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NEUROMECHANICAL ANALYSIS OF LOCUST JUMPING  

 

by 

 

DAVID WAYNE COFER 

 

 

Under the Direction of Dr. Donald H. Edwards 

 

ABSTRACT 

 

The nervous systems of animals evolved to exert dynamic control of behavior in 

response to the needs of the animal and changing signals from the environment.  To understand 

the mechanisms of dynamic control, we need a means of predicting how individual neural and 

body elements will interact to produce the performance of the entire system.  We have developed 

a neuromechanical application named AnimatLab that addresses this problem through 

simulation.  A computational model of a body and nervous system can be constructed from 

simple components and situated in a virtual world for testing.  Simulations and live experiments 

were used to investigate questions about locust jumping.         

The neural circuitry and biomechanics of kicking in locusts have been extensively 

studied.  It has been hypothesized that the same neural circuit and biomechanics governed both 

behaviors, but this hypothesis was not testable with current technology.  We built a 



neuromechanical model to test this and to gain a better understanding of the role of the semi-

lunar process (SLP) in jump dynamics. The SLP are bands of cuticle that store energy for use 

during jumping. The results of the model were compared to a variety of published data and were 

similar. The SLP significantly increased jump distance, power, total energy, and duration of the 

jump impulse.     

Locust can jump precisely to a target, but also exhibit tumbling.  We proposed two 

mechanisms for controlling tumbling during the jump.  The first was that locusts adjust the pitch 

of their body prior to the jump to move the center of mass closer to the thrust vector.  The 

second was that contraction of the abdominal muscles during the jump produced torques that 

countered the torque due to thrust.  There was a strong correlation relating increased pitch and 

takeoff angle.  In simulations there was an optimal pitch-takeoff combination that minimized 

tumbling that was similar to the live data.  The direction and magnitude of tumbling could be 

controlled by adjusting abdominal tension.  Tumbling also influenced jump elevation.  

Neuromechanical simulation addressed problems that would be difficult to examine 

using traditional physiological approaches.  It is a powerful tool for understanding the neural 

basis of behavior.  

 

INDEX WORDS: Neuromechanical, Biomechanics, Neural network, Simulation, Locust, 
Jumping, Kicking, Semi-lunar process, Flight, Tumbling, Elevation, Hill 
muscle, Invertebrate 
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I would like to dedicate this dissertation to my mother, Shirleyn Cofer.  She was the 

strongest and most determined person that I have ever known.  She faced her illness with 

dauntless courage, and she used her strength, courage, and decency to mold me into the person I 

am today.  I hope to live up to her shining example. I would like to share with you one of her 

favorite poems. 

 

When things go wrong as they sometimes will, 

When the road you’re trudging seems all uphill, 

When the funds are low, and the debts are high, 

And you want to smile, but you have to sigh, 

When care is pressing you down a bit, 

Rest if you must, but don’t you quit. 

Life is strange with its twist and turns, 

As everyone of us sometimes learns, 

And many a failure turns about, 

When he might have won had he stuck it out; 

Don’t give up though the pace seems slow, 

You may succeed with another blow. 

Success is failure turned inside out, 

The silver tint of the clouds of doubt, 

And you can never tell how close you are, 

It may be near when it seems so far; 

So stick to the fight when you’re hardest hit, 

It’s when things seem worst, 

That you must not quit. 
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CHAPTER 1. 

GENERAL INTRODUCTION 

A major goal of neuroscience is to understand how the nervous system is organized to 

control behavior. The nervous system gathers sensory information about the body’s relationship 

to the world, and then makes decisions and issues motor commands which change that 

relationship.  The dynamics of the interaction among the central nervous system, the body, and 

the world are central to the functional control of behavior (Chiel and Beer 1997). To govern 

behavior correctly, the nervous system must both predict and respond to the consequences of the 

animal’s own movements and behavior, and do so on a millisecond to second time scale.  

Despite many experimental successes in the analysis of the nervous system and behavior, 

the dynamic relationship between nervous function and the body is poorly understood. The 

kinematics and dynamics of many behaviors have been described, and the neural circuitry for 

some of these behaviors has been mapped in anesthetized or restrained animals, or in isolated 

tissue preparations. However, we lack a means of predicting how the function and behavior of 

individual neural and body elements will affect the performance of the entire system and the 

behavior of the animal.  

 

Neuromechanical Simulation 

The emerging field of neuromechanical simulation provides a promising approach to this 

problem. Computational models of the relevant neural circuits, body parts, and the physical 

world simulate the neural and biomechanical mechanisms of a behavior simultaneously in a 

physically accurate environment (Pearson, et al. 2006).  These types of simulations have a 

number of benefits that complement the traditional, purely physiological approach to biology.  It 



2 

is much easier to make changes to a simulated system, and this allows multiple alternative 

hypotheses to be tested quickly.  Also, unlike in living systems, all of the neural and physical 

variables are available for viewing by the researcher.  Often it would be very helpful to have a 

better understanding of which variables or parameters are more important, or more sensitive to 

changes.  This can be quite difficult to do in living system, but it is a simple matter of varying 

the parameters and comparing the results from a number of simulations.  

Simulation systems for either neural networks or biomechanics have been used for some 

time now.  Genesis and Neuron are two of the more popular software systems for modeling 

biologically realistic neural systems (Bower and Beerman 2007, Hines and Carnevale 2001).  

They allow users to make detailed electro-chemical models of a specific neuron or of entire 

networks in order to gain a better understanding of the working of the brain.  One of the most 

widely used biomechanical simulators is OpenSim, which was based on the popular SIMM 

application (Delp and Loan 2000, Delp, et al. 2007).  It provides a way to make detailed models 

of the musculo-skeletal system that can be utilized in dynamic simulations of movement and 

posture.    

 Computers have only recently become powerful enough to combine these two types of 

simulations to close the sensory-motor feedback loop and begin investigating the neural basis of 

behavior. One of the ways that neuromechanical simulators have proved most useful is in 

determining the role of sensory feedback during the dynamic process of movement.  This is an 

extremely difficult problem to tackle in the live animal due to technical limitations.  It is often 

vary hard to selectively stimulate or remove different sensory receptors to determine their role in 

movement.  Simulation provides a method to do this, and it has already proven to be quite useful 

for a number of different animal models. 



3 

Research on walking in cats suggested that the transition from stance to swing was 

heavily influenced by two sensory signals.  One signal was the unloading of the leg near the end 

of stance (Duysens and Pearson 1980, Whelan, et al. 1995), and the other was the amount of hip 

extension (Grillner and Rossignol 1978, Hiebert, et al. 1996).  However, it was not technically 

possible to completely isolate these signals to determine their relative importance.  

Neuromechanical simulation was able to address this problem (Ekeberg and Pearson 2005).  

They discovered that the leg unloading signal could on its own produce robust walking behavior, 

but when only the hip extension was used it led to abnormal walking patterns that eventually led 

to the cat tripping and falling. This led them to conclude that the leg unloading signal was 

probably the crucial circuit for stance to swing transition, and has helped them to generate new 

ways to test this hypothesis physiologically. 

Neuromechanical simulation has also proven useful for studying insect locomotion. The 

central pattern generators (CPG) for the leg joints of the stick insect are unable to intrinsically 

coordinate the movements of the legs to produce walking behavior without sensory feedback 

(Uuml, et al. 1995).  Neuromechanical simulation and robotic applications have been successful 

in reproducing the walking behavior of the stick insect (Beer, et al. 1997, Cruse, et al. 1995a, 

Cruse, et al. 1998).  Examination of the sensory signals of the leg revealed that they had a direct 

effect on the timing of the neural bursts of the CPG (Ekeberg, et al. 2004).  They were also able 

to postulate that a specific sensory signal was important for lifting the leg even though the 

sensory receptor for it has not yet been found.         

Another animal model that has benefited from neuromechanical simulation is the 

lamprey.  The neural network in the spinal cord responsible for swimming in the lamprey has 

been worked out in considerable detail (Grillner, et al. 1995, Grillner, et al. 1998, Grillner and 
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Wallen 2002).  However, it has been difficult to determine the functional role of a group of 

stretch-activated sensory neurons that synapse directly onto the rhythm-generating circuitry (Di 

Prisco, et al. 1990).  Neuromechanical simulations have been able to reproduce swimming 

behavior at different speeds, and the ability to produce turning behaviors (Ekeberg 1993, 

Ekeberg and Grillner 1999).  They were also able to determine that the sensory receptors had 

little impact on swimming in calm water, but they did in turbulent situations.  When the 

simulated lamprey attempted to swim through a region where the water flowed perpendicular to 

their motion they were unable to do so if they did not have stretch receptor feedback.  When that 

sensory feedback was included they were able to do so easily (Ekeberg and Grillner 1999).       

 

Problems in Neuromechanical Simulation 

Most existing computational simulations of animal behavior are developed by writing 

programs specific to the project at hand. To do this, researchers need to develop sophisticated 

computer programs to solve complex mathematical equations related to neural functioning and 

physical interactions, maintain proper data structures, conduct simulation, record data, and 

visualize the results by animating two dimensional or three dimensional virtual animal models. 

The benefit of this approach is that users have control over every detail of the simulation. The 

drawback is that it requires expertise over a vast range of different disciplines. It also typically 

requires users to learn enough about programming to be able to configure the system. Some of 

these problems can be avoided by using toolkits such as Matlab or Simulink to develop the 

simulations. Although Matlab and Simulink are powerful toolkits and can relieve the user from 

writing and debugging complicated computer programs, they are not designed specifically for 

simulating neuro-musculo-skeletal systems. Therefore it is often necessary to integrate Matlab or 
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Simulink with other tools in order to build a complete simulation (Davoodi and Loeb 2002, 

Davoodi, et al. 2004, Ridderstrom 2003). Such integration and software development is often 

non-trivial, and requires a high level of computer programming experience.  This means that 

most projects featuring neuromechanical simulation require the collaboration and management 

of a number of individuals, and this can be both time consuming and expensive. 

Another problem is that most existing neuromechanical simulations were custom-built 

for human or a particular animal model. As a result, the model, simulation, and visualization are 

often tightly coupled, making it difficult for one research group to exchange or reuse software 

modules developed by other research groups. This drastically reduces the usefulness of the 

model because it cannot be easily shared and modified by the scientific community. 

Finally, the user interfaces of the existing computer simulations are often very minimal 

and difficult to use. For example, the neural network model and the animal body model are often 

stored in script files (Ekeberg, et al. 2004, Ekeberg and Pearson 2005, Reichler and Delcomyn 

2000). If a user wants to modify these models, they have to manually edit the script files.  The 

usefulness of these types of simulations would be greatly improved by making it intuitively easy 

to build and modify the neural circuits and body models.  

 

The Locust Jump 

The locust jump is a system that is well suited to being studied with a neuromechanical 

simulation. Several decades of research has been performed to understand the details of the 

neural circuit and the biomechanics responsible for producing the jump behavior.  This makes it 

a relatively straightforward process to build models of the hypothesized biomechanical and the 

neural control systems, and then connect them together to test the neural control of jumping.  
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This is useful because even though a great deal is known about how locusts jump, there are still 

unanswered questions that can be addressed.  Below is a brief introduction of what has been 

discovered about how locusts jump and how they control their trajectory to jump precisely to a 

specific target.      

 

Biomechanics and Neural Control of Locust Jumping 

The ability to escape predators is of great evolutionary importance. Many animals, 

including the locust, have evolved to specialize in jumping as a method of escape and 

locomotion. A common problem faced by all jumping animals is that while very rapid 

movements are required to propel the body, the ability to generate force in muscles decreases 

with the speed of muscle shortening (Hill 1970). Consequently, it is difficult for muscle 

contraction to produce the larger forces required for high acceleration over the short time needed 

for escape.  Locusts have evolved a specialization of the femur-tibia joint of their metathoracic 

legs that allow them to overcome this problem. On the distal end of each metathoracic femur, the 

locust has a pair of highly sclerotized portions of cuticle that are called the semi-lunar processes 

(SLP). The SLP bends like a bow to store energy that can later be used to power the jump 

(Bennet-Clark 1975). This allows the locust to store energy in the SLP by a slow contraction of 

the powerful extensor muscle over a span of hundreds of milliseconds, and then later release that 

energy rapidly to power the jump.  

The motor circuitry responsible for the jump has been inferred from intracellular 

recordings from metathoracic neurons obtained during the kick, when the locust body is held 

stationary (Heitler 1988, Heitler and Burrows 1977a, Heitler and Burrows 1977b). The similarity 

between the motor program responsible for the kick and the neuromuscular activity produced 
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before and during the jump has led to the suggestion that the kick and jump motor programs are 

the same (Heitler and Burrows 1977a).  Technical limitations currently prevent an explicit test of 

this hypothesis.  

The locust motor program consists of three phases (Burrows 1995, Heitler and Burrows 

1977a). The first phase is cocking the leg. The locust prepares for a jump by activating the flexor 

tibia muscle to bring the tibia into a fully flexed position. The second phase is a period of co-

contraction where both the extensor and flexor tibia muscles are active. The extensor tibia 

muscle slowly contracts and stores energy in the extensor apodeme, in the SLP, and in the leg 

cuticle. As tension builds in the flexor tibia, its distal tendon passes over a cuticular invagination 

in the ventral aspect of the distal ventral femur (Heitler’s lump, Bennet-Clark, 1975). This 

enables the flexor tibia tendon to attach to the tibia at an angle of nearly 90o when the tibia is 

fully flexed, thereby maximizing its mechanical effectiveness in maintaining tibial flexion 

against the increasing tension in the much larger extensor tibia muscle (Heitler 1974). The lump 

also acts as a catch or lock on the tendon that helps keep the tibia flexed while the flexor muscle 

has tension. In the third phase, the jump is triggered when both the flexor muscle and its motor 

neurons are inhibited. When the flexor tension drops below a threshold, the tendon slips off the 

catch and the tibia is rapidly extended to produce the jump (Heitler 1974). 

 

Locust Trajectory Control 

Locusts can expertly control the trajectory and power of their jump to reach a specific 

target (Eriksson 1980). For a locust to jump precisely to a target it must be able to control a 

number of variables including the jump length, elevation, and yaw of the jump.  Locusts use a 

peering behavior to determine the distance to a target (Eriksson 1980, Sobel 1990). During 
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peering they use their front legs to translate their body and head from side to side prior to 

jumping.  This works because apparent motion of objects in their line of site depends on how far 

away those objects are located.  Jump velocity is directly related to target distance, and when 

experiments were performed to artificially manipulate the motion parallax the jump distance and 

velocity changed correspondingly (Sobel 1990).  The amount of power applied during the jump 

is controlled by the tension level of the tibia extensor muscle of the metathoracic legs (Bennet-

Clark 1975).  In defensive kicks the force is related to the number of FETi spikes and the 

duration of the co-contraction phase (Burrows 1995).  The amount of energy that is stored 

determines the takeoff velocity, and thus how far it will jump (Bennet-Clark 1975, Sobel 1990).  

 Locusts can also direct their jump up to 50o away from the direction of the long axis of 

their body when flexion begins.  They control the azimuth angle of their jump by producing 

yawing movements of the body with the front and middle legs (Santer, et al. 2005).  This was 

tested by rolling a ball down a ramp towards a freely behaving locust to induce an escape jump.  

The ramp was positioned to the side of the locust to see whether they would jump away from the 

ball.  When flexion of the rear tibia began the front leg ipsilateral to the ball extended, while the 

contralateral leg flexed.  This rotated the axis of the body away from the stimulus, and changed 

the azimuth direction of the jump.  An alternate hypothesis was that differences in force levels of 

the two rear legs could alter jump trajectory, but no correlation was found between the power or 

trigger timing of the rear leg muscles and azimuth trajectory (Santer, et al. 2005).   

Locusts must also be able to control the elevation of the jump.  Initially it was thought 

that thrust for the jump was split into two separate components, with the initial portion of the 

thrust going downward and then shifting more diagonally later in the jump (Heitler 1977).  A 

problem with this idea though was that elevation control would be directly tied to the amount of 
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thrust, making it difficult to set either variable independently.  However, recent mathematical 

analysis has cleared up this problem and showed that control of elevation can be decoupled from 

the power for the jump, allowing these two variables to be controlled independently (Sutton and 

Burrows 2008).  It was shown that thrust for the jump is applied continuously along a straight 

line drawn from the distal end of the tibia through the proximal end of the femur, and the angle 

of this line with the horizontal plane is termed the beta angle.  This allows elevation to be 

controlled by rotating the metathoracic femur, thus altering the beta angle and the thrust vector.  

These three mechanisms provide the locust with the means to aim its jump to a specific 

target and hit it accurately.  While locusts have the ability to jump precisely, high speed video 

shows that they often rapidly tumble during the jump, sometimes making several complete 

revolutions throughout the jump trajectory (Visual observations, and Pond, 1972).  This makes 

the orientation at their final destination, and during the ballistic phase of the jump, unpredictable.  

In such a tumbling situation, they are as likely to land on their back or head as they are to land on 

their belly.  Since they are able to jump in both a predictable, controlled manner, and in an 

erratic manner, then it seems likely that they have some mechanism for controlling tumbling 

during takeoff, and that this ability may have evolutionary advantages that make it important.  

The existing mechanisms do not account for the role of tumbling in trajectory control.  

 

Neuromechanical Simulation and Locust Jumping 

There are still a number of open questions related to the neural and biomechanical control 

of locust jumping.  Due to technical limitations, a neuromechanical simulation is the best way of 

addressing some of these issues.  A good example of this is the fact that what is known about the 

neural motor program that is thought to be responsible for initiating the jump was actually 



10 

learned by studying the kick.  These behaviors are so similar that it seems reasonable to conclude 

that they both produced by the same neural circuits, but since it is not currently possible to do the 

necessary electrophysiology experiments during a jump it is not possible to know for sure.  A 

neuromechanical simulation will also not be verify that the locust uses the same circuit for both 

behaviors, but what it could do is verify that the same neural circuit is sufficient to produce both 

behaviors.   

   Simulation could also be helpful in analyzing the role of the SLP in jump dynamics. 

The function of the SLP during the jump has been inferred from its movement during kicks as 

recorded by high-speed video and from calculations of the energy stored in the extensor 

apodeme, the SLP, and femur cuticle (Bennet-Clark 1975, Burrows and Morris 2001).  The 

energy stored in the SLP and the timing of its release appears to be important for jump 

performance. High-speed video of locusts kicks show that the SLP does not begin unfurling until 

the tibia has rotated by more than 30o (Burrows and Morris 2001). This suggests that the energy 

stored in the SLP may play a more important role in the later part of the jump impulse than it 

does in the beginning. However, damage to the SLP, which is an integral part of the leg joint, 

makes the locust unable to jump, and so makes comparisons of the jump performance of animals 

with and without a functional SLP almost impossible.  However, addressing this issue in a 

neuromechanical simulation is straightforward, and it may provide valuable insights into the role 

of the SLP. 

The control of tumbling in locusts is another area where neuromechanical simulation may 

prove useful.  Comparisons between the behavior of simulated and real locust jumps may 

provide useful insights into which parameters are important for the control of tumbling.  The 
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simulation could then provide a simple method of varying those parameters over a wide range to 

observe the resulting behavior.    

 

Dissertation Outline 

 The second chapter of this dissertation is devoted to describing the neuromechanical 

simulation software we have built that is called AnimatLab.  The chapter describes the 

components of the application and how they work and interact.  It then goes on to demonstrate 

how AnimatLab can be used by presenting a brief example of a human stretch and withdrawal 

reflex.   

The third chapter details the neural and biomechanical locust model, and compares 

jumping in the model to behavior in the real animal.  An analysis of the role of the SLP in jump 

dynamics was also performed in this chapter.  I found that the neural circuit for the kick motor 

program was able to reproduce the jump behavior.  Simulations also verified that the SLP was 

important for the jump.  The delay in SLP unfurling was analyzed and shown to be an important 

component in the ability of the SLP to increase the power of the jump.  

The forth chapter examines the control of tumbling in a jump.  Two control mechanisms 

are hypothesized and explored in more detail by comparing the results from live locusts to 

simulations. Data from the live locusts supported the two hypotheses, while simulations allowed 

the hypotheses to be explicitly tested in a virtual environment.    
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CHAPTER 2. 

ANIMATLAB: A 3-D GRAPHICS ENVIRONMENT FOR NEUROMECHANICAL 

SIMULATIONS 

 

In Preparation for submission:  David Cofer, Gennady Cymbalyuk, James Reid, Ying Zhu,  

William J. Heitler, and Donald H. Edwards 

 

David Cofer was responsible for the design, coding, and testing of the bulk of the AnimatLab 

application.  The graphics subsystem used in the body plan editor was the work of James Reid, 

and the code for the Integrate-and-fire neural model originally came from Dr. Heitler, and was 

subsequently modified by David Cofer to add new functionality and work within the AnimatLab 

environment. The human reflex model was created by David Cofer.  The text and figures were 

produced by David Cofer with contributions from Dr. Edwards, and both people were also 

heavily involved in the editing and rewriting process.  Dr. Cymbalyuk and Dr. Heitler provided 

revisions for the final versions of the document.   

 

Introduction 

 AnimatLab is a free, open-source, Windows®-based software tool written to provide a 

general simulator for neuromechanical processes of skeletal animals, both vertebrate and 

invertebrate (www.AnimatLab.com).  It allows users to build neural circuit and biomechanical 

body models in a virtual physical environment, and then to record time series of any variable(s) 

while viewing an interactive, 3D animation of the simulated behavior.   
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Both model construction and the simulations are carried out in an integrated environment 

without having to cope with programming details.   AnimatLab implements a simple point and 

click graphical interface that allows users to construct and edit neural network models and 3D 

biomechanical body models in a way similar to that in professional CAD tools or 3D modeling 

tools like Maya or 3DS Max (usa.autodesk.com).  Written in C++ and .Net, the program requires 

no programming knowledge, but does assume familiarity with neural and muscle physiology.  It 

is available with 45 video tutorials, and over 100 pages of help files that will guide new users in 

a click-by-click fashion through model construction and use of the program’s different 

capabilities.   

AnimatLab’s object-oriented, modular architecture makes it highly extensible. Users who 

prefer to write their own programs to extend, supplement, or substitute capabilities will be able 

to do so by plugging their software modules into AnimatLab through a compatible interface. 

Users may concentrate on developing components of interest without having to develop the 

entire system. Simulations and modules can be readily shared between investigators to allow 

others to examine and extend a simulation. 

 

AnimatLab Overview 

AnimatLab has three interactive components: a graphical user interface (GUI) that 

enables model building and data graphing, coupled solvers for the neural circuit and 

biomechanics simulations, and an interactive 3-D animation of the model’s behavior in a virtual 

Newtonian world. In the model building portion, a “Project Workspace” (Fig. 2.1A) sets 

environmental parameters, including gravitational acceleration, maximal surface friction, and the 

physics simulation time step. It sets animation and graphical display parameters, stimulus 
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Figure 2.1.  AnimatLab Screenshot.  Screenshot from AnimatLab showing the different editing 
and simulation components of the program.  (A)  The Project Workspace panel where users 
manage all simulation properties and components, as well as playback, stimuli, and data plots.  
(B)  The Body Plan editor that allows users to build organisms in a point-and-click manner.  The 
top bar of this window lets users switch between viewing rigid bodies, joints and receptive 
fields, and it allows them to select the default body and joint types that are used when new parts 
are added.  The panel in the top-left of this window displays the hierarchal connectivity of the 
body parts, and the property table below that lists all properties for an individual part.  (C)  The 
Behavior Editor allows users to drag-and-drop neurons, muscles, and other electrically excitable 
parts to create neural circuits, and then draw synaptic connections between these elements. Tabs 
at the top of the diagram list all the pages for the entire network, and the property panel on the 
bottom-left lists properties of the selected neuron.  (D)  The simulation window shows the 3-D 
graphical display of the simulated movement.  Users can alter the 3-D view, and manipulate 
objects using the mouse.  (E)  Data charts allow the user to plot a time-series of any set of 
parameters in the simulation. 
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parameters, and it selects, lists, and provides access to editors for all the objects in the 

simulation: the nervous system and body of each animal, the ground and water surfaces, and all 

the fixed objects in the simulated environment. The “Body Plan Editor” (Fig. 2.1B) allows the 

user to assemble each model animal’s body in a point-and-click, Lego®-like fashion from a 

variety of different part types. The “Behavior Editor” (Fig. 2.1C) allows users to construct the 

neurons and neural circuits that control the behavior of the model organism from another set of 

parts in a similar drag-and-drop fashion. Links are established between common elements (e.g., 

muscles, sensors) in the two editors, and the simulation is run by simultaneously operating and 

interacting solvers, the Vortex® simulator from CM-Labs for the biomechanics, and custom-

made solvers for neural interactions.  New neural solver plug-ins can be added by users, and 

each one can operate on a different time scale from the others and from the physics engine.  The 

model animal’s movements in the virtual environment are under neural control as it responds to 

simulated physical and experimental stimuli. The autonomous behavior of the model is displayed 

graphically in a 3-D animation (Fig. 2.1D) as the simulation runs, together with plots of the time-

series responses of any designated set of neural or physical variables (e.g., membrane potentials, 

muscle forces, spatial displacements; Fig. 2.1E).  Both the 3D animation and the data time-series 

can be recorded for off-line analysis, and the model parameter space can be explored by running 

multiple simulations with different parameter values simultaneously on different nodes of a grid 

computer. This makes it easy to systematically alter a variable to see how it influences the final 

behavior, and to see how sensitive it is to change and how important that variable is to the 

ultimate behavior of the animal. 
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Assembly of a Body Model 

To build an animal model, users define rigid body parts in the Body Plan Editor (Fig. 

2.1B), connect them with standard joints, enable them to move with actuators, and provide them 

with sensors to detect the environment. The connectivity of parts in the model is represented in a 

tree diagram (Fig. 2.1B, left). Several different types of body structures are currently available, 

including boxes, spheres, cones, cylinders, and polygon mesh models. A polygon mesh is a set of 

vertices and triangular faces that define the volume for that part. All parts are assumed to have a 

uniform density, and the distribution of mass throughout the mesh volume determines the 

moment of inertia for that part. Meshes allow animal models to have more realistic structures, 

both visually and dynamically, by providing a more accurate representation of the body than is 

possible with simple geometric shapes. Rigid body parts have user-specified physical properties 

including dimensions, density, center of mass, and drag; actuators include muscles, muscle 

spindles, motors, and springs; sensors include receptors for stretch, touch, odors, and tastes. Each 

body part is selected from a drop-down box and then placed, oriented, scaled, and shaped with a 

mouse in a 3-D GUI. A fill-in “Properties” table is visible (Fig. 2.1B, bottom left) for exact 

placements and specifications, including object density and color. Properties tables also contain 

parameter cells that are specific to the particular type of object, such as cells for the dashpot and 

spring constants of a Hill muscle model, or the angular limits of a planar hinge.  A “description” 

cell in each properties table permits entry of text describing the object, or references to sources 

of the parameter values, or hyperlinks to those sources.  Documentation of this sort is essential to 

distinguish between parameters and features based on experimental measurements from those 

that are made up to enable the model to work. This feature enables the model to be used as a 

database for the animal’s neural circuitry and body structure.   
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Joints are modeled as movement constraints that prevent any motion of the connected 

body parts that is not allowed by that joint type. The currently available joint types are hinge, 

ball and socket, prismatic, and fixed. A hinge joint allows two bodies to rotate around a defined 

axis. The ball and socket joint allows two bodies to rotate freely around a common point. The 

prismatic joint allows relative translational movement along a single defined axis. The fixed joint 

welds two parts together into a unified component and prevents both rotational and translational 

movements.  

Sensory receptors for touch and odor, for stretch of a muscle spindle, and for 

chemosensory stimuli are implemented in AnimatLab (photoreceptors and auditory receptors are 

planned for a future version).  Representations of each sensory receptor are created in both the 

body model and the neural circuit model to map the field of sensory receptors onto the 

population of sensory neurons.  In the body model, single mechano- or chemoreceptors, or an 

array of such receptors, can be placed on the body surface where contact with an appropriate 

stimulus will activate it (Fig. 2.2A). Each mechanoreceptor has a 2-D receptive field that 

describes its sensitivity to stimuli applied on the body surface in its vicinity. The distance from 

the contact to the center of the field is used to scale the force of the contact using a Gaussian 

function (Fig. 2.2A2). In the neural circuit model, the corresponding representation of a body 

receptor is linked through a transduction adapter to a neuron compartment that represents the 

sensory neuron excited by the receptor.  The scaled force produced at the receptor is transduced 

by a sensory adapter into a generator current (Fig. 2.2A3) and passed into the sensory neuron 

(Fig. 2.2A4). Receptors with overlapping receptive fields may detect the same physical contact 

and evoke spike responses in their sensory neurons that reflect the different transduction current 

amplitudes.  All physical processes, including joint rotation and extension of a stretch receptor,  
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Figure 2.2.  Modeling of sensory and motor systems in AnimatLab.  (A)  Mechanosensory 
receptive fields are located over the surface of the hand.  The center of each field is shown as a 
green dot.  When an object contacts the hand (1), the field distance, or distance from the contact 
point to the center of the field, is calculated and used to scale the force of the contact (2).  Scaled 
force is used by an adapter (3) to calculate a generator current that is passed into a sensory 
neuron (4) as a result of stimulation.  (B)  Tension in a muscle or spindle is controlled by firing 
of one or more motor neurons (1), which produce depolarizations in the membrane of the muscle 
(2).  The muscle membrane voltage is transduced into a contractile tension (3), which is 
proportionally scaled based on the current muscle length (4), and then applied at the force 
generator (F) in the Hill muscle model (5) to produce joint torques and movements.  Stretch 
receptors use an identical model, but muscle properties like length and velocity are transduced 
into currents (6) that are applied to a sensory neuron (7). 
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use this adapter transduction mechanism to produce a generator current that can be applied to a 

sensory neuron.   

 Both muscles and muscle spindles (or their invertebrate analogs) are represented by Hill-

based models (Hill 1970, Shadmehr and Wise 2005a) that consist of a serial spring in series with 

the parallel combination of a parallel spring, a dashpot, and a force actuator (Fig. 2.1B, yellow 

biceps and blue triceps; Fig. 2.2B). Users attach a muscle to the body by adding attachment 

points to body segments on either side of a joint, and then stringing the muscle between these 

points. Multiple attachment points can be used to allow the muscle to span multiple joints, or to 

control the direction of the applied force.  Muscle model properties are determined by the resting 

muscle length, the spring and dashpot constants, the stimulus-tension curve, and the length-

tension curve. Neural control of muscle tension is mediated by a motorneuron (MN) (Fig. 2.2B1) 

that synapses onto a compartment that represents the common electrical properties of the muscle 

fibers that compose the muscle (Fig. 2.2B2). A sigmoidal stimulus-tension curve relates the force 

level of the actuator to the muscle membrane potential (Fig. 2.2B3). The actuator force is further 

scaled by the length-tension curve, an inverse parabola that determines the percentage of actuator 

force that is applied at a given muscle length (Fig. 2.2B4). The actuator force is then applied to 

the muscle to cause contractions (Fig. 2.2B5).  

A muscle spindle responds to both imposed and excited stretch through an adapter that 

translates muscle properties into a generator current that is passed into a sensory neuron. 

Multiple adapters can be used to allow sensory responses to be as complex as required. For 

example, a Ia afferent may respond to current produced by one adapter sensitive to the serial-

elastic (SE) length of a muscle and to current produced by a second adapter sensitive to the rate 

of change of SE length.   
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Motors are another way that movements can be generated by models within AnimatLab. 

The hinge and prismatic joints can be motorized to produce controlled rotational and 

translational motion. This can be useful in simulating passive movements imposed on a limb 

during an experiment, or in substituting for patterns of muscular force generation around a joint 

when only joint dynamics are known.  A motor can be configured as a DC motor or as a servo 

motor. In a DC motor, an adapter converts a membrane voltage into a desired velocity. In a servo 

motor, the value from the adapter specifies the rotational position of the motor, and a feedback 

system maintains that position against perturbations.  

 

Neuron and Network Models 

In the Behavior Editor (Fig. 2.1C), single- or multi-compartment neurons and neural 

circuits are constructed by dragging elements from a toolbox onto a circuit editing page, and 

linking them by electrical or chemical synapses. Available elements include spiking integrate-

and-fire neurons, non-spiking neurons, firing rate neurons, muscles, and muscle spindles. 

Neurons can be modeled as single compartments or as multiple compartments linked by ohmic 

coupling conductances. Each compartment is characterized by an input conductance, rest 

potential, and membrane time constant, and a set of other parameters that can include an initial 

spike threshold, after-hyperpolarization conductance, absolute refractory period, spike-frequency 

accommodation, calcium conductances with activation and inactivation parameters, Hodgkin-

Huxley-like ionic conductances, and membrane potential noise.  All parameters are displayed in 

a “Property Table” where they can be changed (Fig. 2.1C, bottom left).  

Both conductance-based and current-injection synapses are available and can be added to 

the network by connecting neuron elements with cursor-drawn lines. Users can define new 



21 

instances of these synapse types as the need arises. The neural circuit can be enlarged by adding 

new circuit editing pages from the neural editor. Any individual neuron (or compartment) on one 

page can be represented on another page by an ‘Off-Page Connector’. The network can also be 

divided into hierarchal neural subsystems. This simplifies the organization and maintenance of 

the entire network and allows it to be split out into functional subsystems. For example, it is 

possible to create a sub-network that controls movement of a leg, and then copy, paste, and 

modify it for each of the remaining legs.  

 

Electrical properties 

The primary neuronal element in AnimatLab is a single electrical compartment that 

consists of a capacitance in parallel with the serial combination of a conductance and constant 

voltage source that determines the resting membrane potential (MacGregor and Lewis 1977). 

The three different types of neuron models arise from this: Integrate-and-fire (I&F), non-spiking 

(NS), and firing rate (FR) models.  In the I&F model, an action potential can be triggered when 

the membrane potential exceeds a voltage threshold. The membrane potential is then shifted to 

an adjustable peak voltage in one integration time step, during which no current flows. This 

spike is followed in the next time step by an “after hyperpolarizing potential” (AHP) membrane 

conductance that falls along an exponential time-course from a user-defined maximum back to 

zero with a defined time constant. The conductance is in series with an AHP voltage source, and 

together they produce the AHP that follows the spike. The spike threshold is set infinitely high 

for a brief period after a spike to produce an absolute refractory period.  Spike threshold also 

varies continuously with “accommodation” as the membrane potential varies from rest potential.  

The threshold changes from its initial specified value toward a maximum that is proportional to 
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the difference between the cell’s membrane potential and rest potential.  The proportionality 

constant is the user-defined “relative accommodation” (between 0 and 1), and the rate of 

threshold change is governed by the user-defined accommodation time constant.   Thus a rapid 

depolarization above threshold can induce an initial high rate of spiking that will slow or stop as 

the threshold rises, while a hyperpolarization will cause threshold to fall.  

Other membrane conductances and series potentials can be implemented in the I&F 

model to provide additional current pathways.  Voltage- and time-dependent Hodgkin-Huxley 

(HH) –like conductances can recreate both full action potentials and subthreshold responses, 

while calcium conductances enable plateau potentials and bursting responses.  In both cases, 

users specify parameters that determine the voltage- and time-dependence of activation and 

inactivation variables that together determine the ionic conductance.  Membrane potential noise 

can be added as random changes in potential that occur every time-step and are evenly 

distributed over the amplitude of the noise around the current membrane potential.   

The NS model differs from the I&F model in having no voltage-threshold spiking 

mechanism.  The HH and calcium conductances can be implemented to produce full action 

potentials, delayed rectification, plateau potentials and bursting.   

Single I&F and NS compartment models can be linked together with electrical 

resistances, supplied in AnimatLab as “electrical synapses”, to create multicompartment 

neuronal models in which each compartment represents a local region of the cell, with its own 

complement of membrane current paths.   

The FR model is a more abstract model that is particularly useful in representing the 

average or combined effects of many parallel neurons (Beer 1990). The FR model uses the same 

parallel conductance and capacitance circuit to calculate the membrane voltage within the 
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neuron.  No spikes are modeled in this system. Instead, the firing frequency is treated as a linear, 

continuous function of the membrane voltage once it has exceeded a threshold level. Firing 

frequency limits and the sensitivity of the spike frequency to membrane potential can be set, and 

the frequency is subject to accommodation as described above.  Specific ionic currents are not 

implemented.  

 

Synapses  

A spike mediated chemical synapse is modeled as a rapid increase in post-synaptic 

membrane conductance triggered by a spike in a pre-synaptic I&F compartment. A delay 

between the pre-synaptic spike and the post-synaptic conductance rise can be set to reflect 

conduction time or synaptic delay; the conductance then declines exponentially back to zero with 

a user-defined time constant. The post-synaptic conductance is in series with a user-defined 

reversal potential that enables the synapse to be excitatory or inhibitory. Spiking synapses can 

also be defined as facilitating or anti-facilitating, voltage-dependent, or Hebbian. For each type, 

the postsynaptic conductance depends on another variable, such as the presynaptic spike 

frequency, the postsynaptic voltage, or the relative timing of pre- and postsynaptic spikes.  

A non-spiking chemical synapse is one where the post-synaptic conductance depends on 

the pre-synaptic membrane potential of an NS or I&F compartment, and not on a presynaptic 

spike. The post-synaptic conductance varies linearly with pre-synaptic membrane voltage 

between threshold and saturation voltages, and is a constant minimum or maximum value 

outside that range.   

An electrical synapse is modeled as a non-specific electrical conductance linking two 

neurons, either of which can be NS or I&F. Current flows from one neuron to the other in 
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proportion to the product of the difference between the neurons’ membrane potentials and the 

fixed junctional conductance. In non-rectifying, ohmic synapses, the junctional conductance is 

constant.  In rectifying electrical synapses, the junctional conductance varies linearly with the 

difference between the pre- and post-synaptic potentials.  

Three types of synapses are available for the FR neurons; current, gating, and modulatory 

synapses. Current synapses directly pass current into the post-synaptic neuron based on the 

weight of the synapse and the firing rate of the pre-synaptic neuron. The gating and modulatory 

synapses function heterosynaptically.  A gating synapse enables the presynaptic neuron to 

determine whether or not a current synapse from another presynaptic cell onto a common 

postsynaptic neuron will function. A modulatory synapse is similar, but instead of gating all of 

the heterosynaptic current, the modulatory synapse scales it in proportion to both the modulatory 

synapse’s weight and the modulatory neuron’s firing rate. 

     

Simulation: Human Arm Flexion and Avoidance Reflex 

We created a model of human arm flexion and avoidance reflexes to demonstrate 

AnimatLab’s capabilities.  A model of the human body was developed from a 3-D polygon mesh 

that was purchased online (www.exchange3d.com) and then broken into individual bones and 

body segments using the graphics program Blender (www.blender.org; Fig. 2.1B). Each bone 

and body segment was re-scaled to the appropriate dimensions to match published values 

(Clauser, et al. 1969). All parts are assumed to have a uniform density, and the distribution of 

mass throughout the mesh volume determined the moment of inertia for that part. The model 

consisted of separate bone and non-skeletal elements, in which the bones were inside the non-

skeletal elements. The density of all bones was set to 1.9 g/cm3 (Cameron, et al. 1999), and the 
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densities of the overlying non-skeletal segments (representing the skin, muscle mass, connective 

tissue and blood) were calculated by subtracting the mass and volume of the bone from the mass 

and volume of the overlapping body segment (Clauser, et al. 1969), and calculating the resulting 

mass/volume ratio. The bone and non-skeletal elements of a limb segment (e.g., the forearm) 

were bound together in the model by a fixed joint. 

Here the focus was on arm flexion at the elbow, so the upper arm and body were fixed in 

space, the forearm and hand rotated around a hinge joint at the elbow, and the hand was 

connected to the forearm by a fixed joint (Fig. 2.1A).    The position, orientation, and angular 

limit of the elbow hinge joint was set so that only the normal range of arm movements could 

occur.   

 Forearm movement in the model is driven by a biceps flexor muscle and a triceps 

extensor muscle and controlled by a pair of corresponding muscle spindles.  Values for the 

springs and dashpot coefficients of the biceps and triceps muscle and muscle spindle models 

were obtained from Massone and Myers (Massone and Myers 1996, Myers and Massone 1997). 

The measured maximum tension for these muscles (Myers and Massone 1997) set the upper 

limits for the stimulus-tension curves, and the length-tension curve was assumed to follow 

measurements obtained for similar muscle types (McMahon 1984).  

  

Reflex Circuitry 

 The model myotactic stretch reflex circuit (Fig. 2.3A) (Pearson and Gordon 2000, 

Windhorst 2007) enables the arm to resist perturbations away from its equilibrium position.  The 

circuit contains descending tonic command neurons (FR models) that drive the alpha and gamma 

MNs (I&F models); they, in turn, excite the working and spindle muscles, respectively. Spindle  



26 

 
 

Figure 2.3.  Model neural circuits controlling movements of the arm.  (A)  Tonic commands 
to alpha and gamma motor neurons (MNs) set the tonic MN activity level to obtain the initial 
arm equilibrium position.  The myotactic reflex network mediates responses to deviations from 
the planned movement of the arm.  To initiate arm flexion, depolarizing and hyperpolarizing 
currents (i) drive flexor and extensor alpha MNs (iii), respectively, to cause biceps contraction 
and triceps relaxation (iv), while gamma MNs are stimulated (ii) to maintain tension in the 
muscle spindles (v).  Tensions in muscles produce joint torque and movement of the arm (vi).  
Responses of the Ia sensory neurons (vii) signal an error in the trajectory of a movement.  (B)  
The withdrawal reflex mediates responses to noxious contacts.  The reflex is activated by strong 
contacts on the palm of the hand that excite pressure sensitive neurons PS1-4 (i).  The sensory 
neurons excite local interneurons and inhibit the myotactic reflex (ii) in a fast spinal feedback 
loop (iii) to move the hand away from the contacting stimulus (iv), while a slower central 
feedback loop changes the descending tonic commands (v) to produce a new limb posture. 
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tension generates depolarizing membrane current in a Ia sensory neuron (I&F) that may fire to 

provide afferent feedback to the alpha MNs and (I&F) inhibitory interneurons. The inhibitory 

neurons inhibit the antagonist alpha MNs.  

  The model withdrawal reflex  (Fig. 2.3B) (Pearson and Gordon 2000) extends the arm 

rapidly away from a strong, noxious contact on the upturned palm of the hand and causes the 

limb to adopt a new posture away from the stimulus. The stimulus falls within the receptive 

fields of four model mechanosensory neurons (Figs. 2.2A, 2.3B: PS1-4) that each respond in 

proportion to the amount of force they experience.  These sensory neurons excite a central 

interneuron (Fig. 2.3B, “Pressure”) that excites the extensor MNs and inhibitory interneurons of 

both the flexor MNs and the stretch reflex for both muscles. This promotes extension of the arm 

and inhibits the stretch reflex.  This is the spinal feedback loop. In the longer central feedback 

loop, the interneurons ascend to the tonic command neurons to alter their firing rate.    

 

Responses 

 A voluntary arm flexion was simulated by command current activation of the MNs.  At 

the outset, the tonic activity of the alpha MNs caused the flexor (bicep) and extensor (tricep) 

muscles to maintain constant tensions that kept the forearm at a 90o angle relative to the upper 

arm (Fig. 2.4A).  A step excitatory command current was applied at 1.0s to the biceps alpha MNs 

to simulate an arm flexion motor command (Fig. 2.4B).  The brief rise in flexor tension caused 

the arm to flex rapidly at first, and then more slowly to adopt a new, flexed equilibrium position.  

When the command current was turned off, the equilibrium position reverted to the 90o angle 

and the arm returned to that position.  To produce a faster movement, a multiphase pattern of 

current stimuli evoked a corresponding pattern of flexor and extensor MN activity that started  
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Figure 2.4.  Simulation of voluntary arm flexion.  (A)  Screenshots of the animated arm 
movements from the beginning position (1) to the final position (2).  (B-D)  Plots of model 
variables; the italicized Roman numeral of each plot corresponds to a numbered item in the 
model diagram of Fig. 2.3A.  i)  The current stimuli applied to biceps and triceps alpha MNs.  ii)  
The current stimuli applied to the gamma MNs.  iii)  The MN firing frequencies.  iv)  Tension of 
the biceps and triceps muscles.  v)  Tension of the muscle spindles (Receptors).  vi)  Elbow 
rotation.  vii)  Ia frequency response.  (B)  Responses to a current step applied only to the biceps 
alpha MN and to depolarizing and hyperpolarizing currents applied to the gamma MNs of both 
muscles.  (C)  Responses to a multiphasic command current pattern applied to the alpha and 
gamma MNs that produced a much faster movement by accelerating the arm quickly, braking its 
motion, and then maintaining the new position.  (D)  Responses to the same current pattern as in 
(C), but with gamma co-activation disabled.  
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the arm to flex quickly, then slowed the flexion, and finally maintained the arm at the new flexed 

equilibrium position (Windhorst 2007) (Fig. 2.4C). This pattern of stimulation produced a 

smooth movement of the arm to the target position in about half a second.   

Command currents were also passed to the flexor and extensor gamma MNs to keep 

spindle tension constant during the movement.  The biceps shortened during arm flexion and the 

triceps were stretched, which reduced the tension in the flexor spindle and increased it in the 

extensor spindle.  One hypothesis of Ia reafference is that deviations from the flexor and 

extensor spindle base tension levels are interpreted as errors from the predicted voluntary 

movement and lead to changes in Ia afferent activity; these changes excite resistance reflexes to 

restore the spindle tension (Shadmehr and Wise 2005a).   Increased excitation of the flexor 

gamma MN during arm flexion helped maintain the flexor spindle tension, while decreased 

excitation of the extensor gamma MN maintained the extensor spindle tension (Fig. 2.4B, C).  A 

custom gamma efferent current is included in AnimatLab that calculates the command current 

time-course required for the spindle muscle to maintain a constant tension throughout a planned 

movement.   This current emulates the hypothesized higher-level commands that produce the 

gamma co-activation and ensures that the muscle spindle reports little or no change in tension 

during unperturbed voluntary movements. If the arm is moved without gamma co-activation, the 

changes in spindle tension lead to activation of the stretch reflex, which will fight the movement 

and attempt to return the arm to its original position. This is illustrated in Fig. 2.4D, where a 

three-phase command current produced arm flexion, but the gamma co-activation was disabled 

so that gamma MNs received only tonic excitation. The tension in both the biceps and triceps 

spindles varied widely and oppositely from the desired constant levels, which led to excitation of 

the flexor Ia afferents during flexion, and the extensor Ia afferents during re-extension.  These Ia 
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responses excited MNs to oppose the movements, which became jerky and failed to reach the 

flexion target.   

  The myotactic reflex was activated when the hand encountered a small, heavy block in 

its path as the arm flexed in response to the triphasic command (Fig. 2.5). The block was on a 

hinge joint that allowed it to move out of the way if the arm produced sufficient force. The arm 

flexed until it hit the block, which momentarily stopped the movement. The resulting deviation 

from the planned motion produced a rise in the biceps spindle tension when the interrupted 

flexion prevented the spindle from shortening in response to its gamma MN command (Fig. 

2.5B, Receptor tension). The increased flexor spindle tension excited the Ia afferent, which 

added to the flexor alpha MN excitation. The extra flexor force was sufficient to push the arm 

past the block and overshoot the goal position.  Additional reflex activity allowed the arm to 

settle to its target position.  

 The contact-withdrawal reflex was activated when the hand encountered a sharp spike 

placed in the path of the hand’s movement during arm flexion (Fig. 2.6A). Four sensory 

receptors with overlapping pressure-sensitive receptive fields in the palm of the hand (Fig. 2.6B) 

responded to the contact by producing generator currents in the corresponding sensory neurons 

(Fig. 2.6C).   The circular receptive fields have bell-shaped spatial-sensitivity functions, so that 

the current produced in each cell depended on the magnitude of the force and the distance 

between the point of force application and the field center. In the example presented, pressure 

sensor 2 (Fig. 2.6B, PS2) produced the largest current, while the sensory receptors on either side 

produced less current; the firing frequencies of their neurons were proportional to these currents.  

The sensory neurons excited a set of central interneurons (Fig. 2.3B) that triggered the 

withdrawal response.  Of necessity, the withdrawal response had two phases, an immediate 
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Figure 2.5.  Stretch reflex response to perturbation during arm flexion.  (A)  Simulator 
animation showing the arm flexing (1), then blocked (2, 3), overcoming the hinged block and 
overshooting its target position (4), and reaching its target position (5).  (B)  The italicized 
Roman numeral in each plot refers to the corresponding numbers in Figs. 2.3A and 4B.  
Stimulation of the MNs as in Fig. 2.4C caused the arm to flex quickly and the biceps spindle to 
shorten, thereby keeping its tension constant.  When the hand struck the hinged block, the biceps 
spindle no longer shortened at the planned rate and the spindle tension increased, exciting the 
biceps Ia sensory neurons.  The Ias excited the bicep alpha MN, and inhibited the triceps alpha 
MN, producing an increased flexion torque that was enabled the arm to overcome the block.  
Overcompensation then dampened to leave the arm at the target location.  The numbers in plot vi 
mark the times of the images in A.  
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Figure 2.6.  Contact withdrawal response.  Withdrawal response to a sharp stimulus to the 
palm of the right hand.  (A)  Images from the animated model’s response, showing the initial 
position of the right hand (1), contact upon right arm arm flexion (2), extension of the right arm 
(3), and the new equilibrium position of the right arm (4).  (B)  The location of the four receptive 
fields PS1-4 on the hand.  (C)  Each graph axis corresponds to the italicized Roman numeral 
labels in Fig. 2.3B.  Colors are coded to match the corresponding receptive field or neuron.  i)  
Generator currents in the sensory neurons during contact with the obstacle.  ii)  Firing frequency 
response of the sensory interneurons.  iii)  Alpha MN responses.  iv)  Rotation of the arm; 
numbered arrows mark the times of occurrence of the frames in A.  v)  Reflex change in the tonic 
command to establish a new equilibrium arm position.   
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‘spinal’ phase, and a longer-latency, persistent phase.  The sensory interneurons excited arm 

extensor MNs and inhibited arm flexors to reverse the direction of the hand movement away 

from the spike (Fig. 2.6A, C).  By itself, this spinal reflex was insufficient, as the arm would try 

to return to its new, flexed equilibrium position as soon as contact with the spike had ceased.  To 

prevent this, the sensory interneurons also acted on the higher tonic command neurons (Fig. 

2.3B) to change the position of the equilibrium point away from the spike (Fig. 2.6A, C).   

 

Discussion 

The arm flexion reflex simulations presented here demonstrate some of AnimatLab’s 

facilities for modeling dynamic neuromechanical feedback and control.  We demonstrated how 

appropriately scaled and timed triphasic alpha MN commands can produce rapid, smooth arm 

flexion movements (Fig. 2.4), and how gamma MN commands can provide a “plan” of the 

intended movement to enable myotactic reflexes to correct unexpected deviations from the plan 

produced by external perturbations (Fig. 2.5). Finally, they demonstrated how spinal contact 

avoidance reflexes have to be coupled with inhibition of myotactic reflexes and excitation of 

long-loop reflexes to allow the arm to move quickly to a new equilibrium point.  These and other 

capabilities can be used to explore control of multijoint or multi-limb movements in humans or 

any skeletal animal.     

AnimatLab has also been used to study the dynamic neural control of movements in a 

variety of animals, including cat paw shake (Klishko, et al. 2008), locust jump (Cofer, et al. 

2008), and crayfish escape (Cofer, et al. 2006).  In each instance, AnimatLab proved useful in 

helping to determine whether and how the proposed neural circuit was able to produce patterns 

of muscle contraction that generated movements like those displayed by the animal.   
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SIMM and OPENSIM are widely used general simulators for biomechanics, while 

NEURON and GENESIS play a similar role for neurophysiology.  AnimatLab provides a 

general simulation tool for neuromechanics, at the intersection of biomechanics and 

neurophysiology, where no comparable general simulator exists.  It is our hope that AnimatLab 

will prove as generally useful for this area as these other simulators have for theirs. 



35 

 

CHAPTER 3. 

ROLE OF THE SEMI-LUNAR PROCESSES ON JUMP DYNAMICS IN THE LOCUST 

 

In Preparation for submission:  David Cofer, Gennady Cymbalyuk, William J. Heitler, and 

Donald H. Edwards 

 

David Cofer was responsible for building and testing the locust model.  The text and figures 

were produced by David Cofer with contributions from Dr. Edwards, and both people were also 

heavily involved in the editing and rewriting process.  Dr. Cymbalyuk and Dr. Heitler provided 

revisions for the final versions of the document.   

 

Introduction 

The neural circuitry that is thought to be responsible for the locust jump has been 

determined by studying the electrophysiology of the locust kick with the assumption that the two 

behaviors use the same circuitry.  Technical limitations prevent the tests necessary to confirm 

this assumption.  This issue will be addressed in this chapter by using AnimatLab to build a 

neuromechanical model of the locust biomechanics and the kick neural circuit, and then testing it 

to see if it produces jumping behavior similar to the live animal. 

There are also questions regarding the role of the SLP in the jump dynamics.  It is 

difficult, or impossible, to directly test the role of the SLP because damage to it prevents the 

locust from being able to jump.  Furthermore, high-speed video has shown that there is a delay in 

the unfurling of the SLP that may prove to be important in the timing of the application of power 
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during the jump. The neuromechanical simulation will allow us to examine these questions in a 

straightforward manner.  

  

Materials and Methods 

Animals 

Adult locusts, Shistocerca americana, were obtained from a breeding colony at Agnes 

Scott College, kept caged in small groups at 37 o under a 12hr L:D cycle, and fed fresh organic 

lettuce and 2/1 mixture of fresh wheat germ and powdered milk.  Individuals were taken from 

the cage to a video-recording room and placed on a jumping platform. The platform contained a 

heating element that could adjust the local temperature and was covered by very fine sandpaper 

to allow the locust a slip-free surface for jumping.  A 25x30 cm yellow wooden target was 

placed 30 cm from the platform, and jumps to the target were induced by either gentle touches of 

the abdomen by a hand-held wand or by raising the temperature of the platform.  Animals were 

retrieved after the jump and returned to the platform for another attempt.  Jumps were evoked at 

about 5 minute intervals; individuals were returned to their cage after 10 jumps.  Locust jumps 

were recorded at 500 fps and a resolution of 512x240 pixels by two Photron PIC R2 Fastcam 

video cameras with an exposure time of 0.5 ms.  

 

Locust model 

To distinguish references to the model and its parts from references to the locust, the 

model part names have been given the italicized names of the corresponding locust body parts, 

while references to the locust and its body parts are made in normal font.    
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The 3-D graphical model of the locust body was developed from a 3-D polygon mesh that 

was purchased online (www.turbosquid.com) and then separated into individual body segments 

using the graphics program Blender (www.blender.org). A polygon mesh is a set of vertices and 

triangular faces that define the volume for that segment. The dimensions of each segment were 

re-scaled to match published anatomical measurements (Bennet-Clark 1975, Heitler 1974). All 

segments were assumed to have a uniform density, and the distribution of mass throughout the 

mesh volume determined the moment of inertia for that segment. The model has a body length of 

48 mm and a total mass of 2.5 grams, with metathoracic femur and tibia lengths of 26 mm 

(Bennet-Clark 1975).  Individual body and limb segments were connected with either static or 

planar hinge joints in AnimatLab to assemble the locust body model. Angular limits on the hinge 

joints were set to restrict the movement of each joint to the normal range of the corresponding 

animal’s joint. To ensure that the center of mass (COM) of the whole locust was located 

appropriately, small weighted masses were placed along the body axis of the thorax and 

abdominal segments to adjust the distribution of mass within the body (Bennet-Clark 1975). The 

COM was then determined by pinning the body to a hinge joint and allowing it to rotate freely. 

Mass was re-distributed until the locust balanced both vertically and horizontally at the desired 

location.   

 

Biomechanics 

The geometry and biomechanical properties of the femur-tibia joint of the metathoracic 

leg play a crucial role in the energy storage for the jump (Fig. 3.1).  The tibia extensor 

muscle/apodeme is shown as a red line that attaches to the tibia (Fig. 3.1A), while the tibia flexor 

muscle/apodeme is shown in green. It wraps over Heitler’s lump (Fig. 3.1H) and attaches to the  
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Figure 3.1.  Model of the femur-tibia (FT) joint of the metathoracic leg.  (A)  Extensor 
apodeme attachment point on the tibia.  (B)  FT hinge joint and connection of SLP spring.  (C)  
Flexor apodeme attachment point on the tibia.  (D)  A point further down tibia.  (E)  The SLP 
spring is attached between the femur and the tibia.  (F)  The SLP mass moves along the slider 
joint (G) oriented between the points B and G that is at an inclination of 36.9o.  (H)  Heitler’s 
lump. The flexor muscle wraps over this lump to alter its orientation with respect to the tibia as 
the leg is moved.  (I)  The tendon lock is modeled as a spring located between points C and I.  It 
is only enabled when the tibia is fully flexed and flexor muscle has a tension greater than 0.15 N 
(Bennet-Clark 1975, Heitler 1974).  The distance between AB is 0.76 mm, BC is 1.64 mm.  The 
angle ABC is 144o, and BCD is 143o (Heitler 1974).  The muscle model is shown for the flexor 
and extensor muscles.  This consists of a spring (Kpe) in parallel with a tension generator (T), 
and a dashpot (b), in series with another spring (Kse).  (1)  The muscle is activated by firing of a 
motor neuron (MN).  (2)  This depolarizes the muscle membrane.  (3)  Changes in the membrane 
voltage are converted to a tension value using a sigmoidal function.  (4)  The tension value is 
scaled based on the muscle length.  (5)  The scaled tension is applied to the muscle in the force 
generator producing a contraction.  
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tibia (Fig. 3.1C). The femur was connected to a small block of mass 1.6 mg that represented the 

SLP (Fig. 3.1F) (Bennet-Clark 1975). A sliding prismatic joint connected the SLP to the femur 

(Fig. 3.1G). During normal co-contraction, the distal end of the SLP (where the tibia attaches) 

moves 0.3 mm ventrally and 0.4 mm proximally (Burrows and Morris 2001). The slider joint 

was oriented to allow the SLP mass to move in the same direction (Fig. 3.1 B to G). A spring 

attached the SLP mass to the femur and was oriented along the direction of movement of the 

slider joint (Fig. 3.1E). The stiffness of the semi-lunar spring was calculated from a stress-strain 

curve obtained for the SLP (Bennet-Clark 1975). Straining the process parallel to the extensor 

apodeme by 0.4 mm required approximately 14.2 N of force (Bennet-Clark 1975). However, the 

semi-lunar process moves both proximally and ventrally, and this amount of proximal strain 

corresponds to 0.3 mm of ventral strain, for a total of 0.5 mm total strain. From this strain, we 

calculated the stiffness of the SLP as 28.4 KN/m.  The semi-lunar spring constant was set to this 

value. 

The tibia was connected to the SLP mass by a hinge joint that allowed the tibia to rotate 

between 5o and 160o (Fig. 3.1B). The femur-tibia hinge joint is connected to the SLP mass, so 

that during co-contraction and tibial extension, the hinge joint will move along the slider with 

the SLP mass to approximate the joint movement observed in the locust (Burrows and Morris 

2001). The distances and angles that define the relationships between the extensor attachment, 

femur-tibia hinge joint, and flexor attachment were set to published measured values (AB is 0.76 

mm, BC is 1.64 mm. Angle ABC is 144o, and BCD is 143o) (Heitler 1974).  

 Muscle is represented in AnimatLab by a linear Hill muscle model (Hill 1970, McMahon 

1984, Shadmehr and Wise 2005a, Shadmehr and Wise 2005b). Each muscle model consists of a 

serial spring in series with the parallel combination of a parallel spring, a dashpot, and a force 
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actuator. Muscle model properties are determined by the resting muscle length, the spring and 

dashpot constants, the stimulus-tension curve, and the length-tension curve. The stimulus-tension 

curve is a sigmoidal function that relates the force level of the actuator to muscle membrane 

depolarization. The length-tension curve is an inverse parabola that determines the percentage of 

actuator force that is applied at a given muscle length.  

Only two muscles for each of the rear legs are modeled in this simulation, the flexor 

tibiae and extensor tibiae. The maximum force that can be produced by the extensor is 15 N, 

which is achieved upon depolarization after a latency of  300-800 ms (Bennet-Clark 1975). The 

serial spring constant of the extensor  was calculated using the Young’s modulus of 18.9 kN.mm-

2 found for the extensor apodeme by Bennet-Clark (Bennet-Clark 1975). The average size of the 

apodeme test pieces was 3 mm long x 0.25 mm wide x 40 um thick, and so they have an area of 

0.01 mm2, and a length of 3 mm. These values allowed us to calculate the spring constant as 63 

kN/m from Young’s modulus using the equation K=YA/L, where Y is the modulus, A is the 

area, and L is the length. In the absence of published measurements that would allow calculation 

of the parallel spring constant, we used a value of 20 N/m because it produced a small but 

noticeable tension when the extensor muscle was stretched. The damping coefficient of the 

extensor muscle was set by hand to 700 Ns/m to produce a rise time to peak tension of 

approximately 400 ms. The stimulus-tension curve and the response properties of the non-

spiking neuron that represents the muscle membrane were configured to reproduce the twitch 

response of the extensor muscle to a single FETi spike at a femur-tibia angle of 90o (Heitler 

1988). The length-tension curve was also reproduced from muscle twitch values that were taken 

at various femur-tibia angles using direct stimulation of the muscle (Bennet-Clark 1975). Direct 

stimulation of the extensor muscle produced twitch responses very similar to those recorded 
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from extensor muscle in response to a FETi spike. The resulting length-tension curve of the 

extensor muscle reached the maximum at the fully flexed position and was reduced as the leg 

extended.   

 Recordings from the flexor muscle showed that it produces a maximum tension of around 

0.75 N in response to tetanizing stimulation, and that it reached maximum tension 35-40 ms after 

a latency of 15 ms (Bennet-Clark 1975). The following parameter values enabled the flexor 

muscle model to reproduce the recorded peak tension and tension time course: the serial spring 

constant, Kse, was 100 N/m, the parallel spring constant Kpe was 20 N/m, and the damping 

coefficient, b, was10 Ns/m. The stimulus-tension curve was configured to produce the desired 

maximum tension. As with the extensor model, the flexor length-tension curve was near its 

maximum value when the leg was fully flexed and near its minimum value when the leg was 

extended. 

The tendon on the flexor muscle of the locust contains a pocket. When the tibia is fully 

flexed and the flexor has a tension greater than 0.15 N, this pocket is caught on Heitler’s lump, 

which helps keep the tendon locked in place (Bennet-Clark 1975, Heitler 1974). This tendon 

lock property plays an important role in the jump after co-contraction when the flexor muscle 

and motor neurons are being inhibited. The lock helps keep the tibia fully flexed even while the 

flexor tension is dropping. This prevents premature extension of the tibia and initiates the jump 

once the flexor tension drops below a threshold value for maintaining the lock. In the model, the 

tendon lock was represented by a spring that connects the flexor attachment to a point on the 

femur (Fig. 3.1, Magenta line between C and I). The spring was disabled and produced no 

tension unless the tibia was fully flexed and the flexor tension was greater than 0.15 N. Once 

those two criteria were met the spring was enabled and it provided a force sufficient to keep the 
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tibia flexed. When the tension in the flexor dropped below the threshold the tendon lock was 

disengaged and the tibia rapidly extended and produced the thrust for the jump. 

 

Neural Model 

A conductance-based, integrate-and-fire neuron model was used in this simulation. 

Neurons were modeled as a single equipotential compartment characterized by a set of user-

specifiable parameters, including membrane time-constant, size (i.e., input conductance), 

membrane voltage, current noise, initial spike threshold, spike-frequency accommodation, spike 

after-hyperpolarization conductance, and calcium conductances with activation and inactivation 

variables (MacGregor and Lewis 1977).  

 The neural network used to generate both the kick and jump motor programs was 

designed to apply the correct motor signals in a sequence and duration that mimics the motor 

program seen during kicking in locusts (Heitler and Burrows 1977a, Heitler and Burrows 

1977b). Initial flexion of the tibia begins when the nine fast flexor tibia motor neurons are 

stimulated to fire (Fig. 3.2A, Green FLTi neurons) (Burrows 1995, Burrows 1996). These 

neurons synapse onto the flexor muscle membrane (Fig. 3.2F, Light blue FM node) causing 

muscle depolarization and flexor muscle contraction. The fast extensor of the tibia motor neuron 

(Fig. 3.2B, Red FETi neuron) synapses onto the extensor muscle membrane (Fig. 3.2E, Light 

blue EM node) causing it to contract. A central excitatory synapse connects the FETi neuron to 

the fast flexor motor neurons (B to A) (Burrows 1996, Heitler and Burrows 1977b). There are 

also two inhibitory interneurons that are involved in triggering the jump. The multimodal ‘M’ 

interneuron (Fig. 3.2C, Gold M neuron) inhibits the excitatory flexor motor neurons, while the 

inhibitory flexor inhibitor motor neuron (Fig. 3.D Yellow FI neuron) synapses onto the flexor 
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Figure 3.2.  Neural network model of the jump motor program.  Network shown is for the 
right leg.  (A)  Nine fast flexor tibia motor neurons (green FlTi). FlTis synapse onto the flexor 
muscle membrane (Light blue FM).  (B)  A single fast extensor tibia motor neuron (red FETi). 
FETi synapses onto the extensor muscle membrane (light blue EM).  (C)  The multimodal 
interneuron (Gold M) inhibits the FlTis.  (D)  The flexor inhibitor (yellow FI) directly inhibits 
the flexor muscle.  (E)  Depolarization of the extensor muscle membrane causes the extensor 
muscle to contract.  (F)  Depolarization of the flexor muscle membrane causes the flexor muscle 
to contract. (G)  The tendon lock control node (Light Blue) controls when the tendon lock spring 
is enabled based on the rotation of the tibia and the tension in the flexor muscle.  (H)  When the 
jump is triggered the femur-tibia joint rotates rapidly to produce the jump or kick. 
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muscle and inhibits it directly (Burrows 1995, Pearson, et al. 1980). The Tendon Lock control 

node (Fig. 3.2G, Light blue) is responsible for enabling the tendon lock spring when the tibia is 

sufficiently flexed and the flexor has a tension above the lock threshold. The network that 

governs the right metathoracic leg is shown in Fig. 3.2; an identical network, also excited by the 

same Flexion Command neuron, governs the left metathoracic leg. 

Neurons were configured to reproduce the observed firing frequencies. Peak FETi neuron 

firing ranged between 60-100 Hz (Heitler and Burrows 1977a), while the FLTi neurons fired 

around 60 Hz (Heitler and Burrows 1977a) . The central excitatory synapse connecting the FETi 

to the FLTi neurons was configured by reproducing an experiment in which the FETi was 

stimulated to fire at roughly 10 Hz while the synaptic response of the FLTi was monitored 

(Heitler and Burrows 1977b). The first FETi spike produced a 20 mV EPSP in all of the FLTi 

motorneurons; the EPSPs decayed in approximately 100 ms (Burrows 1996, Heitler and 

Burrows 1977b). Responses to subsequent spikes were reduced by synaptic depression in a 

manner similar to that observed experimentally (Heitler and Burrows 1977b).  

All neurons had a random tonic noise of 0.3 mV added to their membrane potentials at 

each time step. The pseudo-random number generator that controlled the noise was initialized 

using a random seed value at the beginning of each simulation. This caused each simulation with 

a different seed to produce slightly different results because changes in the neuron voltages led 

to alterations in the timing of the motor program and the rise and fall times of the tension in each 

of the muscles. To compare the effects of differences in model parameters on performance, the 

same seed value of the random number generator was used to create the same initial conditions 

for simulations with both models. 
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Procedures for Simulation of Experiments 

During the kick simulations, the locust was suspended above the ground and rotated so 

that its ventral surface was uppermost, and pinned in place so it could not fall. All leg joints 

except the femur-tibia and tibia-tarsus joints of the metathoracic legs were locked to prevent 

rotation. The kick motor program caused the tibia to flex initially and then kick out at high 

speed.  This allowed us to measure the movement of the SLP and tibial rotation. SLP torque 

relative to the extensor attachment was calculated by recording the coordinates of the femur-tibia 

joint, extensor attachment, and the SLP force vector. These values were used to calculate the 

moment arm of the SLP force vector relative to the extensor attachment, and this was used to 

calculate the torque applied by the SLP. Kick velocity was measured as the peak velocity 

between the beginning of the kick and end of the kick when the tibia had fully rotated by 160o. 

Kick duration was the time from the beginning of the kick till full rotation of the tibia. 

Simulations of the locust jump began with the locust held 4.5 cm above the ground, and 

then dropped to the ground. Initially, only the coxa-femur joints of the rear legs were free to 

rotate. All other joints were locked and unmoving. After the locust came to rest, the other joints 

in the rear leg were unlocked so that the motor program could proceed. Once the tibia was fully 

flexed, the metathoracic coxa-femur joint was adjusted to fix the angle of the leg with respect to 

the ground at 45o. The joints for all the other legs remained locked throughout the jump motor 

program in order to maintain a stable and consistent posture, and the posture of the front legs 

was adjusted to fix the initial body pitch of the animal at 3o. The locks on the joints of the front 

and middle legs were disabled when the jump was triggered. This allowed all the legs to move 

freely throughout the take-off and ballistic phase of the jump. The SLP was disabled for tests by 

locking the SLP sliding prismatic joint to prevent it from moving and by disabling the SLP 
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spring to prevent it from generating tension. The maximum tension in the extensor tibia muscle 

was varied by adjusting the maximum tension that the muscle could generate.  

Power for the jump was calculated using the same method outlined in Bennet-Clark 

(Bennet-Clark 1975). The force acting on the body during the jump impulse was multiplied as 

the dot product of the velocity vector acting on the body to obtain the power. Energy was 

calculated by integrating the power curve over the time period of the impulse. The same stimulus 

pattern that was used for kicks was applied to produce the motor pattern for the jump. Jump 

distance was measured using the position of the locust at the beginning of the jump and when 

either the body or one of the rear legs first touched the ground. The beginning of a jump or kick 

was always measured from when the tendon lock was disengaged. Jump duration was the time 

from the beginning till the end of the jump. Jump impulse duration was the time from the 

beginning of the jump until one of the legs lost contact with the ground. Jump velocity and 

acceleration was the peak of those values obtained during the jump impulse. All data analysis 

was performed in Matlab (Matlab R2007a, Mathworks Inc.), and statistical comparisons were 

made using its Anova1 one-way analysis of variance function.  

The influence of SLP flexion torque on the flexor muscle was determined by comparing 

the tension level at which the extensor muscle was able to overcome the tension in the flexor 

when the SLP spring was intact and when it was disabled. The extensor tension was set to 5 N 

and the tendon lock was disabled for both tests. The first test was performed with the SLP intact, 

while in the second test the SLP spring was disabled.  Once the extensor reached the 5 N tension 

level the flexor was inhibited and its tension dropped until it reached a point where the extensor 

muscle was able to overcome it and extend the leg.  
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Results 

The simulated motor program and patterns of muscle activity responsible for the kick are 

shown in Fig. 3.3. The kick motor program began by stimulating the nine FlTi motorneurons on 

the right and left side to fire at about 60 Hz, which produced tension in the flexor muscles that 

caused the left and right tibiae to become fully flexed (Fig. 3.3A). A train of current stimuli 

applied to the FETi motorneurons on both sides began the co-contraction phase (Fig. 3.3B). 

Each current stimulus evoked a corresponding spike in FETi. In addition to driving the extensor 

muscle, the FETi excited the FlTis on the same side (Heitler 1988) to enable the flexor muscle to 

keep the tibia flexed despite the mounting extensor tension. The kick was triggered after the 

extensor tension reached the needed level by direct stimulation of the FI (Fig. 3.3D) and M (Fig. 

3.3C) inhibitory neurons with an applied current for 80 ms, which caused them to fire at 

approximately 200 Hz. The FI neuron directly inhibited the flexor muscle, causing the flexor 

tension to decline rapidly. Simultaneously, the M neuron inhibited the FlTis to remove the drive 

on the flexor muscle. Rapid inhibition of the FlTis and the flexor muscle triggered the kick by 

reducing the flexor tension below the level needed to maintain the tendon lock (Fig. 3.3F and G) 

(Heitler and Burrows 1977a, Pearson, et al. 1980). With the flexor tendon lock removed, the tibia 

began to extend very rapidly, completing extension in 5 ms, the same time-course that was 

recorded with high-speed videography (Fig. 3.3H) (Burrows and Morris 2001).   

To test the hypothesis that the same neural circuitry and motor program could produce 

both the kick and the jump, we used the model of the kick circuit and motor program to evoke a 

simulated jump.  The motor program was activated when the locust was resting normally on the 

ground.  An expanded view of the data for both the kick and jump are shown in Fig. 3.4. 

Although the same motor program controlled both simulated behaviors, the unloaded leg  
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Figure 3.3.  Neural output of the jump motor network.  The nine flexor motor neurons were 
stimulated to fire (A) during the cocking phase and rotated the tibia into a fully flexed position.  
The extensor motor neuron FETi (B) began firing during co-contraction and the central 
excitatory synaptic connection from FETi to FLTi caused a brief increase in flexor frequency.  
The inhibitory interneurons M (C) and FI (D) then began firing once the extensor had reached 
the desired tension level (E).  This caused the tension in the flexor (F) to fall below the threshold 
of the tendon lock (G) and this disabled the tendon spring.  This produced a rapid extension of 
the tibia (H). Each chart corresponds to the output from a labeled element from figure 3.2. 
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extended in less than 5 ms to produce the kick (Fig. 3.4A), whereas the load imposed by the body 

caused the leg to extend much more gradually to produce the jump (Fig. 3.4B). Comparison of 

the simulated movements of the locust with a series of frames taken of a locust’s jump 

(Shistocerca americana) by a high-speed camera operating at 500 fps (Fig. 3.5) shows that the 

simulation has captured the most salient features of the resulting jump behavior.   

Published measures of locust (Shistocerca gregaria) jump behavior (Table 3.1) provide 

benchmarks with which to compare the model locust jump behavior.   Model locust jumps were 

performed with randomly seeded noise added to the membrane potentials of all the model 

neurons and muscles, while all other model parameters were kept constant. Randomly seeded 

membrane potential noise ensured that the locust behaved slightly differently for each jump due 

solely to the randomness in the neurons and their affect on the biomechanics, and this provided a 

method to measure the variance of the behavior when all other initial conditions were identical. 

Several indicators of jump performance were measured, compared to the published benchmark 

values for live locusts (Table 3.1), and found to be essentially the same. This similarity 

demonstrates that the jump performance of the locust using the kick motor program closely 

matched that of the live locusts. 

The contribution of the SLP to the locust jump was analyzed by comparing jumps made 

with the SLP intact to jumps made with it disabled. The extensor tension was varied from 7 to 15 

N in steps of 2 N. For all extensor tension levels tested there was a significant reduction in the 

distance jumped when the SLP was disabled (Fig. 3.6A). The average percentage difference in 

jump distance was 37.3 ± 5 % at the maximum tension of 15 N, and this decreased to 24.8 ± 5.8 

% at 7 N (Fig. 3.6B).  The peak power of the jump impulse when the SLP was intact was 

significantly higher than when the SLP was disabled (2.04 ± 0.07 with, 1.28 ± 0.07 mW without,  
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Figure 3.4.  Expanded view of jump or kick data.  Kick data from fig. 3.3 is expanded and 
compared to data from a jump.  The output of the motor program was the same for both the kick 
and the jump so it was omitted here.  Each chart shows the tension in the extensor and flexor 
muscle of the left metathoracic leg, the rotation of the FT joint, and the status of the tendon lock.  
(A)  To produce a kick, the tibia began to rotate very rapidly after the tendon lock was disabled, 
and completed full extension in 4.1 ms.  (B)  The jump used the same motor program, but the leg 
rotated more slowly because the tibia was loaded, and so reached its maximum value after 28.35 
ms.  
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Figure 3.5.  Screenshots of the simulated and real locust jumping.  Images of a real locust 
jump are in the insets.  The simulated locust produces a jump very similar to those recorded from 
live locusts.  Live locust images are sequential frames taken using a high speed camera at 500 
fps. 
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Table 3.1.  Comparison of real and simulated locust jump performance.  A number of key 
parameters of the virtual locust jump were compared with values published in the literature for 
live locusts.  Simulations were performed using three different extensor tension values at 5, 8, 
and 15 N to demonstrate the wide range of the virtual locust’s jump performance.  The published 
values from live locusts were closest to the simulated results at 8 N and were within the ranges 
for 5 and 15 N simulations.  All simulated results shown are the average and standard deviation 
for that measurement for 20 jumps at each tension level.  (1) (Bennet-Clark 1975), (2) (Burrows 
and Morris 2001), (*) Estimate at 15 N extensor tension. 
 

 

Measure Units 5 N 8 N 15 N 
Experimenta

l 
Jump Distance (m) 0.34±0.013 0.62±0.033 1.122±0.268 0.5-0.71 
Jump Duration (s) 0.33±0.027 0.458±0.041 0.587±0.142 0.31-0.431 
Jump Impulse Duration (ms) 51.4±0.6 35.3±0.34 23.5±5.5 25-301 
Jump Velocity (m/s) 1.8±0.117 2.51±0.054 3.6±0.07 2.2-3.21 
Jump Acceleration (m/s2) 104±6 176±6.7 290±6.6 1801 
Peak Jump Power (mW) 0.371±0.038 0.87±0.04 2.04±0.08 0.751 
Jump Energy (mJ) 4±0.46 7.8±0.33 16±0.44 141* 

Kick Velocity (deg/ms) 34.47±0.1 44.3±0.134 62.58±0.145 54.5±1.32 
Kick Duration (ms) 8.41±0.018 5.96±0.02 4.1±0.01 3-62 
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p<10-30; Fig. 3.7A). A higher peak power also resulted in a significant increase in the total 

energy for the jump (16 ± 0.6*10-3 with, 9.9 ± 0.4*10-3 mJ without, p<10-30). In addition, when 

the SLP was disabled, the power ended significantly sooner than it did when the SLP was intact 

(22.8 ± 0.27*10-3 with, 22.3 ± 0.34*10-3 ms without, p<10-5). The percentage difference between 

the two jumps in this pair were calculated, and then the average and standard deviation of all 

pairs was determined (Fig. 3.7B). This showed that the average percentage difference in jump 

power remained just below 40% throughout most of the jump impulse. Near the end it rose 

quickly because the power for the jump without the SLP fell sooner than when the SLP was 

intact. 

High-speed video of locust kicks have shown that the SLP does not unfurl until after the 

tibia has extended by more than 30o degrees (Burrows and Morris 2001). To analyze this result 

through simulations, the locust kick was reproduced by the locust. Fig. 3.8A shows the amount 

of strain of the SLP plotted with the FT joint rotation against the time of the jump. The filled 

black squares mark the values of the SLP strain at 1 ms intervals as would be recorded by a high-

speed video camera operating at 1000 fps, like those reported in Fig. 3.3B of Burrows and 

Morris (2001). Dashed line 2 is the first instance where a significant unfurling of the SLP would 

be detected at 1000 fps, and this corresponds to a FT rotation of 38.12o. In order to understand 

what caused this delay it is useful to look at the SLP torque (Fig. 3.8B), which was generated by 

the SLP force relative to the extensor attachment. At the beginning of the kick, with the tibia still 

flexed, the SLP torque was negative, and acted to keep the leg flexed (Fig. 3.8C).  Moreover, the 

tension in the extensor apodeme kept the SLP contracted.  When the negative torque produced by 

the flexor muscle was removed by inhibition, the positive torque exerted by the extensor muscle 

began to extend the leg.  The extensor attachment was pulled through the SLP force vector,  
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Figure 3.6.  Effect of SLP on jump distance.  (A)  Jumps were performed with and without the 
SLP for a variety of different extensor tension values.  At all values tested there was a significant 
difference between the distance jumped with and without the SLP.  (p<10-13)  (B)  The 
percentage difference for the maximum extensor tension value of 15 N was 37.3±5 percent, and 
this value declined slightly for decreasing values of extensor tension.  Each test was performed 
with an N=20.  
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Figure 3.7.  Jump power with and without SLP. Extensor tension is at 15 N.  (A)  Jump power 
with the SLP intact (black) and with the SLP disabled (grey).  There is a significant difference in 
the magnitude of the peak power (2.04±0.07 with, 1.28±0.07 mW without, p<10-30), the total 
energy during the jump impulse (16±0.6*10-3 with, 9.9±0.4*10-3 mJ without, p<10-30), and the 
duration of the impulse (22.8±0.27*10-3 with, 22.3±0.34*10-3 ms without, p<10-5).  (B)  The 
percentage difference for each pair of jumps with and without the SLP was calculated and 
averaged.  The average percent difference between the two jumps remained steady near 40% for 
most of the duration of the jump impulse and then increased near the end because the power 
without the SLP dropped off more quickly than when the SLP was intact. 
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Figure 3.8.  SLP movement and torque during a kick. Data was taken from the left 
metathoracic leg at an extensor tension of 15 N.  (A)  SLP movement is the black solid line with 
its axis on the left side, while the rotation of the femur-tibia joint is the grey dashed line with an 
axis on the right.  The FT joint rotated with a maximum velocity of 63oms-1 and took 4 ms to 
reach its full extension of 160o.  The SLP began with a strain of 0.447 mm and rapidly unfurled 
during the kick.  The filled black squares represent the values at 1 ms time intervals where a high 
speed camera at 1000 fps would take images to provide a comparison with the plot Fig. 3.3B of 
(Burrows and Morris 2001).  The first point where a noticeable decrease in the SLP would be 
visible at 1000 fps is shown with the line (2).  This corresponds to a FT rotation of 38.12o.  (B)  
SLP torque is the black solid line with its axis on the left side, while FT rotation is again shown 
in dashed grey on the right side.  SLP torque is the torque generated solely by the SLP force 
relative to the extensor attachment point.  The torque started negative and this helped prevent the 
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SLP from unfurling.  It was only after the torque became positive that significant and rapid 
unfurling occurred.  This time is shown at dashed line (1).  Before this time the SLP unfurled less 
than 10%, while immediately afterwards the rest of the unfurling occurred.  (C)  Negative SLP 
torque occurred when the force applied by the SLP caused torques that retarded tibia rotation, 
while positive torque enhanced tibia rotation.  Positive torque only occurred after the leg had 
rotated enough to move the extensor attachment point to the opposite side of the SLP force 
vector. 
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causing the negative SLP torque to decrease and change sign to become positive (Fig. 3.8C). In 

that position, the SLP torque enhanced the femoral-tibia joint rotation, and the extensor tension 

could no longer prevent it from unfurling. After the torque became positive, the strain in the SLP 

rapidly decreased. Prior to this time (dashed line 1), the strain had decreased by less than 10%. 

 The effect of the SLP flexion torque on the flexor muscle was determined by comparing 

the amount of flexor tension that was required to keep the leg in a fully flexed position when the 

SLP spring was intact and when it was disabled. When the SLP spring was intact the flexor 

muscle was able to hold the tibia in a fully flexed position until the tension dropped to a 

minimum of 0.26 N. When the SLP spring was disabled then flexion torque generated by the 

SLP was removed and the minimum flexor tension required to keep the leg from extending rose 

to a value of 0.56 N. When the SLP spring was present it required 54% less tension in the flexor 

muscle to keep the leg from extending when the tibia lock was not active. 

 

Discussion 

The neural control and biomechanics of locust kicking have been well described because 

the kick can be elicited while the locust is dissected and restrained, thus allowing simultaneous 

intracellular recordings from neurons in the ganglia and EMG in the muscles. Although it is 

currently not possible to make these recordings in a jumping locust, the similarities between the 

kick and jump have led to the assumption that the same motor program may produce both 

behaviors.  A virtual neuromechanical model of the locust has allowed us to determine whether 

the neural circuit, motor program, and biomechanical configuration of the locust legs are 

sufficient to account for the jump as well as the kick.  Our results demonstrate that the kick 

motor program is capable of reproducing the full range of jump behaviors that have been 
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described in the literature, and that the control of the key variable of extensor tension gives the 

locust the ability to alter important jump variables like the jump distance, and take-off velocity. 

These results strongly support the hypothesis that the kick motor program is used for both 

kicking and jumping.  

The locust jump is an important behavior of locusts for both locomotion and escape from 

predators. The SLP is an evolutionary adaptation that has been thought to allow locusts to jump 

significantly farther than they could without it. However, because of the biomechanics of the 

metathoracic FT joint, direct tests of the effects of the SLP on jump performance of live locusts 

are difficult or impossible. The neuromechanical model of a locust presented here has allowed us 

to identify the contributions that the SLP makes to the jump.  The simulations indicate that the 

SLP can act first to help keep the leg flexed until the rotation of the tibia changes the sign of the 

SLP torque to favor extension.  They also showed how the SLP increased the power by almost 

40% throughout most of the jump, and that release of most of the SLP’s energy occurred as the 

extensor muscle neared its peak power output.  

The primary role of the flexor muscle of the metathorcic leg during jumping and kicking 

is to keep the tibia in a fully flexed position while co-contraction is occurring. The flexor muscle 

must be big enough to carry out this role, but any excess volume devoted to the flexor muscle is 

wasteful and that volume would be better used by the extensor muscle to provide more power for 

the jump. When the SLP spring was disabled any flexion torque that it generated was removed, 

and it took 54% more flexor tension to keep the tibia from extending.  The flexion torque 

generated by the SLP was able to assist the flexor muscle and help keep the tibia flexed. This 

meant that the flexor could be less powerful, and thus more volume could be devoted to the 

extensor muscle.   
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High speed video of locust kicking suggested that this might be the case because 

unfurling of the SLP was delayed until after the tibia had rotated by greater than 30o (Burrows 

and Morris 2001). The locust model helps to explain why there is a delay in the unfurling of the 

SLP, and how this affects the jump abilities of locust. As shown in Fig. 3.7, the delay appears to 

depend on the movement of the extensor tibiae attachment point through the SLP force vector, 

changing an SLP torque that produced flexion to one that promotes leg extension.  Finally, the 

simulations show that the SLP enables the locust to jump between 25% and 40% farther than 

without it, depending on the force applied by the extensor tibia.  The SLP is a specialization that 

has evolved to allow the locust to jump significantly further than it could with muscle power 

alone. It allows energy to be stored slowly, but be released very quickly, something that muscle 

cannot do well.  

  Storing energy using deformation of cuticle or strain in apodemes are common methods 

of overcoming the limitations of skeletal muscle that is required for arthropods to make quick 

movements like jumping and snapping. Some of these animals have evolved elaborate 

specializations to allow them to perform these rapid movements. The rabbit flea Spilopsyllus 

cuniculus stores energy for its jump in a resilin pad in the internal skeleton of its thorax. The 

energy is quickly released by the contraction of a small muscle that shifts the point of action of 

the depressor muscle, allowing the femur to be depressed (Bennet-Clark and Lucey 1967). The 

froghopper, Philaenus spumarius, stores energy for the jump by bending a bow-like cuticle 

formation in the pleural arch. A friction locking system prevents the legs from moving until 

tension in the depressors exceeds the holding force of the lock (Burrows 2003, Burrows 2006, 

Burrows, et al. 2008). Both the trap-jaw ant, Odontomachus, and the snapping shrimp, Alpheus 

californiensis, store energy for the rapid closing of their mandible or claw in the apodeme of the 



61 

muscle and by deformation of the cuticle of the exoskeleton (Gronenberg 1995a, Gronenberg 

1995b, Ritzmann 1973). While all these mechanisms are similar, there is a difference that 

appears to be unique to the SLP mechanism of the locust. Energy from the jump primarily comes 

from the apodeme of the extensor and the SLP. Unlike the case with the resilin pad in the flea 

and pleural arches in the froghopper, the SLP and apodeme both produce forces that are on very 

different directions in the locust, and this is a key feature for causing the delay in unfurling the 

SLP.    
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CHAPTER 4. 

CONTROL OF TUMBLING DURING LOCUST JUMPING 

 

In Preparation for submission:  David Cofer, Gennady Cymbalyuk, William J.Heitler, and 

Donald H. Edwards 

 

David Cofer was responsible for building and testing the locust model.  The text and figures 

were produced by David Cofer with contributions from Dr. Edwards, and both people were also 

heavily involved in the editing and rewriting process.  Dr. Cymbalyuk and Dr. Heitler provided 

revisions for the final versions of the document.  David Cofer and Lisa Blumke recorded the high 

speed videos of locust jumping.  

 

Introduction 

A locust has the ability to jump a large distance and land precisely on a specific target 

like a twig (Eriksson 1980).  High speed video demonstrates that in some situations they can 

takeoff with a body pitch velocity that remains low throughout the jump, while in others their 

body pitches rapidly causing tumbling (Visual observations, and Pond, 1972).  This chapter will 

explore mechanisms that the locust may use to control tumbling during the jump. 

Physics predicts that if the thrust of the jump is directly through the center of mass 

(COM) of the animal then no tumbling will occur.  So if the COM were located directly along 

the line of thrust described by the beta angle then tumbling would not be a problem.  However, 

while the COM is very close to the coxa-femoral (CF) joint, it is not located directly at that point 

(Albrecht 1953, Alexander 1968, Bennet-Clark 1975).  This means that as the pitch of the body 
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changes, the location of the COM relative to the thrust vector will change.  If the COM is 

positioned below the thrust vector then a negative downward torque will be generated that will 

cause the locust to tumble downward rapidly (Fig. 4.1A), and if the COM is above the thrust 

then a positive upward torque will cause the body to rotate upward (Fig. 4.1B).   

In fact, any error between the COM and thrust vector should be magnified during the 

jump impulse since downward torque will move the COM further from the thrust vector and 

increase the torque acting on it.  One way to counter this problem is to generate a counter-torque 

to resist the torque generated by the thrust vector.  A possible mechanism to generate the 

counter-torque would be to activate the muscles between the thorax and abdomen.  If a negative 

torque is generated by the thrust vector then activating the dorsal abdominal muscle generates a 

positive torque that offsets it and maintains the COM near the thrust vector throughout the jump, 

or even pulls it up past the thrust vector (Fig. 4.1C).  When the thrust is finished the downward 

torque is removed, but the abdominal muscles are still strongly activated to generate the counter-

torque.  This causes the abdomen to flex upwards (Fig. 4.1D).  Activation of the ventral 

abdominal muscle near the end of the jump impulse would help to reduce the magnitude of the 

dorsal flexion and quickly bring the abdomen back into line with the body.       

The locusts abdomen is used extensively during flight.  Bending of the abdomen in the 

horizontal plane allows it to act as a type of rudder that is controlled by two separate 

mechanisms.  The fastest system is controlled by the direction of the wind on cephalic wind-

receptor hairs, while the slower system uses proprioceptive information from the cervical hairs 

(Camhi 1970b, Gettrup and Wilson 1964).  Abdominal curling is also used during flight to 

increase lift when it is near stalling speeds (Camhi 1970a).  If the abdomen plays such a role in 
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Figure 4.1.  The physics of tumbling.  Jump elevation is determined by the beta angle (β), 
which is the angle between the distal end of the tibia through the proximal end of the femur.  The 
blue dot near the femur is the COM, and the three beads along the dorsal thorax and the abdomen 
were used to measure pitch and abdominal flexion.  Pitch (Purple P) is determined using the first 
two beads.  Abdominal flexion is the difference in abdominal angle 6 ms after the feet leave the 
ground and just before they left the ground (θflex = θb - θa).  (A)  When the beta angle is large and 
the initial pitch is small the COM is below the thrust vector.  This causes a downward torque and 
negative pitch velocities.  (B)  If the beta angle is small and the pitch is large then the COM is 
above the thrust vector. This causes upward torques and positive pitch velocities.  (C)  Thrust is 
applied throughout the jump impulse.  In this example the COM is below the thrust vector so a 
downward torque is generated (green arrow).  Activation of the dorsal abdominal muscle creates 
an upward counter-torque that overcomes the torque from thrust.  (D)  After the feet leave the 
ground the thrust is over and the torque generated from it ends.  This leaves only the counter-
torque from the abdominal muscle, and this causes a visible flexion of the abdomen.   
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the stabilization of flight, then it is not impossible to imagine that it may also play a role in 

stabilization of the jump. 

 

Materials and Methods 

Live Animal Analysis 

Adult locusts, Shistocerca americana, were obtained from a breeding colony at Agnes 

Scott College, kept caged in small groups at 37o under a 12hr L:D cycle, and fed fresh organic 

lettuce and 2/1 mixture of fresh wheat germ and powdered milk.  Each individual was removed 

from their cage and had their wings clipped off near the base, and lightweight beads weighing 

8.96 mg were glued onto the dorsal surface of the thorax and abdomen using superglue. One 

bead was placed near the head, another near the end of the thorax, and a third near the end of the 

abdomen.  Three highly reflective 1 mm sequins were cut in half and glued onto the metathoracic 

leg.  One was placed near the coxa-femoral (CF) joint, another at the midpoint of the femur, and 

a third near the femoro-tibial (FT) joint.  After this treatment individuals were returned to their 

cage for a minimum of 4 hours before being tested. 

To perform tests individuals were taken from the cage to a video-recording room and 

placed on a jumping platform. The platform contained a heating element that could adjust the 

local temperature and was covered by very fine sandpaper to allow the locust a slip free surface 

for jumping.  A 25x30 cm yellow wooden target was placed 30 cm from the platform, and jumps 

to the target were induced by either gentle touches of the abdomen by a hand-held wand or by 

raising the temperature of the platform.  Animals were retrieved after the jump and returned to 

the platform for another attempt.  Jumps were evoked at about 5min intervals; individuals were 
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returned to their cage after 10 jumps.  Locust jumps were recorded at 500 fps and a resolution of 

512x240 pixels by two Photron PIC R2 Fastcam video cameras with an exposure time of 0.5 ms.  

Four of the seven animals that were analyzed also had a BB weighing 0.33 g glued onto 

the pronotum near the head in order to create a downward biasing torque to extend the range of 

behaviors. A minimum of 6 jumps were performed with and without the weight for each animal.  

Two animals were jumped with the weight first and the other two with it attached last.   

Only jumps that were perpendicular to the camera and where the locust did not slip were 

analyzed. Analysis of the jump was performed using four video frames.  The first was at the 

beginning of the jump.  The second was just before the feet left the ground, and the third was 6 

ms afterwards.  The fourth was the final frame where all the beads and sequins were still visible.  

A custom Matlab application called MarkerCollector was used to load in those four frames for 

all jumps and to manually select the center of each bead and sequin that was being tracked 

(Matlab R2007a, Mathworks Inc.).  The pitch of the locust in each frame was measured using the 

two beads on the dorsal thorax and the angle they made with the horizontal.  The initial pitch 

was the pitch of the locust at the beginning of the jump.  The takeoff angle was determined using 

the sequin attached near the CF joint in two separate video frames.  The first frame was just 

before the jump, and second frame was just before the feet left the ground.  The takeoff angle 

was the angle the CF point in the two frames and the horizontal surface.  The abdominal angle 

was calculated using all three beads on the back of the locust.  It was the angle between the 

straight line formed by the two beads on the thorax with the bead attached to the end of the 

abdomen (Fig. 4.1 C,D).  Abdominal flexion was the difference between the abdominal angle 6 

ms after the feet left the ground and just before they left the ground.  A dorsal flexion of the 

abdomen was a positive value, while a ventral extension was negative.  The takeoff pitch 
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velocity (TOPV) was the velocity of the pitch between the beginning of the jump and when the 

feet left the ground.  Positive velocity was upward.  The tumbling pitch velocity (TUPV) was the 

velocity of the pitch between the time the feet left the ground and the last frame that was 

analyzed.        

 

COM Location 

 The chosen locust was placed alive in a refrigerator at 4 Co for 2 hours. It was weighed 

and then killed by placing it in a freezer at -14 Co overnight and was reweighed in the morning. 

There was no detectable difference in the weight after freezing for one night. The frozen locust 

was suspended using a thread by melting plastacine wax with a soldering iron onto the dorsal 

surface of the thorax or abdomen, and then embedding the end of the thread into the hardening 

wax. The locust was hung from a pole and photographed with an 8 megapixel Kodak Z812IS 

camera. A metric ruler was visible within the image and was at the approximately the same 

distance from the camera as the locust. The wax attachment was moved from the tip of the 

pronotum to the abdomen while a picture was obtained at each new location. At each thread 

position the orientation of the locust changed based on the location of the COM relative to the 

attachment point. MarkerCollector was again used to manually select data points for each image. 

The tip of the pronotum was the first data point and it was used as a reference. This location was 

chosen because it narrowed to a well defined point and it was clearly visible in all images. The 

next data point was where the thread attached to the locust. The final points were taken from the 

ruler in order to determine scale length within the image. 

 The distance from the reference point to the thread attachment was measured, along with 

the angle made between the dorsal surface of the thorax and the vertical thread attachment point. 
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Thread attachment distances were measured and a linear regression was used to determine the 

distance from the reference that corresponded to a perfectly balanced locust when the body angle 

was 90o.  This value was used as the horizontal position of the COM. The vertical position of the 

COM was calculated by rotating a line at the determined distance to match the rotation of the 

locust body in that image, and then finding where that line crossed the vertical thread attachment 

line. The average of that point for all images was used as the vertical position of the COM. Any 

data points that were more than 1.5 times the inter-quartile range were excluded from the 

analysis. Once the COM measurement was completed the locust legs were removed and each 

component piece was measured, weighed, and photographed for use in the simulation.  

 

Neuromechanical Simulation 

 To distinguish references to the model and its parts from references to the locust, the 

model part names have been given the italicized names of the corresponding locust body parts, 

while references to the locust and its body parts are made in normal font.  

A neuromechanical simulation of one of the locusts was built using the software 

AnimatLab. The details of the locust body and neural control system have been previously 

described in chapter 3. That model was used here with only a few modifications.  Specifically, 

the sizes, masses of the body parts, and COM were altered to match a single locust from the high 

speed video analysis. Each part of the locust body included an internal mass. The COM was set 

by pinning the locust in place and allowing it to rotate on a hinge joint. The densities of the 

internal masses were adjusted to get the locust to balance both horizontally and vertically at the 

chosen COM.  
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Hill-based muscle models were used to create dorsal and ventral abdominal muscles 

between the abdomen and thorax (Albrecht 1953), and the hinge joint connecting those two parts 

was set to allow a motion from 45o to -45o (Hill 1970, Shadmehr and Wise 2005a)  The 

properties of the muscles were configured to be similar to the settings for the tibia flexor muscle 

of the metathoracic leg that was previously described, but they were altered slightly to allow the 

muscle to respond more quickly.  The dashpot constants were set to 5 Ns/m, and the spring 

constants Kse to 20 N/m, and Kpe to 1 N/m.  The maximum tension attainable by the muscles was 

1 N.  The length-tension curve of each was set to be a maximum at its resting length and to 

decrease as the muscle shortened, while the stimulus-tension curve was configured to facilitate 

quick movements.     

 A postural control feedback system was also used that allowed the beta, thoracic-coxal 

(TC) joint and initial pitch angles to be set to approximate values. The TC joint was set to the 

desired value while the other two variables used feedback to approach the value set by the user.  

Beta angle was measured for the metathoracic legs using the angle between the end of the tibia, 

the CF joint and the horizontal (Fig. 4.1A).  The beta angle was set by rotating the CF joint to 

the correct position.  The initial pitch was measured using two spherical beads on the dorsal 

surface of the thorax as was done for the live animals. The pitch was set by rotating the CF joint 

of the prothoracic legs to raise or lower the body to the desired pitch level.  Changes in one of 

these variables affected the other. While the feedback system was able to get all three variables 

close to the desired values, the fact that two of the variables were strongly linked made it 

difficult for the system to reach the exact value set by the user. However, the feedback system 

provided sufficient control for the tests outlined below.    
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Simulation Jump Procedure 

 The simulation for the jump began with the locust held 1.5 cm above the ground and it 

was released and allowed to fall. The metathoracic FT joints were allowed to move freely under 

power of the muscles throughout the entire simulation.  The CF joints of the metathoracic legs 

were elevated to 30o, similar to a live locust preparing for a kick. This allowed the tibia to flex 

fully without any interference from the ground substrate.  Once the tibias were fully flexed a 

tendon lock in each leg was engaged that held the tibias in position during the co-contraction 

phase. The TC joints were then moved to the user-defined angle, while the postural control 

system rotated the CF joints of the front and rear legs to attain the user-specified beta and initial 

pitch angles.  The mesothoracic legs were locked in an elevated position until just prior to the 

jump to prevent them from interfering with the postural control system. Near the time for the 

jump they were released and allowed to move freely. The other leg joints were locked until the 

beginning of the jump, which was defined as when the tendon lock system disengaged because 

the tension in the flexor tibia muscle had fallen below a threshold value (Heitler 1974).  The 

other joints were then allowed to move freely throughout the jump. Jumps that included a dorsal 

flexion of the abdomen passed a command current to a firing rate neuron that controlled the 

tension in the dorsal abdominal muscle. The current was linear with a user defined magnitude, 

and start and end times.   

 A single jump from the high-speed video data was chosen to analyze in more detail.  The 

jump was chosen because it was near the center of the takeoff angles that could be reproduced in 

the simulation, and it had a small initial pitch angle that made it less likely for the legs to slip on 

the substrate.  The beta angle was set to match the measured takeoff angle of 29o, and the initial 

pitch was adjusted to get a value close to the measured pitch of 1.72o.  The locust performed the 
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jumps while the magnitude of the current stimulus was increased to determine the affects of 

abdominal dorsal flexion on locust tumbling. The first jump occurred with no current, and it was 

subsequently varied between 17.5 and 19 nA.  

  To gain a better understanding of the tumbling behavior over a wide range of parameters 

the beta angle was varied between 20o and 40o in 2o increments, while the initial pitch was 

varied between -4o and 16o in 2o steps. The live animal performed jumps with takeoff angles 

ranging from 9o and 38o, and initial pitch values from -19o to 16o. Only a portion of this range 

was tested because when the beta angle went below 20o the locust feet began to slip during the 

jump. Also, the live tests were performed on a platform that allowed the locust to bend its thorax 

over the open space. Tests in the simulation were done on a flat surface, and this made it difficult 

to use initial pitches smaller than -4o. Low initial pitches also increased the chances of foot 

slippage. Takeoff angle was measured the same as for the live data, but used the CF joint 

position instead of the sequin location. Takeoff and tumbling pitch velocities were measured the 

same as for the live data, but the final frame used to calculate TUPV was always 100 ms after the 

feet left the ground.  Any simulation where the locust failed to jump further than 0.2 m, or where 

the feet visibly slipped were excluded from the data sets. 

 A set of simulations were run using the parameters outlined above with no dorsal flexion 

included. Next, all simulations where the locust had a negative TOPV were re-run while a linear 

command current was applied to produce a dorsal flexion of the abdomen. The magnitude and 

start time of the current was varied manually and set to a value that changed the negative TUPV 

into a small positive value. 
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Results 

COM Location 

The horizontal location of the COM was determined using the regression shown in figure 4.2A.  

The plot shows the relationship between how far away the thread was attached from the 

reference point (Fig. 4.2B Red dot), and the angle that the locust made with respect to the 

horizontal (R2=0.983, p=7.7e-5).  The horizontal location of the COM was determined to be 

15.79 ± 1.95 mm from the reference point. This was the distance of the attachment when the 

body angle was 90o.  The vertical location was calculated to be 9.47 ± 0.88 mm. This was 

determined by finding the intersection of a line at that distance with the line of the thread 

attachment. The projected locations of the COM for each data point are shown as green dots in 

figure 4.2B. There was a single outlier that was greater than 1.5 times the inter-quartile range 

that was excluded from the analysis (Fig. 4.2B Magenta dot). This outlier was produced when 

the locust was almost balanced and the two lines were nearly parallel. The projected location of 

the COM is shown as a light blue dot in figure 4.2B. The internal masses of the virtual locust 

were adjusted to approximate the COM calculated from the live animal. The location of the 

COM used in the simulations is shown as a light blue dot in figure 4.2C. It provides a close 

match to the location calculated for the live animal. 

 

Live Locust Analysis 

There was a strong positive correlation between the initial pitch and the takeoff angle for 

all the locusts that were analyzed (Fig. 4.3A).  The correlation coefficient and significance for 

each locust, and for the combined data, is shown in table 4.1. Takeoff angle is determined by the 

posture and beta angle adopted just prior to jumping (Sutton and Burrows 2008). As the takeoff /  
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Figure 4.2.  Determination of COM.  (A)  A thread was attached to the dorsal surface of the 
locust with wax.  The angle of the body and the distance of the attachment point to a reference 
(red dot) were measured and a regression determined (R2=0.983, p=7.7e-5).  The distance to the 
horizontal COM was read from the regression for an angle of 90o.  (B)  Vertical COM was 
determined by finding the intersection of a line at the horizontal COM distance and the thread 
attachment.  Green dots were the estimated locations for COM for each image, while the blue dot 
was the average location of the COM for all the images used.  The magenta dot was an outlier 
that was excluded. The red dot was the reference point.  (C)  Image of the virtual locust with the 
position of the COM marked as a blue dot.    
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beta angle increased all of the locusts increased their initial pitch.  Locust #2 was chosen as the 

model for the simulations. It showed a strong correlation between takeoff angle and initial pitch 

(Fig. 4.3B). In addition, each data point was color coded to show the TUPV which ranged from a 

minimum of 237 o/s to a maximum of 1577 o/s, with an average of 744 ± 335 o/s. The locust 

produced jumps over a wide range of takeoff angles and initial pitches, but the TUPV remained 

positive and relatively small for all them. The data point circled in red will be further analyzed 

through simulations (Fig. 4.3B). 

A negative correlation that was primarily confined to the upper right quadrant was found 

that related TOPV and abdominal flexion (Fig. 4.4A).  The TOPV was determined by the net 

torque acting on the body during the jump impulse. The greater the downward torque was, the 

more dorsal abdominal muscle activation was required to counter it, thus resulting in a greater 

flexion after the thrust was stopped. The majority of abdominal flexions were positive (114 of 

126), with only a few negative ones that were of much smaller magnitude than the typical 

positive flexion. Negative flexion values correspond to a ventral extension.  

 A negative correlation was also found relating the TUPV and abdominal flexion, with the 

highest velocities occurring when no flexion was detected (Fig. 4.4B). Velocities decreased to 

zero as flexions increased. Importantly, there were very few instances of negative tumbling pitch 

velocities (5 of 126). Locusts overwhelmingly pitched upward during a jump with a positive 

TUPV regardless of their initial posture. 

 It was possible to recreate the results from the live animal jumps using simulations. The 

initial pitch and the current applied to the motor neuron of the dorsal abdominal muscle were 

controlled to reproduce the TOPV results of the live animals (Fig. 4.4C). Downward torque was 

greatest when the initial pitch was at its lowest value. When the pitch was lowest was when the  
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Figure 4.3.  Live initial pitch vs. takeoff angle.  (A)  Correlation for all jumps from seven live 
locusts.  Regression lines for each individual locust are shown in different colors, and correlation 
coefficients and significance are located in table 4.1.  As the takeoff angle, and thus the beta 
angle, increased the locust also increased its initial pitch.  (B)  Locust #2 was used as the model 
for the simulations.  This plot shows the data specific for that locust. Each data point was color 
coded based on the tumbling pitch velocity.  The yellow and red circled points were the 
minimum (237 o/s) and maximum (1577 o/s) pitch velocities.  All of the jumps had a positive 
tumbling velocity regardless of the initial pitch or takeoff angle.  The data point circled in red 
was analyzed in more detail through simulations. 
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Figure 4.4.  Abdominal flexion vs. pitch velocities.  Data for charts A and B is for all jumps 
from seven live locusts.  Regression lines and data points for each individual locust are shown in 
different colors, and correlation coefficients and significance are located in table 4.1.  Only 
regression lines for those locusts that were significant are shown.  Data for charts C and D are 
from simulated jumps. (A)  There was a negative correlation between abdominal flexion and 
takeoff pitch velocity.  When the downward torque was largest the locust generated the greatest 
amount of abdominal flexion.  The majority of abdominal flexions were positive (114 of 126).  
(B)  A negative correlation was also found between abdominal flexion and tumbling pitch 
velocity.  Pitch velocity decreased towards zero as the amount of flexion increased.  There were 
very few jumps that had a negative tumbling pitch velocity (5 of 126).  (C)  The current applied 
to the motor neurons of the dorsal abdominal muscles and the initial pitch of the body were 
setup to reproduce the results of live animal jumps in A. Downward torque was greatest when 
the initial pitch was at its lowest value. When the pitch was lowest was when the most current 
was required to overcome the downward torque, and this produced the greatest amount of 
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abdominal dorsal flexion.  (D)  The current and pitch were setup to reproduce the live jumps 
shown in chart A and the TUPV was measured. Adding dorsal flexion and controlling the initial 
pitch allowed the simulated locust to reproduce the results for TUPV automatically. 
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Table 4.1.  Data for the live locusts jumps.  N is the number of jumps.  NW is the number of 
jumps without a weight attached.  W is the number with a weight, and T is the total of all jumps 
for the locust.  R2 is the correlation coefficient for the three charts that were presented, and p is 
the significance.  Data that was not significant at the 0.05 level was highlighted in grey, and their 
regression lines were excluded from charts. 
 

  N   
Initial Pitch Vs. 
Takeoff Angle   

Ab Difference Vs. 
Takeoff Pitch 

Velocity   

Ab Difference Vs. 
Tumble Pitch 

Velocity 

Animal NW W T   R2 P   R2 P   R2 P 
1 0 15 15  0.598 7.2E-04  0.524 2.3E-03  0.582 9.5E-04 
2 0 22 22  0.823 5.8E-09  0.261 1.5E-02  0.286 0.011 
3 0 12 12  0.852 1.8E-05  0.462 1.2E-03  0.486 0.012 
4 10 13 23  0.537 7.0E-05  0.228 2.1E-02  0.076 0.203 
5 12 9 21  0.580 9.5E-05  0.610 4.8E-05  0.312 0.010 
6 6 7 13  0.464 0.010  0.464 0.010  0.310 0.048 
7 11 9 20  0.375 3.2E-03  0.120 0.124  0.084 0.204 

Combined 39 87 126   0.592 6.0E-26   0.615 1.9E-14   0.479 1.4E-08 
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most current was required to overcome the downward torque, and this produced the greatest 

amount of abdominal dorsal flexion. Adding dorsal flexion and controlling the initial pitch 

allowed the simulated locust to reproduce the results for TUPV automatically. 

 

Comparison of Live Locust to Simulation 

 A single data point for locust #2 was chosen to be analyzed in more detail through 

simulation (Fig. 4.3B, Red circle). The beta angle and pitch were set to the takeoff angle and 

pitch measured from the high-speed video, and the simulation was able to achieve results that 

closely matched those values (Table 4.2). Images from the high-speed video of the jump were 

compared with snapshots from the virtual locust simulations in figure 4.5. The locust began with 

a small initial pitch of 1.72o (Fig. 4.5A1). As its feet left the ground its pitch increased by less 

than a degree with a TOPV of 16.4 o/s (Fig. 4.5A2), and 6 ms later a small abdominal flexion of 

8.1o occurred (Fig. 4.5A3).  Finally, the locust pitched upwards with a small TUPV of 237 o/s 

(Fig. 4.5A4).   

Two different simulations of this data point are also shown. The first was when no dorsal 

flexion was added. In this case the locust began with an initial pitch similar to the live locust 

(Fig. 4.5B1), but the behavior of the simulation quickly diverged from what happened with the 

real animal.  During the takeoff phase the body rapidly rotated downward and attained a TOPV 

of -2260 o/s (Fig. 4.5B2). The rotation continued until the joints between the body and the femurs 

reached their limits, and then the rest of the body somersaulted over it (Fig. 4.5B3). A small 

positive TUPV of 280 o/s (Fig. 4.5B4) was measured because the body rotated down so quickly 

that it bounced off the limits of the joints and transferred enough momentum to make the body 

go back up slightly, but overall the whole body of the locust was in a negative tumble for the  
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Figure 4.5.  Comparison of live and simulated jumps with and without dorsal flexion.  (A1)  
Locust #2 just prior to jumping.  The initial pitch is small (1.72o).  (A2)  Locust just before its 
feet left the ground.  The initial pitch has remained steady throughout the jump (TOPV = 16.4 
o/s).  (A3)  Locust 6 ms after feet left the ground.  A small dorsal flexion of the abdomen is 
visible.  (A4)  Final trackable frame of the jump.  The locust has pitched up slowly.  (B1)  
Simulated locust prior to jumping.  Initial conditions were set to attempt to recreate the jump of 
the live locust.  No dorsal flexion was included.  (B2)  Unlike with the live animal the pitch has 
rapidly decreased (TOPV = -2260 o/s).  (B3)  The whole body somersaults over in a negative 
tumble.  (B4)  When the joint limits for the CF joints were reached the body and abdomen 
rebounded slightly.  (C1)  Simulated locust prior to jumping.  Dorsal flexion was included.  (C2)  
This time the pitch was very similar to the live locust and remained almost constant throughout 
the jump impulse (TOPV = -2.59 o/s).  (C3)  Immediately after the thrust was finished a dorsal 
flexion began.  (C4)  The locust only activated the dorsal abdominal muscle, so the flexion 
reached its maximum angle and was maintained throughout the jump.  The tumbling rate was 
positive (TUPV = 365 o/s). 
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remainder of the jump.  This is what was predicted by physics for an initial posture with a COM 

below the thrust vector. It produced a downward torque that accelerated the COM further from 

the thrust vector during the jump impulse, and lead to a rapid downward tumble while thrust was 

active.   

In the second simulation a dorsal flexion command stimulus was included.  The locust 

began identically to the other simulation (Fig. 4.5C1).  However, the behavior during thrust 

application was considerably different (Fig. 4.5C2).  Now, instead of a strong negative TOPV as 

seen in the other simulation it was much closer to the behavior from the live locust with a TOPV 

of -2.59 o/s.  Soon after the thrust ended an abdominal flexion occurred (Fig. 4.5C3), and the 

locust had a positive TUPV of 365 o/s (Fig. 4.5C4).  One difference between the behavior of this 

simulation and the live locust was that its abdominal flexion was limited and the abdomen 

quickly returned to level with the body pitch, while in the simulation the abdominal flexion goes 

to a maximum value and remains there.  This was due to the fact that we were only modeling the 

initial contraction of the dorsal muscle to counteract the torque of the jump impulse. The live 

locust most likely also activated its ventral abdominal muscles near the end of the thrust to 

counter abdominal flexion that will occur and help bring the abdomen back into line. However, 

to simplify the simulation this aspect of the jump was not included in the model. 

It is also possible to control the takeoff and tumbling pitch velocities by varying the amount of 

tension in the dorsal abdominal muscle during the jump impulse. The tension of the muscle was 

set by varying the magnitude of the command current passed into the motor neuron. Initially no 

current was used (Fig. 4.5B, Fig. 4.6 Red), and then the magnitude was varied between 17.5 and 

19 nA. The simulation snapshots from figure 4.5 B and C were taken when the command current 

was 0 and 18.3 nA respectively.  The tensions were initially similar, with only a small increase 
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for each increase in current (Fig. 4.6A).  The point at which the extra tension was able to 

overcome the downward torque occurred later for each smaller current level.  When there was no 

command current the angle between the abdomen and thorax rapidly went to its maximum value 

(Fig. 4.6B Red), while the pitch of the thorax also rapidly declined (Fig. 4.6C Red).  As the 

current was increased the dorsal flexion was better able to counter the downward torque. The 

abdomen angle dipped slightly during the thrust before a dorsal flexion occurred, and when the 

magnitude of the current was increased the dip was entirely eliminated.  By varying the current 

magnitude the TOPV could be controlled so that it varied between a highly negative -1078 o/s at 

17.5 nA, and a highly positive 1337 o/s at 19 nA (Table 4.2). For most of the current magnitudes 

that were tested the TUPV was positive, but once again the exact value at 100 ms after the feet 

left the ground was somewhat dependent on whether momentum transfers occurred     

 

Variation of Beta and Pitch 

To explore these results in more detail the beta angle and initial pitch were 

systematically varied while takeoff angle and pitch velocities were measured, initially no dorsal 

flexion was included (Fig. 4.7 A and B).  The green line in each panel of the figure is the 

regression line relating initial pitch and takeoff angle for the live locust the model was based 

upon.  This line clearly splits the data into two separate components based on the pitch 

velocities. Near the line the TOPV was close to zero, while below it became more negative the 

further away the initial posture moved from the line.  Moving upward from the line resulted in an 

increase in the TOPV (Fig. 4.7A).  Similar results were seen for TUPV (Fig. 4.7B), but velocities 

in both directions were not as extreme. 
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Figure 4.6.  Effect of varying dorsal flexion command current.  Command current was 
absent, or varied between -17.5 and 19 nA.  Details are shown in table 4.2.  (A)  Increasing the 
command current led to small increases in the dorsal abdominal muscle tension.  Increased 
tension was better able to counter the downward torques generated by thrust.  (B)  As the 
command current increased the locust became better at maintaining the angle between the thorax 
and abdomen.  Eventually, the tension was able to completely overcome the downward torque 
and the angle increased throughout the jump.  (C)  This allowed the pitch velocities to be 
controlled.  As the command current was increased the pitch velocities went from strongly 
negative to strongly positive. 
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Table 4.2.  Comparison of live and simulated locust jump.  The command current was 
initially off in the simulations, and was then varied from 17.5 to 19 nA.  Beta angle was set to 
the takeoff angle measured from the live locust, and the initial pitch was adjusted to be near the 
value from the real animal.  Takeoff angle and pitch velocities were measured for the 
simulations.  Takeoff angle was large when no command current was present, and decreased as 
the current was increased.  Takeoff pitch velocity varied from highly negative to highly positive, 
while tumble pitch velocity at 100 ms was somewhat influenced by momentum transfers, but 
tended to go from negative to positive as the command current was increased. 
 

Jump Type 

Flexion 
Stimulus 

(nA) 

Beta 
Angle 
(Deg) 

Initial 
Pitch 
(Deg) 

Takeoff 
Angle 
(Deg) 

Takeoff 
Pitch 

Velocity 
(Deg/s) 

Tumble 
Pitch 

Velocity 
(Deg/s) 

Live Locust - - 1.72 29.23 16.44 237 
Simulated 0.0 29.1 1.79 49.78 -2260 280 
Simulated 17.5 28.5 1.54 41 -1078 -796 
Simulated 18.0 28.5 1.54 38 -158 529 
Simulated 18.3 28.5 1.54 35.3 -2.59 365 
Simulated 18.6 29.4 1.82 29.3 767 613 
Simulated 19.0 28.5 1.54 25.2 1337 455 
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Figure 4.7.  Simulated initial pitch vs. beta angle.  Simulations were done both with (bottom 
row) and without (top row) dorsal flexion.  Takeoff (left column) and tumbling (right column) 
pitch velocities are color coded.  The green line is the regression of initial pitch vs. takeoff angle 
for locust #2.  (A)  When no dorsal flexion was included takeoff rates were split into two distinct 
sections relative to the regression line.  Near the line velocities were small.  The velocities 
increased as the points moved above the line, and decreased by moving below it.  This was very 
different from what was seen for the live animal jumps.  (B)  Similar, but less drastic, results 
were seen for tumbling pitch velocity.  This is because the bulk of the movement occurred during 
the thrust phase.  (C)  When dorsal flexion was included the behavior becomes very similar to 
the live locust results.  The highly negative velocities are eliminated.  (D)  All tumbling pitch 
velocities were converted from negative to positive by using a dorsal flexion.  
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Next, a dorsal flexion was added to the simulation of any jump that had a negative TOPV.  

The addition of a dorsal flexion radically altered the behavior of the locust (Fig. 4.7 C, D).  The 

TOPV no longer rapidly decreased as it did before. Instead, it remained near zero, or dipped 

slightly negative (Fig. 4.7C).  The TOPV for all points below the regression line increased 

significantly from an average of -1682 ± 1083 o/s when there was no dorsal flexion to a value of 

-290 ± 705 o/s when dorsal flexions were used (p<1e-15).  The tension in the abdominal muscle 

was able to counter the downward torque due to thrust and convert the TUPV for all jumps from 

negative to positive (Fig. 4.7D). 

 A comparison of figures 4.2 and 4.7 rests on the assumption that the beta angle and the 

takeoff angle are linearly related as previously reported (Sutton and Burrows 2008).  However, 

when the plot was changed to use the measured takeoff angle instead of the beta angle the data 

was noticeably altered (Fig. 4.8A).  The data related to positive TOPV values was changed 

slightly from before, but was still similar. The data related to negative TOPV values was 

drastically different. Data points that corresponded to large negative velocities were strongly 

skewed towards a takeoff angle of 60o, and the closer the velocity was to zero the less the takeoff 

angle was skewed.  When dorsal flexions were added to the jumps the data skewing was greatly 

reduced (Fig. 4.8B).  Comparison of the beta angle in simulations with and without a dorsal 

flexion showed that it was initially the same in both cases, but once the body pitch began 

decreasing (Fig. 4.9A) the beta angle increased sharply to over 50o (Fig. 4.9B).  Dorsal flexion 

kept the body pitch more even and prevented this increase in the beta angle.   

The influence of pitch velocity on takeoff angle is seen more clearly in a plot of beta 

versus takeoff angle (Fig. 4.10).  Jumps without dorsal flexion and a positive velocity line up 

linearly, while those with negative velocities are highly skewed to a takeoff angle of 60o  
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Figure 4.8.  Simulated initial pitch vs. takeoff angle.  Simulations were done with (right 
column) and without (left column) dorsal flexions.  For both cases their was a small amount of 
shifting for jumps with positive pitch velocities, but the results were similar to what was seen 
when plotted against the beta angle.  (A)  Without dorsal flexions the jumps with negative pitch 
velocities were skewed towards takeoff angles of 60o.  The more negative the velocity the greater 
the skew that resulted.  (B)  When dorsal flexions were included this skewing was greatly 
reduced, and the data points were pushed back towards the values seen when plotted against the 
beta angle.  
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Figure 4.9.  Beta angle shifts when no dorsal flexion is present.  Simulations were the same as 
seen in fig. 4.5.  (A)  The pitch remained constant when a dorsal flexion was present, but 
decreased without one.  (B)  When the pitch began decreasing the beta angle increased to over 
50o, but when a dorsal flexion was included the beta angle remained approximately constant 
throughout the jump.  (C)  Beta angle decreased just before the feet left the ground in both 
instances.    
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Figure 4.10.  Simulated takeoff angle vs. beta angle.  Simulations were performed with (right 
column) and without (left column) dorsal flexions.  (A)  Without dorsal flexions the jumps with 
negative velocities were skewed upwards towards 60o.  (B)  When dorsal flexions are included 
this data was pushed back down and formed a linear relationship with a slope / intercept of 1.05 / 
4.04o (R2 = 0.427).  This re-established the relationship between the beta and takeoff angles seen 
previously (Sutton and Burrows 2008). 
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regardless of the initial beta angle (Fig. 4.10A). The correlation coefficient is low with R2 = 0.17.  

When dorsal flexion was added the skewed points moved down to form a linear relationship with 

a slope / intercept of 1.05 / 4.04o and correlation coefficient R2 = 0.427 (Fig. 4.10B).     

 

Discussion 

Locusts adjusted their initial pitch relative to the beta angle prior to jumping, and 

simulations demonstrated that the initial pitches they adopted were close to the optimum value 

that minimized tumbling for the model locust.  This suggests that control of tumbling is 

important during locust jumping, and supports the hypothesis that the locust deliberately adopts a 

posture that will keep tumbling velocities low.  By changing the initial pitch of their bodies they 

can move the COM closer to the thrust vector, and thus reduce the torques acting on the body 

during the jump impulse. 

Locusts rarely have negative tumbling pitch velocities. Regardless of the initial pitch or 

beta angle adopted by locust #2 it always had a positive pitch velocity, and only 5 of 126 jumps 

from all locusts had negative velocities.  It would be difficult to explain those results if adjusting 

its body pitch was the only mechanism it used to control tumbling.  Errors are inevitable, and the 

odds of placing the COM above the thrust vector are as likely as placing it under.  Therefore, 

velocities should be evenly distributed instead of being overwhelming positive.  Furthermore, 

physics and the simulations both predict that the when the COM is not inline with the thrust 

vector it will rotate away from the thrust during the jump impulse, and the rotational velocity 

will be related to the size of the error between the COM and thrust vector.  This all supports the 

notion that the locust must utilize another mechanism to overcome these problems and control 

tumbling. 
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Contraction of the abdominal muscles prior to, and during the jump impulse could 

function as a secondary mechanism to control tumbling.  Simulations where the dorsal 

abdominal muscle was contracted in this manner were able to recreate results very similar to the 

behavior of the real locust, and when that contraction was absent it behaved in a manner 

predicted by physics. The thrust torque moved the COM further away from the thrust vector and 

caused the thorax to rotate downward very rapidly.  Varying the magnitude of the contraction 

also allowed the takeoff pitch velocity to be controlled, and produced a dip in the angle between 

the abdomen and thorax during the thrust.  This type of dip was often noticed in the high-speed 

videos, and it was immediately followed by an abdominal dorsal flexion after the feet left the 

ground. This can be easily explained in the model. It occurred because the tension in the dorsal 

muscle was not able to counter all of the downward torque caused by the thrust.  Once the thrust 

was finished, that torque was over and only the torque due to the abdominal muscle remained, 

and this caused the abdominal flexion.  Further supporting this hypothesis is the fact that by 

adding an abdominal flexion it was possible to convert all of the simulated jumps that had 

negative tumbling pitch velocities into positive velocities.  As with the live locusts, this 

mechanism allowed the simulated locust to always have a positive TUPV regardless of the initial 

pitch or beta angle that it adopted. 

The type and timing of the current that was used to produce the dorsal flexion was also 

important.  Initially, a simple step current was attempted, but this proved ineffective. Thrust for 

the jump was not applied uniformly throughout the jump impulse.  The magnitude of the thrust 

began at a low level and increased to a peak near the end of the jump impulse.  When a step 

command current was used that was strong enough to counter the peak torque of the thrust, the 

dorsal flexion occurred too early and always ended with a strong upward tumbling instead of the 
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more controlled scenario seen in live animals.  The linear current used in the simulations proved 

to be quite effective.  It increased the tension in a manner that did not overwhelm the downward 

torque early on, but was high enough near the end of the jump to counter the downward torque. 

 Timing was also important.  It was necessary to start the command current before the 

jump occurred so the muscle would have time to build up sufficient tension to act on the body 

throughout the jump. This implies that just as the locust adjusts its pitch prior to jumping; it must 

also approximate how much dorsal flexion will be required for a given postural setup.  This is 

further supported by the rapidness of the jump, which occurred over a span of 20-35 ms with the 

bulk of the acceleration occurring in the last 10-15 ms (Bennet-Clark 1975, Brown 1967).  The 

speed of the jump makes it unlikely that a reflex circuit alone could be responsible for 

controlling the dorsal flexion.  However, it is possible that a reflex circuit assists an already 

active dorsal flexion when the TOPV becomes negative and causes the dorsal abdominal muscles 

to stretch.   

 Data from the high-speed video also suggests that there is a bias in the way locusts use 

abdominal muscles during control of tumbling.  Very few abdominal extensions (negative 

abdominal flexion) were seen for the live animals, and the few that were visible had a much 

smaller magnitude than the flexions.  If locusts used both flexions and extensions then this data 

should have been more uniform.  Simulations of ventral extensions were effective in reducing 

the pitch velocities for postures that produced a jump that pitched rapidly upward.  So it appears 

that ventral extensions could be used in a manner similar to dorsal flexions, but the locust chose 

not to do so.  Negative tumbling was corrected, but positive tumbling was left alone.   

This bias may be due to an evolutionary advantage related to flight.  Locusts typically 

initiate flight by jumping (Bicker and Pearson 1983, Pond 1972).  This allows them to attain a 
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sufficient velocity and height above the ground to begin flight.  However, if they were to begin 

flying after tumbling downward their head would be pointed at the ground and they would 

quickly crash.  It’s possible that they could correct their orientation in the air using their legs, 

body momentum, and wings to reorient the body (Arbas 1983).  Unfortunately, both of these 

conditions could prove disastrous when attempting to escape a predator.  If they were to crash 

into the ground they would be easily caught and killed.  Even if they could correct the body 

orientation this would waste valuable time and delay their escape, thus increasing the likelihood 

they would be caught.  From an evolutionary perspective it makes much more sense for the 

locust to pitch up instead of down.  So while using the ventral abdominal muscles could 

potentially reduce the tumbling pitch velocities for cases where it is extremely positive, it may 

make it more likely that a positive tumble would be converted into being negative, and that could 

have potentially fatal consequences. 

A key assumption in the previous work that related beta angle with the control of jump 

elevation was that the COM was located directly at the site of force application.  The COM is so 

close the CF joint that this was a justifiable simplification of the model that greatly reduced the 

mathematical complexity.  However, the COM is not actually located there, and this adds some 

nuance to the previous analysis.  First, it means that the COM can be out of the line of the thrust 

vector, and if it is then this will cause torques that produce tumbling.  Second, the amount of 

torque, and thus the velocity of tumbling, will be related to how much error there is between the 

location of the COM and thrust vector.  By altering their pitch prior to jumping the locust can 

minimize this error.  Third, torques from the activation of abdominal muscles can counteract the 

tumbling torques and change negative tumbles into positive ones.  Fourth, the control of jump 

elevation appears to be influenced by tumbling.  The simulations presented here show that when 
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the pitch velocity of the locust during takeoff was held close to zero the beta angle was a good 

predictor of the takeoff angle, and that they varied in linear fashion with a slope of one.  When 

the velocity became strongly negative, as happens without dorsal flexions, the beta angle shifted 

during the jump due to shifting of the body mass, and this skewed the takeoff angle upwards.  So 

it appears that control of tumbling is not only important for maintaining the orientation of the 

body during the jump, but also for ensuring that the elevation is correct. 

It is unclear whether the mechanisms outlined here will be generally applicable to other 

jumping animals.  For instance, while the bush cricket (Pholidoptera griseoptera) has a number 

of differences in its jumping mechanism compared to the locust, it shares enough similarities that 

one would expect it to face similar challenges regarding control of tumbling.  However, 

recordings of their jumping failed to find examples of tumbling (Burrows and Morris 2003).  

This suggests that its COM is directly located at the point of thrust application.  Other animals 

like the flee-beetle (Alticinae) appear to use their wings to prevent tumbling (Brackenbury and 

Wang 1995).  This differs from locusts in that they typically open their wings before takeoff, 

while locusts open their wings 20-30 ms after the tarsi have left the ground (Pond 1972).       
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CHAPTER 5. 

GENERAL DISCUSSION 

The dynamics of sensori-motor feedback loops are affected by the linear, nonlinear, and 

time-varying properties of each of the many elements that compose them, including the location 

and transduction properties of sensory receptors, the responses of sensory neurons, the 

membrane properties, shapes, and synaptic interconnection of central neurons, synaptic 

transmission, the pattern of muscular innervation, excitation-contraction coupling of muscle, and 

the biomechanics of movement.  Movement itself changes both the pattern of external and 

proprioceptive sensory input and the biomechanical context of the body’s function. Both 

decisions about what to do next and how to do it must be continually adjusted in the face of these 

changes in order to respond adaptively.     

To understand the operation of these feedback loops, we must first understand the 

function of the individual elements in isolation, and then determine how they operate in the 

context of the feedback loop.  Finally, we must create a theoretical scheme, or model, that 

captures the essential properties of the elements as they work in a feedback loop in a specific 

neuromechanical context.  Analysis of the model will help identify the elements, properties, and 

interactions that are most critical for it to function, as well as those to which it is indifferent, and 

thereby help us understand how the feedback loop in the animal works in this context. 

Neuromechanical simulations have been constructed to study the behavior of humans 

(Cheng, et al. 2000, Delp and Loan 2000, Taga 1995a, Taga 1995b) and other animals, including 

insects (Cruse, et al. 1998, Ekeberg, et al. 2004, Spragna, et al. 2007), lamprey (Ekeberg and 

Grillner 1999), cat (Ekeberg and Pearson 2005, Lockhart and Ting 2007), and leech 

(Skierczynski, et al. 1996). Some of these models are more biologically realistic (Ekeberg, et al. 
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2004, Ekeberg and Grillner 1999, Ekeberg and Pearson 2005, Skierczynski, et al. 1996, Taga 

1995a), while other models are more abstract (Cruse, et al. 1995a, Cruse, et al. 1995b, Cruse, et 

al. 1998, Reichler and Delcomyn 2000). These studies have shown that the simulation of the 

interacting neuronal and biomechanical components of the virtual animal can lead to valuable 

insights into the mechanisms that govern behavior. However, the modeling approaches are each 

tailored to a particular example of an animal’s behavior and the neural structures that mediate it.  

At present, no general simulator for neuromechanical mechanisms exists to provide the function 

that NEURON (Hines and Carnevale 2001) and GENESIS (Bower and Beerman 2007) provide 

as general neural simulators, or that OPENSIM (Delp, et al. 2007) provides for biomechanical 

simulations.  AnimatLab was created to provide such a general neuromechanical simulator.         

AnimatLab was designed to provide a framework in which neuromechanical models can 

be assembled and analyzed in a specific context.  AnimatLab models constitute a record of what 

is known or hypothesized about the individual elements, including the receptors, neurons, 

synapses, muscles, joints, and body segments that compose a neuromechanical system.  

Annotations in the ‘description’ cell of each ‘properties table’ allow the sources of all the 

parameter values in that table to be identified, so that what is known from measurement and what 

is guessed can be clearly distinguished.  AnimatLab models also reflect hypotheses about how 

the system works and how it depends on the properties of individual elements.  Simulations can 

test the hypotheses by showing the circumstances under which the model behaves like the 

animal, identifying the model parameters that have more or less influence on that behavior, and 

revealing patterns of activity and parameter change that are not normally observable in the freely 

moving animal.  Moreover, the sensitivities of the model to its organization and to its parameters 

provide another set of testable hypotheses about the corresponding organization and parameters 
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of the real animal.  This iterative dialog between experiment and simulation may allow the 

daunting complexity of dynamic neuromechanical systems to be analyzed and understood.   

Beyond a single investigator’s efforts to build and test models of a neuromechanical system is 

the need to share the results of those efforts with others. The lack of a common platform for 

building, testing and editing neuromechanical models has meant that they are not readily shared, 

and so has prevented them from being tested, modified or extended by others.  By providing a 

common, flexible and broadly applicable modeling framework, AnimatLab enables investigators 

to share models, test them and modify them. 

 

Locust Jumping 

The similarity between jumping and kicking in the locust has led to the assumption that 

both of these behaviors arise from the same neural motor program.  Technical limitations 

currently prevent us from testing this physiologically, but neuromechanical simulation provided 

a method to verify that the motor program for the kick was able to reproduce jumping behavior.  

It demonstrated that the jump could be reproduced over a wide range of parameters, and that 

variables like the jump velocity could be controlled by setting the extensor tension. 

  Neuromechanical simulation also allowed us to do a detailed analysis of the role of the 

SLP in jump dynamics by comparing the jumps of virtual locusts when it was intact and when it 

was removed. As predicted, the SLP had a major impact on the jump distance, increasing it 

between 25% and 40% when the SLP was present.  Analysis of the SLP during the jump also 

showed that there was a delay in its unfurling caused by the geometry of the joint and the torques 

that this produced.  The geometry of the joint produces a flexion torque at the beginning of the 
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jump that helps assist the flexor muscle and allows that muscle to be weaker so that more of the 

volume in the leg can be devoted to the extensor muscle to increase the power for the jump.   

These findings highlight some of the areas where neuromechanical simulation is very 

useful.  First, simulation allows you to easily perform tests that are difficult or impossible on the 

living animal.  This is tremendously useful because it gives the researcher the power to 

investigate questions that were previously out of reach.   

Second, we have complete access to all the variables throughout the simulation.  This 

makes it easy to see the relationships between components in the system and obtain a global 

perspective of what is happening.  Typically, in physiological studies the researcher must focus 

on one small piece at a time, and then later try and fit all of those pieces back together like a jig-

saw puzzle to produce a coherent story of how the system works.  When data for all parts of the 

system are readily available this is no longer necessary.   

 

Locust Tumbling 

  Two hypotheses on the control of tumbling in locusts were explored here.  The first 

hypothesis was that locusts adjust the pitch of their body prior to jumping to move the COM 

closer to the thrust vector.  This was supported by a strong correlation which showed that as the 

takeoff angle increases the initial pitch of the body also increased.  Simulations extended this by 

finding that along the regression line of this correlation the pitch velocity was small, and that 

above the line it increasingly pitched upward, and below the line it pitched downward.  The live 

locust was adopting a posture prior to jumping, and within the simulations that same posture 

moved the COM closer to the thrust vector, and thus minimized tumbling.      
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The second hypothesis was that contraction of the abdominal muscles during the jump 

creates a counter-torque that maintains the COM near the thrust vector and prevents rapid 

rotations of the body during the jump impulse.  Comparison between an example jump from a 

live locust and simulated jumps with and without dorsal flexion stimuli demonstrated the 

profound effect that contraction of the abdominal muscles had on jump behavior.  When no 

flexion was included the torque from thrust caused the body to rotate downward rapidly, but 

when dorsal abdominal muscle contraction was included the behavior was very similar to the 

live locust.  Altering the amount of tension in the muscle also allowed the behavior to be 

controlled and produced tumbling over a wide range of velocities, and it was able to convert all 

the instances of negative tumbling into positive ones.   

The simulations also produced some unexpected results.  When strong negative tumbling 

occurred the relationship between the beta and takeoff angle was skewed upward.  Further 

analysis showed that this occurred because the mass of the body shifted and caused the beta 

angle to increase during the jump impulse.  When dorsal flexions were used to prevent negative 

tumbling the relationship between beta and takeoff angle was restored. 

These results also demonstrated several important ways in which neuromechanical 

simulation is beneficial.  It made it very easy to vary several parameters in a systematic manner 

and compare the resulting behavior.  Getting live locust to vary their beta angle and initial pitch 

over such a wide range of values would be infeasible.  Doing the same thing with the simulated 

locust was trivial.  This ability allows researchers to explore the parameter space in more detail 

and allows them to gain a better understanding of how the real animal would behave in situations 

that would be difficult to replicate in an experimental setting.  It also makes it easy to test which 



100 

parameters are most important to the behavior, and how sensitive they are to variation.  This is 

something that is extremely difficult to do in living physiological preparations. 

The fact that the relationship between the beta and takeoff angles was skewed for 

negative pitch velocities was surprising and unexpected.  The neurobiology and biomechanics of 

behavior is such a complex and dynamic processes that it is almost impossible to keep track of 

all of the possible ways that variables can interact and influence each other.  This is what makes 

relying on “just-so” stories of the causes of behavior so perilous.  There may be unforeseen 

interactions that are difficult to grasp by just thinking about the hypothesis and the relationship 

between the proposed mechanism and the resulting behavior.  This is where neuromechanical 

simulations are most useful.  They make the hypothesis explicit and make these types of 

interactions readily apparent.  This can then lead to new insights about how the system works, 

and generate ideas for tests of both the simulation and of physiological experiments.     

 

General Conclusions 

This work demonstrates the utility of neuromechanical simulation for analysis of the 

interaction of neural mechanisms of control with biomechanical processes that mediate and 

constrain the animal’s movement.  Neuromechanical simulation enables the operation of neural 

circuits that have been described in dissected, restrained and anesthetized animals to be 

understood in something like their natural context, where the consequences for movement of 

their activity become readily apparent.    
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