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by 
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Abstract 

The 3' terminal 96 nts of the West Nile virus (WNV) genomic RNA are predicted to 

form two stem loop (SL) stuctures, a short SL (SSL) of 16 nts and a longer terminal 

SL of 80 nts. These two structures are referred to collectively as the WNV 3' (+) SL 

RNA and have been shown to contain cis-acting elements during virus replication. 

RNase footprinting and nitrocellulose filter-binding assays were previously used to 

map one major and two minor binding sites for the cell protein, eukaryote elongation 

factor 1 A (eEF1A), on the WNV 3' (+) SL RNA. Various base substitutions were 

engineered into a WNV cDNA infectious clone within the major eEF1A binding site 

on the terminal SL or within the minor binding site on the SSL and the affect on viral 

growth was assessed. None of these mutations affected the efficiency of translation of 

the viral polyprotein from the genomic RNA, but all of the mutations that decreased 

eEF1A binding to the 3' SL RNA in vitro also decreased viral minus strand RNA 

synthesis in transfected cells. Mutations to the major eEF1A binding site that 

increased the efficiency of eEF1A binding to the 3' SL RNA in vitro increased viral 

minus strand RNA synthesis, which resulted in decreased synthesis of genomic RNA. 

These results strongly suggest that the interaction between eEF1A and the WNV 3' 
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SL promotes viral minus-strand synthesis. eEF1A colocalized with viral replication 

complexes (RC) in infected cells and antibody to eEF1A coimmunoprecipitated viral 

RC proteins, suggesting that eEF1A may facilitates an interaction between the 3' end 

of the genome and the RC. eEF1A was also shown to bind to the 3' terminal SL 

RNAs of four divergent flaviviruses with similar efficiency and colocalized with RC 

in dengue infected cells, suggesting that this cell protein plays a similar role in RNA 

replication for all flaviviruses. 

 

INDEX WORDS: West Nile virus, RNA-protein interaction, 3' Untranslated Region, 

RNA replication 
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CHAPTER I 

Introduction 
 
 

General Characteristics 

WNV is a member of the family flaviviridae, which is comprised of three 

genera, the flaviviruses, the pestviruses and the hepaciviruses and the as yet 

unclassified viruses, GBV-A and GBV-C. Members of the flavivirus genus are 

further divided into antigenic serogroups such as the tick-borne encephalitis virus 

(TBE) group, the Japanese encephalitis virus (JE) group, the yellow fever virus 

(YFV) group and the dengue virus (Den) group. Ticks are the vectors for the 

members of the TBE group, while the vectors for the members of the JE, YFV and 

Den serogroups are mosquitoes (Lindenbach, 2007).  

WNV was first isolated from a patient in the West Nile Province of Uganda 

(Smithburn, 1940). WNV is classified in the JE serogroup. There are two WNV 

lineages based on sequence comparisons. Lineage I viruses are distributed throughout 

Africa, the Middle East, Europe, India, Australia, and North America. Lineage II 

viruses are found in sub-Saharan Africa and Madagascar (Lanciotti et al., 2002). Most 

lineage II viruses are non-pathogenic, while infection with lineage I viruses can result 

in more severe disease and have been associated with major epidemics outside Africa 

(Lanciotti et al., 1999; Murgue, Zeller, and Deubel, 2002). 

WNV is maintained in a mosquito-bird cycle in nature (Gubler, 2007). 

Although Culex mosquitoes are the main vectors of WNV transmission, WNV has 
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been recovered from 60 different species of mosquitoes (Hayes et al., 2005). After 

mosquitoes ingest virus during a blood meal, the virus infects the cells of the midgut. 

The virus disseminates to the hemocele and then to the salivary glands. Virus 

particles present in the salivary glands of infectious mosquitoes are transmitted to 

susceptible birds during a blood meal. In vertebrates, primary replication of the virus 

takes place at the site of the mosquito bite and spreads to the regional lymph nodes. 

Once in the lymph system, the virus enters the vascular system and spreads to 

peripheral organs. Replication occurs in the central nervous system if the virus is able 

to pass the blood-brain barrier. High viral titers in the blood of infected birds are 

necessary for virus transmission back to mosquitoes. WNV has been isolated from 

over 300 species of birds, which exhibit different levels of viremia and disease 

susceptibility (Komar et al., 2003). Humans are considered dead end hosts and do not 

play a part in maintaining the viral transmission life cycle in nature because viral 

titers are not high enough in human blood to infect mosquitoes.  

The majority of WNV infections in humans are asymptomatic. Fever, 

headache and the occasional rash are observed in about 20% of infected individuals 

and less than 1% of infected individuals develop meningitis or encephalitis which is 

sometimes fatal (Petersen, Marfin, and Gubler, 2003). Disease usually clears within 

3-6 days. However, in rare cases, infection can result in a long term paralytic polio-

like syndrome (Saad et al., 2005). 
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VIRION STRUCTURE 

The WN virion is small, enveloped and spherical with a diameter of 40-60 

nm, and contains a positive-sense, single-stranded RNA genome. The surface of the 

virion contains two viral structural proteins, the envelope (E) and membrane (M) 

proteins (Lindenbach, 2007). The interaction between the E homodimers is proposed 

to give the virus its icosahedral symmetry (Kuhn et al., 2002). The capsid is formed 

by the capsid (C) protein and surrounds the viral RNA genome (Lindenbach, 2007).  

FLAVIVIRAL REPLICATION CYCLE 

 Attachment of the E protein on the surface of the virion to the host cell is 

mediated by an unknown receptor(s). Entry into the cell by endocytosis and is 

mediated by clathrin coated pits, the virions are directed into prelysosomal vesicles 

where fusion between the host and virion membranes is induced by low pH, and the 

viral nucleocapsid is released (Fig. 1.1 A) (Chu and Ng, 2004; Gollins and 

Porterfield, 1985; Stiasny et al., 2004). The release of the viral genome from the 

nucleocapsid occurs by an unknown mechanism, but the viral genome has been 

shown to be accessible for translation immediately after host and cell membrane 

fusion (Koschinski et al., 2003). The single open reading frame is translated and the 

viral polyprotein produced is then cleaved by host and viral proteases into 3 structural 

and 7 nonstructural proteins (Fig. 1.1 B and C). The viral genome serves as a template 

for the generation of viral minus strand RNA (Fig. 1.1 D). The minus strand RNA in 

turn is the template for the synthesis of viral genomic RNA (Fig. 1.1 E). RNA 

synthesis of viral plus and minus strand RNAs is disproportionate and after the initial  
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Figure 1.1. Flavivirus replication cycle.  
A. Attachment and entry of the virion and uncoating of the virion RNA. B. 
Translation of the virion RNA. C. Proteolytic proccessing of the viral polyprotein. D. 
Synthesis of minus strand RNA. E. Synthesis of genomic RNA from the minus strand 
RNA. F. Encapsidation of the viral genome and assembly of immature virions. G. 
Transport of the virions to plasma membrane. H. Exocytosis of the virions. Figure 
from (Brinton, 2002) 
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phase of RNA replication, the ratio of plus to minus strand RNA in infected cells is 

about 100 to 1 (Browning et al., 1990). Replication of the viral genome takes place in  

envaginations of perinuclear membranes (Mackenzie, Kenney, and Westaway, 2007; 

Miller, Sparacio, and Bartenschlager, 2006). Virion assembly occurs in the 

endoplasmic reticulum vesicles. Mature virions are produced by the cleavage of the 

precursor viral structural protein, prM, to M in the Golgi (Fig. 1.1 F and G) 

(Lindenbach, 2007). Virions are transported in vesicles to the plasma membrane and 

then released by the fusion of virion containing vesicles with the plasma membrane 

(Fig 1.1 H) (Mackenzie and Westaway, 2001). 

GENOME RNA 

The genomic RNA is an mRNA. The single open-reading-frame (ORF) codes 

for a polyprotein of approximately 3000 amino acids in length (Fig. 1.2). The genome 

contains a 5' type I cap, but no 3' poly A tail. Translation of the genome ORF is cap-

dependent and is initiated by ribosomal scanning. The 5' end of the genome codes for 

the structural proteins, and the 3' end of the genome codes for the nonstructural (NS) 

proteins. The polyprotein is cleaved by viral and cellular proteases. The gene order of 

the WNV ORF is 5' C-prM-E-NS1-NS2A-NS2B-NS3-NS4A- NS4B- NS5 3'.  

VIRION STRUCTURAL PROTEINS 

Dimers of the C protein assemble to form the viral nucleocapsid. The C 

protein is a small, highly basic protein of about 11 kDa. Interaction between the 

nucleocapsid and the viral genomic RNA is achieved through charged interactions 

between the negatively charged RNA and the positively charged amino acid residues  
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Figure 1.2. Schematic drawing of the flavivirus genome RNA and the mature viral 
proteins encoded in the polyprotein.  Not drawn to scale 
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located at the N and C terminus of the protein which are separated by a hydrophobic 

region thought to interact with the viral membrane (Ma et al., 2004). 

The M protein is cleaved from the viral precursor protein, prM. The prM 

protein assists with the folding of the E proteins. The formation of prM-E 

heterodimers prevents E from undergoing an acid catalyzed rearrangement during 

secretory transport of nascent immature virions to the plasma membrane of the host 

cell (Guirakhoo, Bolin, and Roehrig, 1992). In the immature virion, prM is cleaved 

releasing the pr fragment. This allows the E proteins to form homodimers that lie 

close to the virion surface in the mature virion (Wengler and Wengler, 1989). 

The viral E protein is the major antigenic structural protein in the envelope 

and mediates cell receptor binding and membrane fusion. Upon exposure to low pH, 

the E homodimers in the mature virion dissociate and form trimers (Allison et al., 

1995; Stiasny et al., 2004).  

VIRAL NONSTRUCTURAL PROTEINS 

NS1 is translocated into the ER membrane during synthesis (Falgout and 

Markoff, 1995). NS1 is also found within the cytoplasm, on the surface of plasma 

membranes, and is secreted from infected cells (Lindenbach, 2007). Even though NS1 

is a hydrophilic protein and lacks a transmembrane domain, NS1 homodimers 

associate with cell membranes and are not secreted (Winkler et al., 1989). Mutations 

that prevented the formation of NS1 homodimers had no effect on NS1 secretion, but 

reduced viral titers on Vero cells by 100 fold (Hall et al., 1999). NS1 colocalizes with 
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viral replication complexes and the interaction between NS1 and NS4A has been 

shown to be required for viral RNA replication, but the exact function of NS1 in viral 

RNA replication is not known (Lindenbach and Rice, 1999; Mackenzie, Jones, and 

Young, 1996). The function of NS1 on the surface of the plasma membrane is not 

known, but antibody directed against NS1 initiated complement-mediated lysis of 

infected cells and the secreted form of NS1 has been shown to be a complement-

fixing antigen (Brandt et al., 1970; Lindenbach and Rice, 2003). The secreted and 

plasma membrane bound forms of NS1 have recently been shown to bind to 

complement regulatory protein factor H and block activation of the complement 

system (Chung et al., 2006).  

NS2A and NS2B are small hydrophobic proteins. NS2A has been shown to 

have a role in the assembly of the virus (Liu, Chen, and Khromykh, 2003). NS2A has 

also been reported to inhibit interferon signaling by acting as an interferon antagonist 

(Munoz-Jordan et al., 2003). Interferon inhibition could be reversed by mutation of a 

single alanine to a proline at position 30 (Liu et al., 2006). NS2B forms a complex 

with NS3 and is a cofactor for the NS2B-NS3 serine protease, which auto-

proteolytically cleaves the viral polyprotein at the NS2A/NS2B, NS2B/NS3, 

NS3/NS4A, and NS4B/NS5 junctions (Amberg et al., 1994; Chambers et al., 1990). 

NS3 is a large multifunctional protein. The N-terminus of this protein is the 

catalytic domain of the NS2B-NS3 serine-protease complex. The NS3 protease 

domain, without the NS2B cofactor, has been crystallized and the structure showed 

homology to that of other enzymes in the serine protease family (Murthy, Clum, and 
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Padmanabhan, 1999). The NS3 C-terminus resembles the super group 2 RNA 

helicases both in sequence homology and crystal structure. These RNA helicases have 

been shown to have both RNA unwinding and RNA-stimulated nucleoside 

triphosphatase (NTPase) enzymatic activities (Gorbalenya et al., 1989; Wengler and 

Wengler, 1991; Wu et al., 2005; Xu et al., 2005). NS3 has also been shown to have 

RNA triphosphatase activity, which may be used to dephosphorylate the 5' end of the 

genome prior to the addition of the cap by NS5 (Wengler and Wengler, 1993). NS3 

has also been shown to induce apoptosis via the caspase-8 pathway when over-

expressed (Prikhod'ko et al., 2002; Ramanathan et al., 2006). 

NS4A and NS4B are small membrane associated hydrophobic proteins. Both 

have been shown to colocalize with viral replication complexes. NS4A has been 

shown to be required for viral-induced membrane rearangements in the cell 

(Mackenzie et al., 1998; Miller, Sparacio, and Bartenschlager, 2006). NS4A and 

NS4B have been reported to block interferon signaling in replicon containing cells 

(Munoz-Jordan et al., 2003).  

NS5 is a large multifunctional protein. The N terminal domain of NS5 

contains the methyltransferase enzymatic activities for capping the genome RNA and 

was shown to bind specifically to the 5' UTR of the flaviviral genome (Dong et al., 

2007; Filomatori et al., 2006). The C terminal domain of NS5 contains the viral RNA 

dependant RNA polymerse (RDRP). Similar RDRP motifs are found in RDRPs of all 

positive strand RNA viruses (Koonin, 1991; Lindenbach and Rice, 2003; Malet et al., 

2007). The RNA secondary structures present at the 3' end of the genome have been 
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shown to be required for de novo initiation of RNA synthesis (Ackermann and 

Padmanabhan, 2001). 

THE GENOME NONCODING REGIONS 

The flavivirus genomic RNA coding region is flanked by 5' and 3' noncoding 

sequences. The 5' noncoding region of WNV is 96 nt long and the 3' noncoding 

region is 632 nt long (Brinton, Fernandez, and Dispoto, 1986). The 3' terminal 96 nts 

of the WNV genomic RNA are predicted to form two stem loop (SL) structures, a 

short SL (SSL) of 16 nts and a longer 3' terminal SL of 80 nts. These two structures 

will be collectively referred to as the WNV 3' (+) SL RNA and are predicted to be 

conserved among divergent flaviviruses (Brinton, Fernandez, and Dispoto, 1986; 

Hahn et al., 1987; Shi et al., 1996). Previously, three cellular proteins with molecular 

masses of 105, 84 and 52 kDa were reported to bind specifically to the WNV 3' (+) 

SL RNA. The 52 kDa protein was subsequently identified as eEF1A (Blackwell and 

Brinton, 1997). The dissociation constant (kD) for the interaction between eEF1A and 

the WNV 3' SL RNA is 10-9 M and is similar to that of the interaction between 

eEF1A and charged tRNAs (Riis et al., 1990). One major and two minor eEF1A 

binding sites were previously mapped on the WNV 3' (+) SL RNA (Blackwell and 

Brinton, 1997). The major binding site is located on the 5' side and in the middle of 

the terminal SL and accounts for 60% of the binding activity. One minor binding site 

was found to be the pentanucleotide sequence, which is conserved among divergent 

flaviviruses and found in the top loop of the 3' terminal SL. The other minor binding 

site is the SSL. (Blackwell and Brinton, 1997; Elghonemy, Davis, and Brinton, 2005; 
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Tilgner, Deas, and Shi, 2005). Each minor binding site accounted for 20% of the 

binding activity of eEF1A to the WNV 3' (+) SL RNA. The 3' terminal region is 

thought to function as a promoter for viral minus strand synthesis and to contain cis-

acting elements, since deletion of this region is lethal for flavivirus infectious clones 

(Mandl et al., 1998; Men et al., 1996; Zeng et al., 1998).  

The 3' end of the WNV viral genome may also be involved in the regulation 

of viral translation. The WNV genome is an mRNA as well as a template for viral 

transcription. The initiation of translation and RNA replication must be regulated so 

that "collisions" of a ribosome and the RDRP moving in opposite directions do not 

occur. According to the closed loop model of eukaryotic translation, the 5' and 3' 

termini of cell mRNAs are brought close together by the interactions between cap and 

poly A binding proteins (reviewed in Gray and Wickens, 1998). Poly A binding 

protein (PABP) interacts with eukaryotic translation initiation factor 4F (eIF4F) and 

PABP-interacting protein 1 (Paip-1). Paip-1 and eIF4F interact with the components 

of the mRNA cap binding complex, which include eIF4G and eIF4A. The close 

proximity of the 5' and 3' ends of the genome are thought to promote the stability of 

the mRNA and to improve the efficiency of the recruitment and recycling of the 

ribosomal subunits (Gale, Tan, and Katze, 2000; Ishii et al., 1999; McKnight and 

Lemon, 1998; Michel et al., 2000). Since WNV does not have a poly A tail, but does 

have a 5' cap structure, host factors binding to the 3' end might take over the role of 

PABP and mediate an interaction between the 3' end of the genome and the cap 

binding complex.  
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EUKARYOTIC ELONGATION FACTOR 1 A 

eEF1A constitutes 1-4% of the total soluble protein in actively dividing cells 

and is second only to actin in abundance (Browning et al., 1990; Condeelis, 1995). 

eEF1A delivers aminoacylated tRNAs (aa-tRNA) and GTP to the A site on the 

ribosome during protein synthesis. The eEF1A:GTP:aa-tRNA complex then moves to 

the P site. eEF1A hydrolyzes GTP to GDP, which results in the release of 

eEF1A:GDP from the ribosome. In addition to its role in peptide chain elongation, 

eEF1A has been reported to bind to mRNA (Lui, 2002; Mickleburgh et al., 2006), to 

bind to and bundle actin filaments (Ejiri, 2002; Lui, 1996; Lui, 2002), to sever 

microtubules (Shiina, 1994), and to mediate protein degradation via ubiquitin-

dependant pathways (Gonen, 1996; Gonen, 1994). 

For the positive-strand RNA bacteriophage, Qβ, the bacterial homolog of 

eEF1A functions as part of the viral replicase holoenzyme and for the negative-strand 

RNA virus, vesicular stomatitis virus (VSV), eEF1A was shown to be a component of 

the viral transcriptase complex and required for replicase activity in vitro (Blumenthal 

and Carmichael, 1979; Brown, 1996; Miranda, 1997; Qanungo, 2004; Schuppli, 

2000; Schuppli, 1998). eEF1A was also shown to interact with viral nonstructural 

proteins of two members of the family Flaviviridae, bovine viral diarrhea virus 

(NS5A) and hepatitis C virus (NS4A) , and with the Gag polyprotein of HIV type I 

(Cimarelli, 1999; Johnson, 2001; Kou et al., 2006). 

eEF1A was reported to bind to the 3' terminal tRNA-like structure (TLS) of 

the of turnip yellow mosaic virus (TYMV) genome, and to act as both a translational 
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enhancer and a minus strand synthesis repressor (Matsuda, 2003a; Matsuda, 2003b). 

For the positive strand RNA plant virus, tobacco mosaic virus (TMV), eEF1A has 

also been reported to bind to both the genomic 3' TLS and the viral polymerase 

(Yamaji et al., 2006) 

GOALS OF THIS DISSERTATION 

 Many flaviviruses are significant human pathogens and the RNA SL 

structures present at the termini of the WNV genome are found in divergent 

flaviviruses (Markoff, 2003; Olsthoorn and Bol, 2001). eEF1A has been shown to 

bind specifically to the WNV 3' (+) SL structures and has also been shown to bind to 

the 3' terminus of divergent flavivirus genomes (Blackwell and Brinton, 1997). The 

regulation of viral RNA synthesis is poorly understood for flaviviruses and it is also 

not known how the switching of the virus genome RNA from translation of the viral 

proteins to initiation of minus strand RNA synthesis is controlled. It is likely that the 

3'(+) terminal region of the genome contains cis-acting signals for the initiation of 

negative sense RNA of the genome, but the 3'(+) terminal region could also contain 

cis-acting signals that enhance or suppress translation or facilitate the switch from 

genomic RNA translation to transcription. Cis-acting elements that are necessary for 

WNV replication and/or translation would likely be conserved in all flaviviruses. The 

further definition of these elements will help to elucidate the replication and 

translation strategies used by all the flaviviruses. These regions also provide targets 

for the development of new antivirals that would be effective against all flaviviruses. 
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1. Determine whether the major eEF1A binding site is cis-acting for WNV 

replication. 

To obtain data on the functional importance of eEF1A binding to the WNV 3' 

(+) SL, mutations will be made in the major eEF1A binding site in a WNV infectious 

clone. Full-length mutant WNV infectious clone RNAs will be produced by in vitro 

transcription and used to transfect baby hamster kidney (BHK) cells. The viruses 

produced will then be analyzed for their replication efficiency. If particular mutations 

have a negative effect on virus replication, virus progeny will be passaged and then 

analyzed for reversions to the introduced mutations.  

2. Determine whether the previously predicted 3' tertiary interaction is cis-

acting for WNV replication. 

The SSL is predicted to be a minor binding site for eEF1A as well as involved 

in a tertiary interaction with the stem of the terminal SL. The SSL as well as the 

sequences in the 3' terminal SL predicted to be involved in this tertiary interaction 

will be mutated in the WNV infectious clone to determine if these nts are cis-acting 

and whether the predicted pseudoknot is functionally important.  

3. Determine whether mutations to the WNV 3'(+) SL RNA affect the relative 

binding activity of recombinant eEF1A for the WNV 3'(+) SL RNA.  

 Recombinant eEF1A purified from E. coli will be used to test the relative in 

vitro binding activity of eEF1A to 3' (+) SL RNAs with mutations in the major 

eEF1A binding site and the SSL.  
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4. Determine whether mutations to the WNV 3'(+) SL RNA affect the translation 

or replication of the viral RNA. 

 Mutations and deletions engineered into a WNV infectious clone will be 

tested for their effect on translation of the viral polyprotein in BHK cells three hours 

after transfection by relative quantification of viral antigen immunoflourescence. The 

effect of mutations and/or deletions on the efficiency of viral plus-strand and minus-

strand RNA synthesis will be assessed by real-time RT-PCR. 

5. Determine whether eEF1A colocalizes with viral replication complexes in 

infected BHK cells. 

 Antibodies against dsRNA, WNV NS3 and WNV NS5 will be used as 

markers for viral replication complexes. The colocalization of eEF1A with viral 

replication complexes will be assessed in BHK cells by confocal microscopy. Anti-

eEF1A antibody will also be used in coimmunoprecipitation experiments to 

determine whether viral replication complexes interact with eEF1A in infected BHK 

cell lysates.  
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CHAPTER II 

Interaction between the cellular protein eEF1A and the 3' terminal stem loop of 

the West Nile virus genomic RNA facilitates viral RNA minus strand initiation. 

 
 

INTRODUCTION  

The eukaryotic translation elongation factor, eEF1A, constitutes 1-4% of the 

total soluble protein in actively dividing cells and is second only to actin in 

abundance (Browning et al., 1990; Condeelis, 1995). eEF1A delivers aminoacylated 

tRNAs (aa-tRNA) and GTP to the A site on the ribosome during protein synthesis. 

The eEF1A:GTP:aa-tRNA complex then moves to the P site. eEF1A hydrolyzes GTP 

to GDP, which results in the release of eEF1A:GDP from the ribosome. In addition to 

its role in peptide chain elongation, eEF1A has been reported to bind to mRNA (Lui, 

2002; Mickleburgh et al., 2006), to bind to and bundle actin filaments (Ejiri, 2002; 

Lui, 1996; Lui, 2002), to sever microtubules (Shiina, 1994), and to mediate protein 

degradation via ubiquitin-dependant pathways (Gonen, 1996; Gonen, 1994). 

West Nile virus (WNV) is a member of the family Flaviviridae in the genus 

Flavivirus. WNV is transmitted by arthropods and is maintained in a mosquito-bird 

cycle in nature with humans as incidental hosts. WNV infection in humans is usually 

asymptomatic or causes a mild febrile illness. Less than 1% of all infections result in 

a severe central nervous system disease, that can sometimes be fatal (Petersen, 

Marfin, and Gubler, 2003; Weaver and Barrett, 2004).The WNV genome is a 

positive-polarity, single-stranded RNA of about 11 kb in length. Translation and 
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replication of the viral genome occur in the cytoplasm of infected cells. The genome 

contains a single open reading frame (ORF) encoding a polyprotein of approximately 

3000 amino acids that is cleaved by host and viral proteases into 3 structural and 7 

nonstructural proteins. The genome is flanked by 5' and 3' untranslated regions 

(UTR). The WNV 5' UTR is 96 nt long while the 3' UTR is 632 nt long. The 

genomic 3' terminal nt form a SL that is predicted to be highly conserved among all 

flaviviruses (Brinton, Fernandez, and Dispoto, 1986; Hahn et al., 1987; Markoff, 

2003; Wengler and Castle, 1986). This 3' terminal region is thought to function as a 

promoter for viral minus-strand synthesis; deletion of the 3' SL in a flavivirus 

infectious clone was lethal providing evidence that cis-acting elements were present 

in this region (Bredenbeek et al., 2003). Previously, three cellular proteins with 

molecular masses of 105, 84 and 52 kDa were reported to bind specifically to the 

WNV 3' terminal SL RNA (Blackwell and Brinton, 1995). The 52 kDa protein was 

subsequently identified as eEF1A (Blackwell and Brinton, 1997). The dissociation 

constant (kD) for the interaction between eEF1A and the WNV 3' SL RNA is 10-9 

M, which is similar to that of the interaction between eEF1A and individual charged 

tRNAs (Riis et al., 1990). One major and two minor eEF1A binding sites were 

previously mapped on the WNV 3' SL RNA using RNase footprinting and 

nitrocellulose filter binding assays (Blackwell and Brinton, 1997). 

eEF1A has also been reported to bind to the genomic 3' terminal tRNA-like 

structure (TLS) of the positive-strand RNA plant virus, turnip yellow mosaic virus 

(TYMV), and to act as both a translational enhancer and a repressor of minus-strand 
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synthesis (Matsuda, 2003a; Matsuda, 2003b). eEF1A has been reported to bind to 

both the 3' TLS and the viral polymerase of the positive strand RNA plant virus, 

tobacco mosaic virus (TMV) (Yamaji et al., 2006). The bacterial homolog of eEF1A 

was shown to be a functional part of the viral replicase holoenzyme of the positive-

strand RNA bacteriophage, Qβ (Blumenthal and Carmichael, 1979; Brown, 1996; 

Miranda, 1997; Schuppli, 2000; Schuppli, 1998). Similarly, for the negative-strand 

RNA virus, vesicular stomatitis virus (VSV), eEF1A was reported to be a component 

of the viral transcriptase complex and was required for replicase activity in vitro 

(Qanungo, 2004). eEF1A was also reported to interact with the bovine viral diarrhea 

virus nonstructural protein, NS5A; the hepatitis C virus nonstructural protein, NS4A; 

and the HIV type 1 Gag polyprotein (Cimarelli, 1999; Johnson, 2001; Kou et al., 

2006). 

Various mutations were introduced into the previously mapped major binding 

site of the WNV 3' SL RNA in a WNV infectious clone and the effect of these 

mutations on virus production, viral RNA translation, and viral RNA synthesis was 

assessed. All of the mutations that altered eEF1A binding in vitro had a negative 

effect on virus production in cell culture. None of the mutations had an effect on the 

translation of viral proteins. Mutations that decreased the binding efficiency of 

eEF1A to the viral 3'(+) SL in vitro had a negative effect on viral minus-strand RNA 

synthesis, while mutations that increased the binding efficiency of eEF1A to the viral 

3' SL in vitro, increased the production of minus-strand RNA synthesis. The results 
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strongly suggest that eEF1A plays a role in the initiation of flavivirus minus-strand 

synthesis. 

RESULTS 

Effect of mutation of the major eEF1A binding site in a WNV infectious clone on 

progeny virus production.  

Two minor and one major binding sites for eEF1A on the 3'(+) SL RNA of 

WNV were previously reported (Blackwell and Brinton, 1997). The major eEF1A 

binding site (5'CACA 3', nts 62 to 65 from the 3' end of the genomic RNA), was 

predicted to consist of an unpaired A at position 62 and the base paired nts 63 to 65 

(CAC) (Fig. 1A). In a WNV infectious clone, one or more of the four nts of the major 

eEF1A binding site were changed (shown in bold). In Mutant A, the unpaired A62 

was substituted with a U changing the binding site to 5'CACU 3' and creating a G-

U base pair that removed the bulge and further stabilized the stem in this region. In 

Mutant B (5'UGGA 3'), three of the four binding site nts were changed. This 

mutation was predicted to widen the bulge by one nt on each side, but to maintain the 

base pairing of the two 5' mutated nts of the binding site. In Mutant C (5'UGGA 

3'+ 5' GCCA 3'), the nts on the opposite side of the stem from the binding site 

were mutated in Mutant B RNA to restore the predicted secondary structure. In 

Mutant D (5'UGUG 3'), only the four binding site nts were changed. The parental 

predicted secondary structure was preserved, but the unpaired nt in the binding site 

was now mutated to a G instead of an A (Fig. 2.1A). WNV 3'(+) RNA probes with 

the Mutant B or C substitutions were previously reported to decrease in vitro binding  
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Figure 2.1. Mutation of the major eEF1A binding site in the 3' (+) SL of a WNV 
infectious clone.  
(A) The engineered nt substitutions are indicated by black circles and revertant nt are 
indicated with a star. (B) Plaques produced by progeny virus 72 hr after RNA 
transfection. (C) Mutant virus growth in BHK and C6/36 cell monolayers infected 
with an MOI of 0.1. (D) Revertant virus growth in BHK and C6/36 cells infected with 
an MOI of 0.1. Error bars represent the SE (n=4). (E) Predicted secondary structures 
of Mutant B and C revertant viruses. 
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of purified BHK eEF1A by about 60% in filter binding studies (Blackwell and 

Brinton, 1997). The parental and mutant viral RNAs were in vitro transcribed by SP6 

RNA polymerase and used to transfect 90% confluent BHK monolayers in a 6-well 

tissue culture plate. At 72 hr after transfection, the plaque phenotype of progeny virus 

was assessed on an agarose-overlaid transfection well.  

No plaques were observed in wells transfected with Mutant A or after three 

sequential blind passages of culture fluid harvested from transfection wells of BHK 

cells. Also, viral RNA was not detected by RT-PCR in any of these fluids. Mutants B, 

C and D each produced pinpoint plaques (less than 0.1 mm in diameter) on the 

transfection well (Fig. 2.1B). The diameter of plaques produced by parental virus was 

2-3 mm (Fig. 2.1B). Virus harvested from replicate non-overlayed transfection plates 

was titered by plaque assay and then used to analyze virus kinetics in both a 

mammalian (BHK) and a mosquito (C3/36) cell line. The growth of mutant viruses B, 

C, and D was reduced by 100 to 1000 fold as compared to the parental infectious 

clone virus. The titer at 48 hr after infection of BHK cells was 3.5 x 104 PFU/ml for 

Mutant B, 9 x 104 PFU/ml for Mutant C, 4.35 x 104 PFU/ml for Mutant D and 5.5 x 

107 PFU/ ml for parental infectious clone virus (Fig. 2.1C). These mutants also 

displayed a 10,000 fold reduction in growth in C6/36 cells. In these cells, the titer at 

72 hr was 2 x 103 PFU/ml for Mutant B, 4 x 103 PFU/ml for Mutant C, 3 x 103 

PFU/ml for Mutant D and was 1.2 x 107 for parental infectious clone virus (Fig. 

2.1C).  
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After three passages in either BHK or C6/36 cells, some intermediate sized 

plaques (1mm in diameter) were observed among the pinpoint plaques with Mutants 

B, C, and D. Intermediate size plaques were individually picked, virus from each 

picked plaque was amplified by growth for 48 hr in individual wells of a 24-well 

tissue culture plate and then viral RNA in harvested culture fluid was extracted and 

amplified by RT-PCR. The PCR products were cloned into pTOPO TA 2.1 

(Invitrogen) and 10 clones for each mutant were sequenced. Analysis of the 

sequences showed that reversion to the parental nt (C) had occurred in the 

intermediate plaque virus from Mutants B, C, and D at either position 63 or 65 from 

the 3' end of the genome. The two types of partial revertants were found in 

approximately equal frequency for each of the three mutants. The predicted structures 

of the two revertants obtained for Mutant D are shown in figure 2.1A (Rev 1 and Rev 

2). The growth kinetics of the two Mutant D partial revertants was next compared in 

BHK and C6/36 monolayers infected at an MOI of 0.1 These revertant viruses 

maintained an intermediate sized plaque phenotype during passage. Although both 

revertants replicated significantly more efficiently than the original Mutant D, neither 

revertant produced wild type yields. The plaque and growth characteristics of these 

revertants remained stable during three additional passages. The virus titer produced 

in BHK cells at 48 hr after infection by Revertant 1 was 4.3 x 107 PFU/ml and by 

Revertant 2 was 3.9 x 107 PFU/ml, while parental infectious clone virus produced a 

yield of 8.8 x 107 PFU/ml (Fig. 1D). In C6/36 cells, the yields of Revertant 1 and 

Revertant 2 at 72 hr after infection were 8 x 106 PFU/ml and 6 x 106 PFU/ml, 
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respectively, while the yield of the parental infectious clone virus was 1.2 x 107 

PFU/ml (Fig. 2.1D).  

To ensure that the increased replication efficiency observed for the partial 

revertants was not due to a second site mutation located elsewhere in the viral 

genomic RNA, site-directed mutagenesis was performed on Mutant D plasmid DNA 

to engineer a partial revertant sequence (5'UGUG 3' changed to 5'CGUG 3'). This 

mutant was designated Engineered Revertant 2 (Fig. 2.1A). After transfection, this 

RNA produced an intermediate plaque phenotype (1 mm) (Fig. 2.1B). Virus 

recovered from transfection wells was titered and used to infect either BHK or C6/36 

cell monolayers at an MOI of 0.1. The virus yields were similar to those obtained 

with the original Revertant 2 that arose in infected cells. The Engineered Revertant 2 

produced 1.5 x 107 PFU/ml at 48 hr after infection in BHK cells and 8.8 x 106 

PFU/ml at 72 hr in C6/36 cells. These results indicate that the phenotype of the 

Revertant 2 virus was due solely to the reversion of a single C within the major 

eEF1A binding site. 

In the case of Mutant D, the two revertant Cs replaced Us and changed a U-G 

base pair back to a stronger G-C base pair. The predicted secondary structures of the 

Mutants B and C revertants are shown in figure 2.1E. In the Mutant B Revertant 1, 

the G·G bulge was replaced with a G-C base pair and in Mutant B Revertant 2; the G-

U base pair reverted to a G-C base pair. In Mutant C, the two revertant Cs changed 

the more stable G-C and U-A base pairs to C·C and C·A bulges, respectively. While 

the reversions found in Mutants B and D were predicted to stabilize the predicted 
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RNA secondary structure in the major eEF1A binding site, the reversions found in 

Mutant C destabilized the predicted secondary structure in this binding site. The lack 

of correlation observed between the stability of the stem in the region of the major 

eEF1A binding site (nts 63-65) and the efficiency of virus growth strongly suggests 

that the revertant Cs are important for another function. 

Mutagenesis of the nts base paired with the major eEF1A binding site.  

A previous study showed that when the pairing partners of the major eEF1A 

binding site nts were mutated so that the binding site nts were in a single stranded 

context, the resulting mutant RNA bound about 20% more efficiently to eEF1A than 

did the wild type 3' SL RNA (Blackwell and Brinton, 1997). The same set of 

substitutions and another similar set of mutations were introduced into the infectious 

clone. Nts 18-21 were mutated to 5'CCCA 3' (Mutant E) or nts 18-20 were mutated 

to 5'CCA 3' (Mutant F) (Fig. 2.2A) and the effect of these mutations on virus 

growth efficiency was analyzed. After transfection of BHK monolayers with either 

Mutant E or F viral RNA, the plaque phenotype of the progeny virus was similar to 

that of the parental infectious clone virus (2-3 mm). Analysis of the growth of these 

mutant viruses in BHK and C6/36 cell monolayers infected with an MOI of 0.1 (Fig. 

2.2B) showed that both mutant grew about 10 fold less efficiently than the parental 

virus. At 48 hr after infection in BHK cells, Mutant E produced a titer of 7 x 106 

PFU/ml, Mutant F produced a titer of 6 x 106 PFU/ml, and the parental infectious 

clone virus produced a titer of 5.5 x 107 PFU/ml. At 72 hr after infection in C6/36  
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Figure 2.2. Mutation of the pairing partners of the major eEF1A binding site.  
(A) The engineered nt substitutions are indicated by black circles. (B) Virus growth in 
BHK and C6/36 cells infected with an MOI of 0.1. Error bars represent the SE (n=4). 
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cells, Mutant E produced a titer of 6 x 106 PFU/ml, Mutant F produced a titer of 6.6 x 

106 PFU/ml, and the parental virus produced a titer of 1.5 x 107 PFU/ml.  

Mutagenesis of a C adjacent to the major eEF1A binding site.  

The equivalent frequency with which the same two partial revertants were 

generated after passage of Mutants A, B and C and the observation that either of the 

two Cs in the 4 nt binding site increased the efficiency of viral growth in cell culture 

to similar levels suggests that there is a redundancy in this binding sequence. To 

determine whether mutations of other cytidines in the vicinity of the major eEF1A 

binding site would also have a negative effect on viral growth, the C located just 

above the major eEF1A binding site at nt 60 from the 3' end was mutated to a U 

(Mutant G) to maintain base pairing (Fig. 2.2A). Mutant G produced wild type 

plaques (2-3 mm) at 72 hr after RNA transfection (data not shown) and the virus 

yields observed after infection of BHK or C6/36 cell cultures with Mutant G at an 

MOI of 0.1 were similar to those obtained with parental infectious clone virus. At 48 

hr after infection in BHK cells, parental virus produced a titer of 5.5 x 107 PFU/ml, 

while the yield for Mutant G virus was of 3.7 x 107 PFU/ml (Fig. 2.2B). At 72 hr after 

infection in C6/36 cells, the yield for the Mutant G was 1.2 x 107 PFU/ml, while that 

for the parental virus was 1.5 x 107 PFU/ml. In contrast to the two conserved Cs in 

the eEF1A binding site, mutation of the C in Mutant G had no observable effect on 

the efficiency of virus replication. 
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Relative binding activity.  

Although the relative efficiency of the WNV 3'(+) SL RNA probes with 

Mutant B and C substitutions had been previously analyzed in filter binding assays, 

the binding efficiency of eEF1A to the 3' (+) SL RNAs with Mutant A, Mutant D, 

Mutant E and the Engineered Revertant 2 substitutions had not been previously 

reported. A gel mobility shift assay was used to compare the relative binding activity 

of purified recombinant eEF1A for the various 3' (+) SL RNAs and the parental 3' 

(+) SL RNA. Each of the radiolabeled 3' (+) SL RNA probes (2000 CPM) was 

incubated with 0, 4, 8, 20, or 40 ng of purified recombinant eEF1A for 30 min at 

room temperature. The RNA-protein complexes formed were separated on 5% non-

denaturing polyacrylamide gels and detected by phosphorimaging. The percent of the 

free probe shifted was calculated as described in the Materials and Methods. A 

representative gel from at least three replicate assays with each RNA probe is shown 

in Figure 3A. Relative binding activity as measured by the percent of the free probe 

shifted by recombinant eEF1A for each of the RNA probes is shown in Fig. 2.3B. 

With 40 ng of recombinant eEF1A, 67% of the parental 3' SL RNA probe was 

shifted, but only 20% of the mutant A probe, 27% of Mutant C, 30% of the Mutant D 

probe and 54% of the Engineered Revertant 2 RNA probe was shifted. In contrast, 

80% of the Mutant E RNA probe was shifted with 40 ng of recombinant eEF1A. The 

results obtained with the gel mobility shift assays with Mutant A, Mutant C, Mutant 

D, and Mutant E 3' (+) SL RNAs correlated well with those obtained previously with 

filter binding assays (Blackwell and Brinton, 1997). In the case of Mutants C and D,  
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Figure 2.3. Comparison of the binding activity of recombinant eEF1A to parental, 
mutant and revertant virus 3'(+) SL RNA probes.  
(A) A gel mobilty shift assay done with 32P-radiolabeled 3'(+) SL RNAs (2000 
CPM) and recombinant eEF1A purified from E. coli extracts. (B) The percent of 32P 
RNA shifted by recombinant eEF1A. Error bars represent the SE (n=3). 
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the relative decrease in the binding efficiency correlated with the decrease in viral 

replication efficiency. Also, the increased binding efficiency of the Engineered 

Revertant 2 RNA compared to Mutant C and D RNAs correlated with the observed 

increase in virus replication efficiency. Only with Mutant E was there a lack of 

correlation between eEF1A binding efficiency and the virus replication efficiency 

observed. 

Effect of eEF1A binding site mutations on viral RNA translation.  

All of the mutations made in the major eEF1A binding site reduced viral 

growth efficiency in cell culture. These mutations could negatively affect either viral 

RNA translation and/or replication. To analyze the effect of mutations on viral RNA 

translation, parental infectious clone and Mutant A, D and E RNAs were in vitro 

transcribed and used to transfect BHK cells grown on coverslips. At 3 hr after RNA 

transfection, the cells were fixed and permeabilized. WNV antigen (red) was detected 

by immunoflourescence using an anti-WNV MHIAF as described in the Materials 

and Methods. Even though the phenotypes of these mutants differed, Mutant A 

(lethal), Mutant D (0.1 mm plaques) and Mutant E (2-3 mm plaques), similar high 

levels of virus-specific antigen were detected in over 80-90% of the cells with the 

parental infectious clone RNA and also with each of the three mutant RNAs (Fig. 

2.4A). These results indicate that none of these mutations negatively affected the 

translation of the viral RNA. 



 

 
 

39 

 

 

Figure 2.4. Effect of mutations in the major eEF1A binding site on the translation 
and replication efficiency of the viral genome.  
(A) As a measure of translation efficiency, WNV antigens (red) were detected by 
confocal microscopy in BHK cells 3 hr after transfection of genomic RNA with anti-
WNV MHIAF. (B) Relative fluorescent intensities of WNV proteins in the cytoplasm 
of transfected BHK cells. (C) Relative quantification of intracellular WNV genomic 
RNA by Real-Time RT-PCR. RNA detected at 48 and 72 hr after transfection. Error 
bars represent the SE (n=3). (D) Relative quantification of intracellular WNV minus-
strand RNA by strand specific Real-Time RT-PCR. RNA detected at 12, 24 and 48 hr 
after transfection. Error bars represent the SE (n=3). (E) Schematic of a WNV 
reporting replicon containing an Rluc gene fused in-frame with the ORF (RlucRep). 
(E) Equal amounts of wild-type (black bar) and mutant (white bar) RlucRep RNAs 
(10 µg) were transfected into BHK cells and cell lysates were quantified for Rluc 
activity at 2 h and 72 h post-transfection as a measure of viral RNA translation and 
replication, respectively. An average value obtained from four independent 
experiments is shown. 
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Effect of eEF1A binding site mutations on viral RNA replication.  

The effect of mutations in the major eEF1A binding site on viral RNA 

replication was next assayed. Relative real time RT-PCR was used to quantify the 

intracellular levels of genomic viral RNA within BHK cells 48 and 72 hr after 

transfection. Viral RNA levels measured at each of these times were normalized to 

the amount of viral genomic RNA (primarily input viral RNA) present in cell extracts 

at 6 hr after transfection and also to the levels of the cellular GAPDH mRNA to 

control for sample variation. Increases in the levels of viral genomic RNA above 

transfected input RNA were observed at 48 and 72 hr after transfection with the 

parental infectious clone RNA (Fig. 2.4C). At both 48 and 72 hr after transfection of 

Mutant A (lethal) RNA, the intracellular genomic RNA levels were lower than the 

viral RNA input at 6 hr after transfection, indicating degradation of the input RNA 

and little if any RNA replication (Fig. 2.4C). With Mutant D, the level of genomic 

RNA produced was also lower than input RNA at 48 hr after transfection, but to a 

lesser extent than seen with Mutant A, suggesting some RNA replication had 

occurred. An increase observed at 72 hr after transfection confirmed that this RNA 

was replicating, but at a lower level than the parental infectious clone RNA. These 

results were consistent with the low virus yields and small size plaques observed with 

Mutant D in figure 2.1. At 48 hr, the Engineered Revertant 2 genomic RNA level 

detected was similar to that observed after transfection of Mutant D RNA at 48 hr, but 

by 72 hr there was a greater increase in the Engineered Revertant 2 genomic RNA 
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that was seen with Mutant D. With Mutant E, an increase in genomic RNA levels was 

observed at both 48 and 72 hr after transfection, but the levels were lower than those 

observed with the parental infectious clone RNA (Fig. 2.4C). These results indicate 

that each of the major eEF1A binding site mutations had a negative effect on viral 

genomic RNA replication whether or not they increased or decreased in vitro eEF1A 

binding efficiency. 

The WNV 3'(+) SL RNA is thought to contain promoter elements for minus-

strand RNA synthesis. The effects of the major eEF1A binding site mutations on viral 

minus-strand RNA synthesis were next investigated using minus-strand specific real 

time RT-PCR. Intracellular levels of minus strand RNA in BHK cells were quantified 

at 12, 24 and 48 hr after transfection. Minus strand RNA levels at these time points 

were normalized to viral minus strand RNA detected at 2 hr after transfection and to 

cellular GAPDH mRNA. The majority of the minus strand signal detected at 2 hr was 

due to non-specific detection of plus strand input RNA. Therefore, this normalization 

stringently removed nonspecific background. After transfection of parental infectious 

clone RNA, minus-strand RNA levels peaked at 24 hr and then decreased by 48 hr 

(Fig. 2.4D). No minus-strand RNA amplification was detected for Mutant A (lethal) 

RNA at 12, 24 or 48 hr after transfection (Fig. 2.4D). A decreased level of minus-

strand synthesis with was observed after transfection of Mutant D RNA as compared 

to the parental virus. With Engineered Revertant 2, an intermediate level of minus-

strand synthesis was detected that was between that for the parental and Mutant D 

RNAs (Fig. 2.4D). Interestingly, Mutant E, which bound to eEF1A more efficiently 
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in vitro, showed a significantly increased level of minus strand synthesis at 12, 24 and 

48 hr after transfection as compared to the parental infectious clone RNA even 

though the amount of Mutant E genomic RNA synthesis detected was lower than that 

of the parental infectious clone RNA (Fig. 2.4C and D). All of the mutations in the 

major eEF1A binding site that reduced in vitro RNA-protein binding activity also 

reduced in vivo synthesis of minus strand RNA. In contrast, a mutation that increased 

in vitro RNA-protein activity also increased in vivo minus strand RNA synthesis.  

  As an alternate means of analyzing the effect of mutations in the major eEF1A 

binding site on translation and viral RNA replication data was obtained by a 

collaborator, P.Y. Shi, using a luciferase-reporting NY-99 replicon (RlucRep, Fig. 

2.4E). RlucRep contains an Rluc gene fused in-frame with the viral nonstructural 

gene ORF. This gene was inserted into the position where the majority of the viral 

structural gene region had been deleted (Fig. 2.4E). After transfection of BHK cells 

with RlucRep RNA, two distinct Rluc peaks were detected, one at 2-10 hr after 

transfection and another beginning at 24 hr after transfection. The initial peak 

represents translation from the input RNA while the second peak represents 

translation from replicated replicon RNA (Lo et al., 2003). After transfection of BHK 

cells with an equal amount of parental or Mutant D RlucRep RNA, similar levels of 

Rluc activity were observed at 2 hr after transfection, indicating that translation was 

not affected by the mutation (Fig. 2.4F). In contrast, at 72 hr after transfection, a 

background level of Rluc activity was observed for the Mutant D RlucRep (Fig. 

2.4F). Also, an immunofluorescence assay was used to detect viral antigen expressing 
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cells. Antigen positive cells were observed at 72 hr after transfection of BHK cells 

with the parental RlucRep RNA, but no positive cells were observed in cultures 

transfected with the Mutant D RlucRep RNA (data not shown). The data show that in 

the replicon the Mutant D substitutions caused a lethal phenotype. In contrast, 

although the Mutant D infectious clone showed a reduced level of RNA replication 

(Fig. 2.4C and D), sufficient levels of viral RNA replication occurred to generate a 

revertant (Fig. 2.1A).  

Colocalization of WNV proteins and eEF1A within BHK cells.  

The observation that mutations made in the major eEF1A binding site in a 

WNV infectious clone RNA had a negative effect on viral growth suggested this viral 

RNA-cell protein interaction occurred in infected cells. Confocal microscopy was 

used to determine whether eEF1A and viral RC colocalized in the cytoplasm of cells 

infected with either WNV or the divergent flavivirus, Den 2. BHK cells were infected 

with WNV or Den 2 at an MOI of 0.1, or mock infected. Cells grown on coverslips 

were permeabilized and fixed 36 hrs after infection with WNV or 72 hrs after 

infection with Den 2. Den 2 was fixed at a later time point due to the slower growth 

kinetics of Den 2 virus. Anti-NS3/NS5 (red) and anti-eEF1A (green) were both used 

at a 1:200 dilution. Due to the high degree of conservation of NS3 and NS5 among 

divergent flaviviruses, antibodies made against the WNV NS3/NS5 were used to 

detect RC in both WNV and Den 2 infected cells. In uninfected cells, eEF1A was 

found throughout the cytoplasm and NS3/NS5 was not detected (Fig. 2.5A). Although 

eEF1A was detected throughout the cytoplasm in infected cells, it was found to  
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Figure 2.5. Colocalization of eEF1A and flaviviral RC in infected BHK cells.  
BHK cells were infected with WNV, strain Eg101, (panels C and E) and Den 2, strain 
Bangkok, (panels D and F) at an MOI of 0.1, or were mock infected (panels A and 
B). Cells were fixed and permeabilized at 36 hr (WNV) or 72 hr (Den 2) and then 
incubated a rabbit antibody specific for WNV NS3 and NS5 proteins at a 1:50 
dilution (panels A, C and E) or mouse monoclonal anti-dsRNA antibody at a 1:200 
dilution (panels B, D, and F) and a goat polyclonal anti-eEF1A antibody at a 1:200 
(panels A, C and D) or a 1:800 dilution (panels B, E and F). The anti-NS3/NS5 and 
anti-dsRNA antibodies were conjugated with secondary antibody that fluoresced red 
and the anti-eEF1A antibody was conjugated with a secondary antibody that 
fluoresced green. Hoechst Dye was used to stain the nuclear DNA blue. Coverslips 
were mounted on glass slides and cells were visualized using a LSM 510 laser 
confocal microscope (Carl Zeiss Inc., Thornwood, NY) with a 100X oil immersion 
objective.  
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concentrate in discrete foci in the perinuclear region as well as in a ring around the 

nucleus in these cells. Colocalization (yellow) of eEF1A and WNV NS3/NS5 proteins 

in a ring around the nucleus as well as in discrete foci was observed by 36 hrs after 

infection (Fig. 2.5C), and a similar pattern of colocalization in Den 2 infected cells 

was observed at 72 hr after infection (Fig. 2.5D). Previous studies indicated that these 

foci in the perinuclear region represent the viral RC (Mackenzie et al., 1998; Miller, 

Sparacio, and Bartenschlager, 2006; Westaway et al., 1997). The broad ring observed  

could be due to high levels of anti-EF1A antibody or alternatively to the interaction of 

eEF1A and NS3/NS5 outside of the RC. In subsequent experiments, done with a 

higher dilution of anti-eEF1A antibody (1:800) only the discrete perinuclear foci of 

eEF1A were detected.  

  Antibodies directed against dsRNA (red) were also used in separate experiments to 

detect viral RNA in RC. The anti-dsRNA antibody is specific for dsRNA and does 

not detect ribosomal RNA. In both WNV and Den 2 virus infected cells, 

colocalization of dsRNA and eEF1A was observed in perinuclear foci (Fig. 2.5E and 

F). The colocalization of eEF1A with two of the flavivirus nonstructural proteins, and 

also with dsRNA in infected cells strongly suggests that eEF1A is recruited into viral 

RC in infected cells. 
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Co-immunoprecipitation of viral NS3 and NS5 by anti-eEF1A antibodies. 

 eEF1A was previously reported to bind to the viral nonstructural proteins of 

bovine viral diarrhea virus and hepatitis C virus and the polymerase and 3'UTR of 

tobacco mosaic virus (Johnson, 2001; Kou et al., 2006; Yamaji et al., 2006) and the 

colocalization experiments described above indicated that eEF1A might interact with 

one of the WNV nonstructural proteins. The WNV 3'(+) SL RNA is thought to 

contain promoter elements for minus strand synthesis, but there has been no 

conclusive evidence that the viral polymerase and/or other viral RC proteins bind 

efficiently to the 3'(+) SL RNA even though this has been reported by other labs 

(Chen et al., 1997; Cui et al., 1998). Antibodies against eEF1A were used in co-

immunoprecipitation experiments to determine whether eEF1A was able to pull down 

WNV nonstructural proteins. The cellular proteins NFAR-1 and NFAR-2 were 

previously reported to bind to the 3' terminus of bovine viral diarrhea virus genomic 

RNA (Isken et al., 2003). Antibodies to these proteins were also used in co-

immunoprecipitation experiments. HSP105 was not previously reported to bind to 

any viral proteins and antibody to this protein was used as a negative control. BHK 

cells were either infected with the parental infectious clone virus at an MOI of 5 or 

mock infected. S2 lysates were harvested and immunoprecipitated with antibodies 

against the cellular proteins eEF1A, NFAR-1, NFAR-2 or HSP105. The 

immunoprecipitated complexes were analyzed by Western blotting as described in the 

Materials and Methods. NS3 and NS5 were detected in the infected, but not in the 

uninfected cell lysates with an anti-NS3/NS5 antibody (Fig. 2.6A). WNV NS3 and  
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Figure 2.6. Co-immunoprecipitation of NS3 and NS5 with anti-eEF1A antibodies. 
 (A) Antibodies against the cellular proteins eEF1A or HSP105 were incubated with 
WNV infected or uninfected BHK cell lysates and coprecipitated viral proteins were 
detected by Western blot using anti-NS3/NS5 antibody. (B) Anti-NFAR-1 or anti-
NFAR-2 were incubated with uninfected or infected BHK cell lysates and 
coprecipitated viral proteins were detected by Western blot using anti-NS3/NS5 
antibody. (C) Anti-eEF1A, NFAR-1, NFAR-2 or HSP105 were used in pull down 
experiments with WNV infected or uninfected BHK cell lysates and coprecipitated 
viral proteins were detected by Western blot using anti-WNV MHIAF (D) Proteins in 
BHK cell lysates were separated by SDS-PAGE and analyzed by Western blotting 
using anti-eEF1A, NFAR-1, or NFAR-2 antibodies. 
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NS5 were coprecipitated by anti-eEF1A antibody, but not by anti-HSP105 antibody 

(Fig. 2.6A) or anti-NFAR-1 or NFAR-2 antibodies (Fig. 2.6B). Since the anti-NFAR-

1 and the anti-NFAR-2 antibodies were generated in rabbits as was the anti-WNV 

NS3/NS5 antibody, heavy and light chain antibody bands were detected in both 

uninfected and infected immunoprecipitates. Viral proteins in immunoprecipitates 

were also analyzed with a hyperimmune anti-WNV sera made in mice (MHIAF). In 

the infected cell lysate, NS1, E, and NS3 were detected on a Western blot with this 

antibody (Fig. 2.6C). NS3, but not E or NS1, was coprecipitated by anti-eEF1A 

antibody, but not by NFAR-1, NFAR-2, or HSP105 antibodies (Fig. 2.6C). Control 

Westerns performed on the cell lysates with the eEF1A, NFAR-1 and NFAR-2 

antibodies detected only a single band of the expected size (Fig. 2.6D). When cell 

lysates were run on 1% agarose gels, no ribosomal RNA bands were detected by 

ethidium bromide staining, suggesting that polysomes were not present in the lysates. 

eEF1A interacts with one or more proteins present in WNV RC. Although an 

interaction between eEF1A and either E or NS1 was ruled out, the observation that 

both NS3 and NS5 were coprecipitated strongly suggests that eEF1A interacts with 

one or more of the viral proteins in the RC. Since antibodies to the four other RC 

proteins NS2A, NS2B, NS4A, and NS4B were not available, it was also not possible 

to determine whether these proteins were also coprecipitated by eEF1A antibody.  
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DISCUSSION 

The 3' terminal 96 nts of the WNV genomic RNA were predicted to form two 

adjacent SL structures which were confirmed by structure probing experiments and 

these structures are predicted to be conserved among divergent flaviviruses (Brinton, 

Fernandez, and Dispoto, 1986; Hahn et al., 1987; Olsthoorn and Bol, 2001; Wengler 

and Castle, 1986). One major and two minor binding sites for the cellular protein 

eEF1A within the 3' terminal 96 nts of the WNV genomic RNA were previously 

mapped (Blackwell and Brinton, 1997). One minor binding site is located in the top 

left loop (nts 41-47 from the 3' end) of the 3' terminal SL, while the other is in the 

small adjacent SL (nts 81-96), (Blackwell and Brinton, 1997). The majority of the 

primary sequences and predicted structures of the two minor binding sites are 

conserved among divergent mosquito-borne flaviviruses. Previous studies showed 

that mutation of the top left loop of the 3' terminal SL in an infectious clone or a 

replicon negatively affected virus growth or viral RNA replication, respectively 

(Elghonemy, Davis, and Brinton, 2005; Tilgner, Deas, and Shi, 2005). Mutation or 

deletion of the small SL also negatively affected viral growth and viral RNA 

replication (Davis and Brinton, unpublished data). These studies indicated that both 

of the eEF1A minor binding sites are functionally important.  

In the present study, the functional relevance of the major eEF1A binding site, 

which accounts for 60% of the in vitro eEF1A binding activity, was analyzed. The 

major eEF1A binding site consists of 4 adjacent nts (nts 62-65 from the 3' end) 

located on the 5' side in the middle region of the stem of the 3' terminal structure. 
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A62 is unpaired while and nts 63-65 (CAC) are base paired. Substitution of A62 with 

a U to create a G-U base pair was lethal for the virus and in vitro eEF1A binding to 

an RNA probe with this mutation was reduced by 40% as compared to the parental 

SL RNA, suggesting that a bulge in this region is essential for both virus viability and 

efficient eEF1A binding. In a previous study, two alternative substutions that caused 

A62 to be base paired, the substitution of A62 with C or the substitution of the G on 

the opposite side of the stem with a U, were also found to be essential (Yu and 

Markoff, 2005).The presence of a bulge may facilitate the opening of the major 

groove of an RNA stem allowing sequence specific binding to occur (Weeks and 

Crothers, 1991). 

 Although nts 63-65 are base paired in the parental WNV 3'SL RNA 

structure, mutations that made one or more of these three nts single stranded, such as 

in Mutants E and F, were viable but they did not grow as efficiently as the parental 

virus. Mutant C and D RNA probes, in which nts 63-65 were double stranded showed 

decreased eEF1A binding efficiency in vitro and decreased levels of virus growth was 

observed when these mutations were introduced into an infectious clone. All of the 

partial revertants generated by Mutants B, C and D had a revertant C at either nt 63 or 

65. Although these partial revertants grew slightly less efficiently than the parental 

virus, they all grew with equal efficiency whether or not the revertant C was in a 

single stranded or double stranded context. In vitro binding of eEF1A to the 

Engineered Revertant 2 RNA probe, which had nt 65 in a double stranded context, 

did show a 24% increase in eEF1A binding compared to Mutant D, but this RNA still 
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bound 13% less efficiently than the parental RNA. Consistent with its increased 

eEF1A binding efficiency, this revertant grew more efficiently than Mutant D but less 

efficiently than the parental virus. The results indicate that a C at nt 63 or 65 allows 

efficient enough eEF1A binding to facilitate virus replication levels to be that are 

only slightly less efficient than when Cs are present at both positions and suggests 

that two adjacent functional eEF1A binding sites may be present in the major binding 

site in the WNV 3' (+) SL RNA. This redundancy may be an advantage in protecting 

this critical site from being inactivated by random mutations.   

A correlation was consistently observed between the extent of the decrease in 

the in vitro binding activity of eEF1A to a mutant WNV 3' (+) SL RNA and the 

extent of the decrease in the level of viral intracellular minus strand RNA produced 

by an infectious clone with the same mutation. When a decrease in intracellular viral 

genomic RNA was detected, a decreased virus yield was also observed. Conversely, 

with Mutant D 3' (+) SL RNA, which bound 13% more efficiently to eEF1A in in 

vitro binding assays than the parental probe, 10 times higher levels of intracellular 

viral minus strand RNA were observed in transfected cells. In flavivirus infected 

cells, the levels of plus and minus strand RNA synthesis are tightly regulated. After 

the initial phase of RNA replication, the ratio of plus to minus strand RNA in infected 

cells is about 100 to 1 (Cleaves, Ryan, and Schlesinger, 1981). As might be expected, 

dissregulation of this ratio by the increased level of minus strand RNA produced by 

Mutant D resulted in less efficient synthesis of genomic RNA and a reduced virus 
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yield. Together, these results provide strong support for a direct role for eEF1A in the 

initiation of WNV minus strand RNA synthesis.  

eEF1A was found to colocalize with NS3, NS5 and dsRNA in both WNV and 

Den 2 infected BHK cells. Also, anti-eEF1A antibody coimmunoprecipitated WNV 

NS3 and NS5 from infected cell lysates. It is not currently known whether eEF1A 

interacts directly with only one or both of these proteins and/or with another RC 

protein, but these data suggest that eEF1A does interact with the viral RC as well as 

with the 3' (+) SL RNA. Previous studies with several other RNA viruses, including 

Qβ, VSV, BVDV and HCV have reported interactions between eEF1A and viral RC 

proteins (Blumenthal and Carmichael, 1979; Cimarelli, 1999; Johnson, 2001; Kou et 

al., 2006; Qanungo, 2004). The roles of various host factors in the positive sense 

RNA bacteriophage Qβ RC have been well characterized (Blumenthal and 

Carmichael, 1979). The bacterial homolog of eEF1A, EF-Tu, binds the Qβ viral 

genomic RNA at the S2 binding site and to viral proteins in the replication 

holoenzyme and both of these interactions were reported to be required for specific 

initiation of synthesis minus-strand RNA synthesis (Brown, 1996; Kita et al., 2006). 

In contrast, the binding of eEF1A to the 3' TLS of TYMV was shown to enhance 

translation and repress minus-strand RNA synthesis (Matsuda, 2003a; Matsuda, 

2003b). The data obtained in the present study, support the hypothesis that eEF1A 

plays similar roles in facilitating the initiation of WNV and Qβ viral minus strand 

synthesis.  
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Data obtained with purified viral RNA-dependent-RNA-polymerases from 

poliovirus and hepatitis C virus suggest that these enzymes have a low affinity for 

their template RNAs (Beckman and Kirkegaard, 1998; Lohmann et al., 1998). The 

flavivirus RdRp, NS5, must recognize the 3'(+) and 3'(-) strand terminal RNA 

sequences to initiate the synthesis of viral minus and plus strand RNAs, respectively. 

NS5 has only been reported to bind with high affinity to the 5'(+) sequence of the 

viral genomic RNA presumably as part of its RNA capping function (Filomatori et 

al., 2006; Zhou et al., 2007). eEF1A binds to the WNV 3'(+) SL RNA with a high 

affinity (Blackwell and Brinton, 1997) and the strength of the interaction between 

eEF1A and the viral 3' (+) SL RNA consistently correlated with the efficiency of the 

initiation of viral minus stand RNA synthesis. eEF1A also interacts with WNV RC 

proteins. These observations strongly suggest that eEF1A provides specific 

recognition of the 3'(+) SL template RNA and facilitates its interaction with the 

RdRp in the RC. Initiation of minus strand synthesis may be directly coupled with 

translation. The binding of eEF1A to both a newly made viral RC protein and to the 

3' end of a translating genomic RNA may facilitate the switch of a viral genome 

from translation to RNA replication. The three contact sites for eEF1A in the 3'(+) 

SL RNA each appear to be functionally important, which suggests that the binding of 

eEF1A to these three sites on the viral 3'(+) SL RNA may result in a conformation 

change in this RNA template that is necessary for the RC to efficiently recognize and 

bind to it in the correct orientation for the initiation of minus strand RNA synthesis. 
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eEF1A was shown to bind with a similar efficiency to the 3' (+) SL RNAs of 

four divergent flaviviruses (Blackwell and Brinton, unpublished data). While the 3' 

terminal genomic RNA sequences are not well conserved among these divergent 

flaviviruses, the RNA secondary structures as well as several short sequences, 

including the minor eEF1A binding sites, are conserved. Although the major binding 

sites for eEF1A on these divergent flaviviral RNAs have not yet been functionally 

mapped, eEF1A was found to colocalize to RC in both Den 2 and WNV infected 

cells. These results support a role for eEF1A in the initiation of minus strand RNA 

synthesis by all flaviviruses. Several characteristics of eEF1A make it an ideal protein 

to serve as a viral host factor. eEF1A is constitutively expressed and distributed 

throughout the cytoplasm and attached to actin filaments and so would be readily 

available for use by an incoming viral genome. After actin, eEF1A is the second most 

abundant protein in cells and therefore competition between the viral RNA and the 

host cell for this protein would not be an issue. eEF1A is highly conserved among 

different eukaryotic species (Condeelis, 1995). Flaviviruses replicate in both insect 

and a variety of vertebrate hosts during their natural transmission cycles and the 

eEF1As available in these various hosts would be quite similar. During its normal cell 

functions, eEF1A interacts specifically with the other host elongation complex 

proteins and with ribosomal RNA. Both RNA/RNA and RNA/protein interaction 

appear to be functionally important for the role of eEF1A in flavivirus minus strand 

RNA initiation.  
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  None of the mutations made in the major eEF1A binding site in either a WNV 

infectious clone or a replicon had any effect on the translation of the viral RNA. Data 

obtained in a previous study showed that the presence of the WNV 3' (+) SL on a 

chimeric reporter mRNA decreased in vitro translation efficiency under conditions of 

limiting concentrations of translation factors (Li and Brinton, 2001) suggesting that 

under these conditions, 3'(+) SL RNAs and ribosomes were competing for a 

translation factor, such as eEF1A (Blackwell and Brinton, 1997). However, the 

abundance of eEF1A in cells makes it unlikely that eEF1A concentrations would be 

limiting. The observed colocalization of eEF1A to the viral RC, which are thought to 

be located within invaginations of the perinuclear membranes suggests that the 

concentration of eEF1A to these complexes ensures continuing viral minus strand 

synthesis even during peak translation of viral proteins. 

MATERIALS AND METHODS 

Cells and virus.  

Baby hamster kidney-21/WI2 cells (hereafter referred to as BHK cells) were 

grown at 37o C with 5% CO2 in Eagle's minimum essential media (MEM) containing 

4.5% heat-inactivated fetal bovine serum (FBS) and 10 µg/ml gentamicin (Vaheri et 

al., 1965). C6/36 cells were grown at 27oC in Eagle's MEM containing 10% FBS, 

0.1 mM non-essential amino acids and 10 µg/ml of gentamicin. WNV strain Eg101 (2 

x 108 PFU/ml) was prepared in BHK cells as described previously (Scherbik et al., 

2006). Dengue virus 2 (Den 2), strain Bangkok, was provided by Walter Brandt 
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(Walter Reed Army Institute of Research, Washington DC) in a 10% W/V suckling 

mouse brain homogenate with a titer of 2 x 106 PFU/ml. 

Preparation of S100 cell extracts.  

Cells were grown to confluency in T150 tissue culture flasks, washed with 

ice-cold phosphate buffered saline (PBS), harvested by scraping and pelleted by 

centrifugation at 150 X g. The cells were resuspended in hypotonic cell lysis buffer 

[10 mM HEPES (pH 7.9), 5 mM DTT, 20% glycerol, 10 mM NaCl, 0.1 mM 

phenylmethylsulfonyl fluoride (PMSF), 10 µg/ml leupeptin] vortexed for 30 sec, kept 

on ice for 10 min and then lysed by the addition of 1% Triton X-100 (Sigma, St. 

Louis, MO.). The nuclei were removed by centrifugation at 2000 x g. The resulting 

supernatant was adjusted to 14 mM HEPES (pH 7.5), 1 mM EDTA, 6 mM Tris-Cl 

(pH 7.5), 1 mM MgCl2, 1 mM DTT, 5 mM NaCl, 60 mM KCl, and 50% glycerol, 

clarified by centrifugation at 100,000 x g for 15 minutes and stored at –20oC. The 

total protein concentration of the S100-supernatant was approximately 1 µg/µl.  

Purification of eEF1A.  

eEF1A was purified from BHK cell extracts by ammonium sulfate 

precipitation and fractionated on a MonoS HR5/5 column (Amersham Pharmacia 

Biotech, Piscataway, NJ.) as previously described (Blackwell and Brinton, 1997). 

eEF1A cDNA amplified by RT-PCR from BHK cells was cloned into the T7 

expression vector pCR T7/CT-TOPO (Invitrogen, Carlsbad, CA.) (Smith, Blackwell, 

and Brinton, unpublished data). Recombinant eEF1A was expressed in Origami cells 

(Novagen, Madison, WI.) Protein expression was induced with 1 mM IPTG and cells 
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were harvested after 4 hr. The cell pellet was resuspended in Extraction buffer (50 

mM sodium phosphate, 300 mM NaCl, pH 7.6) and lysed with a French pressure cell 

press (SIM-AMINCO Spectronic Instrument Inc., Rochester, NY.). The cell lysate 

was centrifuged at 3000 x g to pellet cell debris. Recombinant protein was bound to 

Talon metal affinity resin (BD Biosciences Clontech, Palo Alto, CA.) that was then 

applied to a 2 ml Talon disposable gravity column (Clontech). The column was 

washed with Wash buffer (50 mM sodium phosphate, 300 mM NaCl, 20 mM 

imidazole, pH 7.6). Recombinant protein was eluted with Elution buffer (50 mM 

sodium phosphate, 300 mM NaCl, 300 mM imidazole, pH 7.6), dialyzed against two 

liters of dialysis buffer (50 mM sodium phosphate, 50 mM NaCl, pH 7.6) in a Slide-

A-Lyzer dialysis cassette (Pierce, Rockford, IL.) to remove imidazole and 

concentrated to 200-400 ng/µl using a Centricon 10 concentrator (Amicon, Beverly, 

MA.).  

DNA templates for RNA transcription.  

The WNV 3' SL template, pWNV(+)3' SL, contained the 3' terminal 111 nt 

of the WNV Eg101 genome RNA cloned into pCR1000 (Invitrogen) and its 

construction was described previously (Blackwell and Brinton, 1995). The plasmids 

described above were used to generate PCR templates that contained a T7 promoter 

for RNA transcription as described previously (Blackwell and Brinton, 1995). The 

primers used are available upon request. PCR products were purified using the 

Qiagen PCR clean up kit (Qiagen, Valencia, CA). 
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RNA transcripts.  

The PCR products described above were used as templates for transcription of 

WNV 3'(+) SL RNAs done in the presence of (α-32P) GTP using T7 RNA 

polymerase (50 U) according to the manufacturer's protocol (Ambion, Austin, TX.) 

for 1 hr at 37o C. Transcription reactions were stopped by the addition of DNase (1 U) 

for 15 minutes at 37o C, and the RNA was gel purified and precipitated with ethanol 

as described previously (D'Alessio, 1982). The purified RNAs were resuspended in 

100µl of RNase free storage buffer (100 mM sodium phosphate (pH 7.2) 300 mM 

KCL, 5 mM EDTA, 5 mM DTT, 25% glycerol) or water. Radioactivity was measured 

using a scintillation counter (Beckman LS6500) and the specific activity (~1.3 x 107 

cpm/µg) was calculated as described previously (Blackwell and Brinton, 1997). 

Gel mobility shift assays. 

 Purified recombinant eEF1A was incubated in Gel shift buffer (GS buffer) 

with a 32P-labeled 3' viral RNA probe (2000 cpm or approximately 0.2 nM final 

concentration per reaction), poly I-C (50 ng), and RNase inhibitor (Ambion) (10 

units) for 30 min at room temperature. The RNA-protein complexes were resolved by 

nondenaturing 5% polyacrylamide gel electrophoresis (PAGE) in 1X TBE buffer. 

The percent RNA bound was quantified with a Fuji BAS 1800 analyzer (Fuji Photo 

Film Co., Japan) and Image Gauge software (Science Lab, 98, version 3.12, Fuji 

Photo Film Co.). Analysis of UV-induced cross-linked RNA-protein complexes was 

performed as described previously (Blackwell and Brinton, 1997).  

 



 

 
 

59 

Mutagenesis of a WNV infectious clone.  

The construction and characteristics of the chimeric full length WNV 

infectious clone were previously described (Yamshchikov, 2001). An extra A was 

inserted at nt position 11,019. This addition did not affect viral growth, but stabilized 

the plasmid in E. coli. Infectious clone DNA was amplified in TOP10 cells 

(Invitrogen) and purified using a plasmid miniprep kit (Qiagen). The strategy used to 

introduce mutations in the 3' SL was described previously (Elghonemy, Davis, and 

Brinton, 2005). Primer sequences used to generate the mutant viral cDNAs are 

available upon request. All mutations made to the infectious clone DNA were 

confirmed by sequencing.  

In vitro transcription of WNV genomic RNA.  

Parental or mutant infectious clone plasmid DNA was linearized at the 3' end 

of the WNV cDNA with the restriction enzyme Xba I and then purified using a PCR 

cleanup kit (Qiagen). The in vitro transcription of capped RNA was performed using 

the Message Maker SP6 Transcription kit (Epicentre, Madison, WI) according to the 

manufacturer's protocol. RNase-free DNase was then added and the reaction mixture 

was incubated at 37o C for 30 min. DNase was heat-inactivated at 65oC for 15 min 

and the reaction mixture was used directly for transfection of BHK cells. 

Transfection of WNV genomic RNA into BHK cells.  

RNA transfection was performed as described previously (Elghonemy, Davis, 

and Brinton, 2005). Briefly, genomic RNA was transfected into BHK cells in 6-well 

dishes with DMRIE-C according to the manufacturer's protocol (Invitrogen). After a 
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2 hr incubation at 37oC, the transfection media was removed and the cells were 

overlayed with either 2 ml of 5% FCS MEM or a 1:1 mixture of 1% agarose and 2X 

MEM containing 5% FBS. At 72 hr after transfection, the agarose was removed and 

plaques were visualized using a methyl violet stain (10% ethanol, 0.5% methyl 

violet). Alternatively, when plaques were to be picked, the initial overlay was not 

removed and a second overlay of 0.05% neutral red solution, 0.5% agarose in 1X 

MEM was added and plaques were visible 8 hr later. Virus in media harvested from 

duplicate wells was titrated by plaque assay on BHK cells. 

Viral growth curves.  

Growth curves were performed as described previously (Elghonemy, Davis, 

and Brinton, 2005). Briefly, duplicate confluent BHK or C6/36 monolayers in T25 

flasks were infected at a multiplicity of infection (MOI) of 0.1. Aliquots of culture 

fluid were taken at 0, 10, 22, 29 and 48 hr after infection of BHK cells and at 0, 10, 

22, 29, 48, and 72 hr after infection of C6/36 cells and stored at -80oC until titrated by 

plaque assay.  

Analysis of virus revertant. 

Revertant virus was first plaque purified and then viral RNA was extracted 

and purified using TRI Reagent LS (Molecular Research Center, Inc., Cincinnati, 

OH.) according to the manufacturer's protocol. A cDNA copy of the desired region 

of the revertant virus was amplified by RT-PCR and cloned into pTOPO-TA 2.1 

(Invitrogen). Ten clones for each revertant virus were checked by DNA sequencing.  
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Analysis of intracellular viral RNA by real-time RT-PCR.  

Full-length genomic RNAs were generated as described above. Replicate 

BHK monolayers in 6-well tissue culture plates (80% confluency) were washed once 

with 2 ml of Opti-MEM (Invitrogen) and then transfected with 200 ng of RNA in 

DMRIE-C (Invitrogen). At the indicated times after transfection, each well was 

washed 3 times with 5 ml of growth media and total RNA within the cell was 

extracted using TRI Reagent (Molecular Research Center, Inc.). The relative amount 

of intracellular viral genomic RNA was determined by real-time RT-PCR on an 

Applied Biosystems 7500 real-time PCR system using 200 ng of total RNA, and the 

TaqMan one-step RT-PCR kit according to the manufacturer's protocol (Applied 

Biosystem). The NS1 region primers used were 

5'GGCGGTTCTAGGAGAAGTCA-3'and 5'-CTCCTGTTGTGGTTGCTTCT-3' 

and the FRET probe was 5' Fam-TGCACCTGGCCAGAAACCCACACTCTGT3' 

TAMRA.  

For specific detection of minus-strand RNA, T7-tagged primer real-time RT-PCR 

was performed as previously described (Lanford et al., 1994; Samuel and Diamond, 

2005). Briefly, 2 pmol of the minus-strand primer, 5'-

GCGTAATACGACTCACTATAgagggcggttctaggagaagt-3', [T7 tag sequence (the 

uppercase, bold); NS1 sequence (lower case, non-bold)] was incubated with 800 ng of 

total RNA in a Taqman one-step RT-PCR reaction mixture and incubated at 50oC for 

30 min and then at 95oC for 30 min to inactivate the reverse transcriptase. Then, 20 

pmol of each of the following primers were added 5'-
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GCGTAATACGACTCACTATA-3', 5'-ctcctgttgtggttgcttc-3' and 5 pmol of the 

probe, 5'Fam-TGCACCTGGCCAGAAACCCACACTCTGT3'-TAMRA, and the 

PCR reaction was performed as follows: 40 cycles at 95oC for 15 sec and then 60oC 

for 1 min.  

   Analysis of all real-time RT-PCR reactions was done using the relative 

quantification software from Applied Biosystems and the cellular mRNA GAPDH 

(Applied Biosystems) as the endogenous control. The genomic RNA levels at 48 and 

72 hr after transfection were normalized against input RNA present at 6 hr after 

transfection to remove background. Levels of minus strand RNA at 12, 24 and 48 hr 

after transfection were also normalized to viral RNA levels present at 2 hr after 

transfection to remove nonspecific amplification of genomic strand RNA 

Confocal Microscopy.  

BHK cells grown to 60% confluency on 15 mm glass coverslips were either 

transfected with 1 µg of viral RNA as described above or infected with WNV or Den 

2 at an MOI of 0.1. The cells were fixed by incubation with 4% paraformaldehyde in 

PBS for 10 min at room temperature and then permeabilized at the indicated times 

with methanol at -20oC for 10 min. Coverslips were washed with PBS and then 

blocked overnight with 5% horse serum (Invitrogen) in PBS. Primary antibodies used 

were: mouse hyper-immune ascitic fluid (MHIAF) against WNV (a gift from Dr. 

Robert Tesh, UTMB, Galveston, TX) at a 1:100 dilution, rabbit anti-WNV NS3/NS5 

made to gel-purified viral proteins as described previously (21) at a 1:50 dilution, a 

mouse anti-dsRNA antibody (English and Scientific Consulting, Szirak, Hungary) at 
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a 1:200 dilution and a goat anti-eEF1A antibody (Santa Cruz Biotechnology, Santa 

Cruz, CA.) at a 1:200 dilution in the NS3/NS5 colocalization experiments or a 1:700 

dilution in the dsRNA colocalization experiments. Coverslips were incubated with 

primary antibody in PBS with 5% horse serum for 1 hr at 37oC and then washed 4 

times with PBS. Coverslips were next incubated with the appropriate secondary 

antibody (chicken anti-rabbit IgG-TR, chicken anti-mouse IgG-TR, or donkey anti-

goat IgG FITC, Santa Cruz Biotechnology) in PBS with 5% horse serum at a 1:300 

dilution and Hoechst Dye to stain the nuclei. After washing with PBS, the coverslips 

were mounted on glass slides with Prolong mounting media (Invitrogen) and 

visualized with a 100 X oil immersion objective on a LSM 510 laser confocal 

microscope using LSM 5 (Ver. 3.2) software (Carl Zeiss Inc., Thornwood, NY). 

Relative fluorescence intensity was measured in 7 µm diameter circles in 3 locations 

in the cytoplasm of 10 representative transfected BHK cells for each viral RNA using 

LSM 5 (3.2) software. Images compared for each experimental series were collected 

using the same instrument settings. 

Mutagenesis of a NY99 WNV replicon.  

The construction and characterization of the luciferase-reporting replicon, 

RlucRep, was reported previously (Lo et al., 2003). A mutant RlucRep containing a 

4-nt 5'-UGUG-3' substitution in the major binding site for eEF1A was constructed 

by swapping the parental 3' cDNA fragment located between the unique Mlu I (nt 

10,436) and Xba I (3' terminus of the genomic cDNA) restriction sites with the PCR 

fragment containing the substitution. The PCR fragment containing the 4-nt change 
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was prepared via standard overlapping PCR. The cDNA clone of mutant RlucRep 

was verified by DNA sequencing. Conditions used for in vitro transcription, and 

transfection of replicon RNA, as well as for the luciferase reporter assays were as 

previously described (Shi et al., 2002) 

Co-immunoprecipitation and Western blotting.  

Confluent monolayers of BHK cells in 6 well tissue culture plates were mock-

infected or infected with WNV (MOI of 5) for 24 hr. Cells were washed twice with 2 

ml of PBS, scraped, pelleted at 700 x G and resuspended in Cell Lysis buffer [50 mM 

sodium-phosphate (pH 7.2), 150 mM NaCl, 10 mM DTT, 1% NP-40, and complete 

mini protease inhibitor (Roche)] at a concentration of 2.5 x 106 cells/ml. Cells were 

incubated on ice for 30 min and then sonicated 4 x 5 sec using a Branson Sonifier 450 

(Danbury, CT). Cell debris was removed by centrifugation at 2000 x G for 5 min. The 

total protein concentration was approximately 200 ng/µl. Infected and mock-infected 

cell lysates (200 µl) were precleared by incubation with protein A/G magnetic beads 

(New England Biolabs) at 4o C for 1 hr. The beads were then removed by applying a 

magnetic field and the cleared supernatant was used for subsequent experiments. 

Cleared supernatant was incubated for 1 hr at 4oC with 2 µg of antibody against one 

the following cellular proteins, eEF1A (Santa Cruz), HSP105 (Santa Cruz), or NFAR-

1 or NFAR-2 (a gift from Sven-Erik Behrens, Fox Chase Cancer Center, 

Philadelphia, PA). Fresh protein A/G magnetic beads (25 µl) were then added and 

incubated at 4oC for 1 hr. Recovered beads were washed 7 times with 1 ml of Cell 

Lysis buffer, resuspended in 50 ml of 2X SDS loading buffer (0.5 M Tris-HCl, 20% 
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glycerol, 4% SDS, 2% mercaptoethanol, 0.5% bromophenol blue) and incubated at 

70oC for 5 min. Beads were removed with a magnetic field and the sample was 

separated by 10% SDS-PAGE. The separated proteins were then electrophoretically 

transferred to a nitrocellulose membrane. The membrane was blocked at 4oC 

overnight with TBS [50 mM Tris (pH 7.6), 150 mM NaCl] containing 5% milk and 

0.1% Tween 20 and then incubated with a rabbit polyclonal anti-NS3/NS5 antibody 

for 1 hr at room temperature or anti-WNV MHIAF. The blots were then washed with 

TBS and incubated with the secondary antibody (horseradish peroxidase-conjugated 

anti-rabbit or horseradish peroxidase conjugated anti-mouse (Santa Cruz) for 1 hr at 

room temperature. The washed blots were processed for enhanced 

chemiluminescence using the Super-Signal West Pico detection kit (Pierce, Rockford, 

Il) according to the manufacturer's instructions and exposed to film. 

Computer analysis of predicted RNA secondary structure.  

The predicted secondary structures of the terminal SL RNAs shown were 

analyzed by minimization of free energy using the M-Fold program (Zuker, 2003). 
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CHAPTER III 

Mutagenesis of a Minor eEF1A binding Site on the West Nile Virus 3' (+) SL 

RNA 

 

INTRODUCTION 

West Nile virus (WNV) is a member of the family Flaviviradae, the genus 

flavivirus and the Japanese encephalitis serogroup. WNV is endemic to Asia and 

Africa and since 1999, also to North Amercia. WNV is maintained in a mosquito-

bird-mosquito cycle in nature with mammals, including humans, as incidental hosts. 

WNV infections in humans are usually asymptomatic with about 20% of infected 

individuals developing a mild febrile illness, but in less than 1% of all cases, infection 

results in severe central nervous system disease that in rare instances can be fatal 

(Petersen, Marfin, and Gubler, 2003; Weaver and Barrett, 2004). 

The single-stranded, positive sense WNV genomic RNA is 11,021 nts in 

length and contains a single open reading frame, which encodes a polyprotein that is 

cleaved by host and viral proteases into 3 structural and 7 nonstructural viral proteins. 

The 3' terminus of the flavivirus genomic RNA is predicted to contain promoter 

elements important for the synthesis of the viral minus strand RNA, since deletion or 

mutation of this region was previously shown to be lethal for virus replication 

(Bredenbeek et al., 2003; Elghonemy, Davis, and Brinton, 2005; Lo et al., 2003; 

Tilgner, Deas, and Shi, 2005; Tilgner and Shi, 2004; Yu and Markoff, 2005). The 

open reading frame is flanked by a 96 nt 5' noncoding region and a 632 nt 3' 



 

 
 

73 

noncoding region. The 3' terminal 96 nts of the WNV genomic RNA are predicted to 

form two stem loop (SL) stuctures, a short SL (SSL) of 16 nts and a longer terminal 

SL of 80 nts. These two structures will be referred to collectively as the WNV 3' (+) 

SL RNA and are predicted to be conserved among divergent flaviviruses (Brinton, 

Fernandez, and Dispoto, 1986; Hahn et al., 1987; Shi et al., 1996). Previously, three 

cellular proteins with molecular masses of 105, 84 and 52 kDa were reported to bind 

specifically to the WNV 3' (+) SL RNA. The 52 kDa protein was subsequently 

identified as eEF1A (Blackwell and Brinton, 1997). The dissociation constant (kD) 

for the interaction between eEF1A and the WNV 3' SL RNA is 10-9 M and is similar 

to that of the interaction between eEF1A and charged tRNAs (Blackwell and Brinton, 

1997; Riis et al., 1990). One major and two minor eEF1A binding sites were 

previously mapped on the WNV 3' (+) SL RNA (Blackwell and Brinton, 1997). The 

major binding site is located on the 5' side in the middle of the terminal SL and 

accounts for 60% of the binding activity. One minor binding site was mapped to the 

pentanucleotide sequence, which is conserved among the divergent flaviviruses and 

located in the top left loop of the 3' terminal SL and the other is in the SSL 

(Blackwell and Brinton, 1997; Elghonemy, Davis, and Brinton, 2005; Tilgner, Deas, 

and Shi, 2005). Each minor binding site accounted for 20% of the in vitro binding 

activity of eEF1A for the WNV 3' (+) SL RNA. 

The SSL consists of a 5 base pair stem and a 6 nt loop. The majority of the nts 

of this loop are conserved among divergent mosquito borne flaviviruses, the 

consensus sequence is (5' GA(U/A)AGA 3') (Olsthoorn and Bol, 2001; Shi et al., 
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1996). This hexanucleotide loop resembles a GNNRA tetra loop-like motif (R-purine 

and N-any nt). GNNRA motifs have shown to be involved in both RNA-RNA and 

RNA-protein interactions (Abramovitz and Pyle, 1997; Gutell, Larsen, and Woese, 

1994). A GNNRA tetra loop was identified in the Sarcin/Ricin Loop (SRL) of 

ribosomal RNA which was previously reported to be a binding site for eEF1A 

(Szewczak et al., 1993). GNNRA motifs have been shown to form RNA-RNA tertiary 

interactions in group I and group II self-splicing enzymes (Costa and Michel, 1995). 

A previous in vitro study of a truncated WNV model RNA predicted that the SSL 

loop nts at positions 86-89 counting from the 3' end of the RNA genome (3'AGAU 5') 

formed a tertiary interaction with nts 71-74 (3'UCUG 5') in the stem of the 3' terminal 

SL (Shi et al., 1996). 

eEF1A, second only to actin in abundance in the cell, constitutes 1-4% of the 

total soluble protein in an actively dividing cell. During protein synthesis, eEF1A 

delivers aminoacylated tRNAs (aa-tRNA) along with GTP to the A site of the 

ribosome. The eEF1A:GTP:aa-tRNA complex then moves to the P site and after the 

hydrolysis of GTP to GDP, the eEF1A:GDP complex is released from the ribosome. 

eEF1A has also been shown to bind to mRNA (Lui, 2002; Mickleburgh et al., 2006), 

to bind to and bundle actin filaments (Ejiri, 2002; Lui, 1996; Lui, 2002), to sever 

microtubules (Shiina, 1994), and to mediate protein degradation via ubiquitin-

dependant pathways (Gonen, 1996; Gonen, 1994). 

For the positive-strand RNA bacteriophage, Qβ, the bacterial homolog of 

eEF1A functions as part of the viral replicase holoenzyme and for the negative-strand 
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RNA virus, vesicular stomatitis virus (VSV), eEF1A was shown to be a component of 

the viral replicase complex and required for activity of this complex in vitro 

(Blumenthal and Carmichael, 1979; Brown, 1996; Miranda, 1997; Qanungo, 2004; 

Schuppli, 2000; Schuppli, 1998). eEF1A was also shown to interact with viral 

nonstructural proteins of two members of the family Flaviviridae, bovine viral 

diarrhea virus (NS5A) and hepatitis C virus (NS4A), and also with the Gag 

polyprotein of HIV type I (Cimarelli, 1999; Johnson, 2001; Kou et al., 2006). 

eEF1A was reported to bind to the 3' terminal tRNA-like structure (TLS) of 

the turnip yellow mosaic virus (TYMV) genome, and to act as both a translational 

enhancer and a repressor of minus strand synthesis (Matsuda, 2003a; Matsuda, 

2003b). eEF1A has also been shown to bind to both the 3' TLS and the viral 

polymerase of another positive strand RNA plant virus, tobacco mosaic virus (TMV) 

(Yamaji et al., 2006) 

The SSL and the region of the 3' terminal SL predicted to form a tertiary 

interaction with the SSL were mutated in an infectious clone. The results showed that 

the SSL is cis-acting and that two base pairs (U72-A10 and G71-C11) in the stem of 

the 3' terminal SL that are flanked by two symmetrical one base-pair internal loops 

are also cis-acting. Disruption of the previously predicted tertiary interaction had no 

affect on viral growth. None of the mutations introduced into the SSL or the 3' 

terminal SL affected the translational efficiency of the genomic RNA, but many of 

the mutations reduced the efficiency of minus strand RNA synthesis.  
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RESULTS 

Mutagenesis of a minor binding site for eEF1A.  

The WNV SSL was previously reported to be one of two minor binding sites for 

the cellular translation elongation factor eEF1A and some of the SSL loop nts were 

predicted to be involved in a putative tertiary interaction with the stem of the 3' 

terminal SL of the viral genomic RNA (Blackwell and Brinton, 1997; Shi et al., 

1996). To determine whether nts in the SSL are cis-acting, a WNV infectious clone 

was used to introduce mutations into the SSL. The mutated WNV cDNAs were in 

vitro transcribed, the RNA produced was used to transfect BHK cell monolayers 

(either 0.1 µg or 1µg of RNA per well of a 6-well plate), and the effect of mutations 

on plaque size was assessed. The representative plaque plates shown in the figures 

were chosen to clearly indicate plaque size and do not indicate the efficiency of 

mutant virus growth. In Mutant 1, the entire SSL (nts 81-96) was deleted. No plaques 

were detected 72 hr after transfection of Mutant 1 RNA. Also, no progeny virus was 

detected by either plaque assay or RT-PCR after three blind passages on BHK cells 

indicating that this was a lethal mutation for the virus (Fig. 3.1). Next, individual nts 

in the loop of the SSL were substituted (Fig. 3.1). All mutations made preserved the 

predicted secondary structure of the WNV 3' (+) SL RNA with the exception of 

Mutant 9 and Mutant 10, in which nts 86 and 91 were predicted to pair. In Mutant 2, 

nt 87 was mutated from a G to a C (Fig. 3.1). This mutation was predicted to disrupt 

the formation of the only G-C base pair in the predicted tertiary interaction (see Fig. 

3.1, parental). This mutation was also lethal. Plaques were not detected on the  
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Figure 3.1. Mutagenesis of the WNV SSL.  
The minor binding sites for eEF1A on the WNV 3'(+) SL RNA are indicated by 
brackets. The major binding site is indicated by arrows. Dashed lines show a 
predicted tertiary interaction between the SSL and the 3' terminal SL. Nt substitutions 
are indicated with an arrow and a black circle. Plaques formed 72 hr after transfection 
of either 1µg or 0.1 µg of RNA on a 6-well plate are shown. 
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transfection plate and no evidence of progeny virus was detected by either plaque 

assay or RT-PCR following three blind passages on BHK cell monolayers. When 

G91 was mutated to an A in Mutant 3, small plaques (0.1 mm) were observed on the 

transfection plate (Fig. 3.1). After a single passage on BHK cells, large parental-size 

plaques (2-3 mm) were detected. Viral RNA was purified from picked large plaques, 

amplified by RT-PCR, sequenced, and only the parental sequence was detected. In 

Mutant 4, A90 was substituted with a U and, parental-sized plaques (2-3 mm) were 

observed on the transfection plate and the mutated nt did not revert to the parental 

sequence after 3 passages. When U89 was mutated to a C in Mutant 5, small plaques 

were observed (Fig. 3.1). After a single passage on BHK cells, large plaques were 

detected and when these plaques were picked and sequenced, only the parental 

sequence was obtained. However, when U89 was changed to an A (Mutant 6), 

parental-size plaques were observed and the nt did not revert to the parental sequence 

after three passages on BHK cells (Fig. 3.1). The Mutant 6 sequence is characteristic 

of the 3' RNAs of divergent mosquito borne flaviviruses, such as dengue and yellow 

fever. In Mutant 7, A88 was changed to a U. While both small and large plaques were 

observed on the transfection plate (Fig. 3.1), only large plaques were observed after a 

single passage on BHK cells. Large plaques were picked and sequenced and only the 

parental sequence was detected. When A86 was mutated to either a G (Mutant 8) or 

to a U (Mutant 9), small plaques were observed on the transfection plate (Fig. 3.1). 

Mutant 8 maintained the predicted secondary structure of the loop while in Mutant 9, 

a G-U base pair was predicted to form between the first and last nts of the loop (Fig. 
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3.1). After a single passage on BHK cells, both Mutant 8 and Mutant 9 produced 

parental-sized plaques. These large plaques were picked and sequenced for both 

Mutant 8 and Mutant 9 and only the parental sequence was detected. To generate 

Mutant 10, A86 and G91 were changed to a G and a C, respectively. These two nts 

were predicted to form a G-C base pair (Fig. 3.1). On the transfection plate, small 

plaques were observed. After a single passage on BHK cells, both small and large 

plaques were detected. The large plaques were picked and sequenced and the results 

showed that both the mutated nts had reverted to the parental sequence. Together 

these data indicate that the SSL is cis-acting and that 3 of the 4 loop nts predicted to 

be involved in the putative tertiary interaction are cis-acting.  

Mutational analysis of the lower stem of the 3' terminal SL.  

As an additional means of testing the biological relevance of the predicted tertiary 

interaction, mutations were next made to nts in the stem of the 3' terminal SL 

predicted to be involved in this interaction in the WNV infectious clone. The tertiary 

interaction was previously reported not to be able to form in in vitro studies when the 

interaction site in the 3' terminal stem was completely base paired (Shi et al., 1996). 

The C at position 73 from the 3' end of the RNA was predicted to interact with G87 to 

form the strongest base pair in the predicted tertiary interaction (Fig. 3.2, parental). In 

Mutants 11, 12 and 13, the C at position 73 was mutated to either a G, an A or was 

deleted (Fig. 3.2). None of these mutations affected the size of the plaques produced 

on the transfection plate, and no revertant sequences were detected after three 

passages on BHK cells. The C at nt position 9 was next mutated to a G (Mutant 14).  
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Figure 3.2. Mutagenesis of nts on the 3' side of the WNV terminal SL predicted to be 
involved in a tertiary interaction.  
Dashed lines indicate the predicted tertiary interaction. Nt substitutions are indicated 
with an arrow and a black circle. Plaques formed 72 hr after transfection of either 1µg 
or 0.1 µg of RNA on a 6-well plate are shown. 
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This mutation was predicted to make the putative interaction site on the stem 

completely double stranded (Fig. 3.2). This mutation produced virus with parental-

sized plaques that did not revert after three passages on BHK cells. 

Since the C73 and C9 mutations predicted to disrupt the predicted tertiary 

interaction had no effect on viral growth, the possibility that the tertiary interaction 

might be able to shift to an alternate location on the stem of the 3' terminal SL in the 

context of the complete 3' terminal SL was next investigated. C70 or C68 were 

mutated to Gs in Mutant 11 to generate Mutants 15 and 16, respectively (Fig. 3.2). 

The mutations in Mutant 16 were predicted to create a large internal loop in the 

middle of the stem (Fig. 3.2). When only the C at position 68 was changed to a G 

(Mutant 17), the predicted structural change was the same for Mutant 16 (Fig. 3.2). 

All of these mutants produced parental-sized plaques that were stable through three 

passages on BHK cells. In Mutant 18, C76 was substituted with a G. This mutation 

not only created a large internal bulge on the 3' side of the stem, but also the two 3' 

terminal nts were predicted to be unpaired and the base pairs on either side of the 

bulge were different (Fig. 3.2). Small plaques were present on the Mutant 18 

transfection plate and after a single passage on BHK cells only large plaques 

containing the parental sequence were detected. Introduction of the Mutant 18 

substitution into a WNV replicon was previously reported to be lethal (Tilgner and 

Shi, 2004). The results indicate that the tertiary interaction did not shift to an alternate 

site on the 3' side of the 3' terminal SL. 
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 Mutations were next made to the stem of the 3' terminal SL that were 

predicted to disrupt the A-U base pairs in the predicted tertiary interaction. In Mutant 

19, U72 was mutated to a G. This mutation created a large internal loop and produced 

small plaques (Fig. 3.2). In Mutant 20, U77 was mutated to a G, which was predicted 

to introduce a bulged G·A near the base of the stem. This mutant produced small 

plaque virus (Fig. 3.2). After a single passage on BHK cells, large plaques were 

observed. These plaques were picked and sequenced and the results showed that the 

mutated nt had reverted to the parental sequence. In Mutant 21, U74 was mutated to a 

G. In Mutant 22, U74 and U72 were mutated to Gs. Both of these mutants had a lethal 

phenotype; no plaques were observed and no viral RNA was detected during three 

blind passages on BHK cells. 

 To determine whether a tertiary interaction might form between the SSL loop 

nts and bases on the 3' side of the 3' terminal SL that might be spatially close in a 

helical structure, mutations were next made either singly or in combination to Cs on 

both the 5' and 3' sides of the stem. In Mutant 23, the Cs at positions 9, 70 and 73 

were changed to Gs. These nt substitutions did not change the predicted secondary 

structure and the mutant virus produced parental-size plaques (Fig. 3.3). The Cs at 

position 9, 68, and 73 were substituted with Gs in Mutant 24. These substitutions 

created a larger loop in the middle of the terminal stem. Plaques produced by this 

virus were intermediate in size (1.5 mm) (Fig. 3.3). This mutation was stable during 

three passages on BHK cells, only intermediate-size plaques and mutant sequence 

was detected. The Cs at positions 9 and 68 were substituted with Gs in Mutant 25,  



 

 
 

83 

 

 

 

 

 

Figure 3.3. Mutagenesis of nts on the 3' and 5' sides of the WNV 3' terminal SL in 
the region of the predicted tertiary interaction. 
 Nt substitutions are indicated with an arrow and a black circle. Plaques formed 72 hr 
after transfection of either 1µg or 0.1 µg of RNA on a 6-well plate are shown. 
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which was predicted to change the C·C bulge to a G-C base pair and to open the 

middle of the stem. Mutant 25 virus had an intermediate plaque diameter (Fig. 3.3). 

This plaque phenotype and the mutated sequence were maintained through three 

passages. In Mutant 26, the Cs at positions 11, 70 and 73 were mutated to Gs, which 

was also predicted to change the C·C bulge to a G-C base pair and to increase the size 

of the internal loop. Mutant 26 produced virus with a small plaque phenotype (Fig. 

3.3). Large plaques were observed after one passage on BHK cells and sequencing of 

viral RNA from picked large plaques revealed that only G11 had reverted to C, 

restoring the G-C base pair. In mutant 27, the Cs at positions 11, 68 and 73 were 

changed to Gs, changing the C·C bulge to a G-C base pair and creating a large 

internal loop in the middle of the stem. Mutant 27 produced pin point plaques (Fig. 

3.3). Large plaques were observed after a single passage on BHK cells. These plaques 

were picked and sequenced. Only the mutated G11 reverted to the parental C. The Cs 

at positions 9 and 11 were changed to Gs in Mutant 28. This mutant produced plaques 

with diameters ranging from small to intermediate (0.5-1.5 mm) at 72 hours after 

transfection (Fig. 3). After a single passage on BHK cells large plaques were 

observed. These plaques were picked and sequenced. Again only the mutated G11 

had reverted to the parental sequence. In Mutant 29, only C11 was changed to a G. A 

large internal loop was predicted to be created by this mutation. No plaques were 

observed on the transfection plate. Parental-size plaques observed after one passage 

on BHK cells, were picked and the viral RNA sequenced. The mutated G11 had 

reverted to the parental C11. Mutation of the Cs at positions 11 and 70 to Gs in 
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Mutant 30 were predicted to create a large internal loop. No plaques were observed 

on the transfection plate, but parental-size plaques appeared after one passage on 

BHK cells (Fig. 3.3). Only the mutated G11 had reverted to the parental sequence. 

For Mutant 31, the Cs at positions 9, 11 and 68 were changed to Gs. These mutations 

were predicted to create a large internal loop. No plaques were observed on the 

transfection plate. Sequencing of viral RNA from parental-size plaques observed after 

one passage on BHK cells (Fig. 3.3), revealed that again only the G at position 11 had 

reverted to the parental C. In Mutant 32, Cs were changed to Gs at positions 9, 11, 70 

and 73 and in Mutant 33 Cs were mutated to Gs at positions 9, 11, 68 and 73, 

respectively. Both of these sets of mutations produced a lethal phenotype. No plaques 

were detected on the transfection plates, and no plaques or viral RNA were detected 

after three blind passages on BHK cells. 

Mutation of U-A and G-C base pairs. 

 The mutational analysis described above indicated that C11 was important for 

efficient viral growth. In many different structural contexts mutation of C11 to a G 

resulted in rapid reversion of this nt and restoration of a G71-C11 base pair and the 

parental phenotype. Restoration of the G71-C11 base pair also allowed the adjacent 

U72-A10 pair to form, which was also shown to be important for efficient viral 

growth in Mutant 19. Mutations were next made to determine the relative importance 

of the primary sequence and the predicted secondary structure of these two base pairs. 

In Mutants 34, 35, 36, 37, the U72-A10 base pair at nt 10 was changed to G-C, C-G, 

A-U, or G-U, respectively (Fig. 3.4). All these mutations preserved the predicted  



 

 
 

86 

 

 

Figure 3.4. Mutagenesis of the U72-A10 and G71-C11 base pairs.  
Nt substitutions are indicated with an arrow and a black circle. Nt substitutions are 
indicated with an arrow and a black circle. Plaques formed 72 hr after transfection of 
either 1µg or 0.1 µg of RNA on a 6-well plate are shown. 
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secondary structure of the 3' terminal SL. No plaques were observed on the 

transfection plate for Mutant 34, but a few small to intermediate size plaques (0.1-1.0 

mm) were observed after a single passage on BHK cells (Fig. 3.4). After a second 

passage on BHK cells, many large plaques were observed and these plaques were 

picked and sequenced. Both mutated nts had reverted restoring the U-A base pair. 

Mutants 35 (C72-G10), 36 (A72-U10), and 37 (G72-U10) produced small to 

intermediate plaques (0.1-1.0 mm) (Fig. 3.4). After two passages on BHK cells, large 

plaque revertants were observed with each of these mutants. These plaques were 

picked and the viral RNA sequenced. In each case, both the mutated nts had reverted 

to the parental U72-A10 sequence. In mutant 38, the U72-A10 base pair was changed 

to a G72·G10. These substitutions were predicted to shift the predicted base pairing of 

the stem (Fig. 3.4). Both small and intermediate-sized plaques were observed on the 

transfection plate (Fig. 3.4). After a single passage on BHK cells, large plaques were 

observed and these plaques were picked and sequenced. Both mutated nts had 

reverted to the parental U72-A10. In Mutants 39 and 40, the G71-C11 base pair was 

changed to C71-G11 and G71-U11, respectively. These mutations were predicted to 

maintain the RNA secondary structure. Mutant 39 virus, produced both small and 

intermediate-sized plaques on the tranfection plate, but after two passages on BHK 

cells, only large plaques were observed (Fig. 3.4). The large plaques were picked and 

sequenced. Both mutated nts had reverted to the parental G71-C11. Mutant 40 virus 

produced large plaques on the transfection plate. After three passages, the large 

plaques were picked and sequenced. Only the mutant sequence was detected 



 

 
 

88 

indicating that this mutant was stable. These results indicated that the primary 

sequence as well as the structure of the U72-A10, G71-C11 base pairs was important. 

However, as indicated by the results with Mutant 40, replacement of the G71-C11 

base pair with a G71-U11 had no effect on viral plaque diameter. 

Relative eEF1A in vitro binding activity. 

The binding activity of eEF1A to the WNV 3' terminal SL alone was previously 

shown to be 20% lower than that to the complete 3' (+) SL, which consists of both the 

SSL and the 3' terminal SL (Blackwell and Brinton, 1997). A gel mobility shift assay 

was used to compare the relative binding activity of purified recombinant eEF1A for 

the SL RNAs of Mutants 1, 2, 39 and 40 to that for the parental 3' (+) SL RNA (Fig. 

3.5 A). Each of the radiolabeled RNA probes (~2000 CPM) was incubated with 0, 4, 

8, or 20 ng of purified recombinant eEF1A for 30 min at room temperature. The 

RNA-protein complexes formed were separated on 5% non-denaturing 

polyacrylamide gels and detected by phosphorimaging. The percent of the free probe 

shifted was calculated as described in the Materials and Methods. A representative 

gel for each RNA probe is shown in Figure 3.5B. Average relative binding activity 

for each RNA probe calculated from three replicate assays is shown in Fig. 3.5C. 

With 20 ng of recombinant eEF1A, 55% of the parental 3' SL RNA probe was 

shifted, but only 28% of the Mutant 1, 10% of the Mutant 2, 33% of the Mutant 39 

and 47% of the Mutant 40 RNA probes were shifted. Deletion of the SSL from the 

3'(+) SL RNA in Mutant 1 resulted in a 27% decrease in relative binding activity as 

compared to the parental 3' (+) SL RNA probe which is similar to the 20% decrease  
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Figure 3.5. Comparison of the in vitro binding activity of recombinant eEF1A for 
parental, mutant and revertant virus 3' (+) SL RNA probes.  
(A) RNA probes used for gel mobility shift assays. (B) Gel mobility shift assays done 
with 32P-radiolabeled WNV 3' (+) SL RNAs (2000 CPM) and recombinant eEF1A 
purified from E. coli extracts. (C) The percent of 32P RNA shifted by recombinant 
eEF1A. Error bars represent the standard error of the mean (SE) (n=3). 
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previously observed in a filter binding assay (Blackwell and Brinton, 1997). 

Interestingly, Mutant 2, in which G87 in the loop of the SSL was changed to a C, 

showed in a 45% decrease in relative binding activity of eEF1A as compared to the 

parental RNA. Mutation of the G71-C11 base pair also had a negative affect on in 

vitro eEF1A binding, as indicated by the results obtained with Mutant 39 (22% 

decrease) and Mutant 40 (8% decrease). 

 Effect of mutations in the WNV 3' (+) SL on viral RNA translation. 

Previous studies have shown that mutations in the 3' terminal regions of some 

other positive strand viral RNAs could affect viral RNA translation. To analyze the 

effect of mutations in the WNV 3' (+) SL on viral RNA translation, the parental 

infectious clone and Mutant 1, 2, 33, 34, 39, and 40 RNAs were in vitro transcribed 

and then used to transfect BHK cells grown on coverslips. At 3 hr after RNA 

transfection, the cells were fixed and permeabilizeded. Intracellular WNV protein 

(red) produced was detected by immunofluorescence microscopy using an anti-WNV 

mouse hyperimmune ascites fluid (MHIAF). Even though these mutants differed in 

their viability and growth efficiency, Mutant 1 (lethal), Mutant 2 (lethal), Mutant 33 

(lethal), Mutant 34 (intermediate-sized plaques only after 1 passage), Mutant 39 

(small plaques) and Mutant 40 (large plaques), similar high levels of viral proteins 

were detected. Relative fluorescence intensity was assessed as described in the 

Materials and Methods. The transfection efficiencies (80-90%) were similar for all of 

the viral RNAs (Fig. 3.6A and B). These results demonstrate that none of the 

mutations had a significant negative affect on the efficiency of viral RNA translation. 
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Figure 3.6. Effect of mutations on translation and replication of viral RNA.  
(A) As a measure of translation efficiency, translated WNV proteins (red) were 
detected by confocal microscopy in BHK cells 3 hr after transfection of genomic 
RNA with anti-WNV MHIAF. (B) Relative fluorescent intensities of WNV proteins 
in the cytoplasm of transfected BHK cells. (C) Relative quantification of intracellular 
WNV minus-strand RNA by strand-specific Real-Time RT-PCR. Minus strand RNA 
levels are expressed as a log fold change of RNA detected at 12, 24 and 48 hr after 
transfection of viral RNA compared to the level of RNA detected at 2 hr after 
transfection. Each RNA sample was normalized to cellular GAPDH mRNA. Error 
bars represent the SE (n=3). (D) Relative quantification of intracellular WNV 
genomic RNA by Real-Time RT-PCR. Genomic RNA levels are expressed as a log 
fold change of RNA detected at 48 and 72 hr after transfection compared to the level 
of RNA present 6 hr after transfection as well as to cellular GAPDH mRNA. Error 
bars represent the SE (n=3).  
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Effect of mutations on viral RNA replication.  

 Relative real time RT-PCR was next used to quantify the intracellular levels 

of viral plus strand and minus strand RNAs produced within BHK cell monolayers 

after transfection of various mutant RNAs. Since the 3' (+) SL RNA is thought to 

contain cis-acting elements necesary for minus strand synthesis, the effects of the 

mutations on viral minus strand RNA synthesis were first investigated using minus 

strand specific real time RT-PCR. Minus strand RNA in BHK cells was quantified at 

12, 24 and 48 hr after transfection by real-time RT-PCR as described in the Materials 

and Methods. After transfection of the parental infectious clone RNA, minus strand 

RNA levels peaked at 24 hr and then decreased by 48 hr (Fig. 3.5C). No minus strand 

RNA amplification above input was detected at 12, 24 or 48 hr after transfection for 

any of the lethal phenotype mutants (Mutant 1, 2, and 33) (Fig. 3.5C). Although no 

minus strand synthesis was observed at 12 or 24 hr after transfection of Mutant 34 

RNA, by 48 hr, a small increase in minus strand RNA was detected. With Mutant 39, 

increased levels of minus strand RNA were detected by 24 hr after transfection (Fig. 

3.5C). Mutant 40 produced slightly lower levels of minus strand RNA at 12 and 24 hr 

after transfection than did the parental RNA.  

 Viral plus strand RNA levels were measured at 48 and 72 hr after transfection, 

as described in the Materials and Methods. With the parental infectious clone RNA, 

the levels of viral genomic RNA increased significantly above the level of transfected 

input RNA present at 6 hr at 48 and 72 hr after transfection (Fig. 3.5D). At both 48 

and 72 hr after transfection of RNAs of the lethal Mutants 1, 2 and 33, the 
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intracellular genomic RNA levels were lower than that of the viral RNA input at 6 hr 

after transfection, indicating degradation of the input RNA and little if any RNA 

replication (Fig. 3.5D). With Mutant 34, for which revertant virus was detected after a 

single passage on BHK cells (Fig. 3.3), the levels of genomic RNA reached input 

levels by 72 hr after transfection, confirming that some viral RNA replication had 

occurred but at a much lower level than for the parental genomic RNA. Mutant 39, 

which produced small plaques on the transfection plate, showed a 10-fold increase in 

genomic RNA over input RNA by 72 hr after transfection. The stable Mutant 40, 

which had a plaque phenotype similar to parental virus, showed a slight decrease in 

genomic RNA levels at both 48 and 72 hr after transfection, compared to the parental 

infectious clone RNA (Fig. 3.5D). These results indicate that each of the mutations 

that had a negative affect on viral viability also had a negative effect on viral genomic 

RNA replication.  

DISCUSSION 

 Two minor binding sites for eEF1A on the WNV 3' (+) SL RNA were 

previously mapped to the top left loop of the 3' terminal SL and to the SSL and one 

major binding site was mapped to the 5' side of the stem of the 3' terminal SL RNA 

(Blackwell and Brinton, 1997). The predicted secondary structures and the majority 

of the sequences in the minor sites are conserved among divergent mosquito borne 

flaviviruses. With the high error rate of the viral RNA dependent RNA polymerase, 

conservation of sequences among flaviviruses especially in a noncoding region 

strongly suggests that these sequences are important in the flaviviral life cycle. 
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Mutations of particular nts in the top left loop of the terminal SL or deletion of the 

SSL had significant negative effects on virus replication even though each of these 

elements only accounted for about 20% of the in vitro eEF1A binding activity for the 

3' (+) SL RNA (Blackwell and Brinton, 1997).  

The previous study that suggested the possibilty of a tertiary interaction by 

ribonuclease probing and UV-melting analysis used in vitro transcribed RNAs (Shi et 

al., 1996). A recent NMR analysis of various synthetic model RNAs was performed 

in collaboration with Dr. M. Germann did not provide supporting evidence for this 

tertiary interaction (data not shown). Either the higher quality of the synthetic RNA 

used or the higher sensitivity of the NMR method provided a more accurate and 

detailed analysis of base pairing in the 3'(+) SL RNA. Data from the mutational 

studies with the WNV infectious clone also did not support the presence of the 

tertiary structure. Mutation of C73, which is located on the 3' side of the stem of the 

terminal SL and predicted to form the strongest base pair in the putative tertiary 

interaction had no effect on viral growth. This was also the case when C73 was 

deleted (Mutant 13). The formation of a G9-C73 base pair in the 3' terminal SL RNA 

was previously reported to disrupt the putative tertiary interaction (Shi et al., 1996). 

When C9 was mutated to a G in the infectious clone Mutant 14 so that a G9-C73 base 

pair was predicted to form, no effect on virus growth was observed. However 

mutation of U72 or U74 to Gs, which would be predicted disrupt the weaker A-U 

base pairs of the putative tertiary interaction, had a negative affect on virus growth. 

However, these mutations were also predicted to disrupt the base pairs at the bottom 
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of the 3' terminal stem (Fig. 3.2). Pairing of the first two bases of the 3' terminal stem 

was previously shown to be essential for viral RNA replication in a WNV replicon 

system (Tilgner and Shi, 2004).  

 The SSL was previously predicted to form in divergent mosquito borne 

flaviviruses (Olsthoorn and Bol, 2001). As well as in whole genome folds of WNV 

and dengue 2 virus (J.Y Sgro and A. Palmenberg, data not shown). The 

hexanucleotide loop of the SSL resembles a GNNRA motif and this structural motif 

has been shown to be important for binding eEF1A to ribosomal RNA (Szewczak et 

al., 1993). Deletion of the SSL in a WNV infectious clone was lethal indicating this 

SL is essential for virus viability (Fig. 3.1). Deletion of the SSL from a WNV 3'(+) 

SL RNA probe resulted in a 27% decrease in relative in vitro eEF1A binding activity 

(Fig. 5). Mutation of G87 in the loop of the SSL to a C was also lethal for the virus. 

This mutation caused a 45% decrease in eEF1A binding activity, suggesting that G87 

is also essential for eEF1A binding. Mutation of the first nt in the SSL loop (G91) 

produced virus with a small plaque phenotype when this nt was changed to either an 

A (Mutant 3) or a C (Mutant 10) which reverted to parental sequence. Mutation of the 

last nt in the SSL loop (A86) resulted in small plaques on the transfection plates 

(Mutant 8, 9 and 10) and the rapid reversion to the parental sequence. The rapid 

reversion of the first and last nt in the loop to a G and an A respectively, suggests that 

the SSL may form a GNNRA loop motif.  

Mutational analysis of the lower part of the stem of the WNV 3' terminal SL 

identified two cis-acting base pairs (U72-A10 and G71-C11). Substitutions that 
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maintained the predicted secondary structure in this region, but changed the primary 

sequence of either of these base pairs had a negative affect on viral viability with the 

exception of Mutant 40 (G71-U11) that produced parental-size plaques, indicating 

that a G-U base pair could substitute for the G71-C11 pair. Mutant 39 (C71-G10) 

showed a 22% decrease in in vitro eEF1A binding and Mutant 40 showed an 8% 

decrease in in vitro eEF1A binding. A decrease of 22% or more in in vitro eEF1A 

binding correlated with reduced viral viability.  

The two minor eEF1A binding sites may facilitate the initial interaction 

between eEF1A and the WNV 3' (+) SL RNA. This initial interaction may lead to 

conformational changes in the viral 3' RNA as well as in eEF1A that allow eEF1A to 

recognize the major binding site, which accounts for 60% of the total in vitro eEF1A 

binding activity. Further induced fit may then maximize the contacts between eEF1A 

and the WNV 3' (+) SL RNA. Most DNA-binding proteins recognize specific 

sequences located in the major groove of a B-form double helix. The steep and 

narrow major groove of the RNA A-form double helix prevents the bases in this 

groove from being easily accessible for interaction with protein. Often RNA-protein 

interactions are accomplished in two distinct steps. First, positively charged residues 

on the surface of a protein allow it to rapidly associate with negatively charged RNA. 

Second, the close proximity of the RNA and protein allow the formation of a stable 

complex via conformational changes in both the RNA and the protein that lead to 

sequence specific interactions (Katsamba, Myszka, and Laird-Offringa, 2001). 



 

 
 

97 

EF-Tu, the bacterial homolog of eEF1A has been shown to bind to the Qβ viral 

genomic RNA at the S2 binding site and also to viral proteins in the replication 

holoenzyme. Both of these interactions were reported to be required for specific 

initiation of minus strand RNA synthesis (Brown, 1996; Kita et al., 2006). Data from 

this study and previous studies demonstrated that mutations in the 3' (+) SL RNA that 

reduced eEF1A binding to this RNA negatively affected the accumulation of viral 

minus strand RNA, suggesting that this RNA-protein interaction may facilitate the 

initiation of minus strand synthesis. eEF1A was also shown to colocalize with WNV 

viral replication complexes in infected cells by confocal microscopy and and anti-

eEF1A antibody coprecipitated viral replication complex proteins (data from Chapter 

2). These data suggest the possibility that eEF1A may also interact with a viral 

nonstructural protein. None of the mutations made in the WNV 3'(+) SL RNA that 

negatively affected eEF1A binding had an effect on the translational efficiency of the 

WNV viral polyprotein in BHK cells. The function of eEF1A in flaviviral replication 

appears to be similar to that in Qβ replication but not TYMV replication where 

eEF1A binding to the terminus of the TYMV viral genome was shown to enhance 

viral protein translation and a repress viral minus strand RNA synthesis (Matsuda, 

2003a; Matsuda, 2003b). 

MATERIALS AND METHODS 

Cells  

Baby hamster kidney-21/WI2 cells (hereafter referred to as BHK cells) were 

grown at 37o C with 5% CO2 in Eagle's minimum essential media (MEM) containing 
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4.5% heat-inactivated fetal bovine serum (FBS) and 10 µg/ml gentamicin (Vaheri et 

al., 1965).  

Mutagenesis of a WNV infectious clone  

The construction and characteristics of the chimeric full length WNV 

infectious clone were previously described (Yamshchikov, 2001). The strategy used 

to introduce mutations to the terminal SL in the infectious clone was described 

previously (Elghonemy, Davis, and Brinton, 2005). To introduce mutations into the 

SSL, a shuttle vector (pWNV-TrunII), which contained 162 5' nt and 207 3'nt of the 

WNV cDNA, was created by digestion of the infectious clone with the restriction 

enzyme, SacII, followed by gel purification and ligation of the fragment similar to the 

method described previously (Elghonemy, Davis, and Brinton, 2005). Mutations were 

introduced using the Quick-Change Site-Directed Mutagenesis kit (Stratagene) 

according to the manufacturer’s protocol. Primer sequences used to generate the 

mutant viral cDNAs are available upon request. The mutated infectious clones were 

generated by restriction digestion with SacII followed by gel purification and ligation 

with the gel purified internal fragment from the parental infectious clone. All 

mutations made were confirmed by sequencing.  

In vitro transcription of WNV genomic RNA  

Parental or mutant infectious clone plasmid DNAs were linearized at the 3' 

end of the WNV cDNA with Xba I and then purified using a PCR cleanup kit 

(Qiagen). The in vitro transcription of capped viral RNA was performed using the 

mMessage Machine high yield capped RNA transcription kit (Ambion) or the 
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Amplicap high yield message maker kit (Epicentre, Madison, WI) according to the 

manufactures' protocols. RNase-free DNase was then added and the reaction mixture 

was incubated at 37o C for 30 min followed by heat-inactivation of the DNase at 65oC 

for 15 min. The transcription reaction mixture was used directly to transfect BHK 

cells. 

Transfection of WNV genomic RNA into BHK cells 

RNA transfection was performed as described previously (Elghonemy, Davis, 

and Brinton, 2005). Briefly, either 0.1 or 1.0 µg of genomic RNA was transfected into 

BHK cells grown to 80% confluency in 6-well dishes with DMRIE-C according to 

the manufacturer's protocol (Invitrogen). After a 2 hr incubation at 37oC, the 

transfection media was removed and the cells were overlayed with either 2 ml of 5% 

FCS MEM or a 1:1 mixture of 1% agarose and 2X MEM containing 5% FBS. At 72 

hr after transfection, the agarose was removed and plaques were visualized using a 

methyl violet stain (10% ethanol, 0.5% methyl violet), or a second overlay of 0.05% 

neutral red solution, 0.5% agarose in 1X MEM was applied to the cell monolayers 

when plaques were to be picked. Virus in growth media harvested from duplicate 

wells was titered in duplicate by plaque assay on BHK cells. 

Analysis of virus revertants 

Viral RNA was extracted and purified using TRI Reagent LS (Molecular 

Research Center, Inc., Cincinnati, OH.) according to the manufacturer's protocol. 

Extracted RNA was subjected to 3' polyadenylation as described previously using the 
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Poly A tailing kit (Ambion), amplified by RT-PCR and then sequenced (Tilgner and 

Shi, 2004). Primers used are available upon request. 

Purification of eEF1A 

 eEF1A cDNA amplified by RT-PCR from BHK cells was cloned into 

the T7 expression vector pCR T7/CT-TOPO (Invitrogen, Carlsbad, CA.) (Smith, 

Blackwell, and Brinton, unpublished data). Recombinant eEF1A was expressed in 

Origami cells (Novagen, Madison, WI.) and induced with 1 mM IPTG. After 4 hr, 

bacterial cells were pelleted and resuspended in Extraction buffer (50 mM sodium 

phosphate, 300 mM NaCl, pH 7.6) and then lysed with a French pressure cell press 

(SIM-AMINCO Spectronic Instrument Inc., Rochester, NY.). The cell lysate was 

clarified by centrifugation at 3000 x g. Recombinant protein was bound to Talon 

metal affinity resin (BD Biosciences Clontech, Palo Alto, CA.), washed with Wash 

buffer (50 mM sodium phosphate, 300 mM NaCl, 20 mM imidazole, pH 7.6), and 

then eluted with Elution buffer (50 mM sodium phosphate, 300 mM NaCl, 300 mM 

imidazole, pH 7.6). To remove imidazole, eluted protein was dialyzed against two 

liters of dialysis buffer (50 mM sodium phosphate, 50 mM NaCl, pH 7.6) in a Slide-

A-Lyzer dialysis cassette (Pierce, Rockford, IL.) and concentrated to 200-400 ng/µl 

using a Centricon 10 concentrator (Amicon, Beverly, MA.).  

Gel mobility shift assays. 

The WNV infectious clone described above was used to generate PCR 

templates to generate 3' SL RNA probes that contained a T7 promoter for RNA 

transcription and specific mutations as described previously (Blackwell and Brinton, 
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1995). The primers used are available upon request. PCR products were purified 

using the Qiagen PCR clean up kit (Qiagen, Valencia, CA). The PCR products were 

transcribed in the presence of (α-32P) GTP using T7 RNA polymerase (50 U) 

according to the manufacturer's protocol (Ambion, Austin, TX.) for 1 hr at 37o C. 

Transcription reactions were stopped by the addition of DNase (1 U) for 15 minutes 

at 37o C, and the RNA was gel purified and precipitated with ethanol as described 

previously (D'Alessio, 1982). The purified RNAs were resuspended in 100 µl of 

RNase free water. Radioactivity was measured using a scintillation counter (Beckman 

LS6500) and the specific activity (~1.3 x 107 cpm/µg) was calculated as described 

previously (Blackwell and Brinton, 1997). 

Purified recombinant eEF1A was incubated in gel shift buffer [(GS buffer) 

3% Ficoll 400, 20 mM Sodium phosphate, pH 7.0, 60 mM KCl, 1 mM MgCl2, and 

0.5 mM EDTA] with a 32P-labeled 3' viral RNA probe (approximately 2000 cpm or 

0.2 nM final concentration per reaction), poly I-C (50 ng), and RNase inhibitor 

(Ambion) (10 units) for 30 min at room temperature. The RNA-protein complexes 

were resolved by nondenaturing 5% polyacrylamide gel electrophoresis (PAGE) in 

1X TBE buffer. The percent RNA bound was quantified with a Fuji BAS 1800 

analyzer (Fuji Photo Film Co., Japan) and Image Gauge software (Science Lab, 98, 

version 3.12, Fuji Photo Film Co.). 

Analysis of intracellular viral RNA by real-time RT-PCR 

Replicate BHK monolayers in 6-well tissue culture plates (80% confluency) 

were washed once with 2 ml of Opti-MEM (Invitrogen) and then transfected with 200 
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ng of parental or mutant viral RNA in DMRIE-C (Invitrogen). BHK monolayers were 

washed 3 times with 5 ml of growth media and total intracellular RNA was extracted 

using TRI Reagent (Molecular Research Center, Inc.) at the times indicated. Using 

real-time RT-PCR, the relative amount of intracellular viral genomic RNA was 

determined on an Applied Biosystems 7500 real-time PCR system using 200 ng of 

total RNA, and the TaqMan one-step RT-PCR kit according to the manufacturer's 

protocol (Applied Biosystem). The primers used to detect WNV RNA were 5'-

GGCGGTTCTAGGAGAAGTCA-3' and 5'-CTCCTGTTGTGGTTGCTTCT-3' and 

the FRET probe was 5'-Fam-TGCACCTGGCCAGAAACCCACACTCTGT -3'-

TAMRA from the NS1 region of the genome.  

T7-tagged primer real-time RT-PCR was performed as previously described 

for specific detection of minus strand RNA (Lanford et al., 1994; Samuel and 

Diamond, 2005). Briefly, 2 pmol of the minus strand primer, 5'-

GCGTAATACGACTCACTATAgagggcggttctaggagaagt-3', [T7 tag sequence 

(uppercase, bold); NS1 specific sequence (lower case, non-bold)] was incubated with 

800 ng of total intracellular RNA in a Taqman one-step RT-PCR reaction mixture and 

incubated at 50oC for 30 min to synthesize cDNA and then at 95oC for 30 min to 

inactivate the reverse transcriptase. Following inactivation, 20 pmol of each of the 

following primers 5'-GCGTAATACGACTCACTATA-3' and 5'-ctcctgttgtggttgcttc-

3' with 5 pmol of the probe, 5'Fam-TGCACCTGGCCAGAAACCCACACTCTGT3'-

TAMRA, were added to the reaction mixture. The PCR reaction was performed as 
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follows: 40 cycles at 95oC for 15 sec and then 60oC for 1 min on an Applied 

Biosystems 7500 real-time PCR system.  

Analysis of all real-time RT-PCR reactions was done using the relative 

quantification software from Applied Biosystems and the cellular mRNA GAPDH 

(Applied Biosystems) as the endogenous control. The genomic RNA levels at 48 and 

72 hr after transfection were normalized against input RNA present at 6 hr after 

transfection to remove background. Levels of minus strand RNA at 12, 24 and 48 hr 

after transfection were also normalized to viral RNA levels present at 2 hr after 

transfection to remove nonspecific amplification of genomic strand RNA. 

Confocal Microscopy 

BHK cells were grown to 60% confluency on glass coverslips and then were 

transfected with 1 µg of in vitro transcribed viral RNA. Three hr after transfection, 

cells were fixed by incubation with 4% paraformaldehyde in PBS for 10 min at room 

temperature and then permeabilized with methanol at -20oC for 10 min. Coverslips 

were blocked overnight with 5% horse serum (Invitrogen) in PBS. Coverslips were 

incubated with a 1:100 dilution of mouse hyper-immune ascitic fluid (MHIAF) 

against WNV (a gift from Dr. Robert Tesh, UTMB, Galveston, TX) in PBS 

containing 5% horse serum for 1 hr at 37oC and then washed 4 times with PBS. 

Coverslips were then incubated with a 1:300 dilution of chicken anti-mouse IgG-TR 

(Santa Cruz Biotechnology) in PBS containing 5% horse serum at and 0.5 µg/ml 

Hoechst 33258 (Molecular probes) to stain the nuclei. Coverslips were washed with 

PBS, mounted on glass slides with Prolong mounting media (Invitrogen) and 
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visualized with a 100 X oil immersion objective on a LSM 510 laser confocal 

microscope using LSM 5 (Ver. 3.2) software (Carl Zeiss Inc., Thornwood, NY). 

Relative fluorescence intensity was measured in equivalent diameter circles in 3 

locations in the cytoplasm of 10 representative BHK cells for each transfected viral 

RNA using LSM 5 (3.2) software. The same camera settings were used for each of 

the images compared. 

RNA secondary structure prediction 

Secondary structures were predicted for the 3' terminal 120 nt of the parental 

and mutant genomic RNAs using the RNA secondary structure predicting program, 

MFold v3.1 (Zuker, 2003).  
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