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PROTEOMIC VARIATIONS BETWEEN A MYCOPLASMA GALLISEPTICUM VACCINE 

STRAIN AND A VIRULENT FIELD ISOLATE 

by 

ROLLIN DENNARD 

Under the Direction of Dr. Georgia Pierce 

ABSTRACT 

Mollicutes (mycoplasmas) are pathogenic in a wide range of mammals (including 

humans), reptiles, fish, arthropods, and plants. Of the medically important mollicutes, 

Mycoplasma gallisepticum is of particular relevance to avian agriculture and veterinary science, 

causing chronic respiratory disease in poultry and turkey. Using two-dimensional electrophoresis 

based quantitative expression proteomics, the current study investigated the molecular 

mechanisms behind the phenotypic variability between a M. gallisepticum vaccine strain (6/85) 

and a competitive, virulent field strain (K5234), two strains which were indistinguishable using 

commonly accepted genetic methods of identification. Twenty-nine proteins showed a 

significant variation in abundance (fold change > 1.5, p-value < 0.01). Among others, the levels 

of putative virulence determinants were increased in the virulent K5234, while the levels of 

several proteins involved with pyruvate metabolism were decreased. It is hoped that the data 

generated will further the understanding of M. gallisepticum virulence determinants and 

mechanisms of infection, and that this may contribute to the optimization of diagnostic 

methodologies and control strategies.  

 

INDEX WORDS: Mycoplasma gallisepticum, Mollicutes, Poultry vaccine, Expression 

proteomics, Two-dimensional electrophoresis, DIGE (Difference Gel Electrophoresis) 
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CHAPTER 1 

INTRODUCTION 

 

Mollicutes and Mycoplasma gallisepticum 

 Mycoplasmas (specifically Mycoplasma mycoides) were first isolated by Nocard and 

Roux in 1898 (Waites and Talkington, 2004). The designation „mycoplasma‟ (mykes, fungi; 

plasma, plasma formed) arose in the 1950‟s and described the organism‟s fungus-like growth, a 

phenotype not actually observed in mycoplasmas other than M. mycoides. Since then 

mycoplasmas have been grouped together in class Mollicutes (mollis, soft; cutis, skin - trivial 

name, mollicutes or mycoplasmas), which consists of 4 orders, 8 genera, and over 200 species 

(Johansson and Pettersson, 2002). 16S rRNA phylogenetic data suggest that mollicutes branched 

off from low GC gram-positive bacteria roughly 600 million years ago (Fig. 1, p. 14), having 

evolved since then by reductive (or degenerative) evolution, whereby they lost their cell walls 

and many biosynthetic capabilities (Maniloff, 2002; Razin et al., 1998). To date, over 30 

mollicutes have been completely sequenced, with genomes ranging in size from 580 to 1,359 kb 

(Fig. 2, p. 15; Table 1, p. 16) (Barre et al., 2004). Because of their minute genomes, mollicutes 

are the subject of intense research efforts aimed at defining the minimal gene compliment 

required for life, and scientists such as J. Craig Venter are interested in using this data to 

synthesize life in vitro (Glass et al., 2006). 

 Mollicutes are highly pleomorphic, exhibiting spherical (0.3 – 0.8µm in diameter), pear 

shaped, flask shaped, and filamentous cell morphologies. Colonies are typically fried egg shaped 

(Razin et al., 1998). Structurally, “Mollicutes are characterized by the complete lack of a cell 
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wall and the presence of an internal cytoskeleton” (Wolf et al., 2004). Cell growth is unaffected 

by cell wall synthesis-inhibiting antibiotics, and chemical analysis confirms the absence of 

peptidoglycan, muramic acid, and diaminopimelic acid in mollicutes (Madigan et al., 2006). 

Genetic studies show that mollicutes do not have the genes needed for the biosynthesis of these 

cell wall components (Waites and Talkington, 2004). 

 Mollicutes are not as sensitive to osmotic shock as are typical protoplasts. This is due to 

the presence of sterols, which are rigid and planar, in their cell membranes (unique among 

bacteria). Some mollicutes possess lipoglycans which add to the stabilization of their membranes 

(Madigan et al., 2006). The plasma membranes are also supported by an internal cytoskeleton 

that is involved in modulating cell shape, cell division, localization of adhesins, and motility 

(Balish and Krause, 2002; Razin et al., 1998). 

 While some mollicutes are strictly respiratory, most are facultative anaerobes (Madigan 

et al., 2006). Glucose is metabolized by glycolysis or an incomplete pentose phosphate shunt. 

Most non-fermentative and some fermentative mollicutes possess an arginine dehydrolysis 

pathway. It is thought that substrate level phosphorylation during these catabolic pathways 

accounts for most of the ATP production in mollicutes. Mollicutes lack TCA cycles, have 

truncated electron transport chains (flavin terminated, no quinones or cytochromes), and are 

incapable of oxidative phosphorylation (Pollock et al., 1997; Razin et al., 1998). Anabolism in 

mollicutes relies heavily on the uptake of many biosynthetic precursors, including amino acids, 

purines, pyrimidines, and cholesterols (Madigan, 2006). As Shmuel Razin states, “metabolic 

activities appear to be associated primarily with energy production rather than providing 

substrate for biosynthetic pathways” (Razin et al., 1998). 
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 Mollicutes have never been isolated as free-living entities in nature. Their limited 

biosynthetic capabilities obligate them to symbiotic, commensal, or parasitic lifestyles. Parasitic 

mollicutes are pathogenic in a wide range of mammals, reptiles, fish, arthropods, and plants 

(Table 1, p. 16). Animal mycoplasmas colonize the epithelial cells of mucosal surfaces, such as 

respiratory and urogenital tracts, alimentary canals, mammary glands, and joints. In humans, 

mycoplasmas are the primary agents of urethritis and respiratory diseases, and two strains have 

been implicated as cofactors in HIV infections (Barre et al., 2004; Razin et al., 1998). 

 Despite their medical relevance, little is known about the pathogenicity of mollicutes. 

Infections are typically chronic, as mollicutes are able to subvert host immune responses by 

cellular invasion, survival within phagocytic and non-phagocytic cells, and the generation of 

phenotypic variants (Rottom, 2003). Potent toxins have not been identified, but mechanisms of 

pathogenicity may include competition for biosynthetic precursors, damage induced by 

cytadherence, damage induced by fusion, oxidative damage due to mildly toxic metabolic 

byproducts such as hydrogen peroxide and superoxide radicals, cytopathic effects of hydrolytic 

enzymes, and indirect damage resulting from the host‟s inflammatory and cellular responses 

(Bradbury, 2005). Antimicrobial therapies have been only partially successful (Razin et al., 

1998).   

Of the medically important mollicutes, M. gallisepticum is of particular relevance to 

avian agriculture and veterinary science, contributing to chronic respiratory disease in poultry 

and turkeys. Mycoplasma gallisepticum is one of the motile and predominately flask shaped 

mollicutes (Fig. 3, p.17). The flask shape is conferred by a terminal tip organelle, which is 

involved in attachment, motility, and cell division. The organism spreads through flocks laterally 

by aerosol exposure and vertically by egg transmission and then colonizes respiratory tracts via 
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attachment epithelial tissue (Papazisi et al., 2003). Mycoplasma gallisepticum has also been 

isolated from the reproductive organs, brains, eyes, and joints of several avian species. 

Dissemination within the host is thought to be aided by the organism‟s ability to adhere to, 

penetrate, and survive within the host‟s red blood cells. Complications (decreased egg production 

and increased vaccination and medication cost) caused by M. gallisepticum infections have a 

severe negative economic impact on both the poultry and turkey industries (Papazisi et al., 

2003). Despite a worldwide impact, mechanisms of M. gallisepticum pathogenicity are not well 

understood. Outbreaks are difficult to control, often necessitating eradication of diseased 

populations (Papazisi et al., 2003). 

 Currently, there are three commercial M. gallisepticum live attenuated vaccine (LAV) 

strains available in the United States: F-strain, ts-11, and 6/85. Strain 6/85 does not persist well 

in birds but has low virulence and low potential for transmission from vaccinated to non-

vaccinated chickens (Evans and Hafez, 1992). In 2002, a report was published that described a 

6/85-like strain found within and near a flock of chickens that had been vaccinated with 6/85 

(Throne-Steinlage et al., 2003). Increased mortality and sinus swelling were observed in both 

vaccinated and unvaccinated birds. Tracheal cultures yielded a strain that was indistinguishable 

from 6/85 by random amplified polymorphic DNA (RAPD) and gene-targeted sequencing (GTS) 

of four genes (gapA, LP, mgc2, and pvpA). However, the field isolate, designated K5234, 

differed significantly from the vaccine strain in field trials. The field isolate produced a much 

stronger antibiotic response and colonized the trachea much more effectively than did the 

vaccine strain (Throne-Steinlage et al., 2003). Thus, while the two strains were indistinguishable 

RAPD and GTS, the 6/85-like strain had the interesting phenotypes of increased antibiotic 

response, colonization, and persistence in experimental chickens. 



5 

 

Using two-dimensional electrophoresis based quantitative expression proteomics, the 

current study investigated the proteomic variations between strains 6/85 and K5234 in order to 

develop a more comprehensive understanding of the molecular basis of M. gallisepticum 

virulence and attenuation and thereby contribute to the optimization of control strategies. 

 

Expression Proteomics 

While the amount of genetic information is staggering (117 billion base pairs currently in 

Genbank), there is a general acceptance that DNA sequences alone are inadequate when the goal 

is to develop a global, real time understanding of biological systems (Beranova-Giorgianni, 

2003). As genes may or may not be expressed, an organism‟s genome can be thought of as a 

potential or a “blueprint” (Simpson, 2003). To a certain extent, mRNA also indicates a potential 

physiological state; numerous modifications can take place above the level of transcription, 

including post-transcriptional and translational modifications, proteolysis, protein degradation, 

and compartmentalization (Graves and Haystead, 2002). Various studies have also revealed poor 

correlations between mRNA levels and their corresponding protein levels (Ghaemmaghami et 

al., 2003; Graves and Haystead, 2002; Ideker et al., 2001). On the other hand, proteins can be 

thought of as actuality; they “mediate the greater part of cellular activities” and are directly 

related to a cell‟s real time physiological state (Tannu and Hemby, 2006).  As Richard J. 

Simpson writes, proteins can be viewed as “bridges between genotype and phenotype” (Simpson, 

2003). 

 The term proteome was originally defined as “the complete set of proteins that is 

expressed, and modified following expression, by the entire genome in the lifetime of a cell” 

(Wilkens et al., 1996). Currently, the most common definition of proteome is “the entire 
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complement of proteins expressed by a cell at any one time,” a definition that reflects the 

dynamic nature of protein expression (Anon., 1999). The goal of most non-targeted proteomic 

research is to gain a more global understanding of biological systems by analyzing as many 

proteins as possible. The global data can then be used as a platform for more targeted studies and 

also be integrated with other “omic” (genomic, transciptomic, and metabolomics) data (Graves 

and Haystead, 2002; Simpson, 2003). This approach forms the core of systems biology, a 

discipline “which aim[s] at a systems level understanding of genetic or metabolic pathways by 

investigation of interrelationships…and interactions…of genes proteins, and metabolites” 

(Selinger, 2003; Wolkenhauer, 2001).  

Proteomics can be divided into four broad areas: bioinformatic based proteomics, 

structural proteomics, functional proteomics, and expression proteomics. Bioinformatic based 

proteomics takes advantage of computational tools and resources to conduct in silico 

experiments (Westermeier and Naven, 2002). The goal of structural proteomics is the analysis of 

protein complexes. Functional proteomics is a general term used to describe more specific, 

directed studies. Expression proteomics (or comparative protein profiling) is the quantitative 

study of protein levels between two systems that differ by some variable (Graves and Haystead, 

2002). 

 Two dimensional electrophoresis (2DE) / mass spectrometry (MS) based expression 

proteomics is of particular value to the microbial cell physiologists interested in investigating 

molecular mechanisms involved with phenotypic variations. By identifying proteins that vary in 

abundance between two samples, it is possible to link certain proteins to observed phenotypic 

variations, leading to the elucidation of molecular mechanisms responsible for processes of 
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interest. For applied microbiologists, this increases the potential targets for affecting cellular 

processes.  

Two-dimensional electrophoresis was developed by O‟Farrell in 1975 (O‟Farrel, 1997). 

The technique is used to resolves complex mixtures of proteins by separating the proteins 

according to two independent characteristics: isoelectric point (pI) and molecular weight (MW). 

In the first dimension, proteins are separated according to their pI using isoelectric focusing 

(IEF). In the second dimension, proteins are separated according to their MW using sodium 

dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). After the proteins are 

separated, variations in protein levels between the two samples are determined using image 

analysis and quantification software. Proteins of interest are then characterized by MS. 

Protein separation by 2DE can be broken down into four stages: sample preparation, IEF, 

SDS-PAGE, and image analysis. As one scientist has noted, “[s]ample treatment is the key to 

adequate [2DE] results” (Westermeier and Naven, 2002). Typically, cells are lysed directly into a 

solubilization buffer that is compatible with IEF and will ensure high resolution. The buffer must 

achieve the following tasks: convert all proteins into single conformations, cancel different 

oxidation steps, disrupt protein aggregates, prevent protein modification, and disrupt hydrogen 

and disulphide bonds. Additionally, the solubilization buffer must satisfy the constraints of IEF, 

namely that conductive substances are kept to a minimum (Shaw and Riederer, 2003). Standard 

solubilization buffers contain urea, a nonionic or zwitterionic detergent, a reductant, and carrier 

ampholytes. Urea denatures proteins by disrupting hydrogen bonds and hydrophobic interactions, 

converting proteins into single conformations. Nonionic detergents, such as NP-40 and Triton X-

100, and zwitterionic detergents, like 3-[3-(cholamidopropyl)dimethylammonio]-1-propane 

sulfonate (CHAPS), prevent hydrophobic interactions and loss of protein due to aggregation and 
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precipitation. Reductants cleave intra-and intermolecular disulphide bonds between cysteine 

residues, converting them to sulfhydral groups. Carrier ampholytes minimize protein aggregation 

due to charge-charge interactions and scavenge isocyanate, a urea derivative which is capable of 

modifying proteins and thereby generating artificial protein spots. (Simpson, 2003; Westermeier 

and Naven, 2002). 

 Once the proteins have been solubilized, they are applied directly to the first dimension 

IEF gel. Isoelectric focusing takes advantage of the amphoteric nature of proteins. The net charge 

of a protein is dependent on the pH of its environment. The pH of the environment where the net 

charge of a protein is zero is called its isoelectric point (pI). If the pH of the environment is 

above a protein‟s pI, then the protein will have a net negative charge. If the pH of the 

environment is below a protein‟s pI, then the protein will have a net positive charge. When 

placed in a pH gradient with a current, proteins will migrate toward the electrode opposite their 

net charge, negatively charged proteins migrating toward the anode and positively charged 

proteins migrating toward the cathode. Proteins will stop (focus) when the pH of the gradient 

equals their pI, and they have no net charge (Westermeier and Naven, 2002).  

Traditionally, IEF gel gradients were created with mixtures of carrier ampholytes, small 

amphoteric buffers with isoelectric points over a broad range and high buffering capacities near 

their pI. The ampholytes were mixed with low percent (so that there was no sieve effect) 

acrylamide monomer, and a current was applied. The buffers migrated accordingly, forming a 

pH gradient. This method was problematic for several reasons. During electrophoresis, the 

gradients were unstable and would drift. Additionally, there was significant batch-to-batch 

variability and gradients could not be extended above a pH of 7.5. Also, proteins could act as 

ampholytes and modify the gradients, making the gel gradients sample specific (Simpson, 2003). 
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 Many of these problems were overcome with the development of immobilized pH 

gradients (IPG) by Bjellqvist and coworkers (Bjellqvist et al., 1982). Immobilized pH gradients 

use acrylamide derivatives instead of carrier ampholytes. The derivatives have carboxylic acid 

and tertiary amino acid reactive groups. Typically, glycerol is added to a solution of the acidic 

acrylamide buffer and linearly mixed with a solution of basic acrylamide buffer. Upon 

polymerization, the reactive groups covalently bind the gel matrix. The gels are bound to a 

support film, dried down, and then cut into strips. Because the gradient is bound to the gel 

matrix, it is stable, and batch-to-batch variation is minimized. Immobilized pH gradient gels also 

have a much higher loading capacity than traditional carrier ampholyte gels (Simpson, 2003). 

 After the first dimension and before the second dimension, the proteins in IEF gels need 

to react completely with SDS, be re-reduced, and alkylated. This is achieved by equilibrating the 

strips twice in a buffer containing SDS, urea, and glycerol. During the first equilibration, 

dithiothreitol (DTT) is added to the equilibration buffer to ensure that all proteins are reduced. 

Iodoacetamide is added to the second equilibration buffer to alkylate sulfhydral group, 

preventing re-oxidation. Iodoacetamide also scavenges excess DTT (which can cause streaking) 

and aids MS analysis (Gorg et al., 2000). 

 Isoelectric focusing gels are applied directly onto the tops of SDS-PAGE gels. Sodium 

dodecyl sulphate polyacrylamide gel electrophoresis separates proteins according to their MW. 

Gels are composed of polymerized acrylamide and N,N‟methylenebisacrylamide. During 

electrophoresis, negatively charged SDS-protein complexes migrate toward the anode, with the 

gel acting as a porous sieve. The migration distance of a protein is logarithmically related to its 

MW. Low MW proteins will migrate further than high MW proteins (Westermeier, 2001). 
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Theoretically, combining IEF and SDS-PAGE could separate up to 10,000 proteins. However, 

only up to 2,000 proteins are routinely separated in laboratories (Gorg et al., 2004).  

 Once a protein extract has been separated by 2DE, MS is typically used to characterize 

the proteins of interest. Mass spectrometry measures the relative MW of molecules by converting 

them to gas phase ions and separating the ions according to their mass:charge (m/z) ratio. Most 

MS instruments contain three modules: the ionization source, the mass analyzer, and the 

detector. The ionization source converts the molecules into gaseous ions by adding protons or 

subtracting electrons. The mass analyzer uses a magnetic or electric field to propel the ions 

toward a detector which monitors the magnitude of the current from the ions as they reach the 

end of the mass analyzer (Henzel et al., 2003). 

 Of the multiple MS configurations used in protein science, matrix assisted laser 

desorption ionization–time of flight (MALDI-TOF) is one of the most simple, robust, and 

amendable to high throughput (Aebersold, 2003). Typically, the sample is digested with trypsin, 

and the peptide digest is co-crystallized with a matrix, which is a small organic molecule that  

absorbs specific wavelengths of light. The dried sample is pulsed with UV light and energy is 

transferred from the matrix to the analyte, causing desorption and ionization. The initial velocity 

of an ion is dependent upon its mass, and an ion‟s time of flight in the analyzer is proportional to 

the square root of its m/z ratio. Smaller molecules will reach the detector before larger 

molecules. The MW of molecules in a complex mixture can be determined by comparing their 

time of flight to that of a standard (Westermeier and Naven, 2002). Ultimately, a spectrum is 

generated that contains the MW of each peptide fragments in the protein digest. 

The MALDI-TOF can also be configured for tandem MS or MALDI-TOF/TOF. With 

this configuration, two TOF analyzers are split by a collision cell. In the first analyzer, specific 
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ions are selected and then energetically fragmented by collision-induced dissociation (CID) in 

the collision cell. The fragments are then separated by the second TOF analyzer (Westermeier 

and Naven, 2002). Matrix assisted laser desorption ionization–time of flight/time of flight 

produces two types of data. The first type is called peptide mass fingerprints (PMF), which is a 

spectrum generated from the MWs of the unfragmented tryptic peptide digests (MS data). A 

protein is identified by comparing its experimental spectrum to those of theoretically digested 

proteins in a database. The second type of data is sequence information deduced from the 

fragmented peptides (MS/MS data). Usually, two or more fragment sequences are enough to 

identify a protein (Henzel et al., 2003). The two types of data are used separately or in 

conjunction to characterize a protein. 

The current study used 2DE / MALDI-TOF/TOF MS in conjunction with difference gel 

electrophoresis (DIGE) technology to quantify proteomic variations between two organisms. 

Difference gel electrophoresis employs a set of three cyanine dyes (Unlu et al., 1997) and 

computer software (Decyder) designed exclusively for use with these dyes. The three fluorescent 

dyes (Cy™2, Cy™3, and Cy™5; Piscataway, NJ), which bind lysine, are matched for charge 

and mass and are spectrally distinct. A protein labeled with each of the fluors will migrate to the 

same position on a gel (co-migration). Images can be generated for each of the Cy™-labeled 

samples, and differential data is generated by comparing the pixel intensities of the fluors 

(Minden et al., 09; Tonge et al., 2001). Typically, control and variant samples are labeled with 

either Cy™3 or Cy™5. In practice, reverse-labeling may be employed to cancel any protein 

specific variation in labeling between the two dyes. A standard sample (internal standard) 

containing equal amounts of protein from each sample in the experiment is labeled with Cy™2. 

After the labeling reaction, the three Cy™- labeled samples are mixed together (multiplexed) and 
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then separated by 2DE (Fig. 4, p. 18; Fig. 5, p. 19). Because each dye has different excitation 

/emission requirements, one image for each of the multiplexed samples can be generated (Alban 

et al., 2003). 

The inclusion of an internal standard offers several advantages. First, a direct ratio of 

each protein spot to its representative internal standard on the same gel can be derived (intra-gel 

analysis). This ratio can then be compared with the ratios of the same spot on different gels 

(inter-gel analysis), allowing the detection of small changes above experimental and biological 

variation to be detected with high statistical significance (DeCyder, Version 5.0). The internal 

standard also facilitates gel matching. With conventional systems, different samples from 

different gels have to be matched. With the DIGE system, the internal sample is the same sample 

on each gel, making matching easier and more accurate (DeCyder, Version 5.0). 

  

Objectives 

The goal of the current project was to identify proteomic variation between a M. 

gallisepticum vaccine strain (6/85) and a closely related virulent, field isolate (K5234) which 

varied in phenotypes of medical relevance. The project was deemed well suited for 2DE / 

MALDI-TOF/TOF MS based proteomics for several reasons. In order to characterize a protein 

using MALDI-TOF/TOF MS, the protein‟s gene has to have been sequenced. The M. 

gallisepticum prototype strain, Rlow, has been completely sequenced. It contains a 1,012,80 bp 

genome with 784 genes, 469 of which have been functionalized (Papazisi et al., 2003; 

Szczepanek et al., 2010). Because of M. gallisepticum’s small genome, 2DE would provide a 

high percent coverage of the M. gallisepticum proteome. Also, because the two strains being 

compared had very similar genomes (as determined in the preliminary evaluations), the data set 
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was predicted to be manageable, enabling some of the protein level variations to be linked to the 

observed phenotypic variations between the two strains. The objectives of the project were first 

to identify proteins that varied in abundance between 6/85 and K5234 using 2DE, and then to 

characterize these proteins by MALDI-TOF/TOF MS. It was hypothesized that some of the 

identified proteins could be implicated in the increased colonization and virulence of K5234, 

thereby shedding light on the mechanisms employed by M. gallisepticum during the infection of 

its host. 
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Fig.  1. Phylogeny of Firmicutes. Mollicutes branched off from the low GC gram-positive 

bacteria (Wolf et al., 2004). 
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Fig. 2. Phylogeny of mollicutes. M. gallisepticum is in the same phylogenetic cluster as M. 

pneumoniae and M. genitalium, the two most well-studied mollicutes (Barre et al., 2004). 
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Table 1. Selected sequenced mollicutes. Species listed in order of increasing genomic size 

(Barre et al., 2004). 
 

Organism Associated disease ( host) kb Genes 

M. genitalium Urogenital or respiratory tract infection (human) 580 484 

Candidatus AY-WB Aster yellows / witches‟-broom (plant) 707 671 

Ureaplasma urealyticum Septicaemia / meningitis / pneumaonia (human) 752 614 

M. mobile (fish) 777 667 

Mesoplasma flurum  (animal) 793 683 

M. synoviae Chronic respiratory disease / synovitis (poultry) 799 672 

M. pneumonia Atypical pneumonia (human) 816 689 

Candidatus asteris OY Onion yellow disease (plant) 861 754 

M. agalactiae Contagious aglactia (small ruminant) 877 752 

M. hypneumoniae 232 Pleuropneumonia (swine) 691 691 

M. hypneumoniae J Enzootic pneumonia (swine) 897 665 

M. hypneumoniae 7448 Enzootic pneumonia (swine) 920 663 

M. pulmonis Respiratory infection (murine) 964 782 

M. gallisepticum Chronic respiratory disease (poultry and turkey) 996 726 

M. capricolum Severe arthritis / septicemia (animal) 1010 827 

M. mycoides Pleuropneumonia (cattle) 1212 1016 

M. penetrans Urogenital and respiratory tract infections (human) 1359 1037 
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Fig. 3. M. gallisepticum cell morphology (Barre et al., 2004). 
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Fig. 4. DIGE workflow. Figure does not reflect reverse-labeling. 
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Fig. 5. DeCyder graphics.  3-D view is a normalized volumetric depiction of variations in pixel 

intensities between control and variant samples. 
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CHAPTER 2 

EXPERIMENTAL OVERVIEW AND MATERIALS AND METHODS 

 

Experimental overview 

 Mycoplasma gallisepticum 6/85 and K5234 were grown under identical conditions and 

harvested during mid-exponential phase. Cells were mechanically disrupted and a crude, soluble 

protein extract was prepared. Protein extracts from four biological replicates of each strain were 

individually labeled with Cy™ dyes. According to best laboratory practice, reverse-labeling (dye 

swaps or flip dye) was employed. Half of the 6/85 extracts were labeled with Cy™2 and half 

were labeled with Cy™5. K5234 extracts were labeled similarly. A standard sample was 

prepared by mixing equal amounts of protein from each of the eight extracts. The standard was 

labeled with Cy™2. The samples were multiplexed by combining one Cy™3 sample, one 

Cy™5, and one Cy™2 standard sample. The four multiplexed samples, along with an unlabeled 

standard sample (a preparative load) were separated by 2-DE, using both 3-7NL and 7-11 IEF 

strips. Variations in protein levels between the two cell types were determined using Decyder™ 

Differential Analysis Software, Version 5.0. Proteins that varied in abundance above 1.5 fold or 

below -1.5 fold and with p-values below 0.01 were located on a preparative gel. Proteins of 

interest were picked and then characterized by MALDI-TOF/TOF MS. 
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Materials and Methods 

Except where otherwise indicated, all reagents were purchased from Sigma-Aldrich. 

Samples for both 4-7NL and 7-11 gel sets were derived from the same protein extracts. Identical 

methods and conditions were used for both gel sets. 

Cell growth. Mycoplasma gallisepticum strains 6/85 and K5234 were cultivated in 

Frey‟s medium (Throne-Steinlage et al., 2003) at 37°C. Starter cultures (10 ml Frey‟s medium) 

were inoculated with 100 µl of glycerol stock and incubated for 14 h. For each strain, 1.25 ml of 

the starter cultures were used to inoculate each of four 1-L flasks containing 450 ml of media. 

The cultures were incubated at 37°C and 100 rpm in a NBS Gyratory shaker (New Brunswick, 

NJ). Cell growth was monitored by plate counts and OD600/640. According to previously 

established growth curves, the cultures were harvested by centrifugation (3,000 x g for 20 min at 

4°C) during mid-exponential phase (18 h). The cell pellets were washed three times in 10 mM 

tris(hydroxymethyl)aminomethane chloride (TrisCl), pH 8.8, and 5 mM magnesium acetate. The 

pellets were stored at -70°C. 

Preparation of lyses buffer. Twelve grams of urea and 4.5 g of thiourea were dissolved 

in 12 ml of ddH2O. The volume was made up to 25 ml with ddH2O, giving a solution of 8 M 

urea and 2.3 M thiourea. To this solution, 250 mg of  PlusOne™ Amberlite IRN-150L (GE 

Healthcare) were added, and the suspension was stirred for 1 h on a magnetic stirrer and then 

filtered through a 0.45-µm filter (Millipore). The following components were added to 13.2 ml 

of the de-ionized urea / thiourea solution: 450 µl of 1 M Tris, 150 µl of nuclease mix (GE 

Healthcare), 300 µl of protease inhibitor mix (GE Healthcare), and 600 mg of 3-[(3-

Cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS). The pH was adjusted to 8.6 

with concentrated hydrochloric acid. The lyses buffer was diluted to 15 ml with ddH2O, making 
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the final concentration: 30 mM Tris, 7 M urea, 2 M thiourea, 4% CHAPS, 1% nuclease mix (GE 

Healthcare), and 2% protease mix (GE Healthcare). The lyses buffer was aliquoted in 1ml-

cryovials and stored at -70ºC for a maximum of 3 months. 

 Soluble protein extract. Nine hundred milliliters of lyses buffer were added to each cell 

pellet. The samples were vortexed vigorously and then incubated on ice for 10 min. The cell 

slurries were transferred to 50 ml glass centrifuge tubes and sonicated (Sonicator
®
 Ultrasonic 

Processor XL, Misonix) on ice six times (15 s on followed by 15 s off) using a 50% duty cycle. 

Following sonication, the samples were incubated at room temperature for 1 h and then clarified 

by centrifugation (40,000 x g for 1 h at 7°C). Protein concentrations were determined using a 2-

D Quant Kit (GE Healthcare). The clarified lysates were stored at -70°C until labeling. 

 Minimal CyDye™ labeling.  The 6/85 (control) and K5234 (variant) samples were 

diluted with lyses buffer to a protein concentration of 5 mg/ml in a volume of 75 µl. A pooled 

sample, containing equal amounts of protein from each sample, was generated by mixing 

together 55 µl of each of the eight samples. For the preparative gels, 40 µl (200 µg) of the 

standard were transferred to a reaction tube. For the analytical gels, 10 µl (50 µg) of each of the 

control/variants samples were transferred to separate reaction tubes. 

CyDye™ DIGE fluors (GE Healthcare) were reconstituted according to the 

manufacturer‟s instructions. Un-opened 10 mM dyes were thawed on ice for 5 min. Ten 

microliters of N,N-dimethylformanide (DMF) were added to each dye, making the final 

concentration 1 mM. The dyes stocks were vortexed vigorously for 30 s, centrifuged briefly, and 

stored at -20°C. 

The labeling reactions were carried out on ice and protected from light according to the 

manufacturer‟s protocol. Working dye solutions consisted of 3 µl of the 1 mM dye stocks and 
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4.5 µl of DMF, giving a final dye concentration of 400 µM. The control and variant biological 

replicates were reverse-labeled. Half of the controls samples were labeled with 1 µl of Cy™3 

(400pmol), and the other half were labeled with 1 µl of Cy™5. The variant samples were labeled 

similarly. Four microliters of Cy™2 were added to reaction tubes which contained 40 ul of the 

pooled sample. The samples were incubated for 30 min, and then the reactions were quenched 

with 1 µl of 10 mM lysine. The samples were incubated for an additional 10 min and then stored 

at -70°C. 

 Sample reduction. Multiplexed sample sets for each of four analytical gels were made 

by marrying a Cy™3, Cy™5, and Cy™2 labeled sample (50 µg 6/85, 50 µg K3234, and 50 µg 

standard - a total of 150 µg of protein). Equal volumes of 2X sample buffer - 7 M urea, 2 M 

thiourea, 4% CHAPS, 10 mM dithiothreitol (DTT), and 2% 3-11 non-linear ampholytes (GE 

Healthcare) - were added to each of the multiplexed samples. The preparative gel sample loads 

were reduced by adding equal volumes of 2X sample buffer to 200 µg of the pooled samples. 

The samples were vortexed and then incubated on ice for 30 min protected from light. 

Two-dimensional electrophoresis. The proteins were separated by 2DE according to the 

methods of O‟Farrel, as modified by Gorg et al., and described by Westermeier (O‟Farrel, 1975; 

Gorg et al., 2000; Westermeier and Naven, 2002). Using a reswelling tray (GE Healthcare), IPG 

strips (GE Healthcare) were rehydrated for 24 h in Destreak™ Rehydration Solution (GE 

Healthcare). For both 4-7NL and 7-11 IPGstrips, the rehydration solution was supplemented with 

1.0% 3-11NL ampholytes (GE Healthcare). The rehydrated strips were transferred to cup loading 

strip holders (GE Healthcare), oriented so that the plastic backing was down and the gel face up. 

The strips were covered with 4.4 ml of mineral oil. Electrode pads moistened with 150 ul of 

ddH2O were placed at the ends of the gels. Protein samples were loaded at the acidic end of the 
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strips via sample cups. The strips were focused for ~ 50, 000 volt/h (4 h at 300 V, 6 h gradient 

from 300 V to 1,000 V, 3 h gradient from 1,000 V to 8,000 V, and 4 h at 8,000 V) using an 

Ettan™ IPGphor™ Isoelectric Focusing System (GE Healthcare). The focused strips were stored 

in plastic tubes at -70°C. 

 Casting second dimension SDS-PAGE gels. Low fluorescent glass gel plates (GE 

Healthcare) were soaked in 1% Contrad (Fisher Scientific), rinsed with ddH2O, and polished 

with 200 proof ethanol prior to casting. Prior to ethanol polishing, plates previously used to cast 

bound gels were soaked in 1% HCL to hydrolyze residual bind-saline. The preparative gel 

sandwich back plates were treated with 4 ml of a bind solution containing 8 ml of 100% ethanol, 

1.8 ml of ddH2O, 200 µl of glacial acetic acid, and 12.5 µl of bind-saline (GE Healthcare). The 

bind solution was evenly spread over each back plate using Crewipes (Kimberly-Clark). After 2 

h, fluorescent picking references (GE Healthcare) were placed on the back plates. Analytical and 

preparative gel sandwiches were assembled and loaded into a caster. A feed tube stem was 

inserted into the displacing solution reservoir, which was then filled with 90 ml of displacing 

solution (0.375 M TrisCl pH 8.8, 50% glycerol, and 0.002% bromophenol blue). A 12.5% 

acrylamide gel solution - containing 294 ml 40% monomer (GE Healthcare), 235 ml 1.5 M 

TrisCl (pH 8.8), 392 ml ddH2O, 9.4 ml 10% sodium dodecyl sulfate (SDS), 376 µl N, N, N’, N,-

tetramethylethylethylenediamine (TEMED), and 9.6 ml ammonium persulfate (APS) - was 

prepared and poured into a funnel attached to the feed tube. The feed tube was removed, and the 

level of the gel solution was adjusted by adding additional displacing solution to the reservoir. 

The gels were allowed to polymerize for 2 h. After polymerization, excess polymer was trimmed 

from the edges of the plates, and the gel sandwiches were rinsed thoroughly with ddH20. The gel 
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surfaces were covered with gel storage solution (0.375 M TrisCl, pH 8.8, 0.1% SDS), wrapped in 

plastic seal wrap, and then incubated overnight at room temperature before use.  

 Strip equilibration and second dimension. The IPG strips were thawed for 10 min at 

room temperature and then incubated twice in 20 ml of equilibration buffer (EB: 50 mM TrisCl, 

pH 8.8, 6 M urea, 30% glycerol, 2% SDS, 0.002% bromophenol blue) for 10 min at room 

temperature with shaking (80 rpm).  During the first equilibration, the proteins were reduced by 

supplementing the EB with 0.5% DTT. During the second equilibration, the proteins were 

alkylated by supplementing the EB with 4.5 % iodoacetamide. 

 The gel sandwiches were rinsed with ddH2O and inverted in a plate rack to drain excess 

liquid from the gel surfaces. Using forceps, the IPG strips were rinsed with electrophoresis 

running buffer (25 mM TrisCl, pH 8.3, 192 mM glycine, and 0.2% SDS), placed on the shelf of 

the gel sandwich (plastic backing against the back plate), and situated along the top of the second 

dimension gel using a plastic ruler. One milliliter of agarose sealing solution was added to the 

gel sandwiches. The proteins were separated (20W per gel at 20ºC until the dye fronts migrated 

off the gels) using an Ettan™ Dalt Twelve Large Format Vertical System (GE Healthcare) in the 

running buffer previously described. Analytical gels were imaged immediately. The top plates of 

the preparative gels were removed, and the gel bound bottom plates were placed in fixing 

solution (7.5% acetic acid, 10% methanol) in preparation for staining. 

 Staining of preparative gels. The preparative gels were incubated overnight in fixing 

solution and then stained with Deep Purple™ (GE Healthcare) according to the manufacturer‟s 

instructions. The gels were transferred directly from the fixing solution into a wash solution (35 

mM sodium bicarbonate and 300 mM sodium carbonate) and incubated for 30 min with gentle 

shaking (25 rpm). After washing, the gels were incubated in 1 L ddH2O for 5 min at 25 rpm. The 
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gels were then covered with 500 ml of a 200-fold dilution of Deep Purple™ stain and incubated 

in the dark for 1 h at 40 rpm. The gels were then incubated in 1 L of stabilization solution (7.5% 

acetic acid) for 1 h prior to imaging. 

 Scanning analytical gels.  The gels were imaged with a Typhoon™ 9410 (GE 

Healthcare). Prior to scanning, the gel sandwiches were rinsed with ddH2O and then dried 

completely. The scanner window was cleaned thoroughly with three rounds of 200 proof ethanol 

followed by ddH2O. The gels were placed in the scanner oriented so that the top plate was up, the 

IEF strip was to the left, and the acidic portion of the gel was toward the user. The recommended 

emission filter / laser combinations were used for each dye. 

A pre-scan at 1000 microns pixel intensity was conducted to optimize the PMT voltages 

for each fluor. The auto link mode was set to sensitivity, and the sensitivity was set to normal. 

The gels were scanned, and the PMT voltages were adjusted so that any increase in voltage 

resulted in the appearance of red saturation spots. Ten units were subtracted from this voltage, 

and it was used for scanning at 100 microns. The images were cropped using ImageQuant 

software, and the resulting 16-bit Tiff files were exported to Decyder™ Differential Analysis 

Software, Version 5.0 (GE Healthcare) for analysis. 

 Scanning preparative gels. While submerged in stabilization solution, cleaned glass top 

plates were lowed at an angle (to prevent trapping large bubbles) onto the top faces of the 

adhered preparative gels and then incubated for 5 min, allowing the top plates to stick to the gel 

surfaces. Prior to scanning, the gel sandwiches were rinsed with ddH2O and then dried with 

Crewipes. Pre-scans were conducted as per analytical gels using the Green (532) laser and the 

560LP emission filter. Images were acquired at optimized PMT voltages at 100 microns pixel 



27 

 

intensity and then exported to quantitative analysis software. The gel sandwiches were stored in 

stabilization solution at 4C until spot picking. 

 Decyder™: analysis of analytical gels. The quantification of variations in protein levels 

between strains 6/85 and K5234 using DeCyder™ (GE Healthcare) was carried out, essentially, 

according to the user manual. For individual gels, the Differential In-gel Analysis (DIA) module 

was used to establish spot boundaries, convert pixel intensities to volumetric units, filter the 

images, normalize Cy™3 labeled and Cy™5 labeled samples against the Cy™2 internal 

standard, and calculate spot volume ratios. The Biological Variation Analysis (BVA) module 

was used for gel matching and the statistical analysis of variations. 

 DIA: sequential intra-gel analysis. Individually, the three images from each gel were 

opened in the DIA module. A value of 4,000 estimated spots was used. Spot detection and 

quantification was carried out with the triple detection function. A light filter using parameters 

established by GE Healthcare (slope, 1.1; area, 100; peak height, 100; and volume, 10,000) was 

applied. 

 BVA: simultaneous inter-gel analysis. Each image was assigned as an analysis image. 

The Cy™2 standard image with the most spots was assigned as the master image. For the 

purpose of statistical analysis, each image was assigned to one of three experimental groups: the 

two Cy™3 6/85 and the two Cy™5 6/85 images were assigned as controls, the two Cy™3 

K5234 and the two Cy™5 K5234 images were assigned as variants, and the four Cy™2 standard 

images were assigned as standards. Extensive manual spot merging and land marking were 

conducted across the entire gel set. Spots were then matched. The matched images were 

intensively scrutinized, and incorrect matches were corrected manually. Statistical data was 

generated using a Student‟s T-test. The results were filtered by assigning all spots with a T-test 
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score below 0.01 and an average ratio above 1.5 or below -1.5 as proteins of interest. Each 

protein of interest was scrutinized again to ensure proper matching and spot boundary 

assignment. 

 Analysis of preparative gels. The preparative gel images were analyzed in the DIA 

module as per analytical gels using the single detection function. The gel images were 

incorporated into the previously established BVA file and assigned as pick gels. The location and 

size of the picking references were, if necessary, adjusted. Spots were merged where necessary, 

and the images were extensively landmarked against the master analytical images. The 

preparative images were then matched to the analytical gel set. Spots of interest that were 

correctly matched or could be manually matched to spots on the preparative image were assigned 

a pick status. The x and y coordinates of the confirmed spots were saved as a pick list. 

 Spot picking. Using an Ettan™ Spot Picker (GE Healthcare), the spots of interest were 

excised from the preparative gels according to the manufacturer‟s instructions. The top plates 

were removed from the gel sandwiches. The bound gels were appropriately oriented in the gel 

tray and covered with ddH2O. The picker was primed 20 times with HPLC grade H2O. Z-heights 

were determined for each gel. The gel plugs were transferred to low protein bind 96-well-plates 

(GE Healthcare) previously rinsed with ddH2O. After picking, the water was removed from the 

wells, and the plugs were stored at 4°C until processing for MS. 

 Protein digestion. Protein digestion was carried out in the 96-well-plates. The gel plugs 

were incubated twice for 20 min in 100 µl of a wash solution containing 5mM ammonium 

bicarbonate and 50% acetonitrile (Applied Biosystems). The wash solution was removed, and 

100 µl of 75% acetonitrile were added to each well.  The samples were incubated for 20 min. 

The acetonitrile was removed, and the plugs were dried for 30 min in a speedvac. The 96-well-
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plates containing the dehydrated plugs were handled with care to avoid sample loss due to static 

electricity. Seven microliters of fresh 20 µg/ml trypsin (Promega) in 20mM ammonium 

bicarbonate were added to the dehydrated plugs. The samples were incubated over night at 37°C.  

After digestion, 60 µl of 50% acetonitrile / 0.1% trifluoroacetic acid (TFA) was added to each 

well. The 96-well-plates were incubated for 20 min. The extracted peptides were transferred to 

low protein bind microfuge tubes (Fisher Scientific), and the extraction was repeated with 40 µl 

of the extraction solution. The second extracts were married to the first. The samples were dried 

down in a speedvac and stored at -20°C until de-salting. 

 De-salting. The dried down samples were solubilized in 1.5 µl of formic acid with 

vigorous vortexing. The volumes were brought up to 10 µl with 8.5 µl of 0.1% TFA. The 

samples were again vortexed and then centrifuged briefly. Samples were de-salted with µC18 

ZipTips (Fisher Scientific) according to the manufacturer‟s instructions. The microtip columns 

were prepped by aspirating and dispensing 10 ul of wetting solution (50% acetonitrile in ddH2O) 

twice and then equilibrated with ten rounds of 0.1% TFA. The samples were bound to the 

column by aspirating and despising the samples seven times. The bound peptides were then 

washed ten times with 10 µl of 1% TFA. The samples were eluted with 0.7 µl of elution solution 

(0.1% TFA and 70% acetonitrile) and spotted onto MS target plates. The spotted samples were 

allowed to partially dry, and then 0.3 µl of alpha matrix (Applied Biosystems) were added to 

each. The target plates were stored at room temperature protected from light until MS analysis. 

 Mass spectrometry. Mass spectrometry was conducted by the Macrochemical Facility at 

Emory University using an Applied Biosystems 4700 MALDI-TOF/TOF. The combined MS and 

MS/MS data was searched against the NCBInr database using the Mascot search engine. A 

protein score C.I. above 95% indicated identification or extensive homology. 
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CHAPTER 3 

RESULTS  

 

 A total of over 1,000 spots were included in the 2DE analysis. This number may seem 

high for an organism containing only 742 genes, but it has been predicted that for prokaryotes 

1.5 protein species exist for each gene (Simpson, 2003).  Also, it must be kept in mind that a 

number of the spots were redundant, appearing in the overlapping region (ph 7) of the two types 

of IEF strips used, and that some spots were inevitably artifacts. Sixty-eight spots from the 

analytical gel sets showed fold changes above 1.5 or below -1.5 and had p-values below 0.01. 

Sixty of these spots were located as isolated spots on preparative gels and were subjected to 

MALDI-TOF/TOF for characterization. The digests from eight of these spots did not result in 

protein match scores indicative of identification, and four identifications were ambiguous. The 

remaining forty-eight digests had protein scores indicative of extensive homology or 

identification, forty of which, representing 29 different proteins, were identified as M. 

gallisepticum strain Rlow protein species. These results are organized in Table 2 (p. 33). Fold 

changes are relative to K5234, positive numbers indicating an increased abundance in K5234 and 

negative numbers indicating a decreased abundance in K5234.  Nine proteins appeared as 

multiple spots (multiple species). These included AtpD (ATP synthase beta chain), Lpd 

(dihydrolipoamide dehydrogenase), AcoA (pyruvate dehydrogenase), Mdh (lactate 

dehydrogenase), Smc-like protein (chromosome segregation ATPase), FusA (translation 

elongation factor G), MgpA-like protein (exopolyphosphatase related), HcaD (NADH oxidase), 

and a conserved hypothetical lipoprotein. All of the multiple forms of a given protein had the 
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same fold change direction. Twelve of the twenty-nine proteins increased in abundance, and 17 

decreased. The highest positive fold change was 19.57 (one of the three AtpD species) and the 

lowest negative fold change was -9.13 (one of the two pyruvate dehydrogenase species). AtpA 

was the only protein of interest to appear on both 4-7NL and 7-11 gel sets. 

 Sixteen proteins of interest belong to COGs (Clusters of Orthologous Groups). The 

COGs represented include: [C] energy production and conversion, [D] cell division and 

chromosome partitioning, [F] nucleotide transport and metabolism, [G] carbohydrate transport 

and metabolism, [J] translation and ribosomal structure biogenesis, [K] transcription, [R] general 

prediction only, and [T] signal transduction. The most well represented COG is [C] energy 

production and conversion, with six proteins. Thirteen proteins of interest have no COG. Proteins 

with no COG represent 39% of the predicted M. gallisepticum proteome. 

 It should be mentioned that COGs are phylogenetic and not necessarily functional 

organizational tools. This discrepancy seems to be accentuated in mollicutes. Many of the 

activities typically associated with proteins encoded by mollicute genomes have not been 

detected in mollicutes. Some mollicute proteins have alternative or additional functions 

(bifunctionality) that are not reflected by their functional assignment. Additionally, some 

processes common to bacteria are mediated by proteins that have evolved independently in 

mollicutes and are thus phylogenetically unrelated to proteins that mediate similar processes in 

other bacteria. Functional classification is further complicated by significant protein functional 

variability within class Mollicute (Pollock, 2002).  

Three of the unclassified proteins are considered virulence factors. These include GapA 

(M. gallisepticum adherence protein A), CrmA (cytadherence related molecule A), and 

VlhA.3.09 (pMGA family protein) – all three of which had increased levels in the virulent field 
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strain. Three proteins of interest are conserved hypothetical proteins, and three are unique 

hypothetical proteins. Generally, proteins associated with virulence increased in abundance in 

the virulent K5234, while metabolic proteins decreased in abundance in K5234. 
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Table 2. Differential and MS data. Fold changes are relative to K5234 (the virulent field isolate). Positive numbers indicate 

increased abundance in K5234, and negative numbers indicate decreased abundance in K5234. (-) indicates multiple forms of the 

same protein, except in the case of AtpA, which appeared in both experimental sets (Tatusov et al., 2001; Barre et al., 2004).  
 

Protein Description Locus Accession # Fold ∆ p-value MS  

C.I.% 

 

[C] Energy production and conversion 

AtpD ATP synthase beta chain MGA_491 31541707 19.57 7.6x10
-5 

98.3 

- - - - 11.19 1.5x10
-5

 100 

- - - - 6.02 2.2x10
-6

 100 

AtpA (4-7) ATP synthase alpha chain MGA_488 31541706 3.76 7.5x10
-6

 100 

-        (7-11) - - - 3.09 1.9x10
-4

 100 

Lpd Dihydrolipoamide Dehydrogenase MGA_161 31541532 2.61 6.3x10
-6

 100 

- - - - 2.60 1.5x10
-5

 100 

AcoA Pyruvate dehydrogenase MGA_165 31541535 -9.13 1.6x10
-6

 100 

- - - - -4.13 5.0x10
-3

 99.7 

Mdh L-lactate Dehydrogenase MGA_746 31541121 -1.85 7.3x10
-6

 100 

- - - - -1.71 3.0x10
-3

 100 

AceF Dihydrolipoamide acetyltransferase MGA_162 31541533 -1.71 3.2x10
-8

 100 

 

[D] Cell division and chromosome partitioning 

Smc-like Chromosome segregation ATPase MGA_917 31541218 1.98 4.9x10
-7

 100 

- - - - 1.86 2.6x10
-5

 100 

FtsZ Cell division protein MGA_27 31541447 -1.60 3.6x10
-6

 100 

 

[F] Nucleotide transport and metabolism 

NrdF Ribonucleotide reductase beta subunit MGA_698 31541093 -2.84 5.0x10
-5

 100 

NrdA Ribonucleotide reductase alpha subunit MGA_695 31541091 -1.97 1.3x10
-5

 100 

 

[G] Carbohydrate transport and metabolism 
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Eno Enolase MGA_209 31541555 -2.63 1.2x10
-3

 100 

 

[J] Translation, ribosomal structure biogenesis 

FusA Translation elongation factor G MGA_260 31541582 1.71 8.3x00
-5

 100 

- - - - 1.54 1.6x10
-4

 100 

 

[K] Transcription 

NusA N-utilization substance protein A homolog MGA_818 31541161 1.57 1.6x10
-4

 100 

 

[R] General prediction only 

MgpA-like Exopolyphosphatase related MGA_683 31541085 -1.97 7.3x10
-8

 100 

- - - - -1.65 6.8x10
-6

 99.8 

Predicted GTPase  MGA_500 31541712 -1.56 3.4x10
-7

 100 

 

[T] Signal transduction 

PTC1 Protein serine/threonine phosphatase MGA_461 31541689 -1.89 5.5x10
-6

 100 

 

Unclassified 

CrmA Cytadherence related molecule A MGA_939 31541229 3.88 7.1x10
-8

 100 

GapA M. gallisepticum adherence protein A MGA_934 31541228 2.17 3.9x10
-3

 100 

TrxB Thioredoxin reductase MGA_1221 31541379 1.91 4.6x10
-7

 100 

Gmk Guanylate kinase MGA_462 31541690 -1.61 7.2x10
-3

 100 

HcaD NADH oxidase MGA_167 31541536 -1.60 1.8x10
-4

 99.4 

- -  - -1.60 5.8x10
-6

 100 

GryB DNA gyrase (topoisomerase) B subunit MGA_616 31541775 -1.56 1.6x10
-4

 100 

VlhA.3.09 pMGA family protein; similar to pMGA1.4.1.3 MGA_395 31541647 -3.70 9.9x10
-5

 100 

 

Conserved hypothetical 

Conserved hypothetical, lipoprotein MGA_267 31541586 1.91 4.4x10
-7

 100 

- - - 1.73 5.8x10
-7

 100 

Conserved hypothetical, lipoprotein MGA_674 31541080 -1.63 2.2x10
-3

 100 

Conserved hypothetical (Hlp2) MGA_1203 31541370 -1.59 2.2x10
-5

 98.3 
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Unique hypothetical 

Unique hypothetical (COG) MGA_480 31541701 2.50 1.2x10
-3 

100 

Unique hypothetical MGA_573 31541754 1.82 1.6x10
-6

 100 

Unique hypothetical MGA_1071 31541293 -2.10 7.2x10
-6 

99.1 
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CHAPTER 4 

DISCUSSION 

 

Phase / antigenic variation and VlhA 

The ability of bacterial populations to persist or proliferate in constantly changing 

environments is often based on their ability to vary phenotypes (phenotypic plasticity), either in 

response to environmental cues or by random mutations. Phenotypic variation via environmental 

sensing is typically achieved through a mechanism whereby an organism “samples” its 

environment and adjusts its phenotype accordingly via a sensor/response regulator system 

(Rottom, 2003). For example, Pseudomonas aeruginosa is thought to switch between a virulent, 

free-living state and a less virulent but more persistent biofilm state in response to available 

nutrient and energy sources (O‟Toole, 2004). 

An alternative means of phenotypic variation employed by many bacteria, especially 

those with limited genetic capacities and few regulatory proteins, is phase or antigenic variation. 

Generally, both phase and antigenic variation refer to the ability of an organism to alternate 

between phenotypes in a “heritable and reversible manner” (van der Woude and Baumler, 2004). 

Within this broad definition, specific definitions of phase and antigenic variation continue to 

evolve as more relevant data is produced. The most contemporary use of „phase variation‟ refers 

to the oscillation of a gene between all „on‟ and all „off‟ states. In contrast, „antigenic variation‟ 

refers to the oscillation between different antigenic forms. Sometimes this involves gene 

families, which can act as archives of epitopes, expressing only one epitope at a time (van der 

Woude, 2006). Simplistically, with the former, the protein is either present or absent, and with 

the latter, the protein or structure is typically present but in different forms. 
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Both phase and antigenic variation generate heterogeneous populations of clonal variants 

by high frequency random mutations which occur as replication errors. The phase of the parent 

cell is passed along to the daughter cell, which can then generate revertants. While the mutations 

are thought to be random and thus non-responsive to the environment, the frequencies of the 

mutations can be modulated, and current research indicates that phase variation may be 

integrated into regulatory networks that are environmentally responsive. The functions of 

structures that undergo phase/antigenic variation vary, but most are antigenic surface structures 

(i.e. surface appendages and lipoproteins) or enzymes involved with modifying these surface 

structures (van der Woude, 2006). The biological significance of phase/antigenic variation is 

most commonly thought to endow pathogens with a means of evading host immune responses, 

which target individual cells expressing dominate antigenic forms while allowing subpopulations 

of antigenic variants to escape and proliferate, causing chronic infections (Frank and Barbour, 

2006; Lipsitch and O‟ Hagan, 2007). Recent studies indicate that phase/antigenic variation is not 

limited to host/pathogen interactions but can also be the bases of numerous adaptive processes, 

including niche exploitation (van der Woude, 2006).  In the current study, three of the virulence 

factors (VlhA, GapA, and CrmA) that varied in abundance undergo phase and/or antigenic 

variation. 

VlhA (previously designated pMGA), a family of surface lipoproteins, is the 

immunodominant antigen of M. gallisepticum recognized by chicken antibodies. VlhAs are 

hemmagluttinins and have been shown to undergo both phase and antigenic variation in vitro and 

in vivo (Bradbury, 2005; Markham et al., 1992). Mycoplasma gallisepticum strains analyzed thus 

far have VlhA families consisting of from 32 to 51 genes, attesting to its importance to M. 

gallisepticum survival (Basseggio et al., 1996).  The prototype stain Rlow has 49 vlhA genes 
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(Szczepanek et al., 2010). Early studies interpreted the presence of different vlhA transcripts 

within a single population as multiple vlhA transcription at the cellular level (Glew et al., 1995); 

however, current studies indicate that the expression of different VlhA paralogues within a 

population results from small subpopulations that happen to express different family members, 

and that at the cellular level only one family member is transcribed at any given time (Liu et al., 

2000).  

In vitro expression of VlhA in isogenic lineages oscillates in response to the presence or 

absence of VlhA directed antibodies. Markham et al. demonstrated that when grown in the 

presence of an antibody directed at VlhA1.1 (the designation of the predominate VlhA protein 

expressed in culture without antibody pressure), M. gallisepticum S6 ceased expressing VlhA1.1 

and immediately began expressing a secondary, antigenically distinct family member, designated 

VlhA1.9. When the VlhA1.9
+
 progenitor cells were transferred back into media lacking the 

antibody, the population ceased expressing VlhA1.9 and reverted to the phenotype of the founder 

cells (Markham et al., 1998).  Glew et al. observed a slightly different scenario in vivo. Chickens 

were inoculated with strain S6, and six days post infection the majority of the recovered cells 

ceased to express any VlhA family member. Only after prolonged incubation did a population 

arise that expressed a paralogue different from that of the inoculant. Thus, a phase variant 

dominated the acute stage of infection, while an antigenic variant dominated the chronic stage of 

infection. Interestingly, unlike the in vitro study mentioned above, the in vivo variant population 

arose and proliferated prior to the appearance of detectable antibodies. The authors hypothesized 

that there might have been some growth advantage that selected for the VlhA phase variant 

(Glew et al., 2000). The nature of these phenotypic switches was shown to be transcriptional, 
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involving high frequency alterations in the number of short tandem GAA repeats in the 

intergenic regions of vlhA family members (Glew et al., 1998; Liu et al., 1998; Liu et al., 2000). 

 A recent analysis of global transcript variations between M. gallisepticum cells grown in 

broth versus cells grown in association with eukaryotic cells showed that one VlhA paralogue 

was up-regulated 2.41 fold in cells grown in association with eukaryotic cells (Cecchini et al., 

2007). Interestingly, by setting the incubation time below that of a generation time, the study was 

designed in way as to negate the influence of phase/antigenic variation and only include 

variations resulting from transcriptional regulation in response to environmental cues. A genomic 

comparison of the virulent Rlow strain with the attenuated F strain revealed that the vlhA locus 

was the most highly variable genomic region between the two strains, with F strain containing 28 

fewer family members than Rlow (Szczepanek et al., 2010). This data further supports the 

involvement of VlhA in the adaptation of M. gallisepticum to its environment. 

 In the current study, the attenuated vaccine strain (6/85) expressed 3.7 fold more 

VlhA.3.09 than did the virulent 6/85-like field isolate (K5234); no other VlhA appeared in the 

data set. As previously mentioned, individual M. gallisepticum cells express only one or no VlhA 

family member at any given time , and other than being  all „on‟ or all „off‟ (Liu et al., 2000), 

there are no reports of M. gallisepticum cells varying the expression of any one family member. 

Likewise, there are no reports which indicate that, at the cellular level, one strain of M. 

gallisepticum produces significantly more or less VlhA than another strain. So while it cannot be 

dismissed that individual 6/85 cells may have simply contained more VlhA.3.09 than K5234 

cells, it is more likely that the experimental variations occurred at the population level: more 

cells in the 6/85 population expressed VlhA.3.09 than did cells in the K5234 populations. With 

this in mind, one possible scenario to account for the experimental variation is that VlhA.3.09 
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could have been the predominant (that member expressed in the absence of antibodies) family 

member expressed by 6/85 populations and only a secondary family member expressed by 

K5234 populations. In this case, K5234 may have expressed its predominant VlhA in higher 

levels than the same family member was expressed in 6/85, but the variation was not detected by 

the analysis. Alternatively, VlhA.3.09 could have been the predominant VlhA for both strains, 

with K5234 populations generating a higher number of phase variants which expressed no VlhA 

family member. If the two strains do in fact express different predominate VlhAs during the 

initial stage of infection, the epitope of the VlhA expressed by K5234 could elicit a stronger 

antibody response than VlhA.3.09, contributing to the enhanced infectivity of K5234. The 

predominant VlhA of K5234 may also have enhanced functionality when compared to 

VlhA3.09. VlhAs have been shown to mediate the attachment of M. gallisepticum to chicken 

erythrocytes (Markham et al., 1992), and, recently, it was discovered that M. gallisepticum is 

capable of invading erythrocytes and is commonly found in the bloodstream of infected chickens 

(Vogl et al., 2008). It follows that enhanced VlhA functionality could aid both the dissemination 

of the pathogen within the host and the evasion of the host‟s immune response. Regarding the 

latter scenario, in which K5234 was predisposed to generate phase variants at a higher frequency 

than 6/85, it has been demonstrated that VlhA phase variants can dominate the acute stages of 

infection (Glew et al., 2000). VlhA phase variants could hide from the host‟s immune response 

by not expressing any VlhA, replacing the function of VlhA with an alternative adhesin. 

Alternatively, phase variants may be more suitable for colonization during early infection. VlhAs 

are known to self-interact (Markham et al., 98), causing the clumping of cells which may 

actually detract from the organism‟s ability to spread along a surface. If, indeed, the 3.7-fold 

decrease in VlhA.3.09 reflects a higher abundance of phase variants in the K5234 experimental 
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populations, it is also possible that the increased frequency of variants resulted from an unknown 

regulatory activity rather than the predisposition of the organism. In lieu of the experimental 

findings and previous research involving VlhA, variations in VlhA expression likely play a role 

in the enhanced virulence and persistence of K5234 as compared that of 6/85. 

 

Adhesins 

 Cytadherence is considered a prerequisite for the pathogenesis of many mollicutes, and 

adhesins are often considered the primary virulence factors of these organisms (Rottom, 03). 

After being inhaled, mollicute respiratory pathogens often adhere to the epithelial cells of the 

host‟s respiratory tract (Bradbury, 05). Strong adherence prevents the immediate clearing of the 

organism by the host‟s immune system, allowing the initiation of other colonization mechanisms, 

such as motility, cell invasion, and biofilm formation. The best studied mollicute adherence 

system is that of M. pneumoniae, which localizes adhesins at one end of the cell in what is called 

a terminal tip organelle (or attachment organelle) (Rottom, 03). While the attachment of M. 

gallisepticum is not as well elucidated as that of M. pneumoniae, M. gallisepticum does possess a 

terminal tip organelle and has several adhesins which are homologous to those of M. 

pneumoniae, two of which appeared in this study (Fig. 6, p. 58). 

GapA, which increased 2.27-fold in K5234, has been implicated in M. gallisepticum 

cytadherence and is, like VlhA, phase variable (Papazisi et al., 2003). The putative function of 

GapA was determined by searching the genome of M. gallisepticum for homologues to the well-

studied adhesions of M. pneumoniae and M. genitalia, which belong to the same phylogenic 

cluster as M. gallisepticum. A gene was located that shared 45% homology to the M. pneumonia 

P1 adhesin and 46% homology to the M. genitalium  MgPa adhesin, both of which are the 
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primary adhesin in there respected organism (Goh et al., 1998). This putative adhesin gene was 

located at the beginning of a multi-gene operon and was designated gapA (M. gallisepticum 

adherence protein A). In tracheal ring attachment inhibition assays, labeling M. gallisepticum 

cells with a GapA antagonist resulted in reduced attachment by 64% (Goh et al., 1998). Several 

other assays, both in vitro and in vivo, have demonstrated that GapA is essential to M. 

gallisepticum cytadherence (Papazise et al., 2000; Papazise, 2002 et al., Mudahi-Orenstein et al., 

2003). 

In order for M. gallisepticum to attach to host cells and cause infection, gapA expression 

must co-occur with the expression of crmA (Papazise et al., 2002). CrmA expression increased 

3.88 fold in K5234. The function of crmA was determined, in part, by comparing the protein 

expression profile of the avirulent, attenuated M. gallisepticum Rhigh strain with its virulent 

progenitor, strain Rlow. Papazise et al. identified three proteins present in Rlow that were absent in 

Rhigh. One of the absent proteins was GapA. The gene of another absent protein was located 

immediately downstream from gapA and shared significant sequence homology to genes 

encoding attachment accessory molecules in M. pneumoniae and M. genitalium. This putative 

cytadherence gene was designated crmA (cytadherence related molecule) (Papazisi et al., 2000). 

In cell culture attachment assays, attachment of the avirulent Rhigh strain was 75% less than that 

of the virulent Rlow strain. Complimenting Rhigh with wild type gapA or crmA did not restore wild 

type levels of attachment; however, complementing Rhigh with the entire Rlow gapA operon, 

containing both gapA and crmA, did result in attachment and virulence phenotypes in vitro and in 

vivo (Papazisi et al., 2002). Comparative sequence analysis of gapA and crmA indicates that they 

might interact with each other in the cytoplasm, implying that not only co-expression but also 

coordinated action between the two proteins may be necessary for attachment (Papazise et al., 
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2003). This is consistent with the functions of homologues in M. pneumoniae (Krause, 2001). 

Transposon mutagenesis studies conducted by Orenstein and co-workers confirmed that GapA 

and CrmA are essential to the cytadherence and virulence of Rlow. Of the 3,500 mutans screened, 

only 5 had attachment and avirulent phenotypes. Two of these contained transposons in gapA 

and one contained a transposon in crmA. (Mudahi-Orenstein et al., 2003).  

 GapA/CrmA expression is phase variable. Phase variants arise as a consequence of a 

reversible nonsense mutation at the beginning of the gapA gene and not as a consequence of the 

deletion or addition of intergenic trinucleotide repeats, as is the case for VlhA. The mechanism 

by which the reversible nonsense mutation is achieved is unknown; it cannot be reconciled with 

slipped-strand mispairing, the mechanism (not well understood itself) used to explain the DNA 

replication error that promotes trinucleotide repeat mediated phase variation (Rosengarten et al., 

2000; Winner et al., 2003).  

 Together, this data demonstrates that GapA and CrmA are essential to the cytadherence 

and virulence of M. gallisepticum Rlow. Cytadherence not only enables bacteria to avoid host 

clearance, it is also a prerequisite for other physiological activities associated with mollicute 

pathogenesis, like cellular invasion and motility (Much et al., 2002; Nakane et al., 2009).  

Increased levels of GapA and CrmA in the virulent field strain (K5234) may have contributed to 

its increased persistence, colonization, and virulence. 

 

Energy metabolism and housekeeping enzymes 

Many of the proteins in the data set provide basic metabolic functions. The role these 

“housekeeping enzymes” might potentially play in pathogenicity is typically overlooked. But 

“housekeeping genes may confer virulence” (Pollack, 2002). Hudson et al. note: 
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Traditionally, the Lpd protein [dihydrolipoamide dehydrogenase of M. gallisepticum] would be 

considered a metabolic factor, and therefore, its role in pathogenicity might never be 

investigated…The definition of what constitutes a virulence-associated determinant is not limited 

to toxins and cytadhesins, but also includes proteases, regulatory proteins, stress response 

proteins, transport proteins, and proteins involved in metabolism. A virulence-associated 

determinant is therefore defined as any factor that confers a selective advantage on the pathogen, 

allowing it to colonize the host, persist, propagate, and cause disease (Hudson et al., 2006). 

The relevance of housekeeping enzymes as virulence factors has been heightened by the 

discovery that many housekeeping enzymes, including all five enzymes of the triose portion of 

glycolysis, can localize on the cell surface of prokaryotes, with several capable of  mediating the 

attachment to host cell fibronectin and plasminogen (Pancholi and Chhatwal, 2003). While it is 

difficult to reconcile most of the variations in abundance of metabolic enzymes in the current 

study with known mechanisms of M. gallisepticum virulence, these proteins may have 

contributed to the increased persistence and virulence of K5234, and thus they warrant 

discussion. 

 The primary locus of fermentative mollicute metabolism is pyruvate. Mollicutes 

are capable metabolizing pyruvate to lactate, acetyl-CoA, or oxaloacetate (Fig. 7, p. 59) (Hudson 

et al., 06; Razin et al., 98). With the exception of one of the three components of the pyruvate 

dehydrogenase complex (PDHC), the enzymes responsible for the conversions of pyruvate to 

lactate and acetyl-CoA decreased in abundance in the virulent field strain (K5234) as compared 

with the attenuated vaccine strain (6/85). These enzymes included lactate dehydrogenase (Mdh) 

and two of the three enzymes of the PDHC, pyruvate dehydrogenase (AcoA) and 

dihydrolipoamide acetyltransferase (AceF). The third PDHC enzyme, dihydrolipoamide 

dehydrogenase (Lpd), showed increased levels in K5234. 
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As mentioned in the introduction, fermentative mollicutes possess complete glycolytic 

pathways but lack TCA cycles, cytochromes, and quinones and are thus incapable of generating 

ATP by oxidative phosphorylation. Most of their ATP is thought to be produced by substrate-

level phosphorylation during glycolysis (Pollock, 02). Glycolysis relies on the electron accepting 

role of NAD
+
, which is reduced to NADH and must be regenerated in order for glycolysis to 

continue. In mollicutes, the major pathway for regenerating NAD
+
 is the reduction of pyruvate 

(the end product of glycolysis) to lactate, with the concomitant re-oxidation of NADH to NAD
+
 

(Equation1). This conversion is catalyzed by lactate dehydrogenase (the Mdh protein in M. 

gallisepticum), which decreased -1.85, -1.71, and -1.68 fold in the current study (Figure 3). The 

malate dehydrogenase activity observed in some mollicutes is also attributed to lactate 

dehydrogenase and will be discussed later (Pollock et al., 97). 

 

Equation 1: Pyruvate + NADH → Lactate + NAD
+ 

 

It has been shown in several fermentative mollicutes that lactate dehydrogenase is de-

activated by reduced levels of fructose1,6-bisphosphate (the final metabolite of the hexose 

portion of glycolysis) and it is hypothesized that this feed forward inhibition shunts pyruvate 

toward acetyl-CoA and/or oxaloacetate and away from lactate and the re-oxidation of NADH to 

NAD
+
. The assumption is that under growth limiting conditions, where glycolytic activity is 

being reduced due to limited substrate, cells are less reliant on the regeneration of NAD
+
 and 

may benefit from having fewer resources invested in the lactate pathway (Pollock, 02). This also 

may increase the viability of a dense cell populations by decreasing the amount of lactate 

secreted into the environment, as lactate production is accompanied by the acidification of the 
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cellular milieu, which has been shown to inhibit cell growth at high cell densities (Pollock et al., 

97). 

In addition to lactate, mollicutes can also convert pyruvate to acetyl-CoA by the PDHC, a 

ternary complex composed of dihydrolipoamide dehydrogenase, dihydrolipoamide 

acetyltransferase, and pyruvate dehydrogenase (Equation 2). Dihydrolipoamide acetyltransferase 

(-1.71/-1.64) and pyruvate dehydrogenase (-9.13/-4.13) showed reduced levels in K5234, while 

dihydrolipoamide dehydrogenase (2.61/2.60) showed increased levels. Additional ATP can be 

generated by substrate-level phosphorylation with the conversion of acetyl-CoA to acetate 

(Equation 3) (Halbedel et al., 2007; Madigan et al., 2009). However, the ATP generated by this 

pathway is not thought to contribute significantly to the total ATP pool. Acetate is an important 

precursor for fatty acid synthesis in most mollicutes (Pollock et al., 97). 

 

Equation 2: Pyruvate + CoA + NAD
+
 → Acetyl-CoA + CO2 + NADH 

Equation 3: Acetyl-CoA + Pi → Acetyl-phosphate 

  Acetyl-phosphate + ADP → Acetate + ATP  

  

Of the enzymes involved in pyruvate metabolism that are represented in the dataset, 

dihydrolipoamide dehydrogenase is the only one that has been linked to virulence in M. 

gallisepticum (Hudson et al, 06). The role of dihydrolipoamide dehydrogenase in the PDHC is to 

re-set the redox state of the complex toward the end of the conversion of pyruvate to acetyl-CoA 

so that the PDHC can continue to function (White, 2000). Hudson et al. identified 

dihydrolipoamide dehydrogenase as a potential virulence determinant using signature sequence 

mutagenesis (SSM), an in vivo technique which involves inoculating a single animal with a pool 
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of tagged transposon mutants. If a mutant is unrecoverable, then it is hypothesized to contain a 

transposon in a gene essential for in vivo survival, and thus the gene product is identified as a 

potential “virulence-associated determinant.” Of the 27 mutants inoculated into chickens, the 

only one that was not recovered from the tissue tested contained a transposon in the 

dihydrolipoamide dehydrogenase gene. When compared to the wild type strain (the virulent 

Rlow), protein homogenates from the dihydrolipoamide dehydrogenase mutant showed decreased 

PDHC activity in vitro. The mutant was also attenuated in vivo. The authors concluded that the 

lack of functional dihydrolipoamide dehydrogenase rendered the PDHC inoperative after one 

reaction, decreasing the amount of ATP that could potentially be produced by the conversion of 

acetyl-CoA to acetate, causing a growth defect which was masked in vitro but manifest in vivo 

(Hudson et al., 06). In a follow up study, the authors evaluated the SSM Lpd mutant as a vaccine 

candidate. Under the experimental condition employed, the Lpd mutant outperformed the 

vaccine strains ts-11 and F-strain (Gates et al., 2008). Recently, in Mycobacterium tuberculosis, 

dihydrolipoamide dehydrogenase was shown to be a component of two enzyme complexes other 

that the PDHC. Both enzyme complexes are colonization factors, one provides protection from 

host born reactive nitrogen intermediates and the other prevents the accumulation toxic 

intermediates of amino acid metabolism (Venugopal et al., 2011). These activities have not been 

investigated in M. gallisepticum, but they may exist and may have contributed to the attenuation 

of the Lpd mutant discussed above. Lastly, in a study which compared the transcriptomes of M. 

gallisepticum cells grown in broth versus cells grown in association with eukaryotic cells, 

dihydrolipoamide dehydrogenase was reported to be downregulated 2.28 fold in attached cells 

(Cecchini et al., 07). Interestingly, lactate dehydrogenase (-3.50) and dihydrolipoamide 

acetyltransferase (-2.22) were also shown to be downregulated. As previously mentioned, these 
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two enzymes showed a decreased abundance in K5234. The downregulation of PDHC enzymes 

and lactate dehydrogenase in the transcriptome study suggests a decreased dependence on the 

conversion of pyruvate to lactate and acetyl-CoA in what is thought to be a more persistent 

lifestyle. 

In addition to lactate and acetyl-Co, the other major product of pyruvate metabolism in 

mollicutes is oxaloacetate (OAA) (Equation 4). Oxaloacetate can be used as a substrate for 

amino acid biosynthesis, or it can be converted to malate by the activity of lactate dehydrogenase 

(Equation 5). As with the production of lactate, malate production is accompanied by the 

regeneration of NAD
+
. It is thought that the malate pathway may provide organisms with a 

means of producing NAD
+
 without the deleterious effects of the acid production associated with 

the lactate pathway. In mollicutes, low malate dehydrogenase activity has been associated with a 

decreased dependence on NAD
+
 regeneration and an increased flow of oxaloacetate to amino 

acid biosynthesis (Pollock et al., 97; Pollock, 02).  

 

Equation 4: Pyruvate + ATP + CO2 → OAA + ADP + Pi  

Equation 5: OAA + NADH → Malate + NAD
+ 

 

The evidence that some mollicutes funnel pyruvate away from lactate and malate under 

growth limiting conditions, and that M. gallisepticum downregulates lactate dehydrogenase and 

two of the three enzymes of the PDHC when grown in contact with eukaryotic cells suggests a 

possible correlation between the increased persistence of K5234 in the field trials and the 

decreased levels of lactate dehydrogenase and the PDHC enzymes observed in the current study. 

One possible explanation is that K5234 is a more effective parasite, in that it may be able to 
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acquire more metabolic precursors from its host and is thus less dependent on energy metabolism 

producing the necessary ATP needed for macromolecular subunit biosynthesis. Another possible 

scenario is that the decreases reflect a metabolic state that is more conducive to long term 

persistence in a substrate limiting environment, and that K5234 achieves this state by either 

investing fewer resources in pyruvate metabolism in general or by funneling pyruvate away from 

lactate and acetate at the pyruvate locus, or both. If this were to be the case, then either K5234 is 

simply genetically predisposed toward this state, or it is more effective at regulating metabolic 

enzymes than is 6/85. In either case, the variation would have to have been masked in the 

nutrient rich, in vitro growth media, where the two strains had similar growth curves, but become 

apparent in the more competitive and limiting in vivo environment. If the variations involved 

variable regulation, the obvious question is why this shift toward stationary phase growth 

occurred in vitro during mid-exponential phase in K5234, and also why it occurred in K5234 and 

not 6/85. It has been reported that variations in the expression of metabolic enzymes observed 

during transitional phase cells of some bacteria actually begin in mid-exponential phase growth 

(Cohen et al., 2006). Decreases in the abundance of FtsZ (-1.60), NrdA (-1.97), and NrdF (-2.84, 

-1.95) in K5234 could also indicate preparation for slower growth. FtsZ (filamentous 

temperature sensitive - Z) is a tubulin-like protein that initiates cell division by polymerizing into 

a ring around the center of a growing cell (Madigan, et al., 2009). The decrease in abundance of 

FtsZ could simply reflect a decrease dependence on FtsZ specifically for cell division, as the 

protein was recently found to be nonessential to cell division in M gallisepticum’s close relative 

M. genitalium (Lluch-Senar and Piol, 2010). Two subunits of ribonucleotide reductase (NrdA 

and NrdF) showed a decreased abundance in K5234. Ribonucleotide reductase reduces 

ribonucleotides to deoxyribonucleotides in preparation for chromosomal replication (Madigan et 
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al., 2009). It is possible that by an unknown regulatory system K5234 begins preparing for 

stationary phase growth before 6/85 does, and that this is not reflected in the growth curves of 

the two strains, though it may manifest with prolonged, late stationary phase growth, which was 

not included in the experimental growth curves.  Perhaps the regulation of metabolism in K5234 

is slightly different and more sensitive than that of 6/88.  Also, in a substrate limiting 

environment, K5234 may be less dependent upon fatty acid biosynthesis and benefit from having 

fewer resources invested in the acetate pathway. 

While no significant change in the abundance of the enzymes needed to convert 

oxaloacetate to amino acids was detected by in this study, it is possible that K5234, when 

compared with 6/85, funnels less pyruvate toward lactate and acetyl-CoA and more pyruvate 

toward amino acids and protein biosynthesis, perhaps toward the synthesis of structural proteins 

that are directly associated with persistence and virulence – like GapA, CrmA, and VlhA. It is of 

interest that while lactate dehydrogenase and the PDHC enzymes were down-regulated in the 

Cecchini et al. study, numerous ribosomal proteins were up-regulated, indicating a generalized 

increase in translation (Cecchini et al., 2007). In the current study, FusA, a translation elongation 

factor, increased in abundance in K5234. This, likewise, could indicate an increase in translation. 

 

Other proteins of interest 

 The most conspicuous aspect of the results is the high fold change of AtpA (ATP 

synthase alpha chain) and AtpD (ATP synthase beta chain); the former increased 3.76/3.09 and 

the latter increased 19.57/11.19/6.02 in K5234. As previously mentioned, mollicutes are 

incapable of generating ATP at the expense of the proton motive force, a process catalyzed by 

ATPase. Mollicutes possess ATPase, but their ATPase acts only in reverse, using energy from 
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ATP hydrolysis to establish ion gradients by pumping hydrogen or sodium ions out of the cell 

membrane. In addition to their role in ATP synthesis, ion motive forces are also used to drive 

cellular activities like membrane transport and motility (Pyrowolakis et al., 1998; White, 2000). 

However, it has been demonstrated that the gliding motility exhibited by mollicutes is driven by 

the direct hydrolysis of ATP (like Type IV pila mediated motility), as opposed to being driven by 

ion motive forces (like flagella mediated motility) (Charon, 2005; Jaffe et al., 2004). 

The ATPase of M. gallisepticum has the same eight subunits that compose the typical 

bacterial F-type ATPase, with AtpA and AtpD composing the catalytic portion of the complex 

(Rasmussen et al., 1992). However, the AtpA and AtpD that increased in abundance in this study 

seem to be additional variants, possessing a PS00107 protein kinase motif, and their 

chromosomal location is different than that of the other eight subunits (Gutman et al., 2005; 

Papazisi et al., 2003). It is unclear, but perhaps M. gallisepticum has variable ATPases, some 

containing conventional AtpA and AtpD subunits and others containing variant subunits. Due to 

the high fold change of these two proteins and the importance of ATPases to cellular physiology, 

further investigation into the function of these ATPase subunit variants is warranted. 

Thioredoxin reductase (TrxB) increased 1.91 fold in K5234. Along with thioredoxin, 

thioredoxin reductase is a component of the NADP
+ 

/ thioredoxin system (NTS). The NTS is 

involved in numerous processes in eukaryotes, but little is known about its function in 

prokaryotes. “Although the magnitude of the role of [the] thioredoxin-reductase system…in 

mollicute metabolism is presently not certain, we imagine that it is significant,” writes one 

researcher (Pollock, 2002). It has been reported that  the mollicute NTS is capable of protecting 

cells from the deleterious effects of reactive oxygen species (ROS) by transferring electrons from 

NADPH (the origin of the NADPH is not known) to proteins and low molecular weight 
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molecules (Fig. 8, p. 60), thereby maintaining them in their functional reduced forms and 

protecting them from deleterious oxidation by host-born and native ROS - such as superoxide, 

hydroxyl radicals, and H2O2, and organic peroxides (Ben-Menachem et al., 1997; Koharyova and 

Kollarova, 2008; Pollack, 2002). Mollicute infection sites contain an abundance of ROS, mainly 

H2O2. Hydrogen peroxide is considered a virulence factor of mycoplasmas and is also produced 

by host phagocytes (Madigan 09 et al.; Jenkins et al., 2008). The NTS of other bacteria provides 

protection from nitric oxide and reactive nitrogen species, and the thioredoxin reductase of 

mycobacteria has been discussed as a potential drug target (Jaeger et al., 2006; Qu et al., 2009). 

As mollicutes lack catalase and peroxidase activities (Pollock, 2002), NTS may be their primary 

defense mechanism against ROS, and elevated levels of TrxB could enhance both colonization 

and virulence. 

 

Equation 6: Trx-S2 + NADPH + H
+
 → Trx-(SH)2 + NADP

+ 

 
                                                                          ↓ 

                                              Protein-S2 + Trx-(SH)2 → protein-(SH)2 + Trx-S2 

 

The presence of guanylate kinase (Gmk) in the data set is of interest because it is one of 

the very few M. gallisepticum proteins that possesses motifs indicative of regulatory proteins. 

Thus far, no conventional regulatory proteins have been described in M. gallisepticum (Papazisi 

et al., 2003). 

 

Hypothetical proteins 

Six conserved or hypothetical proteins varied in abundance between the two strains. Two 

of these proteins have been renamed since the initial sequencing of strain Rlow and the 
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completion of the current study. MGA0674, which decreased 1.63-fold,  is now named MslA, for 

Mycoplasma-specific lipoprotein A, and MGA1203, which decreased 1.59-fold, is now named 

Hlp2, for high molecular weight (HMW) 3-like protein (May et al., 2006; Szczepanek et al., 

2010b). MslA has appeared in two global transcript studies. In a transcriptomic comparison of 

strain Rlow cells grown in broth versus cells grown in association with eukaryotic cells, MslA was 

downregulated 2.5-fold, the same fold-change direction as in this study (Cecchini et al., 2007). 

However, MslA transcripts were 6-fold more abundant in the virulent Rlow strain than the 

attenuated F strain. Szczepanek and co-workers reported that MslA was immunogenic, and that 

mutants with transposons in mslA had reduced recovery and attenuated virulence in vivo. The 

role MslA plays in M. gallisepticum physiology and pathogenesis is yet to be determined 

(Szczepanek et al., 2010b). Hlp2, which also decreased in abundance in K5234, is classified as a 

cytadherence-related protein based on homology to the M. pneumonia protein HMW2 (May et 

al., 2006). HMW2 is a major component of the M. pneumonia’s terminal tip structure and is 

involved in the localization of numerous proteins that mediate not only attachment and gliding 

motility but also cell division (Bose et al., 2009; Hasselbring et al., 2006). Hlp2 is also 

homologous to MG218 of M. genitalium. Like HMW2, MG218 is a terminal tip protein essential 

to attachment and motility (Pich et al. 2008). Along with MslA, the expression MGA267 and 

MGA573 were reported to vary in the Cecchini et al. study. MGA267 showed an increase in 

abundance in the K5234 and was also upregulated in cells grown in contact with eukaryotic cells, 

while MGA573 increased in abundance in K5234 but was downregulated in cells grown in 

contact with eukaryotic cells (Cecchini et al., 2007). The appearance of hypothetical proteins in 

the data set demonstrates that these proteins are expressed and presumedly functional in the two 

strains studied. Thirty-three percent of the M. gallisepticum predicted proteome is comprised of 
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hypothetical proteins. Functional analysis of these proteins will be essential to a comprehensive 

understanding of M. gallisepticum physiology. As demonstrated by the previous discussion, 

comparative functional genomics is a powerful tool and could play an important role in the 

investigation of proteins with no known function. 

 

Conclusion 

 Using 2DE-MS based comparative expression proteomics, numerous variations between 

the proteomes of two genetically similar M. gallisepticum strains were uncovered. Strain K5234 

was isolated from a flock of poultry that had been vaccinated with the live attenuated vaccine 

strain 6/85. Field trials demonstrated that K5234 was virulent, and that it persisted longer in birds 

than did 6/85. However, the two strains were indistinguishable using accepted methods of 

mycoplasmal differentiation (RAPD and selected sequence comparison). The nature of the 

phenotypic variations (increased virulence and persistence) observed during the field trials was 

investigated in vitro using 2DE-MS based proteomics. Highlights of the data set include an 

increased abundance in K5234 of several phase and/or antigenic variable virulence factors (to 

date, the only three well investigated virulence factors of M. gallisepticum), and a decreased 

abundance in K5234 of enzymes involved with pyruvate metabolism. These and other proteins in 

the data set could play a role in the increased virulence and persistence of K5234. They may also 

be involved with phenotypic variations between K5234 and 6/85 that have not been detected.  

This study demonstrates the utility of quantitative comparative proteomics as a tool to 

investigate the molecular mechanisms behind phenomena. Regarding M. gallisepticum, 

mechanistic data could aid both the understanding of virulence at a basic level and the discovery 

or development of enhanced vaccine strains. As mentioned in the introduction, complications 
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due to M. gallisepticum infections are an enormous economic burden to the poultry industry 

(Papazisi et al., 2003). Currently, live-attenuated vaccines are the most promising options for 

control. Bacterins have proved ineffective. Antibiotics can control symptoms but cannot clear 

infections. Biosecurity measures are effective against sporadic outbreaks when flock eradication 

is an option. But in the egg laying industry, due to its structure and extreme size, eradication is 

not an option. Flocks can become infected for life, and live-attenuated vaccines are currently the 

best option for control (Evan et al., 2005; Gates 2008). But, as acknowledged by Jeff Evan of the 

USDA poultry research team, vaccine development is hindered by a lack of mechanistic 

knowledge concerning vaccine and field strains (the molecular studies cited in the discussion 

employed almost exclusively laboratory strains); what is known about field and vaccine strains is 

mostly phenomenological. For example, regarding the three vaccine strains currently in use, the 

F strain is an effective colonizer, persist well, and is capable of displacing virulent field strains, 

but induces mild respiratory disease and is transmissible to flocks where it is a pathogen. In 

contrast, strains ts-11 and 6/85 are safer and less transmissible but do not persist well and are less 

protective (Abd-El-Motelib and Kleven, 1993). With few exceptions, the mechanisms which 

account for these observations have not been investigated. If the superior protection provided by 

F-strain results from competitive exclusion, then what mechanisms account for its ability to out-

colonize field strains and why can it achieve this exclusion better than stains ts-11 and 6/85? If 

F-strain‟s superior protection is the result of eliciting an immune response that displaces 

pathogens more effectively than the immune response elicited by ts-11 and 6/85, then how is this 

achieved? The current study is an initial (or pilot) experiment conceived to address these 

questions. The data generated will be used as a starting point for directed physiological and 

molecular experiments, hopefully resulting in a more thorough understanding of the nature of 
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what is desirable and undesirable in a vaccine strain. This knowledge will then be used to 

identify markers and develop assays with which to screen vaccine candidates or, alternatively, 

used as a basis for the development of recombinant vaccines. 

Additionally, the potential demonstrated by this study to elucidate mechanisms of M. 

gallisepticum pathogenicity has encouraged the initiation of a long-term, large-scale research 

effort of which proteomics is the core approach. Currently, a LC-based proteomic comparison of 

K5234 and 6/85 is being carried out - which, along with the differential data generated by this 

study, will be used as a starting point for a large-scale systems (or modeling) project. The 

vaccine strains ts-11 and F-stain, the sequenced Rlow laboratory strain, and various field strains 

will be incorporated into this project. The conditions under which the proteomic comparisons 

will be carried out will have to be standardized. However, comparative proteomics lacks the 

rigor of genomic and transcriptomic approaches. As mentioned in the introduction, the lack of 

rigor stems both from the technology and the dynamic nature of protein pools within a cell. The 

development of systems models for an organism that is inherently variable using technology that 

is inherently variable will undoubtedly be challenging and will likely require a consensus 

approach. 

As one reviewer notes, “It is no coincidence that the first vaccines were developed 

against pathogens with little variability” (Telford, 2008). The complications involved with 

developing live-attenuated vaccines for the control of highly plastic pathogens are extensive, but 

a more thorough understanding of pathogenic mechanisms via global proteomic approaches will 

likely help address these complications. Proteomics also has the capacity to help elucidate the ill-

understood genetic mechanisms that govern the replication errors that lead to phase and antigenic 
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variations (and the repair mechanism that overlook these errors) and also perhaps implicate 

environmentally responsive regulatory networks in the process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 

 

 

 

Fig. 6. Cytadherent M. gallisepticum. M. gallisepticum cells attached via attachment organelle 

to chick embryo epithelium 2 days post-infection (Bradbury, 2005). 
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∆Mdh: -1.85, -1.71, -1.68 

 ∆PDHC: 

  AcoA: -9.13, -4.13 

  AceF: -1.71, -1.64 

  Lpd: 2.61, 2.60 
 

Fig. 7. Pyruvate catabolism in mollicutes. This figure shows the experimental abundance 

changes in enzymes involved with pyruvate metabolism in the virulent K5234. Negative fold 

changes (∆) indicates decreased levels in the virulent K52 strain in versus the 6/85 vaccine strain. 

Abbreviations: Mdh (lactate dehydrogenase), LDH (lactate dehydrogenase), PDHC (pyruvate 

dehydrogenase complex), AcoA (pyruvate dehydrogenase), Lpd (dihydrolipoamide 

dehydrogenase), AceF (dihydrolipoamide acetyltransferase). 
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APPENDIX  

DEATILED LABORATORY PROTOCOLS 

 

Crude protein extract 

Lyses buffer (30 mM Tris, 7 M urea, 2 M thiourea, 4% CHAPS) – 15 ml 

 ____make 25 ml 8 M urea, 2.3 M thiourea 

  ____12 ml ddH20 

  ____12 g urea 

  ____4.5 g thiourea 

  ____make up to 25 ml with ddH2O 

  ____add 250 mg amberlite and stir for 1 h 

  ____filter into clean, rinsed bottle 

 ____13.2 ml deionized urea/thiourea solution 

 ____450 ul 1 M Tris 

 ____150 ul nuclease mix 

 ____300 ul protease inhibitor 

 ____600 mg CHAPS 

 ____pH to 8.6 with HCL 

 ____make up to 15 ml 

 ____950 ul aliquots and store at -70ºC 
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Protocol 

1) Remove cell pellets and lysis buffer (LB) from -70ºC. Place pellets in -20ºC and allow 

LB to thaw at room temp. 

2) Vortex LB thoroughly. Making sure all presipitated dissolves. Add required volume to 

pellet. Incubate at room temp for 2 min. 

3) Disperse pellet by vortexing (and pipeting if needed). 

4) Transfer slurry to sonication vessel incubate on ice for 10 min while: 

5) Clean sonication tip with 3 rounds of ethanol and water. 

6) On ice, sonicate sample 6 x 15 s on 15 s off. 

7) Transfer lysate to microfuge tube and place on ice. 

8) Repeat steps 1-7 for remaining samples. 

9)  Allow all samples to incubate at room temp for 1 hr. 

10) Transfer lysates to 1.5ml thick-walled centrifuge tubes and centrifuge 40K x g at 7ºC for 

1 hr. 

11) Transfer clarified lysate to tube on ice. 

12) Aliquot 70 ul into screw-cap tubes and store at -70ºC. 

 

IPG strip rehydration with reswelling tray 

1) Using toothbrush, clean reswelling tray with IPG detergent (or other non-ionic detergent). 

Rinse thoroughly with ddH20 and airdry (if needed, use crewipes to dry). 

2) Remove appropriate amount of Destreak rehydration solution from -20ºC. Bottle contains 

3ml of solution. 450 ul required per well. Once thawed, vortex vigorously until white 

solid (urea) dissolves. 

3) Add IPG buffer (or other ampholytes) to 0.5% v/v (15ul to 3ml, 60ul to 6ml). 
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Note: Ampholyte range should match that of the strip. However, many prefer 3-11NL 

ampholytes when using 3-7NL or 4-7 strips. 

4) For right –handed persons, orient the reswelling tray so that the acidic (+) end is to the 

left. Acidic end has the little circular well. Pipet 450 ul of rehydration solution into the 

appropriate number of wells. 

Note: Many find that applying rehydration solution toward cathodic (-) end of well 

results in more complete rehydration. 

5) Load strips. Remove strips one at a time and load.  Grasp acidic end (the one with the bar 

code) between thumb and index finger of left hand so that the protective cover in facing 

away from left hand. With right hand, gently peel off protective cover. Again with right 

hand, grasp basic end backing between thumb and index finger so that when the strip is 

flipped, the gel side is facing down and the plastic backing is up. Lower the strip so that 

acidic end contacts pool of rehydration buffer. Gently slide the strip back and forth across 

the solution, making sure that gel is wet before contacting any part of tray that is dry. 

Lower and release basic end so that acid end completely crosses well at acidic end. 

6) Cover each strip with 3.4 ml of Drystrip cover fluid (mineral oil). 

7) Insert cover, gently move tray to place of incubation, and balance with black nobs. 

8) Incubate strips for 20-30 h at room temp. 

 

Reconstitution of CyDyes 

1) Transfer small volume of DMF to microfuge tube. 

Note: Once cracked, DMF reagent should only be used for 3 months. After 3 months, 

crack another one. 
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2) Remove un-opened dye from -20ºC.  Leave dye in black plastic container. Incubate on 

ice for 5 min. 

3) Add appropriate volume of DMF: 5 ul to 5mM, 10 ul to 10mM, and 25 ul to 25 mM. This 

gives a stock solution of 1mM. 

4) Vortex dye for 30 s. 

5) Spin down. 

6) Immediately return dye to -20ºC. 

Note: Reconstituted dye is stable for up to 2 months or up to the expiration date. 

 

Minimal Cy dye labeling 

1) Dilute samples to 5 ug/ul (5mg/ml) with lysis buffer (LB) in a total volume of 75 ul. The 

LB is the diluent. This will be enough for analytical gels, several preparative gels, and a 

small amount to archive. To determine appropriate volume of sample and LB, divide 

375ug by the concentration of the sample in ug/ul (75 ul of a 5 ug/ul solution contains 

375ug). Enter the result (ul) into the chart. The left-hand blank. The one for sample. 

Subtract the result from 75 ul. Enter this result in the right-hand blank. The one for 

diluent. Label microfuge tubes according to following chart. Dilute samples. Vortex 

diluted samples and place on ice. 

sample A (cy3 control)____  sample B (cy5 variant)____ 

1A._____ul sample  _____ul diluent 1B._____ul sample  _____ul diluent 

2A._____ul sample  _____ul diluent 2B._____ul sample  _____ul diluent 

3A._____ul sample  _____ul diluent 3B._____ul sample  _____ul diluent 

sample B (cy3 variant)____  sample A (cy5 control)____ 

4B._____ul sample  _____ul diluent 4A._____ul sample  _____ul diluent 
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5B._____ul sample  _____ul diluent 5A._____ul sample  _____ul diluent 

6B._____ul sample  _____ul diluent 6A._____ul sample  _____ul diluent 

2) Transfer 55 ul of each diluted sample to single tube labeled pool. Vortex pooled sample 

and place on ice. 

3) Multiply number of analytical gels plus one by 10 ul (6 + 1 = 7, 7 x 10 ul = 70 ul). 

Transfer this amount of pooled sample to tube labeled standard. This will be enough 

standard for each analytical gel and a little left over. Vortex standard sample and place on 

ice. The remaining pooled sample will be used for preparative loads and archiving. 

4) Transfer 10 ul of remaining diluted sample to reaction tube (simply another microfuge 

tube) labeled identically to dilution tube. Place reaction tubes on ice. 

5) Prepare CyDye working solution (400 pm/ul). Remove dyes from -20ºC and thaw on ice 

for 5 min. Keep dye tube in black plastic container. Vortex thawed dyes and spin down. 

Transfer small amount of DMF to tube labeled DMF. According to the following chart, 

transfer appropriate volume of DMF to tubes labeled Cy2, Cy3, and Cy5. Add the 

appropriate volume of thawed dye respected tube. Return stock dyes to -20ºC 

immediately. Vortex diluted dye, spin down, and place on ice in the dark. 

 4 samples: add 2 ul stock to 3ul DMF 

 6 samples: add 3 ul stock to 4.5ul DMF 

 8 samples: add 3.5 ul stock to 5.25ul DMF 

6) Reaction. Working methodically, add 1ul Cy3 to Cy3 reaction tubes. Vortex each for 10 

s, spin down, and return to ice. Add 1ul Cy5 to Cy5 sample tubes. Vortex each for 10 s, 

spin down, and return to ice. Add 1 ul Cy2 per 10 ul standard sample to standard reaction 

tube. Vortex, spin, and return to ice. 
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7) Incubate reaction tubes for 30 min on ice protected from light. Place 10 mM lysine on 

ice.  

8) Quench reaction. Add 1 ul 10 mM lysine to Cy3 and Cy5 reaction tubes. Add same 

volume of 10 mM lysine to standard reaction tube that was used for Cy2 in step 6. Vortex 

and spin down each sample before return to ice protected from light. 

9) Incubate reaction tubes for 10 min. 

10) Proceed to reduction and 1
st
 dimension or store samples at -70ºC.  

 

Reduction and 1
st
 dimension 

1) Remove aliquot of 2X solubilization buffer (2XSB), aliquot of rehydration buffer (RB), 

CyDye labeled samples, and pooled sample from -70ºC. Once thawed, vortex each. 

Ensure precipitates are dissolved. Spin down labeled samples. 

2) For each sample set, marry Cy3 and Cy5 samples by transferring entire contents of Cy5 

tubes to Cy3 tubes.  

3) Add 12 ul standard sample to each Cy3 tube. Now each Cy3 tube should contain 36 ul. 

4) Add 36 ul 2XSB to each sample and vortex. 

5) Transfer amount of pooled sample needed for preparative gels to fresh tube. Add equal 

volume of 2XSB and vortex. 

6) Incubate samples on ice in the dark for 30 min while: 

7) Using treezers, gasp the strip‟s basic end backing. Lift, flip, and place in ceramic boat so 

that acidic end (the one with the + and barcode) is pointed toward end of  boat and 

cathodic end of gel is at square end of boat. Make sure gel surface is up. 

8) Cover each rehydrated strip with 4.4 ml Drystrip cover fluid (mineral oil). 
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9) Place electrode pads moistened with 150 ul ddH20 on cathodic and acidic end on gel, not 

the gel backing. 

10) Place electrodes on electrode pads, several mm from the ends of the gel. Ensure that the 

electrode is over the gel, not the gel backing. 

11) Place sample cup several mm from the acidic end electrode pad. Ensure that the cut feet 

contact the bottom of the boat and that they do not contact the boat‟s guides. Observe at 

eyes level to make sure. 

12) Fill each sample cup with 100 ul of Drystrip cover fluid. Allow gels to sit for 10 min 

while:  

13) Add 28 ul RB to each reduced sample (total volume now 100ul).Brig preparative sample 

up to 100 ul with RB. Vortex each and spin down. 

14) Ensure that cups are not leaking by making sure that level of Drystrip cover fluid in each 

cup has not dropped. 

15) Add entire sample contents (100 ul) to sample cup. 

16) Place strips on IEF platform. Ensure that boat electrodes contact platform electrodes (the 

gold part).  

17) Place covers over boats and close hood. 

18) Toggle to or program desired protocol, press start, enter the number of gels, and press 

start again. 

19) Protect unit from light. 

20) Return remaining pooled sample to -70ºC. 

21) After run completed, store strips in capped plastic tubes or proceed directly to strip 

equilibration and 2
nd

 dimension. 
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Casting analytical and preparative gels 

1) Prepare bind silane solution. The plates with vinyl spacers will be the back plates of 

sandwiches. Gels are bound to the back plates. 4ml bind solution needed per back plate. 

Bind–silane working solution (prepare fresh) – 10ml (enough for 2 back plates) 

 ____8 ml 200 proof ethanol 

 ____1.8 ml ddH2O 

 ____200 ul glacial acetic acid 

____12.5 ul bind-silane (this is 2X recommended amount) 

2) Treat plates. Plates should have been cleaned and then treated with 1% HCL. Plates 

should be dry and free of dust. Place plates on crewipes so that vinyl spacers are up. This 

will be the inside of the gel sandwich. Pipet 4 ml of bind solution onto plates. Thoroughly 

spread solution over plates with crewipe (or other lint-free wipe). Work up and down 

across plates and across plates up and down. Cover plates with crewipes to protect from 

dust. Allow plates to sit for 45 min while: 

3) Prepare gels solution. Leave out APS. Measure larger volumes with 100ml graduated 

cylinder. 

Gel solution (12.5%) – 940 ml 

 ____294 ml 40% monomer solution 

 ____235 ml 1.5M TrisCl pH8.8  

 ____392 ml ddH2O 

 ____9.4 ml 10% SDS 

 ____376 ul TEMED  (80% of recommended amount) 
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4) Prepare displacing solution. 

Displacing solution (0.375 M TrisCl pH 8.8, 50% glycerol, 0.002% bromophenol blue) – 

120ml 

____20 ml ddH20 

____30 ml 1.5M TrisCl, pH 8.8 

____70 ml glycerol 

____240ul 1% bromophenol blue 

5) Prepare 10% APS by adding 1 g of APS to 9.6 ml ddH2O. 

6) After 45 min (step 2), place reference markers on plates. Place reference markers 10.5 cm 

up from plate bottoms (vinyl spacers go all the way to the edge at the bottom of the 

plates) and slightly inward (several mm) of the vinyl spacers. Use tweezers to place 

markers and press marker hard to plates. Allow plates to sit for additional 45 min before 

loading the caster. 

7) Grease gasket on removable front face of caster. 

8) Load caster. Work briskly. Place plastic separator sheet to back of caster. Then back plate 

(one with spacers). Then front plate. Then thin separator sheet, etc. Ensure all plates are 

flush to one side of caster and all plate bottoms are flush and seated on caster bottom. 

When all plates are loaded, fill any space between last plate and front of caster with thin 

or thick separator sheets so that final sheet is flush with the front of the caster.  

9) Secure front face of the caster.  

10)  Level caster.  

11) Secure funnel tube stem in displacing solution reservoir.  

12) Fill reservoir with 85 ml displacing solution. 
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13) Add 9.4 ml 10% APS to gel solution and gently mix. 

14) Pour gel solution until level with mark 3 cm from top of front plates and stop flow. 

15) Remove funnel stem. 

16) Adjust solution level by adding needed amount of remaining displacing solution to    

reservoir. 

17) Overlay gels with 2 ml water-saturated butanol. 

18) Allow gels to sit for at least 1.5 h. 

19) Place caster in large autoclave bucket and dismantle from plate. 

20) Remove plates. Rinse plate with ddH2O. Rinse top of gel sandwiches, making sure water 

saturated butanol is displaced. Trim off excess polymer. 

21) Lay plate on seal wrap. Fill top gel gaps with storage buffer. Pipet storage buffer along 

the gel sandwich bottoms. Wrap sandwiches.  

22) Store overnight at room temperature. 

23) If 2nd
 dimesion not started day after casting, gels can be stored for several days at 4ºC. 

 

Equilibration and 2
nd

 dimesion 

1) Remove equilibration buffer (EB) from -4ºC. 1 tube (50 ml) per gel. 

2) Split EB between 2 flasks. Add 0.5% DTT to one and 4.5% iodoacetamide to the other. 

______ml EB x 0.005 = ______g DTT 

        x 0.045 = ______g iodo 

3) Stir flask while: 

4) Turn on heating block. Insert required aliquots (1 per gel) of agarose sealing solution. 

5) Dilute electrophoresis buffer and pre-chill if desired. 

6) Remove strip tubes from -70Cº. Incubate at room temp for 10 min in dark 
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7) Add 20 ml DTT EB to gel tubes. Cap tubes and place on shaker at 80rpm. Incubate 

15min in dark while: 

8) Rinse gel sandwiches with ddH2O. Invert sandwiches and place in plate rack while: 

9) Pour off DTT EB. 

10)  Add 20 ml ioda EB to gel tubes. Cap and shake as before. Incubate 10min in dark 

11) Drain EB. 

12)  Fill 100 ml cylinder with 1X electrophoresis buffer. 

13) With clean forcepts remove strip from tube and rinse in 100 ml cylinder containg 

electrophoresis buffer. 

14) Lay strip on ledge at top of sandwich gel with the acidic end to the left. 

15) Use clean rule to position IEF strip on top of 2
nd

 dimension gel. Make sure ruler only 

contacts IEF strip gel backing. 

16) Cover IEF strip with 1ml agarose sealing solution. 

17) Incubate sandwiches for 5 min to allow sealing solution to solidify while: 

18) Set tank to circulate. Add electrophoresis buffer to gel tank. 

19) Insert appropriate number of gel blanks. 

20) Ensure agarose sealing solution is solid. 

21) Insert sandwiches into gel tank. 

22) Program desire protocol and start. 

23) After run, remove and rinse gel sandwiches with ddH2O. 

24) Remove front plate from preparative gels. Place gels in fixing solution and store in dark. 

25) Wrap analytical gels in seal wrap. Protect from light. Scan immediately. 
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Deep Purple Staining 

Solutions 

Fixing solution (7.5% acetic acid / 10% methanol) – 1 L 

 ____825 ml ddH2O 

 ____75 ml glacial acetic acid 

 ____100 ml methanol 

Wash solution (35 mM NaHCO3 / 300 mM Na2CO3) – 1 L 

 ____750 ml ddH2O 

 ____2.94 g NaHCO3 

 ____31.8 g Na2CO3 

 ____make up to 1 L 

 ____verify pH 10 – 11 (solution can be stored up to 2 weeks) 

Working stain solution – 500 ml/gel – 500 ml 

 ____remove stain from -20ºC and incubate at room temp for 2 min 

 ____shake concentrate briefly and transfer 2.5 ml to 500 ml ddH2O 

Stabilization solution (7.5% acetic acid) – 3 L 

 ____2775 ml ddH20 

____225 ml glacial acetic acid   

 

Protocol 

1) Thoroughly clean and rinse (ddH2O) staining containers. 

2) Prepare fixing solution. 
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3) Remove gels from electrophoresis tank. Remove top plate. Place gels in 1 L of fixing 

solution and incubate overnight. 

4) Remove gel, rinse container and wash gel in 1 L wash solution for 30 min at 25 rpm. 

5) Remove gel, rinse container and incubate in 1 L ddH2O for 5min at 25 rpm. 

6) While gel is incubating in water, make working stain solution. 

7) Remove gel, rinse container and cover each gel with 500 ml working solution. Incubate 

for 1 h with gentle agitation (40 rpm) protected from light. 

8) Remove gel, rinse container, and place gel in 1 L stabilization solution with gentle 

agitation protected from light for at least 20 min. 

9) Repeat step 8 twice (optional). 

10) Scan gel using the green laser (532nm) and emission filter 560LP (PMT voltage will have 

to be adjusted according to the protein load if saturation is an issue. Start with 550. Do 

not go above 600). Or gels can be stored at 4ºC, between glass plates, in the dark, in 

stabilization solution or 0.75% acetic acid. 

 

Sypro Ruby staining 

Solutions 

Fixing solution (7.5% acetic acid / 10% methanol) – 1 L 

 ____825 ml ddH2O 

 ____75 ml acetic acid 

 ____100 ml methanol 

Stabilization solution (7.5% acetic acid) – 3L 

 ____2775 ml ddH20 

____225 ml glacial acetic acid 
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Protocol 

1) Thoroughly clean and rinse (ddH2O) staining containers. 

2) Remove gels from electrophoresis tank. Remove front plate. Place gels in 1 L of fixing 

solution and incubate overnight. 

3) Remove gel, pour out fixing solution, rinse container, then fill with 400 ml Sypro Ruby, 

and insert gel. Incubate with gentle shaking (50rpm) overnight protected from light. 

4) Wash gels 6 x 20 min with 1.2L ddH20 with shaking at 25 rpm protected from light. 

Rinse container between each wash. Alternatively, transfer gel from stain to 100% 

methanol for exactly 1.00000 min (use stop watch). Wash gel with ddH20 and scan. 

5) Scan gel with Sypro Ruby emission filter. 

6) Replace front glass and store in stabilization solution. 

 

Scanning analytical gels 

1) Remove gels from tank, rinse with ddH2O, and wrap with sealwrap. 

2) Wrap all seal wrapped gels in foil to protect from light and place at -4ºC. 

3) Remove 1 gel. Rinse with ddH2O, Dry with crewipe while: 

4) Using crewipe, clean scanner window with 2 rounds of 100% ethanol followed by 

ddH2O.  

5) Place position bar on window on edge closest to user. 

6) Ensure that window is completely dry and position gel. Orient gel so that the top plate is 

up and ledge is left. Position acidic side of gel on metal tabs of positioning bar.  

7) Grasp basic side of gel with small positoning bar and lower gel. Close scanner hood. 

8) Open Scanner Control. 
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9) Set Acquisition Mode to Fluorescence. 

10) Click Setup 

11) On Typhoon Scanner Control under column Use de-select image 2, 3, and 4. 

12) Set Emission filter to 520 BP 40 CY2, Blue FAM. 

13) Ensure Laser is Blue2 (488) and Sensitivity is Normal.  

14) Set PMT voltage to 550.  

15) Under Auto Link Mode select Sensitivity. 

16) Select OK. 

17) On Typhoon Scanner Control tick Press Sample. 

18) Set Pixel size to 1000 microns. 

19) Select SCAN. 

20) On Multiple Sample Naming screen select SCAN 

21) Watch real time display of scan.  

- If red spots appear on gel return to Fluorescent Setup for Typhoon9410 

screen. Reduce PMT voltage by 10 units (to 540) and repeat pre-scan. Repeat 

until no red spots. Subract 10 units from the final PMT voltage that produces no 

red spots. This will be the PMT voltage for Cy2.  

- If no red spots appear on gel, increase PMT voltage by 10 units (560) and scan. 

Repeat until 1 or 2 red spots appear. Subtract 15 units from this voltage. This 

will be the voltage for Cy2. 

22) Repeat steps 10-21 for Cy3 and Cy5. 

23) Go to Fluorescent Setup for Typhoon 9410 screen. Under Use select Image 1, 2, and 3. 
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24) Set image 1 to 520 BP 40 CY2, Blue FAM. Set image 2 to 580 BP 30 Cy3, TAMRA, 

AlexaFlour 546. Set image 3 to 670 BP 30 Cy5.  

25) Enter respected voltages under PMT. 

26) Ensure Laser for image 1 is Blue2 (488), for image 2 is Green (532), and for image 3 is 

Red (633). 

27) Sensitivity for all should be normal. 

28) Ensure Auto Link Mode is Sensitivity. 

29) Select OK.  

30) On Typhoon Scanner Control window, under Tray, select DIGE Ettan Dalt and 

number 1. 

31) Under options, tick Press Sample. Set Pixel size to 100 microns. Set Focal Plane to +3 

mm. 

32) Tick DIGE File Naming Format and select SCAN. 

33) On Multiple Sample Naming screen in Use Common Settings for All samples box on 

line Folder, Browse to desired folder for data output and select Set. 

34) On line Base File Name, enter the experiment name and the gel being scanned and select 

SCAN 

35) After scan complete open ImageQuant software. Under Tools, select Define area of 

Interest. Outline desired area of interest. 

36) Under File, select Save Gel Files from Dataset to Folder. 

37) Select desired folder and Save. 

.tiff or .gel files and can now be opened with DeCyder. 
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Scanning preparative gels 

1) Using crewipe, clean scanner window with 3 rounds of 100% ethanol followed by 

ddH2O. 

2) Place clean and dust-free top plate on gel adhered to back plate. Lower at an angle to 

prevent trapping air. 

3) Allow gel sandwich to sit for 5 min. 

4) Remove gel sandwich from stabilization solution. Rinse with ddH2O. Dry with crewipe. 

5) Position gel on window as per steps 5-7 of Scanning analytical gels. 

6) Optimize PMT voltage as per steps 14-21 of Scanning analytical gels. 

7) Scan gel as per step analytical gels, using the manufacturer‟s recommended parameters. 

8) Store gel sandwich in stabilization solution at 4ºC. 

 

 

Decyder differential analysis (overview) 

1) Open Decyder module DIA / Create file for .gel file of analytical gel / Process gel image 

(establishes spot boundaries) / filter / Save as .dia file and export as .xml file / repeat for 

remaining analytical gels 

2) Open Decyder module BVA / Import .xml files of all analytical gels / Assign gel 

functions / establish experimental groups / In Match Table screen, merge spots and 

landmark / Match / Run student‟s T-test / Filter data / Confirm results 
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Plate cleaning and hydrolysis of residual bind silane 

1) Dissemble gel sandwich. Place top plate aside in plate rack. Use plastic wedge to remove 

bulk polymer from back plate. Work up and down and across plate. 

2) Soak back plate in 1% Contrad for 2 h. 

3) Scrape plate as per step 1. Rinse plate thoroughly to remove non-adhered polymer. Using 

plastic wool, scrub plate thoroughly, rinse again, and dry with crewipe. 

4) Inspect plate for residual polymer. Repeat step 3 until all polymer is removed. 

5) Soak plates in 1% HCL for 2 h. 

6) Rinse plates thoroughly with ddH2O. 

7) Place plates in plate rack and set aside to dry. Put plate rack in autoclave bag labeled. Do 

Not Autoclave. 

 

Spot picking 

1) Remove gel tray from spot picker and rinse with ddH20. 

2) Cover the surface of the tray with ddH2O (just enough to cover bottom of tray). 

3) Remove gel from 4ºC. Gently remove top plate. Orient try so that corner feet are toward 

user. Place plate in tray, oriented so that bottom of gel is toward user. Secure gel. Making 

sure both reference markers are between white lines of tray. Place tray with gel in picker. 

Bottom corner feet fit on knobs toward user. Make sure all 4 feet are fit onto knobs. 

4) Rinse 96-well plate with ddH2O. Place in bottom left (A) plate position. Situate down 

and to the left. 

5) Remove camera cover. 

6) Close cabinet. 

7) Place feed tube in bottle of ddH2O. 
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8) Open Ettan Spot Picker. 

9) Click Tools then Prime Syringe. Enter 20 then click Prime. 

10) Set Z-height. 

11) Bottom right screen, click Load Pick List and open text file pick list. 

12) Click Skip in Scanner Correction box. 

13) After spots appear, click Next at bottom right. Read message and click Next again. 

14) Click Auto Detection in Detect Marker box. 

15) When marker detection complete, click next and enter output directory file name and 

route. Then click Create Directory. 

16) Click Run batch. 

17) When picking complete, confirm plugs in each well by removing ddH2O and inspecting 

well. Alternatively, scan 96-well plate with Deep Purple protocol. The gel can also be re-

scanned. 

18) Replace cap on camera. Remove gel try. Remove gel from tray. Rinse tray and leave 

inverted to dry. 

 

Protein digestion 

Reagent prep (20 samples) 

50mM ammonia bicarb / 50% acetonitrile – 8 ml 

 ____4 ml ddH2O 

 ____4 ml acetonitrile 

 ____31 mg ammonium bicarb 

75% acetonitrile – 4 ml 

 ____3 ml acetonitrile 
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 ____1 ml ddH2O 

20 ug/ml trypsin / 20 mM ammonium bicarb – 1 ml 

 ____ to 10 ml ddH2O, add 16 mg ammonium bicarbonate (20 mM) 

 ____add 1 ml 20 mM ammonium bicarbonate to trypsin vial (20 ug) 

 ____mix and transfer to tube 

50% acetonitrile / 0.1% TFA – 4 ml 

 ____2 ml ddH2O 

 ____2 ml acetonitrile 

 ____4 ul TFA 

 

Protocol 

1) Prepare first 3 reagents…keep reconstituted trypsin at 4ºC. 

2) Remove ddH2O, making sure not to smash or loose the plugs. 

3) Add 100 ul 50mM ammonium bicarbonate/50% acetonitrile  /  incubate 20 min  / remove 

solution. 

4) Repeat. 

5) Add 100 ul 75% acetonitrile  /  incubate 20 min  /  remove solution. 

6) Dry plugs in speed vac (may need to remove rotor) for 30 min with no heat. 

7) Add 7 ul 20 ug/ml trypsin directly to each plug. 

8) Seal plate and incubate at 37ºC overnight. 

9) Make up last reagent. 

10) Add 60 ul 50% acetonitrile/0.1% TFA  /  incubate 20 min / transfer to fresh tube. 
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11)  Add 40 ul 50% acetonitrile/0.1% TFA to each well / incubate for 20 min / marry to 

previous 60 ul. 

12) Dry solution in speedvac (no heat) until dry…around 2 h. 

13) Proceed to ziptip or freeze samples at -20ºC. 

 

Target plate cleaning 

1) Cover plate surface with target plate cleaning solution. 

2) Scrub surface with toothbrush. 

3) Rinse scrubbed plate with ddH2O. 

4) Dry plate with crewipe. 

5) Dab very small amount of Pol metal cleaning polish on fresh crewipe. 

6) Polish plate with crewipes in circular motion until no black residue is seen on the 

crewipes (do not let polish dry). 

7) Rinse plate with isopropanol and allow to air dry. 

 

De-salting (uC18) for MS 

Wetting solution (50% ACN in milli-Q water) – 1 ml 

 ____500 ul ddH2O 

 ____500 ul ACN 

0.1% TFA in milli-Q water – 1 ml 

 ____1 ml ddH20 

 ____1 ul TFA 

Elution solution (0.1% TFA / 70 % ACN in milli-Q water) – 1 ml 

 ____700 ul ACN 



90 

 ____300 ul ddH2O 

 ____1 ul TFA 

 

Protocol 

1) Add 1.5 ul neat formic acid and vortex. 

2) Add 8.5 ul 0.1% TFA, vortex, and spin down. 

3) At max volume setting (10 ul) aspirate and discard wetting solution twice. 

4) Equilibrate by aspirating and discarding 0.1% TFA 10X. 

5) Bind by aspirating and dispensing sample 7X.  

6) Wash bound sample 10X with 0.1% TFA. 

7) Aspirate and elute 0.7 ul elution solution 5X (no air) and spot sample directly onto 

TOF/TOF plate. 

8) Allow to dry (or almost dry) and spot .3 ul alpha matrix onto each spot. 

9) Keep plate in dark until processing.  
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