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KINETIC AND CRYSTALLOGRAPHIC STUDIES OF 

DRUG-RESISTANT MUTANTS OF HIV-1 PROTEASE: 

INSIGHTS INTO THE DRUG RESISTANCE MECHANISMS 

by 

Fengling Liu 

Under the Direction of Irene T. Weber 

 

ABSTRACT 

HIV-1 protease (PR) inhibitors (PIs) are important anti-HIV drugs for the 

treatment of AIDS and have shown great success in reducing mortality and 

prolonging the life of HIV-infected individuals. However, the rapid development of 

drug resistance is one of the major factors causing the reduced effectiveness of PIs. 

Consequently, various drug resistant mutants of HIV-1 PR have been extensively 

studied to gain insight into the mechanisms of drug resistance. In this study, the 

crystal structures, dimer stabilities, and kinetics data have been analyzed for wild type 

PR and over 10   resistant mutants including PRL24I, PRI32V, PRM46L, PRG48V, PRI50V, 

PRF53L, PRI54V, PRI54M, PRG73S and PRL90M. These mutations lie in varied structural 

regions of PR: adjacent to the active site, in the inhibitor binding site, the flap or at 

protein surface.  The enzymatic activity and inhibition were altered in mutant PR to 

various degrees.  



 

Crystal structures of the mutants complexed with a substrate analog inhibitor 

or drugs indinavir, saquinavir and darunavir were determined at resolutions of 0.84 – 

1.50 Å. Each mutant revealed distinct structural changes, which are usually located at 

the mutated residue, the flap and inhibitor binding sites. Moreover, darunavir was 

shown to bind to PR at a new site on the flap surface in PRI32V and PRM46L.  The 

existence of this additional inhibitor binding site may explain the high effectiveness 

of darunavir on drug resistant mutants.  Moreover, the unliganded structure PRF53L 

had a wider separation at the tips of the flaps than in unliganded wild type PR. The 

absence of flap interactions in PRF53L suggests a novel mechanism for drug resistance. 

Therefore, this study enhanced our understanding of the role of individual residues in 

the development of drug resistance and the structural basis of drug resistance 

mechanisms. Atomic resolution crystal structures are valuable for the design of more 

potent protease inhibitors to overcome the drug resistance problem. 

 

 

INDEX WORDS: protease inhibitor, substrate analog inhibitor, indinavir, saquinavir,   

darunavir, TMC114, active site mutation, flap mutation, distal 

mutation.  

 

 

 

 



 

KINETIC AND CRYSTALLOGRAPHIC STUDIES OF DRUG-RESISTANT 

MUTANTS OF HIV-1 PROTEASE: INSIGHTS INTO THE DRUG RESISTANCE 

MECHANISMS 

           by 

FENGLING LIU 

 

 

 

 

 

 

A Dissertation Submitted in Partial Fulfillment of Requirements for the Degree of  

Doctor of Philosophy  

In the College of Arts and Sciences 

Georgia State University 

 
 
 
 
 
 
 
 
 

2006 
 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Fengling Liu  

2006 

 



 

KINETIC AND CRYSTALLOGRAPHIC STUDIES OF DRUG-RESISTANT 

MUTANTS OF HIV-1 PROTEASE: INSIGHTS INTO THE DRUG RESISTANCE 

MECHANISMS 

 

by 

FENGLING LIU 

 

 

Major Professor: Irene Weber 

                                             Committee:         Giovanni Gadda 

                                John Houghton 

 

 

 

Electronic Version Approved: 

 

Office of Graduate Studies 

College of Arts and Sciences 

Georgia State University 

May 2007 



 iv

ACKNOWLEGEMENTS 

I would like to sincerely thank my advisor Dr. Irene Weber for her 

guidance, encouragement, and patience throughout my graduate study at Georgia 

State University. She taught me protein crystallography and innumerable lessons 

and insights into research. Her technical and editorial advice was essential for the 

completion of my dissertation. She always respects my interest and put my needs 

as her top priority. Importantly she provides me a pleasant laboratory environment 

for my study and research. In all, I am very blessed to have her as my mentor who 

has set a great example for me to follow. 

My sincere thanks also go to my committee members Dr. Giovanni Gadda 

and Dr. John Houghton. They have provided lots of valuable advices at my annual 

meetings and defense.   

I give special thanks to Dr. Andrey Kovalevsky and Dr. Peter Boross for 

fruitful collaborations. They educated me crystallography and kinetics, 

respectively. Andrey helped me solve a couple of crystal structures and also 

critiqued my writing. Thanks also go to Yuan-Fang Wang for teaching me using 

various programs for solving crystal structures.  The friendship of Yunfeng Tie, 

Ping Liu and Bin Fang is much appreciated and has led to many interesting and 

good-spirited discussions relating to my research. I am also grateful to my 

colleagues Tingyi Chiu, Johnson Agniswamy, Alexander Chumanevich.  



 v

My thanks go to Dr. Robert Harrison for his insightful questions and 

inspiriting suggestions at our lab meetings. His students Hao Wang, Patra 

Volarath, Xianfeng Chen also provided help with computer programs.   

I am gratitude to Dr. Arun Ghosh and Merck for providing protease 

inhibitors and Dr. John Louis for providing HIV protease constructs. I also thank 

the staff at the SER-CAT (ID-22 beamline) at the Advanced Photon Source, 

Argonne National Laboratory for assistance during X-ray data collection. My 

research was supported in part by the Georgia Research Alliance, the Georgia 

Cancer Coalition, the National Institute of Health grants and Molecular Basis of 

Disease Program at Georgia State University.  

Finally, I would like to express my whole-heart thankfulness to my parents 

(Guangxin Liu and Siai Lin) for their unconditional love. Without their great 

support and encouragement, I could not make it for today. I am deeply indebted 

them.  



 vi

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS……………………………………………… iv
 
LIST OF TABLES……………………………………………………….. vii
 
LIST OF FIGURES……………………………………………………… viii
 
LIST OF xi
 
GENERAL INTRODICTION ……..…………………………………… 1
            
MARTIALS AND METHODS ……..…………………………………… 39
 
CHAPTER ONE : Kinetic, Stability, and Structural Changes in High 
Resolution Crystal Structures of HIV-1 Protease with Drug Resistant 
Mutations L24I, I50V, and G73S ……..…………………………………. 

47

 
CHAPTER TWO: Mechanism of Drug Resistance Revealed by the 
Crystal Structure of the Unliganded HIV-1 Protease with F53L Mutation  

74

 
CHAPTER THREE: Ultra-high Resolution Crystal Structure of HIV-1 
Protease Mutant Reveals Two Binding Sites for Clinical Inhibitor 
TMC114 ………………………………………………………………….. 

91

 
CHAPTER FOUR: The Role of HIV-1 Protease with Flap Mutations in 
Drug Resistance of Saquinavir and Darunavir: Insights from High 
Resolution Crystal Structures …………………………………………… 

118

 
OVERALL SUMMARY ………………………………………………… 142
 
REFERENCES…………………………………………………………… 151
 
APPENDICES …………………………………………………………… 166



 vii

LIST OF TABLES 

Table 1 The DNA sequences of primers for introducing mutations 40
  
Table 2 The crystallization conditions  44
  
Table 1.1 Kinetic parameters for hydrolysis of spectroscopic substrate  50
  
Table 1.2 Kinetic parameters from the HPLC assay 53
  
Table 1.3 Inhibition constants for indinavir 55
  
Table 1.4 Crystallographic data statistics 56
  
Table 2.1 Crystallographic data collection and refinement statistics  78
  
Table 3.1 Data collection and refinement statistics for PRV32I and PRM46L 

in complex with TMC114 
99

  
Table 3.2 Kinetic parameters from the spectrophotometric assay  114
  
Table 4.1 Crystallographic Data Statistics 123



 viii

LIST OF FIGURES 

Figure 1 Genetic organization of HIV-1 and the cleavage sites of 
protease  

3

  
Figure 2 The life cycle of HIV 4
  
Figure 3 Alignment of retroviral PR sequences of known structure 

and structural superposition of retroviral PR 
7

  
Figure 4 The proposed catalytic mechanism for aspartic PR 8
  
Figure 5 The overall structure of HIV PR/inhibitor complex. 13
  
Figure 6 The schematic diagram of a substrate bound to HIV-1 PR 

subsites. 
15

  
Figure 7 The complex of HIV reverse transcriptase with an RNA-

DNA Duplex.  
19

  
Figure 8 The chemical structures of reverse transcriptase inhibitors 20
  
Figure 9 Structural features of HIV protease inhibitors 21
  
Figure 10 The H-bonds between the PR and inhibitor 23

  
Figure 11 The PI drug resistance notes from the Stanford HIV drug 

resistance database 
28

  
Figure 12 Mutations in the protease gene associated with resistance to 

PIs 
30

  
Figure 1.1 PR dimer structure with indinavir 49
  
Figure 1.2 Protease stability 54
  
Figure 1.3 Omit map for indinavir in crystal structure of PRL24I–IDV  58
  
Figure 1.4 Residues with alternate conformations and Omit maps for 

mutated residues 
59



 ix

Figure 1.5 Structural differences at sites of mutation  64
  
Figure 1.6 Protease-inhibitor interactions 68
  
Figure 1.7 The electron density map of catalytic site of PRL24I – p2/NC 72
  
Figure 2.1 Specific activity as a function of urea concentration 77
  
Figure 2.2 The Fo-Fc omit map for flap residues 81
  
Figure 2.3 Comparison of unliganded PR, PRF53L, PRMDR, and 

TMC114-complexed PR structures
82

  
Figure 2.4 Comparison of inter-flap interactions in unliganded PRF53L 

and unliganded PR structures 
84

  
Figure 3.1 PR dimer structure and electron density map 95
  
Figure 3.2 Comparison of hydrogen bonds between the central OH 

group of TMC114 and Asp25, Asp25’ for major and minor 
inhibitor orientations 

103

  
Figure 3.3 PR-TMC114 interactions 104
  
Figure 3.4 TMC114 bound to the flap binding site in PRV32I 107
  
Figure 3.5 Interactions of TMC114 bound in the flap site for PRV32I 109
  
Figure 3.6 The superposition of the mutant V32I and M46L structures 111
  
Figure 4.1 The chemical structures of saquinavir and darunavir 120
  
Figure 4.2 The Fo-Fc omit maps showing the mutated residues and the 124
  
Figure 4.3 The Fo-Fc omit maps of saquinavir and darunavir 125
  
Figure 4.4 The flap regions for superimposed complexes with darunavir 126
  
Figure 4.5 Comparison of the flaps of PRG48V-DRV and of wild type 129
  
Figure 4.6 The interactions of residues 50, 51, 54 and 79-81 133



 x

  
Figure 4.7 Selected darunavir interactions of PRG48V-DRV and PRI54M-

DRV 
137

  
Figure 4.8 PRI54M-inhibitor interactions 139
  
Figure 13 The summary of drug resistance mechanism of HIV-1 

protease mutants  
143

 



 xi

LIST OF ABBREVIATIONS 

Å   Angstrom 

ALA   alanine 

AMMP  Another Molecular Mechanics/Modeling Program 

ARG   arginine 

AS   ammonium sulfate 

ASP   aspartic acid 

ASN   asparagine  

C   carbon 

CYS   cysteine 

DMSO  dimethylsulfoxide 

GEL 1-O-octyl-2-heptylphosphonyl-SN-glycero-3- 

phosphoethanolamine 

GLU   glutamic acid 

GLN   glutamine 

GLY   glycine 

DRV (TMC114)         darunavir (3R,3AS,6AR)-hexahydrofuro [2,3-B]furan-3-

yl(1S,2R)-3-[[(4-aminophenyl)sulfonyl](isobutyl) amino]-

1-benzyl-2-hydroxypropylcarbamate 

HIS   histidine 

HIV-1   Human Immunodeficiency Virus 1 

ILE   Isoleucine 



 xii

IPTG   isopropyl-D-thio-galactopyranoside 

LB   Luria-Bertani 

LEU   leucine 

LYS   lysine 

M   molar 

MET   methionine 

MR   molecular replacement 

Na+   sodium ion 

PDB   Protein Data Bank 

PEG    polyethylene glycol 

PHE   phenylalanine 

PO4
3-   phosphate ion 

PR   wild type HIV-1 protease  

PRL24I   PR with L24I mutation 

PRD25N   PR with D25N mutation 

PRM46L   PR with M46L mutation 

PRI50V   PR with I50V mutation 

PRF53L   PR with F53L mutation 

PRI54V   PR with I54V mutation 

PRI54M   PR with I54M mutation 

PRG73S   PR with G73S mutation 

PRI84V   PR with I84V mutation 



 xiii

PRV82A   PR with V82A mutation 

PRL90M   PR with L90M mutation 

PRO   proline 

RMS   root mean square 

SER   serine 

SO4
2-   sulfate ion 

SQV                            saquinavir cis-N-tert-butyl-decahydro-2-[2(R)-hydroxy-4-

phenyl-3(S)-[[N-2-quinolylcarbonyl-L-

asparaginyl]amino]butyl]-(4AS)-isoquinoline-3(S)-

carboxamide 

THR threonine 

TRP   tryptophan 

TYR   tyrosine 

µl   microliter 

VAL   Valine 



 1

GENERAL INTRODUCTION 

1.  AIDS and HIV  

It has been over two decades since HIV (Human Immunodeficiency Virus) 

was first recognized as the pathogenic/causative agent for AIDS (Acquired 

Immunodeficiency Deficiency Syndrome) (Barre-Sinoussi 1983; Gallo 1984; Popovic 

1984). Since then, the pathogenesis and treatment of AIDS has been extensively 

studied and great progress has been made. However, the pandemic of AIDS is still 

globally expanding and the fight against this dreaded disease is long-lasting. 

According to the UNAIDS report, over 40 million people worldwide are living with 

HIV, of which a half million are in the United States. In 2005 alone, 5 million 

individuals were newly infected with HIV and more than 3 million died of AIDS 

(UNAIDS/WHO 2005). It means that every 6 seconds a person is newly infected with 

HIV and that every 10 seconds a person dies of AIDS or AIDS-associated infection 

(Greene 2004). The global spending on AIDS treatment and care is huge, US $300 

million in 1996 and US $5 billion in 2003. Nevertheless, the budget is far below the 

need especially in the south of Africa, where the pandemic hits hardest.   

1.1 HIV Life Cycle 

The infection of HIV begins with the recognition of  viral envelope 

glycoprotein to the cell surface receptors CD4 and other coreceptors on the host cells 

(Maddon 1986; Deng 1996). The binding of CD4 to envelope glycoprotein gp120 

induces conformational changes in gp120 and causes enhanced binding affinity for 
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other coreceptors (Wu 1996). After the virus fuses with the host cell membrane, HIV 

releases the viral genetic material into the cytoplasm of the host cell. HIV belongs to 

the retrovirus family, which possesses two copies of single-strand RNA in its viral 

particle. The viral RNA is first reverse transcribed into DNA; the DNA replicates into 

double strands, and then inserts into the genome of the human host cell. So the viral 

genome is replicated with the host cell genome. The viral genome is translated into 

three primary polyproteins (Figure 1): Gag, Gag-pol and Env. Gag (group antigen) 

encodes internal structural components of the virion: matrix, capsid, and nucleocapsid 

proteins. Pol (polymerase) contains reverse transcriptase and integrase, two key 

enzymes in the viral replication. Another important enzyme, the protease, is located at 

the upstream of Pol in Gag-pol polyprotein. Env encodes two exterior proteins SU 

(surface unit glycoprotein) and TM (transmembrane envelope). These exterior 

proteins recognize the surface receptors on the target cells in the early stage of 

infection (Coffin 1997). The HIV particle packing is a self-assembly course under the 

direction of the Gag precursor polyproteins (Gheysen 1989; Luban 1993). When the 

uncleaved viral precursor polyproteins, viral RNA and other elements are packed into 

the viral particles and released from the infected cells, they are immature or have no 

infectious ability. The virus only becomes infectious after the PR cleaves the Gag and 

Gag-pol into functional proteins (Emini 2002). Besides these primary proteins, HIV 

also encodes some accessory proteins, which regulate the viral infection, replication 

and maturation. All the retroviruses follow a similar life cycle, including fusion, 

reverse transcription, integration, translation, assembly and budding (Figure 2).  
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Figure 1: Genetic organization of HIV-1 and the cleavage sites of HIV PR at Gag and 

Gag-pol polyproteins. Some of accessory proteins are omitted for clarity. MA for 

matrix, CA for capsid, NC for nucleocapsid, TF for transframe, RT for reverse 

transcriptase, RH for RNase H, IN for integrase, p1 and p2 are spacer peptides. p6 is 

peptide at 3’ region of the Gag precursor and negatively regulates the PR activity. SU 

for surface unit glycoprotein and TM for transmembrane envelope. 

MA CA NC p6p1p2 Gag

Gag-PolTF RT          INPRMA CA NC p1p2 RH

SU TMEnv

MA CA NC p6p1p2MA CA NC p6p1p2 Gag

Gag-PolTF RT          INPRMA CA NC p1p2 RHTF RT          INPRMA CA NC p1p2 RH

SU TMEnv  
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Figure 2: The life cycle of HIV includes fusion, reverse transcription, integration, and 

assembly (from the website: pathmicro.med.sc.edu/lecture/hivstage.gif). 
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Most of the key steps in the life cycle of HIV can be employed as targets to design 

anti-HIV drugs. 

1.2 The Role of HIV PR  

 HIV protease (PR) is an endopeptidase that catalyzes the cleavage of Gag and 

Gag-pol polyproteins into mature proteins.  The active form of the PR is a homodimer 

with 99 amino acid residues in each subunit. For convenience, the residues in one 

subunit are numbered 1-99 and those from the other subunit are numbered 1’-99’. The 

two subunits form an active site cavity, in which the substrate binds and is hydrolyzed. 

Most of PR inhibitors are designed to bind in the active site cavity of PR and 

competitively exclude the binding and cleavage of natural substrates. When the PR is 

inactivated by inhibitor or mutation of key residues, the cleavage of Gag and Gag-pol 

polyproteins is interrupted; as a result, the budding viral particles become 

noninfectious (Kohl 1988; Seelmeier 1988).  

Besides the function in hydrolysis of viral polyproteins, PR has also been 

detected to cleave cellular proteins, such as NF-κB precursor, cytoskeleton and 

sarcomeric proteins. The cleavage of those cellular proteins has been speculated to 

play a role in viral replication and infection (Riviere 1991; Shoeman 1993). 

2. HIV-1 PR Structure 

After recognizing the indispensable role of PR in virus maturation, intensive 

efforts have been made to determine the three dimensional structures of PR, which 

are crucial for the design of anti-viral drugs. The three dimensional structures of HIV-

1 PR were one of the first retroviral PR structures solved by X-ray crystallography 

(Lapatto 1989; Miller 1989; Navia 1989; Wlodawer 1989). Since 1989, more than 
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200 HIV PR structures unliganded or complexed with various inhibitors or substrates 

have been deposited in the Protein Data Bank (Berman 2000) and HIV Protease 

Database (Wlodawer 1993; Vondrasek 1997). Meanwhile, many other retroviral PR 

structures have been solved by X-ray crystallography, including those of ASLV 

(Avian Sarcoma-Leukosis Virus) (Miller 1989), RSV (Rous Sarcoma Virus) 

(Jaskolski 1990), HIV-2 (Mulichak 1993; Tong 1993), SIV (Simian 

Immunodeficiency Virus) (Rose 1993; Zhao 1993), FLV (Feline Leukemia Virus) 

(Wlodawer 1995), EIAV (Equine Infectious Anemia Virus) (Gustchina 1996), and 

recently HTLV-1 (Human T-cell Leukemia Virus) (Li 2005). As can be seen in 

Figure 3, the retroviral PRs share some common features in amino acid sequence and 

tertiary structure. Among the structures of known retroviral PRs, the sequence 

similarity is low and only about 20 residues are highly conserved (Figure 3A), most 

of which are located around the active site and substrate binding site (Rao 1991 ; 

Coffin 1997). Despite the diversity of the amino acid sequences, the overall three 

dimensional structures of PR are extremely similar in the central region (Figure 3B). 

They share conserved structural motifs at the conserved triplet (Asp-Thr-Gly) at the 

active site, the flap region, the dimer interface and a conserved water molecule.  

2.1 The Catalytic Site and Proposed Catalytic Mechanisms of HIV-1 PR 

 Like other aspartic PRs, the HIV-1 PR contains a conserved triad, Asp-Thr-

Gly, at residues 25-27 (Cairns 1988). The mutation of Asp25 causes the HIV-1 PR to 

be completely inactive and thus the Asp25 plays an irreplaceable role in the reaction 

of hydrolysis of peptide bonds (Kohl 1988; Seelmeier 1988).  
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Figure 3A: Alignment of retroviral PR sequences of known structure; 3B: Structural 
superposition of retroviral PR. HIV-1 PR is colored in green; HIV-2 PR in dark blue; 
HTLV-1 PR in blue; SIV PR in gray; RSV PR in magenta; EIAV PR in yellow; and 
FIV PR in red (Li, 2005) 

A 
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Figure 4A: The proposed “the general-base mechanism” for aspartic PR (Brik, 2003) 
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Figure 4B: The proposed catalytic mechanism of HIV PR by Hyland (Brik, 2003) 
 



 10

Several catalytic mechanisms of HIV PR have been proposed although the 

detailed catalytic mechanisms remain unclear. The catalytic mechanism of aspartic  

PR has been extensively studied in nonviral aspartic PR before focusing on HIV PR 

(Pearl 1984; Fruton 1987; Suguna 1987). Despite some disagreement about the details 

among the various proposed mechanisms, the general acid-base mechanism is 

commonly accepted for aspartic PR. Suguna (1987) proposed a mechanism based on 

a crystal structure of Rhizopys chinensis PR complexed with a substrate analog 

inhibitor. In this mechanism, one of the carboxylate of the aspartate in an 

unprotonated state acts as a base to attack the water in the active site, as illustrated in 

Figure 4A. The activated water in turn attacks the carbonyl C of substrate at the 

scissile bond to form a tetrahedral intermediate. The other carboxylate of aspartate in 

protonated state acts as an acid to polarize the carbonyl bond. The intermediate is 

broken into carboxylic acid and amine products as a result of the protonation of the 

scissile amide N and unstable bonds.  

Some catalytic mechanisms have been proposed specifically for HIV PR.  

Based on solvent isotope effects and structure data, Hyland proposed the mechanism 

as shown in Figure 4B (Hyland 1991; Hyland 1991; Brik 2003). In this mechanism, 

the proton of one of the carboxylate O of Asp25 attacks the carbonyl C of the 

substrate, and nucleophilic water attacks the unprotoned Asp25 and the photon is 

transferred to the Asp25 and the hydroxyl is transferred to the carbonyl C. The newly 

gained proton of Asp25 then is transferred to the amide N of the substrate; 

simultaneously (Hyland 1991; Silva 1996) or subsequently (Okimoto 1999) a proton 

from hydroxyl group of the carbonyl C donates to the amide N (Piana 2002). A 
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concerted mechanism has also been proposed (Antonov 1981; Jaskolski 1991) and the 

major standpoint is that the nucleophilic water and acidic unprotonated Asp25 

simultaneously attack the scissile bond.  

Based on those proposed mechanisms, the nucleophilic water is indispensable 

and should be located between the two active site aspartates. In unliganded crystal 

structures of HIV PR, a uranyl ion has been found to bind between the two active site 

aspartates (Wlodawer 1989) but no water molecule has been observed at this position. 

In the crystal structures of HIV PR complexed with inhibitors, there is no space to 

accommodate a water molecule or other atoms bigger than a proton at this position. 

Nevertheless, a conserved water molecule that bridges two C=O groups of the 

substrate at the scissile bond and NH groups of the main chain of Ile50 and Ile50’ has 

been consistently observed in most of inhibitor-bound HIV PR structures. This water 

has been proposed to be involved in the catalytic reaction (Gustchina 1990; Harrison 

1994). According to the molecular dynamic simulations of HIV PR by Harrison 

(1994), this conserved water molecule is likely to attack the scissile bond along with 

two aspartates from the opposite side of the substrate. The flexibility of the flap of 

HIV allows this water to enter the right position for the reaction.  In summary, the 

understanding of the HIV PR catalytic mechanism remains incomplete. However, the 

various proposed mechanisms share some similarity and generally agree with the 

involvement of the nucleophilic water and the function of the two aspartic residues.  

2.2 The Dimer Interface 

 Since the active form of PR is composed of two subunits, the dimer stability 

has significant effects on the enzyme activity. The dimer stability of PR is maintained 
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through noncovalent interactions of the four strands of ß-sheet comprising residues 1-

4 (N-terminus) and 96-99 (C-terminus) and the residues 24-29 at the active site region. 

In addition, the interactions between residues from two subunits Ile50 and Gly51’, 

Asp29, Arg87 and Arg8’ also influence the dimerization significantly (Weber 1990; 

Louis 2003). Finally, the binding of substrates or inhibitors greatly enhances the 

dimer stability.  

2.3 The Flap Region   

A glycine-rich loop from residues 45-55, known as the flap, folds into an 

extended anti-parallel β strand. Unlike the pepsin-like PR, which has only a single 

flap (James 1982), the active HIV-1 PR possesses two flap regions, one from each 

monomer (Figure 5). The flap clinches a substrate into its active site cavity and 

releases products out of the active site, so it has to be fairly flexible. The analysis by 

molecular dynamic simulations and NMR experiments suggests that the flap is in the 

dynamic equilibrium of fully open (allowing the entry of substrate), semi-open (as in 

the structures without binding of inhibitor) and closed conformations (as in the 

inhibitor-bound structures); and the semi-open is anticipated to be the major 

conformation for unliganded PR (Nicholson 1995; Freedberg 2002; Hornak 2006). 

The comparison of crystal structures of the unliganded PR and PR/inhibitor 

complexes has shown that the tips of the flaps (near residue 50) shift 7 Å (Miller 

1989). It has been predicted that the flaps must swing about 15 Å from their position 

in the inhibitor-complexed PR to allow the polyprotein substrate to enter the active 

site (Gustchina 1990).  
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Figure 5: The overall structure of HIV PR/inhibitor complex. The flap region is 

indicated in pink; the dimer interface at the N and C terminus regions in cyan; Active 

site Asp25 in red; the inhibitor as spheres. 

flap 

inhibitor 

dimer interface 

Asp25 
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 Large scale mutagenesis has been done to identify the side chains required for 

PR activity at each residue in the flap region (Shao 1997). Three groups of residues  

were defined, including the side chains (Met46, Phe53 and Lys55) that are directed 

outward toward solvent, which are the most tolerant to substitutions, side chains 

(Ile47, Ile50, Ile54 and Val56) directed inward, which only tolerate a few 

conservative substitutions, and the Gly-rich region (Gly48, Gly49, Gly51, Gly52), 

which is the most sensitive region to substitutions (Shao 1997). Therefore, the 

conformation of the flaps and residues in that region greatly contribute to the PR 

activity and the substrate or inhibitor binding affinity. 

 

3.   HIV PR Substrate Specificity 

Understanding the substrate specificity of HIV PR is important for studying 

the molecular basis of drug resistance and development of new drugs. For the optimal 

catalysis, the minimal length of substrates is 7 amino acids (Darke 1988; Tozser 1991; 

Tomasselli 1994; Coffin 1997). The substrate of HIV PR binds to the dimer in an 

asymmetric way, as illustrated in Figure 6. The residues of substrate at carboxyl 

terminus of the scissile bond are defined as P1, P2, P3 and P4, and correspondingly 

P1’, P2’, P3’ and P4’ in the amino terminus (Schechter 1967). The residues of PR that 

accommodate the side chains P4’-P4 of substrate are correspondingly defined as 

subsites S4’-S4.  

The substrate specificity is determined by the overall shape and chemistry of 

the side chains of peptide substrates rather than the specific sequences (Konvalinka 

1990; Tozser 1991; Griffiths 1992; Tozser 1992; Prabu-Jeyabalan 2002; Ozer 2006).  
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Figure 6: the schematic diagram of a substrate (P4-P3’) bound to HIV-1 PR (S4-S3’) 

subsites. The scissile bond is indicated by an arrow. 
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Substrate sequences cleaved by protease are relatively diverse. Despite this diversity, 

some common features can be deduced from the analysis of natural viral sequences, 

enzyme kinetic and mutagenesis studies (Pettit 1991; Poorman 1991; Tozser 1992; 

Coffin 1997; Louis 2000; Beck 2002). P1 and P1’ favor large hydrophobic amino 

acids; P2 and P2’ are typically occupied by hydrophobic and small polar residues. P3 

is glutamine or basic amino acids; P4 is normally a small amino acid.   

 

4. Viral Mutation Mechanisms 

 The HIV genome-wide natural polymorphisms have been observed up to 30% 

among various viral subtypes and the polymorphisms of PR exist in over 49 out of 99 

residues (Boden 1998; Hertogs 2000; Velazquez-Campoy 2001). Besides the natural 

polymorphisms, the emergence of drug resistance is very severe. And it is probably 

the main factor leading to the failure of current treatment of HIV. It is estimated that 

over 70% of HIV-1 infected individuals harbor drug resistant virus and nearly 5-10% 

of them reveal resistance to all of the current RT and PR inhibitors (Yu 2005). What 

makes it even worse is that virus strains carrying drug resistant mutations are 

transmitted directly to newly infected individuals, which corresponds to about 10-

15% of the total newly infected (Hirsch 1998; Wainberg 1998).  

Multiple factors contribute to the rapid development of mutations in the virus. 

First, the virus is intrinsically prone to mutate because HIV RT has no 3’-5’ 

exonuclease proofreading function. During the reverse transcription, the error rate of 

RT is approximately 1 in 4000-10,000 base pairs (Preston 1988; Mansky 1995; 

Mansky 1998). That means roughly one base mutation is introduced in each viral life 
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cycle.  Second, the viral turnover is extremely high, approximately 10 billion new 

viral particles per day in an untreated HIV-infected individual (Ho 1995; Wei 1995; 

Perelson 1996). Third, genetic diversity of HIV can be amplified through 

recombination when two viruses with different genetic makeup simultaneously infect 

the same host cell (Robertson 1995; Kuwata 1997). Fourth, the APOBEC3G system, 

an RNA editor and DNA mutator, speeds up the mutation rates. The APOBEC3G is 

packed into HIV virions, binds to proviral DNA and yields dC to dU mutations in the 

viral minus-strand DNA. If the minus-strand DNA is not degraded or repaired, it 

serves as a template to replicate the plus-strand DNA, with dG to dA mutations (Chiu 

2006). Fifth, drug pressure causes the rapid selection of drug resistant strains. In the 

presence of antiretroviral drugs, resistant strains remain as the dominant species after 

other strains are killed (Drake 1993). In cell culture in the presence of drugs, the 

wild-type virus is almost completely replaced by drug-resistant mutants after fourteen 

days (Wei 1995). 

 

5. Anti-HIV Drugs 

The extraordinary efforts to develop effective therapeutics have resulted in the 

discovery of drugs for the treatment of AIDS. Over 20 drugs have been approved by 

the FDA (Food and Drugs Administration) for the treatment of AIDS patients. Those 

drugs have shown great success by providing to HIV-infected individuals a longer life 

span and improved quality of life. The current drugs mainly inhibit the biological 

function of two key retroviral enzymes: reverse transcriptase (RT) and protease (PR). 

5.1 HIV Reverse Transcriptase Inhibitors 
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As one of the major enzymes, the HIV reverse transcriptase (RT) converts the 

HIV single strand RNA into DNA, which is integrated into the host genome for viral 

replication.  The crystal structures of RT in the presence or absence of  DNA have 

been determined (Kohlstaedt 1992; Jacobo-Molina 1993). The active RT is comprised 

of a heterodimer, with molecular weight 66 and 51 kDa for each subunit. Both of the 

subunits (p66 and p55) are folded into a hand configuration with four subdomains 

known as “fingers”, “palm”, “thumb” and “connection”, as illustrated in Figure 7.  

Two distinct classes of HIV-1 RT inhibitors have been applied in the clinic, 

namely nucleoside/nucleotide analogs (NRTIs, 11 drugs) and non-nucleoside 

inhibitors (NNRTIs, 3 drugs) (examples in Figure 8). NRTIs are in the form of 

prodrugs which need to be activated by cellular kinases through two phosphorylation 

steps. Phosphorylated NRTIs compete with natural dNTPs to incorporate into the 

elongating DNA chains. The difference between NRTIs and natural dNTPs is that the 

former do not have the 3’-OH group, required for DNA chain elongation. After 

binding to the dNTP site, NRTIs terminate the growth of the DNA chain. The other 

class of RT inhibitors, NNRTIs, bind to the hydrophobic pocket close to the active 

site of the RT and prevent the conformational changes of RT required for DNA 

elongation, thus terminating the DNA replication. Importantly, all of these inhibitors 

bind to allosteric sites (non active sites) of RT (Erickson 1996). 

5.2 HIV Protease Inhibitors (PIs) 

Since their introduction in the market, the PIs have shown great success in the 

treatment of HIV infection (Wlodawer 1998). The currently approved PIs by FDA 

include amprenavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir, atazanavir,  
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Figure 7: The complex of HIV reverse transcriptase with an RNA-DNA Duplex. RT 

comprises two subunits p51 and p66, which have fingers, palm, thumb and 

connection. Yellow sphere indicates the mutations conferring resistance to NRTI and 

blue sphere indicate the mutations conferring NNRTIs (Clavel 2004). 
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Figure 8A: the chemical structures of NRTIs; 8B: the chemical structures of NNRTIs 

(Erickson 1996). 
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Figure 9: Structural features of HIV protease inhibitors. The core peptidomimetic 

structure found within all HIV protease inhibitors is shown in the shaded regions. A. 

lopinavir; B. indinavir; C. ritonavir; D. amprenavir; E. nelfinavir; F. saquinavir; G. 

atazanavir; H. Tipranavir; I. darunavir (Hertel, 2004).  
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tipronavir and darunavir (Figure 9). Except for tipronavir, all other PIs contain a core 

motif mimicking the P1’ proline-containing substrate (Roberts 1990). Compared with 

the substrate analog, those clinical drugs are smaller and make few interactions with 

PR (Figure 10A and B). All of these drugs bind to the active site of PR by hydrogen 

bonds and van der Waals interactions, depending on the nature of the groups at each 

position. Some conserved hydrogen bond interactions are observed between the NH 

and CO groups of inhibitor and PR, involving the amide and carboxylate oxygen of 

Asp29, the carbonyl oxygen of Gly27 and the amide and carbonyl of Gly48 from both 

subunits (Figure 10). Moreover, the interactions between the amide of Ile50 from 

both subunits and the carbonyl oxygen of P2 and P1’ mediated by a conserved water 

molecule are also conserved in the PR/inhibitor structures. The interactions between 

PR and inhibitor are the major focus for structure-based drug design. 

Based on the key role of a conserved water molecule, which bridges the 

inhibitor and PR, cyclic urea inhibitors have been designed to bind to the PR active 

site and replace this water molecule (Lam 1994; Ala 1998).  Also inhibitors 

preventing the dimerization of the PR have been proposed (Zhang 1991; Schramm 

1993). Those endeavors have not provided any successful clinic inhibitors so far.  

5.3 HAART 

Both RT and PR inhibitors cannot fight HIV effectively in monotherapy 

because their effectiveness is undermined quickly by the emergence of drug resistant 

strains. Instead, the cocktails known as the highly active antiretroviral therapy 

(HAART), typically including two reverse transcriptase inhibitors with one or two PR 

inhibitors, are administered to infected patients. Since initiated 10 years ago, HAART  
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Figure 10A: The H-bonds between the PR and a substrate analog of the cleavage site 

p6/PR (Tie, 2006); B: The H-bonds between the PR and the clinical drug indinavir 

(Liu, 2005).  
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has successfully diminished both mortality and morbidity in HIV-infected patients 

(Palella 1998). When administered over prolonged periods, However, HAART cannot 

completely prevent the emergence of drug resistant strains and those drugs also bring 

substantial toxicity to patients. 

5.4 Other Inhibitors 

Prodigious efforts have been made to discover and design new anti-HIV 

compounds with unique structures and mechanisms of action. Besides RT and PR 

inhibitors, a new class of anti-HIV drug, the fusion (entry) inhibitor, has been 

approved by the FDA. Enfuvirtide is the first and the only one in this category now 

and is much more expensive than other antiretroviral drugs. Combined with 

optimized therapy, it significantly improves virological response for highly treatment-

experienced patients who harbor drug resistant strains (Hornberger 2006). Drugs 

targeting other steps in HIV infection have also been considered, including 

attachment inhibitors, coreceptor inhibitors, integrase inhibitors and maturation 

inhibitors (Greene 2004). 

Other strategies have been proposed to target cellular enzymes such as the 

helicase. The helicase is required for the replication of HIV, both the wild type and 

mutants. It has been supported by the preliminary evidence that helicase inhibitors 

(nucleoside analogues) have significantly blocked the HIV activity in cell culture at 

non-cytotoxic doses (Kwong 2005). However, this type drugs block the function of 

cellular proteins and thus bring potential cytotoxicity to the host cells. This is the 

major concern for this type drugs although they have a better chance of avoiding drug 
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resistant problem. Endeavors to develop this type drugs have made various levels of 

advancement but have not resulted in the manufacture of successful medicines. 

5.5 The Development of Vaccines  

The ideal and traditional way to prevent infectious disease is to develop 

vaccines. However, the development of vaccines for HIV is still in the early phase, 

confronted with various challenges (Girard 1999).  The viral envelope glycoprotein 

gp120 has been a promising target to generate neutralizing antibodies. Nevertheless, 

it has been proved that HIV can escape the binding of antibodies at the distinct areas 

of the viral envelope proteins (Smith 2003). So generation of neutralizing antibodies 

is very difficult to achieve by HIV vaccines. Some vaccine trials have been performed 

in animal models and human (most in developing countries), but no vaccine 

candidates have constantly induced good immune response. And moreover, the 

genetic diversity of HIV is another big obstacle for the development of abroad 

spectrum vaccine for HIV variants (Emini 2002).  

 

6.  Methods of Testing for Drug Resistance  

Since the drug resistance has become a substantial problem in antiviral 

therapy, testing for drug resistance is recommended in HIV treatment guidelines. The 

information of the drug-resistance profile of patients helps physicians gain insight 

into the patient's viral makeup and provides the information for optimizing treatment 

regimens.  

Currently, the two basic methods to detect drug resistance are phenotypic 

resistance testing (PRT) and genotypic resistance testing (GRT) (Romanelli 2000). 
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PRT is a method to quantify the HIV susceptibility to various antiviral drugs in the 

human lymphocyte culture. The viruses are considered to be less susceptible or drug 

resistant to a particular drug if a larger quantity of the drug is required to block the 

replication of mutants than for the wild type viruses. However, the difficulty for this 

method is to determine how much variation of the drug dose for mutants from the 

dose of wild type virus is still considered as sensitive.   

In contrast, GRT does not directly test the drug susceptibility but rather 

investigates the mutations in genomic sequences of target genes, currently RT and 

PR. So it indirectly assesses the viral resistance which is associated with genetic 

changes. The advantages of this method are that it is more rapid, less technically 

demanding and cheaper than PRT. Moreover, it can detect the mutations before they 

are expressed into functional proteins; thus GRT is more commonly used in the clinic. 

However, the mutants have to occupy at least 20-30% of the total viral population to 

be detected by GRT. In order to detect resistance for both methods, the minimum 

viral load for the test has to be over 500-1000 copies/ml. Although the interpretation 

of drug resistance profiles is not straightforward, both genotypic and phenotypic tests 

have shown good reliability and are cost-effective. It is reported that the concordance 

between PRT and GRT is about 80-90% for the susceptibility to NRTIs, NNRTIs, 

and PIs (Dunne 2001). 

Combining the two basic methods, the virtual phenotype test is actually a 

genotype test by using a database, comprising resistance results of both genotyping 

and phenotyping tests from the same patients, to improve the genotype results. In fact, 

the virtual phenotype is a prediction of drug susceptibility based on genotypic 
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analysis and database matches. It is generally considered to be an advancement over 

standard genotypic testing. The database commonly used is the Stanford University 

HIV Drug Resistance Database (http://hivdb.stanford.edu/index.html). It is a 

collection of almost all published RT and PR sequences associated with drug 

exposure as well as unpublished data in other databases such as GenBank. Source 

sequences in the database are related to the antiretroviral drug treatment history of the 

person from whom the isolates are taken. In the protease inhibitor (PI) resistance 

notes, a series of possible drug resistant mutations are correlated with the level of 

susceptibility to all available FDA approved PR drugs (Figure 11). With the 

assistance of drug resistance tests, not only the antiretroviral treatment strategies can 

be enhanced but also drug resistance mechanisms of a variety of mutants in response 

to different drugs can be better understood.   

 

7.  Drug Resistance Mechanisms of RT and PR Inhibitors 

Viruses with mutations are rapidly selected under the drug pressure, so those 

mutations should provide viruses with some selective growth advantage over the wild 

type viruses in the presence of drugs. In contrast, most of drug resistant mutations are 

deleterious for viral replication in absence of drugs. However, the drug resistance, in 

some cases, is difficult to explain completely by genetic changes, involving a single 

or multiple mutations. 
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Figure 11:  The PI drug resistance notes from the Stanford HIV drug resistance 
database (Shafter, 1999). The darker the color means the higher level of resistance.  
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7.1 Drug Resistance Mechanisms of RT Inhibitors 

The treatment with the reverse transcriptase inhibitors (NRTIs and NNRTIs) 

results in severe drug resistance. Two major drug resistance mechanisms for NRTIs 

have been proposed (De Mendoza 2002). In some mutants, the RT gains the ability to  

recognize the structural difference between the phosphorylated NRTIs and dNTPs, so 

NRTIs lose their competitive advantage over dNTPs (Naeger 2001; Clavel 2004). The 

other mechanism is that the NRTIs incorporated in the DNA chains are removed by 

the attack of ATP or pyrophosphate and the DNA chains continue to grow (Meyer 

1998; Meyer 2000). For NNRTIs, resistant mutants reduce the affinity of drugs for 

the binding site (Hsiou 2001; De Mendoza 2002).  

7.2 Drug Resistance Mechanisms of PR Inhibitors  

Similar to RT, the drug resistance is also a major issue in PI treatment. The 

drug resistance mechanisms of PIs have been studied extensively and appear to be 

very complicated. On long exposure to the drugs, not only the mutations in PR 

change the enzyme properties but also the mutations in the cleavage sites of 

substrates can arise to compensate for the changes caused by PR mutations.  

7.3 Mutations in PR 

The mutations in PR alter single or multiple residues which can cause 

multidrug resistance and cross-resistance (Figure 12). Mutations in 45 out of 99 

residues of the PR have been associated with the treatment with PIs (Schinazi 1997; 

Hertogs 2000; Wu 2003; Johnson 2005). A clinical isolate of the HIV has 

accumulated as many as 10 mutations in PR at diverse positions and is resistant to all 
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Figure 12: Mutations in the protease gene associated with resistance to PIs (Johnson, 

2005). 
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available PIs (Condra 1995; Vickrey 2003). However, drug resistant mutations in PR 

cannot be at any position and altered to any amino acid. The potential mutations have 

been constrained to permit proper protein folding, structural stability, and catalytic 

activity on diverse substrates (Erickson 1996). Many PR mutants coupled with 

diverse inhibitors have been studied by crystallography and kinetics (Chen 1995; 

Mahalingam 1999; Hong 2000; Mahalingam 2001; Mahalingam 2002; Clemente 

2004; King 2004; Mahalingam 2004; Tie 2004; Tie 2005; Kovalevsky 2006; Liu 

2006). Those drug resistant mutants have shown diverse changes in catalytic activity, 

inhibition constants, and stability by the combinations of different mutations with 

substrate or inhibitor (Gulnik 1995; Ermolieff 1997; Ridky 1998; Mahalingam 1999; 

Xie 1999; Mahalingam 2001; Prabu-Jeyabalan 2002; Prabu-Jeyabalan 2003). 

Combinations of different mutations may lead to additive, synergistic or 

compensatory effects (Erickson 1996; Mahalingam 2002). In some cases, the 

observed structural changes in mutations are in agreement with kinetic and stability 

changes. However, other mutants do not demonstrate understandable relationships of 

catalytic activity, inhibition, and structural changes. Drug resistant mutation cause 

independent changes in any one of the above factors or combinations of those factors. 

Drug resistant mutations can be simply classified as active site (inhibitor 

binding site) mutations and non-active site mutations. They also can be categorized as 

the major or primary mutations, the secondary mutations, the flap mutations, the 

dimer interface mutations and other distal mutations. The major mutations are 

normally by themselves able to cause drug resistance to one or multiple PIs. On the 

other hand, the secondary mutations frequently appear with those drugs resistant 
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mutations (Shafer 2002). These categorizations are mainly for the purpose of 

convenience and a mutation may belong to multiple categories at the same time.  

The active site mutations or major mutations 

The binding of inhibitor is stabilized by hydrogen bonds and van der Waals 

interactions between PR and inhibitor. So mutations of the residues forming at the 

inhibitor-binding site can potentially disturb the interactions between PR and 

inhibitor, thus leading to the diminished affinity of the inhibitor to the mutated PR 

(Hong 2000; Prabu-Jeyabalan 2003; Wartha 2005). This mechanism has been 

confirmed by the crystal structures of HIV-1 PR with single or double mutations at 

active sites complexed with inhibitors (Mahalingam 2001; Mahalingam 2002; 

Mahalingam 2004; Tie 2004). In addition, mutations of one residue not only directly 

alter the inhibitor interaction of that residue but may also indirectly modify the 

interaction of other residues with the inhibitor. Since the clinical drugs are always 

smaller than the natural substrates, the altered active site would have much larger 

effects on the binding of inhibitors than on the binding of substrates. So the inhibitors 

lose competitive advantage over the natural substrate in mutants. In many cases, such 

as mutations of V82A and I84V, the active site mutations are also the major resistant 

mutants. It seems that reducing drug affinity is a primary drug resistance mechanism 

which has been adopted by many targets of fungicides, antibiotics and so forth 

(Yotsuji 1988; Hayes 1997). 

Non-active site or secondary mutations 

The mutations of non-active site residues have been frequently observed and 

also significantly contribute to drug resistance (Muzammil 2003; Clemente 2004; Liu 
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2005). Although they do not directly interact with inhibitors, the mutated side chains 

may perturb the subunit-subunit interactions in the PR dimer. The perturbation may 

be transferred to the active site through an extended structural network, which can 

indirectly interfere with the binding of the inhibitor, and (or) diminish the dimer 

stability of the PR, and consequently impair the enzyme activity and lower the 

inhibitor binding affinity (Xie 1999; Mahalingam 2001; Mahalingam 2004; Liu 2005; 

Kovalevsky 2006).  

Flap mutations  

Due to the important role of the flap in substrate or inhibitor binding at the 

active site, mutations in the flap can potentially disturb the PR activity, dimer stability 

and conformation. Some HIV PR mutants are predicted to alter the equilibrium of 

conformations of fully open, semi-open and closed (Rose 1998). In the case of M46I, 

the mutated flap is predicted to be more stable in a closed conformation (Collins 

1995). Some flap mutants have been suggested to have wider open flap than that of 

the wild type (Logsdon 2004). So the effect of the mutations on the equilibrium of 

different conformations could be one of the mechanisms of drug resistance (Perryman 

2004). 

7.4 Compensatory Mutations in the Cleavage Sites of Substrates   

After the mutations in PR, mutations in substrate cleavage sites have been 

observed at NC/p1 and p1/p6 of the Gag gene in drug resistant strains (Doyon 1996; 

Zhang 1997; Robinson 2000; Feher 2002; Shafer 2002). The cleavage sites at NC/p1 

and p1/p6 are the slowest to be cleaved in the polyprotein processing and those sites 

in the short peptides representing natural substrates have the lowest binding 
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specificity (kcat/Km) (Tozser 1991; Doyon 1996). In the presence of PR inhibitors, 

mutations of cleavage sites are able to partially compensate for the reduced activity, 

restore the efficiency of substrate processing and enhance the viral replication 

capacity (Doyon 1996; Croteau 1997; Zhang 1997; Feher 2002). Nevertheless, 

mutations of cleavage sites alone have not been found to cause PI resistance.  

 

8. A Paradigm for Structure-Assisted Drug Design 

Anti-viral drugs are likely to remain the mainstay for treating diseases caused 

by viral infection. The development of anti-retroviral drugs has made substantial 

progress in the past two decades. Within the past 20 years, the number of licensed 

clinical anti-viral drugs has grown from 5 to over 50 (De Clercq 2004) and 2/5 of 

them are anti-HIV drugs. Nevertheless, new drugs with better efficiency and 

specificity against viral resistance are still remarkably in demand.  Besides the well 

studied classic models of HIV, hepatitis B and C, the emergence of new viruses such 

as the SARS (Severe Acute Respiratory Syndrome) coronavirus and the haemorrhagic 

fever viruses as potential bioweapons has also increased the need for anti-viral drug 

discovery (De Clercq 2004).   

Structure-assisted (also called rational) drug design is one of the most 

powerful approaches among the technologies in drug research if the molecular 

structures are available or can be predict accurately. This drug design method 

involves multiple-disciplines of crystallography, NMR (Nuclear Magnetic 

Resonance), computational modeling and chemical synthesis. X-ray crystallography 

has proven to be the central technology to understand the structural binding modes of 
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proteins and small molecules. In an addition, crystallography provides the starting 

point for molecular dynamics modeling, docking of ligands, virtual screening for 

potential leads and optimizing of lead compounds in the design of drugs and vaccines.   

The development of PIs is a typical representative of the success of structure-

assisted drug design through the collaboration of pharmacology, medicinal chemistry 

and structural biology (Wlodawer 1993; Kempf 1995; Wlodawer 1998; Prabu-

Jeyabalan 2003). Some initial PIs were substrate analogs (peptide derivatives) that 

replace the scissile-bond with a non-cleavable bond. They are normally large in size, 

cannot easily penetrate into cells and are easily digested by cellular enzymes. 

Consequently, smaller inhibitors with fewer peptide bonds have been developed. 

Except for tipranavir, all other PIs hold a peptidomimetic core and large hydrophobic 

moieties binding in the substrate-binding cleft of the PR (Figure 11).  

The general steps for screening and structure-assisted drug design are 

summarized as below, concentrating on HIV PIs (Tomasselli 1994; Coffin 1997; 

Tomasselli 2000). First, inhibitory activities are measured to screen some compounds 

with low inhibition constants. The cocrystal structures of PR/inhibitors demonstrate 

the comprehensive pattern of hydrogen bond, hydrophobic and van der Waals 

interactions formed by the compound and protein. The guidance from crystal 

structures can speed up the screening. Further structural optimization can be made to 

introduce or modify the functional groups to improve the binding affinity and 

minimize the binding energy. It typically takes several rounds of inhibition studies, 

structural analyses and chemical synthesis until the discovery of some compounds 

with the desired potency and affinity for the protein. For instance, in the process of 
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designing indinavir (Merck), more than 150 intermediate compounds were produced 

before the final product was obtained (Lyle 1991; Vacca 1994). Then subsets of 

inhibitors are evaluated for their ability to penetrate cells and inhibit various strains of 

viral particles. Further inhibitors with high potency, satisfactory pharmacokinetic 

properties, toxicity and bioavailability tests in animal models are developed (Coffin 

1997). Finally the compounds go to the lengthy clinical trials to test the dose and side 

effects before they become commercial drugs.  

An ideal HIV PI should be effective against both wild type PR and 

structurally similar mutants. However, most PIs are designed to have a constrained 

shape in order to have high specificity and binding affinity for PR. Thus, they 

preferentially target wild type PR and cannot easily adapt to mutants. In order to 

minimize the drug resistance problem, the new inhibitors should be designed to have 

critical interactions with conserved regions of PR while they retain the adaptive 

ability through flexible functional groups (Ohtaka 2005). Thus the knowledge of 

design of effective anti-HIV drugs provides significant insight for designing drugs 

against other retroviral infections.  

 

9.  Limitations of PI in Anti-HIV Therapy 

Besides drug resistance, the adverse metabolic side effects are another major 

issue involving the PI treatment. The adverse effects have been reported include 

peripheral lipodystrophy, visceral adiposity, hyperlipidemia, diabetes mellitus, 

cardiovascular disease, hypertension and insulin resistance (Hruz 2001; Grinspoon 

2005; Barbaro 2006). As more and more evidence accumulates, it has been confirmed 
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that PIs do not specifically target HIV PR as designed and they disturb the function of 

a number of unrelated molecules. The glucose tolerance, for instance, has been 

disturbed in 10–16% of the patients on PI regimens (Hruz 2001). It is found that the 

activity of the glucose transporter (GLUT-4) is noncompetitively inhibited by 

indinavir and lopinavir (Hertel 2004; Grinspoon 2005). And indinavir must be 

administered with a large amount of water in order to prevent kidney stones. So one 

of the major considerations for the development of safer and potent PIs is to minimize 

toxic metabolic consequences (Hruz 2001). Despite the severe side effects of PI, the 

therapy cannot be terminated since no better alternatives are available for the patients 

at present.  

Successful long-term chemotherapy treatment of HIV-1 infection remains an 

unrealized goal confronted by various challenges. First, antiviral drugs can not 

eliminate virus from an infected individual because the viral DNA is integrated into 

the host cell genome. Another difficulty is that the virus retains in reservoirs that the 

current drugs are hard to reach (Chun 1997; Finzi 1997). So drugs may only diminish 

the infection to a lower level. Second, the development of inhibitors with the double 

features of potency and no adverse effects for HIV positive individuals who harbor 

wild type and drug resistant viruses is an extremely difficult task. However, most of 

the mutations have deleterious effects on key viral proteins. Therefore, the hope for 

effective therapeutic for HIV is still there since the replication of resistant variants 

seems to be less efficient, or the virus loses its virulence (Clavel 2004). After 

blocking the replication of the wild type and some mutants, the viral load in the body 

can be reduced to a lower level at which the host immune system can control of it. 
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Once the therapy initiates, however, the drugs have to be maintained at a certain dose 

for the whole life because the incomplete suppression of viral replication facilitates 

the appearance of drug resistant virus and leads to a resurgence of high-level viral 

replication and treatment failure. 
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MATERIALS AND METHODS 

Preparation of HIV-1 PR mutants  

An HIV-1 PR (Genbank HIVHXB2CG) clone with five optimizing mutations 

(Q7K, L33I, L63I, C67A and C95A) was used as the template (called as wild type PR) 

to introduce the mutations. Those mutations have been proved to stabilize the protein 

and the optimizing mutants have similar kinetic properties to the protease without 

those mutations (Louis 1999). Plasmid DNA (pET11a, Novagen, Madison, WI) 

encoding PR was used with oligonucleotide primers with the base corresponding to 

the mutation to generate the mutant constructs by the Quick-Change mutagenesis kit 

(Stratagene, La Jolla, CA).  The sequences of primers used for introducing the 

mutations are listed in the Table 1. The PCR mixture (total 50 µl) contained: 5 µl 

(10X) of reaction buffer, 1µl (25 mM) of dNTP, 1µl (125 ng/µl) of forward primer, 

1µl (125ng/µl) of reverse primer, 1µl (2.5 U/µl) of Pfu turbo DNA polymerase, 1µl 

(10-20 ng) of DNA template. PCR setting was 1 cycle at 95 °C for 30 sec, followed 

by 12 cycles at 95 °C for 30 sec, 55 °C for 1 min, 68 °C for 12 min and held at 4 °C. 

A small fraction of each reaction mixture (5-10 µl) was applied to 1.0% agarose gel 

electrophoresis to estimate the quantity of DNA. The PCR products (5-25µl) were 

digested with 1 µl DpnI at 37 °C for an hour to dispose of wild type template then 

were transformed into XL-blue competent cells from Stratagene according to the 

protocols. 
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Table 1: The DNA sequences of primers for introducing mutations  

Mutant 5’-3’ primer sequences (number of nucleotide) 

L24I Forward: GGTCAG CTG AAA GAA GCT CTG ATC GAT ATC GGC GCT 

GAC GAT ACC (45nt) 

Reverse: GGT ATC GTC AGC GCC AGT ATC GAT CAG AGG TTC TTT 

CAG CTG ACC (45nt) 

I50V Forward: CCA AAA ATG ATA GGG GGA GTT GGA GGT TTT ATC AAA 

GTA AGA C (43 nt) 

Reverse: G TCT TAC TTT GAT AAA ACC TCC AAC TCC CCC TAT CAT 

TTT TGG (43 nt) 

F53L Forward: G ATA GGG GGA ATT GGA GGT TTG ATC AAA GTA AGA CAG 

TAT G (41 nt) 

Reverse: C ATA CTG TCT TAC TTT GAT CAA ACC TCC AAT TCC CCC 

TAT C (41 nt) 

I54V Forward: G ATA GGG GGA ATT GGA GGT TTT GTC AAA GTA AGA CAG 

TAT G (41 nt) 

Reverse: C ATA CTG TCT TAC TTT GAC AAA ACC TCC AAT TCC CCC 

TAT C (41 nt) 

I54M Forward: G ATA GGG ATT GGA GGT TTT ATG AAA GTA AGA CAG TAT 

G (41 nt) 

Reverse: C ATA CTG TCT TAC TTT CAT AAA ACC TCC AAT TCC CCC 

TAT C (41 nt) 
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Protein Purification 

The PR mutants were expressed using pET11a vector and Escherichia coli 

BL21 (DE3) protein expression competent cells. PR was purified from inclusion 

bodies, as described previously (Mahalingam 1999).  Cells were grown at 37°C in 

Luria-Bertani medium with 100ug/ml carbenicillin and shaken at 225 rpm until the 

OD600 reached 0.4 - 0.5. Protein expression was induced by IPTG (2 mM) (Louis 

1989). After inducing for 3-4 hours, cells were harvested and suspended in 20 volume 

of buffer A (50 mM Tris-HCl, pH 8.2, 10 mM EDTA) and lysed by sonicating (5 of 1 

minute intervals, 40-50% duty, 4-5 output) on ice. After centrifugation (12,000 rpm, 

20 min in SS34 rotor at 4°C), the pellets (inclusion bodies) were then washed by 

resuspending in buffer B (buffer A plus 2 M urea and 1% Triton X-100) and then in 

buffer A again. The pellet was solubilized in 50 mM Tris-HCl, pH 8.0, 7.5-8 M 

guanidine-HCl, 10 mM EDTA.  

After filtering through an 0.2-0.8 um syringe filter, the solution was applied to 

a Superdex-75 column (HiLoad 2.6 cm × 60 cm, Amersham Pharmacia Biotech, NJ) 

equilibrated in 50 mM Tris-HCl, pH 8, 4 M guanidine-HCl, 5 mM EDTA at a flow 

rate of 1 ml/min. Peak fractions were pooled and subjected to reverse-phase high-

performance liquid chromatography (HPLC) on a RPC15 ST 4.6/100 column 

(Amersham Pharmacia Biotech, NJ). The peak appearing at gradient 40% of buffer B 

(0.05% TFA in Acetonitrile for buffer B and 0.05% TFA in water for buffer A) was 

collected and confirmed by molecular weight shown on SDS-PAGE. In both cases, 

the chromatography was run at room temperature. The protein was appropriately 
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folded by dialysis in 0.05 M formic acid at pH 2.8 for at least 3 hours, followed by 

0.05 M sodium acetate buffer, pH 5.0 for at least 3 hours at 4°C. The protein was 

concentrated to the desired concentration (usually 2-6 mg/ml) for the kinetic study 

and crystallization. Concentrated protein remained stable at least one year at -80°C. 

The mutation was confirmed by both nucleic acid sequencing and protein mass 

spectrometry. 

 

Enzyme Kinetics  

            The chromogenic substrate Lys-Ala-Arg-Val-Nle-p-nitroPhe-Glu-Ala-Nle-

amide (Sigma, St. Louis, MO) is a CA/p2 analog and was used to determine the 

kinetic parameters.  PR at a final concentration of 70-120 nM was added to varying 

concentrations of substrate (25-400 µM) maintained in 50 mM sodium acetate pH 

5.0, 0.1 M NaCl, 1 mM EDTA, and assayed by monitoring the decrease in 

absorbance at 310 nm within the first 1-2 min using a PerkinElmer Lambda 35 UV-

Vis spectrometer.   

The absorbance was converted to substrate concentration via a calibration 

curve. The enzyme concentrations were based on active site titration data.  The 

Michaelis-Menten curves were fitted using SigmaPlot 8.0.2 (SPSS Inc.). PR 

hydrolysis of the peptides K-A-R-V-L-A-E-A-M-S (CA/p2) and V-S-F-N-F-P-Q-I-T-

K-K (p6Pol/PR) was assayed using HPLC as described (Mahalingam 2001). The 

reduced peptide analogs R-V-L-r-F-E-A-Nle (CA/p2) and Ace-T-I-Nle-r-Nle-Q-R 

(p2/NC) (r is the reduced peptide bond and Nle replaces M) were purchased from 

BACHEM.  Indinavir was a gift from Merck & Co and TMC114 and saquinavir from 
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Dr. Arun Ghosh (Purdue University).  The Ki values were obtained from the IC50 

values estimated from an inhibitor dose-response curve with the spectroscopic assay 

and the chromogenic substrate using the equation Ki = (IC50 - [E]/2) / (1 + [S]/Km), 

where [E] and [S] are the PR and substrate concentrations, respectively (Maibaum 

1988).  

 

Urea Denaturation Assays  

The denaturing effect of urea was measured using the spectroscopic assay.  

PR activity was measured with increasing concentration of urea (0 – 4.0 M) at the 

final concentrations of 300–500 nM enzyme and 400 µM substrate (Feher 2002).  The 

UC50 values at half-maximal velocity were obtained by plotting the initial velocities 

against urea concentration and fitting to a curve for solvent denaturation of protein 

using SigmaPlot 8.0.2 software.   

 

Kd Determination  

The Kd was determined by measuring specific activity as a function of dimeric 

enzyme concentration at a final substrate concentration of 375 µM in 50 mM acetate 

pH 5.0, 0.1 M NaCl at 25 °C (Wondrak 1996). 

 

Crystallographic Analysis.  

 Crystals were grown at room temperature by vapor diffusion using the 

hanging drop method.  The protein concentration was 1.8 - 5 mg/ml.  The reservoir 

contained precipitant, buffer at various concentrations and pH as described in Table 2.  
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Table 2: The crystallization conditions  

PR/PI 
 

PR/PI 
Ratio 

Precipitate/salt Buffer Additives 

L24I/ 
p2-NC 

1:20 6-20% saturated 
(NH4)2SO4 

0.1 M citrate/0.2 M phosphate 
buffer, pH 5.4-5.8 

5-10% DMSO 

L24I/ 
IDV 

1:5 20-40% saturated 
(NH4)2SO4 

0.1 Mcitrate/0.2 M phosphate 
buffer, pH 5.0-6.0 

10% DMSO 

I50V/ 
p2-NC 

1:20 6-20% saturated 
(NH4)2SO4 

0.1 M citrate/0.2 M phosphate 
buffer, pH 5.4-5.8 

10-15% DMSO 

I50V/ 
IDV 

1:5 20-40% saturated 
(NH4)2SO4 

0.1 M citrate/0.2 M phosphate 
buffer, pH 4.6-5.8 

6-10% MPD, 
10% DMSO 

G73S/ 
IDV 

1:5 20-40% saturated 
(NH4)2SO4 

0.1 M citrate/0.2 M phosphate 
buffer, pH 4.6-5.8 

6-10% MPD, 
10% DMSO 

F53L 1:5* 20-30% saturated 
(NH4)2SO4, 0.1 M 
sodium citrate 

0.2M sodium citrate, 
phosphate buffer, pH = 6.0-
6.4 

10% DMSO 

M46L/ 
DRV 

1:2 25% NaCl 0.2 M sodium acetate buffer, 
pH = 3.8 

 

D25N/ 
p2-NC 

1:20 10% NaCl  0.1 M citrate/0.2 M phosphate 
buffer, pH 5.4 

5-10% DMSO 

D25N/ 
DRV 

1:2 30% NaCl 0.2 M sodium acetate buffer, 
pH 5.0 

 

WT/ 
p2-NC 

1:20 10-15% saturated 
(NH4)2SO4, 0.1 M 
sodium citrate 

0.2M sodium citrate, 
phosphate buffer, pH 6.0-6.2 

10-15% DMSO 
5-10% dioxide 

I54M/ 
DRV 

1:2 25-30% NaCl 0.2 M sodium acetate buffer, 
pH 4.4-4.6 

 

I54M/ 
SQV 

1:5 10-15% NaCl 0.2 M sodium acetate buffer, 
pH 4.8-5.2 

 

I50V/ 
SQV 

1:5 30-35% saturated 
(NH4)2SO4 

0.2M sodium citrate, 
phosphate buffer, pH 6.0-6.2 

 

F53L/ 
SQV 

1:5 1.75M KCl 0.2 M sodium acetate buffer, 
pH 5.4 

5-10% dioxide 

G48V/ 
DRV 

1:2 1.3 M KCl 0.1 M citrate/0.2 M phosphate 
buffer, pH 5.6-5.8 

7-10% MPD 

L90M/ 
DRV 

1:2 20% NaCl 0.2 M sodium acetate buffer, 
pH 4.2 

 

 

*The molecular ratio of F53L and indinavir was 1:5 in the crystallization mixture; 

however, indinavir was not bind to the PR revealed in the crystal structures. Similar 

crystals were also obtained in the absence of indinavir in the PR solution. 
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Some additives such as DMSO (dimethylsulfoxide), MPD (2-Methyl-2,4-

Pentanediol), and dioxide were added in order to improve the quality of crystals. The 

crystallization drops had a 1:1 v/v ratio of the reservoir solution and the protein.  The 

crystals grew from overnight to 10 days into tetrahedral bipyramids, bricks, plates, 

and rod shapes. Some of them formed crystal clusters and were cut into small crystals 

before mounting. Crystals were frozen in liquid nitrogen after soaking in the 20-35% 

glycerol as a cryoprotectant. All protein was mixed with inhibitors in a certain ratio 

that depended on whether the inhibitor had higher affinity (1:2) or low affinity (1:20) 

for the protein. One exception was that PRF53L crystallized in the unliganded form 

although the molar ratio of PRF53L: inhibitor was 1:5 in the solution. Some mixtures 

of PR and inhibitor were more difficult to crystallize than others.  

 X-ray diffraction data for the crystals were collected on the SER-CAT 

beamline of the Advanced Photon Source, Argonne National Laboratory in Chicago.  

Data were processed with HKL2000 (Otwinowski 1997). The structures were solved 

by molecular replacement using the AmoRe (Navaza 1994) and CPP4i suite 

(Collaborative Computational Project 1994; Potterton 2003) programs.  The 

structures were refined by SHELX97 (Sheldrick 1997) and refitted using O 8.0 (Jones 

1991).  Alternate conformations were modeled for residues when obvious in the 

electron density maps.  The solvent was modeled with 180-300 water molecules per 

dimer including partial occupancy sites and ions present in the crystallization 

solutions, as described previously (Tie 2004). Anisotropic B factors were refined for 

the structure. Hydrogen atom positions were included in the last stage of refinement 

using all data after all other parameters including the disorder had been modeled.  The 
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published structures have been deposited in the Protein Data Bank (Berman 2000), 

with the accession codes listed in the Table 3.  The mutant structures were compared 

with the wild type structures or other by superimposing their main chain atoms or Cα 

using the program ALIGN (Cohen 1997) or FUD.  Figures were made using RasMol 

(Sayle 1995), Molscript (Kraulis 1991) and Bobscript (Esnouf 1997; Esnouf 1999). 
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Chapter One:  Kinetic, Stability, and Structural Changes in High 

Resolution Crystal Structures of HIV-1 Protease with Drug Resistant 

Mutations L24I, I50V, and G73S 

(Published: Liu F., Boross P.I., Wang Y.-F., Tozser J., Louis J.M., Harrison R.W., 
Weber I.T. (2005) J Mol Biol. 354(4):789-800.) 

 

INTRODUCTION 

Indinavir was one of the first PR inhibitors in clinical use.  High levels of 

resistance to indinavir were associated with substitutions of up to 11 PR residues in 

different combinations (Brown 1999). The crystal structures of drug-resistant HIV 

PRs with multiple mutations have been reported in complexes with indinavir (Chen 

1995; Munshi 2000; King 2002). Our analysis of the high resolution crystal structures 

of HIV PR, and the common indinavir-resistant mutants PRV82A and PRL90M in 

complexes with indinavir, showed structural changes consistent with differences in 

their enzymatic activity (Mahalingam 2004). However, biochemical and biophysical 

analyses have not been performed for other mutations that are consistently observed 

at lower frequency. Mutations L24I and G73S are observed in about 10% and 5%, 

respectively, of patients exposed to indinavir. These rare mutations are generally 

observed in combination with other resistant mutations. Mutations of Gly 73 appear 

in patients failing multiple PR inhibitors, and are often found in combination with 

L90M (Shafer 2002). The effects of these mutations have been compared to that of 
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I50V, which is rarely observed on exposure to indinavir (0.2%), however, it is found 

in 30% of patients exposed to amprenavir as their first PR inhibitor. PRI50V showed 

higher Ki values for saquinavir, indinavir, and nelfinavir in biochemical studies 

(Partaleis 1995). Mutations L24I, I50V, and G73S alter residues in different regions 

of the PR dimer structure as shown in Figure 1.1. I50V alters a residue at the tip of 

the flexible flap that forms part of the inhibitor-binding site. L24I is next to the 

catalytic Asp 25 but has no direct contact with inhibitor, while G73S is located far 

from the inhibitor binding site. These mutants provide good models to help dissect the 

varied molecular mechanisms of drug resistance. 

Here, we report the kinetics, dimer stability, and crystal structures of the HIV 

drug-resistant mutants PRL24I, PRI50V, and PRG73S. Crystal structures were determined 

for PRL24I, PRI50V, and PRG73S in complexes with indinavir, while PRL24I and PRI50V 

structures were also determined with a peptide analog of the p2/NC cleavage site in 

order to analyze the interactions with both substrate and inhibitor. Atomic details 

from these new crystal structures will be important for the design of second-

generation inhibitors to circumvent the development of drug-resistance. 

 

RESULTS AND DISCUSSION 

Kinetics and Stability 

Kinetic parameters were determined for the resistant mutants using the 

spectrophotometric substrate (K-A-R-V-Nle-p-nitroPhe-E-A-Nle-amide), which is an 

analog of the HIV-1 CA/p2 cleavage site (Table 1.1). The two mutants PRL24I and 

PRI50V showed lower kcat/Km values of 3.7% and 18%, respectively, relative to PR.   
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Figure 1.1. PR dimer structure (green ribbons) with indinavir (red bonds). The sites of 

mutation are indicated by black spheres for Leu 24, Ile 50 and Gly 73.  Only one 

subunit is labeled.   

 

Ile50 

Leu24 Gly73 
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Table 1.1: Kinetic parameters for hydrolysis of spectroscopic substrate (KARV-Nle-

p-nitroPhe-EA-Nle-amide) (CA/p2#). aPR values were taken from (Mahalingam, 

2004).  

 

Protease Substrate Km 

(µM) 

kcat 

(min-1) 

kcat/Km 

(min-1µM-1) 

Relative

kcat/Km 
a PR CA/p2# 55 ± 7 290± 10 5.2± 0.2 100 

PRL24I CA/p2# 310 ±45 61 ± 4 0.19 ± 0.03 3.7 

PRI50V CA/p2# 500±36 480±19 0.93±0.08 18 

PRG73S CA/p2# 46±4 280±65 6.1±0.6 117 
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The decrease in kcat/Km for PRI50V was primarily due to an increase in Km, whereas 

for PRL24I, it was due to both an increase in Km and a decrease in kcat.  PRG73S and PR 

showed similar kcat/Km values for this substrate.  Therefore, PRG73S was tested for the 

hydrolysis of three other peptide substrates, representing different cleavage sites in 

Gag and Gag-Pol polyproteins: K-A-R-V-L*A-E-A-M-S (CA/p2) and V-S-F-N-F*P-

Q-I-T-K-K (p6Pol/PR) and E-R-Q-A-N*F-L-G-K-I (NC/p1) (where * indicates the 

hydrolyzed peptide bond) (Table 1.2). PRG73S showed more variation in the Km values 

than in the kcat values. The relative kcat/Km values were 14%, 27.5% and 390% for the 

CA/p2, NC/p1 and p6Pol/PR peptides, respectively, suggesting significant differences 

in substrate specificity compared to PR.  

The stability of these three mutants, as assessed by urea denaturation, was 

reduced to 50-60% for PRL24I and PRI50V, and about 80% for PRG73S relative to the PR 

value (Figure 1.2A).  Consistent with the lower catalytic activity and susceptibility to 

urea denaturation, the dissociation constant (Kd) was approximately 20 nM for both 

PRL24I and PRI50V (Figure 1.2B).  In contrast, PRG73S exhibited no significant decrease 

in specific proteolytic activity at the lowest measured protein concentration similar to 

PR, which showed no dissociation at 5 nM concentration. 

 

Inhibition 

The three mutants were assayed for inhibition by the clinical inhibitor, 

indinavir, and two substrate analog inhibitors, R-V-L-r-F-E-A-Nle (CA/p2) and Ace-

T-I-Nle-r-Nle-Q-R (p2/NC) (r is the reduced peptide bond), that represent two 

cleavage sites in Gag (Table 1.3). PRI50V was poorly inhibited by indinavir with about 
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50-fold higher inhibition constant (Ki), and about19-fold higher Ki with the p2/NC 

analog, and about 3-fold with the CA/p2 analog as compared to PR. In contrast, 

PRL24I showed relatively strong inhibition by the CA/p2 analog with Ki of 0.05-fold 

of the PR value, while the inhibition by indinavir was 2.6-fold and by p2/NC was 

similar to PR value. Inhibition of the hydrolytic reaction catalyzed by PRG73S was 

similar to PR for indinavir and p2/NC, and was 4.4-fold of the PR value for CA/p2 

(Table 1.2).  Therefore, the mutant PRI50V had the largest effect on inhibition, while 

PRG73S was most similar to wild type PR.  

 

Crystal Structures 

 The crystal structures were determined of mutants PRL24I, PRI50V, and PRG73S 

in complex with indinavir, and mutants PRL24I and PRI50V with the substrate analog 

p2/NC in order to determine any structural changes compared to the wild type PR. 

Good diffraction data were not obtained for crystals of PRG73S with p2/NC. The 

crystallographic data collection and refinement statistics are shown in Table 1.4.  The 

crystal structures of PRL24I-p2/NC, PRL24I-IDV and PRI50V-IDV were refined to R-

factors of 10.6 to 10.8% at the highest resolution of 1.10 Å.  The structures of PRI50V-

p2/NC, and PRG73S-IDV were refined to an R-factor of 11.1 to 14.4% at resolutions of 

1.30 to 1.50 Å. The crystal structures had one dimer in the asymmetric unit of space 

groups P212121 or P21212, except for PRG73S-IDV. In PRG73S-IDV, the two alternate 

conformations of inhibitor in P212121 were resolved by refining in P21 with two 

dimers in the asymmetric unit, as observed previously (Gulnik 1995). Overall, the 

main chain structure of the dimers was very similar and superimposed with RMS  
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Table 1.2: Kinetic parameters from the HPLC assay for hydrolysis of peptides 

KARVL*AEAMS (CA/p2) and VSFNF*PQITKK (p6Pol/PR) and ERQAN*FLGKI 

(NC/p1).  bPR values were taken from (Mahalingam, 2001).  

 

Protease Substrate Km 

(µM) 

kcat 

(min-1) 

kcat/Km 

(min-1µM-1) 

Relative

kcat/Km 
bPR CA/p2 164±9 26±2 0.16 100 

PRG73S CA/p2 680±170 15±1 0.022 14 
bPR p6Pol/PR 253±15 105±2 0.42 100 

PRG73S p6Pol/PR 61±11 100±4 1.64 390 

PR NC/p1 234±68 187±35 0.80 100 

PRG73S NC/p1 347±25 76.2±3.6 0.22 27.5 
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Figure 1.2  Protease stability. 1.2A. Sensitivity to Urea. L24I: closed circles and 

continuous line (UC50=1.05M); I50V: open squares and dotted line (UC50=0.97 M); 

G73S: open circles and continuous line (UC50=1.54M). 1.2B. Dimer dissociation. 

L24I: closed circles and continuous line (Kd=22 nM); I50V: open squares and dotted 

line (Kd=19 nM); G73S: open circles (No dissociation observed). 
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Table 1.3: Inhibition constants for indinavir (IDV), the reduced peptide analogs 

CA/p2 (RVL-r-FEA-Nle) and p2/NC (Ace-TI-Nle-r-Nle-QR), where r is the reduced 

peptide bond. Values relative to PR are given in parentheses.  

 

Protease Inhibition Constant (Ki) 

 IDV (nM) CA/p2 (nM) p2/NC (µM) 

PR 0.54 75 2.17 

PRL24I 1.40 (2.6) 3.5 (0.05) 2.0 (0.9) 

PRI50V 27.0 (50) 230 (3.0) 41 (19) 

PRG73S 0.55 (1.0) 330 (4.4) 3.3 (1.6) 
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 Table 1.4: Crystallographic Data Statistics 

 
Protease Mutant L24I I50V L24I I50V G73S 

Inhibitors p2/NC p2/NC IDV IDV IDV 

Space group P21212 P21212 P212121 P212121 P21 

a 58.2  57.9  51.5 51.3 51.3 

b 85.9 86.0  58.6 58.4 62.7 

   Unit cell 

dimensions 

(Å) c 46.5 46.5  61.6     61.0 59.2 

Unique reflections 91188 57183 75564 72654 56309 

Rmerge (%)  

        Overall (final shell) 

6.8 

(13.2) 

5.8 

(28.1) 

5.7 

(12.2) 

5.6 

(17.7) 

6.5 

(23.9) 

I/sigma(I)  

Overall (final shell) 

25.24 

(9.9) 

26.79 

(4.14) 

28.23 

(7.38 ) 

33.81 

(5.07 ) 

17.42 

(4.51) 

Resolution range for 

refinement (Å) 

10-1.10  10-1.30  10-1.10 10-1.10 10-1.50 

Rwork (%)  10.62 11.14 10.84 10.72 14.43 

Rfree (%) 13.22 14.41 13.81 14.12 21.62 

No. of waters 252.0 313.0 202 240.5 257.5 

Completeness (%) 

        Overall (final shell) 

95.9 

(84.0) 

92.2 

(93.9) 

98.9 

(90.0) 

98.0 

(85.9) 

94.1 

(70.5) 

RMS deviation from ideality      

        Bonds (Å) 0.016 0.013 0.015 0.015 0.008 

        Angle distance (Å) 0.035 0.029 0.034 0.036 0.027 

Average B-factors (Å2)      

        Main chain 7.8 10.1 11.0 9.3 18.3 

        Side chain 10.9 12.7 13.2 11.3 23.4 

        Inhibitor 9.8 14.8 10.5 8.8 15.2/18.5a 

        Solvent 24.1 27.3 24.2 24.5 28.4 

 

a: The two numbers  represent the average B-factors for inhibitors in the two dimers 

in an asymmetric unit  
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differences of < 0.3 Å for pairs in the same space group, and 0.5-0.6 Å for 

comparison of dimers in two different space groups. The indinavir was bound in two 

alternate conformations in the dimers of PRI50V and PRG73S with relative occupancies 

of 0.81/0.19 and 0.58/0.42, respectively. The inhibitor showed one orientation in all 

the other structures. The electron density map of indinavir in PRL24I-IDV is shown in 

Figure 1.3. The atomic B factors were especially low for the protein and inhibitor 

atoms in the structures at 1.10 Å resolution; the average B values were 8-11 Å2 for 

main chain and inhibitor atoms and 11-13 Å2 for side chain atoms. The average B 

factors increased as the resolution decreased. The 1.5 Å resolution structure of 

PRG73S-IDV had average B factors of 18.3 and 23.4 Å2 for main chain and side chain 

atoms, respectively, and 15.2 and 18.5 Å2 for the atoms of the two inhibitors, 

consistent with the lower resolution and higher difference (7%) between Rwork and 

Rfree.  From 202 to 313 solvent molecules were modeled for the different structures 

with average B factors of 24.1 to 28.4 Å2.  

Alternate conformations were observed for many amino acid side chains and 

some main chain atoms, especially for the highest resolution structures (Figure 1.4A). 

There were 42 side chains modeled with alternate conformations for PRL24I-IDV, 39 

for PRL24I-p2/NC, 33 for PRI50V-IDV, 28 for PRI50V-p2/NC, and 44 for the two dimers 

in the PRG73S-IDV structure. Main chain atoms with alternate conformations were 

modeled for residues in the surface turns of 39-41 in PRI50V-IDV and 66-69 in PRL24I-

p2/NC. There were alternate conformations for the side chains of Nle P1’ and Arg 

P3’ of the peptide analog p2/NC in the two mutant structures. The crystal structures 

that were refined at 1.1 Å resolution had the most alternate conformations. However, 
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Figure 1.3. Omit map for indinavir in crystal structure of PRL24I–IDV contoured at a 

level of 3.5 σ.  
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Figure 1.4A. Residues with alternate conformations. Alternate conformations of 

residues in 6 dimers of 5 new crystal structures. Alternate conformations for both side 

chain and main chain atoms were included.  
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Figure 1.4B. Omit maps for mutated residues contoured at a level of 3.5 σ. Val 50’ in 

PRI50V–IDV had a single conformation for the side chain. Two alternate 

conformations are shown for the side chains of Val 50 (relative occupancy of 0.7/0.3) 

in PRI50V–IDV, Ile 24 (relative occupancy of 0.6/0.4) in PRL24I–p2/NC, and Ser 73 

(relative occupancy of 0.5/0.5) in PRG73S–IDV structures. 

Ile24

Val50’

Ser73

Val50
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none of the residues consistently showed alternate conformations in both subunits of 

all structures. Moreover, the structures can show different relative occupancies for the 

alternate conformations of the same residue. The side chains of Glu 21, Met 46, Val 

82 and Leu 97 had alternate conformations in both subunits of most structures. Met 

46 and Val 82 are located near the inhibitor and frequently are mutated in drug 

resistant variants. All the mutated residues showed alternate conformations of the side 

chains (Figure 1.4B). The side chain of Ile 24 had alternate conformations in both 

subunits of both the PRL24I structures, Val 50 had alternate conformations in one 

subunit of each of the PRI50V structures, and Ser 73 showed alternate conformations in 

3 subunits of the 2 dimers in the PRG73S-IDV structure. 

Structural Differences at Sites of Mutation 

 Each mutation introduced distinct structural changes compared to PR that can 

propagate to the inhibitor binding site and the dimer interface. The new mutant 

structures were compared to structures of PR-IDV and PR-p2/NC (Mahalingam 2004; 

Tie 2005). Leu/Ile24 lies in a hydrophobic internal pocket formed by residues from 

both subunits: Ile 3, Val 11, Ile 66, Ile 85, Leu 90, Leu 97’, and Phe 99’ in all the 

structures. The PRL24I showed two alternate conformations for the Ile side chain in 

both subunits of the two crystal structures of PRL24I – IDV and PRL24I – p2/NC. The 

relative occupancies were about 0.8/0.2 for Ile 24 and about 0.6/0.4 for Ile 24’. 

Similar interactions were observed in both structures. The two alternate 

conformations of the side chains of Ile 24 and 24’ in the mutant enabled the formation 

of similar van der Waals contacts to those of the side chains of Leu 24/24’ in PR. One 

exception was the new interaction of the Cg side chain atom of Ile 24 with the side 
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chain of Leu 90, which was not observed for the wild type PR (Figure 1.5A). The 

mutant Ile 24/24’ showed reduced interactions with Ile 85/85’ and Phe 99’/99; for 

example, the shortest interatomic distance increased from 3.8 to 4.4 Å between the 

side chain atoms of residue 24 and Phe 99’ (Figure 1.5A). Leu/Ile 24 interacted with 

Leu 97’ and Phe 99’ at the C-terminus of the other subunit. Therefore, structural 

changes can propagate from the mutated residue 24/24’ to the dimer interface 

between the two C-terminal beta strands formed by residues 95-99. PRL24I had one 

less intersubunit contact of residues 24/24’ compared to PR in the complexes with 

p2/NC, and 2 less in the indinavir complexes. The altered contacts at the dimer 

interface appeared to be unfavorable consistent with the lowered stability in urea and 

increased dissociation of the dimer. 

 Residue 50 lies at the tip of the flap and interacted closely with the other flap 

of the dimer and the inhibitor (Figure 1.1). The interactions with inhibitor are 

described in the following section. The carbonyl oxygen of Ile/Val 50 from one 

subunit formed a conserved hydrogen bond interaction with the amide of Gly 51 from 

the other subunit. The mutated residue in one of the subunits, Val 50 in PRI50V-IDV 

and Val 50’ in PRI50V-p2/NC, showed two alternate conformations for the side chain 

with relative occupancies of about 0.7/0.3 (Figure 1.4B). Ile/Val 50 and 50’ showed 

slightly asymmetric van der Waals interactions (<4.2 Å) in all the structures (Table 

1.5). In general, residue 50 interacted with residues from both flaps in the dimer (Gly 

51, Gly 52, Ile 47’, Gly 48’, Gly 49’, Ile/Val 50’, Ile 54’) and residues Thr 80’, Pro 

81’ and Ile 84’ in the 80’s loop from the other subunit. Residue 50’ in the other 

subunit interacted with similar residues except for Ile 47. PR-IDV differed slightly  
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Figure 1.5. Structural differences at sites of mutation. Dashed lines indicate hydrogen 

bond interactions (2.6-3.3Å).  Dotted lines indicate van der Waals interactions (3.5-

4.2Å). Lines alternating dash and dots indicate distances over 4.2Å. Fig 1.5A. 

Interactions of Leu/Ile24 with Leu90 and Phe99’ in the indinavir complexes. PR is 

green and PRL24I is red. Figure 1.5B. Interactions of Ile/Leu 50 with Ile 47’ and Ile 

84’ in the complexes with p2/NC.  PR is green and PRI50V is red. Figure 1.5C. 

Interactions of Gly73 with residues 74, 31, 29 and 88 in PR-IDV structure. Figure 

1.5D. Interactions of Ser 73 with residues 74, 31, 29 and 88 in the second dimer of 

PRG73S-IDV crystal structure. The side chain of Ser 73’ has two conformations. 
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from the mutant PRI50V-IDV in the loss of contact of Ile 50 with Thr 80’, fewer 

interactions with Pro 81’, more interactions of Ile 50 with 47’ and 48’, and additional 

interactions with Gly 49 and 49’.  The interactions in the PR-p2/NC structure also 

showed small differences from the PRI50V-p2/NC structure, such as the improved 

interactions of Ile 50 with Ile 84’ and 47’ (Figure 1.5B). Val 50/50’ in both PRI50V-

IDV and PRI50V-p2/NC had approximately 10 fewer intersubunit contacts than Ile 

50/50’ in the PR complexes (considering only major conformations). The loss of 

intersubunit interactions of Val 50/50’ compared to those of Ile 50/50’ was consistent 

with the lower stability and higher dimer dissociation constant of PRI50V. 

 The mutant PRG73S showed two alternate conformations for the side chain of 

Ser 73 in three of the four subunits in the crystal structure with indinavir (Figure 

1.4B). In all four subunits at least one conformation of the Ser side chain hydroxyl 

formed a new hydrogen bond interaction with the side chain of Asn 88, a hydrogen 

bond interaction with the amide of Thr74, and new van der Waals contacts with Leu 

89 (Figure 1.5C, 1.5D). The side chain of Asn 88 formed conserved hydrogen bond 

interactions with the carbonyl oxygen and the amide of Thr 74, and van der Waals 

contact with the carbonyl oxygen of Asp 29 in both mutant and wild type PR 

structures (Weber 1990). The new interactions of Ser 73 can propagate to the active 

site via the Asn 88 interaction with Asp 29 and Thr 31, since Asp 29, Asp 30 and Val 

32 interacted directly with the substrate or inhibitor. This network of hydrogen bond 

and van der Waals interactions provides a mechanism for non-active site mutations to 

transmit energetic effects to the binding site for substrates and inhibitors. Little 

difference was observed in the inhibitory effect of indinavir on PRG73S compared with 



 66

PR, probably because indinavir did not form hydrogen bond interactions with Asp 30, 

unlike the peptide analogs. Therefore, the new interactions of Ser 73 in PRG73S are 

likely to be responsible for the observed differences in inhibition by the CA/p2 analog 

and the relative kcat/Km values for different substrates.   

 

Protease-Inhibitor Interactions 

Generally, the mutants and wild type PR showed similar interactions with 

inhibitors. Indinavir was bound by a set of 7 direct hydrogen bond interactions to 

protease residues (Figure 1.6A), as described previously for PR.(Mahalingam 2004) 

There were also conserved interactions mediated by four distinct water molecules. 

The mutants showed changes in the hydrogen bond interactions with the pyridyl 

group of indinavir. In PRL24I-IDV, the major indinavir conformation in PRI50V–IDV, 

and in the first dimer of PRG73S–IDV, the pyridyl group of indinavir can form a 

hydrogen bond with the side chain of Arg 8’ (Figure 1.6B). A similar interaction was 

previously observed in the indinavir complex with PRL90M but not for PR and 

PRV82A(Mahalingam 2004). The pyridyl group of indinavir appeared to have two 

possible positions, and the side chain of Arg 8’ was frequently observed in alternate 

conformations. Consequently, Indinavir can form a hydrogen bond interaction with 

Arg 8’ when the two groups are close enough. The minor conformations of indinavir 

in the complexes with PRI50V and PRG73S had lost interactions with Asp 29 and Gly 27. 

The first dimer of PRG73S had lost interactions via water C, although it is possible that 

this water was not visible due to the lower resolution of the crystal structure.  
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The PR interacted with p2/NC substrate analog by 12 direct hydrogen bonds 

from PR residues Asp 25, Gly 27, Asp 29, Asp 30, and Gly 48 from both subunits 

that extended from the amide of P3 to the NH2 of P4’ (Figure 1.6C). Seven of these 

interactions involved main chain amides and carbonyl oxygens in both PR and 

inhibitor, as described previously (Gustchina 1994). Additional PR-p2/NC 

interactions were mediated by eight water molecules. The highly conserved water 1 

that interacted with the flaps and inhibitor was equivalent to water A in the indinavir 

complexes. Water 2 was structurally equivalent to B in the indinavir complexes, 

while the others were not in equivalent positions. Water 2 mediated interactions of P3 

C=O with Gly 27 and Asp 29, while water 3 had pseudosymmetric interactions with 

P2’ C=O, Gly 27’ and Asp 29’. Waters 4-8 interacted with the P3 Thr side chain and 

with the termini of the inhibitor. The hydrogen bond interactions of PR with p2/NC 

substrate analog were highly similar in the mutant structures (differences of 0.1 Å or 

less in length) (Figure 1.6C), with only minor changes in the interactions with water. 

The hydroxyl of P3 Thr had one interaction with water in PR and two interactions in 

the mutants, while the P4’ NH2 only had one hydrogen bond with water in PRI50V. 

Residue 50/50’ was the only mutated residue that had direct contacts with 

inhibitor. Val 50 cannot form the van der Waals interactions of the Ile CD atom with 

indinavir.  The loss of interactions was partially compensated by movement of the 

PRI50V flaps toward indinavir by 0.4 Å at the Cα atoms of residues 50 and 50’. Both 

structures of PRI50V showed two alternate conformations for inhibitor and for the side 

chain of Val 50 in one subunit of the dimer. The presence of alternate conformations 

clearly increased the number of protease-inhibitor contacts. However, the occupancy 
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Figure 1.6.  Protease-inhibitor interactions. Only the residues involved in hydrogen 
bond interactions are shown. Water molecules are represented as spheres.  Hydrogen 
bonds are indicated by dashed lines. Fig1.6A. PRL24I hydrogen bond interactions with 
indinavir.  Water molecules are labeled A-D.  Fig 1.6B. Interactions of Arg 8’ in 
PRI50V –IDV with the pyridyl group of indinavir.  The omit map was contoured at 3.5 
σ. Fig 1.6C. PRL24I interactions with p2/NC. Water molecules are labeled 1-8. Arg 8 
and Arg 8’ are omitted for clarity. Fig 1.6D. Selected interactions of the side chains of 
Ile/Leu 50 and 50’ with indinavir in the PRI50V and PR indinavir complexes.  PR-IDV 
is in green and PRI50V–IDV is red. Only the central portion of indinavir is shown with 
van der Waals contacts indicated by dotted lines with distances in Å.  
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ratio was 0.8/0.2 for alternate conformations of indinavir, and about 0.7/0.3 for 

p2/NC and the Val 50/50’ side chains. Therefore, the contacts involving major 

conformations were expected to be more significant. The side chain atoms of Ile 50 

and 50’ showed 9 van der Waals contacts with indinavir in PR-IDV, while Val 50 and 

50’ had 5 van der Waals contacts with indinavir for the major conformers. Some 

differences are illustrated in Figure 1.6D.  Similarly, PR-p2/NC showed 6 van der 

Waals contacts between the side chains of Ile 50 and 50’ and the p2/NC, while the 

mutant had 3 contacts of Val 50 and the major conformer of Val 50’ side chains with 

p2/NC.  In both cases the mutant had lost 3-4 contacts with inhibitor, consistent with 

the increased relative Ki values for PRI50V of 50-fold for indinavir and 20-fold for 

p2/NC.  

 

Catalytic Sites 

The 1.1 Å resolution crystal structures of PRL24I-IDV and PRI50V-IDV showed 

more asymmetrical interactions between the carboxylate oxygens of the catalytic Asp 

25 and 25’ and the hydroxyl of indinavir than observed for PR.  PR-IDV structure 

showed interatomic distances of 2.7-2.9 Å, while the mutant structures had two 

shorter interactions of 2.6-2.7 Å and two longer interactions of 3.0-3.2 Å.  The 

peptide analog did not have a carbonyl group at the catalytic site and there was only 

one hydrogen bond formed between the amide of P1’ and the OD2 of Asp 25, unlike 

the four possible with the hydroxyl group of indinavir.  

Crystal structures of HIV PR-inhibitor complexes at resolution of at least 1.1 

Å have shown potential difference density for the hydrogen associated with the 
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catalytic aspartates (Brynda 2004; Tie 2004). Positive difference density was 

observed near the catalytic aspartates in the 1.1 Å structure of PRL24I – p2/NC. This 

difference density was between the two closest inner carboxylate oxygen atoms of 

Asp 25 and 25’ (Figure 1.7). A smaller peak was observed between the Asp 25 and 

the CH2 of the reduced peptide group after adding hydrogen. The peak representing 

the proton between the Asp 25 and 25’ oxygen atoms in the PRL24I – p2/NC complex 

was not in exactly the same position as that in the PRV82A - UIC94017 complex (Tie 

2004). Therefore, the location of the proton may depend on the chemistry of the 

inhibitor.  

 

CONCLUSION 

Structural changes due to mutations may result in reduced affinity for 

inhibitor, altered protease activity or stability, and consequently provide resistance to 

drugs.  All three protease variants showed distinct structural changes near the site of 

mutation and changes in catalytic activity or inhibition relative to wild type protease. 

The substantially reduced catalytic activity of PRL24I agreed with the sensitive 

location of the mutation next to the catalytic Asp 25.  Although this mutation has 

been observed in about 10% of patients exposed to indinavir there was only a small 

(2.6-fold) increase in Ki relative to PR.  Hence, the drug resistance is expected to 

arise from the effect of L24I on reducing catalytic activity and dimer stability, which 

is consistent with the observed presence of this mutation only in combination with 

other indinavir-resistant mutations.  In contrast, PRI50V exhibited a dramatic 50-fold 

increase in Ki for indinavir, although this mutation is very rarely observed in isolates  
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Figure 1.7. The catalytic site of PRL24I – p2/NC at 1.1 Å resolution. The 2Fo-fc map is 

in green and contoured at 2.6σ and the positive Fo-Fc map is in purple at 3.5σ. 
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resistant to indinavir.  The weaker inhibition appeared to arise from reduced van der 

Waals interactions of inhibitors with Val 50 in PRI50V compared to Ile 50 in PR. 

PRG73S was similar to PR in dimer dissociation and inhibition, consistent with the 

location of residue 73 at the protein surface and far from the active site. Interestingly, 

Ser 73 in PRG73S formed new hydrogen bond networks that can transmit changes to 

the substrate binding site consistent with the variation in activity for different 

substrates.  The rarity of this mutation, and its selection in combination with other 

resistant mutations, are consistent with the relatively minor effects on protease 

structure and catalysis.   

Two of the three mutants PRL24I and PRI50V appeared to have the major effect 

of reducing intersubunit interactions and increasing dimer dissociation. The subunit-

subunit interface in the PR dimer is formed mainly by residues from the N- and C-

termini (below the active site), the catalytic residues, and the flaps (above the active 

site) (Figure 1.1). Increased dimer dissociation was observed for both the PRI50V 

mutant that reduced the intersubunit interactions of the flaps, and PRL24I that altered 

intersubunit interactions with the C-terminal residues located at the opposite side of 

the molecule from the flaps. This analysis has confirmed that drug resistance can arise 

when mutations alter the PR dimer interface at the flaps or the terminal beta sheet, as 

well as when mutations directly alter the inhibitor binding site.  Furthermore, distal 

mutations with relatively minor effects can transmit changes to the substrate binding 

site and contribute to viral resistance. 
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Chapter Two: Mechanism of Drug Resistance Revealed by the 

Crystal Structure of the Unliganded HIV-1 Protease with F53L 

Mutation 

(Published: Liu F., Kovalevsky A.Y., Boross P.I., Louis J.M., Harrison R.W., Weber 
I.T. (2006) J Mol Biol. 358(5):1191-9.) 

 

INTRODUCTION  

According to Shafer (Shafer 2002) the presence of the flap mutations results 

in intermediate-to-high-level resistance of the HIV-1 PR to the seven approved PR 

inhibiting drugs (nelfinavir, saquinavir, indinavir, ritonavir, amprenavir, lopinavir, 

atazanavir).The F53L mutation has been attributed to the use of the lopinavir/ritonavir 

treatment regimen.  The mutations at positions 46-48, 50, 53 and 54 are the most 

commonly detected, and usually are accompanied by the mutations at positions 82 

and 84 in the inhibitor binding site.  Combinations of these mutations arise during the 

treatment of infected patients with over three PR inhibitors producing multidrug 

resistant variants of the HIV-1 PR.   

 In order to fully understand the molecular mechanisms of multidrug resistance 

it is necessary to analyze structures of both the inhibitor-complexed and uncomplexed 

HIV-1 PR.  Although there are numerous reports on the PR structures complexed 

with a variety of inhibitors (Rodriguez-Barrios 2004), the structural information on 

the unliganded PR is extremely scarce.  The crystal structures of only the wild-type 

PR (natural (Lapatto 1989; Navia 1989) and synthetic (Wlodawer 1989)) and a single
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 multidrug resistant PR variant (Logsdon 2004; Martin 2005) have been determined at 

the resolutions of 2.7-3Å and 1.30Å, respectively.   

 Therefore, in this study we have prepared the HIV-1 PRF53L mutant, examined 

its kinetic properties and obtained a high-resolution X-ray crystal structure of the PR 

in its unliganded form.  The structure is discussed in comparison with the previously 

reported unliganded PR structures.  The crystal structure of the PRF53L mutant is the 

first uncomplexed HIV-1 protease structure containing a single flap mutation 

important for drug resistance.  It demonstrates that even a single mutation can 

produce substantial structural changes in the flap region. 

RESULTS AND DISCUSSION  

PRF53L Showed Altered Kinetics and Stability  

The enzyme kinetic parameters were measured and compared to those for 

wild type PR.  PRF53L showed lower catalytic efficiency (kcat/KM) at 15% of the PR 

value, due primarily to the ~6-fold increased KM (KM = 320±50 µM, kcat = 245±18 

min-1, kcat/KM = 0.77±0.12 µM-1⋅min-1 for PRF53L and KM = 55±7 µM, kcat = 285±10 

min-1, kcat/KM = 5.2±0.2 µM-1⋅min-1 for PR) (Mahalingam 2004).  The mutant was 

assayed for inhibition by the clinical inhibitor, indinavir, and two substrate analog 

inhibitors, CA-p2 and p2-NC, that represent cleavage sites in HIV-1 Gag.  PRF53L was 

inhibited by indinavir with 20-fold higher inhibition constant compared to PR (Ki = 

11.1±1.7 nM for PRF53L and Ki = 0.54±0.07 nM for PR).  However, the peptide 

analogs gave slightly better inhibition (0.7 and 0.8-fold) of this mutant relative to the 

Ki values of 0.075 and 2.2 µM for CA-p2 and p2-NC inhibition, respectively, of PR 

(Tie 2005). 
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The stability of PRF53L was assessed using two approaches.  Monitoring 

protease activity as a function of increasing urea concentration indicated that PRF53L 

was more sensitive to urea denaturation with a transition mid-point value (UC50) of ~ 

1.2 M as compared to PR (UC50=1.8 M) (Figure 2.1a).  Consistent with this 

observation a gradual loss in catalytic activity of PRF53L, when monitored as a 

function of enzyme dilution, was observed below 20 nM, with ~ 50 % decrease at ~5 

nM (Figure 2.1b), which represents the apparent dimer dissociation constant (KD) 

(Jordan 1992).  Under the same conditions (50 mM sodium acetate pH 5, 0.1 M NaCl, 

25 °C), wild type PR does not exhibit any loss in catalytic activity.  The KD of PR is 

expected to be lower than 5 nM, which is the lower limit of the assay.  

 In summary, PRF53L exhibits significantly lower kcat/Km than the wild type PR. 

It is weakly inhibited by indinavir, but shows similar inhibition by substrate analogs 

as does the wild-type PR.  In addition, PRF53L has significantly decreased stability as 

assessed by urea denaturation and showed increased dimer dissociation relative to PR.  

Clearly, there is likely to be a correlation between the reduced activity and stability of 

this flap mutant. 

Crystal Structure of Unliganded PRF53L 

 The crystal structure of PRF53L was determined in its unliganded form at 1.35 

Å resolution, which is one of the highest resolution structures reported to date for 

unliganded PR.  The crystallographic statistics are given in Table 2.1.  The 

crystallographic asymmetric unit contains one monomer, and the dimer is constructed 

by the rotation around the crystallographic 2-fold axis of the P41212 space group.  The 

residues are numbered 1-99 and 1’-99’ for the asymmetric and symmetry-related PR  
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Figure 2.1.  Specific activity as a function of urea concentration (a) and the dimeric 

enzyme concentration (b).  Black circles and continuous line correpond to data for 

PRF53L, while open circles and dashed line indicate PR.   
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Table 2.1.  Crystallographic data collection and refinement statistics.  

                                               
Space group P41212 

Unit cell (Å) 60.95, 55.55 

Resolution range (Å) (final 

shell) 

50 – 1.35 (1.40 – 1.35) 

Unique Reflections (final shell) 22,779 (2166) 

Completeness (%) (final shell) 97.3 (95.1) 

Rmerge (%) overall (final shell) 6.8 (56.3) 

Data range for refinement (Å) 10 – 1.35 

I/σ(I) (final shell) 22.2 (2.52) 

R1 (I > 2σ(I)) 15.5 

Rwork, Rfree (%) 16.0, 23.4 

No. of protein atoms refined 762 

No. of solvent (total 

occupancies) 

97 (83) 

RMS deviation from ideality: 

Bonds (Å) 

Angle distances (Å) 

 

0.012 

0.030 

Average B-factors (Å2): 

Main chain 

Side chains 

Solvent 

 

26.7 

33.0 

44.6 
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subunits, respectively.  The structure was refined using anisotropic atomic 

displacement parameters (B-factors) for all atoms, including 97 water molecules per 

asymmetric unit.  Water O1050, which forms hydrogen bond interactions with the 

catalytic Asp25, has a unique position in the structure since it is located on the 

crystallographic 2-fold axis, and therefore equidistant from both Asp25 and Asp25’ in 

the crystallographic dimer.  Hydrogen atoms were added at the last stages of the 

refinement.  The PR showed good electron density for almost all of the non-hydrogen 

atoms, except for several side chain atoms of Ile50 in the flexible tip of the flap 

(Figure 2.2a).  The average B factors for all residues were calculated to be ~27Å2 and 

~33Å2 for the main chain and side chain atoms, respectively.  The average B factor 

for flap residues 45-56 was ~32 Å2 and ~39Å2 for main chain and side chain atoms, 

respectively, the values being very similar to the overall values.  Alternate 

conformations were modeled for the side chains of Arg8 and Met46.  The electron 

density for the mutation site at position 53 unequivocally showed the leucine side 

chain (Figure 2.2b).  No electron density for inhibitor was observed in the binding site, 

although indinavir was present in the crystallization drops. Numerous attempts to 

crystallize PRF53L in complex with various inhibitors (indinavir, TMC114, DMP323) 

were not successful in yielding crystals.   

 

Structural Differences between Unliganded PRF53L and the Unliganded PRWT. 

 The unliganded structures of PRF53L and PR (PDB code 1HHP) were 

compared to determine the differences due to the F53L mutation.  PRF53L differs in its 

sequence at 6 positions compared to PR.  In addition to the drug resistant mutation 
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F53L, the mutations Q7K, L33I and L63I were introduced to significantly restrict 

auto-proteolysis and C67A and C95A to avoid aggregation due to cysteine-thiol 

oxidation of PR.  These optimizing mutations did not alter the overall solution 

structure, stability or the catalytic activity of PR(Ishima 1999; Louis 1999).  The 

overall RMS deviation of the main chain atoms was only 0.44 Å, a seemingly 

insignificant difference. However, the analysis of the conformational differences in 

the two structures demonstrated considerable disparity in the flap region, particularly, 

for the tips of the flaps (Figure 2.3a, 2.3b).   

The deviation of the main chain atoms for the flap residues 48-54 was 0.8-2.5 

Å from the corresponding atoms in PR, with the largest shift at Ile50.  This shift 

resulted in a greater separation of the tips of the two flaps of PRF53L dimer than in the 

wild type structure, although the overall conformation of the main chain remained 

very similar (Figure 2.3b).  Such mutual reorientation of the symmetry-related flaps 

in the mutant opens up a channel with the closest inter-flap distance of 6.3 Å as 

measured between the carbonyl oxygen atoms of Gly51 and Gly51’ (Figure 2.3c).  

Interestingly, however, no well-defined solvent molecules were visible in the 6Å-

wide channel.   

 In contrast, in PR the tips of the flaps are much closer together (Figure 3b and 

3d) and show both hydrophobic and hydrophilic interactions between each other. An 

unconventional C-H…O hydrogen bond Ile50 CD1…Gly49’ O of 3.00 Å is present, 

which is supported by the hydrophobic interaction Ile50 CD1…Gly48’ Cα of 3.7 Å 

(Figure 2.4). 
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    (a) 
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Figure 2.2 (a) The Fo-Fc omit map for residues 47 through 53 in the flap region of 

PRF53L contoured at 2.6σ. (b) Fo-Fc omit map for residue 53 in PRF53L, contoured at 

2.7σ, unambiguously shows leucine.  Figures were made with Bobscript (Esnouf 

1997; Esnouf 1999). 

Ile50

Leu53

47

Gly49

Gly48

Gly51

Gly52

Ile50

Leu53

47

Gly49

Gly48

Gly51

Gly52
 



 82

  

             (a)  

   

   (b)

PRWT

PRWT-tmc114

PRMDR

PRF53L

PRWT 

PRWT-tmc114 

PRMDR 
PRF53L 



 83

~ 6Å  
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Figure 2.3.  (a) Superposition of unliganded PR, PRF53L, PRMDR, and TMC114-

complexed PR structures.  (b) Superposition of residues 45-56 and 45’-56’ in the 

flaps of unliganded PR, PRF53L, PRMDR, and PRWT-tmc114 structures.  PRF53L is in red, 

PR in green, PRMDR in blue and inhibitor-complexed PRWT in pink.  The F53L mutant 

structure was compared with the wild type structures and the MDR mutant protease 

by superimposing their main chain atoms using ALIGN (Cohen 1997).  (c) Space-

filling representations of the protease dimers showing a 6 Å separation between the 

tips of the flaps in PRF53L, (d) the unliganded PR and (e) PRWT-tmc114 with the 

inhibitor omitted for clarity.  Figures were made using Bobscript (Esnouf 1997; 

Esnouf 1999) and WebLabViewer (Molecular Simulations Inc).   
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Figure 2.4.  Comparison of inter-flap interactions in unliganded PRF53L and 

unliganded PR structures. PRF53L is colored by atom type; PR is in orange.  Figure 

was made with Bobscript (Esnouf 1997; Esnouf 1999).
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The other major difference between PRF53L and PR is the absence of the large phenyl 

ring of phenylalanine in the former due to the mutation.  The large aromatic ring is 

known to favor strong hydrophobic interactions, for instance, C-H…π interactions.  

In the wild-type structure the aromatic carbon atoms of Phe53 are in close contact 

with the Ile50’ CD1 atom, and the closest intermolecular distance is just 3.4 Å 

(Figure 2.4).  Moreover, the orientation of the terminal CH3 group of Ile50 and the 

phenyl ring is such that they close the narrow flap-to-flap channel from both sides.  

By mutating residue 53 to the smaller non-aromatic leucine, which can only 

participate in much less energetically favorable C-H…H-C interactions, those C-

H…π contacts are eliminated completely.  Unlike in PR, where the terminal methyl 

group of Ile50 is directed into the space between the tips of the flaps, in PRF53L it is 

pointed away from the wide channel towards the protein surface, making only weak 

hydrophobic interactions with Pro81 carbon atoms of ~ 3.9 Å.  Furthermore, the side 

chain of Leu53 is directed into the channel between the flaps, and does not make any 

intermolecular interactions (Figure 2.4).   

Therefore, we can speculate that the C-H…π interactions found between the 

aromatic carbon atoms of Phe53 and the terminal methyl group of Ile50’ are essential 

to stabilize the conformation observed in PR.  These contacts are absent in the mutant 

PRF53L, which is likely to make the flap more conformationally flexible.  The 

increased flexibility of the flaps could thus preclude the formation of PRF53L complex 

with indinavir, despite its presence in solution during the crystal growth.   
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Structural Differences between Unliganded PRF53L and Liganded PRWT 

 The unliganded PRF53L was compared with a wild-type PR complexed with an 

inhibitor to investigate the conformational change due to ligand binding. Our 

structure of PRWT-tmc114 (PDB code 1S6G) was chosen for this comparison (Tie 

2004).  PRWT-tmc114 contains the second generation antiviral inhibitor TMC114.  

The choice was also motivated by the fact that the two proteins have the same amino 

acid sequence, except for the primary mutation F53L.   

 The overall RMS deviation of the main chain atoms for PRF53L and PRWT-

tmc114 was 2.27 Å.  As expected the active site triad Asp25-Thr26-Gly27 had a very 

similar orientation in both structures. The Asp25 carboxyl groups in PRF53L were 

shifted by just 0.6 Å into the active site cleft compared to their positions in PRWT-

tmc114.  On the other hand, substantial differences were observed for the 

conformations of the flaps (residues 45-55) (Figure 2.3a and 2.3b) and of residues 79-

82.  The tips of the flaps in the wild type inhibitor-complexed structure were shifted 

by as much as 8.3 Å from their positions in the unliganded structure in order to close 

the active site cavity and embrace the inhibitor (Figure 2.3e).  Moreover, in the 

PRF53L structure the loop of residues 79-82 (the 80’s loop) was about 2-2.5 Å away 

from the position in the wild type molecule, and the 80’s loop changes in cooperation 

with the flap to open up the active site cavity even further.  Molecular dynamics 

simulations (Ridky 1998) on the unliganded PR have suggested that the closed 

conformation of the flap observed in inhibitor-complexed structures is less favorable 

than the more open conformation found in PRF53L and PR structures.  Recent 

simulations by Meagher and Carlson (Meagher 2005) have strongly supported the 
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previous results.  They concluded that the “semi-open” form of the unliganded PR is 

indeed a stable conformation and is not biased by the crystal packing effects.  

 

Structural Variations between Unliganded PRF53L and Unliganded PRMDR. 

 Our unliganded structure of PRF53L was compared with the unliganded 

structure of PRMDR (PDB code 1TW7), which is a multi-drug resistant variant of 

HIV-1 PR (Martin 2005).  These two proteins differ in amino acid sequence in 

several positions besides the F53L mutation.  PRMDR has ten mutations associated 

with drug resistance (L10I, M36V, S37N, M46L, I54V, I62V, A71V, V82A, I84V, 

L90M), and the inactivating D25N mutation.  Furthermore, unlike PRF53L, it does not 

bear the optimizing mutations of residues 7, 33, 63, 67, and 95.  In contrast to PRF53L, 

the PRMDR mutant crystallized in P41 space group, with a dimer in the asymmetric 

unit.  The comparison of the two structures showed an RMS deviation of the main 

chain atoms of 1.0 Å, which is in between the values for comparison of PRF53L with 

PR and PRWT-tmc114.  Similar to the trend observed in case of comparing with 

PRWT-tmc114, the largest variations are found for the flaps (residues 43-56) (Figure 

2.3a and 2.3b), residues 35-38 and 79-82.  The different conformations of residues 

35-38 (RMS deviations are 1.0-2.0 Å, the largest values are at positions 35 and 37) 

can be explained by the S37N mutation present in PRMDR.  The longer side chains of 

the Asn37 and Asn37’ form water-mediated interactions with the side chain nitrogens 

of Arg57 and Arg57’, respectively.  This interaction is unattainable for the shorter 

side chain of serine in PRF53L.  Ser37, therefore, has the opposite orientation, away 

from the protein surface.   
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 The major difference in the geometries of the two molecules is in the mutual 

orientation of their flaps (Figure 2.3b).  The flaps’ orientation in PRMDR is such that 

the active site cavity is even more open than in PRF53L.  The geometry can thus be 

regarded as “quasi-open” conformation, since the flaps are not yet opened enough for 

entry of a substrate or inhibitor.  The mutual conformation of the flaps in the PRMDR 

mutant can be viewed as if the flaps were simply moved away from each other from 

their position in the complexed structure to a separation of about 10 Å.  Although 

there are several water molecules around the flaps’ tips, such a large separation does 

not allow any water-mediated contacts between the flaps.   

 The orientation of the flaps’ tips for both PRF53L and PRMDR leads to their 

proximity to residues in the 80’s loop.  In the PRMDR structure, the terminal CH3 

groups of Ile50 and Ile50’ have strong van der Waals contacts of 3.6 Å with one of 

the carbon atoms of Pro81’ or Pro80, respectively.  As mentioned above, similar C-

H…H-C interaction in the PRF53L structure has the distance of 3.9 Å and therefore 

might be slightly weaker.  These interactions result in a slight movement of the 80’s 

loop away from the active site cavity for PRF53L compared to its position in the PRMDR.   

 It has to be emphasized that different crystallization conditions were used for 

obtaining the crystals of unliganded PRF53L, PRMDR and PR.  The three structures have 

different unit cells and therefore the protease molecules are packed in a different 

fashion, having disparate intermolecular interactions.  Although the conformation of 

the flap region observed in PRF53L is very plausibly due to the mutation, a partial 

effect of the crystal packing on the flap’s geometry cannot be ruled out for these 

structures.   
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Implications for the Mechanism of Drug Resistance. 

 Drug resistant mutations in PR have been classified structurally as active site 

and non-active site, depending on whether they are located on the inside or the 

outside of the active site cavity (Erickson 1996).  Additionally, these mutations are 

designated as “major” or “minor” mutations depending on whether they appear to 

have a major effect on phenotypic and clinical resistance or play an accessory role.  

Several molecular mechanisms have been described previously for drug resistant PR 

mutants.  Major active site mutations have been shown to directly alter PR 

interactions with inhibitor and/or substrate analogs and consequently reduce the 

affinity for inhibitor (Erickson 1996; Hong 2000; Clemente 2004; Logsdon 2004). 

Non-active site mutations were observed to alter interactions with the catalytic Asp25, 

or the dimer interface (Xie 1999; Clemente 2004); these mutations can alter catalytic 

efficiency or PR stability.   

 The F53L mutation of the HIV-1 PR occurs in 5-10% isolates from patients 

treated with indinavir, saquinavir, lopinavir, atazanavir, or more than one PR inhibitor, 

and it is always accompanied by other resistant mutations (Shafer 2002; Wu 2003).  

Consequently, the F53L mutation is classified as a non-active site minor mutation.  

Interestingly, no crystal structures have been reported previously of the PR with the 

single F53L mutation, although Heaslet et al. reported two inhibitor-complexed HIV-

1 PR structures that contain multiple mutations including F53L (Heaslet 2006).  In 

inhibitor-complexed PR structures without the F53L mutation, both Phe53 and 

Phe53’ side chains have conserved conformations directed away from the active site 
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and interacting closely only with the neighboring Gly48 or Gly48’ of the same flap 

(Brynda 2004).  However, in the unliganded wild type PR the two symmetric Phe53 

residues play a major role in stabilizing the “semi-open” conformation of the flaps by 

means of the C-H…π interactions with the methyl groups of Ile50 and Ile50’ (Figure 

2.4).  The substitution of the Phe53 by Leu eliminates these attractive interactions, 

although no new intramolecular contacts are formed.  Thus, we theorize that the 

absence of such stabilizing short contacts produces more conformationally flexible 

flaps, especially at the tips.  It was suggested previously that the hydrophobicity of 

Phe53 side chain was important for the capture of substrates and inhibitors (Shao 

1997).  According to the solution NMR experiments the very tips of the flaps are in a 

rapid conformational exchange on the order of nanoseconds, while the residues 48-55 

move to open and close the active site on the order of ~ 100 µs (Ishima 1999). An 

approaching substrate or inhibitor can interact with the Phe53 aromatic ring and assist 

with the flap opening.  In PRF53L the flap might move significantly faster than in the 

wild type PR.  Furthermore, a substrate or inhibitor would have much weaker 

interactions with Leu53 than with Phe.  Thus, this mutant can hamper binding of a 

substrate or inhibitor.  Accordingly, the drug resistance associated with F53L 

mutation can be attributed to the additional mobility of the PR flaps due to the loss of 

attractive interactions with residue 53. Therefore, we propose that the F53L mutation 

introduces a distinct mechanism for drug resistance.  

Protein Data Bank Accession Code 

 The coordinates and structure factors have been deposited in the RCSB 

Protein Data Bank with accession code 2G6B   
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Chapter Three: Ultra-high Resolution Crystal Structure of HIV-1 

Protease Mutant Reveals Two Binding Sites for Clinical Inhibitor 

TMC114 
(Published: Kovalevsky A.Y., Liu F., Leshchenko, S., Ghosh A.K., Louis J.M., 

Harrison R.W., Weber I.T. (2006) J Mol Biol. 363:161-173) 
 

INTRODUCTION  

TMC114 (darunavir) is an exceedingly potent antiviral agent designed to 

inhibit HIV-1 PR by binding at its active site (Ghosh 1998). It is highly effective 

against various subtypes of HIV-1, including many drug resistant strains (Koh 2003; 

De Meyer 2005),  Recently, it was approved by the FDA for treatment of drug 

resistant HIV.  TMC114 is a non-peptidic transition-state analog, with the chemical 

structure as shown below.  It differs from its closest chemical analog, amprenavir, by 

the presence of the bis-THF moiety (Wlodawer 1998). 
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The design rationale was to increase the number of favorable interactions with main 

chain atoms of PR.  This objective has been achieved as evidenced by 

crystallographic studies on wild type PR and mutant complexes with TMC114 (King 

2004; Tie 2004) and by quantum chemical calculations of interaction energies of 

TMC114, amprenavir, or nelfinavir with wild type PR (Nivesanond 2005).

TMC114 
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 No TMC114-specific resistant mutations in PR have been reported to date, so 

our approach has been to study PR mutants with a single substitution mutation that 

renders resistance to the other clinical inhibitors.  Recently, we reported the analysis 

of TMC114 complexes with PR containing single multi-drug resistant mutations 

D30N, I50V, V82A, I84V and L90M (Tie 2004; Kovalevsky 2006).  TMC114 

adapted to the PR structural changes due to V82A and I84V mutations, with the Ki 

values increasing by no more than four times. In the case of PRL90M   TMC114 had 

even better inhibition than for the wild type enzyme. On the other hand, TMC114 

exhibited less effective inhibition of PRD30N and PRI50V, where the Ki values were 

increased 12-17 times compared to the value for the wild type PR (Kovalevsky 2006).   

 Here, we focus on the multi-drug resistant mutations V32I and M46L (Wu 

2003).  The mutation V32I is observed in about 20% of isolates from patients treated 

with amprenavir, in 3-6% of patients treated with ritonavir, lopinavir, atazanavir and 

indinavir, and in about 4% of those on a multi-PI regimen (Wu 2003).  It confers 

intermediate level resistance to amprenavir, ritonavir and indinavir.  The mutation 

M46L is selected for resistance to seven of the eight FDA approved clinical PIs, and 

is a major mutation arising during treatment with indinavir (Johnson 2005).  

Structurally, V32I alters a residue in the substrate-binding site and can directly 

contribute to the drug resistance by unfavorable interactions with an inhibitor because 

isoleucine is larger than valine.  Conversely, M46L alters a residue in the flexible PR 

flap (residues 43-58) and is not in direct contact with an inhibitor bound in the active-

site cavity, although the main-chain atoms of Met46 form hydrogen bonds with 

substrate analogs (Tie 2005).  The active dimer of HIV-1 PR employs the two flaps to 
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enclose the substrate or inhibitor within the active-site cleft.  The PR flap is believed 

to be essential for substrate or inhibitor recognition and delivery to the active site 

(Shao 1997).  Hence, the M46L mutation can influence the binding of inhibitor 

indirectly either by reducing the hydrophobic interactions during the binding process, 

or by strengthening interactions with a substrate.   

 We describe crystallographic analysis of the effects of TMC114 on mutants 

PRV32I and PRM46L.  The crystal structures have been determined at 0.84Å and 1.22Å 

resolution for PRV32I-TMC114 and PRM46L-TMC114 complexes, respectively.  The 

first ultra-high resolution structure of a PR-inhibitor complex showed two molecular 

species at 60% and 40% occupancy. The higher occupancy conformer has TMC114 

bound at two distinct sites: the active site cavity and a second, new site on the surface 

of one of the flaps, while the lower occupancy conformer showed TMC114 only in 

the active site cavity.  These results suggest an alternative mechanism for the 

effectiveness of TMC114 against many clinical drug resistant isolates of HIV-1 and 

may provide a distinct target for the design of novel inhibitors that bind to the second 

site on the flap. 

RESULTS 

Crystallographic analysis 

 The crystal structures of PRV32I and PRM46L drug resistant mutants complexed 

with the inhibitor TMC114 were solved in the space group P212121 as summarized in 

Table 1.  The asymmetric units contain the PR dimer and the residues in the two 

subunits are labeled 1-99 and 1’-99’ (Figure 3.1a).  The crystals diffracted to the 

ultra-high resolution of 0.84 Å for PRV32I-TMC114 and near-atomic resolution (1.22 
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Å) for PRM46L-TMC114.  The final R-factors are 11.7% and 13.1% for PRV32I-

TMC114 and PRM46L-TMC114, respectively.  There was clear electron density for all 

atoms of the protease, the inhibitor and solvent molecules in the two structures.  The 

2FO-FC electron density map had distinct peaks for each non-hydrogen atom in the 

ultra-high resolution structure of PRV32I-TMC114, whereas the near-atomic resolution 

structure showed lower, less distinct peaks for atoms (Figure 3.1b and 3.1c).  The 

average atomic B-factor values were approximately two-fold lower for the PRV32I-

TMC114 complex (Table 3.1) indicating the higher accuracy of atomic positions for 

this structure.  The high resolution of the diffraction data allowed modeling of two 

shells of solvent, including more than 200 water molecules, chloride anions and 

dimethylsulfoxide (DMSO) molecules.   

 Of particular interest is the fact that TMC114 is found not only inside the 

active-site cleft, as observed in other structures (King 2004; Surleraux 2005; 

Kovalevsky 2006),  but also on the protein surface in the flap region (Figure 3.1a and 

3.1d).  The inhibitor bound in the active site of PRV32I-TMC114 and PRM46L-TMC114 

structures has two alternate conformations related by a 180° rotation and occupancies 

of 60/40%.  TMC114 shares the second surface binding site with the solvent DMSO 

molecule, with the occupancies refined to 60 and 40%, respectively.  Remarkably, 

TMC114 has different configurations when bound on the surface and in the active-

site cavity.  The amide nitrogen of the sulfonamide moiety has a pyramidal 

configuration and is chiral due to the presence of three chemically different  
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Figure 3.1  (a) –  PR dimer structure.  Two subunits (in red and blue) are drawn 

indicating the secondary structure.  TMC114 is in ball-and-stick representation and is 

colored by atom type, and is bound in two sites as revealed in PRV32I and PRM46L 

structures.  (b) and (c) –  stereoview of the electron density (2FO-FC) for residues 55-

60 in the PRV32I and PRM46L structures.  Contour levels are 3.6σ for (b) and 2.4σ for 

(c).  (d) –  stereoview of the 2FO-FC electron density for TMC114 bound to the flap in 

PRV32I, drawn at 1.8σ.  TMC114 has 60% occupancy, while the other 40% 

correspond to DMSO solvent molecule, depicted in magenta.  (e) –  the structures of 

TMC114 bound in the active site cavity (R-enantiomer) and in the flap region (S-

enantiomer).  The moieties in the box are related by reflection in a mirror and can be 

obtained by the sulfonamide nitrogen inversion. 

S-enantiomer R-enantiomer

mirror 
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Table 3.1. Data collection and refinement statistics for PRV32I and PRM46L in complex 

with TMC114. 

 

§  The numbers in parentheses are given for the highest resolution shell 

 PRV32I PRM46L 

Data collection 

Space group P 21 21 21 P 21 21 21 
Unit cell dimensions    
a, b, c (Å) 28.70, 65.92, 92.53 28.9, 66.6, 93.1 
Resolution Range (Å) 50–0.84 (0.87-0.84)§ 50–1.22 (1.26–1.22)§ 
Unique reflections (obsvd. 
with I>2σ(I)) 

153847 (131172) 50541 (42888) 

I / σ(I) 45.3 (2.0) 20.0 (3.1) 
Rmerge (%) 6.3 (35.8) 9.9 (31.9) 
Completeness (%) 95.9 (63.3) 93.0 (73.2) 
Refinement 

Data range for refinement 
(Å) 

20–0.84 10–1.22 

R1 (I > 2σ(I)) 11.7 13.1 
Rwork (%) 12.4 14.0 
Rfree (%) 14.8 19.6 
No. of solvent molecules 258 212 
No. of obsvd. 
reflections/No. of refined 
paramts. 

6.6 2.5 

RMS deviation from 
ideality: 

  

    Bonds (Å) 0.018 0.013 
    Angle distance (Å) 0.039 0.033 
    Main-chain 8.4 15.1 
    Side-chain 13.3 21.2 
Inhibitor at active site, 
at flap’s site 

10.2, 12.1 17.3, 24.5 

    Solvent 26.3 31.5 
Occup. of alternate conf. 
of TMC114 (%) 
in active site cavity 

60/40 60/40 

Occup. of 
TMC114/DMSO at 2nd 
site in flap 

60/40 60/40 
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substituents and a lone electron pair.  The sulfonamide nitrogen has the R-

enantiomeric configuration when TMC114 is bound in the active-site cavity, but an S-

enantiomeric configuration in the flap binding site (Figure. 3.1e).  The two 

diastereomers are related by the nitrogen inversion, a well-known geometrical change 

of a pyramidal nitrogen atom.  The presence of two enantiomers of a ligand bound to 

different sites in a protein molecule is unusual.   

 Alternate conformations were modeled for 50 and 19 residues in the PRV32I-

TMC114 and PRM46L-TMC114 crystal structures, respectively.  Owing to the ultra-

high resolution data for PRV32I-TMC114, alternate conformations for main-chain as 

well as side-chain atoms were observed for many amino acid residues.  On the 

contrary, the lower resolution data for PRM46L-TMC114 resulted in less apparent 

disorder for the main-chain atoms; only the peptide bond connecting residues Ile50 

and Gly51 has two alternate conformations.  In the PRV32I-TMC114 structure the 

main-chain and side-chain atoms of residues 23-25, 30-32, 47-52 and 22’-25’, 30’, 

32’-33’, 47’-55’ have two alternate conformations, with the occupancies refined to 60 

and 40%, the same as the relative populations of the two inhibitor conformations.   

 The high quality and 0.84 Å resolution of the X-ray data permit the 

decomposition of the PRV32I-TMC114 structure into two distinct conformers with 

60% and 40% occupancy. The remarkable conclusion is that two different molecular 

species have co-crystallized together; the 60% occupancy species has two inhibitor 

molecules bound to the protease at the active-site and the surface of the flap, while 

the other conformer has a single inhibitor bound in the active-site and DMSO 

occupies the surface site. 
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Effect of mutations on TMC114 binding in the active-site cavity of HIV-1 

protease. 

 TMC114 forms a variety of interactions inside the active-site cavity.  On 

average about a hundred different contacts are made, including: 

a) strong O-H…O hydrogen bonds – normal distances are in the 2.6-3.0 Å range 

(Sarkhel 2004);  

b) moderately strong N-H…O and N-H…N hydrogen bonds – normal distances 

are in the 2.8-3.2 Å range (Sarkhel 2004); 

c) weaker C-H…O contacts – contacts are considered good when the distances 

are of 3.0-3.7 Å (Desiraju 2001); 

d) C-H…π interactions - the distance to any atom of a π-system has to be < 4.0 

Å, provided C-H is not in the aromatic ring plane (Nishio 1998); 

e) the weakest van der Waals interactions such as C-H…H-C – when distances 

of 3.8-4.2 Å the interactions are attractive, while at distances of < 3.6 Å they 

are repulsive (Rowley 1999). 

Although the V32I mutation introduces a bigger side chain next to the inhibitor, 

potentially reducing the size of the active-site cavity, in fact the inhibitor loses some 

favorable interactions with the protease, especially in its minor conformation, rather 

than gaining unfavorable contacts (Figure 3.3).  A similar effect is observed in the 

PRM46L–TMC114 structure, even though M46L has no direct contacts with the 

TMC114 molecule that occupies the active site cavity.  The interactions are described 

below separately for the major and minor molecular species in the two mutant 

complexes.  
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The major conformation of TMC114 in the active site of PRV32I and PRM46L 

has interactions that are similar to those for the inhibitor in the wild type PR structure, 

except for the differences noted below.  In PRV32I C-H…π contacts between the 

aniline π-system of the inhibitor and the side chains of residues Ala28’, Ile32’ and 

Ile50 are preserved and the distances between non-hydrogen atoms of 3.4-3.8 Å  are 

comparable to those calculated in the PR structure with residues Ala28, Val32 and 

Ile50’.  However, a direct hydrogen bond of the N-H…O type with a distance of 2.7 

Å from the aniline NH2 group to a carboxylate oxygen of Asp30 is replaced by a 

weaker water-mediated interaction in PRV32I, with the distances NH2…H2O…OOC 

(Asp30’) of 3.0 Å and 2.7 Å, respectively.  Additionally, an unconventional hydrogen 

bond Cα-H…O between Gly49’ Cα and an oxygen of the sulfonamide moiety is 

weaker in the PRV32I structure with a distance of 3.3 Å, which is significantly longer 

than the 2.9 Å observed in PR.  

 A quite symmetric pattern of hydrogen bonds is observed between the central 

OH group of TMC114 and the two Asp25 and 25’ residues (Figure 3.2a) for the 

major and minor conformations of the inhibitor in PR–TMC114 co-crystal and for the 

major conformation of TMC114 in PRV32I complex (Figure 3.2b).  However in 

PRM46L–TMC114, a strong asymmetry is apparent in the similar hydrogen-bond 

network (Figure 3.2c).  The OH…OOC distances are 2.4, 2.8 Å and 2.9, 3.1 Å with 

Asp25’ and Asp25, respectively.  However, we cannot rule out the possibility that 

some of these differences may be an artifact of the lower resolution (1.3 Å) of the  
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                               (a) 

 

    
                                  (b)                                                              (c) 
                                
Figure 3.2 Comparison of hydrogen bonds between the central OH group of 

TMC114 and Asp25, Asp25’ for major and minor inhibitor orientations.  The 2FO-FC 

electron density for the active site residues Asp25 and Asp25’ is shown for PRV32I (b) 

and PRM46L (c).  For PR-TMC114 the published structure is used with the PDB code 

1S6G.  Contour levels are 2.2σ in b and c.  Distances between the central OH group 

of TMC114 in two orientations and carboxylate groups of 25 and 25’ are indicated in 

Å.  60% populated orientation of TMC114 and protease atoms (60% populated 

conformation in PRV32I) are colored by atom type.  40% populated orientation of 

TMC114 and 40% populated conformation of protease atoms in PRV32I (a) are in 

green.  The corresponding occupancies of TMC114’s orientations are 55% and 45% 

in PR (a). 
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Figure 3.3 H-bond, C-H…O and C-H…π interactions of TMC114’s major (a) and 

minor (b) orientations with PRV32I. 
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wild type complex.  The minor form in PRV32I–TMC114 has an asymmetric 

hydrogen-bond network of the catalytic Asp 25 and 25’ similar to that seen for the 

major conformation in PRM46L-TMC114 (Figure 3.2b). However, the minor inhibitor 

conformation in PRM46L–TMC114 has four very similar hydrogen bonds to the 

catalytic aspartates. 

 The minor (40%) species shows larger differences in the TMC114-protease 

interactions in the mutant complexes (Figure 3.3).  Interestingly, the minor and major 

conformations of TMC114 show different binding in the active site cavity of PRV32I, 

presumably related to the asymmetric hydrogen-bond network with Asp25 and 25’.  

On the other hand, the analogous asymmetry of the interactions of the major 

conformation of TMC114 with the catalytic aspartates in PRM46L-TMC114 has little 

effect on its overall interactions with the protein.  Therefore, it is surprising that the 

minor conformations in both mutant structures have similar absent or weaker 

interactions.  A good hydrogen bond between NH2 of the aniline and O=C of Asp30 

of ~ 3.2 Å in PR-TMC114 is completely absent in the mutant structures where the 

corresponding distances are more than 4.3 Å.  Similarly, only a single C-H…O 

contact (3.1-3.3 Å) of the bis-THF part with the main-chain carbonyl of Gly48’ 

remains in the PRV32I and PRM46L complexes, whereas two such interactions with the 

distances of 2.9-3.4 Å are present in the wild-type structure.  In addition, another C-

H…O contact between Cα-H of Gly49 and an O of the sulfonamide, which can be 

considered a good non-conventional hydrogen bond with the distance of 2.8-2.9 Å in 

PR-TMC114, is considerably longer with the distances of 3.2 Å and 3.6 Å in PRM46L 

and PRV32I, respectively.  Furthermore, the aniline moiety of TMC114 lacks the 
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aforementioned C-H…π interactions with residue 32 in both mutant complexes, since 

the corresponding C…C distances are > 4.4 Å.  Finally, repulsive short van der Waals 

interactions are introduced in the mutant structures that include 3.4-3.5 Å contacts 

involving one methyl group of the iso-butyl moiety of TMC114 and the side-chain 

atoms of Val82 (Rowley 1999).  Analogous contacts in PR-TMC114 are attractive 

van der Waals interactions with the distances of 3.9 Å. 

 

Second binding site for TMC114 on the protease surface. 

A second TMC114 molecule was found on the protein surface in the major 

conformer of the PRV32I and PRM46L complexes.  The larger part of the inhibitor 

molecule is positioned in a groove located in the flap region of the protease (Figure 

3.4a).  The groove is formed by the residues Glu35’, Trp42’, Pro44’-Met46’(or 

Leu46’), Lys55’-Arg57’ and Val77’-Pro79’, and is less evident on the other protease 

subunit.  The smaller part of the TMC114 molecule that is outside the groove consists 

of the phenyl and bis-THF groups that face two symmetry-related protein molecules.  

A similar, although shallower, groove is present in the PR-TMC114 structure where a 

50% occupancy glycerol molecule is bound (Figure 3.4b).  Thus, these structures 

suggest that the groove can open up to accommodate TMC114.  

 TMC114 has a larger number and significantly stronger interactions with the 

residues in the groove formed by the flap than with the residues of the symmetry-

related protein molecules.  A network of hydrogen bonds is formed between the 

aniline, sulfonamide and carbamate moieties of the TMC114 and the main- and side-

chain atoms of PRV32I or PRM46L (Figure 3.5a).  Two direct hydrogen-bonds of 2.9-3.3  
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                                (a)                                                                (b) 

                                           

      (c) 

Figure 3.4  TMC114 bound to the flap binding site in PRV32I (a), similar view in PR 

(b);  superposition of R-enatiomer (magenta) from the active-site cavity with the S-

enantiomer  bound in the flap site.  The inhibitor for PRV32I and a glycerol molecule 

for PR are in a space-fill representation.  Protease is represented as a surface.  The 

aniline moiety of the R-enantiomer in (c) (indicated by arrow) collides with the PR 

residues; this would therefore prevent it from binding in the flap site.  The figure is 

from PRV32I; the geometry is similar in PRM46L.The inhibitor’s binding in PRM46L is 

essentially unchanged.  The residues forming the binding groove are labeled.  
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Å are made with the main-chain of Lys45’ and side-chain of Arg57’ in the two 

mutant structures (aniline NH2 …O=C of Lys45’ and S-O…H-N of Arg57’).  

Additionally, there are interactions mediated by two water molecules that involve the 

central OH group and the carbamate carbonyl oxygen atom of the inhibitor and the 

side chain amino groups of Lys55’ and Arg57’ of the mutants, with the distances in 

the 2.8-3.1 Å range (Figure 3.5a).  The binding of TMC114 at the flap is also 

supported by other weaker interactions, such as non-conventional C-H…O hydrogen 

bonds.  Two C-H…O interactions connect the main-chain carbonyl oxygens of 

Val56’ and Val77’ with the aniline and the iso-butyl group of TMC114, respectively.  

The distances are comparable in both mutant structures (3.2-3.3 Å).  A slightly 

weaker C-H…O interaction exists between the sulfonamide oxygen and Cγ of Arg57’, 

with 3.4 Å separation between heavy atoms in PRV32I and PRM46L.  Moreover, the 

aniline group of TMC114 is bound more tightly in the groove by C-H…π interactions 

with side chains of Pro44’ and Lys55’ and interatomic distances as short as 3.4 Å.  

Similar van der Waals contacts of 3.9-4.0 Å are found with residue 46’ in the V32I 

and M46L mutant structures.  Hence, remarkably, the M46L mutation, though 

forming a part of the second binding site, does not alter the inhibitor binding in this 

site.   

 The phenyl and bis-THF groups are directed away from the groove in the flap 

and toward two symmetry-related protease molecules, while a third protease molecule 

is situated on top of the groove and above the inhibitor (Figure 3.5b).  These groups 

make only a few hydrophobic contacts and no hydrogen bonds with residues of 

PRV32I or PRM46L.  These symmetry-related interactions of the phenyl and bis-THF  
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(a) 

  
(b) 

 
Figure 3.5 (a) Hydrogen bonds network and C-H…O interactions of TMC114 bound 

in the flap site for PRV32I.  All distances indicated are between the heavy atoms.  

Hydrogen bonds are colored in magenta, while C-H…O contacts are colored in black.  

Interactions in PRM46L complex are very similar.  (b)  TMC114 bound to the surface 

site is surrounded by four protein molecules.  The asymmetric unit consists of PR 

(blue) and two inhibitor molecules shown in ball-and-stick representations.  The 

symmetry related protease molecules are in cyan, orange and magenta. 
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moieties are similar in both mutant structures.  The π-system of the phenyl substituent 

is in the close vicinity of Arg41 from the first symmetry-related protease molecule 

and forms interactions of 3.4-3.7 Å with the main-chain amide and side-chain Cβ 

atoms.  The side-chain of Arg41 past the Cβ atom is highly disordered, indicating the 

weakness of the protease/inhibitor intermolecular binding in this region.  Similarly, 

bis-THF interacts with the indole group of Trp6 of the second symmetry-related 

molecule by C-H…π contacts with the distances of 3.4-3.8 Å.  The side chain of Trp6 

is also parallel to and about 3.5 Å away from the inhibitor’s carbamate moiety and 

therefore can participate in π-π stacking interactions.  Another set of C-H…π contacts 

involves residue Gly94’ of the third symmetry-related protease and the aniline group.  

These interactions are very similar in PRV32I and PRM46L with distances of 3.4-3.6 Å. 

 

Binding of the second inhibitor molecule induces conformational changes in the 

protease. 

 When the mutant structures are superimposed onto the PR-TMC114 structure 

(PDB code 1S6G) (Tie 2004) the overall main-chain root-mean-square deviation 

(rmsd) is 0.6 Å for both PRV32I and PRM46L.  The rmsd value is analogous to that for 

comparison of HIV PR structures with different unit cells (Mahalingam 2004; 

Kovalevsky 2006), where the largest differences were observed for surface residues 

not involved in the inhibitor-protease interactions.  However, the PRV32I and PRM46L 

complexes show dramatic conformational disparities relative to PR-TMC114 that go 

beyond the changes usually observed on comparison of closely related structures in  
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Figure 3.6 (a) The superposition of the mutant V32I and M46L structures on to the 

PR;  (b)  The residues (labeled) of the second binding site, which have the largest 

atomic shifts when PR, PRV32I and PRM46L are superposed, are illustrated.  PR is 

colored by atom type, while PRV32I and PRM46L are colored in magenta and cyan, 

respectively.  The atomic shifts (Å) are indicated as dashed arrows.   
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different unit cells (Figure 3.6a).  The largest differences are in the conformations of 

the broad surface loop of residues 34-43, where the atomic shifts reach 5 Å compared 

with the position in the wild type structure.  This large change of the flexible loop in 

the mutants is likely due to the close contacts with the symmetry-related surface-

bound TMC114, in particular with Arg41.  The second largest differences in the 

conformation of the proteases are evident for the flap residues that form the surface 

TMC114 binding site (Figure 3.6b).  The main-chain atoms of residues 44’-46’ shift 

by 1.2-2.4 Å towards the inhibitor in the mutant complexes and form hydrogen bonds 

(i.e., aniline NH2…O=C of Lys45’) and hydrophobic interactions, while the side-

chain of Arg57’ moves by 3.5 Å, breaking its salt-bridge interactions in the PR and 

forming hydrogen bond interactions with TMC114.  The residues that form 

hydrophobic interactions are shifted either toward the TMC114, like Pro44’, or 

slightly away from it, like Lys55’ and Trp42’, and therefore either form good C-H…π 

contacts (Pro44’ and Lys55’) or avoid unnecessary close interactions with the 

sulfonamide group (Trp42’).  The changes of the protease atoms in the other areas 

that are in contact with TMC114 do not exceed 0.4 Å, indicating much weaker 

inhibitor interactions.  These structural changes confirm that TMC114 binding on the 

protease surface is mostly confined to the flap area.  The protease adjusts in this area 

to accommodate the drug, while other symmetry-related interactions are mostly due 

to the crystal packing. Interestingly, the configuration of TMC114 also adjusts since 

the S-enantiomer is bound at this surface site.  
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Enzyme kinetics and inhibition. 

 The kinetic parameters of protease-catalyzed hydrolysis were measured for 

wild-type PR and the two mutants PRV32I and PRM46L using the chromogenic substrate 

that represents the CA-p2 cleavage site of the HIV-1 Gag precursor (Table 3.2).  PR 

and PRV32I showed essentially the same kcat/Km, while PRM46L showed only 50% of 

the PR value.  The lower activity of PRM46L is primarily due to an approximately 

three-fold increase in the Km value.   

 The wild-type PR and mutants were assayed for inhibition by the clinical 

inhibitor TMC114.  TMC114 shows sub-nanomolar inhibition of PR, while the 

relative Ki values are about 7 and 10-fold higher for the inhibition of PRV32I and 

PRM46L, respectively (Table 3.2).  This decreased inhibition for PRV32I and PRM46L is 

consistent with the loss of interactions with TMC114 observed in the crystal 

structures (Figure 3.3d-f).  The PRV32I  

and PRM46L mutants are significantly more resistant to the inhibition by TMC114 than 

the PRV82A and PRI84V mutants employed in our previous study (Tie 2004).  

Alternatively, TMC114 showed less effective inhibition of PRD30N and PRI50V 

(Kovalevsky 2006).   

 

DISCUSSION 

 TMC114 is performing exceptionally well in clinical trials for treatment of 

HIV infection.  It shows an outstanding resistance profile and high effectiveness 

against all the subtypes of HIV (Koh 2003; De Meyer 2005), and has been approved 

as a salvage therapy for those patients who fail other drug regimens.  Remarkably,  
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Table 3.2.  Kinetic parameters from the spectrophotometric assay for hydrolysis of 

peptide Ac-KARVNle(Phe-p-NO2)EANle-CO-NH2 and inhibition by TMC114 of PR, 

PRV32I and PRM46L.  

Protease Km,  

µM 

kcat,  

min-1 

kcat/Km,  

min-1·µM-1 

Ki, nM 

(Relative) 

PR 106 ± 9 245 ± 10 2.3 ± 0.2 0.49 ± 0.13 (1) 

PRV32I 90 ± 8 198 ± 6 2.2 ± 0.2 3.3 ± 0.2 (6.7) 

PRM46L 286 ± 23 283 ± 11 1.00 ± 0.08 4.9 ± 0.4 (10) 
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there are no reports of resistant mutations in HIV-1 specifically selected by treatment 

with TMC114.   

  Similar to other drugs, TMC114 was designed to bind exclusively in the 

active-site cleft of the HIV-1 PR.  Unexpectedly, the structures of PRV32I–TMC114 

and PRM46L–TMC114 obtained with ultra-high 0.84 Å and near-atomic 1.22 Å 

resolution, respectively, have unequivocally shown that TMC114 binds at two sites: 

the active-site and a surface site on the flap.  The subatomic resolution of the PRV32I–

TMC114 structure allowed us to definitively relate the major conformation of 

TMC114 in the active site and the surface flap site.  Consequently, we concluded that 

two molecular species have co-crystallized: one has two TMC114 molecules bound to 

the protease, the PRV32I-(TMC114)2 species, and the other has just one TMC114 

molecule in the active-site cavity and a DMSO solvent molecule in the second 

potential site on the protein surface.  It is not unusual for an enzyme to have two 

binding sites for inhibitors, where one binds at the catalytic site and the other 

(allosteric) site is located in a different part of the protein molecule (Tian 2003).  

Detailed kinetic analysis may help to establish whether the second site for TMC114 

has an inhibitory effect.   

 The crystal structures of PRV32I and PRM46L imply a biological role for the 

TMC114 binding site on the flap.  Other types of compounds, like beta-lactams 

(Sperka 2005) or polyoxometalate anions (Judd 2001), have been demonstrated to 

inhibit the HIV-1 protease by exclusively binding to surface sites in the flap region.  

The part of TMC114 bound on the protease flap makes a number of strong stabilizing 

interactions to the main- and side-chain atoms of the protein.  On the other hand, the 
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rest of the inhibitor that contacts three symmetry-related protease molecules has only 

a few hydrophobic contacts with each of them.  Brynda et al. (Brynda 2004) reported 

another PR structure with a peptide inhibitor bound to a similar second site.  In 

contrast to TMC114, this peptide inhibitor binds with a number of direct hydrogen 

bonds and water-mediated contacts with all four surrounding PR molecules in the 

crystal.  Notably, the peptide inhibitor forms only water-mediated contacts with the 

flap residues, while direct hydrogen bonds are observed with other symmetry–related 

PR molecules.  Thus, the authors concluded that the second site did not have any 

relevance for the inhibition of the PR.  The analysis of the surface site in our PRV32I 

and PRM46L crystal structures suggests that TMC114 has significantly more 

interactions with the flap region than with the other parts of the protease.  Another 

consideration is that the conformation of the protease in the flap site changes on 

binding of TMC114.  In the complexes with PRV32I and PRM46L the residues in this 

flap site show substantial shifts from their positions in the wild-type PR that optimize 

the interactions with TMC114 (Figure 6b).  Finally, TMC114 has two different 

configurations related by the sulfonamide nitrogen inversion:  an S-enantiomeric 

configuration when bound on the surface and an R-enantiomeric configuration in the 

active-site cavity of the protease.  If the active-site bound inhibitor configuration is 

superimposed onto the TMC114 bound in the flap site, the aniline moiety clashes 

with protease residues (Figure 4c).  Thus, it is evident that the flap binding site is 

shaped to accommodate only the diastereomer with S-enantiomeric amide nitrogen.  

The other diastereomer with the R-enantiomeric amide nitrogen cannot bind at the 
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flap site due to the steric collisions with the protease atoms.  Therefore, both the 

protease and TMC114 adapt to form a complex with two bound inhibitors.  

 We therefore propose that the second TMC114 binding site observed in the 

structures of HIV-1 PRV32I and PRM46L mutants can explain the remarkable 

effectiveness of TMC114 on the drug resistant strains of HIV-1.  
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Chapter Four: The Role of HIV-1 Protease with Flap Mutations 

in Drug Resistance of Saquinavir and Darunavir: Insights 

from High Resolution Crystal Structures 

 
 

INTRODUCTION 

HIV-1 (Human immunodeficiency virus type 1) protease (PR) is an effective 

drug target for protease inhibitors (PIs).  The active HIV-1 PR homodimer possesses 

two glycine-rich regions, known as flaps. Each flap folds into extended anti-parallel β 

stands, comprising residues Lys45-Met-Ile-Gly-Gly-Ile-Gly-Gly-Phe-Ile-Lys55. The 

flap region is very flexible and binds substrate or inhibitor in the active site cavity of 

PR (Miller 1989; Gustchina 1990; York 1993; Collins 1995; Shao 1997). The 

importance of residues in the flap for PR activity has been characterized through large 

scale mutagenesis (Shao 1997). The residues Met46, Phe53 and Lys55 are the most 

tolerant to substitutions; residues Ile47, Ile50, Ile54 and Val56 only tolerate a few 

conservative substitutions; and the Gly-rich region at residues Gly48, Gly49, Gly51, 

Gly52 is the most sensitive to mutation (Shao 1997). Therefore, mutations in the flap 

residues potentially affect the enzyme activity and structural properties of the flap 

(Swairjo 1998).  Mutations in flap residues 46, 47, 48, 50, 53, and 54 are frequently 

observed in drug resistant mutants of HIV and show various levels of reduced drug 

susceptibility to different protease inhibitors (PIs) (Shafer 2002).  



 

 

119

 

Saquinavir (SQV) was the first PI to be approved (in 1995) and is still widely 

used in AIDS therapy. In the treatment with saquinavir, G48V, L90M and 

G48V/L90M are the primary drug resistant mutations selected (Noble 1996; Shapiro 

1999). Darunavir (DRV, previously known as TMC114) was approved in 2006 and 

inhibits the wild type PR and most drug resistant mutants very well in vitro and in 

vivo (Koh 2003; De Meyer 2005; Kovalevsky 2006). Currently, darunavir (boosted 

with ritonavir) is recommended for treatment-experienced patients who respond 

poorly to other PIs. Mutations I54V and I54M are commonly reported during therapy 

with multiple PIs (Molla 1996; Condra 2000; Shafer 2002; Murphy 2004).  The 

chemical structures of saquinavir and darunavir are shown in Figure 4.1. Saquinavir 

was designed to target the wild type PR, so it contains the peptidic main chain groups 

mimicking a natural substrate of PR. In contrast,  darunavir was designed be less 

peptidic while introduce in more hydrogen bond interactions with the main chain 

atoms of PR in order to maintain the effectiveness on PR variants (Koh 2003).  

In this study, mutations of four flap residues (G48V, I50V, I54V and I54M) of 

HIV-1 PR were analyzed to gain insights into their roles in the development of drug 

resistance. Residue 50 lies at the tip of the flap, while residues 48 and 54 are located 

at the opposite sides of the flap as shown in Figure 4.1. The crystal structures of flap 

mutants PRG48V, PRI50V, PRI54V, and PRI54M have been solved in their complexes with 

saquinavir (the first PI) and darunavir (the newest PI). Structural comparison revealed 

that the introduction of mutations in the flap caused changes in flap conformation, 

interactions between adjacent residues (45-55) in the flap region, inhibitor binding 

and conformation of residues 78-82 (called the 80’s loop). The results from this study  
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Figure 4.1: (a) The chemical structures of saquinavir and darunavir. (b) Structure of 

HIV-1 PR dimer with the locations of mutated residues 48, 50, 54 indicated in 

spheres (main chain atoms only for clarity) in both subunits. Gly48 is in cyan, Ile50 

in red and Ile54 in green. Darunavir is shown in sticks colored by atom type. The flap 

residues (45-55) and the 80’s loop (78-82) are colored in blue and purple, respectively. 
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confirmed the important roles of residues in protease flap region and enhanced our 

understanding of the drug resistant mechanisms used by the flap mutants. It also 

provides useful information for guiding the structure-based drug design to combat 

HIV.  

 

RESULTS AND DISCUSSION 

Dimer Stability 

The dimer stability of four flap mutants (PRG48V, PRI50V, PRI54V, and PRI54M) 

and the wild type PR was evaluated by assessing the PR activity with increasing 

concentrations of urea. When the PR activity drops to 50% of the initial value, the 

concentration of urea is defined as UC50. The UC50 value of PRI50V was reduced to 

60% of the value for the wild type PR, while the UC50 of the other three mutants 

(PRG48V, PRI54V, and PRI54M) were very similar to that of the wild type PR (90-110%).  

In our previous study, the UC50 of PRF53L was also reduced to 60% of the value for 

the wild type PR (Liu 2005). Therefore, the mutations of flap residues I50V and F53L 

adversely affected the PR dimer stability, while mutations G48V and I54V/M did not 

show significant effects on dimer stability.  

 

Crystal Structures 

The crystal structures of PRI50V, PRI54V, and PRI54M complexed with 

saquinavir and PRG48V, PRI54V, and PRI54M complexed with darunavir were 

determined at resolutions of 1.05-1.40 Å. Three crystallographic data sets (PRI54M-

SQV, PRI54V-SQV, PRI54V-DRV) reached atomic resolution (1.05 Å). The data 



 

 

122

 

collection and refinement statistics are provided in Table 4.1. All six structures 

crystallized in isomorphous unit cells and the same space group P21212. The R-factors 

were refined to the range of 0.12 to 0.16. One asymmetric unit accommodated one PR 

dimer, with residues labeled 1-99 and 1-99’ for each subunit. The electron density 

maps clearly showed the correct mutations in all the complexes as illustrated in 

Figure 4.2. All atoms were clearly visible in the electron density maps. An example 

from the flap region of PRI54V-SQV is shown in Figure 4.2. Darunavir was bound at 

the active site of PR with two pseudosymmetric conformations in the complexes with 

PRG48V, PRI54V, and PRI54M, while saquinavir showed a single conformation in the 

complexes of PRI54V-SQV and two conformations in the complexes of PRI54M-SQV 

and PRI50V-SQV.  The electron density maps of saquinavir (in PRI54M-SQV) and 

darunavir (in PRI54V-DRV) are shown in Figure 4.3. Alternate conformations were 

modeled for side chain and main chain atoms when observed in the electron density 

map. The mutated residue Met54 showed alternate conformations of the side chain 

only in the PRI54M-SQV complex (Figure 4.2) and Val54 showed alternate 

conformations of the side chain only in the PRI54V-SQV complex. As observed 

previously in atomic resolution crystal structures, residue 50 showed alternate 

conformations for the main chain and side chain in the all the complexes, except the 

lower resolution structure PRG48V-DRV, (Liu 2005; Kovalevsky 2006; Tie 2006). In 

addition, water molecules (161-223) and other solvent molecules including glycerol, 

phosphate, sodium ions and chloride ions with full or partial occupancy were 

modeled to fit the maps in the different structures. 
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Table 4.1: Crystallographic Data Statistics 

 

Protease Mutant PRI50V PRI54V PRI54M PRG48V PRI54V PRI54M 

Inhibitors SQV SQV SQV DRV DRV DRV 

Space group P21212 P21212 P21212 P21212 P21212 P21212 
a 58.9  58.7 59.5 58.2  58.8 58.6 
b 86.0 85.9 85.7 86.2 86.1 85.7 

Unit cell 
dimensions 
(Å) c 46.4 46.38 46.2  45.9 46.2 46.0 
Unique reflections 69158 101144 103172 40435 100265 53524 
Rmerge (%) Overall 
(final shell) 

8.9 
(53.7) 

10.0 
(42.3) 

8.8 
(25.8) 

9.4 
(20.3) 

10.8 
(41.7) 

8.9 
(57.6) 

I/sigma(I)  
Overall (final shell) 

13.5 
(1.8) 

16.8 
(2.5) 

21.9 
(7.0) 

13.2 
(3.0 ) 

17.8 
(1.8) 

24.4 
(2.2) 

Resolution range for 
refinement (Å) 

10-1.20  10-1.05 10-1.05  10-1.40 10-1.05 10-1.30 

Rwork (%)  15.0 15.0 11.9 16.0 15.9 15.1 
Rfree (%) 19.2 17.4 14.7 22.7 17.96 19.5 
No. of waters 200 223 209 174 212 161 
Completeness (%) 
Overall (final shell) 

93.1 
(79.4) 

92.5 
(58.1) 

93.4 
(79.3) 

87.5 
(55.8) 

91.2 
(58.7) 

94.4 
(80.8) 

RMS deviation from 
ideality 

      

        Bonds (Å) 0.014 0.017 0.017 0.011 0.017 0.013 
        Angle distance (Å) 0.032 0.033 0.036 0.029 0.037 0.034 
Average B-factors (Å2)       
        Main chain 10.2 14.0 10.1 15.7 15.5 16.9 
        Side chain 18.7 19.9 19.1 25.8 21.4 26.4 
        Inhibitor 9.4 17.0 10.8 13.8 12.8 16.8 
        Solvent 26.1 33.5 26.0 29.8 32.0 19.0 
Inhibitor occupancy (%) 80/20 100 75/25 60/40 60/40 70/30 
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Figure 4.2: The Fo-Fc omit maps showing the mutated residues and the flap residues 

(47-54) contoured at 3.3 sigma. Val 48 is from PRG48V-DRV, Val50 from PRI50V-

SQV, Val54 from PRI54V-SQV, Met54 from PRI54M-SQV and flap residues from 

PRI54M-SQV. The cyan sticks indicate the alternate conformations of main-chain and 

side-chain atoms in Val50 and Met54. 
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Figure 4.3: The Fo-Fc omit maps of saquinavir (upper panel) and darunavir (lower 

panel) contoured at 3.3 sigma. Saquinavir is colored by atom type from complex 

PRI54M-SQV. Darunavir is from complex PRI54V-DRV showing alternate 

conformations of 60/40% occupancy. The major conformation is colored by atom 

type and the minor is colored pink.  
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Comparison of Structures  

The new mutant PR structures were compared with the structure of wild type 

PR complexed with the same inhibitor, which were determined in our previous 

studies. The wild type PR-DRV (1S6G) (Tie 2004) structure has been solved at 1.30 

Å resolution in space group P21212, while the PR-SQV has recently been determined 

to 1.16 Å resolution in P212121 (Tie 2006). The mutations in the flap region possibly 

alter interactions with neighboring residues, the flap conformation and inhibitor 

binding. The structural differences between mutant PRs and the wild type PRs are 

indicated by the RMS deviations. The pairwise overall RMS deviations of Cα were 

0.1-0.3 Å for complexes with darunavir in the same space group. The complex 

PRI54V-DRV is the most similar to the wild type PR-DRV, while the other two 

complexes have similar deviations (0.3 Å) from the wild type PR. The pairwise 

overall RMS deviations of Cα for the three complexes with saquinavir were very 

close in the range of 0.6-0.7 Å. It is common for very similar HIV PR structures in 

two different space groups to have RMS deviations ~ 0.6 Å (Liu 2005). For all 

complexes, larger deviations were consistently located around residues 50 (the flap) 

and 80 (the loop) in both subunits. The alternate conformations of main chain residue 

50/50’ significantly contributed to the high RMS deviations in the flap regions. 

Structural deviations between residues 46-53 are shown in Figure 4.4. PRG48V had the 

biggest difference from the wild type PR among all the complexes with darunavir, 0.8 

Å at the Cα atom of Ile50 towards the active site cavity in one subunit and 0.5 Å at 

the equivalent position in the other subunit. In high resolution structures, a difference 

over 0.2 Å is significant.  
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Figure 4.4: The flap regions for superimposed complexes with darunavir. The wild 

type PR is in green, PRG48V in cyan, PRI54V in magenta and PRI54M in red. The 

distances between Cα atoms of PRG48V  and of the wild type PR are labeled in Å.   
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In all the mutant structures, the main chain atoms of residues 78-82 (the 80’s 

loop) were notably shifted relative to their positions in wild type PR. The shifts 

appeared in both subunits of the dimer, and were slightly larger in one subunit than 

the other. The shifts of the 80’s loop were directly related to the size of the side chain 

in the mutated residues, independent of the type of bound inhibitor. A certain 

separation seems to be required between residues 50, 54 and the 80’s loop. However, 

the conformational changes in the 80’s loop due to the mutations in the flap did not 

produce substantial changes in the inhibitor binding at the active site cavity in each of 

the complexes. Further, the flap mutants showed varied effects for the interactions of 

the mutated residues with the bound inhibitors, which is discussed for each mutant 

individually in the following sections. 

 

PRG48V-DRV 

Residue Gly48 interacts with inhibitors in the wild type PR complexes. 

Replacing Gly48 by Val in PRG48V is expected to disrupt the interactions with 

neighboring residues on the flap as well as with the inhibitor, thus destabilizing the 

flap and reducing the affinity for inhibitor. Despite extensive efforts, no crystals were 

obtained for the single mutant PRG48V in complex with saquinavir.  Fortunately, it was 

possible to cocrystallize PRG48V with darunavir and the crystals diffracted to 1.40 Å. 

The comparison of PRG48V-DRV with the wild type PR-DRV complex showed that 

Cα of Val48 in both subunits has lost interactions with the Phe53 aromatic ring, while 

new hydrophobic interactions were observed between the Val48 side chain and the 

Gly52 main chain atoms (Figure 4.5). In one subunit, the side chain of Phe53’ has  
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Figure 4.5: Comparison of the flaps of PRG48V-DRV and of wild type PR-DRV in two 

subunits. The structure of PRG48V-DRV is colored by atom type and wild type PR is 

colored grey. Dashed lines indicate van der Waals interactions with interatomic 

distances shown in Å. The arrows show the shifted distances in Å between the two 

structures. 
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rotated away from the position in wild type PR. Consequently, interactions between 

Cα of Gly48’ and the ring of Phe53’ were eliminated. However, a new interaction 

was formed between CG2 of Val48’ and the carbonyl O of Gly52’. In the other 

subunit, the main chain residues around Val48 have shifted by 0.7 Å at the carbonyl 

C of Val48 while there is little change in the side chain of Phe53. As a result, the Cα 

of Val48 has lost most of the favorable van der Waals interactions with the ring of 

Phe53. However, the Cβ and CG2 atoms of Val48 have gained new interactions with 

the ring of Phe53. Similar to the other subunit, CG2 of Val48 has gained new 

interactions with carbonyl O and C of Gly52. Those new interactions may partially 

compensate for the missing interactions between Cα of Gly48 and the ring of Phe53 

in the wild type PR. So Val48 did not simply disturb the interactions with the 

neighboring residues as expected, but structural adjustments partially compensated 

for lost interactions. 

Other structural changes in PRG48V-DRV were at the 80’s loop. Residue 48 

was near the 80’s loop but there were no van der Waals contacts of less than 4.2 Å 

interatomic distance. The 80’s loop in PRG48V-DRV has shifted up to 0.7 Å at N of 

Pro81’ towards Val48 from the position in the wild type PR-DRV, nevertheless the 

residues were still too far apart to make favorable interactions.  

The carbonyl O of residue 48 makes direct interactions with at least four 

atoms of darunavir in both major (60%) and minor (40%) conformations. The 

carbonyl O of Val48 shifted 0.9 Å relative to the position in wild type PR-DRV. As a 

result, the carbonyl O of Val48 has gained more van der Waals interactions with both 

conformations of darunavir, mainly with the minor conformation. Also the 
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interactions (O….HC) with darunavir were 0.5 Å shorter and likely to be stronger as 

indicated in Figure 4.7. In addition, the side chain of Val48 has gained a new van der 

Waals interaction with the darunavir. Therefore, the PRG48V-DRV structure showed 

compensating changes and new interactions with darunavir, suggesting that mutation 

G48V is unlikely to cause resistance in the treatment with darunavir.  

A previously reported crystal structure of PRG48V/L90M-SQV, however, shows 

that the position of bound saquinavir has adjusted to accommodate the side chain of 

Val48, so that larger gaps form between inhibitor and PRG48V/L90M. Consequently, the 

carbonyl O of Val48 loses the hydrogen bond interactions with saquinavir (Hong 

2000). In addition, there are fewer van der Waals interactions between saquinavir and 

the flap (residues 47–50) (Hong 2000). These structural changes may explain why 

G48V is a primary mutation observed in isolates that are resistant to saquinavir. 

Nevertheless, reduced interactions between PR and inhibitor were not observed in the 

structure of PRG48V-DRV, which is consistent with the absence of mutation G48V in 

mutants resistant to darunavir.  

 

PRI50V-SQV 

Residue 50 lies at the tip of the flap and the carbonyl O forms a hydrogen 

bond interaction with Gly51’ from the other subunit (Figure 4.1). The roles of 

Ile/Val50 in maintaining the flap conformation and binding of indinavir or darunavir 

have been described previously (Liu 2005; Kovalevsky 2006).  In the wild type PR, 

the side chain of Ile50 forms van der Waals interactions with Thr80’ and Pro81’ from 

the other subunit of the PR dimer. Thr80 has been proposed to play an important role 
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in maintaining the mobility of the flap tips by pulling Ile50’ in the other subunit out 

of a hydrophobic pocket (Foulkes 2006). In PRI50V-SQV, the loss of a methyl group 

in Val50 induced the 80’s loop to shift towards Val50 by 1.4 Å at the N atom of 

Pro81 in one subunit (Figure 4.6), so that contacts (within 4.2 Å) between Val50 and 

the 80’s loop were maintained. Moreover, Val50 has gained new interactions with 

Ile54’.  It appears that the mutation I50V in PRI50V-SQV did not reduce the contacts 

between the two subunits at the flap tip as observed in the PRI50V-indinavir complex 

(Liu, 2005).  

Generally, the interactions of PRI50V and saquinavir changed little relative to 

wild type PR-SQV, except at residue Val50. Compared with Ile50, Val50 is shorter 

by a methyl group. In one subunit, Val50 has lost two van der Waals interactions with 

saquinavir. However, in the other subunit Val50 has gained a new van der Waals 

interaction with saquinavir. In our previous studies, a number of attractive 

interactions between the side chain of Ile50 and inhibitor were lost in the complex of 

PRI50V with darunavir and indinavir (Liu 2005; Kovalevsky 2006). This is in 

agreement with the fact that the mutation I50V is observed in isolates resistant to 

darunavir and shows relatively low inhibition by indinavir, but it is not commonly 

observed during the treatment with saquinavir.  

 

PRI54M-DRV, PRI54M-SQV, PRI54V-DRV, and PRI54V-SQV  

Residue 54 is located on the opposite side of the flap from residue 48 (Figure 

4.1). Both mutations I54V and I54M are observed in isolates resistant to darunavir at 

intermediate and high levels, respectively. Mutation I54V appears in variants resistant  
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    (c)  

Figure 4.6: The interactions of residues 50, 51, 54 and 79-81 in (a) PRI50V-SQV, (b) 

PRI54M-DRV and (c) PRI54V-DRV. The structures of mutants are colored by atom 

types and corresponding structures of wild type are grey. Dashed lines indicate van 

der Waals interactions with interatomic distances shown in Å. The arrows show the 

shifted distances in Å between the two structures. 
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to saquinavir, but mutation I54M has not been reported (Shafer 2002).  Mutation 

I54M appears most frequently among mutations newly detected after amprenavir 

(chemically related to darunavir) treatment (Murphy 2004).  

Significant structural changes were observed at the 80’s loop in mutants 

complexed with saquinavir and darunavir in comparison with the corresponding wild 

type PR complexes. The 80’s loop has shifted away from Met54 in PRI54M and 

towards Val54 in PRI54V to adapt to the altered size of the side chains in residue 54 

(Figure 4.6). In PRI54M-DRV, the carbonyl O of Pro79 has shifted away from Met54 

by 0.7 Å and 1.4 Å in two subunits, respectively, in order to accommodate the longer 

Met side chain. Despite this movement, Met54 has gained new van der Waals 

interactions with Pro79 and side chain of Ile50 from the other subunit. In the other 

hand, the flap tip has shifted towards Met54 by 0.5 Å at the carbonyl O of Gly51, 

because there is more space due to the absence of CG1 atom of Ile in Met54.  

However, the mutation I54V introduces a smaller side chain, so the 80’s loop has 

shifted towards Val54 by 0.6 Å and by ~ 0.1 Å at the carbonyl O of Pro79’ in two 

subunits of PRI54V-DRV, respectively (Figure 4.6). Even with the 0.6 Å shift, no 

new interactions were formed between Val54 and the 80’s loop. Different from 

PRI54M, the tip of the flap did not have significant change in PRI54V relative to the 

wild type PR structures.  

The shift of the 80’s loop caused by the mutation of 54 residue modified the 

interactions between inhibitor and PR clearly in PRI54M-DRV, but not in the other 

complexes.  In PRI54M-DRV, residues 78-82 were further away from 54 in the flap, so 

the interactions between Pro81-Val82 and darunavir (the major conformation) were 
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weaker (the interatomic distance is 0.3-0.4 Å longer) than in the wild type as 

indicated in Figure 4.7. The hydrogen bond interaction between the amino group of 

darunavir (in the major conformation) and OD2 of Asp30 in the wild type PR was 

absent in PRI54M-DRV, instead a water mediated the interactions between the two 

atoms. In the minor conformation of darunavir, however, the hydrogen bond 

interactions between the amino group and OD2 of Asp30 were maintained. In 

addition, the hydrogen bond interaction between amino group and carbonyl O of 

Asp30 was absent (within the interatomic distance of 4.5 Å). The loss of interactions 

may suggest one reason for the reduced susceptibility of virus containing PRI54M to 

darunavir. However, no significant structural changes in the PR-inhibitor interaction 

were observed in PRI54V-DRV, PRI54V-SQV and PRI54M-SQV complexes relative to 

the corresponding wild type PR complexes. Therefore, mutation I54M caused more 

obvious conformational changes than mutation I54V in the flap region and the 

inhibitor binding site. This is consistent with the fact that mutation I54M more 

commonly appears than I54V in the treatment with amprenavir and darunavir 

(Murphy 2004).  

 

The Comparison of Saquinavir and Darunavir  

The differences between saquinavir and darunavir interactions were 

investigated in the complexes of PRI54M and PRI54M. The major differences between 

PRI54M-SQV and PRI54M-DRV as well as between PRI54V-SQV and PRI54V-DRV were 

located in the flap and the 80’s loop. Overall, the interactions of saquinavir and 
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    (a) 

  

      (b) 

Figure 4.7: Selected PR-inhibitor interactions of (a) G48V-DRV and (b) I54M-DRV 

with Val82 shows alternate conformations. Darunavir is shown in minor 

conformations in all structures. The structures of mutants are colored by atom types 

and the structure of wild type PR-DRV is colored grey. Dashed lines indicate van der 

Waals interactions with interatomic distances shown in Å. The arrows show the 

shifted distances in Å between the two structures.  
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darunavir with PRI54V were more similar than those with PRI54M so the complexes 

with PRI54M were used as examples to illustrate the differences between saquinavir 

and darunavir.  

Saquinavir with 49 non-hydrogen atoms is larger than darunavir with 38 non-

hydrogen atoms. The major PR-inhibitor interactions for saquinavir and darunavir are 

illustrated in Figure 4.8. Saquinavir has larger hydrophobic groups at both ends of the 

molecule so it forms more van der Waals interactions with numerous PR residues 

(Figure 4.8). However, darunavir forms 3 more direct hydrogen bonds with the main 

chain atoms of Asp29 and Asp30 than does saquinavir (Tie 2004; Tie 2006). The van 

der Waals interactions between PR and hydrophobic groups of saquinavir are 

possibly more vulnerable to changes due to mutations of residues in the binding site. 

Therefore, the binding affinity for saquinavir can be reduced more easily by mutation. 

On the contrary, the hydrogen bond interactions of darunavir with main-chain atoms 

of PR are not directly affected by mutations. Therefore, darunavir can more flexibly 

adapt to the changes due to mutations of the active site thus maintaining the affinity 

for mutated PR. Through this strategy, darunavir preserves its effectiveness to many 

(but not all) drug resistant mutants (Koh 2003). PRI54M and PRI50V showed weaker 

interactions with darunavir compared to the wild type PR (Figure 4.7), which is 

consistent with the fact that both mutants appear in HIV isolates showing resistance 

to darunavir but not in those resistant to saquinavir. This may suggest that saquinavir 

adapts to the changes caused by I54M and I50V better does than darunavir.  

Another major difference between these two inhibitors was that saquinavir 

forms one hydrogen bond with carbonyl O of Gly48 while this interaction is 
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         (b) 

Figure 4.8: PR-inhibitor interactions in PRI54M. (a) The major orientation of 

saquinavir. (b) The major orientation of darunavir. Hydrogen bonds are indicated in 

red and CH-π in blue and CH….O in purple. Interatomic distances are shown in Å.  
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substituted by two weaker (CH…O) interactions in darunavir complexes. The 

hydrogen bond between Gly48 and saquinavir can be disturbed as observed in mutant 

PRG48V/L90M-SQV (Hong 2000). However, the interactions (CH…O) between Val48 

and darunavir in PRG48V-DRV were even tighter than in the wild type PR-DRV. This 

may explain why PRG48V provides resistance to saquinavir but maintains 

susceptibility to darunavir. 

Moreover, saquinavir interacts (CH…O) with Gly49 Cα atom and Gly48 

carbonyl O atom in one subunit of PR, while equivalent interactions occur in two 

subunits of PR dimer for darunavir. In this way, darunavir may stabilize the PR dimer 

more than does saquinavir.  

 

CONCLUSION 

The crystal structures of flap mutants (PRG48V, PRI50V, PRI54V, and PRI54M) 

complexed with two clinical drugs saquinavir and darunavir have been determined to 

high resolutions. The inhibitor complexes of drug resistant mutants revealed 

conformational and interaction changes relative to their wild type PR complexes. 

Analysis showed that the introduction of mutations in the flap caused conformational 

modifications of the flap in all the complexes with the biggest deviations observed in 

the PRG48V-DRV complex. In all the complexes, the 80’s loop was flexibly adjusted 

to accommodate the sizes of neighboring residues. It shifted towards smaller residues 

Val50 and Val54, and away from longer residue Met54. Nevertheless, it shifted 

towards the bigger side chain of Val48 since the side chain of mutated residue was 

further away from the 80’s loop. The 80’s loop shifts did not cause the interactions 
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between inhibitor and PR to alter significantly in most of complexes except for 

PRG48V-DRV and PRI54M-DRV.  The interactions with darunavir were enhanced in 

PRG48V-DRV but were weakened in PRI54M-DRV because of the shift of the 80’s loop. 

The crystal structure suggests that resistance to darunavir by HIV isolates with I54M 

mutations may arise from the reduced binding affinity of inhibitor. This mechanism is 

also used by PRI50V to provide resistance to darunavir and by PRG48V/L90M to provide 

resistance to saquinavir as suggested in previous studies  (Hong 2000; Kovalevsky 

2006). However, the reduced inhibitor interactions were not observed in the structures 

of PRI54V-DRV, PRI54V-SQV and PRI54M-SQV. These structures revealed that 

saquinavir and darunavir differ in their interactions with different mutants. Darunavir 

is a better inhibitor than saquinavir for mutants with G48V, while it is the opposite for 

I54M. Therefore, this study has extended our understanding on the important role of 

residues in the flap region and the structural basis for drug resistance.  
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OVERALL SUMMARY 

The protease inhibitors (PIs), combined with other anti-HIV drugs, have 

shown great success in treating HIV infection by reducing mortality and morbidity of 

HIV-infected individuals. However, the long-term effectiveness of treatment is 

undermined due to the rapid development of drug resistance. The drug resistant 

mutants of HIV-1 protease (PR) have been extensively studied to understand the 

molecular basis of the drug resistance. In many cases, mutations in the active site 

cavity directly disturb the interactions between the mutated residues and the inhibitor, 

thus the variant PR shows reduced affinity for inhibitor. In addition, mutated residues 

can indirectly modify the interaction of other residues with the inhibitor.  

My research has focused on the drug resistant mutations in the flap (M46L, 

G48V, I50V, F53L, I54V and I54M) and the distal regions (L24I and G73S) of PR. 

These mutations have been observed in the patients treated with PIs and contribute to 

drug resistance to different drugs. Here, I have characterized the roles of single 

mutations in the development of drug resistance to indinavir, saquinavir and 

darunavir through crystallographic and kinetics analysis. In general, the mutated 

residues are observed to alter the PR properties including catalytic efficiency, 

conformation of the flap, dimer interface, interactions with the neighboring residues, 

the 80’s loop and binding affinity of inhibitor/substrate (Figure 

13).                                  .
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Figure 13: the summary of drug resistance mechanisms of HIV-1 protease mutants. 
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The mutations in the flap region 

Due to the important role of the flap in substrate/inhibitor binding and 

intersubunit interactions, flap mutations are expected to be able to modify the PR 

activity, dimer stability and flap conformation. The drug resistant mutants of residues 

46, 48, 50, 53 and 54 are the most commonly reported in the treatment with PIs and 

these mutations are frequently combined with the mutations in active site cavity. The 

mutations in the flap residues result in intermediate to high levels of resistance to 

most of the approved PIs.  

Mutation F53L arises at low frequency in patients treated with multiple PIs.  

The PRF53L dimer showed 15% of catalytic efficiency, 60% of dimer stability, 20-fold 

weaker inhibition by indinavir and similar inhibition by two peptide analog inhibitors 

relative to wild type PR.  A high-resolution (1.35 Å) crystal structure of unliganded 

PRF53L revealed that the tips of the flaps in PRF53L dimer had a wider separation than 

in unliganded wild type PR. The mutation F53L eliminated favorable interactions 

between two subunits in the flap region, thus the flap in PRF53L might be significantly 

more flexible than in the wild type PR and thus potentially reduces the binding 

affinity of an inhibitor. Therefore, the single mutation F53L produced substantial 

structural changes in the flap region in the absence of inhibitor, which suggests a new 

mechanism for drug resistance.  

The mutation M46L provides resistance to most of the clinical PIs at 

intermediate to high levels, with the possible exception of saquinavir and darunavir. 

The main-chain atoms of Met46 can form hydrogen bonds with substrate analogs, but 

they do not make direct contacts with smaller PIs. Surprisingly, the crystal structure 
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of PRM46L complexed with daruanvir (at 1.22 Å resolution) showed two inhibitor 

binding sites: the active site cavity as well as a new site on the flap surface. The 

darunavir in the active site cavity showed fewer interactions in PRM46L than in wild 

type PR. At the second binding site, darunavir existed in a different form of 

diastereomer from the one in active site cavity.  One half of the darunavir molecule 

was bound on the flap by several strong interactions with the PR, while the rest made 

a few hydrophobic contacts with three symmetry-related PR molecules. The 

conformations of residues at the second binding site were altered to accommodate the 

binding of darunavir. It is likely that the mutation M46L stabilized the PR flap and 

facilitated the binding of darunavir on the flap surface. The second inhibitor binding 

site may explain the significant effectiveness of darunavir on the various drug 

resistant mutants since other drugs probably can not bind there. Moreover, this new 

crystal structure with the second darunavir binding site provides a distinct model for 

the design of novel inhibitors targeting the flap of the HIV-1 PR. 

Mutation I50V is located at the tip of the flap and makes hydrogen bond 

interactions with the Gly51’ from the other subunit of the PR dimer. The substitution 

of Ile50 by Val resulted in reduced intersubunit interactions and increased dimer 

dissociation. Although this mutation is very rarely observed in mutants resistant to 

indinavir, PRI50V had 50-fold higher Ki value for indinavir relative to wild type PR.  

The crystal structure of PRI50V complexed with indinavir, which was determined at 

1.1 Å resolution, revealed that Val50 had reduced van der Waals interactions with 

indinavir in agreement with the significantly weaker inhibition. Interestingly, the 

crystal structure of PRI50V complexed with saquinavir did not show weaker 
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interactions between PR and saquinavir as observed in the complex with indinavir.  

Although Val is smaller in size than Ile, the mutated residueVal50 maintained good 

interactions with the 80’s loop. The structural changes agreed with the fact that I50V 

is not a resistant mutation observed in the treatment with saquinavir.  

 Residue 48 is positioned in the flap region and makes contacts with substrates 

and inhibitors bound in the active site cavity. Mutation G48V is the primary drug 

resistant mutation selected in the treatment with saquinavir and it, alone, causes 10-

fold resistance to saquinavir. The crystal structure of the double mutant PRG48V/L90M 

complexed with saquinavir shows the PR-inhibitor interactions are weakened in order 

to accommodate the larger side chain in G48V mutation. However, the crystal 

structure of PRG48V-DRV showed darunavir bound to PRG48V with more favorable 

interactions than in the wild type PR. In addition, the mutation Val48 altered the 

interactions with the neighboring residue Phe53 on the flap.  

Mutations I54V and I54M, located on the other side of residue 48 across the 

flap hairpin structure, cause PR to be resistant to the new PI darunavir at intermediate 

and high level, respectively.  The crystal structures of PRI54V and PRI54M complexed 

with saquinavir and darunavir were determined at the resolutions of 1.05-1.20 Å. 

Structural comparison revealed that the introduction of mutation at 54 caused the 

conformational changes in the flaps and the 80’s loop. The 80’s loop was shifted 

away from Met54 by 0.7 Å at the carbonyl O of Pro79 in PRI54M-DRV from the 

position in the wild type PR-DRV, while it was shifted towards Val54 by 0.6 Å at the 

equivalent position in PRI54V-DRV. Therefore, the conformational movement of the 

80’s loop was directly related to the changes in the side-chain size of the mutated 
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residue, independent of the bound inhibitor. A certain separation seems to be required 

between residue 54 and the 80’s loop. However, the shift of the 80’s loop did not 

result in the significant changes in any interactions between PR and inhibitor. Only a 

couple of van der Waals interactions between Pro81 and Val82 and the minor 

conformation of darunavir become weaker by lengthening (0.3-0.4 Å) the interatomic 

distances in PRI54M-DRV.  

 

The mutations in the distal regions  

Mutations L24I and G73S are consistently observed at lower frequency in 

AIDS patients exposed to indinavir. They alter residues next to the catalytic Asp25 

and on the surface of PR, respectively. The analysis of kinetics, dimer stability, and 

crystal structures of the HIV drug-resistant mutants PRL24I and PRG73S has shown 

distinct mechanisms used by these two mutants to resist inhibition by indinavir. The 

catalytic activity of PRL24I dropped to less than 4% of the value for wild type PR, 

which is in good agreement with the sensitive location of residue 24 next to the 

catalytic Asp25. The relative Ki for indinavir became 2.6-fold higher in PRL24I. The 

crystal structure of PRL24I  complexed with indinavir showed that mutation L24I 

eliminated the intersubunit interactions between Ile24 and Phe99’ and consequently 

reduced the dimer stability of the mutant.  

Residue 73 is on the protein surface and far from the active site cavity. 

However, G73S is reported to appear in HIV variants showing low levels of 

resistance in the treatment with all approved PIs, always combined with other 

mutations. The activity, dimer dissociation and structural properties of G73S were 
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very similar to those of the wild type PR. However, the relative kcat/Km of PRG73S 

varied from 14-400% for different substrates compared to wild type PR values.  

Interestingly, Ser73 in PRG73S-IDV formed new hydrogen bonds with Asn88, which 

made hydrogen bonds with Thr31 and Asp29 in the active site cavity. Therefore, the 

structural changes can be transmitted from residue 73 on the PR surface to the 

substrate binding site.  

 

The protease inhibitors indinavir, saquinavir and darunavir 

The design and modification of most of PIs are guided by the crystal 

structures of PR complexed with inhibitor. Saquinavir and indinavir were the initial 

protease inhibitors approved by FDA and are still widely used in the HAART 

treatment.  Multiple drug resistant mutants arise with varied levels of resistance to 

these two inhibitors. Darunavir is a recently approved PI and it has shown excellent 

inhibitory profile for most of drug resistant variants, so it (boosted with ritonavir) is 

recommended for patients who fail in the treatment with other PIs. Saquinavir and 

indinavir were designed based on the structure of a natural substrate of PR, while 

darunavir was modified by introducing more hydrogen bonds to the main chain atoms 

of PR with the purpose of maintaining its potency for drug resistant mutants.  

Indinavir and saquinavir are larger than darunavir because they have larger 

hydrophobic groups at both ends of their structures. Therefore, indinavir and 

saquinavir form more van der Waals interactions with PR residues. However, 

darunavir forms more favorable hydrogen bonds directly with the main chain atoms 

of PR than indinavir and saquinavir. Indinavir has more water mediated hydrogen 
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bond interactions than the other two inhibitors. The hydrogen bond interactions 

between main-chain PR and darunavir are hardly affected by mutations at the active 

site and other regions of PR. On the contrary, the van der Waals interactions between 

PR residues and hydrophobic groups of indinavir and saquinavir are more susceptible 

to changes thus the inhibitor binding affinity is more easily reduced in mutants. 

Therefore, darunavir establishes an excellent example for designing new drugs by 

maximizing the favorable interactions with the main chain residues to combat drug 

resistance of HIV. 

My studies drug resistant mutants of HIV protease has confirmed that drug 

resistance can arise when mutations alter the PR dimer interface at the flaps or the 

terminal beta sheet, as well as when mutations directly alter the inhibitor binding site.  

Furthermore, distal mutations with relatively minor effects can transmit changes to 

the substrate binding site and contribute to viral resistance. PR variants with drug 

resistant mutations in the flap and distal regions have shown diverse changes in 

catalytic activity, inhibition constants, dimer stability, the flap conformation and 

inhibitor binding. Changes caused by mutations at distal regions can also be 

transmitted to the inhibitor/substrate binding site. Drug resistant mutations can cause 

changes in any of the above factors or combinations of those factors. In most cases, 

the observed structural changes in mutations were consistent with kinetic and stability 

changes.  

Therefore, my studies of the flap mutants and distal mutants have extended 

our understanding of the drug resistant mechanisms of indinavir, saquinavir and 

darunavir in different mutants of HIV-1 protease. Atomic resolution crystal structures 
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will be important for the design of more effective inhibitors for resistant mutants. In 

particular, the structures of unliganged PRF53L and of PRM46L with darunavir bound in 

two sites provide valuable frameworks for designing novel inhibitors either to prevent 

the closure of flap or to target on the flap surface. In addition, these results will 

provide guidance for physicians to select the optimal regimens for AIDS patients who 

carry certain PR mutations.  
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APPENDICES I: The list of HIV protease structures determined by Liu F. 

NO. PR Inhibitor Space 
Group Reso Rwork Rfree PDB 

Code Status 

1 WT P21212 1.40 0.15 0.19 2AOD published
2 L24I P21212 1.10 0.11 0.13 2AVM published
3 I50V P21212 1.30 0.11 0.14 2AVQ published
4 D25N 

p2-NC 
  
  
  P21212 1.05 0.14 0.17   done 

5 L24I P212121 1.10 0.11 0.14 2AVO published
6 I50V P212121 1.10 0.11 0.14 2AVS published
7 G73S 

IDV 
  
  P21 1.50 0.14 0.22 2AVV published

8 F53L None P41212 1.35 0.15 0.22 2G69 published
9 L90M P21212 1.25 0.14 0.19 2F81 published
10 M46L P212121 1.22 0.14 0.20 2HS2 done 
11 G48V P21212 1.40 0.16 0.22   done 
12 I54M P21212 1.30 0.15 0.20   done 
13 I54V P21212 1.18 0.15 0.19   done 
14 D25N 

DRV 
  
  
  
  
  

P21212 1.30 0.15 0.20   done 
15 I50V P21212 1.20 0.16 0.21   done 
16 I54M P212121 1.05 0.14 0.16   done 

17 F53L 

SQV 
  
  P212121 1.65 0.25 0.35   In 

process 
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APPENDICES II: The activity, stability and structural changes in drug resistant mutants  
        of HIV protease.  

 

PR  Location  Resistance 
level  

Activity and stability 
changes 

Structural changes 

L24I Next to 
Asp25/ dimer 
interface 

Low to IDV kcat/Km: dropped to 4 
%  
IDV:relative Ki =3 
p2-NC:relative 
Ki=2.6 
CA-p2: relative 
Ki=0.05 

IDV:  reduced dimer 
interactions 
p2-NC: reduced dimer 
interactions 

D25N 
 

catalytic 
residue 

N/A increased dimer 
dissociation  

DRV: reduced PR-inhibitor 
interactions 

M46L 
 

Flap Intermediate 
to NFV, low 
to others 
except DRV 

kcat/Km: dropped to 
50 %  
DRV:  relative Ki=10 

DRV: two binding sites 
Reduced PR- inhibitor 
interactions at the active site  

G48V 
 

Flap/inhibitor 
and substrate 
binding 

SQV, NFV: 
high,  ATV, 
IDV, LPV: 
low  

SQV: relative Ki=10 DRV: flap conformation and 
80’s loop shift, tighter PR-
inhibitor interaction 

I50V 
 

Flap/inhibitor 
and substrate 
binding/dimer 
interface 

Very high to 
APV, high to 
DRV and 
LPV 

kcat/Km:18% lower  
IDV: relative Ki=50 
P2-NC: relative 
Ki=19 
CA-p2: relative Ki=3 
 
 

IDV:  reduced dimer 
interactions and PR-inhibitor 
interactions 
SQV: flap and 80’s loop shift, 
not reduce PR-inhibitor contacts 
p2-NC: reduced dimer 
interactions, reduced PR-
inhibitor interactions 

F53L 
 

Flap/dimer 
interface 

Low to all 
PIs 

kcat/Km: 15% lower 
IDV: relative Ki=20 

Reduce dimer stability, 
flap wider open 

I54V 
 

Flap Low to all 
PIs 

 DRV: 80’s loop shift towards 
Val54. 
SQV: 80’s loop shift towards 
Val54 

I54M 
 

Flap High to 
DRV, APV 
intermediate 
to LPV 

 DRV: 80’s loop shift away from 
Met54, reduced PR-DRV 
interactions. 
SQV: 80’s loop shift away from 
Met54 

G73S 
 

Protein 
surface 

Low to all 
PIs 

kcat/Km:14-400% for 
different substrates 

IDV:  new hydrogen bonds 
transmitting changes to the 
substrate binding site 
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APPENDICES III: The publications and presentations by Liu F. 
 
Peers Reviewed Papers 
 

1. Kovalevsky A.Y., Liu F., Leshchenko, S., Ghosh A.K., Louis J.M., Harrison 
R.W., Weber I.T. (2006) Ultra-high Resolution Crystal Structure of HIV-
1Protease Mutant Reveals Two Binding Sites for Clinical Inhibitor TMC114. J 
Mol Biol. 363:161-173.    

 
2. Liu F., Kovalevsky A.Y., Boross P.I., Louis J.M., Harrison R.W., Weber I.T. 

(2006) Mechanism of Drug Resistance Revealed by the Crystal Structure of the 
Unliganded HIV-1 Protease with F53L Mutation. J Mol Biol. 358(5):1191-9.   

 
3. Kovalevsky A.Y., Tie Y., Liu F., Boross P.I., Wang Y.F., Leshchenko S., Ghosh 

A.K., Harrison R.W., Weber I.T. (2006) Effectiveness of Nonpeptidic Clinical 
Inhibitor TMC114 to Highly Drug Resistant Mutations D30N, I50V and L90M of 
HIV-1 Protease. J Med Chem. 49(4):1379-1387. 

 
4. Liu F., Boross P.I., Wang Y.-F., Tozser J., Louis J.M., Harrison R.W., Weber I.T. 

(2005) Kinetic, Stability, and Structural Changes in High-resolution Crystal 
Structures of HIV-1 Protease with Drug-resistant Mutations L24I, I50V, and 
G73S. J Mol Biol. 354(4):789-800. 

 
5. Tie Y, Boross P.I., Wang Y.-F, Gaddis L., Liu F., Chen X., Tozser J., Harrison 

R.W., Weber I.T. (2005) Molecular basis for substrate recognition and drug 
resistance from 1.1 to 1.6 angstroms resolution crystal structures of HIV-1 
protease mutants with substrate analogs. FEBS J. 272(20):5265-5277.  

 
 

Conference Abstracts 
 

6. Liu F., Mahalingam B., Boross P.I., Wang Y.-F., Louis J.M., Tozser J., Harrison 
R.W. and Weber I.T. (2003) Analysis of HIV-1 Protease Mutants to Understand 
Mechanisms of Resistance. Retroviruses International Meeting Cold Spring 
Harbor Lab, NY. 

 
7. Liu F., Mahalingam B., Boross P.I., Wang Y.-F., Louis J.M., Tozser J., Harrison 

R.W. and Weber I.T. (2003) Analysis of HIV-1 Protease Mutants to Understand 
Mechanisms of Resistance. Georgia State Biotech Symposium: From Bacterial 
Physiology to Molecular Genetics to Biotechnology, Georgia State University, 
Atlanta, GA. 

 
8. Liu F., Mahalingam B., Boross P.I., Wang Y.-F., Louis J.M., Tozser J., Harrison 

R.W. and Weber I.T. (2004) Analysis of HIV-1 Protease Mutants to Understand 
Mechanisms of Resistance. SECABC Biotech/Biocomputing Symposium, 
Georgia State University, Atlanta, GA.  
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9. Liu F., Boross P.I., Tozser J., Louis J.M., Harrison R.W. and Weber I.T. (2005) 

Analysis of HIV-1 Protease Mutants to Understand Mechanisms of Resistance. 
FEBS J. 272 (supplement1):12. 

 
10. Liu F., Boross P.I., Louis J.M., Tozser J., Harrison R.W. and Weber I.T. (2006). 

Distinct Structural Changes in High Resolution Crystal Structures of HIV-1 
Protease with Drug Resistant Mutations L24I, I50V, and G73S. The Third Annual 
Ser-Cat Symposium, Georgia State University, Atlanta, GA. 

 
Poster Presentations at Scientific Conferences 
 

1. Liu, F., Tie, Y., Iro, A., Wang, Y-F., Gaddis, L., Mahalingam, B., Boross, PI., A. 
Ghosh, Harrison, RW., Weber, IT. “High Resolution Crystal Structures of HIV 
Protease Mutants with Inhibitors.” 11th Annual Suddath Symposium and Annual 
Georgia Cancer Coalition Spring Symposium, Georgia Institute of Technology, 
Atlanta, GA, March 27-29, 2003.  

 
3. Fengling Liu, Bhuvaneshwari Mahalingam, Yunfeng Tie, Peter Boross, Yuan- 

Fang Wang, John M. Louis, Jozsef Tozser, Robert W. Harrison, Irene T. Weber. 
Analysis of HIV-1 Protease Mutants to Understand Mechanism of Resistance. 
Retroviruses International Meeting Cold Spring Harbor Lab, New York, May 19-
23, 2003  

 
4. Fengling Liu, Bhuvaneshwari Mahalingam, Yunfeng Tie, Peter Boross, Yuan-

Fang Wang, X. Chen, John M. Louis, Jozsef Tozser, Robert W. Harrison, Irene T. 
Weber. “Analysis of HIV-1 Protease Mutants to Understand Mechanisms of 
Resistance.”  Georgia State Biotech Symposium 2003: From Bacterial 
Physiology to Molecular Genetics to Biotechnology, Georgia State University, 
Atlanta, GA, June 16-17, 2003. 

 
6. F. Liu, Boross, P., Mahalingam, B., Wang, Y-F., Gaddis, L., Louis, JM., 

Harrison, R.W., Weber, I.T. “Crystallographic and kinetic analysis of drug-
resistant mutants of HIV protease.” 12th Annual Suddath Symposium, Georgia 
Institute of Technology, Atlanta, GA, March 19-20, 2004. 

 
7. Fengling Liu, Bhuvaneshwari Mahalingam, Peter Boross, Yuan-Fang Wang, 

John M. Louis, Jozsef Tozser, Robert W. Harrison, Irene T. Weber. “Analysis of 
HIV-1 Protease Mutants to Understand Mechanisms of Resistance.” SECABC 
Biotech/Biocomputing Symposium, Georgia State University, Atlanta, GA, May 
24-25, 2004. 

 
8. Fengling Liu, Bhuvaneshwari Mahalingam, Peter Boross, Yuan-Fang Wang, 

John M. Louis, Jozsef Tozser, Robert W. Harrison, Irene T. Weber. “Analysis of 
HIV-1 Protease Mutants to Understand Mechanisms of Resistance.” Gordon 
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Research Conference “Diffraction Methods in Structural Biology”, Bates 
College, Lewiston, Maine, July 11-16, 2004. 

 
 
10. Fengling Liu, Peter Boross, John M. Louis, Jozsef Tozser, Robert W. Harrison, 

Irene T. Weber. “Analysis of HIV-1 Protease Mutants to Understand 
Mechanisms of Resistance.” The Protein World Proteins and Peptides: 
Structure, Function and Organization: 30th FEBS Congress, 9th IUBMB 
Conference, Budapest, Hungary, July 2-7, 2005.  

 
11. Fengling Liu, Peter Boross, John M. Louis, Jozsef Tozser, Robert W. Harrison, 

Irene T. Weber Distinct Structural Changes in High Resolution Crystal 
Structures of HIV-1 Protease with Drug Resistant Mutations L24I, I50V, and 
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Atlanta, GA, Nov 24-25, 2005. 
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Irene T. Weber Distinct Structural Changes in High Resolution Crystal 
Structures of HIV-1 Protease with Drug Resistant Mutations L24I, I50V, and 
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Atlanta, GA, March 10, 2006. 

 
Contributions to other posters presentations 
 
13. Mahalingam, B., Tie, Y., Liu, F., Iro, A., Wang, Y-F., Boross, P., Harrison, 

R.W., Weber, I.T. “High Resolution Crystal Structures of HIV Protease Mutants 
and the Implications for Drug Resistance.” University System of Georgia 
Symposium, Applying Bioinformatics: From Genes to Systems, Georgia State 
University, Atlanta GA, Oct.4, 2002. 

 
14. Wang Y.-F., Mahalingam B, Tie Y., Boross P., Liu F., Louis J.M., Tozser J., 

Harrison R. W. and Weber I. T. “Analysis of HIV-1 Protease Mutants To 
Understand Mechanisms of Resistance.” AIDS Structural Biology Meeting, 
Bethesda, MD, June 18-20, 2003. 

 
15. Yuan-Fang Wang, Yunfeng Tie, Peter I. Boross, Fengling Liu, Laquasha 

Gaddis, Arun K. Ghosh, John M. Louis, Robert W. Harrison, Irene T. Weber. 
“What Can We Learn From Crystal Structures At Atomic Resolution?” AIDS 
Structural Biology Meeting, Bethesda, MD, June 9-11, 2004.  

 
16. Andrey Yu. Kovalevsky, Yunfeng Tie, Fengling Liu, Peter I. Boross, Yuan-

Fang Wang, Arun K. Ghosh, Robert W. Harrison, Irene T. Weber. “Crystal 
Structures At Near-Atomic Resolution of Drug Resistant HIV-1 Protease 
Mutants with the Potent Inhibitor UIC94017 (TMC114)” AIDS Structural 
Biology Meeting, Bethesda, MD, June 23-24, 2005. 
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17. Yunfeng Tie, Andrey Y. Kovalevsky, Fengling Liu, Peter Boross, Yuan-Fang 
Wang, Arun K. Ghosh, Robert W. Harrison, Irene T. Weber. “High Resolution 
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Wang, Arun K. Ghosh, Robert W. Harrison, Irene T. Weber. Effectiveness of 
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D30N, I50V and L90M of HIV-1 Protease. The Third Annual Ser-Cat 
Symposium, Georgia State University, Atlanta, GA, March 10, 2006. 

 
19. Andrey Y. Kovalevsky, Yunfeng Tie, Fengling Liu, Peter I. Boross, Yuan-Fang 

Wang, Sofiya Leshchenko, Arun K. Ghosh, John M. Louis, Robert W. Harrison, 
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