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ABSTRACT 

 

Caspase-3 is a cysteine protease that hydrolyzes diverse intracellular proteins during 

programmed cell death (known as apoptosis). It has been a popular target for drug design against 

abnormal cell death for more than a decade. No approved caspase based drug, however, is 

available so far. Therefore, structural insights about the substrate recognition of caspase-3 are 

needed for the future development of caspase-3 based inhibitors and drugs. In this study, crystal 

structures of recombinant caspase-3 in complex with seven substrate analog inhibitors, including 

acetyl (Ac)-DEVD-aldehyde (Cho), Ac-DMQD-Cho, Ac-IEPD-Cho, Ac-YVAD-Cho, Ac-

WEHD-Cho, Ac-VDVAD-Cho, and tert-butoxycarbonyl (Boc)-D-fluoromethylketone (Fmk), 

have been analyzed in combination with enzyme kinetic data and computational models.      

 Seven crystal structures were determined at resolutions of 1.7-2.6Å. The binding 

conformation of each inhibitor residue at P1-P4 position was analyzed. The negative P1 aspartic 

acid side chain is exclusively required by the positive S1 pocket of caspase-3. Small hydrophobic 

P2 residues are preferred by the nonpolar S2 pocket formed by Y204, W206, and F256. 



 
 

 

Although hydrophilic residues at P3 position tend to fit better, hydrophobic residues also can be 

accommodated by the plastic S3 pocket. Two substrate binding sites were found in the S4 pocket, 

one formed by main chain atoms of F250 and side chain atoms of N208 and the other formed by 

aromatic side chains of W206 and W214. These two binding sites are responsible for the binding 

of hydrophilic and hydrophobic P4 residues, respectively. Furthermore, the S5 subsite of 

caspase-3 formed by side chains of F250 and F252 was discovered. It stabilizes hydrophobic P5 

residues on the substrates by an induced fit mechanism.  

 Computational studies were performed to help improve prediction of protein structures 

and protein-ligand interactions. Based on the Morse’s function, a novel potential function with 

only three adjustable parameters per residue pair was developed, which will significantly 

increase the efficiency of protein structure prediction and molecular mechanics. Altogether, our 

studies have provided valuable information for the future caspase-3 based drug development.      

 

 

INDEX WORDS: Enzyme catalysis, Cysteine protease, Protein recognition, Apoptosis,          
Induced fit  



 
 

 

STRUCTURAL BASIS OF CASPASE-3 SUBSTRATE SPECIFICITY REVEALED BY 

CRYSTALLOGRAPHY, ENZYME KINETICS, AND COMPUTATIONAL MODELING 

 

 

 

by 

 

 

 

BIN FANG 

 

 

 

 

A Dissertation Submitted in Partial Fulfillment of Requirements for the Degree of 

Doctor of Philosophy 

in the College of Arts and Sciences 

Georgia State University 

 

 

 

2009 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 
Bin Fang 

2009 



 
 

 

STRUCTURAL BASIS OF CASPASE-3 SUBSTRATE SPECIFICITY REVEALED BY 

CRYSTALLOGRAPHY, ENZYME KINETICS, AND COMPUTATIONAL MODELING 

 

by 

 

BIN FANG 

 

 

 

 

                                                                                         Committee Chair: Irene T. Weber 

 

Committee:          Robert W. Harrison 

                             Giovanni Gadda 

 

 

Electronic Version Approved: 

 

Office of Graduate Studies 

College of Arts and Sciences 

Georgia State University 

December 2009 



v 
 

 

ACKNOWLEGEMENTS 

I would love to give my thanks first to my dear advisor Dr. Irene T. Weber. She is the 

person who led me into the fantastic area of structural biology. She is the person who gave me 

guidance, advice, and encouragement throughout my entire graduate study at Georgia State 

University. She is the person who not only educated me about reading, writing, and experimental 

skills, but also trained me to think as a scientist. She is the person who not only cared about 

students’ studies but also respected their interests and needs. She is the person to whom I have to 

say: Thank you so much!  

My sincere thanks also go to my committee member Dr. Robert Harrison. He advised my 

studies in computational biology. His brilliant ideas always gave me inspirations. I also want to 

thank another committee member Dr. Giovanni Gadda who gave me a lot of valuable advices on 

my study, writing, and presentation.  

I give special thanks to Dr. Peter Boross who taught me protein purification and enzyme 

kinetics; Dr. Tracy Tie, Dr. Ping Liu, and Yuanfang Wang who taught me crystallography; and 

Dr. Johnson Agniswamy who gave me in-depth suggestions for my caspases studies. Thanks also 

go to Andrey Kovalevsky, Xianfeng Chen, Alexander Chumanevich, Fengling Liu, Hao Wang, 

Patra Volarath, Guioxing Fu, Brian Shen, Ying Zhang, Xiaxia Yu, and Ting Chiu who gave me 

sincere advice and help for research and presentations.    

I also thank the staffs at the SER-CAT (ID-22 beamline) at the Advanced Photon Source, 

Argonne National Laboratory for their assistance during X-ray data collection. My study was 

supported in part by the Georgia Research Alliance, the Georgia Cancer Coalition, the National 

Institute of Health grants and Molecular Basis of Disease Program at Georgia State University. 



vi 
 

 

Finally, I would love to give my whole-heart thankfulness to my wife Wei Li, my mother 

Wei Feng, and my father Shiyu Fang. Thank you for being my all-time support!  



vii 
 

 

 

TABLE OF CONTENTS 

ACKNOWLEGEMENTS ............................................................................................................... v 

TABLE OF CONTENTS .............................................................................................................. vii 

LIST OF TABLES .......................................................................................................................... x 

LIST OF FIGURES ....................................................................................................................... xi 

LIST OF ABBREVIATIONS ...................................................................................................... xiii 

1.  GENERAL INTRODUCTION ..................................................................................... 1 

1.1.  Caspase Enzyme ..................................................................................................................1 

1.2.  Caspases and Apoptosis .......................................................................................................2 

1.3.  Caspase Substrate Specificity ..............................................................................................6 

1.4.  Caspase Inhibitors ................................................................................................................9 

1.5.  Protein Crystallography and Caspase Structures ...............................................................16 

1.6.  Protein Structure Prediction and Potential Functions ........................................................21 

1.7.  Objectives ..........................................................................................................................24 

2.  CASPASE-3 BINDS DIVERSE P4 RESIDUES IN PEPTIDES AS REVEALED BY 

CRYSTALLOGRAPHY AND STRUCTURAL MODELING ................................. 35 

2.1.  Introduction ........................................................................................................................35 

2.2.  Materials and Methods .......................................................................................................37 

2.2.1.  Plasmids and Recombinant Proteins ....................................................................... 37 

2.2.2.  Enzyme Kinetic Assays .......................................................................................... 38 

2.2.3.  Crystallographic Analysis ....................................................................................... 38 

2.2.4.  Molecular Modeling................................................................................................ 39 



viii 
 

 

2.3.  Results ................................................................................................................................40 

2.3.1.  Analysis of P4 Residues in Known Caspase-3 Substrates ...................................... 40 

2.3.2.  Inhibition Constants of Caspase-3 Inhibitors .......................................................... 40 

2.3.3.  Overall Structures of Four Caspase-3 Complexes .................................................. 41 

2.3.4.  Inhibitor Interactions in the S1-S3 Subsites............................................................ 43 

2.3.5.  S4 Subsite................................................................................................................ 45 

2.3.6.  Correlation of Structural Interactions with Inhibition ............................................ 47 

2.3.7.  Predicted Binding Of Diverse P4 Residues ............................................................ 48 

2.4.  Discussion ..........................................................................................................................51 

3.  STRUCTURAL AND KINETIC ANALYSIS OF CASPASE-3 REVEALS ROLE 

FOR S5 BINDING POCKET IN SUBSTRATE RECOGNITION ............................ 66 

3.1.  Introduction ........................................................................................................................66 

3.2.  Materials and Methods .......................................................................................................68 

3.2.1.  Protein Expression and Purification ........................................................................ 68 

3.2.2.  Enzyme Kinetic Assays .......................................................................................... 69 

3.2.3.  Crystallographic Analysis ....................................................................................... 70 

3.2.4.  Protein Data Bank Accession Codes ....................................................................... 71 

3.3.  Results and Discussion ......................................................................................................71 

3.3.1.  Crystal Structures .................................................................................................... 71 

3.3.2.  Caspase-3 Interactions with Peptide Analogs ......................................................... 73 

3.3.3.  Conformational Change when Caspase-3 Binds the P5-Containing Peptide ......... 75 



ix 
 

 

3.3.4.  Enzyme Kinetics and Relative Inhibition ............................................................... 75 

3.3.5.  Roles of S2 and S3 in Substrate Recognition and Caspase-3 Activity ................... 76 

3.3.6.  Role of S5 Pocket in Caspase Recognition of Substrates ....................................... 78 

3.4.  Conclusions ........................................................................................................................80 

4.  COMPACT, DIFFERENTIABLE, KNOWLEDGE-BASED POTENTIAL 

FUNCTIONS FOR EVALUATING PROTEIN MODEL QUALITY ...................... 93 

4.1.  Introduction ........................................................................................................................93 

4.2.  Materials and Methods .......................................................................................................95 

4.2.1.  Calculation of Total Potential ................................................................................. 95 

4.2.2.  Parameter Determination Using Genetic Algorithm............................................... 96 

4.2.3.  Training Data and Decoy Sets ................................................................................ 97 

4.2.4.  Performance Measurement ..................................................................................... 98 

4.3.  Results and Discussion ......................................................................................................98 

4.3.1.  Parameters Determined for 210 Potential Functions .............................................. 98 

4.3.2.  Performance on 70 Standard Multiple Decoy Sets ................................................. 99 

4.3.3.  Performance on 9 Docking Decoy Sets ................................................................ 102 

4.3.4.  Conclusions and Future Work .............................................................................. 102 

5.  OVERALL SUMMARY .......................................................................................... 111 

LITERATURE CITED ............................................................................................................... 113 

APPENDICES ............................................................................................................................ 126 

 



x 
 

 

LIST OF TABLES 

Table 2.1. Crystallographic data collection and refinement statistics .......................................... 55 

Table 2.2. Inhibition constants ...................................................................................................... 56 

Table 3.1. Crystallographic Data Collection and Refinement Statistics ....................................... 81 

Table 3.2. Polar interactions of caspase-3 with peptide analogs .................................................. 82 

Table 3.3: Inhibition constants ...................................................................................................... 83 

Table 3.4: Kinetic parameters of caspase-3 substrates ................................................................. 84 

Table 4.1. 70 multiple decoy sets for testing. ............................................................................. 104 

Table 4.4. The success rates and average Z-scores of different SCM potentials. ....................... 107 

Table 4.5. The success rate of other energy models ................................................................... 108 

Table 4.6. The Ranking of native structures for 9 docking decoy sets. ...................................... 109 

 



xi 
 

 

LIST OF FIGURES 

Figure 1.1. Grouping of 14 mammalian caspase family members ............................................... 25 

Figure 1.2. Extrinsic and intrinsic signaling pathway of apoptosis .............................................. 26 

Figure 1.3. Schematic presentation of caspase substrate binding site. ......................................... 27 

Figure 1.4. Peptidomimetic inhibitors. ......................................................................................... 28 

Figure 1.5. Isatin sulfonamide analog inhibitors. ......................................................................... 29 

Figure 1.6. Quinoline derivative inhibitors. .................................................................................. 30 

Figure 1.7. Structures of VX-765 and IDN-6556 ......................................................................... 31 

Figure 1.8. Crystal packing and the Bragg’s law. ......................................................................... 32 

Figure 1.9. Hanging drop vapor diffusion system and crystal samples. ....................................... 33 

Figure 1.10. The list of caspase structures currently deposited in PDB. ...................................... 34 

Figure 2.1. The occurrence of different amino acids at P4 in the cleavage sites of natural 

substrates of caspase-3. ............................................................................................... 57 

Figure 2.2. Inhibition characterization of caspase-3 inhibitors. .................................................... 58 

Figure 2.3. Binding conformations of inhibitors. ......................................................................... 59 

Figure 2.4. Schematic representation of hydrogen bond and ionic interactions between caspase-3 

and the inhibitors......................................................................................................... 60 

Figure 2.5. Comparison between subsites in four new complexes (color) and published structure 

of caspase-3/DEVD (grey) (2H5I). ............................................................................. 61 

Figure 2.6. P4 binding site on caspase-3. ...................................................................................... 62 

Figure 2.7. Superposition of inhibitors in the crystal structures (green) and structural models 

(purple). ....................................................................................................................... 63 

Figure 2.8. Predicted binding affinities for diverse P4 residues. .................................................. 64 



xii 
 

 

Figure 2.9. Predicted binding conformations of fifteen different P4 residues in caspase-3/XEVD.

..................................................................................................................................... 65 

Figure 3.1. Overall structure of caspase-3/DMQD. ...................................................................... 85 

Figure 3.2. His121 has different side-chain conformations in the two p17/p12 heterodimers of 

caspase-3/DMQD. ....................................................................................................... 86 

Figure 3.3. Structure of peptide analog inhibitors. ( ..................................................................... 87 

Figure 3.4. Schematic representation of the caspase-3 interactions with inhibitors ..................... 88 

Figure 3.5 The superimposed complexes of caspase-3/DEVD and caspase-3/VDVAD. ............. 89 

Figure 3.6. Structural comparison of caspase-3 and caspase-2. ................................................... 90 

Figure 3.7. Sequence homology among six caspase family members. ......................................... 91 

Figure 3.8 Different compositions of active site groove............................................................... 92 

Figure 4.1. Accuracy of different potential functions ................................................................. 110 

 



xiii 
 

 

LIST OF ABBREVIATIONS 

Å angstrom 

ALA alanine 

Asp aspartic acid 

Asn asparagines 

Ac acetyl 

Boc tert-butoxycarbonyl 

Arg arginine 

Cα alpha carbon 

cDNA complementary deoxyribonucleic acid 

CHO aldehyde 

CYS cysteine 

C-terminal carboxyl terminal 

Da dalton 

DDT dithiothreitol 

EDTA ethylene diamine tetraacetic acid 

Fmk fluoromethyl ketone 

Glu glutamic acid 

Gln glutamine 

Gly glycine 

His histidine 

Ile isolucine 



xiv 
 

 

L liter 

LB Luria-Bertani 

Leu leucine 

Lys lysine 

kDa kilodaltons 

MAD multiplewavelength anomalous diffraction 

Met methionine 

mM millimolar 

MW molecular weight 

NMR nuclear magnetic resonance 

N-terminal amino terminal 

OMe methylated oxygen 

Pro proline 

PAGE polyacrylamide gel electrophoresis 

PCR polymerase chain reaction 

PDB protein data bank 

PEG polyethylene glycol 

pNA p-nitroanilide 

Phe phenylalanine 

RMSD root mean square deviation 

SDS sodium dodecyl sulphate 

Ser serine 



xv 
 

 

Thr threonine 

Trp tryptophan 

Tyr tyrosine 

Val valine 

 

 



1 
 

 

1. GENERAL INTRODUCTION  

1.1. Caspase Enzyme 

 Caspases are cysteinyl aspartate proteases that specifically cleave their substrate proteins 

after an aspartic acid. Since the discovery of the first caspase family member caspase-1 ( initially 

known as interleukin-1b-converting enzyme, ICE) in 1992 (Cerretti, Kozlosky et al. 1992; 

Thornberry, Bull et al. 1992), numerous caspase family members have been found in various 

vertebrate and invertebrate species, including 11 in humans, 10 in mice, 4 in birds, 4 in zebra fish, 

8 in amphibians, 7 in insects, and 3 in nematodes (Lamkanfi, Declercq et al. 2002). Caspases are 

widely involved in differentiation, cell death, and inflammation processes. Although many 

caspases function in nonapoptotic pathways, the evolutionarily conserved role of caspases is to 

execute programmed cell death.  

 Caspase zymogens (known as procaspases) consist of three domains. A big subunit with a 

molecular weight around 20 kDa (p20) and a small subunit around 10 kDa (p10) are connected 

by a short linker region. At the N-termini, different caspases have their prodomains varying in 

length (figure 1.1). Some of them have big prodomains, such as caspase-2, 8, and 9. These 

caspases usually interact with death-inducing signaling complex (DISC) through their 

prodomains during the activation process. Other caspases, such as caspase-3, 6, and 7, have short 

prodomains, and their activation normally depends on cleavage by other caspases. The full 

length sequences of human caspases share homologies from 20% to 77%. Caspase-4 and 8 share 

the lowest homology while caspase-4 and 5 share the highest (Cohen 1997).  

Procaspases have limited catalytic activities. During maturation, the prodomain is 

removed and the linker region between p20 and p10 is cleaved. As a result, two subunits will be 

assembled into a heterodimer p10/p20 which contains one catalytic groove responsible for 
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substrate recognition and hydrolysis. X-ray crystallography data suggested that caspases 

normally form heterotetramers (p10/p20)2 under physiological conditions, although it is not 

required for the catalytic activity. 

Based on their physiological functions in cells, caspases are divided into inflammatory 

caspases and apoptotic caspases. As illustrated in the Figure 1.1, the group I caspases, including 

caspase-1, 4, 5, 11, 12, 13, 14, belong to inflammatory caspases. Apoptotic caspases fall into two 

subgroups based on the position and function in the apoptotic signaling pathways. Caspase-2, 8, 

9, 10 are initiator caspases (group II) and caspase-3, 6, 7 are executioner caspases (group III). 

The detailed functions of apoptotic caspases are introduced in the following section. 

1.2. Caspases and Apoptosis 

 The programmed cell death, also named apoptosis, is a critical event in the cell life cycle. 

It is characterized by a series of highly ordered cell morphological and biochemical changes, 

including blebbing, loss of membrane asymmetry and attachment, cell shrinkage, nuclear 

fragmentation, chromatin condensation, and chromosomal DNA fragmentation. In the end, the 

cell will be lysed and debris will be degraded. In general, apoptosis occurs when a cell is injured 

beyond repair, infected by virus, or under stressful conditions such as heat or radiation. On the 

other hand, it is also required for tissue development, such as the differentiation of fingers and 

toes. The regular apoptosis is a highly controlled process and is not harmful to the organisms, 

which makes it different from necrosis, another type of cell death.  

 The apoptotic process is controlled by diverse cell signals initiated both extracellularly 

and intracellularly. Caspases are the major component of both pathways. According to the 

position in the signaling pathway, human apoptotic caspases are divided into two groups. 

Caspase-2, 8, 9, and 10 are initiator caspases because they are located on the upstream of the 
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signaling cascade. Caspase-3, 6, and 7 are executioner caspases which are located on the bottom 

of the cascade. Almost all healthy cells contain several caspases. These caspases, however, are in 

their inactive zymogen form, named procaspases. All the procaspases consist of an N-terminal 

domain and a catalytic domain formed by a big subunit p20 and a small subunit p10. The 

primary structures of catalytic domains share high homology for all apoptotic caspases while 

their N-terminal domains vary a lot. The initiator caspases usually contain large N-terminal 

domains, such as the caspase recruitment domain (CARD) in caspase-2, -9, and a pair of death 

effecter domains (DEDs) in caspase-8 and -10. These domains consist of specific protein-protein 

interaction motifs that play crucial roles in the activation process. Upon the stimulation of cell 

death signal, the N-terminal domains of initiator caspases will mediate the recruitment of the 

procaspases to specific death signaling complexes. The procaspase molecules will subsequently 

undergo self activation by ‘proximity-induced’ mechanism (Degterev, Boyce et al. 2003; 

Fuentes-Prior and Salvesen 2004). In contrast, the executioner caspases only have short N-

terminal domains and thus lack the capability of self activation in vivo. Their activation depends 

on the cleavage of initiator caspases.   

 The apoptosis pathway initiated by extracellular signals is called the extrinsic pathway 

(Fig 1.2) (Zhang, Hartig et al. 2005). It starts from specific molecules outside of the cells, known 

as pro-apoptotic ligands. These ligands include Apo2L/TRAIL and CD95L/FasL. The pro-

apoptotic ligand binds to their receptors on the cell surface. The receptor, known as death 

receptor, is characterized by extracellular cysteine-rich domains (CRDs) and belongs to the 

tumor necrosis factor (TNF) family of proteins (Lavrik, Golks et al. 2005). A number of death 

receptors have been discovered, and some of them have been well studied, such as TNFR1 (p55 

or CD120a), Fas (Apo1 or CD95), and TRAIL (R1/R2) (Yan and Shi 2005). All the death 
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receptor proteins have a death domain (DD) in their intracellular domains. They are responsible 

for binding adapter proteins during the caspase activation. The death ligands form homotrimers 

when they are activated, which induces the oligomerization of death receptor upon binding. The 

death domains of death receptor will subsequently bind to adaptor proteins such as FADD and 

TRADD. These adapter proteins also have death domains and they interact with the death 

receptor through homotyptic interactions (Cohen 1997). In addition, homotypic interactions are 

also formed between the death effecter domains (DED) of the adaptor protein and the pro-

domain of procaspase-8, which leads to the oligomerization of procaspase-8 (Lavrik, Golks et al. 

2005). Then, the death-inducing signaling complex (DISC) is formed. When the local enzyme 

concentration of procaspase-8 is increased in the DISC, procaspase-8 molecules begin to cleave 

each other, although a single procaspase-8 only has weak proteolytic activity (Lavrik, Golks et al. 

2005). As a result, the active initiator caspase-8 molecules are released. In type I cells, once 

caspase-8 is activated, it will start to process downstream executioner procaspases, including 

procaspase-3, 6 and 7. After that, the active executioner caspases will cleave their substrates and 

the apoptosis begins (Kumar 2007). 

 In the type II cells, the apoptosis signal coming from extrinsic death ligands is usually not 

strong enough to trigger the entire apoptotic cascade. As a result, it requires another loop to 

amplify the signal (Fig 1.2) (Zhang, Hartig et al. 2005). This loop is mitochondria-dependent 

signal pathway which will be introduced in the next paragraph. The bridge between these two 

pathways is built by a Bcl-2 family protein Bid. Following the activation, Bid will be cleaved by 

active caspase-8. The truncated protein tBid in turn translocates to the mitochondria and starts 

the apoptosis with other two Bcl-2 family members Bax and Bak (Yan and Shi 2005).  
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Another type of apoptosis pathway is called the intrinsic pathway (Fig 1.2). This is 

usually triggered by the death signals from inside the cells in response to diverse cell stresses, 

such as DNA damage, a defective cell cycle, detachment from the extracellular matrix, hypoxia, 

and loss of cell survival factors. The intrinsic apoptosis initiates from mitochondria and it is 

regulated by Bcl-2 protein family. The Bcl-2 protein family is characterized by the conserved 

Bcl-2 homology domain (BH) (Yan and Shi 2005). Over twenty Bcl-2 family members fall into 

two categories, the pro-apoptotic Bcl-2 and the anti-apoptotic Bcl-2 (Kumar 2007). The anti-

apoptotic Bcl-2 proteins, such as Bcl-2 and Bcl-xL in mammals, reduce the permeability of 

mitochondrial membrane and thus suppress the release of mitochondrial proteins. During 

activation, the pro-apoptotic Bcl-2 proteins, such as Bax and Bak, will undergo homo-

oligomerization. It is thought that these oligomers form pores which facilitate the release of 

mitochondrial proteins, although the conclusive evidence is lacking (Yan and Shi 2005). With 

the help of Bax and Bak, mitochondria proteins including cytochrome c and SMAC/DIABLO are 

released into the cytosol. The SMAC/DIABLO can promote apoptosis by directly interacting 

with inhibitor of apoptosis proteins (IAPs). The interaction interrupts the binding between IAPs 

and caspases and thus activates caspases. Meanwhile, Cytochrome c binds the adaptor apoptotic 

protease activating factor-1 (Apaf-1) to form a big multiprotein complex known as apoptosome. 

The apoptosome is a key component of the intrinsic pathway because procaspase-9 is recruited 

and activated from within the complex. Similar to the extrinsic pathway, the initiator caspase-9 

will activate downstream executioner caspases upon maturation. 

The other two initiator caspases are caspase-2 and caspase-10. The activation of caspase-

2 is similar to that of caspase-9. A big multiprotein complex is formed resembling the Apaf-

1/caspase-9 complex. The pro-domain of caspase-10 contains two DEDs, and its activation 
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depends on the oligomeration process similar to caspase-8. The physiological functions of 

caspase-2 and 10 in apoptosis, however, remain a matter of considerable debate (Kumar 2007).

 Caspase-3 is a major executioner caspase that cleaves the majority of cellular substrates 

in apoptotic cells. It can be activated by caspase-8 and 9 but not caspase-2 (Kumar 2007). 

Previous study in caspase-3 mutant mice in genetically mixed 129/SvJ_C57BL/6 background 

showed that mutant mice die prenatally due to reduced cell death in the central nervous system 

(CNS). However, in pure C57BL/6 background, caspase-3 null animals are viable but show 

reduced fertility. This comparison indicates that caspase-3 is redundant for most developmental 

cell death (Lakhani, Masud et al. 2006). In addition, caspase-7 null animal also showed normal 

development. In C57BL/6 background, Casp3/Casp7 double knockout (DKO) mice die rapidly 

after birth. Cells from DKO mice showed resistance to extrinsic apoptosis but not intrinsic 

apoptosis, although the activation of intrinsic apoptosis was delayed. It suggests that caspase-3 

and 7 may amplify the signal of intrinsic apoptosis. Caspase-3, 6, and 7 share a similar structure, 

but caspase-6 shows different substrate specificity from caspase-3 and 7. The function of 

caspase-6 in apoptosis is still unclear. The mutation and knockout results suggest that one 

executioner caspase may be most important in a particular cell death pathway while others are 

either redundant or compensate. And their activities may be context dependent (Kumar 2007).  

1.3. Caspase Substrate Specificity 

 Understanding the substrate specificities of caspases can help us to predict natural 

caspase substrates and understand apoptotic signaling pathways. More importantly, it can 

provide guidance for the design of inhibitors and drugs. This work can be done in two different 

ways, either by investigating binding preferences in caspase active site grooves or by analyzing 

the cleavage site sequences on their natural substrates. Obviously the first way is easier at the 
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early stage of investigation as finding natural substrates of caspases is relatively difficult. In 

1997, two different groups, Thornberry and Talanian, established the basic understanding of 

caspase substrate preference by using synthetic peptide substrates (Talanian, Quinlan et al. 1997; 

Thornberry, Rano et al. 1997). In the following years, the result was refined by a number of 

studies, which led to a widely accepted understanding of caspase substrate specificity. As 

illustrated in Figure 1.3, most caspases recognize tetrapeptide sequences. From the N-terminus to 

the C-terminus, positions of each residue on the substrate are named P4, P3, P2, and P1. The 

corresponding binding sites on the protein are named S4-S1. The enzyme can hydrolyze the 

peptide bond after the P1 Asp. From P4 to P1, caspase-1,4,5,14 prefer W/YExD (x refers to any 

amino acid); caspase-8,9,10 prefer I/LExD; caspase-3,7 prefer DExD; caspase-6 prefers VExD; 

and caspase-2 prefers the pentapeptide substrate V/LDExD (Timmer and Salvesen 2007). Further 

studies suggested that the P1’ residue (the residue after P1) is also important for substrate 

specificity. For example, Gly, Ala, Thr, Ser and Asn are preferred at P1’ by caspase-3, while 

bulky or charged residues were poorly tolerated (Stennicke, Renatus et al. 2000).  

 The traditional understanding of caspase substrate specificity has been verified by many 

in vitro kinetic studies, however, it is vast oversimplified and dangerous to use for the prediction 

of protein substrates (Timmer and Salvesen 2007). The presence of the preferred cleavage site 

sequence is not sufficient for a protein substrate to be cut. The cleavage site must be properly 

presented to the enzyme. The interactions between enzymes and larger substrates are usually 

mediated by exosites distant from the catalytic site for many other regulatory proteases. 

Although additional interactions between caspase and substrate have been suggested, the 

mechanism still remains unrevealed. The crystal structure of p35 interacting with caspase-8 at a 

surface area distant from the active site may suggests a possible exosite (Fisher, Cruz et al. 1999). 
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In addition to exosites, the cleavage site sequences on caspase natural substrates also diverge 

from canonical sequences. For example, about 45% of reported caspase-3 natural substrates 

contain noncanonical cleavage site sequences (Fischer, Janicke et al. 2003). Thus, the preferred 

cleavage site sequence on a protein is neither sufficient nor necessary to be a real cleavage site in 

vivo.  As the functions of caspases are better understood, more and more natural substrates of 

caspases are being discovered. As discussed in a previous review (Earnshaw, Martins et al. 1999), 

natural caspase substrates in apoptotic cells contain a wide range of proteins, including but not 

limited to cytoskeleton proteins in cytoplasm, structural proteins in the nucleus, proteins 

involved in DNA metabolism and repair, proteins involved in cell cycle regulation and 

proliferation, proteins involved in signal transduction pathways, proteins related to human 

genetic diseases, and proteins in the apoptotic regulation pathway. The identification of a real 

substrate target is a challenging process with experiments from in vitro kinetic assay using 

recombinant caspases to the test of cleavage site mutant transgenically introduced into whole 

animals. Indeed only a small portion of the reported events are found to be significant in vivo. 

Therefore, we must be aware that the published results have different levels of reliability and 

they should not be considered equally for the analysis of caspase substrates.  

 The studies of caspase substrate specificity have been progressing for more than a decade. 

They began from investigating the catalytic rates of different substrates. The preliminary 

understanding helped the discovery of various natural caspase substrates, which in turn provides 

valuable information for refining our understanding of caspase substrate specificity. In the 

second round of investigation, we are studying the substrate binding from the structural point of 

view. We hope that our study will provide valuable information to improve knowledge of 

caspase substrate specificity.    
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1.4. Caspase Inhibitors 

Caspases are involved in apoptosis and inflammatory responses. They have been hot 

targets of drug design for many years because dysregulation of caspase activity leads to many 

severe diseases. Suppression of caspase activity is usually observed in cancer patients while 

increased caspase activity is associated with many neuronal degenerative diseases and 

autoimmune diseases, such as Parkinson’s disease (Blandini, Sinforiani et al. 2006), Alzheimer’s 

disease (Blandini, Sinforiani et al. 2006), Huntington’s disease (Sanchez Mejia and Friedlander 

2001), stroke (Schulz, Weller et al. 1999), and sepsis (Hotchkiss and Nicholson 2006). Although 

caspase is a very attractive drug target and many inhibitors have been developed, no compound 

has become an approved drug against caspase so far. Therefore, developing better caspase based 

inhibitors is necessary for future drug development. 

Current caspase inhibitors can be divided into three groups, natural inhibitor proteins, 

substrate analog inhibitors, and non-peptide compounds. The most well known cellular caspase 

inhibitors are the inhibitors of apoptosis protein (IAP) family. They are characterized by their 

consensus N-terminal baculoviral inhibitory repeat (BIR) domains. XIAP is the most studied 

family member. It has three BIR domains among which BIR2 is shown to inhibit caspase-3 and 7 

while BIR3 can inhibit caspase-9. The functions of other IAPs, however, still remain unclear 

(Eckelman, Salvesen et al. 2006). 

Substrate analog inhibitors are usually peptides with ketone or aldehyde warheads. These 

peptide inhibitors are not attractive for therapeutic development due to lack of specificity, 

inhibiting all caspases and other cysteine proteases, or poor cell penetration and metabolic 

stability. The mode of binding of peptide inhibitors has been studied in crystal structures, and 

many structure based designs have aimed to reduce the peptidyl features (Weber, Fang et al. 
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2008). This strategy has led to the identification of several effective substitutions for P2-P4 

residues, as summarized in an earlier review (O'Brien and Lee 2004). Recently, a number of new 

peptidomimetic caspase inhibitors were reported. One example is MX1153 (compound 1 in Fig. 

1.4) (Wang, Guan et al. 2005). Although this inhibitor has fluoromethylketone as a warhead, it 

showed >5000 fold IC50 for caspase-3 over several other cysteine proteases and serine proteases, 

and reduced apoptosis in a mouse model. Another potent caspase-3 inhibitor M867 was 

synthesized recently (Han, Giroux et al. 2005) (compound 2 in Fig 1.4). The P1 Asp was retained 

in this compound, while the P2-P4 backbone was replaced by an amino pyrazinone template. The 

hydrophilic furazanmethylamino showed the best binding affinity at P4, and at P2, the 

hydrophobic t-Bu displayed the optimal whole cell activity, consistent with the substrate 

specificity of caspase- 3. At the P1’ position, an N-methyl-N-hexyl group dramatically improved 

cell permeability. Overall, M867 was highly effective in the in vivo anti-apoptosis tests (IC50 20-

1200 nM). Interestingly, M867 was shown to be about 60-fold more effective against 

recombinant caspase-3 versus caspase-7, and may facilitate the development of inhibitors 

selective for caspase-3 rather than caspase-7, which has been a difficult issue for many years. 

Other novel compounds are the aza-peptide inhibitors (Ekici, Li et al. 2006; Ganesan, Jelakovic 

et al. 2006).These inhibitors carry P2-P4 peptide residues, but the P1 Asp is modified to aza-Asp 

(Cα was replaced by N). Ketone and aldehyde were substituted with Michael acceptors as 

warheads in these compounds, resulting in better selectivity against caspases over clan CA and 

other clan CD proteases, such as legumain, clostripain, and gingipain K (Ekici, Li et al. 2006). 

The interactions between these aza-Asp inhibitors and caspases are similar to those of 

conventional tetrapeptide inhibitors at the P1-P4 positions, although the extension at P1’ allows 

the exploration of the S1’ site of caspases. Crystal structures showed that the S1’ pocket of 
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caspase-3 is surrounded by four loops forming an internal space of 900 Å3 (Ekici, Li et al. 2006). 

Thr166 and Tyr204 are located at one side of this pocket and Phe128 and Met61 are on the other 

side (Fig. 1.4B). Analysis of kinetic data and crystal structures suggested that a bulky 

hydrophobic group can penetrate deeply into the S1’ pocket of caspase-3 forming favorable 

interactions. Consequently, this inhibitor had enhanced binding affinities compared with 

compounds with small P1’ groups. In contrast, caspase-8 has a relatively small S1’ site created 

by Leu254, Ile257 and Tyr324 (Fig. 1.4B), and prefers small non-polar groups such as ethyl. 

Enzyme inhibition assays suggested that caspase-7 has the same S1’ selectivity as caspase-3, 

perhaps due to their highly homologous sequences; esters were the best candidates at P1’ for 

caspase-2; ethyl was the optimal P1’ group for caspase-9 and 10; while there was no distinct S1’ 

selectivity observed for caspase-6 (Ekici, Li et al. 2006). 

 Parallel to the modification of peptidic inhibitors, potential caspase inhibitors have been 

discovered by searching in the available chemical libraries. 5-nitroisatin was first discovered as a 

nonpeptide caspase-3 inhibitor by using a highthroughput screen in the SmithKline Beecham 

compound collection (Lee, Long et al. 2000). The modification of this compound led to the 

development of a series of potent isatin analog inhibitors of caspase-3/7, including compound 3 

in Fig. 1.5A with appKi values of 1.2 nM and 6 nM for caspase-3 and caspase-7, respectively 

(Lee, Long et al. 2001). Kinetic data and crystallographic analysis on compound 5 in the 

complex with caspase-3 indicated that a reversible covalent, tetrahedral adduct was formed 

between the isatin carbonyl and the active site cysteine (Lee, Long et al. 2000). Unlike most 

peptidomimetic inhibitors, the isatin inhibitors lack a P1 Asp and the caspase S1 pocket is thus 

empty (Lee, Long et al. 2000) Fig. 1.5C. The pyrrolidine rings interact with caspase-3/7 

primarily in the hydrophobic S2 pocket formed by three aromatic residues: tyrosine, tryptophan, 
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and phenylalanine (Fig. 1.5D). Because caspases differ in their S2 pockets, this exclusive 

binding profile of these inhibitors results in 1000-fold higher selectivity for caspase-3/7 versus 

many other caspases (1, 2, 4, 6, and 8). This unique feature enables them to specifically inhibit 

caspase-3 and 7, which has been unachievable by peptidomimetic inhibitors to date. Surprisingly, 

a recent biochemical and biophysical study showed that compound 3 abolished caspase-3 activity 

upon binding to only one active site of the homodimer (Aulabaugh, Kapoor et al. 2007). This 

interesting phenomenon, however, was not observed in the previous crystal structure (Lee, Long 

et al. 2000). Despite the ambiguities in the inhibition mechanism of isatin sulfonamide inhibitors, 

their effectiveness in reducing apoptosis has been clearly demonstrated (Lee, Long et al. 2000; 

Chapman, Magee et al. 2002). N1-substituted 5-pyrrolidinylsulfonyl isatins have been shown to 

inhibit caspase processing in apoptotic endothelial cells (Kopka, Faust et al. 2006). For instance, 

the compound (s)-(+)-5- [1-(2-methoxymethylpyrrolidine) sulfonyl]isatin (MMPSI) reduced 

myocardial ischemic injury in an isolated rabbit heart model (Chapman, Magee et al. 2002). The 

isatin sulfonamide compounds, which are potent and selective reversible nonpeptide caspase 

inhibitors, have become good templates for structure-based drug design. Recently, modifications 

at three different regions of an isatin sulfonamide molecule were evaluated for caspase-3/7 

inhibition (Fig. 1.5A) (Chu, Zhang et al. 2005). In region I, neither substitution of the para-

position nor replacement with a pyridine ring significantly changed the inhibitory potency. 

Nevertheless, a 20 fold lower potency was observed when the phenoxymethyl moiety in this 

region was removed, indicating the hydrophobic group in region I possibly binds in the non-

polar S1’ site of caspase-3/7. In region II, the replacement of the pyrrolidine ring with an 

azetidine ring did not improve the potency. In region III, the substitution of the benzene ring with 

a pyridine ring increased the potency by 3-4 times against caspase-3/7, possibly due to the 
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introduction of a hydrophilic interaction between the phenoxymethyl moiety and the S3 binding 

pocket of caspase-3/7 (Chu, Zhang et al. 2005). An earlier study claimed that the in vivo 

applications of isatin sulfonamide inhibitors may be limited because of the highly reactive nature 

of their ketone carbonyl groups toward nucleophiles (Lee, Long et al. 2000). A possible solution 

for this issue has been achieved recently by a new class of isatin sulfonamide analog compounds 

called isatin Michael acceptors (IMAs) (Chu, Rothfuss et al. 2007). They contain Michael 

addition acceptors as their warheads, which can be attacked by the thiol nucleophile of cysteine 

(Fig. 1.5B). The binding affinities of certain IMAs, such as compound 4 in Fig. 1.5B, have 

reached the nanomolar range against caspase-3/7. Interestingly, all IMAs showed 10-fold higher 

potency for caspase-6 relative to their isatin sulfonamide analogs (Chu, Rothfuss et al. 2007). 

This potency may provide a valuable hint for the design of caspase-6 inhibitors, which has 

lagged far behind the development of caspase-3/7 inhibitors. 

1,3-dioxo-2,3-diydro-1H-pyrrolo[3,4-c]quinoline (Fig. 1.6B) was recently discovered as a 

small molecule inhibitor of caspase-3/7. It represents a novel scaffold for non-peptide inhibitors 

of executioner caspases. A number of derivatives varying at the R1, R2 and R3 positions were 

synthesized and evaluated in caspase-3 in vitro inhibition assays (Kravchenko, Kysil et al. 2005). 

Compound 6 with the combination of a morpholinesulfonyl moiety at position R1 and 1,3,5-

trimethyl-1H-pyrazol-4-yl group at R2 was the lead compound among those tested when R3 was 

fixed to –CH3 (Fig. 1.6A) (Kravchenko, Kysil et al. 2005). It showed an IC50 value of 4 nM 

against caspase-3, comparable to the commercial tetrapeptide inhibitor Ac-DEVD-CHO 

(IC50=3.1 nM under the same conditions). The best R3 moiety was examined by fixing R1 and 

R2 groups. Methyl group and phenyl group displayed the best IC50 values of 23nM and 27nM, 

respectively (Kravchenko, Kuzovkova et al. 2005). Overall, the best combination of R1-R3 is 
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shown in compound 8 in Fig. 1.6A, however, its activity remains to be determined. The 

inhibitory mechanism of this class of inhibitors has been suggested to arise from nucleophilic 

attack of the caspase catalytic cysteine on the ‘phthalimide’ carbonyls (Kravchenko, Kysil et al. 

2005) (Fig. 1.6B). However, the mode of binding of these inhibitors has not been confirmed due 

to the absence of structural evidence. In addition, recent kinetic studies indicated that these 

compounds were noncompetitive reversible inhibitors for caspase-3 (Kravchenko, Kuzovkova et 

al. 2005), implying that they do not bind in the active site groove of caspase-3 or interact with 

the catalytic cysteine. Possibly these compounds bind in another region of caspase-3, such as the 

allosteric binding site. Further insights into the mode of binding of these inhibitors could lead to 

the discovery of new inhibitory mechanisms. Another subset of this class of inhibitors is the 

isoquinoline-1,3,4-trione (compound 9) derivatives (Chen, Zhang et al. 2006). The best 

compound (compound 10) showed a comparable potency against caspase-3 to that of the peptidic 

inhibitor Ac-DEVD-CHO. Although, most of these compounds demonstrated better activities 

against caspase-3/7 over other caspases, the differences were not sufficient to ensure selectivity. 

However, some isoquinoline-1,3,4-trione derivatives specifically inactivated caspase-1 (Ma, 

Zhang et al. 2007). Importantly, this class of compounds showed 50-1000 fold higher 

specificities against caspases relative to other cysteine and serine proteases (Chen, Zhang et al. 

2006). The compounds were validated in PC21 cells and primary neuronal cells, where they 

effectively attenuated apoptosis induced by the amyloid-beta protein that is released by caspase-3 

in the progression of Alzheimer’s disease (Zhang, Zhang et al. 2006). Enzyme kinetic studies 

indicated that these compounds performed as noncompetitive inhibitors (Chen, Zhang et al. 2006) 

and they bound to caspases irreversibly in a slow-binding manner (Zhang, Zhang et al. 2006). 

The binding mode of these compounds is unknown. Therefore, the future development of these 
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promising quinoline derivatives would benefit greatly from structural analysis of the caspase-

inhibitor complexes.  

 Despite substantial efforts, relatively few compounds targeting caspases are currently in 

clinical trials. The caspase inhibitors VX-765 (Fig. 1.7 compound 11), VX-740, and MX-1013 

were reviewed previously (Callus and Vaux 2007). Caspase-1 inhibitor VX-756 is in Phase II 

clinical trials for the treatment of inflammatory diseases (Fischer and Schulze-Osthoff 2005). 

VX-799, a small molecule pan caspase inhibitor developed by Vertex/Serono for septic organ 

failure, is in Phase I clinical trials. The pan caspase inhibitor IDN-6734 developed for the 

treatment of acute myocardial infarction is also in Phase I clinical trials (Fischer and Schulze-

Osthoff 2005). IDN-6556 (Fig. 1.7 compound 12) is an oxamyl dipeptide pancaspase inhibitor 

(O'Brien and Lee 2004) with promising results in Phase I clinical trials (Callus and Vaux 2007) 

and in Phase II clinical trials in patients with liver transplants (Baskin-Bey, Washburn et al. 

2007). Also, IDN-6556 is promising as a potential drug for chronic hepatitis C (Pockros, Schiff 

et al. 2007).  

Information from crystal structures of caspase complexes has proven valuable in the 

design of more selective and potent caspase inhibitors such as the aza-peptides with Michael 

acceptors, and the non-peptide isatin derivatives, and for the design of SMAC mimics to activate 

caspases. In parallel, structure-based screening of chemical libraries has identified novel 

compounds to control caspase activity like the isatin derivative inhibitors and the activator 

embelin. Overall, the development of pharmacological agents to control caspase mediated cell 

death has greatly benefited from structural studies, and several compounds are in clinical trials or 

preclinical development for treatment of various diseases. 

 



16 
 

 

1.5. Protein Crystallography and Caspase Structures 

 Determining protein 3D structure can help the understanding of protein functions and 

thus is a critical component of proteomics. Two methods are currently widely used for 

determining protein structures, X-ray protein crystallography and nuclear magnetic resonance 

(NMR). The basics of X-ray crystallography were established by a number of scientists in the 

early twentieth century, but this technique was not used on investigating protein structures until 

1950s’. By first solving the structure of sperm whale myoglobin using X-ray crystallography, 

Max Perutz and Sir John Cowdery Kendrew were awarded the Nobel Prize in Chemistry in 1962. 

In the following half century, protein crystallography technique has been significantly improved 

in respect to both accuracy and efficiency. Today protein crystallography has become an almost 

routine technique in biological studies. Compared with NMR, crystallography has no limitation 

on the size of macromolecules, thus it is becoming more and more popular. According to the 

protein data bank (www.pdb.org), 52025 structures of biological macromolecules have been 

determined by X-ray crystallography by Sep-29-2009.  

 Protein crystal is a solid material where protein molecules are arranged in an orderly 

repeating pattern extending in all three spatial dimensions. When an X-ray beam strikes a crystal, 

it will be diffracted into many specific directions. By analyzing the diffraction pattern, a 

crystallographer can determine the positions of protein atoms in the crystal. The basis of protein 

crystallography is the Bragg’s law (nλ = 2 d sinθ) whose principle is shown in the Figure 1.8b. 

Crystal is formed by highly ordered repeats of unit cells (Figure 1.8a). We can consider the 

atoms 1 and 1’ in the figure 1.8b as equivalent atoms in two repeated unit cells. When an X-ray 

beam strikes on these two atoms, there will be two reflections (a and b) generated by the 

reflection planes (m and m’). Because X-rays are a type of electromagnetic wave, the amplitudes 
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of a and b will be amplified if they are in the same phase when they reach the detector. In 

contrast, their amplitudes will be canceled out if they are in opposite phases. According to 

Bragg’s law, if the difference (2l in the figure 1.8b) between the pathlengths of a and b equals nλ 

(n is any integer, λ refers to the wave length) then a and b will have the same phase when they 

reach the detector. This means we can find the right angle θ by simply rotating the crystal 

because λ and d are constants for a particular experiment. Since every equivalent atom 1 in each 

unit cell will generate a reflection, once the X-rays strike the crystal from the right angle θ, the 

amplitudes of all these reflections will be summed up on the detector and thus form one bright 

spot. On the other hand, reflections generated by nonequivalent atoms will not form a spot 

because their amplitudes will be canceled out due to different phases. The intensity of a spot is 

proportional to the square of the amplitude of the diffracted wave. The intensities together with 

the phase angles can be transformed by Fourier Transformation into 3D visualizations of electron 

surfaces of atoms, called electron density map. As a result, the position of each atom can be 

determined.   

Protein crystallography, although useful, is a challenging technique because several 

bottlenecks limit its success rate. For example, growing diffraction quality crystals, including 

previous protein expression and purification, finding appropriate cryoprotectant, and phasing are 

all very challenging tasks. The entire process of protein crystallography includes the following 

steps: crystallization, data collection, phasing, modeling, and refinement.  

Crystallization is the first and the most difficult step. Normally, proteins can form into 

crystals in very particular conditions depending on protein concentration, pH, salt, temperature, 

buffer, precipitant, and addictives. Crystallization conditions of different proteins normally vary 

a lot from one to another. Even single residue mutation or replacement of a small ligand can 
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dramatically change the crystallization condition. Therefore a standard crystallization protocol 

does not exist, and one successful crystallization usually comes out of hundreds even thousands 

of failures. Crystallization techniques fall into several categories, vapor diffusion, batch, and 

dialysis. The vapor diffusion method is the most widely used method. Taking hanging drop 

method as an example, the principle of vapor diffusion is illustrated in Figure 1.9a.  The sealed 

system contains reservoir solution in a small well covered by a glass coverslip. The reservoir 

solution consists of buffer, precipitant, and sometimes addictives. A small amount (1-2µl) of 

protein solution is mixed with equal amount of reservoir solution and suspended as a droplet 

underneath the coverslip. Because the precipitant concentration in the droplet is lower than that 

in the reservoir solution, water in the droplet will slowly evaporate and migrate into the reservoir 

until the system equilibrates. As a result, protein concentration in the droplet will gradually 

increase. If the final concentrations of protein and precipitant are optimal, protein crystals will be 

formed (Rhodes 2000). A picture of protein crystals is shown in the Figure 1.9b.  

The second step is data collection. Because low temperature can increase the stability of 

molecules and thus enhance diffraction quality, X-ray diffraction data are currently collected 

with the help of liquid nitrogen (boiling point -196°C). Therefore, the protein crystal needs to be 

mounted on to a fine glass capillary loop with the reservoir liquid and frozen in the liquid 

nitrogen before the diffraction experiment. The freezing step requires the protection of 

cryoprotectant, which is some chemical agent that prevents the formation of both crack and ice in 

the protein crystal during the flash freezing in liquid nitrogen. Regular cryoprotectants include 

glycerol, small molecular weight polyethylene glycol, sugar, and some oils. Because the type and 

concentration of cryoprotectant and the appropriate procedure for freezing crystals vary from 

crystal to crystal, the cryoprotection is also a challenging step. During the data collection, the 
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crystal is placed in front of an X-ray detector. Following the Bragg’s law, an X-ray beam will be 

diffracted into many particular directions after striking the crystal and thus form spots on the 

detector. The detector will record the diffraction pattern as one diffraction frame. The crystal is 

rotating during the data collection. In order to determine the 3D structure of the protein, a large 

number of frames must be taken at different angles. Because long-term X-ray radiation can 

damage the alignment of crystal cells, the aim of data collection is to accomplish the highest 

resolution and completeness within the shortest time. 

 To solve the protein structure, both diffraction density and phase are required. However, 

the phase cannot be measured directly in the experiment and it needs to be deduced indirectly. 

Actually, the phasing problem is the second serious bottleneck of crystallography. There are two 

basic approaches to solve the phasing problem: one is to perturb the structure and diffraction, and 

the other is to guess the phases. Two methods are widely used for the first approach: multiple 

isomorphous replacement and multiple wavelength anomalous dispersion. The isomorphous 

replacement is a classic phasing method. It uses a crystal nearly identical to the one being studied, 

except that there are several atoms replaced or added. Usually heavy atoms are co-crystallized or 

soaked into the crystal where they can bind tightly with the protein. These heavy atoms can 

perturb the diffractions and their positions are likely to be deduced. From positions of heavy 

atoms, phases of other protein atoms can be deduced. Because replacing or adding atoms can 

disturb structures of nearby protein atoms, the isomorphism is never perfect. The multiple 

wavelength anomalous dispersion (MAD) then becomes a substitution. In this method, only one 

crystal is studied. It contains atoms called anomalous scatterers, such as selenium. The degree to 

which the anomalous scatterers perturb the diffraction pattern can be changed by using different 

X-ray wavelengths. In this way, the position of anomalous scatterers can be deduced. This 
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method is more accurate than the isomorphous replacement because all the experiments are done 

on one crystal. In contrast to deduction, phase can be solved more efficiently by guessing 

sometimes, especially when the protein structure has been solved in another crystal form, or the 

protein sequence is similar to another protein (identity > 25%) with known structure. In this case, 

the known structure can be used as a template to guess the phase of the current crystal by using 

rotation and translation functions (Blow 2002).  

 When the phase problem is solved, the diffraction data can be transformed into electron 

density map by using Fourier transform (Sherwood 1976): 
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According to Fourier transform, the electron density function ρ (x,y,z) can be determined by the 

volume of the unit cell V, structure factor Fhkl, and the phase. The structure factor is calculated by 

the following equation: 
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In the equation, the parameter fj refers to scattering factor of a particular atom j.  

Based on the electron density map, a protein structural model can be built. Usually the 

main chain atoms of the protein are first fitted into the electron density map. Side chain atoms 

are then added one by one according the protein sequence. Building structural model is much 

more straightforward for molecular replacement because most atoms would have been positioned 

after the phasing. Normally, high resolution data can provide more detailed and confident 

information to the protein conformations. Roughly speaking, the overall shape of a protein can 

be seen with the data of resolution 5.5 ; main chain structures can be determined with 
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resolution of 3.5 ; side chain conformations can be determined with resolution of 2.5 ; and 

positions of single atoms can be determined with resolution of 1.5  or better. Since this step is 

relatively straightforward, some software has made it automatic, such as ArpWarp (Lamzin and 

Wilson 1993) and Coot (Emsley and Cowtan 2004).  

 The last and most tedious step is the model refinement. In this step, the conformation of 

each individual residue needs to be examined. If the model structure does not fit the electron 

density perfectly, then it needs to be adjusted as close to the density map as possible. 

Subsequently, new electron density map will be calculated based on adjusted model. This 

process needs to be repeated many times until the discrepancy R between the X-ray structure 

factors calculated for the model structure |Fcal| and the observed intensities |Fobs| drops to a 

reasonable lever ( 0.25obs calh

obsh

F F
R

F
−

= <∑
∑

). Usually a protein has one to several hundreds of 

residues, therefore the refinement process can last days to weeks.  

 3D structures of six caspases family members have been determined using X-ray 

crystallography, including caspase-1, 2, 3, 7, 8, and 9 (Yan and Shi 2005). The structures of 

other caspases still remain unclear. All the identified mature caspase structures share similar 

overall structure. In most caspase structures, a heterotetramer is formed by two caspase 

molecules, each of which contains a big subunit p20 and a small subunit p10. The active site 

cysteine is surrounded by loops, forming the substrate binding pocket. The structures of six 

caspase family members are shown in the Figure 1.10.       

1.6. Protein Structure Prediction and Potential Functions 

 The number of proteins discovered in different species is growing very fast because of 

the development of new techniques for investigating biological mechanisms. The determination 

of protein structures, however, lags behind due to the efficiency limit of current experimental 
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techniques for structural determination. Fortunately, it is believed that proteins always fold into 

their 3D structures by following certain physical and chemical rules. Roughly speaking, a protein 

molecule always folds into the most stable conformation in a certain environment, which means 

the internal energy of a protein molecule is the lowest in its native conformation. Therefore, the 

protein structure can be predicted by simply comparing the internal energies of all possible 

conformations. With the help of modern computers, protein structure prediction, or structural 

modeling, has made great contributions to the understanding of protein structures and functions. 

 The internal energy of a protein molecule cannot be directly measured in the experiment. 

It is thus approximated by mathematical functions. One type of potential functions is derived 

from physical laws and they are called empirical potentials. Normally, the molecular system is 

represented in atomic level for molecular mechanics and electronic level for quantum mechanics. 

In the molecular mechanics, atoms are typically described as points with certain charges and 

masses. Their positions are represented by coordinates in Cartesian space (Erkoc 2001). The 

interactions between atoms include bonded interactions and nonbonded interactions. The bonded 

interaction is usually represented with a quadratic expansion around the equilibrium bond 

distance.  Similar functions are used to represent other aspects of covalent geometry such as 

bond angles, planarity, chirality and torsional (around bond) rotations. The nonbonded 

interactions, including van der Waals interactions (attractive and repulsive force between 

molecules) and electrostatic interactions, are normally described by the Lennard-Jones potential 

and the Coulomb's law, respectively. Total potential energy of a protein molecule is determined 

by the summation of the bonded and non-bonded energies (Erkoc 2001). This type of potential 

function has large complexity and moderate accuracy.  
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Another type of potential energy function is named knowledge-based potentials (or 

statistical potentials). It differs from the empirical potentials in developing potential functions 

using statistical approaches but not physical rules. Based on the assumption that a protein 

molecule always folds into its native structure with the lowest potential energy in native 

conditions, computers can be trained to develop statistical potential functions to discriminate the 

native structure (experimentally determined protein structure) from structural models having 

different conformations (known as decoys). These potential functions, therefore, can be applied 

for evaluating the qualities of predicted protein structural models. More specifically, lower 

potential energy reflects better quality for a structural model, or verse visa. Many knowledge-

based potentials have been developed. In some methods, a single point is used to represent the 

position of a residue. Different methods use different residue representation, such as Ca atom, Cb 

atom, or side chain center of mass (SCM) (Zhang, Liu et al. 2004). The entire potential energy of 

a protein is calculated as the summation of the energy between each residue pair. These methods 

are thus residue level potentials, such as RAPDF-SCM (Samudrala and Moult 1998), KBP-SCM 

(Lu and Skolnick 2001), and DFIRE-SCM (Zhang, Liu et al. 2004). In order to achieve better 

accuracy, many methods calculate the potential energy based on each atom pair. These methods 

are named atomic level potentials, such as DFIRE-A (Zhou and Zhou 2002), and Atomic KBP 

(Lu and Skolnick 2001). 

The knowledge-based potentials are developed by using machine learning techniques, 

where training data has large impact on the accuracy of the potential functions. The training data 

normally consists of decoy sets. Each decoy set contains one native structure of a protein and a 

certain amount (from less than one hundred to thousands) of distinct structural models of the 

same protein. Decoy structures are generated by using different algorithms. Commonly used 
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decoy sets include lattics_ssfit (Xia, Huang et al. 2000), lmds (Keasar and Levitt 2003), and 

Rosetta (Simons, Bonneau et al. 1999), etc. Hidden features of the native protein structure can be 

extracted by machine learning methods, such as genetic algorithm which is a widely used 

machine learning technique for searching exact or approximate solutions to optimization 

problems (Banzhaf, Nordin et al. 1998). The extracted hidden feature can be consequently 

integrated into potential functions to discriminate the native structure and closely similar 

structural models from other models. Although traditional knowledge-based potentials have 

better computational efficiency and cover hidden features of protein structures, the potential 

functions themselves are less physically meaningful and cannot be used for molecular mechanics. 

Therefore, this method still needs to be improved. 

1.7. Objectives 

 Although a tremendous mount of effort has been put into the development of caspase-

based drugs for over a decade, no caspase-based drug is yet available. Major challenges for drug 

development include cell permeability, metabolic stability, and target specificity. Since a large 

number of caspase inhibitors have been developed (Weber, Fang et al. 2008), a potential drug is 

likely to be obtained by modifying these caspase inhibitors. Structural information of 

substrate/inhibitor binding in caspases can provide valuable guidance in the design of the next 

generation of drug candidates. Therefore, this study aims to help the future caspase-3 based drug 

design from two aspects. First, the structural basis of caspase-3 substrate binding at P1-P5 will 

be investigated by analyzing crystal structures of caspase-3 bound with its substrate analog 

inhibitors. Second, novel knowledge-based potential functions will be developed in order to 

facilitate the prediction of protein structures and protein-ligand structures.     
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Figure 1.1. Grouping of 14 mammalian caspase family members (Lavrik, Golks et al. 2005). 
Colorful blocks refer to different domains.   
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Figure 1.2. Extrinsic and intrinsic signaling pathway of apoptosis (Zhang, Hartig et al. 2005). 
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Figure 1.3. Schematic presentation of caspase substrate binding site. The substrate 
specificities of caspases are shown in the Table where X refers to any amino acid. 
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Figure 1.4. Peptidomimetic inhibitors. A. MX1153 and M867 are two examples of 
peptidomimetic inhibitors of caspase-3. B. The binding of aza-peptide inhibitors in caspase-3 
(PDB code 2C2M) and caspase-8 (PDB code 2C2Z). Side chains of caspase S1’ residues are 
shown in stick format and labeled with residue names. The aza-peptide Michael acceptor 
inhibitors are shown in stick format and their P1’ groups are labeled. 
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Figure 1.5. Isatin sulfonamide analog inhibitors. A. Isatin sulfonamide analog inhibitors of 
caspase-3/7. I, II, and III indicate three groups modified in later studies (12,49). B. IMA inhibitor, 
and proposed reaction mechanism with caspases. C. Crystal structure of 1GFW shows the 
binding mode of compound 5 in caspase-3. Caspase-3 active groove is in a surface representation. 
S1’~S4 binding pockets are labeled. D. Schematic representation of interactions between 
inhibitor 5 and caspase-3. Hydrogen interactions are shown in dashed lines. Caspase-3 S2 
residues having non-polar interactions with inhibitor 5 are labeled. 
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Figure 1.6. Quinoline derivative inhibitors. A. Modification of a general quinoline derivative 
inhibitor led to the discovery of two potent caspase-3 inhibitors, compounds 6 and 7. Compound 
8 suggests a putative better inhibitor. B. Putative inhibitory mechanism of quinoline inhibitors 
against caspases. C. Compound 10 is an example of isoquinoline inhibitor derived from 
compound 9. 
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Figure 1.7. Structures of VX-765 and IDN-6556. Structure of VX-765 (11) and IDN-6556 (12) 
in clinical trials. 
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Figure 1.8. Crystal packing and the Bragg’s law. (a) Packing of protein crystals. (b) 
Schematic presentation of the Bragg’s law. 
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Figure 1.9. Hanging drop vapor diffusion system and crystal samples. (a) Hanging drop 
vapor diffusion system. (b) Protein crystals of caspase-3/DMQD complex under microscope. 
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Figure 1.10. The list of caspase structures currently deposited in PDB. The structures are in 
ribbon representation and rainbow coloring. 
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2. CASPASE-3 BINDS DIVERSE P4 RESIDUES IN PEPTIDES AS REVEALED BY 

CRYSTALLOGRAPHY AND STRUCTURAL MODELING 

2.1. Introduction 

 Caspases are key effectors in the processes of apoptosis and inflammation. The family of 

cysteine aspartyl proteases comprises 14 mammalian caspases that are divided into three groups 

according to their structure and role in the apoptotic and inflammatory pathways. The first group 

consists of inflammatory caspase-1, 4, 5, and 11 (Martinon, Holler et al. 2000). They play 

essential roles in cytokine maturation and inflammatory responses. The second and the third 

groups are involved in the apoptotic process. Caspase-2, 8, 9, 10, and 12 are called initiator 

caspases because they are located on the upstream of the signaling pathway. They initiate the 

apoptotic cascade upon receiving interior or exterior death signals. Caspase-3, 6, 7, and 14 are 

downstream caspases that are activated by initiator caspases during apoptosis. The mature 

proteins are called executioner caspases because they selectively hydrolyze cellular proteins in 

the pathways leading to cell death. Several hundred different proteins have been identified as 

caspase substrates, as reviewed in (Fischer, Janicke et al. 2003; Timmer and Salvesen 2007).  

 Caspase activity is highly regulated in the cell. Some natural caspase regulators have 

been identified, such as caspase recruitment domains (CARD) and inhibitor of apoptosis proteins 

(IAPs), however, the entire regulatory machinery is very complicated and not yet fully 

understood. Dysregulation of caspase activity is associated with many severe human diseases. 

For example, neuronal crush injury, stroke, heart failure and neurodegenerative diseases such as 

Alzheimer’s, Parkinson’s, and Huntington’s diseases are associated with increased activities of 

caspases (Hartmann, Troadec et al. 2001; Hermel, Gafni et al. 2004; Tacconi, Perri et al. 2004). 

On the other hand, caspase activity is suppressed in cancer, autoimmune diseases and viral 



36 
 

 

infections (Vucic, Stennicke et al. 2000; Lakhani, Masud et al. 2006; Volkmann, Cornberg et al. 

2006). The development of caspase inhibitors as potential drugs has attracted great attention. 

Several non-peptide caspase inhibitors are currently in clinical trials, such as IND6556 and VX-

740 (O'Brien and Lee 2004; Callus and Vaux 2007).  

Caspase recognition of substrates has been investigated in order to identify the caspase-

mediated pathways leading to cell death as well as to facilitate drug development. Early studies 

on peptides showed that caspases recognize at least four residues from P1 to P4, and they 

exclusively require aspartic acid at P1 in their substrates. From P2 to P4, different caspases have 

distinct preferences. Caspase-1, 4, and 5 were shown to prefer the tetrapeptide sequence WEHD. 

Caspase-2, 3, and 7 prefer DEXD, whereas, caspase-6, 8, and 9 prefer (L/V)EXD (Thornberry, 

Rano et al. 1997; Lavrik, Golks et al. 2005). However, a series of recent studies have questioned 

these preferences. For example, the application of substrate-phage approach implied that DLVD 

was hydrolyzed up to 170% faster than canonical caspase-3 substrate DEVD (Lien, Pastor et al. 

2004). A computer based virtual screen found a potent caspase-3 inhibitor Ac-DNLD-Cho with 

comparable inhibition to Ac-DEVD-Cho. Similarly, Ac-DFPD-Cho was found to be the best 

tetrapeptide inhibitor for caspase-7 (Yoshimori, Sakai et al. 2007). Moreover, a non-polar P5 

residue was shown to facilitate substrate recognition of caspase-2 and 3, while polar P5 is 

preferred by caspase-6 (Schweizer, Briand et al. 2003; Fang, Boross et al. 2006). Since many 

caspase substrates are observed with diverse non-canonical sequences at their cleavage sites 

(Backes, Kuentzer et al. 2005), it is apparent that the substrate selectivity of caspases is still 

poorly defined. 

Caspase-3 is one of the critical executioner caspases. Previously, we analyzed the S2, S3 

and S5 pockets of caspase-3 using aldehyde peptidyl inhibitors Ac-DEVD-Cho, Ac-DMQD-Cho, 
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and Ac-VDVAD-Cho (17). Analysis of the P5 interaction in S5 was extended to the Ac-LDESD-

Ac complex (Fu, Chumanevich et al. 2008). The complexes with non-canonical P4 residues in 

the S4 pocket of caspase-3 have not been analyzed, due to the assumption that P4 Asp was 

critical for substrate binding (Stennicke, Renatus et al. 2000). Although P4 Asp is common, 

many other amino acids, including hydrophobic residues, can be found at the P4 position in the 

known protein substrates of caspase-3 (Fischer, Janicke et al. 2003). Evidently, P4 Asp is not 

essential for substrate recognition and hydrolysis. In addition, the analysis of non-polar residues 

in the S4 pocket is important for development of inhibitors into drugs, because hydrophobic 

moieties provide better cell permeability in drugs. Therefore, the binding of P4 residues was 

studied with the dual aims of helping to identify natural caspase-3 substrates and to design new 

inhibitors and drugs. Previous structural studies have focused on peptide with P4 Asp. The 

plasticity of the S4 pocket was studied in four caspase-3 crystal structures with inhibitors Ac-

IEPD-Cho (IEPD), Ac-WEHD-Cho (WEHD), Ac-YVAD-Cho (YVAD), and Boc-D(OMe)-Fmk 

(BocD). This crystallographic analysis was combined with molecular mechanics energy 

calculations on structural models of P4 residues in relation to enzyme inhibition data, and 

suggested that S4 pocket of caspase-3 can accommodate a variety of residues with different 

affinities.  

2.2. Materials and Methods 

2.2.1. Plasmids and Recombinant Proteins 

The cloned full length human caspase-3 cDNA was expressed in E.coli BL21(DE3). The 

over-expressed protein was purified using nickel affinity chromatography, ion exchange 

chromatography, and gel-filtration chromatography as previously described (Fang, Boross et al. 

2006). Protein was concentrated to 4 mg/ml and stored at -80 °C. The purity was determined to 

be over 99% by SDS-PAGE. 
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2.2.2. Enzyme Kinetic Assays  

The inhibition constants of reversible aldehyde caspase-3 inhibitors Ac-IEPD-Cho, Ac-

WEHD-Cho, and Ac-YVAD-Cho were measured using the same protocol as previously 

described (Fang, Boross et al. 2006). Briefly, caspase-3 was preincubated with its inhibitors in 

reaction buffer (50 mM HEPES, 100 mM NaCl, 0.1% CHAPS, 10% glycerol, 1mM EDTA and 

10 mM dithiothreitol, pH 7.5) at room temperature for 15 mins. Then, substrate was added and 

reaction velocity was calculated from p-nitroanilide released by enzyme cleavage as measured at 

a wavelength of 405 nm using a Polarstar Optima microplate reader (BMG Labtechnologies, 

NC). The inhibition constants of each inhibitor were determined by a dose-response curve 

described by the equation: Ki = (IC50-0.5[E])/(1+[S]/Km), where [E], [S] and IC50, respectively, 

correspond to active enzyme concentration, substrate concentration, and the inhibitor 

concentration needed to suppress half enzyme activity (Maibaum and Rich 1988). The enzyme 

concentration was determined by active site titration against Ac-DEVD-Cho using method 

described previously (Donepudi, Mac Sweeney et al. 2003). The inhibition profile of irreversible 

inhibitor BocD was obtained using the same method and 30 mins preincubation. Time 

dependence of the initial velocity was measured using 300 nM of caspase-3 and a constant 

amount (2µM) of BocD after preincubation for times from 0 to 60 mins.  

2.2.3. Crystallographic Analysis  

The inhibitors were dissolved in dimethylsulfoxide. Caspase-3 was incubated at room 

temperature with the inhibitor at 10 to 20-fold molar excess. Crystallization was performed by 

the hanging-drop vapor diffusion method. Specifically, 1 µl of protein solution (4 mg/ml) was 

mixed with an equal volume of mother liquid (100 mM sodium citrate, 5% glycerol, 10 mM 

dithiothreitol, and 14-18% PEG6000, pH 6.5). Crystals grew within 24 hrs at room temperature. 

The crystals were frozen in liquid nitrogen with 20% glycerol as a cryoprotectant. X-ray 
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diffraction data were collected on the SER-CAT beamline at the Advanced Photon Source, 

Argonne National Laboratory.  

The diffraction data were processed with HKL2000 (Otwinowski 1997). The structures 

were solved by molecular replacement with the program AmoRe (Navaza 1994). The structure of 

caspase-3/DMQD (PDB code 2H5J) was used as the initial model for all the structures in this 

study. All the structures were refined using CNS (Brunger, Adams et al. 1998). The molecular 

graphics program O 8.0 (Jones, Zou et al. 1991) was used to display the electron density map and 

to refit structures. Water molecules and alternate conformations of caspase-3 residues were 

modeled when observed in the election density maps. Structural figures were made by Weblab 

viewer pro (Accelrys Inc., MA) and images of electron density map were obtained using 

Molscript (Esnouf 1997; Esnouf 1999). The crystal structures have been deposited in the RCSB 

Protein Data Bank with accession codes 3GJT for caspase-3/IEPD, 3GJQ for caspase-3/WEHD, 

3GJS for caspase-3/YVAD, and 3GJR for caspase-3/BocD. 

2.2.4. Molecular Modeling 

 Models of caspase-3 complexes with inhibitors of the form Ac-XEVD-Cho, where X is 

one of the 20 amino acids, were built using the program AMMP (Harrison 1993). The models 

were generated from the crystal structure of caspase-3/DEVD (Fang, Boross et al. 2006), which 

comprises the DEVD inhibitor bound to one large and one small subunit of a caspase-3 

heterodimer. The other P4 residues were introduced into the inhibitor using Coot (Emsley and 

Cowtan 2004). The hydrogen atoms were built with the sp4 potential set using 15 cycles of the 

analytic model building algorithm in AMMP (Bagossi, Tozser et al. 1999; Harrison 1999), 

followed by conjugate gradients minimization of the non-bonded and geometrical terms. Finally, 

each caspase-3/inhibitor complex was optimized by 1000 steps of conjugate gradients energy 

minimization. The total non-bonded interaction energy was calculated for each caspase-peptide 
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model. Structural models were examined with the molecular graphics program RasMol (Sayle 

and Milner-White 1995) on Linux PCs. The experimental binding energy was calculated as ΔG = 

RT lnKi from the seven measured inhibition constants for correlation with the calculated 

interaction energies. The regression line from this correlation was used to predict Ki values for 

the peptides with other P4 residues from the peptide-caspase interaction energies calculated by 

the modeling program. 

2.3. Results 

2.3.1. Analysis of P4 Residues in Known Caspase-3 Substrates 

The frequency of occurrence of different P4 amino acids was analyzed for 182 natural 

substrates of caspase-3 listed in (Fischer, Janicke et al. 2003). Almost all amino acids can be 

found at least once at the P4 position as shown by the relative occurrence (Fig. 2.1). Aspartic 

acid was the most frequent residue in this position appearing in 55% of the substrate cleavage 

sites. The other cleavage sites had sixteen different residues at the P4 position, comprising 29% 

polar and 16% nonpolar residues. Glu and Ser are ranked second and third in frequency after Asp, 

appearing in 10% and 9 % of cleavage sites, respectively. Hydrophobic residues appear in the 

relative frequency of Val > Ala > Leu > Met > Phe > Ile/Cys. None of the 182 proteins had Arg, 

Lys, or Gln at P4, so these positively charged or polar amino acids are likely to be rare in 

caspase-3 cleavage sites. Therefore, in normal physiological conditions, the S4 pocket of 

caspase-3 can accommodate a variety of residues including the preferred negatively charged Asp, 

small polar and a variety of hydrophobic side chains.  

2.3.2. Inhibition Constants of Caspase-3 Inhibitors  

 Seven substrate analog reversible inhibitors of caspase-3 are commercially available. 

They were divided into two groups based on their P4 residues. DEVD, DQMD, and DMQD are 

caspase-3/7 inhibitors with the standard motif of DxxD; while IEPD, ESMD, WEHD, and 
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YVAD possessing different P4 residues are optimal inhibitors of initiator caspase-8 and 

inflammatory caspases. The kinetic study was performed using the canonical caspase-3 substrate 

Ac-DEVD-pNA with the Km value determined as 62.5±2.5 µM. The inhibition constants of the 

seven inhibitors against caspase-3 are listed in Table 2. The first group of inhibitors with the 

standard P4 Asp exhibited potent inhibition with Ki values from 1.2 nM for DEVD to 12 nM for 

DMQD, whereas the second group of inhibitors had Ki values approximately a thousand times 

weaker. In the second group, IEPD was the most potent with the Ki value of 1.2 μM, while 

YVAD was the weakest with Ki of 10 μM. The inhibition values are comparable with those of 

previous studies with fewer inhibitors showing Ki values of 0.2-1nM for DEVD, 195 nM for 

IETD, 1.9 μM for WEHD and 10-12 μM for YVAD (Nicholson, Ali et al. 1995; Talanian, 

Quinlan et al. 1997; Garcia-Calvo, Peterson et al. 1998).  

 BocD is a pan-caspase irreversible inhibitor widely used for in vivo studies. Its inhibitory 

profile was compared with IEPD as shown in Fig. 2.2a. At low inhibitor concentration, the 

enzyme activity was insensitive to the inhibitor. However, a substantial decrease of enzyme 

activity was observed when the inhibitor concentration was raised to 1 µM. The sigmoidal 

dependence of inhibition upon inhibitor concentration suggests that BocD has a cooperative or 

two-state binding as described for another irreversible inhibitor in (Qiu, Chen et al. 2005). The 

two-states may reflect different binding modes of BocD in the same site, or binding to the two 

active sites in the caspase heterotetramer. The inhibition increased when the BocD was incubated 

longer with the caspase-3 before the activity was assayed (Fig 2.2b). The time dependency 

suggests that BocD acts as a slow binding inhibitor. 

2.3.3. Overall Structures of Four Caspase-3 Complexes 

 Caspase-3 was crystallized in complex with three tetrapeptide aldehyde inhibitors, IEPD, 

WEHD, and YVAD, as well as one modified monopeptide inhibitor BocD, in order to study the 
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binding of hydrophobic P4 residues. The crystallographic data and refinement statistics are 

summarized in Table 2.1. The proteins crystallized in two space groups: primitive orthorhombic 

space group P212121 and primitive monoclinic space group P21. The four structures were refined 

to the resolutions of 1.9-2.6Å with R factors of 21.4-24.4%. All the four complexes consist of 

two p17/p12 heterodimers in their asymmetric units. The main chain conformations of caspase-3 

in the four complexes are essentially identical and they closely resemble our previously reported 

structure of caspase-3/DEVD (2H5I) with overall rmsd of 0.41-0.49 Å for Cα atoms. Overall, the 

side chain atoms share similar conformations since the average all atom rmsd for the four 

structures is 0.7 Å, and the average for residues in the active site cavity is almost identical at 0.8 

Å. 

The three tetrapeptide inhibitors were bound in extended conformations in the S1-S4 

substrate binding sites of caspase-3 (Fig. 2.3a). The 2Fo-Fc electron density map of inhibitor 

YVAD is shown in Figure 2.3b. A thiohemiacetal bond was formed between the aldehyde group 

(-CHO) of the inhibitor and the mercapto group (-SH) of the catalytic site Cys163. The main 

chain atoms of all three inhibitors shared similar positions and their Cα atoms superimposed very 

well with average rmsd of 0.27 Å for four Cα atoms. On the other hand, significant 

conformational variations were observed when side chain atoms were compared. Compared with 

the canonical inhibitor DEVD, the three weaker inhibitors differ mainly at P2 and P4 positions, 

and the structural differences will be explained in the later sections. 

 Caspase-3 was crystallized with the inhibitor BocD in order to study the unliganded S4 

pocket. BocD was observed in a unique mode of binding. The Fo-Fc map in the substrate 

binding site clearly indicated that this inhibitor only occupied the S1 and S2 pockets of caspase-3 

(Fig. 2.3c). A zwitterionic intermediate was formed between the fluoromethyl ketone (-FMK) on 
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the inhibitor and the mercapto group (-SH) of Cys163. Although it has been claimed that this 

inhibition could be reversed in certain conditions, such as high DTT (1,4-dithio-threitol) 

(Ganesan, Mittl et al. 2006), this class of inhibitors is conventionally considered to be 

irreversible caspase inhibitors in physiological conditions. 

2.3.4. Inhibitor Interactions in the S1-S3 Subsites 

 The peptidic inhibitors formed a series of hydrogen bond and ionic interactions in the 

caspase active site cavity, as shown in Figure 2.4. The interactions in each subsite are described 

separately. Caspases are known to have a stringent requirement for aspartic acid at the P1 

position of their substrates. In agreement, the P1 Asp of the three tetrapeptide inhibitors bound in 

the S1 pocket in very similar conformations. The major interactions in S1 include both ionic 

bonds and hydrogen bonds formed between P1 Asp and Arg64, Arg207, Gln161, and Ser205. 

Although P1 Asp is critical for tight binding of peptides, its negative charge is undesirable in 

potential drugs. The inhibitor BocD illustrates one way to improve cell permeability by 

methylation of one side chain oxygen atom of the P1 Asp. The methyl-Asp occupied the S1 

pocket of caspase-3 in a comparable conformation to the P1 Asp of the canonical inhibitor 

DEVD (Fig. 2.4a) except that the methyl group extended into the pocket towards Gln161. The 

neutralized P1 group formed single hydrogen bond interaction, instead of ionic interaction, with 

the positively charged Arg64 and Arg207. The interaction with Gln161 was not observed in this 

structure (Fig. 2.4d). From the protein perspective, the conformations of S1 residues were 

conserved in all four complexes. 

 The S2 subsite is formed by three hydrophobic residues, Tyr204, Trp206, and Phe256. Its 

plasticity was explored using the residues Pro and His, as well as the hydrophobic moiety Boc 

(tert-butoxycarbonyl) in the new structures. In the structure of caspase-3/IEPD, the P2 Pro neatly 

fitted into the S2 subsite. Although its side chain is smaller than Val in the canonical DEVD, 
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three S2 residues shifted their side chains towards the P2 Pro reducing the size of the S2 pocket. 

Consequently, proline has favorable van der Waals interactions with these three S2 residues (Fig. 

2.5b). Compared with proline, histidine was not expected to be an attractive P2 residue due to its 

bulkier side chain. In the structure of caspase-3/WEHD, however, the P2 histidine was 

accommodated in the S2 pocket with its aromatic ring pointing into the solvent (Fig. 2.5c). All 

the side chain carbon atoms formed van der Waals interactions with the three hydrophobic S2 

residues. Compared with P2 Val of canonical DEVD, the Cα atom of His had moved a little 

further from the S2 residues, which was likely due to the larger size of the His side chain. In the 

caspase-3/BocD complex, the hydrophobic Boc group occupies the equivalent P2 position. 

Unexpectedly, the electron density map clearly showed that the Boc group was directed out of 

the S2 subsite, (Fig. 2.3c; 2.5d). Although the terminal carbon atoms of the Boc group had 

interactions with Tyr204, the interactions with Trp206 and Phe256 were lost. This analysis 

suggests that the S2 subsite of caspase-3 prefers small hydrophobic moieties like Val or Pro, and 

the Boc group is too bulky for optimal fit. 

The primary interactions in the S3 pocket are the main chain hydrogen bonds formed 

between the P3 residue and Arg207. They are conserved independent of the type of amino acid at 

P3. In these structures of caspase-3 with IEPD, WEHD, and YVAD, Glu and Val formed similar 

main chain interactions in the S3 pocket as described in an earlier study (Fang, Boross et al. 

2006). Therefore, P3 Val can be accommodated in the S3 subsite, although earlier binding 

studies showed that caspase-3 preferred hydrophilic residues, with the highest affinity for P3 Glu 

in peptides (Thornberry, Rano et al. 1997). The side chain of P3 Glu formed hydrogen bond 

interactions with the side chain hydroxyls of Ser65 and Ser209 in caspase-3/WEHD, however, 

the P3 Glu in IEPD only retained the interaction with Ser65 while the side chain of Ser209 
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rotated to interact with its neighbor Lys210. A water mediated hydrogen bond was formed 

between P3 Glu and Arg207 in both structures. In contrast, the side chain of P3 Glu in the 

canonical inhibitor DEVD formed a direct hydrogen bond with Arg207 but had no hydrogen 

bonds with Ser65 and Ser209 (Fig. 2.5e). These differences imply that the interactions of the P3 

side chain depend on the type of amino acid at positions P2 and P4, however, further studies are 

necessary to address this question. 

2.3.5. S4 Subsite 

 In our previously reported structure of caspase-3/DEVD, the P4 Asp interacted with the 

main chain atoms of Phe250 and Asn208 through its side chain oxygen atoms and main chain 

amide group. Those polar interactions tightly anchored the P4 Asp in the S4 subsite. In contrast, 

the three hydrophobic P4 residues in the new structures showed no direct hydrogen bonds with 

S4 residues, except for the hydrogen bond between the amide of P4 Ile in IEPD and the carbonyl 

oxygen of Phe250 (Fig. 2.4a). In caspase-3/YVAD a water mediated hydrogen bond interaction 

was found between the side chain hydroxyl of P4 Tyr and the main chain atoms of Gln248. 

Despite the paucity of polar interactions, the three P4 residues formed favorable hydrophobic 

interactions in two separate regions of the S4 pocket. In the structure of caspase-3/IEPD, the side 

chain of Ile was rotated slightly into the S4 subsite compared with the conformation of P4 Asp in 

caspase-3/DEVD, and fitted in a non-polar pocket formed by the aromatic side chains of Trp206 

and Trp214 (Fig. 2.5f). Similar favorable van der Waals interactions between P4 Ile and two Trp 

residues were observed in the complex of caspase-7/IEPD (Agniswamy, Fang et al. 2007). Also, 

the S4 subsite of initiator caspase-8 is formed by two aromatic residues, Trp420 and Tyr412, 

consistent with the preference for Ile at P4 position. In the complex of caspase-3/YVAD, the P4 

Tyr lay in the S4 pocket with its side chain hydroxyl directed out of the substrate binding groove. 

The P4 Tyr formed favorable van der Waals bonds with Trp214 and Trp206 (Fig. 2.5g). The 



46 
 

 

terminal acetyl oxygen of YVAD formed hydrogen bonds with the main chain and side chain of 

Ser209, whereas, the acetyl group of IEPD formed a water-mediated interaction with the side 

chain of Ser209, and these interactions also contribute to the binding affinity (Fig. 2.6).  

In the complex of caspase-3/WEHD, the P4 Trp binds in the S4 subsite in a unique 

manner. The entire side chain of Trp and the acetyl group were rotated by about 90° (Fig. 2.5h). 

Consequently, the aromatic ring of P4 Trp interacted with the hydrophobic side chains of Phe250 

and Phe252 that were proposed to form the S5 pocket of caspase-3 (Fang, Boross et al. 2006). 

Because of the rotation, the acetyl oxygen formed a hydrogen bond with the main chain amide of 

Phe250 instead of the interaction with Ser209 seen in the other complexes (Fig. 2.4b). Moreover, 

the interaction of P4 Trp with Phe250 and Phe252 in the S5 subsite appeared to trigger a closure 

of about 0.9 Å of the loops 1 and 4, similar to the conformational change and induced fit 

mechanism proposed in our previous studies of caspase-3 with P5-containing pentapeptides 

(Fang, Boross et al. 2006).  

Although BocD does not possess a P4 residue, a glycerol molecule was found in the S4 

subsite in the crystal structure of caspase-3/BocD. The glycerol molecule was positioned to form 

two hydrogen bonds between glycerol oxygen O1 and O2 and the side chain nitrogen of Trp214 

as well as the amide group of Phe250, respectively (Fig. 2.5i). The binding of glycerol reflects 

the polar nature of the S4 subsite. In the absence of P4-containing ligand, S4 is highly accessible 

for water and other polar solvent molecules.  

Overall, the structures showed that the different P4 residues can bind with small 

conformational changes in the caspase-3 residues, similar to the observations for caspase-7 

(Agniswamy, Fang et al. 2007). The divergent binding modes of the various P4 residues imply 

that, although polar residues bind favorably in the S4 subsite, non-polar residues can be 
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accommodated without triggering substantial conformational changes. Two distinct hydrophobic 

pockets provide interactions with hydrophobic P4 in the S4 region. Trp206 and Trp214 form an 

inner subsite, which is suitable for smaller non-polar side chains while Phe250 and Phe252 form 

an outer pocket, which is suitable for larger hydrophobic P4 side chains like Trp or, alternatively, 

P5 residues like Val or Leu. The binding modes of P4 Trp and P4 Tyr in YVAD and WEDH, 

respectively, illustrate the two distinct pockets (Fig. 2.6). This structural analysis explains why 

some natural substrates of caspase-3 have hydrophobic P4 resides, such as Ile and Leu in CREB 

and DCC, respectively (Backes, Kuentzer et al. 2005). 

2.3.6. Correlation of Structural Interactions with Inhibition 

 The three substrate analog inhibitors share the same P1 Asp residue. They exhibit 

comparable conformations for P1 and have similar interactions with S1 residues. In the next 

subsite, all three different P2 residues exhibited favorable van der Waals interactions with S2 

residues. Therefore, the variations of P3 and P4 are the primary factors influencing inhibitory 

potency. The three tetrapeptide inhibitors showed weak inhibition compared with canonical 

inhibitor DEVD (Table 2.2). IEPD is the strongest among three with a Ki value of thousand 

times higher than for DEVD. The weakest inhibitor YVAD is ten-fold weaker than IEPD. 

Structural analysis suggests that Ile is the most favorable of the three P4 residues because it 

preserves a main chain hydrogen bond interaction with Phe250. Tyr is the next most favorable 

since its side chain has a water mediated hydrogen bond with Gln248. The Trp is ranked last 

because of two reasons. First, it has no polar interactions with S4 residues unlike the other two 

residues. Second, the binding to the S5 pocket requires rotation of its entire bulky side chain. At 

the P3 position, Glu is clearly more favorable than Val in the S3 subsite. The positively charged 

Arg207 and hydrophilic Ser65 firmly anchored the negatively charged Glu in the S3 pocket. On 

the contrary, the Val side chain has no favorable interaction with S3 residues. Thus, the variation 
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of P3 is the primary reason for the inhibitory differences of the three inhibitors. Overall, the 

substitution of P4 Asp with hydrophobic residues resulted in dramatically reduced inhibitory 

potency. IEPD was the best because P4 Ile has a better fit in S4 than other two and P3 Glu is 

favorable. YVAD showed the weakest inhibition mainly because of the mismatch of P3 Val in 

the S3 subsite. WEHD had the least favorable P4 residue, however, the favorable P3 Glu 

interaction still made a stronger inhibitor than YVAD. Moreover, the side chain of P3 Glu in 

WEHD formed one more hydrogen bond with Ser209 relative to P3 Glu in IEPD. This analysis 

illustrates the effects of combining sequence variations at the P4 and P3 positions, which is 

expected to influence the efficiency of hydrolysis of proteins with different sequences at their 

cleavage sites.   

 From the viewpoint of numbers of favorable interactions with caspase-3, BocD should 

exhibit the lowest binding affinity as reflected in our inhibition assay. The methylated P1 Asp is 

uncharged and less favorable than the negatively charged Asp for binding the positively charged 

S1 pocket. The consequence is that a higher concentration of the inhibitor needs to be 

accumulated in order to effectively block the active site of the enzyme. Hence, the poor 

performance of BocD was observed in the low concentration range. In the higher concentration 

range, BocD was a stronger inhibitor than WEHD and YVAD because it can irreversibly 

inactivate caspase-3.  

2.3.7. Predicted Binding Of Diverse P4 Residues 

 The analysis of mode of binding and inhibition of P4 residues was extended to all 20 

amino acids by molecular modeling. 20 residues at the P4 position in peptide inhibitor XEVD 

were modeled in their complexes with caspase-3. The program AMMP (Harrison 1993) was used 

for modeling with the crystal structure of caspase-3/DEVD (2H5I) comprising one inhibitor 

bound to one large and one small caspase subunit as the initial template. The structural 
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interactions and the interaction energies were predicted for the peptides in the molecular models 

of caspase-3/XEVD. Importantly, the predicted conformations of the P4 Ile, Trp and Tyr in the 

inhibitor XEVD closely resemble those observed in our crystal structures (Fig. 2.7).  

The accuracy of the energy calculation was evaluated using the seven commercial 

caspase tetrapeptide inhibitors with Ki values determined in our caspase-3 activity assay (Table 

2.2). To our knowledge, this is the most complete set of aldehyde tetrapeptide inhibitors of 

caspase-3 at present. As shown in the Fig 2.7a, the observed free energies (ΔG) derived from 

experimental Ki values for the seven inhibitors showed excellent correlation (R of 0.83) with the 

calculated interaction energies for the models. The calculated interaction energy is an estimate of 

the internal energy ΔU, which is assumed to dominate the changes in free energy. In these 

calculations on a single configuration the effects of entropy and energy of solvation are assumed 

to be small or similar for the series of inhibitors. Therefore, the estimate for ΔU can be used to 

estimate trends in binding free energy ΔG for different peptides. The high correlation indicates 

that these structural models and energy calculations are reliable.  

In order to estimate relative binding affinities for all 20 P4 residues in the peptide XEVD, 

structural models were also made with Asp, Ile, Trp, and Tyr in the P4 position using the same 

procedure. The predicted Ki values of inhibitors XEVD, which were derived from mapping the 

calculated interaction energies onto the regression line in Fig 2.8a, are shown in Fig 2.8b. The P4 

Asp showed the highest affinity in the prediction, in agreement with experimental results. The 

inhibitor with P4 Glu was predicted to be the second strongest one. Arg and Asn were predicted 

to be the next best at P4 in this tetrapeptide, although Lys and His were among the weaker 

inhibitors. Among the hydrophobic P4 residues, aliphatic residues were predicted to show better 

binding than aromatic residues. These results are consistent with the previous experimental 
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analysis of caspase-3 substrate preference (Thornberry, Rano et al. 1997). The predicted trends in 

binding affinity showed general agreement with the residue ranking in our analysis of natural 

substrates (Fig 2.1), although deviations appeared for some residues such as Arg and Asn. The 

predictions for relative inhibition from the energy calculations assume that changes in entropy 

and solvation energy are negligible. Also, the binding affinity depends on the entire substrate and 

the models used tetrapeptides with optimal residues at P1 to P3 instead of the full-length protein 

substrates with a variety of residues at these positions. Therefore, experimental data for proteins 

with different cleavage site sequences are required in order to more fully understand the substrate 

specificity of caspase-3. 

The model complexes were analyzed for the binding mode of the different P4 residues 

(Fig. 2.9). Most of the sixteen residues showed similar conformations with interactions 

depending on the type of side chain at P4. The eight polar P4 residues Arg, Lys, Glu, Asn, Gln, 

His, Ser and Thr were predicted to form at least one side chain hydrogen bond interaction with 

caspase residues. Most of them interacted with the main chain atoms of Phe250 (Fig. 2.9). The 

P4 Arg and Lys were predicted to form hydrogen bonds with the main chain of Glu248 and the 

side chain of Asn208, and P4 His formed a hydrogen bond with Ser209. On the other hand, the 

hydrophobic residues Pro, Ala, Cys, Val, Leu, Met and Phe interacted with S4 subsite through 

van der Waals interactions with distance cutoff of 3.8-4.2 Å. All of these residues interacted with 

Trp206. In addition, P4 Leu, Met and Phe interacted with Phe250, and P4 Leu also interacted 

with Trp214. Glycine is not shown in the figure since it does not have a side chain. Most acetyl 

group on the inhibitors formed hydrogen bond interactions with Ser209, as observed for crystal 

structures of caspase-3/IEPD and YVAD (Fig. 2.4). An exception was observed in the model 

with P4 Phe, where the acetyl interacted with Asn208 and Trp214 instead. This change was 
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because the side chain of P4 Phe had rotated towards Phe250 and Phe252 similar to the rotated 

conformation seen for P4 Trp in the crystal structure of caspase-3/WEHD (Fig. 2.6).  

Independent of the predicted binding affinities, most P4 residues were accommodated 

without greatly changing the conformation of the S4 pocket. His and Phe were only two P4 

residues that showed considerable conformational change when bound to the enzyme, which is 

consistent with their higher estimated Ki compared with others. Our results imply that the S4 

subsite is capable of accommodating various P4 residues. Hydrophilic P4 residues are predicted 

to interact with F250 and N208, whereas hydrophobic P4 residues are predicted to interact with 

W206 and F250. According to the calculated interaction energy, most substitutions of P4 

resulted in a hundred fold decrease in the binding potency compared with inhibitor DEVD. The 

binding affinity, however, will also depend on the residues present at other positions, such as P3. 

Further analysis will be needed to explore the effect of variations at other positions in the 

cleavage sites. Moreover, a substrate protein with a significantly lower binding affinity can still 

effectively bind to caspase-3 and be hydrolyzed in physiological conditions. This analysis 

explains why a large number of non-canonical substrate sequences have been found.   

2.4. Discussion 

Since the original work of Thornberry and Talanian (Talanian, Quinlan et al. 1997; 

Thornberry, Rano et al. 1997), the idea of consensus recognition sequences was established as 

the basis of the current substrate and inhibitor research of caspases. DxxD was considered the 

classic substrate recognition motif for caspase-3 and -7 from studies of short peptides. This 

information, however, is misleading in searching for cellular caspase substrates because a 

substrate protein does not have to bind with the highest affinity. Numerous natural substrates of 

caspases have been discovered by in vitro kinetic studies, in vivo cleavage studies, and 
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mutagenesis studies. For example, in one recent study, 27 out of 59 natural caspase-3 substrates 

do not have Asp at P4 in their cleavage sites (Backes, Kuentzer et al. 2005). In fact, 10 of those 

substrates possess hydrophobic P4 residues. We have extended the statistics on natural substrates 

of caspase-3 and found that 45% of 182 reported natural caspase-3 substrates possess residues 

other than Asp at P4, and over a third of them are non-polar residues. It challenges the older 

understanding of substrate recognition of caspase-3 from earlier in vitro kinetic studies on 

peptides. Crystal structures of caspase-substrate complexes can shed light on this problem by 

providing direct evidence of whether a putative substrate can bind and how it binds.  

 Our structures with three substrate analog inhibitors have demonstrated the binding 

modes of non classical residues from P2 to P4 positions. The hydrophobic S2 subsite of caspase-

3 was suggested to preferentially recognize aliphatic residues. Nevertheless, some natural 

caspase-3 substrates have aromatic residues at P2, such as PAPD in CAMK4 

(calcium/calmodulin dependent protein kinase IV) and DRHD in NFKBIA (nuclear factor of 

Kappa light peptide gene enhancer in B-cells inhibitor, alpha) (Backes, Kuentzer et al. 2005). In 

our structures, the aromatic side chain of His and hydrophobic Pro were both accommodated in 

the S2 subsite. This observation is consistent with a previous screening study where proline was 

found to be one of the best P2 residues (Lien, Pastor et al. 2004). Furthermore, the pyrrolidine 

ring has been successfully utilized at P2 in the development of caspase-3/7 inhibitors, such as the 

isatin sulfonamide inhibitors (Lee, Long et al. 2000). Clearly, the S2 subsite of caspase-3 can 

accommodate both aliphatic residues and aromatic residues. At the P3 position, our analysis 

confirmed previous studies that various residues can bind in S3, among which Glu is the best. 

At the P4 position, the three groups of caspases exhibit distinct preferences. Initiator 

caspases prefer Leu/Ile/Val, inflammatory caspases prefer Trp, while executioner caspases 
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demonstrate a strong preference for Asp at P4 position and any substitution resulted in thousand-

fold difference in the binding affinity. This characterization was challenged by several previous 

studies where caspase-8 was shown to tolerate P4 Asp (Blanchard, Donepudi et al. 2000) and 

caspase-7 was shown to accommodate hydrophobic P4 residues such as Trp (Agniswamy, Fang 

et al. 2007). The cleavage sites of many caspase-3 natural substrates, such as YVPD in CDC2L1 

(cell division cycle 2 like 1 protein) and ILND in CREB (cAMP response element-binding 

protein) (Backes, Kuentzer et al. 2005) underlined the natural ability of caspase-3 to bind diverse 

P4 residues in vivo. Several polar residues have showed tight interactions with S4 in our 

predictions, including Asp, Glu, Asn and Ser. Although hydrophobic residues showed weaker 

interactions in the S4 subsite, most of them can be accommodated in favorable conformations in 

our models as well as in the crystal structures. Our previous studies revealed that the S4 subsite 

of caspase-7 has dual functionality with a hydrophilic area and a hydrophobic area (Agniswamy, 

Fang et al. 2007). In the current study, the same feature was found in the S4 subsite of caspase-3. 

The side chain of P4 Ile in IEPD and P4 Tyr in YVAD interacted with a hydrophobic pocket 

formed by Trp206 and Trp214 deep inside the S4 subsite. In contrast, the side chain of P4 Trp in 

WEHD extended out of the S4 subsite and made contact with the reported hydrophobic S5 

residues (Fang, Boross et al. 2006). The physiological function of hydrophobic S5 is reflected in 

the crystal structure of XIAP bound with caspase-3 (Riedl, Renatus et al. 2001), where Ile149 

and Ile153 of XIAP interacted with S5 residues. In the absence of structural information for 

natural caspase substrates, the roles of Trp206 and Trp214 in the S4 subsite were not understood 

before. Nevertheless, their ability to interact with non-polar residues was revealed in this study. 

Van der Waals interactions between hydrophobic P4 residues and Trp206 were also conserved in 

our structural models. This analysis supports the existence of the inner non-polar pocket of the 
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S4 subsite. The discovery of dual functionality of the S4 subsite and the binding modes of 

diverse P4 residues provides the structural basis for binding of non-polar residues in S4 subsite. 

Small aliphatic non-polar residues such as Ala, Val, and Leu are better accommodated than 

aromatic residues in the inner pocket of S4, which may explain the relative frequency in the 

caspase cleavage sites. However, the P4 preferences will likely differ in the context of a full-

length protein substrate rather than a short peptide. Protein substrates may form additional 

interactions at exosites, as described for caspase-7 (Agniswamy, Fang et al. 2007). Although the 

mechanism is not fully understood, it is clear that some non-polar P4 residues such as Ala, Val, 

and Leu, must be considered when searching for potential caspase-3 substrates.  

Last but not least, the information on binding of non-polar P4 residues to caspase-3 can 

facilitate the development of new inhibitors and drugs. Current drug design for caspase-3 is 

mostly limited to the P1, P2 and P3 positions. Introduction of a hydrophobic P4 moiety would 

not only facilitate the binding, but also improve the cell permeability. Compound IDN-6556 is 

one such example (Pockros, Schiff et al. 2007). Although the structure of its complex with 

caspase is not available, the aromatic moiety at its N terminus is likely to bind in the S4 of 

caspase-3 (Irene T. Weber 2008). This oxamyl peptide compound showed inhibition of all 

caspases and is currently under phase II clinical trials in patients with liver transplants (Baskin-

Bey, Washburn et al. 2007). The results from this study should be considered in the future 

development of therapeutic compounds.      
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Table 2.1. Crystallographic data collection and refinement statistics  

 

 

Caspase3/ 

Ac-YVAD-
Cho 

Caspase3/ 

Ac-IEPD-
Cho 

Caspase3/ 

Ac-WEHD-
Cho 

Caspase3/ 

Ac-D(Me)-
Fmk 

Space group P21 P212121 P212121 P21 

a (Å) 

b (Å) 

c (Å) 

β(°) 

50.4 

70.3 

93.4 

102.4 

68.2 

88.3 

96.9 

90 

69.1 

88.2 

96.6 

90 

50.4 

69.7 

93.4 

102 

Resolution range 50-1.9 50-2.2 50-2.6 50-2.2 

Completenessa 85.7(52.0) 99.7(99.3) 99.7(99.7) 95.1(75.0) 

<I/σ(I)> 13.18(3.0) 21.3(10.7) 12.3(7.0) 11.9(2.8) 

Rsym (%)b 7.3(21.4) 7.6(17.9) 11.2(33.1) 11(30.5) 

Refinement statistics     

Resolution range 10-1.9 10-2.2 10-2.6 10-2.2 

Rcryst (%)c 21.6 24.4 23.6 21.4 

Rfree (%)d 24.8 28.8 29.0 25.3 

Average B factor (Å2) 25.3 25.5 31.2 20.7 

No. protein atoms 3908 3786 3776 3774 

No. water atoms 299 134 49 181 

Bond length rmsd (Å)  0.007 0.007 0.007 0.007 

Angles rmsd (°) 1.3 1.3 1.3 1.3 

aValues in parentheses are given for the highest resolution shell. bRsym = Σhkl|Ihkl - 
〈Ihkl〉|/ΣhklIhkl. cR = Σ|Fobs-Fcal|/ΣFobs. dRfree = Σtest(|Fobs|-|Fcal|)2/Σtest|Fobs|2.  
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Table 2.2. Inhibition constants 

Inhibitor Ki (nM) 

Ac-DEVD-Cho 1.2 ± 0.05 

Ac-DQMD-Cho 11.0 ± 0.5 

Ac-DMQD-Cho 12.0 ± 0.5 

Ac-IEPD-Cho 170 ± 7 

Ac-ESMD-Cho 1200 ± 48 

Ac-WEHD-Cho 4700 ± 190 

Ac-YVAD-Cho 10200 ± 410 

Caspase-3 was preincubated with its inhibitors in reaction buffer (50 mM HEPES, 100 mM 
NaCl, 0.1% CHAPS, 10% glycerol, 1mM EDTA and 10 mM dithiothreitol, pH 7.5) at room 
temperature for 15 mins. Substrate was then added and reaction product p-nitroanilide was 
measured at a wavelength of 405 nm. The inhibition constants were determined by using the 
equation: Ki = (IC50-0.5[E])/(1+[S]/Km), where [E], [S] and IC50, respectively, correspond to 
active enzyme concentration, substrate concentration, and the inhibitor concentration needed to 
suppress half enzyme activity. The enzyme concentration was determined by active site 
titration.                                                                                                                                             
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Figure 2.1. The occurrence of different amino acids at P4 in the cleavage sites of natural 
substrates of caspase-3. Different residues are represented in different colors. 
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Figure 2.2. Inhibition characterization of caspase-3 inhibitors. (a) Inhibition profiles of caspase-3 inhibitors IEPD (▲) and BocD 
(●). The fractional inhibition is calculated as V/V0×100%, where V and V0 refer to velocities with and without inhibitor respectively. 
Caspase-3 was preincubated with inhibitors in reaction buffer (50 mM HEPES, 100 mM NaCl, 0.1% CHAPS, 10% glycerol, 1mM 
EDTA and 10 mM dithiothreitol, pH 7.5) at room temperature for 30 mins. Inhibition profile of IEPD was fitted using hyperbola 
equation: Inh=Inhmax[I]/(Kd+[I]), while inhibition profile of IEPD was fitted using sigmoidal equation: Inh=Inhmin+(Inhmax-
Inhmin)/(1+10^(logEC50-[I])). Inh, [I], and EC50 refer to fractional inhibition, inhibitor concentration, and the inhibitor concentration 
provides the halfway inhibition. The sigmoidal inhibition profile of BocD suggests a cooperative binding mechanism. BocD may bind 
to an allosteric site on caspase-3, which in turn facilitates the binding of BocD in the active site of the protein. (b) Time dependence of 
the initial velocity was measured using 300 nM of caspase-3 and 2µM of BocD after preincubation for 0 to 60 mins. Because time 
dependence inhibition profiles of irreversible inhibitors typically follow exponential decay, data in the graph was fitted into the 
exponential decay curve defined by equation: V=Vmin+a*exp(-bt), where V and t refer to initial reaction velocity and time, 
respectively.  
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Figure 2.3. Binding conformations of inhibitors. (a) Superposition of four inhibitors in the 
substrate binding site of caspase-3. Inhibitors IEPD (blue), WEHD (magenta), YVAD (yellow), 
and BocD (green) are shown in stick representation. The binding surface of S1-S4 subsites is 
shown in pale blue. (b) 2Fo-Fc electron density map of inhibitor YVAD contoured at a level of 
1.4σ. (c) Fo-Fc electron density map of inhibitor BocD in the complex of caspase-3/BocD. The 
map was contoured at a level of 1.4σ. The inhibitor covalently binds to active site Cys163. The 
backbone of loops forming the substrate binding site is illustrated as ribbons.  
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Figure 2.4. Schematic representation of hydrogen bond and ionic interactions between caspase-3 and the inhibitors. (a) IEPD, 
(b) WEHD, (c) YVAD, and (d) BocD. The protein residues are in blue and inhibitors are in black. Interactions are indicated in dash 
lines.   
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Figure 2.5. Comparison between subsites in four new complexes (color) and published 
structure of caspase-3/DEVD (grey) (2H5I). (a) The methylated P1 Asp of BocD and S1 
residues. (b)-(d) P2 residues Pro, His, and Boc moiety, respectively are shown in S2 subsite. (e) 
P3 Glu in structure caspase-3/IEPD (purple) and caspase-3/WEHD (magenta). (f)-(h) The 
binding of P4 Ile, Tyr, and Trp, respectively, in S4 subsite. (i) The unbound S4 has glycerol in 
the BocD complex. Hydrogen bonds are represented by dashed lines. The boxed caspase-3 
residues form hydrogen bonds or hydrophobic interactions with inhibitors.  
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Figure 2.6. P4 binding site on caspase-3. P4 residues Ile (green), Tyr (cyan), and Trp (yellow) 
can bind in either the S5 pocket formed by Phe250 and 252 (orange) or another hydrophobic 
pocket formed by Trp206 and 214 (orange). 
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Figure 2.7. Superposition of inhibitors in the crystal structures (green) and structural 
models (purple). (a) IEPD/IEVD (b) YVAD/YEVD (c) WEHD/WEVD 
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Figure 2.8. Predicted binding affinities for diverse P4 residues. (a) The correlation between 
experimental binding energies and calculated interaction energies. (b) Predicted Ki values of 
inhibitors Ac-XEVD-Cho. 
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Figure 2.9. Predicted binding conformations of fifteen different P4 residues in caspase-3/XEVD. The P4 residue is located in the 
center in the stick representation, while caspase residues are shown as lines. The letter in the top left corner is the name of the P4 
amino acid. Hydrogen bond interactions are indicated by dashed lines. Caspase residues involved in polar interactions are labeled in 
black, while those involved in van der Waals interactions are labeled in blue. 
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3. STRUCTURAL AND KINETIC ANALYSIS OF CASPASE-3 REVEALS ROLE FOR 

S5 BINDING POCKET IN SUBSTRATE RECOGNITION 

3.1. Introduction 

 Caspases promote apoptosis by proteolytic cleavage of a number of downstream protein 

substrates(Alnemri, Livingston et al. 1996). Caspase activity is associated with a variety of 

diseases including neurodegenerative disorders, ischemic injury and cancers (Thompson 1995). 

Caspase-3 mediated apoptosis has a major role in neurodegenerative diseases (Charriaut-

Marlangue 2004). Caspase-3 is activated in spinal cord injury and Alzheimer’s disease, where it 

can cleave the amyloid-beta precursor protein and influence apoptosis of neurons (Kim, 

Pettingell et al. 1997; Gervais, Xu et al. 1999). Several peptidomimetic and nonpeptide caspase-3 

inhibitors have been found to inhibit apoptosis (Lee, Long et al. 2000; Micale, Vairagoundar et al. 

2004). Inhibitors of caspase-3 were shown to prevent neuronal loss in mouse models (Takuma, 

Tomiyama et al. 2004). On the other hand, the deficiency or suppression of caspases is a factor in 

the development of cancer and autoimmune diseases (Thompson 1995; Soengas, Alarcon et al. 

1999), and tumor specific gene therapy based on caspase-3 has been explored (Yang, Cao et al. 

2004). Moreover, abnormal heart development was found in knockout mice without caspase-3 

and -7 (Lakhani, Masud et al. 2006).  Consequently, caspase-3 is required for normal 

development and control cell death in many diseases (Philchenkov 2004).  

 Information on the molecular structure and substrate specificity of caspase-3 is valuable 

for understanding the development of disease and for the design of new therapies. The crystal 

structures are known for the catalytic domain of caspase-3, both unliganded and in complex with 

different peptidic, non-peptidic, or protein inhibitors (Fuentes-Prior and Salvesen 2004; Salvesen 

and Abrams 2004). The catalytic domain comprises a small (12 kD) and large (17 kD) subunit 



67 
 

 

arising from cleavage of the procaspase-3. The peptide substrates or inhibitors consisting of 

residues P4-P1’, where the scissile peptide bond is between P1 and P1’, are bound in pockets S4-

S1’ formed by the caspase. Generally, peptidic inhibitors contain aldehydes (Cho) or 

fluororometyhlketones (fmk) that form a covalent link with the catalytic Cys 163, as shown in 

the caspase-3 complexes with peptide inhibitors Ac-DVAD-fmk (Mittl, Di Marco et al. 1997) 

and Ac-DEVD-Cho (Rotonda, Nicholson et al. 1996) (where Ac is the acetyl group).  

 All caspases have a stringent specificity for Asp at P1 in the substrate. Caspase-3 and –7 

are effector caspases that recognize the canonical peptide sequence of DEVD and are involved in 

similar signaling pathways. In caspase-3 the P1 Asp is bound in a deep basic pocket formed by 

the conserved residues Arg 64, Arg 207 and Gln 161, and a peptide with Glu at P1 instead of 

Asp was hydrolyzed at a 20,000-fold lower kcat/Km (Stennicke, Renatus et al. 2000). Caspase-3 

was shown to preferentially cleave the peptide bond after the optimal sequence of DE(V/I)D in a 

combinatorial peptide library (Thornberry, Rano et al. 1997). Other studies using peptides with 

substitutions at different positions suggested the preferred peptide sequence of DE(M/L)D-(S/G) 

(Talanian, Quinlan et al. 1997; Stennicke, Renatus et al. 2000). However, peptide library 

searches with a substrate-phage selected DLVD with 170% faster hydrolysis than the canonical 

DEVD peptide(Lien, Pastor et al. 2004). These results suggest that the substrate preferences for 

P2 and P3 are not fully understood. Although most caspase family members have been shown to 

recognize a tetrapeptide of P4-P1, the P5 position was determined to be essential for the substrate 

selectivity of caspase-2 (Talanian, Quinlan et al. 1997; Schweizer, Briand et al. 2003). Few 

studies, however, have been performed to investigate the P5 position in other caspases. Clearly, 

the substrate or inhibitor specificities of caspases are not fully understood.  



68 
 

 

 In order to improve our knowledge of the molecular basis for substrate specificity the 

crystal structures were determined of complexes of recombinant human caspase-3 with the 

peptide analogs Ac-DEVD-Cho, Ac-DMQD-Cho and Ac-VDVAD-Cho. The complex with Ac-

DEVD was obtained at the significantly higher resolution of 1.70 Å compared to 2.5 Å for the 

previously reported structure (Rotonda, Nicholson et al. 1996). These complexes explore the 

specificity for positions P2 and P3 in the peptide substrates, and examine the effect of adding the 

P5 residue. The analysis of these new structures with peptide analog inhibitors will help in the 

design of new caspase-3 inhibitors as potential therapeutic agents for neurodegenerative diseases. 

3.2. Materials and Methods 

3.2.1. Protein Expression and Purification  

The cloned full length human caspase-3 cDNA was expressed as previously described 

(Stennicke and Salvesen 1997). Cells were harvested and resuspended in lysis buffer (20 mM 

Tris-HCl, 5 mM imidazole, 25 mM NaCl, 5 mM dithiothreitol, 0.1 mg/ml lysozyme and 0.1% 

Triton X-100, pH 7.5). Cell crude extract, obtained by sonication and centrifugation, was filtered 

with 0.2μm filters and loaded onto the nickel affinity column (HisTrap™ HP, Amersham, NJ). 

Caspase-3 was eluted by a gradient of 20-1000 mM imidazole. Imidazole in the protein solution 

was subsequently removed by dialysis against 25 mM Tris-HCl, 20 mM NaCl, 10mM 

dithiothreitol, pH 7.5. The partially purified caspase-3 was then loaded onto the anion exchange 

column (High Q Cartridge, Bio-Rad, CA) and eluted by 20-1000 mM NaCl gradient. Salt 

concentration was reduced to 20mM by buffer exchange using ultrafiltration. Further purification 

was performed using a gel-filtration column (Superdex 75, Amersham, NJ) with the buffer 20 

mM Tris-HCl, 20 mM NaCl, 10 mM dithiothreitol, pH 7.5. Finally, caspase-3 was concentrated 

to 4mg/ml and stored at -80°C. The purity was determined to be over 99% by SDS-PAGE.   
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3.2.2. Enzyme Kinetic Assays  

 Caspase-3 activity was determined using the colorimetric caspase-3 substrate Ac-DEVD-

pNA (Biomol, PA), where Ac is the acetyl group and pNA is p-nitroanilide. Caspase-3 was 

preincubated in reaction buffer (50 mM HEPES, 100 mM NaCl, 0.1% CHAPS, 10% glycerol,  

1mM EDTA and 10 mM dithiothreitol, pH 7.5) at room temperature for 5 mins prior to the 

addition of substrate at various concentrations. p-nitroanilide released by enzyme cleavage was 

measured at a wavelength of 405 nm using a Polarstar Optima microplate reader (BMG 

Labtechnologies, NC). SigmaPlot 9.0 (SPSS Inc. IL) was used to obtain the Km and Vmax values 

by fitting reaction velocities as described (Howard, Kostura et al. 1991). The catalytic constants 

kcat of three caspase-3 substrates: Ac-DVAD-pNA (GenScript, NJ), Ac-VDVAD-pNA (Axxora, 

CA) and Ac-LDVAD-pNA (GenScript, NJ) were determined by using the equation kcat=Vmax/[E], 

where [E] values were measured by active site titration during Ki determination as described 

below.  

 Caspase-3 substrate analog inhibitors Ac-DEVD-Cho (Biomol, PA), Ac-DMQD-Cho 

(Calbiochem, CA), and Ac-VDVAD-Cho (Axxora, CA) bind to caspase-3 through thioether 

bonds between the aldehyde (–CHO) group of the inhibitor and the mercapto (–SH) group of Cys 

163 on the protein. According to the vendor instructions, the binding of these inhibitors is 

reversible although it is strong. Therefore, they were treated as reversible tight binding inhibitors. 

For the measurement of inhibition constant Ki, caspase-3 was preincubated with its substrate 

analog inhibitors in reaction buffer at room temperature for 30 mins. Then, substrate was added 

and reaction velocity was calculated according to substrate cleavage. The inhibition constants of 

each inhibitor were determined by a dose-response curve described by the equation: Ki = (IC50-

0.5[E])/(1+[S]/Km), where [E], [S] and IC50, respectively, correspond to active enzyme 
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concentration, substrate concentration and the inhibitor concentration needed to suppress half 

enzyme activity(Maibaum and Rich 1988).  

3.2.3. Crystallographic Analysis  

 The inhibitors were dissolved in dimethylsulfoxide. Caspase-3 was incubated at room 

temperature with the inhibitor at 20-fold molar excess. Crystallization was performed by the 

hanging-drop vapor diffusion method. 1 µl of protein solution (4 mg/ml) was mixed with an 

equal volume of 100 mM sodium citrate, 5% glycerol, 10 mM dithiothreitol, and 14-18% 

PEG6000, pH 6.5. Crystals grew within 24 hrs at room temperature. The crystals were frozen in 

liquid nitrogen with 15% glycerol as a cryoprotectant. X-ray diffraction data were collected on 

the SER-CAT beamline at the Advanced Photon Source, Argonne National Laboratory.  

 The diffraction data were processed with HKL2000 (Otwinowski 1997). The structures 

were solved by molecular replacement with the program AmoRe (Navaza 1994). The caspase-3 

structure (1NME) (Erlanson, Lam et al. 2003) in the space group I222 was used as the initial 

model for caspase-3/DEVD, while the structure 1CP3 (Mittl, Di Marco et al. 1997) was used as 

the initial model for the two complexes in the P21 space group. The structures of caspase-

3/DEVD and caspase-3/DMQD were refined using the program SHELX97 (Sheldrick 1997) and 

caspase-3/VDVAD was refined using CNS (Brunger, Adams et al. 1998) due to the lower 

resolution. The molecular graphics program O 8.0 (Jones, Zou et al. 1991) was used to display 

the electron density map and to refit structures. The initial inhibitor structures were generated by 

energy minimization using AMMP (Harrison 1993). Water molecules and alternate 

conformations of caspase-3 residues were modeled where observed in the election density maps. 

Structural figures were made by Weblab viewer pro (Accelrys Inc., MA) and images of electron 

density map were obtained using Molscript (Esnouf 1997; Esnouf 1999). 
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3.2.4. Protein Data Bank Accession Codes 

The crystal structures have been deposited in the RCSB Protein Data Bank with 

accession codes 2H5I for caspase-3/DEVD, 2H5J for caspase-3/DMQD, and 2H65 for caspase-

3/VDVAD. 

3.3. Results and Discussion 

3.3.1. Crystal Structures 

The crystal structures of caspase-3 were determined in the complexes with the three 

substrate analog inhibitors Ac-DEVD-Cho, Ac-DMQD-Cho and Ac-VDVAD-Cho. The 

crystallographic statistics are summarized in Table 3.1. The crystal structures were refined to the 

resolutions of 1.7-2.3 Å and R-factors of 19.4-22.7. The structures of caspase-3/DMQD and 

caspase-3/VDVAD have not been reported previously, while our structure of caspase-3/DEVD 

was determined at a significantly higher resolution of 1.7 Å compared to 2.5 Å for the reported 

structure of 1PAU (Rotonda, Nicholson et al. 1996). The mature caspase-3 consists of the p17 

and p12 subunits derived from processing of the procaspase-3. The crystal structure of caspase-

3/DEVD has the p17/p12 heterodimer consisting of residues 29-174 and 185-277 in the 

asymmetric unit of the I222 space group. Residues 175 in p17 and 176-184 in p12 were not 

visible due to the weak electron density in the terminal regions. The complexes of caspase-

3/DMQD and caspase-3/VDVAD were crystallized in the P21 space group with two 

heterodimers (p17/p12)2 (residues 34-174 and 186-277 for each heterodimer) in the asymmetric 

unit (Fig 3.1). The terminal residues (29-33 and 175 in p17; 176-185 in p12) were not visible in 

the electron density map. 

 The three caspase-3 structures are closely similar overall, with RMS deviations of 0.35-

0.60 Å for Cα atoms although they were obtained in two different space groups. The major 

differences, with RMS deviations on Cα atoms of greater than 1.0 Å, were in the loop1 (residues 
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56-61) and loop4 (residues 251-254). In addition, the residues 29-33 at the N-terminus of the p17 

subunit have visible electron density only in the structure of caspase-3/DEVD in the space group 

I222. The p17 N-terminal region extends out of the p12/p17 heterodimer and interacts with the 

C-terminal region of the p12 subunit of a symmetry related molecule. Hydrogen bond 

interactions are formed between two symmetry related molecules: the main chain amide and 

carbonyl oxygen of His277 interact with the carbonyl oxygen of Ile31 and the amide of Leu33, 

respectively. In the structures of caspase-3/DMQD and caspase-3/VDVAD in space group P21, 

no ordered density was observed for residues 29-33 and the p17 N-terminal region has no 

contacts with nearby symmetry related molecules. Self processing is unlikely since the peptide 

sequence of residues 30-33 GISL is not a site for self-cleavage of caspase-3 (Stennicke and 

Salvesen 1997). Therefore, the conformation of p17 N-terminus is more flexible in the structure 

in the space group P21. 

 Most of the residues in the active site had very similar positions in all three complexes. 

The exception was the side chain of His 121, which is located beside the catalytic Cys 163 at the 

bottom of the active site groove. In the structure of caspase-3/DEVD, the imidazole group of His 

121 is directed away from the catalytic Cys 163 and into the substrate binding groove. In the 

other two structures, the side chain of His 121 has different conformations in the two 

heterodimers: one resembles that in caspase-3/DEVD, and the other is rotated so that the 

imidazole group is closer to Cys 163 (Fig 3.2). This conformational change was not observed in 

the previous caspase-3 structures (Rotonda, Nicholson et al. 1996; Mittl, Di Marco et al. 1997); 

and it suggests that the side chain of His121 can approach Cys 163 to participate in the catalytic 

reaction, and then move away after the cleavage has occurred to facilitate release of the reaction 

products.  
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3.3.2. Caspase-3 Interactions with Peptide Analogs   

All the amino acids in the peptide analogs were clearly visible in the three structures. The 

electron density map for the inhibitor in the caspase-3/DEVD structure is shown in Figure 3.3a. 

The substrate analogs bind with thioether bonds between the aldehyde group (–CHO) and the 

mercapto group (–SH) of Cys 163 of the caspase-3. The three inhibitors bind in the β-strand 

conformation with almost identical overall conformation and atomic positions (Figure 3.3b). 

Their Cα atoms (P1-P4) have small RMS deviations from 0.09Å to 0.3Å.  The side chain atoms 

of aspartates at P1 and P4 also have very similar positions. This rigid conformation allows 

caspase-3 residues to interact with the β-strand inhibitor tightly in the active site groove. The P2 

and P3 amino acid side chains of the inhibitor share very similar positions for their equivalent 

atoms. The differences in the size and type of amino acid at P2 and P3, as well as the presence of 

P5 in one inhibitor, however, are expected to lead to the potency differences of the three 

inhibitors. 

 Caspase-3 showed very similar interactions with the main chain atoms of P1-P4 and the 

Asp side chains at P1 and P4 of the analogs in all three structures (Fig 3.4 and Tab 3.2). In the 

structure of caspase-3/DEVD, the side chain of Asp at P1 has ionic interactions with Arg 64 and 

Arg 207 and a hydrogen bond interaction with Gln 161 in the S1 pocket (Fig 3.4a). The main 

chain amide of P1 Asp interacts with the main chain carbonyl oxygen of Ser 205. At the P2 

position, the hydrophobic side chain of Val has van der Waals interactions with caspase residues 

Tyr 204, Trp 206 and Phe 256. The negatively charged Glu at P3 interacts closely with Arg 207 

forming an ionic interaction between their side chains and two hydrogen bond interactions 

between their main chain carbonyl oxygen and amide groups. In addition, P3 Glu shows a water-

mediated interaction with Thr 62. The carboxylate side chain oxygens of P4 Asp form hydrogen 

bond interactions with the side chain of Asn 208 and main chain amide of Phe 250. A water-
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mediated interaction is formed between main chain amide of P4 Asp and the main chain 

carbonyl oxygen of Phe 250. At the N-terminus of the inhibitor, the acetyl protecting group 

interacts with the main chain amide of Ser 209. 

 At P2 and P3, the protein-inhibitor interactions of caspase-3/DMQD (Fig 3.4b) differ 

from those in the complex of caspase-3/DEVD. The polar side chain of P2 Gln is directed out of 

the hydrophobic S2 pocket. At the P3 position, the long hydrophobic side chain of methionine 

lies in the S3 pocket, but forms no specific interactions. Fortunately, the hydrogen bonds 

between the main chain atoms of P3 and Arg 207 are conserved. Similar interactions are present 

in both two inhibitor binding sites of this (p17/p12)2 structure.  

 The longer peptide analog Ac-VDVAD-Cho binds to caspase-3 in a similar manner to the 

other two inhibitors at positions P1-P4 (Fig 3.4c). At the P2 position, the side chain of Ala forms 

van der Waals interactions with hydrophobic residues in the S2 pocket. However, the 

hydrophobic side chain of P3 Val has no contacts with nearby caspase-3 atoms, which is similar 

to P3 Met in Ac-DMQD-Cho. At the P4 position, in addition to the hydrogen bond interactions 

observed in the caspase-3/DEVD structure, another hydrogen bond is formed between the main 

chain carbonyl oxygen of P4 Asp and main chain amide of Phe 250 (Tab 3.2).  

The peptide analog Ac-VDVAD-Cho contains P5 Val, unlike the other two analogs. The 

P5 main chain amide is positioned to interact with the side chain hydroxyl group of Ser 209, and 

its carbonyl oxygen interacts with both the side chain hydroxyl group and main chain amide of 

Ser 209 (Fig 3.4c). These three hydrogen bonds stabilize the main chain of P5 Val and help to 

position its hydrophobic side chain in a hydrophobic cleft formed by the side chains of Phe 252 

and Phe 250. The acetyl group, on the other hand, has moved out of the active site groove of 

caspase-3 into the solvent. Therefore, caspase-3 forms specificity pockets for recognition of 
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substrate residues from P5 to P1. The hydrophobic S5 pocket in caspase-3 has not been described 

previously.  

3.3.3. Conformational Change when Caspase-3 Binds the P5-Containing Peptide  

The caspase-3 residues forming S5 in the structure of caspase-3/VDVAD undergo a 

conformational change relative to the complexes with tetrapeptides (Fig 3.5). The S5 pocket is 

formed by residues from loop4, which has moved towards loop1 by up to 2.9 Å for Cα atoms 

compared to the positions in the complexes with tetrapeptides. This conformational change 

partly closes the entire active site groove of caspase-3 and enables P5 Val to form good van der 

Waals contacts with Phe 250 and 252. This more closed conformation of the substrate-binding 

groove has not been reported for other caspase-3 structures. In contrast to previous suggestions 

that the active site groove of caspase-3 is rigid (Ni, Li et al. 2003), our results indicate that the 

loop4 region of caspase-3 near S5 is flexible, and it forms a mouth-like binding groove together 

with loops 1, 2 and 3. This “mouth” can open to different extents to accommodate a variety of 

substrates by an induced fit mechanism. These structures suggest that the loop1 and loop4 

regions are flexible in physiological conditions and this flexibility contributes to the binding of 

substrate. Other caspases may also have flexible binding sites formed by their four loops. This 

observation provides valuable insight into the dynamic mechanism of caspase recognition and 

binding of substrates. 

3.3.4. Enzyme Kinetics and Relative Inhibition 

 Three substrate analogs Ac-DEVD-Cho, Ac-DMQD-Cho and Ac-VDVAD-Cho that 

differ in the P2, P3, and presence of the P5 position, were assayed for inhibition of the caspase-3 

activity (Tab 3.3). Overall, the three analogs showed similar potency as reversible tight-binding 

inhibitors. Ac-DEVD-Cho, with the canonical sequence, was the strongest inhibitor with a Ki 

value of 0.2 nM. Ac-VDVAD-Cho was five-fold weaker, and Ac-DMQD-Cho was the weakest 
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with a Ki value of 1.9 nM. The Ki values were comparable to those reported in previous studies 

(Mittl, Di Marco et al. 1997; Talanian, Quinlan et al. 1997). 

 Three colorimetric peptides Ac-DVAD-pNA, Ac-VDVAD-pNA and Ac-LDVAD-pNA 

were designed based on the crystal structures to evaluate the importance of the P5 position for 

specificity of caspase-3. These peptides were shown to be substrates of caspase-3 and the kinetic 

parameters are listed in Table 4. The major differences were observed in the Km values, while the 

kcat values showed little variation, which suggested that the P5 residue affected the binding 

affinity. Caspase-3 showed the highest catalytic efficiency (kcat/Km) and lowest Km for Ac-

LDVAD-pNA, about 40% higher than the values for Ac-DVAD-pNA. Similarly, the kcat/Km for 

Ac-VDVAD-pNA was 20% higher than for Ac-DVAD-pNA. These results demonstrated that the 

hydrophobic P5 residue has an important contribution to the recognition and hydrolysis of 

substrates by caspase-3. 

3.3.5. Roles of S2 and S3 in Substrate Recognition and Caspase-3 Activity 

The three crystal structures of caspase-3 with peptide analogs that vary in the amino acids 

at P2, P3 and the presence of P5 have demonstrated the molecular basis for substrate recognition. 

Caspase-3 interactions with the three analogs are conserved for the P1 and P4 positions and 

differ for P2, P3 and P5. Kinetic studies have indicated that the caspase-3 substrate preferences 

at P1 and P4 are almost absolute, since only aspartic acid is acceptable at these two positions and 

any substitution resulted in a dramatic decrease in the binding affinity (Talanian, Quinlan et al. 

1997; Thornberry, Rano et al. 1997). In agreement with these studies, all the protein-inhibitor 

interactions in S1 and S4 are strong and conserved in all three crystal structures (Tab 3.2). Unlike 

P1 and P4, the substrate selectivity of caspase-3 can vary for P2 and P3 positions. Theoretically, 

hydrophobic amino acids are preferred at P2, and hydrophilic amino acids are preferred at P3. 
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This is confirmed by the 10-fold difference in Ki values for Ac-DEVD-Cho and Ac-DMQD-Cho 

(Tab 3.3).  

 The S2 pocket has an important role in both substrate recognition and regulation of 

caspase-3 activity. Previous studies suggested that various hydrophobic amino acid residues at 

P2 bound with high affinity, while polar amino acids were weakly bound (Talanian, Quinlan et al. 

1997; Thornberry, Rano et al. 1997). At the P2 position, the main chain atoms cannot form 

hydrogen bonds with caspase-3. The affinity for P2 binding is therefore largely dependent on the 

side chain atoms. Hydrophilic residues will be unfavorable in the hydrophobic S2 pocket. 

Previous studies showed that a pyrrolidine ring bound in S2 can increase the inhibitory potency 

of 1-Methyl-5-nitroisatin by 30-fold (Lee, Long et al. 2000). In our kinetic assay, Ac-DMQD-

Cho showed twofold weaker inhibition of caspase-3 than did Ac-VDVAD-Cho (Table 3.3). 

Similarly, the catalytic efficiency for hydrolysis of Ac-DMQD-pNA was 54% of the value for 

Ac-DVAD-pNA and 17% of the value for Ac-DEVD-pNA (Tab 3.4). The structural explanation 

is that the binding of polar P2 Gln in hydrophobic S2 is unfavorable and decreases the binding 

affinity of the inhibitor, although the P5 position will also have an effect. Nevertheless, the CB 

and CG atoms in the long side chain of P2 Gln form favorable van der Waals interactions with 

residues in the S2 pocket. Therefore, the inhibition is not greatly decreased. The S2 pocket 

appears to have a role in regulation of caspase-3 activity. The crystal structure of caspase-3 in 

complex with the inhibitor of apoptosis protein XIAP showed that the side chain of Tyr 204 was 

rotated into the S2 pocket and blocked the binding of substrate (Riedl, Renatus et al. 2001). Also, 

the side chain of Tyr 204 filled the S2 pocket in the structure of an unliganded caspase-3 (Ni, Li 

et al. 2003). These results suggest that the S2 pocket has an important role in both substrate 

recognition and regulation of caspase activity.  
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The P3 position can tolerate a wide range of amino acids. Although negatively charged or 

polar amino acids have better binding affinity, some non-polar amino acids such as valine and 

alanine can also bind in the S3 pocket quite stably (Talanian, Quinlan et al. 1997; Thornberry, 

Rano et al. 1997). Analysis of our structures showed that the hydrogen bond interactions formed 

between the main chain atoms of P3 residue and Arg 207 are conserved in all three structures 

(Tab 3.2). These interactions stabilize the P3 residue in the correct location, independent of the 

type of side chain. Hence, the P3 residue can vary without significantly altering the binding 

affinity.  

3.3.6. Role of S5 Pocket in Caspase Recognition of Substrates 

The structure of caspase-3/VDVAD shows that the side chain of P5 Val lies in a 

hydrophobic cleft formed by two aromatic residues in the loop4 region, Phe 250 and Phe 252 

(Fig 3.6b). Moreover, the caspase-3 loops forming the binding site had a conformational change 

relative to the two complexes with tetrapeptides, suggesting that the P5 residue of a pentapeptide 

bound by an induced fit mechanism. The importance of a hydrophobic P5 residue for binding 

and hydrolysis of caspase-3 substrates was confirmed by our kinetic assays showing kcat/Km 

values in the order Ac-LDVAD-pNA > Ac-VDVAD-pNA > Ac-DVAD-pNA (Tab 3.4). Because 

the P5 residue is located at one end of the major active site groove of caspase-3, polar side-

chains are free to rotate into the solvent and away from the hydrophobic S5 site, which might 

explain why little apparent substrate preference at P5 has been observed previously for caspase-3. 

Nevertheless, hydrophobic residues at P5 enhance the binding affinities and specificities of the 

tested caspase-3 substrates. In contrast, the addition of the hydrophobic P5 residues had the 

opposite effect on hydrolysis by caspase-7, and the kcat/Km values were in the reverse order of 

Ac-DVAD-pNA>Ac-VDVAD-pNA>Ac-LDVAD-pNA (Tab 3.4). This discovery of the S5 

recognition site in caspase-3 will be helpful for the future design of novel inhibitors. 
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Previous work on caspase-2 has revealed that the addition of a hydrophobic P5 residue 

can increase the Vmax/Km value of its substrate (Talanian, Quinlan et al. 1997), underscoring the 

critical role of the S5 pocket, and consistent with the observed interactions in the caspase-

2/LDESD crystal structure (Schweizer, Briand et al. 2003). The main chain conformations of the 

two bound pentapeptides are very similar in the structures of caspase-2/LDESD and caspase-

3/VDVAD (Fig 3.6a). Also, the hydrogen bond and van der Waals interactions of P5 in the S5 

binding pocket are similar in caspase-3 and caspase-2 (Fig 3.6b and c). The main chain amide 

and carbonyl oxygen of the P5 residue form hydrogen bond interactions with Ser209 of caspase-

3 or with Thr233 of caspase-2. The hydrophobic P5 side chain has van der Waals contacts with 

structurally equivalent hydrophobic side chains from loop4 in both caspase-2 and -3. In caspase-

2, the P5 Leu interacts with Tyr273 and Pro275, while in caspase-3 P5 Val interacts with Phe250 

and Phe252.  

No apparent substrate selectivity at P5 has been reported for other caspases. Therefore, 

the potential S5 binding site formed by residues of loop4 was examined for other caspases of 

known structure. The sequences and structures of six human caspases (caspase-1(Wilson, Black 

et al. 1994), 2(Schweizer, Briand et al. 2003), 3, 7(Chai, Wu et al. 2001), 8(Watt, Koeplinger et 

al. 1999), and 9(Chao, Shiozaki et al. 2005)) are compared in Figure 3.7 and 3.8. These six 

caspases have diverse sequences and lengths for the loop4 regions (Fig 3.7), suggesting that they 

will vary in their substrate specificity. The loop4 regions of caspase-2, -3 and -7 have similar 

lengths and conformations. Caspase-2 and -3 have two aromatic residues forming the S5 pocket; 

while the polar Gln and Asp were located at the equivalent positions of caspase-7. We therefore 

predict that either caspase-7 forms a hydrophilic S5 pocket, or else it has no preference for the 

type of residue at the P5 position. These differences in substrates recognition of caspase-3 and –7 
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are likely to result in different cellular effects, including activation of distinct signaling pathways. 

The other three caspases, -1, -8 and -9, have shorter loop4 regions and may not be able to form 

an S5 binding pocket (Fig 3.8). Therefore, these caspase proteins are likely to differ in their 

recognition of the P5 position of their substrates. 

3.4. Conclusions 

Our crystal structures of caspase-3 with three different peptide inhibitors have revealed 

the molecular basis for substrate preferences at P2, P3, and suggested the preference for 

hydrophobic side chains at P5. The importance of the hydrophobic P5 residue was confirmed by 

studies of caspase-3 activity on substrates with different P5 residues. The newly defined 

hydrophobic S5 pocket of caspase-3 is similar to the S5 pocket in caspase-2, but polar residues 

are found in equivalent positions of caspase-7, suggesting that these caspases will differ in their 

substrate selectivity at P5. Moreover, caspase-1, 8 and 9 are unlikely to have similar S5 binding 

pockets on the basis of their structures. These discoveries will be valuable for the future design 

of novel inhibitors that are more specific for caspase-3. The distinct preferences observed for the 

P5 residue in caspase substrates will help define the particular cellular signaling pathways 

associated with each caspase protein. 
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Table 3.1. Crystallographic Data Collection and Refinement Statistics 

Structure  Caspase-
3/DEVD 

Caspase-
3/DMQD 

Caspase-
3/VDVAD 

Inhibitor Ac-DEVD-Cho Ac-DMQD-
Cho 

Ac-VDVAD-
Cho 

Space group I222 P21 P21 

A (Å) 69.9 50.2 50.4 

B (Å) 86.1 69.3 69.7 

C (Å) 98.0 94.1 93.4 

β 90° 102° 101° 

Resolution (Å) 50-1.7 50-2.0 50-2.3 

Data range for refinement 
(Å) 

10-1.7 10-2.0 10-2.3 

Completeness overall (last 
shell) (%) 

85.9 (79.0) 94.7 (66.9) 97.6 (89.4) 

R merge overall (last shell) 
(%) 

12.5 (36.4) 7.1 (24.5) 8.8 (40.2) 

I/sigma overall (last shell) 14.0 (3.3) 9.7 (3.0) 12.0 (2.0) 

Rwork (%) 19.5 20.3 22.7 

Rfree (%) 23.7 27.2 25.4 

Number of waters 240 593 86 

RMS deviation (Å)    

Bonds 0.011 0.015 0.007 

Angle 0.03a 0.025a 1.3b 

Average B-factor (Å)    

Main chain 14.5 21.2 27.9 

Side chain 23.5 27.8 32.3 

Inhibitor 18.4 24.1 36.4 

a. In SHELX97, the angle RMS deviation is indicated by distance in Å; b. Structure 
refined with CNS where the angle RMS deviation is indicated by angle in degrees. 
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Table 3.2. Polar interactions of caspase-3 with peptide analogs 

Distance (Å) 

 Analog 
atoms 

Protein atoms Ac-DEVD-Cho 

 

Ac-DMQD-Cho 

Chain E/F 

Ac-VDVAD-Cho 

Chain E/F 

P1 Asp N Ser205 O 3.0 2.9/2.9 2.8/2.8 

 Asp OD1 Arg64 NE 2.9 2.7/2.8 2.6/2.7 

 Asp OD1 Arg207 NE 2.9 2.8/2.8 3.2/3.4 

 Asp OD1 Arg207 NH1 3.1 3.0/2.8 2.8/3.1 

 Asp OD2 Arg64 NH1 2.9 2.9/2.9 2.9/2.6 

 Asp OD2 Gln161 NH2 2.9 2.9/2.9 3.2/3.1 

P2      

P3 E/M/V  N Arg207 O 2.8 2.6/2.8 2.8/2.8 

 E/M/V  O Arg207 N 2.9 2.8/2.8 2.8/3.0 

 E  OE1 Arg207 NH2 2.9   

P4 Asp OD1 Asn208 ND2 3.1 2.9/2.9 2.8/2.9 

 Asp OD2 Phe250 N 3.1 3.0/3.0 3.1/3.2 

 Asp N Phe250 O   3.0/3.2 

P5 Val O Ser209 N   3.0/2.8 

 Val O Ser209 OG   2.9/2.6 

 Val N Ser209 OG   3.0/2.8 

 Ace O Ser209 N 2.9 2.7/2.9  
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Table 3.3: Inhibition constants 

Inhibitor Ki (nM) 

Ac-DEVD-Cho 1.3 ± 0.1 

Ac-VDVAD-Cho 6.5 ± 0.4 

Ac-DMQD-Cho 12.4 ± 0.7 

Caspase-3 activity was assayed using the substrate Ac-DEVD-pNA and 
the Km value was 67±4 μM. Ac indicates the acetyl group and Cho 
represents the aldehyde group. Caspase-3 was preincubated with its 
inhibitors in reaction buffer (50 mM HEPES, 100 mM NaCl, 0.1% 
CHAPS, 10% glycerol, 1mM EDTA and 10 mM dithiothreitol, pH 7.5) 
at room temperature for 15 mins. Substrate was then added and reaction 
product p-nitroanilide was measured at a wavelength of 405 nm. The 
inhibition constants were determined by using the equation: Ki = (IC50-
0.5[E])/(1+[S]/Km), where [E], [S] and IC50, respectively, correspond to 
active enzyme concentration, substrate concentration, and the inhibitor 
concentration needed to suppress half enzyme activity. The enzyme 
concentration was determined by active site titration.                                    
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Table 3.4: Kinetic parameters of caspase-3 substrates 

 
kcat (min‐1)  Km (μM)  kcat/Km (mM‐1min‐1) 

C3  C7  C3  C7  C3  C7 

DEVD  53.1±3.2  NA  67.1±4.3  NA  790.4±47.4  NA 

DMQD  211.8±12.7  NA  1600.3±96.0  NA  132.4±7.9  NA 

DVAD  54.2±1.8  56.8±1.1  222.3±7.3  219.3±4.4  243.8±8.0  259.0±5.2 

VDVAD  48.4±1.6  75.6±2.3  164.7±5.4  314.9±9.4  293.9±9.7  240.1±7.2 

LDVAD  50.6±1.5  66.1±1.3  147.2±4.4  323.9±6.5  343.8±10.3  204.1±4.1 

Caspase-3 was preincubated in reaction buffer (50 mM HEPES, 100 mM NaCl, 0.1% CHAPS, 
10% glycerol,  1mM EDTA and 10 mM dithiothreitol, pH 7.5) at room temperature for 5 mins 
prior to the addition of substrates at various concentrations. p-nitroanilide released by enzyme 
cleavage was measured at a wavelength of 405 nm using a Polarstar Optima microplate reader. 
Km and Vmax values were determined by fitting the Michaelis-Menten plot: 
V=Vmax[S]/(Km+[S]) where [S] refers to substrate concentration. The catalytic constants kcat 
of caspase-3 substrates were determined by the equation kcat=Vmax/[E], where active enzyme 
concentration [E] was measured by active site titration. 
 



85 
 

 

L1
L2

L3
L4

DMQD

A B C
D

C17

N17

C12

N12

E

F
 

Figure 3.1. Overall structure of caspase-3/DMQD. Two heterodimers (p17/p12)2 of caspase-
3/DMQD are shown in a ribbon representation with the large and small subunits colored blue 
and grey, respectively. The inhibitor Ac-DMQD-Cho is shown in a yellow ball and stick 
representation. The four polypeptide chains are labeled A to D and the two peptide analog 
inhibitors are labeled E and F. The N and C-termini are indicated for the 12 and 17 kD chains. 
L1 to L4 refer to Loops 1 to 4.  
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Figure 3.2. His121 has different side-chain conformations in the two p17/p12 heterodimers 
of caspase-3/DMQD. The A conformation of the His 121 side-chain lies in the active site groove, 
while conformation B is closer to the catalytic Cys163. The active site groove is formed by 
residues from the four loops (L1–L4). The peptide analog Ac-DMQD-Cho is shown in cyan. 
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(a)                                        (b) 

Figure 3.3. Structure of peptide analog inhibitors. (a) 2Fo – Fc electron density map of Ac-
DEVD-Cho in the caspase-3/DEVD complex. The map was contoured at a level of 1.8σ. The 
active site Cys163 of caspase-3, located at the bottom, forms a hemithioacetal bond with the 
aldehyde group of the inhibitor. Inhibitor P1–P4 residues and the acetyl group are labeled. (b) 
Superposition of the three peptide analogs Ac-DEVD-Cho (green), Ac-DMQD-Cho (orange), 
and Ac-VDVAD-Cho (purple). The equivalent atoms on both the main chain and side chain have 
similar positions from P1 to P4. 
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(a) 
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(c) 
Figure 3.4. Schematic representation of the caspase-3 interactions with inhibitors. (a) 
caspase-3/DEVD, (b) caspase-3/DMQD, and (c) caspase-3/VDVAD. The substrate analog 
inhibitors are indicated by thicker lines. Inhibitors are covalently linked to the active site Cys163 
via a thioether bond. Hydrogen bonds and salt bridges are indicated by dashed lines. Van der 
Waals interactions are shown as thick curves.  
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(b) 
Figure 3.5 The superimposed complexes of caspase-3/DEVD and caspase-3/VDVAD. (a) 
Stereoview of Cα backbone of caspase-3/DEVD (yellow) and caspase-3/VDVAD (green). The 
complex with P5 residue has a narrower active site groove, as reflected by the indicated distances. 
The boxed region is shown in detail in (b) where the S5 residues of Phe 250 and 252 on the 
loop4 form van der Waals contacts with the P5 Val of the substrate analog. Distances between 
atoms are shown by dashed lines.   
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(b)                                              (c) 

 

Figure 3.6. Structural comparison of caspase-3 and caspase-2. (a) Comparison of interactions 
of substrate analogs VDVAD (red) and LDESD (green) with caspase-3 and -2. The substrate 
binding groove is formed by four loops labeled L1 to L4. The inhibitor amino acids from P1 to 
P5 are labeled. Protein-inhibitor interactions are compared in the S5 pocket of (b) caspase-3 and 
(c) caspase-2. The P5 residue of the inhibitor was located in the middle. Its interactions are 
indicated by dashed lines. Hydrogen bond interactions and hydrophobic interactions are 
indicated by black and green dashed lines respectively. Distances between atoms are shown in 
angstroms. 
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Loop4
 

Figure 3.7. Sequence homology among six caspase family members. Only the regions of the small subunits including loop3 and 
loop4 are compared. The loop4 regions from sequence alignment are shown in the red box. The loop4 regions defined from the crystal 
structures, are indicated by the green letters. The S5 residues of caspase-2 and -3, as well as the residues at equivalent positions of 
caspase-7, are colored red. 
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Figure 3.8 Different compositions of active site groove. The structures of the active site grooves of six human caspase family 
members are shown. The numbers 1 to 4 indicate the loops 1-4. Hydrophobic protein residues are colored blue, and hydrophilic ones 
are colored red. The loop4 regions are longer in caspase-2, 3 and 7. The S5 residues on the loop4 of caspase-2, 3 as well as the 
equivalent residues of caspase-7 are labeled.  
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4. COMPACT, DIFFERENTIABLE, KNOWLEDGE-BASED POTENTIAL 

FUNCTIONS FOR EVALUATING PROTEIN MODEL QUALITY 

4.1. Introduction 

An effective and efficient potential function is required for protein structure prediction. 

There are currently two major categories of potential functions: physical-based potentials and 

knowledge-based potentials. The physics-based potentials are the summation of non-bonded 

electrostatic and van der Waals interaction energies. Numerous factors have to be considered for 

this method, such as bond length, angle, dihedral angle, entropy, and solvent effects (Brooks and 

Bruccol 1983; Jorgensen, Maxwell et al. 1996; Lazaridis and Karplus 1999). However, this 

physics-based potential is becoming less and less popular for protein structural prediction due to 

expensive computation. In contrast, the knowledge-based potentials provide a more efficient way 

of assessing potentials and thus have become widely used (Zhou, Zhou et al. 2006). The typical 

knowledge-based potential is built on the mean potentials from the distribution of pairwise 

distances of experimentally determined protein structures (Zhou, Zhou et al. 2006).  Boltzman’s 

law is used to calculate the interaction energy between a particular particle pair (Sippl 1990). 

And the entire potential is considered as the summation of all pairwise potentials. Usually one 

residue is represented by one interacting point, such as Cα, Cβ, and side chain center of mass 

(SCM) (Zhang, Liu et al. 2004; Fogolari, Pieri et al. 2007). This type of potential is called 

residue-level potential. All atoms or residue specific heavy atoms were also used for representing 

residues in many successful models (Zhou and Zhou 2002; Makino and Itoh 2008; Mirzaie, 

Eslahchi et al. 2009). Their potentials are called atomic-level potentials.  

Although current knowledge-based potential functions achieved good performance in 

protein structure prediction (Zhou, Zhou et al. 2006), molecular mechanics is still dominated by 
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physical-based potentials. This is because of the common limitation of current knowledge-based 

potentials. The potential curve of the knowledge-based function is built from a series of discrete 

points defined by distance-potential pairs. Each point represents the values of a certain distance 

bin and is independently determined by the statistical analysis of the entire protein structure. It 

means the relation between potential energy and pairwise distance is not directly described by a 

mathematical function. This makes the calculation of molecular mechanics difficult because the 

force exerted on a particle is determined by the gradient of the potential function (Alder and 

Wainwright 1959) and the gradients cannot easily be obtained for potential functions consisting 

of discrete points.  

In order to overcome the limitations of current knowledge-based potentials, here we 

designed a novel method of constructing knowledge-based potentials. The potential energies of a 

pair of residues of a certain type of amino acid, such as nonpolar-nonpolar pair, or charged-

charged pair, should follow a certain pattern although there must be some variation between 

different pairs of residues. Therefore, a small number of potential patterns can be used to 

represent the potential energies of all the residue pairs. Based on this assumption, if we can find 

a polynomial expression to describe each potential pattern, the potentials of all the residue pairs 

can be defined by a set of polynomial expressions. Then the total potential can be easily 

calculated. The atomic-level potentials can also be obtained using the same strategy, but it will 

be more complex since more potential patterns might be needed. The advantage of our proposed 

method is that we do not need to consider how the potential is derived from either physical laws 

or statistical analysis, the only thing we need is a number of mathematical expressions 

determined by regression, which can reflect the natural properties of protein potentials.  
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Since polynomial expressions need more computational power to be determined, we 

started from using simple, physical equations to approximate potential energies. Physical 

potential functions like Gaussian: 

( )2

22
r b

cE ae
−

−
= (Laplace 1812), Lennard Jones 6/12 

potentials: 

12 6

4 b bE a
r r

⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦  (Lennard-Jones 1924), and Morse potentials: 

( )( )2
1 ka r rE D e− −= −

(Morse 1929) have the desirable feature of converging to a constant at 

large distances, which is not true, in general, with polynomial expansions.  Therefore they are 

well suited to use in expansions of inter-residue and inter-atomic potentials.  In this study, the 

Morse potential function showed the best outcome among a number of models we have tested. 

Although different types of residue pairs have distinct potential patterns, we simplify this 

problem by using the Morse potential curve to approximate the potentials of all residue pairs. 

Thus the potential values in this study are considered as “pseudo” or “relative” potentials.  

Unless specified, protein residues are represented by the side chain center (SCM) of mass in this 

study. Since our potentials are defined by many fewer parameters than other knowledge-based 

potentials, we name the entire set of 210 potential functions as the Compact-SCM. 

4.2. Materials and Methods 

4.2.1. Calculation of Total Potential 

In our study, the total potential of mean force for a protein was approximated as the sum 

of pairwise potentials of all the residues.  The potential of each different residue pair was defined 

by one potential function. Therefore, 210 functions were determined for the total potential of a 

protein. The Morse potential function was used to approximate the potential of mean force u(i, j, 

r) between two residues i and j at the distance r:  
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( ) 2( , , ) (1 )a r reu i j r D ee
− −= −  

re refers to the equilibrium distance between two residues, a and De control the width and depth 

of the potential curve respectively. The ranges of three parameters were set to: 1≤De≤6, 

0.3≤a≤3.0, and 0<re<14. The basic step sizes were 1, 0.1, and 0.1 for tuning De, a and re, 

respectively. For each residue pair ij, one triple (De, a, and re) was determined for its unique 

potential function. Thus, a total number of 630 parameters (210 triples) were determined for 210 

potential functions. Finally, the total potential of mean force u for a given protein was calculated 

as: 

1
( , , ) ( , , )

2 ,
u i j u i j rij

i j
∑∞ = − ∞  

Since the potential energy of a well formed protein molecule is negative, the value at infinity (∞) 

was subtracted to ensure negative values of the potential energy.  In this study, the position of 

each residue was represented using three different approaches: Cα atom, Cβ atom, and side chain 

center of mass (SCM). 

4.2.2. Parameter Determination Using Genetic Algorithm 

Genetic algorithm is particularly effective for tuning large number of variables (Kaufman 

1998). In this study, a vector containing 630 parameters with designed initial values was 

considered as an individual chromosome. Each population was formed by 30 distinct 

chromosomes. The elitism selection (Mashohor, Evans et al. 2005) was applied in reproduction. 

Combination rate and mutation rate were 90% and 1%, respectively. The selection pressure was 

the rank of the native fold in the decoy sets. The parameters were tuned for over 300 parallel 

cycles on the Octans cluster at Georgia State University. In each cycle, 4 to 6 decoy sets were 

used simultaneously. A set of 630 parameters were generated only if the potentials of all the 



97 
 

 

native structures in tested decoy sets were correctly ranked to the 1st. The final parameter set 

was produced in the integration step, where all sets of produced parameters were analyzed and 

the most frequent value for each parameter was extracted as the final value. The averaged values 

were also tested in our study, but the result was worse than the most frequently appeared values. 

4.2.3. Training Data and Decoy Sets 

The training data contains decoys from CASP6 and 4state_reduced (Park and Levitt 

1996). CASP6 decoys were downloaded from http://predictioncenter.org/casp6. Among those 

decoy sets, only X-ray structures of monomer proteins without gaps were selected. Specifically, 

18 decoy sets (t0199, t0200, t0201, t0262, t0263, t0264, t0267, t0268, t0269, t0271, t0273, t0274, 

t0275, t0277, t0279, t0280, t0281), each containing 60 decoy structures on average, were 

selected as part of our training data. Because most proteins in CASP6 are relatively big (100-300 

residues), seven 4state_reduced decoy sets from http://dd.compbio.washington.edu/download. 

shtml (1ctf, 1r69, 1sn3, 2cro, 3icb, 4pti, 4rxn), were added to our training data set to minimize 

the bias towards the protein size. Each native structure in this decoy sets has 50-70 residues and 

each decoy set contains about 660 decoy structures on average. Training decoys were preselected 

by removing structures with gaps, missing atoms, incomplete or longer sequences. The testing 

decoy sets are listed in the Table 1. All the decoy sets were used for the tests of Cα and Cβ 

representations while two groups of decoys were used on the examination of SCM representation. 

One group contains all the 70 multiple decoys and the other group only contains the filtered 

decoys. Decoys marked with * in the Table 1 were discarded during the filtering as missing side 

chain atom was found in the PDB file of the native structure. The docking decoy sets were 

downloaded from http://www.sbg.bio.ic.ac.uk/docking/all _decoys.html.  
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4.2.4. Performance Measurement 

Z-score is the difference from the mean divided by the standard deviation.  It places 

values of the potential in a “standard measure” and reflects the degree to which a value at an 

individual is distinct from the values at the rest of the data points. It reflects the bias towards the 

native structure (calculation follows the standard definition (Zhang, Liu et al. 2004)). CC refers 

to correlation coefficient between Cα rmsd and calculated potential energy. FE represents 

fraction enrichment which means the percentage of the top 10% best scoring structures that are 

also found in the top 10% lowest rmsd structures.  

4.3. Results and Discussion 

4.3.1. Parameters Determined for 210 Potential Functions 

Ideally, different residue pairs will have distinct potential trajectories, especially for 

different types of residue pairs, such as nonpolar-nonpolar pairs and charged-charged pairs. We 

simplified this complication by approximating the potentials of all residue pairs by one type of 

trajectory. However, we set a wide value range for each adjustable variable in the potential 

function, allowing the potential curves to be different from one to another. We tested four types 

of potential curves defined by single Gaussian’s function (Laplace 1812), double Gaussian 

function, Lenard-Jones function (Lennard-Jones 1924), and Morse function (Morse 1929), 

respectively. As shown in Figure 4.1, the Morse potential curve showed the best accuracy in our 

test. The genetic algorithm successfully generated 630 parameters for 210 potential functions. 

Although there are 210 functions, only a narrow range of values were selected for each variable 

after training. All 210 functions have the same De value of 5.0. The majority functions have their 

a values in the range of 0.5±0.2 (Table 4.2) although several exceptions exist. In contrast, a 

variety of values from 4.3 to 8.1 were selected for the parameter re as indicated in the Table 4.3. 

Since the re defines the equilibrium distance between two residues, it suggests that our method 
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tends to use the equilibrium distance as the most important feature to distinguish potentials of 

different residue pairs. The opening width of the potential curve, which is determined by a, also 

plays some roles for the discrimination. The well depth of the potential curve, however did not 

contribute to the discrimination. By analyzing single potential function, correlation between the 

shape of the curve and the residue type was not observed. This is not surprising as our 

approximated potentials were designed to function as an intact system.   

4.3.2. Performance on 70 Standard Multiple Decoy Sets 

In previous studies, it was suggested that a residue can be represented by a single 

interaction point instead of all the atoms. The potential function using side chain center of mass 

(SCM) showed the most comparable result to the atomic level potentials (Zhang, Liu et al. 2004). 

In order to find out the most efficient residue representation for our model, three most widely 

used approaches, Cα, Cβ, and SCM, were tested. The success rates on 70 decoy sets increased 

significantly from 30%, 46% to 70% as the interaction center moved from Cα, Cβ, to SCM.  We 

subsequently compared the performance of the Compact-SCM with three previously published 

models using the SCM representation. The performance data of KBP, RAPDF, and DFIRE-SCM 

was obtained from the previous study of Zhang (Zhang, Liu et al. 2004). The detailed 

comparison was shown in the Table 4.4.  

The lattice_ssfit decoy set was generated by tetrahedral lattice model with all-atom 

ENCAD energy function (Xia, Huang et al. 2000). The original package has 2000 decoys for 

each of eight targets. The performances of the Compact-SCM were quite different on filtered and 

non-filtered decoys. 5 targets were correctly ranked out of 8 non-filtered decoy sets while all 

three filtered decoy sets were correctly ranked. Our average Z-scores were lower than other three 

methods. The lmds was generated by a local minimization method with a reduced ENCAD 

function (Keasar and Levitt 2003). The best success rate of three previous methods on this decoy 
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was 3/10. Our method achieved comparable performance for both filtered and non-filtered 

decoys. The fisa and fisa_casp3 decoy sets were generated by simulated annealing method with 

Bayesian scoring function (Simons, Kooperberg et al. 1997; Simons, Bonneau et al. 1999). Our 

method successfully rated all the seven targets while all other three approaches missed at least 

one target. Our average Z-score for fisa decoys was comparable to other methods whereas it is 

somehow lower for the fisa_casp3 decoys. Among 10 filtered targets of CASP4 decoys, our 

method discriminated 7 native structures. The accuracy is a little better for the non-filtered 

decoys. The success rate and average Z-score were both lower than other three methods. In 

contrast, our method achieved 79% of success for 24 Rosetta targets and only DFIRE-SCM got 

the similar accuracy. All together, the Compact-SCM achieved an average accuracy of 70% for 

the entire 70 non-filtered decoy sets, which is close to the DFIRE and better than other two 

methods. However, if only the filtered decoys are considered, the Compact-SCM achieved an 

accuracy of 73% which is better than all other three methods. Considering that the performance 

of knowledge-based potential relies on the training data, it is necessary to exclude low quality 

structures from the training set. Similarly, the non-filtered testing set can possibly generate false 

result due to the ignoring of missing side chain atoms or even residues.  Therefore, our result for 

the filtered decoy sets is more reliable than other three methods. In addition, we discarded model 

structures having gaps or sequence differences from the native structure by filtering, thus some 

decoys far from the native conformation were excluded from our testing data. This could result 

in the decrease on the average Z-score for the filtered decoys. 

Many knowledge-based potential functions were developed in recent years, some of 

which use different residue representations other than the SCM. We therefore compared the 

performance of Compact-SCM with some other methods. The data of comparison was obtained 
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from (Makino and Itoh 2008) for DFMAC and (Mirzaie, Eslahchi et al. 2009) for all other 

methods. To exclude the possible training bias of different studies, only commonly tested decoys 

were compared. The number of correctly ranked targets for each decoy set is shown in the Table 

4.5. Our method correctly rated 13 targets out of 19 decoy sets, which is significantly higher than 

the Rosetta and three ModPipe methods. However, DFIRE-A, DOPE, PC2CA, and Force model 

all got 15-17 correct rankings. This result, however, is not surprising because those methods use 

more complicated residue representations. DFIRE-A, DOPE, and Force model use residue 

specific heavy atom representation, and the PC2CA use both Cα and SCM information. The 

DFMAC is a recently reported method using only main chain atoms. Although its success rate 

was 6/8 in our comparison, its tested decoy set was significantly less and our method got the 

same success rate if only the same decoy sets were counted.  

CC and FE are other two parameters used in assessing the ability to discriminate the 

native fold from structural models. In this study, the average CC and FE for all 70 multiple 

decoy sets were 30% and 20%, respectively. The best average CC was 61% on Casp4 decoy set. 

And our results on lattice_ssfit, fisa, fisa_casp3 and lmds decoy sets were similar to the DFMAC 

(Makino and Itoh 2008). Clearly, the correlation between rmsd and potential score is not 

significant for our method. Nevertheless, to achieve a significant correlation coefficient for a 

large number of decoy sets is still a very challenging problem and most studies can only obtain 

good results on some particular decoy sets (Makino and Itoh 2008) (Zhou and Zhou 2002).  

Overall, the Compact-SCM has demonstrated one of the best performances among 

methods using the SCM representation. Although the performance is moderate compared with 

some atomic-level potentials, it is likely due to the limit of the SCM representation. Moreover, 

our method uses significantly fewer adjustable parameters than those used in other methods 
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(about 90% fewer than other residue level potentials (Table 4.4) and over 99% fewer than atomic 

level potentials (Table 4.5)). It suggests that our potential function captures the hidden features 

of potential energy better than other methods and thus is more statistically significant. Last but 

not least, although improving the correlation between rmsd and function score is a challenging 

task, future development will benefit since the construction method of our potentials is much 

simpler and more flexible than other studies. 

4.3.3. Performance on 9 Docking Decoy Sets 

In the study of Zhang (Zhang, Liu et al. 2004), the performance of DFIRE-SCM was 

tested by 21 docking decoys sets. To understand Compact-SCM’s capability of discriminating 

docking decoys, we performed the same test using 9 decoy sets available at 

http://www.sbg.bio.ic.ac.uk/docking/all_decoys.html. Four decoy sets contain dimer interfaces 

and five contain trimer interfaces. The performance of Compact-SCM was compared with the 

LLS (all atom version) (Lu, Lu et al. 2003) and the DFIRE-SCM (data from (Zhang, Liu et al. 

2004)). The ranking of native structure for each decoy set is indicated in the Table 4.6. For the 

dimer decoys, our method successfully rated 3 out of 4 native structures, which is equivalent to 

the LLS and a bit lower than the DFIRE-SCM. For the trimer decoys, our method correctly rated 

4 native structures out of 5. DFIRE-SCM got the same accuracy while LLS got only 1 hit. 

Overall, the performance of Compact-SCM was much better than the LLS and comparable to the 

DFIRE-SCM. This result indicated that the Compact-SCM has considerable capability of 

discriminating docking decoys. Since the Compact-SCM was not trained with any interface 

decoys, the performance has a good chance to be enhanced in the future. 

4.3.4. Conclusions and Future Work 

We introduced a new method of generating knowledge–based potentials that can be used 

for both structural prediction and molecular mechanics. The potential of mean force for each 
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residue pair was defined by one Morse function determined by training against 25 sets of 

multiple decoys. The total potential of mean for a protein was calculated as the summation of all 

residue pairs. The capability of the Compact-SCM on discriminating native structure from 

structural models was comparable to some of the best models using residue-level potentials. 

What’s more, each potential function was described by only three parameters (De, a, and re), 

which is much less (<10%) than other potentials. And derivatives of each potential functions on 

the distance can be easily calculated. These advantages make the Compact-SCM favorable for 

both structure prediction and molecular mechanics.  

The development of our potential functions is still in progress. We are testing more 

mathematical models to approximate the potential patterns. The Morse function will be further 

refined by integrating auxiliary expressions. Meanwhile, we are trying to distinguish different 

types of residue pairs using different mathematical expressions. And we will eventually establish 

a set of atomic-level potential functions. With the further development, we believe the 

performance of our potential functions will be considerably enhanced. This new type of 

knowledge-based potentials will help the future studies of structural bioinformatics. 
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Table 4.1. 70 multiple decoy sets for testing. 

Source Average decoys PDB ID 

lattice_ssfita 1998 1beo, 1ctf, 1pgb, 1dtk-A*, 1fca*, 1nkl*, 1trl-A*, 4icb*  

lmdsb 445 1b0n-B, 1bba, 1ctf, 1dtk, 1fc2, 1igd, 1shf-A, 2cro, 2ovo, 4pti* 

fisac 500 1fc2, 1hdd-C, 2cro, 4icb 

fisa_casp3d 1498 1bg8-A, 1bl0, 1jwe 

CASP4e 37 t0092(1im8), t0098(1fc3), t0100(1qjv), t0103(1ga6), t0104(1fl9), t0108(1j83), 
t0115(1fwk), t0117(1j90), t0123(1exs), t0125(1ghk), t0086(1fw9)*, 
t0087(1i74)*, t0096(1e2x)*, t0106(1ijx)*, t0107(1i8u)*, t0111(1e9i)*, 
t0112(1e3j)*, t0113(1e3w)*, t0118(1fzr)*, t0121(1g29)*, t0126(1f35)* 

Rosettad 846 1aa2, 1acf, 1ail, 1bdo, 1csp, 1ctf, 1erv, 1gvp, 1kte, 1mbd, 1msi, 1pal, 1pdo, 
1r69, 1ris, 1tul, 1utg, 1vls, 1who, 2acy, 2fha, 4fgf, 2gdm, 5icb 

a (Xia, Huang et al. 2000), b (Keasar and Levitt 2003), c (Simons, Kooperberg et al. 1997), d (Simons, Bonneau et 
al. 1999), e (Feig and Brooks 2002)  

*decoys not tested for SCM approach due to the missing side chain atoms in the native structure. 

 



105 
 

 
 

 

Table 4.2. Values of the parameter a for each residue pairs. 
 A C D E F G H I K L M N P Q R S T V W Y 

A 0.5 0.4 0.7 0.6 0.3 0.5 0.7 0.4 0.6 0.6 0.5 0.6 0.7 0.5 0.7 0.6 0.5 0.5 0.5 0.4
C  0.5 0.3 0.6 0.5 0.5 0.7 0.5 0.7 0.5 0.3 0.4 0.5 0.5 0.4 0.5 0.6 0.6 0.3 0.5
D   0.6 0.5 0.5 0.6 0.5 0.5 0.3 0.5 0.5 0.5 0.7 0.5 0.7 0.5 0.3 0.5 0.3 0.5
E    0.7 0.6 0.6 0.4 0.7 0.7 0.6 0.5 0.4 0.7 0.6 0.6 0.6 0.5 0.6 0.4 0.6
F    0.3 0.6 0.5 0.4 0.4 0.3 0.3 0.7 0.5 0.5 0.3 0.5 0.5 0.7 0.6 0.5
G    0.6 0.4 0.7 0.5 0.5 0.6 0.5 0.7 0.4 0.3 0.5 0.7 0.5 0.4 0.5
H    0.5 0.6 0.4 0.5 0.7 0.5 0.6 0.5 0.7 0.5 0.5 0.5 0.5 0.4
I    0.5 0.7 0.6 0.3 0.6 0.7 0.6 0.7 0.6 0.5 0.5 0.4 0.6
K    0.7 0.7 0.3 0.6 0.5 0.3 0.7 0.5 0.7 0.6 0.3 0.5
L    0.6 0.5 0.5 0.7 0.6 0.3 0.7 0.7 0.6 0.4 0.5
M    0.5 0.5 0.7 0.4 0.5 0.5 0.6 0.5 0.4 0.4
N    0.5 0.6 0.5 0.5 0.4 0.5 0.5 0.7 0.4
P     0.7 0.5 0.7 0.5 0.5 0.6 0.5 0.7
Q     0.5 0.7 0.5 0.5 0.5 0.6 0.5
R     0.6 0.6 0.7 1.1 0.4 0.4
S     0.5 0.6 0.8 0.3 0.5
T     0.3 0.9 0.6 0.9
V     1 0.4 0.4
W     0.5 0.5
Y     0.5

.  
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Table 4.3. Values of the parameter re for each residue pairs. 
 A C D E F G H I K L M N P Q R S T V W Y 

A 5.9 5 4.9 4.3 4.9 4.5 5.8 4.9 5.7 4.5 5.8 4.4 5.6 5.1 5 5.5 4.3 5 4.9 4.8
C  4.3 4.3 8.1 4.5 5.2 4.3 4.5 5.3 4.5 4.4 4.5 4.3 4.7 4.4 5.1 4.8 4.6 4.7 4.7
D   4.6 4.4 4.4 5.3 5.4 4.7 4.4 6.7 4.5 4.7 5.4 5 5.9 5 6.1 5 4.3 4.8
E    4.5 4.7 4.3 4.9 5 4.4 6.2 5.2 5.2 4.3 5 4.9 5 4.4 5 4.5 5
F    4.6 5 5.1 5 4.7 4.7 4.5 5 4.8 4.5 5.8 6 5.7 6.2 5 5
G    6.1 5.4 6 6.1 6.2 5.8 4.8 6.1 5.8 4.3 6.2 6.1 5.2 5.9 5.8
H    4.8 5.9 4.6 4.8 5 4.8 5.8 6.1 6.1 6 5.1 4.5 4.6 4.5
I    5.9 6.2 6.2 6 6 6 6 5.8 5.8 4.6 5.8 6.1 6
K    6.1 6.7 6 6.1 6.2 5.9 6.2 6 6.1 6.2 5.9 5.9
L    6 6 4.8 6.2 5.2 6.2 6.1 6 5.7 5.3 5.8
M    5.1 6.2 4.6 4.7 6.1 6.1 6 5.6 6.1 4.5
N    5.1 5.8 6.1 4.4 5 5.2 5.4 6.1 4.9
P     6.1 5.5 7.1 5 5.4 4.9 6.1 5
Q     5 5 4.8 6.2 5.1 5.1 6.2
R     4.3 4.3 5.5 5.9 4.8 5
S     6.1 4.8 5.2 5.1 5.1
T     6.1 5.1 6.1 6
V     5 5 7.4
W     4.9 4.8
Y     6.8
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Table 4.4. The success rates and average Z-scores of different SCM potentials. 

Source RAPDF-SCMa KBP-SCMa DFIRE-SCMa Compact-SCMb Compact-SCMc 

lattice_ssfit 6/8 (3.21) 6/8 (5.11) 8/8 (6.19) 5/8 (1.17) 3/3 (1.52) 

lmds 2/10 (1.78) 4/10 (2.59) 3/10 (2.56) 3/10 (1.98) 3/9 (2.04) 

fisa 1/4 (2.51) 3/4 (3.99) 3/4 (4.70) 4/4 (3.96) 4/4 (3.96) 

fisa_casp3 2/3 (3.70) 3/3 (4.96) 3/3 (6.05) 3/3 (1.49) 3/3 (1.49) 

CASP4 19/23 (2.74) 17/23 (3.83) 19/23 (3.15) 15/21 (2.49) 7/10 (1.01) 

Rosetta 27/41 (3.55) 29/41 (4.16) 33/41 (4.90) 19/24 (2.54) 19/24 (2.38) 

Summary 64.0% (2.92) 69.7% (4.11) 71.9% (4.59) 70.0% (2.27) 73.6% (2.06) 

Parameters 7560 5880 8400 630 630 
a (Zhang, Liu et al. 2004) 
b Tested with all decoys 
c Tested with filtered decoys  

Numbers in parentheses are average Z-scores 
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Table 4.5. The success rate of other energy models   

Source DFIRE-
Aa Rosettaa ModPipe-

Paira 
ModPipe-

Surfa 
ModPipe-

Comba DOPEa PC2CAa Force 
modela DFMACb Compact-

SCM 

lattice_ssfit 3/3 3/3 3/3 2/3 3/3 3/3 3/3 3/3 2/2 3/3 

lmds 6/9 2/9 3/9 2/9 3/9 6/9 6/9 9/9 2/3 3/9 

fisa 3/4 1/4 0/4 1/4 0/4 3/4 4/4 4/4 1/1 4/4 

fisa_casp3 3/3 0/3 2/3 0/3 2/3 3/3 3/3 1/2 1/2 3/3 

Correct 15 6 8 5 8 15 16 17 6 13 

Parameters >200,000 630 
a(Mirzaie, Eslahchi et al. 2009) 
b(Makino and Itoh 2008) 
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Table 4.6. The Ranking of native structures for 9 docking decoy sets. 

PDB ID 1ugha 2sica 1cgia 1dfja 1ahwb 1bvkb 1dqjb 1mlcb 1wejb 

LLSc 1 1 1 4 3 4 4 3 1 

DFIRE-SCMd 1 1 1 1 1 1 1 1 2 

Compact-SCM 1 61 1 1 1 1 1 1 55 

a Dimers 
b Trimers 
c (Lu, Lu et al. 2003) 
d (Zhang, Liu et al. 2004)    
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Figure 4.1. Accuracy of different potential functions. The mathematical expressions and curves were shown for (a) Gaussian’s 
function, (b) Lennard-Jones function, and (c) Morse function. (d) In the test of 70 standard multiple decoy sets, four different 
functions obtained accuracies of 37%, 31%, 50%, and 70%, respectively.  
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5. OVERALL SUMMARY 

In this study, the structural basis of caspase-3 substrate specificity was investigated by 

crystallographic study and structural modeling. Subsites from S1 to S5 in the caspase-3 substrate 

binding groove showed different characteristics for substrate recognition. Specifically, the S1 

pocket which is highly positive and stringent for P1 Asp, is formed by Arg64, Arg207, and 

Gln161. Our observation is consistent with the previous conclusion that the S1 pocket 

exclusively recognizes P1 Asp (Talanian, Quinlan et al. 1997; Thornberry, Rano et al. 1997). 

The S2 pocket is surrounded by three aromatic residues, Tyr204, Trp206, and Phe256. This 

pocket prefers hydrophobic residues with small side chains, and its size can be adjusted upon the 

binding of different P2 residues. The S3 pocket, mainly formed by Arg207, is open at the protein 

surface and prefers hydrophilic P3 residues. The S4 pocket can accommodate both polar and 

nonpolar residues. Crystal structures showed that Trp206 and Trp214 in the S4 pocket interacted 

with P4 Ile or Tyr. Computational modeling suggested that most nonpolar P4 residues, except 

Trp, can interact with either Trp206 or Trp214 (Fang, Fu et al. 2009). The S5 pocket, formed by 

Phe250 and Phe252, was newly identified by our study. It can interact with P4 Trp and P5 

residues with hydrophobic side chains. Binding of P5-containing peptides leads to 

conformational changes in the L4 loop via an induced fit mechanism (Fang, Boross et al. 2006). 

The comparison of seven caspase-3 crystal structures indicated that most (S2-S5) of the caspase-

3 substrate binding groove is flexible, and only the S1 pocket is stringent in recognition of amino 

acids. The S1-S5 binding sites are interdependent, as different substrate residues at one position 

also showed impact on the binding of residues at other positions (Fang, Boross et al. 2006).  

Besides the crystallographic analysis, a computational study was performed to develop 

novel knowledge-based potential functions for evaluating the quality of protein structural models. 
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Our new potential energy function Compact-SCM was established using Morse’s potential 

functions. It achieved a comparable accuracy to the best previous method in the same category. 

More importantly, the number of adjustable parameters used by Compact-SCM is 90% fewer 

than other residue-level potentials and over 99% fewer than atomic-level potentials. It suggests 

that our method is more statistically significant and thus better captures the hidden features of 

protein potential energy. In contrast to traditional knowledge-based potentials, our potential 

energy functions are defined by differentiable mathematical expressions, which are more 

physically meaningful and can be directly applied for molecular mechanics. Thus the Compact-

SCM is a new type of potential function that combines the advantages of both physics-based 

potentials and knowledge-based potentials. 

Overall, my research will be helpful for the future design of caspase-based drugs in the 

following two aspects. First, the analysis of the substrate binding sites in caspase-3 and 

conformations of different residues in the inhibitors provides direct guidance for the design of 

the next generation of drug candidates. Second, our new potential functions can be used in the 

prediction of protein structures and protein-ligand structures, which is a widely used technique 

for screening potential protein inhibitors.   
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APPENDICES 
 

I. List of All Caspase Complexes Studied and Publications 

Protein Inhibitor PDB 

code 

Purifi- 

cation 

Crystalli-

zation 

Solve Enzyme 

Kinetics 

Caspase-3 Ac-DEVD-Cho 2H5I # # # # 

Caspase-3 Ac-DMQD-Cho 2H5J # # # # 

Caspase-3 Ac-VDVAD-Cho 2H65 # # # # 

Caspase-3 Ac-IEPD-Cho 3GJT # # # # 

Caspase-3 Ac-WEHD-Cho 3GJQ # # # # 

Caspase-3 Ac-YVAD-Cho 3GJS * * * # 

Caspase-3 Boc-D(OMe)-Fmk 3GJR # # # # 

Caspase-3 Ac-LDESD-Cho 3EDQ * * * # 

Caspase-7 Ac-DMQD-Cho 2QL5 *   # 

Caspase-7 Ac-DQMD-Cho 2QL9 *   # 

Caspase-7 Ac-DNLD-Cho 2QLF *   # 

Caspase-7 Ac-IEPD-Cho 2QL7 *   # 

Caspase-7 Ac-ESMD-Cho 2QLB *   # 

Caspase-7 Ac-WEHD-Cho 2QLJ *   # 

Caspase-7 Ac-YVAD-Cho 3IBC *   # 

Caspase-7 Ac-LDESD-Cho 3EDR *   # 

# full contribution   *partial contribution   N/A not published yet 

Related publications are listed below. 
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1. Agniswamy J, Fang B, Weber IT. Catalytic restrictions in the active site of human caspase-7 

revealed by unliganded and inhibited structures. Apoptosis. 2009 14(10):1135-44.  

2. Fang B, Fu G, Agniswamy J, Harrison RW, Weber IT. Caspase-3 binds diverse P4 residues in 

peptides as revealed by crystallography and structural modeling. Apoptosis. 2009 May 

14(5):741-752. 

3. Weber IT, Fang B, Agniswamy J. Caspases: structure-guided design of drugs to control cell 

death. Mini Rev Med Chem 2008;8: 1154-1162. 

4. Fu G, Chumanevich AA, Agniswamy J, Fang B, Harrison RW, Weber IT. Structural basis for 

executioner caspase recognition of P5 position in substrates. Apoptosis 2008;13: 1291-1302. 

5. Agniswamy J, Fang B, Weber IT. Plasticity of S2-S4 specificity pockets of executioner 

caspase-7 revealed by structural and kinetic analysis. FEBS J. 2007 Aug 14 

6. Fang B, Boross PI, Tozser J, Weber IT. Structural and kinetic analysis of caspase-3 reveals 

role for s5 binding site in substrate recognition. J Mol Biol. 2006 Jul 14;360(3):654-66. 

 

II. Mutagenesis Study in the S4 Binding Site of Caspase-3 

Enzyme kinetic studies have showed that caspase-3 prefers the aspartic acid residue at P4 

position on its substrate and any substitution dramatically decrease substrate binding affinity. 

Our molecular modeling study in chapter three, however, suggested that the glutamic acid can 

bind in the S4 pocket and form hydrogen bonds with F250 and S209. Since Glu and Asp only 

differ from one side chain carbon atom, what make caspase-3 stringently prefer Asp at P4? This 

question still remains to be a mystery. We observed in several caspase-3 structures that the P4 

aspartic acid form water mediated hydrogen bond interactions with some protein residues nearby 

the S4 subsite, including D221, W214, and Q217. In order to examine the effect of these indirect 
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interactions to the P4 binding, mutagenesis and enzyme kinetic studies were performed. In 

addition, crystallization of caspae-3 mutant was also performed. 

Three caspase-3 mutants, D221A, W214A, and Q217A were made following the standard 

site-directed mutagenesis protocol using PCR. The following protein expression, purification, 

and kinetic analysis were performed using the same protocol described in previous chapters.  

Three caspase-3 mutants were successfully constructed and expressed. However, the 

yield of purified enzyme is low. The enzyme kinetic study indicated that all three caspase-3 

mutants have very low catalytic activities on the canonical substrate Ac-DEVD-pNA. Since the 

exclusion of one water mediated hydrogen bond should not substantially decrease the catalytic 

activity, we suspect that the mutated residues must be important for the correct folding of the 

substrate binding pocket. The active site conformation of caspase-3 might be changed by the 

mutation leading to the dropped activity. This explains the low yield of protein purification as 

caspase-3 needs to be processed to the active form by its own proteolytic activity. However, the 

crystallization was unsuccessful, thus structural evidence of our hypothesis is still missing.     
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