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STUDY OF INNATE IMMUNE RESPONSE COMPONENTS IN WEST NILE VIRUS 

INFECTED CELLS 

by 

HUSNI MUHAMMAD HISHAM ELBAHESH 

Under the direction of Margo A. Brinton 

ABSTRACT 

 Two cellular innate responses, the dsRNA protein kinase (PKR) pathway and the 

2'-5' oligoadenylate synthetase (OAS)/RNase L pathway, are activated by dsRNAs 

produced by viruses and reduce translation of host and viral mRNAs. PKR activation 

results in eIF2a phosphorylation. As a consequence of eIF2a phosphorylation, stress 

granules (SGs) are formed by the aggregation of stalled SG proteins with pre-initiation 

complexes and mRNA. West Nile virus (WNV) infections do not induce eIF2a 

phosphorylation despite upregulation of PKR mRNA and protein suggesting an active 

suppression of PKR activation. Assessment of the mechanism of suppression of PKR 

activation in WNV-infected cells indicated that WNV infections do not induce PKR 

phosphorylation so that active suppression is not required.  

 In contrast to infections with "natural" strains of WNV, infections with the 

chimeric W956 infectious clone (IC) virus efficiently induce SGs in infected cells. After 

two serial passages, the IC virus generated a mutant (IC-P) that does not induce SGs 

efficiently but does induce the formation of NS3 granules that persist throughout the 

infection. This mutant was characterized.  



 

 

 2'-5' oligoadenylate synthetases (OAS) are activated by viral dsRNA to produce 

2-5A oligos that activate RNase L to digest viral and cellular RNAs. Resistance to 

flavivirus-induced disease in mice is conferred by the full-length 2'-5' oligoadenylate 

synthetase 1b (Oas1b) protein. Oas1b is an inactive synthetase that is able to suppress the 

in vitro synthetase activity of the active synthetase Oas1a. The ability of Oas1b to inhibit 

Oas1a synthetase activity in vivo and to form a heteromeric complex with Oas1a was 

investigated. Oas1b suppressed 2-5A production in vivo. Oas1a and Oas1b overexpressed 

in mammalian cells co-immunoprecipitated indicating the formation of heteromeric 

complexes by these proteins.  

 Unlike mice, humans encode a single OAS1 gene that generates alternatively 

spliced transcripts encoding different isoforms. Synthetase activity has previously been 

reported for only three of the isoforms.  The in vitro synthetase activity of additional 

OAS1 isoforms was analyzed. All tested isoforms synthesized higher order 2-5A oligos. 

However, p44A only produced 2-5A dimers which inhibit RNase L. 

 

  

INDEX WORDS:  West Nile virus, PKR, dsRNA, 2'-5' oligoadenylate synthetase, 

Oas1b, EIF2α. 
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CHAPTER 1 

 

INTRODUCTION 

General Characteristics of West Nile virus 

 West Nile virus (WNV) was first isolated in the West Nile region of Uganda from 

a febrile patient in 1937 (Gubler, 2007; Smithburn, 1940).  Until 1999 WNV was limited 

to countries of the northern Mediterranean region, parts of Europe, the Middle East, 

Africa, West Asia, and Australia.  In 1999, WNV extended its geographical distribution 

to the Western hemisphere where it has spread rapidly (Lanciotti et al., 2002).  WNV is 

maintained in a mosquito-bird cycle in nature and virus spread follows migratory patterns 

of infected birds.  Humans and domestic animals are susceptible to WNV infection. 

However, since viremia titers in these hosts are not sufficiently high enough for a 

mosquito to obtain virus in a blood meal, they are considered incidental, dead-end hosts 

(Gubler, 2007).  The majority of WNV infections in humans are asymptomatic. However, 

flu-like symptoms are observed in about 20% of infected individuals.  Less than 1% of 

infected persons develop severe neurologic disease, such as encephalitis, or poliomyelitis, 

which is sometimes fatal. (Petersen et al., 2003; Saad et al., 2005).  

 

WNV Virion Structure 

 WNV virions are small, spherical, enveloped particles that are ~50 nm in diameter 

with nucleocapsids that range from 20 to 30 nm in diameter (Murphy, 1980).  The virion 

envelope is a host-derived membrane in which the viral membrane (M) and envelope (E) 
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proteins are anchored.  The C-terminal regions of these proteins are hydrophobic and 

span the membrane twice (Zhang et al., 2003a; Zhang et al., 2003b).  During virion 

maturation, the M precursor (prM) is cleaved by the host protease, furin.  This cleavage 

results in a conformational change in the associated E protein trimers that leads to the 

formation of E dimers that interact to form an icosohedral protein shell on the outer side 

of the virion envelope (Lindenbach, 2007).      

 

Replication Cycle 

 Flaviviruses replicate entirely in the cytoplasm of infected cells (Fig. 1.1).  The 

first step of the viral infection cycle is binding of the virion E protein to an unknown host 

receptor(s).  Viral entry occurs via clathrin-mediated endocytosis.  Acidification of the 

virus-containing endosomal vesicle causes a conformational change in the viral E protein 

that leads to fusion of the viral envelope with the endocytic membrane and ultimately 

facilitates release of the viral nucleocapsid as well as the genomic viral RNA (Chu and 

Ng, 2004).  In the cytoplasm, the positive-sense genomic RNA is translated into a single 

polyprotein that is co- and post-translationally cleaved by viral and host proteases to 

produce the mature viral proteins (Lindenbach, 2007).  The viral genome also serves as 

the template for minus-strand RNA synthesis.  Genome RNA synthesis is more efficient 

than that of the minus-strand RNA resulting in a 10 to 100:1 ratio of positive- to minus-

strand RNA in infected cells (Chu and Westaway, 1985).   
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Figure 1.1.  WNV replication cycle.  (A)  Attachment and entry of virion and uncoating of the virion 
RNA.  (B)  Translation of the virion RNA.  (C)  Proteolytic processing of the viral polyprotein.  (D)  
Synthesis of minus strand RNA.  (E)  Synthesis of genomic RNA from the minus strand RNA.  (F)  
Encapsidation of the viral genome and assembly of immature virions.  (G)  Transport of the virions to the 
plasma membrane.  (H)  Exocytosis of the virions.  Figure and legend from (Brinton, 2002). 
 

 Viral RNA replication occurs inside perinuclear replication complexes that are 

located inside vesicles that are invaginations of rough ER membranes. Each vesicle opens 

to the cytoplasm via a membraneous neck (Gillespie et al., 2010).  The newly transcribed 

genomic viral RNA exits the replication complex through the neck of these vesicles and 

is either translated or binds to capsid proteins associated with ER membranes leading to 

virion budding into the lumen of the ER (Gillespie et al., 2010).  Non-infectious, 

immature viral particles are transported through the trans-Golgi network where prM is 

cleaved into the M protein by the host protease furin to generate mature infectious 

particles that are transported to the plasma membrane in vesicles (Mackenzie and 

Westaway, 2001; Stadler et al., 1997).  Virions are released from the cell by exocytosis as 
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the virus-containing vesicles fuse with the plasma membrane (Mackenzie and Westaway, 

2001). 

 

Genomic RNA 

 The single-stranded, positive-sense WNV genome RNA is approximately 11 kb in 

length. The 5' end of the genome contains a type I cap but the 3' end lacks a poly(A) tail.  

The genomic RNA encodes a single polyprotein that is co-translationally and post-

translationally cleaved by viral and host proteases to produce three structural proteins (E, 

M and C), and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and 

NS5) (Fig. 1.2) (Lindenbach, 2007).   

 

5' 3'Structural Nonstructural

C prM E 1 2A 2B 3 4A 4B 5

Mpr  Protein Position (nts) 
C  (97-465) 
pr  (466-741) 
M  (742-966) 
E  (967-2469) 
NS1  (2470-3525) 
NS2A (3526-4218) 
NS2B (4219-4611) 
NS3  (4612-6468) 
NS4A (6469-6915) 
NS4B (6916-7680) 
NS5  (7681-10395)

 

Figure 1.2.  Schematic of a flavivirus genome. The polyprotein and mature processed proteins are shown.  
Figure from (Brinton, 2002).   
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Viral Structural Proteins 

 Three viral structural proteins, E, prM/M and C, are encoded at the 5' end of the 

viral ORF and are associated with the virion (Lindenbach and Rice, 2003).  The precursor 

of C protein, anchored C, contains a C-terminal hydrophobic domain that spans the ER 

membrane and targets prM for translocation to the ER prior to cleavage. Anchored C is 

cleaved at its C-terminus by the viral protease on the cytoplasmic side of the ER 

membrane to generate the mature C protein (~11 kDa) (Lindenbach, 2007; Yamshchikov 

and Compans, 1994). The mature C protein folds into a dimer that is composed of 2 

monomers each containing 4 alpha-helices. Internal hydrophobic regions of C protein 

mediate association with the ER membrane while nonspecific interactions between the 

charged residues at the N- and C-termini of mature C protein and the viral genomic RNA 

are thought to facilitate assembly of the nucleocapsid around the genomic RNA 

(Khromykh and Westaway, 1996; Lindenbach et al., 2007).  Additionally, C protein has 

been reported to exhibit RNA chaperoning activity that suggests it may play a role in 

structural rearrangements of viral RNA during WNV replication (Ivanyi-Nagy et al., 

2008).  

 The M protein (~8 kDa) is a proteolytic fragment of its glycoprotein precursor, 

prM protein (~26 kDa).  The C-terminal region of prM contains two transmembrane 

domains that anchor prM and M in the ER membrane, and may aid in the 

heterodimerization of prM and E. The prM protein maintains surface E proteins in a 

raised trimeric confirmation thus blocking premature viral fusion with the cellular 



6 

 

membranes during virion trafficking through acidic compartments of the trans-Golgi 

secretory pathway (Heinz et al., 1994; Zhang et al., 2003b)    

 The major virion surface protein is the E protein, a glycosylated type I integral 

membrane protein that is ~53 kDa in size. The E protein mediates viral attachment, 

membrane fusion as well as virion assembly (Mukhopadhyay et al., 2005).  In mature 

virions, E protein homodimers are arranged in a head-to-tail conformation and lie parallel 

to the lipid bilayer (Heinz and Allison, 2000). The E protein contains the major antigenic 

determinants on the surface of flavivirus particles (Lindenbach, 2007). 

 

Viral Non-Structural Proteins 

 The NS1 protein (~47 kDa) has been shown to exist as a monomer, homodimer 

and a hexamer, and is the only flaviviral nonstructural protein known to be glycosylated 

(Grun and Brinton, 1986; Lindenbach, 2007; Winkler et al., 1989; Winkler et al., 1988).  

NS1 has been reported to play a role in viral replication, and the hexameric form is 

secreted from infected cells and has been reported to inhibit complement activation in 

during WNV infection (Chung et al., 2006; Flamand et al., 1992; Flamand et al., 1999; 

Khromykh et al., 1999; Lindenbach and Rice, 1997).  The eight C-terminal residues of 

NS1 and the ~140 N-terminal residues of NS2A are required for the cleavage of NS1 

from NS2A by an unknown host protease (Falgout and Markoff, 1995).   

 The NS2A and NS2B proteins are small (23 kDa and 13 kDa, respectively) 

hydrophobic proteins.  Mutations that prevent cleavage at the NS1/NS2A junction have 

proven lethal for the virus without affecting viral RNA replication, suggesting a role for 
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NS2A in virion assembly (Kummerer and Rice, 2002; Liu et al., 2003). In addition, 

mutational analysis of WNV and Kunjin NS2A demonstrated that this protein mediates 

attenuation of type I interferon (IFN) signaling (Liu et al., 2004; Liu et al., 2006).  NS2B 

is a membrane-associated protein that is required as a cofactor for the activity of the 

serine protease of NS3 (Chambers et al., 1991; Chambers et al., 1993).   

 The NS3 is a large ~70 kDa protein is highly conserved among flaviviruses.  The 

N-terminal region comprises the NS3 protease domain that forms an active complex with 

NS2B.  NS3 autocatalytically cleaves itself from the viral polyprotein and then cleaves at 

multiple other sites within the polyprotein (Nall et al., 2004). RNA-stimulated NTPase 

and RNA helicase activities have been mapped to C-terminal regions of the NS3 protein. 

Additionally, the NS3 mediates dephosphorylation of the 5' end of the viral genomic 

RNA prior to cap addition. Collectively, the data establishes the requirement of NS3 in 

viral RNA replication (Borowski et al., 2000; Li et al., 1999; Wengler, 1993; Wengler 

and Wengler, 1991).   

 NS4A and NS4B are small hydrophobic proteins (16 and 27 kDa, respectively) 

that localize to the ER membrane. Neither of these proteins share sequence motif 

homology with known enzymes.  The C-terminus of NS4A is cleaved by both host signal 

peptidase and viral serine protease (Lin et al., 1993).  NS4A has been shown to interact 

with NS1 and colocalizes with replication complexes within vesicle packets, supporting a 

role for NS4A/NS1 in RNA replication (Lindenbach and Rice, 1999; Mackenzie et al., 

1998). Overexpression of dengue NS4A induced membrane rearrangements similar to 

those observed in infected cells (Miller et al., 2007; Roosendaal et al., 2006; Welsch et 
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al., 2009). Kunjin NS4B can induce membrane proliferation and rearrangement and 

perinuclear protein accumulation when overexpressed (Westaway et al., 1997). NS4A 

and NS4B play a role in attenuation of the IFN antiviral response to WNV infection and 

NS4B was shown to inhibit STAT phosphorylation and subsequent signaling (Liu et al., 

2005; Munoz-Jordan et al., 2005). NS2A, NS2B, NS3, NS4A and NS4B form ER 

membrane-associated complexes in infected cells (Lindenbach, 2007).    

 NS5 is a large (96 kDa) multifunctional protein that is the most conserved 

flavivirus protein.  The C-terminal region of the NS5 protein contains the viral RNA-

dependent RNA polymerase (RdRp) (Koonin, 1991). NS5 also has an N-terminal 

methyltransferase domain that methylates the cap structure of flaviviral genomic RNAs 

(Koonin, 1993; Lindenbach, 2007; Ray et al., 2006; Zhou et al., 2007).  NS5 has been 

show to interact with NS3 in vivo as well as in vitro (Kapoor et al., 1995).  

Phosphorylation of NS5 by cellular serine/threonine kinases in vivo has been previously 

reported and this phosphorylation may regulate NS3-NS5 interactions (Kapoor et al., 

1995; Mackenzie et al., 2007; Reed et al., 1998).  Although predominantly cytoplasmic, 

the flavivirus NS5 has also been detected in the nuclei of infected cells (Buckley et al., 

1992; Kapoor et al., 1995; Miller et al., 2006).  In addition to RdRp and helicase 

functions, NS5 plays a role in modulating the antiviral host response.  In cells infected 

with virulent strains of WNV such as, NY99, NS5 was shown to be an antagonist of IFN 

signaling by preventing accumulation of STAT1 phosphorylation.  Interestingly, 

mutation of Kunjin NS5 at S653F increased the virulence of this typically attenuated 
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strain by making it capable of inhibiting STAT1 phosphorylation (Laurent-Rolle et al., 

2010). 

Genomic Untranslated Regions  

The WNV 5' and 3' untranslated regions (UTRs) are 96 nt and 631 nt in length, 

respectively (Brinton et al., 1986; Markoff, 2003).  Stable stem-loop (SL) structures are 

predicted to be formed by the terminal sequences of both the 5' and 3' UTRs (Brinton and 

Dispoto, 1988).  While only short regions within the 5′ UTR sequence are conserved 

among different flaviviruses, the 5′ SL structure it forms shares structural homology with 

those of different flaviviruses (Brinton and Dispoto, 1988).  The 3′ UTR of the minus-

strand, used to initiate plus-strand synthesis, is complementary to the 5′ UTR.  In dengue 

infected cells, deletions in the 5′ UTR of the viral genomic RNA proved lethal (Cahour et 

al., 1995).  Similarly, only a few conserved sequences are present in the 3' UTR of 

flaviviruses (Lindenbach, 2007).  However, the terminal 3′ SL forms a structure that is 

highly conserved among divergent flaviviruses (Brinton et al., 1986).  Three hamster cell 

proteins were previously reported to interact with the 3′ SL of the WNV genomic RNA.  

One of these proteins was identified as the translation elongation factor 1A (EF1A) which 

is responsible for recruiting aminoacyl-tRNA to the A site of the ribosome (Blackwell 

and Brinton, 1995; Blackwell and Brinton, 1997; Condeelis, 1995; Grassi et al., 2007; 

Lewin, 2000).  Mutational evidence indicated that minus-strand RNA synthesis is 

facilitated by the interaction between eEF1A and the WNV 3' (+) SL (Blackwell and 

Brinton, 1997; Davis, 2007; Khromykh et al., 2003).   
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Cap-Dependent Translation Initiation 

 Most eukaryotic mRNAs are modified in the nucleus before transport to the 

cytoplasm for translation.  The 5' end of the mRNA is capped and a 3' poly(A) tail (~50 

to 300 nts in length) is added.  These terminal modifications serve to increase 

translational efficiency as well as stabilize the mRNA (Hall, 2002; Schoenberg and 

Maquat, 2009).  The 5' cap of mRNAs is a molecular tag that initiates translation by 

recruitment of the 40S ribosomal subunit via the eIF4F cap-binding complex which 

consists of eIF4E, eIF4A and eIF4G (Lopez-Lastra et al., 2010; Lopez-Lastra et al., 

2005).  The eIF4E subunit directly binds to the 5' cap, eIF4A unwinds secondary 

structures within the 5' UTR of mRNAs through its ATPase and helicase activities and 

eIF4G serves as a scaffold protein that links the mRNA cap and the 40S ribosomal 

subunit via interaction with eIF4E and eIF3, respectively (Gingras et al., 1999; Lopez-

Lastra et al., 2010; Lopez-Lastra et al., 2005).  The poly(A) binding protein (PABP) 

binds to the 3' poly(A) tail of mRNAs as well as to the PABP-interacting protein-1 

(PAIP-1) which is a eIF4G homologue.  The eIF4G subunit bridges the 5' cap and the 3' 

poly(A) tail of the mRNA via interactions with PAIP-1 leading to a "closed loop" 

conformation of the mRNA which increases translation efficiency (Kahvejian et al., 

2001). The mechanism by which mRNA circularization increases the efficiency of 

translation has yet to be determined.  Possible explanations include efficient recycling of 

the 40S ribosomal subunit allowing for rapid translational re-initiation, increased stability 

of the mRNA and biasing translation towards full-length RNAs (Lopez-Lastra et al., 

2010; Lopez-Lastra et al., 2005). Because the WNV genome does not have a 3' poly(A) 
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tail, it is not known whether it forms a closed loop conformation. The 43S preinitiation 

complex is formed at the 5' cap of the mRNA upon recruitment of the 40S ribosomal 

subunit bound to eIF2-GTP/Met-tRNAi, eIF3, eIF1 and eIF1A. Both eIF1 and eIF1A are 

required for mRNA binding and scanning of the 43S complex in a 5' to 3' direction 

(Lopez-Lastra et al., 2010; Pestova et al., 1998).  The initiation codon recognized is 

usually the first AUG triplet present within the nearest Kozak consensus sequence 

(G/AXXAUGG) downstream of the 5' cap (Kozak, 1986). Ribosomal scanning from the 

5' cap is thought to be the mechanism by which flavivirus genomes are translated 

(Lindenbach, 2007).  Interactions between the cellular proteins binding to the 3' and 5' 

terminal genome RNA structures may bridge the 5' and 3' termini thereby facilitating 

replication of the viral RNA (Brinton, 2002). However, cellular and/or viral proteins that 

may be involved in translational regulation of the WNV genomic RNA have not yet been 

identified.   

 

Virus Stress-Induced Genes 

 The virus stress-inducible genes (VSIG) are modulated in response to virus 

infection, dsRNA and IFN. Viral infections cause cellular stresses that result in a strong 

and transient induction of these genes (Sarkar and Sen, 2004).  IFN responses serve as an 

essential first line of host defense against many viruses including flaviviruses.  IFNs are 

classified as Type I and Type II. Both types have antiviral activity (Samuel, 2001). The 

two types of IFN are structurally unrelated and their actions are mediated by different and 

structurally unrelated cell-surface receptors (Sarkar and Sen, 2004).  The Type I IFN 
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family includes IFN-α, IFN-β, IFN-ω and IFN-τ; while IFN-γ is the only known Type II 

IFN (Sarkar and Sen, 2004).  A positive regulatory domain (PRD) and a PRD-like 

element (PRD-LE) are cis-acting elements present in the promoters of IFN-α and IFN-β, 

respectively; these elements are inducible by IFN regulatory factors (IRFs) (Nakaya et 

al., 2001).  IFN produced in an infected cell is secreted and binds to receptors on the 

surface of both infected cells and uninfected cells.  IFN-α/β binding to the IFN-α/β 

receptor (IFNAR) causes cross-activation of Jak1 and Tyk2, which phosphorylate one 

another along with STAT1 and STAT2. The phosphorylation of these two STATs results 

in the formation of IFN-stimulated gene factor 3 (ISGF3), a trimeric complex that 

includes STAT1, STAT2 and IRF9. The ISGF3 complex translocates to the nucleus 

where it binds to IFN-stimulatory response elements (ISREs) in the promoter regions of 

IFN-stimulated genes (ISGs) such as PKR, 2'-5' oligoadenylate synthetase (OAS) family 

members and IRF7, activating their transcription (Darnell et al., 1994; Nakaya et al., 

2001; Stark et al., 1998).  IRF7 phosphorylation in response to viral infection leads to 

translocation of IRF7 to the nucleus to further activate IFNα/β promoters resulting in 

massive IFNα/β production that is maintained via a positive feed-back loop (Au et al., 

1998; Nakaya et al., 2001; Samuel, 2001). Although VSIG were initially discovered as 

IFN-inducible genes, their expression can be induced independently of IFN 

(Bandyopadhyay et al., 1995; Daly and Reich, 1995; Weaver et al., 1998).   

  

 

 



13 

 

RNA Sensor-Mediated Translational Inhibition 

 The IFN response to viruses is initiated at early stages of viral infection and is 

mediated by pattern recognition receptors (PRRs) that include retinoic acid-inducible 

gene I (RIG-I), melanoma differentiation associated gene 5 (MDA5) and Toll-like 

receptors (TLRs) that recognize viral pathogen-associated molecular patterns (PAMPs) 

such as single- and/or double-stranded viral RNA structures (Diamond, 2009).  

Engagement of these PRRs ultimately leads to activation of transcription factors 

including IRF3 and IRF7 that induce expression of ISGs (Li et al., 2007; Stark et al., 

1998) which in turn amplify the antiviral response within infected cells and neighboring 

uninfected cells (Fig. 1.3). 

   

Figure 1.3. Sensing of ssRNA/dsRNA by the immune system. On the left of the diagram, sensing in non-
immune cell types is represented. This relies on RIG-I (for RNAs with 5'-triphosphate) and MDA-5 (for 
dsRNAs). On the right of the schematic, innate immune sensing of ss/dsRNAs by endosomal TLRs in 
immune cells is represented.  Figure and modified legend from (Gantier and Williams, 2007). 
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 Additionally, cell-type specific (e.g. immune vs. non-immune cell) responses 

have previously been reported in response to viral RNAs (Gantier and Williams, 2007).  

In non-plasmacytoid dendritic cells and fibroblasts, the Type I IFN response to infection 

with ssRNA viruses is mediated through RIG-I (Kato et al., 2005).  On the other hand, 

MDA5 was reported to be the prime sensor of poly(I:C) as well as of 

encephalomyocarditis virus (EMCV) RNA (Gitlin et al., 2006; Kato et al., 2006).  

Activation of these sensors leads to IPS-1/MAVS/CARDIF-mediated activation of 

transcription factors such as IRF3 and NFκB (Hiscott et al., 2006).  In some immune 

cells, viral RNAs are initially sensed by endosomal TLRs and this results in 

transcriptional activation of IRFs and NFκB. Collectively, activation of these pathways 

confers a general antiviral state. 

  The PKR and the 2'-5' OAS pathways are part of the IFN-induced antiviral 

response and are activated by viral dsRNA structures. Unlike the cell transcriptional 

response mediated through the PRRs, the PKR and OAS responses limit viral protein 

synthesis through translational inhibition of viral mRNAs and ultimately lead to 

apoptosis (Gantier and Williams, 2007).  Recognition of dsRNA or helical regions of 

hairpin structures within single-stranded RNAs by PKR promotes its dimerization and 

activation through subsequent autophosphorylation. Active PKR dimers bind to and 

phosphorylate eIF2a at S51.  Phosphorylated eIF2a forms a stable complex with its 

guanine exchange factor, eIF2B, and this prevents efficient recycling of GDP-bound 

eIF2a to GTP-eIF2a leading to inhibition of translational initiation (Fig. 1.4). 
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Figure 1.4.  DsRNA-induced translation inhibition mechanisms. Double-stranded RNA promotes 
activation of PKR and 2'-5'OAS. These two events fortify the antiviral state by stopping protein synthesis. 
Figure and modified legend from (Gantier and Williams, 2007). 
 

 Binding of dsRNA to an OAS protein causes a conformational change that 

activates the enzyme.  Active OASs catalyze the polymerazation of ATP into 2'-5' 

oligoadenylate (2-5A) that binds to RNase L and induces its dimerization and activation.  

Active RNase L nonspecifically degrades ssRNAs whether of cellular or viral origin 

which ultimately leads to apoptosis (Fig. 1.4). 
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GOALS OF THIS DISSERTATION 

The dsRNA-induced translational inhibition in response to virus infection is 

largely mediated by two pathways:  the dsRNA protein kinase (PKR) pathway and the 2'-

5' oligoadenylate synthetase (OAS)/RNase L pathway.  Both of these pathways can be 

activated by viral dsRNAs or secondary structures within viral ssRNAs that are produced 

in infected cells.  Activation of the PKR pathway results in phosphorylation of eIF2a 

leading to an attenuation of translational initiation, whereas activation of the OAS/RNase 

L pathway results in degradation of virus and cellular RNAs.  Components of these 

pathways were investigated under the following aims: 

Specific Aim 1. Investigation of the mechanism of suppression of PKR  

     phosphorylation in WNV-infected cells.  

Additional Aim. Analysis of a spontaneous WNV infectious clone mutant. 

Specific Aim 2.  Functional analysis of the mouse Oas1b protein. 

Specific Aim 3.  Synthetase activity analysis of human OAS1 splice variant proteins.  

 

SUMMARY OF DISSERTATION RESULTS 

 PKR can be activated by viral dsRNA and then phosphorylate eIF2α leading to 

the formation of SGs and the attenuation of cell translation. Infections with "natural" 

WNV strains inefficiently induce eIF2a phosphorylation and SGs. Although total PKR 

was upregulated, PKR was not phosphorylated in WNV-infected MEFs and BHK cells. 

The low level of PKR phosphorylation observed in WNV-infected MEFs was found to be 

due to Type I IFN secreted in response to the infection. While PKR did not colocalize 
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with most of the cellular PKR inhibitor proteins tested, it did colocalize and co-

immunoprecipitate with Nck in WNV-infected and uninfected cells. The association with 

Nck suggested PKR was inactive. In addition, even when this PKR-associated inhibitor 

was absent in Nck1,2-/- cells, PKR was still only minimally activated after WNV 

infection. Although several WNV RNAs activated PKR in vitro, this was not observed in 

vivo. Also, WNV infection did not interfere with the ability of intracellular PKR to 

respond to the non-viral dsRNA activator, poly(I:C), and virus yields were similar in 

control and PKR-/- cells. The results showed that PKR phosphorylation was not actively 

suppressed in WNV-infected BHK cells and that the PKR present did not exert an 

antiviral effect. 

 The chimeric WNV W956 IC (IC) efficiently induces SGs. Passaging the IC virus 

generated a mutant (IC-P) virus. IC-P virus infections did not efficiently induce SGs but 

did induce the formation of large NS3 granules that persisted throughout the infection. 

The NS3 granules localized to ER-derived membranes but did not colocalize with viral 

replication complexes. The data suggest that the NS3 granules are not active replication 

complexes and that the viral protein-directed membrane rearrangement required to form 

replication complexes may not occur properly/efficiently in IC-P virus-infected cells. 

Preliminary 454 deep sequencing identified a single mutation in the NS4B gene which 

may be responsible for the formation of NS3 granules and/or could change the folding of 

the viral RNA affecting viral RNA replication efficiency. 

 Murine Oas1b protein was previously shown to be an inactive synthetase and to 

inhibit Oas1a synthetase activity in vitro. Cells expressing full-length Oas1b produced 
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lower levels of 2-5A in response to poly(I:C) stimulation. These results show that Oas1b, 

but not Oas1btr, acts as a dominant negative protein for Oas1a synthetase activity, 

possibly to fine tune a potentially dangerous response. Co-immunoprecipitation assays 

demonstrated that Oas1a and Oas1b form heteromers suggesting that an interaction 

between these two proteins likely mediates Oas1b inhibition of Oas1a synthetase activity. 

 Nine alternatively spliced human OAS1 isoforms have been identified. Of the 9 

isoforms, only p42, p46 and p48 were previously assayed for 2-5A synthetase activity. 

The various isoforms were expressed in bacteria and shown to be active synthetases. All 

of the isoforms synthesized higher order 2-5A except p44A, which generated 2-5A 

dimers. The results suggest that isoforms with different OAS1 C-termini are active 2-5A 

synthetases, but the C-terminus can affect the type of 2-5A produced. It is not known 

whether the human Oas1 isoforms are involved in regulating synthetase activity. 
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CHAPTER 2 

Investigation of the mechanism of PKR phosphorylation suppression in WNV-

infected cells.  

 

INTRODUCTION 

 PKR is a serine/threonine kinase composed of an N-terminal regulatory domain 

that contains two dsRNA binding motifs (DRBMs) and a C-terminal kinase domain 

(Meurs et al., 1990; Nanduri et al., 1998). These domains are connected by a spacer that 

provides an interface for dimerization (McKenna et al., 2007). In the unphosphorylated 

state, the N-terminal regulatory domain may interact with the C-terminal catalytic domain 

to inhibit kinase activity (Nanduri et al., 2000). Activation of PKR by dsRNA leads to the 

formation of dimers that are stabilized by autophosphorylation at multiple residues, 

including Thr446 and Thr451 which are located within the activation loop of the kinase 

domain and essential for PKR activation (Romano et al., 1998). Minimal PKR activation 

requires dsRNAs that are at least 30 bp in length. Shorter dsRNAs inhibit PKR by 

competitively binding to inactive PKR monomers and limiting their dimerization 

(Bevilacqua and Cech, 1996; Sadler and Williams, 2007). Once active PKR dimers have 

ejected the activating dsRNA, presumably, due to phosphorylation of N-terminal 

residues, they phosphorylate eIF2a (Jammi and Beal, 2001). PKR is constitutively and 

ubiquitously expressed at low levels due to the presence of a kinase conserved sequence 

(KCS) site in its promoter (Toth et al., 2006). PKR is an ISG and its expression is 

upregulated by Type I IFN produced in response to viral infection. The majority of 
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intracellular PKR is cytoplasmic where a portion is associated with ribosomes. Some 

PKR is also present in the nucleus (Tanaka and Samuel, 1994; Toth et al., 2006). 

 During translation of cellular mRNAs, a ternary complex composed of a GTP-

bound eIF2 and a methionyl-tRNA delivers the charged initiator tRNA to the 40S 

ribosomal subunit of the 43S preinitiation complex by a process that requires the 

hydrolysis of GTP to GDP (Hershey, 1991; Majumdar and Maitra, 2005). Under stress 

conditions, the α-subunit of eIF2 is phosphorylated by one of the four eIF2α kinases: 

general control nonrepressed 2 (GCN2), heme-regulated inhibitor (HRI), PKR-like ER 

kinase (PERK), or PKR (Kaufman, 1999). The eIF2a kinases share a conserved kinase 

domain that mediates eIF2a phosphorylation, but each kinase responds to a different 

stress due to their unique regulatory domains (Kaufman, 1999). Phosphorylation of eIF2α 

on Ser51 leads to the formation of a high-affinity complex with the guanine exchange 

factor, eIF2B. This inhibits the exchange of GDP for GTP and "stalls" the preinitiation 

complexes on mRNAs (Sudhakar et al., 2000). Phosphorylation of as little as 20% of 

eIF2a significantly reduces the synthesis of most cellular proteins (Sudhakar et al., 2000). 

In virus-infected cells, PKR is activated by viral dsRNA. PKR can also be activated by 

heparin oligosaccharides, by IL-3 withdrawal, or by peroxide or arsenite treatment that 

leads to PKR activation via interaction with PACT (Ito et al., 1999; Patel et al., 2000). 

 West Nile virus, a member of the genus Flavivirus within the family Flaviviridae, 

was first isolated in 1937 from a febrile woman in the West Nile region of Uganda 

(Brinton, 2002). Until 1999, WNV was largely confined to Southern Europe, the Middle 

East, Africa, West and Central Asia, Indonesia and Australia. In 1999, WNV extended 
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into the Western hemisphere where it has spread rapidly. The majority of WNV 

infections in humans are asymptomatic. Flu-like symptoms are observed in ~20 % and 

meningitis, encephalitis and/or paralysis occurs in less than 1% of infected individuals 

(Brinton, 2002; Gubler, 2007). The WNV genome is a positive-sense, single-stranded 

RNA of ~11 Kb with a 5' cap but no 3' polyA tract. It encodes a single polyprotein that is 

co- and post-translationally cleaved to generate 3 structural proteins (E, prM and capsid) 

and 7 non-structural proteins (NS1, NS2a, NS2b, NS3, NS4a, NS4b and NS5). Viral 

replication occurs entirely in the cytoplasm where viral RNA replication occurs in 

vesicles formed by invaginations of the ER membranes (Lindenbach, 2007). WNV 

infection does not lead to shut-off of cellular protein synthesis. Viral structural proteins 

associated with ER membranes and newly synthesized viral RNA interact and bud into 

the lumen of the ER (Brinton, 2002; Gubler, 2007).   

 PKR has been reported to play a role in NFκB signaling and the control of cell 

growth through induction of p53 (Garcia et al., 2006). PKR is also involved in IFN, 

platelet-derived growth factor (PDGF), TNF-α, p38, JNK, STAT1 and IL-1 signaling. 

The involvement of PKR in multiple cellular processes requires its phosphorylation 

(Garcia et al., 2006). A number of cellular inhibitors have been identified that modulate 

PKR activity by forming stable heterocomplexes with PKR and interfering with the 

various steps of the PKR activation process: (1) dsRNA recognition (C114 and RPL18), 

(2) dimerization (p58ipk) or (3) autophosphorylation (Hsp70 and Hsp90) (Garcia et al., 

2007). The catalytic subunit of protein phosphatase 1 alpha (PP1a) dephosphorylates 

PKR resulting in dimer disruption (Tan et al., 2002). The importance of PKR in the 
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antiviral innate immune response is highlighted by the observation that most known 

viruses have evolved mechanisms for inhibiting PKR activity (Garcia et al., 2007). 

Consistent with our previous data demonstrating that WNV does not induce significant 

eIF2a phosphorylation (Emara and Brinton, 2007), the present study provides evidence 

that PKR activation is not induced nor actively suppressed in WNV-infected rodent cells. 

     

RESULTS 

PKR phosphorylation is not induced by WNV-infection. PKR can be activated by 

viral dsRNA and phosphorylate eIF2α leading to attenuation of cell translation (Garcia et 

al., 2007). We previously reported that WNV-Eg101 infection of BHK cells did not 

induce significant eIF2α phosphorylation (Emara and Brinton, 2007). To determine 

whether the low level of eIF2α phosphorylation observed was due to a lack of PKR 

activation, PKR phosphorylation was assessed in mock-infected or WNV Eg101-infected 

(MOI 5) C3H/He mouse embryo fibroblasts (MEFs) (IFN-responsive) and BHK cells 

(IFN non-responsive). As a positive control, mock-infected MEFs were treated with 100 

IU/ml of Type I IFN for 24 h and BHK cells were transfected with 50 μg/ml poly(IC) for 

2 h. A slight increase in PKR phosphorylation (P-PKR) above mock levels in WNV 

Eg101-infected MEFs starting at 24 h after infection (Fig. 2.1A) but no increase in WNV 

Eg101-infected BHK cells (Fig. 2.1B) was detected by immunoblotting using anti-

phospho Thr451 PKR antibody. However, total PKR (T-PKR) protein levels increased 

significantly in both Type I IFN-treated and WNV Eg101-infected MEFs and in WNV 

Eg101-infected but not poly(I:C)-treated BHK cells. In both types of cells, the ratio of 
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phosphorylated to total PKR (P/T-PKR) decreased after WNV infection to levels below 

those observed in mock-infected cells indicating that the majority of the newly 

synthesized PKR was not phosphorylated.  
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Figure 2.1. Analysis of PKR phosphorylation in WNV-infected cells. (A) C3H/He MEFs were mock 
infected (M), or infected with WNV-Eg101 at a MOI of 5 for the indicated times or treated with 100 U/ml 
universal type I IFN for 24 h (IFN).  (B) BHK cells were mock-infected (M) or infected with WNV-Eg101 
(MOI 5) for the indicated times or infected with various strains of WNV (NY99, TX113, SPU and Mg78) 
for 24 h or transfected with 50 μg/ml poly(IC) for 2 h (pIC). Total PKR, phopho-Thr451 PKR and WNV-
NS5 were detected in cell lysates by Western blotting after separation of proteins by 10% SDS-PAGE. 
Band densities were measured, quantified using ImageJ software. The values from at least three 
independent experiments were expressed in relative units compared to the intensity levels present in mock-
infected, untreated control lysates (value set at 1). P-PKR = level of PKR phosphorylation, P/T-PKR = ratio 
of phospho-PKR to total PKR. Error bars represent the standard error (SE) (n = 3 for BHK and n = 4 for 
C3H/He MEFs) and are based on the 95% confidence level. The dashed line denotes the baseline levels 
observed in mock-infected cells. Asterisks indicate a statistically significant (p<0.05) increase above the 
levels in mock-infected cells.   
 
 To determine whether the low level of PKR phosphorylation induced was virus-

strain specific, BHK cells were infected with other WNV lineage 1 (NY99 or Tx113) or 

lineage 2 (Mg78 or SPU) strains at a MOI of 5 for 24 h. In contrast to the dramatic 

increase in total PKR levels in WNV Eg101-infected BHK cells, no increase in total PKR 

levels was observed in cells infected with the other WNV viruses (Fig. 2.1B). The 
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mechanism of PKR expression upregulation in WNV Eg101-infected BHK cells is not 

currently known. However, due to the Type I IFN insensitivity of BHK cells, the PKR 

upregulation is expected to be Type I IFN-independent. The ratio of phospho- to total 

PKR in BHK cells infected with each of the four additional WNV strains tested was 

similar to that in mock-infected cells (Fig. 2.1B). These data suggest that PKR 

phosphorylation is not induced in MEFs or BHK cells by WNV-infection. 

 

The Low levels of PKR phosphorylation in WNV-infected MEFs is Type I IFN-

dependant. PKR protein expression is upregulated in response to Type I IFN signaling 

(Tanaka and Samuel, 1994; Toth et al., 2006). PKR phosphorylation was also reported to 

be induced through direct interactions between PKR and JAK1 and/or Tyk2, two 

components of the Type I IFN receptor complex (Su et al., 2007). To determine whether 

the low level of PKR phosphorylation observed in C3H/He MEFs was due to IFN-

mediated PKR activation, PKR phosphorylation was assessed in lysates from IFNR1-/- 

MEFs infected with WNV Eg101 at a MOI of 5 and compared to that in 129wt MEFs. 

Cells treated with 100 IU/ml of Type I universal IFN (PBL Biomedical laboratories, NJ) 

for 24 h served as a positive control.  Consistent with our previous observations in 

C3H/He MEFs, a slight increase in P-PKR and a significant increase in T-PKR levels 

compared to mock-infected cells were observed in WNV-infected 129wt MEFs (Fig. 

2.2). IFN treatment also resulted in an increase in PKR phosphorylation and expression. 

In contrast, in IFNR1-/- MEFs, neither total PKR levels nor the P/T-PKR ration increased 

in WNV-infected IFNR1-/- MEFs (Fig. 2.2). Although statistically significant (p < 0.05) 
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increases in P-PKR levels were observed in 129wt MEFs treated with IFN as well as at 

24 and 36 h after WNV Eg101-infection, P-PKR levels were significantly higher in IFN-

treated 129wt MEFs than in WNV-infected cells. These results suggest that the small 

increase in P/T-PKR ratio observed in WNV-infected MEFs was due to Type I IFN 

secreted in response to the infection. We previously reported that IFN-beta expression is 

upregulated in WNV-infected MEFs by 12 h after infection (Scherbik et al., 2007). 

M 12 24 36 IFN

PKRpT451

Total PKR

Eg101
129wt MEFs IFNR1 -/- MEFs

M 12 24 36 IFN

Eg101

NS5

**

**
**

**

0.00

0.50

1.00

1.50

2.00

M E12 E24 E36 IFN

R
el

at
iv

e 
D

en
si

ty

129wt P/T-PKR
IFNR1-/- P/T-PKR
129wt P-PKR
IFNR1-/- P-PKR

 
 
Figure 2.2. Assessment of IFN-mediated PKR phosphorylation in WNV-infected MEFs. 129wt or 
IFNR1-/- MEFs were mock infected (M) or infected with WNV-Eg101 at a MOI of 5 for the indicated 
times or treated with 100 U/ml universal Type I IFN for 24 h. The data were analyzed was done as 
described in the legend for Fig. 1. The dashed line denotes the baseline levels observed in mock-infected 
cells. Asterisks indicate statistically significant (p<0.05) increases above the levels in mock-infected cells. 
 

PKR localization in WNV-infected cells. PKR is typically activated in virus-infected 

cells by dsRNA viral replication intermediates or hairpin structures within single-

stranded viral RNAs (Garcia et al., 2006). WNV RNA replicates in the perinuclear region 
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of infected cells in association with ER membranes (Gillespie et al., 2010; Mackenzie, 

2005). To determine whether the cellular distribution of PKR was altered in WNV-

infected cells, MEFs and BHK cells were mock-infected or infected with WNV Eg101 at 

a MOI of 5 for 10 or 24 h. The cells were fixed, permeabilized and incubated with anti-

PKR and anti-dsRNA antibody and visualized by confocal microscopy. PKR was 

observed to concentrate in the perinuclear region of infected cells and to co-localize with 

sites of viral RNA replication in both MEFs and BHK cells at 10 h and 24 h after 

infection (Fig. 2.3A). Because PKR serves as a sentinel of the innate immune response, 

viral proteins, including influenza virus NS1, reovirus σ3, Kaposi-sarcoma herpesvirus 

vIRF2 and LANA2, herpes simplex virus 1 (HSV-1) Us11, Epstein-Barr virus SM, 

vaccinia virus E3L and hepatitis C virus NS5A and E2 proteins (Garcia et al., 2007), 

directly interact with PKR and inhibit either its binding to viral dsRNA or its activation. 

To assess PKR colocalization with nonstructural protein components of the WNV 

replication complex, BHK cells were mock-infected or infected with WNV Eg101 at a 

MOI of 5 for 24 or 30 h and PKR and the viral NS1, NS3, NS5 proteins were detected by 

confocal microscopy using protein specific antibodies. No co-localization was observed 

between PKR and NS3, NS5 or NS1 (Fig. 2.3B). The observed colocalization of PKR 

with dsRNA but not with individual viral replication complex proteins might be due to a 

higher signal intensity for the viral dsRNA due to more antibody binding sites per 

molecule compared to the viral nonstructural proteins and also to a more restricted 

distribution of the viral dsRNA compared to the nonstructural proteins.  
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 As an additional means of assessing whether PKR associates with viral protein 

components of the replication complexes, PKR was immunoprecipitated from mock-

infected and WNV-infected BHK cells and the precipitates were immunoblotted with 

anti-NS3 or anti-NS5 antibodies. A species-specific IgG was used as a negative control. 

Neither NS3 nor NS5 co-immunoprecipitated with PKR (Fig. 2.3C). These data suggest 

that although PKR colocalizes with viral replication complexes, it does not interact 

directly with the NS3 protein, which is a marker for the membrane bound complex, nor 

with the NS5 (RdRp) protein. However, indirect mechanisms of PKR suppression 

mediated by these viral proteins were not ruled out. 
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Figure 2.3. PKR colocalization with sites of WNV replication. (A) Analysis of PKR colocalization with 
replication complexes. BHK cells and MEFs mock-infected or infected with WNV-Eg101 at a MOI of 5.  
At 10 and 24 h after infection, cells were permeabilized, fixed, and blocked overnight.  Cells were stained 
with anti-PKR and anti-dsRNA antibodies and then AlexaFluor488 (green) and AlexaFluor594 (red) 
conjugated secondary antibodies, respectively. Cell Nuclei were stained with Hoechst. (B) Analysis of PKR 
colocalization with viral proteins. BHK cells and MEFs were mock-infected or infected with WNV-Eg101  
(MOI of 5). At 24 and 30 h after infection, cells were permeabilized, fixed, and blocked overnight.  Cells 
were stained with anti-PKR and either anti-NS5, anti-NS3 or anti-NS1 antibodies and then AlexaFluor488 
(green) and AlexaFluor594 (red) conjugated secondary antibodies, respectively. Cell Nuclei were stained 
with Hoechst. (C) Analysis of PKR interaction with viral NS3 or NS5 proteins. BHK cells were mock-
infected (M), or infected with WNV-Eg101 (MOI of 5). At 26 h after infection, cells were lysed and S2 
fractions were prepared. Rabbit anti-PKR antibody or a rabbit IgG was used for immunoprecipitation.  
Immunoprecipitated proteins were separated by 10% SDS-PAGE and detected by Western blotting using 
anti-NS5 or anti-NS3 antibodies.  
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PKR does not colocalize with known cellular PKR inhibitors in WNV-infected cells. 

With the exception of PP1a, known cellular PKR inhibitors must remain associated with 

PKR to mediate their inhibitory effect and therefore would co-localize with PKR. Hsp90 

and Hsp70 have both been shown to inhibit PKR by masking its autophosphorylation 

sites (Donze et al., 2001; Pang et al., 2002; Pratt and Toft, 2003). In influenza infected 

cells, p58ipk is recruited by the viral NS1 protein into a complex with PKR where it binds 

to the PKR dimerization interface preventing activation (Lee et al., 1990). C114, an IL-11 

inducible nuclear dsRNA-binding protein that shuttles between the cytoplasm and 

nucleus, inhibits PKR activation through interactions with the PKR DRBMs (Yin et al., 

2003). To assess whether PKR is associated with a cellular PKR inhibitor in WNV-

infected cells, BHK cells were infected with WNV Eg101 at a MOI of 5 and at 24 h or 30 

h after infection, cells were fixed, permeabilized and incubated with anti-PKR and an 

antibody to a PKR inhibitor followed by incubation with fluorescent tagged secondary 

antibodies and visualization by confocal microscopy. Neither Hsp90, Hsp70, p58ipk, nor 

C114 were observed to colocalize with PKR in WNV-infected cells (Fig. 2.4A).  

 The HSV protein γ134.5 mediates recruitment of PP1a to dephosphorylate eIF2a 

(He et al., 1998). PP1a has also been reported to dephosphorylate PKR (Tan et al., 2002). 

PP1a did not concentrate in the perinuclear regions of WNV-infected cells or colocalize 

with PKR (Fig. 2.4A). Overexpression of human papillomavirus E6 protein was reported 

to induce PKR localization to P-bodies where it was sequestered (Hebner et al., 2006). 

PKR did not localize to P-bodies, detected with Dcp1a antibody, in WNV-infected cells 
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(Fig. 2.4A). These data suggest that suppression of PKR phosphorylation in WNV-

infected cells is not mediated by any of the tested cellular PKR inhibitors. 
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Figure 2.4. Analysis of PKR colocalization with known cellular PKR inhibitors in WNV-infected 
cells.  (A and B) Colocalization of PKR with known cellular PKR inhibitors. BHK cells were mock-
infected or infected with WNV-Eg101 (MOI of 5).  At 30 h after infection, cells were permeabilized, fixed 
and blocked overnight.  Cells were stained with anti-PKR and an antibody to a cellular PKR inhibitor and 
then with AlexaFluor488 (green) and AlexaFluor594/555 (red) conjugated secondary antibodies. (C) Nck 
protein levels in WNV-infected BHK cells. Cells were mock infected (M), or infected with WNV-Eg101 
(MOI of 5) for the indicated times. NS3, Nck-1, and actin were detected by Western blotting after 
separation of proteins by 10% SDS-PAGE. (D) Co-immunoprecipitation of Nck and PKR. BHK cells were 
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mock-infected (M) or infected with WNV-Eg101 (MOI of 5). At 24 h after infection, cells were lysed and 
S2 fractions were prepared. Rabbit anti-PKR antibody or a rabbit IgG was used for immunoprecipitation. 
Immunoprecipitated proteins were separated by 10% SDS-PAGE and detected by Western blotting using 
anti-Nck antibody. (E) Analysis of PKR phosphorylation in WNV-infected Nck-knockout cells. Nck-1,2-/- 
MEFs were mock infected (M) or infected with WNV-Eg101 (MOI of 5) for the indicated times. NS3, total 
PKR, phopho-Thr451 PKR, total eIF2a and phospho-Ser51 eIF2a were detected by Western blotting after 
separation of proteins by 10% SDS-PAGE. 
 

PKR colocalizes with the PKR inhibitor Nck in WNV-infected cells.  Nck has been 

shown to inhibit PERK-, PKR-, and HRI- but not GCN2-mediated eIF2a phosphorylation 

(Cardin et al., 2007). Nck binds to inactive PKR. However, dsRNA can outcompete Nck 

for PKR binding (Cardin and Larose, 2008). In WNV-infected BHK cells, Nck was 

observed to concentrate in the perinuclear region and to colocalize with PKR (Fig. 2.4B). 

Nck protein levels were high in uninfected cells and did not increase in WNV-infected 

BHK cells (Fig. 2.4C). Interaction between Nck and PKR was analyzed by co-

immunoprecipitation. Lysates made from WNV-infected BHK cells at 24 h after 

infection were incubated with rabbit-anti-PKR antibody or a control nonspecific rabbit 

IgG. The bound proteins were separated by SDS-PAGE and immunoblotted using a 

rabbit-anti-Nck or a mouse-anti-PKR antibody. Nck was co-immunoprecipitated by PKR 

antibody but not by the nonspecific IgG. Similarly, PKR was co-immunoprecipitated by 

Nck antibody. A higher amount of PKR was co-immunoprecipitated from WNV-infected 

cell lysates than from mock-infected cell lysates indicating increased Nck-PKR 

interaction in WNV-infected cells consistent with the increase in total PKR (Fig. 2.4D). 

A decrease in this interaction would be expected if WNV RNA competed with Nck for 

binding to PKR. The observed colocalization and association of Nck and PKR in WNV-
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infected cells suggests that most of the PKR that colocalizes with viral dsRNA in infected 

cells is inactive. 

 Mammalian genomes have two Nck genes. The Nck-1 and Nck-2 proteins 

encoded by these genes share 68% amino acid homology and have been reported to have 

redundant functions based on the results of studies with single and double-knock out 

MEFs (Latreille and Larose, 2006). As an additional means of determining whether Nck 

plays a role in the inhibition of PKR activation during WNV infection, Nck1-/-, Nck2-/- 

(Nck1,2-/-) MEFs were infected with WNV Eg101 at a MOI of 5. Similar to what was 

observed with control 129wt and C3H/He MEFs, total PKR significantly increased in 

WNV-infected Nck1,2-/- MEFs (Fig. 2.4E). Only a minimal increase in PKR 

phosphorylation levels was detected in WNV-infected Nck1,2-/- MEFs (Fig. 2.4E). 

Similar to what was seen with control MEFs, the ratio of P/T-PKR was lower than that in 

mock-infected Nck1,2-/- MEFs (Fig. 2.4E). Also, no increase in eIF2a phosphorylation 

was observed after WNV-infection in these MEFs (Fig. 2.4E). These results indicate that 

even when the PKR-associated inhibitor Nck is absent, PKR is still only minimally 

activated in WNV-infected cells.  

 

PKR autophosphorylation is induced by viral RNAs in vitro. PKR binds dsRNA in a 

sequence non-specific manner but the structure of the RNA plays a critical role in PKR 

activation. The binding of activating dsRNAs to PKR leads to the formation of active 

PKR dimers and release of the activating dsRNA. Activated PKR dimers have been 

reported to have reduced affinity to poly(I:C) (Jammi and Beal, 2001; Langland and 
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Jacobs, 1992; Lemaire et al., 2005). Viral PKR inhibitor RNAs, such as adenovirus VAI 

RNA and Epstein-Bar virus EBER-1 RNA, bind to PKR but their structures inhibit PKR 

activation (Garcia et al., 2006). Neither of these RNAs induced activation of PKR in vitro 

at any of the concentrations tested (McKenna et al., 2006; McKenna et al., 2007). In 

competition assays with an activator RNA, optimal inhibition by either VAI RNA or 

EBER-1 RNA was observed when concentrations of these RNAs were 2-10 times higher 

than that of an activator RNA.  

 A WNV genomic RNA fragment consisting of the 3' terminal 529 nts (3'sfRNA) 

accumulates in infected cells as well as in mouse brains (Lin et al., 2004; Scherbik et al., 

2006; Urosevic et al., 1997) and is generated by XRN1 5' digestion (Pijlman et al., 2008). 

The 3'sfRNA is significantly larger (529 nts) than known viral PKR inhibitor RNAs (VAI 

RNA 136 nts; EBER-1 RNA 157 nts). However, several regions of the mFold predicted 

structure of the 3'sfRNA (data not shown) are similar to the structures of the VAI and 

EBER-1 RNAs (McKenna et al., 2007). The ability of the WNV 3'sfRNA to inhibit PKR 

activation was tested in an in vitro PKR autophosphorylation assay. Poly(I:C) was used 

as a control activator RNA. Purified recombinant PKR (a gift from Graeme Conn, Emory 

University) was incubated with poly(I:C) or 3'sfRNA. Both RNAs induced PKR 

autophosphorylation (Fig. 2.5A). 

 Flavivirus genome RNAs contain conserved terminal RNA structures (Brinton, 

2002; Lindenbach, 2007). Since the structures of the WNV 3' and 5' terminal stem-loop 

(SL) RNA regions are similar to those of known viral RNA PKR inhibitors, the ability of 

these RNAs to inhibit PKR activation was also assessed. Both the 3'SL and 5'SL WNV 
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RNAs induced significant PKR autophosphorylation; the 5' SL RNA induced a 2-fold 

greater increase in PKR activation than the 3'SL RNA (Fig. 2.5B). Also, preincubation of 

either of these RNAs with PKR led to an increase not a decrease in PKR activation above 

that of either RNA alone. The data indicate that the WNV 3'sf, 3'SL and 5'SL RNAs can 

activate PKR in vitro. 
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Figure 2.5. In vitro PKR autophosphorylation assays. (A) Reaction mixtures contained 150 ng of 
purified PKR alone or with the indicated concentrations of in vitro transcribed WNV 3'sfRNA or poly(I:C) 
for 30 min. (B) Reaction mixtures contained 150 ng of purified PKR alone or with the indicated 
concentrations of in vitro transcribed WNV 3'SL or 5'SL RNA and/or poly(I:C) for 30 min, or preincubated 
with the 3'SL or 5'SL for 10 min and then with poly(I:C) for 30 min. γ32P-ATP was included in the 
reactions as a phosphate donor. Image Gauge 3.2 software was used to measure the relative band intensities 
of images acquired using a Fuji BAS 2500 analyzer. Results are representative of two independent 
experiments. 
 

Poly(I:C)-mediated PKR activation in WNV-infected BHK cells. As an additional 

means of analyzing whether PKR is actively suppressed in WNV-infected BHK cells, the 

ability of poly(I:C) to activate PKR in infected cells was assessed. In preliminary 

experiments, the minimum concentration required for maximum intracellular PKR 

activation was determined to be 50 μg/ml (data not shown). BHK cells were mock-

infected or infected with WNV Eg101 at a MOI of 5 and at 20 h and 30 h after infection, 
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cells were transfected with 50 μg/ml of poly(I:C) or incubated with transfection reagent 

alone for 1.5 h. An increase in total PKR levels was observed only in uninfected cells 

transfected with poly(I:C) (Fig. 2.6A). However, a similar increase in P-PKR, was 

observed in response to poly(I:C) transfection in both infected and uninfected cells (Fig. 

2.6A).  
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Figure 2.6. Analysis of active suppression and antiviral activities of PKR in WNV-infected cells. (A) 
Poly(I:C)-mediated PKR autophosphorylation in WNV-infected cells. BHK cells were mock-infected or 
infected with WNV-Eg101 (MOI of 5). At 20 or 30 h after infection, cells were transfected with 50 μg/ml 
of poly(I:C) in Celfectin II (+) or transfection reagent alone (-) for 1.5 h before cell lysis. Total PKR, 
phopho-Thr451 PKR and actin were detected in cell lysates by Western blotting after separation of proteins 
by 10% SDS-PAGE. (B) Viral yields produced by PKR-/- and wildtype MEFs infected with WNV Eg101 
(MOI of 5). Samples of culture fluid were harvested at the indicated times, and infectivity titers were 
determined by plaque assay on BHK cells. Virus titers are expressed as log10 PFU/ml Error bars indicate ± 
standard error of the mean (SEM) (n = 3).  
 
In additional experiments using lower poly(I:C) concentrations (10 or 25 ug/ml) similar 

levels of PKR activation were observed in infected and uninfected cells (data not shown). 

The data suggest that PKR phosphorylation is not actively suppressed in WNV-infected 

BHK cells and that a WNV infection does not interfere with the ability of PKR to 

respond to a dsRNA activator. 

 The antiviral effect of PKR in WNV-infected cells was assessed by comparing 

viral yields from WNV-infected wildtype MEFs to those from PKR-/- MEFs. Samples of 
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culture fluid collected at the indicated times and assayed for infectivity by plaque assay 

on BHK cells. Comparable virus titers were produced by both cell types at 12, 24 and 36 

h after infection (Fig. 2.6B) indicating that the presence of PKR does not have an 

antiviral affect on WNV infection.  

 

DISCUSSION 

 Infection of MEFs with WNV leads to the production of low levels of Type I IFN 

by 12 to 24 h after infection (Daffis et al., 2009). The initial IFN response to a WNV 

infection has been reported to be mediated by the RNA sensor RIG-I, while the amplified 

IFN response observed at later times after infection depends primarily on the MDA5 

RNA sensor but also to some extent on RIG-I (Fredericksen et al., 2008). PKR is known 

to be an ISG (Kuhen and Samuel, 1997; Tanaka and Samuel, 1994) and PKR levels 

increase in cells responsive to Type I IFN with time after WNV infection. The observed 

increase in total PKR levels during WNV infection of Type I IFN non-responsive BHK 

cells indicates that PKR levels are upregulated by an IFN-independent mechanism, 

possibly by the NFκB pathway. 

 PKR is typically activated by viral dsRNA structures. PKR can also be activated 

in MEFs by an IFN-dependent mechanism that requires Jak1- and Tyk2-mediated 

phosphorylation at specific PKR tyrosine residues in addition to autophosphorylation at 

the Thr446 and Thr451 residues (Su et al., 2007; Su et al., 2006). IFN treatment of 

uninfected, wild-type (PKR+/+) MEFs but not of PKR-/- MEFs leads to PKR-mediated 

eIF2a phosphorylation and a reduction in protein synthesis (Su et al., 2007).  The low 
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amount of PKR phosphorylation observed in IFN responsive, WNV-infected MEFs was 

not observed in WNV-infected IFNR1-/- MEFs suggesting that the observed level of 

PKR phosphorylation after WNV-infection of wildtype MEFs was due to IFN-induced 

PKR activation and not to activation by viral dsRNA. In addition, similar infectivity titers 

were produced by wildtype and PKR-/- MEFs infected with WNV. A previous study 

done with WNV virus-like particles (VLPs) containing WNV replicons concluded that 

PKR activation provides antiviral protection against WNV (Gilfoy and Mason, 2007). 

While PKR activation would be expected to have a negative effect on a flavivirus 

infection, similar to the data of the present study, Gilfoy and Mason (2007) observed a 

significant increase in total PKR but only a slight increase in PKR phosphorylation and 

no increase in eIF2a phosphorylation in WNV VLP-infected cells (Gilfoy and Mason, 

2007). While a similar number of foci forming units (FFU) was detected in wildtype and 

PKR-/- MEFs 48 h after infection with WNV VLPs, IFN-treatment led to a reduction in 

FFUs only in wild-type MEFs suggesting that PKR was activated by IFN and not by 

WNV RNA replication. These results are consistent with those obtained in the present 

study. Another study that utilized VLPs containing a WNV replicon with a C-terminal 

EMCV IRES driving translation of a neomycin gene ORF (Jiang et al., 2010), reported a 

reduction in virus titers in cells that overexpressed PKR compared to control cells. The 

EMCV IRES was previously shown to activate PKR in vitro and in vivo (Arnaud et al., 

2010; Shimoike et al., 2009) and this may have contributed to the PKR activation 

observed.  
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 PKR exerts its antiviral effect through phosphorylation of eIF2a. Phosphorylation 

of as little as 20% of the eIF2a in a cell results in a significant reduction in protein 

synthesis (Sudhakar et al., 2000). PKR also plays a regulatory role in multiple cell 

signaling pathways and a number of cellular proteins have been identified that have an 

inhibitory effect on PKR (Garcia et al., 2006; Garcia et al., 2007). Among the cellular 

inhibitors tested, only Nck colocalized with the PKR that concentrated in the perinuclear 

region of WNV-infected cells. Since Nck interacts with inactive PKR, the detection of 

Nck associating with PKR in the perinuclear region of infected cells suggested that the 

majority of PKR is in the inactive state. An interaction between Nck and PKR in both 

infected and uninfected cells was indicated by co-immunoprecipitation. Nck binding to 

PKR can be outcompeted by dsRNA (Latreille and Larose, 2006). Even though WNV 

dsRNA is present in infected cells and increases with time after infection, it does not 

compete with Nck for binding to PKR. The minimal activation of PKR in WNV-infected 

Nck1,2-/- MEFs as indicated by low levels of PKR phosphorylation similar to those in 

wildtype MEFs provided additional evidence that PKR was not activated by viral dsRNA 

in infected cells. The perinuclear concentration of PKR observed in WNV-infected cells 

may be due to virus-directed ER membrane rearrangement. 

 Since eIF2a phosphorylation leads to attenuation of protein synthesis, viruses 

have evolved mechanisms to avoid, block or suppress PKR activation. Some viruses use 

alternative translational mechanisms. For example, caliciviruses encode viral proteins 

that act as cap-analogues while picornaviruses initiate translation from an internal 

ribosome entry site (IRES) in an eIF2a-independent manner (Lopez-Lastra et al., 2010). 
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Other viruses, such as adenoviruses and Epstein Barr virus produce small RNA inhibitors 

of PKR (Langland et al., 2006; Sharp et al., 1993). During influenza, reovirus, and herpes 

simplex virus infections, a viral protein either directly or indirectly inhibits PKR activity 

(Garcia et al., 2007). The WNV genome RNA utilizes cap-dependent translation and so is 

susceptible to eIF2a-mediated translation inhibition. However, shut-down of host 

translation does not occur in flavivirus infected cells (Lindenbach, 2007). We previously 

observed only low levels of eIF2a phosphorylation in WNV-infected BHK cells (Brinton, 

2002; Emara and Brinton, 2007). Consistent with this observation, no increase in PKR 

phosphorylation in WNV-infected BHK cells and only a slight increase in infected MEFs 

mediated by IFN was observed in the present study. The observation that poly(I:C) 

induced similar levels of PKR phosphorylation in mock-infected and WNV-infected cells 

suggesting that PKR phosphorylation is not actively suppressed in WNV-infected cells. 

The observation that similar virus yields were produced by wildtype and PKR-/- MEFs 

infected with WNV confirms that the presence of PKR does not have an antiviral effect 

on a WNV infection. 

 Although terminal genomic WNV SL RNAs were able to activate PKR in vitro, 

PKR activation was not observed in WNV-infected cells even when high amount of 

genomic 3'sfRNA and replication intermediate RNA were present. Although the reasons 

why viral RNA does not bind and activate PKR in WNV-infected cells are not known, 

known characteristics of flavivirus infections provide possible clues. The viral capsid 

protein forms dimers that associate with ER membranes and viral RNA (Lindenbach, 

2007) and these interactions may prevent PKR from binding to the genomic RNA. The 
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WNV genomic 3'SL RNA was previously reported to bind to several cellular proteins 

that are thought to be required for efficient initiation of viral minus strand RNA synthesis 

(Brinton, 2002; Davis et al., 2007). The binding of cell proteins to the 3'SL RNA in 

infected cells may prevent the interaction of this RNA region with PKR. The WNV 

genomic RNA contains a 5' cap which is an RNA modification reported to prevent PKR 

activation by cellular RNAs (Nallagatla et al., 2007). In addition to the 5' cap, 

interactions between the 5'SL and translation factors may mask this structure from 

detection by PKR. Alternatively, an interaction between NS5 and the 5' nts of the viral 

genome (Dong et al., 2008) may mask RNA structures in this region. Flaviviruses 

replicate in the cytoplasm and induce extensive ER membrane proliferation and 

rearrangement. Perinuclear vesicles that are formed by invaginations of the rough ER 

membrane contain the double-stranded viral RNA replication intermediates (Gillespie et 

al., 2010; Mackenzie, 2005; Welsch et al., 2009). The sequestering of replicating dsRNA 

in vesicles as well as the close proximity of viral RNA replication sites to sites of 

translation and packaging of genomic RNA may allow WNV dsRNA regions to evade 

detection by PKR. The localization of the 3'sfRNA in infected cells is not known. It is 

possible that it may be sequestered and inaccessible to PKR. GU wobble pairs in RNAs 

were previously shown to inhibit PKR activation in vitro (Nallagatla and Bevilacqua, 

2008). Not only the number but also the clustering of GU pairs is required to sufficiently 

alter a dsRNA structure so that it is unable to activate PKR (Nallagatla and Bevilacqua, 

2008). More than 500 GU wobble base pairs (bp) are predicted to form in a whole 

genome fold of the WNV Eg101 RNA (Ann Palmenberg, unpublished data). In the 
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context of the whole genome, 13 of the 22 GU pairs formed by the 3'sfRNA sequence are 

long distance interactions with nts located near the 5' end of the viral RNA. Most of these 

GU pairs are clustered. However, the "free" 3'sfRNA is predicted to form only 12 GU 

pairs and these are not clustered. The decrease in GU pairs would be expected to increase 

the ability of the "free" 3'sfRNA to activate PKR. However, PKR activation was not 

observed to increase in infected cells with the accumulation of this RNA fragment.  

 Although an overlap in the species of RNAs recognized by different patter 

recognition receptors has been reported, the RNA recognized by RIG-I, MDA5 and 

TLRs, which lack DRBMs, likely differs from that recognized by PKR (Nallagatla and 

Bevilacqua, 2008). The WNV RNA sequences or structures that can serve as targets for 

each of these RNA sensors have not been determined.  

 

MATERIALS AND METHODS 

Cell lines and viruses. Simian virus 40 (SV40)-transformed C3H/He and C57BL/6 

mouse embryo fibroblast (MEF) lines, as well as BHK-21 WI2 cells (Vaheri et al., 1965), 

were grown as previously described (Scherbik et al., 2006). PKR+/+ and PKR-/- 

(generated by Charles Weissmann, the Scripps Research Institute; provided by Scott 

Kimball, Pennsylvania State University), SV40-transformed IFNR1-/- and 129 wild-type 

(129wt) (provided by Herbert Virgin, Washington University, St. Louis, Mo), Nck1,2-/-  

(provided by Tony Pawson, Samuel Lunenfield Research Institute, Ontario, Canada) 

MEFs were maintained at 37°C in 5% CO2 in Dulbecco's modified Eagle medium 
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(DMEM) containing high glucose, 10% heat inactivated fetal bovine serum (FBS), 100 

μg/ml streptomycin and 100 IU/ml penicillin.  

 Stocks of lineage 1 (Eg101, Tx113 and NY99) and lineage 2 (SPU and Mg78) 

strains of WNV were prepared by infecting BHK cells at a multiplicity of infection 

(MOI) of 0.1 and harvesting culture fluid 32 h after infection. Clarified culture fluid (1 x 

108 PFU/ml, Eg101; 3 x 106 PFU/ml, Tx113; 5 x 107 PFU/ml, NY99; 2 x 107 PFU/ml, 

SPU; 3 x 106 PFU/ml, Mg78) was aliquoted and stored at -80°C. Plaque assays to 

measure virus titer were done in BHK cells as previously described (Scherbik et al., 

2006). 

Confocal microscopy.  BHK cells (2 x 103 cells per well) were seeded on 12.5-mm 

coverslips, in 24-well plates and 24 h later, the cells were counted and infected with 

WNV-Eg101 at a MOI of 5. At the indicated times, cells were fixed in 4% 

paraformaldehyde and then permeabilized using cold 100% methanol. The cells were 

washed in PBS and incubated overnight at 4ºC in blocking buffer (5% heat inactivated 

horse serum in PBS).  The cells were then incubated with a primary antibody diluted in 

blocking buffer for 1 h at room temperature, washed three times with PBS, and incubated 

for 1 h at room temperature with AlexaFluor-350, -488, -594 or -555 conjugated 

secondary antibodies (Invitrogen) diluted in blocking buffer. Cell nuclei were stained 

with 0.5 µg/ml Hoechst 33258 (Molecular Probes) added during the secondary antibody 

incubation. Coverslips were mounted with Prolong mounting medium (Invitrogen), and 

the cells were viewed and photographed with a Zeiss LSM 510 confocal microscope 

(Zeiss, Germany) using either a 63X or 100x oil immersion objective. The images were 
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merged and analyzed using Zeiss software version 3.2. The same camera settings were 

used for all images in an experimental series. Primary antibodies used were: mouse anti-

PKR (1:100) or rabbit anti-PKR (1:100) (Santa Cruz Biotechnology), mouse anti-dsRNA 

(1:200) (English and Scientific Consulting, Hungary), mouse anti-Hsp90 (1:100) 

(Stressgen), mouse anti-Hsp70 (1:100) (Stressgen), rabbit anti-p58ipk (1:100) (Cell 

Signaling), rabbit anti-PP1a (1:100) (Cell Signaling), anti-Dcp1a (a gift from J. Lykke-

Anderson, University of Colorado, Boulder, CO), rabbit anti-Nck (Millipore), mouse 

anti-C114 (Sigma Aldrich) and mouse-anti-RLP18 (Sigma Aldrich). 

Co-immunoprecipitation assay. BHK cells (2 × 107) were mock-infected or infected 

with WNV at a MOI of 5. At 26 h after infection, cells were collected in NP-40 lysis 

buffer [50 mM sodium phosphate (pH 7.2), 150 mM NaCl, 1% Nonidet P-40, and EDTA-

free Complete Mini Protease Inhibitor Cocktail (Roche)]. Cell lysates were incubated on 

ice for 30 min, sonicated, and then centrifuged at 2,000 × g for 5 min at 4°C to make S2 

fractions. S2 lysates (500 μl per reaction containing ~500 μg of total protein) were 

incubated with 1 μg of rabbit anti-PKR-1 or a nonspecific rabbit IgG antibody overnight 

at 4°C with rotation. Protein G-magnetic beads (New England Biolabs) were added and 

incubation was continued for 1 h. Beads were collected magnetically, washed seven times 

with 1 ml of lysis buffer, and proteins were eluted by boiling for 5 min. Proteins were 

separated by 10% SDS/PAGE, transferred to nitrocellulose membranes, and analyzed by 

Western blotting using one of the following antibodies: mouse anti-PKR (Santa Cruz), 

rabbit anti-Nck (Millipore), mouse anti-NS5 (a gift from Pei-Yong Shi, Wadsworth 

Center, NY State Department of Health, NY) or goat anti-NS3 (R&D systems). 
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Western blot analysis.  Cells were seeded into 12-well plates and grown to ~100% 

confluency and infected at a MOI of 5.  Cells were lysed in RIPA buffer [1X PBS, 1% 

NP-40, 0.5% sodium deoxycholate, 1% SDS and protease inhibitor cocktail (Roche)] at 

the indicated times after infection, lysates were collected and 2X Sample Buffer [20% 

SDS, 25% glycerol, 7% 0.5M Tris-HCl (pH 6.8), 0.5% bromophenol blue,and 5% 2-

mercaptoethanol] was added.  The samples were boiled for 5 min and proteins were 

resolved by SDS-PAGE.  The proteins were transferred to a nitrocellulose membrane. 

The membrane was blocked with 5% BSA or 5% non-fat dry milk (NFDM) in 1X TBS + 

0.05% Tween-20 (TBST) for 1 h at room temperature. A primary antibody was then 

incubated with the membrane overnight at 4ºC, the membranes were washed 3 times in 

1X TBST and then incubated with a secondary antibody diluted in 5% NFDM-TBST for 

1 h at room temperature. After washing the membrane twice in 1X TBST and once in 1X 

TBS, membranes were processed for enhanced chemiluminescence using a Super-Signal 

West Pico detection kit (Pierce, Rockford, IL) according to the manufacturer's 

instructions. Membranes were incubated with one of the following primary antibodies: 

anti-p-eIF2α (Ser51) (Cell Signaling) (1:500 in 5% BSA-TBST) and anti-eIF2α (1:1000 

in 5% NFDM-TBST) (Cell Signaling), anti-PKR (1:3000 in 5% NFDM-TBST) (Santa 

Cruz), anti-PKR-pT451 (1:500 in 5% BSA-TBST) (Millipore), anti-Nck (1:1000 in 5% 

NFDM-TBST) (Millipore) or anti-actin (1:40,000 in 5% NFDM-TBST) (Abcam).  Anti-

Rabbit-HRP (1:2000) and anti-Mouse-HRP (1:2000) (Cell Signaling) secondary 

antibodies were both diluted in 5% NFDM-TBST. 
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In vitro transcription of viral RNA. WNV3'(+)SL RNA, WNV5'(+)SL RNA, and the 

WNV 3' small fragment RNA (3'sfRNA) were in vitro transcribed using a MAXIscript in 

vitro transcription kit (Ambion) in 20-µl reactions containing T7 RNA polymerase (30 

U), a PCR purification kit (Qiagen)-purified PCR product (1 µg), 0.8 mM [α-32P]GTP 

(3,000 Ci/mmol, 10 mCi/ml; Perkin Elmer), and 0.5 mM CTP, UTP, and ATP. Unlabeled 

viral RNA was in vitro transcribed as described above, except that 0.5 mM of each 

nucleoside triphosphate was added to the reaction mixture. The in vitro transcription 

mixture was incubated at 37°C for 2 h, and transcription was stopped by the addition of 

DNase I (1 U). The reaction mixture was heated at 95°C for 5 min in 2X Gel Loading 

Buffer II (Ambion) and the RNA transcripts were purified by electrophoresis on a 6% 

polyacrylamide gel containing 7 M urea. The wet gel was autoradiographed, the 32P-

labeled RNA band as well as unlabeled RNA bands loaded onto adjacent lanes were 

excised. RNA was eluted from the gel slices by rocking overnight at 4°C in elution buffer 

[0.5 M NH4OAC, 1 mM EDTA, and 0.2% SDS]. Eluted RNA was filtered through a 

0.45-µm cellulose acetate filter unit (Millipore), ethanol-precipitated, resuspended in 

water, aliquoted, and stored at -80°C. The amount of radioactivity incorporated into each 

RNA probe was measured in a scintillation counter (model LS6500; Beckman), and the 

specific activity was estimated using Ambion's specific activity calculator (Ambion). 

Unlabeled RNA concentrations were calculated based on UV absorbance measured at 

260 nm. 

RNA secondary structure prediction. The secondary structure of each RNA probe used 

in this study was predicted using Mfold version 3.1 software (Zuker, 2003). 
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PKR autophosphorylation assay. Recombinant human PKR expressed and purified 

from E. coli was a gift from Graem Conn, Emory University (Conn, 2003). Purified PKR 

(150 μg) was incubated with in vitro transcribed viral RNAs in kinase buffer [5 mM Tris-

HCl, (pH 7.6), 1 mM MgCl2, 25 mM KCl, 0.25% Triton-X 100, and RNase Inhibitor 

(Ambion)] on ice for 10 min. Poly(I:C), 4X Mg/ATP cocktail (Millipore) [20 mM 

MOPS, pH 7.2, 25 mM β-glycerophosphate, 5 mM EGTA, 1mM Na3VO4, 1 mM 

dithiothreitol, 75 mM MgCl2, and 0.5 mM ATP] and 10 μCi 32p-γ-ATP (Perkin Elmer) 

were added to the reactions and incubated at 30°C for 20 minutes. The reactions were 

stopped by addition of 2X Sample Buffer [20% SDS, 25% glycerol, 7% 0.5M Tris-HCl 

(pH 6.8), 0.5% bromophenol blue and 5% 2-mercaptoethanol added fresh], and the 

proteins were resolved by SDS-PAGE. Gels were fixed in 30% methanol and 10% 

acetone, incubated in Autofluor image intensifier solution (National Diagnostics) and 

then incubated in anti-cracking buffer [7% methanol, 7% acetone and 1% glycerol] at 

room temperature, dried and analyzed using a Fuji BAS 2500 analyzer (Fuji Photo Film 

Co.) and Image Gauge software (Science Lab, 98, version 3.12; Fuji Photo Film Co.). 

Poly(I:C) transfection.  To activate intracellular PKR, 1 to 100 μg of poly(I:C) (Sigma 

Aldrich) were transfected into BHK cell monolayers in 12-well plates. Briefly, 5 μl of 

poly(I:C) was diluted in 95 μl OptiMEM I Reduced Serum media (Invitrogen) and 

incubated with 5 μl Celfectin II transfection reagent (Invitrogen) diluted in 95 μl 

OptiMEM for approximately 20 minutes. The poly(I:C)–Celfectin complexes were added 

to the cell monolayers (200 μl per well), the volume was increased to 1 ml with 

OptiMEM and the monolayers were incubated for 2 h at 37°C.   
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CHAPTER 3 

Analysis of a spontaneous WNV infectious clone mutant. 

 

INTRODUCTION 

 A final step in the initiation of eukaryotic mRNA translation is the delivery of a 

methionyl-tRNA by eIF2 within a ternary complex to the 40S ribosomal subunit of the 

43S preinitiation complex (Garcia et al., 2007). Under stressful conditions, 

phosphorylation of Ser51 of the alpha-subunit of eIF2 by one of the eIF2a kinases leads 

to inhibition of the exchange of GDP-bound eIF2a for GTP-eIF2a. This results in a 

"stalled" 43S complex and leads to an attenuation of protein synthesis (Garcia et al., 

2007). Not all host translation is compromised and a subset of mRNAs escapes 

translation shut-off due to the presence of IRESs, multiple ATGs in close proximity to 

one another or the presence of unique RNA hairpin structures present within their 5' 

UTRs making their initiation independent of eIF2a (Mueller and Hinnebusch, 1986; 

Ventoso et al., 2006; Wilson et al., 2000). Ribosomes already elongating on mRNAs with 

a stalled 48S preinitiation complex continue translating and then fall off. RNA-binding 

proteins such as TIA-1, TIAR or G3BP act as nucleating proteins that bind to the stalled 

pre-initiation complexes and the mRNA and then aggregate to form stress granules (SGs) 

(Anderson and Kedersha, 2008).  The mRNAs in SGs are sequestered until the cell 

becomes committed to either survival or death (McEwen et al., 2005).  If the cellular 

stress is relieved or overcome, then SGs dissociate allowing eIF2a-GTP pre-initiation 

complexes to initiate translation of the mRNAs (Fig. 3.1).  On the other hand, if the cell 
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is committed to death, these mRNAs will be sent to processing bodies (PBs).  PBs 

contain proteins, including Dcp1a and Xrn1, that mediate decapping and degradation of 

mRNAs (Anderson and Kedersha, 2008; Buchan and Parker, 2009). 

 

Figure 3.1. Translational initiation in the presence or absence of stress. In the absence of stress, eIF2B 
promotes the charging of the eIF2-GTP-tRNAMet ternary complex by exchanging GDP for GTP. When the 
eIF2-GTP-tRNAMet ternary complex is available, a canonical 48S preinitiation complex is assembled at 
the 5' end of capped transcripts and scanning begins. Upon recognition of the initiation codon by the 
anticodon of tRNAMet, eIF5 promotes GTP hydrolysis, and early initiation factors are displaced by the 60S 
ribosomal subunit. As additional ribosomes are added to the transcript, the mRNA is converted into a 
polysome. In stressed cells, phosphorylation of eIF2a by PKR, PERK, HRI or GCN2 converts eIF2 into a 
competitive antagonist of eIF2B, depleting the stores of eIF2/GTP/tRNAMet. Under these conditions, TIA-
1 is included in a non-canonical, eIF2/eIF5-deficient 48S* preinitiation complex (composed of all 
components of the 48S pre-initiation complex except eIF2 and eIF5) that is translationally silent. TIA-1 
self-aggregation then promotes the accumulation of these complexes at discrete cytoplasmic foci known as 
stress granules. Figure and legend modified from (Anderson and Kedersha, 2002). 
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 Viral mRNAs compete with cellular messages for components of the translation 

machinery. Accordingly, many viruses have developed strategies to redirect ribosomes to 

selectively translate viral RNAs (Lopez-Lastra et al., 2010). Some viral components have 

been shown to interact with proteins found in SGs (Anderson and Kedersha, 2008). 

Sendai virus trailer RNAs bind to and sequesters TIAR leading to inhibition of SG 

assembly (Iseni et al., 2002). A stem-loop structure formed at the 3' end of the minus 

strand of WNV has been shown to bind to TIAR suggesting an important role for TIAR 

in WNV infection; these observations are further supported by the fact that the efficiency 

of WNV replication in TIAR -/- MEFs is reduced (Li et al., 2002).  

 WNV NS3 is a multifunctional protein that encodes serine protease, RNA 

helicase and RNA-NTPase domains (Brinton, 2002). The NS3-NS2B complex associates 

with the ER membrane and this association is necessary for efficient NS3 processing of 

the viral polyprotein (Brinton, 2002). As a component of the ER bound viral replication 

complex, NS3 interacts with the viral polymerase, NS5 and this interaction coordinates 

the helicase, polymerase and capping activities during RNA replication by the viral 

replication complex (Brinton, 2002; Kapoor et al., 1995). 

 WNV strains have been classified into two main lineages based on nucleotide 

sequence homology. Lineage I strains are associated with epidemics in various parts of 

the world while lineage II strains are primarily endemic in Africa (Gubler, 2007). The 

generation of a full-length cDNA infectious clone of a positive-strand RNA virus 

represents a powerful technique for studying these viruses. Mutations are made in DNA 

and then the infectious clone is used as a template to in vitro transcribe full-length, 
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infectious genomic RNA that when transfected into cells initiates an infection. Mutant 

viruses generated can be used to investigate the various steps of the viral replication cycle 

and pathogenesis (Boyer and Haenni, 1994). One obstacle in construction of many 

flavivirus infectious clones has been instability of the full-length cDNA in E. coli (Ruggli 

and Rice, 1999). The initial cDNA clone for yellow fever virus was maintained as 

separate 3' and 5' clones and ligated in vitro prior to RNA transcription (Rice et al., 

1989). 

 To generate the first WNV infectious clone (IC), a lineage II virus strain (B956) 

that had been serially passaged multiple times and for which a sequence was available 

was used to construct an infectious clone cDNA (W956) (Yamshchikov et al., 2001). 

Because of the lack of a 3' sequence clone for the B956 passaged virus, a 3' terminal 

sequence (starting from within the C-terminal region of the NS5 gene to the end of 

3'UTR) derived from the lineage I strain Eg101 were used to complete the cDNA clone 

(Fig. 3.2).  

B956 Eg101

 

Figure 3.2.  Schematic of the IC virus genome. The region comprising sequences from B956 is indicated 
with a blue line. The chimeric region from Eg101 is indicated with a red line. 
 

 Compared to the original B956 virus, the passaged W956 virus contains multiple 

nucleotide substitutions throughout the length of the genome as well as a 76 nt deletion 
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within the 3' UTR (Yamshchikov et al., 2004; Yamshchikov et al., 2001). W956 IC virus 

has been shown to efficiently induce SGs in infected cells (Courtney et al., unpublished 

data) but WNV Eg101 infections induce SGs inefficiently (Emara and Brinton, 2007). 

Virus isolated from the culture fluid of BHK cells transfected with W956 IC-derived 

RNA is designated IC virus in this study. When the IC virus was passaged twice in BHK 

cells at a MOI of 0.1, the IC-P mutant virus was generated. The current study provides 

data that indicate that the IC-P virus infection does not induce SGs efficiently but do 

induce formation of NS3 granules that persist throughout the infection. 

 

RESULTS 

SG formation in IC-P infected BHK cells. Up to 30% of BHK cells infected with WNV 

IC virus produced SGs while 3% or less produce SGs in response to WNV Eg101 

infection (Courtney et al., unpublished data).  The ability of IC-P virus to induce the 

formation of SGs was assessed. BHK cells were mock-infected or infected with IC virus 

or IC-P virus at a MOI of 5. At 30 h after infection, cells were fixed, permeabilized and 

incubated with anti-NS3 and anti-eIF3g antibody, followed by incubation with 

fluorescent tagged secondary antibodies and visualization by confocal microscopy. NS3, 

a viral nonstructural protein, was used as a marker of infected cells and eIF3g was used 

as a marker of SGs. As a positive control, mock-infected cells were treated with 0.5 mM 

arsenite for 30 min to induce SG formation. SGs were observed in arsenite-treated cells 

as well as in IC-infected cells; however, IC-P infection did not lead to the formation of 

SGs (Fig. 3.3). Large cytoplasmic granules were detected with anti-NS3 antibody in most 
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IC-P virus infected cells at all times after infection but only in a few IC virus-infected 

cells at early times after infection (Fig. 3.3). No colocalization was observed between 

NS3 and eIF3g, a marker of SGs. These results suggest that passaging of the IC virus led 

to the generation of a mutant that does not induce the formation of SGs but does 

efficiently induce NS3 "granule" formation. 

Mock
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Figure 3.3. NS3 granule formation in IC-P infected BHK Cells. BHK cells were mock-infected or 
infected with WNV IC or WNV IC-P (MOI of 5). Positive control cells were treated with 0.5 M arsenite for 
30 min. At 24 h or 36 h after infection, cells were permeabilized, fixed and blocked overnight. Cells were 
stained with anti-NS3 and anti-eIF3g and then with AlexaFluor488 (green) and AlexaFluor555 (red) 
conjugated secondary antibodies, respectively. 
 
 
Formation of NS3 granules in WNV IC-P infected cells. The time course of NS3 

granule formation was next investigated. BHK cells were mock-infected or infected with 

IC or IC-P virus. Mock-infected cells were treated with 0.5 mM arsenite for 30 min as a 

positive control for SGs. At 24 h or 36 h, cells were fixed, permeabilized and incubated 

with anti-NS3 and anti-eIF3g antibodies, followed by incubation with fluorescent tagged 
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secondary antibodies and visualization by confocal microscopy. SGs were observed at 24 

h and 36 h in IC virus-infected cells but not in IC-P virus-infected cells at either time 

(Fig. 3.3). At 24 h after infection, NS3 granules were observed in most BHK cells 

infected with IC-P virus but only in a few cells infected with IC virus. Whereas the 

majority of NS3 granules had dispersed in IC virus-infected cells by 36 h, NS3 granules 

were still present in the majority of IC-P virus-infected cells (Fig. 3.3). The NS3 granules 

were mainly located at the cytoplasmic periphery of the NS3 stained area around the 

nucleus.  

 

Analysis of the presence of other viral non-structural proteins in the NS3 granules.  

WNV replication complexes contain the viral non-structural proteins NS3, NS2A, NS2B, 

NS4A and NS4B in a membrane bound complex, the viral RdRpe NS5 and replicating 

viral RNA. Some NS1 is thought to associate with replication complexes since it has 

been shown to play a role in viral replication (Lindenbach, 2007). NS3 has been show to 

interact with NS5 (Kapoor et al., 1995). To determine whether the NS3 granules observed 

during IC-P virus infection also contain NS5, NS1 or viral dsRNA, BHK cells were 

mock-infected or infected with IC-P virus at a MOI of 5 At 26 h after infection, cells 

were fixed, permeabilized and incubated with anti-NS3 and anti-NS5, anti-NS1 or anti-

dsRNA antibody, followed by incubation with fluorescent tagged secondary antibodies 

and visualization by confocal microscopy. Although perinuclear co-localization was 

observed between NS1 and the diffuse NS3, NS1 did not colocalize with the NS3 

granules (Fig. 3.4A). The same distribution was observed for NS5 (Fig. 3.4B). Also, viral 
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dsRNA did not colocalize with the NS3 granules. Interestingly, dsRNA foci were 

detected around the NS3 granules (Fig. 3.4C and D). These data suggest that the NS3 

granules are not active viral replication complexes.  
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Figure 3.4. NS3 localization with IC-P viral replication sites.  BHK cells were mock-infected or infected 
with WNV IC-P (MOI of 5). At 26 h after infection, cells were permeabilized, fixed and blocked overnight. 
Cells were stained with anti-NS3 and anti-NS1 (A), anti-NS5 (B) or anti-dsRNA (C and D) and then with 
AlexaFluor488 (green) and AlexaFluor555/594 (red) conjugated secondary antibodies. 
  

 The localization of the NS3 granules to cellular compartments within WNV IC-P 

virus-infected cells was next assessed. To determine whether NS3 granules colocalize 

with PBs, BHK cells were mock-infected or infected with WNV IC-P virus at a MOI of 
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5. At 26 h after infection, cells were fixed, permeabilized and incubated with anti-NS3 

and anti-hDcp1a antibody, a marker of PBs, followed by incubation with fluorescent 

tagged secondary antibodies and visualization by confocal microscopy. As expected 

based on results obtained with WNV Eg101 and IC virus infections, the number of PBs 

decreased but the size increased with time after infection. However, PBs did not 

colocalize with IC-P virus-induced NS3 granules (Fig. 3.5A).  
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Figure 3.5. NS3 granule localization within IC-P infected cells. BHK cells were mock-infected or 
infected with WNV IC-P (MOI of 5). At 26 h after infection, cells were permeabilized, fixed and blocked 
overnight. Cells were stained with anti-NS3 and anti-Dcp1a (A), anti-α-Tubulin (B), anti-CoxIV (C) or 
anti-Calnexin (D) and then with AlexaFluor488 (green) and AlexaFluor555/594 (red) conjugated secondary 
antibodies. 
 
 The cellular localization of NS3 granules was further assessed using cellular 

markers specific to the mitochondria (anti-coxIV), cytoskeleton (anti-α-tubulin) and ER 

(anti-calnexin). BHK cells were mock-infected or infected with WNV IC-P virus at a 

MOI of 5. At 26 h after infection, cells were fixed, permeabilized and incubated with 

anti-NS3 and the indicated antibodies, followed by incubation with fluorescent tagged 

secondary antibodies and visualization by confocal microscopy. No colocalization was 

observed between the NS3 granules and mitochondria or microtubules (Fig. 3.5B and C). 
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In contrast, strong colocalization was observed between the NS3 granules and calnexin 

(Fig. 3.5D). These data suggest that the NS3 granules formed in IC-P virus-infected cells 

localize to ER derived membranes as do viral replication complexes but to different 

regions of the ER membrane. 

 

Sequence analysis of IC-P virus. The phenotypic differences observed between the IC-P 

virus and the parental IC virus suggest that a mutation(s) occurred during passage of the 

IC virus. The genome is ~11 Kb in length. Individual nonstructural protein genes were 

sequenced to try to find the mutation(s) responsible for the formation of NS3 granules 

and the ability to suppress SG formation. BHK cells were infected with IC or IC-P virus 

at a MOI of 5. At 32 h, culture fluids were collected and viral genomic RNA was 

isolated. To generate viral gene cDNAs for sequencing, One-step RT-PCR was done 

using primers specific to sequences flanking each gene to be sequenced. The generated 

cDNAs were then subcloned into bacterial plasmids prior to amplification and 5 clones 

for each gene from each virus were selected for sequences. No mutations were identified 

in the IC-P NS1, NS2A, NS3, NS4A or NS5 genes. However, a mutation(s) may have 

occurred in a region of the viral RNA that has not yet been sequenced. To obtain a 

complete genomic sequence as well as analyze the diversity of the virus population, viral 

genomic RNA was extracted and purified from IC virus and IC-P virus stocks and sent to 

collaborators for 454 deep sequencing. The 454 sequencing analysis method is orders of 

magnitude more sensitive than traditional Sanger sequencing and allows identification of 

nucleotide frequencies at specific positions (Green et al., 2006). Initial deep sequencing 
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results identified a single nucleotide mutation that resulted in a coding mutation in the 

NS4B viral protein. The number of sequencing reads for the IC-P and IC genomic RNAs 

was low due to technical issues with the sequencing reaction. While there were sufficient 

sequencing reads to generate a consensus sequences for the IC-P virus, the number of 

reads was low and the sequence for the IC genomic RNA contained some gaps which 

may contain mutations between the two RNAs. Further deep sequencing analysis are 

underway to confirm our initial sequencing data. 

 

DISCUSSION 

 Infectious cDNA clones of viruses have been utilized to study various aspects of 

viral replication. Bovine diarrhea virus and Dengue virus infectious clones were utilized 

to demonstrate the importance of NS3 helicase and/or NTPase activities for viral minus-

strand RNA synthesis and virus viability (Gu et al., 2000; Matusan et al., 2001). Dengue 

virus infectious clones engineered with deletions in either the plus-strand 3' or 5' terminal 

structures did not replicate (Cahour et al., 1995; Lai et al., 1991; Men et al., 1996). 

Similarly, deletion of the 3' UTR of a Kunjin replicon was lethal (Khromykh and 

Westaway, 1997). Deletions within the 3' UTR regions of Dengue virus infectious clones 

resulted in mutant viruses that were attenuated and, in some cases, displayed altered 

phenotypes (Lai et al., 1991; Men et al., 1996). A WNV infectious clone harboring a 

mutation in the EF-1a binding site exhibited poor replication and a small plaque 

phenotype. Passaging of the resultant virus produced partial revertants of the mutated 

sequences (Davis et al., 2007) demonstrating that a selective advantage in replication 
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efficiency is conferred by the wild-type sequence. The WNV infectious clone used in this 

study is a chimeric clone composed of W956 5' and Eg101 3' sequences (Fig. 3.2). 

Although, WNV-IC infections in BHK cells efficiently induced SG formation, infections 

with the passaged WNV-IC virus did not. These results suggest that the WNV-IC virus 

was outcompeted by a mutant generated by a viral polymerase error.   

 Flavivirus replication is associated with membrane rearrangement and induction 

of perinuclear vesicles that enclose viral replication complexes within ER membrane 

invaginations (Gillespie et al., 2010; Mackenzie, 2005; Welsch et al., 2009). As the 

infection progresses, these vesicles accumulate and become interconnected within vesicle 

packets. Genomic RNA synthesized within replication complexes exit the vesicles 

through neck-like pores that connect the vesicles to the cytoplasm (Gillespie et al., 2010; 

Welsch et al., 2009). The WNV NS2B/NS3 protease complex, along with cellular 

proteases, cleave the viral polyprotein to generate the mature viral proteins. The NS3 

protein does not contain a transmembrane domain but associates with the ER membrane-

bound NS2A, NS2B, NS4A and NS4B complex via interaction with the NS3 cofactor, 

NS2B. Overexpression of either the hydrophobic NS4A and NS4B proteins induced 

membrane rearrangements similar to those observed in infected cells (Miller et al., 2007; 

Roosendaal et al., 2006; Welsch et al., 2009; Westaway et al., 1997a). The sequence of 

the IC-P virus NS4B gene has not yet been analyzed. A mutation in this protein could 

cause an alteration in the membrane rearrangements needed to efficiently form the final 

stage replication complex containing vesicles. 
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 Some of the NS1 protein has been shown to colocalize with NS3 and dsRNA in 

replication complexes in WNV-infected cells (Westaway et al., 1997b). However, no 

colocalization was observed between the NS3 granules and NS1 in WNV IC-P infected 

cells. Although the viral RdRp is encoded within the NS5 protein, only 10% of NS5 was 

reported to be enriched in "heavy" cytoplasmic membrane fractions associated with RdRp 

activity (Grun and Brinton, 1987). No detectable colocalization between NS3 granules 

and dsRNA or NS5 was observed in WNV IC-P virus infected cells suggesting that these 

granules are distinct from viral replication complexes. The observation that some NS3 

granules are observed in cells infected with WNV Eg101 at early times after infection 

suggests that these granules might represent an intermediate stage in replication complex 

formation.  

 The observed NS3 granules did not colocalize with mitochondria or PBs, nor did 

they colocalize with the cytoskeleton of WNV IC-P infected cells. Consistent with the 

formation of replication complexes within ER membrane invaginations, replication 

complex constituents (dsRNA, NS5 and NS3) colocalize with the ER resident protein 

calnexin (Mackenzie, 2005). Diffuse NS3 as well as NS3 granules colocalized with 

calnexin in WNV IC-P virus-infected cells suggesting that the NS3 granules are 

associated with ER-derived membranes. WNV-specific antibodies to NS2A, NS2B, 

NS4A and NS4B that work in confocal microscopy are not available to assess the 

presence of these proteins in NS3 granules. However, NS3 would not be expected to be 

membrane associated unless it interacted with one of these membrane anchor proteins. 

Interestingly, while dsRNA did not colocalize within the NS3 granules, it was detected in 
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foci located in a "ring" around the NS3 granules. These data provide further support to 

the hypothesis that membrane rearrangement may not occur properly or efficiently in IC-

P virus-infected cells. Results obtained from preliminary 454 deep sequencing identified 

a single mutation in the NS4B gene which may be responsible for the formation of NS3 

granules and/or could change the folding of the viral RNA affecting viral RNA 

replication efficiency. However, these results are yet to be confirmed by a second and 

more complete deep sequencing analysis 

 

MATERIALS AND METHODS  

Cell lines and viruses.  Simian virus 40 (SV40)-transformed BHK-21 WI2 cells, were 

maintained as previously described (Scherbik et al., 2006). Stocks of virus were prepared 

by infecting BHK cells with WNV Eg101 at a MOI of 0.1 or transfection with in vitro 

transcribed IC RNA (1 μg) and harvesting culture fluid 32 h after infection. IC-P virus 

stocks were prepared by passaging of the IC virus twice in BHK cells. Clarified culture 

fluid (3.5 x 107 PFU/ml, IC; 3.6 x 107 PFU/ml, IC-P) was aliquoted and stored at -80°C. 

Confocal microscopy.  BHK cells (2 x 103 cells per well) were seeded on 12.5-mm 

coverslips or in 24-well plates and 24 h later, the cells were counted and infected with 

WNV-IC or WNV IC-P at a MOI of 5. At the indicated times, cells were fixed in 4% 

paraformaldehyde and then permeabilized using cold 100% methanol. The cells were 

washed in PBS and incubated overnight at 4ºC in blocking buffer (5% heat inactivated 

horse serum in PBS).  The cells were then incubated with a primary antibody diluted in 

blocking buffer for 1 h at room temperature, washed three times with PBS, and incubated 
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for 1 h at room temperature with AlexaFluor-488, -594 or -555 conjugated secondary 

antibodies (Invitrogen) diluted in blocking buffer. Cell nuclei were stained with 0.5 µg/ml 

Hoechst 33258 (Molecular Probes) added during the secondary antibody incubation. 

Coverslips were mounted with Prolong mounting medium (Invitrogen), and the cells were 

viewed and photographed with a Zeiss LSM 510 confocal microscope (Zeiss, Germany) 

using either a 63x or 100x oil immersion objective. The images were merged and 

analyzed using Zeiss software version 3.2. The same camera settings were used for all 

images in an experimental series. Primary antibodies used were: mouse mouse anti-

dsRNA (1:200) (English and Scientific Consulting), mouse anti-CoxIV (1:500) 

(Invitrogen), mouse anti-tubulin (1:100) (Cellsignal), rabbit anti-Calnexin (1:1000) 

(Sigma), goat anti-NS3 (1:300) (R & D systems), goat anti-eIF3g (1:75) (Santa Cruze) 

and mouse anti-Dcp1a (a gift from J. Lykke-Anderson; University of Colorado, Boulder, 

CO). 

One-Step RT-PCR. A One-Step RT-PCR kit (Invitrogen) was used to generate cDNAs 

from the NS1, NS2A, NS3, NS4A or NS5 viral genes of purified IC and IC-P viral RNA. 

PCR products were separated by agarose-electrophoresis, purified using the MiniElute 

Gel extraction kit (Qiagen),  subcloned into pTopoXL (Invitrogen) and transformed into 

Top10 chemically competent cells according to manufactures' protocols. Transformed 

cells were plated on LB + Kanamycin (100 μg/ml) media agar plates and incubated 

overnight at 37°C. Five clones from each strain were cultured and plasmids from these 

clones were isolated using a MiniElute DNA isolation kit according to the manufacturer's 

protocols (Qiagen).  
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Sequencing. Plasmid DNA from the various clones sequenced using M13 forward and 

reverse primers by the GSU Core Facility. For 454 Deep sequencing, viral RNAs were 

isolated using the RNeasy kit (Qiagen) according to the manufacturer's protocol. Purified 

RNAs were sent to collaborators for 454 sequencing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



75 

 

REFERENCES: 

Anderson, P., and Kedersha, N. (2002). Stressful initiations. J Cell Sci 115(Pt 16), 3227-
34. 

Anderson, P., and Kedersha, N. (2008). Stress granules: the Tao of RNA triage. Trends 
Biochem Sci 33(3), 141-50. 

Boyer, J. C., and Haenni, A. L. (1994). Infectious transcripts and cDNA clones of RNA 
viruses. Virology 198(2), 415-26. 

Brinton, M. A. (2002). The molecular biology of West Nile Virus: a new invader of the 
western hemisphere. Annu Rev Microbiol 56, 371-402. 

Buchan, J. R., and Parker, R. (2009). Eukaryotic stress granules: the ins and outs of 
translation. Mol Cell 36(6), 932-41. 

Cahour, A., Pletnev, A., Vazielle-Falcoz, M., Rosen, L., and Lai, C. J. (1995). Growth-
restricted dengue virus mutants containing deletions in the 5' noncoding region of 
the RNA genome. Virology 207(1), 68-76. 

Davis, W. G., Blackwell, J. L., Shi, P. Y., and Brinton, M. A. (2007). Interaction between 
the cellular protein eEF1A and the 3'-terminal stem-loop of West Nile virus 
genomic RNA facilitates viral minus-strand RNA synthesis. J Virol 81(18), 
10172-87. 

Emara, M. M., and Brinton, M. A. (2007). Interaction of TIA-1/TIAR with West Nile and 
dengue virus products in infected cells interferes with stress granule formation 
and processing body assembly. Proc Natl Acad Sci U S A 104(21), 9041-6. 

Garcia, M. A., Meurs, E. F., and Esteban, M. (2007). The dsRNA protein kinase PKR: 
Virus and cell control. Biochimie. 

Gillespie, L. K., Hoenen, A., Morgan, G., and Mackenzie, J. M. (2010). The endoplasmic 
reticulum provides the membrane platform for biogenesis of the flavivirus 
replication complex. J Virol 84(20), 10438-47. 

Green, R. E., Krause, J., Ptak, S. E., Briggs, A. W., Ronan, M. T., Simons, J. F., Du, L., 
Egholm, M., Rothberg, J. M., Paunovic, M., and Paabo, S. (2006). Analysis of 
one million base pairs of Neanderthal DNA. Nature 444(7117), 330-6. 

Grun, J. B., and Brinton, M. A. (1987). Dissociation of NS5 from cell fractions 
containing West Nile virus-specific polymerase activity. J Virol 61(11), 3641-4. 

Gu, B., Liu, C., Lin-Goerke, J., Maley, D. R., Gutshall, L. L., Feltenberger, C. A., and 
Del Vecchio, A. M. (2000). The RNA helicase and nucleotide triphosphatase 
activities of the bovine viral diarrhea virus NS3 protein are essential for viral 
replication. J Virol 74(4), 1794-800. 

Gubler, D. J., Kuno, G., and Markoff, J. (2007). Flaviviruses. In "Fields Virology" (P. M. 
H. David M Knipe, Ed.), pp. 1153-1252. Lippincott Williams and Wilkins, 
Philadelphia. 

Iseni, F., Garcin, D., Nishio, M., Kedersha, N., Anderson, P., and Kolakofsky, D. (2002). 
Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced 
apoptosis. Embo J 21(19), 5141-50. 

Kapoor, M., Zhang, L., Ramachandra, M., Kusukawa, J., Ebner, K. E., and 
Padmanabhan, R. (1995). Association between NS3 and NS5 proteins of dengue 



76 

 

virus type 2 in the putative RNA replicase is linked to differential phosphorylation 
of NS5. J Biol Chem 270(32), 19100-6. 

Khromykh, A. A., and Westaway, E. G. (1997). Subgenomic replicons of the flavivirus 
Kunjin: construction and applications. J Virol 71(2), 1497-505. 

Lai, C. J., Zhao, B. T., Hori, H., and Bray, M. (1991). Infectious RNA transcribed from 
stably cloned full-length cDNA of dengue type 4 virus. Proc Natl Acad Sci U S A 
88(12), 5139-43. 

Li, W., Li, Y., Kedersha, N., Anderson, P., Emara, M., Swiderek, K. M., Moreno, G. T., 
and Brinton, M. A. (2002). Cell proteins TIA-1 and TIAR interact with the 3 ' 
stem-loop of the West Nile virus complementary minus-strand RNA and facilitate 
virus replication. J Virol 76(23), 11989-12000. 

Lindenbach, B. D., Thiel, H. J, and Rice, C. M. (2007). Flaviviridae: The Viruses and 
Their Replication. In "Fields Virology" (D. M. Knipe, and Howley, P. M., Ed.), 
pp. 1101-1152. Lippincott Williams and Wilkins, Philadelphia. 

Lopez-Lastra, M., Ramdohr, P., Letelier, A., Vallejos, M., Vera-Otarola, J., and Valiente-
Echeverria, F. (2010). Translation initiation of viral mRNAs. Rev Med Virol 
20(3), 177-95. 

Mackenzie, J. (2005). Wrapping things up about virus RNA replication. Traffic 6(11), 
967-77. 

Matusan, A. E., Pryor, M. J., Davidson, A. D., and Wright, P. J. (2001). Mutagenesis of 
the Dengue virus type 2 NS3 protein within and outside helicase motifs: effects 
on enzyme activity and virus replication. J Virol 75(20), 9633-43. 

McEwen, E., Kedersha, N., Song, B., Scheuner, D., Gilks, N., Han, A., Chen, J. J., 
Anderson, P., and Kaufman, R. J. (2005). Heme-regulated inhibitor kinase-
mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits 
translation, induces stress granule formation, and mediates survival upon arsenite 
exposure. J Biol Chem 280(17), 16925-33. 

Men, R., Bray, M., Clark, D., Chanock, R. M., and Lai, C. J. (1996). Dengue type 4 virus 
mutants containing deletions in the 3' noncoding region of the RNA genome: 
analysis of growth restriction in cell culture and altered viremia pattern and 
immunogenicity in rhesus monkeys. J Virol 70(6), 3930-7. 

Miller, S., Kastner, S., Krijnse-Locker, J., Buhler, S., and Bartenschlager, R. (2007). The 
non-structural protein 4A of dengue virus is an integral membrane protein 
inducing membrane alterations in a 2K-regulated manner. J Biol Chem 282(12), 
8873-82. 

Mueller, P. P., and Hinnebusch, A. G. (1986). Multiple upstream AUG codons mediate 
translational control of GCN4. Cell 45(2), 201-7. 

Rice, C. M., Grakoui, A., Galler, R., and Chambers, T. J. (1989). Transcription of 
infectious yellow fever RNA from full-length cDNA templates produced by in 
vitro ligation. New Biol 1(3), 285-96. 

Roosendaal, J., Westaway, E. G., Khromykh, A., and Mackenzie, J. M. (2006). Regulated 
cleavages at the West Nile virus NS4A-2K-NS4B junctions play a major role in 
rearranging cytoplasmic membranes and Golgi trafficking of the NS4A protein. J 
Virol 80(9), 4623-32. 



77 

 

Ruggli, N., and Rice, C. M. (1999). Functional cDNA clones of the Flaviviridae: 
strategies and applications. Adv Virus Res 53, 183-207. 

Scherbik, S. V., Paranjape, J. M., Stockman, B. M., Silverman, R. H., and Brinton, M. A. 
(2006). RNase L plays a role in the antiviral response to West Nile virus. J Virol 
80(6), 2987-99. 

Ventoso, I., Sanz, M. A., Molina, S., Berlanga, J. J., Carrasco, L., and Esteban, M. 
(2006). Translational resistance of late alphavirus mRNA to eIF2alpha 
phosphorylation: a strategy to overcome the antiviral effect of protein kinase 
PKR. Genes Dev 20(1), 87-100. 

Welsch, S., Miller, S., Romero-Brey, I., Merz, A., Bleck, C. K., Walther, P., Fuller, S. D., 
Antony, C., Krijnse-Locker, J., and Bartenschlager, R. (2009). Composition and 
three-dimensional architecture of the dengue virus replication and assembly sites. 
Cell Host Microbe 5(4), 365-75. 

Westaway, E. G., Khromykh, A. A., Kenney, M. T., Mackenzie, J. M., and Jones, M. K. 
(1997a). Proteins C and NS4B of the flavivirus Kunjin translocate independently 
into the nucleus. Virology 234(1), 31-41. 

Westaway, E. G., Mackenzie, J. M., Kenney, M. T., Jones, M. K., and Khromykh, A. A. 
(1997b). Ultrastructure of Kunjin virus-infected cells: colocalization of NS1 and 
NS3 with double-stranded RNA, and of NS2B with NS3, in virus-induced 
membrane structures. J Virol 71(9), 6650-61. 

Wilson, J. E., Pestova, T. V., Hellen, C. U., and Sarnow, P. (2000). Initiation of protein 
synthesis from the A site of the ribosome. Cell 102(4), 511-20. 

Yamshchikov, G., Borisevich, V., Seregin, A., Chaporgina, E., Mishina, M., Mishin, V., 
Kwok, C. W., and Yamshchikov, V. (2004). An attenuated West Nile prototype 
virus is highly immunogenic and protects against the deadly NY99 strain: a 
candidate for live WN vaccine development. Virology 330(1), 304-12. 

Yamshchikov, V. F., Wengler, G., Perelygin, A. A., Brinton, M. A., and Compans, R. W. 
(2001). An infectious clone of the West Nile flavivirus. Virology 281(2), 294-304. 

 
 
 
 

 

 

 

 

 

 



78 

 

CHAPTER 4 

Functional analysis of the mouse Oas1b protein. 

 
The majority of this chapter was published in Virology, Jan. 2011, 409(2): 262-270.  The 
data is used with copyright permission obtained from Elsevier publishing under license 
#2652701163203. 
 
An Addendum containing additional data has been added to the end of this chapter. 

 
Results presented in Fig. 4.1A, Fig. 4.2, Fig. 4.4 and Fig. 4.5A represent data previously 
published as part of a Master's thesis. 
 

 

INTRODUCTION 

 The genus Flavivirus includes a number of mosquito borne human pathogens, 

such as yellow fever virus, dengue virus, Japanese encephalitis virus, and West Nile virus 

(WNV). A number of factors such as the age, immune status and genetic makeup of the 

host as well as the route of inoculation, dose and virulence of the infecting virus can 

influence the outcome of flavivirus infections (Brinton, 2002). In mice, the alleles of an 

autosomal gene (Flv) determine resistance/susceptibility to flavivirus-induced disease. 

Mice carrying the resistant allele (Flvr) are not resistant to flavivirus infection but 

produce significantly lower levels of virus compared to susceptible mice. The Flv gene 

was identified as 2′-5′ oligoadenylate synthetase 1b (Oas1b) (Mashimo et al., 2002; 

Perelygin et al., 2002). Resistant mice express a full-length Oas1b protein while 

susceptible mice express a truncated Oas1b protein (Oas1btr) generated by a premature 

stop-codon. The majority of inbred mouse strains used in laboratories are homozygous 

for the susceptibility allele (Flvs).  
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 In mice, the 2′-5′ oligoadenylate synthetase family consists of eight small Oas1 

genes (Oas1a through Oas1h), an Oas2 gene, an Oas3 gene, and two Oas-like genes 

(OasL1 and OasL2) (Kakuta et al., 2002). The Oas1 proteins contain a single 2′-5′ 

oligoadenylate synthetase unit, while two and three copies are present in the Oas2 and 

Oas3 proteins, respectively. The OasL proteins contain a single OAS unit as well as two 

C-terminal ubiquitin-like domains (Hartmann et al., 1998b; Rebouillat et al., 1998). 

Members of the 2′-5′ oligoadenylate synthetase family are interferon-inducible genes 

(ISGs) and were previously reported to be upregulated in WNV infected cells (Scherbik 

et al., 2007b). 2′-5′ oligoadenylate synthetases are activated by binding to dsRNA and 

polymerize ATP into short 2′-5′ linked oligoadenylates (2-5A) (Kerr and Brown, 1978). 

The 2-5A binds to RNase L in the cytosol which leads to activation and dimerization of 

RNase L (Floyd-Smith et al., 1981). Activated RNase L cleaves viral and cellular single-

stranded RNAs after UA and UU dinucleotides (Wreschner et al., 1981). Activated 

RNase L was previously reported to have an antiviral effect against WNV infections in 

mouse embryofibroblasts (MEFs) from both flavivirus resistant and susceptible mice 

(Scherbik et al., 2006). The virus-nonspecific nature of 2-5A production and RNase L-

mediated RNA degradation are not consistent with the flavivirus-specific phenotype of 

the Flv gene suggesting that Oas1b mediates flavivirus resistance through a novel 

mechanism unrelated to the 2-5A/RNase L pathway.  

 The N-terminal sequence of human OAS1 proteins contains an LXXXP motif 

previously shown to be required for synthetase activity (Ghosh et al., 1997a). The 

catalytic domain contains a nucleotidyltransferase fold, a P-loop motif, three catalytic 
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aspartic acid residues, and the substrate acceptor binding site (Yamamoto et al., 2000). 

The substrate donor binding site and a CFK motif are located in the C-terminal domain. 

The catalytic aspartic acid triad forms a Mg2+-binding DAD motif. It has been suggested 

that the putative RNA activation site spans both the catalytic domain and C-terminal 

domain in the human OAS1 protein and contains a lysine/arginine rich motif (KR-rich 

motif). The P-loop, DAD catalytic triad, and KR-rich motif are required for the 

synthetase activity of OAS proteins (Saraste et al., 1990; Yamamoto et al., 2000). The 

CFK motif has been shown to be required for the synthetase activity of human OAS1 

proteins; however, the active murine synthetases Oas1a and Oas1g contain substitutions 

in this motif suggesting that it is not likely to affect the structural stability of the murine 

proteins.  

 In the present study, Oas1b was shown to lack synthetase activity. This finding is 

consistent with previous data indicating that the flavivirus resistance phenotype mediated 

by Oas1b does not involve the 2-5A antiviral pathway (Scherbik et al., 2006). Full-length 

Oas1b, but not Oas1btr (the truncated protein encoded by Flvs), was able to inhibit the in 

vitro synthetase activity of Oas1a in a dose-dependent manner and reduced poly(I:C)-

stimulated 2-5A production in vivo. The results suggest that full-length Oas1b, but not the 

truncated protein Oas1b, functions as a dominant negative inhibitor of 2-5A 

oligonucleotide synthetase activity. 
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RESULTS 

Assay of the 2-5A synthetase activity of recombinant Oas1b proteins.  In a previous 

study, unpurified lysates from bacteria expressing individual recombinant murine Oas1 

proteins fused to an N-terminal 10X histidine tag were tested for 2-5A synthetase activity 

and poly(I:C) binding activity (Kakuta et al., 2002). Only Oas1a and Oas1g were shown 

to be active 2-5A synthetases but all eight of the Oas1 proteins (Oas1a through h) tested 

were able to bind poly(I:C). The Oas1 cDNAs used in that study were cloned from 

flavivirus-susceptible C57BL/6 J mice and so Oas1btr but not Oas1b was analyzed. To 

test the synthetase activity of the full-length Oas1b protein, recombinant Oas1b, Oas1a 

(positive control) and Oas1btr (negative control) proteins fused to an N-terminal 

42.5 kDa maltose binding protein (MBP) were expressed in bacteria and partially purified 

on amylose resin columns. Fusion proteins of the expected molecular masses, Oas1a 

(~ 85 kD), Oas1b (~ 86 kDa) and Oas1btr (~ 71 kDa) were detected by the Coomassie 

blue staining after separation of proteins by 10% SDS-PAGE (Fig. 4.1A). The average 

purity of Oas1a and Oas1btr was ~ 80% while that of Oas1b was ~ 60 to 75%. The 

identity of the recombinant proteins was confirmed by immunoblotting with anti-MBP 

(Fig. 4.1B) and anti-OAS antibody (Fig. 4.1C).  
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Figure 4.1. Expression and purification of recombinant MBP-Oas1 proteins. (A) MBP-Oas1 proteins 
were expressed in bacteria, partially purified on amylose columns, separated by 10% SDS-PAGE and 
visualized by Coomassie blue staining. Lane 1, MBP-Oas1a. Lane 2, MBP-Oas1b. Lane 3, MBP-Oas1btr. 
Asterisks indicate the positions of the MBP-Oas1 fusion proteins. (B) Immunoblot of partially purified 
MBP-Oas1 proteins detected with anti-MBP-HRP antibody. Lane 1, MBP-Oas1a. Lane 2, MBP-Oas1b. 
Lane 3, MBP-Oas1btr. Lane 4, MBP. (C) Immunoblot of partially purified MBP-Oas1b protein detected 
with anti-OAS1 antibody. 

Some breakdown of the Oas1b protein was observed as indicated by the minor ~ 35 kDa 

band (N-terminal fragment) on the anti-MBP Western blot (Fig. 4.1B) and the ~ 55 kDa 

band (C-terminal fragment) on the anti-OAS Western blot (Fig. 4.1C).   

 To determine whether the MBP-tag negatively affected the enzymatic activity of 

Oas1a, the synthetase activity of the MBP-Oas1a fusion protein (Fig. 4.2A, lanes 4–7) 

was compared to that of the Oas1a protein after removal of the tag with Genenase I (Fig. 

4.2A, lane 3). The proteins were incubated with poly(I:C) and α-32pATP at 30 °C for 

18 h. The 2-5A produced were separated by denaturing 8 M urea 20% PAGE and 

visualized by autoradiography. Dimer, trimer, tetramer and higher order products were 

produced by reactions containing MBP-Oas1a at concentrations ranging from 0.5 μg 

(117 nM) to 16 μg (3.76 μM) (Fig. 4.2A, lanes 4–7). The level of 2-5A synthesized by 

MBP-Oas1a was similar to that previously reported using a similar concentration of a 

His-tagged recombinant Oas1a protein under similar reaction conditions (Kakuta et al., 

2002; Yan et al., 2005). The cleaved and fused Oas1a proteins produced similar levels of 
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2-5A, indicating that the MBP-tag did not negatively affect Oas1a synthetase activity 

(Fig. 4.2A, lanes 3 and 4). As expected, synthetase activity was not detected in the 

reaction containing MBP (Fig. 4.2A, lane 2). Neither MBP-Oas1b nor MBP-Oas1btr 

produced detectable 2-5A when added to the reactions at concentrations of 2.6 μg 

(638 nM) or 2.3 μg (605 nM), respectively (Fig. 4.2B, lanes 3 and 2). These 

concentrations were 4 to 5 times higher than the lowest active concentration of MBP-

Oas1a tested. The results confirmed the previous finding of Kakuta et al. (2002) that 

Oas1a is an active 2-5A synthetase while Oas1btr is an inactive synthetase. Oas1b was 

also shown to be inactive. However, an additional spot migrating above the free ATP but 

below the position of the oligoA dimer generated by Oas1a was observed only in the 

Oas1b reaction (Fig. 4.2B, lane 3). This extra spot was only observed when poly(I:C) was 

included in the reaction mixture (Fig. 4.2C, compare lanes 3 and 4) suggesting that MBP-

Oas1b, but not MBP-Oas1btr, is able to bind to and modify ATP after activation by 

dsRNA. 
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Figure 4.2. Analysis of MBP-Oas1 protein 2-5A synthetase activity. Different amounts of MBP-Oas1 
proteins were incubated with α32p-ATP and poly (I:C) for 18 h at 30 °C. Four μl (A) or two μl (B and C) of 
each reaction were then electrophoresed on a 20% polyacrylamide-urea denaturing gel. (A) Analysis of 
MBP-Oas1a 2-5A synthetase activity. Reactions contained: Lane 1, no protein. Lane 2, 16 μg of MBP. 
Lane 3, 0.75 μg of Oas1a. Lanes 4–7, 0.5 μg, 0.75 μg, 1 μg, and 16 μg of MBP-Oas1a, respectively. (B) 
Analysis of MBP-Oas1b 2′-5′ OAS activity. Reactions contained: Lane 1, No protein. Lane 2, 2.3 μg of 
MBP-Oas1btr. Lane 3, 2.6 μg of MBP-Oas1b. Lanes 4–6, 1 μg, 0.75 μg, and 0.5 μg of MBP-Oas1a, 
respectively. (C) Analysis of the effect of poly(I:C) on MBP–Oas1b synthetase activity. Reactions 
contained: Lane 1, No protein. Lane 2, 0.5 μg of MBP–Oas1a with poly(I:C). Lane 3, 1.5 μg of MBP–
Oas1b without poly(I:C). Lane 4, 1.5 μg of MBP–Oas1b with 50 μg/ml poly(I:C). The data shown are 
representative of results obtained from at least three repeats using different pooled protein preparations. 

 

Poly(I:C)-binding activity of recombinant Oas1b proteins. The 2-5A synthetases 

require dsRNA to activate them to polymerize ATP into 2-5A (Wreschner et al., 1981). 

In a previous study, recombinant Oas1a and Oas1btr were shown to bind poly(I:C) 

efficiently (Kakuta et al., 2002). Oas1b poly(I:C) binding activity was tested by 

incubating bacterial lysates from cells expressing recombinant MBP-Oas1b with 

poly(I:C)-agarose. The bound proteins were separated by SDS-PAGE and detected by 

immunoblotting using anti-MBP antibody. Lysates from cells expressing MBP-Oas1a 
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and MBP from the empty pMAL-C2g vector were used as positive and negative controls, 

respectively. Poly(I:C) bound efficiently to MBP-Oas1a and MBP-Oas1btr, consistent 

with previously published results (Kakuta et al., 2002), but less efficiently to MBP-Oas1b 

(Fig. 4.3). As expected, MBP did not bind to poly(I:C). 
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Figure 4.3. Analysis of Oas1 protein dsRNA-binding activity. The ability of MBP-Oas1a, MBP-Oas1b, 
MBP–Oas1btr or MBP to bind dsRNA poly(I:C)-agarose was tested. Bound RNA-protein complexes were 
separated by 10% SDS-PAGE. Immunoblotting was performed using anti-MBP antibody. Lys, lysate; pIC, 
poly(I:C)-bound fraction; Unb, unbound fraction. The data shown are representative of results obtained 
from at least three repetitions. 

Analysis of the interaction of MBP-Oas1 proteins with WNV 3′ genomic RNA 

secondary structures. Single-stranded viral RNA genomes are predicted to have a 

significant amount of structure due to intramolecular RNA–RNA interactions and viral 

RNA stem-loop structures have been shown to be able to activate 2′-5′ oligoadenylate 

synthetases (Desai et al., 1995; Maitra and Silverman, 1998; Sharp et al., 1999). Regions 

of the WNV-Eg101 genome RNA predicted to form long stem-loop structures by mfold 

analysis as well as by a whole genome fold (Palmenberg and Sgro, 1997) (Fig. 4.4A, D 

and H) were synthesized in vitro and used as probes in gel mobility shift assays with 

MBP-Oas1a, MBP-Oas1b, and MBP-Oas1btr. Increasing concentrations of each of the 
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MBP-Oas1 proteins were tested with a constant amount of each probe. None of the Oas1 

fusion proteins bound efficiently to Probe 1 (nts 10,931–11,029), the 3′ terminal stem-

loop of the genome (Fig. 4.4A, B and C). Probe 2 (nts 10,387–10,448) was AU-rich and 

included the last 10 nts of the viral coding region, the viral stop-codon, and the first 57 

5'nts of the 3′ UTR. MBP-Oas1b bound to Probe 2 at concentrations between 10 ng and 

200 ng (Fig. 4.4E), while MBP-Oas1a RNA binding to this probe was detected starting at 

50 ng (Fig. 4.4F). MBP-Oas1btr did not bind to Probe 2 at any of the concentrations 

tested (Fig. 4.4G). Probe 3 (nts 10,308–10,364) was also AU-rich. Only MBP-Oas1b, at 

concentrations of 25 ng, 50 ng and 100 ng, exhibited detectable binding to Probe 3 (Fig. 

4.4I and J). The data indicate that full-length Oas1b and Oas1a, but not Oas1btr, can bind 

to partially dsRNAs. In contrast to its efficient binding to poly(I:C), Oas1btr did not bind 

to any of the viral RNAs tested. 
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Figure 4.4. Analysis of Oas1 protein binding activity for partially dsRNA probes. (A, D, and H) WNV 
Eg101 genome RNA secondary structures predicted by MFOLD version 3.1 (black) of just the probe 
sequences or of the probe region in a whole genome fold (color). The nts with the highest probability of 
pairing (P–num value < 3%) are indicated in red, with orange next, then yellow, and then green. Probe 1 
(A), Probe 2 (D), and Probe 3 (H) RNAs were radiolabeled by incorporation of 32p-UTP during in vitro 
transcription. Gel mobility shift assays with Probe 1 (1000 cpm). (B) Lanes 1–3, MBP-Oas1b at 25, 50 and 
100 ng. Lanes 4–6, MBP-Oas1a at 25, 50 and 100 ng. Lane 7, 100 ng of MBP. (C) Lanes 1–3, MBP-Oas1b 
at 25, 50 and 100 ng. Lanes 4–6, MBP-Oas1btr at 25, 50 and 100 ng. Lane 7, 100 ng of MBP. Gel mobility 
shift assays with Probe 2 (2000 cpm). (E) Lane 1, 200 ng of MBP. Lanes 2–7, MBP-Oas1b at 10, 25, 50, 
75, 100, and 200 ng. (F) Lane 1, 400 ng of MBP. Lanes 2–7, MBP-Oas1a at 10, 25, 50, 75, 100, 200, and 
400 ng. (G) Lane 1, 200 ng of MBP. Lanes 2–7, MBP-Oas1btr at 10, 25, 50, 75, 100, and 200 ng. Gel 
mobility shift assays with Probe 3 (1000 cpm). (I) Lanes 1–3, MBP-Oas1b at 25, 50 and 100 ng. Lanes 4–6, 
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MBP-Oas1a at 25, 50 and 100 ng. Lane 8, 100 ng of MBP. (J) Lanes 1–3, MBP-Oas1b at 25, 50 and 
100 ng. Lanes 4–6, MBP-Oas1btr at 25, 50 and 100 ng. Lane 8, 100 ng of MBP. Components of binding 
reactions were separated on a 6% polyacrylamide non-denaturing gel. Bands on the dried gel were detected 
using a Bio-Image Analyzer PhosphorImager (Molecular Dynamics). FP, free probe. The data shown are 
representative of results obtained from at least three repeats using different pooled protein preparations. 
  

Oas1b, but not Oas1btr, reduces Oas1a synthetase activity in vitro. A previous study 

reported that the inactive murine 2-5A synthetase, Oas1d, inhibited the in vitro synthetase 

activity of Oas1a in a dose-dependent manner (Yan et al., 2005). To investigate whether 

the inactive MBP-Oas1b or MBP-Oas1btr proteins could inhibit in vitro MBP-Oas1a 

synthetase activity, increasing molar ratios (0, 0.5X, 1X, 1.5X, and 2X) of these proteins 

were added to reactions containing a constant amount of MBP-Oas1a. MBP-Oas1b 

reduced MBP-Oas1a synthetase activity in a dose-dependent manner (Fig. 4.5A, lanes 2–

6). In contrast, the addition of similar concentrations of MBP-Oas1btr caused no 

reduction in MBP-Oas1a synthetase activity (Fig. 4.5A, lanes 7–10). Both ATP and 

poly(I:C) were present in excess in these reactions. The data in Fig. 4.3 shows that the 

three Oas1 proteins studied bound poly(I:C) with different levels of efficiency: 

Oas1a ≥ Oas1btr > Oas1b. These data suggest that Oas1a would be expected to out-

compete Oas1b for poly(I:C) binding. Also, if the inhibition were due solely to 

competition for poly(I:C), Oas1btr should also be expected to be able to inhibit Oas1a 2-

5A synthesis. This was not observed to be the case. The results suggest that the inhibition 

of Oas1a synthetase activity by Oas1b is mediated through protein–protein interactions 

and that Oas1b, but not Oas1btr, has a dominant negative effect on in vitro Oas1a 

synthetase activity. 
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Figure 4.5. Oas1b reduces 2-5A production in vitro and in vivo. (A) In vitro 2-5A production. All 
reactions contained α32p-ATP, poly (I:C), and 1 μg of MBP-Oas1a. Lane 1, no additional protein. Lanes 2–
6, MBP-Oas1a and 0, 0.5X, 1X, 1.5X, or 2X of MBP-Oas1b, respectively. Lanes 7–10, MBP-Oas1a and 0, 
0.5X, 1X, 1.5X, or 2X of MBP-Oas1btr, respectively. The products of each reaction were separated on a 
20% polyacrylamide-urea denaturing gel. The data shown are representative of results obtained from at 
least three repeats using different pooled protein preparations. (B) Levels of 2-5A in C57BL6 and Oas1b-
KI cells. MEFs were seeded into 6-well plates and grown overnight to about ~ 100% confluency and then 
incubated with 100 U/ml type I universal IFN for 24 h (IFN). No IFN was added to the media of the control 
cells. After 24 h, some wells of IFN treated cells were transfected with 10 μg/ml poly(I:C) for 1 h 
(IFN + pIC). The amounts of 2-5A in cell extracts were measured using a FRET assay of RNase L activity. 
Data are expressed as amount of 2-5A per 106 cells. The values are averages of three replicate samples each 
assayed in triplicate. The standard error (SE) of the mean is indicated. The results shown are representative 
of three experiments each done in triplicate. The data were subjected to a Student's t-test statistical analysis 
done with EXCEL software. ** denotes p = 0.0133. (C and D) Analysis of changes in the expression levels 
of the Oas1a and Oas1b genes in Oas1bKI and C57BL6 cells after IFN treatment or IFN plus poly(IC) 
treatment by qRT-PCR. The relative fold change in expression compared to the level of the same mRNA 
present in cell-type specific untreated controls (value set at 1) is expressed in RQ units. Error bars represent 
the SE (n = 3) and are based on an RQMin/Max of the 95% confidence level. 
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Cells expressing Oas1b exhibit reduced 2-5A levels in response to poly(I:C) 

stimulation. The production of 2-5A in vivo in response to poly(I:C) stimulation was 

assessed in MEFs from transgenic C57BL/6 Oas1b knock-in mice (Oas1bKI) that express 

full-length Oas1b and control C57BL/6 mice that express Oas1btr (Scherbik et al., 

2007a). MEFs were incubated with 100 U/ml of Type I Universal IFN for 24 h to 

upregulate Oas1 expression and then transfected with 10 μg/ml poly(I:C) for 1 h to 

induce 2-5A production. A FRET assay that measures RNase L activity based on 2-5A 

levels was used to determine the amount of 2-5A produced in vivo (Thakur et al., 2005). 

Consistent with previously published reports (Andersen et al., 2007; Knight et al., 1980), 

low levels of 2-5A were observed in the untreated and IFN treated MEFs. An increase in 

2-5A levels was observed only in the C57BL/6 MEFs treated with IFN and poly(I:C) 

(Fig. 4.5B). Due to the high homology between Oas1 proteins, antibodies cannot be used 

to distinguish individual Oas1 proteins by Western blotting. Oas1a and Oas1b mRNA 

levels in Oas1bKI and C57BL/6 MEFs were therefore assessed by real-time RT-PCR. 

IFN treatment resulted in about a 4-fold increase of Oas1a and Oas1b mRNA in Oas1bKI 

cells and a 2- to 3-fold increase in C57BL/6 MEFs compared to the levels in control cells. 

Both Oas1a and Oas1b mRNA levels decreased after poly(I:C) transfection, possibly due 

to RNase L-mediated degradation of mRNA, but the levels remained higher than in 

control cells indicating that Oas1 mRNA was upregulated by the IFN treatment (Fig. 

4.5C). Even though IFN-mediated Oas1 mRNA upregulation was less efficient in 

C57BL/6 MEFs compared to Oas1bKI MEFs, the levels of 2-5A production as measured 

by RNase L activation were higher in C57BL/6 cells expressing Oas1btr. The results are 
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consistent with the hypothesis that Oas1b has a dominant negative effect on Oas1a 

synthetase activity in vivo. 

 

DISCUSSION 

 The production of 2-5A and its subsequent activation of RNase L are important 

components of the IFN-induced antiviral response (Samuel, 2001). Of the eight mouse 

Oas1 genes, only Oas1a and Oas1g are active synthetases (Kakuta et al., 2002). The 

alleles of the Flv gene (Oas1b) determine whether mice produce a full-length or a 

truncated Oas1b protein (Perelygin et al., 2002). Kakuta et al. (2002) reported that 

Oas1btr is an inactive synthetase and the current study showed that full-length Oas1b is 

also not capable of synthesizing 2-5A. Both Oas1b and Oas1btr, but none of the other 

inactive mouse Oas1 proteins, contain a 4 amino acid deletion in the P-loop that may 

prevent the folding of a catalytically functional structure as well as R90Q and R91Q 

substitutions in the ATP-substrate acceptor site and K195N, S203R and K209T 

substitutions in the ATP-substrate donor sites. The P-loop deletion as well as the 

substitutions in conserved residues characteristic of active synthetases are expected to be 

the reason for the lack of activity (Kakuta et al., 2002; Yamamoto et al., 2000). 

 An intact P-loop motif was previously postulated to be required for ATP binding 

(Saraste et al., 1990). Although both Oas1b and Oas1btr have the same 4 amino acid 

deletion in the 15 amino acid P-loop (VVMGGSSGKGt/aLKB, deleted residues are 

underlined and lower case letters indicate a sequence difference between Oas1a and 
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Oas1b/btr, respectively), the data from in vitro 2-5A synthetase assays suggested that 

Oas1b but not Oas1btr could bind and modify ATP. 

 The Oas1btr and Oas1b proteins also differ in their RNA binding specificities. 

Oas1b bound to poly(I:C) less efficiently than did either Oas1a or Oas1btr. However, the 

interaction of Oas1b with poly(I:C) was of sufficient strength to activate it to bind and 

modify ATP. It was previously reported that the RNA binding activities of OAS proteins 

do not correlate with their synthetase activities (Hartmann et al., 1998a). Oas1b bound to 

partially double-stranded viral stem-loop RNAs more efficiently than did Oas1a, while 

Oas1btr did not bind to any of the viral RNAs. The Oas1 dsRNA-binding domain(s) has 

not been identified but the crystal structure of porcine OAS, a protein that shares 56% 

identity with mouse Oas1b in residues important for folding, predicted a bilobal 

conformation with the interface between the N- and C-terminal domains forming a 35 Å 

long positively charged groove that could mediate interactions with RNA (Hartmann et 

al., 2003). Although enzymatic activity was completely abrogated by small C-terminal 

deletions of the human OAS1 protein, some dsRNA-binding activity was retained by 

truncated proteins with more than half of the protein deleted, consistent with the 

existence of a large RNA activation site that spans both the catalytic and C-terminal 

OAS1 domains (Ghosh et al., 1991; Hartmann et al., 2003). Interestingly, viral stem-loop 

RNA binding was observed only for the two full-length Oas1 proteins tested suggesting 

that the C terminus is necessary for the binding of these RNAs. However, Oas1b bound 

to two of the three viral RNAs while Oas1a bound to only one of these RNAs suggesting 

the possibility of differential RNA recognition by different Oas1 proteins. A recent study 
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identified the RNA consensus sequence NNWWNNNNNNNNNWGN as a recognition 

site for human OAS1 (Kodym et al., 2009). Although interaction between Oas1a and 

probe 2 was observed, no activation of Oas1a was observed after incubation of 1 μg of 

this protein with up to 50 μg/ml of probe 2 RNA; whereas, Oas1a activation was 

observed with as little as 10 μg/ml poly(I:C) (data not shown). It was previously reported 

that activation of human 2-5A synthetase activity in HeLa cell extracts required 

considerably higher concentrations (360 nM) of HCV genomic RNA than of poly(I:C) 

(50 μg/ml) (Han and Barton, 2002). 

 In addition to its antiviral role, the OAS/RNase L pathway is involved in 

regulating mRNA turnover during cell differentiation, division and apoptosis (Ghosh et 

al., 2001; Kumar et al., 1994; Salzberg et al., 1997). Because of the possibility that 

inappropriate or over production of 2-5A could cause significant damage, mechanisms to 

tightly regulate this pathway must exit in cells. Once 2-5A is synthesized, it is rapidly 

degraded by 2′-phosphodiesterase (Schmidt et al., 1979). However, the data from the 

present study and a previous study (Yan et al., 2005) indicate that inactive murine Oas1 

proteins can function as dominant negative inhibitors of active synthetases (Oas1a and 

Oas1g) and suggest that regulation can also occur at the level of 2-5A synthesis. 

 The expression of the Oas1a mRNA is detected in most tissues with the highest 

levels in digestive and lymphoid tissues (Kakuta et al., 2002; Salzberg et al., 1997; 

Shibata et al., 2001). The inactive Oas1d is exclusively expressed in ovaries. It was 

shown to inhibit the in vitro activity of Oas1a in a dose-dependent manner and was 

postulated to protect oocytes from a dsRNA-induced IFN response and cell death by 
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reducing OAS/RNase L-mediated RNA degradation. Oas1c and Oas1e, which are also 

inactive synthetases, could partially compensate for this protective role in Oas1d-null 

mice (Yan et al., 2005) suggesting functional redundancy among the inactive synthetases. 

Oas1b mRNA is expressed at low levels in lung, uterus, and ovary and at higher levels in 

muscle tissue as well as lymphoid organs such as the thymus and spleen (Kakuta et al., 

2002). Similar to Oas1d, full-length Oas1b, but not Oas1btr, inhibited in vitro Oas1a 

synthetase activity in a dose-dependent manner. Furthermore, 2-5A production in 

response to dsRNA stimulation in Oas1bKI cells, which express the full-length Oas1b, 

was markedly lower than in C57BL/6 cells, which express Oas1btr. These findings 

support a role for full-length Oas1b in the down-regulation of the Oas/RNase L pathway 

in vivo. Oas1b is expressed in a broad range of tissues suggesting that it is a major 

regulator of the Oas/RNase L pathway. However, the other inactive Oas1 proteins 

(Oas1c, e, f, and h) may be able to provide sufficient redundant function in mice 

expressing Oas1btr, which is unable to function as a dominant negative inhibitor. It has 

been reported that tetramer formation is required for the activity of human OAS1 proteins 

and that tetramerization of the human OAS1 proteins is mediated through the CFK motif 

(Ghosh et al., 1997b). The active mouse synthetases Oas1a and Oas1g have substitutions 

in the CFK motif as does Oas1d but Oas1b has an intact CFK motif. However, the gel 

mobility shift assay data (Fig. 4.4) suggest that Oas1b as well as Oas1a may form 

multimers (Fig. 4.4). Although it is not yet known whether tetramer formation is required 

for the synthetase activity of mouse Oas1 proteins, the dominant negative activity of 
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inactive mouse Oas1 proteins strongly suggests that multimer formation is required for 

this inhibition. 

 Although Oas1b functions in the OAS/RNase L pathway to reduce the level of 2-

5A produced, it is paradoxically not proviral in flavivirus–infected cells because it also 

functions to specifically reduce the replication of flaviviruses by an alternative 

mechanism that is independent of RNase L (Sabin, 1952; Scherbik et al., 2006). 

 

MATERIALS AND METHODS 

Expression and purification of MBP-Oas1 proteins. Murine Oas1a cDNA (accession 

No. X04958) and Oas1b cDNA (accession No. AF328926) were obtained as previously 

described (Perelygin et al., 2002). Oas1a and Oas1b plasmid DNAs were amplified with 

primers that added SnaBI and BamHI restriction sites to the PCR fragment and sub-

cloned into the pMAL-c2G expression vector (New England Biolabs). The resulting 

constructs were designated pMAL-O1a and pMAL-O1b. The pMAL-O1btr construct was 

generated using primers that introduced the premature codon into the Oas1b cDNA and 

also contained the SnaBI and BamHI restriction sites to clone the PCR fragment into 

pMAL-c2G. Recombinant MBP-Oas1a protein was expressed by pMAL-O1a 

transformed BL21 (non-D3E) cells grown in 250 ml of Rich Media containing 0.05% 

glucose and 75 μg/ml of carbenicillin (CRB). Expression was induced with 1 mM IPTG 

overnight at 16 °C. Recombinant MBP-Oas1b protein was expressed by pMAL-O1b 

transformed BL21 (non-D3E) cells grown in 500 ml of TB Autoinduction media 

(Novagen) containing 0.05% glucose and 75 μg/ml of carbenicillin (CRB). Expression 
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was auto-induced overnight at 16 °C. Recombinant MBP-Oas1btr protein was expressed 

by pMAL-O1btr transformed BL21 (non-D3E) cells grown in 250 ml of Rich Media 

containing 0.05% glucose and 75 μg/ml of carbenicillin (CRB). Expression was induced 

with 0.5 mM IPTG overnight at 16 °C. Cells were pelleted by centrifugation at 5000 ×g 

for 15 min in an Avanti J30-I centrifuge using a JA-10 rotor (Beckman Coulter). The 

cells were resuspended in 5 ml of column buffer [20 mM tris–HCl, 200 mM NaCl, 1 mM 

EDTA, 10 mM β-ME and Complete Mini Protease inhibitor cocktail (Roche)] and frozen 

at − 20 °C until use. 

Purification of MBP-Oas1 proteins. Recombinant Oas1 proteins were purified by 

affinity column purification using amylose resin. Bacterial cells were lysed with a SLM-

Aminco French pressure cell (Heinemann) at 20,000 lb/in2 and the lysate was centrifuged 

at 10,000 × g for 20 min. The soluble fraction was loaded onto an amylose resin column. 

The resin was washed with 100 ml of column buffer, and the MBP-fusion protein was 

then eluted from the column with 10 mM maltose in column buffer. MBP was cleaved 

from MBP-Oas1a using Genenase I (New England Biolabs) according to the 

manufacturer's protocol. The digestion mixture was loaded onto a hydroxyapatite column 

to remove maltose bound to MBP. Free MBP was then removed by passage through an 

amylose resin column. The flow-through containing Oas1a and trace amounts of the 

protease was collected, concentrated, and stored at − 80 °C until use. Pools of three or 

more partially purified recombinant Oas1 protein preparations were concentrated using a 

Microcon centrifugal filter device (50,000 nominal molecular weight limit) (Millipore) 

prior to use in vitro 2-5A synthetase and EMSA experiments. 
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Western blotting. MBP-Oas1 proteins were separated by 10% SDS-PAGE and 

transferred electrophoretically to a PVDF membrane, which was then blocked overnight 

at 4 °C with 5% BSA in TBS. The membrane was incubated at room temperature with a 

horseradish peroxidase (HRP) conjugated, monoclonal, murine anti-MBP (New England 

Biolabs) diluted 1:35,000 in a 5% BSA-TBS solution at room temperature for 1.5 h. The 

membrane was washed with 0.05% Tween-20-TBS solution (TBS-T). Alternatively, anti-

OAS1 polyclonal antibody (Novus Biological) was diluted (1:1000) in a 5% milk-TBS-T 

solution and incubated with the membrane overnight at 4 °C. The membrane was washed 

with TBS-T and then incubated with anti-mouse IgG-HRP (Cell Signaling) diluted 

1:2000 in 5% milk-TBS-t at room temperature for 1 h. The membrane was washed with 

TBS-T 3 times and once with TBS. Immunoreactive protein bands were detected by 

addition of West Pico Enhanced Chemiluminescence reagent (Pierce) and exposure to 

film. 

Synthesis of RNA probes. Probe 1, Probe 2, and Probe 3 encompassed nts 10,931–

11,029, 10,387–10,448, and 10,308–10,364 of the WNV Eg101 genome, respectively. 

RNA probes were synthesized using a MAXIscript in vitro transcription kit (Ambion) 

which utilizes a T7 RNA polymerase. Transcription reactions were carried out according 

to the manufacturer's protocol in the presence of 32P-UTP (800 mCi/mol; Perkin–Elmer). 

Transcription products were separated by 6 M urea PAGE. Gel slices containing RNA 

transcripts of the expected size were excised and the RNA was eluted from the gel slices 

by rocking overnight at 4 °C in elution buffer (0.5 M NH4OAC, 1 mM EDTA, and 0.2% 

SDS). The eluted RNA was filtered through a 0.45-μm cellulose acetate filter unit 
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(Millipore) to remove gel pieces, precipitated with ethanol, resuspended in water, 

aliquoted, and stored at − 80 °C. The amount of radioactivity incorporated into each RNA 

probe was measured with a scintillation counter (model LS6500; Beckman). 

Genome RNA fold. A secondary structure fold of the 11,029 nt WNV-Eg101 genomic 

RNA (accession no. AF260968) was generated by Ann Palmenberg using version 3.1 of 

MFOLD (Palmenberg and Sgro, 1997). In this fold, each base was algorithmically 

compared with all possible partners to determine the number of pairing partners within a 

free-energy range. The calculated pairing numbers (P-num values) provide a quantitative 

measure of the pairing probability for different partners in the context of multiple sub-

optimal folds. Low P-num values (< 3%) indicate high probability of pairing. 

2′-5′OAS activity assay. The reaction mixture (50 μl) contained 2′-5′ OAS activity assay 

buffer [20 mM HEPES–KOH pH 7.5, 50 mM KCl, 25 mM Mg(OAC)2, 10 mM creatine 

phosphate, 1 U/μl creatine kinase, 5 mM ATP, and 7 mM β-ME], 10 μCi α32p-ATP and 

50 ng/μl poly (I:C). MBP-Oas1 fusion proteins were added to reaction mixtures at 

increasing concentrations. Reactions were incubated at 30 °C for 18 h and stopped by 

addition of 50 μl of Gel Loading Buffer II (95% formamide, 18 mM EDTA, 0.025% 

SDS, xylene cyanol, and bromophenol blue) (Ambion). Two to four μl of each reaction 

were loaded onto a 20% polyacrylamide–urea gel and electrophoresed at 800 V for 3.5 h. 

Radiolabeled 2-5A was visualized by autoradiography.  

Gel mobility shift assay. Reactions contained 1X Gel Shift Buffer (3% Ficoll-400, 

20 mM sodium phosphate pH 7.2, 60 mM KCl, 1 mM MgCl2, and 0.5 mM EDTA), 

0.2 μl of RNasin, 50 ng of phenol-extracted yeast tRNA as a non-specific competitor, 
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10 mM (DTT) dithiothreitol, Oas1 protein and radiolabeled RNA probe. Reactions were 

incubated at room temperature for 20 min. An equal volume of gel-shift loading buffer 

(0.025% bromophenol blue, 0.025% xylene cyanol, 4% sucrose, and 1X TBE) was added 

and the reactions were electrophoresed on non-denaturing 5% polyacrylamide gels (39:1 

acrylamide:bis-acrylamide and 1X TBE) at 120 V for 2 h at 4 °C. The gel was dried and 

analyzed with a Fuji BAS 1800 analyzer (Fuji Photo Film Co.) and Image Gauge 

software (Science Lab, 98, version 3.12; Fuji Photo Film Co.). 

Poly(I:C)-agarose binding assay. Recombinant MBP-Oas1a, MBP-Oas1b, MBP–

Oas1btr and MBP were expressed in BL21 STAR (DE3)pLysS bacterial cells grown in 

35 ml of LB Media containing 0.05% glucose and 75 μg/ml of carbenicillin (CRB) at 

37 °C. At O.D600 ~ 1.0, cultures were placed on ice for 10 min. Expression was induced 

with 1 mM IPTG for 15 min at 20 °C. Cells were pelleted by centrifugation at 5000 ×g 

for 15 min in an Avanti J30-I centrifuge using a JA-10 rotor (Beckman Coulter). Cell 

pellets were resuspended in 1 ml of dsRNA-binding buffer [10 mM Hepes–KOH (pH 

7.5), 3 mM Mg(OAc)2, 0.3 mM EDTA, 50 mM KCl, 0.5% glycerol] supplemented with 

protease Complete Mini EDTA-Free protease inhibitor cocktail (Roche). Cells were lysed 

by the addition of Cellytic cell lysis powder (Sigma-Aldrich) and incubation at 37 °C for 

15 min. Cell lysates were centrifuged at 15,000 × g for 12 min in a bench-top centrifuge 

(model 5415 D, Eppendorf). Clarified supernatant was added to 100 μl poly(I:C)-agarose 

bead slurry and rotated at room temperature for 2 h. Samples were then centrifuged at 

700 × g for 5 min at 4 °C and the supernatant containing the unbound protein fraction 

was collected. Samples were washed 5 times with 500 μl of dsRNA-binding buffer, 
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centrifuged at 700 × g for 5 min at 4 °C after each wash and the supernatant was 

discarded. The poly(I:C)-agarose bound to MBP-Oas1 proteins was resuspended in 

100 μl of dsRNA-binding buffer and 100 μl of 2X SDS sample buffer (125 mM Tris–HCl 

pH 6.8, 4% SDS, 20% Glycerol, 0.004% bromophenol blue and 5% 2-mercaptoethanol). 

Whole-cell lysate, unbound fraction and poly(I:C)-agarose bound fraction proteins were 

separated by 10% SDS-PAGE and immunoblotted using HRP-conjugated anti-MBP 

antibody (New England Biolabs). 

Cells. Oas1b knock-in mice were generated as previously described (Scherbik et al., 

2007a). C57BL/6 and transgenic C57BL/6 Oas1b-KI MEFs were SV-40 transformed and 

the cell lines were maintained as previously described (Scherbik et al., 2007b). 

FRET assay of RNase L activity for 2-5A levels. C57BL6 and Oas1b-KI MEFs were 

seeded into 6-well plates and grown overnight to about ~ 95% confluency. Cells were 

incubated with 100 U/ml type I universal IFN for 24 h. No IFN was added to the media 

for control cells. After 24 h, some of the IFN treated cells were transfected with 10 μg/ml 

poly(I:C) using Cellfectin (Invitrogen) for 1 h. Cells were then harvested and lysed by 

addition of NP-40 buffer [50 mM Tris–HCL (pH 7.2), 150 mM NaCl, 1% NP-40, 

200 μM NaVO3, 2 mM EDTA, 5 mM MgCl2 and 5 mM DTT] that was pre-heated at 

95 °C for 3 min. The cell suspension was heated to 95 °C for 7 min. Cell debris was 

removed by centrifugation and the supernatant was applied to a Microcon centrifugal 

filter device (3000 nominal molecular weight limit) (Millipore) and centrifuged for 

45 min at 4 °C. The volume was measured and the samples stored at − 80 °C until use.  
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 RNase L activity was determined using a fluorescence resonance energy transfer 

(FRET) assay (Thakur et al., 2005). Recombinant human RNase L was produced in insect 

cells from a baculovirus vector and purified by FPLC (Townsend et al., 2008). The 

cleavable substrate consisted of a 36 nucleotide synthetic oligoribonucleotide [5′(6-FAM-

UUA UCA AAU UCU UAU UUG CCC CAU UUU UUU GGU UUA-BHQ-1)-3′] 

derived from respiratory syncytial virus (Thakur et al., 2005). The RNA sequence 

contains several cleavage sites for RNase L (UU or UA). Triplicate 5 μl aliquots of 1:10 

dilution of each sample in DEPC-treated water were added to 96-well black polystyrene 

microtiter plates (Corning) on ice. The reactions (45 μl) contained 100 nM FRET probe, 

25 nM RNase L, 25 mM Tris–HCl (pH 7.4), 100 mM KCl, 10 mM MgCl2, 100 μM ATP, 

and 7.2 mM 2-mercaptoethanol. RNase L was the last component added. The plates were 

incubated at 20 °C protected from light. To generate a standard curve, authentic trimeric 

2-5A (> 95% purity) diluted to final concentrations of 0.05 0.1, 0.3, 1, 3, 10, and 30 nM 

in DEPC-treated water was used. Fluorescence was measured at 5, 30, and 60, min with a 

Wallac 1420 fluorimeter (Perkin–Elmer LAS Inc., USA) (excitation 485 nM/emission 

535 nm with a 0.1 s integration time). 

Real-time qRT-PCR. Real-time quantitative reverse transcription-PCR (qRT-PCR) 

analysis of mouse Oas1a and Oas1b mRNAs was performed with Assays-on-Demand 

20x primer and fluorogenic TaqMan FAM/TAMRA (6-carboxyfluorescein/6-

carboxytetramethylrhodamine)-labeled hybridization probe mixes (Applied Biosystems). 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was used as an 

endogenous control and was detected using TaqMan mouse GAPDH Control Reagents 
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primers and probe (Applied Biosystems). One-step RT-PCR was performed for each 

target gene and for the endogenous control in a singleplex format using 200 ng of RNA 

and the TaqMan one-step RT-PCR master mix reagent kit (Applied Biosystems). The 

cycling parameters were as follows: reverse transcription at 48 °C for 30 min, AmpliTaq 

activation at 95 °C for 10 min, denaturation at 95 °C for 15 s, and annealing/extension at 

60 °C for 1 min (cycle repeated 40 times). Triplicate Ct values were analyzed with the 

comparative Ct(ΔΔCt) method (Applied Biosystems) using Microsoft Excel software. 

The amount of fold change in the target mRNA (2-ΔΔCt) was normalized to an 

endogenous control (GAPDH) . The relative fold change in expression compared to the 

level of the same mRNA present in cell–type specific, untreated controls was expressed 

in relative quantification (RQ) units. 
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ADDENDUM TO CHAPTER 4 

Additional data -- Results and Discussion 

 Gel mobility shift data (Fig. 4.4) and the observation that Oas1b can inhibit Oas1a 

synthetase activity in a dose-dependent manner (Fig. 4.5) strongly suggest that Oas1b 

associates with Oas1a to mediate this inhibition. To test this hypothesis, C3H/He-1B/1A 

MEFs that stably express 3x FLAG-tagged Oas1b and Xpress-tagged Oas1a were made 

and Oas1a and Oas1b in vivo interactions in cell lysates were analyzed by co-

immunoprecipitation. C3H/He-1B/1A S2 lysates were first incubated with rabbit anti-

FLAG agarose beads or nonspecific rabbit-IgG agarose beads. Oas1a was co-

immunoprecipitated by anti-FLAG antibody but not by a non-specific IgG (Fig. 4.6). 

These data indicate that Oas1a specifically interacts with Oas1b in vivo. A reciprocal 

immunoprecipitation using the anti-Xpress antibody proved unsuccessful because Oas1a 

was not efficiently immunoprecipitated (data not shown) suggesting that the use of anti-

Xpress antibody for immunoprecipitation is not appropriate under the conditions used.  

3xFLAG-Oas1b

50

37
IB: anti-FLAG

50
Lys rIgG rFLAG

Xpress-Oas1a

C3H/He-1B/1A MEFs

37
IB: anti-Xpress

 

Figure 4.6. Co-immunoprecipitation of Oas1a and Oas1b. C3H/He-1B/1A cells were lysed and S2 
fractions were prepared. Rabbit anti-FLAG agarose beads or rabbit control IgG agarose beads were used 
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for immunoprecipitation. Immunoprecipitated proteins were separated by 10% SDS-PAGE and detected by 
Western blotting using mouse anti-Xpress antibody or mouse anti-FLAG. 
 

 Tetramerization of the human p42 and p48 OAS1 isoforms were reported to occur 

and to require an intact C-F-K motif. Substitutions in this motif completely abolished 

human OAS1 synthetase activity (Ghosh et al., 1997a). Unlike human OAS1 proteins, the 

active mouse synthetases Oas1a and Oas1g have substitutions in the CFK motif predicted 

to inactivate their function. However, Oas1a co-immunoprecipitation with Oas1b 

suggests that these proteins do form multimers. This observation strongly supports the 

hypothesis that Oas1b inhibits Oas1a synthetase activity in vitro and in vivo through 

protein-protein interactions that do not require a CFK motif.  

 

Additional data – Materials and Methods 

Cells. A C3H/He-Oas1b clonal MEF cell line was generated by transfection of C3H/He 

MEFs with an He-Oas1b expression construct that encodes a N-terminally 3x-FLAG 

tagged full-length Oas1b, followed by clonal cell selection in the presence of 5 μg/ml of 

G418 (Gibco) (Courtney et al., unpublished data). C3H/He-1B/1A MEF cell lines were 

generated by transfection of C3H/He-Oas1b MEFs with a pHis/Max-Oas1a encoding a 

N-terminally 6X His and Xpress-tagged Oas1a followed by selection in the presence of 

250 μg/ml of G418 (Gibco) and 850 μg/ml of blasticidin (Invitrogen). The resultant cell 

line was designated C3H/He-1B/1A. Cells were grown in minimal essential medium 

supplemented with 10% heat-inactivated fetal bovine serum, 10 µg/ml gentamicin and the 

two drugs at 37°C in 5% CO2.  
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Cloning Oas1a cDNA. Oas1a cDNA was amplified by PCR using specific primers and 

subcloned into the pTOPO-His/Max mammalian expression vector (Invitrogen). The 

recombinant protein expressed has N-terminal 6X His and Xpress tags. The resultant 

construct was designated pHis/Max-Oas1a. 

Co-immunoprecipitation assay. C3H/He-1B/1A MEFs were rinsed with cold PBS and 

then lysed with FLAG-lysis buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% 

Triton-X 100 and 1 mM EDTA] supplemented with Complete Mini EDTA-Free Protease 

Inhibitor Cocktail (Roche). Cell lysates were incubated on ice for 30 min, sonicated and 

then centrifuged at 2000 x g for 5 min at 4°C. The supernatant was designated the S2 

fraction. The protein concentrations of the S2 lysates were measured using a Bradford 

Assay (Bio-Rad) following the manufacturer's protocol. Protein concentration was 

adjusted to 1 μg/μl with FLAG-lysis buffer. S2 lysates (750 μl per reaction containing 

~750 μg total protein) were incubated with 30 μl of rabbit anti-FLAG-agarose beads (10 

μg of antibody) or 30 μl of agarose beads coupled to a non-specific rabbit IgG (10 μg of 

antibody) overnight at 4°C with rotation. Beads were collected by centrifugation at 750 x 

g for 2 min at 4°C, and then washed 5 times with 1 ml of FLAG-lysis buffer. Proteins 

were eluted by boiling in 2X SDS sample buffer for 5 min. 

Western blot analysis. Proteins were separated by 10% SDS/PAGE, transferred 

electrophoretically to nitrocellulose membranes, and blocked with 5% non-fat dry milk 

(NFDM) in 1X TBS + 0.05% Tween-20 (TBST) for 1 h at room temperature. Primary 

antibody diluted in 5% NFDM-TBST was then incubated with the membrane overnight at 

4ºC, the membranes were washed 3 times in 1X TBST and then incubated with a 
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secondary antibody diluted in 5% NFDM-TBST for 1 h at room temperature. After being 

washed twice in 1X TBST and once in 1X TBS, the membranes were processed for 

enhanced chemiluminescence using a Super-Signal West Pico detection kit (Pierce, 

Rockford, IL) according to the manufacturer's instructions. Membranes were incubated 

with either anti-Xpress (Invitrogen) (1:1000 in 5% NFDM-TBST) or anti-FLAG (Sigma) 

(1:1000 in 5% NFDM-TBST).  
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CHAPTER 5 

Synthetase activity analysis of human OAS1 splice variants. 

 

INTRODUCTION 

 Mammalian genomes encode a family of antiviral, IFN-inducible 2'-5' OAS 

proteins that are activated by dsRNA or hairpin structures formed by ssRNA to 

polymerize ATP into 2-5A that activates RNase L which cleaves cellular and viral 

ssRNAs after UU and UA dinucleotides (Floyd-Smith et al., 1981; Kerr and Brown, 

1978; Wreschner et al., 1981). Two distinguishing features of the OAS family are their 

ability to form 2'-5' linked oligonucleotides and their activation by dsRNA in spite of the 

lack of a canonical dsRNA binding motif (Ghosh et al., 1991; Hartmann et al., 2003). In 

humans, small, medium and large OAS proteins are encoded by the OAS1, OAS2 and 

OAS3 genes, respectively. Additionally, OASL proteins, encoded by OAS-like genes, 

contain C-terminal ubiquitin-like domains (Hartmann et al., 1998b; Rebouillat et al., 

1998). The OAS1 protein contains a single OAS unit whereas the OAS2 and OAS3 

proteins are composed of 2 and 3 OAS units, respectively (Marie and Hovanessian, 1992; 

Rebouillat et al., 1998). Interestingly, the conserved activity motifs in the last OAS unit 

in OAS2 and OAS3 share the highest sequence identity with OAS1 (Hartmann et al., 

2003). The catalytic activity of OAS proteins has been postulated to depend on its 

multimerization state. Tetramerization of the OAS1 isoforms, p42 and p48, has been 

reported to be required for synthetase activity (Ghosh et al., 1997). However, monomeric 

p42 that was expressed in insect cells was fully active (Justesen et al., 2000). 
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Catalytically active OAS2 and OAS3 exist as dimers and monomers, respectively (Marie 

and Hovanessian, 1992). Oligomerization of the OAS proteins is mediated by the CFK 

motif at the C-terminus of the OAS1 and OAS2 proteins; this motif is not conserved in 

any of the OAS domains of OAS3 (Ghosh et al., 1997). The length of 2-5A generated by 

the OAS proteins varies. OAS1 and OAS2 proteins are capable of synthesizing higher 

order 2-5A oligomers (2-5A tetramers or more), while OAS3 mainly synthesizes 2-5A 

dimers that do not activate RNase L (Hovanessian and Justesen, 2007).  

 In contrast to the 8 Oas1 genes that are present in mice, humans have a single 

OAS1 gene that is alternatively spliced to yield multiple isoforms.  These isoforms all 

share the enzymatic N-terminal 346 amino acids residues but encode different C-termini 

due to alternative splicing (Benech et al., 1985; Ghosh et al., 2001).  Polymorphisms at 

two positions result in the expression of different splice variants. At least 5 isoforms of 

human OAS1 (p42, p44, p46, p48 and p52) have been reported. Both the p42 and p44 

isoforms have been reported to be produced by all genotypes (Belsher et al., 2007). An 

A/G SNP (rs10774671) at the intron-5/exon-6 splice acceptor site alters OAS1 splicing 

(Bonnevie-Nielsen et al., 2005; Ghosh et al., 1991; Justesen et al., 2000; Saunders et al., 

1985). The A-allele at the intron-5/exon-6 splice acceptor site generates two transcripts, 

one that encodes the p48 isoform and one that encodes the p52 OAS1 isoform. The G-

allele at this site leads to production of the p46 transcript (Fig. 5.1). An additional variant 

of the p42 isoform encodes a Ser162 to Gly162 substitution that is generated by the G-allele 

of an exon 3 SNP; however, this substitution is not expected to affect synthetase activity 

since it is not located in a catalytic region  (Belsher et al., 2007).   



112 

 

 Four novel OAS1 cDNAs have recently been identified by the Brinton lab that 

encode proteins designated p41, p44A, p49 and p49A (Perelygin et al., unpublished data). 

The p49 isoform is produced by all tested genotypes. The p41 isoform is produced when 

the G-allele is present in the intron-5/exon-6 splice acceptor site. The A-allele, together 

with an A-insertion in exon 7 that leads to a frame shift, results in premature translation 

termination and production of the p44 variant p44A and the p49 variant p49A (Fig. 5.1).  
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Figure 5.1.  SNP-dependent generation of variant human OAS1 transcripts. 

 Although the p42, p44, p46, p48 and p52 transcripts were identified some time 

ago, the majority of the initial studies used OAS1 preparations that were presumed to 

contain only a single OAS1 isoform, but this was not the case according to a 

comprehensive review by Johnston and Torrence (1984). For instance, a previous study 

that reported synthetase activity for the p46 isoform (Chebath et al., 1987) used cellular 

extracts that contained p42 (referred to as p40) and p46, and most likely also p41, p44 

and p49 all of which could have contributed to the observed synthetase activity. In 

addition, the antibody used to identify and/or immunoprecipitate the p46 and p42 proteins 

recognized a region that is present in all OAS1 isoforms as well as in OAS2 and OAS3 
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proteins. One study mis-identified the human p42 and p48 OAS1 isoforms as murine 

proteins designated 3-9 and 9-2, respectively (Ghosh et al., 1991); this was likely due to 

contamination of murine RNA preparations with human mRNA (Justesen et al., 2000). 

Most of the currently published functional studies on human OAS1 synthetase activity 

are limited to the p42 and p48 isoforms (Ghosh et al., 1997; Ghosh et al., 2001; Justesen 

et al., 2000). However, a recombinant p46 expressed in insect cells was reported to be an 

active synthetase (Hartmann et al., 1998a). The alternatively spliced transcripts have not 

yet been characterized.  

 The functions of most of the individual isoforms have not been tested and it is 

tempting to speculate that p42, which is encoded by all genotypes, provides only antiviral 

activity while the alternatively spliced isoforms might have additional functions. 

Accordingly, the p48 isoform was reported to exihibt proapoptotic activity by interacting 

with the anti-apoptotic Bcl-2 and BclxL proteins via a C-terminal BH3 domain and was 

also reported to exhibit mitochondrial localization (Ghosh et al., 2001).  Structural 

constraints observed in the crystal structure of the pig OAS1 protein suggest that the C-

terminal alterations in the isoforms translated from alternatively spliced human OAS1 

transcripts might affect enzymatic activity (Hartmann et al., 2003). The different C-

termini may be responsible for alternative functions of the various OAS1 isoforms. The 

2-5A synthetase activity of each of the previously described OAS1 isoforms as well as 

the recently identified OAS1 splice variant proteins was assessed in the current study. 
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RESULTS 

Expression and purification of OAS1 recombinant proteins. A comprehensive 

analysis of the OAS1 2-5A synthetase activity of isoforms other than p42, p46 and p48 

has not been reported. To assess the ability of these isoforms to polymerize ATP into 2-

5A, various OAS1 isoforms as well as recombinant LacZ protein (negative control) fused 

to N-terminal 6X His and V5 tags were expressed in bacteria. Proteins from uninduced 

and IPTG-induced bacterial extracts were separated by 10% SDS-PAGE. Fusion proteins 

were not readily detectable in induced bacterial lysates by Coomassie blue staining (data 

not shown) suggesting that expression of the recombinant OAS proteins was not efficient. 

However, fusion proteins of the expected molecular masses were detected by 

immunoblotting with anti-V5 antibody only from the induced bacterial lysates confirming 

expression of these fusion proteins (Fig. 5.2).  
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Figure 5.2. Expression of OAS1 isoform proteins. Individual human OAS1 isoform fusion proteins were 
expressed in bacteria. Bacteria were lysed and proteins in the crude bacterial lysates were separated by 10% 
SDS-PAGE, transferred to nitrocellulose membrane and immunoblotted with anti-V5 antibody. 
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Some breakdown of the OAS1 isoforms was observed as indicated by bands 

corresponding to N-terminal fragments on the anti-V5 Western blot (Fig. 5.2). 

Breakdown was also observed for the control protein, LacZ, which was expressed from 

the same plasmid and in the same cells as the OAS1 isoforms. Taken together with the 

poor expression levels, these data indicate some toxicity was associated with bacterial 

expression of the OAS1 fusion proteins; this is consistent with previously published data 

obtained when murine Oas1 fusion proteins were expressed in bacteria (Elbahesh et al., 

2011).  

150

50

p41 p42 p44 p46 p48 p49ap44a p49 LacZ

LacZ

OAS1
proteins

IB: anti-V5

kDa

C.

B.A.

LacZ

150

75

50

kDa

100

p41 p42 p44 p46 p48 p49ap44a p49 LacZ
OAS1

proteins

IB: anti-OAS1

kDa
50

 

Figure 5.3. Purification of OAS1 isoform proteins. (A) Purification of the LacZ control protein. LacZ 
fusion was expressed in bacteria, partially purified on a metal affinity resin column, separated by 10% 
SDS-PAGE and visualized by Coomassie blue staining. (B and C) Immunoblot of purified OAS1 isoforms. 
Human OAS1 fusion proteins were expressed in bacteria, partially purified on metal affinity resin columns, 
separated by 10% SDS-PAGE, transferred to nitrocellulose membrane and immunoblotted for OAS1 
isoforms detected with anti-V5 antibody (B) or anti-OAS1 antibody (C). 
 
 The OAS1 isoforms and recombinant LacZ were partially purified on Talon metal 

affinity columns and then separated by 10% SDS-PAGE. Recombinant LacZ was 

detectable by Coomassie staining following SDS-PAGE (Fig. 5.3A). Purified OAS1 

isoform proteins were detected by Western blotting with anti-V5 antibody or anti-OAS1 

antibody (Fig. 5.3B and 5.3C, respectively). As expected, LacZ was detected only by 
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anti-V5 antibody. The anti-V5 antibody detected a number of the OAS1 isoforms more 

strongly than the anti-OAS1 antibody suggesting that the anti-OAS1 antibody may not 

recognize all the isoforms with equal efficiency. 

 

2-5A synthetase activity of recombinant OAS1 isoforms.  To assess the ability of the 

human OAS1 isoforms to synthesize 2-5A, partially purified proteins were incubated 

with poly(I:C) and α-32P-ATP at 30°C for 18 h. The 2-5A produced was separated by 

denaturing 8M urea 20% PAGE and visualized by autoradiography. Consistent with 

previous reports (Ghosh et al., 1997; Ghosh et al., 2001; Justesen et al., 2000), p42 and 

p48 synthesized higher order 2-5As were (2-5A tetramers or higher order products) 

demonstrating that the presence of N-terminal 6X His and V5 tags did not inhibit 

synthetase activity. Higher order 2-5A was synthesized by p41, p46, p49 and p49A (Fig. 

5.4). Pig OAS1 protein (provided by Rune Hartmann, University of Aarhus, Denmark) 

was used as a positive control. This protein is 73% identical in sequence to human p46 

OAS1 and has similar activity (Hartmann et al., 2003). As expected, the pig OAS1 

efficiently  produced higher order 2-5A. In contrast, p44A, which is a truncated variant of 

the p44 isoform, only produced 2-5A dimers (Fig. 5.4). 2-5A dimers have been reported 

to be very weak activators of RNase L (Dong et al., 1994). Partially purified lacZ 

expressed from the same vector was used as a negative control. As expected, LacZ did 

not produce 2-5A. A small spot that migrated above the free ATP was observed in the 

LacZ reaction suggesting that it might bind to ATP (Fig. 5.4). The migration of this spot 
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was different from that observed for p44A or any of the other isoforms indicating that 

synthetase activity was only observed with the OAS1 proteins. 

 

p41 p42 p46LacZ Pig OAS1 p48 p49 p49Ap44 p44ANo Protein  

Figure 5.4. Analysis of human OAS1 isoform 2-5A synthetase activity. Each human OAS1 isoform (22 
μl) was incubated with α32P-ATP and poly (I:C) for 18 h at 30°C. LacZ (22 μl) was used as a negative 
control. Pig OAS1 (1 μg) was used as a positive control. Two µl of each reaction were then electrophoresed 
on a 20% polyacrylamide urea denaturing gel. 

 
The data obtained indicate that all of the OAS1 isoforms tested, including the newly 

identified p41, p44A, p49 and p49A isoforms, are able to synthesize 2-5A in vitro. 

However, p44A only synthesizes dimeric 2-5A. Because the OAS1 variant proteins were 

expressed at low and varied levels and only partially purified, a quantitative comparison 

of the 2-5A activities of the various isoforms was not carried out. 

 

DISCUSSION 

 The OAS/RNase L system represents an important component of the IFN-

dependent antiviral response (Samuel, 2001). The proteins of the OAS family polymerize 
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ATP into oligoA that is uniquely linked by 2'-5' phosphodiester bonds. The only function 

currently identified for 2-5A is the activation of the latent cellular endoribonuclease 

RNase L. Activated RNase L cleaves viral and cellular ssRNAs. In humans, multiple  

OAS1 proteins are expressed from a single OAS1 gene due to alternatively spliced 

mRNAs and allelic variation. Five isoforms (p42, p44, p46, p48 and p52) were 

previously reported (Benech et al., 1985; Bonnevie-Nielsen et al., 2005; Ghosh et al., 

2001; Ghosh et al., 1991; Justesen et al., 2000; Saunders et al., 1985). The identification 

of 4 new OAS1 isoforms (p41, p44A, p49 and p49A) (Perelygin et al. unpublished data) 

and no previous data on the synthetase activity of the majority of the OAS1 isoforms 

prompted the current study.   

 While each of the OAS1 proteins encode all of the functional motifs required for 

synthetase activity, the presence of different C-termini might alter the structures of some 

of the isoforms resulting in inactive synthetases. Of the 9 OAS1 isoforms, p42, p46 and 

p48 are the only ones previously characterized for their ability to synthesize 2-5A (Ghosh 

et al., 1997; Ghosh et al., 2001; Hartmann et al., 1998a; Justesen et al., 2000). All of the 

OAS1 isoforms encode an intact C-F-K motif which was reported to mediate OAS1 

tetramer formation required for activation (Ghosh et al., 1997). The p41, p42, p46, p49 

and p49A isoforms were observed to polymerize ATP into 2-5A oligomers in the current 

study. These data suggest that all of the OAS1 isoforms adopt a conformation that does 

not inhibit OAS synthetase activity even though different C-terminal regions are present. 

It is possible that sequences within the different C-terminal regions may have been 

selected because they form folded structures that do not impede and/or stabilize the 
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catalytically active structure. An alternative explanation is that short deletions of or 

changes in the C-terminal sequences are tolerated because they occur far enough away 

from the functional OAS unit. However, the p44A isoform only synthesized 2-5A dimers 

which suggests that deletions in the C-terminus may affect the type of 2-5A made. 

 Antiviral activity has been reported to be associated with the expression of 

specific OAS1 isoforms. For example, an A-allele in the intron-5/exon-6 splice acceptor 

site which leads to the expression of the p48 and p52, but not p46 or p41, OAS1 isoforms 

has been reported to correlate with an increased risk of infection with WNV (Lim et al., 

2009). Another study reported that Dengue replication is blocked by a RNase L 

dependent mechanism in human cells over-expressing p42 or p46, but not p44, p48 or 

p52, (Lin et al., 2009). However, Lin et al. (2009) also reported an antiviral effect in cells 

over-expressing p100 (OAS3) which was previously reported to synthesize RNase L-

inhibitory 2-5A dimers (Dong et al., 1994). Although the p100 transfected cells produced 

RNase L cleavage products, these may have been due to the synthesis of longer 2-5A by 

endogenous human OAS1 isoforms. 

 In addition to possible effects on protein structure and synthetase activity, the 

presence of different C-termini may result in differential cellular localization and/or 

facilitate binding of the OAS1 isoforms to unique protein partners. The p42 isoform was 

reported to be cytosolic as determined by subcellular fractionation (Hovanessian et al., 

1987). Consistent with this observation, p42 is thought to interact with the cytosolic 

domain of the prolactin-receptor. This interaction was suggested to mediate inhibition of 

prolactin-induced STAT1 binding at the IRF-1 promoter GAS (IFN-γ activated sequence) 
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element observed in p42-transfected cells (McAveney et al., 2000). The p48 isoform is 

predicted to contain a Bcl-2 homology-3 (BH3) domain and was shown to mediate 

cellular apoptosis by interacting with Bcl-2 and BclxL (Ghosh et al., 2001). Consistent 

with these observations, over-expressed p48 was reported to colocalize with 

mitochondria in osteosarcoma human cells (Ghosh et al., 2001). The fact that both the 

p42 and p48 isoforms have been reported to carry out alternative functions, suggests that 

synthetase activity does not prevent these functions. The data presented in the study 

provide preliminary data for future functional studies of the OAS1 isoforms. 

 

MATERIALS AND METHODS 

Cloning and expression of OAS1 isoforms. Primary human skin fibroblast cell lines, 

CCL-66 and CCL110, were maintained at 37°C in 5% CO2 in Eagle's Minimum Essential 

Medium containing 10% heat inactivated fetal bovine serum (FBS), 100 μg/ml 

streptomycin and 100 IU/ml penicillin. Cell lines were treated with 1000 IU/ml of human 

recombinant IFN-β (Sigma) for 16 h to induce expression of OAS1 mRNA, total RNA 

was exctracted using RNeasy Mini Kit (Qiagen) and first-strand cDNA was generated 

using the ThermoScript RNase H Reverse Transcriptase kit (Invitrogen) and an oligo-dT 

primer. OAS1 cDNAs were cloned into the pCR-XL-TOPO TA cloning vector 

(Invitrogen) and plasmid DNA was amplified in One Shot TOP10 chemically competent 

E. coli cells. Plasmid DNA containing cDNA for each of the isoforms was provided by 

Dr. Andrey Perelygin. 
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 Human OAS1 cDNAs for the p41, p42, p44A, p44, p46, p48, p49A and p49 

isoforms was subcloned into the pET151 expression vector (Invitrogen) which encodes 

6X His and V5 N-terminal tags. Plasmids were transformed into One Shot TOP10 

chemically competent E. coli and sequenced. OAS1 isoform proteins were expressed in 

pET151-p41, -p42, -p44A, -p44, -p46, -p48, -p49A or -p49 transformed BL21-(DE3)-

pLysS cells grown in 125 ml of LB media containing 0.05% glucose and 100 μg/ml of 

carbenicillin (CRB). Expression was induced with 1 mM IPTG overnight at 16°C. Cells 

were pelleted by centrifugation at 6,000 x g for 10 min at 4°C in a Avanti J30-I 

centrifuge using a JA-10 rotor (Beckman Coulter). The cells were resuspended in 10 ml 

of 1X Equilibration buffer [50 mM sodium phosphate (pH 7.4) and 300 mM NaCl] 

supplemented with Complete Mini EDTA-Free Protease inhibitor cocktail (Roche) and 

frozen at -80°C until use. 

Purification of OAS1 isoform proteins. For cell lysis, Cellytic Express lysis powder 

(Sigma) was added to thawed cell suspensions and incubated at 37°C for 30 min with 

shaking. Samples were then clarified by centrifugation at 15,000 x g for 10 min at 4°C in 

a Avanti J30-I centrifuge using a JA-20 rotor (Beckman Coulter). Clarified supernatant 

volume was increased to 20 ml by addition of 1X Equilibration buffer and proteins were 

column purified by loading onto columns containing 1 ml of TALON metal affinity 

nickel resin (Clontech), the columns were washed with 1X Wash buffer [50 mM sodium 

phosphate (pH 7.4), 300 mM NaCl and 5 mM imidazole] and the bound proteins were 

eluted with 5 ml of 1X Elution buffer [50 mM sodium phosphate (pH 7.4), 300 mM NaCl 

and 150 mM imidazole. The eluted protein fractions were combined, the buffer 
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exchanged with protein storage buffer [20 mM Hepes-KOH (pH7.5), 50 mM KCl, 25 

mM Mg(OAc)2, 7 mM β-ME, 0.03 mM EDTA and 0.25% glycerol] supplemented with 

Complete Mini EDTA-Free Protease inhibitor cocktail (Roche) and concentrated using a 

Microcon centrifugal filter device (10,000 kDa cut-off) (Millipore) prior to use in in vitro 

2-5 A synthetase assays. For short term storage, proteins were stored at 4°C or were 

aliquoted and stored in -80°C. 

Western blotting. Proteins were resolved by SDS-PAGE, transferred to a nitrocellulose 

membrane and blocked with 5% non-fat dry milk (NFDM) in 1X TBS + 0.05% Tween-

20 (TBST) for 1 h at room temperature. Anti-V5 (Sigma) (1:1000 in 5% NFDM-TBST) 

or anti-OAS1  (Novus Biological) (1:1000 in 5% NFDM-TBST) primary antibody was 

then incubated with the membrane overnight at 4ºC, the membranes were washed 3 times 

in 1X TBST and then incubated with a HRP-conjugated secondary antibody diluted in 

5% NFDM-TBST for 1 h at room temperature. After washing the membrane twice in 1X 

TBST and once in 1X TBS, membranes were processed for enhanced chemiluminescence 

using a Super-Signal West Pico detection kit (ThermoScientific) according to the 

manufacturer's instructions.  

2'-5' OAS activity assay. The reaction mixture (50 µl) contained 2′-5′ OAS activity 

assay buffer [20 mM HEPES-KOH pH 7.5, 50 mM KCl, 25 mM Mg(OAC)2, 10 mM 

creatine phosphate, 1U/µl creatine kinase, 5 mM ATP, and 7 mM β-ME], 20 µCi α32p-

ATP and 50 ng/µl poly (I:C). Twenty-two μl of OAS1 recombinant proteins was added to 

the reaction mixtures, incubated at 30°C for 18 hrs and stopped by addition of 50 µl of  
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Gel Loading Buffer II (95% formamide, 18 mM EDTA, 0.025% SDS, xylene cyanol, and 

bromophenol blue) (Ambion). Two µl of each reaction were loaded onto a 20% 

polyacrylamide gel and electrophoresed at 800 V for 3.5 hrs.  Radiolabeled 2-5A was 

visualized by autoradiography.  
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