receptors 

present on neurons.  Insights on how neural activity affects those processes would provide a 

better understanding of the extent of environmental influence on the brain.  

  

a)  Activity-independent factors: guidance molecules as an example 

Topographic maps in the brain, which are projections that represent external space in an 

organized way, are a common feature of sensory systems.  An ample set of data suggests that 

topographically organized projections in the brain are mainly guided by intrinsic molecular 

factors and not by neural activity.  The mammalian retinocollicular projection and its homologue 

in non-mammalian vertebrates, the retinotectal projection, is a model system widely used to 

study molecular guidance cues in the central nervous system.  The retinocollicular projection is 

organized in such a way that cells located close together in the retina project to neighboring 
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target cells in the SC.  Furthermore, the SC contains an organized projection of the visual field, 

in which visual field axes are represented along the axes of the SC.  Several kinds of evidence 

indicate that the gross topography in the SC is controlled by molecular gradients and that the 

fine-tuning process depends on neuronal activity (see Debski and Cline, 2002; and Ruthazer and 

Cline, 2004 for reviews). 

 One of the first studies of guidance molecules in the retinotectal system was performed 

by severing the optic nerve in frogs and allowing it to regenerate into the optic tectum (Sperry, 

1944, 1963).  In those experiments, the regenerating RGC (retinal ganglion cell) axons in the 

optic nerve maintained their original topographic position in the tectum even if the eye was 

surgically rotated prior to regeneration. Subsequent in vitro assays suggested that repulsive 

interactions between RGC axons and tectal neurons would explain the topographic preference of 

the retinotectal projection (Walter et al., 1987a; Walter et al., 1987b).  Later studies identified 

ephrins and Eph receptors as molecules involved in guiding RGC axons in the tectum.  These 

molecules are distributed in opposing gradients across the retina and tectum (Braisted et al., 1997; 

Davenport et al., 1998).  Studies on transgenic mice in which A2 and A5 ephrins were knocked 

out showed that the map in the SC is profoundly disrupted in the absence of these ephrins (Frisén 

et al., 1998; Feldheim et al., 2000).  Other studies have provided evidence that ephrins and Eph 

receptors are not only involved in axon guidance in the visual system, but are also involved in 

axon guidance in other brain areas (Knoll and Drescher, 2002; Quinn and Wadsworth, 2006). 

 

b)  Activity-dependent factors 

Several studies have highlighted the necessity of neuronal activity for the normal 

development of neuronal properties in the visual system (Thompson and Holt, 1989; Shatz, 1990; 
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Cook et al., 1999; Zhang and Poo, 2001; McLaughlin et al., 2003), motor system (Kalb and 

Hockfield, 1992), auditory system (Sanes and Takacs, 1993; Kotak and Sanes, 1997), and 

somatosensory system (see Purves et al., 1994 for review; Wang et al., 2007).  Neuronal activity 

can be spontaneous or driven by sensory inputs.  While spontaneous activity has a relatively 

larger contribution early in development, particularly before sense organs mature, sensory input-

driven activity is critical for the fine tuning of sensory systems.  For example, in the auditory 

system, the acoustic environment plays a role in the formation of a tonotopic map in the auditory 

cortex (Recanzone et al., 1993; Weinberger, 1995; Chang and Merzenich, 2003; Nakahara et al., 

2004; Yu et al., 2007).  In the somatosensory system, sensory deprivation disrupts receptive field 

structure and responsiveness in the rat barrel cortex (Van der Loos and Woolsey, 1973; Stern et 

al., 2001; Shoykhet et al., 2005).  These studies on auditory and somatosensory systems point out 

the role of sensory experience in the fine tuning of the cortical circuitry.  Evidence in the visual 

system also shows that normal properties and maturation of visual cortex depend on normal 

patterns of visual input (Cynader, 1983; Mower and Christen, 1985).  The current view is that 

both types of activity, spontaneous and sensory input-driven, contribute to brain development 

and plasticity at particular developmental stages. 

 

i)  Correlated spontaneous activity in development and plasticity of the visual system 

The relationship between neural activity and brain development is still under debate.  

Some studies have argued that neural activity has an instructive role in visual system 

development (Stellwagen and Shatz, 2002; Torborg and Feller, 2005; Butts et al., 2007).  Other 

studies have suggested that neural activity is instead only permissive, and thus that its pattern is 

not relevant in determining neuronal properties (Huberman et al., 2003).  Both patterned and 
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spontaneous neural activity have been proposed to act through spike timing-dependent, Hebbian-

type synaptic plasticity (STDP) to stabilize or destabilize synapses.  Here, the central idea is that 

neurons firing together within a restricted time and space window strengthen their mutual 

synaptic contacts, and vice versa. 

In the visual system of vertebrates, it is possible to find patterned waves of spontaneous 

activity sweeping across the retina before eye opening (Galli and Maffei, 1988; Meister et al., 

1991).  These waves of activity are first dependent on acetylcholine, and later, on glutamate, 

because they rely on the asynchronous development of cholinergic amacrine and glutamatergic 

bipolar cells in the retina.  It has been proposed that the activation of adjacent neurons in the 

retina would facilitate the strengthening of their synapses with their postsynaptic target through 

coincidence detection by the postsynaptic neuron.  The coordinate firing of presynaptic neurons 

could lead to refinement of retinotopy and segregation of eye-specific laminae in the lateral 

geniculate nucleus (LGN) (Eglen, 1999; Butts, 2002).  There is an ongoing debate about whether 

the pattern or the amount of spontaneous activity is important for development of visual 

pathways.  One study showed that mice lacking the β2 subunit of the acetylcholine receptor 

exhibit an anomalous organization in the LGN (Grubb et al., 2003).  In these animals, the 

absence of acetylcholine-dependent correlated activity in the retina disrupts fine grain retinotopy 

in the LGN, which suggests that this spontaneous activity is necessary for the normal 

development of this pathway (but see Sun et al., 2008).  In addition, pharmacological blockade 

of acetylcholine receptors in the retina with epibatidine prevents eye segregation in the LGN of 

ferrets (Penn et al., 1998).  On the other hand, a different study in ferrets showed that disrupting 

the patterned activity in the retina, without decreasing the absolute amount of activity, does not 

interfere with eye-specific lamina segregation in the LGN (Huberman et al., 2003).  That study 
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argues for a permissive role of neural activity in brain development.  In yet another study in the 

superior colliculus rather than LGN, the chronic pharmacological disruption of cholinergic 

spontaneous activity in the retina led to enlarged retinal ganglion cell (RGC) arbors 

(Chandrasekaran et al., 2005).  That study also reports that spontaneous glutamatergic activity in 

the retina, which is present during the second postnatal week in mice, produces a partial 

refinement of RGC arbors, but is still deficient compared to that in wild-type mice.  Blockade of 

the detection of retinal correlated activity by pharmacological blockade of NMDA receptors in 

the SC also argues in favor of the role of spontaneous waves of activity in the retina on the 

refinement of the retinocollicular projection.  Chronic blockade of NMDA receptors in the SC of 

rats prior to visual experience leads to unrefined RGC projections in the SC (Simon et al., 1992).  

The same chronic treatment extended into adulthood and thus also reducing patterned sensory 

input, results in  enlarged receptive fields (RFs) (Huang and Pallas, 2001).  Although insightful, 

the studies are not necessarily conclusive due to possible compensations as the results of gene 

knockout or activity blockade treatments.  Further studies would provide a more definite 

conclusion about the role of spontaneous correlated activity in the retina on visual pathway 

refinement. 

 

ii)  Experience-dependent activity in development and maintenance of the visual system 

The involvement of visual experience in development of the visual system has been 

studied at different locations along the visual pathway.  In the LGN, visually-driven activity has 

been shown to be necessary for maintenance of eye-specific lamina segregation (Chapman, 

2000).  In the same visual nucleus, visual deprivation disrupts the normal developmental increase 

of acuity (Mower and Christen, 1982; Blakemore and Vital-Durand, 1986), decreases cell size 
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(Prada, 1987; Lachica et al., 1990), and decreases the number of NMDAR (N-methyl-D-

aspartate receptor)- immunoreactive cells (Fava et al., 1999).  In visual cortex, the role of visual 

experience in defining neuronal properties has been extensively studied.  Early observations 

showed that monocular deprivation leads to a marked decrease in the number of neurons 

responsive to the deprived eye (Wiesel and Hubel, 1963b).  Visual experience is necessary for 

the normal development of orientation selectivity (Barlow and Levick, 1965) and receptive field 

refinement in the visual cortex.  Rearing cats in a striped environment results in an increased 

proportion of neurons that are responsive to the experienced orientation (Hirsch and Spinelli, 

1970; Sengpiel et al., 1999).  Beyond the role attributed to visual experience in the development 

of neuronal properties, a handful of studies suggested that visually-driven activity is also 

necessary for their maintenance (Buisseret and Imbert, 1976; Fregnac and Imbert, 1978).  Those 

studies argued that orientation selectivity develops in dark-reared kittens in a similar fashion as 

in light-reared kittens, but is lost afterwards. 

In our model system, the SC, in which the effects of visual deprivation are comparatively 

less well known, visually-driven activity was shown to contribute to the development of 

orientation and speed selectivity in cats and rabbits (Hoffmann and Sherman, 1975; Fox et al., 

1978).  However, studies in hamster SC reported that visual experience has only a minimal role 

in the development and maintenance of direction selectivity and speed preference (Chalupa and 

Rhoades, 1978b).  Also in hamsters, it was shown in behavioral experiments that dark-rearing 

does not modify visual orienting behavior, which depends on the SC  (Rhoades and Chalupa, 

1978a). 
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iii)  The effect of visual experience on plasticity and maturation of the visual system 

Brain plasticity is more extensive at relatively early stages of development.  Wiesel and 

Hubel found that monocular deprivation early in life has profound effects on neuronal 

responsiveness in LGN (Wiesel and Hubel, 1963a) and visual cortex of cats (Wiesel and Hubel, 

1963b).  They found that kittens with one eye covered from birth to 2-3 months of age had 

almost no neurons in visual cortex that responded to visual stimulation of that eye, but the same 

results could not be reproduced if the animals were more mature at the time of visual deprivation.  

Thus, they described a ‘critical period’ for the effects of monocular deprivation in visual cortex.  

Since then, the monocular deprivation paradigm has been widely used to investigate the role of 

visual input in the development of physiological properties of neurons.  Interestingly, it was 

found that binocular deprivation by dark-rearing prolongs the period of susceptibility to 

monocular deprivation in visual cortex far beyond the natural critical period (Cynader, 1983; 

Mower and Christen, 1985; Mower, 1991).  Hence, visual input has the effect of promoting the 

end of plasticity to monocular deprivation in visual cortex.  Whether that effect can be extended 

to physiological properties in other visual areas has not been extensively studied.  

 

2.  Mechanisms through which neural activity affects the development of the visual system 

Normal brain development involves changes in receptor composition and distribution of 

excitatory and inhibitory neurotransmitters, among other factors.  For example, NMDARs rich in 

NR2B subunits are predominant in the juvenile brain and cause the receptors to have a longer 

open time than receptors rich in NR2A subunits, which are predominant in the adult brain 

(Williams et al., 1993; Monyer et al., 1994; Sheng et al., 1994; Zhong et al., 1995).  Several 

studies have shown that maturation of brain circuitry is modulated by neuronal activity and that 
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sensory deprivation results in immature molecular profiles of the affected sensory systems.  In 

addition to neurotransmitter receptors, expression of neurotrophins, such as BDNF, NGF, and 

neurotrophin-3 (NT-3), which are involved in synapse maturation, modulation of synaptic 

efficacy and morphology, are also modulated by neuronal activity during development (Schuman, 

1999; Poo, 2001).  Alterations in the molecular characteristics of the brain due to a particular 

sensory experience could lead to profound modifications of neuronal properties.  

 

a)  NMDA system 

The effects of visual deprivation on NMDARs have been studied at different levels of the 

visual system.  In the LGN, visual deprivation causes a decrease in the proportion of neurons 

immunoreactive to NR1 (Fava et al., 1999), the obligatory subunit of functional NMDARs.  In 

visual cortex of rats and cats, dark-rearing decreases the expression of the NR2A subunit of 

NMDARs during the critical period for ocular dominance shifts, and increases it afterwards 

without affecting NR2B or NR1 expression (Quinlan et al., 1999a; Chen et al., 2000b; Tongiorgi 

et al., 2003).  In the superior colliculus, the molecular effects of visual deprivation are relatively 

less well studied.  NMDAR-mediated currents assume a relatively greater importance for 

transmission of visual stimuli in the SC of dark-reared rats than in normal rats (Binns and Salt, 

1998b).  Because changes in NMDAR subunit composition result in alterations in the opening 

time of this type of glutamate receptor, visual deprivation could eventually lead to prolonged 

circuitry modification through STDP by increasing the time window for coincidence detection. 
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b)  GABAergic system 

In the visual system, decreased activity by means of visual deprivation or activity 

blockade has several effects on the inhibitory circuitry.  In the retina, visual deprivation reduces 

the number of GABA-immunoreactive cells (Lee et al., 2006).  In the cat LGN, visual 

deprivation decreases the expression of alpha 1, 2, 3, 4, and 5 subunits of GABA receptors 

(Huntsman et al., 1995; Huntsman and Jones, 1998), and in the monkey LGN GABA and GAD 

immunostaining  are reduced after three weeks of  bilateral enucleation  (Hendry, 1991).  Visual 

cortex also exhibits alterations in both the inhibitory and excitatory circuitry in visually-deprived 

animals.  Thus, dark-rearing prevents the normal developmental increase of the GABAergic 

input in the rat visual cortex (Morales et al., 2002).  Dark-rearing also alters the expression 

pattern of GABA receptor subunits, re-establishing immature levels of alpha1 and alpha3 GABA 

receptor subunits in cat visual cortex (Chen et al., 2001).  Monocular deprivation reduces the 

number of GABA immunostained neurons within ocular dominance columns associated with the 

deprived eye (Hendry and Jones, 1986).  Additional studies have shown that inhibition in the SC 

also seems to undergo changes under visual deprivation conditions.  It was reported that dark-

rearing reduces the benzodiazepine binding in the rat SC (Schliebs et al., 1986), although another 

study found no reduction in the number of GABA immunoreactive neurons in the SC of rhesus 

monkey (Mize and Luo, 1992).  Taken together, these studies indicate that visual experience has 

a role in the development of the GABAergic circuit.  Reduction in the strength of the 

GABAergic circuit as a result of visual deprivation could lead to significant changes of neuronal 

properties. 
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c)  Neurotrophins 

 The expression of an important group of molecules, the neurotrophins, depends on visual 

experience.  In the retina, visual deprivation decreases protein and mRNA levels of BDNF (Seki 

et al., 2003).  In rat visual cortex, BDNF mRNA is significantly lower after three weeks of dark-

rearing commencing at birth, whereas NGF is slightly increased after dark-rearing (Schoups et 

al., 1995).  Alterations in the level of neurotrophin expression could lead to significant changes 

in physiological and synaptic properties of neurons due to involvement in synapse maturation, 

processes outgrowth and synapse modulation. 

 

d)  Signal transduction pathways underlying effects of neural activity on brain plasticity 

The way in which neural activity affects cellular processes during refinement and 

development of the nervous system has been thoroughly investigated.  One of the most 

remarkable effects of neuronal activity is the increase of presynaptic and postsynaptic 

intracellular Ca2+, which leads to secretion of neurotransmitters and proteins, changes in synaptic 

efficacy, and changes in expression of neurotransmitter receptors.  Hence, Ca2+ entering the cell 

through NMDARs or other ion channels can modulate gene expression either directly or through 

second messengers (Bliss and Collingridge, 1993; Bear and Malenka, 1994; Ghosh and 

Greenberg, 1995; Flavell and Greenberg, 2008).  Several studies have shown that synaptic 

potentiation and depression depend on Ca2+ through molecular pathways involving CaMKII 

(Ca2+/calmodulin-dependent protein kinase type II) (Malinow et al., 1989; Salin et al., 1996) and 

CREB (cAMP-responsive element binding protein) (Bourtchuladze et al., 1994).  Activation of 

those pathways would increase neurotransmitter release probability and contribute to the 

insertion of AMPA-type glutamate receptors at the postsynaptic membrane, thus inducing 
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synaptic potentiation (Luscher et al., 1999; Malinow and Malenka, 2002).  Thus, electrical 

activity regulates the function of these proteins and also of some ‘candidate plasticity-related 

genes’, such as cpg15, involved in synaptic maturation.  Visual deprivation decreases cpg15 

expression in visual cortex (Lee and Nedivi, 2002) and brief visual experience causes the rapid 

expression of immediate early genes (IEGs) (Rosen et al., 1992).  Hence, visually evoked 

neuronal activity has an important role in controlling the molecular profile of the visual pathway. 

Visually-evoked neuronal activity, through Ca2+ influx, also upregulates expression of 

neurotrophins such as BDNF in  cortical neurons (Ghosh et al., 1994) and NGF and BDNF in 

cultured hippocampal slices (Lu et al., 1991; Zafra et al., 1992).  Moreover, BDNF can increase 

the levels of the NR1 and NR2A subunits of the NMDAR (Glazner and Mattson, 2000).  

Implications from these studies include the possibility that neural activity can affect neuronal 

maturation and morphology and regulate synaptic efficacy through neurotrophic factors 

(Thoenen, 1995; Bonhoeffer, 1996; Schuman, 1999; Poo, 2001). 

 

3.  Why study the retinocollicular projection 

The retinocollicular projection is the visual pathway that projects from the eye to the 

superior colliculus (SC) in the midbrain.  The SC is a multisensory processing center involved in 

control of head and eye position, guiding of visuomotor behavior, attention, and generation of 

voluntary and involuntary eye movements, such as saccades (Schiller, 1972; Sprague, 1972; 

Dean and Redgrave, 1984; Wurtz and Optican, 1994).  The SC has a layered organization.  

Deeper layers of the SC receive input from the auditory and somatosensory systems, which are in 

spatial register with the visual projection.  The most superficial layer, the stratum griseum 

superficiale (SGS) (up to ~200 µm in depth), receives direct input from the retinal ganglion cells 
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(RGCs).  This projection is organized in a topographic way, with a point-to-point representation 

of visual space given by the organized projection of RGCs.  These features make the SC an 

appropriate model system for the study of development and refinement of topographic maps, a 

widespread characteristic of sensory systems.  

 Our model system, the retinocollicular projection of Syrian hamsters (Mesocricetus 

auratus), is well documented in terms of SC neuron properties and developmental plasticity.  

The fact that Syrian hamsters are altricial allows for manipulations and treatments to be 

performed postnatally, just as RGCs are reaching the SC.  Because the development of the 

retinocollicular projection involves neuronal population matching and maturation of the intrinsic 

SC circuitry, it is an appropriate model system for the study of the mechanisms responsible for 

these processes.  Questions regarding the role of neuronal activity-dependent and –independent 

development in the visual system can be better addressed by studying this direct projection from 

the RGCs to the midbrain than the indirect thalamocortical pathway. 

 

4.  Development of the retinocollicular projection 

The SC serves as a sensory integration system involved in visually-guided behaviors.  

The superficial gray layer of the SC, the stratum griseum superficiale (SGS), contains a 

topographic representation of the visual field, provided by the ordered projection from the retina 

that forms a retinotopic map in the SGS.  The retinotopic projection of RGCs in the SC is guided 

by activity-independent factors, such as molecular cues that are present in the retina and SC in 

concentration gradients (Ruthazer and Cline, 2004).  Although the gross topography depends on 

molecular factors, development of the grain of the visual map in SC is an activity-dependent 

process.  This refinement process involves cell death in the retina and SC as well as axon 
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collateral elimination and maturation of receptors in the SC (Finlay et al., 1982; O'Leary et al., 

1986b; van Zundert et al., 2004).  Experiments in which neuronal activity in the eye has been 

blocked by TTX injections have resulted in enlarged terminals in the developing and 

regenerating retinotectal projection, and enlarged tectal neuron receptive fields (Schmidt and 

Edwards, 1983; Kobayashi et al., 1990; Olson and Meyer, 1991).  A different approach using β 

2-/- mice, which lack the β2 subunit of nicotinic acetylcholine receptors, suggests that 

acetylcholine-dependent waves of spontaneous activity in the retina are needed for the 

anatomical refinement of RGC terminals in the SC (McLaughlin et al., 2003b; but see Sun et al., 

2008) and RF refinement of SC neurons (Chandrasekaran et al., 2005).  Moreover, chronic 

blockade of NMDA receptors by APV results in  enlarged RGC terminals in the optic tectum 

(Cline and Constantine-Paton, 1989) and SC (Simon et al., 1992).  The same treatment causes an 

enlargement of RFs of neurons in the SC of the hamster (Huang and Pallas, 2001), likely as a 

result of the increased RGC axon arbor size.  Thus, the participation of NMDARs in the 

refinement of RGC terminal arbors suggests that neural activity has an instructive role that 

involves the coordinated firing of presynaptic and postsynaptic neurons.  Due to the nature of the 

NMDARs, which are blocked by Mg2+ unless neurons are slightly depolarized, the coactivation 

of several inputs projecting to the same postsynaptic neuron enhances the probability of 

NMDAR activation and thus the molecular events triggered by Ca2+ influx.  Support for the role 

of correlated activity in the refinement of this projection is also provided by experiments in 

which goldfish were reared with stroboscopic light, which artificially induces highly correlated 

activity within retinae and results in enlarged tectal RFs and RGC terminal arbors (Schmidt and 

Buzzard, 1993).  Therefore, correlated activity coming from spontaneous synchronized firing 

appears to be required for the refinement of the retinocollicular and retinotectal projection. 
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Developmental plasticity studies have been performed using the retinocollicular 

projection as a model system.  In hamsters, ablation of the caudal SC on the day of birth results 

in a compressed retinotopic map in the SC, whereas SC neurons conserve their properties, 

including normal RF size (Pallas and Finlay, 1989).  Receptive field size, but not velocity or size 

tuning, is altered when APV is chronically applied in the normal or ablated SC, however (Huang 

and Pallas, 2001).  Under APV treatment, RFs of individual SC neurons are enlarged, denoting 

the role of correlated activity in RF refinement in intact and partially ablated SC. 

In sum, development of the retinocollicular projection depends on both activity-

independent and –dependent processes that cooperate in different aspects.  The role of visually-

driven activity in these processes is the main topic of this study.  We have investigated how 

visually-driven activity is involved in the refinement and maintenance of the retinocollicular 

projection and the SC cell response properties. 

 

5.  Receptive field properties of neurons in the superior colliculus 

The SC is a layered midbrain structure, with its superficial layer, the stratum griseum 

superficiale (SGS), receiving almost exclusively direct input from RGCs.  Properties of SC 

neurons depend on both their inputs and the intrinsic collicular circuitry.  The input from the 

retina to the SC is mainly contralateral in rodents, although the far temporal portion of the 

ipsilateral eye projects to the rostral SC and thus it is possible to find binocularly responsive 

neurons there (Tiao and Blakemore, 1976).  The intrinsic collicular circuitry, on the other hand, 

includes inhibitory neurons expressing GAD (glutamic acid decarboxylase) and GABA (Okada, 

1974; Houser et al., 1983; Mize, 1988).  More than one type of GABAergic neuron has been 

identified in the SC of cats and monkeys, but they do not seem to be organized in a layered 
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fashion (Mize, 1988; Mize et al., 1991; see Mize, 1992 for review).  The importance of this 

inhibitory circuitry for neuronal response properties has not been extensively studied.     

Neurons in the superficial SC of the golden hamster are exclusively visual, and respond 

preferentially to smaller, more slowly moving objects than neurons in visual cortex, with 

preferred velocities of less than 20 deg/sec (Tiao and Blakemore, 1976; Chalupa and Rhoades, 

1977).  Velocity tuning depends at least in part on lateral inhibition in the SC (Razak and Pallas, 

2005).  Most of the SC neurons also selectively respond to stimuli that are substantially smaller 

than their excitatory RF (Stein and Dixon, 1979).  Size tuning depends on the strength of lateral 

inhibition within the RF (Razak and Pallas, 2006).  Selectivity for direction of movement occurs 

in SC neurons (Tiao and Blakemore, 1976; Chalupa and Rhoades, 1977) and this property 

depends completely on ipsilateral input from visual cortex, although removing cortex does not 

alter other neuronal properties (Chalupa and Rhoades, 1977; Rhoades and Chalupa, 1978b). 

 

6.  Effects of visual experience on response properties of superior colliculus neurons  

 Several studies point out that the effects of alterations in visual experience on SC neurons 

are not as drastic as those seen in visual cortex (see Chalupa, 1981 for review).  Complete and 

incomplete visual deprivation have been studied by dark-rearing animals and performing eyelid 

suturing.  Eyelid suturing produces a loss of direction selectivity, reductions in general 

responsiveness, and reduced responsiveness specifically to rapidly moving stimuli in the SC of 

cats (Hoffmann and Sherman, 1975).  In rabbits, visual deprivation does not change SC neuronal 

properties (Chow and Spear, 1974).  In guinea pigs, dark-rearing or strobe rearing decrease the 

number of directionally selective cells in the SC (Thornton et al., 1996).  In the SC of hamsters, 

dark-rearing produces longer latencies of “on” responses  (Rhoades and Chalupa, 1978a), and 
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reduces stimulus size tuning (Razak and Pallas, 2006), but has no effect on direction or speed 

selectivity (Rhoades and Chalupa, 1978a).  Strobe rearing, which allows the experience of visual 

pattern but not visual movement, seems to have more pronounced effects on SC than visual 

deprivation.  Strobe rearing reduces the percentage of directionally selective neurons in the SC of 

hamsters (Chalupa and Rhoades, 1978a, b) and cats, in which it also produces a deficit of the Y-

cell retinal input to the SC (Kennedy et al., 1980).  These studies show that not only the 

occurrence of visual experience but also the quality of visual experience has consequences for 

SC neuronal properties. 

 Visual deprivation alters both glutamatergic and GABAergic circuitry in the SC.  Dark-

rearing of rats increases the contribution of NMDARs to visual responses in the SC, as shown by 

quantifying the effect of acute blockade of NMDARs by APV (Binns and Salt, 1998b, a).  Dark-

rearing decreases the effect of NR2A antagonists on SC neurons’ responsiveness, suggesting that 

visual deprivation alters NMDAR subunit composition or receptor number (Binns et al., 1999).  

It also decreases binding to benzodiazepine receptors according to autoradiographic studies in 

the rat SC (Schliebs et al., 1986), although it has been reported that in the monkey SC, visual 

deprivation does not change GABA or calbindin immunoreactivity (Mize and Luo, 1992).  These 

studies support the importance of visual experience in maintaining the excitatory/inhibitory 

balance in the SC circuitry and therefore its function in the proper working of the visual system.  

We have further investigated that issue by considering electrophysiological and molecular 

approaches to test the strength of intracollicular inhibition.  We have found that visually-

deprived animals have weaker inhibitory circuitry in their SC than normal animals and thus these 

results highlight the relevance of visual experience during development for the proper brain 

function. 
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7.  Specific Aims of dissertation 

Specific Aim 1 (Chapter 2):  Determine the role of visual experience in refinement and 

maintenance of receptive fields of neurons in the superior colliculus.  Previous studies have 

shown that sensory experience is necessary for the development of sensory systems.  The role of 

visual experience in the development and maintenance of subcortical structures, such as the 

superior colliculus, is it not fully known, however.  This aim investigated the role of visual 

experience in the development of the retinocollicular pathway by studying receptive field (RF) 

refinement in dark-reared and normally reared hamsters. 

 

Specific Aim 2 (Chapter 3):  Determine how much and when visual experience is necessary 

to maintain the refinement of RFs of neurons in the superior colliculus.  We have shown that 

visual experience is necessary for maintenance but not refinement of RFs in the superior 

colliculus.  The aim of this chapter is to define the time window when visual experience can 

prevent RF enlargement produced by long term dark-rearing.   

 

Specific Aim 3 (Chapter 4):  Determine how visual experience contributes to maintenance 

of RFs in the superior colliculus by acting on the GABAergic circuitry.  Our previous data 

have suggested that surround inhibition is decreased in the RFs of the SC of long term dark-

reared hamsters, possibly accounting for the loss of RF refinement.  This chapter elucidates the 

role of visual experience in maintaining RF refinement through its action on the GABAergic 

circuitry in the SC. 

 

 



 

                                                                                                                                                      19 

CHAPTER 2:  Visual experience is necessary for maintenance but not development 

of receptive fields in superior colliculus 

1.  Abstract 

Sensory deprivation is thought to have an adverse effect on visual development and to 

prolong the critical period for plasticity.  Once the animal reaches adulthood, however, synaptic 

connectivity is understood to be largely stable.  We reported previously that NMDA receptor 

blockade in  the superior colliculus of the Syrian hamster prevents refinement of receptive fields 

(RFs) in normal or compressed retinotopic projections, resulting in target neurons with enlarged 

RFs but normal stimulus tuning.  Here we asked whether visually driven activity is necessary for 

refinement or maintenance of retinotopic maps or if spontaneous activity is sufficient.  Animals 

were deprived of light either in adulthood only or from birth until the time of recording.  We 

found that dark rearing from birth to two months of age had no effect on the timing and extent of 

RF refinement as assessed with single unit extracellular recordings.  Visual deprivation in 

adulthood also had no effect.  Continuous dark rearing from birth into adulthood, however, 

resulted in a progressive loss of refinement, resulting in enlarged, asymmetric receptive fields 

and altered surround suppression in adulthood.  Thus, unlike in visual cortex, early visually 

driven activity is not necessary for refinement of receptive fields during development, but is 

required to maintain refined visual projections in adulthood.  Because the map can refine 

normally in the dark, these results argue against a deprivation-induced delay in critical period 

closure, and suggest instead that early visual deprivation leaves target neurons more vulnerable 

to deprivation that continues after refinement.  
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2.  Introduction 

Neural activity is thought to be essential for normal development in central visual 

structures such as the superior colliculus (SC), lateral geniculate nucleus (LGN), and visual 

cortex, but the specific contributions of spontaneous activity and visually driven activity remain 

under debate (Grubb et al., 2003; Huberman et al., 2003; McLaughlin et al., 2003b).  

Furthermore, little is known about how visual circuitry is maintained in adulthood, or how early 

deprivation might influence later maintenance and plasticity.  This study addresses the unique 

contribution of vision itself to the development, refinement, and maintenance of visual receptive 

fields (RFs) in SC.   

  It has been argued based on studies in visual cortex that visual deprivation stabilizes an 

early, diffuse stage of connectivity (Blakemore and Van Sluyters, 1975; Emerson et al., 1982; 

Cynader, 1983; Derrington, 1984; Czepita et al., 1994; Chalupa, 1995; Daw, 1995), decreases 

GABAergic shaping of responses (Benevento et al., 1992; Benevento et al., 1995; Morales et al., 

2002), and prolongs the critical period for plasticity (Lee and Nedivi, 2002).  Consistent with the 

diffuse terminal arbors, dark rearing throughout postnatal development can also result in 

enlarged cortical receptive fields, as defined electrophysiologically (Fagiolini et al., 1994). An 

alternative explanation for these results, however, is that the enlarged receptive fields in deprived 

animals result not from preservation of an early, unrefined state, but from a failure to maintain 

visual projections that were previously refined by spontaneous activity alone.  Thus, the extent to 

which spontaneous and visually driven activity contribute to the development and maintenance 

of stimulus specificity is unclear.   

 Examination of the factors contributing to the development and maintenance of response 

properties in a well-defined subcortical system such as the retinocollicular projection could help 
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to resolve the separate roles of vision and spontaneous activity.  In rodents the superior colliculus 

plays a prominent role in visual perception.  Moreover, unlike cortical ocular dominance column 

formation (Crowley and Katz, 1999; Crowley and Katz, 2000) or orientation tuning (Fregnac and 

Imbert, 1978; Crair et al., 1998; Chapman et al., 1999) , RF refinement in the visual midbrain is 

known to require retinal activity (see Udin and Fawcett, 1988 for review), making it in some 

ways a better model system for studying the role of retinal activity in visual development. 

There is substantial evidence suggesting that patterned, locally correlated retinal activity 

is required for development of subcortical retinotopic maps.  In the superior colliculus (SC), after 

activity-independent establishment of gross retinotopy, the retinocollicular projection 

progressively refines, as measured by a reduction in the size of single unit receptive fields (Fortin 

et al., 1999; Huang and Pallas, 2001) and a corresponding reduction in retinal axon arbor size 

and extent (Simon and O'Leary, 1992; Yates et al., 2001). Blocking retinal activity with TTX 

prevents the normal refinement of retinal axon arbors in developing or regenerating retinotectal 

projections (Harris, 1980; Meyer, 1983; Schmidt and Eisele, 1985; O'Leary et al., 1986a; 

Schmidt and Buzzard, 1993), as does synchronizing activity across the retina with strobe rearing 

(Chalupa and Rhoades, 1978b; Schmidt and Eisele, 1985; Schmidt and Buzzard, 1990).  

Blocking NMDA receptor dependent activity from birth, which neither alters the level of activity 

nor blocks retinocollicular transmission, also prevents RF refinement (Huang and Pallas, 2001), 

and knockout of the β2 acetylcholine receptor gene has the same effect (McLaughlin et al., 

2003b).  It has been reported in hamster SC that dark rearing has little effect (Chalupa and 

Rhoades, 1978b; Rhoades and Chalupa, 1978a).  Thus, whether spontaneous activity is sufficient 

or whether vision is necessary for the developmental refinement and maintenance of 
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retinocollicular projections in mammals remains unclear.  We have investigated this issue in the 

present study. 

We tested the hypothesis that refinement of receptive field size in the SC would be 

delayed or prevented in the absence of visual experience.  We also investigated whether vision 

would be necessary to maintain refined RFs, even if refinement was delayed by visual 

deprivation.  Contrary to expectation, we found that the receptive fields in SC became fully 

refined in the dark, without any delay, yet they could not be maintained if animals remained in 

the dark as adults. These results are unexpected and important for understanding how early 

experience may influence the ability to recover from temporary vision loss late in life. 

Some aspects of this study have been published previously in abstract form. 

 

3. Methods 

A total of 122 Syrian hamsters (Mesocricetus auratus) of different postnatal ages 

between P17 and P362 were used in this study.  We chose Syrian hamsters as our model system 

because, although their visual system is much like that of rats and mice, they are born at an 

earlier stage of brain development, facilitating manipulations of early developmental events.  All 

of the procedures used on animals met standards of humane care developed by the National 

Institutes of Health and the Society for Neuroscience and were approved by the Institutional 

Animal Care and Use Committee. 

 

a)  Rearing conditions 

  Syrian hamsters were obtained from Charles River Laboratories (Wilmington, MA) or 

bred in house.  Normal hamsters were kept on a 14h/10h light/dark cycle.  Dark-reared (DR) 
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hamsters were maintained in a light-tight, dark room from before birth and exposed only to a dim 

red light for husbandry purposes (not visible to Syrian hamsters (Huhman and Albers, 1994)).  

These conditions were maintained until the recording session.  All were acute preparations. 

 

b)  Surgical procedures 

  Animals were prepared for terminal electrophysiological recordings as described 

previously (Pallas and Finlay, 1989; Huang and Pallas, 2001).  Each animal was anesthetized 

with urethane (0.7 g/ml; 0.3ml/100g body weight in 4 i.p. aliquots at 20-30 min intervals), an 

anesthetic that has minimal effect on subcortical neurotransmission (Maggi and Meli, 1986).  

After surgical exposure of the SC, visual cortex was aspirated bilaterally in order to visualize the 

SC.  Removal of cortex has no effect on SC neuron receptive field properties in hamsters, except 

for a loss of direction tuning (Rhoades and Chalupa, 1978b).  The brain was kept covered with 

sterile saline solution, and the eye was protected by a custom designed, plano contact lens 

throughout the experiment.  In some of the youngest animals, an endotracheal tube was placed in 

order to facilitate respiration.  The animal was placed in a stereotaxic device and the 

conjunctivum was stabilized with 6-0 silk suture to prevent movement of the contralateral eye 

(Pallas and Finlay, 1989).  Anesthesia level was periodically monitored during experiments by 

checking withdrawal reflexes, and supplemental doses of urethane were given if needed.  

 

c)  Electrophysiology  

 Teflon®-coated tungsten electrodes (1-2 MΩ, FHC, Bowdoinham, ME) were used for 

extracellular recording of single neurons within 200 µm of the SC surface to ensure that all 

recorded units were contained in the stratum griseum superficiale (SGS, the retinorecipient layer) 



 

                                                                                                                                                      24 

in the right SC.  Receptive field (RF) diameters of single neurons were plotted by hand or with a 

computerized method.  For the manual method used in the first group of experiments, single 

units were electrically isolated by shape and amplitude of action potentials in response to 

stimulation with a penlight.  Receptive field borders were plotted on a translucent dome fixed 30 

cm from the eye, with the center of the dome aligned with the optic disk.  A RF map was 

constructed by systematically recording along the rostrocaudal axis of the SC at 100 or 200µm 

intervals.  Only neurons located in the rostral SC were considered for determining RF size 

(nasotemporal diameter), in order to be consistent with our previous studies and to provide a 

uniform population of cells across both experimental groups. 

 A computerized plotting method was used to gain greater resolution of RFs in some older 

animals.  The data obtained by this method were analyzed separately because they necessarily 

yield different estimates of RF size. (The difference arises because the threshold for defining the 

RF edge is set differently and stimulus features are different, but the two methods are internally 

consistent (Pallas and Finlay, 1989).  Stimuli were generated and data acquired as described 

previously (Huang and Pallas, 2001). Receptive field diameter of each neuron was determined by 

sweeping a spot of light (1o diameter) from the top to the bottom of the computer monitor screen 

at successive nasotemporal locations.  Successive sweeps started 2o lateral to the previous sweep, 

allowing a determination of the naso-temporal extent of the RF.  The light spot was swept at 

5o/sec for neurons that preferred slowly moving stimuli or at 30o/sec for neurons that preferred 

rapidly moving stimuli (Pallas and Finlay, 1989).  The estimated RF size did not change with the 

velocity of the stimulus used.  Regardless of the method, we defined RF size as the naso-

temporal diameter of the single unit RF.  The zero position of the field was defined as the 

stimulus position that evoked the greatest response.   
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d)  Analysis of RF refinement 

 In order to determine when RFs were refined during postnatal development, we grouped 

normal and DR animals into 5-day age intervals, and compared their RF diameters to those in the 

normal adult (>P80) using a Kruskal-Wallis One Way Analysis of Variance on Ranks, and Dunn 

post hoc pairwise comparisons.  Within age groups, comparisons between normal and DR 

animals were made using a Mann-Whitney Rank Sum test. 

 

e)  Plotting of RF symmetry 

We analyzed the symmetry of RFs by measuring the response level at progressive 

distances from the RF center. A ratio of the nasal location compared to the temporal location 

where response levels fell to 20% of maximum provided an estimate (Asymmetry Index) of how 

sharply the response declined on one side of the RF center (defined as 0) compared to the other.  

An Asymmetry Index exceeding one indicates that the decline in the response on the temporal 

side of the visual receptive field was sharper than on the nasal side, and vice versa.  

 

f)  Plotting receptive field substructure 

To determine the extent of inhibition both within the RF and in the surround, two spots of 

light (diameter 1o each) were swept in parallel from the top to the bottom of the monitor.  The 

second spot of light was swept at successive distances away from its previous location, while the 

first spot was always swept through the center of the RF.  Each stimulus pair was repeated 3-7 

times.  The response to the two spots of light was normalized to the response elicited by the 

center spot presented alone.  This allowed us to determine the spatial extent and strength of 

inhibition of the response to the first spot as caused by the second spot. 
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4.  Results 

 In order to determine the effect of visual deprivation on retinocollicular map topography 

and refinement of receptive fields (RFs), we recorded extracellularly from single units in the 

superficial layers of the SC. Included in the study were 404 units from 68 normal hamsters and 

409 units from 46 dark-reared (DR) hamsters.  The ages of the animals ranged from postnatal 

day (P)17 to P362.  Eye opening in Syrian hamsters occurs between P12 and P14, and sexual 

maturity occurs between P60 and P90.  We also recorded 115 units from 8 hamsters whose dark 

rearing commenced at P60 and extended on into adulthood. 

 

a)  Dark rearing has no effect on gross retinocollicular map topography 

The retinocollicular projection in rats is roughly retinotopic prior to eye opening (Frost et 

al., 1979; Yhip and Kirby, 1990; Simon and O'Leary, 1992).  Our recordings revealed that the 

same is true in hamsters; an orderly map of visual space was present in all normal animals, at all 

ages (Fig. 2.1A).  In the youngest normal animals examined (P22), an ordered retinotopic map 

was already present in the SC.  We also found an orderly retinotopic map in animals dark reared 

from birth, at all ages (from P17 to P150) (Fig. 2.1B).  There were no differences in the rate of 

change or in the linearity of RF position along the rostrocaudal axis of the SC between the 

normal and DR groups (Normal: 53.2 ± 4.15 deg/mm mean ± SEM, n = 77 neurons from nine 

animals; DR: 48.2 ± 3.11 deg/mm, n = 57 neurons from eight animals; p>0.3, t-test; r≥0.90 for 

all cases).  These results are consistent with previous findings that patterned sensory input is not 

necessary for the development of gross retinocollicular topography (Harris, 1980; Thornton et al., 

1996). 
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b)  Receptive field refinement is complete by seven weeks of age 

We assessed the refinement of the retinocollicular projection by measuring receptive field 

size (nasotemporal diameter) of single units in the SC. We observed that in normal animals, RF 

diameter decreased with age (Fig. 2.2) and RF borders became more sharply defined.  In the SC 

of animals <P40, visual responses were robust in the RF center, but were less reliably elicited at 

the edges of the RF.  As a result, measured variability in RF sizes was greater in young animals 

and became less variable with age.  The extracellular recording methods used here cannot 

distinguish whether this variability might be caused by a rapid maturation of lateral inhibition or 

by a loss of weak excitatory inputs at the RF edges, but both processes likely contribute (Simon 

and O'Leary, 1992; Shi et al., 1997).  In normal adults (>P80), RF diameter averaged 19.4 ± 

0.56° (n=32 neurons).  In order to quantify the time course of refinement, we divided postnatal 

development into 5-day age intervals and compared the mean RF size in these different age 

groups to that in normal adults (Fig. 2.2).  By P46-51 in normal animals, RFs had refined to their 

adult size (mean RF diameter 21.3 ± 0.84°, n=21 neurons).  Prior to P46, RFs in normal animals 

were significantly larger than those measured in adults (p<0.05, One Way ANOVA on Ranks).  

Within the group of normal adults, RF size did not vary significantly with increasing age beyond 

P46 (p>0.15, ANOVA on Ranks), demonstrating that normal levels of visually driven activity 

are sufficient to maintain the refined map.  The RFs in normal animals remained stable at least 

up to 12 months of age, the oldest age examined. 

 

c)  Dark rearing has no effect on refinement of the retinocollicular projection  

We reasoned that if visually driven activity is needed for the refinement process, then 

RFs would fail to refine in DR animals and thus average RF size would be larger than normal.  
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Alternatively, if the correlated “waves” of spontaneous retinal activity that are present from birth 

to eye opening (see Wong, 1999 for review) or persistent spontaneous activity in the SC (Itaya et 

al., 1995) could compensate for a lack of visual input, then refinement might be delayed or only 

partially completed rather than prevented altogether.  In the DR animals, contrary to our 

expectation, we found that dark rearing neither prevented nor delayed the refinement process.  

Receptive field diameters in the DR group, as in the normal group, attained normal adult size by 

P46-51 (21.8 ± 1.08º, n=33) (Fig. 2.2).  Receptive fields in DR animals remained stable in size 

between P46 and approximately P80, and were not significantly different in size from those in 

normal animals within the same age groups (p>0.05, Mann-Whitney Rank Sum Test) up to P80.  

These findings demonstrate that refinement follows the same time course for both normal and 

DR animals.  These results support the interpretation that visually driven activity is not necessary 

for the refinement of RF size in SC neurons and that visual deprivation does not alter the time 

course of this process. 

  

d)  Dark rearing causes a failure to maintain RF size 

After learning that RFs could refine in the dark, we hypothesized that continued dark 

rearing might result in a failure to maintain a refined retinotopic map.  Indeed, in DR animals 

older than P80, RFs were enlarged significantly beyond normal size (Fig. 2.2), suggesting a 

failure to maintain RF refinement (DR >P80: mean RF diameter 29.9 ± 1.28º, n=36; p<0.001 

compared to normal adults at 19.4 ± 0.56º, n = 32).  In order to examine the transition from 

developmental refinement to subsequent maintenance, we looked more closely at RF size 

between P70 and adulthood, using a more precise computerized plotting method (Fig. 2.3).  We 

compared four DR age groups (P70, P80, P89 and P125-362) to the normal adults (≥P75) using a 
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Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn post hoc comparisons.  We 

found that despite the chronic lack of visual experience, RFs of SC neurons in DR hamsters had 

normal adult RF diameters by P70.  There was no significant difference in RF size of SC neurons 

between normal adults (≥P75) and P70 DR animals (Fig. 2.3A and B; normal adult: 9.7 ± 0.30°, 

n=71; P70 DR: 9.6± 0.42º, n=14; p>0.05, One Way ANOVA on Ranks).  However, consistent 

with the hand-plotted data in Figure 2.2, we observed a progressive loss of refinement of the 

excitatory RF under prolonged dark rearing.  DR animals ≥ P80 had enlarged RFs compared to 

normal adult RFs (P80 DR: 13.6 ± 0.56°, n=23; P89 DR: 14.1 ± 1.16º, n=14; P125-P362 DR: 

15.6 ± 0.55º, n=66, p<0.05, One Way ANOVA on Ranks).  A finer analysis of RF diameter in 

the normal adults confirms that receptive fields are stable in size throughout adulthood in normal 

animals (Fig. 2.3C) (life span for these animals is approximately one year).  Together these data 

show that a loss of refinement in the RFs occurs in the continued absence of light beyond early 

adulthood.  It appears that the visual receptive fields in DR adults may continue to degrade 

further into adulthood.  The P125-P362 DR animals had slightly larger receptive fields than the 

P80-P89 DR hamsters (P80-P89 DR: 13.7 ± 0.55, n=37; P125-P362: 15.6 ± 0.55º, n=66; p<0.02, 

Rank Sum Test). 

 

e)  Dark exposure commencing after P60 does not affect RF size 

 To address the possibility that dark rearing can destabilize receptive fields regardless of 

when it occurs, we placed animals in the dark at P60, after the map would have reached its adult  

level of refinement in normal and DR animals, but prior to the time when animals that had been 

dark reared from birth would exhibit enlarged RFs.  In these animals, RF size remained stable 

regardless of the amount of time spent in the dark.  This was true up to 198 days, the last time 
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point tested (Fig. 2.4) (RF diameter: normal >P80: 19.4 ± 0.56; P122-P139 DR at P60: 19.4 ± 

0.38; P177-P198 DR at P60: 17.9 ± 0.46; p>0.05, One-way ANOVA on Ranks) (mean RF size 

of both age groups together = 18.9 ± 0.30, n=115; p>0.4, t-test, compared to normal adult).  

These results indicate that early visual experience is sufficient to protect against the detrimental 

effects of visual deprivation later in life.  

 

f)  Dark rearing alters the symmetry of receptive fields in SC 

 To examine how this loss of refinement might occur, we looked at the fine structure of 

receptive fields in SC using the computerized plotting method.  We found that prolonged dark 

rearing altered not only the size but also the shape of the excitatory RFs.  Although neurons in 

the P70-P89 DR group had a symmetric RF structure as in normal animals (see representative 

examples in Fig. 2.5A, B), DR animals older than P90 had asymmetric RFs that were expanded 

toward one side of the visual field (the nasal side in all cases so far examined) (Fig. 2.5C).  In 

addition, dark rearing resulted in some neurons having more than one spatial peak in 

responsiveness (Fig. 2.5D).  This was never observed in normal adult animals, either in this 

study or our several previous studies of adult hamster SC.  Calculating the ratio of nasal to 

temporal RF extent (defined as the asymmetry index, AI) in neurons with a single response peak 

revealed that in the population of normal animals (n=71) and in the population of dark reared 

animals younger than P90 (n=53) the RFs were fairly symmetric (normal adults: AI = 1.14 ± 

0.054, n=71; <P90 DR adults: AI = 1.12 +/- 0.05, n=53) (Fig. 2.5E).  However, in older adult DR 

hamsters (P125-P362), RFs were on average less symmetric than normal (DR P125-P362: AI = 

1.56 ± 0.15, n= 42; p<0.05 compared to >P90 normal adults, One Way ANOVA on Ranks) and 

were always biased in the nasal, not temporal, direction.  This change in symmetry could result 
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from a loss of inhibition on one side of the RF, and thus we next examined the contribution of 

surround inhibition to the responsiveness of SC neurons in different parts of the RF, in DR adults 

compared to normal adults. 

 

g)  Dark rearing alters the strength of the inhibitory surround 

In order to assess the spatial arrangement and strength of inhibition within the RF in 

normal and DR adults before and after 3 months of age, a second visual stimulus was placed at 

varying distances from the central stimulus as both were swept through the RF (Fig. 2.6).  The 

center of the receptive field was defined as the location where the response to a single stimulus 

was highest.  Response levels to the addition of the second stimulus at the other RF locations 

were normalized to the maximum response.  This analysis revealed that inhibition was enhanced 

considerably beyond normal within the temporal part of the RF in 2-3 month old DR animals 

(n=53), but was reduced somewhat within the nasal part of the RF.  In DR animals older than 3 

months, inhibition was significantly reduced compared to normal on both sides of the RF, but the 

reduction was greater on the nasal side.  These changes in the spatial arrangement of surround 

suppression, whether arising in SC or elsewhere, could account at least in part for the expanded 

and asymmetric receptive fields. 

 

h)  Dark rearing has no effect on responsiveness of SC neurons in adults 

To address the possibility that differing levels of SC neuron responsiveness in normal 

compared to DR animals could bias RF measurements, we used a subset of the digitized 

recordings from the SC neurons in Figure 3 to compare peak response levels in a subpopulation 

of the SC neurons from the adult DR and normal animals (Fig. 2.7).  Levels of spontaneous 
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activity are low in SC of normal animals under our recording conditions, and this was also the 

case for dark reared animals.  We found no significant difference in peak response levels 

between the normal and DR animals (response in spikes/sec: normal: 15.8 ± 0.85; dark-reared: 

16.6 ± 1.21; mean ± SEM; p>0.25 t-test), indicating that the enlarged receptive fields in the older 

DR animals are not an artifact of a general increase in responsiveness, and thus further 

supporting the hypothesis that dark rearing results in a failure to maintain refined receptive fields 

in the retinocollicular pathway of Syrian hamsters.  

 

5.  Discussion 

The hypothesis tested in these experiments was suggested by results from sensory 

deprivation experiments in visual cortex.  Those results led us to expect that visual experience 

would be necessary for refinement, but not maintenance, of visual receptive fields in SC neurons.  

We found the opposite.  Animals dark reared from birth to adulthood, thus experiencing 

spontaneous activity but no visual stimulation (see Wong, 1999; Feller, 2002 for reviews), 

refined their receptive fields to the same extent, over the same period of time as in normal 

animals, with maximum refinement attained by two months of age.  This seems appropriate for a 

fossorial rodent like the hamster that does not exit the burrow until later in development.  

Prolonged dark rearing into adulthood, however, led to a failure to maintain RF size commencing  

long after refinement was complete.  Light deprivation in adulthood had no effect.  These results 

show that spontaneous activity is sufficient and that visual experience is not necessary for 

developmental refinement of the retinocollicular projection.  Further, they suggest that visual 

experience during development is necessary for long-term stabilization of synapses such that 

projections can be maintained in a refined state throughout adulthood.  
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a)  Visual experience is not necessary for establishing gross retinotopy in SC 

Using physiological methods, this study demonstrates that gross retinotopy in SC is 

present by the third postnatal week in hamsters, and possibly earlier.  Furthermore, our 

recordings in this study and in a previous one (Huang and Pallas, 2001) never discovered any 

mistargeted projections, suggesting that retinal axon targeting is quite specific from the outset. 

This result is consistent with previous findings in lower vertebrates (see Udin and Fawcett, 1988 

for review) and birds (see Mey and Thanos, 1992 for review), and supports previous anatomical 

evidence that initial topography is determined independently of visually driven activity 

(McLaughlin et al., 2003b).  The preponderance of evidence to date thus argues strongly that 

formation of gross retinotopy is directed entirely by activity-independent molecular guidance 

cues (McLaughlin et al., 2003a; Mann et al., 2004).  

 

b)  Refinement of the retinocollicular projection occurs independently of visual experience 

  After establishment of gross retinotopy in SC, receptive fields are refined through retinal 

ganglion cell death and elimination of retinal axon collaterals.  In normal hamsters, we found 

that complete refinement of SC receptive fields did not occur until P50 or later.  This is 

surprising given previous reports of refinement by P30 or earlier (Simon and O'Leary, 1992; 

Binns and Salt, 1997a) and considering that hamsters are sexually mature by approximately P60.  

This may be explained by the finding that the number of synapses in SC is not stable until P80 

(Warton and McCart, 1989).  Syrian hamsters are altricial rather than precocial, and it is unlikely 

that development of their visual system occurs more slowly than in other rodents commonly 

employed in studies of the visual system (Clancy et al., 2001).  This raises the possibility that a 

similarly protracted refinement period occurs in other rodents but has not been noted due to 
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differences in the timing of experiments.  Regardless, this suggests that remodeling of synaptic 

connectivity can occur quite late in rodents, as it does in humans (Giedd et al., 1999). 

Previous studies employing activity blockade via intraocular TTX (O'Leary et al., 1986a; 

Thompson and Holt, 1989) have shown that retinal activity in some form is necessary for 

complete RF refinement.  Systemic knockout of the β2 subunit of the nicotinic acetylcholine 

receptor (nAChR) results in unrefined retinotopic maps in LGN and SC (Grubb et al., 2003; 

McLaughlin et al., 2003b), consistent with the idea that the early cholinergic waves of correlated 

retinal activity (Wong, 1999; Feller, 2002) are necessary to achieve a mature pattern of 

connections.  A side effect of β2 nAChR gene knockout, however, is compensatory change in 

glutamatergic waves (Feller, 2002), complicating the interpretation.  Blockade of NMDA 

receptors in SC, either throughout postnatal development, as shown physiologically (Huang and 

Pallas, 2001), or in the first two postnatal weeks when spontaneous waves are present and eyes 

are not open, as shown anatomically (Simon et al., 1992), also disrupts map refinement.  These 

experiments suggest that both cholinergic and glutamatergic spontaneous retinal activity are 

important to retinocollicular development, although their separate contributions remain to be 

elucidated.   

Prior to the present study, little was known about the specific role of visually driven 

activity in receptive field refinement.  An early physiological study in hamsters found that dark 

rearing had little effect on SC response properties or on visual behavior (Chalupa and Rhoades, 

1978b).  In a study on rats, it was suggested that dark rearing causes a delay in RF refinement in 

SC (Binns and Salt, 1997a).  Refinement was assessed in that study by measuring the size of the 

visual stimulus that evoked the best response.  Cells in the SC are tuned to stimulus size, 

however, and prefer stimuli much smaller than the RF (Stein and Dixon, 1979; Razak et al., 
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2003).  Thus the apparent delay in refinement may have reflected an increase in the time taken 

for development of stimulus size tuning in DR animals.  In this study we measured RF size 

directly to avoid this potential confound.   

The conclusion that retinocollicular projection refinement occurs normally in the dark has 

important implications for understanding visual system development.  Our finding that lack of 

visual experience did not prevent, delay, or prolong the development of a refined visual 

projection supports the conclusion that spontaneous activity is sufficient to refine the 

retinocollicular projection.  This activity could arise from cholinergic or glutamatergic retinal 

input, from other inputs to the SC, or from the SC itself (Itaya et al., 1995).  Our results contrast 

with previous studies in visual cortex, in which dark rearing prevented refinement of receptive 

fields, reduced acuity, increased RF size, and caused a delay in both the onset and the close of 

the critical period for ocular dominance plasticity (Sherman and Spear, 1982; Cynader, 1983; 

Mower and Christen, 1985; Swindale, 1988; Daw, 1995).  Some reports suggest that the critical 

period for ocular dominance plasticity in visual cortex never closes in DR animals and that 

acuity never reaches normal values (Fagiolini et al., 1994).  It has been suggested that a similar 

delay may also occur in SC (Fosse et al., 1989; Shi et al., 1997; Binns and Salt, 1998b). Indeed, 

our earlier work showed that chronic postnatal NMDA receptor blockade results in enlarged RFs 

(Huang and Pallas, 2001).  Only adults were examined, however, and it is conceivable that RF 

enlargement occurred secondarily to initial refinement, or that postnatal NMDA receptor 

blockade resulted in RF enlargement through blocking detection of spontaneous retinal activity, 

and not by interfering with detection of coincidence in visually driven activity.  
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c)  Visual experience is necessary for maintenance of refined retinocollicular projections 

Despite the resistance of the refinement process to visual deprivation, we found that 

refined RFs could not be maintained in adulthood in the continued absence of light.  It is 

surprising that deprivation led to a failure to maintain the refined projection already present in 

our adult DR animals.  Late light deprivation had no such detrimental effect.  The loss in 

refinement did not result from an increase in spontaneous activity or a differential increase in 

overall response levels in DR compared to normal animals, although this occurs in visual cortex 

(Benevento et al., 1992).   

The signal leading to the loss of refinement in adult RFs could come directly from a 

reduction in overall activity independent of its source.  In all vertebrate species studied to date, 

waves of correlated spontaneous activity in the retina cease when the eyes open (Wong, 1999; 

Feller, 2002).  Dark reared mice do not present abnormal characteristics, or a different time 

course of loss of spontaneous retinal waves compared to normally reared animals (Demas et al., 

2003).  Thus correlated activity levels would drop at approximately P14 and not be replaced by 

visually driven activity in the DR animals.  Spontaneous activity levels after eye opening are 

quite low in SC (Huang and Pallas, 2001) and thus may not be able to compensate for the lack of 

visual experience. We conclude from these results that spontaneous activity is not sufficient and 

visual experience is necessary for maintenance of refined retinotopy into late adulthood.  

Because the loss of refinement occurs well into adulthood, after the projection has been fully 

refined in the dark, we argue that it does not result from a delay in closure of a critical period as 

seen in visual cortex.  Rather, retinocollicular synapses formed in the dark are apparently less 

stable over the long term.  This finding is inconsistent with a period of retinotopic map plasticity 

that irreversibly closes in adulthood.  The mechanism responsible for map maintenance may be 
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independent of the mechanism underlying initial map refinement (Sawtell et al., 2003; Frenkel 

and Bear, 2004) and may not be subject to a critical period. 

 

d)  Possible mechanisms underlying the failure to maintain refined RFs 

What could be responsible for the latent instability in retinocollicular synapses in 

adulthood?  If light exposure is required for maturation of NMDA receptors (Philpot et al., 2001; 

Yoshii et al., 2003), then the failure to maintain refined RFs may result from a late deprivation-

induced loss of NMDA receptors containing NR2A at the postsynaptic density.  This could affect 

the time course of NMDAR-dependent LTP and LTD (van Zundert et al., 2004).  This scenario 

predicts that response levels in the center of the RF would decline, however, which does not 

occur.  

An alternative explanation was pursued in the context of this study.  The delayed 

enlargement of receptive fields in adult DR hamsters could result from a decrease in number or 

strength of inhibitory inputs.  We found that visual responses were biased toward the nasal side 

of the RF in >3 month old DR animals, but not in normal adults or <3 month old DR animals.  In 

many SC neurons surround suppression is greater on the nasal side of the RF (Razak and Pallas, 

unpublished data).  A uniform loss of lateral inhibition would therefore result in a nasal 

expansion of the RFs in those neurons, biasing the population statistics.  The results from our 

tests of surround suppression (see Fig. 2.6) show that lateral inhibition is undergoing dynamic 

changes in adult DR animals.  Sensory deprivation leads to a shift in the balance between 

excitation and inhibition in visual cortex (Kilman et al., 2002; Morales et al., 2002) that can also 

occur in adulthood (Hendry et al., 1994), consistent with this suggestion.  A failure in the 

maturation of inhibitory synapses could occur via failure to anchor mature GABA receptors 
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(Kneussel et al., 1999), as shown for activity-dependent NMDA receptor anchoring (Philpot et 

al., 2001; Yoshii et al., 2003), along with a delay in the maturation of GABA receptor 

composition.   This would be an interesting avenue for further examination. 

 

e)  Conclusion 

Our results suggest that a reinterpretation of some earlier studies of visual system 

plasticity may be warranted.  If animals that are deprived of light during development are not 

examined until well into adulthood, then it may appear that projections have never refined, when 

instead they have refined and subsequently deteriorated. Because visual defects at birth are often 

not corrected until many months or years have passed, it is important to understand when 

intervention would be of most benefit, underscoring the clinical relevance of our findings.  In 

conclusion, our results point out the relevance of early sensory experience to the maintenance of 

visual receptive field properties, and suggest that disuse of sensory organs during the early 

postnatal period could have severe consequences much later in life than might be expected. 
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Figure 2.1.  Visual deprivation does not affect map topography.  Maps of visual field 

 location in the SC for (A) normal and (B) dark reared hamsters.  Symbols correspond  

to the center of each RF.  Average values derived from linear regressions are comparable 

between normal (mean 53.2 deg/mm ± 4.15 SEM, n=77 neurons) and DR (48.2 ± 3.11 

deg/mm, n=57 neurons) animals (p=0.36, t-test).  N: nasal, T: temporal visual field; R: rostral, 

and C: caudal edge of SC.  
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Figure 2.2.  Visual experience is necessary for maintenance but not refinement of RF size.  

Data from single unit recordings in dark reared animals were grouped into 5-day age intervals 

and compared to that from the normal animals.  There was no difference in RF size between 

normal and dark reared cases within any age group, with the exception of the >P80 group. * 

indicates statistical significance compared to normal adults (p<0.05).  Numbers inside bars 

represent number of single units recorded. 
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Figure 2.3. Long-term dark rearing leads to a loss of RF refinement.  (A) Data from normal 

animals with RFs plotted by a higher resolution method showed that RF size at P70 in DR 

animals is similar to normal adult RF size (>P74).  In animals dark reared for 80 days or 

more, RF diameters were significantly enlarged.  (B)  Data from (A) is plotted as a scatter 

plot (separated in two columns at each time point for visibility) to show that the increase in 

mean RF size arises from a gradual shift in the distribution of RF sizes with age.  (C) Data 

from normally reared adults show that RFs maintain their refined size from P75 throughout 

adulthood.  Conventions as in Figure 2. 
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Figure 2.4.  Late dark rearing does not interfere with maintenance of RF size.  Animals were 

dark reared beginning at P60 and tested for RF size in two groups, one at P122-P139 and one 

at P177-P198.  No significant differences in RF size were found when compared to normal 

adults. 
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Figure 2.5.  Long-term dark rearing alters RF structure of SC neurons.  (A–D) Representative 

examples of RF structure.  (A) The RFs of normal SC neurons were symmetric in the 

nasotemporal dimension, with a single response peak.  (B) In DR animals < 3 months of age, 

RFs were symmetric.  (C) After 3 months of dark rearing, asymmetric RFs extending further 

in the nasal than temporal direction were common.  (D) In some neurons from DR animals at 

this age, multiple response peaks were seen.  (E) Data from the entire population.  An 

asymmetry index (AI) >1 indicates an asymmetric RF expansion toward nasal visual field.  

Asymmetries were seen only in the older DR animals (>P89).  Numbers inside bars are 

number of single units.  N: nasal, T: temporal. 
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Figure 2.6.  Long-term dark rearing alters the spatial arrangement of surround inhibition. 

Receptive field substructure was plotted using dual visual stimuli.  One stimulus was swept 

through the RF center, and the other was swept at varying distances away along the x-axis, 

with nasal positive.  In DR animals 2-3 months of age (n=30), inhibition was stronger than 

normal in near temporal visual field but slightly reduced in strength at one nasal location and 

one far temporal location (*).  In DR animals >3 months old (n=52), inhibition was 

significantly reduced compared to normal animals in several locations, but highly 

significantly reduced in the nasal locations.  Thus visual experience appears necessary to 

maintain the balance between excitation and inhibition in the RF.   

 



 

                                                                                                                                                      48 

Response levels 
in normal and dark-reared adults

Pe
ak

 re
sp

on
se

 (s
pi

ke
s/

se
c)

0

5

10

15

20

Normal         Dark reared

64 35

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7.  Dark rearing does not alter responsiveness to visual stimulation.  The number of 

spikes per second to a visual stimulus in the center of the RF was measured, and was not 

significantly different between normal and dark reared adults. 
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CHAPTER 3:  Early visual experience prevents but cannot reverse deprivation-induced loss 

of refinement in adult superior colliculus 

1.  Abstract 

The role of sensory experience in the development and plasticity of the visual system has 

been widely studied.  It has generally been reported that once animals reach adulthood, 

experience-dependent visual plasticity is reduced.  We have found that visual experience is not 

needed for the refinement of receptive fields (RFs) in the superior colliculus (SC) but instead is 

necessary to maintain them in adulthood (Carrasco et al., 2005).  Without light exposure, RFs in 

SC of hamsters refine by postnatal day 60 as usual but then enlarge, presumably reducing visual 

acuity.  In this study we examined whether a brief period of light exposure during early postnatal 

development would be sufficient to prevent RF enlargement in adulthood, and whether 

prolonged light exposure in adulthood could reverse the deprivation-induced increase in RF size.  

We found that an early postnatal period of at least 30 days of visual experience was sufficient to 

maintain refined RFs in the adult SC.  Prolonged visual experience in adulthood could not 

reverse the RF enlargement resulting from long term dark rearing, reflecting a loss of plasticity at 

this age.  Our results suggest that, unlike in visual cortex, dark rearing does not indefinitely 

extend the critical period of plasticity in SC.  Rather there is a limited time window when early 

experience can protect RFs from the detrimental effects of visual deprivation in 

adulthood.  These results contribute to understanding adult brain plasticity and argue for the 

importance of early visual experience in protecting the adult visual system.  

 

2.  Introduction 

The specific contribution of visually-driven activity to the development and plasticity of 

subcortical visual centers remains undefined despite considerable study.  In the optic tectum 
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(superior colliculus, SC) of rodents, activity-independent cues establish gross retinotopy, but 

retinal activity, whether spontaneous (Meister et al., 1991) or visually-driven is required to refine 

receptive fields to their final small size (O'Leary et al., 1986a; Fortin et al., 1999).  We have been 

exploring the mechanisms by which visual experience influences development and plasticity of 

retinotopic maps in the SC of Syrian hamsters (Mesocricetus auratus).  We reported that visual 

stimulation is not needed for normal receptive field refinement in hamster SC, suggesting that 

spontaneous activity is sufficient (Carrasco et al., 2005).  Vision was found to be necessary for 

maintaining refinement of the retinocollicular projection in adulthood, however.  Thus, receptive 

fields (RFs) of SC neurons refine normally and without delay by 60 days after birth (P60) in 

dark-reared (DR) hamsters, but with continued light deprivation the refinement is lost by 

approximately P90, resulting in enlarged single unit RFs.  Whether there is a critical time 

window within which visual experience must occur in order to prevent the enlargement of RF 

size in the SC of DR animals is unknown.  Nor is it known whether visual experience after dark 

rearing can prevent or reverse the enlargement of RFs in the SC.  Answers to these questions are 

relevant because understanding the role of visual experience in the maintenance of different 

areas within the visual system will inform strategies for treatment of patients that have been 

visually deprived.  This issue is also important in considering risk factors for visual impairment.   

Studies on visual cortex in rodents and carnivores have supported the idea that visual 

deprivation by dark rearing prevents maturation and extends the period during which the cortex 

is susceptible to visual experience.  For example, dark rearing extends the critical period for 

ocular dominance shifts due to monocular deprivation in mice and cats (Mower et al., 1983; 

Mower, 1991; Fagiolini et al., 1994).  In addition, dark rearing prolongs the period when LTP 

can be induced in the visual cortex of rats (Kirkwood et al., 1996) perhaps as a result of delaying 
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the normal developmental change in NMDA receptor subunit composition that reduces channel 

open time (Carmignoto and Vicini, 1992; also see Hensch, 2005).  When light is provided, it has 

the effect of closing the critical period for ocular dominance plasticity in cat visual cortex 

(Mower et al., 1983; Mower and Christen, 1985).  These studies show that dark rearing preserves 

visual cortex in an immature state, at least in some respects.  In this study we address how dark 

rearing affects a subcortical visual center, the visual midbrain SC, with respect to refinement of 

its receptive fields. 

In our previous study on hamster superior colliculus, we reported that dark rearing 

commencing at P60, when RFs have just refined, does not lead to a loss of RF refinement 

(Carrasco et al., 2005).  This result is consistent with the concept of a critical period that closes 

when refinement is complete.  An unexpected finding in this previous study, however, was that 

continued dark rearing into adulthood led to a loss of RF refinement.  This adult plasticity cannot 

be explained by a deprivation-induced prolongation of the critical period, and suggests instead 

that although receptive fields refine normally in DR animals, their synaptic connections are less 

stable than in normal animals.  This led to the hypothesis tested in the present study, that dark 

rearing until P60 (when RFs have refined in normal and DR animals) makes SC neurons more 

sensitive to subsequent visual experience than in normal adults, and thus that light exposure 

commencing at P60 might prevent the loss of RF refinement.  We then tested whether visual 

experience after RFs have enlarged in adult DR animals could reverse the loss of refinement. 

Previous studies have shown that brief visual experience has remarkable effects on visual 

cortex of DR animals, thus we also studied the effect of limited visual experience on the SC.  In 

visual cortex of cats, two hours of daily binocular visual experience protects against the loss of 

visual acuity by monocular deprivation, as measured behaviorally (Mitchell et al., 2003, 2006).  



 

                                                                                                                                                      52 

Another study has shown, using physiological methods, that a period of visual experience as 

short as six hours during the critical period blocks the effects of monocular deprivation in 

kittens’ visual cortex (Mower et al., 1983).  Two hours of light exposure is sufficient to 

normalize the expression level of the NR2A subunit of NMDA receptor in the visual cortex of 

dark-reared rats (Quinlan et al., 1999a).  Whether a similar time window of visual experience 

also prevents the effects of visual deprivation in subcortical visual areas has not been studied, to 

our knowledge.  Given our previous result that visual experience until maturity at P60 maintains 

RF size in the SC even if animals are subsequently dark-reared, we hypothesized that there must 

be a limited time window before P60 when visual experience prevents the dark-induced failure to 

maintain refined RFs. 

Our results suggest that the maintenance of refined RFs in adult SC neurons is highly 

dependent on a relatively long period of early visual experience.  Interestingly, visual experience 

in adulthood could not reverse the effects of earlier deprivation, even though the loss of 

refinement did not occur until after the maturation of RF size.  These results have relevant 

implications when considering cases in which patients have undergone periods of visual 

deprivation such as that produced by cataracts, retinopathy, or macular degeneration, and when 

considering plasticity of sensory systems in general. 

 

3.  Methods  

A total of 60 Syrian hamsters (Mesocricetus auratus) of different postnatal ages between 

P61 and P360 were used in this study.  We chose Syrian hamsters as our model system because 

although their visual system is much like that of rats and mice, they are born at an earlier stage of 

brain development, prior to the formation of retinocollicular synapses (Frost et al., 1979), 
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facilitating manipulations of early developmental events.  Our long-term interest in superior 

colliculus stems from our and others’ studies on the development and refinement of retinotopic 

maps (Chalupa and Rhoades, 1978b; Pallas and Finlay, 1989, 1991; Xiong et al., 1994; Huang 

and Pallas, 2001; Razak et al., 2003) and on the need for a relatively simple central visual 

structure with interesting, complex response properties that can be isolated from cortical 

influences (Rhoades and Chalupa, 1978b).  All of the procedures used on animals met standards 

of humane care developed by the National Institutes of Health and were approved by the 

Institutional Animal Care and Use Committee. 

 

a)  Rearing conditions 

Syrian hamsters were obtained from Charles River Laboratories (Wilmington, MA) or 

bred in house.  Normal hamsters were kept on a 14h/10h light/dark cycle.  Dark-reared (DR) 

hamsters were maintained in a light-tight, dark room from before birth and exposed only to a thin 

beam of dim red light [Philips 25W red A-type bulb #814546, not visible to Syrian hamsters 

(Huhman and Albers, 1994)] during brief, daily caretaker visits.  Experimental groups used in 

this study are as follows (Figure 3.1): 1a) animals reared in a normal light/dark cycle, or b) 

reared in complete darkness from birth until the day of recording;  2) animals reared in light until 

either P60 or P80 and then moved to a darkroom to test whether late dark rearing can lead to 

enlarged RFs; 3) animals reared in darkness until P60, P93 or P130 and moved to light 

afterwards, to test whether late visual experience may prevent or reverse the loss of RF 

refinement in the SC of DR animals; and 4) animals that were exposed to light for 13, 22, or 32 

days starting at P8 and then returned to the dark to test the existence of a time window when 
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visual experience is necessary to prevent the loss of RF refinement by dark rearing.  All were 

acute preparations from animals that were P60 or older as indicated. 

  

b)  Surgical procedures 

Animals were prepared for terminal electrophysiological recordings as described 

previously (Pallas and Finlay, 1989; Huang and Pallas, 2001).  Each animal was anesthetized 

with urethane (0.7 g/ml; 0.3ml/100g body weight in 4 i.p. aliquots at 20-30 min intervals), an 

anesthetic that has minimal effect on subcortical neurotransmission (Maggi and Meli, 1986).  

The SC was surgically exposed by bilateral aspiration of the visual cortex.  Removal of cortex 

has no effect on SC neuron receptive field properties in hamsters, except for a loss of direction 

tuning (Rhoades and Chalupa, 1978b).  The brain was kept covered with sterile saline solution, 

and the eye was protected by a custom designed, plano contact lens during the experiment.  In 

most of the animals, an endotracheal tube was placed in order to facilitate respiration.  The 

animal was placed in a stereotaxic device and the conjunctivum was stabilized with 6-0 silk 

suture to prevent movement of the contralateral eye (Pallas and Finlay, 1989).  Anesthesia level 

was periodically monitored throughout the experiments by checking withdrawal reflexes, and 

supplemental doses of urethane were given if needed.  

 

c)  Electrophysiology  

Teflon®-coated tungsten electrodes (1-2 MΩ, FHC, Bowdoinham, ME) were used for 

extracellular recording of single neurons within 200 µm of the right SC’s surface to ensure that 

all recorded units were contained in the stratum griseum superficiale (SGS, the retinorecipient 

layer).  Receptive field (RF) diameters (nasal to temporal) of single neurons were plotted by 
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hand on a translucent hemisphere fixed 30 cm from the eye, with the center of the hemisphere 

aligned with the optic disk.  Single units were electrically isolated by shape and amplitude of 

action potentials in response to stimulation with a penlight.  Only neurons located in the rostral  

SC, representing frontal visual fields, were considered for determining RF size, in order to be 

consistent with our previous studies and to provide a uniform population of cells across 

experimental groups. 

 

4.  Results 

a)  Dark rearing after RFs have refined does not affect RF size 

We reported in our previous study that RF refinement in the SC occurs by two months of 

age (P60) regardless of whether visual stimulation occurs, and that this refinement is 

subsequently lost in animals that are continuously dark-reared from birth into adulthood 

(Carrasco et al., 2005).  The goal of the current study was to determine whether and when 

exposure to light could prevent or reverse this loss of refinement.  Our previous results suggest 

that maintenance of refined, small RFs is dependent on visual experience during adulthood.  This 

led to the prediction that late dark rearing, after RFs have refined, would lead to a similar loss of 

refinement in adulthood as is produced by prolonged dark rearing.  Here, we provide evidence 

contrary to this prediction; late dark rearing did not lead to enlarged RFs.  We dark-reared P60 or 

P80 animals up to P198 and P360 days of age, respectively (Fig. 3.2).  These animals were 

moved from a normal 14 light/10 dark environment to a darkroom and were maintained in the 

dark for four to nine months.  We did not include a group dark-reared from P60 for 9 months 

because there was no difference in RF size at any age or treatment beyond P60.  We found that 

RFs from single SC units were not significantly different in diameter between the late DR 
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hamsters and normal adult hamsters (normal adult: 19.4 ± 0.31º diameter, n=92; DR at P60: 18.9 

± 0.31º, n=115; DR at P80: 19.5 ± 0.34º, n=72; mean ± SEM; P=0.18, One Way Analysis 

of Variance on Ranks).  This result is surprising because the deprivation occurred at the same 

developmental stage when RF enlargement occurred in animals reared in the dark from birth.  

These results support the hypothesis that visual experience up to the age when RFs have refined 

in the SC prevents any later loss of RF maintenance that might result from subsequent visual 

deprivation.  

 

b)  Visual experience after RFs have refined preserves the refinement 

We next asked whether late visual experience could prevent the RF enlargement that 

occurs in long-term dark-reared hamsters.  We hypothesized that, although normal visual 

experience up to the age at which RFs have refined prevents subsequent dark-induced plasticity 

of RFs (see above), dark rearing could make RFs susceptible to late visual experience.  To test 

this hypothesis, we dark-reared animals from birth up to P60, P93 or P130, and exposed them to 

normal visual experience thereafter (Fig. 3.3).  Receptive fields of hamsters dark-reared from 

birth have a normal adult size by P60, start enlarging by P90, and have further enlarged by P130 

(Carrasco et al., 2005).  We found that when animals were dark-reared until P60 and then 

exposed to normal visual experience thereafter, RFs did not get any larger and were not 

significantly different in size from RFs of normal adult animals (Fig. 3.3, normal adult: 19.4 ± 

0.31º, n=92; DR until P60: 18.7 ± 0.33, n=58, P>0.05, One Way ANOVA on Ranks).  Thus, 

visual experience commencing at P60 in DR animals, before loss of RF refinement has occurred, 

did prevent dark-induced RF enlargement, but light exposure after P90, when RFs have enlarged, 
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did not.  This result argues against the idea that the visual deprivation prolongs a critical period 

of susceptibility of the SC to the influences of light. 

 

c)  Visual experience after RFs have refined cannot reverse loss of refinement 

In the next set of experiments, we addressed whether visual experience after loss of 

refinement could reverse the detrimental effects of dark rearing up to P90.  Thus, animals were 

dark-reared until P93 or P130, after which they were exposed to a normal light cycle.  We found 

that these animals presented enlarged RFs even after five months of normal visual experience.  

Their RFs were not significantly different from those of adult hamsters that were dark-reared 

from birth until the day of recording, but remained significantly larger than those of normal 

adults (Fig. 3.3, normal adult: 19.4 ± 0.31º, n=92; DR until P93: 28.2 ± 0.78º, n=46; DR until 

P130: 27.9 ± 0.68º, n=99; DR >P80: 30.3 ± 1.1º, n=50, P<0.05, One Way ANOVA on Ranks).  

The experiments described above show that visual experience maintains RFs in their 

refined state, but cannot reverse the loss of RF refinement produced by long-term dark rearing.  

Additionally, visual deprivation starting at P60 does not lead to loss of RF refinement.  These 

results, taken together, show that visual experience just after RFs have refined can prevent loss 

of refinement in hamster SC, but cannot reverse it.  We next examined the time window when 

visual experience is necessary to prevent loss of RF refinement.  

 

d)  Thirty days of early visual experience protects against the effects of dark rearing 

Because our results showed that visual experience up to P60 prevents any loss of RF 

refinement that might be induced by dark rearing after P60 (Fig. 3.2), we hypothesized that there 

is a distinct time window before P60 when visual experience must occur in order to protect the 
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retinocollicular projection from deprivation-induced failure to maintain RFs.  In order to test this 

hypothesis, we recorded from the SC of adult hamsters that had either 13, 22, or 32 days of 

visual experience commencing at P8 (Fig. 3.4A).  Because hamsters open their eyes at 

approximately P12, the actual period of visual experience was slightly shorter than the period of 

light exposure, although it is possible that light could activate the retina through the eyelids prior 

to eye opening (Akerman et al., 2002).  After the period of visual experience and before P8, 

animals were maintained in the dark.  Data were obtained from animals in the middle of adult 

life (P145-P205).  Our results indicated that neither 13 nor 22 days of light exposure was 

sufficient to prevent loss of RF maintenance in light-deprived animals.  The RFs from SC 

neurons in these groups were significantly larger than those in normal adults (normal adult: 19.4 

± 0.31º, n=92; DR with 13d of light: 25.4 ± 0.73º, n=80; DR with 22d of light: 27.1 ± 0.75º, 

n=53, P<0.05, One Way ANOVA on Ranks).  However, 32 days of light exposure commencing 

at P8 did prevent deprivation-induced loss of RF refinement. The mean RF size of SC neurons in 

the 32-day light exposure group was not significantly different from that of normal adults 

(normal adult: 19.4 ± 0.31º, n=92; DR with 32d of light: 20.1 ± 0.34º, n=64, P>0.05).  Thus, dark 

rearing starting at P40 and maintained until late in adulthood did not lead to the loss of RF 

refinement seen in animals dark-reared from birth.  Furthermore, animals with 32 days of light 

exposure had very stable RF sizes, even after approximately three months of visual deprivation 

(Fig. 3.4B).  In contrast, the RFs of animals with either 13 or 22 days of light exposure were 

more variable during the analyzed time period.  These results suggest that a period of 

approximately 30 days of visual experience commencing early in postnatal development has 

long-lasting effects on SC neuronal properties; in particular, it protects neurons from later visual 

deprivation-induced loss of RF refinement.  Whether light exposure later in postnatal 
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development would have a similar effect would be an interesting question for investigation given 

the concept that plasticity decreases steadily with age after eye opening (see Hensch, 2004 for 

review). 

 

5.  Discussion 

 In a previous study we showed that long term-term dark rearing from birth, although it 

does not delay the developmental refinement of retino-SC projections, leads to a loss of 

refinement in adulthood, manifested as enlarged single unit RFs (Carrasco et al., 2005).  In this 

study we have examined the time window during which visual experience is necessary to prevent 

this visual deprivation-induced loss of RF refinement.  We have reported four main results (Fig. 

3.5).  First, we have shown that dark rearing commencing in adulthood does not interfere with 

the maintenance of previously refined RFs in the SC.  Second, the loss of refinement incurred 

after early, long-term deprivation could not be reversed by many months of subsequent visual 

experience in adulthood.  Third, enlarged RFs could be prevented in dark-reared animals if visual 

experience started at P60, when RFs have just reached their refined adult size.  Additionally, we 

found that a >3 week period of early postnatal visual experience can prevent any subsequent loss 

of RF refinement caused by dark rearing late into adulthood.  Briefer, early exposure to light (9 

or 18 days beyond eye opening) was not protective.  These results suggest that visual deprivation 

is promoting plasticity in the adult SC, but with certain limitations; visual experience during 

development can prevent the deleterious effects of deprivation, but visual experience during 

adulthood can only maintain the pre-existing state of refinement.  As a result, loss of receptive 

field refinement in adult DR animals could not be reversed with visual experience.  
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a)  Dark rearing promotes adult plasticity  

Several previous studies in visual cortex have shown that plasticity is not only age-

dependent, but also experience-dependent (see Hensch, 2004 for review).  Visual deprivation in 

cats reportedly blocks the maturation of some aspects of cortical structure and function, and 

prolongs the critical period during which visual experience-dependent changes such as ocular 

dominance plasticity can take place in visual cortex (Cynader and Mitchell, 1980; Cynader, 1983; 

Mower et al., 1985).  Something different is occurring in the SC, as seen here and in our previous 

study (Carrasco et al., 2005).  Rather than causing the circuitry to remain suspended in a juvenile 

state, visual deprivation neither prevents nor delays normal maturation of RF size in the SC.  A 

previous study in ferret lateral geniculate nucleus (LGN) has shown similarly that visually-driven 

activity is necessary to maintain LGN lamination (Chapman, 2000), suggesting that other 

subcortical visual areas also depend on vision for maintenance of at least some of their properties.  

In addition, a handful of studies on cat visual cortex have similarly suggested that visual 

deprivation causes a loss of mature properties rather than a failure to attain maturity in neurons 

of the visual cortex (Buisseret and Imbert, 1975; Fregnac and Imbert, 1978).  More recent 

findings in ferrets, a species born earlier in development than cats, provide evidence for an 

activity-independent origin of ocular dominance columns (Crowley and Katz, 1999; Crowley and 

Katz, 2000; Crair et al., 2001), further supporting the idea that light exposure may promote 

maintenance rather than normal formation of visual cortical circuits.  It would be interesting to 

reexamine the earlier work with more frequent sampling of postnatal time points and determine 

whether or not dark rearing has different effects in cortical versus subcortical visual areas or 

whether there may be species differences rather than or in addition to regional differences. 
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In our study the refined connections in the long-term DR animals were vulnerable to 

continued deprivation in adulthood, despite exposure to spontaneous retinal activity during 

development.  Although our results do not reveal what the nature of the vulnerability is, it is 

apparent that non-visual retinal activity is insufficient to stabilize RFs in a fully mature state.  

Spontaneous activity is low in SC compared to visual cortex.  Without light-driven activity then, 

there is substantially less activation of the SC.  The quantity of activity is important in 

maturation of LGN (Stellwagen and Shatz, 2002; Huberman et al., 2003), and may be critical in 

other subcortical visual regions as well.    

Our results demonstrate that adult brain plasticity can be influenced by the previous 

rearing conditions of the animal.  Similar findings have been reported in visual cortex.  Recovery 

of visual cortical responses in the deprived eye after monocular deprivation (MD) has been 

shown to occur after the critical period for MD in ferrets if the eye was exposed to light before 

the deprivation (Liao et al., 2004).  In mice, a transient period of monocular deprivation renders 

the visual cortex susceptible to monocular deprivation in adulthood (He et al., 2006; Hofer et al., 

2006).  In this study we have shown that long-term dark rearing also elicits late brain plasticity in 

the SC, but the adult plasticity can be prevented by providing 30 days of normal sensory input 

during development.  Thus, our results emphasize the role of early sensory experience in 

preventing detrimental adult brain plasticity that could lead to impaired visual acuity.    

 

b)  Light exposure in adulthood can stabilize pre-existing levels of RF refinement 

 Our finding that visual experience from P60 onward prevented enlargement of single SC 

neuron RFs, even if animals were previously reared in the dark, suggests that the early 

deprivation allows the SC to be modified by visual experience in adulthood.  The opposite does 
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not occur, that is, dark rearing starting at P60 does not produce enlarged RFs.  Thus, visual 

experience starting at P60 can prevent deprivation-induced loss of RF refinement, but dark 

rearing starting at P60 cannot reverse the effect of early visual experience on RFs.  These results 

may indicate that dark rearing allows SC neurons to remain susceptible to changes in visual 

experience for a longer period of time than normal, despite the fact that the RFs refine on 

schedule.  Alternatively, the deprivation may reopen a critical period for experience-dependent 

plasticity that had previously closed.  Our results also showed that the loss of RF refinement 

could not be reversed, even with several months of visual experience, if animals were dark-

reared until P90 or later.  This suggests that there is a restricted period during which visual 

experience can protect RFs.  Generally the term ‘critical period’ is reserved for plasticity that 

occurs during development, but in this case the loss of RF refinement does not occur until after 

sexual maturity.  Exposure to light in adulthood, which can prevent loss of refinement if it 

commences at P60, may either be stabilizing the synapses or preventing them from being further 

destabilized.  The stability of the synapses could be probed by dark rearing animals until P60, 

followed by light exposure, then retesting with another period of dark rearing.  If synapses are 

stabilized by the light exposure, then the second deprivation should have no effect. 

      

c)  Early limited visual experience has long lasting protective effects on SC properties  

 We have stated above that visual deprivation starting at P60 did not reverse the effects of 

early visual experience on RFs; that is, RFs did not enlarge.  Furthermore, our findings showed 

that a 32 day period of early visual experience has long lasting effects on RF size, preventing the 

future loss of RF refinement that would be caused by prolonged deprivation.  Receptive fields in 

the hamster SC attain their normal adult size between P50 and P60 (Carrasco et al., 2005).  Thus, 
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when dark rearing started at P40 for the animals that experienced 32 days of visual experience, 

RFs had not refined to the adult RF size, but nonetheless their refinement and maintenance 

occurred as usual.  Our previous results show that visual experience is not necessary for the 

development of the retinocollicular projection but is necessary for its maintenance.  Interestingly, 

we have found here that visual experience protects refined RFs, through unknown mechanisms, 

even if it takes place before RFs have been completely refined.  However, 13 or 22 days of visual 

experience were not enough to protect RFs in adulthood.  This result suggests that visual 

experience has to occur in a certain amount and/or at the time when RFs are close to being 

refined in order to maintain RF refinement. 

 Although the mechanism underlying the loss of RF refinement is not currently known, 

our previous results suggest that animals dark-reared from birth until late in adulthood have 

decreased surround inhibition in the SC (Carrasco et al., 2005).  This finding is consistent with 

previous studies in developing SC of cats (Fosse et al., 1989) and in visual cortex, where it has 

been found in adult rats that dark rearing reduces benzodiazepine and muscimol binding and the 

number of GABA-immunopositive cells (Schliebs et al., 1986; Benevento et al., 1995; Gordon et 

al., 1997).  It has been suggested that GABA has a preponderant role in triggering the closure of 

the plastic state of the visual cortex and that visual experience contributes to the maturation of 

the GABA circuit (see Hensch, 2005 for review).  Thus, visual experience might prevent the 

depression of the inhibitory circuitry in the SC as it does in visual cortex.  The effects of dark 

rearing on the SC could be similar to the effects of aging on visual cortex, in which it has been 

found that GABA function is depressed and that visual function improves with GABA 

administration (Leventhal et al., 2003).  We are currently addressing this possibility and 

investigating the mechanism involved in RF maintenance in the SC.   



 

                                                                                                                                                      64 

Although decreased inhibition may account for at least part of the loss of RF refinement 

in DR animals, other possibilities also need to be taken into account.  Previous studies in visual 

cortex and SC have shown that the subunit composition of NMDA receptors is experience-

dependent (Carmignoto and Vicini, 1992; Binns and Salt, 1998b; Philpot et al., 2001).  Visual 

deprivation in neonatal rats makes NMDA currents longer by increasing the NR2B/NR2A ratio 

(Quinlan et al., 1999a).  Changes in NMDA receptor subunit composition can lead to changes in 

kinetics, which in turn might lead to changes in synaptic strength, in particular, to LTP, making 

previously silent synapses functional.  Such a scenario if it occurred in SC could lead to a 

broader activation area and thus larger receptive fields. 

 

d)  Why might SC be different from visual cortex?  

If it is the case that visual cortex is more susceptible than SC to visual experience during 

development, how could this be explained?  One interesting difference in the molecular 

underpinnings of plasticity is that expression of cpg15, a gene involved in synaptic maturation, is 

affected by experience in V1 but not LGN or SC (Lee and Nedivi, 2002).  Exploration of this and 

other activity-regulated genes may be fruitful.  Results from studying the possible mechanisms 

underlying maintenance of visual circuitry and adult plasticity in different areas of the brain will 

provide knowledge that will contribute to a broader understanding and treatment of sensory 

impairment. 
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Figure 3.1. Experimental groups: 1) animals reared in a normal light/dark cycle a) or reared in 

complete darkness from birth until the day of recording b); 2) animals reared in light until 

either P60 or P80 and then moved to a darkroom to test whether late dark rearing can lead to 

enlarged RFs; 3) animals reared in dark until P60, P93 or P130 and moved to light afterwards, 

to test whether late visual experience may prevent or reverse the loss of RF refinement in the 

SC of DR animals; and 4) animals that were exposed to light for 13, 22, or 32 days starting at 

P8 and were reared in the dark before and after that period to test the existence of a time 

window when visual experience is necessary to prevent the loss of RF refinement by dark 

rearing. 
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Figure 3.2.  Late visual deprivation does not affect RF maintenance. Animals were dark-

reared commencing at either P60 or P80.  Receptive fields from animals dark-reared at P60 

were obtained when animals reached P123-P198. Receptive fields from animals dark-reared 

at P80 were obtained at P224-P360. Neither of the experimental groups were different from 

the normal adult group (normal adult: 19.4 ± 0.31º, n=92; DR at P60: 18.9 ± 0.31º, n=115; 

DR at P80: 19.5 ± 0.34º, n=72; mean ± SEM; P=0.18 One Way ANOVA on Ranks).  The 

label on the x-axis denotes the age of the animal in postnatal days on the day of recording.  

Numbers inside bars show the number of single units recorded in each group. 
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Figure 3.3.  Late visual experience can prevent but cannot reverse the effects of long term 

dark rearing. Animals were dark-reared until P60, P93 or P130 and exposed to normal visual 

experience thereafter.  Late visual experience prevented the loss of RF refinement in animals 

dark-reared until P60 (normal adult: 19.4 ± 0.31º, n=92; DR until P60: 18.7 ± 0.33, n=58, 

P>0.05, One Way ANOVA on Ranks), however it did not reverse loss of RF refinement in 

animals dark-reared until P93 or P130 (DR until P93: 28.2 ± 0.78º, n=46; DR until P130: 27.9 

± 0.68º, n=99; DR >P80: 30.3 ± 1.1º, n=50, P<0.05, One Way ANOVA on Ranks).  Labels on 

the x-axis denote the postnatal day on the day of recording.  Numbers inside bars are number 

of single units. * denotes significant difference (<0.05) compared to the normal adult group. 
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Figure 3.4.  A 32 days period of visual experience in early life prevents the effects of long 

term dark rearing.  Animals were exposed to light at P8 lasting 13, 22 or 32 days.  A) 

Receptive field size from both the 13 and the 22 days of light exposure groups were 

significant different from those of normal adult animals (normal adult: 19.4 ± 0.31º, n=92; DR 

with 13d of light: 25.4 ± 0.73º, n=80; DR with 22d of light: 27.1 ± 0.75º, n=53, P<0.05, One 

Way ANOVA on Ranks).  Receptive field size of units in animals with 32 days of light 

exposure were not different from those of normal adults (DR with 32d of light: 20.1 ± 0.34º, 

n=64, P>0.05).  Label on the x-axis denote the postnatal day on the day of recording.  

Numbers inside the bars are number of single units.  *indicates significant difference 

compared to normal adult group. B) Data from animals with 13, 22 or 32 days of visual 

experience are shown as RF diameter vs. days between the end of visual experience and the 

day of recording, that is, days in the dark after the visual experience period. Data points (mall 

circles) are represented as a scatter plot with mean values (large circles) ± SEM. 
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Figure 3.5.  Summary of results.  Different schedules of visual experience lead to either 

refined RFs or RFs that have lost their refinement, as indicated with the size of the circles on 

the right.  1) a) Visual experience throughout the lifespan leads to refined RFs by P60; b) 

Dark rearing from birth leads to refined RFs by P60, but RFs lose refinement by P90; 2) 

Visual experience until P60 protects against dark-induced loss of RF refinement; 3) a) Visual 

experience commencing at P60 after dark rearing from birth prevents the loss of RF 

refinement; b) Visual experience commencing at P90 does not reverse the loss of RF 

refinement; 4) a) 13 days of visual experience starting at P8 is not enough to prevent loss of 

RF refinement in adulthood; b) 32 days of visual experience starting at P8 is enough to 

prevent loss of RF refinement that would occur in adulthood as a result of dark rearing. 
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CHAPTER 4:  Inhibitory plasticity contributes to deprivation-induced loss of refinement  

in adult superior colliculus 

1.  Abstract 
 The patterning of sensory pathways relies on activity-dependent and -independent factors. 

Increasing evidence shows that sensory experience is necessary for maintenance or plasticity of 

brain properties but not initial patterning. We have investigated the role of visual experience in 

development and plasticity of the retinocollicular pathway of an altricial rodent, the Syrian 

hamster. We reported previously that visual receptive field (RF) refinement in superior colliculus 

(SC) occurs with the same time course in dark-reared (DR) as in normally-reared hamsters, but 

RFs in DR animals become unrefined in adulthood.  Here we provide support for the hypothesis 

that this failure to maintain refined RFs into adulthood is related to a decreased contribution of 

GABAergic inhibition in the SC of DR animals.  Iontophoretic application of gabazine, a 

GABAA receptor antagonist, or muscimol, a GABAA receptor agonist, had less of an effect on 

excitability or RF size of SC neurons in adult DR animals with enlarged RFs than in normal 

animals or DR animals prior to loss of RF refinement.  The percentage of GABA-

immunoreactive neurons was significantly decreased in the SC of adult DR animals compared to 

normal animals.  These results suggest that neurons in adult DR hamsters have a weaker 

inhibitory surround, which would contribute to the visual deprivation-induced enlargement of 

RFs in adult DR animals. Changes in inhibitory circuitry could occur through a homeostatic 

process that compensates for the lack of excitatory drive by a generalized depression of 

inhibition.  Our results argue that visually-driven activity is necessary to maintain the inhibitory 

circuitry intrinsic to the SC and to protect against the consequences of visual deprivation.  These 
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findings provide relevant insights into inhibitory plasticity and the role of sensory experience in 

the maintenance of neuronal properties. 

 

2.  Introduction 

The way in which the brain responds to sensory experience during different stages of life 

is not fully understood.  Specifically, how visually-driven activity contributes to the balance 

between excitatory and inhibitory inputs as animals age remains unclear, especially in 

subcortical visual centers (Hooks and Chen, 2007).  Both spontaneous activity and visually-

driven activity contributes to the development of retinal projections into the superior colliculus 

(SC) (Rhoades and Chalupa, 1978a; Thompson and Holt, 1989; Huang and Pallas, 2001; Torborg 

and Feller, 2005; Colonnese and Constantine-Paton, 2006; Chandrasekaran et al., 2007) and 

maintenance of the receptive field properties of LGN (Chapman, 2000; Hooks and Chen, 2008) 

and SC neurons (Carrasco et al., 2005).  Our previous studies have shown that the receptive 

fields (RFs) of SC neurons refine normally in the absence of visual experience by postnatal day 

(P) 60, but they start losing their refinement and thus enlarging their RFs by P90 if deprivation 

continues (Carrasco et al., 2005).  A period of about 30 days of visual experience early in life is 

sufficient to forestall the RF enlargement produced by long-term dark-rearing (Carrasco and 

Pallas, 2006).  Our previous findings point out the importance of early visual experience for 

protecting neuronal circuits in the SC against the detrimental effects of sensory deprivation later 

in life, but did not address how this protection is conferred.  We report here on our new findings 

regarding a possible mechanism for RF enlargement that suggest how early visual experience 

ensures the future maintenance of RFs in the adult SC.   
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a)  The role of visual experience in the development of sensory systems 

Visual experience plays a critical part in brain development and plasticity in several 

model systems.  In the barn owl’s midbrain, visual experience plays a fundamental role in 

normal development of the auditory map of space in the inferior colliculus and in its 

reconfiguration after prism rearing (Knudsen, 2002).  In visual cortex, dark rearing delays the 

critical period for monocular deprivation and maintains the cortex in an apparently immature 

state (Blakemore et al., 1978; Mower et al., 1981; Mower et al., 1985).  In addition, dark-rearing 

prolongs the critical period in visual cortex during which shifts in ocular dominance columns can 

be induced by monocular deprivation (Mower et al., 1985; Mower and Christen, 1985), as well 

as the critical period for LTP induction in visual cortex (Kirkwood et al., 1995).  Understanding 

the mechanism by which visual experience alters neuronal circuits could shed light on general 

mechanisms involved in brain plasticity. 

 

b)  The role of visual experience in the modulation of glutamatergic and GABAergic 

circuitry 

Much of the previous work on visual deprivation has focused on alterations of 

glutamatergic synapses, specifically the composition of NMDARs.  In particular, in visual cortex 

and retina, visual deprivation alters the glutamatergic circuit by modifying the subunit 

composition of NMDA receptors and therefore channel open time (Quinlan et al., 1999b; Chen et 

al., 2000a; Philpot et al., 2001; Xue and Cooper, 2001; Tongiorgi et al., 2003).  Visual 

deprivation decreases the number of NR2A subunits in all visual cortical layers, producing as a 

consequence a relatively higher proportion of NR2B subunits, which has the effect of prolonging 

currents through NMDARs.  However, visual deprivation also alters the inhibitory GABAergic 
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circuitry.  Dark-rearing weakens lateral inhibition (Kasamatsu et al., 1998), decreases GABA 

immunoreactivity (Hendry and Jones, 1986),  and changes the subunit composition of GABAA 

receptors (Chen et al., 2001) in visual cortex.  It also prevents the normal developmental increase 

in GABAergic inputs converging on neurons in layer II/III (Choi et al., 2002).  In the retina, 

visual deprivation decreases GABA immunoreactivity and the expression of GAD65 and 

GAD67 proteins (Lee et al., 2006).  Because of these effects and because RF enlargement could 

result from a loss of lateral inhibition, we hypothesized that the loss of refinement in SC neurons 

in adult dark-reared hamsters results from a loss of inhibition. 

 

c)  Role of inhibition in visual receptive field properties 

Visual deprivation-induced changes in inhibitory circuitry may provide particular insight 

into neural plasticity because of the important role of inhibition in regulating neuronal properties.  

For example, in visual cortex, GABAergic circuitry is involved in construction of spatiotemporal 

receptive field properties, including orientation selectivity and the substructure of receptive fields 

(Sillito, 1974, 1975; Wolf et al., 1986; Allison et al., 1996; Pernberg et al., 1998).  Meanwhile, in 

the SC, a brain area with a relatively high number of GABAergic interneurons (Okada, 1974; 

Fosse et al., 1989; Mize, 1992; Okada, 1992), inhibitory inputs provide surround inhibition 

(Albus et al., 1991; Binns and Salt, 1997b), response habituation (Binns and Salt, 1997b), and 

stimulus size and velocity tuning (Razak and Pallas, 2005, 2006).  Although the SC contains both 

metabotropic and ionotropic GABA receptors, visual response properties seem to depend mainly 

on ionotropic GABAA receptors (Binns and Salt, 1997b).  Given the role of GABA in the SC, we 

hypothesized that changes in the GABAergic intracollicular circuitry induced by dark-rearing 

would affect neuronal properties.  Furthermore, we predicted that a weaker contribution of 
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GABA in the SC of DR hamsters could be a mechanism by which RFs lose refinement in long-

term DR animals.  In this study, we tested these predictions pharmacologically, using 

iontophoretic injection of gabazine, a GABAA receptor antagonist, and muscimol, a GABAA 

receptor agonist, in the SC while performing extracellular recordings.  We compared the effect of 

gabazine and muscimol on RF size and responsiveness of neurons in normally reared and DR 

animals.  In addition, we performed GABA immunohistochemistry to test the hypothesis that the 

loss of RF refinement results from differences in the number of GABA immunoreactive neurons 

between normal and DR animals.  Our findings suggest that neurons of long-term DR hamsters 

have a weaker inhibitory surround, at least in part resulting from a decline in the number of 

GABAergic neurons in SC, and further suggest that a depression of the intracollicular inhibitory 

circuitry contributes to the failure to maintain refined RFs in adult DR animals.  These results are 

relevant when considering environmental influences on brain plasticity and the role of sensory 

experience in maintaining the excitatory/inhibitory balance in the brain. 

 
 

3.  Methods 
A total of 38 Syrian hamsters (Mesocricetus auratus) of different postnatal ages between 

P55 and P234 were used.  All procedures used on animals met or exceeded standards of humane 

care developed by the National Institutes of Health and were approved by the Institutional 

Animal Care and Use Committee. 
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a)  Experimental groups and electrophysiology preparation and procedure 

i)  Rearing conditions and experimental groups 

Syrian hamsters were obtained from Charles River Laboratories (Wilmington, MA) or 

bred in house.  Normal hamsters were kept on a 14h/10h light/dark cycle.  Dark-reared (DR) 

hamsters were maintained in a light tight darkroom from before birth and exposed only to a thin 

beam of dim red light ((Philips 25W red A-type bulb #814546) not visible to Syrian hamsters 

(Huhman and Albers, 1994)) during brief, daily caretaker visits.  Experimental groups included 

in this study were:  1) normal adult animals, aged P62-P217, reared in a light/dark cycle; 2) P55-

P65 dark-reared (DR) animals, reared in the dark from birth until the day of the experiment; and 

3)  P138-P234 dark-reared animals, reared in the dark from birth until the day of the experiment.  

These age groups were chosen based on the timing of RF refinement and loss of refinement in 

DR animals.  Receptive fields are refined at ~P60 in normally-reared and dark-reared animals 

and they lose refinement after P90 in DR animals (Carrasco et al., 2005).  

 

ii)  Surgery 

Animals were prepared for terminal electrophysiological recordings in the superficial 

layers of the right SC as described previously (Carrasco et al., 2005).  Each animal was 

anesthetized with urethane (0.7 g/ml; 0.3ml/100g body weight in 4 i.p. aliquots at 20-30 min 

intervals), an anesthetic that has minimal effect on subcortical neurotransmission and 

approximately equivalent effects on different neurotransmitter systems (Maggi and Meli, 1986; 

Hara and Harris, 2002; Sceniak and Maciver, 2006).  The right SC was surgically exposed by 

bilateral aspiration of the visual cortex.  Removal of cortex has no effect on SC neuron receptive 

field properties in hamsters, except for a loss of direction tuning (Chalupa et al., 1978; see also 
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Razak and Pallas, 2005).  The brain was kept covered with sterile saline solution, and the left eye 

was protected by a custom designed, plano contact lens during the experiment (Conforma, 

Norfolk, VA).  In most of the animals, an endotracheal tube was inserted in order to facilitate 

respiration.  The animal was placed in a stereotaxic device and the conjunctivum of the left eye 

was stabilized with 6-0 silk suture to prevent movement (Pallas and Finlay, 1989).  Anesthesia 

level was periodically monitored throughout the experiments by checking withdrawal reflexes, 

and supplemental ¼ doses of urethane were given if needed.  

 

iii)  Visual stimulation 

 Visual stimulation was delivered monocularly (usually to the left eye), because there is a 

strong contralateral dominance of visual inputs to the retino-recipient layers of the hamster SC 

(Tiao and Blakemore, 1976; Pallas and Finlay, 1989).  A Sergeant Pepper graphics board 

(Number Nine, Cambridge, MA) was used in conjunction with “STIM” software (developed by 

K. Christian at Rockefeller University) to generate stationary and moving visual stimuli.  Data 

were acquired by CED 1401 hardware and processed by Spike 2 software (Cambridge Electronic 

Design, Cambridge, UK).  

 Electrode penetrations were made perpendicular to the surface of the SC to locate 

visually responsive cells in the retino-recipient superficial gray layer (<200 µm depth).  Edges 

and location of the excitatory receptive fields were determined with a penlight.  A 14-inch 

computer display monitor was then placed 40 cm in front of the hamster’s eye such that the 

center of the neuron’s excitatory receptive field coincided with the center of the monitor.  The 

stimulus consisted of a light spot of 1 degree diameter moving from the top to the bottom of the 

monitor screen, from temporal to nasal, with an interstimulus interval of 5s to prevent 
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habituation.  The choice of stimulus velocity used, 10o/sec, was guided by previous results 

showing that the vast majority of hamster SC neurons in the superficial gray layer prefer for 

slowly moving spots of light (Tiao and Blakemore, 1976; Stein and Dixon, 1979; Pallas and 

Finlay, 1989; Razak et al., 2003).  Each stimulus set was repeated 4 to 12 times. 

   

iv)  Electrodes, recording and iontophoresis 

To determine the contribution of inhibition through GABAA receptors in the different 

experimental groups, responses were quantified during control conditions, during gabazine or 

muscimol application, and during recovery from drug treatment.  Multi-barreled micropipettes 

were used for the extracellular recording and iontophoretic drug application.  The pipettes were 

broken under microscope control to a final outer tip diameter of about 4-10 µm (1-3 µm per 

barrel).  The recording barrel contained a solution of 1 M NaCl. The remaining electrode barrels 

were filled with muscimol or gabazine (Sigma-Aldrich).  The drug solutions were prepared at 10 

mM for gabazine and 5 mM for muscimol (Celada et al., 1999; Waroux et al., 2005; Windels and 

Kiyatkin, 2006).  All drug solutions were adjusted to pH 3.7 with 0.1 M HCl and thus were 

positively charged.  An iontophoresis device (Cygnus Technology, Inc, Delaware Water Gap, PA) 

was used for drug administration.  Negative retaining currents of 10 nA were applied to drug 

barrels not in use.  Muscimol and gabazine were ejected using positive currents at 5 nA for 

muscimol and 15-20 nA for 10 mM gabazine.  In each penetration, only the first neuron 

encountered was isolated, which in combination with the monitoring of electrode depth ensured 

that recorded neurons were from the retinorecipient, superficial gray layer.  

Application of both muscimol and gabazine was maintained throughout the period when 

their effects were being tested.  Typically this lasted 20-30 min for each drug.  The changes in 
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neuronal excitability due to maintained drug application took considerable time to reverse.  It 

was possible, however, to obtain data concerning recovery from the effects of the drugs in most 

neurons.   

 

v)  Data analysis   

 We carried out an off-line data analysis by using Spike2 software and we isolated single 

units in according to their waveform.  We determined the effect of the drugs by quantifying the 

change in RF size and the number of spikes of each single unit under control and drug 

application conditions.  Receptive field center was obtained by determining the spatial location 

producing the highest number of spikes (peak response) obtained for a single stimulus within 

each trial.  Stimulus locations generating spike numbers less than 20% of the peak response were 

defined as no response and were considered to be outside of the RF. 

 

b)  Immunohistochemistry 

i)  Rearing conditions and experimental groups 

 Two experimental groups were used in this part of the study: 1) P91-218 normal adult 

hamsters (n = 5), reared in a light/dark cycle, and 2) P141-153 long-term DR hamsters (n = 5), 

reared in the dark since birth.  These age groups were chosen because RFs in the SC become 

refined at approximately P60 and long-term DR animals lose that refinement after P90. 

 

ii)  Tissue preparation 

 Animals were euthanized with a lethal overdose of sodium pentobarbital (150 mg/kg) and 

were perfused through the heart with 0.1 M phosphate buffered saline (PBS) adjusted to pH 7.4 
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with NaOH, followed by 4% paraformaldehyde in PBS containing 0.2% of glutaraldehyde, at pH 

7.4.  Brains were removed and stored at 4°C in the same fixative for 48-72 h and then transferred 

to 30% sucrose in 0.1M phosphate buffer for cryoprotection.  Brains were sectioned frozen in the 

coronal plane at 50 µm for Nissl staining and at 30 µm for GABA immunohistochemistry.   

 

iii)  Immunohistochemistry procedure 

 Sections were processed free-floating using the avidin-biotin method for localization of 

antigens with peroxidase (Vector, Burlingame, CA).  They were first rinsed in 0.1 M PBS at pH 

7.4 with 0.02% sodium azide (PBS/A) and then treated for 1h in 0.34% L-lysine and 0.05% 

sodium periodate (NaIO4) to reduce free aldehydes.  Blocking of nonspecific staining was 

achieved by incubating the sections in 3% normal goat serum (NGS) in PBS/A for 1h at room 

temperature.  Incubation with the primary antibody (mouse anti-GABA from MP Biomedicals, 

Solon, OH, diluted with PBS/A plus 3% NGS at 1:1,000) in NGS was done for 48 h at 4°C under 

constant agitation. After rinsing in PBS/A, sections were incubated in the secondary antibody 

solution for 2h (biotinylated goat anti-mouse in PBS/A plus 3% NGS, Vector Labs, Burlingame, 

CA at a dilution of 1:200), washed in PBS, and then incubated in ABC solution according to 

package directions (Vectastain Elite ABC kit, Vector, Burlingame, CA) for 1h.  Sodium azide 

was left out of the buffer after incubation in the secondary antibody.  The peroxidase reaction 

was performed with 0.01% diaminobenzidine and 0.004% hydrogen peroxide and intensified by 

adding 1% nickel ammonium sulfate and 0.34% imidazole.  Sections were mounted from saline, 

dehydrated, and coverslipped with Permount. 
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iv)  Quantitative analysis 

 We utilized Neurolucida (MicroBrightfield, Burlington, VT) to perform quantitative 

analysis of immunolabeled neurons.  Three 30 µm coronal sections per animal located at 

approximately 25, 50 and 75% of the rostrocaudal extent of the SC were selected for counting.  

A 300 µm wide rectangular boundary was drawn in the mediolateral center of the right SC to 

define the area within which neurons would be counted.  We counted only GABAergic neurons 

located in the superficial gray layer of the SC, defined according to adjacent Nissl-stained 

sections.  All of the GABA immunopositive neurons found within the defined area were counted.  

We obtained the total number of neurons from 50 µm Nissl sections by counting neurons within 

every 4th bin of a 25 µm x 25 µm grid and multiplying by 4 (Pallas and Finlay, 1991; Gao et al., 

1999).  We did not account for differences in section thickness between the tissue treated for 

immunohistochemistry (30 um) and Nissl substance (50 um) because the antibody does not 

penetrate the sections completely (see Gao et al., 1999).  To determine whether there were any 

differences in soma size between normal and experimental groups that might bias the counts, we 

measured soma diameter (average of the widest and narrowest diameters) of 100 GABA-ir SC 

neurons in each experimental group and compared them using a Student’s t-test.   

 

4.  Results 

 We investigated the mechanism underlying the loss of refinement of RFs in the SC of 

long-term DR hamsters by examining the influence of GABAergic inputs, using 

electrophysiological and immunohistochemical methods.  We used three experimental groups:  1) 

normal adult animals reared in a light/dark cycle; 2) P55-P65 DR animals, which have refined 

RFs; 3) >P90 (P100-P250) DR animals, which have enlarged RFs.  We hypothesized that a 
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weaker GABAergic circuit in the SC exists in >P90 DR animals, possibly contributing to the loss 

of RF refinement. 

 

a)  The effect of GABAA receptor blockade on visual responsiveness is reduced after 

prolonged dark-rearing 

In order to test the hypothesis that GABAergic influence is decreased in the SC of long-

term DR hamsters, we tested the effect of gabazine, a competitive GABAA receptor antagonist, 

on the responsiveness of neurons in the SC of our different experimental groups.  Previous 

studies suggest that GABAA receptors are selectively involved in surround inhibition of RFs in 

the SC (Binns and Salt, 1997b), visual cortex, and retina  (Sato et al., 1996; Pernberg et al., 1998; 

Flores-Herr et al., 2001), as compared to GABAB or GABAC receptors.  As expected, gabazine 

increased the number of spikes recorded in response to visual stimulation from single units in the 

normal group.  The mean number of spikes per visual stimulation series in the normal adult 

group increased from 48.83 ± 6.18 to 112.1 ± 21.4 (mean ± S.E.M., n = 32) under iontophoretic 

application of gabazine.  Those values were significantly higher than normal (p = 0.016, Rank 

Sum Test) and are in accordance with a previous study on somatosensory cortex that examined 

the effect of similar concentrations of gabazine on neuronal responsiveness (Foeller et al., 2005).  

The ratio between the number of spikes under the influence of gabazine and the number of spikes 

without any drug application was 2.10 ± 0.15 for the same group of neurons from normal adults 

(Fig. 4.1).  For the P55-65 DR group, the number of spikes of single units in response to visual 

stimulation was significantly increased by gabazine application from 36.1 ± 3.83 to 69.3 ± 6.51, 

n = 30 (p < 0.001, Rank Sum Test).  The ratio between the number of spikes with gabazine and 

without was 2.27 ± 0.26 for this group, wich was not significantly different from the normal 
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group.  In sharp contrast, there was no significant difference in single unit responsiveness to 

visual stimulation before and after gabazine application in the >P90 DR group.  The values 

obtained for that group were 30.98 ± 3.80 spikes without gabazine and 40.12 ± 9.01 spikes with 

gabazine (n = 27, p = 0.71, Rank Sum Test), and the ratio was 1.24 ± 0.10.  There were 

significant differences between the >P90 DR group and both the normal and the P55-65 DR 

group in the effect of gabazine on the visual responses (p < 0.05, ANOVA on Ranks, post hoc 

Dunn’s Method).  

 

b)  The effect of GABAA receptor blockade on RF size is reduced after prolonged dark-

rearing 

 In order to test the hypothesis that GABAergic influence is decreased in the SC of long-

term DR hamsters, we examined the contribution of surround inhibition to RF size in animals 

with refined RFs and in animals whose RFs were enlarged as a consequence of long-term dark-

rearing.  We found that gabazine application enlarged RFs of single units by approximately 50% 

in normal adult animals, which is close to the magnitude of RF enlargement that we previously 

reported in long-term DR animals (Carrasco et al., 2005).  The ratio of RF size under gabazine 

application to that under control conditions in the normal group was 1.533 ± 0.0503 (n = 32) (Fig 

4.2).  In the P55-65 DR animals, whose RFs were not yet significantly different from those of 

normal adults, RF size increased on average by 41% for a gabazine/no gabazine RF size ratio of 

1.465 ± 0.0882 (n = 30), which was not significantly different from the normal group.  The long-

term DR group on the other hand, whose RFs were significantly larger than those of the other 

two experimental groups, presented only a 6% average increase in RF size after gabazine 

treatment, which was not significantly different from the RF size obtained from the same 
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neurons before gabazine application (p = 0.28, Rank Sum Test), with a ratio of 1.088 ± 0.0365 (n 

= 27).  The increase in RF size under gabazine application was significantly different between 

the long-term DR group and both the normal and P55-65 DR groups (ANOVA on Ranks, p < 

0.001, post hoc Dunn’s Method).  In summary, these results show that blockade of GABAA 

receptors increased RF size in long-term DR animals to a lesser extent than in normal animals 

and suggest that surround inhibition is decreased as a consequence of chronic visual deprivation. 

 

c)  The effect of muscimol on visual responsiveness is reduced after prolonged dark-rearing 

 As an additional test of the hypothesis that the increase in RF size in SC of the >P90 DR 

animals was due to a loss of inhibition, we tested the effect of muscimol, a GABAA receptor 

agonist, on neuronal responsiveness in the SC of the normally reared and >P90 DR groups.  The 

expectation was that application of the agonist muscimol would produce opposite effects from 

the antagonist gabazine.  Our results with muscimol were consistent with this expectation, and 

thus provide further support for the hypothesis.  Muscimol application resulted in a decreased 

responsiveness of neurons to visual stimuli in normal animals from 14.19± 2.35 to 5.52 ± 1.18 (n 

= 18), which represents a 61% decrease (Fig 4.3).  The ratio between the number of spikes with 

and without muscimol obtained during a visual stimulation trial was 0.4497 ± 0.0675.  In the 

long-term DR group, on the other hand, muscimol decreased neuronal responsiveness only by 

4%, from 28.52 ± 5.54 to 27.21 ± 6.02 (n = 16), which did not represent a significant change 

(Rank Sum Test, p = 0.624).  The ratio between the number of spikes with and without muscimol 

was 0.8995 ± 0.146 for this group.  These data show that the effect of muscimol on neuronal 

responsiveness was significantly reduced in the long-term dark-reared animals in comparison to 

normal animals (p = 0.011, Rank Sum Test). 
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d)  The effect of muscimol on RF size is reduced after prolonged dark-rearing 

 We also quantified the effect of muscimol on RF size.  As expected from the above 

results, muscimol application significantly decreased RF size in the normal group, but not in the 

long-term DR group.  The amount of reduction in RF size was 45% and 14% in the normal and 

long-term DR group, respectively.  The ratio of the RF sizes obtained with and without 

muscimol was 0.5555 ± 0.0533 (n = 17) for the normally-reared group and 0.8800 ± 0.0726 (n = 

16) for the DR group (Fig 4.4).  The effect of muscimol on these two groups was significantly 

different (p < 0.001, t-test).  Taken together, the data from these pharmacological manipulations 

suggest that alterations in the number/effectiveness of GABAA receptors occur in the SC as a 

consequence of chronic dark-rearing. 

 

e)  The proportion and density of GABA immunopositive neurons in the SC of >P90 DR 

animals is significantly lower than that in normal animals 

 To determine whether dark-rearing also affects intracollicular GABAergic circuitry 

presynaptically, we quantified the number and density of GABA-containing neurons in the SC of 

normal adult (P91-218) and long-term DR (P141-153) hamsters using an antibody to GABA 

visualized with a biotinylated secondary antibody in an ABC reaction (see Methods).  The 

superficial layers of the SC in long-term DR hamsters have a significantly lower density of 

GABA-ir neurons than in normal hamsters, by over 50% (Fig 4.5, normal: 2113 ± 301 

neurons/mm2; DR: 904 ± 130 neurons/mm2, mean ± SEM, p = 0.006, t-test).  In addition, the 

proportion of GABA-immunoreactive (-ir) neurons compared to total neurons was reduced in the 

long-term DR group compared to that in normal hamsters (Fig 4.6, p = 0.003, t-test).  GABA-ir 

neurons comprised 10% of total neurons in normal animals, but only 4% in DR animals. To test 
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the alternative hypothesis that the reduction in the proportion and density of GABA-ir neurons in 

long-term DR animals was a result of an overall decrease in neuronal density or number, or a 

smaller soma size in that group, we also quantified those parameters.  We found that visual 

deprivation did not affect the neuronal density in the superficial layers of the SC (Fig. 4.7 A, 

normal: 20,066 ± 524 total neurons/mm2; DR: 20,380 ± 898 total neurons/mm2; p = 0.771, t-test).  

Size of GABA-ir neuronal somata was not significantly different between the two groups (Fig. 

4.7 B, normal: 6.041 ± 0.11 µm, n = 100; DR: 5.846 ± 0.093 µm, n = 100, p = 0.201, t-test), and 

furthermore, the total number of neurons was not significantly different between the two 

experimental groups (normal adult: 742 ± 24.8; >P90 DR: 680 ± 21.3, p =0.097, t-test).  Taken 

together, these results support the hypothesis that long-term dark-rearing produces an increase in 

RF size in the SC as a consequence, at least in part, of a reduction in the intrinsic collicular 

inhibition. 

 

5.  Discussion   
 
 We investigated mechanisms underlying deprivation-induced plasticity in the SC of long-

term DR animals (Carrasco et al., 2005; Carrasco and Pallas, 2006).  In particular, we tested 

whether a reduction in inhibition can explain all or part of the DR-induced RF enlargement.  We 

examined the strength of the intracollicular GABAergic circuit by using electrophysiological and 

immunohistochemical methods.  We found that the effects of activating or blocking GABAA 

receptors in the SC are reduced in the long-term DR group compared to normal and that DR 

animals have a lower proportion of GABA-ir neurons compared to the normal group.  

 The SC has one of the highest concentrations of GABAergic neurons in the brain (Mize, 

1992).  Intracollicular inhibition plays an important role in some receptive field properties of 
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neurons in the SC, including velocity and size tuning (Razak and Pallas, 2005, 2006), surround 

inhibition, and habituation (Binns and Salt, 1997b).  In this study, we tested the strength of 

lateral inhibition in the SC itself by local application of the GABA antagonist gabazine and the 

GABA agonist muscimol, and showed that surround inhibition in the SC is weaker in long-term 

DR animals but not in short-term DR animals that still have refined RFs.  Moreover, our results 

suggest that the loss of RF refinement is due in large part to a decreased number of GABAA 

receptors and GABA in the SC.   

 Results from a recent study raise the possibility that changes at the retinal level are also 

involved in the loss of RF refinement with chronic visual deprivation (Lee et al., 2006).  That 

study reported that GABA immunoreactivity is decreased in the retina of P30 DR mice, raising 

the possibility that decreased lateral inhibition in the retina could also contribute to the RF 

enlargement in the SC.  Decreased inhibition in the retina could increase RF size of RGCs, which 

would in turn increase RF size of SC neurons.  Although interesting, those results do not explain 

the RF expansion after P60, however, because they observed decreased retinal inhibition much 

earlier, at P30.  Our results with gabazine and muscimol iontophoresis in SC directly showed that 

both drugs change RF size of SC neurons by about 50% up or down, respectively, in normally-

reared animals.  In contrast, gabazine and muscimol only changed RF size by +6% and -14%, 

respectively, in long-term DR animals.  Interestingly, the average increase in RF size that we 

observed in the SC of long-term DR animals corresponds to approximately a 40% expansion 

beyond normal (Carrasco et al., 2005).  Our results thus suggest that a large part of the RF 

enlargement in long-term DR animals can be explained by the changes in the GABAergic SC 

circuitry that we have reported in this study. 
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 The loss of inhibition in long-term DR animals could occur through different mechanisms 

and could manifest itself at the presynaptic level, the postsynaptic level, or both. The weak effect 

of gabazine and muscimol on neurons in the SC of long-term DR hamsters could be due to a 

reduction in the number of GABAA receptors.  Alternatively or in addition, changes in the 

subunit composition of GABA receptors could be responsible.  It has been shown that age and 

visual experience alter GABAA receptor composition in the SC and visual cortex (Chen et al., 

2001; Clark et al., 2001).  More than twenty different subunits can contribute to the pentameric 

GABAA receptor, in addition to the obligatory one, γ2 (Sieghart, 1995). Certain changes in 

receptor composition affect the receptor affinity for gabazine and muscimol (see Hevers and 

Luddens, 1998 for review; Stell and Mody, 2002).  Modulation of plasticity by changes in the 

strength of the inhibitory circuitry has been reported in visual cortex (Fagiolini and Hensch, 2000; 

Fagiolini et al., 2004).  GABAA receptors containing α1 are necessary for the expression of ocular 

dominance plasticity (Fagiolini et al., 2004) and, furthermore, the level of GABAA receptor-

mediated inhibition is proposed to control the critical period for ocular dominance plasticity in 

visual cortex (Fagiolini and Hensch, 2000).  Our study points out a similar kind of plasticity 

involving GABAA receptors.  In our study, however, we found that visual experience may affect 

GABAA receptor number, which we suggest accounts for the plasticity observed.  Further 

examination of GABA receptor composition in the SC of DR hamsters might provide more 

detailed information regarding the role of inhibition in plasticity.   

 Several previous studies have shown that neuronal networks are capable of compensating 

for alterations in their own activity (see Turrigiano, 1999 for review).  This homeostatic 

plasticity occurs in both sensory and motor systems (see Rich and Wenner, 2007 for review).  A 

handful of studies have addressed plasticity at inhibitory and excitatory synapses after treatments 
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that alter input activity (He et al., 2004; Froemke et al., 2007).  In the somatosensory system, 

where removal of sensory afferents reorganizes representation of the body surface in the 

somatosensory cortex (see Kaas, 2000 for review), this reorganization involves modulation of 

AMPA and GABAA receptors (Wellman et al., 2002; He et al., 2004).  The expression level of 

these receptors stabilizes several weeks after deafferentation, at which point RFs in the 

somatosensory cortex return to their refined size.  Their and our studies demonstrate that 

inhibition can be modulated by sensory afferents and that a balance between excitation and 

inhibition is necessary to maintain or regain a refined RF size.  In the auditory cortex of rats, 

increasing excitatory input by stimulation of subcortical afferents produces a rapid reduction of 

inhibition in the cortex, followed by increased excitation and a slow increase in inhibition 

(Froemke et al., 2007).  This latter increase in inhibition may balance the changes in excitation.  

Our results suggest that decreased neuronal activity due to the lack of visual input in DR animals 

has been balanced with decreased inhibition in the SC.  

 In the visual system, alterations in sensory input activity also regulate both excitatory and 

inhibitory synaptic strength.  Visual deprivation may cause an increase in the effectiveness of 

glutamatergic synapses in visual cortex through a decrease in NR2A subunit expression, without 

affecting NR1 or NR2B levels (Quinlan et al., 1999a; Quinlan et al., 1999b; Tongiorgi et al., 

2003).  Binding of flunitrazepam, a GABAA receptor antagonist, is decreased in the SC and LGN 

of rats reared in the dark until P25 (Schliebs et al., 1986).  The effect of dark-rearing on GABAA 

receptors observed by Schliebs et al. (1986) occurred at a much earlier age than in our study, 

thus it is possible that alterations in GABAA receptor composition occur earlier than P90 but that 

they have no effect on RF size and were not detected by measuring the effect of gabazine in our 

study.  Nevertheless, our results are in concordance with the conceptual framework of 
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homeostatic plasticity and suggest that a lack of impulse activity by visual deprivation triggers 

changes in inhibition that preserve the inhibitory/excitatory balance in the subcortical visual 

system.  The reduction in the GABA immunostaining that we found in the SC of long-term DR 

hamsters is consistent with that idea.  We do not know, however, whether visual experience 

maintains refined RFs in the SC through the pattern of activity (instructive effect), the amount of 

activity derived from sensory experience (permissive effect), or both.  

Whether the regulation of synaptic strength by neuronal activity occurs presynaptically or 

postsynaptically has been debated.  In our study, we investigated deprivation-induced changes at 

the presynaptic and postsynaptic levels in the strength of the inhibitory inputs to SC neurons.  

Our results show that GABAergic inputs are weaker in long-term DR hamsters at both levels.  

Whether a decrease in the amount of GABA present in neurons decreased or change composition 

of GABAA receptors in postsynaptic neurons, or vice versa, was not tested in our study, but 

would be interesting to examine.  Blockade of spiking activity in hippocampal cultures of 

neonatal rats decreases the density of GABAergic terminals (Hartman et al., 2006) and GABA 

transporters can be regulated by neuronal activity (Erickson et al., 2006).  On the other hand, 

many studies have demonstrated changes in both pre- and postsynaptic loci as a result of altering 

activity levels (see Rich and Wenner, 2007; and Turrigiano, 2007 for reviews).  More studies are 

needed to resolve where the sensors for altered network activity are located and how the 

compensatory synaptic changes are manifested. 

 In summary, our results offer a mechanism by which lack of visual experience can affect 

maintenance of neuronal properties in rodent visual midbrain.  Our results point to the 

importance of intrinsic collicular circuitry for construction and maintenance of neuronal response 

properties.  This study offers insight into plasticity of a subcortical visual system that could be 
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extended to other sensory systems. Moreover, it contributes to the knowledge about adult 

plasticity occurring through modulation of network inhibition.  
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Figure 4.1.  Gabazine reduces neuronal responsiveness to a greater extent in SC of normal adult 

animals or P60 DR animals than in long-term (>P90) DR animals.  (A) mean ± SEM and (B) raw 

data represent the ratio between the number of spikes per single unit, averaged over all visual 

stimulation trials under control conditions and under gabazine (20 mM, 20 nA) iontophoresis.  

The increase in neuronal responsiveness under gabazine is significantly lower in the >P90 DR 

group than in the other two experimental groups (p < 0.001, ANOVA on Ranks, post hoc Dunn’s 

Method), suggesting that deprivation reduces GABAA receptor number or effectiveness. 
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Figure 4.2. Gabazine enlarges RF size to a greater extent in normal or P60 DR animals than in 

>P90 DR animals.  (A) mean ± SEM and (B) raw data represent the ratio between the RF size of 

single units under control conditions and gabazine iontophoresis.  The effect of gabazine is 

significantly less in the >P90 DR group than in the other two experimental groups (p < 0.001, 

ANOVA on Ranks, post hoc Dunn’s Method), suggesting that long-term dark-rearing reduces 

GABAA receptor number or effectiveness. 
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Figure 4.3.  Muscimol decreases neuronal responsiveness to a lesser extent in the >P90 DR 

group than in the adult normal group.  (A) mean ± SEM and (B) raw data represent the ratio of 

the number of spikes from single SC neurons per trial of visual stimulation with iontophoretic 

injection of muscimol to that without muscimol (5 mM, 5 nA).  The effect of muscimol was 

significantly reduced in the DR group compared to the normal group (p = 0.013, Rank Sum Test), 

supporting the interpretation that long-term visual deprivation reduces the number or 

effectiveness of GABAA receptors. 
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Figure 4.4.  Muscimol decreases single unit RF size to a lesser extent in the >P90 DR group than 

in the normal adult group.  (A) mean ± SEM and (B) raw data represent the ratio of the RF size 

from single units with iontophoretic injection of muscimol to that without muscimol (5 mM, 5 

nA).  The effect of muscimol was significantly reduced in the DR group compared to the normal 

group (P = 0.003, Rank Sum Test), in agreement with the interpretation that long-term visual 

deprivation decreases the number or effectiveness of GABAA receptors in the SC. 
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Figure 4.5.  The density of GABA immunoreactive neurons is significantly lower in the SC of 

>P90 dark-reared animals compared to normal animals.  (A) Examples of Nissl staining (10x) 

and GABA immunohistochemistry (10x and 20x) from the SC of normal adults and >P90 DR 

animals B) Density of GABA-ir neurons in both experiemental groups (normal: 2113 ± 301, DR: 

904.7 ± 130, p = 0.006, t-test).  Thus there is a loss of inhibitory influence under chronic DR. 
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Figure 4.6.  Adult DR animals have a significantly lowered proportion of GABA 

immunoreactive neurons in the SC compared to normal adults.  Proportions values were: normal: 

0.104 ± 0.013, DR: 0.0443 ± 0.0047, mean ± SEM, p = 0.003, t-test, suggesting that a reduction 

in the number of GABA-containing neurons is also partially responsible for the RF enlargement 

seen in that group.  Refer to methods section to see how data were obtained. 
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Figure 4.7.  The size (A) and neuronal density (B) of immunopositive neurons in the SC of >P90 

DR animals do not differ from that in normal animals (p > 0.05, t-test).  These results refute the 

alternative hypothesis that a generalized decreased in neuron density or size explains the 

differences found in proportion (Fig 4.5) and density (Fig 4.6) of GABA-ir neurons in the SC of 

>P90 DR animals compared to normal adults.  Data represented as mean ± SEM. 
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CHAPTER 5:  Discussion 

Our results concerning the effects of dark-rearing on development and maintenance of the 

retinocollicular projection of the hamster point out the relationship between early sensory 

experience and brain plasticity later in life.  Our results provide the first example of adult 

plasticity in a subcortical visual structure.   They provide knowledge necessary to understand the 

effects of anomalous visual experience, and should be taken into account when considering 

treatments for patients with visual abnormalities.   

 

1.  Visual experience is necessary for maintenance but not refinement of receptive fields in 

the superior colliculus 

 Refinement of RFs is a necessary process that occurs during maturation of sensory 

systems.  In the visual system, refinement of receptive fields results in higher visual acuity 

(Prusky et al., 2004).  Our results show that visual experience is necessary for the maintenance of 

refinement in adulthood but not for the development of refined RFs (Carrasco et al., 2005).  This 

conclusion derives from our finding that RFs of SC neurons become refined in DR hamsters at 

the same rate and age as in light/dark reared hamsters, but they lose refinement and thus enlarge 

if the animals remain in the dark.  Unexpectedly, this loss of refinement occurs around P90, 

when hamsters are sexually mature and considered adults. Although a previous study showed 

that neuronal activity is necessary for maintenance of neuronal properties (Chapman, 2000), our 

results were unexpected because the loss of RF refinement occurred in animals that were further 

into adulthood and after RFs had attained their normal size. 
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a)  Adult plasticity in sensory systems 

 While the notion of brain plasticity in sensory systems has been studied primarily in 

juvenile systems, several studies argue that the adult and aging brain are also susceptible to 

modifications in response to experience or damage, although in a more limited fashion (see Chen 

et al., 2002; and Mahncke et al., 2006 for reviews).  A very well known example occurs in the 

somatosensory system.  Whisker trimming in adult rats leads to alterations in inhibition in the 

barrel cortex (Akhtar and Land, 1991; Fuchs and Salazar, 1998).  That brain plasticity can occur 

in adults has also been shown in the auditory and visual systems.  Adult barn owls can shift their 

midbrain sound localization map in response to distortion of visual cues by prism-rearing if they 

have had previous prism experience as juveniles (Linkenhoker and Knudsen, 2002).  In the deep 

layers of the SC of guinea pigs, the auditory map is disrupted after a period of dark-rearing in 

adulthood (Withington et al., 1994).  Thus, brain plasticity in sensory systems is not limited to 

the juvenile brain. 

 Additional examples of adult brain plasticity have been reported in the visual system.  In 

the visual cortex of adult rodents, ocular dominance can be shifted beyond the previously defined 

juvenile ‘critical period’ (Guire et al., 1999; Sawtell et al., 2003; Liao et al., 2004; Pham et al., 

2004).  Plasticity of the visual cortex occurs in adult cats within a few hours of retinal lesion 

(Chino et al., 1992).  Interestingly, reorganization of cortical receptive fields only occurs if the 

intact eye is removed, suggesting that the intact eye would compete on an activity-dependent 

basis with the lesioned eye.  Another example of adult visual system plasticity comes from a 

study on adult humans that have attained a substantial improvement of visual acuity with their 

amblyopic eyes after practicing a visual acuity task (Levi and Polat, 1996).  Although there are 

no examples of adult plasticity in subcortical visual structures, one anatomical study showed that 
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lesions to visual cortex in adult cats produce synaptic rearrangements of the retinal afferents  in 

the LGN (Kalil and Behan, 1987).  Ours is the first report of plasticity in the adult superficial SC, 

therefore offering novel insight into the effects of sensory experience later in life on a subcortical 

visual structure. 

 

b)  The role of neuronal activity in maintaining receptive field properties in the visual 

system 

 Although numerous studies showed the importance of neural activity in the development 

and plasticity of neural connections and neuronal properties in the visual system, few studies 

have addressed their maintenance.  In ferrets, blockade of glutamatergic activity in the retinae 

after segregation of eye-specific laminae in the LGN and before eye-opening produces 

desegregation (Chapman, 2000).  In visual cortex, in addition to studies suggesting that visual 

experience is necessary for development of direction and orientation selectivity (Mower et al., 

1981; Fagiolini et al., 1994), some earlier studies suggested that it is also necessary for their 

maintenance.  Recordings from cat visual cortex have shown that direction and orientation 

selectivity are recognizable as soon as visual responses can be obtained in both light and dark-

reared animals, but visual experience is necessary for their maintenance after the first few weeks 

of postnatal life (Buisseret and Imbert, 1975, 1976; Fregnac and Imbert, 1978).  Similarly, our 

study showed that visual experience has a stabilizing effect on RF size in the SC.  Furthermore, 

dark-rearing after RFs are refined does not affect RF size.  Spontaneous activity might have a 

preponderant role relatively early in life, but later, when levels of spontaneous activity decrease 

(Itaya et al., 1995), visual experience becomes necessary to maintain the circuitry.  Our data 

suggest that certain levels of neuronal activity are necessary even in adulthood to preserve 
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neuronal properties in the SC, although we do not know whether the pattern or the amount of 

activity is the relevant factor in maintaining the SC circuitry (see Crair, 1999; and Chalupa, 2007 

for reviews). 

 

c)  Spontaneous and visually-evoked activity during map formation 

 We show, as reported previously (Thornton et al., 1996), that development of gross map 

topography in the SC is independent of visual experience.  Gross retinotopy was present at the 

earliest age recorded in both DR and normal animals.  Several studies on non-mammalian 

vertebrates suggest that initial establishment of an organized representation of the visual field in 

the optic tectum, the non- mammalian homologue of the SC, depends on molecular cues (see 

Flanagan, 2006 for review) but spontaneous, correlated retinal activity is required for refinement.  

Spontaneous waves of correlated activity that depend first on acetylcholine and later on 

glutamate have been described in the retinae of different vertebrate groups during the first 

postnatal weeks (Galli and Maffei, 1988; Meister et al., 1991; see Wong, 1999 for review).  

Studies on the role of spontaneous correlated retinal activity on the retinothalamic projection 

show that topography in the LGN is disrupted in mice lacking the β2 acetylcholine receptor 

subunit (Feller, 2002; Grubb et al., 2003; but see Sun et al., 2008).  Other studies on the role of 

glutamatergic waves of activity point out the importance of NMDARs as coincidence detectors 

during map refinement.  NMDAR blockade in the SC during the first two postnatal weeks 

disrupts the anatomical and physiological refinement of RGC axon arbors (Simon et al., 1992; 

Huang and Pallas, 2001) presumably by interfering with the detection of the spontaneous 

correlated activity that takes place in the retina during that period.  In our study, we did not 

disrupt spontaneous activity and thus as expected map formation proceeded normally.  The 
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relative roles of acetylcholine and glutamate-dependent spontaneous activity in the retina on the 

development of the retinocollicular projection remain undefined. 

 

2.  Early visual experience prevents but cannot reverse deprivation-induced loss of 

refinement in adult superior colliculus 

 Our findings point out the role of early visual experience on plasticity later in adulthood.  

We show that a 30-day period of visual experience early in the life of hamsters is necessary to 

prevent RF enlargement in adult SC neurons induced by subsequent dark-rearing.  We also show 

that visual experience after dark-rearing can prevent but not reverse the loss of RF refinement.  

Our results may offer insight into experience-dependent plasticity in other sensory systems. 

 

a)  Plasticity and sensory experience 

 That sensory experience modulates the degree of plasticity in sensory systems has been 

reported by several studies.  In the visual system, dark-rearing extends the period when cortex is 

more susceptible to the effects of monocular deprivation (Mower et al., 1985; Mower and 

Christen, 1985; Mower, 1991), which normally occurs only in juvenile animals (Daw et al., 1992; 

Fagiolini et al., 1994).  Ocular dominance plasticity is also achievable in adult animals (Liao et 

al., 2004; Pham et al., 2004; Fischer et al., 2007; Goel and Lee, 2007).  We show that dark-

rearing after RFs have been refined in the SC, at P60, does not produce a loss of RF refinement, 

suggesting that early visual experience leaves the visual system in a state less likely to undergo 

plasticity.  Furthermore, dark-rearing from birth until P60 allows the SC to remain capable of 

being affected by late visual experience, because light exposure after that age prevents loss of RF 

refinement.  Hence, early deprivation leaves the brain susceptible to later sensory experience.  

Our results also suggest that there is a defined period early in life when visual experience must 
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occur (see Appendix 1, Fig. 1) to forestall detrimental effects of light deprivation in adulthood.  

The amount of visual experience needed to protect against loss of RF refinement, ~30 days, 

seems relatively extensive compared to the 6-h period of visual experience needed to prevent the 

effects of monocular deprivation in cat visual cortex (Mower et al., 1983).  Differences in the 

requirements for plasticity in these two visual areas may originate from distinct mechanisms of 

plasticity and/or their intrinsic malleability.  Visual deprivation has severe effects on visual 

cortex, but is ineffective in changing receptive field properties other than RF size in the superior 

colliculus (this thesis; (Rhoades and Chalupa, 1978a; Chalupa, 1981)).     

                             

 b)  Early experience and adult plasticity 

 Our findings suggest that visual experience has a stabilizing effect in the retinocollicular 

projection and that its effects extend well into adulthood.  Another example of the role of 

previous experience in achieving plasticity in adulthood has been reported in visual cortex.  

Although ocular dominance plasticity is achievable in adults as well as in juvenile animals,  this 

type of plasticity can be enhanced by previous experience with monocular deprivation (Hofer et 

al., 2006), even though adult and juvenile plasticity involve different cellular mechanisms 

(Sawtell et al., 2003; Frenkel and Bear, 2004).  Similarly, in the auditory system, early training 

promotes adult plasticity.  Adult barn owls can learn sound localization based on an abnormal 

association of visual and auditory cues as adults only if they have experienced the association as 

juveniles (Linkenhoker and Knudsen, 2002).  Anatomical remnants of this early experience 

found in the inferior colliculus of adults barn owls support the idea that adult learning is based on 

anatomical traces left in the brain from a previous learning process (Linkenhoker et al., 2005).   
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 Our results from Chapter 4 suggest that a decrease in the strength of the inhibitory 

intracollicular circuit mediates the loss of RF refinement seen in the SC of long-term DR animals.  

Thus, a 30-day period of early visual experience may act by stabilizing the inhibitory circuit in 

the SC.  Although we do not currently know the mechanism involved, several studies show that 

neuronal activity regulates the strength of inhibition in neuronal networks (Memo et al., 1991; 

Seil and Drake-Baumann, 1994).  NMDAR activation increases the strength of the inhibitory 

circuitry in the rat SC (Aamodt et al., 2000).  Those results together with our study suggest that a 

certain level of NMDAR activation early in life could have a long-term effect on inhibitory 

circuitry in the SC.  Further investigation of the molecular nature of the long-term stabilization of 

the inhibitory circuitry by visual experience could provide important information about the 

mechanisms involved. 

  

3.  Adult plasticity in the superior colliculus results from the loss of surround inhibition 

 We have investigated the mechanism underlying the loss of RF refinement in the SC of 

long-term DR animals.  Our results show that iontophoresis of GABA agonists and antagonists 

had a significantly reduced effect on both responsiveness and RF size in neurons of long-term 

DR animals with enlarged SC receptive fields than in normal animals (Chapter 4).  We have also 

found that the density and number of GABA immunoreactive neurons is reduced in the SC of 

long-term DR animals compared to normal ones.  Our results strongly suggest that the loss of RF 

refinement in long-term DR animals is due in large part to a partial loss of intracollicular 

inhibition.  This study argues that modulation of the inhibitory circuitry is an important factor, 

and may be entirely responsible for adult plasticity in SC. 
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a)  Visual deprivation and inhibitory circuitry 

 That visual deprivation leads to changes in inhibitory circuitry has been previously 

reported.  In the retina, dark-rearing mice from birth until P30 decreases the levels of GAD65 

and GABA, and 15 days of visual experience commencing at P30 recovers normal levels of 

GAD65 (Lee et al., 2006).  In the LGN of monkeys, activity blockade by TTX eye injections 

decreases the number of GABA and GAD immunoreactive neurons and the expression of alpha1 

and beta2/3 GABA receptor subunits in the deprived-eye laminae of the LGN (Hendry, 1991; 

Hendry and Miller, 1996).  Presynaptically, neither dark-rearing nor monocular deprivation 

affect the level of GAD65 or GAD 67 in the visual cortex of cats (Benson et al., 1989; Mower 

and Guo, 2001).  In monkeys, on the other hand, eyelid suture decreases the number of GABA 

immunoreactive neurons in the deprived-eye dominance columns of area 17 (Hendry and Jones, 

1986).  Interestingly, that study was done in adult monkeys, which shows a previously 

unrecognized level of plasticity in adulthood.  At the postsynaptic level, in the cat visual cortex, 

the number of alpha1 and alpha3 GABAR subunits is elevated after dark-rearing, giving the 

cortex a juvenile-like molecular profile for these subunits (Chen et al., 2001).  Our results 

suggest that long-term dark-rearing affects the GABAergic collicular circuitry both pre- and 

postsynaptically in adult animals: presynaptically, by decreasing the number of GABA 

immunoreactive neurons, and postsynaptically by decreasing the response mediated by GABAA 

receptors. 

 

b)  Homeostatic plasticity of the inhibitory circuit 

 Homeostatic plasticity in the nervous system refers to the phenomenon of regulation of 

activity levels within certain limits in a given network.  Homeostatic plasticity occurs in several 
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systems including cortical and hippocampal cell cultures (see Turrigiano and Nelson, 2000 for 

review).  In cortical cultures, for example, blocking activity with TTX increases mEPSC 

amplitudes.  Conversely, GABAA receptor blockade decreases mEPSC amplitudes (Turrigiano et 

al., 1998).  Our results show that neither stimulus-induced nor spontaneous spiking levels differ 

between the visually-deprived group and the normal group (Chapter 2) and that GABAA receptor 

antagonists and agonists have a reduced effect on neurons of long-term DR hamsters compared 

to normal hamsters.  We show a reduction of the number and density of GABA immunoreactive 

neurons in the SC of long-term DR hamsters.  Interestingly, in visual cortex cultures, activity 

blockade with TTX decreases the amplitude of mIPSCs and this occurs through a reduction of 

the probability of channel opening accompanied by a reduction of GABAA immunoreactivity 

(Kilman et al., 2002).  One of the mechanisms responsible for plasticity of GABAA receptors is 

their phosphorylation, which modulates insertion of many receptors, including GABAA receptors, 

into the membrane (Wan et al., 1997; Wang et al., 2003).  Presynaptically, a reduction in the 

level of GABA  in visual cortex has been reported after intraocular TTX injections (Hendry and 

Jones, 1988).  mRNA and protein expression of GABA and glutamate vesicle transporters are 

bidirectionally regulated by changes in activity levels (De Gois et al., 2005).  These mechanisms 

involved in the regulation of activity seem to be common in the nervous system and therefore, it 

is possible that what is seen in the SC also occurs in other sensory systems. 

 

4.  Clinical implications  

a)  Visual impairments and plasticity 

 Studies that confirm the possibility of achieving brain plasticity in adulthood offer hope 

for possible treatments of anomalous conditions of sensory systems that are present beyond 
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infancy.  We have focused on the role of visual experience in maintenance of neuronal properties 

in a subcortical visual structure, the superior colliculus.  We found that visual deprivation can 

have negative effects during adulthood and that early visual experience is crucial to prevent 

future consequences of visual deprivation.  Visual deprivation of the active eye as a treatment for 

amblyopia has been one of the most common methods used to treat that condition (Daw, 1998; 

Wu and Hunter, 2006).  In light of our results, it is valid to consider that deprivation of the sound 

eye early in life could potentially cause irreversible damage to central circuitry in the long term.  

Our research, by addressing the long term effect of visual treatments, should shed light into the 

capability of the system to respond to visual experience beyond youth. 

 

b)  Plasticity of GABAergic circuitry and psychiatric disorders 

 One of the highlights of this work is related to plasticity of the inhibitory circuitry as a 

result of visual deprivation.  Plasticity of inhibitory circuitry has become a relevant topic due to 

the role of inhibition in modulating the excitability of neural circuits.  Several disorders, such as 

epilepsy, anxiety, insomnia, and substance abuse have been attributed to the anomalous 

functioning of inhibition at different locations in the central nervous system (see Mohler, 2006 

for review). 

 Anxiety disorders have been related to a decreased clustering of GABAA receptors at the 

synapse (Crestani et al., 1999).  Decreased benzodiazepine binding in the orbitofrontal and 

temporal cortices and reduced GABA levels in occipital cortex have been found in patients 

suffering from anxiety (Tiihonen et al., 1997; Goddard et al., 2001).  Epilepsy is another 

condition that has been suggested to arise from a dysregulation of GABAA receptors (see Coulter, 

2001 for review).  A complex pattern of changes in the functionality, receptor subunit 
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composition, and distribution of GABAA receptors has been found in models of epilepsy (Loup 

et al., 2000; Coulter, 2001; Mohler, 2006).  Thus, the dynamic control of the different factors 

affecting the functionality of GABAA receptors seems to be key in regulating the excitability of 

neuronal systems.  These findings point out the relevance of learning about the nature of and 

mechanisms underlying plasticity of the inhibitory system.   

 

c)  GABA circuitry and aging 

 Functional decline is a normal process in the aging brain.  Much of the functional 

degradation may be due to alterations of the inhibitory circuitry in addition to changes in the 

morphology of neurons and tissue density (see Mora et al., 2007; and Rissman et al., 2007 for 

reviews).  Therefore, understanding the factors that modulate inhibition in the central nervous 

system will offer insights into the process of brain aging. 

 One of the most interesting examples of plasticity of the inhibitory system in normal 

aging occurs in the visual cortex of macaque monkeys, where data suggest a decreased level of 

intracortical inhibition in old age (Leventhal et al., 2003).  In that study, an improvement in 

direction and orientation tuning was reported in the visual cortex of senescent monkeys with 

acute GABA or muscimol application.  In addition, bicuculline, a GABAA receptor antagonist, 

had a much weaker effect on cortical neurons from aged monkeys than on neurons from 

juveniles.  Our results on the effects of gabazine and muscimol iontophoresis show a decreased 

effect of these drugs in the long-term DR group compared to the other experimental groups.  

Thus, our study also suggests inhibitory plasticity in the adult brain, but in this case as a 

consequence of early visual deprivation.  Gaining knowledge of the physiological consequences 
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of a depressed inhibitory circuit may help to understand changes occurring during the normal 

aging process. 

 

 Our results on plasticity of the GABA circuitry in the SC add to the understanding of the 

relationship between circuit properties and neuronal response properties.  Knowledge about the 

nature of the plasticity in inhibitory synapses gives insight into possible mechanisms of plasticity 

involved in sensory systems in particular and in the brain in general.  
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Appendix A 
 
1.   Visual experience must occur early in life to prevent the effects of dark-rearing in the 

SC 

 In Chapter 3, we reported that a 32-day period of visual experience starting at P8 is 

necessary to avoid the loss of RF refinement by dark-rearing (Carrasco and Pallas, 2006).  

Because we did not test whether visual experience was necessary at a particular developmental 

stage, we added an additional experimental group, as reported in this section.  We tested whether 

30 days of visual experience starting at P37, instead of P8, is sufficient to maintain RF 

refinement.  We chose P37 because we wanted to test whether visual experience starting at an 

age far from eye opening but still before RFs would refine would prevent from the effects of 

long-term dark-rearing.  We found that this experimental group also lost RF refinement when 

tested as adults.  Our results suggest that visual experience needs to occur early in life in order to 

prevent the effects of dark-rearing in the SC. 
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Figure A.1.  Visual experience starting at P8 but not P37 prevents loss of RF refinement by dark-

rearing.  Animals exposed to 30 days of visual experience at P37 have significantly larger RFs in 

the SC than normally-reared animals (normal: 19.4 ± 0.31, n = 92; DR with 30 days of visual 

experience: 35.0 ± 1.0, n = 35; P < 0.001, Mann-Whitney Rank Sum Test). 
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Appendix B 

1.  Introduction 

Development and maintenance of the properties of sensory systems depend on sensory 

input.  In the visual cortex and LGN, the development of normal response properties of neurons 

requires visual experience (see Chapman et al., 1999; and Crowley and Katz, 2002 for reviews).  

Our previous studies showed that in the Syrian hamster (Mesocricetus auratus) superior 

colliculus (SC), visual experience is necessary to maintain rather than drive receptive field (RF) 

refinement (Carrasco et al., 2005; Carrasco and Pallas, 2006).  The question that remains 

unanswered in several systems concerns the mechanism by which visual experience acts on 

modifying neuronal properties.   

 In the visual cortex, the level of expression of several molecules depends on visual 

experience.  Specifically, and very importantly due to its role in coincidence detection, the 

subunit composition of NMDA receptors (NMDARs) depends on developmental stage and 

sensory experience (Carmignoto and Vicini, 1992; Philpot et al., 2001; Tongiorgi et al., 2003).  

Normally the NR2B subunit, with its longer channel open time, is replaced by the NR2A subunit 

during development, accounting at least in part for the shortening of NMDA currents with age. It 

has been suggested that NMDARs containing a relatively high proportion of NR2B may 

facilitate induction of long-term potentiation (LTP), as seen in young animals (Yoshimura et al., 

2003).  On the other hand, visual deprivation has been shown to decrease levels of NR2A in 

visual cortex, and visual experience rapidly increases its levels (Quinlan et al., 1999a; Quinlan et 

al., 1999b; Tongiorgi et al., 2003).  Thus, changes in the relative amount of NR2A and NR2B 

may be involved in plasticity of physiological responses, which depends on age and sensory 

experience. 
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 In the SC, which receives direct input from the retina, hamsters reared in complete 

darkness since birth or with less than 30 days of early visual experience show refinement of RFs 

of retinorecipient neurons, but RF refinement is lost in adulthood (Carrasco et al., 2005).  

Consequently, RFs of SC neurons become enlarged in hamsters that have not received enough 

visual input at the appropriate time.  Some studies have suggested that dark-rearing increases the 

percentage of cells sensitive to NMDAR antagonists and that NMDA currents have a greater 

importance in visual transmission in the SC compared to light reared rats (Binns and Salt, 1998a, 

b).  Those results support more recent evidence that visual experience and age modulate the 

subunit composition or number of NMDARs in the SC. 

NMDARs are involved in synapse strengthening in several model systems.  Long-term 

potentiation elicited in the retinotectal projection, the non-mammalian homologue of the 

retinocollicular projection, is NMDAR-dependent and may be involved in the refinement of 

retinal projections (Schmidt, 1990; Zhang et al., 1998).  Therefore, we propose that abnormalities 

in the amount of NMDARs and/or in the ratio between NR2A and NR2B subunits underlie the 

loss of refinement in DR animals.  In particular, we hypothesize that if the NR2B subunit is 

present in the long-term DR groups in a relatively higher proportion than in the normal group, 

and/or in NR2A is unchanged or decreased, then previously silent synapses could become 

potentiated and thus make RFs larger.  To investigate this possibility, we performed Western 

Blotting to analyze the relative amounts of NR2A and NR2B protein in the SC of normally 

reared and DR hamsters.  
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2.  Materials and methods 

a)  Experimental groups 

  Syrian hamsters (Mesocricetus auratus) were used in this study.  We compared the 

quantity of NR2A and NR2B proteins in membrane fractions of four experimental groups (n=14 

animals in each group): 1) Adult animals at postnatal day 136 (P136)-P163 adult animals reared 

in a 14/10 h light/dark environment, 2) P54-57 14 light/10 dark, 3) P135-149 animals reared in 

an internal dark room since birth (dark-reared -DR), and 4) P57-58 DR.  We chose to compare 

these age groups because hamsters have developed refined RFs in the SC by P60, and DR 

hamsters begin to lose RF refinement after P90.  All of the procedures used on animals met or 

exceeded standards of humane care developed by the National Institutes of Health and the 

Society for Neuroscience, and were approved in advance by our Institutional Animal Care and 

Use Committee. 

 

b)  Protein extraction 

 For protein extraction, brains were extracted after animals were deeply anesthetized with 

sodium pentobarbital (15 mg/100g).  With the brain on dry ice, rapid dissection of the superficial 

layers of the superior colliculus (SC) was performed.  We tried different lysis buffers (50 mM 

HEPES only and 20 mM HEPES to which was added 150 NaCl, 2mM EDTA, 10 % glycerol, 

and 0.5% Nonidet P-40 ) and centrifugation at ~10,000xg for at least 30 min to extract NMDARs 

from the tissue.  Because one-step centrifugation at that speed in the different lysis buffers did 

not yield the expected band at 180 kDa, the size of the NMDARs subunits, we sought more 

specific methods to isolate synaptosomes, which should be enriched in NRs.  Thus, we followed 

the protocol of a previous study (Shi et al., 1997) and the SC tissue of each animal group was 
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homogenized in 500 µl of lysis buffer (10 mM phosphate buffer, pH 7.0, to which was added 5 

mM EGTA, 5 mM EDTA, 1 mM DTT, and Complete Mini protease inhibitor (Roche 

Diagnostics, Indianapolis, IN)).  Homogenates were fractionated by centrifugation at 4°C for 10 

min at 16,000×g.  The supernatants (crude soluble fraction) were collected and placed on ice.  

The pellets were resuspended in 150µl of 2 mM HEPES, pH 7.2, and centrifuged at 4°C for 30-

45 min at 200,000×g.  The supernatants were discarded and the pellets resuspended in 140 µl of 

0.5 mM HEPES, pH 7.3, 0.32 M sucrose and centrifuged at 4°C for 8 min at 450×g.  The 

supernatants obtained correspond to the membrane fraction, in which synaptic proteins including 

the NMDAR subunits were found.  All of the preceding procedures were performed on ice or at 

4°C.  Protein concentration was calculated using a DC (detergent compatible) protein assay , 

which is a modified Lowry assay (DC protein assay reagents, Bio-Rad, Hercules, CA).  Samples 

were mixed in equal amounts of Laemmli sample buffer (Bio-Rad, Hercules, CA) and 5% 

mercaptoethanol and heated to 90°C for 5 min.  Samples that were not immediately used were 

stored at -80°C. 

 

c)  Western Blotting 

  Samples and standards (Precision plus protein standard, Bio-Rad) were run on 7% SDS-

Polyacrylamide minigels at 110 V for ~1 h, taking care to load the same amount of protein in 

each well (20-24 µl of sample per well).  Proteins were transferred to nitrocellulose membranes 

by electroblotting (Bio-Rad) at 400 mA for 130 min at 4°C on ice.  Blots were washed in TTBS 

(0.1% Tween in TBS) and blocked with 5% nonfat dry milk in TTBS for 5 h at room 

temperature.  Membranes were washed in TTBS three times for 5 min each.  Blots were 

incubated in the primary antibody solution made in 2% nonfat dry milk in TTBS (rabbit anti-
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NR2A 1:500; rabbit anti-NR2B 1:500, Chemicon, Temecula, CA) for 17 h at 4°C.  Blots were 

washed three times for 5 min each in TTBS and incubated in secondary antibody solution made 

in 2% nonfat dry milk in TTBS for 1 h (horseradish peroxidase-conjugated goat anti-rabbit, 

1:10,000, Bio-Rad).  Blots were then washed three times for 5 min each in TTBS and three times 

for 5 min in TBS, and reacted with a chemiluminescent substrate kit (SuperSignal West Pico 

Chemiluminescent Substrate, Pierce, Rockford, IL).  Films (X-OMAT LS, Kodak, Rochester, 

NY) were exposed to the membrane for 15-30 s and processed in a Kodak processor (X-OMAT 

2000A processor). 

  

d)  Data analysis 

  We measured optical density of bands in the films using ImageJ software.  All 

experimental groups were compared to the optical density of bands from the adult normal group 

and were represented as a percentage of normal.  Only bands from the same blot were compared 

in this way, but results from different samples and blottings were pooled together. 

 

3.  Results  

We performed Western Blotting for NR2A and NR2B proteins from membrane fractions 

from the four experimental groups: 1) P54-57 normal animals 2) P136-163 normal animals, 3) 

P57-58 DR animals, and 4) P135-149 DR animals. Bands for both proteins, NR2A and NR2B, 

appeared at the expected location in accordance with their molecular weight, 180 kDa.      

 We hypothesized that NR2B levels would be comparatively increased in the long-term 

DR group and NR2A would be the same or decrease compared to the normal adult group.  Figure 

1 shows examples of NR2A bands obtained from the four different experimental groups.  We 
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found that the levels of NR2A in the older DR group were significantly different from those 

found in normal adult animals (Fig. 2).  P135 DR animals had decreased levels of this protein 

compared to the P136 normal group (p<0.05, ANOVA on Ranks, post hoc Tukey test).  There 

were no significant differences found between the normal and DR group earlier in development 

(<P57-58). 

 We expected to see an increase in the amount of NR2B in the DR animals.  Contrary to 

this expectation, we found no significant differences in the levels of NR2B protein between any 

of the experimental groups (Fig. 3). However, there was a trend for this protein to decrease in 

quantity with age and to be diminished in the P149 DR group. 

 

4.  Discussion 

We demonstrated that adult DR animals have less NR2A protein in the SC compared to 

normal adult animals.  Taken together with our previous studies showing that DR hamsters >P90 

have enlarged RFs in the SC (Carrasco et al., 2005; Carrasco and Pallas, 2006), this result raises 

further questions about causation.  Previous studies showed that dark-rearing decreases NR2A in 

the visual cortex of rats (Quinlan et al., 1999a; Quinlan et al., 1999b; Tongiorgi et al., 2003) and 

that visual experience has the opposite effect.  Our results, although in a different brain area, are 

consistent with those studies.   

Visual deprivation facilitates LTP induction in rat visual cortex (Kirkwood et al., 1996), 

and this could be due in part to changes in NMDAR subunit composition (Yoshimura et al., 

2003).  A relatively higher proportion of NR2B in relation to NR2A would increase the duration 

of glutamatergic currents and thus make spike-time dependent plasticity (STDP) more likely. We 

found no difference in the level of NR2B in DR animals compared to normal, although there was 



 

                                                                                                                                                      135 

a tendency for this protein to be decreased in the older DR group compared to the other groups.  

It has been shown that NMDARs are involved in the appearance of LTP in the SC (Okada and 

Miyamoto, 1989).  Consistent with that idea, we expected to find a larger proportion of NR2B in 

old DR animals, which would facilitate the potentiation of synapses that were previously silent 

and thus contribute to the enlargement of the excitatory RF in the SC.  We think that a more 

detailed electrophysiological study that measures changes in the contribution of NR2A and 

NR2B dependent currents would help to draw a more solid conclusion.  Thus, although 

interesting, our results are not conclusive.   

Nevertheless, our finding that visual experience regulates NMDAR composition in the 

SC is still of interest.  Further studies are necessary to describe the physiological effects of that 

regulation.  Regulation of the amount or composition of NMDARs modulates Ca2+ conductance 

through these receptors and therefore several cellular processes that involve Ca2+ binding 

proteins and gene regulation related to synaptic plasticity (Rauschecker, 1991; Malenka and 

Nicoll, 1993; Barria and Malinow, 2005; Citri and Malenka, 2008; Huang et al., 2008).  Whether 

these changes in NMDAR composition are related to the RF enlargement in the SC of DR 

hamsters is still uncertain. 

Results presented in Chapter 4 suggest that there are fewer GABA immunoreactive 

neurons in the SC of long-term DR hamsters than in normal animals.  In addition, our 

electrophysiological results show that SC neurons of long-term DR animals are less responsive 

to antagonists and agonists of GABAA receptors, suggesting that they have fewer of these 

receptors or that they are altered in composition.  Several previous studies have shown that 

inhibitory and excitatory inputs can regulate each other through their postsynaptic neurons and 

therefore maintain excitation in the system within certain levels (Liu, 2004; see Turrigiano and 
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Nelson, 2004 for review; Echegoyen et al., 2007).  The downregulation of the GABAergic 

system of DR animals may also downregulate the glutamatergic system, a hypothesis that would 

coincide with the decreased amounts of NR2A and NR2B subunits.  On the other hand, the 

opposite situation may be true:  regulation of NMDARs may have regulated the GABAergic 

circuit in the SC.  Distinguishing between these possibilities requires futher study. 
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Figure B.1.  Examples of NR2A bands from dark-reared (DR) and Normal animals at the 

postnatal (P) ages indicated.  The band located between 150 and 250 kDa corresponds to 

NR2A, a 180 kDa protein. 
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Figure B.2.  NR2A is decreased in old DR animals.  Optical densities were expressed as a 

percentage of the density of the band in the P136 normal group run in the same gel and blot.  

Each sample was run three times for each of the groups and their percentage values combined 

and expressed as mean ± SEM.  The amount of NR2A in the P135 DR group was 

significantly less than that in the P136 normal group (ANOVA on Ranks, P = 0.036, post hoc 

Tukey test).  Data represented as mean ± SEM. 
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Figure B.3.  No significant differences were found for NR2B.  Optical densities were 

expressed as a percentage of those from the P136-163 normal group run in the same gel and 

blot.  Samples were run at least twice for this protein for each of the groups.  No significant 

differences were found between the groups, although the P149 DR group tended to have a 

decreased amount of this protein compared to the other groups (ANOVA on Ranks, P = 

0.171).  Data represented as mean ± SEM. 
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