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IMMUNOGLOBULINS AND IMMUNOGLOBULIN FC RECEPTORS IN  
 

NONHUMAN PRIMATES COMMONLY USED IN BIOMEDICAL RESEARCH  

by 

KENNETH ALTON ROGERS 

Under the Direction of Roberta Attanasio 

ABSTRACT 

 

Antibodies neutralize and eliminate pathogens, malignancies, and toxins by acting 

either alone or in association with Fc receptors which, once engaged, activate the 

elimination mechanisms of phagocytic cells. Based on structural differences, antibodies 

are divided into functionally distinct classes (IgM, IgD, IgG, IgE and IgA). Structure-

function relationships within these classes are not well characterized. In addition, animal 

models for the assessment of potential therapeutic strategies for the modulation of the 

interaction between antibodies and Fc receptors are not established. Nonhuman primates 

are widely used to model human diseases and, represent excellent in vivo systems for this 

assessment. Therefore, we have studied nonhuman primate IgD as well as IgG and IgA 

specific Fc receptors in rhesus macaques, cynomolgus macaques, baboons and sooty 

mangabeys. IgD genes had not been identified in nonhuman primates nor the IgD 

receptors characterized in any species. We characterized IgD genes of the four monkey 

species, as well as chimpanzees and dogs. In contrast to other antibody classes, the IgD 

hinge regions are highly conserved between human and nonhuman primates, thus 

indicating a role in Fc receptor binding. In humans, Fc receptors CD16a (natural killer 



 
 

cells) and CD16b (neutrophils) bind IgG1 and IgG3, and CD89 (myeloid cells) binds 

IgA. To assess ligand binding and glycosylation properties of nonhuman primate CD16a, 

CD16b, and CD89, we sequenced, cloned, and generated recombinant molecules in a 

mammalian expression system. Our results verify the presence of CD16a, but not CD16b 

in nonhuman primates. CD16a is expressed on monocytes and a subpopulation of 

lymphocytes. In sooty mangabeys, CD16 is also expressed on neutrophils. Recombinant 

sooty mangabey/baboon CD16a binds to human IgG1 and IgG2, but not IgG3 and IgG4. 

Monkey CD89 has the same peripheral blood leukocyte expression profiles as humans, 

and binds human and recombinant macaque IgA. Blocking of N-glycans inhibited 

expression of CD89, but only marginally CD16a expression. Although extensive 

similarities of antibody/Fc receptor interactions exist between human and nonhuman 

primates, several differences must be considered when evaluating therapeutic strategies. 

However, these differences can be exploited to further characterize the structure-function 

relationships existing within antibody molecules and respective receptors. 

 

INDEX WORDS:     Immunoglobulin, Immunoglobulin Fc receptor, Nonhuman 
          primates, Therapeutic antibodies, Animal models, CD16, CD89
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CHAPTER 1 

Introduction and Study Objectives 

 

Organisms as diverse as bacteria and humans have evolved defense mechanisms 

against pathogens. In simple organisms, defenses are generally limited to the level of 

single cells. For example, bacteria produce endonucleases to cleave DNA of invading 

bacteriophages as they enter the cell (King and Murray, 1994). With the increasing 

complexity of the organism, the task of defense becomes more intricate. Complex 

multicellular organisms must not only mount a defense at the level of the single cell, but 

must coordinate a defense of the organism as a whole, while preventing any detrimental 

responses. The immunity of more complex organisms is distinguished by the 

development of a proper immune system consisting of specialized cells and tissues 

dedicated to controlling pathogens, toxins and malignancies. In the lower organisms these 

defenses are limited to innate immunity, which is established prior to the encounter with 

a pathogen and does not require education of the immune system to function (Akira et al., 

2006).  

Innate immunity has been highly conserved throughout evolution, and entails 

specialized cells and molecules that recognize and target foreign structural components 

common to different classes of pathogens. For example, toll-like receptors are molecules 

expressed by cells to detect pathogen components, such as bacterial cell wall molecules 

and DNA, and are found in species from insects to vertebrates (Akira et al., 2006).  
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Specialized cells of the innate immune system include several types of phagocytic cells: 

neutrophils, eosinophils, monocytes, macrophages, and dendritic cells (Kuby, 1997). 

These cells engulf and inactivate pathogens and substances that need to be cleared from 

the body. Toll-like receptors and other receptors on the surface of phagocytes may bind 

directly to substances to initiate phagocytosis, or the substances may first be coated with 

serum proteins called opsonins that are recognized by phagocytes and assist in 

phagocytosis (Henricks et al., 1986). Opsonins include complement proteins of the innate 

immune system and antibodies, also called immunoglobulins, of the adaptive immune 

system (Rus et al., 2005; Henricks et al., 1986). Other cells of the innate immune system, 

including basophils, mast cells and natural killer cells, are not phagocytic and use other 

mechanisms to kill pathogens (Kuby, 1997). For example, natural killer cells recognize 

infected and malignant cells, and can kill these cells by signaling the cells to undergo 

apoptosis (O’Connor et al., 2006).  

Although innate immunity is critical for survival, over time pathogens have 

evolved mechanisms to evade and overcome innate immunity (Finlay and McFadden, 

2006). It was under this selective pressure that an adaptive immune system evolved in 

vertebrates. The adaptive immune system first emerged in early fish and consists of 

lymphocytes and their products, which likely evolved from the more ancient innate 

immune system (Cooper and Alder, 2006). As its name suggests, adaptive immunity is 

not preexistent to an encounter with a specific pathogen as is innate immunity. Instead, 

adaptive immunity develops with specificity for a pathogen when the body encounters 

that particular pathogen for the first time. Adaptive immunity is further distinguished 
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from innate immunity because of a unique property: memory (Nayak et al., 2005). That 

is, upon subsequent infection with the same pathogen, the adaptive immune system 

remembers the pathogen and mounts a faster and stronger response to eliminate the 

pathogen from the body. However, the adaptive immune system does not operate alone, 

but works in coordination with the innate immune system. The role of antibodies as 

opsonins directing phagocytosis has already been mentioned. Conversely, innate immune 

cells play roles in activating the adaptive immune system (Clark and Kupper, 2005).  

The cells of adaptive immunity are B and T lymphocytes. Lymphocytes make up 

20-40% of the human leukocyte population and also include natural killer cells (Kuby, 

1997). B lymphocytes, or B cells, mature in the bone marrow. T lymphocytes, or T cells, 

mature in the thymus. B cells are responsible for the production of antibodies, which are 

the major effector molecules of humoral immunity. On the basis of their function in the 

immune response, T cells are divided into two categories: T helper (TH) lymphocytes and 

cytotoxic T lymphocytes (CTLs) (Fabbri et al., 2003).  TH cells orchestrate the activity 

of other cells of the immune system by releasing messenger molecules known as 

cytokines and are subdivided into T helper type 1 (TH1) and T helper type 2 (TH2) cells 

on the basis of the cytokines they produce.  TH1 cytokines preferentially direct immune 

responses against pathogens that invade cells and against tumors, whereas TH2 cytokines 

preferentially direct immune responses against extracellular pathogens (Mosmann and 

Sad, 1996).  CTLs eliminate target cells, such as tumor cells or cells infected by viruses, 

by producing molecules that form pores on their surface.  CTLs then use the pores on the 
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target to insert additional molecules that specifically induce cell death (Andersen et al., 

2006).  

The keystones to adaptive immunity are receptors that recognize parts of the 

pathogens referred to as antigens. These receptors are of two different types that are 

known as B cell receptors (BCR) and T cell receptors (TCR) for the respective 

lymphocytes on which they are found. BCRs are composed of membrane bound 

immunoglobulin molecules and ancillary signaling proteins (Ollila and Vihinen, 2005). In 

contrast to receptors of innate immunity, BCR and TCR expression involves 

reorganization of the genes encoding them (Ollila and Vihinen, 2005; von Boehmer, 

2006). This reorganization occurs in the lymphocyte progenitor cells, found in the bone 

marrow for B cells and in the thymus for T cells, and involves stochastic shuffling of 

gene segments and insertion of nucleotides to create receptors with unique antigen 

specificity that are exclusive to each differentiated lymphocyte and its daughter cells 

(Ollila and Vihinen, 2005; von Boehmer, 2006). Each clone produced in this manner 

undergoes negative selection whereby clones with antigen receptors that recognize self-

proteins are induced to undergo apoptosis or to enter a state of inactivation known as 

anergy (Kappler et al., 1987; Ferry et al., 2006). Unfortunately, this process is imperfect 

and can lead to autoimmune disorders in which the body attacks itself (Copper and Alder, 

2006). Hence, autoimmunity is a byproduct of a dysfunctional adaptive immune system. 

TCRs only recognize processed antigen presented by major histocompatibility molecules 

(MHC) expressed on the surface of cells, in contrast to BCRs that recognize unprocessed 

antigen directly (Kuby, 1997). Therefore, T cells also undergo positive selection. The 
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process of positive selection allows only development of T cells bearing TCRs that 

recognize MHC molecules (Kersh, 2004). All other T cells undergo apoptosis.  

Newly formed B cells and T cells are naïve and must first be activated prior to 

performing the immune effector functions that ultimately eliminate pathogens (Kuby, 

1997). B cell activation generally requires two signals. The first signal is provided when 

antigen is recognized by the BCR. The second signal comes from the cognate interaction 

with a T cell. The antigen bound to the BCR is internalized, processed, and presented as a 

peptide on MHC class II molecules to a T helper cell (McHeyzer-Williams and 

McHeyzer-Williams, 2005). T helper cells that recognize the antigen through their TCR 

become activated and provide costimulatory signals and cytokines that complete the 

activation process of B cells (McHeyzer-Williams and McHeyzer-Williams, 2005). Some 

antigens provide a strong enough signal to activate B cells in the absence of T cells. 

These antigens are known at T cell independent antigens, an example of which is 

vesicular stomatitis virus that has multiple identical antigen binding sites, or epitopes 

(Freer et al., 1994). By having these epitopes located in close proximity to each other, 

several BCRs are brought together by binding a single virion at once. This cross-linking 

of the BCR then leads to an intracellular signaling cascade that activates the B cell. Once 

activated, B cells proliferate and differentiate into effector memory cells and antibody 

secreting plasma cells (Shapiro-Shelef and Calame, 2005; McHeyzer-Williams and 

McHeyzer-Williams, 2005). As mentioned, antigen presented in the context of MHC 

class II molecules can activate T helper cells. For this reason, B cells along with 

macrophages and dendritic cells that also bear MHC class II molecules are known as 
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professional antigen presenting cells (APC). CTL like T helper cells must be presented 

with antigen in the context of MHC molecules, but CTL recognize antigen presented by 

MHC class I molecules, which present endogenous antigens and are expressed on 

virtually all cell types (the only exception is represented by red blood cells) (Kuby, 

1997). CTLs activated through recognition of MHC class I presented antigen kill the 

presenting cell. Adaptive immune responses are classified as humoral or cellular based on 

whether the response to clear antigen involves antibodies, or cellular mechanisms, such 

as those used by CTL. 

Antibodies play vital roles in immune defenses. Without medical intervention, 

individuals born with antibody deficiencies succumb to infections and die early in life 

(Bonilla and Geha, 2006). Even before the adaptive immune system has developed and 

produced antibodies of its own, fetuses and infants receive protection from maternal 

antibodies transferred across the placenta (Simister, 2003). At mucosal surfaces, 

antibodies are important for blocking the initial entry of bacteria and viruses into the 

body (Woof and Kerr, 2006). If such a barrier is bypassed, then antibodies are employed 

in systemic defense. In addition to their role in killing pathogens and neutralizing viruses 

and toxins, antibodies coordinate the immune response by acting as adaptor molecules 

that bring antigens together with cells and proteins of the innate immune system (Burton, 

2002). These interactions are made possible by the unique structure of antibodies. 
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Immunoglobulin (antibody) structure 

Immunoglobulins are composed of four peptides, two identical light chains and 

two identical heavy chains (Figure 1.1). Each heavy chain is covalently linked to the 

other by one or more disulfide bonds, and a single light chain is linked to each heavy 

chain by an additional disulfide bond (Kuby, 1997). At the quaternary level the 

immunoglobulin is Y-shaped (Ramsland and Farrugia, 2002). Each immunoglobulin 

chain is divided into a series of immunoglobulin domains that all share a common tertiary 

immunoglobulin fold held together by an intra-domain disulfide bond. Immunoglobulin 

domains are further subdivided into variable immunoglobulin domains and constant 

immunoglobulin domains. A single variable immunoglobulin domain is located at the 

amino-terminal end of each immunoglobulin chain, followed by one constant domain in 

the light chains (CL) and three to four constant domains in the heavy chains (CH). 

Together, one variable domain from a light chain and one from a heavy chain form the 

antigen-binding portion of the antibody (Kuby, 1997). Since immunoglobulins have two 

pairs of heavy and light chains, each molecule has two antigen binding sites at the ends of 

the arms of the Y-shaped molecule, making it divalent. Variable domains vary 

extensively in their amino acid content as a result of the previously mentioned 

reorganization of the gene segments that encode them (Fugmann et al., 2000). It is this 

diversity of the variable domains that allows antibodies of each B cell and its clones to 

have unique antigen binding properties. By contrast, constant domains are highly 

conserved and form the structure of the immunoglobulin that allows it to interact with 

other components of the immune system to elicit immune effector functions that destroy 
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Figure 1.1. Structure of an immunoglobulin molecule. Immunoglobulin light chains 

consisting of VL and CL domaind are shown in blue. Immunoglobulin heavy chains are 

shown in orange and red and consist of VH, CH1, CH2, and CH3 (some have a CH4). 

The four polypeptide chains are linked together by disulfide bonds (Kuby, 1997). VL: 

light chain variable domain; VH: heavy chain variable domain; CL: light chain constant 

domain; CH heavy chain constain domain.  
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CH2
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CL 

Fc 
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Antigen
Binding 
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and eliminate immunoglobulin-tagged antigens (Kuby, 1997).  

The original elucidation of the structure of immunoglobulin molecules was aided 

in the 1950’s and 1960’s by experiments carried out by Rodney Porter. In these 

experiments, immunoglobulins of the IgG class were proteolytically fragmented (Porter, 

1967). Since the resulting fragments of the immunoglobulin are functionally different, it 

is still convenient to refer to the portions of an immunoglobulin by the names of these 

fragments. Digestion with pepsin cleaves immunoglobulins at the heavy chains between 

the first and second constant domains in a region known as the hinge. This releases two 

fragments, the F(ab’)2 , which is capable of binding antigen and the Fc, so named because 

the fragment is easily crystallized. Alternatively, papain cleaves also at the hinge, but at a 

position N-terminal to all the disulfide bonds that hold the heavy chains together. 

Therefore papain digestion releases a similar Fc fragment and two antigen binding Fab 

fragments.  Primarily, it is through the Fc portion that other immune system components 

bind immunoglobulins to initiate immune effector functions. For this reason, 

immunoglobulin receptors that bind this portion the immunoglobulin are called Fc 

receptors (FcR) (Ravetch and Kinet, 1991).   

The constant domains of each immunoglobulin peptide are encoded by constant 

region genes located downstream of the variable region genes, which recombine together 

to encode the variable domain of the same immunoglobulin chain. In humans, constant 

region genes are located at three loci. Immunoglobulin light chain constant regions are 

encoded by either the κ light-chain locus on chromosome 2 or by the λ light-chain locus 

on chromosome 22 (Lefranc and Lefranc, 2001). Accordingly, the resulting light chains 
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are referred to as κ and λ light. The heavy chain constant region locus on chromosome 14 

has nine functional heavy chain constant region genes and three pseudogenes. The nine 

heavy chain regions that are encoded by the functional genes are grouped into five types: 

µ, γ, α, δ, and ε, which in turn define the five isotypes or classes of immunoglobulins: 

IgM, IgG, IgA, IgD and IgE respectively (Lefranc and Lefranc, 2001). IgG antibodies can 

be further subdivided into four subclasses (IgG1, IgG2, IgG3 and IgG4), whereas IgA 

antibodies are found as two subclasses (IgA1 and IgA2). The heavy chains of the 

antibody subclasses are designated γ1, γ2, γ3, γ4 (for IgG1, 2, 3 and 4) and α1, α2 (for 

IgA1 and IgA2). The constant region heavy chain genes are named according to the 

standardized ImmunoGeneTics nomenclature as IGH, followed by the appropriate letter 

and number to designate the specific subclass, i.e. IGHG3 for the γ3 gene, and IGHA1 for 

the α1 gene (Lefranc and Lefranc, 2001). Immunoglobulins of a common class have 

highly conserved peptide sequences, share common features and have similar functional 

properties. The immunoglobulin classes IgA, IgD and IgG have heavy chains containing 

three immunoglobulin constant domains with a hinge that separates the CH2 and CH3 

domains. IgM and IgE by contrast have four CH domains and no hinge. Most of the 

differences between immunoglobulin subclasses are located in the hinge region.  

The hinge region contributes to segmental flexibility (Nezlin, 1990) and in IgA 

and IgG also to intermolecular covalent assembly (Coloma et al. 1997). Variability of the 

length and amino acid content of the hinge region from each subclass results in a 

different degree of flexibility and to the overall shape of the immunoglobulin (Løset et 

al., 2005; Sun et al., 2005). The hinge of IgG consists of three segments, the upper, 
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middle and lower hinge. The middle hinge is a rigid region that contains a variable 

number of cysteines, which form the inter-chain disulfide bonds by connecting two 

parallel polyproline double helices. It is connected to the Fc region by the lower hinge 

and to the Fab portion by the upper hinge. The lower hinge is involved in binding the low 

affinity Fc gamma receptors (Radaev and Sun, 2001). In humans, the IGHG1, IGHG2 

and IGHG4 genes include only one separate hinge exon, whereas the IGHG3 hinge is 

usually encoded by four exons and less frequently by two, three, or five distinct exons 

(Dard et al., 1997; Lefranc and Lefranc, 2001). Since the IgG3 hinge region is encoded 

by more than one exon, IgG3 molecules are characterized by hinge regions exhibiting 

several repetitions and are therefore longer than the hinge regions of the other IgG 

subclasses. Consequently, IgG3 molecules are the most flexible of all human IgG 

subclasses (Roux et al., 1997). IgA1 molecules include an elongated hinge region rich in 

proline residues. The IgA2 hinge region differs from the IgA1 hinge region by a 13-

residue stretch of amino acids, presumably the result of an evolutionary response to 

bacterial IgA1 specific proteases (Kerr, 1990). The human IgD hinge region includes 64 

amino acid residues and is, therefore, longer than the hinge region of the other antibody 

classes (with the exception of IgG3). Hinge regions are characterized by evolutionary 

instability, as they are the most diverse at the interspecies and intraspecies level 

(Flanagan, 1984; Scinicariello and Attanasio, 2001; Attanasio et al., 2002; Sumiyama et 

al., 2002; Scinicariello et al., 2004). Differences in the hinge of each molecule have been 

demonstrated to alter immunoglobulin affinity for antigen and immune complex 

formation (Roux et al., 1997; Løset et al., 2004). In some HIV in vitro studies IgG3 with 
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its long hinge has been demonstrated to be more efficient than other IgG subclasses at 

neutralizing viruses in the absence of affinity differences (Cavacini, 1995; Scharf et al., 

2001). Hence the hinge region greatly contributes to antigen binding and antigen 

elimination. 

Immunoglobulins are expressed as BCR or as secreted proteins based on the type 

of carboxyl-terminal tail they express. Immunoglobulins forming BCRs are anchored to 

the plasma membrane by a hydrophobic tail that makes up the transmembrane domain 

and a short cytoplasmic tail. The transmembrane domains of all antigen receptors, 

including TCRs, have residues that make up a conserved antigen receptor transmembrane 

motif (CART). This motif is believed to be necessary for proper association with the 

signaling molecules of the antigen receptor complex (Campbell et al., 1995). For BCR, 

these signaling molecules are the invariant transmembrane proteins Ig-α and Ig-β, which 

contain the necessary cytoplasmic elements for signaling and antigen presentation 

(Cambier et al., 1994). For all human immunoglobulin heavy chains, the immunoglobulin 

transmembrane tail is encoded by two exons (M1 and M2) found 3’ to the last CH exon 

of the gene, whereas secreted antibodies have a short hydrophilic tail that varies greatly 

between the different immunoglobulin isotypes. For all isotypes except IgD, the secretory 

tail is encoded at the 3’ end of the final CH exon. The IgD secretory tail has been found 

to be encoded by a separate exon (CH-S) located between the CH3 exon and the exons 

M1 and M2 of the Igδ gene (IGHD) in all species in which it has been characterized. 

Polyadenylation of polyA motifs found 3’ of the tail to be used and subsequent 

alternative splicing regulate production of the cytoplasmic tail.   
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Immunoglobulin subclasses and functions 

Antibodies alone in some cases are sufficient to inactivate a pathogen to prevent 

infection or render toxins innocuous. These antibodies are called neutralizing antibodies. 

The mechanisms responsible for neutralization are not fully understood (Burton, 2002). 

Neutralizing antibodies may defend against viruses by occupying all possible virion sites 

of interaction with host cells, thus blocking infection. Evidence indicates that other 

antibody properties are usually required to prevent or stop infections. Fab fragments from 

neutralizing antibodies generally lose the ability to prevent disease (Burton, 2002). 

Indeed, many bacteria actively produce proteases that separate antigen binding Fab 

fragment from the Fc fragment of the antibody (Kilian et al., 1996). It has been suggested 

that some gut bacteria may be able to use IgA Fab fragments created by their proteases to 

cloak antigen epitopes from other intact antibodies to escape targeting by the immune 

system. Other bacterial proteins like staphylococcal superantigen-like protein 7 bind the 

Fc region of IgA antibodies, thereby blocking interactions with complement and Fc 

receptors (Langley et al., 2005).  

Each immunoglobulin subclass has different properties and consequently 

performs different functional roles in the immune system (Figure 1.2 and Table 1.1) 

(Spiegelberg, 1989). Particularly, immunoglobulin functional differences include eliciting 

different immune effector mechanisms (complement-dependent cytotoxicity, antibody-  
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Figure 1.2. Structure of the five mammalian classes of immunoglobulins. Diagram is an 

adaptation from Kuby (1997). 
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Table 1.1. Functional properties of the human immunoglobulin subclasses (Kuby, 1997). 
 
 
 Immunoglobulin 
Functional Property IgG1 IgG2 IgG3 IgG4 IgM IgA1 IgA2 IgD IgE 

Complement Activation 
(Classic pathway) 

++ + +++ - +++ - - - - 

Complement Activation 
(Alternative pathway 

- - - - - + - + - 

Placental transfer +++ + ++ -/+ - - - - - 

Binding to phagocyte 
Fc receptors 

+ - + -/+ - + + - + 

High-affinity binding 
to mast cells & 
basophils 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
- 

 
+++ 

Neutralization  ++ ++ ++ ++ + ++ ++ - - 

Opsonization +++  ++ + + + + - - 

Senstization for killing 
by NK cells 

++ - ++ - - - - - - 

Sensitization of mast 
cells 

- - + - - - - - +++ 
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dependent cellular cytotoxicity, and opsonization), physiological localization, ability to 

multimerize, ability to cross the placenta, and secretion at mucosal surfaces (Burton and 

Woof, 1992; Jefferis et al., 1998). Each subclass within an immunoglobulin class appears 

similar to the other (only a 5-10% gene difference for the IgG subclasses). However, 

there are important differences between them. Production of a specific subclass is 

controlled by genetic rearrangement at the heavy chain gene locus, a process called 

isotype switching (Stavnezer, 1996). This process results in a heavy chain consisting of 

the same variable domain (and therefore with identical antigen specificity). The 

environmental milieu of a B cell dictates which subclass of antibody is produced and is a 

reflection of the assault with which the immune system is challenged. For example, a 

viral infection stimulates T helper type I cytokines that will result in isotype switching to 

produce antibody classes best able to fight intracellular infections.  

IgM and IgD with the same antigen specificity are coexpressed on the surface of 

naïve B cells and act as the initial BCR to bind antigen. No other combination of two 

immunoglobulins can be expressed. Uniquely, Igµ and Igδ genes are transcribed in a 

single RNA molecule which is then polyadenylated 3’ of either the Igµ exons or the Igδ 

exons and then spliced (Preud’homme et al., 2000). Of the two, IgD is the least 

understood. Results from a few recent studies show that IgD and IgM may modulate B 

cell activation differently. Secreted IgD makes up only about 0.5% of serum 

immunoglobulins and very little research has been performed to determine its role 

(Brandzaeg et al., 1991). Both membrane and secreted IgD can bind to receptors 

expressed on T cells, hence modulating immune responses (Amin et al., 1991; Rudd et 
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al., 1995). IgM constitutes 5-10% of the total serum immunoglobulin. Low affinity IgM 

is the first immunoglobulin secreted in a primary immune response and is thought to 

represent the major isotype of natural antibodies. Natural antibodies are secreted in the 

absence of prior exposure to antigen, and often have broad antigen specificity. Natural 

antibodies may play an important role by priming the immune response through an initial 

capture of pathogens for processing by APC (Ochsenbein et al., 1999). Multimeric IgM is 

efficient at activating the classical complement pathway. IgD does not form multimers 

and does not activate the classical complement pathway. 

Both IgA and IgM multimerize and are transported across epithelial cells to 

mucosal surfaces (Brandzaeg et al., 1999). IgM molecules form pentamers and IgA 

predomintly forms dimers, although IgA polymers can exist also in trimeric and 

tetrameric forms. Multimerization is facilitated by the attachment of a polypeptide chain 

called the J chain. The J chain in turn can associate with the poly-immunoglobulin 

receptor (pIgR) expressed on the basolateral surface of epithelial cells. The pIgR then 

endocytoses and transports the immunoglobulin to the apical surface. The pIgR is then 

cleaved to release the immunoglobulin, leaving a portion of the pIgR (referred to as the 

secretory component) still attached to the molecule. IgA is the most abundant 

immunoglobulin class, accounting for 10-15% of serum immunoglobulin and for almost 

all of secreted immunoglobulin (76-90% in the gut mucosae, 69-86% in nasal, lacrimal 

and parotid glands) (Brandtzaeg et al., 1999). In the mucosae, IgA acts via immune 

exclusion by coating pathogens and preventing them from binding to the mucosal linings. 

IgA also helps with clustering of pathogens and their subsequent expulsion from the 
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mucosae (van Egmond et al., 2001). IgA is considered an anti-inflammatory 

immunoglobulin. Through binding Fc receptors (FcαRI or CD89), IgA can down regulate 

the effector functions of leukocytes from the myeloid lineage, such as inflammatory 

cytokine release induced by IgG immune complexes. Somewhat paradoxically, IgA 

immune complexes can interact with the same receptor to induce leukocyte effector 

functions (Pasquier et al., 2005).  

IgG makes up 80% of serum immunoglobulins with the relative abundance of the 

human subclasses being IgG1>IgG2>IgG3>IgG4 (Kuby, 1997). IgG are usually high 

affinity antibodies and are produced late in a primary immune response. IgG modes of 

action differ between subclasses. IgG3 followed by IgG1 then IgG2 can activate 

complement, whereas IgG4 cannot. IgG1, IgG3 and IgG4 are transported across the 

placenta to protect the fetus. IgG1 and IgG3 are most efficient at binding Fc receptors 

(Gessner et al., 1998). 

IgE has a very low serum concentration and is mostly bound to mast cells and 

eosinophils through the high affinity IgE Fc receptor. Antigen cross-linking of Fc 

receptor bound IgE on these cells results in the release of type I hypersensitivity reactions 

mediators. Type I hypersensitivity reactions range from common allergies to anaphylaxis. 

In addition, IgE plays an important role in defense against parasites (Kuby, 1997). 
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Immunoglobulin Fc receptors 

The humoral immune system consists mostly of antibodies and is connected to the 

cellular immune system though immunoglobulin Fc receptors (FcRs). FcRs exist for all 

antibody isotypes and are present on all leukocytes (Ravetch and Kinet, 1991). However, 

different Fc receptors are present for the different types of leukocytes and each is specific for 

one or a few immunoglobulin subclasses. Antigen/immunoglobulin complexes act to cross-

link FcR and subsequently set off intracellular signaling cascades. FcRs contain either 

immunoreceptor tyrosine activation motifs (ITAMs) or immunoreceptor tyrosine inhibition 

motifs (ITIMs), which function to activate or inactivate cells, respectively. The first step of 

the signaling cascades is the phosphorylation at tyrosines of one of these motifs (Cox and 

Greenberg, 2001). Most leukocytes have both ITAM and ITIM-containing receptors and the 

balance of these competing signals determines the activation status of the cell. Although FcR 

activation is similar in different classes of leukocytes, the induced effector functions are 

dictated by which type of leukocyte is activated. FcR-induced effector functions that directly 

target antigens include phagocytosis, antibody-dependent cell-mediated cytotoxity (ADCC), 

and respiratory burst (Ravetch and Kinet, 1991). Additionally, FcR-controlled events include 

release of cytokines and inflammatory mediators, and antigen presentation.  The IgA Fc 

receptor I, CD89, can regulate IgA half-life by protecting endocytosed IgA for transport back 

out of the cell or by transporting it to the lysosome compartment for degradation (Launay et 

al., 1999). IgG Fc receptors may modulate antibody production by IgG-mediated feedback 

suppression or by enhancement of antibody responses (Heyman, 2003).   
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FcRs are diverse in their structure, but share common features and nomenclature. 

FcRs were first described in the 1970’s, and the IgE high affinity immunoglobulin receptor 

(FcεRI) was the first characterized at the molecular level. FcεRI is made up of four 

polypeptide chains: α, β, and a γ dimer formed by an inter-chain disulfide bond (Conner and 

Saini, 2005). The FcεRI α chain is the IgE ligand binding chain. The β and γ chains are 

responsible for intracellular signaling and each consists of a transmembrane portion and a 

cytoplasmic tail containing ITAMs. Subsequent to the description of FcεRI, other FcR 

(FcγRI, FcγRIII and FcαRI) were found to consist also of unique ligand binding α chains and 

the same γ chain dimer (FcRγ2) (Ravetch and Kinet, 1991). The α chains associate with 

FcRγ2 through conserved charged residues in the transmembrane domain of each chain. 

Alternatively, in human natural killer cells FcRγ2 can be substituted with a TCR ζ signaling 

chain dimer or a heterodimer of a TCR ζ and FcRγ (Lanier et al., 1989). For the IgG 

receptors FcγRI and FcγRIIIa, the signaling chains have been shown to be required for 

efficient transport from the endoplasmic reticulum to the plasma membrane, whereas the IgA 

receptor FcαRI may be transported to the plasma membrane without association with FcRγ2 

(van Egmond et al., 2001). In contrast to other receptors, the IgG Fc receptors FcγRIIa and 

FcγRIIb consists of single α chain only with an extended cytoplasmic tail that contains either 

an ITAM or ITIM, respectively (Ravetch and Bolland, 2001). Human neutrophils may also 

express FcγRIIIb. This receptor is almost identical to FcγIIIa, but is truncated and connected 

to the plasma membrane by a GPI-link. This receptor lacks any signaling motif and functions 

by modulating the function of other neutrophil FcRs with which it becomes cross-linked 

(Ravetch and Bolland, 1998). FcR α chains are members of the immunoglobulin superfamily, 
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because they all have two or more immunoglobulin-like domains forming their extracellular 

portion. The IgG Fc receptors bind IgG with their membrane proximal immunoglobulin-like 

domain at an 1:1 ratio (Radaev and Sun, 2001). By contrast, FcαRI binds IgA at its first 

immunoglobulin-like domain in a 2:1 ratio (Herr et al., 2003). FcRs have different affinities 

for immunoglobulins. The high affinity FcεRI allows it to bind to monomeric IgE, thus 

resulting in a low concentration of free IgE in serum (Conner and Saini, 2005). Fc receptors 

with low affinities usually bind antibodies as part of immune complexes.  

Fc receptors are important not only for initiating immune responses to pathogen. IgG 

receptors are polymorphic within the human population and it is now well established that 

certain polymorphisms are risk factors for susceptibility to some infectious diseases and 

autoimmune disorders (van der Pol and van de Winkel, 1998).  Polymorphisms of FcγRIII 

are associated with severity of Guillain-Barré syndrome (Sorge et al., 2005). Soluble FcαRI 

released from cells has been proposed in a model for the mechanism of IgA nephropathy, the 

most common form of primary glomerulonephritis and renal failure (Launay et al., 1999; 

Monteiro et al., 2002; Monteiro, 2005). Although this model is still hotly debated, there is a 

tacit consensus that one or more Fc receptors are likely to be involved in IgA nephropathy 

(van der Boog, 2003; van der Boog et al., 2004). Fc receptor interactions are also critical to 

the design and use of therapeutic antibodies. Monoclonal antibodies are effectively used to 

prevent and/or control a variety of disorders, including cancer, autoimmune diseases and 

infectious diseases (Schulze-Koops and Lipsky, 2000; Zeitlin et al., 2000; Park and Smolen, 

2001). At least eleven therapeutic antibodies are currently approved for human therapy and 

the need for novel engineered antibodies continues to expand (Presta, 2002; Cohen-Solal, 
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2004). Currently, over 300 different clinical trails involving monoclonal antibodies are listed 

on the National Institute of Health website (http://www.clinicaltrial.gov). A clear 

understanding of the mode of action of monoclonal antibodies should take into account Fc 

receptor interactions. Antibodies designed to ameliorate autoimmune diseases often have as 

their goal to stimulate inhibitory receptors like FcγRIIb, while at the same time avoiding 

stimulation of activating receptors. For antibodies being used for cancer treatment just the 

opposite is true. Therefore, antibodies with modified Fc regions are being engineered. Such 

modifications can be designed only if a detailed characterization of Fc receptor/antibody 

interaction is available (Newman et al., 2001; Bisikirsha et al., 2005).  To further complicate 

matters, engineered bispecific antibodies that have one variable region with specificity for a 

tumor antigen and the other with specificity for an Fc receptor are considered to have great 

potential as cancer therapeutics. Even once a monoclonal antibody is developed and shows 

efficacy in clinical trails, the reasons for the success are often unknown and required further 

research (Bisikirsha et al., 2005).  

Antibodies and their Fc receptors are studied widely in different species to understand 

their structure and function. It is hoped that information from these studies will help to devise 

means to better bolster positive or attenuate harmful immune responses in humans and in 

economically important species. These studies also have yielded important insights into the 

evolution of the immune system, which has given us a better understanding of host-pathogen 

interactions. The antibodies and Fc receptors most extensively studied have been those of 

humans and species important as models of human diseases and immunity. In particular, 

mice are well studied and have given us great insight into how the immune system operates. 
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However, mice differ from humans in their humoral immune system. For example, mice have 

only one subclass of IgA and their IgD is quite structurally distinct from the human IgD 

(Mushinski et al., 1980; Shimizu et al., 1982). Fc receptors show major differences between 

mice and humans. Mice have no homologues of several human Fc receptors:  IgA Fc receptor 

I (CD89), IgG Fc receptor IIa (CD32a), and IgG Fc receptor IIIb (CD16b) (Ravetch and 

Kinet, 1991).  Additionally, the mouse IgG Fc receptor CD16a does not appear to be a true 

orthologue of human CD16a (Hughes, 1996). Indeed, comparative studies with other species 

show that the biology of antibodies and their receptors is quite diverse throughout 

vertebrates. Therefore, to perform research with the goal of understanding human humoral 

immune responses, it is often necessary to use species phylogenetically closely related to 

humans. Hence, nonhuman primates are often the animal models of choice. This choice is 

based on the assumption that antibodies and Fc receptors are highly conserved between 

humans and nonhuman primates. Existing data generally support this assumption, but 

antibodies and Fc receptors have not been fully characterized in any species including 

nonhuman primates.  

 
 
Animal models 

The use of animal models in biomedical research has provided and will continue 

to provide the basis for numerous advances in medicine. Despite ever mounting 

bioethical pressures to minimize the numbers of animals used in research and despite the 

increasing availability of in vitro experimental systems, animal models are indispensable 

to understand human physiology and human diseases.  Only in vivo models can reproduce 
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the complexity of the interactions connecting the human organ systems. These systems 

cannot be fully understood through reductive studies of their individual components.  

According to the United States Department of Agriculture, an estimated 1.13 

million animals were used in research in 2002. Rodents make up the majority of these 

animals, whereas nonhuman primates account for about one percent (~50,000) of animals 

used in research. The absolute number of nonhuman primates currently in use has been 

steady for over 20 years. Recent developments in biomedical research have increased 

demand for these species, despite considerable efforts made to minimize their use 

whenever possible. Nonhuman primates remain an appropriate model for research in 

hematology, immunology and virology (Hérodin et al., 2005; Patterson and Carrion 

2004). Furthermore, the demand for nonhuman primates is expected to increase because 

of needs related to the development of therapeutics and vaccines against potential 

bioterrorism threats (Patterson and Carrion, 2004). Indeed, the US Food and Drug 

Administration’s new guideline for the assessment of reagents against select agents 

would require testing in at least two animal models, one of which should be a nonhuman 

primate (Patterson and Carrion, 2004). The evaluation of therapeutic strategies now 

includes the understanding of their mechanism of action as well as the careful analysis of 

potential side effects, thus requiring the presence of minimal differences resulting from 

species divergence. 

Nonhuman primates used in biomedical research are represented by many species. 

Therefore, we will briefly discuss the evolution of primates and their phylogenetic 

relationships.  
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Primate evolution  

Although mammals are as ancient as the dinosaurs, the fossil record suggests that 

mammal diversity was limited until the end of the Cretaceous period, when the die off of 

the dinosaur allowed for the rapid adaptive radiation of mammals to fill the opening 

niches. Placental mammals emerged about 140 million years ago (MYA) and radiated 

during the Cenozoic period. Most of the major groups were established during the 

Paleocene epoch about 65 MYA. The fossil record indicates that distinct primate forms 

emerged at this time starting with the prosimians. Only recently some consensus has been 

reached by taxonomists on the overall relationship of placental mammals. Currently, 

placental mammals are divided into Afrotheria, Xenarthra, Laurasiatheria, and 

Euarchontoglires, the group in which primates and rodents are placed (Springer et al., 

2004). This new phylogeny clearly removes chiroptera from its previous grouping with 

primates making flying lemur and members of scandentia the closest relatives of 

primates. It is also now accepted that rodents are more closely related to primates than to 

carnivores and ungulates (Springer et al., 2004). Primate evolution is believed to have 

started in the old world where the ancestors of modern prosimians, Old World monkeys 

(Catarrhines) and New World monkeys (Platyrrhines), coexisted perhaps up to the late 

Eocene epoch.  

The history of anthropoids (Old World monkeys, New World Monkey and 

hominoids) is based on the exchange of species between Eurasia and Africa, and it’s still 
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an area of controversy. The latest fossil evidence suggests that the earliest African 

anthropoids emigrated from Asia before the late Paleocene, just before 37 MYA. At the 

same time, other species were being swapped between these continents (Jaeger and 

Marivaux, 2005; Seiffert et al., 2005; Beard 1995). Recently, molecular studies have 

placed the split off of the New World monkey around 35 MYA. At that time, the 

ancestors of these monkeys may have crossed the Atlantic to South America where their 

descendants are found today (Schrago and Russo, 2003). The ancestors of modern Old 

World monkeys and hominoids, which include humans and the apes, probably stayed in 

Africa until they split around 25 MYA ago. Further splits occurred about 18 MYA when 

the lesser apes (Gibbons and Siamangs) split from the great apes, and around 14 MYA 

when the papionins split from the colobines (Stewart and Disotell, 1998). Investigators 

generally agree on the relationship of the greater apes:  humans are most closely related 

to chimpanzees, with whom they share a common ancestor about some 5 MYA (Schrago 

and Russo, 2003; Stewart and Disotell, 1998). By contrast, the relationships between Old 

World monkey species (papionins, which include baboons, mangabeys, and macaques) 

are far from resolved. As a general rule, however, the African species of baboons, 

mangabeys, and mandrill are grouped together apart from the mostly Asian macaques 

(Stewart and Disotell, 1998).  There is only one non-Asian macaque species, Macaca 

sylvanus. This species raises doubts on the monophyletic origin of the genus Macaca 

(Groves, 2000). Figure 1.3 depicts the phylogentic tree of Old World monkeys and 

hominoids along with a chronology of evolutionary events.  
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Figure 1.3. Phylogeny of catarrhine primates. Adapted from evolution and phylogeny 

proposed by Stewart and Distell (1998). Estimated times of splits for the major groups 

are shown. The intercontinental dispersal events between Africa and Eurasia are indicated 

by the arrows with the stem of the tree starting in Africa. 

 
 
 
 
 
 
 
 
 
 
 
 

35        30      25      20       15      10        5        0    
Millions of years ago   

Humans  
Chimpanzees  

Gorillas  

Orangutans  
Lesser apes 
(Gibbons and Siamangs)  
Macaques 
Baboons 

and 
Mangabeys 

Langurs  

Colobus
Monkeys 

Colobines  

Papio- 
nines  

Great  
 apes  

Old 
World 

Monkeys

Africa   

Asia   

Africa   

Asia  

Asia  



 

 

28

Nonhuman primates in research 
 

Evolutionarily humans are most closely related to the great apes (chimpanzees, 

gorillas, organutans and gibbons), and therefore our physiology is most similar that of 

these species (Rogers and VandeBerg, 1998).Only a few studies are carried out in great 

apes since, they are endangered. In addition, the costs associated with research in these 

animals are prohibitively expensive (Shearer, 1999). Therefore, most nonhuman primate 

research is performed using the papionini group of Old world monkeys. A review of 

publications in which nonhuman primates were recently used shows that the most widely 

used species are, in descending order, Macaca mulatta (rhesus macaque), Macaca 

fascularis (cynomolgus macaque) and Papio spp. (baboons). Chlorocebus aethiops 

(African green monkey), is the most commonly used species when counting in vitro 

studies using cells lines, i.e. Vero cells, which are derived from this species (Carlsson et 

al., 2004).  On a smaller scale, some species of New World monkeys and prosimians are 

also used in research. The primary areas of research that use nonhuman primates are 

microbiology including HIV/AIDS (26%), neuroscience (19%), biochemistry (12%) and 

pharmacology/physiology (11%) (Carlsson et al., 2004).  

 

Macaques 

The macaques are included in the living cercopithecine. Macaques used in 

research include rhesus macaques (M. mulata), crab eating or cynomolgus macaques (M. 

fascicularis) and pig-tailed macaques (M. nemestrina).  
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 Rhesus monkeys have been the primary primate used in medical research up 

until recently, but their use is now likely to decrease. Once abundant for use and 

inexpensive, a decline in their numbers resulted in an embargo in their trade from India 

in 1978 and subsequently a shift to imports from China which has been accompanied by 

a rising cost. The vital role of rhesus macaques in HIV pathogenesis and in AIDS 

vaccine development research has placed this species at the forefront of immunological 

studies in primates (Earl et al., 2002; Horton et al., 2002; Barber et al., 2004; Evans et 

al., 2003; Lifson et al., 2003; Monceaux et al., 2003; Willey et al., 2003; Lena et al., 

2002). In addition, these monkeys have been and continue to be employed for 

immunological characterization and vaccine design for viral, bacterial, and protozoan 

infections associated with Ebola virus (Geisbert et al., 2002), West Nile/dengue virus 

(Pletnev et al., 2003), hepatitis E (Purcell et al., 2003), Mycobacterium tuberculosis, 

Borrelia burgdorferi (Lyme’s disease),  Helicobacter pylori (Del Giudice, 2001; 

Langermans et al., 2001; Pachner et al., 2001; Lai et al.,  2003), Leishmania major 

(Freidbag et al., 2003) and Plasmodium species (Angov et al., 2003).  

 As rhesus macaques become less available and more costly, researchers have 

focused on other macaques as animal models including pigtail macaques and 

cynomolgus macaques. Pigtail macaques are now being extensively used as animal 

models for AIDS-related studies (Qian et al., 1994; Dale et al., 2002; Herz et al., 2002; 

Yu Kimata et al., 2002; Ambrose, 2003; Shen et al., 2003).  They are being developed 

as animal models for mucosally transmitted HIV-1 infection using R5-tropic SHIV 

(simian/human immunodeficiency virus) and characterizing neutralization-resistant 
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virus variant of SHIV (Stephens et al., 1997; Narayan et al., 1999; Chen et al., 2000). 

Other research studies using pigtail monkeys include studying the pathogenesis of viral 

gastroenteritis (Subekti et al., 2002) and identifying immunological markers of aging 

(Bowden et al., 1994).  Cynomolgus macaques are being used similarly to other 

macaques species for pathogenesis and vaccine studies a sampling of which include 

yellow fever-dengue (Guirakhoo et al., 2004), hepatitis E virus (Li et al., 2004), HIV 

(Reimann et al., 2005), SARS (Qin et al., 2006), scrub typhus (Chattapadhyay et al., 

2005) and Yersina pestis (bubonic plague) (Honko et al., 2006). Additionally, macaques 

have frequently been used to test evaluate therapeutic antibodies and have been used in 

transplantation studies, two area of research that are not mutually exclusive (Cendales et 

al., 2005; Cozzi et al., 2005; Gaudreault et al., 2005; Martin et al., 2005; Hering et al., 

2006; Kim et al., 2006).  

 

Baboons and sooty mangabeys 

 Two types of African papionini monkeys used in research are baboons (Papio 

species) and sooty mangabeys. Baboons are used as models for numerous biomedical 

interests including transplantation (Elster et al., 2001; Hoerbelt and Madsen, 2004), 

therapeutic antibodies (Wu et al., 2002; Deckmyn et al., 2005), vaccine development, 

and cardiovascular disease (Kushwaha and McGill, 1998; Holm, 2001), which in recent 

years has been recognized to involve immune responses. The use of baboons benefits 

several areas of research because many of these animals from the primate centers in the 

US are pedigreed (VandeBerg and Williams-Blangero, 1997). Baboons are now 
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commonly used as animal models for the development of several vaccines, including 

HIV infection/AIDS (Locher et al., 2001; Wang et al., 2002; Locher et al., 2003) 

influenza virus (Bot et al., 2001), hepatitis B virus (Watts et al., 1999), Hemophilus 

influenza (Shearer et al., 1997), Mycobacterium tuberculosis (Pehler et al., 2000), 

Neisseria mengiditis (Granoff et al., 1997), group B Streptococcus (Paoletti et al., 

2000), and Schistosoma mansoni (Farah and Nyindo, 1996). Sooty mangabeys 

(Cercocebus torquatus) are natural hosts of SIV, but rarely develop AIDS-like 

pathogenesis as do macaques infected with SIV (Ling et al., 2004).  Therefore sooty 

mangabeys represent useful animal models for evaluation of AIDS pathogenesis and 

potential vaccines (Villinger, 1996; Kaur et al., 2000; Ansari et al., 2003; Bostick et al., 

2003; Silvestri et al., 2003; Veazey et al., 2003, Silvestri, 2005). Mangabeys represent a 

useful model to study leprosy (Wolf et al., 1985; Gormus et al., 1995). 

 

Study objectives 

 

The immune system is an essential defense without which we would quickly 

succumb to pathogens and malignancy. Just as the challenges to this defense are many, 

diverse and complex, so is the makeup of the immune system. Although in vitro studies 

are pivotal to advance our understanding of immune responses, in vivo studies are 

indispensable to complete this understanding. Since the first use of vaccines, medical 

science has constantly strived to develop new ways to manipulate the immune system to 

bolster or attenuate it where needed for better health. These developments come through 
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experimentation, which for ethical considerations and availability of proper controls 

cannot be done in humans. Therefore, animal models are often used in immunological 

research. Nonhuman primates are excellent animal models because they are most similar 

to humans when compared to other species commonly used in biomedical research. In 

order to optimize the value of research performed in nonhuman primates, it is necessary 

to understand their physiology. Antibodies and hence their Fc receptors are crucial to the 

adaptive humoral immune system. These molecules are being actively researched and 

used as tools to modulate the immune responses in humans, yet their structure and 

functions are not fully characterized, especially for the nonhuman primate species in 

which testing of immunotherapeutic strategies is carried out.  

Our laboratory seeks to understand how the immune system is shaped by and 

responds to challenges from pathogens and immunosenescence. We have characterized 

humoral immune responses generated against antigen challenge or as a result of aging in 

healthy nonhuman primates. In addition, we have characterized the immunoglobulin 

variable and constant region gene repertoire as well as antibody gene polymorphisms in 

these species, focusing on IgA and IgG molecules. The present study was designed to 

expand the characterization of nonhuman primate humoral responses.  

 

Specifically, our objective was to answer the following questions:   

1) What is the extent of similarity between human antibody genes and nonhuman primate 

antibody genes, in particular the IgD heavy chain gene? Are IgD molecules conserved in 

these species and might they have conserved features that suggest shared function? What 
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insights can this information bring to understanding structure/function relationships in 

other antibody isotypes? 

2) Do humans and nonhuman primates share the same immunoglobulin Fc receptors and 

are Fc receptors expressed on the same cell types in humans as in nonhuman primates? 

3) How do human and nonhuman primate antibodies interact with nonhuman primate Fc 

receptors?  

Answers to these questions will enhance and guide work performed with nonhuman 

primates, improving our understanding of the strengths and weaknesses of scientific 

results obtained using these species. Ultimately, this work will provide a foundation for 

research that focuses on the development of therapies to prevent and treat infectious 

diseases and cancers, prevent transplant rejection, and control autoimmune diseases. 
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CHAPTER 2 

Identification and Characterization of Macaque CD89 (IgA Fc Receptor) 

 
The content of this chapter was published as: Rogers et al., Immunology 2004; 
113:178-86. 
 
Keywords: CD89, IgA receptor, Macaques, Splice variants, Nonhuman primate 

models 

 
 
Summary 

The interaction of the IgA molecule with its specific cellular receptor is 

necessary to trigger a variety of effector functions able to clear IgA-opsonized 

antigens. The human IgA-specific Fc receptor, FcαRI or CD89, is expressed on cells 

of the myeloid lineage. Recently, CD89 homologues have been identified in rats and 

cattle. Because nonhuman primates represent well established models for a variety of 

human diseases and for the testing of immunotherapeutic strategies, we cloned and 

sequenced cDNAs corresponding to the CD89 gene from rhesus (Macaca mulatta) 

and cynomolgus (Macaca fascicularis) macaques. Macaque sequences of full-length 

CD89 consist of five exons of length identical to the corresponding human CD89 

exons. The rhesus and cynomolgus macaque derived amino acid sequences are highly 

homologous to each other (99.3% identity) and exhibit 86.5% and 86.1% identity to 

the human counterpart, respectively. Transfection of HeLa cells with plasmids 

containing the cloned macaque cDNAs resulted in the expression of surface 
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molecules recognized by an anti-human CD89 antibody. Five splice variants were 

identified in rhesus macaques. Three of the five variants are similar to described human 

CD89 splice variants, whereas two variants have not been described in humans. Three 

splice variants were identified in cynomolgus macaques. Of the three variants, one is 

present also in humans and rhesus macaques, whereas the other two are shared with 

rhesus macaques but not humans. Similarly to the human CD89, macaque CD89 is 

expressed on myeloid cells from peripheral blood. The characterization of macaque 

CD89 represents an essential step in establishing a nonhuman primate model for the 

testing of immunotherapeutic approaches based on the manipulation of the IgA/CD89 

interaction. 

 

Introduction 

Fc receptors (FcRs) are expressed on a variety of immune effector cells and, by 

binding the constant region of antibody molecules, provide an essential link between the 

humoral and cellular arms of the immune system (Ravetch and Kinet, 1991). FcαRI 

(CD89), the Fc receptor specific for IgA molecules, is a transmembrane glycoprotein that 

belongs to the immunoglobulin gene superfamily (Maliszewski et al., 1990). It is 

expressed on monocytes, eosinophils, neutrophils and macrophages (Monteiro and van de 

Winkel, 2003) and its signaling capacity is dependent on the association with the FcR γ-

chain subunit (Pfefferkorn and Yeaman, 1994). The human CD89 gene is located within 

the leukocyte receptor cluster on chromosome 19 (Kremer et al., 1992), appears to exist 

as a single copy (Maliszewski et al., 1990), spans 12 kb and includes five exons (de Wit 
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et al., 1995). Exons S1 and S2 encode the leader peptide, EC1 and EC2 each specify an 

extracellular immunoglobulin-like domain of 103 amino acids, and TM/C codes for the 

transmembrane domain (19 amino acids) and cytoplasmic tail (41 amino acids) of the 

receptor.  

The CD89/IgA interaction mediates immune effector responses, including 

antibody-dependent cell-mediated cytotoxicity, phagocytosis and respiratory burst, as 

well as release of cytokines and inflammatory mediators (Monteiro and van de Winkel, 

2003). Therefore, this interaction is necessary to maintain the integrity of the immune 

responses in both systemic and mucosal compartments. Indeed, IgA is the most 

abundantly produced antibody isotype and represents a first line of defense at mucosal 

surfaces. The IgA system differs in the animal species most extensively studied. In 

humans, there are two IgA subclasses, designated IgA1 and IgA2. Both subclasses bind 

FcαRI with a low affinity of approximately Ka = 106 M-1 (Wines et al., 1999). Only one 

IgA subclass is present in mice (Shimizu et al., 1982), whereas rabbits possess 13 IgA 

subclasses (Burnett et al., 1989). In rhesus macaques, IgA molecules are characterized by 

an extremely high level of intraspecies heterogeneity (Scinicariello and Attanasio, 2001; 

Scinicariello et al., 2004). This IgA heterogeneity appears in several nonhuman primate 

species (Sumiyama et al., 2002). Interestingly, no FcαRI homologue has been identified 

in mice. Recently, FcαRI homologues have been identified in rats (Maruoka et al., 2004), 

and cows (Morton et al., 2004). Here, we describe the rhesus and cynomolgus macaque 

CD89.  
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Materials and methods 

Amplification, Cloning and Sequencing of Macaque CD89 

Heparinized blood samples were collected from one healthy rhesus macaque 

(Macaca mulatta) and one healthy cynomolgus macaque (Macaca fascicularis). Total 

RNA was extracted from whole blood using the QIAamp RNA Blood Mini Kit (Qiagen 

Inc., Valencia, CA), and reverse transcribed into cDNA using oligo d(T)17 primers, 

followed by primer extension with the AMV reverse transcriptase (Roche Diagnostic 

Corp., Indianapolis, IN). PCR amplification of the cDNA was performed with Expand 

High Fidelity polymerase (Roche Diagnostic Corp.). The nucleotide sequences of the 

PCR primers used to amplify the complete CD89 transcripts have been previously 

reported by Pleass and co-workers (Pleass et al., 1996). Forward (RP1) and reverse (RP2) 

primers specific for the human CD89 located at the start codon of the S1 exon and the 

stop codon of the TM/C exon, respectively, were employed. The PCR conditions used 

were those described by Pleass and coworkers (Pleass et al., 1996) except that forty 

cycles of PCR were performed.  

An alternate form of CD89, known also as FcαRIb (which lacks exon TM/C but 

contains nucleotide sequences present in the intron located between exon EC2 and exon 

TM/C of variant 1) has been described (van Dijk et al., 1996). There are two FcαRIb 

isoforms, known as CD89 transcript variants 9 and 10 (van Dijk et al., 1996). In order to 

amplify this alternate form, we designed the FCARB2 primer (5’-

TCTAGCGAGGAAGTGAAAGCGG-3’) located at the 1024-1003 nt of the CD89 

transcript variant 9 (GenBank NM_133279) that, used with the RP1 primer, allows 
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amplification of the complete FcαRIb transcripts. After reverse transcription of total 

RNA, the cDNA was amplified with the FCARB2 and RP1 primers using the same 

conditions described for the RP1 and RP2 primers (Pleass et al., 1996). Fifty microliters 

of a PCR reaction was run on a 2% agarose gel. The bands of interest were excised from 

the gel, purified using the QIAquick Gel Extraction Kit (Qiagen Inc.) and ligated into the 

pCR2.1 vector (Invitrogen Corp., Carlsbad, CA). After transformation into the 

appropriate Escherichia coli, colonies from each sample were expanded. Plasmid DNA 

was screened on a 1% agarose gel after EcoRI digestion, to confirm the presence of the 

correct fragment size. All DNA sequences were determined using the ABI Prism Dye 

Termination Cycle Sequencing kit (PerkinElmer, Inc., Wellesley, MA) on an ABI model 

3100 automated sequencer (PerkinElmer, Inc.). The forward and reverse M13 primers 

were used for sequencing. Completed sequences were edited and aligned using the 

MacVector sequence analysis package (Accelrys Inc., Burlington, MA).  

 

Expression of Macaque CD89 cDNAs in HeLa Cells 

Full length rhesus and cynomolgus CD89 cDNAs ligated into the pCR2.1 vector 

were subjected to digestion with XhoI and EcoRI. The resulting fragments were ligated 

into the XhoI and EcoRI digested expression vector pcDNA3.1 (+) (Invitrogen Corp.) and 

amplified in E. coli. Twenty µg of expression vector was then added to HeLa cells 

suspended in 250µl of Dulbecco’s modified Eagle medium (DMEM) at 14×106 cells/ml. 

After ten min of incubation on ice, cells were electroporated by one or two pulses using 

the power supply set to 300V, 25mA, and 25W and the Electroporator II (Invitrogen 
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Corp.) set to 1000µF and ∞Ω, according to the manufacturer’s recommendations. Cells 

were then incubated at room temperature for ten minutes and grown in 10ml of DMEM 

with 10% fetal calf serum in 5% CO2 at 37°C. For rhesus macaque CD89, stably 

transfected cells were established by selection with Geneticin (400µg/ml) added 72 hours 

post transfection.  After several passages non-transfected and transfected HeLa cells were 

harvested from cell culture following three PBS washes from wells with 90% confluent 

growth. 1×106 cells were stained at 4°C with either 20µl of phycoerythrin-conjugated 

mouse anti-human CD89 (clone A59) or SimultestTM Control γ1/γ2a (both from Becton, 

Dickinson and Co., San Diego, CA) for 15 min, followed by 3 washes with PBS. A59 

binds to the extracellular domain 2 (EC2) of CD89 (Morton et al., 1999). Cells were then 

fixed with 1% paraformaldehyde and analyzed using a FACSCalibur flow cytometer 

(Becton, Dickinson and Co.). Repeated flow analysis of cells transfected for rhesus CD89 

confirmed that cells stably expressed rhesus CD89. Expression of cynomolgus macaque 

CD89 in HeLa cells was determined as described above, with the exception that only 

transient transfectants were generated and examined by flow cytometry analysis.   

 

Determination of CD89 Expression on Blood Leukocytes 

Blood from 4 rhesus and 7 cynomolgus macaques was collected in EDTA 

Vacutainer® tubes (Becton, Dickinson and Co.) by venipuncture under anesthesia. 

Leukocyte expression of CD89 was analyzed by two-color flow cytometry analysis using 

phycoerythrin (PE)-conjugated anti-human CD89 and fluorescein isothiocyanate (FITC)-

conjugated  monoclonal antibodies for CD14, CD20, and CD3 and cy-chrome conjugated 
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anti-CD16 (Becton, Dickinson and Co.). Monoclonal antibody clones for CD14, CD20, 

CD3 and CD16 were M5E2, L27, SP34, and 3G8 respectively.  SimultestTM Control 

γ1/γ2a was used to detect non-specific binding of mouse IgG to cells. Staining of whole 

blood was done using a standard procedure. Briefly, 100µl of blood was incubated with 

20µl of each antibody in the dark at room temperature. Erythrocytes were lysed with 2ml 

of BD PharM Lyse (Becton, Dickinson and Co.), washed 3 times with PBS and fixed 

with 1% paraformaldehyde. 5000 events were counted by flow cytometry.  

 

Results  

We cloned and sequenced macaque cDNA obtained through reverse transcription 

of total RNA followed by amplification performed using primers complementary to 

sequences located in the S1 and TM/C exons. The introduction of errors into the 

sequence was minimized by using a high fidelity polymerase with proofreading ability. 

To validate the amplification strategy, we amplified, cloned and sequenced the full length 

human CD89 as well as two human alternatively spliced variants. All human sequences 

matched those available in GenBank (accession numbers NM_002000, NM_133271 and 

NM_133279) (data not shown). We then used the same strategy to amplify, clone and 

sequence rhesus and cynomolgus macaque CD89. Each sequence was confirmed by 

cloning and sequencing the products of another independent PCR performed using the 

same total RNA. A complete transcript including all five exons along with several 

additional transcripts representing alternatively spliced forms of the CD89 mRNA were 

identified. Figure 2.1 shows the deduced amino acid sequences of the complete cDNA 
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from rhesus and cynomolgus macaques along with the corresponding human sequences. 

All five macaque exons were of length identical to the corresponding human CD89 

exons. The rhesus macaque and the cynomolgus macaque CD89 amino acid sequences 

exhibit 86.5% and 86.1% identity to the human counterpart, respectively. The rhesus 

macaque CD89 amino acid sequence shows 99.3% identity to the corresponding 

cynomolgus macaque sequence. Therefore, the CD89 sequences from these two 

nonhuman primate species are highly homologous to each other, differing for only two 

amino acids (a methionine/isoleucine substitution at position 40 and a 

phenylalanine/leucine substitution at position 85). We did not identify amino acid 

differences in the S1 and S2 exons between human and macaque sequences. The majority 

of human/macaque substitutions are clustered in the EC1 exon.  

To ascertain whether or not expression of the isolated full-length CD89 cDNA 

resulted in the production of a cell surface product, we generated HeLa cell transfectants 

using plasmids containing either rhesus or cynomolgus macaque full-length CD89 

cDNA. Transfected cells were stained with a PE conjugated anti-human CD89 and a 

mouse isotype control and analyzed by flow cytometry. Transfected cells exhibited 

increased fluorescence intensity when stained for CD89 as compared to staining with a 

control mouse antibody (Figure 2.2). Staining with anti-human CD89 PE did not result in 

detectable fluorescence of untransfected HeLa cells indicating that CD89 was not 

expressed in these cells prior to introduction of the expression vectors. The lower 

fluorescence intensity levels observed in cynomolgus macaques as compared to rhesus 
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                                ┌Mature Peptide 
                        │            ▼ │ 
               S1     ▼    S2    ▼                       EC1 
HuCD89.1   MDPKQTTLLCLVLCLGQRIQAQEGDFPMPFISAKSSPVIPLDGSVKIQCQAIREAYLTQLMIIKNSTYREIGRRLKFWNE 80 
MamuCD89.1 MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLIWLMMLKNSTYEKRDEKLGFWND 80 
MafaCD89.1 MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLIWLIMLKNSTYEKRDEKLGFWND 80 
                                                    │ 
                                                     ▼                EC2 
HuCD89.1   TDPEFVIDHMDANKAGRYQCQYRIGHYRFRYSDTLELVVTGLYGKPFLSADRGLVLMPGENISLTCSSAHIPFDRFSLAK 160 
MamuCD89.1 TTPEFVIDHMDANKAGRYRCRYRIGFSRFRYSDTLELVVTGLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAK 160 
MafaCD89.1 TTPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVTGLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAK 160 
                                                                   │ 
                                                                     ▼         TM/C 
HuCD89.1   EGELSLPQHQSGEHPANFSLGPVDLNVSGIYRCYGWYNRSPYLWSFPSNALELVVTDSIHQDYTTQNLIRMAVAGLVLVA 240 
MamuCD89.1 EGELSLPQHQSGEHPANFSLGPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAMAGLVLVA 240 
MafaCD89.1 EGELSLPQHQSGEHPANFSLGPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAMAGLVLVA 240 
 
 
HuCD89.1   LLAILVENWHSHTALNKEASADVAEPSWSQQMCQPGLTFARTPSVCK 287 
MamuCD89.1 LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 
MafaCD89.1 LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 
 

Figure 2.1.  Alignment of CD89 derived amino acid sequences obtained by cloning and sequencing rhesus macaque (GenBank 
accession number AY386684) and cynomolgus macaque (GenBank accession number AY386690) cDNA from whole blood 
and comparison with the published human sequence (GenBank NM_002000). Amino acid differences are underlined. The first 
amino acid of the preprotein is numbered as residue 1. The mature peptide starts at residue 22. Arrows indicate distinct 
domains. The first two amino acids for EC1 are encoded at the end of the S2 exon. The signal peptide is encoded by both S1 
and S2 sequences. Potential N-glycosylation sites, cysteines involved in disulfide bonds and arginine 209 critical for 
association with the FcRγ chain are bolded. Hu: Homo sapiens; Mamu: Macaca mulatta; Mafa: Macaca fascicularis.
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Figure 2.2. Expression of recombinant macaque CD89 on HeLa cells. Cells were 

transfected with a plasmid containing full-length (A) rhesus macaque CD89 cDNA or (B) 

cynomolgus macaque CD89 cDNA and stained with anti-human CD89: red line (rhesus 

MFI = 120.70, SD= 343.04; cynomolgus 30.35, SD=345.04) or with isotype control 

mouse IgG: tan line (rhesus MFI = 8.65, SD=7.40; cynomolgus MFI=9.27, SD=34.47). 

Untransfected HeLa cells stained with anti-human CD89: green line (MFI = 5.26, SD= 

28.69). MFI= Mean fluorescence intensity, SD= standard deviation. Stable transfectants 

were used for detection of rhesus macaque CD89 and transient transfectants were used 

for detection of cynomolgus macaque CD89. 5,000 events were counted per sample.

A B
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macaques are likely to reflect the transient transfection of Hela cells with the cynomolgus 

macaque cDNA (as mentioned above, stable transfectants were used to detect cell surface 

expression of rhesus macaque CD89). 

Several distinct mRNA isoforms of the human CD89 have been identified. These 

isoforms are generated through deletion of exons or parts of exons via alternative RNA 

splicing, resulting in the expression of closely related but functionally different receptor 

variants (Morton et al., 1996; Patry et al., 1996; Pleass et al., 1996; Reterink et al., 1996). 

Therefore, alternative splicing may represent the mechanism underlying the 

diversification of CD89 functions (Pleass et al., 1996). Ten human variants are listed in 

the GenBank data base. In addition to the complete CD89 transcript, we have identified 

several alternatively spliced transcripts in macaques. Specifically, five splice variants 

were present in the rhesus macaque blood sample analyzed and three splice variants in 

the cynomolgus macaque sample. Figure 2.3 depicts the derived amino acid sequences of 

the rhesus macaque variants. Three of the five variants (MamuCD89.3, MamuCD89. 7 

and MamuCD89.9) are similar to described human CD89 isoforms (Monteiro and van de 

Winkel, 2003), whereas two variants (MamuCD89.∆EC1 and MamuCD89. 

∆EC1∆TM/C) have not been described in humans. The derived amino acid sequences of  

the splice variants from cynomolgus macaques are shown in Figure 2.4. Of the three 

isoforms, one (MafaCD89.9) is present also in humans and rhesus macaques, whereas the 

other two (MafaCD89.∆EC1 and MafaCD89.∆EC1∆TM/C) are shared with rhesus 

macaques but not humans. Figure 2.5 shows the schematic representation of the complete 

CD89 transcript and corresponding splice variants identified in both macaque species.
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                                          ┌ Mature Peptide 
                                   │           ▼ │ 
                            S1  ▼    S2    ▼             EC1 
MamuCD89.1           MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLIWLMMLKNSTYEKRDEKLGFWND 80 
MamuCD89.3(∆EC2)     MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLIWLMMLKNSTYEKRDEKLGFWND 80 
MamuCD89.∆EC1        MDPKQTTLLCLVLCLGQRIQAQE--------------------------------------------------------- 23 
MamuCD89.7(∆S2∆EC1)  MDPKQTTLLCL--------------------------------------------------------------------- 11 
MamuCD89.9(∆TM/C)    MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLIWLMMLKNSTYEKRDEKLGFWND 80 
MamuCD89.∆EC1∆TM/C   MDPKQTTLLCLVLCLGQRIQAQE--------------------------------------------------------- 23 
                                                             │ 
                                                                 ▼               EC2 
MamuCD89.1           TTPEFVIDHMDANKAGRYRCRYRIGFSRFRYSDTLELVVTGLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAK 160 
MamuCD89.3(∆EC2)     TTPEFVIDHMDANKAGRYRCRYRIGFSRFRYSDTLELVVT---------------------------------------- 120 
MamuCD89.∆EC1        ----------------------------------------GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAK 63 
MamuCD89.7(∆S2∆EC1)  ----------------------------------------GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAK 51 
MamuCD89.9(∆TM/C)    TTPEFVIDHMDANKAGRYRCRYRIGFSRFRYSDTLELVVTGLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAK 160 
MamuCD89.∆EC1∆TM/C   ----------------------------------------GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAK 63 
                                                                             │ 
                                                                              ▼             TM/C 
MamuCD89.1           EGELSLPQHQSGEHPANFSLGPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAMAGLVLVA 240 
MamuCD89.3(∆EC2)     --------------------------------------------------------DSINRDYTTQNLIRMAMAGLVLVA 144 
MamuCD89.∆EC1        EGELSLPQHQSGEHPANFSLGPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAMAGLVLVA 143 
MamuCD89.7(∆S2∆EC1)  EGELSLPQHQSGEHPANFSLGPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAMAGLVLVA 131 
MamuCD89.9(∆TM/C)    EGELSLPQHQSGEHPANFSLGPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVT------------------------ 216 
MamuCD89.∆EC1∆TM/C   EGELSLPQHQSGEHPANFSLGPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVT------------------------ 119 
                                                                      │ 
                                                                    ▼        TAIL 
MamuCD89.1           LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK                        287 
MamuCD89.3(∆EC2)     LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK                        191 
MamuCD89.∆EC1        LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK                        190 
MamuCD89.7(∆S2∆EC1)  LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK                        178 
MamuCD89.9(∆TM/C)    -----------------------------------------------GRYLPVQPCVRVGCPGPCHWAGI 239 
MamuCD89.∆EC1∆TM/C   -----------------------------------------------GRYLPVQPCVRVGCPGPCHWAGI 142 

 
Figure 2.3. Alignment of the five rhesus macaque CD89 splice variants (GenBank accession number AY386684-AY386689) 
with full-length CD89 from the same species. Arrows indicate distinct domains. Mamu: Macaca mulatta. 
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                                        ┌Mature Peptide 
                                  │               ▼      │ 
                            S1  ▼    S2    ▼                        EC1 
MafaCD89.1           MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLIWLIMLKNSTYEKRDEKLGFWND 80 
MafaCD89.∆EC1        MDPKQTTLLCLVLCLGQRIQAQE--------------------------------------------------------- 23 
MafaCD89.9(∆TM/C)    MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLIWLIMLKNSTYEKRDEKLGFWND 80 
MafaCD89. ∆EC1∆TM/C  MDPKQTTLLCLVLCLGQRIQAQE--------------------------------------------------------- 23 
                                                                 │ 
                                                               ▼                     EC2 
MafaCD89.1           TTPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVTGLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAK 160 
MafaCD89. ∆EC1       ----------------------------------------GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAK 63 
MafaCD89.9(∆TM/C)    TTPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVTGLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAK 160 
MafaCD89. ∆EC1∆TM/C  ----------------------------------------GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAK 63 
                                                                             │ 
                                                                              ▼         TM/C 
MafaCD89.1           EGELSLPQHQSGEHPANFSLGPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAMAGLVLVA 240 
MafaCD89. ∆EC1       EGELSLPQHQSGEHPANFSLGPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAMAGLVLVA 143 
MafaCD89.9(∆TM/C)    EGELSLPQHQSGEHPANFSLGPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVT------------------------ 216 
MafaCD89. ∆EC1∆TM/C  EGELSLPQHQSGEHPANFSLGPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVT------------------------ 119 
                                                                    │ 
                                                                     ▼          TAIL 
MafaCD89.1           LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK                        287 
MafaCD89. ∆EC1       LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK                        190 
MafaCD89.9(∆TM/C)    -----------------------------------------------GRYLPVQPCVRVGCPGPCHWAGI 239 
MafaCD89. ∆EC1∆TM/C  -----------------------------------------------GRYLPVQPCVRVGCPGPCHWAGI 142 
 

Figure 2.4. Alignment of the three cynomolgus macaque CD89 splice variants (GenBank accession number AY386690-

AY386693) with full-length CD89 from the same species. Arrows indicate distinct domains. Mafa: Macaca fascicularis.
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      MamuCD89.1 
 

 

 MamuCD89.3 (∆EC2) 
 

  MamuCD89. ∆EC1 
 

 MamuCD89.7 (∆S2∆EC1) 
 

 MamuCD89.9 (∆EC1∆TM/C) 
 

 MamuCD89. ∆EC1∆TM/C 
 

 MafaCD89.1 
 

 MafaCD89. ∆EC1 
 

 MafaCD89.9 (∆TM/C) 
 

 MafaCD89. ∆EC1∆TM/C 

Figure 2.5. Schematic representation of the complete CD89 transcript and corresponding 

splice variants identified in rhesus and cynomolgus macaques. Mamu: Macaca mulatta; 

Mafa: Macaca fascicularis.
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The two variants identified in macaques and not described in humans are characterized 

by a deletion of the EC1 exon or by a deletion of the EC1 and TM/C exons. The latter 

variant maintains the tail sequences, as found in a human isoform with deletion of the 

TM/C exon. This human isoform is designated FcαRIb and results from an alternate 

splicing that, by skipping the 3’ splice site located at the end of the exon EC2, introduces 

a tail of 23 new amino acids before reaching the stop codon (van Dijk et al., 1996).  

Human CD89 is expressed only in selected cells of the myeloid lineage and not in 

lymphocytes.  To determine whether or not macaque CD89 is similarly expressed, whole 

blood from four rhesus and seven cynomolgus macaques was stained with the anti-human 

CD89 PE as well as various FITC-conjugated antibodies against markers of leukocyte 

populations and then analyzed by flow cytometry. Both macaque species expressed CD89 

on granulocytes and monocytes, but not on lymphocyte populations. Cells positive for 

markers of B cells, T cells and natural killer cells (CD20, CD3 and CD16 respectively) 

were all CD89 negative in both species (Figure 2.6). In humans, CD16 is present on 

neutrophils as well as on natural killer cells (Fleit et al., 1982). However, our results 

indicate that either macaque granulocytes do not express CD16 or granulocyte CD16 is 

present in a form not recognized by the antibody clone used in our study. Rhesus 

macaque leukocytes stained for CD14 can be plotted along with their side scatter 

properties to distinguish the lymphocyte, eosinophil, neutrophil, and monocyte 

populations (Lafont et al., 2000). Taking advantage of this, we stained whole blood for 

CD89 and CD14, and gated cell populations using a sidescatter versus CD14 dot plot 

(Figure 2.7). Without gating, CD14/CD89 staining identified three clusters of cells: a  
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Figure 2.6. CD89 is not expressed on lymphocytes of rhesus and cynomolgus macaques. 

Two-color dot-plots of whole blood leukocytes from a representative rhesus (A-D) and 

cynomolgus macaque (E-H). (A and E) forward scatter (FSC) versus side scatter (SSC). CD89 

versus CD20 (B and F), CD3 (C and G), and CD16 (D and H). 
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Figure 2.7. CD89 is expressed on monocytes and on granulocytes of rhesus and 

cynomolgus macaques.Two-color dot-plots of whole-blood leukocytes from a 

representative rhesus (A-D) and cynomolgus macaque (E-H). (A and E) CD14 versus 

side scatter. CD14 versus CD89 (B and F) total leukocytes, (C and G) granulocytes, (D 

and H) monocytes. Gates used for granulocyte (R1) and monocyte (R2) populations of 

rhesus (A) and cynomolgus macaque (E) are shown.
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double negative population in the bottom left hand corner corresponding to lymphocytes, 

a population with intermediate fluorescence on both axes, and a cluster of cells positive 

for CD89 with a broad range of expression for CD14. Gating of the granulocyte 

population revealed that the latter two populations contained granulocytes. The cluster of 

cells with intermediate fluorescence likely corresponds to a portion of eosinophils, as 

eosinophils are known to exhibit greater autofluorescence than other cell populations 

(Lafont et al., 2000). A percentage of the eosinophil population was always found in the 

CD89 high fluorescence cluster of cells, with the remaining CD89 positive cells 

representing neutrophils and monocytes.   

 

Discussion  

Macaques are widely used in biomedical research as models for pathogenesis 

studies, vaccine development and testing of immunotherapeutic approaches, including 

experimental strategies to prevent transplant rejection (Attanasio et al., 2000; Guirakhoo 

et al., 2000; Solnick et al., 2000; Hahn et al., 2001; Asiedu et al., 2003; Custer et al., 

2003; Lu et al., 2003; Vugmeyster et al., 2003; Xu et al., 2003). It is well recognized that 

macaques infected with simian immunodeficiency viruses (SIV) or simian-human 

immunodeficiency viruses (SHIV) are the best animal model currently available to study 

AIDS pathogenesis and vaccine development (Hirsch and Lifson, 2000). Given the 

importance of CD89 in the immune response, we identified and characterized CD89 

cDNA in two different macaque species. Results from our experiments show that HeLa 

cells transfected with plasmids containing rhesus macaque or cynomolgus macaque 
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CD89 cDNA express the CD89 molecule on their cell surface, and this molecule is 

recognized by an anti-human CD89 antibody. In addition, our results indicate that, 

similarly to the human counterpart, macaque CD89 is expressed on blood leukocytes of 

the myeloid lineage. 

The rhesus and cynomolgus macaque CD89 amino acid sequences exhibit 86.5% 

and 86.1% identity with the human counterpart, respectively, and are highly homologous 

to each other (99.3% identity). The human CD89 cDNA encodes a protein containing six 

potential N-glycosylation sites, four of which are located in the extracellular domains 

(Maliszewski et al., 1990). The presence of ordered carbohydrates at these four sites 

(N44, N58, N120, and N156) has been recently demonstrated in the crystal structure of 

the human CD89 (Herr et al., 2003). The other two sites are located at positions 165 and 

177. Differentially glycosylated CD89 species are expressed on monocyte/macrophages 

and granulocytes (Monteiro et al., 1992). As shown in Figure 2.1, the six glycosylation 

sites are also present in the CD89 sequences from both macaque species. However, an 

additional potential glycosylation site is present in the EC1 domain of the macaque CD89 

(asparagine at position 4). In the human CD89 molecule, cysteines involved in disulfide 

bonds are located at positions 28 and 79 of the EC1 domain and at position 125 and 172 

of the EC2 domain. As expected, these four cysteines are conserved in the CD89 

sequences from both macaque species. Additionally, arginine 209, critical for CD89 

association with the signaling molecule FcR γ chain (Morton et al., 1995), is conserved in 

macaques. 
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Human CD89 interacts with human IgA molecules through residues located on 

the EC1 domain. These residues, which include Y35, Y81 and R82 (along with R52 and 

to a lesser extent H85 and Y86), appear to form a single face at the N-terminus of the 

molecule and have been identified by scanning mutagenesis (Wines et al., 1999; Wines et 

al., 2001). While Y35 and Y81 are conserved in both macaque species, the arginine at 

position 52 and the tyrosine at position 86 are substituted by a glutamic acid and a serine, 

respectively, in both macaque species. In addition, the histidine located at position 85 of 

the human sequence is replaced by a phenylalanine in rhesus macaques and by a leucine 

in cynomolgus macaques. Recently, additional human CD89 residues involved in IgA 

binding (along with those previously described) have been identified by analyzing the 

crystal structure of the molecule (Herr et al., 2003). Of these amino acids, L54, F56, W57 

and G84 are conserved in the human and macaque CD89 molecules, whereas the arginine 

at position 53 and the lysine at position 55 of the human molecule are substituted by a 

lysine and by a glycine, respectively, in both macaque species. To date, the only CD89 

homologue model for IgA binding is the recently described bovine CD89 (bCD89), 

which was found to bind human and bovine IgA similarly (Morton et al., 2004). Binding 

of macaque IgA to macaque CD89 has not yet been shown. Interestingly, two of the 

human CD89 residues identified in the crystal structure as contributing to IgA binding 

(R53 and K55) are lysine and glycine, respectively, in both bovine and macaque CD89. 

This and the observation that bCD89 is more dissimilar than macaque CD89 to human 

CD89 indicates that, although some of the amino acids involved in the human IgA/CD89 
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interaction are not conserved in macaques, macaque CD89 is likely to bind IgA from the 

same species.  

Lack of identification in the macaque samples of additional splice variants similar 

to human transcripts may be due to different factors. Macaques may express only a 

limited number of the isoforms described in humans or, most likely, the identified 

macaque isoforms are a reflection of the samples used for RNA purification and therefore 

of transcripts that are present in cells found in peripheral blood. Human CD89 splice 

variants are indeed cell-type specific. The CD89.2 isoform is found only in alveolar 

macrophages (Patry et al., 1996). Similarly, expression of the CD89.3 variant (∆EC2) is 

cell-type specific (Togo et al., 2003). The presence of variants found only in macaques 

may indicate that such variants are specific to these species or that the corresponding 

human isoforms have not been identified yet. In addition, it has been demonstrated that 

the ratio of variants to wild type CD89 is regulated by inflammatory cytokines and can be 

differentially modulated by diseases (Monteiro et al., 2002; Togo et al., 2003). Indeed, 

we have observed differences in the relative intensity of bands for cDNA of the various 

splice variants from an individual varied compared with other individuals (data not 

shown). Therefore, CD89 isoform expression may be dependent on the particular 

individual analyzed and on the concomitant presence of inflammatory conditions or other 

disorders. Clearly, additional studies are necessary to fully characterize the entire set of 

macaque CD89 splice variants. 

The IgA Fc receptor has been characterized only in a few species. The rat CD89 

gene homologue shares 53% amino acid identity with the human CD89 (Maruoka et al., 
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2004). Only full-length CD89 and a single splice variant (characterized by a deletion of 

the S2 exon) have been identified in rat spleen (Maruoka et al., 2004). The cattle CD89 

homologue shares 56.2% amino acid identity with the human CD89. However, no splice 

variants have been reported in this species (Morton et al., 2004). The identification of 

several variants in macaques indicates that CD89 transcript processing may vary 

considerably between species.  

There is currently increased interest in the manipulation of the IgA/CD89 

interaction for immunotherapeutic purposes (Dechant and Valerius, 2001; Corthesy, 

2002; Presta, 2002). CD89 represents an effective target molecule for immunotherapy 

mediated by bispecific antibodies (Valerius et al., 1997). Results from a more recent 

study show that a chimeric surfactant protein D/anti-CD89 protein may effectively target 

pathogens to neutrophils (Tacken et al., 2004). Like humans, macaques express CD89 on 

granulocytes and monocytes. Because of the potential use of macaques as models for the 

development of IgA-based therapies, the characterization of CD89 and corresponding 

isoforms in these species represents an essential step to define a valuable system for the 

testing of therapeutic antibodies.   
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CHAPTER 3 

Immunoglobulin A Fc receptor I (CD89) Homologues in Nonhuman Primates: 

Identification and Characterization of Baboon and Sooty Mangabey CD89 and 

Characterization of Rhesus Macaque CD89 Interactions with Human and Rhesus 

Macaque IgA 

 
Keywords: IgA, CD89, IgA receptor, Nonhuman primate models 
 
 
 
Summary 
 
 Immune complexes containing IgA interact with the IgA Fc receptor I (CD89) to 

initiate the pathogen elimination processes carried out by cells of the myeloid lineage.  

Results from in vitro studies using IgA bispecific antibodies directed to either tumor or 

pathogen antigens and to CD89 show the great potential of therapeutic antibodies capable 

of harnessing immune responses. In addition, IgA/CD89 immune complexes appear to 

contribute to IgA nephropathy, the leading cause of first stage renal failure. Therefore, 

the characterization of IgA/CD89 interactions is essential to understand both 

physiological and pathological mechanisms mediated by these interactions. Currently, 

there is no established in vivo model for studying IgA/CD89 interactions. We have 

previously characterized the CD89 blood leukocyte expression profile in macaques and 

identified macaque CD89 genes. Here, we have extended our studies by characterizing 

CD89 gene transcripts and protein expression patterns in two additional nonhuman 

primate species important in biomedical research, baboons and sooty mangabeys. 
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Furthermore, we have employed recombinant rhesus macaque IgA and recombinant 

CD89 molecules to evaluate macaque IgA/CD89 binding properties. Our results show 

that leukocytes from baboons and sooty mangabeys produce several alternatively spliced 

CD89 gene transcripts. In these species, CD89 is detected only on monocytes and on 

granulocytes. Multiple CD89 alleles that fit a Mendelian mode of inheritance are present 

in baboons. Macaque CD89 binds to macaque IgA as well as to human IgA1 and IgA2. 

This binding is nearly abolished by blocking N-glycosylation. We have expressed two 

macaque CD89 isoforms produced from alternatively spliced transcripts in HeLa cells. 

One of these isoforms appears to be secreted and is capable of interacting with IgA 

complexes. This interactions reduces initial binding of IgA to CD89 expressed on HeLa 

cells and may act in vivo to block cross-linking of CD89 by IgA, thus resulting in 

inhibition of cellular activation. Together, these results greatly contribute to the 

development of animal models for studying the function of serum IgA, the mechanisms 

involved in the pathogenesis of IgA nephropathy, and the therapeutic potential of 

antibodies that interact with CD89 molecules.  

 
Introduction 

The human immunoglobulin A (IgA) Fc receptor I (CD89) is expressed on 

neutrophils, monocytes, and other select myeloid lineage cells. Cross-linking of CD89 

with IgA-opsonized pathogens initiates a variety of cellular immune responses, including 

phagocytosis, that assists in killing and removing these pathogens. In the absence of 

antigen binding IgA can act through CD89 to suppress activation of coexpressed IgG Fc 

receptors, thus helping to explain the anti inflammatory properties of this 
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immunoglobulin isotype (Pasquier et al., 2005). CD89 is not present in mice (Maruoka et 

al., 2004). CD89 homologues have been identified in few species (cow, horse, rat, 

macaques and chimpanzee) (Maruoka et al., 2004; Rogers et al., 2004; Morton, 2005; 

Morton et al., 2005). However, these homologues are still poorly characterized. Even 

human CD89 is incompletely characterized.  

As discussed in chapter 2, we have recently identified rhesus and cynomolgus 

macaque CD89 (Rogers et al., 2004). The whole blood leukocyte expression profile of 

these receptors matches that of humans. Macaques produce several alternatively spliced 

transcripts of CD89, including unique transcripts and transcripts similar to those 

generated by human cells. Macaque and human CD89 are highly conserved. However, 

they differ for few amino acid substitutions at positions that in humans are necessary for 

interactions with IgA. To further our understanding of CD89 structure and function, we 

have identified and characterized CD89 full length transcripts and several splice variants 

from baboons and sooty mangabeys. In addition, we show that recombinant rhesus 

macaque CD89 generated in HeLa cells is able to specifically bind human IgA1 and IgA2 

as well as recombinant rhesus macaque IgA. Efficient expression of rhesus macaque 

CD89 in HeLa cells is dependent on N-glycosylation.  
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Materials and methods 

Animals 

Blood samples were collected from a total of five healthy sooty mangabeys 

(Cercocebus torquatus) and twenty healthy baboons (Papio hamadryas anubis). The 

sooty mangabey samples were from animals housed at the Yerkes National Primate 

Research Center, Emory University, Atlanta, GA. Baboon samples were from animals 

housed at the Southwest National Primate Research Center San Antonio, TX. The 

animals used for sequencing of the CD89 gene were different from those used for flow 

cytometric analysis of blood leukocyte expression of CD89.  

 

Amplification, cloning and sequencing of baboon and sooty mangabey CD89 

Heparinized blood samples were collected from one sooty mangabey (Cercocebus 

torquatus) and sixteen baboons (Papio hamadryas anubis). Total RNA was extracted 

from whole blood using the QIAamp RNA Blood Mini Kit (Qiagen Inc., Valencia, CA), 

and reverse transcribed into cDNA using oligo d(T)17 primers, followed by primer 

extension with the AMV reverse transcriptase (Roche Molecular Biochemicals, 

Indianapolis, IN). Reverse transcription PCR amplification, cloning and sequencing were 

performed following a previously described protocol to identify CD89 in primates 

(Rogers et al., 2004). PCR forward (RP1) and reverse (RP2) primers used to amplify the 

full-length CD89 transcripts have been previously described (Pleass et al., 1996). 

Forward (RP1) and reverse (RP2) primers specific for human CD89 are located at the 

start codon of the S1 exon and the stop codon of the TM/C exon, respectively. An 
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alternate form of CD89, known as FcαRIb or CD89.9 (which lacks exon TM/C but 

contains nucleotide sequences present in the intron located between exon EC2 and exon 

TM/C) has been described for humans and macaques (van Dijk et al., 1996; Rogers et al., 

2004). Baboon and sooty mangabey splice variants of this type were amplified here as 

described previously with the reverse primer FCARB2 and forward primer RP1, which 

yield full-length FcαRIb transcripts (Rogers et al., 2004). Each sequence was confirmed 

by cloning and sequencing the products of another independent PCR performed using the 

same total RNA. 

 

Analysis of DNA sequences 

Overlapping regions were identified and sequences were edited using the 

MacVector software program (Accelrys Inc., San Diego, CA). Sequences were aligned 

with each other and other known CD89 genes using the CLUSTAL function of the 

MEGALIGN part of the LASERGENE software package (DNASTAR Inc., Madison, 

WI). The GenBank accession numbers for the CD89 sequences previously published are 

human NM_0020000, chimpanzee BK005386, rhesus macaque AY386684, cynomolgus 

macaque AY386690, rat AB109767, cow AY247821, pig CR45038 and horse 

AY587560. The pig gene has not previously been identified. We have predicted its 

sequence from a pig contig sequence on the basis of sequence homology with other CD89 

genes.  
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Determination of CD89 expression on blood leukocytes 

Blood from 4 baboon and 4 sooty mangabeys was collected in EDTA 

Vacutainer® tubes (Becton, Dickinson and Co., San Jose, CA) by venipuncture under 

anesthesia. Mangabey leukocyte expression of CD89 was analyzed by two-color flow 

cytometry using phycoerythrin (PE)-conjugated anti-human CD89 (clone A59) and 

fluorescein isothiocyanate (FITC)-conjugated anti-human CD16 (clone 3G8) (Becton, 

Dickinson and Co.). Baboon leukocyte expression of CD89 was analyzed by staining 

with PE anti-human CD16 alone. SimultestTM Control γ1/γ1 was used to detect non-

specific binding of mouse IgG to cells (Becton, Dickinson and Co.). Staining of whole 

blood was done using a standard procedure. Briefly, 100µl of blood was incubated with 

20µl of each antibody in the dark at room temperature for 15 min. Erythrocytes were 

lysed with 2ml of BD PharM Lyse (Becton, Dickinson and Co.), washed 3 times with 

PBS and fixed with 1% paraformaldehyde. 10000 cells were counted by flow cytometry. 

Samples were read using a FACSCalibur flow cytometer and data analyzed using BD 

CellQuestTM Pro version 5.2 software (Becton, Dickinson and Co.). 

 

Generation of HeLa cell clones expressing recombinant rhesus macaque CD89 

Previously we generated recombinant rhesus macaque CD89 in HeLa cells using 

a vector constructed with pcDNA3.1 (Invitrogen Corp., Carlsbad, CA) (Rogers et al., 

2004). However, even after extensive selection with G418, expression of CD89 using this 

vector in HeLa cells was only temporary. To improve the stability of the expression 

vectors in transfected cells, part of the pcDNA3.1 constructs (containing cDNA of rhesus 
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macaque CD89, a cytomegalovirus promoter, a bovine growth hormone polyadenylation 

signal, and a f1 origin) were amplified and inserted into the vector pLSXN (Clontech 

Laboratories, Inc., Mountain View, CA), which contains long terminal repeats for 

integration into chromosomes. pLSXN contains a neomycin resistance gene, which 

allows for transfectant selection. Insertion of a pcDNA-CD89 fragment into pLXSN was 

carried out by amplifying with primers PcHp (5’-

CTGCTGTTAACCGTTAGGGTTAGGCGTTTTGCG-3) and PcSa (5’-

ACTTTGTCGACGCTCAGCGGCCGGCCATCGATCCACAGAATTAATTCGCGTT-

‘3). The resulting fragment was then digested with Hpa I and Sal I, whereas pLXSN was 

digested with Hpa I and Xho I. The two fragments were then ligated together to form 

pLXSN-CD89. The Sal I digested fragment can be ligated to the Xho I digested vector 

because both enzymes produce the same sticky ends. Similarly, vectors were generated 

for rhesus macaque CD89 splice variants CD89.9 ∆TM/C and CD89 ∆EC1 from 

expression vectors created with pcDNA 3.1 according to the method used to generate the 

original CD89 expression vector with pcDNA3.1 (Rogers et al., 2004).   

Large quantities of vector for transfection were prepared using EndoFree® 

Plasmid Maxi kits (Qiagen, Inc.). Twenty µg of expression vector was added to HeLa 

cells suspended in 250µl of Dulbecco’s modified Eagle medium (DMEM) at 14×106 

cells/ml. After 10 min of incubation on ice, cells were electroporated by one pulse using 

the power supply set to 300V, 25mA, and 25W and the Electroporator II (Invitrogen 

Corp.) set to 1000µF and ∞Ω, according to the manufacturer’s recommendations. Cells 

were then incubated at room temperature for 10 min and grown in 10ml DMEM 
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(containing 10% FCS) in 5% CO2 at 37°C. Antibiotic G418 (400µg/ml) was added to 

cells 72 hours post transfection to obtain stable transfectants.   

Selection and expansion was performed to isolate HeLa cell clones stably 

expressing CD89 at high levels. To isolate single clones, cells were diluted serially into 

96 well microtiter plates and grown in 100µl of DMEM (containing 10% FCS and 

consisting of 50% fresh media and 50% conditioned media collected from flasks of 

untransfected HeLa cells and filtered with a 0.2µm filter) with 400µg/ml G418. Plates 

were examined by microscopy to identify wells with a single cell. Clones were 

subsequently expanded in wells of increasing size until cell numbers were sufficient to 

screen for CD89 expression. Reverse transcription PCR was performed to identify clones 

with CD89 transcripts. CD89 expression was then verified by staining cells with anti-

human CD89 PE (clone A59) or a mouse isotype control, followed by flow cytometric 

analysis. HeLa cells were prepared for flow cytometry as follows. Adherent cells were 

removed from flasks with 0.25% trypsin/EDTA and counted. Viability was determined 

by trypan blue exclusion. Cells were then aliquoted (0.5 ×106 cells/tube), washed with 

PBS, stained with 5µl of the appropriate antibody for 30 min at 4º C, washed three times 

with PBS to remove unbound antibody, and resuspended in 1% paraformaldehyde. 
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Generation of recombinant rhesus macaque IgA 

 The generation of recombinant rhesus macaque IgA has been previously 

described (Jayashankar, 2004) (Figure 3.1). This IgA molecule consists of a mouse 

variable region with specificity for the hapten 5-iodo-4-hydroxy-3-nitrophenacetyl (NIP) 

and a Chinese rhesus macaque IgA heavy chain constant region. Expression of 

recombinant rhesus macaque IgA was performed by transfection of J558L mouse 

myeloma cells (a gift from Dr. S. L. Morrison, UCLA) with a vector encoding the cDNA 

from the Chinese rhesus macaque IGHA gene (GenBank accession number AY29614; 

Scinicariello et al., 2004). The vector also contains the mouse immunoglobulin variable 

heavy region with affinity for the hapten NIP. The complete set of antibody genes 

includes the variable region of the mouse Igλ light chain produced in J558L cells 

(Jayashankar, 2004). J558L cells do not produce a mouse immunoglobulin as a result of a 

spontaneous loss of the immunoglobulin heavy chain from the parental cells line J558 (Oi 

et al., 1983). Vector construction was performed in our laboratory by Lakshmi 

Jayashankar from the parental human genomic IgG3 expression vector pLNOH2 

(provided by Drs. Lars Nordehaug and Inger Sandlie, University of Oslo and Antibody 

Design AS, Nesoddtangen, Norway). pLNOH2 was derived from pcDNA3 (Invitrogen 

Corp.). To create the final expression vector the human IGHG3 gene was removed from 

pLNOH2 by digestion with HindIII and BamHI followed by ligation with a rhesus 

macaque IGHA cDNA cassette, previously digested with HindIII and BamHI.  

 Production of recombinant rhesus macaque IgA from J558L cells was 

verified by ELISA as follows. Microtiter plates were coated with antigen consisting of  
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Figure 3.1. General outline of vector construction and expression of nonhuman primate 

recombinant antibodies. Antibody domains are rhesus: red and mouse: purple and orange.
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 bovine serum albumin conjugated to five molecules of NIP (NIP (5) BSA) (Biosearch 

Technologies, Inc., Novato, CA) in coating buffer at 15µg/ml overnight at 4ºC. The 

plates were blocked with 5% FCS at 37ºC for 30 min and washed 3 times in PBS with 

0.05% Tween 20. One hundred µl of supernatants from the transfected and untransfected 

cells were added and incubated overnight at 4ºC. After washing, 50 µl of 1:2000 HRP-

labeled goat anti-rhesus IgA antibody (KPL, Inc., Gaithersburg, MD) and goat anti-

mouse Igλ (Invitrogen Corp.) was added. After incubation for 1 hour at 37ºC, plates were 

washed and ABTS/H2O2 was added. After addition of the stop solution, absorbance was 

measured at 405 nm with a Benchmark microplate plate reader (Bio-Rad Laboratories, 

Inc., Hercules, CA). Samples with the greatest OD values for rhesus macaque IgA were 

used to examine binding to rhesus macaque CD89. 

  

Immunoglobulin binding assay 

Binding of immunoglobulin molecules to CD89 was assessed by flow cytometry 

using antibodies that were heat aggregated (HA) at 63ºC for 1hr. Human myeloma 

proteins IgA1, IgA2, IgG and IgM (Binding Site Ltd., Birmingham, UK) with 

immunoglobulin κ light chains were added to 0.5×106 cells at 20µg/ml in PBS and 

incubated for 1 hr at 4ºC. For experiments using media from cells transfected with rhesus 

macaque CD89.9 (CD89 ∆TM/C) and media from untransfected cells, human HA IgA2 

or IgM was incubated with cells suspended in media instead of PBS. PBS washed cells 

were then stained with either FITC-conjugated mouse anti-human Igκ (Invitrogen Corp.), 

FITC-conjugated mouse anti-human Igα (KPL, Inc.) or FITC-conjugated mouse isotype 
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control (Becton, Dickinson and Co.) for 30 min at 4ºC. For some experiments, 

noncompetitive mouse anti-human CD89 PE (clone A59) was added. Cells were washed 

and analyzed by flow cytometry as described above. For N-glycosylation blocking 

experiments, tunicamycin was added to half of the cell cultures at 1µg/ml 30 hr prior to 

harvesting cells. Tunicamycin blocks the addition of N-glycans to proteins by inhibiting 

the transfer of N-acetylglucosamine-1-phosphate to dolicholmonophosphate.  

Experiments to determine binding of recombinant rhesus macaque IgA were 

performed as variations on the above protocol. Two ml of supernatant from J558L cells 

secreting recombinant IgA or supernatant from control J558L cells was mixed with NIP 

(5) BSA (15µg/ml final concentration) and incubated for 2 hours at 37°C. Cells 

expressing rhesus macaque CD89 and control HeLa cells were prepared as described 

above followed by suspension in 50µl of either supernatant and incubated for 40 min at 

4°C. This step was repeated twice more with 20 min incubations following spinning of 

cells and removal of supernatant each time. Two hundred µl of supernatants without NIP 

(5) BSA was then added to cells and incubated for 30 min. Finally, cells were washed 

with PBS, stained with 20µl goat anti-mouse Igλ FITC and 5µl anti-human CD89 for 20 

min at 4°C, washed 3 times with PBS, and fixed with 1% paraformaldehyde. 

Experiments to determine whether or not NIP (5) BSA was necessary for rhesus macaque 

IgA/CD89 binding were then performed. Three hundred µl of supernatants were added to 

cells with NIP (5) BSA at concentrations of 15, 7.5, 3.75, 1.88 or 0 µg/ml and incubated 

at 4°C for 1 hour, then washed, stained and prepared as done above.  

 



 

 

69

 

Results 

Cloning and sequencing of baboon and sooty mangabey full-length CD89 and CD89 

splice variants 

We cloned and sequenced baboon and sooty mangabey cDNA obtained through 

reverse transcription of total RNA followed by amplification performed using primers 

complementary to sequences located in the S1 and TM/C exons. Full-length transcripts 

including all five exons were identified along with several additional transcripts 

representing alternatively spliced forms of the CD89 mRNA. Figure 3.2 shows the 

deduced amino acid sequences of the full-length cDNA from baboons (represented by the 

sequence most frequently observed in baboons) and sooty mangabeys (one of two variant 

sequences) along with the corresponding sequences from humans and other primates. All 

five baboon and sooty mangabey exons were of length identical to the corresponding 

human CD89 exons. The baboon and the sooty mangabey CD89 amino acid sequences 

exhibit 86.4% and 87.1% identity to the human counterpart, respectively. Complete 

comparison of percent identity and percent divergence for CD89 of all characterized 

species is given in Table 3.1. Amino acid differences in the S1 and S2 exons between any 

of the primates were not identified. There is a higher frequency of CD89 substitutions 

clustered in the EC1 exon as compared to the overall molecule and EC2 across all phyla 

for which CD89 has been identified (Tables 3.1-3.3).  Figure 3.3shows a phylogenetic 

analysis of CD89 from all available species.  

Baboon and sooty mangabey CD89 transcripts were variable due to both 

alternative RNA splicing and sequence substitutions. Several distinct mRNA splice  
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Figure 3.2. (Next page) Amino acid sequences of baboon and sooty mangabey CD89 

aligned with those of other primates. Baboon and sooty mangabey sequences were 

deduced from  experimentally derived sequences of cDNA from whole blood and 

compared with published sequences from human (GenBank accession number 

NM_002000), chimpanzee (GenBank BK005386), rhesus macaque (GenBank 

AY386684) and cynomolgus macaque (GenBank AY386690). The chimpanzee sequence 

is based on a third party annotation derived from the genome project sequence and has 

not been confirmed experimentally. Amino acid differences are underlined. The first 

amino acid of the preprotein is numbered as residue 1. The mature peptide starts at 

residue 22. Arrows indicate distinct domains. The first two amino acids for EC1 are 

encoded at the end of the S2 exon. The signal peptide is encoded by both S1 and S2 

sequences. Potential N-glycosylation sites, cysteines involved in disulfide bonds and 

arginine 209 critical for association with the FcRγ chain are bolded. Amino acids that 

form interface with IgA Fc region are in grey (Herr et al., 2003). Hu: human; Chimp: 

chimpanzee; Paca: baboon; Soma: sooty mangabey; Mamu: rhesus macaque; Mafa: 

cynomolgus macaque. 
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                                 ┌Mature Peptide 
                       │         ▼ │ 
                S1     ▼   S2      ▼                   EC1 
HuCD89.1    MDPKQTTLLCLVLCLGQRIQAQEGDFPMPFISAKSSPVIPLDGSVKIQCQAIREAYLTQL 60 
ChimpCD89.1 MDPKQTTLLCLVLCLGQRIQAQEGDSPMPFISAKSSPVIPLDGSVKIQCQAIREAYLTQL 60 
PacaCD89.1a MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 60 
SomaCD89.1  MDPKQTTLLCLVLCLGQRIQAQEGDFPTPFISTRSSPVVPWGGSARIQCQAIPDAYLIWL 60 
MamuCD89.1  MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLIWL 60 
MafaCD89.1  MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLIWL 60 
 
 
HuCD89.1    MIIKNSTYREIGRRLKFWNETDPEFVIDHMDANKAGRYQCQYRIGHYRFRYSDTLELVVT 120 
ChimpCD89.1 MIIKNSTYREIGRKLKFWNETDPEFIIDHMDANKAGRYQCQYRIGHYRFRYSDTLELVVT 120 
PacaCD89.1a MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFQYSDTLELVVT 120 
SomaCD89.1  MMLKNSTYEKRDEKLGFWNDTTPEFVIDHMDANKAGCYQCRYRIGFSRFRYSDTLELVVT 120 
MamuCD89.1  MMLKNSTYEKRDEKLGFWNDTTPEFVIDHMDANKAGRYRCRYRIGFSRFRYSDTLELVVT 120 
MafaCD89.1  IMLKNSTYEKRDEKLGFWNDTTPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVT 120 
 
            │ 
            ▼                            EC2 
HuCD89.1    GLYGKPFLSADRGLVLMPGENISLTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 180 
ChimpCD89.1 GLYGKPFLSADRGLVLMPGENISLTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 180 
PacaCD89.1a GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 180  
SomaCD89.1  GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQYQSGEHPANFSL 180 
MamuCD89.1  GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 180 
MafaCD89.1  GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 180 
 
 
                                                │ 
                                                ▼          TM/C 
HuCD89.1    GPVDLNVSGIYRCYGWYNRSPYLWSFPSNALELVVTDSIHQDYTTQNLIRMAVAGLVLVA 240 
ChimpCD89.1 GPVDLNVSGIYRCYGWYNRSPHLWSFPSNALELVVTDSIHQDYTIQNLIRMAMAGLVLVA 240 
PacaCD89.1a GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 240 
SomaCD89.1  GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAVAGLVLVA 240 
MamuCD89.1  GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAMAGLVLVA 240 
MafaCD89.1  GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAMAGLVLVA 240 
 
HuCD89.1    LLAILVENWHSHTALNKEASADVAEPSWSQQMCQPGLTFARTPSVCK 287 
ChimpCD89.1 LLAILVENWHSHTALNKEASADVAEPRWSQQMCQPGLTFA------- 280 
PacaCD89.1a LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 
SomaCD89.1  LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 
MamuCD89.1  LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 
MafaCD89.1  LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 

 

Figure 3.2. 
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Table 3.1. Percent identities and divergences of CD89 amino acid sequences. Sequences 

represent all identified CD89 molecules. GenBank accession numbers of previously 

identified genes are in the text. Paca: baboon; Soma: sooty mangabey; Mamu: rhesus 

macaque; Mafa: cynomolgus macaque. 

 

 
 

1 2 3 4 5 6 7 8 9 10
1        ** 97.5 86.4 87.1 86.4 86.1 55.7 54 55.7 49.6 1 Human 
2 2.5 *** 85.4 85 85 84.6 55.7 53.6 54.9 50.4 2 Chimpanzee 
3 13.8 16.3 *** 94.4 95.1 95.8 54.6 51.7 54.9 48.6 3 Paca
4 14.2 16.8 4.7 *** 97.2 96.5 53.9 51.6 53.8 49.6 4 Soma
5 15 16.8 4 2.8 *** 98.6 53.9 52.3 53.8 49.6 5 Mamu
6 15.5 17.2 3.2 3.6 1.4 *** 53.5 51.9 54.2 49.3 6 Mafa
7 64.1 63.3 65.8 67.5 67.5 68.3 *** 69 67.4 55 7 Horse
8 66.4 67.3 70.9 72.2 70.5 71.4 39.9 *** 70.8 50.7 8 Cow
9 60.7 61.5 62.4 64.9 64.9 64.1 40.4 35.1 *** 55.3 9 Pig
10 69.8 67.4 71.1 69 69 69.8 60.2 69 60.2 *** 10 Rat

1 2 3 4 5 6 7 8 9 10

Percent Identity
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Table 3.2. Percent identities and divergences for deduced amino acid sequences of CD89 

extracellular domain 1, the IgA binding domain. GenBank accession numbers of 

previously identified genes are in the text. Paca: baboon; Soma: sooty mangabey; Mamu: 

rhesus macaque; Mafa: cynomolgus macaque. 

 

 

1 2 3 4 5 6 7 8 9 10
1 *** 96.9 72.2 72.2 72.2 70.1 46.3 49.5 47.4 42.6 1 Human 
2 3.2 *** 71.1 71.1 71.1 69.1 49.5 50.5 48.4 43.6 2 Chimpanzee 
3 34.8 36.4 *** 89.7 93.8 94.8 42.1 46.3 48.4 41.5 3 Paca
4 34.8 36.4 11.1 *** 95.9 92.8 43.2 45.3 46.3 44.7 4 Soma
5 34.8 36.4 6.5 4.2 *** 96.9 43.2 47.4 47.4 42.6 5 Mamu
6 38.1 39.8 5.3 7.6 3.2 *** 42.1 46.3 48.4 41.5 6 Mafa
7 84.2 75.7 93.5 90.3 90.3 93.5 *** 74.7 72.6 59.6 7 Horse
8 73.1 70.5 81.3 84.2 78.5 81.3 30.8 *** 72.6 55.3 8 Cow
9 78.5 75.7 75.7 81.3 78.5 75.7 34.1 34.1 *** 59.6 9 Pig
10 98.7 95.3 95.3 88.8 92 95.3 59.7 66.7 57.4 *** 10 Rat

1 2 3 4 5 6 7 8 9 10

Percent Identity
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Table 3.3. Percent identities and divergences for deduced amino acid sequences of CD89 

extracellular domain 2. GenBank accession numbers of previously identified genes are in 

the text. Paca: baboon; Soma: sooty mangabey; Mamu: rhesus macaque; Mafa: 

cynomolgus macaque. 

 

 
 

1 2 3 4 5 6 7 8 9 10
1 *** 99 94.8 94.8 94.8 94.8 61.5 61.5 65.6 65.6 1 Human 
2 1 *** 93.8 93.8 93.8 93.8 60.4 60.4 64.6 64.6 2 Chimpanzee 
3 5.4 6.5 *** 97.9 97.9 97.9 60.4 59.4 61.5 63.5 3 Paca
4 5.4 6.5 2.1 *** 97.9 97.9 58.3 59.4 61.5 63.5 4 Soma
5 5.4 6.5 2.1 2.1 *** 100 59.4 60.4 61.5 64.6 5 Mamu
6 5.4 6.5 2.1 2.1 0 *** 59.4 60.4 61.5 64.6 6 Mafa
7 53.6 55.7 55.7 60 57.8 57.8 *** 65.6 66.7 61.5 7 Horse
8 53.6 55.7 57.8 57.8 55.7 55.7 45.8 *** 75 61.5 8 Cow
9 45.8 47.7 53.6 53.6 53.6 53.6 43.9 30.4 *** 63.5 9 Pig
10 45.8 47.7 49.6 49.6 47.7 47.7 53.6 53.6 49.6 *** 10 Rat

1 2 3 4 5 6 7 8 9 10

Percent Identity
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Figure 3.3. Neighbor joining (NJ) phylogenetic tree constructed from the amino acid 

sequences of all identified CD89 molecules in various species. Bootstrapping of the NJ 

tree was performed with 10,000 replicates. Baboon and sooty mangabey sequences are 

derived from this study, GenBank accession numbers for the remaining species are given 

in the Materials and Methods section. The bar indicates the number of substitution per 

site.    
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variants CD89 have been identified in humans and macaques, but few splice variants 

have been identified in other species (Morton et al., 1996; Patry et al., 1996; Pleass et al., 

1996; Reterink et al., 1996; Maruoka, 2004; Morton et al., 2004; Rogers et al., 2004; 

Morton et al., 2005). As was the case in other primates, we identified several splice 

variants in baboons and in mangabeys. We identified eight splice variants for four 

different baboons and three splice variants from a single sooty mangabey in addition to 

the full length transcript. Figures 3.4 and 3.5 depict schematically the splice variants 

identified for the baboons and the sooty mangabey, respectively. For baboons, five of the 

eight splice variants (PacaCD89.3, PacaCD89.4, PacaCD89. 7, PacaCD89.9 and 

PacaCD89∆EC1∆EC2) are similar to described human CD89 isoforms (Monteiro and 

van de Winkel, 2003; Pleass et al., 1997), whereas three of the variants (PacaCD89 

∆EC1, PacaCD89 ∆EC1∆TM/C and PacaCD89 ∆S2∆EC1∆TM/C) have not been 

described in humans. Two sooty mangabey splice variants are similar to reported human 

splice variants (SomaCD89.3 and SomaCD89.9). The third sooty mangabey variant has 

not been described in humans (SomaCD89 ∆S2∆EC1∆TM/C). 

We have previously noted a high degree of polymorphism of the CD89 ligand, IgA, for 

nonhuman primates and have considered the possibility that gene conversion may 

account for some of this variation. To determine whether or not this IgA diversity might 

correspond to polymorphisms in CD89, we examined CD89 from several baboons. 

Genetic variations resulting in amino acid substitutions were identified in three of the 

baboons examined and in the sooty mangabey. Two nucleotide sequences that differed 

only by a single silent substitution were obtained from the fourth baboon. The deduced 
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Figure 3.4. Schematic representation of the full-length CD89 transcript and 

corresponding splice variants identified in baboons. Paca: Papio hamadryas anubis. 
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Figure 3.5. Schematic representation of the full-length CD89 transcript and 

corresponding splice variants identified in sooty mangabey. Soma: Sooty mangabey. 

SomaCD89.1

SomaCD89.3 
        (∆EC2) 

SomaCD89.9 
       (∆TM/C) 

SomaCD89.∆S2 
                 ∆EC1 



 

 

79

 

 amino acid sequences of the different sequence variants of the CD89 transcripts and 

splice variants of each of the four baboons and of the sooty mangabey are shown in 

Figures 3.6-3.10. CD89 gene sequence variations were studied further in baboons using 

two pedigreed families consisting of a sire, a dam and four offspring. All of the different 

deduced amino acid sequences for baboon CD89 representing sixteen animals examined 

are presented in Figure 3.11. The offsprings’ CD89 genes were inherited with the 

expected patterns of normal Mendelian genetics (Figure 3.12).  

 

Expression of CD89 on baboon and sooty mangabey blood leukocytes 

In humans and macaques, CD89 is expressed only on select cells of the myeloid 

lineage and not on lymphocytes.  To determine whether or not baboon and sooty 

mangabey CD89 is similarly expressed, whole blood from four animals of each species 

was stained with the anti-human CD89 PE and anti-human CD16 FITC (sooty 

mangabeys only) and analyzed by flow cytometry. Lymphocytes, monocytes, and 

granulocytes (neutrophils and eosinophils) were identified using forward and side scatter 

properties and each population gated. For all four baboons examined, no well delineated 

population of monocytes could be identified. These samples must be shipped overnight, 

and our results possibly reflect a selective loss of this population as the blood ages. By 

contrast, mangabey blood which was only two to four hours old when processed had well 

defined monocyte populations. Mangabeys expressed CD89 on 72.61±12.25% (mean ± 

standard deviation) of their total leukocytes with no appreciable expression on 

lymphocytes (0.64±0.17%) and expression on a majority of monocytes and granulocytes  
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                                          ┌Mature Peptide 
                                 │        ▼  │ 
                          S1     ▼   S2      ▼                   EC1 
PacaCD89.1a           MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 60 
PacaCD89.1c           MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 
PacaCD89 ∆EC1         MDPKQTTLLCLVLCLGQRIQAQE------------------------------------- 
PacaCD89 ∆S2          MDPKQTTLLCL------------GNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 
PacaCD89 ∆EC1∆EC2     MDPKQTTLLCLVLCLGQRIQAQE------------------------------------- 
PacaCD89.9 (∆TM/C)    MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 
PacaCD89 ∆S2∆EC1∆TM/C MDPKQTTLLCL------------------------------------------------- 
PacaCD89 ∆EC1∆TM/C    MDPKQTTLLCLVLCLGQRIQAQE------------------------------------- 
 
 
PacaCD89.1a           MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFQYSDTLELVVT 120 
PacaCD89.1c           MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVT 
PacaCD89 ∆EC1         ------------------------------------------------------------ 
PacaCD89 ∆S2          MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVT 
PacaCD89 ∆EC1∆EC2     ------------------------------------------------------------ 
PacaCD89.9 (∆TM/C)    MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFQYSDTLELVVT 
PacaCD89 ∆S2∆EC1∆TM/C ------------------------------------------------------------ 
PacaCD89 ∆EC1∆TM/C    ------------------------------------------------------------ 
                      │ 
                      ▼                            EC2 
PacaCD89.1a           GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 180 
PacaCD89.1c           GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89 ∆EC1         GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89 ∆S2          GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89 ∆EC1∆EC2     ------------------------------------------------------------ 
PacaCD89.9 (∆TM/C)    GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89 ∆S2∆EC1∆TM/C GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89 ∆EC1∆TM/C    GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
                                                          │ 
                                                          ▼          TM/C 
PacaCD89.1a           GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 240 
PacaCD89.1c           GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 
PacaCD89 ∆EC1         GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 
PacaCD89 ∆S2          GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 
PacaCD89 ∆EC1∆EC2     ------------------------------------DSINQDYTTQNLIRMAVAGLVLVA  
PacaCD89.9 (∆TM/C)    GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVT------------------------ 
PacaCD89 ∆S2∆EC1∆TM/C GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVT------------------------ 
PacaCD89 ∆EC1∆TM/C    GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVT------------------------ 
                                                                     │ 
                                                                     ▼     Tail 
PacaCD89.1a           LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 
PacaCD89.1c           LLAILVENWHSHKALNKEASADVVEPSWSHQMCQPGWTFARTPSVCK 
PacaCD89 ∆EC1         LLAILVENWHSHKALNKEASADVVEPSWSHQMCQPGWTFARTPSVCK 
PacaCD89 ∆S2          LLAILVENWHSHKALNKEASADVVEPSWSHQMCQPGWTFARTPSVCK 
PacaCD89 ∆EC1∆EC2     LLAILVENWHSHKALNKEASADVVEPSWSHQMCQPGWTFARTPSVCK 
PacaCD89.9 (∆TM/C)    -----------------------------------------------GRYLAVQPCVQVG  
PacaCD89 ∆S2∆EC1∆TM/C -----------------------------------------------GRYLAVQPCVQVG 
PacaCD89 ∆EC1∆TM/C    -----------------------------------------------GRYLAVQPCVQVG 
 
 
PacaCD89.9 (∆TM/C)    CPGPCHWAGI 
PacaCD89 ∆S2∆EC1∆TM/C CPGPCHWAGI 
PacaCD89 ∆EC1∆TM/C    CPGPCHWAGI  
 

Figure 3.6. Alignment of baboon CD89 splice variants and polymorphisms from animal 

#35. Amino acid differences between sequences are bolded and italicized. Paca: Papio 

hamadryas anubis. 
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                                         ┌Mature Peptide 
                               │         ▼ │ 
                        S1     ▼   S2      ▼                   EC1 
PacaCD89.1a         MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 60 
PacaCD89.1e         MDPKQTTLLCLVLCLGQKIQAQEGNFSTPFISTRSSPVVPWGGSARIQCQAIPDAYLTWL 
PacaCD89.9 (∆TM/C)a MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 
PacaCD89.9 (∆TM/C)b MDPKQTTLLCLVLCLGQKIQAQEGNFSTPFISTRSSPVVPWGGSARIQCQAIPDAYLTWL 
 
PacaCD89.1a         MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFQYSDTLELVVT 120 
PacaCD89.1e         MMLKNSTYEKRDEKLGFWNDTTPEFVIDHMDANKAGRYQCRYRIGLSSFRYSGTLELVVT 
PacaCD89.9 (∆TM/C)a MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFQYSDTLELVVT 
PacaCD89.9 (∆TM/C)b MMLKNSTYEKRDEKLGFWNDTTPEFVIDHMDANKAGRYQCRYRIGLSSFRYSGTLELVVT 
                    │ 
                    ▼                            EC2 
PacaCD89.1a         GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 180  
PacaCD89.1e         GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89.9 (∆TM/C)a GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89.9 (∆TM/C)b GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
                                                        │ 
                                                        ▼          TM/C 
PacaCD89.1a         GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 240 
PacaCD89.1e         GPVDLNASGSYRCYGWYNRSPYLWSFPSNALELVVTDSINQDYTTQNLIRMAVAGLVLVA 
PacaCD89.9 (∆TM/C)a GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVT------------------------ 
PacaCD89.9 (∆TM/C)b GPVDLNASGSYRCYGWYNRSPYLWSFPSNALELVVT------------------------ 
                                                                   │ 
                                                                   ▼     Tail 
PacaCD89.1a         LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 
PacaCD89.1e         LLAILVENWHSHKALNKEASADVAEPSWSHQMCQSGWTFARTPSVCK 
PacaCD89.9 (∆TM/C)a -----------------------------------------------GRYLAVQPCVRVG 
PacaCD89.9 (∆TM/C)b -----------------------------------------------GRYLPVQPCVRVG 
 
 
PacaCD89.9 (∆TM/C)a CPGPCHWAGI 
PacaCD89.9 (∆TM/C)b CPGPCHWAGI 
 

Figure 3.7. Alignment of baboon CD89 splice variants and polymorphisms from animal 

#36. Amino acid differences between sequences are bolded and italicized. Paca: Papio 

hamadryas anubis. 
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                                        ┌Mature Peptide 
                              │         ▼ │ 
                       S1     ▼   S2      ▼                   EC1 
PacaCD89.1a        MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 60 
PacaCD89.1b        MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 
PacaCD89 ∆S2∆EC1   MDPKQTTLLCLVLCLGQRIQAQE-------------------------------------    
PacaCD89.3 (∆EC2)  MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL  
PacaCD89 ∆EC1∆EC2  MDPKQTTLLCLVLCLGQRIQAQE-------------------------------------    
PacaCD89 ∆EC1∆TM/C MDPKQTTLLCLVLCLGQRIQAQE------------------------------------- 
PacaCD89.9 (∆TM/C) MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 
 
 
PacaCD89.1a        MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFQYSDTLELVVT 120 
PacaCD89.1b        MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVT 
PacaCD89 ∆S2∆EC1   ------------------------------------------------------------    
PacaCD89.3 (∆EC2)  MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVT  
PacaCD89 ∆EC1∆EC2  ------------------------------------------------------------    
PacaCD89 ∆EC1∆TM/C ------------------------------------------------------------ 
PacaCD89.9 (∆TM/C) MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVT 
 
                   │ 
                   ▼                            EC2 
PacaCD89.1a        GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 180  
PacaCD89.1b        GLYGKPSLSADRGPVLMPGENISITCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89 ∆S2∆EC1   GLYGKPSLSADRGPVLMPGENISITCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL    
PacaCD89.3 (∆EC2)  ------------------------------------------------------------  
PacaCD89 ∆EC1∆EC2  ------------------------------------------------------------    
PacaCD89 ∆EC1∆TM/C GLYGKPSLSADRGPVLMPGENISITCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89.9 (∆TM/C) GLYGKPSLSADRGPVLMPGENISITCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
 
                                                       │ 
                                                       ▼          TM/C 
PacaCD89.1a        GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 240 
PacaCD89.1b        GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 
PacaCD89 ∆S2∆EC1   GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA    
PacaCD89.3 (∆EC2)  ------------------------------------DSINQDYTTQNLIRMAVAGLVLVA 
PacaCD89 ∆EC1∆EC2  ------------------------------------DSINQDYTTQNLIRMAVAGLVLVA   
PacaCD89 ∆EC1∆TM/C GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVT------------------------ 
PacaCD89.9 (∆TM/C) GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVT------------------------ 
 
                                                                  │ 
                                                                  ▼     Tail 
PacaCD89.1a        LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 
PacaCD89.1b        LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 
PacaCD89 ∆S2∆EC1   LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK    
PacaCD89.3 (∆EC2)  LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK  
PacaCD89 ∆EC1∆EC2  LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK    
PacaCD89 ∆EC1∆TM/C -----------------------------------------------GRYLAVQPCVRVG 
PacaCD89.9 (∆TM/C) -----------------------------------------------GRYLAVQPCVRVG 
 
 
PacaCD89 ∆EC1∆TM/C CPGPCHWAGI 
PacaCD89.9 (∆TM/C) CPGPCHWAGI 
 

Figure 3.8. Alignment of baboon CD89 splice variants and polymorphisms from animal 

#38. Amino acid differences between sequences are bolded and italicized. Paca: Papio 

hamadryas anubis. 
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                                          ┌Mature Peptide 
                                │         ▼ │ 
                         S1     ▼   S2      ▼                   EC1 
PacaCD89.1b          MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 60 
PacaCD89.3 (∆EC2)    MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 
PacaCD89 ∆EC1        MDPKQTTLLCLVLCLGQRIQAQE------------------------------------- 
PacaCD89 ∆EC1∆EC2    MDPKQTTLLCLVLCLGQRIQAQE------------------------------------- 
PacaCD89.9 (∆TM/C)   MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 
PacaCD89 ∆S2∆EC1∆EC2 MDPKQTTLLCL------------------------------------------------- 
 
 
PacaCD89.1b          MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVT 120 
PacaCD89.3 (∆EC2)    MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFQYSDTLELVVT 
PacaCD89 ∆EC1        ------------------------------------------------------------ 
PacaCD89 ∆EC1∆EC2    ------------------------------------------------------------ 
PacaCD89.9 (∆TM/C)   MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVT 
PacaCD89 ∆S2∆EC1∆EC2 ------------------------------------------------------------ 
 
                     │ 
                     ▼                            EC2 
PacaCD89.1b          GLYGKPSLSADRGPVLMPGENISITCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 180 
PacaCD89.3 (∆EC2)    ------------------------------------------------------------ 
PacaCD89 ∆EC1        GLYGKPSLSADRGPVLMPGENISITCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89 ∆EC1∆EC2    ------------------------------------------------------------ 
PacaCD89.9 (∆TM/C)   GLYGKPSLSADRGPVLMPGENISITCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89 ∆S2∆EC1∆EC2 GLYGKPSLSADRGPVLMPGENISITCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
 
                                                         │ 
                                                         ▼          TM/C 
PacaCD89.1b          GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 240 
PacaCD89.3 (∆EC2)    ------------------------------------DSINQDYTTQNLIRMAVAGLVLVA 
PacaCD89 ∆EC1        GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 
PacaCD89 ∆EC1∆EC2    ------------------------------------DSINQDYTTQNLIRMAVAGLVLVA 
PacaCD89.9 (∆TM/C)   GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVT------------------------ 
PacaCD89 ∆S2∆EC1∆EC2 GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVT------------------------ 
 
                                                                    │ 
                                                                    ▼     Tail 
PacaCD89.1b          LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 
PacaCD89.3 (∆EC2)    LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 
PacaCD89 ∆EC1        LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 
PacaCD89 ∆EC1∆EC2    LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 
PacaCD89.9 (∆TM/C)   -----------------------------------------------GRYLAVQPCVRVG 
PacaCD89 ∆S2∆EC1∆EC2 -----------------------------------------------GRYLAVQPCVRVG 
 
 
PacaCD89.9 (∆TM/C)   CPGPCHWAGI 
PacaCD89 ∆S2∆EC1∆EC2 CPGPCHWAGI 
 

Figure 3.9. Alignment of baboon CD89 splice variants and polymorphisms from animal 

#39. Amino acid differences between sequences are bolded and italicized. Paca: Papio 

hamadryas anubis. 
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                                        ┌Mature Peptide 
                              │         ▼ │ 
                    S1        ▼      S2   ▼                   EC1 
SomaCD89.1a        MDPKQTTLLCLVLCLGQRIQAQEGDFPTPFISTRSSPVVPWGGSARIQCQAIPDAYLIWL 60 
SomaCD89.1b        MDPKQTTLLCLVLCLGQRIQAQEGDFPTPFISTRSSPVVPWGGSARIQCQAIPDAYLIWL 
SomaCD89 ∆EC1      MDPKQTTLLCLVLCLGQRIQAQEGDFPTPFISTRSSPVVPWGGSARIQCQAIPDAYLIWL 
SomaCD89.9 (∆TM/C) MDPKQTTLLCLVLCLGQRIQAQEGDFPTPFISTRSSPVVPWGGSARIQCQAIPDAYLIWL 
SomaCD89 ∆S2 ∆TMC  MDPKQTTLLCL------------GDFPTPFISTRSSPVVPWGGSARIQCQAIPDAYLIWL 
 
 
SomaCD89.1a        MMLKNSTYEKRDEKLGFWNDTTPEFVIDHMDANKAGCYQCRYRIGFSRFRYSDTLELVVT 120 
SomaCD89.1b        MMLKNSTYEKRDEKLGFWNDTTPEFVIDHMDANKAGCYRCRYRIGFSRFQYSDTLELVVT 
SomaCD89 ∆EC1      MMLKNSTYEKRDEKLGFWNDTTPEFVIDHMDANKAGCYQCRYRIGFSRFRYSDTLELVVT 
SomaCD89.9 (∆TM/C) MMLKNSTYEKRDEKLGFWNDTTPEFVIDHMDANKAGCYRCRYRIGFSRFQYSDTLELVVT 
SomaCD89 ∆S2 ∆TMC  MMLKNSTYEKRDEKLGFWNDTTPEFVIDHMDANKAGCYQCRYRIGFSRFRYSDTLELVVT 
 
                   │ 
                   ▼                           EC2 
SomaCD89.1a        GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQYQSGEHPANFSL 180 
SomaCD89.1b        GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQYQSGEHPANFSL 
SomaCD89 ∆EC1      ------------------------------------------------------------ 
SomaCD89.9 (∆TM/C) GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQYQSGEHPANFSL 
SomaCD89 ∆S2 ∆TMC  GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQYQSGEHPANFSL 
 
                                                       │ 
                                                       ▼              TM/C 
SomaCD89.1a        GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAVAGLVLVA 240 
SomaCD89.1b        GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVTDSINRDYTTQNLIRMAVAGLVLVA 
SomaCD89 ∆EC1      ------------------------------------DSINRDYTTQNLIRMAVAGLVLVA 
SomaCD89.9 (∆TM/C) GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVT------------------------ 
SomaCD89 ∆S2 ∆TMC  GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALELVVT------------------------ 
 
                                                                 │ 
                                                                 ▼      TAIL   
SomaCD89.1a        LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 
SomaCD89.1b        LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 
SomaCD89 ∆EC1      LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 
SomaCD89.9 (∆TM/C) -----------------------------------------------GRYLPVQPCVRVGCPGPCHWAGI 
SomaCD89 ∆S2 ∆TMC  -----------------------------------------------GRYLPVQPCVRVGCPGPCHWAGI 
 

Figure 3.10. Sooty mangabey CD89 splice variant alignment and amino acid 

substitutions. Amino acid differences between sequences are bolded and italicized. Soma: 

sooty mangabey. 
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                                 ┌Mature Peptide 
                       │         ▼ │ 
                S1     ▼   S2      ▼                   EC1 
PacaCD89.1a MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 60 
PacaCD89.1b MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 
PacaCD89.1c MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 
PacaCD89.1d MDPKQTTLLCLVLCLGQRIQAQEGNFSTPFISTRSSPVVPWGGSVRIQCQAIPDAYLTWL 
PacaCD89.1e MDPKQTTLLCLVLCLGQKIQAQEGNFSTPFISTRSSPVVPWGGSARIQCQAIPDAYLTWL 
 
 
 
PacaCD89.1a MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFQYSDTLELVVT 120 
PacaCD89.1b MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVT 
PacaCD89.1c MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVT 
PacaCD89.1d MMLKNSTYEKRGEKLGFWNDTKPEFVIDHMDANKAGRYRCRYRIGLSRFRYSDTLELVVT 
PacaCD89.1e MMLKNSTYEKRDEKLGFWNDTTPEFVIDHMDANKAGRYQCRYRIGLSSFRYSGTLELVVT 
 
            │ 
            ▼                            EC2 
PacaCD89.1a GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 180  
PacaCD89.1b GLYGKPSLSADRGPVLMPGENISITCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89.1c GLYGKPSLSVDRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89.1d GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
PacaCD89.1e GLYGKPSLSADRGPVLMPGENISVTCSSAHIPFDRFSLAKEGELSLPQHQSGEHPANFSL 
 
                                                │ 
                                                ▼          TM/C 
PacaCD89.1a GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 240 
PacaCD89.1b GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 
PacaCD89.1c GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINQDYTTQNLIRMAVAGLVLVA 
PacaCD89.1d GPVDLNVSGSYRCYGWYNRSPYLWSFPSNALKLVVTDSINRDYTTQNLIRMVVAGLVLVA 
PacaCD89.1e GPVDLNASGSYRCYGWYNRSPYLWSFPSNALELVVTDSINQDYTTQNLIRMAVAGLVLVA 
 
 
 
PacaCD89.1a LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 287 
PacaCD89.1b LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 
PacaCD89.1c LLAILVENWHSHKALNKEASADVVEPSWSHQMCQPGWTFARTPSVCK 
PacaCD89.1d LLAILVENWHSHKALNKEASADVAEPSWSHQMCQPGWTFARTPSVCK 
PacaCD89.1e LLAILVENWHSHKALNKEASADVAEPSWSHQMCQSGWTFARTPSVCK 
 
 

 Figure 3.11. Baboon CD89 polymorphisms. Positions that are different between 

sequences are bolded and italicized. Form “a” is found in baboons 35, 36, 38, 7808, 8344, 

8170, and 10595 albeit there are differences in some monkeys in the nucleic acid 

sequence. Form “b” is found in baboons 39 (two different nucleic acid sequences) and in 

baboon 38. The remaining three peptide sequences are deduced from a single baboon: “c” 

for baboon 35, “d” for baboon 7808, “e” for baboon 36. 
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Figure 3.12. Inheritance of CD89 gene sequence variants among baboons in two 

pedigreed baboon families. Diagrams above give the baboon numeric designation 

assigned by the Southwest National Primate Research Center above the genotypes of 

each monkey. Genes are arbitrarily designated A, B and C. Genes A and B differ by a 

single nucleotide and do not differ in the amino acid sequence and match the 

PacaCD89.1a amino acid sequence of figure 3.11. Gene C encodes a protein matching 

PacaCD89.1e of figure 3.11. 
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 (83.45±6.08% and 99.30±0.58% CD89+ respectively) (Figure 3.13). CD89 staining of 

mangabey cells was specific, since an irrelevant isotype matched PE labeled mouse 

antibody did not bind to the cells (CD89+ 0.37±0.63). CD16, the IgG low affinity Fc 

receptor III, was coexpressed on a majority of mangabey granulocytes with CD89, but 

was only expressed on a minority of cells in the monocyte gate, a few of which did not 

express CD89. Baboons expressed CD89 on their granulocytes (mean fluorescence 

intensity (MFI) = 162.16±37.98), but not on lymphocytes (MFI = 5.58±1.68) (Figure 

3.14). A mouse isotype control did not bind to baboon leukocytes (MFI = 7.31±2.96). 

Expression of recombinant rhesus macaque CD89 in HeLa cells, IgA binding and effects 

of glycosylation inhibition 

HeLa cells were transfected with an expression vector for full-length rhesus 

macaque CD89 designed to incorporate itself in chromosomes for stable expression. 

After antibiotic selection, isolation, expansion and screening, three clones positive for 

CD89 cDNA transcripts and exhibiting high CD89+ fluorescence staining were identified 

(Figure 3.15).  Cells from the positive clones were incubated with mouse isotype control 

PE and untransfected HeLa cells incubated with anti-human CD89 PE. All these cells 

were negative for fluorescence staining, thus verifying that CD89+ staining of these 

clones was specific. Expression of CD89 from these cells was stable, since CD89 

expression was consistently detected on these cells for over one year.  

Using clones expressing CD89 and untransfected control HeLa cells, binding of 

heat aggregated human myeloma proteins and recombinant chimeric rhesus IgA to rhesus 

macaque CD89 was assessed (Figures 3.16 and 3.17). Cells were simultaneously stained  
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Figure 3.13. Sooty mangabey CD89 is expressed on monocytes and granulocytes. 

Two-color dot-plots of whole blood leukocytes from a representative sooty 

mangabey showing cell population expressing CD89. Forward scatter versus side 

scatter plot (A); mouse isotype control PE versus mouse isotype control FITC (B); 

CD16 versus CD89 for all leucocytes (C), gated lymphocytes (D), gated 

monocytes (E), and gated granulocytes (F). 
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Figure 3.14. Baboons express CD89 on granulocytes, but not on lymphocytes 

from whole blood. Forward scatter versus side scatter dot-plot (A) showing gated 

lymphocytes and granulocytes (no defined monocyte populations could be 

identified for any of the baboon samples stained for CD89). Histogram of baboon 

whole blood leukocytes staining for CD89 (B): green curve = granulocytes, thick 

line = lymphocytes, dotted line = total leukocytes stained with PE labeled mouse 

isotype control.  

R1

R2

A B 
Granulocytes 

  Lymphocytes 



 

 

90

 

      

 
 
 
 
 
 
 

 
 
 

Figure 3.15. Expression of recombinant rhesus macaque CD89 on HeLa cells. (A) 

Non-clonal HeLa cells expressing CD89 and (B and C) HeLa cell clones expressing 

CD89. HeLa cells were stained with anti-human CD89 PE and 5000 counted by flow 

cytometry. Thick solid line = transfected cells, dashed line = untransfected HeLa cells, 

dotted line = transfected cells strained with an isotype control. 
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Figure 3.16. Recombinant rhesus macaque CD89 binds to heat aggregated human 

myeloma IgA1 and IgA2 (representative experiment). A: histogram plots of HeLa cells 

expressing rhesus macaque CD89 (filled red curves) or control cells (green line) stained 

with anti-human CD89 PE and anti-human Igα FITC. B: two-color dot plots of anti- 

human IgA FITC versus anti-human CD89 PE. 10,000 cells were counted for each assay. 
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Figure 3.17. Rhesus IgA binds to rhesus macaque CD89. HeLa cells expressing 

recombinant rhesus macaque CD89 were incubated with supernatant of J588L cells 

expressing recombinant rhesus IgA (containing a mouse Igλ) or control supernatant and 

stained with anti-mouse Igλ FITC and anti-human CD89 PE. A: histogram plot of the 

HeLa cells expressing CD89 incubated with rhesus IgA (filled), or control supernatant 

(dashed line), and untransfected control HeLa cells incubated with IgA (thick line). Two-

color dot plots (C) HeLa cells with IgA supernatant, (B) and (D) HeLa cells expressing 

CD89 cells with control supernatant and IgA supernatant, respectively.
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with anti-human CD89 PE and either anti-human Igκ or anti-human Igα to detect bound 

antibodies. Human IgA1 and IgA2, but not human IgG or IgM, bound to CD89 (Figure 

3.16). IgA binding increased with increased expression of CD89 as indicated by the 

positive correlation of MFI for CD89 staining plotted against MFI for bound IgA staining 

(Figure 3.16). No correlation exists for MFI of CD89 staining plotted again MFI of 

staining for isotypes that did not bind IgM or IgG (Figure 3.16). Multiple experiments 

were carried out to test for CD89 binding to NIP specific rhesus IgA. The presence of 

recombinant IgA in the supernatant of transfected J558L cells was verified by ELISA 

(data not shown). When rhesus IgA binding was tested in the presence of the antigen NIP 

(5) BSA, staining against the recombinant antibody was positive for CD89 cells 

incubated with IgA supernatant (10.81 ± 8.15), but not for HeLa cells (5.45±3.37) or 

CD89 cells incubated with control supernatant (5.00±4.61) (Figure 3.17). Thus, binding 

of rhesus macaque IgA to rhesus macaque CD89 was detectable, although IgA was 

present at much lower concentrations in the supernatant when compared to the 

concentration of the human IgA myeloma protein in its corresponding binding assay. 

To assess whether or not rhesus IgA interactions with CD89 were dependent on 

IgA binding to antigen, a variation of the binding assay was performed by titrating out the 

concentration of NIP (5) BSA incubated with the supernatants (Table 3.4). Binding to 

IgA was detectable in the absence of antigen, increased slightly with antigen 

concentrations of 1.88-7.5µg/ml and declined with further excess of antigen (15µl/ml). 

MFI for staining of bound IgA was significantly less for both controls using 

untransfected HeLa cells incubated with IgA supernatant (p = 0.005) and HeLa cells  
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Table 3.4. Binding of rhesus macaque CD89 to recombinant rhesus IgA incubated with 

different concentrations of antigen, NIP (5) BSA. HeLa cells expressing recombinant 

rhesus macaque CD89 or untransfected control HeLa cells were incubated with 

supernatant of J588L cells expressing recombinant rhesus IgA (containing a mouse Igλ) 

or control supernatant which contained the indicated concentrations of NIP (5) BSA and 

stained with anti-mouse Igλ FITC to detect bound rhesus IgA. MFI: mean fluorescence 

intensity.  

 
NIP (5) BSA 

(µg/ml) 
Rhesus IgA & 

Rhesus 
Macaque CD89 

(MFI) 

Control 
Supernatant & 

Rhesus 
Macaque CD89 

(MFI) 

Rhesus IgA & 
HeLa Cells 

(MFI) 

0 27.6 21.8 22.8 
1.88 31.6 20.2 25.7 
3.75 28.9 24.3 18.2 
7.5 31.3 24.3 18.7 
15 26.6 21.4 19.0 

Mean ± Std 29.2 ± 2.2 22.4 ± 1.8 20.9 ± 3.3 
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expressing CD89 incubated with control supernatant (p = 0.005), but not between the two 

control groups (p = 0.52) as determined using a paired student T-test.  

Fc receptor glycans are often important for expression and immunoglobulin Fc 

binding (Drescher et al., 2003). We examined the effects of blocking N-glycosylation 

with tunicamycin on rhesus CD89 expression and binding properties, since rhesus 

macaque CD89 has N-glycosylation motifs conserved with sites in human CD89 

occupied by N-glycans (Figure 3.18). Expression of CD89 was dramatically reduced in 

cells treated with tunicamycin (57%-73% reduction) with a disproportionately greater 

decrease in ability to bind to human IgA1 and IgA2 (84%-95%).  

 

Splice variants of rhesus macaque CD89 

Attempts were made to isolate clones with high expression levels of two rhesus 

macaque splice variants: CD89∆EC1, which has the first extracellular domain deleted, 

and CD89.9 (CD89 ∆TM/C), which has the transmembrane and cytoplasmic domains 

deleted. Despite isolating clones for each variant that produced transcripts, none of the 

clones stained for high levels of CD89 expression. The monoclonal antibody used to 

detect CD89 expression (A59) binds to the EC2 domain, which is present in both 

transcripts; therefore, failure to detect the CD89 isoforms is unlikely to be due to the 

absence of the binding epitope. There was some evidence for low level expression of the 

resulting isoforms for each of these splice variants. For some clones, low expression 

levels were detected by flow cytometry on the cell surface (Figure 3.19).  
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Figure 3.18.  Blocking N-glycosylation reduces expression of recombinant rhesus 

macaque CD89 and results in a strong decrease in binding of human IgA1 and IgA2. 

HeLa cells were treated with tunicamycin to inhibit the N-glycosylation pathway.

IgA1 IgA2 IgM

Anti IgA 

Anti CD89 

-  Transfected with gene for rhesus CD89 HeLa cells 
- Transfected HeLa cells with N-glycosylation blocked  

- Control untransfected HeLa cells  
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100 101 102 103 104
Mouse IgG1 PE

100 101 102 103 104
CD89 PE

 

 
Figure 3.19. Rhesus CD89 isoforms expressed at low levels in HeLa cells. Two-color dot 

plot showing specific staining against CD89 (A, B) and the mouse isotype control (C, D). 

Clones for the expression of CD89∆EC1 (A, C), and of CD89∆TM/C (B, D) are shown 

from representative clones. MFI of CD89 staining is indicated on the X-axis. MFI of 

auto-fluorescence is indicated on the Y-axis indicates.  

A B

DC
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While some recombinant human CD89.9 is expressed on the surface of Cos-7 

cells, most of the product is secreted into the media (van Dijk, 1996). Therefore, attempts 

were made to detect rhesus macaque CD89.9 in the media. Secreted CD89.9 was not 

detected by ELISA, but no positive control was available for these experiments (data not 

shown). Since CD89.9 was difficult to detect directly, transfected cells were tested for its 

expression indirectly by assaying for IgA binding. MFI did not convincingly increase 

when cells were stained for bound IgA, but an increase of MFI for CD89 staining of these 

cells was observed after incubation with IgA. Therefore, it was hypothesized that cells 

expressed low levels of CD89.9 that could bind to HA IgA complexes, which in turn 

allowed binding of soluble CD89.9 to unoccupied IgA binding sites. This would result in 

an increased concentration of CD89.9 associated with the cells, and hence the observed 

increase in MFI for CD89 staining. To test this hypothesis, a similar assay was 

performed. HeLa cells expressing full length CD89 were incubated with human IgA and 

either media from untransfected HeLa cells or media from cells transfected with the 

expression vector for CD89.9. In multiple experiments, greater staining for CD89 was 

observed for cells incubated with CD89.9 media compared to cells incubated with control 

media (Figure 3.20 A and B). A small but significant decrease in staining for bound IgA 

was also observed in some experiments under similar circumstances (Figure 3.20 C and 

D). No differences in staining for CD89 were present between CD89.9 media and control 

media treated cells when IgM was incubated with cells instead of IgA.  
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Figure 3.20. Soluble rhesus CD89.9 binds to IgA captured by CD89 on cells and reduces 

IgA binding. Incubation of media from cells putatively secreting CD89.9 (black line) 

with HeLa cells expressing rhesus CD89 on the plasma membrane results in an increase 

in CD89 staining mean fluorescence intensity (MFI) (A, B) and decreased bound IgA 

staining MFI (C, D) compared to incubation of media from control HeLa cells which do 

not secrete a CD89 isoform (grey line). A, C: histogram plots; B, D: cumulative fraction 

plots. Differences were determined to be statistically significant using the Kolmogorov-

Smirnov test (p ≤ 0.001). 10000 cells were counted by flow cytometry for each group. 
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Discussion 

 
IgA forms an important defense against pathogens at the mucosal surfaces and is 

found at significant concentration in sera where it can interact with CD89 to engage 

immune effector functions. IgA/CD89 interactions are important for immune responses to 

pathogens including mucosal infections with S. pneumoniae and Bordetella pertussis 

(Monteiro and van de Winkel, 2003). CD89 plays a protective role in periodontal disease 

and has been shown to mediate the clearance of Porphyomonas gingivalis (Yuan et al., 

2000; Kobayashi et al., 2001, 2003). Interestingly, a polymorphism of CD89 involving a 

silent nucleotide substitution has been shown to be associated with aggressive 

periodontitis (Kaneko et al., 2003). By contrast, single nucleotide polymorphisms of 

CD89 do not appear to be risk factors for allergic asthma (Jasek et al., 2004). CD89 

function, concentrations in sera as well as on cells, and glycosylation patterns are altered 

in several diseases including HIV-1 infections (Grossetête et al., 1994), alcoholic 

cirrhosis (Silvain et al., 1995), ankylosing spondylitis (Montengro et al., 2000) and 

Henoch-Schonlein pupura (Haddad et al., 2003). Results from preliminary studies show 

that bispecific therapeutic antibodies and other therapeutics targeting CD89 are 

potentially efficacious in the treatment of bacterial and fungal infections (Kobayashi et 

al., 2004; Tacken et al., 2004) and cancers (Valerius et al., 1997; Stockmeyer 2000; 

Sundarapandiyan 2001).  

Several studies have examined a possible role for CD89/IgA interactions in the 

pathogenesis of IgA nephropathy (IgAN). Also called Berger’s disease, IgAN is a major 

cause of end-stage renal failure and the most common form of primary  
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 glomerulonephritis. Renal damage in IgAN is caused by the deposition of IgA immune-

complexes on mesangial cells and subsequent inflammatory responses. In IgAN patients, 

CD89 expression levels are reduced on myeloid linage cells despite normal transcription, 

soluble CD89 concentrations are elevated in sera and CD89 is found on mesangial cells 

(Launay et al., 1999; Monteiro, 2005). Additionally, transgenic CD89 mice develop 

IgAN-like pathogenesis (Launay et al., 1999). A mechanism for IgAN pathogenesis has 

been proposed on the basis of the above mentioned observations. Abnormal IgA from 

IgAN patients interacts with CD89 on cells, resulting in the release of IgA/CD89 

complexes into the circulation. These complexes then bind to mesangial cells through 

interaction with an IgA receptor and therefore induce inflammation (Launay et al., 1999; 

Monteiro et al., 2002; Monteiro, 2005). To date, the IgA receptor present on mesangial 

cells has not been characterized. It might be CD71 (the transferrin receptor) (Monteiro et 

al., 2002), some uncharacterized IgA Fc receptor (Barratt et al., 1999) or CD89 (Tsuge et 

al., 2003). Although CD89 is not usually expressed on these cells, it has been argued that 

under yet to be established conditions its expression is induced and leads to production of 

the monocyte chemoattractant protein-1, which plays a role in the inflammatory process 

(Tsuge et al., 2003). However, such a model of IgAN pathogenesis has been challenged. 

IgA/CD89 complexes have been described in serum of both IgAN patients and healthy 

individuals (van der Boog et al., 2003), in discrepancy with reports of these complexes 

being unique to IgAN patients (Launay et al., 1999). Injection of human CD89 into 

normal mice induces mesangial IgA deposits and mouse IgA is unable to bind human 

CD89 (van der Boog et al., 2004). Thus, these findings are in apparent contradiction with 
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the results from the CD89 transgenic mouse models studies (Launay et al., 2004). 

Clearly, results obtained using mouse models of IgA/Fc receptor interactions must be 

interpreted with caution. Indeed, expression of IgA receptors is quite different between 

rodents and humans (Decot et al., 2005).  

Nonhuman primates are important animal models for biomedical research, 

including research that focuses on pathogenesis, vaccine development, transplantation 

and development of immunotherapeutics. IgA/CD89 interactions are likely to be 

important in several of these studies. For example, macaques are used as a model system 

for periodontal disease (Ebersole et al., 2002) in which, as pointed out above, CD89 plays 

a role in pathogenesis. Previously, we have identified and partially characterized rhesus 

and cynomolgus macaque CD89 (Rogers et al., 2004). Such charcaterization has been 

recognized as an important step in the development of animal models for the study of 

therapeutic antibodies and IgAN without the limitations that encumber mouse studies 

(Woof and Kerr, 2004).  

Our further identification and characterization of CD89 in nonhuman primates 

shows these molecules to be functionally well conserved with human CD89 and provides 

new insights into the function of CD89 in humans as well. Nonhuman primate CD89 

molecules share over 80% amino acid sequence identity to human CD89 and over 90% 

with each other (Table 3.1). Like macaque and human CD89 genes, baboon and sooty 

mangabey CD89 genes have 5 exons and produce multiple splice variants using different 

combinations of these exons. These splice variants may result in the production of 

functionally distinct CD89 isoforms (Figures 3.4-3.10). Similarly to human and macaque 
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CD89, baboon and sooty mangabey CD89 are expressed on blood leukocytes of the 

myeloid lineage only (Figures 3.13 and 3.14). There are different polymorphisms of 

human CD89, some of which are associated with increased disease risks (Kaneko et al., 

2003). Baboon and mangabey CD89 molecules are also polymorphic (Figures 3.10 and 

3.11).  Analysis of two baboon families shows that baboon CD89 gene polymorphisms 

follow a classical Mendelian inheritance (Figure 3.12), raising the possibility to identify 

polymorphisms associated with disease in these animals through analysis of pedigreed 

families.  

Human IgA binds to human CD89 at the first extracellular domain (EC1) with 

interactions involving residues Y35, R52-N59, H85 and Y86 (Herr et al., 2003). Half of 

these residues are substituted in Old World monkeys and in chimpanzees (Figure 3.2). 

Baboon and mangabey CD89 substitutions at these residues are nearly identical to those 

found in macaques. All of the Old World monkeys have the substitutions R52E, R53K, 

K54G, and Y86S. H85 is replaced in baboons and cynomolgus macaques with L85 and in 

sooty mangabeys and rhesus macaque with F85. These data suggest that CD89 from all 

four Old World species is likely to similarly interact with IgA. To assess nonhuman 

primate CD89 interactions with IgA, we chose to express rhesus macaque CD89, since 

this species is the most commonly used nonhuman primate for in vivo studies. We 

produced three HeLa cell clones expressing high levels of full length recombinant rhesus 

macaque CD89. Human IgA1 and IgA2 both bind to rhesus macaque CD89 indicating 

that CD89/IgA interactions are indeed conserved between humans and Old World 

monkeys (Figure 3.3).  



 

 

104

 

Rhesus macaques possess a single IGHA gene that encodes the IgA heavy chain, 

which is highly polymorphic (Scinicariello and Attanasio, 2001; Scinicariello et al., 

2004). The functional properties of rhesus macaque IgA have not been previously 

studied. Therefore, our laboratory has generated a recombinant IgA molecule with 

affinity for the hapten NIP, containing rhesus macaque IgA CH1-CH3 domains, a mouse 

immunoglobulin light chain and a mouse variable heavy chain domain (Jayashankar, 

2004). The deduced amino acid sequences of the recombinant rhesus macaque IgA CH1-

CH3 domains are shown aligned with IgA CH1-CH3 sequences of humans and other 

primates in Figures 3.21-3.23. As depicted in these figures, human IgA residues 

responsible for forming interactions with human CD89 are located in the CH2 and CH3 

domains. All but two of these residues are conserved in all nonhuman primates. In Old 

World monkeys there are substitutions (S46T and E48Q) in the CH3 domain. Therefore, 

interactions of different nonhuman primate IgA molecules with CD89 orthologues are 

predicted to be similar. Recombinant rhesus macaque IgA is capable of binding to 

recombinant rhesus macaque CD89 (Figure 3.17). Human CD89 is a low affinity receptor 

and does not bind to monomeric IgA with great efficiency. Affinity for IgA is increased 

when IgA binds to antigen and forms immune complexes (increased avidity). When the 

antigen of recombinant IgA was titrated out we observed that most of the detected IgA 

binding occurred regardless of the presence of antigen with a slight increase at low 

concentrations of antigen (Table 3.4). At the highest concentration of NIP (5) BSA-IgA 

binding decreased. Such a finding could be interpreted as follows: a) rhesus macaque 

CD89 has a relatively high affinity for monomeric IgA; b) addition of antigen at lower  
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CH1  
                 10        20        30        40        50 
                  :         :         :         :         : 
Hu Igα1  ASPTSPKVFPLSLCSTQPDGNVVIACLVQGFFPQEPLSVTWSESGQGVTA 
Hu Igα2  ASPTSPKVFPLSLDSTPQDGNVVVACLVQGFFPQEPLSVTWSESGQNVTA 
Mumu Igα ASPTSPKVFPLNLCSTQSD-NVVVACLVQGFFPQEPLNVTWSKSGADVTV 
Soma Igα ASPTSPKVFPLSLEGTQSD-NVVVACLVQGFFPQEPLNVTWNKSGAGVTV 
Mane Igα ASPTSPKVFPLSLEGTQSD-NVVVACLVQGFFPQEPLNVTWSKSGAGVTV 
Paca Igα ASPTSPKVFPLSLEGTQSD-NVVVACLVQGFFPQEPLSVTWNKSGAGVTV 
 
 
                 60        70        80        90       100 
                  :         :         :         :         :                
Hu Igα1  RNFPPSQDASGDLYTTSSQLTLPATQCLAGKSVTCHVKHYTNPSQDVTVPCP 
Hu Igα2  RNFPPSQDASGDLYTTSSQLTLPATQCPDGKSVTCHVKHYTNPSQDVTVPCP 
Mumu Igα INFPPSQDASGGLYTTSSQLTLPAAQCPASESVTCHVEHYTNPSQDVAVPC- 
Soma Igα INFPPSQDASGGLYTTSSQLTLPAAQCPASESVTCHVEHYTNPSQDVAVPCV 
Mane Igα INFPPRQDASGGLYTTSSQLTLPAAQCPASESVTCHVEHYTNPRQDVAVPCR 
Paca Igα INFPPSQDASSGLYTTSSQLTLPAEQCPASESVTCHVEHYTNPSQDVAVRCR 
 
 
Figure 3.21. Alignment of human (Hu), rhesus macaque (Mamu), sooty mangabey 

(Soma), pig-tailed macaque (Mane) and baboon (Paca) IgA CH1 deduced amino acid 

sequences. Residues that do not match human IgA1 residues are unlined. GenBank 

accession numbers are: human IgA1 J00220, human IgA2 J00221, Mamu IgA AY29614, 

and Soma IgA AY54480. Paca IgA and Mane IgA have not yet been assigned GenBank 

accession numbers. The Chinese rhesus macaque IgA sequence shown here is that of the 

gene used to produce recombinant IgA.    
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CH2 
                  10        20        30        40        50 
                   :         :         :         :         :   
Hu Igα1  -VPSTPPTPSPSTPPTPSPSCCHPRLSLHRPALEDLLLGSEANLTCTLTGL 
Hu Igα2  -VP-------------PPPPCCHPRLSLHRPALEDLLLGSEANLTCTLTGL 
Mumu Igα -VPPITP---PC------PSCCEPRLSLRRPALEDLLLGSEANLTCTLTGL 
Soma Igα -–PK----PNSC------L-CDEPRLSLRRPALEDLLLGSEANLTCTLTGL 
Mane Igα -VPP----PN-C----P-L-CDKPRLSLRRPALEDLLLGSEANLTCTLTGL 
Paca Igα GIPP—-P---P-----PS--CCEPRLSLHRPALEDLLLGSEANLTCTLTGL 
 
                 60        70        80        90       100 
                  :         :         :         :         : 
Hu Igα1  RDASGVTFTWTPSSGKSAVQGPPERDLCGCYSVSSVLPGCAEPWNHGKTF 
Hu Igα2  RDASGATFTWTPSSGKSAVQGPPERDLCGCYSVSSVLPGCAQPWNHGETF 
Mumu Igα KDPSGATFTWTPSSGKNAVQQSPKRDPCGCYSVSSVLPGCAEPWNNRETF 
Soma Igα RDPSGATFTWTPSSGKNAVQQSPERDPCGCYSVSSVLPGCAEPWNNRVTF 
Mane Igα RDPSGATFAWTPSSGKNAVQQSPEHDPCGCYSVSSVLPGCAEPWNNRVTF 
Paca Igα KDPSGATFTWTPSSGKNAVQQSPERDPCGCYSVSSVLPGCAEPWNNRETF 
 
                110       120 
                  :         : 
Hu Igα1  TCTAAYPESKTPLTATLSKS 
Hu Igα2  TCTAAHPELKTPLTANITKS 
Mumu Igα TCTANHPELETPLTATISKS 
Soma Igα TCTANHPELETQLTATISKS 
Mane Igα NCTANHPELKTPLTATISKS 
Paca Igα TCTANHPELKTPLTATISKS 
 
 

Figure 3.22. Alignment of human (Hu), rhesus macaque (Mamu), sooty mangabey 

(Soma), pig-tailed macaque (Mane) and baboon (Paca) IgA CH2 deduced amino acid 

sequences, including the IgA hinge regions. Residues in human IgA1 as well as 

corresponding residues in other IgA molecules that make contact with human CD89 are 

shaded (Herr et al., 2003). Residues that do not match human IgA1 residues are unlined. 

GenBank accession numbers are: human IgA1 J00220, human IgA2 J00221, Mamu IgA 

AY29614, and Soma IgA AY54480. Paca IgA and Mane IgA have not yet been assigned 

GenBank accession numbers. The Chinese rhesus macaque IgA sequence shown here is 

that of the gene used to produce recombinant IgA.
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CH3 

                 10        20        30        40        50      
                  :         :         :         :         :    
Hu Igα1  GNTFRPEVHLLPPPSEELALNELVTLTCLARGFSPKDVLVRWLQGSQELP 
Hu Igα2  GNTFRPEVHLLPPPSEELALNELVTLTCLARGFSPKDVLVRWLQGSQELP 
Mumu Igα GNTFRPEVHLLPPPSEELALNELVTLTCLARGFSPEDVLVRWLKGTEQLP 
Soma Igα GNTFRPEVHLLPPPSEELALNELVTLTCLARGFSPEDVLVRWLKGTEQLP 
Mane Igα GNTFRPEVHLLPPPSEELALNELVTLTCLARGFSPEDVLVRWLKGTEQLP 
Paca Igα GNTFRPEVHLLPPPSEELALNELVTLTCLARGFSPEDVLVRWLKGTEQLP 
 
                 60        70        80        90       100 
                  :         :         :         :         : 
Hu Igα1  REKYLTWASRQEPSQGTTTFAVTSILRVAAEDWKKGDTFSCMVGHEALPL 
Hu Igα2  REKYLTWASRQEPSQGTTTFAVTSILRVAAEDWKKGDTFSCMVGHEALPL 
Mumu Igα RDKYLTWESRQEPSQGTTTFAVTSILRVAAEDWKKGDTFSCMVGHEALPL 
Soma Igα RDKYLTWESRKEPSQGTTTFAVTSILRVAAEDWKKGDTFSCMVGHEALPL 
Mane Igα RDKYLTWESRKEPSQGTTTFAVTSILRVAAEDWKKGDTFSCMVGHEALPL 
Paca Igα RDKYLTWESRKEPNQGTTTFAVTSILRVAAEDWKKGDTFSCMVGHEALPL 
 
                110       120       130 
                  :         :         : 
Hu Igα1  AFTQKTIDRLAGKPTHVNVSVVMAEVDGTCY 
Hu Igα2  AFTQKTIDRLAGKPTHVNVSVVMAEVDGTCY 
Mumu Igα AFTQKTIDRLAGKPTHVNVSV 
Soma Igα AFTQKTIDRLAGKPTHVNVSV 
Mane Igα AFTQKTIDRLAGKPTHVNVSV 
Paca Igα AFTQKTIDRLAGKPTHVNVSV 
 
 

Figure 3.23. Alignment of human (Hu), rhesus macaque (Mamu), sooty mangabey 

(Soma) and pig-tailed macaque (Mane) and baboon (Paca) IgA CH3 deduced amino acid 

sequences. Residues in human IgA1 as well as corresponding residues in other IgA 

molecules that form the surface interface with human CD89 are shaded (Herr et al., 

2003). Residues that do not match human IgA1 residues are unlined. GenBank accession 

numbers are: human IgA1 J00220, human IgA2 J00221, Mamu IgA AY29614, and Soma 

IgA AY54480. Paca IgA and Mane IgA have not yet been assigned GenBank accession 

numbers. The Chinese rhesus macaque IgA sequence shown here is that of the gene used 

to produce recombinant IgA. 
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levels resulted in IgA-immune complexes that bound with slightly higher affinity, but at 

higher concentration with excess antigen; c) IgA antigen binding sites were saturated and 

could not form larger immune complexes.  

Differential glycosylation is characteristic of CD89 on different cells types and 

during certain types of pathogenesis (Monteiro et al., 1992). Human CD89 can have N-

glycans at four of the six N-gylcosylation motifs (N44, N58, N120 and N156) (Herr, 

2003). The other two sites are N165 and N177. All six of these N-glycosylation motifs 

are conserved in nonhuman primates. Additionally, macaque and baboon CD89molecules 

have a seventh site at N4 that is absent in humans, chimpanzees and sooty mangabeys 

(Figure 3.2). Notably, N58 is found at the CD89/IgA interaction interface. Blocking of N-

glycosylation greatly reduced the expression of rhesus macaque CD89 from HeLa cells 

and led to a greater decrease in IgA binding, indicating that N-glycans are important for 

both CD89 expression and interactions with IgA (Figure 3.18).  

Alternative splice variants of human CD89 were identified over a decade ago. At 

least two isoforms are known to be produced (Monteriero and van de Winkel, 2003). The 

expression of these two isoforms is modulated by inflammatory cytokines (Togo et al., 

2003). However, neither the expression nor the function of the majority of these splice 

variants has been determined. Transfection of the genes for two alternative splice variants 

of rhesus macaque CD89 (CD89∆EC1 and CD89.9) into HeLa cells results in only very 

low expression on the cell surface (Figure 3.19).  

The CD89∆EC1 splice variant has not been described in humans and would not 

be expected to be able to bind to IgA, since the domain responsible for IgA binding 
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(EC1) is deleted. The remaining domain (EC2) may play some as yet unknown functional 

roles. CD89 is most closely related to killer-inhibitory/activatory (KIR/KAR)-related 

immunoreceptors, Ig-like transcripts, as well as the leukocyte and 

monocytes/macrophage Ig-like receptors (Monteiro and van de Winkel, 2003). These 

molecules typically share about 35% identity with CD89 (Monteiro and van de Winkel, 

2003). We have identified a putative pig KIR gene located upstream of the pig CD89 

gene in a contig encoding an immunoglobulin-like domain. This domain is up to 42% 

identical to the EC2 domain of CD89 from different species. The homology of KIR/KAR 

molecules with CD89 suggests that they have some functions in common with CD89 

EC2. 

CD89.9 is a splice variant also found in humans and has a deletion of the exon 

encoding the transmembrane and cytoplasmic domains. This deletion results in the 

addition of an alternative tail from the translation of several codons found at the 5’ end of 

the EC2-TM/C introns (Dijk et al., 2006). Recombinant CD89.9 is mostly found in 

extracellular secretions and has been speculated to possibly contribute to CD89 deposits 

found on mesangial cells in IgAN (Dijk et al., 1996; Monteiro et al., 2002). Although 

CD89.9 can bind to IgA, it has not been determined yet whether or not it is produced in 

vivo and what its functional role maybe in health individuals. Here, we observed that 

media from cells transfected with a rhesus macaque CD89.9 expression vector could 

enhance CD89 cell surface staining on cells already expressing CD89 only in the 

presence of IgA. In addition, an apparent inhibition of IgA binding was observed. On the 

basis of these observations, it is reasonable to propose that CD89.9 may be produced in 
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vivo and may function under normal physiological conditions to modulate IgA activation 

of CD89 by blocking IgA binding. A single IgA molecule can bind to two CD89 

molecules. Therefore, CD89.9 may act to prevent the initial binding of IgA to cells as 

well as bind to IgA already bound to a single CD89 molecule to block cross-linking and 

signal transduction through interaction with another membrane bound CD89 molecule. It 

would be of interest to know if this splice variant is expressed in species other than 

primates. As of yet similar splice variants have not been described in other species. The 

putative pig CD89 gene that we have identified has a EC1-TM/C intron 5’ sequence 

similar to that of primates. CD89 sequences from pig and nonhuman primates are 

conserved (data not shown). In addition, a polyA tail motif (AATAAA) is present in the 

pig intron downstream of the stop codon, further supporting the presence of a similar 

splice variant in pigs.  

Although the functions of IgA and CD89 are incompletely understood, it is clear 

that these molecules play roles in both protective immunity and autoimmunity. The 

presence of CD89 with similar expression and function profiles in four nonhuman 

primates strongly supports the development of animal models to study IgA and CD89 

functions as well as to evaluate therapeutics.  
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CHAPTER 4 

Molecular Characterization of IgD in Mammals: Immunoglobulin Heavy Constant 

Delta (IGHD) Genes in Dogs, Chimpanzees and Four Old World Monkey Species 

 
The content of this chapter have been published as: Rogers et al., Immunology 2006; 
118:88-100. 
 

 
 
Keywords: Immunoglobulin heavy constant delta, IgD, Nonhuman primates, Dog, B cell  
 
receptor 
 
 
Summary 
 

Antibodies are adaptor molecules that neutralize pathogens and link humoral and 

cellular defense mechanisms. IgD, one of the five antibody classes present in mammals, 

is expressed as an antigen receptor on naïve B cells. The functional role that IgD plays in 

the immune response is still poorly understood, but the recent characterization of 

immunoglobulin heavy constant delta genes (IGHD) in a variety of species challenges the 

view that IgD is of minor importance and is not present in many animals. On the basis of 

serological studies, IgD appears to be expressed in the majority of mammalian species 

examined. To confirm, at the molecular level, that IgD is present in different species, we 

cloned and sequenced IGHD cDNA from dogs and five nonhuman primate species 

(chimpanzee, rhesus macaque, cynomolgus macaque, baboon and sooty mangabey). Our 

results show that in all six species, IgD heavy chains possess three immunoglobulin 

domains and a long hinge region encoded by two exons. Only the hinge region of 
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nonhuman primates is similar to the human hinge region, with conservation of O-

glycosylation sites and multiple charged residues at opposing ends. The preservation of 

IgD in primates, dogs and previously characterized species suggests an important 

functional role for IgD, possibly involving binding to a receptor. The high degree of 

similarity existing between the structural features of human and nonhuman primate IgD 

suggests that nonhuman primates are suitable for in vivo studies designed to define the 

role that IgD plays in the immune response.  

 

Introduction 

Immunoglobulin D (IgD) is the least understood of the five antibody classes 

found in mammals, both from a functional and evolutionary perspective. On the surface 

of naïve B cells, IgD functions as an antigen receptor in apparent redundancy with IgM. 

Indeed, IgM heavy chain gene (IGHM) knockout mice appear to be healthy, with only a 

slight reduction of their B cell compartment (Lutz et al., 1998). IgD is also present in a 

secreted form, with sera concentrations (40µg/ml in adults) considerably less than those 

of IgG, IgA and IgM (Preud’homme et al., 2000). Attempts to identify the function of the 

secreted form have languished in part due to the difficulty of obtaining purified IgD 

(Preud’homme et al., 2000). Initially described in 1965 as a human myeloma protein 

(Row and Fahey, 1965), IgD was subsequently characterized in humans, mice and rats at 

both the protein and genetic levels (Rowe and Fahey, 1965; Mushinki et al., 1980; 

Putnam et al., 1981; White et al., 1981; Sire et al., 1982; Zhao and Hammarström, 2003). 

The presence of IgD in nonhuman primates was firmly established soon after that of 
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human IgD (Martin et al., 1976). Putative IgD molecules were also identified in other 

species including chicken, rabbit, dog and tortoise (Fiebig and Ambrosius, 1976; Eskinazi 

et al., 1977; Sire et al., 1977; Wilder et al., 1979; Chen et al., 1982; Yang et al., 1995). 

Additional studies failed to identify IgD either at the protein or the genetic level in other 

species (swine, cows, sheep, duck and African clawed frog) as well as in the same species 

(chicken and rabbit) (Knight and Tunyaplin, 1995; Butler et al., 1996; Naessens, 1996; 

Zhao et al., 2000; Lundqvist et al., 2001). The finding that mouse and human IgD are 

structurally different argued against a conserved IgD function (White et al., 1985). These 

combined observations contributed to the speculation that IgD evolved recently, was 

repeatedly deleted in different species, and lacks a major function. However, results from 

recent studies indicate that IgD plays an important role in the immune system 

(Preud’homme et al., 2000). IgD expression is differentially regulated from that of IgM 

(Loder et al., 1999), and antigen binding properties differ for IgM and IgD due to 

differences in their hinge regions (Løset et al., 2004). Antigen cross-linking of IgD on B 

cells leads to a stronger and more prolonged signal than that of IgM (Kim and Reth, 

1995), and in IgD deficient mice affinity maturation is slower than that of normal mice 

(Roes and Rajewsky, 1993).  

Analysis of newly described immunoglobulin heavy constant delta genes (IGHD) 

has greatly altered and expanded the understanding of IgD biology and evolution. Until 

the late 1990’s, only human and mouse DNA sequences were available in addition to a 

partial rat sequence. Even with this paucity of genetic information, it is apparent that 

IGHD properties are quite divergent between species. The human IGHD consists of eight 
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exons: one encoding the first immunoglobulin domain (CH1), two encoding 58 amino 

acids of an extended hinge region (H1 and H2), two encoding the second and third 

immunoglobulin domains (CH2 and CH3), one encoding a hydrophilic secretory tail 

(CH-S), and two encoding the membrane tail (M1and M2) (White et al., 1985). By 

contrast mouse and rat IGHD have only 6 exons (CH1, a single hinge exon, CH3, CH-S, 

M1 and M2) (Mushinski et al., 1980; Sire et al., 1982; Zhao and Hammarström, 2003). 

The human IgD hinge region is characterized by a highly O-glycosylated N-terminal end 

encoded by H1 and a highly charged C-terminal end encoded by H2. The rodent IgD 

hinge region is shorter and appears to be structurally unrelated to the human hinge (Sire 

et al., 1982). In 1997, Wilson et al. described an IGHD in channel catfish, which contains 

seven tandem immunoglobulin exons and lacks any hinge exon. IGHD has since been 

identified in Atlantic cod, Japanese flounder, carp, Atlantic salmon, Atlantic halibut, 

rainbow trout, fugu and zebra fish. These genes also encode IgD heavy chains without 

hinge regions and consist of various numbers of tandem immunoglobulin domain 

encoding exons, which for some species are repeated in clusters (Hordvik et al., 1999; 

Stenvik and Jørgensen, 2000; Bengtén et al., 2002; Hordvik, 2002; Hirono et al., 2003; 

Saha et al., 2004; Srisapoome et al., 2004; Danilova et al., 2005; Hansen et al., 2005; 

Savan et al., 2005). The fish IgD heavy chains are characterized by the fusion of their N-

terminal end with the CH1 of IgM, which results in unique chimeric molecules. Recently, 

IGHD of cow, sheep, pig and horse have been sequenced. Their exon configuration is 

similar to that found in humans (Zhao et al., 2002; Zhao et al., 2003; Wagner et al., 

2004). With the exception of the pig IgD, which has the H2 exon spliced out (Zhao et al., 
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2003), in ungulates the IgD hinge regions are all encoded by two exons. However, their 

hinge regions are dissimilar to those of humans and rodents in sequence. Interestingly, 

pig IGHD transcripts can have the IgM CH1 fused to their 5’ end as described in fish 

(Zhao et al., 2003). Together, these data demonstrate that IGHD has an ancient origin, is 

distributed widely across vertebrate taxa, and is structurally diverse particularly within 

the hinge region. 

Despite the early recognition of the presence of IgD both on B-cells and as a 

secreted protein in nonhuman primates (Voormolen-Kalova et al., 1974a; Voormolen-

Kalova et al., 1974b; Martin et al., 1976; Finkelman and Scher, 1979; Black et al., 1993), 

IgD has not been studied in these animals at the genetic level. In pioneering studies of 

IgD function, injection of anti-IgD antiserum into rhesus macaques was shown to 

enhance antibody responses to antigen in an adjuvant-like manner and lead to 

hypergammaglobulinemia, indicating a role for IgD in regulation of humoral responses 

(Pernis, 1975; Martin and Leslie, 1979). Because of their similarities to humans, 

nonhuman primates are commonly used as models to understand pathogenesis for a 

variety of human diseases and to develop therapeutic and preventive approaches 

(Kennedy et al., 1997; Carlsson et al., 2004). Although IgD in nonhuman primates 

appears well conserved with human IgD based on serology (Black et al., 1993), more 

detailed studies are required to determine the extent to which this is so, particularly in 

light of the divergence of IgD seen in other species. A dog immunoglobulin with IgD-like 

properties, including B cell surface expression and lack of cross-reactivity with 

antibodies against the other dog isotypes, has been identified (Yang et al., 1995). As 
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pointed out by Naessens (1996), conclusive evidence that this immunoglobulin is indeed 

canine IgD, such as cross-reactivity with known anti-IgD antibodies, is still lacking. 

Hence, the presence of IgD in dogs remains to be established, particularly since it has 

previously been proposed that IgD may have been deleted from many mammals 

(Naessens, 1996; Stenvik and Jørgensen, 2000).  

The human IgD hinge region has structural features in common with the hinge 

region of IgA, including a repetitive sequence. It has been suggested that this repetition is 

possibly responsible for the genetic instability and diversification of the IgA hinge region 

(Flanagan et al., 1984). If this is correct, the hinge regions of IgD from species closely 

related to humans might be expected to be highly divergent and polymorphic. On the 

other hand, the O-glycans of the human hinge are responsible for forming interactions 

with an IgD receptor expressed on human CD4+ and CD8+ T cells (Tamma and Coico, 

1992; Rudd et al., 2001). If the human IgD receptor has orthologues in nonhuman 

primates and it is important for survival, then the hinge region of nonhuman primates 

may be well conserved with that of human IgD. Therefore, we have sequenced IGHD 

from chimpanzee, rhesus macaque, cynomolgus macaque, baboon and sooty mangabey. 

We have also sequenced dog IGHD, thus confirming the presence of IgD in carnivora, 

and expanding the growing body of evidence that IgD is present in most mammals and 

likely to be functionally important.  
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Materials and methods 

 

Blood samples and RNA extraction 

Total RNA was extracted from heparinized whole blood of two rhesus macaques 

(Macaca mulatta), three cynomolgus macaques (Macaca fascicularis), two baboons 

(Papio hamadryas anubis) and one sooty mangabey (Cercocebus torquatus), whereas 

total RNA was extracted from isolated PBMC of two chimpanzees (Pan troglodytes) and 

one dog (Canis familiaris) using the QIAamp RNA Blood Mini Kit (Qiagen Inc., 

Valencia, CA). PBMC were isolated from whole blood by Histopaque®-1077 (Sigma-

Aldrich Corp., St. Louis, MO) centrifugation. All animals used were healthy. Macaques 

and baboons samples were from animals housed at the Southwest National Primate 

Research Center San Antonio, TX. The sooty mangabey and the chimpanzees, Tika and 

Manuel, were housed at the Yerkes National Primate Research Center, Emory University, 

Atlanta, GA. Whole dog blood was purchased from Harlan Bioproducts for Science, Inc., 

Madison, WI.  

 

Amplification, cloning and sequencing of immunoglobulin D heavy chain cDNAs 

RNA was reverse transcribed into cDNA using oligo d(T)17 primers, followed by 

primer extension with AMV reverse transcriptase (Roche Diagnostic Corp., Indianapolis, 

IN). PCR amplification of cDNA was performed with Expand High Fidelity polymerase 

(Roche Diagnostic Corp.). Primers for amplification of primate IGHD were designed on 

the basis of the human sequence assuming conserved homology between primates. The 
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forward primer IgD7 (5’-CGGATGTGTTCCCCATCATATCAG-3’) is located in the 5’ 

end of the human CH1 exon (16-39nt). Two reverse primers were used with IgD7, IgD3 

(5’-ACCCAGAAGTGTTCACCTCACG-3’) located in the center of the CH3 exon (135-

156nt) and IgD13 (5’-AGCTGACTTCTAGGCTCCGGCT-3’) located at the 3’ end of 

CH3 exon (303-324nt). Canine primers were designed from DNA sequences of a contig 

(GenBank accession number NW_140211) predicted to encode an IgD heavy chain-like 

protein. The canine forward primer K9IGHDF1 (5'- ATCGTCACTTCTGCTCCCCTTG 

-3') is located in the canine IgD CH1 exon (12-33nt). The canine reverse primer 

K9IGHDB6 (5'- AGCAAAAAGGCAAGGGGCTG -3') is located in a region upstream 

of a polyadenylation signal and downstream of the M2 exon. After initial denaturation at 

95°C for 10 min, cDNAs was amplified for 40 cycles, with each cycle consisting of 94°C 

for 1 min, 56°C for 1 min and 72° for 1 min 30 sec. A final step at 72°C for 10 min was 

used to ensure complete extension. Primers IgD7 and IgD13 yield a human product of 

1110bp and primers IgD7 and IgD3 yield one of 942bp. All reactions were performed in 

at least two independent reverse transcriptions PCR to verify product sequences. At least 

10 clones were sequenced for each animal of the primate species and six clones were 

sequenced for dog. An additional primer set was used to amplify the baboon IgD hinge 

region exons and the immediate surround nucleotides (BGDF 5’-

AGTACAAATGCACCGTCAAGCAT-3’ and BGDR 5’-

CGAAGCAGGTGAAGGTGACTTTG-3’). 
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Cloning of the amplified gene sequences 

For cloning, 100µl of a reverse transcription PCR was run on a 1% agarose gel. 

The specific band of interest was excised from the gel and purified using a QIAquick® 

Gel Extraction Kit (QIAgen, Inc., Valencia, CA). The cDNA was ligated into TopoTA 

vector and transformed into Top10 Esherichia coli (Invitrogen Corp., Carlsbad, CA). 

Plasmid DNA was purified using a FastPlasmid® Mini kit (Eppendorf, Inc., Hamburg, 

Germany) and screened on a 1% agarose gel after digestion with EcoRI to confirm the 

correct size of the DNA fragments. All DNA sequences were determined using the 

BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA) 

on an ABI 3100 Genetic Analyzer (PerkinElmer, Inc., Wellesley, MA). The forward and 

reverse M13 primers were used for the sequencing. For the canine DNA fragments, an 

additional primer, K9IGHDB2 (5'- TGATCCAGGTGAGGAGGATGTCAG -3'), located 

in the CH3 exon, was used.  

 

Analysis of DNA sequences 

Overlapping regions were identified and sequences were edited using the 

MacVector software program (Accelrys Inc., San Diego, CA). Sequences were aligned 

with each other and other known IGHD using the CLUSTAL function of the 

MEGALIGN part of the LASERGENE software package (DNASTAR Inc., Madison, 

WI). ImMunoGeneTics (IMGT) standardized nomenclature and numbering has been used 

to show and discuss data based on human reference sequences (Lefranc and Lefranc, 

2001). The GenBank accession numbers for the IGHD sequences of the various species 
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used for analysis which were previously available are human K02875-K02883, horse 

AY631942, cow AF411240, pig AF411239 and AY228508, sheep AF411238, rat 

AY148494 and AY148495, and mouse V00786-V00788 and J00450,. The GenBank 

accession numbers for the IGHD sequences described in this study are chimpanzee 

DQ297173-DQ297174, baboon DQ297175-DQ297176, cynomolgus macaque 

DQ297177-DQ297178, rhesus macaque DQ297179-DQ297181, sooty mangabey 

DQ297182-DQ297184 and dog DQ297185. 

 

Results  

Chimpanzee IGHD 

We cloned and sequenced IGHD using total RNA of PBMC from two different 

chimpanzees. Tika and Manuel’s IGHD were sequenced using the primers IgD7 and 

IgD3, which amplify a 942bp product with a sequence encoding amino acids from the 

CH1 position 7 to the CH3 position 52. Tika’s IGHD was also amplified using the primer 

pair IgD7 and IgD13 allowing for sequencing through the 3’ terminus of the CH3 and 

yielding a 1110bp product. Attempts to sequence Manuel’s IGHD with this latter primer 

pair were unsuccessful. The region amplified for both animals had identical sequence 

except for a single G/C difference in the CH1 codon 14 at position 3, which is silent. 

Through screening of GenBank for matches with the chimpanzee mRNA sequences 

IGHD, the genomic sequence was identified on a contig from the chimpanzee 

chromosome 14 (NW_115908). The nucleotide sequence of the contig has 99.4% identity 

to that of the cDNA, with a G in the third position of CH1 codon 14. In the contig 
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sequence three nucleotide differences from the cDNA sequences are present: an insertion 

of C at CH2 codon 16 between positions 2 and 3, which results in a reading frame shift; a 

silent A to C substitution of CH2 codon 24 position 3; and a missense A to C substitution 

of CH3 codon 106 at position 3 resulting in a coding change from glutamate to aspartate. 

All exons had the anticipated boundaries and were of equivalent sizes to the human 

counterparts. Besides the CH1-3 identified by reverse transcription PCR, we identified an 

exon for the secretory tail and the first exon for the transmembrane tail from the contig 

(Figures 4.1 and 4.2). 

The chimpanzee IGHD deduced amino acid sequence, which is 98.1% identical to 

that of human IGHD, is shown aligned with IGHD of other species in Figure 4.2. All 

cysteines responsible for inter- and intra- chain disulfide bonds found in human IGHD 

are conserved in the chimpanzee (CH1 positions 15, 28 and 84; CH2 positions 2, 31 and 

90; CH3 positions 27 and 88). Similarly, the three N-glycosylation motifs (CH2 

asparagine 66 and CH3 asparagines 49 and 100) are conserved between humans and 

chimpanzees. The human IgD N-terminal portion of the hinge is highly O-glycosylated 

(Putnam et al., 1981). Identified sites of O-glycosylation in human IgD hinge include H1 

encoded residues S8, S9, T12, T25, T26, T30 and T31. All of these O-glycosylation sites 

are present in chimpanzee IgD with the exception of T25, which is replaced by an 

arginine in chimpanzee. 
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Human Chromosome 14q32.33 (GenBank accession NC_000014) 
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Figure 4.1. Chain diagram of human, chimpanzee and dog IGHD genes. Numbers indicate nucleotides in exons or introns. 

Domains which have not been identified are indicated by dashed lines. 
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Figure 4.2. (Following pages) Alignment of IgD heavy chain deduced amino acid sequences for 

each domain: CH1 (A), hinge H1 (B) and H2 (C), CH2 (D), CH3 (E) and transmembrane (F). 

Mouse and rat hinge is encoded by a single exon. Pig H2 is spliced out of the mature mRNA and 

its deduced sequence is denoted in italics case to reflect this (Zhao et al., 2003). B) Glycines in 

the middle of the hinge, potentially contributing to flexibility, are underlined. O-glycan sites in 

human H1 and the corresponding conserved residues in nonhuman primates are bolded and 

italicized. A, C, D, and E) N-glycosylation motifs (NXS or NXT where X is not proline) are 

bolded and italicized. Cysteines that form disulfide bonds within immunoglobulin domains and 

between immunoglobulin chains are bolded and underlined. F) Amino acid of the conserved 

antigen receptor transmembrane motif (CART) are underlined and bolded. Mangabey.1 and 

mangabey.2 in D are two sequence variants. Numbering is based on IMGT numbering for human 

IgD heavy chain and disregards insertions and deletions found in other species. GenBank 

accession numbers are given in the methods sections. 
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A 

IgD CH1 
             1                 20                  40 
             |                  |                   | 
Human        APTKAPDVFPIISGCRHPKDNSPVVLACLITGYHPTSVTV 
Chimpanzee   APTKAPDVFPIISGCRHPKDNSPVVLACLITGYHPTPVTV 
Baboon             DVFPIISVCELPKDNSPVVLACLITGYNPKSVTV 
Mangabey           DVFPIISACQLPKDNSPVVLACLITGYNPKSVTV 
Rhesus             DVFPIISACQLPKDNSPVVLACLITGYNPKSVTV 
Cynomolgus         DVFPIISACQLPKDNSPVVLACLITGYNPKSVTV 
Dog          ASRESSLLLPLVSGCKVPKNGEDITLACLAKGPFLDSVRV 
Horse         SLEDTAVIPLFSECKAPKEDDVVSLACLVKGYFPEPVQV 
Cow          EGESHLRVFPLVSCVSSPSDESTVALGCLARDFVPNSVSF 
Sheep        ESESHPKVFPLVSCVSSPSDENTVALGCLARDFMPNSVSF 
Pig          ESQSAPNLYPLVSCVSPPSDESLVALGCLARDFLPSSVTF 
Mouse NFTICLAGDKKEPDMF-LLSECKAPEENEKINLGCLVIGSQP--LKI 
Rat          APEKEPDLF-LSSECKAPNQNEHVNVSCMAIGVQP--LTL 
 
          41                     60                     80 
           |                      |                      | 
Human      TWYMGT----QSQPQRTFPEIQRRDSYYMTSSQLS---TPLQQWRQG 
Chimpanzee TWYMGT----QSQPQRTFPEIQRRDSYYMTSSQLS---TPLQQWRQG 
Baboon     TWHLGT----QIQNQIMFPETER-EGSYTTSSQLAP-TPLLSQQHQG 
Mangabey   TWHLGT----QIQNQIMFPETER-EGSYMTSSQLAP-TPPLSQQHQG 
Rhesus     TWHLGT----QIQNQIMFPETER-EGSYTTSSQLAP-TPPLSQQHQG 
Cynomolgus TWHLGT----QIQNQTMFPETER-EGSYTTSSQLAP-TSPLSQQHQG 
Dog        TTGPES----QAQMEKTTLKMLK-IPDHTQVSLLS------TPWKPG  
Horse      TWEPEM----QNQKPWTFPAMKK-GQEYIHVFSLT------TWWKPG 
Cow        SWKFNNST-VSSERFWTFPEVLR-DGLWSASSQVVLPSSSAFQGPDD 
Sheep      SWKLNNST-VSSERFWTFPEVLR-DGLWSASSQVALHSSSAFQG-TD 
Pig        SWNYKNSSKVSSQNIQDFPSVLR-GGKYLASSRVLLPSVSIPQDPEA 
Mouse      SWEPKK----SSIVEHVFPSEMR-NGNYTMVLQVT---VLASEL-NL 
Rat        AWEP-------TLPSTVFSGKNK-D-EYITILQVS---VPAPNL-SP 
 
          81                 100 
           |                   | 
Human      EYKCVVQHTASKSKKE-IFRWP 
Chimpanzee EYKCVVQHTASKSKKE-IFRWP 
Baboon     EYKCTVKHTPSNTNQEKTFRWP 
Mangabey   EYKCTVKHIPSDTNKAKTFRWP 
Rhesus     EYKCTVKHTPSDTSKEKTFRWP 
Cynomolgus EYKCTVKHTPSNTNNEKTFRWP 
Dog        LHYCEAIRKDNKEKLKKAIHWP 
Horse      SHSCTVHHKASSFRKKMTFQEP 
Cow        YLVCEVQHPKGGKTVGTVRVVPR 
Sheep      GYLCEVQHPKGGKTVGTTRVVPR 
Pig        FLVCEVQHPSGTKSVSISGP  
Mouse      NHTCTINKP---KRKEKPFKFP 
Rat        NLTCTITNTS--KKKSKTFKLP 
 
Figure 4.2. A.
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B 
 
IgD Hinge H1 
                          1                                          20 
           |                  | 
Human      ESPKAQASSVPTAQPQAEGSLAKATTAPATTRNT 
Chimpanzee ESPKAQASSVPTAQPQAEGSLAKATRAPATTSNT 
Baboon     ESPKAQYPSVPTVQPQAEGGLSKATRPPATNRNT 
Mangabey   ESPKAQYPSVPTVQPQAEGGLSKATRPPATNRNT 
Rhesus     ESPKAQYPSVPTVQPQAEGGLSKATRPPATNRNT 
Cynomolgus ESPKVQYPSVPTVQPQAEGGLSKATRPPATNRNT 
Dog        ASWETAIS-LLTHAPSR---PQDHTQAPSMARVS 
Horse      ASWAPQ------RTSALPVTSKEPTPAPTTLRKS 
Cow        ASTPT—-P-T-TPLPSLISGSEGSNKAVSTQSSP 
Sheep      VSASTLTP-T-TLAPSLKSRSEGSSKAVTTQSSP 
Pig        ASRQLPAP-AGTPGPTL---STVSTKALTTPRIPA 
Mouse      -SWDSQSSKRVTPTLQAKNHSTEATKAITTKKDIE 
Rat        ETRNSQSSKKANPTPQAKNHYIEATKPTATKNIVG 
 
C 
 
IgD Hinge H2 
           1                 20 
           |                  | 
Human      GRGGEEKKKEKEKEEQEERETKTP 
Chimpanzee GRGGEEKKKEKEKEEQEERETKTP 
Baboon     GR--REKENEEEKEQQEG-ETKTP 
Mangabey   GR--REKEDEEEKEQQEG-ETKTP 
Rhesus     GR--REKEDEEEKEQQEG-ETKTP 
Cynomolgus GR--REKDDEEEKEQQEG-ETKTP 
Dog        VPPTSHTQTQAQ-EPGCPVDTILR 
Horse      EPSTRHTQPETQK-PRIPVDTPLK 
Cow        ALTTSHRQTEAQT-LACPKE-PCR 
Sheep      VPATSHSQTEAPT-LACPKD-PCR 
Pig        -RSTVRGQPGAQT-QE-PPEGPRG 
 
Figure 4.2. B and C.
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D 
 
IgD CH2 
           1                 20                  40 
           |                  |                   | 
Human      ECPSHTQPLGVYLLTPAVQDLWLRDKATFTCFVVGSDLKD  
Chimpanzee DCPSHTQPLGVYLLPPAVQDLWLRDKATFTCFVVGSDLKD 
Baboon     ECPSHTQPLGVYLLPPALQDLWFRDKVTFTCFVVGSDLQD 
Mangabey.1 ECPSHTQPLGVYLLPPALQDLWFRDKVTFTCFVVGSDLQD 
Mangabey.2 ECPSHTQPLGVYLLPPALQDLWFRDKATFTCFVVGSDLQD   
Rhesus     ECPSHTQPLGVYLLPPALQDLWFQDKVTFTCFVVGSDLQD 
Cynomolgus ECPSHTQPLGVYLLPPALQDLWFQDKAIFTCFVVGSDLQD 
Dog        ECWNHTHPPSLYMLRPPLRGPWLQGEAAFTCLVVGDDLQK 
Horse      ECQSHTHPPSIYLLHPPLQGLWLKGEATFTCLVVGDDLKD 
Cow        ECQNHTQAPRVHLLPPTPQGLWLLDKAEFTCLATGEAPLD 
Sheep      ECQNHTQAPSVRLLPPPPQGLWLLDKAEFTCLATGEALLD 
Pig        -CQNHTRPPSVYLLLPPLQGLWLRAEATFTCLAVGQDLQE 
 
                         41                                         60                                            80 
           |                  |                   | 
Human      AHLTWEVAGKVPTGGVEEGLLERHSNGSQSQHSRLTLPRS 
Chimpanzee AHLSWEVAGKVPTGGVEEGLLERHSNGSQSQHSRLTLPRS 
Baboon     AHLSWEVAGKVPKGDMEEGPLEQHSNGSQSQHSRLALPRS 
Mangabey.1 AHLSWEVAGKVPKGGMEEGPLEQHSNGSQSQHSRLALPRS 
Mangabey.2 AHLSWEVAGKVPEGGMEEGPLEQHSNGSQSQHSRLALPRS   
Rhesus     AHLSWEVAGKVPKGGMEEGPLEQHSNGSQSQHSRLALPRS 
Cynomolgus AHLSWEVAGKDPKGGMEKGPLEQHSNGSQSQHSRLALPRS 
Dog        AHLSWEVAGAPPSEAVEERPLQEHENGSQSWSSRLVLPIS 
Horse      AHLSWELSERSNGMFVESGPLEKHTNGSQSRSSRLALPRS 
Cow        AHFSWEVNGQPHGGALEEG-PTRHINSSWSQSSRLALPRS 
Sheep      AHFSWEVNGQPHGGAVEER-PTSHMNGSWSHSSRLALPRS 
Pig        ARLSWAVAEDPQGGRMEEG-PTEHTNGSWSLSSRLALPRS 
 
          81                 100      
           |                   | 
Human      LWNAGTSVTCTLNHPSLPP-QRLMALREP 
Chimpanzee LWNAGTSVTCTLNHPSLPP-QRLMALREP 
Baboon     LWNAGTSVTCTLNHPSLPS-QKLMALREP 
Mangabey.1 LWNAGTSVTCTLNHPSLPS-QKLMALREP 
Mangabey.2 LWNAGTSVTCTLNHPSLPS-QKLMALREP   
Rhesus     LWNAGTSVTCTLNHPSLPS-QKLMALREP 
Cynomolgus LWNAGTSVTCTLNHSSLPS-QKLMALREP 
Dog        LWASGANITCTLSLPSMPSQVVSAAAREH 
Horse      SWAMGTSVTCKLSYPNLLSSMEVVGLKEH 
Cow        LWASGSNVTCTLSSPGLQSPVTLTAQREH      
Sheep      LWASGSNVTCTLSGPGLRSPVSLTAQREH      
Pig        SWAAGAPVTCRLSGPGLRSLVTAEARREH 
 
Figure 4.2. D.
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E 
 
IgD CH3           
           1                    20                  40 
           |                     |                   | 
Human      AAQAPVKLSLNLLASSDP---PEAASWLLCEVSGFSPPNILLM 
Chimpanzee AAQAPVKLSLNLLASSDP---PEAASWLLCEVSGFSPPNILLM 
Baboon     AAQAPVRLSLNLLASSDP---PEAASWLLCEVSDFSPPNILLM 
Mangabey   AAQAPVRLSLNLLASSDP---PEAASWLLCEVSDFSPPNILLM 
Rhesus     AAQAPVRLSLNLLASSDP---PEAASWLLCEVSDFSPPNILLM 
Cynomolgus AAQAPVRLSLNLLASSDP---PEAASWLLCEVSDFSPPNILLM 
Dog        AARAPSSLNVHALTMP------RAASWFLCEVSGFSPPDILLT 
Horse      AASAPRSLTVHALTTPGLNASPGATSWLQCKVSGFSPPEIVLT 
Cow        AASVPGNLTLRTVTAPG----PFSPAWLLCEVSGFSPVDILLT 
Sheep      AASVPGNLTLRTLTTPG----PFSPAWLLCEVSGFSPVDILLT 
Pig        AALAPSNLAVRVLTAPGPLAFTKAASWLLCEVSSFSPLDILLT 
Mouse       AMAPSNLTVNILTTSTH---PEMSSWLLCEVSGFFPENIHLM 
Rat         AMAPSNLNVNILTTFTH---HEMSSWLMCEVSGFYPEDIHLW 
 
          41                 60                  80 
           |                  |                   | 
Human      WLEDQREVNTSGFAPARPPPQPRSTTFWAWSVLRVPAPPS 
Chimpanzee WLEDQREVNTSGFAPARPPPQPGSTTFWAWSVLRVPAPPS 
Baboon     WLEDQREVNTSWFATTHPTPQPGSTMFWAWSVLRVPGPTS 
Mangabey   WLEDQREVNTSWFATTHPTPQPGSTMFWAWSVLRVPGPTS 
Rhesus     WLENQREVNTSWFATTHPTPQPGSTMFWAWSVLRVPGPTS 
Cynomolgus WLEDQREVNTSWFATTHPTPQPGSTMFWAWSVLRVPGPTS 
Dog        WIKDQIEVDPSWFATAPPMAQPGSGTFQTWSLLRVLAPQG 
Horse      WLEGQREVDPSWFATARPTAQPGNTTFQTWSILLVPTIPG 
Cow        WLEGQQEVEPSQFATAHTTAQAGRASSHTWSVLRVSSPLD 
Sheep      WLEGQQEVEPSQFATAHTTAQSGHASFHTWSVLHVSSPLD 
Pig        WLEGQQEVDPSWFATARPAAQPGNPTFRTWSVLRVPASPG 
Mouse      WLGVHSKMKSTNFVTANPTAQPGG-TFQTWSVLRLPVALS 
Rat        WLSAQTKMDPINFVTAQPVRQSGD-KFQIWSVLRLPVALS 
 
          81                100 
           |                  | 
Human      PQPATYTCVVSHEDSRTLLNASRSLEVS 
Chimpanzee PQPATYTCVVSHEDSRTLLNASRSLEVS 
Baboon     PQPATYTCVVSHEDSRTLLNASRSLEVS 
Mangabey   PQPATYTCVVSHEDSRTLLNASRSLEVS 
Rhesus     PQPATYTCVVSHEDSRTLLNASRSLEVS 
Cynomolgus PQPATYTCVVSHEDSRTLLNASRSLEVS 
Dog        PHPPTYTCVVRHEASRKLLNTSWSLDS 
Horse      PPTATYTCVVGHEASRQLLNTSWSLDTG 
Cow        HAGATYTCVVSHEASRTLLNGSCSLDT 
Sheep      HVGSTYTCVVSHEASRTLLNGSCSLDTG 
Pig        HQDATYTCVVGHEASRTLLNASWRLDTG 
Mouse      SSLDTYTCVVEHEASKTKLNASKSLAIS 
Rat        PSLDTYTCVVEHEASQTKLNASKSLEIS 
 
Figure 4.2. E
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F 
 
IgD TM 
              1                 20                  40         
              |                  |                   | 
Human         YLAMTPLIPQSKDENSDDYTTFDDVGSLWTTLSTFVALFILTLLYSGIVTFIKVK 
Chimpanzee    DLAMTPLIPQSKDENSDDYTTFDDVGSLWTTLSTFVALFILTLLYSGIVTFIKVK 
Dog           GLTMTPPAPQSHDESSGDSMDLEDASGLWP---TFAALFVLTLLYSGFVTFLKVK 
Horse         GLAMTPE---SKDENSDDYADLDDAGSLWL---TFMALFLITLLYSGFVTFIK 
Cow           GLATWPPW--SQDESSDDGTDVEDASPLWL---TFLALFLVTVVYGGFVTFIKVK 
Sheep         GLATWPPW--SQDESSDDSADAEDASPLWL---TFLALFLATVVYSGFVTFIKVK 
Pig           GLATLTPG--SQDEGSDDYVDLEDAGRLWL---TFTVLFLVTLLYSGFVTFLKVK 
Mouse         GIVNTIQHSCIMDEQSDSYMDLEEENGLWPTMCTFVALFLLTLLYSGFVTFIKVK 
Rat           GMVDTIPNSCIRDEQTDSYVDLEEENGLWPTLCTFVALFLLTLLYSGFVTFIKVK 
 

Figure 4.2. F. 
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IGHD mRNA transcripts in Cercopithecoidea 

With the same strategy used to clone and sequence chimpanzee IGHD, we 

identified IGHD transcripts for four Old World monkey species commonly used in 

biological research. IGHD were sequenced for two rhesus macaques, three cynomolgus 

macaques, two baboons and one sooty mangabey. Amplification of monkey IGHD cDNA 

with the primer pair IgD7 and IgD13 resulted in an 1107bp product for all four species. 

Because IGHA in macaques and baboons is highly polymorphic (Scinicariello and 

Attanasio, 2001; Scinicariello et al., 2004), multiple animals were used for some of the 

species to allow for identification of potentially high levels of IGHD polymorphisms in 

these species. A single IGHD sequence was present for each species, except sooty 

mangabey, which had two sequences in one animal that varied at five nucleotides 

resulting in two amino acid substitutions. As discussed below, polymorphisms of IGHD 

appear to be less extensive than those of IGHA in nonhuman primates. 

The deduced amino acid sequences for each species are shown in Figure 4.2. The 

percent identities of the Old World monkey sequences with those of the human and 

chimpanzee (in parentheses if different) sequences are 72% baboon, 77% (78%) sooty 

mangabey, 77% rhesus macaque and 76% cynomolgus macaque. The percent identities 

between Old World monkeys are higher: 96% baboon-sooty mangabey, 97% baboon-

rhesus macaque, 94% baboon-cynomolgus macaque, 98% sooty mangabey-rhesus 

macaque, 96% sooty mangabey-cynomolgus macaque and 97% rhesus macaque-

cynomolgus macaque (Table 4.1). The transcripts encoded all expected domains: CH1, 

hinge, CH2 and CH3. In the Old World monkeys, CH1 is two amino acids longer than  
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Table 4.1. Range of percent identities for deduced amino acid sequences between the IgD 

heavy chain domains of different mammalian phyla. Groups used are based on 

representative species for which IGHD has been identified and include: hominoids 

(human and chimpanzee); cercopithecoidea (baboon, mangabey, rhesus macaque and 

cynomolgus macaque); primates (combined cercopitheocoidea and hominoids); 

Laurasiatheria (dog, horse, pig, sheep and cow); rodents (mouse and rat). * For the 

described species of rodents, IgD does not encode a CH2 domain. 

 

 CH1 Hinge CH2 CH3 CH1-3 
Human-
Chimpanzee 

98.9 96.6 97.2 99.1 98.1 

Hominoids-
Cercopithecoidea 

57.7-58.8 61.8-65.5 84.3-89.8 88.9-90.7 71.5-77.7 

Within 
Cercopithecoidea 

91.8-95.9 96.4-100 93.5-99.1 99.1-100 93.8-98.4 

Primates- 
Laurasiatheria 

21.6-32.0 13.2-19.6 48.6-55.6 51.4-60.2 27.3-42.4 

Primates- 
Rodents 

15.5-18.7 23.5-31.4 N/A* 47.2-51.9 12.9-32.3 
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the hominoid CH1 (excluding any differences in the first six amino acid which are 

encoded by nucleotides prior to where our forward PCR primer annealed), while the Old 

World monkey hinge is three amino acids shorter than the hominoid IgD hinge. These 

differences result in Old World monkey IgD heavy chains being one amino acid shorter 

in their described CH1-CH3 portion than is found in chimpanzee and human IgD heavy 

chain. Comparing hominoids to Old World monkeys, CH1 of Old World monkeys lacks 

arginine 60, has an insertion of proline and threonine between S71 and T72, and an 

insertion of lysine between E96 and I97. Within the carboxy-terminal half of the hinge 

region, three amino acids present in human and chimpanzee IGHD are absent in the Old 

World monkeys: G3, G4 and R19. All N-glycosylation motifs and cysteines involving 

inter- and intra-chain disulfide bonds in humans are conserved in Old World monkey 

IgD. Cynomolgus macaques have additional potential N-glycosylation sites at CH1 N50 

and CH2 N93. These position are not N-glycosylated in any of the other know 

mammalian IgD.  CH1 N50 is also present in pig and the other Old World primates and 

CH2 N93 is present in all the primates examined. However, in these species, neither is 

followed by the N-glycosylation consensus sequence. Human O-glycosylation sites in the 

first half of the hinge are partially conserved in the Old World monkeys; H1 encoded 

residues S9, T12, T25 and T30 are conserved, but S8, T26, T31 are proline, arginine and 

asparagine respectively in Old World monkeys.  

Unexpectedly, in addition to the 1107bp inserts from the RT-PCR clones, 1044bp 

clones were isolated from all four Old World primate species.  These clones have the 

same sequence as the larger product but, inferring a similar intron-exon arrangements and 
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boundaries as found in humans and chimpanzees, with an absent H2 exon. This H2 

deletion was present in clones from PCR products of both IgD3 and IgD13, and IgD7 and 

IgD13 primer sets. In two of the three cynomolgus macaques examined, all of the clones 

sequenced had the H2 deletions. Conversely, the clones of the third cynomolgus macaque 

included the H2 exon. A single clone for each of the other species (baboon, rhesus 

macaque and sooty mangabey) was sequenced that lacked the H2. In addition to clones 

that were verified by sequencing, clones for each species with inserts of size 

corresponding to the H2 deletion product were observed on 1% agarose gels.  No clones 

missing the H2 exon were observed for chimpanzee clones or human clones when the 

same primer sets were employed. Besides the two primer pairs described, we also 

designed a primer set (BGDF and BGDR) flanking the hinge to amplify small PCR 

fragments. These primers were tested with cDNA of two different baboons than those 

reported here and produced primarily fragments of the size expected for the IgD∆H2 

product when visualized as bands on an agarose gel. The bands for the product with a 

complete hinge were faint. These experiments likely under represent the full-length hinge 

product, because PCR amplification would favor the smaller IgD∆H2 product, which was 

nearly half the size of the product with H2. 

 

Dog IGHD 

We performed reverse-transcription PCR on dog PBMC total RNA using primers 

K9IGHDF1 and K9IGHDB6 derived from sequences within a contig (NW_140211) that 

had a high percent identity with IGHD of other species. The resulting 1468nt product 
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consisted of seven exons (CH1, H1, H2, CH2, CH3, M1 and M2) encoding a 416 amino 

acids polypeptide (Figure 4.2), and a portion of the 3’ untranslated region. Comparison 

with the genomic sequence shows the dog IGHD spans 8.25kb and all the introns follow 

the GT…AG rule with the possible exception of the H2/CH3 intron, which does not 

begin with GT in the contig sequence. The cDNA sequences agree with the dog contig 

for all but two nucleotides. Residues corresponding to human IgD CH1 positions 56 and 

63 are methionine and glutamate in the contig, but are lysine and aspartate respectively in 

our clones. All cysteines that form intra- and inter-chain disulfide bonds in humans IgD 

heavy chains are conserved in the dog IgD heavy chain. An additional cysteine is present 

in the dog H2 at position 16. The predicted molecular weight of the unglycosylated 

transmembrane protein is 45.409 kDa, and without the transmembrane domain is 

39.836kDa. There are four potential N-glycosylation sites in the dog IgD heavy chain. N-

glycosylation sites at CH2 N66 and CH3 N100 are sites conserved with other mammalian 

IgDs. The N-glycosylation site at CH2 N4 is shared with artiodactyls and the N-

glycosylation site at CH2 N87 is also present in cow and sheep. Dog IgD heavy chain 

amino acid identities with horse, pig, cow and sheep are similar to those seen between 

these species. CH1 and the hinge are least conserved, while CH2, CH3 and 

transmembrane domains are more conserved. Residues of the conserved antigen receptor 

transmembrane (CART) motif are present in the dog IgD transmembrane domain with the 

exception of T31, which is also absent in the other species of the Laurasiatheria group, 

i.e. pig, cow, sheep and horse (Campbell et al., 1994). Dog IgD is most similar to horse 

IgD for CH1, hinge, CH2 and CH3 with percent identities of 40.2%, 37.3%, 57.8% and 
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67.3%, respectively. Dog IgD TM is most similar to that of pig and sheep with 62% 

identity to each. The percent identity of dog IgD CH1-CH3 with that of primates is 39% 

(human 39.3%, cynomolgus 38.7%, mangabey 38.6%, rhesus 38.7% and baboon 38.5%). 

 

Phylogenetic analysis and comparative analysis of IgD heavy chains 

To gain further insight into the evolution of IGHD, additional analysis of IGHD in 

mammals was performed. A phylogenetic tree was constructed from IgD CH1-CH3 of 

different mammals (Figure 4.3). The relationship between taxa corresponds to accepted 

phylogeny, with the exception of that of the Old World monkeys.   

The human IgD H1 may have originated from IgM CH2 (Putnam et al., 1981). 

Therefore, we compared the amino acid sequences from IgD H1 and IgM CH2 of 

different species. Human H1 is 35.3% identical to a portion of human IgM CH2 (R46-

T79). The H1 of the chimpanzees and Old World monkeys have 32.4% identity with the 

same portion of IgM CH2, but the percent identity was lower when dog or mouse IgM 

CH2 was used for comparison. IgD H1 S8 and T26 in humans in this scenario would 

derive from IgM CH2 S53 and T71 respectively. However, with the exception of humans, 

IgD H1 S8 is only conserved in chimpanzees and IgD H1 T26 is replaced by an arginine 

in all the examined nonhuman primate species. IgD H1 A22 of hominoids is substituted 

with S22 in all Old World monkeys which aligns with the conserved IgM CH2 S67. IgD 

H1 of species other than primates have less than 17% amino acid identities with IgM 

CH2. 
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Figure 4.3. Phylogentic relationships of mammalian IgD heavy chains. Neighbor joining 

tree constructed from the deduced amino acid sequences of mammalian IgD domains 

CH1-CH3 created using the CLUSTAL X method. Mangabey.1 and mangabey.2 

represent two sequence variants. Accepted phylogenetic relationships between the 

different species are present in the tree except for Old World monkeys, which likely 

result from the high conservation of IgD within these species. The values shown 

represent the number of occurrences of branches over 1,000 bootstrap resamplings of the 

data sets. 
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In previously characterized IGHD sequences, different exons are conserved at 

different degrees. Table 4.1 summarizes the overall trends in deduced amino acid 

conservation observed between groups of mammals for the CH1-CH3 exons.  As 

reported by others (Wagner et al., 2004), the CH1 and the hinge exons are the least 

conserved. CH3 is the most conserved exon. In rodents, IgD CH2 is absent, but otherwise 

CH2 is conserved nearly as well as CH3 for other mammals. IGHD is well conserved in 

primates, both within the Old World monkey and hominoid groups, and between the two 

groups. Comparing Old World monkeys with hominoids, the IgD domain conservation is 

CH3>CH2>hinge>CH1. IgD CH3 is conserved 100% between baboon, mangabey and 

cynomolgus monkeys. The IgD hinge region of rhesus and mangabey is identical. The 

secretory tail (CH-S) of IgDs is poorly conserved between species. Of all the IgD 

domains, CH-S has the lowest percent identity between chimpanzees and humans 

(77.8%; chimpanzee CH-S: YVTDRGPVK versus human CH-S: YVTDHGPMK). 

 

Disscussion 

Here, we have sequenced IGHD cDNA from five nonhuman primate species and 

from dog. Through comparison of these sequences and previously available IGHD 

sequences, we have examined issues related to the evolution of IgD and gained insight 

into structural IgD features that are most likely involved in functional properties. In 

agreement with what previously known about IgD, CH3 is the most conserved domain 

among the different species (Table 4.1). In contrast, the hinge region has diversified 



 

 

138

extensively between different mammalian groups, but is well conserved within primates. 

Hence the hinge region may have evolved unique functional roles in primates.  

Despite the importance of nonhuman primates in research, the immunoglobulin 

heavy chain constant regions of these species are only partially characterized. Sequences 

of genes are currently available for only a few antibody classes, mainly IgG and IgA, and 

are limited to a few species (Ueda and Kawamura, 1992; Calvas et al., 1999; 

Scinicariello and Attanaio, 2001; Attanasio et al., 2002; Scinicariello et al., 2004). 

Furthermore, corresponding immunoglobulin Fc receptors, which are responsible for 

initiating cellular immune responses to antibody bound antigens, generally have not been 

characterized for nonhuman primates beyond identification by cross-reactive antibodies. 

The biology of humans and mice with regards to Fc receptors is often quite different 

(Takai, 2005). Therefore, nonhuman primates may provide useful alternative models to 

study antibody/Fc receptor interactions. Mice lack a homologue of the human IgA Fc 

receptor I (Takai, 2005), but homologues are present in macaques (Rogers et al., 2004). 

In nonhuman primates, IgA is highly polymorphic and sequence differences from the 

human counterpart may result in modifications of their functional properties 

(Scinicariello and Attanasio, 2001; Scinicariello et al., 2004). Overall, few studies have 

been performed to evaluate the functional properties of nonhuman primate antibodies, in 

part because of their incomplete molecular characterization.  

Understanding of IgD has lagged compared to other immunoglobulin classes, but 

evidence has mounted over the past years for distinct roles played by IgD in the immune 

response. When immunized with a model antigen, the antibody repertoire of IgD+IgM- 
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mice differs from that of the IgD+IgM+ mice by VH gene usage, degree of affinity 

maturation, and reduced isotype switching to the IgG2a subclass (Han et al., 2004). Both 

secretory and membrane bound IgD can bind to IgD receptors found on T cells of 

humans and mice (Amin et al., 1991; Rudd et al., 1995). In contrast to Fc receptors for 

IgE, IgG and IgA, these IgD receptors, identified over a decade ago, have remained 

poorly characterized making it difficult to assess their true function. In mice, antigen 

specific responses involving the cognate interactions of T and B cells are enhanced by the 

combined presence of IgD on B cells and up regulation of the IgD receptor on CD4+ T 

cells (Wu et al., 1999). IgD can activate the alternate complement pathway (Spiegelberg, 

1989). Despite the low concentration of IgD in normal sera, IgD serum concentrations are 

elevated under some circumstances (Preud’homme et al., 2000). For example, increased 

serum IgD levels appear early and persist in HIV infections (Raiteri et al., 1991). IgD 

levels also increase in humans with atopy (Peng et al., 1991). Pathogen-specific IgD can 

be produced in response to infection (Preud’homme et al., 2000). IgD makes up 3-10% of 

immunoglobulins in nasal, lacrimal and parotid glands, and in IgA deficient individuals 

IgD increases to 34-57% of the total immunoglobulins at these locations (Brandzaeg et 

al., 1991). Elevated levels of serum IgD are characteristic of an autosomal recessive 

disorder, hyper IgD and periodic fever syndrome (HIDS), which is caused by mutations 

in the mevalonate kinase gene (Centola et al., 1998). Although symptomatic attacks in 

HIDS patients do not correlate to IgD serum levels, attacks are marked by high levels of 

IL1, IL6 and TNF-α, the same cytokines induced by incubation of normal PBMC with 

IgD, suggesting a possible link between IgD and HIDS pathology (Drenth et al., 1996). 
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Our findings show IgD structure of nonhuman primates and dog is similar to that 

found in human, horse and artiodactyls (cow and sheep). Three CH domains and a long 

hinge are present in all the examined primates and in dog. By contrast, mouse and rat IgD 

have no CH2, although a mouse pseudo-exon related to CH2 has been described 

(Mushinski et al., 1980; Sire et al., 1982; Richards et al., 1983). Our results cannot 

establish whether or not the dog immunoglobulin identified by Yang et al. (1995) 

corresponds to the one that would be produced from dog IGHD; however, our data is 

compatible with this possibility. The calculated molecular weight of dog IgD CH1-CH3 

domains is 40kDa. A complete IgD heavy chain including glycans at its four N-

glycosylation sites, the heavy chain variable domain and a secretory tail (which we did 

not identify) would be expected to be of a greater molecular weight. This would be 

consistent with the reported molecular weight of 55kDa of the putative dog IgD heavy 

chain found in sera (Yang et al., 1995). 

N-glycosylation is an important feature of all immunoglobulin molecules 

including IgD. All the N-glycosylation sites found in humans are conserved in nonhuman 

primates. In humans, the N-glycosylation site at CH2 N66 is necessary for the association 

of IgD heavy chains to form a complete antibody and for secretion from the endoplasmic 

reticulum (Gala and Morrison, 2002). The N-glycosylation site at CH3 N49 is 

characteristic of all the examined primates and not found in IgD of the other species. 

Cynomolgus macaque IgD has additional N-glycosylation motifs present at CH1 N50 and 

CH2 N93. Mice possess an IgD receptor different from that of humans, which is 

expressed on CD4+ T cells and is specific for N-linked glycans on murine IgD (Adachi 
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and Ishizaka, 1986; Amin et al., 1991). It is unknown if similar IgD receptors are present 

in other species, but possible N-glycan sites are present in dog IgD that might provide 

points of interaction with such an IgD receptor.  

The structure of the immunoglobulin hinge regions is critical for their function; it 

gives antibodies the flexibility needed to bind antigen and provide sites of interaction 

with Fc receptors and complement. The IgD hinge is quite diverse in structure between 

species. Rodents have a shorter IgD hinge encoded by a single exon. The hinge regions of 

dog and chimpanzee are encoded by two exons. Old World monkey IgD hinge regions 

similarly have two distinct segments that are highly conserved with those of hominoids, 

including the large number of lysine and glutamate residues of the C-terminal portion. 

These charged residues may favor the formation of an α-helix structure and act to 

separate the two hinge segments by repulsion (Sun et al., 2005). The IgD hinge region is 

the longest of that found in all human antibody isotypes and, besides the IgG3 hinge, is 

the only other immunoglobulin hinge encoded by multiple exons (Lefranc and Lefranc, 

2001). The dog IgD hinge region is structurally distinct from the corresponding primate 

regions and is related more closely to that of ungulates; it does not have a highly charged 

second domain. The second half of the dog hinge region contains a cysteine which is at a 

conserved position with cysteines found in the hinge regions of sheep and cow. In the 

latter two species a second cysteine is also present in the IgD H2. It is possible that these 

cysteines in the IgD hinge regions of dogs, sheep, and cows are involved in forming 

inter-heavy chain disulphide bonds as described for the cysteines of IgG hinge regions. 
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Structurally, IgD and IgA1 hinges of humans share common features. IgA1 is the 

only other immunoglobulin with O-glycosylation in its upper hinge. As previously 

demonstrated for IgA, the flexible arms of IgD Fab can be separated by a wide angle thus 

resulting in an average antibody conformation similar to that of a T-shape in contrast to 

the more typical immunoglobulin Y-shape (Løset et al., 2004; Sun et al., 2005). 

Comparable to the hinge of IgD, IgA of different mammals is highly variable in length 

and amino acid sequence. IgD H2 is high repetitive. It has been suggested that the 

repetitive genetic structure of the IgA hinge region has led to its evolutionary instability 

(Flanagan et al., 1984). Indeed, the hinge of two mouse species has diverged 25% in the 

mere 4-8 millions since the two species have separated (Osborne et al., 1988). Old World 

monkeys, unlike humans, have only a single IGHA that encodes a short hinge more like 

the human IgA2 hinge without multiple O-glycosylation sites (Scinicariello et al.,2004). 

The IgA hinge within rhesus macaques is highly polymorphic (Scinicariello et al.,2004). 

By contrast, nonhuman primate IgD amino acid substitutions were found only in a sooty 

mangabey at two positions in CH2. More importantly, the hinge is highly conserved 

between primates; rhesus macaque and sooty mangabey IgD hinge regions are identical. 

Therefore, the hinge region of IgD appears to be less variable and evolutionarily more 

stable than the hinge region of IgA in nonhuman primates.  

In humans, three glycine residues encoded at the start of H2 contribute to IgD 

hinge segmental flexibility (Sun et al., 2005). Though conserved in chimpanzee, the 

glycines at H2 positions 3 and 4 are deleted in Old World monkeys. Loss of these 

glycines may be compensated for by a glycine dyad created by a glycine substitution next 
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to a conserved glycine in IgD H1 and by another glycine substitution in the middle of IgD 

H2. Besides being important for IgD receptor interactions (Rudd et al., 1995), the O-

glycans of the hinge contribute to structural rigidity (Sun et al., 2005). We predict that 

IgD H1 O-glycosylation is reduced in nonhuman primates. At equivalent positions of the 

human O-glycan sites, IgD of chimpanzee has one substitution and IgD of Old World 

monkeys have three substitutions. In Old World monkeys, only IgD H1 S22 offers a 

potential O-glycosylation site not found in human IgD H1. Dog IgD hinge is not well 

conserved with that of primates. Hence, if present, dog IgD O-glycosylation is quite 

different. 

In mangabey, baboon, rhesus macaque and cynomolgus macaque, we identified 

IGHD clones in which the hinge region that corresponds to the hominoid H2 exon was 

deleted. These transcripts (IgD∆H2) may be the result of 1) an artifact of the reverse 

transcription PCR, 2) a polymorphism encoded by a second IGHD gene or allele or 3) 

alternative splicing events. Several lines of evidence argue against the first possibility. 

Under the same PCR conditions, and using the same primer sets, IgD∆H2 transcripts 

were niether found in any of the chimpanzee clones, nor in control experiments using 

human RNA. The percentage of clones for each transcript varied between animals. 

Multiple primer pairs produced IgD∆H2 clones. The deletion was always exact so that it 

maintained the reading frame. Finally, alignment of the hinge regions and CH3 were 

compared and no unusual sequences with high identity were found that might be 

conducive to PCR jumping. The latter two possible explanations remain to be tested and 

are not necessarily exclusive. For example, an allelic variant in the intron between H1 
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and H2 could alter splicing. Pig IGHD has an H2 exon that is spliced out because of a 

branchpoint mutation in the H1-H2 hinge intron (Zhao et al., 2003). When a single T 

nucleotide is introduced into this sequence, pig IGHD transcripts include H2. Zhao et al. 

(2003) speculated that some transcripts with H2 might be produced normally in pigs, 

although none of their clones included the H2 exon. Future studies will be needed to test 

whether or not these primates express IgD without the H2 portion of the molecule, as 

such a difference may have profound effects on antigen binging properties. 

The origin of the hinge in IgD is still an open question. Fish IgD have no hinge 

(Wilson et al., 1997; Hordvik et al., 1999; Stenvik and Jørgensen, 2000; Bengtén et al., 

2002; Hordvik, 2002; Hirono et al., 2003; Saha et al., 2004; Srisapoome et al., 2004; 

Danilova et al., 2005; Hansen et al., 2005; Savan et al., 2005). Putnam et al. (1981) have 

made the case that the human IgD N-terminal half of the hinge (H1) may have originated 

from a duplication of the IGHM CH2 domain, since human IgD H1 residues have a 

significant percent identity with those conserved between IgM CH2 of different species. 

Complementing this hypothesis is evidence that IGHM and IGHD are closely related and 

have exchanged genetic material in the past. Such evidence includes the probable 

origination of IGHD from an ancient duplication of IGHM (Zhao and Hammarström, 

2003), and the demonstration that a duplicated IGHM CH1 replaced the original IGHD 

CH1 in artiodactyls (Zhao et al., 2003). IgD H1 of primate appear to have a common 

origin, and nonhuman primate IgD H1 has a 32.4% identity with the same section of 

human IgM CH2 that has a 35.3% identity to human IgD H1. Such supports the 

hypothesis for a possible IgM CH2 origin of the primate IgD H1. This hypothesis does 
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not fit as well for species other than primates, which possess IgD hinges with less than 

17% amino acid identities with IgM CH2. If the hypothesis is correct, then it would seem 

likely that IgD hinge regions arose in evolution three or more times, once for rodent 

hinge, once for primate hinge, and once for Laurasiatheria hinge. Additionally, the H2 of 

primates appears to be unique and may have yet another origin. 

As anticipated on the basis of cross-reactivity obtained with anti-human 

antibodies, IgD deduced amino acid sequences of nonhuman primates are well conserved 

among the examined primates and humans. By contrast, dog IgD is not as well 

conserved, and it is not surprising that the available anti-IgD raised against IgD of other 

species do not cross-react with dog IgD. IgD CH1 and CH2 domains compared to CH3 

and transmembrane domains are less conserved at the amino acid levels. This would 

seem to indicate that the IgD CH1 and CH2 domains are less critical for functional 

properties of IgD that are conserved across species, although these domains may have 

important species-specific functions. For example, in human IgD, these domains contain 

cysteines necessary for integrity of the quaternary structure. CH1 C15 forms bonds with 

the immunoglobulin light chains and CH2 C2 forms the only covalent bond between 

heavy chains. These cysteines are conserved in nonhuman primates and in dog.  

IgD CH1 of artiodactyls shares a high degree of conservation with CH1 of IgM as 

a result of the IGHM CH1 having replaced the original IGHD CH1 (Zhao et al., 2002; 

Zhao and Hammarström, 2003). Our data are in agreement with the hypothesis that the 

IgD CH1 replacement with IgM CH1 in artiodactyls was recent. Dog IgD CH1 is not 

highly conserved with the published dog IgM CH1 protein sequence (14.3% identity) 
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(McCumber and Capra, 1979). Horse IgD CH1 is not highly conserved with IgM CH1 

(Wagner et al., 2004). Therefore, the genetic event leading to the replacement of the 

original IgD CH1 in artiodactyls occurred after the evolution of carnivora, perissodactyla 

and cetartiodactyla as distinct phyla. 

The IGHD M1 and M2 exons encoding the transmembrane domain are highly 

conserved between all species examined reflecting the importance of the transmembrane 

domain that they encode in establishing interactions with the B cell receptor associated 

signaling chains. As expected, dog IGHD maintains the M1 and M2 exon arrangement 

seen in other species. Presumably, this is also the case for chimpanzee IGHD for which 

we could not identify the M2 (because of the incomplete resolution of the chimpanzee 

contig sequence).  Importantly, the dog and chimpanzee transmembranes domains 

contain the CART motif found in antigen receptors described by Campbell et al. (1994). 

This motif is involved in forming interactions with the B cell receptor signaling 

polypeptides (Campbell et al., 1994). 

Knowledge at the genetic level of IgD in species other than human and rodents 

has only begun to accumulate recently, and has demonstrated that IgD is widespread 

throughout vertebrates and is extremely diverse. Despite this diversity, IgD is 

surprisingly well conserved between nonhuman primates. In contrast to the view that IgD 

function as a BCR is redundant with IgM and that secreted IgD is unimportant, this high 

degree of conservation indicates that IgD may have valuable biological roles as yet 

unappreciated. Future studies should include the molecular characterization of IgD 

receptors and the determination of whether or not IgD receptors are a common feature of 
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mammals, thus leading to a clear definition of the roles that IgD plays in the immune 

response. The IgD sequences identified here would be valuable in such endeavors. 
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CHAPTER 5 

Immunoglobulin G (IgG) Fc Receptor III Homologues in Nonhuman Primate Species: 

Genetic Characterization and Ligand Interactions 

 
 
Summary  
 

Immunoglobulin Fc receptors are glycoproteins that bind to immune complexes 

through interactions with the Fc regions of specific antibody subclasses to initiate or 

inhibit the defense mechanisms of the leukocytes on which they are expressed.  The 

human IgG low affinity Fc receptor III (CD16) can initiate phagocytosis and antibody-

dependent cell-mediated cytotoxicity. CD16 has two isoforms, CD16a expressed on 

natural killer cells, monocytes as well as macrophages, and CD16b expressed on 

neutrophils. CD16a associates with either FcR γ or TCR ζ signal molecules to transduce 

activation signals. Although the development of therapeutic IgG molecules usually 

involves testing in nonhuman primates, the Fc receptors in these species have not been 

studied. Therefore, we have identified and characterized CD16 homologues in rhesus 

macaques, cynomolgus macaques, baboons and sooty mangabeys. Similar to humans, 

CD16 expression was detected on a lymphocyte subpopulation, on monocytes, and on 

neutrophils of sooty mangabeys. By contrast, CD16 was detected only on a lymphocyte 

subpopulation and on monocytes in macaques and baboons.  In each nonhuman primate 

species, we identified a single CD16 gene encoding a protein at least 91% identical to 

human CD16a and a TCR ζ gene predicted to encode a protein with a conserved 

transmembrane domain necessary for CD16a association. A recombinant nonhuman 
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primate CD16 generated in HeLa cells interacted with human IgG1 and IgG2. By 

contrast, human CD16 binds to IgG1 and IgG3. Similar to human CD16, the monoclonal 

antibody 3G8 was able to block IgG binding to nonhuman primate CD16. Inhibition of 

nonhuman primate CD16 N-glycosylation enhanced IgG binding. Differences in 

interaction with IgG subclasses and in cells type expression should be considered when 

using these species for in vivo evaluation of therapeutic antibodies. 

 

Introduction 

Fc receptors are plasma membrane glycoproteins that bind to the Fc region of one 

or a few classes of antibodies. Cross-linking of antibody Fc receptors by antibody-

opsonized antigen complexes initiates cellular immune responses including phagocytosis, 

antibody-dependent cell-mediated cytotoxity (ADCC), respiratory burst, release of 

cytokines and inflammatory mediators, and antigen presentation (Ravetch and Bolland, 

2001). Fc receptors are therefore crucial for the destruction and clearance of pathogens 

and tumors. Different Fc receptors with specificity for each of the five classes of 

antibodies (IgM, IgD, IgA, IgE and IgG) have been identified in mammals. Human IgG 

Fc receptors include FcγRI, FcγRII, and FcγRIII, which differ for cell type distributions 

and affinity for the four subclasses of human IgG (Ravetch and Bolland, 2001). Human 

FcγRIII, also known as CD16, is specific for IgG1 and IgG3 (Tamm and Schmidt, 1997). 

Humans express two 97% identical FcγRIII isoforms, CD16a and CD16b, 

encoded by separate genes consisting of two immunoglobulin-like domains and a tail 

region linking the protein to the plasma membrane (Ravetch and Perussia, 1989; Gessner 
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et al., 1998). CD16a is expressed on monocyte subpopulations, macrophages, natural 

killer cells, select γδ T cells, and can be induced on glomerular mesangial cells (Lanier et 

al., 1985; Ravetch and Kinet, 1991; Radeke et al., 1994; LaFont et al., 2001). Because 

CD16a is the only Fc receptor expressed on natural killer cells and is responsible for IgG 

initiated ADCC, it has been called the ADCC receptor (Ahmad and Menezes, 1996; 

Mandelboim et al., 1999). The CD16a complex consists of three polypeptide chains: one 

unique ligand binding chain and two signaling chains. The ligand binding chain (CD16a 

or FcγRIIIa) spans the plasma membrane and has a short cytoplasmic tail. In humans, the 

signaling chains of the complex are composed of either a homodimer or a heterodimer of 

FcRγ and TCR ζ that are required for efficient assembly, transport of the receptor from 

the endoplasmic reticulum to the plasma membrane and retention on the plasma 

membrane (Lanier et al., 1989; Anderson, 1990; Gessner et al., 1998). FcRγ is also a 

necessary component of the FcεRI and FcγRI complexes (Ra, 1989; Ravetch and 

Bolland, 2001). TCR ζ, expressed in T cells and natural killer cells, is also a component 

of the T cell receptor complex (Weissman et al., 1989). In contrast to CD16a, CD16b is 

not associated with signaling chains. The CD16b isoform, exclusively expressed on 

neutrophils and eosinophils that have been exposed to IFN-γ (Hartnell et al., 1992; 

Ravetch and Bolland, 2001), is linked to the outer plasma membrane by a glycosyl 

phosphatidylinositol (GPI) link, and modulates cellular responses through interactions 

with the other neutrophil Fc receptors (Scallon et al., 1989; Jones and Brown, 1996). 

Association of the FcRγ signaling chain dimer with CD16a may contribute to a higher 
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ligand affinity of CD16a compared to CD16b (Miller et al., 1996). No orthologues for 

CD16b have been identified in nonhuman species.  

Nonhuman primates are widely used in biomedical research. The complex 

mechanisms of action and pharmacokinetics of therapeutic antibodies, usually IgG1 or 

IgG2 molecules, are routinely evaluated in these species (Yang et al., 1999a; 1999b; 

Hahn et al., 2001; Hinton et al., 2003). Potential therapeutic cytokines and cytokine 

receptors are tested in nonhuman primates, and there is interest in extending these studies 

to immunoglobulin-cytokine fusion proteins as has been done in mice (Evans et al., 1994; 

Munn et al., 1996; Hérodin et al., 2003). Macaques represent the accepted model for HIV 

vaccine development and AIDS pathogenesis (Hirsch and Lifson, 2000). CD16a is 

critical for natural killer cell targeted destruction of HIV infected cells through ADCC, 

although the relative importance of this mechanism in vivo is debated (Ahmad and 

Menezes, 1996). Recently, a small study in SIV-infected macaques indicated that 

sustained ADCC correlates with delayed onset of AIDS pathogenesis (Banks et al., 

2002). Xenograft rejection, also studied in nonhuman primates, is in part mediated 

through IgG directed ADCC via CD16 (Schaapherder et al., 1994; Watier et al., 1996; 

Cozzi et al., 2005; Rood et al., 2006). Nonhuman primates are widely used in testing 

monoclonal antibodies designed to prevent allograft rejection (Cosimi et al., 1990; Kirk 

et al., 1999; Kanmaz et al., 2004; Kawai et al., 2004; Koyama et al., 2004; Schuler et al., 

2004).  

CD16 homologues in nonhuman primates remain uncharacterized, and the 

premise that IgG/CD16 interactions in these species mimic those in humans has not been 
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fully evaluated. In the present study, we have identified nonhuman primate homologues 

of the human CD16 α chain and one of its associated signaling chains, TCR ζ, by 

sequencing these genes in four of the species most frequently used in biomedical 

research: rhesus macaque, cynomolgus macaque, baboon and sooty mangabey. 

Furthermore, we generated a recombinant nonhuman primate CD16 expressed on 

mammalian cells, and assessed its binding ability to the various IgG subclasses. 

 

Materials and methods 

Samples 

Heparinized blood samples were collected from healthy animals of each of the 

following species: rhesus macaque (Macaca mulatta), cynomolgus macaque (Macaca 

fascicularis), baboon (Papio hamadryas anubis), and sooty mangabey (Cercocebus 

torquatus). Rhesus macaque and baboon samples were from animals housed at the 

Southwest National Primate Research Center San Antonio, TX. The samples from 

cynomolgus macaque and sooty mangabey were from animals housed at the Yerkes 

National Primate Research Center, Emory University, Atlanta, GA. Animal blood was 

collected under approval of the appropriate institutional review committees. 

 

Determination of CD16 expression on blood leukocytes 

Blood from 4 rhesus macaques, 7 cynomolgus macaques, 4 baboons and 4 sooty 

mangabeys was collected in EDTA Vacutainer® tubes (Becton, Dickinson and Co., San 

Jose, CA) by venipuncture under anesthesia. Leukocyte expression of CD16 on macaque 
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cells was analyzed by three-color flow cytometry analysis using cy-chrome conjugated 

anti-human CD16 (clone 3G8), phycoerythrin (PE)-conjugated anti-human CD89 (clone 

A59) and fluorescein isothiocyanate (FITC)-conjugated anti-human CD3 (clone SP34) 

(Becton, Dickinson and Co.). SimultestTM Control γ1/γ2 (Becton, Dickinson and Co.) was 

used to detect non-specific binding of mouse IgG to cells. Since cy-chrome conjugated 

anti-human CD16 was found to be poorly cross-reactive with baboon  and sooty 

mangabey leukocytes, baboon and sooty mangabey leukocytes were analyzed by staining 

with anti-human PE conjugated CD16 PE (clone 3G8) and FITC conjugated anti-human 

CD3 (clone SP34). Additionally, sooty mangabey leukocytes were stained with CD89PE 

and CD16 FITC. Staining of whole blood was done using a standard procedure. Briefly, 

100µl of blood was incubated with 20µl of each antibody in the dark at room 

temperature. Erythrocytes were lysed with 2ml of BD PharM Lyse (Becton, Dickinson 

and Co.), washed 3 times with PBS and fixed with 1% paraformaldehyde. 10000 events 

were counted by flow cytometry. 

 

Amplification of nonhuman primate CD16 and TCR ζ  cDNA 

Total RNA was extracted from whole blood using the QIAamp RNA Blood Mini 

Kit (Qiagen, Inc., Valencia, CA), and reverse transcribed into cDNA using oligo d(T)17 

primers, followed by primer extension with the AMV reverse transcriptase (Roche 

Diagnostic Corp., Indianapolis, IN). PCR amplification of the cDNA was performed with 

Expand High Fidelity polymerase (Roche Diagnostic Corp.) with the appropriate primer 

pair.  Primers for amplification of primate CD16 were designed from the human sequence 
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assuming conserved homology between primates. The forward primer FCG3aF (5’-

ATGTGGCAGCTGCTCCTCCCA-3’) encodes the first 7 amino acids of CD16. The 

reverse primer FCG3aR (5’-TCATTTGTCTTGAGGGTCCTT-3’) encodes the last 6 

amino acids and the stop codon. TCR ζ and FcR γ primers were likewise designed. The 

forward primer TCRZ3F (5'ATGAAGTGGAAGGCGCTTTTCAC-3') encodes the first 7 

amino acids of TCR ζ. The reverse primer TCRZ3B (5'-TTAGCGAGGGGGCA-3') 

encodes the last 3 amino acids and the stop codon of TCR ζ. The FcR γ forward primer 

FCRgamF (5'-ATGATTCCAGCAGTGGTCTTGCT-3') binds at the start codon, whereas 

the reverse primer FcRgam4 (5'-CTACTGTGGTGGTTTCTCATGCTTC-3') binds at 

stop codon and together amplify the complete gene. After initial denaturation at 95°C for 

10 min, the cDNAs were amplified for 40 cycles, with each cycle consisting of 94°C for 

1 min, 56°C for 1 min and 72° for 1 min 30 sec. A final step at 72°C for 10 min was used 

to ensure complete extension. For amplification of the signaling chains the step at 72ºC 

was reduced to 30 sec. All reactions were performed in at least two independent reverse 

transcriptions PCR to verify product sequences. For CD16 of each nonhuman primate 

species 10 clones were sequenced from each of two independent PCR reactions. 

 

Cloning of the amplified gene sequences 

For cloning, 50µl of a reverse transcription PCR was run on a 1% agarose gel. 

The specific band of interest was excised from the gel and purified using a QIAquick® 

Gel Extraction Kit (QIAgen, Inc.). The cDNA was ligated into pCR2.1 vector and 

transformed into Top10 Esherichia coli (Invitrogen Corp., Carlsbad, CA) followed by 
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expansion of select white colonies grown on media containing X-gal. Plasmid DNA was 

purified using a Wizard®plus Minipreps kit (Promega Corp., Madison, WI). The samples 

were screened on a 1% agarose gel after digestion with EcoRI to confirm the correct size 

of the DNA fragments. At least two clones from each PCR were sequenced. All DNA 

sequences were determined using the BigDye® Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems, Foster City, CA) on an ABI 3100 Genetic Analyzer (PerkinElmer, 

Inc., Wellesley, MA).The forward and reverse M13 primers were used for sequencing. 

Overlapping regions were identified and sequences were edited using the MacVector 

software program (Accelrys Inc., San Diego, CA). Sequences were aligned with each 

other and other published sequence using the CLUSTAL function of the MEGALIGN 

part of the LASERGENE software package (DNASTAR Inc., Madison, WI).  

 

Construction of nonhuman primate CD16 expression vectors  

Full length nonhuman primate CD16 genes were first PCR amplified from 

cDNAs ligated into the pCR2.1 vector using forward and reverse primers FCG3FHinb 

(5'-AGATAAGCTTGATATGTGGCAGCTGCTCCTCCCA-3') and FCG3RBam  

(5'-TCTAGGATCCTCATTTGTCTTGAGGGTCCTT-'3), which add Hind III and 

BamHI restriction sites 5’ and 3’ of the full length cDNA, respectively. CD16 fragments 

from clones with the correct sequence were released from vector by sequential digestion 

with Hind III and BamHI, cleaned up on a 1% agarose gel, and ligated into the Hind III 

and BamHI digested expression vector pcDNA3.1 (+) (Invitrogen Corp.) to create 
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pcCD16 vectors. CD16 expression vectors were then cloned into Top10 E. coli and 

colonies screened by sequencing with primers T7 and T7 reverse.  

To improve the stability of the expression vectors in transfected cells, part of the 

pcDNA3.1 constructs were amplified (containing cDNA of nonhuman primate FcγIIIRa, 

a cytomegalovirus promoter, a bovine growth hormone polyadenylation signal, and a f1 

origin) and inserted into the vector pLSXN (Becton, Dickinson and Co.), which contains 

long terminal repeats for integration into chromosomes. pLSXN contains a neomycin 

resistance gene, which allows for transfectant selection. Insertion of a pcDNA-CD16 

fragment into pLXSN was carried out by amplifying with primers PcHp (5’-

CTGCTGTTAACCGTTAGGGTTAGGCGTTTTGCG-3) and PcSa (5’-

ACTTTGTCGACGCTCAGCGGCCGGCCATCGATCCACAGAATTAATTCGCGTT-

‘3). The resulting fragment was then digested with Hpa I and Sal I and pLXSN digested 

with Hpa I and Xho I. The two fragments were then ligated together to form pLXSN-

CD16.   

 

Generation of recombinant CD16 by transfection of expression vectors into HeLa cells  

Large quantities of vector for transfection were prepared using EndoFree® 

Plasmid Maxi kits (Qiagen Inc.). Twenty µg of expression vector was added to HeLa 

cells suspended in 250µl of Dulbecco’s modified Eagle medium (DMEM) at 14×106 

cells/ml. After ten min of incubation on ice, cells were electroporated by one pulse using 

the power supply set to 300V, 25mA, and 25W and the Electroporator II (Invitrogen 

Corp.) set to 1000µF and ∞Ω, according to the manufacturer’s recommendations. Cells 
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were then incubated at room temperature for ten min and grown in 10ml of DMEM 10% 

FCS in 5% CO2 at 37°C. Antibiotic G418 (400µg/ml) was added to cell 72 hours post 

transfection to obtain stable transfectants.   

Once cells recovered, an initial screen for successful transfections was carried out 

by flow cytometry. Adherent cells were removed from flasks with 90% confluent growth 

using 0.25% trypsin/2.21 EDTA in Hank’s Balanced Saline Solution for 10 min. Cell 

number and viability was assessed using trypan blue exclusion on a hematocrit. PBS 

washed cells (0.5 ×106) were stained by incubation with 5µl of cross-reactive 

phycoerythrin-conjugated (PE) mouse anti-human CD16 clone 3G8 or mouse isotype 

control (Becton, Dickinson and Co.) for 30 min at 4º C. Unbound antibody was then 

removed with three washes of 200ul of PBS. Finally, cells were fixed with 200µl of 1% 

paraformaldehyde and analyzed using a FACSCalibur flow cytometer (Becton, Dickinson 

and Co.). 

 

Clonal expansion 

Selection and expansion of clones was performed following identification of 

successful transfections as indicated by positive stain for CD16 and a positive reverse 

transcription PCR for CD16. To isolate single clones, cells were diluted serially into 96 

well microtiter plates. Cells were grown in 100µl of DMEM 10% FCS with G418 

400µg/ml which was 50% fresh media and 50% conditioned media collected from flasks 

of untransfected HeLa cells and filtered with a 0.2µm filter. Each well was examined by 
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microscopy to identify wells with a single cell. Clones were subsequently expanded in 

wells of increasing size until cell numbers were sufficient to screen for CD16 expression.  

 

Purification of nonhuman primate IgG 

Nonhuman primate IgG was purified from serum from each species. Briefly, 

200µl of serum diluted 1:1 in Pierce ImmunoPure® IgG binding buffer was incubated 

with 200µl ImmunoPure® Plus immobilized protein G for 30 min at room temperature 

(Pierce Biotechnology, Inc., Rockford, IL). The mix was then transferred to a 0.45µm 

filter tube and centrifuged for 2 min at 6g and the filtrate discarded. Following four 

washes with PBS at a (pH 7.2) and 10 min incubation at room temperature with Pierce 

ImmunoPure® IgG elution buffer, the tube was spun for 2 min and the filtrate collected. 

Finally, the filtrate was dialyzed against water using Spectral/Por® cellulose ester 

MWCO 50,000 (Spectrum Laboratories, Inc., Ft. Lauderdale, FL), first with two 

incubations at room temperature for 1 hour each and then overnight at 4ºC with the buffer 

being changed each time. Purity of IgG was verified by a reducing SDS PAGE and the 

concentration checked by spectrophotometry at 280nm. IgG was frozen at -80ºC prior to 

use. 

 

IgG subclass ELISA  

ELISA was used to verify the purity and identity of the human IgG myeloma 

proteins used in the CD16 binding assays. Microtiter plates were coated with human 

myeloma proteins (IgG1, IgG2, IgG3, or IgG4) (Binding Site Ltd., Birmingham, UK) or 
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purified total nonhuman primate IgG from the four species. After incubation at 4ºC 

overnight, the plate was blocked with 5% FCS diluted in PBS at 37ºC for 30 min. After 

washing, anti-human IgG1 (clone SG-16), IgG2 (clone HP-6014), IgG3 (clone HP-6050), 

or IgG4 (clone SK-44) were added to the plate and incubated for 1 hr at 37ºC (Sigma-

Aldrich Corp., St. Louis, MO). Following washing to remove unbound antibody, HRP-

labeled goat anti-mouse IgG (H+L) was added to the plate and incubated for 1hr at 37ºC 

(KPL, Inc., Gaithersburg, MD). The washed plate was developed by addition of 

ABTS/H2O2 followed by addition of stop solution, and its absorbance measured at 405nm 

using an automated Benchmark microplate reader (Bio-Rad Laboratories, Inc., Hercules, 

CA).  

 

Immunoglobulin binding assay 

Binding of immunoglobulin to CD16 was assessed by flow cytometry using 

antibodies that were heat aggregated at 63ºC for 1hr. Human myeloma proteins IgG1, 

IgG2, IgG3, IgG4, IgA1, IgA2, IgM (Binding Site Ltd.) or IgE (Serotec Inc, Raleigh, 

NC) with immunoglobulin κ light chain as well as purified nonhuman primate IgG from 

different species were added to 0.5×106 cells at 20µg/ml and incubated for 1 hr at 4ºC. 

PBS washed cells were then stained with 5µl of either FITC-conjugated mouse anti-

human kappa or FITC-conjugated mouse IgG3 control for 30 min at 4ºC (Invitrogen 

Corp.). In addition, in some experiments cells were stained using FITC-goat anti-human 

IgG (Invitrogen Corp.). For dual labeling experiments, mouse anti-human CD16 PE was 

added as well. Cells were washed and analyzed by flow cytometry as described above. 
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The ability of mouse monoclonal antibody 3G8 to block IgG binding was performed by 

first incubating harvested HeLa cells and mangabey CD16 expressing cells (0.5×106 

cells/tube) with 20µl of 3G8 or control mouse myeloma IgG1 at different concentrations 

(0.5, 0.25, 0.125 and 0 mg/ml) for 30 min at 4ºC. Afterwards cells were washed 3 times 

with PBS and IgG binding tests carried out as described above except that human 

myeloma antibodies were added at 40µg/ml. For N-glycosylation blocking experiments, 

tunicamycin was added to half of the cell cultures at 1µg/ml 30 hr prior to harvesting 

cells. Tunicamycin blocks the addition of N-glycans to proteins by inhibiting the transfer 

of N-acetylglucosamine-1-phosphate to dolicholmonophosphate. 

 

Results 

 

CD16 expression on macaque leukocytes 

Although CD16 has been used as a marker of natural killer cells in nonhuman 

primates (Reimann et al., 1994), CD16 expression on neutrophils has not been reported in 

these species. To determine whether or not CD16 is expressed on neutrophils in macaque 

species, whole blood from four rhesus and seven cynomolgus macaques was stained for 

flow cytometry analysis with anti-human CD16 Cy-Chrome, anti-human CD89 PE and 

anti-human CD3 FITC (Figure 5.1 C-H). Previously, it was determined that CD89 is 

expressed on macaque monocytes and granulocyte populations including neutrophils and 

eosinophils (Rogers et al., 2004). Anti-human CD16 clone 3G8 was used because it binds 

to human CD16a natural killer cells on and human CD16b on neutrophils. CD16+  
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Figure 5.1. (Next page) CD16 expression on nonhuman primate leukocytes. 

Representative two-color dot-plots of whole blood leukocytes from nonhuman primates 

stained for CD16 expression. A) forward scatter versus side scatter plot with leukocytes 

gates indicated, B) staining with mouse isotype controls, C-N) gated leukocyte 

populations (C, F, I and L granulocytes; D, G, J and M lymphocytes; E, H, K and N 

monocytes) stained for CD16 and either CD89 or CD3. CD16 expression was examined 

for rhesus macaques (C, D and E), cynomolgus macaques (F, G and H), baboons (I, J and 

K) and sooty mangabeys (L, M and N). At least 10000 cells were counted for all plots. 
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leukocytes were 6.76±1.04% (mean± standard deviation) for rhesus macaque and 

11.02±3.55% for cynomolgus macaque of the total peripheral blood leukocyte 

population. CD89+ granulocytes (Figure 5.1 C and F) and CD3+ lymphocytes (Figure 5.1 

D and G) from both macaque species were CD16-. CD16- cells constituted 11.75±4.28% 

of rhesus macaque and 15.31±7.64% of cynomolgus macaque lymphocytes (Figure 5.1 D 

and G). 14.67±4.66% of rhesus macaque and 28.40±14.00% of cynomolgus monocytes 

were CD16+ (Figure 5.1 E and H). CD89+CD16+ monocytes accounted for less than 1% 

of total leukocytes and constituted 29.81±9.71% of rhesus macaque and 8.84±8.26% of 

cynomolgus macaque monocytes.  

Three-color analysis was attempted for four baboons and four sooty mangabeys as 

done above for the macaques, but cy-chrome conjugated anti-human CD16 was not 

sufficiently cross-reactive. Whole blood from four baboons was stained with anti-human 

CD16 PE and anti-human CD3 FITC (Figure 5.1 I-K). In baboons, CD16+ cells 

constituted 3.97±0.94% of the peripheral blood leukocytes. Seventy percent of the CD16+ 

cells were found within the lymphocyte gate and accounted for 11.92±6.95% of the 

lymphocyte population (Figure 5.1 J). CD16+ cells in baboons were CD3-. Most of the 

remaining CD16+ cells fell within the monocyte gate where 21.38±13.71 of the cells were 

CD16+ (Figure 5.1 K). CD16+ cells made up 44.42±12.27% of sooty mangabey peripheral 

blood leukocytes (Figure 5.1 L-N). Within the lymphocyte gate 6.70±1.97 of the cells 

were CD16+CD3- and 0.65±0.62% were CD16+CD3+ (Figure 5.1 N). In the monocyte 

gate 25.61±13.43% of the cells were CD16+ (21.85±12.86% CD16+CD89+) (Figure 5.1 
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M). The majority of the sooty mangabey granulocytes were CD16+, with 72.51±14.29% 

staining CD89+CD16+ (Figure 5.1 L). 

 

Cloning and sequencing of nonhuman primate CD16 genes 

Cloned and sequenced cDNA of rhesus macaque, cynomolgus macaque, baboon 

and sooty mangabey was obtained through reverse transcription of total RNA isolated 

from whole blood followed by amplification performed using primers complementary to 

CD16 gene sequences located at the 5’ and 3’ ends of the coding region. The primers 

were designed to be complementary to the genes for both human CD16 isoforms. To 

verify that both human CD16 genes could be amplified with the primers, human CD16 

cDNA was amplified, cloned and sequenced. All sequences from clones amplified using 

total RNA from human whole blood matched the CD16b isoform allele FCGR3B*02 

(GenBank accession number AJ581669), likely a result of CD16b transcripts 

outnumbering CD16a transcripts. Therefore, we stimulated THP-1 monocytic cells with 

PMA in the absence of estrogen to induce expression of CD16a. Amplification of cDNA 

from these cells yielded clones all matching a reported CD16a sequence (GenBank 

accession number X52645), thus validating our strategy to amplify both human CD16 

isoforms. This strategy was then used to amplify CD16 from a single animal of each of 

four nonhuman primate species.  

For all four nonhuman primate species, a single PCR band was present which 

represented a CD16 transcript with the complete reading frame encoding 254 amino 

acids, equivalent in size to human CD16.  All nonhuman primate CD16 clones bore 
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greater sequence homology to human CD16a than CD16b. In nonhuman primates, 

residues at positions that differ between human CD16a and CD16b were conserved with 

human CD16a, including Gly147, Tyr158 and Phe203 (Figure 5.2). Phe203 is substituted  

by a Ser in CD16b and is critical to the expression of CD16b as a GPI linked protein on 

human neutrophils (Kurosaki and Ravetch, 1989). Single sequences were obtained for 

rhesus macaque, baboon and sooty mangabey CD16, whereas two sequences differing by 

a single amino acid (Lys25 or Arg25) were obtained for cynomolgus macaque CD16 

(GenBank accession numbers DQ423376-DQ423380). All cysteines involved in forming 

intra-chain disulfide bonds in human CD16 are conserved in nonhuman primates (C47, 

C89, C128 and C172). Human CD16 (GenBank accession number CAA34755) has N-

glycosylation motifs at Asn 56, Asn 63, Asn 92, Asn 180, and Asn 187. These motifs are 

conserved in nonhuman primate CD16 molecules, with the exception of Asn 92. An 

additional motif is present in nonhuman primates at Asn 82. Rhesus macaque and 

cynomolgus macaque CD16 amino acid sequences exhibit 91.7% and 91.3% identity to 

the human CD16a, respectively. The rhesus macaque CD16 amino acid sequence shows 

99.6% identity to the corresponding cynomolgus macaque sequence. Baboon and sooty 

mangabey CD16 have identical amino acids sequences and share 92.5% identity with 

human CD16a, 98.4% identity with rhesus macaque and 98.0% identity with cynomolgus 

macaque.  Therefore, CD16 sequences are highly conserved in nonhuman primates with 

only three residues distinguishing the African species (baboons and mangabeys) from the 

Asian species (macaques) (an Asp/Glu substitution at position 122, a Val/Met 

substitution at position 229 and a Ser/Arg substitution at position 238).  
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Figure 5.2. (Next page) Alignment of CD16 amino acid sequences of rhesus macaque, 

cynomolgus macaque, baboon, and sooty mangabey and humans. Nonhuman primate 

sequences were deduced from cDNA of whole blood. Human CD16a and CD16b 

sequences are from GenBank (accession numbers CAA34753 and J04162). Amino acid 

differences between human CD16a and nonhuman primate sequences are underlined. The 

mature peptide begins at residue 18 as indicated by the arrow. Two vertical arrows 

indicate the boundaries of exon S2, which is spliced out of one isolated rhesus macaque 

transcript. Potential N-glycosylation sites and cysteines involved in disulfide bonds are 

bolded. Shaded amino acids indicate amino acids in human CD16 that interact with 

human IgG1 (Sondermann et al., 2000). Domains of the protein are indicated by arrows. 

The sequence of MafaCD16.2 was found to match an unpublished GenBank sequence 

(accession number AF485815). MafaCD16.1 is an experimentally isolated variant of 

CD16 differing at residue position 25. Hu: human; Soma: sooty mangabey; Paca: baboon; 

Mamu: rhesus macaque; Mafa: cynomolgus macaque. S1 and S2: signal peptide; Ig: 

immunoglobulin; Tm: transmembrane. Star indicates the amino acid critical for binding 

to monoclonal antibody 3G8.
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                            Mature Peptide  
                            ↓            Ig1 domain 
               S1       ↓ S2    ↓        →        
HuCD16a    MWQLLLPTALLLLVSAGMRTEDLPKAVVFLEPQWYRVLEKDSVTLKCQGAYSPEDNSTQWFHNESLISSQASSYFIDAATVDDSG  
HuCD16b    MWQLLLPTALLLLVSAGMRTEDLPKAVVFLEPQWYRVLEKDSVTLKCQGAYSPEDNSTQWFHNENLISSQASSYFIDAATVDDSG  
MamuCD16   MWQLLLPTALLLLVSAGMRAEDLPKAVVFLEPQWYRVLEKDSVTLKCQGAYSPEDNSTRWFHNESLISSQTSSYFIAAARVNNSG  
MafaCD16.1 MWQLLLPTALLLLVSAGMRAEDLPRAVVFLEPQWYRVLEKDRVTLKCQGAYSPEDNSTRWFHNESLISSQTSSYFIAAARVNNSG  
MafaCD16.2 MWQLLLPTALLLLVSAGMRAEDLPKAVVFLEPQWYRVLEKDRVTLKCQGAYSPEDNSTRWFHNESLISSQTSSYFIAAARVNNSG 
PacaCD16   MWQLLLPTALLLLVSAGMRAEDLPKAVVFLEPQWYRVLEKDSVTLKCQGAYSPEDNSTRWFHNESLISSQTSSYFIAAARVNNSG 
SomaCD16   MWQLLLPTALLLLVSAGMRAEDLPKAVVFLEPQWYRVLEKDSVTLKCQGAYSPEDNSTRWFHNESLISSQTSSYFIAAARVNNSG   
           •                  •                   •                   •                   •   
           1                 20                  40                  60                  80 
 
                   Ig1 domain          Ig2 domain      

←           →                                                  * 
HuCD16a    EYRCQTNLSTLSDPVQLEVHIGWLLLQAPRWVFKEEDPIHLRCHSWKNTALHKVTYLQNGKGRKYFHHNSDFYIPKATLKDSGSY  
HuCD16b    EYRCQTNLSTLSDPVQLEVHVGWLLLQAPRWVFKEEDPIHLRCHSWKNTALHKVTYLQNGKDRKYFHHNSDFHIPKATLKDSGSY  
MamuCD16   EYRCQTSLSTLSDPVQLEVHIGWLLLQAPRWVFKEEESIHLRCHSWKNTLLHKVTYLQNGKGRKYFHQNSDFYIPKATLKDSGSY  
MafaCD16.1 EYRCQTSLSTLSDPVQLEVHIGWLLLQAPRWVFKEEESIHLRCHSWKNTLLHKVTYLQNGKGRKYFHQNSDFYIPKATLKDSGSY  
MafaCD16.2 EYRCQTSLSTLSDPVQLEVHIGWLLLQAPRWVFKEEESIHLRCHSWKNTLLHKVTYLQNGKGRKYFHQNSDFYIPKATLKDSGSY  
PacaCD16   EYRCQTSLSTLSDPVQLEVHIGWLLLQAPRWVFKEEDSIHLRCHSWKNTLLHKVTYLQNGKGRKYFHQNSDFYIPKATLKDSGSY 
SomaCD16   EYRCQTSLSTLSDPVQLEVHIGWLLLQAPRWVFKEEDSIHLRCHSWKNTLLHKVTYLQNGKGRKYFHQNSDFYIPKATLKDSGSY  
                         •                   •                   •                   • 
                       100                 120                 140                 160 
 
               Ig2 domain                     Tm domain            Cytoplasmic tail 
                     ←                      →                 → 
HuCD16a    FCRGLVGSKNVSSETVNITITQGLAVSTISSFFPPGYQVSFCLVMVLLFAVDTGLYFSVKTNIRSSTRDWKDHKFKWRKDPQDK  
HuCD16b    FCRGLVGSKNVSSETVNITITQGLAVSTISSFSPPGYQVSFCLVMVLLFAVDTGLYFSVKTNI 
MamuCD16   FCRGLIGSKNVSSETVNITITQDLAVSSISSFFPPGYQVSFCLVMVLLFAVDTGLYFSMKKSIPSSTRDWEDHKFKWSKDPQDK  
MafaCD16.1 FCRGLIGSKNVSSETVNITITQDLAVSSISSFFPPGYQVSFCLVMVLLFAVDTGLYFSMKKSIPSSTRDWEDHKFKWSKDPQDK  
MafaCD16.2 FCRGLIGSKNVSSETVNITITQDLAVSSISSFFPPGYQVSFCLVMVLLFAVDTGLYFSMKKSIPSSTRDWEDHKFKWSKDPQDK 
PacaCD16   FCRGLIGSKNVSSETVNITITQDLAVSSISSFFPPGYQVSFCLVMVLLFAVDTGLYFSVKKSIPSSTSDWKDHKFKWSKDPQDK 
SomaCD16   FCRGLIGSKNVSSETVNITITQDLAVSSISSFFPPGYQVSFCLVMVLLFAVDTGLYFSVKKSIPSSTSDWKDHKFKWSKDPQDK  
                    ↑                   ↑                   ↑                   ↑          
                  180                 200                 220                 240 

 

Figure 5.2.
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Expression of sooty mangabey/baboon CD16 and identification of nonhuman primate 

TCR ζ chains 

To characterize the ligand interactions of nonhuman primate CD16, the sooty 

mangabey gene was selected for expression in HeLa cells. The expression vector 

pLXSN-CD16 encoding mangabey CD16 was transfected into HeLa cells. These cells do 

not express Fc receptors and have been previously used to generate recombinant Fc 

receptors (Renedo et al., 2001; Rogers et al., 2004). Transcription of the introduced 

CD16 gene was determined by reverse transcription PCR. CD16 expression was assessed 

by staining with a PE conjugated anti-human CD16 and a mouse isotype control. 

Screening by reverse transcription PCR identified 9 clones which were positive for CD16 

transcription. One clone resulted in high CD16 expression as determined by flow 

cytometry (mean fluorescence intensity MFI=1445.22) (Figure 5.3). Anti-CD16 staining 

was specific, since staining of untransfected HeLa cells (MFI= 8.12) and staining of the 

clone with a mouse isotype control (MFI =11.91) was low. 

Mangabey CD16 expression was unexpected in HeLa cells without cotransfection 

with a signaling chain vector, because human CD16 requires coexpression of FcRγ or 

TCRζ for efficient expression (Hibbs et al., 1989; Kurosaki and Ravetch, 1989; Lanier et 

al., 1989). To address whether or not HeLa cells express either signaling chain, reverse 

transcription PCR was performed. FcR γ transcripts were amplified successfully using 

RNA isolated from THP-1 cells (positive control), but not RNA isolated from HeLa cells. 

By contrast, reverse transcription PCR for TCR ζ yielded a band for the T cell line Hut-

78 cells and a band of lesser intensity for HeLa cells. Cloning and sequencing of the band  
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Figure 5.3.  HeLa cells expressing high levels of recombinant sooty mangabey CD16. 

Histogram plot showing fluorescence of HeLa cells stained for the presence of 

recombinant mangabey with anti-human CD16 PE detected by flow cytometry. Filled 

curve-mangabey CD16 clone (MFI=1445.22), dotted line- HeLa cell control (MFI=8.21) 

and, solid line-clone stained with an antibody isotype control (MFI=11.91). 10000 events 

were counted per sample.
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as well as a real time RT-PCR confirmed that TCR ζ is transcribed in HeLa cells albeit at 

levels lower than those found in Hut-78 cells. These results indicate that high levels of 

CD16 in HeLa cells may be permissible as a result of endogenous TCR ζ expression.   

In contrast to human TCR ζ, mouse TCR ζ acts to down regulate CD16 as a result 

of a substitution of Leu 46 with Ile 46 in the transmembrane domain (Kurosaki et al., 

1991; Arase et al., 2001). Therefore, TCR ζ cDNA from rhesus macaque, cynomolgus 

macaque, baboon and sooty mangabey was cloned and sequenced (Figure 5.4) (GenBank 

accession numbers DQ437667, and DQ437669, DQ437663 and DQ437665). Importantly, 

Leu 46 is conserved in Asian and African species. In baboons and sooty mangabeys the 

transmembrane domain and surrounding residues are completely conserved, whereas two 

substitutions (Ile41Leu and Val53Ala) are present in macaques. This conservation 

suggests that in mangabeys and boaboons CD16 and TCR ζ may associate similarly to 

what is observed in humans.  

The percent identities of the deduced amino acid sequences compared with the 

human TCR ζ sequence for rhesus macaque, cynomolgus macaque, baboon and 

mangabey are 92.7%, 95.1%, 96.3% and 96.3%. The amino acid identity between the two 

macaque species is 98.2%. Baboon and mangabey deduced amino acid sequences are 

100% identical, although there are differences at the nucleotide level. The 

baboon/mangabey amino acid sequence shares 97.0% identity with rhesus macaque and 

98.8% identity with cynomolgus macaque. All TCR ζ chains from the nonhuman 

primates have an Asn and a Gln inserted between residues 131E and 132R of the 

corresponding human TCR ζ. As a result, nonhuman primate TCR ζ chains are two amino  
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                                       Extracellular                         Cytoplasmic 
               Signal Peptide           → domain    → Transmembrane domain    → Tail 
Human      MKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILFIYGVILTALFLRVKFSRSA 
Baboon     MKWKALFTAAILQAQFPITEAQSFGLLDPKLCYLLDGILFIYGVILTALFLRVKFSRSA 
Mangabey   MKWKALFTAAILQAQFPITEAQSFGLLDPKLCYLLDGILFIYGVILTALFLRVKFSRSA 
Rhesus     MKWKALFTAAILQAQFPITEAQSFGLLDPKLCYLLDGILFLYGVILTALFLRAKFSRSA 
Cynomolgus MKWKALFTAAILQAQFPITEAQSFGLLDPKLCYLLDGILFLYGVILTALFLRAKFSRSA 
Mouse      MKWKVSVLACILHVRFPGAEAQSFGLLDPKLCYLLDGILFIYGVIITALYLRAKFSRSA 
                                          #   $         ! 
              
Human      DAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPQRRKNPQEGLYNELQKDK 
Baboon     DAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPQRRKNPQEGLYNALQKDK 
Mangabey   DAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPQRRKNPQEGLYNALQKDK  
Rhesus     DAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPQRRKNPQEGLYNALQKDK 
Cynomolgus DAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPQRRKNPQEGLYNALQKDK 
Mouse      ETAANLQDPNQLYNELNLGRREEYDVLEKKRARDPEMGGKQQRRRNPQEGVYNALQKDK 
                           1st ITAM                  *          2nd ITAM   
 
Human      MAEAYSEIGMKGE--RRRGKGHDGLYQGLSTATKDTYDALHMQALPPR 
Baboon     MAEAYSEIGMKGENQRRRGKGHDGLYQGLSTATKDTYDALHMQTLPPR 
Mangabey   MAEAYSEIGMKGENQRRRGKGHDGLYQGLSTATKDTYDALHMQTLPPR 
Rhesus     MAEAYSEIGMKGENQRRRGKGHDGLYQGLSTATKDTYDALHMQTLPPR 
Cynomolgus MAEAYSEIGMKGENQRRRGKGHDGLYQGLSTATKDTYDALHMQTLPPR 
Mouse      MAEAYSEIGTKGE--RRRGKGHDGLYQGLSTATKDTYDALHMQTLAPR 
                     +         +         3RD ITAM   
 
 

Figure 5.4. Alignment of TCR ζ deduced amino acid sequences. ITAM= immunoreceptor 

tyrosine activation motif (italics with conserved tyrosine and leucine/isoleucines bolded). 

Other features are underlined and indicated by symbols which appear below the position of 

the feature: # = cysteine involved in TCR ζ dimerization, $ = aspartic acid which pairs with a 

charged residue of associated ligand binding chain (Lanier et al., 1991), + = lysine and 

glycine residues in human peptide that bind GTP and GDP (Franco et al., 1994), * = 

glutamine spliced into a variant that disrupts a G coupled protein binding motif, which 

includes 2 prolines prior and 1 after the glutamine (Atkinson et al., 2003). != position 46 of 

leucine critical for human CD16 association (Kurosaki et al., 1991). GenBank accession 

numbers for humans and mice are AL031733 and BC052824, respectively.
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acids longer than their human counterpart (166 amino acids as compared to 164). In addition 

to the 164 amino acid TCR ζ polypeptide, humans also produce a 163 amino acid 

polypeptide that results from the splicing out of the codon encoding Gln 101 (Atkinson et al., 

2003). Splice variants were isolated for all four nonhuman primate species that were 165 

amino acids long as a result of the same splicing event (GenBank accession numbers 

DQ437668, DQ437670, DQ437664 and DQ437666).  

 

Mangabey CD16 binding to immunoglobulins 

Binding assays were performed to determine the ability of mangabey CD16 to 

bind the different human and antibody subclasses and polyclonal nonhuman IgG. Heat 

aggregated myeloma proteins with an Ig κ light chain or polyclonal Ig were incubated 

with control HeLa cells or mangabey CD16 expressing cells followed by staining against 

bound antibody and analysis by flow cytometry.  

Purity and identity of myeloma proteins was verified by ELISA using IgG 

subclass specific antibodies (data not shown). All tested subclass specific antibodies did 

not cross-react with purified nonhuman primate species’ IgG. The staining for human 

IgG subclasses on mangabey CD16 expressing cells as measured by MFI was: IgG2 

(131.78) and IgG1 (75.98) >> IgG3 (17.68) > IgG4 (10.05) (Figure 5.5). Staining of 

control HeLa cell for each subclass was as follows: IgG2 (10.75), IgG1 (10.16), IgG3 

(14.08), and IgG4 (9.73). Staining of mangabey CD16 expressing cells using a FITC 

conjugated mouse antibody isotype control was negative (12.73). These results indicate 

that mangabey CD16 binds human IgG2 and IgG1 and only slightly binds IgG3, but not  
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Figure 5.5. Binding of human IgG subclasses to recombinant mangabey CD16 expressed 

on HeLa cells. Human myeloma immunoglobulins of different subclasses all with Igκ 

light chain were incubated with HeLa cells expressing mangabey CD16; bound 

immunoglobulins were detected with anti-human Igκ FITC (IgG1: solid line MFI = 

75.98, IgG2: filled MFI = 131.78, IgG3: dashed line MFI = 17.68, IgG4: thin line MFI 

=10.05). As negative control, cells were stained with a mouse FITC isotype control 

(dotted line MFI = 12.73). 10000 cells were counted per sample. MFI= mean 

fluorescence intensity 
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IgG4. These results were independently verified using FITC conjugated goat anti-human 

immunoglobulin γ (data not shown). No staining for heat-aggregated human IgA1 

(11.53), IgM (13.34), or IgE (7.75) was detected, nor for heat aggregated polyclonal 

mouse IgG (10.31). Polyclonal IgG from sooty mangabey and baboon bound to CD16 as 

detected by both FITC conjugated mouse anti-human immunoglobulin κ and FITC 

conjugated goat anti-human immunoglobulin γ (Figure 5.6). Similarly, binding was 

observed for purified polyclonal IgG of rhesus macaques and cynomolgus macaques.  

 

IgG binding correlates with expression of sooty mangabey CD16 and is blocked by 

monoclonal antibody 3G8 

Taking advantage of the variation in CD16 expression levels among different 

cells of the clone, IgG binding was correlated to CD16 expression. This was done by 

incubating HeLa cells expressing recombinant CD16 as well as untransfected HeLa cells 

with each of the four human IgG subclasses, followed by staining with PE conjugated 

anti-human CD16 clone 3G8 and FITC anti-human immunoglobulin κ. 3G8 is an 

antagonist of IgG binding to human CD16 (Hibbs et al., 1994). As observed on dot plots 

of MFI for anti-human immunoglobulin κ versus MFI for anti-human CD16, there was a 

positive correlation between bound IgG and receptor level for the human subclasses IgG2 

and IgG1 (Figure 5.7). As expected, no correlation was observed when using IgG3, IgG4 

and IgA1. To ascertain whether or not a similar antagonist effect might exist for 

mangabey CD16, regression analysis was performed plotting anti-human 

immunoglobulin κ MFI versus anti-human CD16 MFI using different Ig subclasses.    
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A B

C D

 

Figure 5.6. Binding of sooty mangabey (A & B) and baboon (C & D) IgG to HeLa cells 

expressing recombinant mangabey CD16. (A & C) detection of bound IgG with goat anti-

human IgG FITC to mangabey CD16: filled (baboon MFI = 992.63, sooty mangabey 

MFI = 325.87), control HeLa cells: dotted line (baboon IgG MFI = 29.44, sooty 

mangabey IgG MFI = 37.17) and goat anti-human IgG bound in the absence of IgG to 

mangabey CD16: solid line (baboon MFI = 61.20, sooty mangabey MFI = 24.93). (B & 

D) detection of bound IgG with anti-human Igκ FITC to mangabey CD16: filled (baboon 

IgG MFI = 62.04, sooty mangabey MFI = 24.46) and in the absence of IgG (baboon MFI 

= 7.67, sooty mangabey MFI = 7.69). MFI = Mean fluorescence intensity. 10000 events 

were counted per sample. 
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Figure 5.7. Binding of human IgG1 and IgG2 increases with increased expression of 
mangabey CD16 on HeLa cells. Following incubation with human myeloma 
immunoglobulins, which all have Igκ light chains, cells expressing recombinant 
mangabey CD16 were stained with anti-human CD16 PE and anti-human Igκ FITC. 
Density dot plots for IgG1 (a), IgG2 (b), IgG3 (c), IgG4 (d) and IgA1 (e). 1000 cells were 
counted by flow cytometry for each sample. 
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A significant negative correlation (R2= -0.97, P=0.006) was present, thus indicating that 

IgG competes with the anti-human CD16 clone 3G8 for binding to mangabey CD16. 

These results also suggest that IgG did not completely saturate receptor binding sites at 

the concentration used. To verify that 3G8 blocks mangabey CD16 preventing binding of 

IgG, IgG binding experiments were repeated with cells that were first incubated with 

unlabeled 3G8 at different concentrations. Incubation of cells with 3G8 prior to addition 

of human IgG resulted in reduced binding of human IgG1 and IgG2 to mangabey CD16 

(Figure 5.8). By contrast, incubation with a mouse antibody of irrelevant specificity prior 

to addition of human IgG did not alter the ability of mangabey CD16 to bind to human 

IgG1 and IgG2. 

 

Effects of blocking N-glycosylation on the expression and ligand binding of CD16  

Human and mangabey CD16 have conserved glycosylation motifs. Therefore, N-

glycosylation of mangabey CD16 was blocked to assess the effects on IgG binding. Anti-

human CD16 staining with monoclonal antibody 3G8 of tunicamycin treated cells 

decreased 15.43-17.47% compared to untreated cells. Previously, it has been shown that 

3G8 binding to human CD16 is unaltered by glycosylation and that blocking N-

glycosylation of human CD16 results in a modest decrease in its expression (Drescher et 

al., 2003). Thus, the decrease in staining for mangabey CD16 likely represents a similar 

decrease in receptor expression. By contrast, staining for bound IgG increased for both 

IgG1 and IgG2 when N-glycosylation was blocked. Adjusting for the decrease in receptor 

expression, the increase in bound IgG1 and IgG2 ranged from 110% to 129.5% between  
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Figure 5.8. Monoclonal antibody 3G8 (Mouse Anti-human CD16) blocks binding of 

human IgG1 and IgG2 to recombinant mangabey CD16 expressed on HeLa cells. 

Different concentrations of 3G8 were incubated with HeLa cells expressing mangabey 

CD16 (diamonds) or with control HeLa cells (squares). Additionally mangabey CD16 

expressing cells were incubated with an irrelevant mouse IgG1 control (triangles). Next, 

cells washed of unbound antibody were incubated with either human IgG1 (solid shapes) 

or human IgG2 (outlined shapes). Finally, washed cells were stained with FITC labeled 

anti-human Ig κ to detect bound human IgG. 10000 cells for each condition were read by 

flow cytometry and the mean fluorescence intensity (MFI) plotted against the 

concentration of monoclonal antibody 3G8 or mouse IgG1. 



 

 

179

different experiments. The increase in IgG binding did not favor either isotype over the 

other. Staining for bound IgG3 and IgG4 was not significant regardless of N-

glycosylation.  

 

Discussion 

Animal model studies of Fc receptor/antibody interactions have and will continue 

to yield useful insights into humoral immune responses, since only in vivo testing can 

mimic the complexities of the immune system. Mice have been used extensively for this 

purpose and have provided fundamental information about the function of Fc receptors. 

However, mice have no homologue of CD16b (Gessner et al., 1998). Mice do possess 

CD16a, but this molecule does not appear to be a true orthologue of human CD16a 

because its extracellular region, responsible for binding to IgG, is more conserved with 

mouse FcγRII (Hughes, 1996). In addition, mouse FcγRIII is expressed on mast cells, 

whereas human mast cells do not express this receptor (Tkaczyk et al., 2004). A second 

mouse receptor (CD16-2), which may be more homologous to human CD16a, has been 

recently identified (Mechetina et al., 2002). However, this receptor has not yet been 

studied extensively. Nonhuman primates, which are widely used in immunological 

research and are more closely related to humans than mice, may be suitable models to 

study Fc receptors and related therapeutic strategies. Considering the importance of 

CD16 in immune responses and the use of nonhuman primates to evaluate human 

therapeutics which may bind CD16, we have identified and characterized CD16 ligand 
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binding chains and potentially associated signaling chains (TCR ζ) in rhesus macaques, 

cynomolgus macaques, baboons, and sooty mangabeys.  

The presence of CD16 on nonhuman primate natural killer cells and monocytes 

was determined through staining of lymphocytes with cross-reactive anti-human CD16 

(Reimann et al., 1994; Munn et al., 1996; Sopper et al., 1997). Indeed, CD16 is 

recognized as one of the most reliable marker for phenotyping natural killer cells in 

macaques, while CD56, an informative marker for NK cells in humans, is not (Carter et 

al., 1999).  However, these studies do not provide information on the expression of CD16 

on nonhuman primate neutrophils. Using flow cytometry and the anti-human CD16 clone 

3G8, which cross-reacts with both human CD16 isoforms, we confirmed the presence of 

CD16 on nonhuman primate natural killer cells and monocytes in agreement with 

previous reports. We did not observe many CD3+CD16+ cells in any of the examined 

animals suggesting that most T cells in these nonhuman primate species do not usually 

express CD16. In humans, γδ T cells can express CD16, but these are a minority of the T 

cell population and expression of CD16 on these cells may generally remain low until 

cells are properly stimulated (LaFont et al., 2001). It remains to be determined whether or 

not nonhuman primates have γδ T cells that can express CD16. In two of the sooty 

mangabeys a little over 1% of the cells in the lymphocyte gate stained CD3+CD16+. For 

all other animals examined the percentage of CD3+CD16+ cells was below 1% and 

comparable to the number of nonspecifically stained cells observed using mouse isotype 

control antibodies. Macaque and baboon granulocytes failed to stain positive for CD16. 

These results suggest the possibility that macaques and baboons may lack an orthologue 
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of human CD16b. Alternatively; any such orthologues may not be expressed at high 

levels on peripheral blood granulocytes in healthy animals or have diverged sufficiently 

so as to be undetectable by antibodies against the human receptor. In contrast, sooty 

mangabey granulocytes stained positive for CD16 on their cell surface.  

Employing RT PCR capable of amplifying genes of both human CD16 isoforms, 

we identified a single gene homologue for each nonhuman species. These genes code for 

polypeptides that share at least 91% amino acid identity with human CD16, and more 

closely resemble human CD16a than CD16b. In particular, all genes from nonhuman 

primates possess a phenylalanine at position 203 like human CD16a. In human CD16b 

this residue is replaced with a serine that dictates the truncation and GPI linking of the 

protein to the plasma membrane (Kurosaki and Ravetch, 1989). The similarity of 

nonhuman primate CD16 with human CD16a is consistent with detection of CD16 on 

nonhuman primate NK cells and monocytes. We did not identify a nonhuman primate 

gene similar to the human CD16b gene.  Differences in promoter regulation of the single 

CD16 gene identified in sooty mangabey may allow for its expression on granulocytes as 

well as monocytes and NK cells. The absence of CD16 on neutrophils from macaques 

and baboon suggests the absence of a CD16b gene homologue and requires further 

research. Humans may lack expression of CD16 on neutrophils without any apparent 

health problems (de Haas et al., 1995). Thus, CD16b does not appear to be essential for 

effective immune responses, although it can modulate phagocytosis (Bredius et al., 

1994). Based on the high sequence homology of the two human CD16 genes, it appears 
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that the second gene arose recently from duplication of the original CD16 gene. This 

would explain why CD16b homologues have not been identified in other species. 

CD16a is part of a larger complex that includes a signaling chain dimer with an 

immunoreceptor tyrosine activation motif. Human CD16a expression requires association 

with a signaling chain dimer of FcRγ, TCRζ or a heterodimer of the two (Lanier et al., 

1989; Anderson, 1990; Gessner et al., 1998). In mice, by contrast, increased expression 

of TCR ζ in NK cells down regulates CD16 expression (Arase et al., 2001). 

This species difference may be explained by differences in the TCR ζ transmembrane 

domain. Kurosaki et al. (1991) have shown that the Leu/Ile substitution at position 46 in 

the transmembrane domain of mouse TCR ζ causes the loss of the association of this 

signaling chain with CD16. We found that Leu 46 is conserved in all four nonhuman 

primate species. However, macaques exhibit substitutions that may influence the 

interactions with CD16. HeLa cells expressing TCR ζ, but not FcRγ, were able to express 

mangabey CD16. TCR ζ is normally only expressed in T cells and NK cells, because it is 

encoded by a gene controlled by a tissue-restricted promoter (Rellahan et al., 1994). We 

also observed that when transient transfection was performed, mangabey and cynomolgus 

macaque CD16 expression was greater in a T cell line, HUT 78, than in HeLa cells that 

have lower levels of TCR ζ (results not shown). Thus, nonhuman primate CD16 may be 

positively regulated by TCRζ, similar to human CD16. 

Results from mutational analysis and antibody epitope mapping show that the 

CD16 membrane proximal immunoglobulin-like domain interacts with the lower hinge 

and CH2 domain of the IgG Fc region (Hibbs et al., 1994; Shields et al., 2001). Further 
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refinement of this model is based on the crystal structure of a human IgG1 fragment 

bound to soluble Fc gamma RIII (Sondermann et al. 2000). The crystal structure reveals 

that a single FcγRIII receptor binds asymmetrically to the two chain of a single IgG1 Fc 

fragment. Using the numbering of Sondermann et al. (IMGT unique numbering of CH2 

immunoglobulin domain; LeFranc and LeFranc, 2001), IgG1 residues crucial for binding 

FcγRIII include Leu 234(4)-Ser 239(9), Asp 265(35), Ser 267 (37), Glu 269 (39), Ala 327 

(97)-Ala 330 (100), and Ile 332 (102). In addition, the N-glycan at Asn 297 (67) is 

important (Sondermann et al., 2000).  Numbering from the start of the preprotein, the 

CD16 residues forming contact with IgG1 are Ile 106-Trp 108, Trp 131-Ala 135, His 

137-Thr 140, Asp 147-His 153, Arg 173, and Val 176-Lys 179 (Sondermann et al., 

2000). The majority of the human CD16 residues important for binding IgG are 

conserved in nonhuman primate CD16 molecules. In all four nonhuman primate species 

Ala 135, His 153, and Val 176 are substituted with Leu, Glu, and Ile, respectively. In 

addition, Asp 147 is Gly in all nonhuman primate CD16 molecules as is found in human 

CD16a.  

To assess nonhuman primate CD16/IgG interactions, we generated recombinant 

sooty mangabey CD16 in HeLa cells. The recombinant sooty mangabey CD16 was 

capable of binding to human IgG1 and IgG2, but not human IgG3 and IgG4. Despite the 

strong conservation of the mangabey CD16 sequence with the human CD16 sequence, 

mangabey and human CD16 differ in their ability to bind human IgG subclasses. Human 

CD16 binds to IgG1 and IgG3, but only weakly to IgG2 and IgG4 (Tamm and Schmidt, 

1997).  Mangabey CD16/IgG interactions are specific as indicated by the positive 
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correlation of cells labeled for both CD16 and bound IgG (Figure 5.7). Similarly, 

monoclonal antibody 3G8, an antagonist of IgG binding to human CD16, blocks binding 

to mangabey CD16 (Figure 5.8). These results indicate that the IgG binding site for 

mangabey CD16 is likely conserved with the human CD16 binding site as the sequence 

homology suggests, but only a few amino acid substitutions may be sufficient to allow 

for binding to IgG2. Failure to detect sooty mangabey CD16 binding to IgG3 could 

represent a limitation of the assay used. The myeloma IgG3 could have failed to form 

heat aggregates. However, under such circumstances, a low level of monomeric IgG3 

binding to the receptor might then be anticipated.  Alternatively, sooty mangabey CD16 

may have low affinity for IgG3. 

The IgG1 motif LLGGP located in the lower hinge is particularly important for 

binding to CD16 (Chappel et al., 1991; Tamm and Schmidt, 1997). In IgG2 this motif is 

replaced by VAGP. Mutational analysis shows that the entire IgG2 lower hinge motif 

must be replaced with that of the IgG1 motif to allow binding to CD16. Mutations of 

IgG1 in its motif are detrimental to binding affinity (Chappel et al., 1991). The motif 

LLGGP is encoded by all four IgG subclasses genes in baboons, rhesus macaques, 

cynomolgus macaques, pigtail macaques and sooty mangabeys with the exception of 

baboon IgG2 and pigtail macaque IgG4 (Attanasio et al., 2002; Scinicariello et al., 2004; 

and our unpublished results). Here, we have shown that recombinant mangabey CD16 is 

capable of binding to rhesus macaque, cynomolgus macaque, baboon and sooty 

mangabey IgG. Currently, purified nonhuman primate IgG1, IgG2, IgG3 and IgG4 are 

not available and therefore could not be tested in binding assays. Based on the 
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conservation of the IgG1 motif in most of these IgG molecules, it is expected that all four 

subclasses bind CD16. However, IgG/CD16 interactions have been shown to be complex 

and involve residues outside of the IgG lower hinge (Shields et al., 2001). Radaev and 

Sun (2001) found that small peptides with the sequences matching those of the lower 

hinge of human IgG1, IgG2 and IgG4 all have similar affinities for human CD16 and 

concluded that additional IgG features, such as hinge length, are important. Human IgG3 

contains the LLGGP motif, yet we did not detect its binding to mangabey CD16. 

Therefore mangabey CD16/IgG interactions are likely to also involve additional IgG 

subclass differences.  

The N-glycan of human CD16 at Asn 180 is in close proximity of other residues 

that interact with the Fc fragment of IgG1 (Sondermann et al., 2000). Glycosylation 

inhibition and mutation of Asn 180 to Glu results in increased affinity of CD16 for 

monomeric IgG, whereas mutations at other CD16 N-glycan sites have no effect 

(Dreshcer et al., 2003). CD16a of monocytes, macrophages and NK cells have different 

affinities for IgG as a result of differential glycosylation (Edberg and Kimberly, 1997). 

Hence, cells can modulate binding to IgG through modification of the Asn 180 N-glycan. 

CD16 of nonhuman primates have the Asn 180 glycosylation motif.  Inhibition of N-

glycosylation with tunicamycin resulted in a modest increase of human IgG binding to 

mangabey CD16, just as is reported for human CD16 (Drescher et al., 2003). As is the 

case for other molecules, CD16 glycosylation may be altered during inflammation to 

modulate affinity to IgG and hence activation through CD16 (Drescher et al., 2003). Our 

data support the possibility that such a mechanism is also possible in nonhuman primates, 
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although it is unclear how important this would be in the context of the types of increased 

binding affinity we observed. Testing of this hypothesis will require examination of 

CD16 affinity and glycosylation changes under inflammatory conditions which would be 

more physiologically relevant than a total inhibition of glycosylation.  

The extensive use of nonhuman primates in immunological studies makes it 

important to understand how their antibody responses compare to those of humans. To 

achieve this goal it is not only vital to study nonhuman primate antibodies directly, but 

also to understand how they interact with the various components of the immune system. 

Therapeutics that may directly interact with Fc receptors include monoclonal antibodies, 

immunoglobulin fusion proteins as well as small drugs being developed to inhibit Fc 

receptor function (Radaev and Sun, 2001). Our results are therefore critical for the proper 

interpretation of results from studies performed in nonhuman primates.  
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Epilogue:  Nonhuman Primate CD16 and Testing of Therapeutic Antibodies 

 

Does the IgG Fc receptor III (CD16) play a role in determining the efficacy of 

therapeutic antibodies and other therapeutics? How would the human/nonhuman primate 

differences in CD16 expression profiles and binding characteristics influence testing of 

therapeutics in nonhuman primates?  

Many therapeutic antibodies and other therapeutics containing the Fc region from 

antibodies are either approved for use or are being developed for use in humans for 

sundry medical conditions. Use of therapeutic antibodies is rapidly increasing with 19 

FDA approved molecules and over 150 in development (Kim et al., 2005). These 

molecules primarily are of the IgG isotype. Therefore, engineering and evaluation of 

these molecules must take into account potential interactions with CD16. In some clinical 

applications it is desirable to engage Fc receptor induced cellular effector mechanisms, 

for example when trying to target ADCC to cancer cells (Carton et al., 2004), whereas in 

others it is preferable that Fc receptors not be engaged, for example when using anti-CD3 

monoclonal antibodies to prevent transplant rejection (Cole et al., 1997; Li et al., 2005). 

Anti-tumor therapeutics are usually IgG1 molecules and thus bind to Fc receptors (Carton 

et al., 2004). By contrast, IgG2 is a preferred subclass for anti-CD3 monoclonal 

antibodies (Cole et al., 1997). Clearly, the IgG subclass of each potential therapeutic 

immunoglobulin must be selected on the basis of its ability to engage Fc receptors. 

Indeed, understanding IgG/CD16 interactions may improve the prognostic value of 

monoclonal antibody treatment. Multiple alleles exist for both isoforms of human CD16. 
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CD16a isoforms have either a valine or a phenylalanine at position 158, the former 

having higher affinity for IgG (Koene et al., 1997). Therapeutic success rates are higher 

in individuals homozygous for the CD16 valine 158 allele receiving rituximab for 

follicular lymphoma or Waldenstrom’s macroglobulinemia compared to individuals 

either heterozygous or homozygous for the phynylalanine 158 allele who receive similar 

treatment (Carton et al., 2004; Weng and Levy, 2003; Treon, 2005). Immunoglobulin-

fusion molecules, a class of therapeutics, typically consist of a biological active molecule 

(such as a cytokine or cytokine receptor) attached to the IgG Fc portion which includes 

the hinge region and the CH2 and CH3 domains (Kim et al., 1998). Incorporation of the 

immunoglobulin Fc in these molecules has the advantage of extending their half-life and 

allowing for multimeric presentation. However, often it is desirable that these molecules 

not interact with IgG Fc receptors, including CD16, as such interactions would result in 

unwanted biological activities (Kim et al., 1998). Other therapeutics being considered are 

peptidyl inhibitors that mimic IgG to block IgG receptors including CD16. These 

molecules would be potentially beneficial for treating autoimmune diseases, as for 

example rheumatoid arthritis, which are triggered by autoantibodies activating 

inflammatory cellular responses through Fc receptors (Radaev and Sun, 2001).  

We found that CD16 in nonhuman primates is expressed on some cells types in 

common with those on which human CD16 is expressed, and nonhuman primate CD16 

homologues do not always interact with the same IgG subclasses as human CD16. It 

would be imperative to consider these differences in monoclonal antibody safety studies 

in nonhuman primates. For example, studies of IgG2 monoclonal antibodies in these 
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animals may over estimate toxicity, because IgG2 may trigger CD16 directed NK cell 

ADCC responses that would not occur in humans (where IgG2 does not interact with 

CD16). On the other hand, neutrophil responses to IgG1 would also differ. In baboons 

and macaques CD16 seems to be absent from neutrophils.  Therefore, IgG1 antibodies 

might trigger immune responses in human neutrophils that would not be uncovered from 

testing in nonhuman primates. While expression of CD16 on neutrophils of sooty 

mangabeys is more similar to what observed in humans, our data suggest that the 

mangabey receptor may be similar to the human isoform found on other cell types 

(CD16a) than the isoform found on human neutrophils (CD16b). These isoform differ in 

the transmembrane and cytoplasmic regions, hence in cell signaling capacities. Therefore, 

sooty mangabey and human IgG activation of neutrophils through CD16 is likely to be 

different.
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CHAPTER 6 
 

Conclusions 
 

Our defenses against pathogens and malignancies comprise a complex array of 

interacting cells and molecules that makeup our immune system. At the beginning of 

vertebrate evolution, the adaptive portion of the immune system budded from the older 

innate immune system and diversified. Antibodies, the quintessential component of the 

adaptive humoral immune system, act as adaptor molecules that link targets of the 

immune system to immune effector responses. As previously discussed, antibodies are 

highly diverse and are divided into classes and subclasses characterized by different 

functional properties, which result from differences in the structure of the constant 

regions. These functional properties are still not completely defined. To fully understand 

antibody function, it is necessary to characterize the other components of the immune 

system with which antibodies interact. Because the immune system of nonhuman 

primates most closely resembles that of humans, and because nonhuman primates are 

widely used for biomedical research, we characterized immunoglobulins and 

immunoglobulin Fc receptors in these species.  

In mammals there are five classes of antibodies (IgM, IgD, IgG, IgA, and IgE), 

each of which is represented in humans. We have studied selected aspects of three classes 

of antibodies: IgA, IgD and IgG. IgA, the antibody class produced most copiously, is 

dominant in the mucosae, where it represents the frontline defense against pathogens, and 

is a major component of sera. IgD, along with IgM, is responsible for the initial 



 

 

191

recognition of antigens and activation of B cells in adaptive humoral immune responses 

as part of the B cell receptor.  IgG is the most abundant antibody in sera and is 

recognized as the most important antibody for systemic adaptive immunity.  The 

characterization of structure/function relationships related to these classes of antibodies 

as well as the characterization of differences between species, especially humans and 

nonhuman primates, is incomplete. In this study, we have identified and characterized 

nonhuman primate IgD. In addition, we have extended our previous work on nonhuman 

primate IgA and IgG by defining the interactions of these two immunoglobulin isotypes 

with their specific Fc receptors.  

While the role of IgA at mucosal surfaces is partially understood, the role of IgA 

in sera is mostly undefined. In the last decade, the discovery and characterization of a 

human IgA Fc receptor (CD89) has provided a context to understand the functions of 

serum IgA. Early studies of this receptor suggested its participation in activating cellular 

effector functions, including antibody-dependent cell-mediated cytotoxicity, phagocytosis 

and respiratory burst, as well as release of cytokines and inflammatory mediators. Results 

from recent studies point out that CD89 can also provide down regulation and activation 

signals to other Fc receptors, helping to explain the anti-inflammatory properties of IgA. 

Because of the lack of a reliable in vivo model system, research on IgA/CD89 

interactions has been limited. At the onset of this project, no animal homologues of CD89 

were known, despite extensive searches performed in mice (it is now established that 

mice most likely have lost the CD89 gene).  Thus, we have characterized CD89 

homologues in rhesus macaques, cynomolgus macaques, baboons and sooty mangabeys. 
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Nonhuman primate and human CD89 molecules are expressed on the same cell types and 

are highly conserved with each other (Figure 6.1). Furthermore, similar to what is known 

for humans, the four nonhuman primate species produce several different CD89 splice 

variants. By contrast, CD89 splice variants have not been identified in other mammalian 

species. By generating and using in binding studies recombinant rhesus macaque CD89 

expressed on the cell surface of HeLa cells, we have determined that rhesus macaque 

CD89 can bind both human IgA subclasses and that its expression is dependent on N-

glycosylation (Figure 6.1). Recombinant rhesus macaque IgA generated in our laboratory 

is also able to bind rhesus macaque CD89. These results indicate that IgA function is 

conserved between humans and nonhuman primates, thus validating the use of these 

animal models to study the functional properties of IgA in vivo. 

IgD has been a neglected class of antibodies and little is know about its functions 

outside of its role as a B cell receptor. Because of its apparent redundancy with IgM, even 

the B cell receptor related function of IgD has been treated dismissively until recently. 

IgD is also present as a secreted protein in serum, although it is only found at 

comparatively low concentrations under most physiological conditions. Although IgD 

receptors were described in mice and humans over a decade ago, they remain poorly 

characterized. In stark contrast, important advances have been made in the 

characterization of Fc receptors for IgG, IgE and IgA. The faltering progress on IgD 

receptors has engendered a degree of uncertainty over the true function of these receptors. 

Nonetheless, there has recently been a resurgence of interest in IgD. IgD previously was  
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Table 6.1. Human and nonhuman primate expression of CD89 and CD16 on different 

leukocyte populations and antibody subclasses binding patterns of each receptor. NT not 

tested, hu: human, rh: rhesus macaque, NHP: nonhuman primate. 

 

 

 

 

  Human 
Rhesus 

Macaque 
Cynomolgus 

macaque Baboon  
Sooty 

Mangabey 

Lymphocytes - - - - - 
Monocytes + + + + + 

Granulocytes + + + + + 

   
C

D
89

 

Antibody 
Subclasses 

huIgA1, 
huIgA2 

huIgA1, 
huIgA2, 
rhIgA NT NT NT 

Lymphocytes 

NK 
cells, γδ 
T cells NK cells NK cells NK cells NK cells 

Monocytes + + + + + 

Granulocytes + - - - +    
C

D
16

 

Antibody 
Subclasses 

huIgG1, 
huIgG3 NT NT 

huIgG1, 
huIgG2, 
NHPIgG 

huIgG1, 
huIgG2, 
NHPIgG 
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thought to be expressed in only a very limited number of mammals. The recent discovery 

of IgD in additional species has sharply challenged this view.  We have characterized IgD 

in chimpanzees, rhesus macaques, cynomolgus macaques, baboons, sooty mangabeys and 

dogs, thus contributing information that will aid to shed light on IgD functions. IgD is 

expressed at high levels in certain pathogenic conditions including myeloma, hyper IgD 

and periodic fever syndrome, atopy, and HIV infection.  Characterization of IgD in 

macaques, the accepted model for HIV, will make it possible to better explore the 

significance of elevated IgD in AIDS patients. It is our hope and intent that the 

characterization of nonhuman primate IgD be used to identify and characterize the IgD 

receptor. Only nonhuman primate IgD hinge regions are structurally similar to the 

corresponding human region, which is known to be responsible for interactions with the 

human IgD receptor.  Structural similarities exist between the hinge region of nonhuman 

primate IgD and IgA, including a repetitive sequence which for IgA has been 

hypothesized to contribute to genetic instability. Sequence information on nonhuman 

primate IgD allows us to address this hypothesis. Our laboratory has previously found 

that IgA is highly polymorphic in nonhuman primates, showing that there is sufficient 

evolutionary human-nonhuman primate separation to allow for diversification of the IgD 

hinge. The strong conservation of the human-nonhuman primate IgD hinge region does 

not support the hypothesis that a repetitive genetic sequence is the most important factor 

influencing the diversity of the hinge region. Other factors that may have influenced 

hinge region diversity include selective pressure due to the existence of bacterial 
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proteases that cleave IgA molecules at the hinge region and possibly important conserved 

functions of the IgD hinge region, as for example interactions with an IgD receptor.  

In humans, two genes encode the two isoforms of the IgG Fc receptor III (CD16). 

These isoforms differ from each other by only 3% in amino acid sequence, but are 

functionally distinct as a result of differences in cell type distribution and in how they are 

anchored to the plasma membrane. CD16a is present on monocytes, macrophages, and 

natural killer cells, contains a complete transmembrane domain that associates with a 

signaling chain, and is essential for directing natural killer cells antibody-depended cell-

mediated cytotoxicity. CD16b is expressed on neutrophils and activated eosinophils, and 

is attached to the plasma membrane by a GPI-link, thus being truncated and not directly 

associated with signaling chains. Therefore, CD16b is thought to function in cooperation 

with other Fc receptors. No homologues for human CD16b have been described in other 

species. Because of the major role that CD16 plays in the immune response, we have 

identified and characterized nonhuman primate CD16 homologues. Identification of these 

homologues is especially important in view of the increasing use of nonhuman primate 

models to test therapeutic antibodies as well as strategies to control xenograft rejection. 

We profiled peripheral blood leukocytes for CD16 expression by flow cytometry with a 

cross-reactive anti-human CD16 monoclonal antibody (Figure 6.1). Traditionally, CD16 

has been used to phenotype nonhuman primate natural killer cells with cross-reactive 

anti-human CD16 antibodies. However, there are no published reports on the expression 

of these molecules on nonhuman primate granulocytes. CD16 is undetectable on the cell 

surface of rhesus macaques, cynomolgus macaques and baboons, although it is expressed 
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on natural killer cells and some monocytes. Surprisingly, CD16 was detected on sooty 

mangabey neutrophils as wells as natural killer cells and a few monocytes from this 

species. Genetic analysis of CD16 mRNA in nonhuman primates confirms the absence of 

CD16b in rhesus macaques, cynomolgus macaques, and baboons. Indeed, all the 

transcripts isolated from these three species appear to be more related to CD16a. The 

same was true of transcripts isolated from sooty mangabey. In disagreement with results 

obtained by flow cytometry in sooty mangabeys, genetic analysis shows only presence of 

CD16a related transcripts in this species.  Sooty mangabey CD16 transcripts differ only 

at the genetic level from the corresponding baboon transcripts. Indeed, the deduced CD16 

amino acid sequences are identical in sooty mangabeys and baboons. Macaque CD16 

deduced amino acid sequences are also highly conserved with baboon/mangabey CD16 

sequences. The differences in the expression profile of sooty mangabey CD16 when 

compared to other nonhuman primate species could be explained on the basis of a 

differential regulation of the expression of the identified sooty mangabey CD16 gene, 

which in turn would be the result of differences in promoter elements responsible for 

restrictive tissue type expression. Alternatively, as demonstrated in humans, sooty 

mangabeys may possess a second CD16 gene.   

To assess IgG/nonhuman primate CD16 interactions, we generated a high 

expression recombinant sooty mangabey CD16 HeLa cell clone. The resolved crystal 

structure of a human CD16/IgG1 Fc complex and mutational studies have determined 

important residues of interaction on both molecules. The majority of residues that in 

humans are responsible for Fc interaction are conserved in nonhuman primate CD16 
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molecules. A few human-nonhuman primate substitutions are conserved in all four 

nonhuman primate species.  Therefore, we could predict that the binding properties of 

nonhuman primate CD16 molecules are similar to those of human CD16. Indeed, our 

results show that recombinant mangabey CD16 is capable of binding heat-aggregated 

polyclonal IgG from rhesus macaques, cynomolgus macaques, baboons and sooty 

mangabeys. The recombinant CD16 molecule also binds heat-aggregated human IgG1 

and IgG2 (Figure 6.1). However, this molecule does not appreciably bind the other 

human antibody classes. These results indicate that the subclass interaction properties of 

sooty mangabey/baboon CD16 (and probably macaque CD16) differ from the 

corresponding human properties. Such a finding has important implications for the testing 

of therapeutic antibodies in these species. IgG2 therapeutics tested in these animals are 

likely to be able to activate cells, ex. NK cells, which would not be activated in humans. 

On the other hand, interactions with IgG1 molecules would be different for human and 

nonhuman primate neutrophils, at least for the three species in which CD16 is not 

expressed in neutrophils. While efficacy studies of therapeutic antibodies ultimately must 

be carried out in humans, trials in nonhuman primate species are especially important for 

evaluation of safety. Without considering the differences existing between human and 

nonhuman primate CD16, there is a potential to overestimate or underestimate health 

risks and therapeutic values of monoclonal antibodies or other molecules containing 

antibody Fc regions.  

Use of nonhuman primates in biomedical research is based on the premise that 

these species are physiologically similar to humans. As biomedical research becomes 
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more technical and more dependent on refined molecular targeting, it has necessary to 

clearly delineate the distinctions of these species from humans. Our characterization of 

nonhuman primate immunoglobulins and Fc receptors shows presence of conserved 

traits, e.g. IgD structure and CD89/ligand interaction, and non-conserved traits, e.g. 

aspects of CD16 expression and CD16/ligand interactions.  The study of the immune 

system and immune responses in nonhuman primates is likely to lead to new insight into 

human biology and human diseases.  
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Appendix A 

 
Supplemental Information Related to the Identification of IgD in Nonhuman 

Primates and Dogs: Additional Considerations 

 
Because of the advent of the various genome projects and increasing availability of 

genetic information though GenBank and other community databases, it has become possible 

to access large amounts of genetic information.  The Human Genome Project was officially 

launched in 1990 and completed in April 2003 when two simultaneous reports on the 

completion of the human genome sequencing were released in Science and Nature. 

Sequencing of genomes of other species, including several mammals, is in various stages of 

completion. 2005 marks the official release of the complete chimpanzee genome, and the dog 

genome is also soon to be released.  The information obtained through the Human Genome 

Project is expected to further our understanding of diseases, thus leading to new cures. Just as 

the Human Genome Project is expected to advance human medicine, the Dog Genome 

Project is expected to advance veterinarian medicine. Considering the intimate relationship 

existing between the immune system and disease, it is then reasonable to exploit the 

information available from the various genome projects to understand the biological role of 

IgD.  Therefore, in the next few pages, we will use sequence information from different 

genome projects to answer biological questions related to IgD genes.
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Is the chimpanzee immunoglobulin heavy chain (IGH) locus similar to the human locus? 

What can we learn about the evolution of human immunoglobulins? 

Upon identifying a contig from GenBank that encodes the chimpanzee IGHD 

(accession number NW_115908), we examined the contig for flanking genes and the 

exon/intron arrangement of IGHD. This revealed that chimpanzee IGHD is flanked by IGHM 

and IGHG3 (the genes encoding the immunoglobulin heavy chains of IgM and IgG3) on the 

contig. This is the same gene arrangement as is found in the human immunoglobulin heavy 

chain locus. 

As it is characteristic of all described IGHD genes, the IGHM gene is found upstream of the 

IGHD gene (Figure A.1). The intergenic space between chimpanzee IGHM and IGHD is 

6.195kb, slightly larger that the intergenic distance of the human orthologues (6.049 kb based 

on GenBank contig NC_00014). Comparing the predicted IGHM transcript with sequences 

available through GenBank, we found a Gnomon predicted mRNA (accession number 

XM_522973) constructed from the same contig. Such a Gnomon agrees with our prediction, 

except that it contains additional nucleotides 5’ of the expected CH1 exon boundary. The 

chimpanzee IGHM gene is structured as the human gene, with four exons encoding the CH1-

CH4 domains followed by two exons encoding the transmembrane domain and the 

cytoplasmic tail. Figure A.2 shows the alignment of the deduced amino acid sequence of 

chimpanzee IGHM with that of two human IGHM alleles (IGHM*01 and IGHM*03). As 

expected, all cysteines involved in disulfide bonds within the immunoglobulin domains and 

linking the four chains of IgM are preserved in the chimpanzee. Five N-glycosylation sites 

are present at positions identical to those found in the human IgM heavy chain. A few amino  
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Figure A.1. Chain diagram of human and chimpanzee IGHM genes . Numbers indicate nucleotides in exons or introns.  
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                              CH1 
Human*01   GSASAPTLFPLVSCENSPSDTSSVAVGCLAQDFLPDSITLSWKYKNNSDISSTRGFPSVL  
Human*03   GSASAPTLFPLVSCENSPSDTSSVAVGCLAQDFLPDSITFSWKYKNNSDISSTRGFPSVL 
Chimpanzee GSASAPTLFPLVSCENSPSDTSSVAVGCLAQDFLPDSITFSWKYKNNSDISSTRGFPSVL 
 
  
                                                       ▼       CH2 
Human*01   RGGKYAATSQVLLPSKDVMQGTDEHVVCKVQHPNGNKEKNVPLPVIAELPPKVSVFVPPR  
Human*03   RGGKYAATSQVLLPSKDVMQGTDEHVVCKVQHPNGNKEKNVPLPVIAELPPKVSVFVPPR 
Chimpanzee RGGKYAATSQVLLPSKEVMQGTDEHVVCKVQHPNGNKEKNVPLPVTAELPPKVSIFVPPR 
 
 
 
Human*01   DGFFGNPRKSKLICQATGFSPRQIQVSWLREGKQVGSGVTTDQVQAEAKESGPTTYKVTS  
Human*03   DGFFGNPRKSKLICQATGFSPRQIQVSWLREGKQVGSGVTTDQVQAEAKESGPTTYKVTS 
Chimpanzee DGFFGNPRSSKLICQATGFSPRQIQVSWLREGKQVGSGVTTDQVQAEAKQSGPTTYKVTS 
 
 
                                               ▼          CH3 
Human*01   TLTIKESDWLGQSMFTCRVDHRGLTFQQNASSMCVPDQDTAIRVFAIPPSFASIFLTKST  
Human*03   TLTIKESDWLSQSMFTCRVDHRGLTFQQNASSMCVPDQDTAIRVFAIPPSFASIFLTKST 
Chimpanzee TLTIKESDWLSQSVFTCRVDHRGLTFQQNASSMCSPGPDTAIRVFAIPPSFASIFLTKST 
 
 
 
Human*01   KLTCLVTDLTTYDSVTISWTRQNGEAVKTHTNISESHPNATFSAVGEASICEDDWNSGER  
Human*03   KLTCLVTDLTTYDSVTISWTRQNGEAVKTHTNISESHPNATFSAVGEASICEDDWNSGER 
Chimpanzee KLACLVTDLTTYDSLTISWTRQNGEAVKTHTNISESHPNATFSAVGEASICEDDWNSGER 
 
 
                                 ▼                CH4 
Human*01   FTCTVTHTDLPSPLKQTISRPKGVALHRPDVYLLPPAREQLNLRESATITCLVTGFSPAD 
Human*03   FTCTVTHTDLPSPLKQTISRPKGVALHRPDVYLLPPAREQLNLRESATITCLVTGFSPAD 
Chimpanzee FTCTVTHTDLPSPLKQTISRPKEVALHRPDVYLLPPAREQLNLRELATITCLVTGFSPAD 
 
 
 
Human*01   VFVQWMQRGQPLSPEKYVTSAPMPEPQAPGRYFAHSILTVSEEEWNTGETYTCV-AHEAL  
Human*03   VFVQWMQRGQPLSPEKYVTSAPMPEPQAPGRYFAHSILTVSEEEWNTGETYTCVVAHEAL 
Chimpanzee VFVQWMQRGQPLSPEKYVTSAPMPEPQAPGRYFAHSILTVSEEEWNTGETYTCVVAHEAL 
 
 
 
Human*01   PNRVTERTVDKSTGKPTLYNVSLVMSDTAGTCY  
Human*03   PNRVTERTVDKSTGKPTLYNVSLVMSDTAGTCY 
Chimpanzee PNRVTERTVDKSTGKPTLYNVSLVMSDTAGTCY 
 
 
Tail of Membrane bound IgM 
                      M1                         ▼M2 
Human      GEVSADEEGFENLWATASTFIVLFLLSLFYSTTVTLFKVK 
Chimpanzee GEVSADEEGFENLWATASTFIVLFLLSLFYSTTVTLFKVK 
 

Figure A.2. Alignment of chimpanzee and human IgM heavy chains. The chimpanzee 
(Chimp) IGHM deduced amino acid sequence were obtained through analysis of a contig on 
chromosome 14 (GenBank accession number NW_115908) and compared with two human 
alleles IGHM*01 (GenBank X14940) and IGHM*03 (GenBank X57331). Chimpanzee 
IGHM is most like human allele IGHM*03, indicating that this allele maybe more ancestral. 
The tail of the membrane bound form of IgM is identical for all the sequences. Amino acid 
differences are underlined. Arrowheads indicate the start of each domain encoded by separate 
exons. Potential N-glycosylation sites and cysteines involved in disulfide bonds are italicized 
and bolded. Dashes indicate deleted residues.
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acid substitutions are found in each of the CH domains, but no substitutions are located in the 

secretory tail, the transmembrane domain and cytoplamic tail. 

The chimpanzee sequence is more conserved with IGHM*03 than with IGHM*01. 

The chimpanzee IGHM shares 96.0% amino acid identity with IGHM*01 and 97.1% identity 

with IGHM*03. Chimpanzee IGHM has a phenylalanine at CH1 position 40 , serine at CH2  

position 87 and a valine at CH4 position 93 as is the case for human IGHM*03, whereas 

human IGHM*01 has a leucine at the first position, a glycine at the second position and a 

deletion at the latter position. This finding suggests the possibility that the human allele 

IGHM*03 may represent a more ancestral allele, whereas and IGHM*01 may represent a 

derived allele. Therefore, we examined such a possibility. At the nucleotide level, the 

chimpanzee identities with the respective human alleles IGHM*01 and IGHM*03 are 97.4% 

and 98.1%, respectively. There are 30 nucleotide substitutions in chimpanzee IGHM when 

compared to human IGHM.  Of these substitutions, 26 are different from both human alleles 

and the remaining 4 are only different from IGHM*01. It is possible that these substitutions 

may have arised from two mutation events, once in the chimpanzee gene and once in 

IGHM*01, but this is highly unlikely for all four positions. The Chimpanzee Sequencing and 

Analysis Consortium (2005) has reported that the error rate for assignment of human single 

nucleotide polymorphisms  (SNPs) as ancestral (on the basis of their presence in the 

chimpanzee sequence) is estimated at ~1.6% overall and 12% when the chimpanzee sequence 

occurs at a TG and human polymorphisms are CG and TG. Indeed, CpG dinucleotides are 

hotspots for deamination of C to yield T (Hwang and Green, 2004). Thirty % of the 

chimpanzee IGHM substitutions are at a CG/TG dinucleotides compared to the 12.5% that 
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would be expected by unbiased random mutation of the gene. Only one of the four 

chimpanzee substitutions differing from a single human allele is a CG/TG substitution (this 

substitution is TG in the chimpanzee sequence and IGHM*03).  Together, these data suggest 

that the human allele IGHM*03 may be ancestral. Further analysis of other primate IGHM 

sequences is required to determine whether IGHM*01 is likely derived or possibly originates 

from an ancestral polymorphism.  

A putative chimpanzee IGHG3 was found ~90kb downstream of IGHD (Figure A.3). 

This intergenic distance is larger than that found in humans, (65 kb between IGHD and 

IGHG3). Due to the incomplete resolution of the contig sequence, the center portion of 

the IGHG3 sequence encoding part of the hinge region, CH2 and the 5’ end of CH3 could 

not be examined (Figure A.3 and A.4). The last exon encoding the second half of the 

transmembrane domain and cytoplasmic tail could not be identified. It is likely that the 

contig sequence terminates prior to this portion of the chimpanzee IGHG3. Despite the 

incomplete sequence, it is clear that the gene, if functional, would be classified as 

IGHG3. Indeed, two complete hinge exons and a portion of a third exon encoding amino 

acids identical to those of the human IgG3 heavy chain can be identified. In humans, the 

IgG hinge region is the most defining characteristic of the IgG subclasses, and only the 

human IgG3 subclass has a hinge encoded by multiple exons, the number of which varies 

depending on the allele (LeFranc and LeFranc, 2001). Additionally, as is the case for  

human IGHG3, the chimpanzee gene is found downstream of IGHD.  In the chimpanzee 

IgG3 CH1, CH3 and available portion of the hinge region, all cysteines involved in inter-  
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Chimpanzee Chromosome 14 (GenBank accession NW_1159908) 
 

 
5’ 

      
 

CH2 

    
 

M1 

  
 

M2 

  
 

3’ 

 
 

CH1 
 

391 

 
 

H1 
 

143 

 
 

H2 
 

143 

 
 

H3 
  

 

 
 

H4 
 

118 
  

 

 
 

CH3 
 
 

Poly A
  

 
  

? 
  

? 

Poly A
  

 
             294                          51                       45                                                                                                                                                             131  
 
 
 
  
                                                                                                                                          2227                                                           1294 
 
Figure A.3. Chain diagram of human and chimpanzee IGHG3 genes. Numbers indicate nucleotides in exons or introns. 

Domains that have not been identified are indicated by dashed lines.  
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Figure A.4. (Next Page) Alignment of chimpanzee and human IgG3 heavy chains. 

Chimpanzee (Chimp) IGHG3 derived amino acid sequences were obtained through 

analysis of GenBank sequences including a contig on chromosome 14 (accession number 

NW_115908), from which IGHG3 had not previously been identified, and two partial 

mRNA sequences denoted as allele A1 (GenBank AF300434) and allele A2 (GenBank 

AF300435). Human alleles of the IgG3 heavy chain exist with varying numbers of hinge 

exons (H1, H2, H3 and H4). Although incomplete, the available chimpanzee sequences 

also vary in number of hinge exons. Therefore multiple IgG3 alleles with varying 

numbers of hinge exon repeat may represent polymorphisms of a common ancestor of 

both primate species. Amino acid differences are underlined. Arrowheads indicate the 

start of each domain encoded by separate exons. Potential N-glycosylation sites and 

cysteines involved in disulfide bonds are italicized and bolded. Dashes indicate residues 

absent in the sequences, whereas asterisks indicate unresolved sequences from the contig. 

Sequences are compared to the human allele IGHG3*03 (GenBank X03604). The tail of 

the membrane bound form of IgG3 is composed of exons M1 and M2. Only M1 is shown 

here since the chimpanzee contig did not extend through to the M2 exon. 
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                        CH1 

Human        ASTKGPSVFPLAPCSRSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS 
Chimp Contig ASTKGPSVFPLAPCSRSTSEGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSS 
Chimp A1                                                           AVLQSS        
Chimp A2                                                           AVLQSS 
 
                                                   ▼   H1           ▼ 
Human        GLYSLSSVVTVPSSSLGTQTYTCNVNHKPSNTKVDKRVELKTPLGDTTHTCPRCPEPKSC  
Chimp Contig GLYSLSSVLTVPSSTFGTQTYTCNVNHKPSNTKVDKRVELKTPLGDTTHTCPRCPEPKSC 
Chimp A1     GLYSLSSVVTVPSSSLGTQTYICNVDHKPSNTKVDKRVELKTPLGDTTHTCPRCPEPKSC 
Chimp A2     GLYSLSSVVAVPSSSLGTQTYTCNVNHKPSNTKVDKRVELKTPLGDTTHTCPRCPEPKSC 
 
              H2       ▼     H3       ▼     H4       ▼          CH2 
Human        DTPPPCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPRCPAPELLGGPSVFLFPPKPKDT  
Chimp Contig DTPPPCPRCPEPKSCDTP****************************************** 
Chimp A1     DTPPPCPRCP------------------------------APELLGGPSVFLFPPKPKDT 
Chimp A2     DTPLPCPRCP------------------------------APELLGGPSVFLFPPKPKDT 
 
 
Human        LMISRTPEVTCVVVDVSHEDPEVQFKWYVDGVEVHNAKTKPREEQYNSTFRVVSVLTVLH  
Chimp Contig ************************************************************ 
Chimp A1     LMITRTPEVTC 
Chimp A2     LMITRTPEVTC 
 
                                           ▼           CH3 
Human        QDWLNGKEYKCKVSNKALPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVK 
Chimp Contig ****************************************LPPSREKMTKNQVNLTCLVK 
 
 
 
Human        GFYPSDIAVEWESSGQPENNYNTTPPMLDSDGSFFLYSKLTVDKSRWQQGNIFSCSVMHE 
Chimp Contig GFYPSDIAVEWESSGQPENNYNTTPTMLDSDGSFFLYSKLTVDKSRWQQGNIFSCSVMHE 
 
 
 
Human        ALHNRFTQKSLSLSPGK 
Chimp Contig ALHNHESQKSLSLSPGK 
 
 
Tail of Membrane bound IgG3  
                                M1 
Human        ELQLEESCAEAQDGELDGLWTTITIFITLFLLSVCYSATVTFFK 
Chimp Contig ELQLQESCAEAQDGELDGLWTTITIFITLFLLSVCYSATVTFFK 
 
 

 
Figure A.4.
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and intra- chain disulfide bonds are conserved with human IgG3.  The N-glycosylation 

site CH3 N52 is also conserved in the chimpanzee protein.  

Two partial sequences of chimpanzee IGHG3 have been deposited in GenBank by 

Fortenfant et al. (accession numbers AF300434 and AF300435). These short cDNA 

sequence fragments (CH1 codon 55 to CH2 codon 31) contain 764nt that overlap with the 

contig sequence. These sequences are designated in GenBank as alleles A1 (AF300434) 

and A2 (AF300435) and share 98.0% nucleic acid identity with each other and 97.4% 

nucleic acid identity with the contig sequence for this overlapping region. Each of these 

smaller sequences have hinge regions encoded by two hinge exons in contrast to the 

contig sequence that contains three or more hinge exons (Figure A.4). Thus, chimpanzee 

IGHG3 exists in multiple alleles, some of which differ because of the number of hinge 

exons they possess, as found in humans. These data suggest the possibility that the human 

IGHG3 alleles were established before the phylogenetic split of humans and 

chimpanzees. Alternatively, duplication of the hinge exons may have occurred separately 

in humans and chimpanzees, despite the short period of time since their divergence.  

Overall, the chimpanzee IGH locus region surrounding IGHD is quite similar to 

the human IGH locus. The intron sizes in all three genes are quite similar to those found 

in humans (Figure 4.1, A.1, A.3). Where there are differences in intron sizes, the majority 

of differences are due to longer chimpanzee introns. The locus region examined is much 

larger in the chimpanzee primarily as a result of longer intergenic distances. All identified 

chimpanzee introns for IGHG3, IGHD and IGHM have canonical GT…AG boundaries.  
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Future analysis of other immunoglobulin genes in chimpanzees and other 

hominoid species would likely help elucidate the extent to which inheritance from a 

common primate ancestor contributed to human immunoglobulin polymorphisms. Here, 

results from the analysis of chimpanzee IGHM and IGHG3 indicated that more than one 

allele of many human genes are ancestral. Such finding would support the view that there 

was a diverse genetic pool among the founders of our species.  

 

Humans have two alleles of IGHD, is one more ancestral than the other? 

The two described alleles of human IGHD (IGHD*01 and IGHD*02) differ by two 

silent nucleotide substitutions, one at H1 codon 9 position 3 (C versus A) and one at CH3 

codon 9 position 3 (T versus C). Both of these nucleotides are conserved in chimpanzees, 

baboons, sooty mangabeys and macaques with the IGHD*02, indicating that IGHD*01 is 

more ancestral. 

 

What does our analysis tell us about the limitations of the bioinformatics program Gnomon 

to predict open reading frames from the eukaryotic genome projects? 

The bioinformatics program Gnomon is used to predict gene open reading frames and 

create putative mRNA from DNA sequences. Through the release of different genomes from 

the various genome projects, many of these putative mRNAs have been deposited into 

GenBank. As mentioned above, a chimpanzee IGHM mRNA was constructed in this manner, 

but the predicted transcript mistakenly incorporated sequence 5’ to the proper start of the 

gene. This may represent a limitation of Gnomon. Immunoglobulin heavy region constant 
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genes lack a canonical start codon and promoter, because their transcription begins at the 

immunoglobulin genes encoding the variable domain, which is created through somatic 

recombination. Therefore Gnomon may inappropriately identify start sequences for the 

immunoglobulin constant heavy genes located upstream of their real start sequences.   

By screening GenBank, we also found Gnomon predicted IgD-like mRNAs for 

chimpanzee (GenBank XM_51026) and for dog (GenBank XP_548647). Both of these 

sequences were assembled incorrectly and illustrate potential pitfalls of Gnomon analysis. 

The chimpanzee mRNA and the deduced protein sequences are highly conserved with those 

of human IGHD CH2 and CH3 exons and IgD respectively. However, other exons of the 

IGHD gene are not present. 5’ of the CH2 exon the putative mRNA is conserved with CH1-

CH2 intron sequences and 3’ of the CH3 exon sequence is taken from IGHG3 found 

downstream of IGHD. Additionally, the CH2 exon sequence has a single nucleotide insertion 

that shifts the reading frame. The dog sequence has similar mistakes made in its assembly, 

with the CH2 exon being preceded by sequences derived from the H2-CH2 intron. Mapping 

out these genes may provide possible explanations for these errors.    

Analysis of the chimpanzee contig for IGHD exons homologous to human IGHD 

exon reveals seven of the eight anticipated exons (Figure 4.1). The putative second exon 

encoding the tail of the transmembrane bound IgD is missing. This second exon has been 

found in all the other characterized mammalian IGHD genes and encodes two amino acids 

and the stop codon. Presumably, this second exon would be present in a region of the contig 

where the sequence has not yet been resolved (consistent with the hypothesis that the intron 

between the first and second transmembrane encoding exons is of similar size to that present 



 

 

242

in humans). Indeed, the intron sizes of the remaining IGHD gene are very close to those of 

their corresponding human counterparts. Therefore, Gnomon may have inappropriately 

incorporated a part of IGHG3 in its predicted chimpanzee IgD-like mRNA, because the 

appropriate stop codon was not found as a result of the incomplete resolution of the contig it 

used.  The incorporation of an intron at the 5’ end of the predicted mRNA may be explained 

because of the lack of any stop codons in this sequence. This is also true for the predicted 

dog sequence, where the problem of predicting the correct reading frame may be 

compounded by the H1-CH3 intron having a cryptic 5’end rather than the canonical GT 

dinucleotide.  

Gnomon is a useful tool for identifying genes. However, it appears prone to 

errors. These errors may be due to incomplete sequence resolution, presence of unusual 

introns, and presence of non-classical genes. The use of this program may lead to 

underestimate numbers of genes as a result of predictions deriving from a combination of 

two actual genes, as shown for chimpanzee IGHD and IGHG3. Therefore, Gnomon is a 

practical tool for an initial genome screening. However, results related to predicted genes 

should be carefully evaluated. 

 

Do the IGHD of carnivora members use a cryptic splice site for the H2-CH2 intron? 

As determined by comparing mRNA with the DNA sequence, dog IGHD has two 

hinge region encoding exons. Examination of the DNA sequence alone does not readily 

reveal the second exon (H2), since the contig sequence does not have the canonical GT at 

the start of the intron between H2 and CH2 (Figure A.5). One simple explanation is that  
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A. 
             

Dog   catctccctttcctccctag/TGCCTCCCACCAGCCACACC             
Panda cacgccctcttcccccgcag/TGCCCTCCACCAGCCACACC 
 
Dog   CAGACGCAAGCCCAGGAGCCAGGATGCCCAGTGGACACCA 
Panda CAGACACAAGCCGCGGAGCCAGGAAGCCCAGGGGATGCCA 
 
Dog   TCCTCAGAG/gccagttcct-ggggtgcaga 
Panda AGCACAGAG/gccagttccttggggcacaga 
 

    B. 
 

Dog   VPPTSHTQTQAQEPGCPVDTILR 
Panda VPSTSHTQTQAAEPGSPGDAKHR 
 
 

Figure A.5. Dog and putative panda IgD second hinge region exons. Alignments of the 

dog and panda IGHD H2 exon gene sequences with nucleotides of the flanking 5’ and 3’ 

introns (A) and the deduce amino acid sequences (B) are shown. The dog IGHD exon 

boundaries have been confirmed from mRNA sequence. The 3’ exon does not start with 

the typical GT dinucleotide. The sequence at this exon/intron junction is highly 

conserved with putative panda H2 3’ exon. This suggests that the use of a cryptic splice 

junction for the 3’ end of IGHD H2 may be a common feature of carnivora. Panda 

nucleotides and amino acids different from those of dog are underlined.  
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the contig sequence contains a miscalled nucleotide at the start of the intron. 

Alternatively, the intron/exon boundary may be cryptic. An unpublished DNA sequence 

of IGHD from panda, also a member of carnivora, is available in GenBank (AY818394). 

The authors of the panda submission only identify the first hinge exon, but when we 

screened the gene for a possible second exon we found a sequence with 66% nucleotide 

identity and 69.6% deduced amino acid sequence identity with the second exon of dog 

IGHD (Figure A5). The intron that would be present 5’ of the putative panda H2 exon 

follows the canonical GT…AG rule, but the 3’ intron, similarly to what found in dogs, 

does not start with GT. In panda IGHD, the putative H2 preceding the predicted 

exon/intron junction and the first ten nucleotides of the intron are identical to the similar 

dog sequence. Sequencing of panda IGHD mRNA could easily determine whether or not 

this is a true H2. Assuming that the genomic sequences are correct and that the 5’ end of 

the introns are correctly identified, then the intron would follow a GC…AG splice type. 

Less than 1% of introns are spliced by the U2 spliceosome that contain a motif GC…AG 

(Burset et al., 2001). However, these introns have 5’ sequences that are strongly 

conserved with the complement sequence of the U1 snRNA (GAG/gcaagt) (Abril et al., 

2005). This sequence is only one nucleotide different from the sequences at the 5’ end of  

 the H2-CH2 introns of dog and panda IGHD genes. Taken together, the information 

from dog and panda sequences suggests that an IGHD of canivora members may possess 

H2 exons with cryptic 3’ exon/intron boundaries.   
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How do the multiple immunoglobulin domains of fish IgD correspond to the mammalian IgD 

domains? 

Fish IgD is structurally quite different from mammalian IgD. Fish IgD heavy chains have 

no hinge, require splicing of IgM CH1 to the N-terminus to provide the cysteines 

necessary to form disulfide bonds with the immunoglobulin light chains, and consist of 

up to seven immunoglobulin domains, which may be repeated depending on the species 

(Wilson et al., 1997;Stenvik and Jørgensen, 2000; Hirono et al., 2003; Srisapoome et al., 

2004; Savan et al., 2005; Saha et al., 2004; Hordvik, 2002; Danilova et al., 2005; 

Bengtén et al., 2002; Hansen et al., 2005; Hordvik et al., 1999). These structural 

differences have made it difficult to immediately correlate the different immunoglobulin 

domains of teleost fish to those in mammals. A general consensus present in the literature 

is that the teleost CH1 and mammalian CH1, as well as teleost CH5 and mammalian CH2 

domains, correspond most closely to each other. On the other hand, there is disagreement 

about whether teleost CH6 or CH7, most closely correspond to mammal CH3 (Stenvik 

and Jørgensen, 2000; Hordvik et al., 1999). To test the relationship of mammalian IgD 

CH3 to fish IgD CH6 and CH7 we constructed phylograms using the different mammal 

CH3 and teleost CH1, CH5 (or Atlantic cod CH2), CH6 and CH7 (Figure A.6). The 

resulting phylogenetic tree matches the accepted taxonomy of mammals, with the 

exception that the relationship between Old World monkeys is not resolved (probably 

because of the shallow differences within the group). Fish CH6 appears to be the domain 

most homologous domain to mammalian CH3. Accordingly, both of their clades share a 

common node that follows the split of the teleost CH6 and CH7 clades.  
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Figure A.6. Phylogenetic relationships of mammalian IgD CH3 domains and fish IgD CH 

domains. Neighbor joining tree of IgD was constructed with deduced amino acid 

sequences using the CLUSTAL method. The CH6 domains of fish cluster most closely 

with mammalian CH3, indicating that these domains are more homologous than fish CH7 

domains and mammalian CH3. CH3 differences in primates are small and resolved into 

only two clades. GenBank accession numbers for mammals are included in the Materials 

and Methods section of Chapter 4. GenBank accession numbers for fish are: channel 

catfish U67437, fugu AB159482, Atlantic salmon AF141605, Japanese flounder 

AB052658, Atlantic cod AF 155199 and halibut AY077849.
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 What is the origin of the IgD secretory tail and is secretory IgD a common feature of 

species with IgD? 

Of the immunoglobulin heavy chain genes, only IGHD has a separate exon that encodes 

the hydrophilic secretory tail (Lefranc and Lefrance, 2001). This tail has been identified 

in some of the species possessing a IGHD gene and it is highly diverse among these 

species (Figure A.7) (White et al., 1985; Mushinski et al., 1980; Zhao and Hammarström, 

2003; Zhao et al., 2002; Wagner et al., 2004, Bengtén et al., 2002). In channel catfish the 

IgD membrane bound and secreted forms are encoded by separate genes (Bengtén et al., 

2002). One secretory tail has been confirmed for mouse IgD. A second putative tail has 

also been identified and its presence confirmed by Northern blot analysis (Cheng et al., 

1982). The chimpanzee CH-S is the least conserved of the IGHD exons when compared 

to human IGHD. Although a polyadenylation site is found 5’ to the first dog IGHD 

transmembrane domain exon, we could not identify a CH-S with homology to CH-S from 

other species. Mouse CH-S is much longer than human CH-S and it only shares identity 

at the nucleotide level with the carboxy-terminus of human CH-S (White et al., 1985). In 

fish, CH-S has only been described for some species. In channel catfish, two separate 

IGHD genes encode secretory and membrane bound IgD (Bengtén et al., 2002). It is 

possible that similarly to the hinge exon, the secretory tail has evolved many times. For 

several species it has not yet been established whether or not IgD is secreted. Therefore, 

the importance of secreted IgD in the vertebrate immune responses cannot be fully 

evaluated.  
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Human            -----------Y-VTDH---GPMK 
Chimpanzee       -----------Y-VTDR---GPVK 
Rat              GCY---HLLPESDGPPRRPDGPAFP 
Mouse (Putative) GCY---HLLPESDGPSRRPDGPALA 
Mouse            EDFLFKIYSKSYKISAR---TSHKA 
Horse            GPSHGSSSGSRAGQPQE---TSSHA  
Pig              PLLIQQRLGAEWKASKRAPASPE-A 
 
 

Figure A.7. Alignments of characterized IgD secretory tails from mammals. The poor 

conservation of the IgD secretory tails may be due to the exon evolving multiple times.  

It has been hypothesized that mice may use more than one IgD secretory tail (Cheng et 

al., 1982); the unconfirmed mouse IgD tail is shown here as putative (both tails are from 

GenBank accession number J00450).   

 



 

 

249

Appendix B 

IgG Subclass Evolution and Its Implications for IgG Fc Receptor Interactions 

 

How do human and nonhuman primate IgG subclasses relate to each other? What do 

these relationships tell us about their potential functional properties including 

interactions with IgG Fc receptors? 

IgG subclasses are often determined for immunological studies in mice and 

humans, as they are a major indicator of different types of immune responses (Jefferis et 

al., 1994). For example, human natural killer cell ADCC responses are associated with 

IgG1 and IgG3, because CD16 binds these subclasses (Tamm and Schmidt, 1997). It is 

desirable to similarly measure different IgG subclass responses in nonhuman primates 

(Shearr et al., 1999). However, reagents that can be used for this purpose are not 

currently available. In addition, it is unknown whether or not the four nonhuman primate 

IgG subclasses correlate functionally with their human counterparts. In particular, it is not 

known whether or not nonhuman primate IgG subclasses are able to engage immune 

effector functions through CD16.  If the IgG subclasses of human and nonhuman 

primates were inherited from a common ancestor, then it would be reasonable to 

hypothesize that they share cognate effector functions.  

Phylogenetic analysis of immunoglobulin gamma heavy chains from different 

species reveals that multiple IgG subclasses likely arose repeatedly from a single 

ancestral gene in multiple species (Figure B.1; Scinicariello et al., in press; Wagner et al., 

2002; Flanagan and Rabbits, 1982). For primates, this analysis produces two separate IgG 
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clades, one for hominoids and one for old world monkeys. Following branching of these 

two clades, the IgG heavy chains cluster together by subclasses. Therefore, IgG heavy 

chain gene duplication appears to have happened separately in Old World monkeys and 

in hominoids, but prior to radiation of the representative species from each group. If this 

analysis represents the true evolutionary history of these subclasses, then there is no a 

priori reason for predicting that the IgG subclasses of Old World primates have functions 

in common with the human IgG subclasses. By contrast, IgG subclasses from other 

hominoids appear to be true orthologues of human subclasses. Phylogenetic analysis of 

IgG genes should take into account that gene conversion is likely to have shaped these 

genes, as shown for human IGHG genes (Lefranc et al,. 1986). Such genetic events 

would lead to overestimating how closely related these genes are in Old World monkeys. 

Old World monkey IgG subclasses are similar to those of humans. In humans, 

baboons, sooty mangabeys and macaques (rhesus, cynomolgus, and pig-tailed), the lower 

hinge of IgG2 molecules has a deletion of one amino acid. In addition in baboons and 

humans, there is a common substitution of a glycine with an alanine in the IgG2 lower 

hinge region. Phylogenetic analysis indicates these similarities represent convergent 

evolution (Figure B.1). Human subclass differences in the IgG lower hinge regions 

account for their varying capacities to bind to IgG Fc receptors, including CD16 (Tamm 

and Schimdt, 1997). If nonhuman primate IgG subclass differences alter the ability to 

form IgG/Fc receptor interactions, then convergent evolution would help to substantiate 

the hypothesis of the selective advantage provided by IgG subclasses that vary in their 

capacity to initiate effector functions. Homologues of CD16 have been identified in other  
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Figure B.1.  (Page 253) Phylogenetic relationships of IgG heavy chains from 

different species. The neighbor joining (NJ) tree was constructed from the amino acid 

sequences of the immunoglobulin gamma heavy chains of various mammalian species, 

two birds and an amphibian. The NJ tree indicates that multiple IgG subclasses emerged 

from one progenitor IgG in many groups after splits from other groups. The four 

subclasses of old world monkeys appear to have evolved separately from those of 

hominoids after the two groups split. Bootstrapping of the NJ tree was preformed with 

10,000 replicates. The GenBank accession numbers for the reported species are: 

Australian brushtail possum (Possum) (AF157619); baboon (Paca) IGHG1 (AY125048), 

IGHG2 (AY125049), IGHG3 (AY125050), and IGHG4 (AY125051); camel IGHG1 

(CDIGGC); cat IGHG1a (AB016710) and IGHG1b (AB016711); chicken (X07174); 

chimpanzee IGHG1 (X65284-5, X61310-1); cow IGHG1 (X16701), IGHG2 (X16702), 

IGHG3a (BTU63638) and IGHG3b (BTU63639); dog IGHG a (AF354264), IGHG b 

(AF354265), IGHG c (AF354266), and IGHG d (AF354267); duck (X65219); echidna 

(AF416949); gray short-tailed opossum (Opossum) IGHG (AF035195); hamster IgG2 

(U17166); horse IGHG1 (AJ302055), IGHG2 (AJ302056), IGHG3 (AJ312379), IGHG4 

(AJ302057), IGHG5 (AJ312380), IGHG6 (AJ312381), IgG7 (AY445517); human (Hm) 

IGHG1 (J00228), IGHG2 (J00230), IGHG3 (D78345), and IGHG4 (K01316); mink 

(L07788); mouse IGHG1 (D78344), IGHG2a (V00825), IGHG2b (J00461), and IGHG3 

(D78343); platypus IgG1 (AY055781), IgG2 (AY055782);  rabbit IGHG (K00752); rat 

IGHG1 (M28670), IGHG2a (M28669), IGHG2b (M28671), IGHG2c (X07189); rhesus 

macaque (Mamu) IGHG1 (AY292507), IGHG2 (AY292519), IGHG3 (AY292513), and 
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IGHG4 (AY292521, AY292522, AY292524, AY292525); sheep IGHG1 (X69797) and 

IGHG2 (X70983); sooty mangabey (Ceat) IGHG1 (AY544376), IGHG2 (AY544377), 

IGHG3 (AY544378), and IGHG4 (AY544379), pig IGHG1 (U03778), IGHG2a 

(U03779), IGHG2b (U03780) and IGHG3 (U03781); and Xenopus (X15114). IgG 

sequences for cynomolgus macaque (Mafa) and pig-tailed macaque (Mane) have not yet 

been published and have not been assigned GenBank accession numbers. The bar 

indicates the number of substitutions per site.  
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Figure B.1. 
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other species including mice, cats and cows thus indicating that CD16 predates the 

development of multiple IgG subclasses in primates (Nishimura et al., 2000; Yan 2000). 

IgE and IgG are thought to have a common origin as a result of an ancient gene 

duplication event, which is supported by the ability of mouse IgE to bind CD16 (Arase et 

al., 2003). Therefore, IgG interactions with CD16 are likely ancient, predating the 

evolution of the IgG subclasses. Taken together these observations indicate that some 

subclasses selectively lost the ability to bind CD16, rather than evolving to bind CD16. 

Under the phylogenetic scenario presented here, Old World monkey IgG subclasses 

would not inherently be expected to bind or not to bind to CD16 based on relationships to 

human IgG subclasses. 
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