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HUMAN CRANIAL GROWTH AND SHAPE CHANGE:  ARE FETAL RATES AND 

MORPHOLOGIES EXTENDED THOUGHOUT THE FIRST YEAR OF LIFE?

by

DANA J. RUSSELL

Under the Direction of Frank L’Engle Williams

ABSTRACT

Selection for increased encephalization in humans necessitated extensive brain 

growth after birth.  To estimate changes in rates of growth and corresponding shape 

changes during gestation and infancy, chord and arc distances were obtained from the 

frontal, parietal, and occipital bones of 44 human fetuses, neonates, and infants (one 

year old and younger). Rates of growth in chord and arc measurements were calculated 

and  compared  using  linear  regression  of  log-transformed  variables,  followed  by 

ANCOVA. Curvature of bone lengths and widths were estimated by chord/arc indices. 

Fetal rates of cranial growth were significantly slower while the fetal frontal and occipital 

bones were significantly more curved than those of infants. Fetal rates of cranial growth 

decrease during the first  six postnatal  months,  in conjunction with rapid  changes in 

shape, except for parietal superior-inferior height where bossing of the bone is similar in 

fetuses and neonates.

INDEX  WORDS:  Brain,  Cranium,  Encephalization,  Fetal,  Growth  and  development, 
Human, Infant, Prenatal, Postnatal, Rate of growth, Shape change
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Chapter I: Introduction

Through approximately two million years of  evolution,  selection has produced 

larger cranial capacity in the genus  Homo.  The increasing size of the hominid brain 

may have been selected for by a number of factors.  Determinants may have included 

environmental and/or climatic changes encountered by early species of Homo, the need 

for improved social behaviors due to population increases necessitating closer proximity 

of  others,  or  possibly  increased  competition  with  other  hominid  species  for  scarce 

resources (Bogin, 1999; Ponce de León, et al., 2008; Rosenberg, 1992; Wortham and 

Kuzara, 2005).  

During ontogeny there must be sufficient increase in the volume of brain tissue 

before maturation to allow for either of these three theories to accurately explain the 

evolution of our large brain.  The increase in volume of our brain begins, as does all 

human growth, during the early stages gestation. But there are limitations as to the 

degree of growth the brain can achieve before a fetus can no longer be born due to its 

large size.  These restrictions originate more from the dimensions of the female pelvis 

than from the fetus itself.  First and foremost the fetus is constrained by the diameter 

and shape of the pelvic inlet and outlet as it relates to the path the fetus must take to be 

born.     

During ontogeny there must be sufficient increase in the volume of brain tissue 

before maturation to allow for either of these three theories to accurately explain the 

evolution of our large brain.  The increase in volume of our brain begins, as does all 
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human growth, during the early stages gestation. But there are limitations as to the 

degree of growth the brain can achieve before a fetus can no longer be born due to its 

large size.  These restrictions originate more from the dimensions of the female pelvis 

than from the fetus itself.  First and foremost the fetus is constrained by the diameter 

and shape of the pelvic inlet and outlet as it relates to the path the fetus must take to be 

born.     

During ontogeny there must be sufficient increase in the volume of brain tissue 

before maturation to allow for either of these three theories to accurately explain the 

evolution of our large brain.  The increase in volume of our brain begins, as does all 

human growth, during the early stages gestation. But there are limitations as to the 

degree of growth the brain can achieve before a fetus can no longer be born due to its 

large size.  These restrictions originate more from the dimensions of the female pelvis 

than from the fetus itself.  First and foremost the fetus is constrained by the diameter 

and shape of the pelvic inlet and outlet as it relates to the path the fetus must take to be 

born (Berge,  1998;  De Silva, et  al.,  2008;  Gould,  1977; Jordaan,  1976; Rosenberg, 

1992; Schultz, 1969; Whitcome, et al., 2007).  

If the pelvic dimensions were to increase further to allow for the passage of a 

larger fetus, the center of gravity would have to have shifted such that our ancestors 

would no longer have been able to sustain the upright posture necessary for efficient 

bipedalism (Ponce  de  León,  et  al.,  2008;  Rosenberg,  1992;  Wortham and  Kuzara, 

2005).  Therefore, an increase in fetal cranial volume prior to birth may have offset the 

progression of obligate bipedality.  So how does the rate of brain growth before birth 
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compare to the rate observed after birth? And, does the degree of curvature for each of 

the individual cranial bones follow the same growth trajectories seen in overall size?  

Brain growth in utero beyond 8.5 months complicated the successful passage of 

a  fetus  during  the  birthing  process.   It  is  at  approximately  this  point  in  gestational 

development, that the fetus reaches the upper limits in size and cranial capacity that 

can successfully pass through the pelvic outlet of a female during delivery (Berge, 1998; 

De Silva, et al., 2008; Jordaan, 1976; Ponce de León, et al., 2008; Rosenberg, 1992; 

Steer, 2006; Whitcome, et al., 2007).  Nevertheless, without further extension of cranial 

volume  beyond  gestation,  the  large  adult  brain  size  could  not  be  attained.   This 

necessitated  the  need  for  continued  rates  of  growth  extending  after  an  efficacious 

delivery (Alba, 2002; De Silva, et al., 2008; Hawkes, 2006a; McNamara, 2002a;  Ponce 

de León, et al., 2008).  The continuation of fetal rates of encephalization beyond birth 

was the evolutionary compromise that emerged.  This accommodation suggests that 

selection for increased brain size had to also effect selection for an extension of the 

rates seen in the fetal  brain.   Thus,  allowing the efficiency of  bipedalism to remain 

uncompromised by an increasingly larger pelvis.

It can be noted that the human brain grows significantly after birth, whereas in 

nonhuman primates, brain growth is more rapid during gestation (Alba, 2002; Diewert, 

2985;  Gould,  1977;  Hawkes,  2006a).   The  cranial  capacity  of  an  average  human 

neonate is approximately 25% of adult size, by the end of the first year approximately 

50%, and by the fifth year  it  is  estimated that  the brain has reached 90% capacity 

(Coqueugnoit,  et al., 2004;  Farkas, et al.,  1992; McNamara, 2002a; Robson, et al., 
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2006).  Because the rate of growth is perceived to be so rapid after birth, at least in the 

first year, it has been suggested that fetal rates are carried over to attain the large adult 

size  evolution  has  selected  for  (Coqueugnoit,  et  al.,  2004;  De  Silva,  et  al.,  2008; 

McNamara, 2002a; Thompson, et al., 2003; Vinicius, 2005).    

To study the increase of size and degree of curvature in the brain of the fetus and 

early infant, I have examined bones of the cranial vault of 133 fetuses and infants of 

spontaneous abortion and natural death as collected by Aleš Hrdlička and housed at the 

National  Museum  of  Natural  History  at  the  Smithsonian  Institute.   Specifically,  the 

frontal, parietal, and occipital were examined.   It has been shown that there is a direct 

correlation between the brain and skull such that measures of one can be used as a 

proxy for the other.  Therefore, by collecting the measurements of size and curvature for 

the vault bones, a reasonable expectation can be interpreted for the early growth of the 

human brain.  

Most  of  the  individuals  were  collected  from  public  hospitals  and  clinics  in 

Washington, D.C. and the surrounding areas, although a few came from a colleague of 

Hrdlička's in Germany.  The collection dates from approximately 1900 to 1925 and most 

are in an excellent stage of preservation.  Limited information on identification for either 

the individuals or their families is available, including specifics on social and economic 

status of the families.  With the limited information of the individuals in this collection, 

one possible area for bias of data collected could be based on nutritional differences 

and variations in degrees of health stressors.  Therefore, future research may focus 

more on populations with known socioeconomic status and health histories.
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Another bias faced when collecting data based on this collection is that of the 

osteological  paradox.  Many physical  anthropologists face confounding factors when 

studying any set of skeletal remains, but even with the limited information available for 

this  collection,  possible  issues  regarding  these individuals  are  satisfied.   The  most 

confounding factor noted in Wright and Yoder (2003) is that of sex determination of 

skeletal remains within a population.  Individuals within this collection that were used in 

this  study  were  assigned  a  biological  sex  determination  at  the  time  of  death  and 

therefore is not ambiguous.  A second factor is accurate age determination.  For each 

individual utilized, age was noted from autopsy cards and verified using growth charts 

established from living fetuses using sonography, as well as from skeletal collections. 

To address the third factor of individual mortality from illness or disease, all individuals 

with any diagnosed or visible signs of pathology were excluded from this study.  

Data were collected on those individuals with the relevant cranial elements over a 

period  of  one  week  and  statistically  analyzed  for  rates  of  growth  and  increases  in 

degrees of curvature.  Each element was measured for chord in length and width from 

points  described in the Fetal  Forensic Osteology by  Fazekas and Kósa (1978) with 

sliding calipers  that  were  calibrated  to  0.001mm  accuracy  3  months  prior  to  use. 

Curvature was determined in mm with a paper measuring tape along the same line of 

bisection  as  the  chord  measurements.   Age  in  weeks  for  each  individual  was 

determined using long bone measurements as described in Developmental  Juvenile 

Osteology by Scheuer and Black (2000) and age sets were   determined based on 

medical viability of the fetus and standard obstetric trimester weeks.  All measurements 
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were input  into  PAWS Statistics  v.18,  also  known as  SPSS,  for  statistical  analysis. 

Values for age noted in weeks and all measurements taken from the cranial elements 

were log transformed to align magnitudes for each stage of development to allow for 

linear regression.  ANCOVA was preformed on all measurement values against age to 

assess rates of growth in the form of slopes for each age set, and allow for comparison 

between groups.   

Individuals in both early and late stages of gestational development showed an 

increase in brain volume at a rate of growth that was expected, or a rate sometimes 

faster than expected.  Measurements taken for specimens after 40 weeks gestation to 

the age of three months showed patterns of growth slower than those of the fetuses or 

at times with almost no increase of size based on age.  In the development of curvature 

for  the  frontal  and occipital,  only  in  the  those individuals  at  the  ages 27-40 weeks 

gestation was expected growth achieved, and during the early to midpoint of gestation 

between 16 to 26 weeks and the young infant groups, did the amount of change in 

curvature slow and fall below the rate that would be expected based on an increase in 

age.  This would indicating only minute changes in the degree of curvature for these 

bones.

These results suggest that the most rapid gains in both size and curvature of 

individual elements are attained during the final four months of gestation.  Additionally, 

brain volume that is acquired after birth occurs at a slower rate.  When viewed overall, 

brain and cranial development is at its maximum during the third trimester of pregnancy 

and these total rates do not carry over past birth.    
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Chapter 2: Theoretical Background

Part I: Examining Life Histories

Life histories are defined by Bogin (2003), Gould (1977), Whitcome, et al. (2007) 

and others as a set of adaptations and strategies with which an organism allocates 

energy towards growth, maintenance, reproduction (including the rearing of young), and 

the avoidance of death within a particular environment.  Included within the theoretical 

frame of life history would be the timing of reproduction, birth, developmental stages of 

aging, and when to die.  All species of mammals incorporate the basic stages of life 

history including gestation, infancy, juvenility, and adulthood in varying degrees of length 

(Bogin, 2006).  It has been suggested that information on phylogenetic relationships can 

be determined when the timing and duration of  life cycle stages are compared and 

contrasted between species (Bogin, 2006; Hawkes, 2006a; Leigh, 1992; Robson, et al., 

2006; Schultz, 1969).    

Gestation: The definition, as well as the length, of gestation is not always clear 

and  can  be  dependent  on  the  discipline  and  culture  (Scheuer  and  Black,  2000). 

Standard  agreement is  that  gestation  is  the  term of  life  before birth,  and medically 

determined to last approximately 280 days.  This stage is further broken into several 

developmental stages, usually based on viability of the fetus, and includes the the initial 

perinatal period.  Specifically, this is termed the perinatal stage and includes the time 

between 24 weeks post fertilization to the seventh postnatal day (Fazekas and Kósa, 

1978; Scheuer and Black, 2000).
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Gestation  is  the  first  stage  at  which  humans  and  their  closest  phylogenetic 

cousins begin to differ.  When gestation is compared between the two groups, duration 

of intrauterine growth and development, defined as the length of time from fertilization 

to parturition, is ten to thirty days longer in the genus  Homo than that of non-human 

primate  relatives (Bogin,  1999;  Robson,  et  al.,  2006;  Schultz,  1969).   Although the 

duration of this stage would seem to impart a developmental advantage to humans, it 

would appear that this is not so, as discussed below.    

Infancy: It has been assumed that after birth, great ape and human neonates 

appear to  diverge in the degree of physiological  development.   Non-human primate 

infants seem to be more physically and neurologically mature when compared to human 

infants,  which appear  to  be secondarily  altricial  (Bogin,  1999;  Robson, et  al.,  2006, 

Schultz, 1969; Wortham and Kuzara, 2005).  Robson, et al. (2006) states that there has 

been  an assumption  of  great  ape infants  being  born  with  a  unique grasping  reflex 

sufficient  to  allow  them  the  ability  to  hang  on  to  the  parent  for  protection  and 

transportation.  This has been challenged as far back as 1969 by other researchers 

stating that human infants have grasping reflexes equal to those seen in apes.  These 

studies suggest  that  human infants are born with and use equally complex survival 

strategies and that the perinates of all large apes are born near the same helpless and 

immature state (Robson, et al., 2006, Schultz, 1969; Wortham and Kuzara, 2005).  

As  development  continues  along  species-specific  patterns,  infancy  has  been 

determined  to  have  one  of  the  largest  discrepancies  of  duration  when  compared 

between  human and  their  closest  primate  cousins,  as  originally  defined  by  Schultz 
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(1969) and shown by Schultz (1969) and Bogin (1999).  For non-human primates, the 

infancy period terminates at the time of weaning and coincides with the eruption of the 

first permanent molar, which is species specific.  The nonhuman primate then moves on 

to the next life stage of development, juvenility, and consequently lacks a true life cycle 

stage of childhood (Bogin, 2006; Schultz, 1969).

In contrast, humans end infancy much earlier at a time that does not coincide 

with the eruption of the first molar (Bogin, 2006; Robson, et al., 2006; Schultz, 1969; 

Smith, 1991).  Bogin (1999, 2006) states that infancy in the human primate ends at 

approximately  three  years  of  age,  a  time that  still  leaves the individual  almost  fully 

dependent  on the older members of  the community.   This  stage of  development  is 

characterized by a decline in the rate of growth lasting until childhood. 

The relationship in the timing of weaning and M1 eruption has been shown as a 

disconnect  when exploring  life  histories  and the  successful  transition  of  the  human 

infant  from  full,  dependent  nursing  to  the  complete  adult  diet  (Bogin,  1999,  2006; 

Hawkes, 2006a; Robson, et al., 2006; Smith, 1991).  Ages for weaning were collected 

from  modern  hunter-gatherer  populations,  and  it  was  determined  that  in  these 

populations the weaning of infants occurs at an average age of 2.5 years, while the 

eruption of the first molar in the same populations occur at approximately 6.3 years 

(Bogin, 2006; Hawkes, 2006a).  

This  discrepancy  between  weaning  and  first  permanent  dentition  eruption  is 

termed childhood, one of two life stages seen only in the human primate (Bogin, 2006; 
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Hawkes, 2006a).  Humans evolved the need for childhood as a period of slow physical 

growth that allows for continued dependence on parental support for development for 

social learning, nutritional support, and can be viewed as reproductively beneficial for all 

members  of  the  community  (Bogin,  2006;  Hawkes,  2006b;  Robson,  et  al.,  2006; 

Thompson, et al., 2003).  According to Bogin (1999, 2003), communities most benefit 

from a lengthy  childhood by insuring offspring  accumulate  sufficient  knowledge and 

skills to survive and reach reproductive age, thus increasing the population fitness.  

Childhood/Juvenile: Following infancy in nonhuman primates is the life stage of 

juvenility, while in humans this period of development is divided into childhood followed 

by juvenility (Bogin,  2006; Schultz, 1969).  This period begins at the end of infancy 

which is at the eruption of the first permanent molar for non-human primates and the 

third year of life in humans, and lasts until the beginning of puberty/adolescence (Bogin, 

1999, 2006; Thompson, et al.,  2003).   The period of  all  primate juvenility  has been 

described as one of extended slower growth to allow for increased size at maturation, 

environmental  knowledge  and  understanding  of  social  constructs  (Hawkes,  2006a; 

Thompson, et al., 2003).  In examining comparisons of the full juvenile period of human 

and nonhuman primates, this life stage is similar in both duration, with respect to life 

span, and goals during this time across species (Thompson, et al., 2003).  

It  should be noted, however, that for humans childhood is defined as a short 

phase of growth before juvenility, beginning at the end of infancy and ending at roughly 

the age of seven (Bogin, 1999, 2006).  This period is followed then by juvenility from 7 

years  of  age  until  the  onset  of  puberty.   For  purposes  of  research,  the  stages  of 
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childhood  and  juvenility  are  combined  when  comparing  across  species  since  when 

condensed in the human species the two are similar in duration, goals, and timing as 

the single stage of non-human primates (Bogin, 1999, 2006; Schultz, 1969).  

Puberty/Adolescence: Following  the  juvenile  period  is  that  of  puberty  and 

adolescence,  during  which  sexual  maturation  is  reached  (Bogin,  2003,  2006; 

Thompson, et al., 2003).  Puberty is seen in both human and nonhuman primates and is 

described as the activation of the HPG axis of the endocrine system and is usually a 

short term event, only lasting days in some species to as long as weeks in others.  This 

influx of sex steroids initiates the life stage of adolescence.  In this stage of life history, 

there is seen a rapid growth spurt and sexual maturation (Bogin, 2003, 2006).  During 

this  time,  primary  and  secondary  sexual  characteristics  develop  in  preparation  for 

reproduction, as well as active learning of parenting techniques and practices from older 

members of the community (Bogin, 2003, 2006; Robson, et al., 2006).  From onset to 

completion, adolescence lasts on average 8-9 years (Bogin, 2006). 

Adulthood: This stage is marked by the cessation of an individual's growth, and 

begins the contribution of resources and reproductive maturity for the community and 

ends at the time death (Bogin, 2006).  For human females, this life cycle stage is limited 

and can be separated into two sub-stages: that of childbearing and post-childbearing 

(Hawkes, 2006a; Robson, et al., 2006).  In human populations, the ability to reproduce 

is  reached  during  adolescence,  but  does  not  usually  occur  until  the  adult  stage  is 

reached (Bogin, 2006).  
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When  the  active  reproductive  stage  of  female  humans  and  great  apes  are 

compared in duration, they last roughly the same length of time, 25-30 years (Robson, 

et al., 2006; Schultz, 1969).  It is the period following that most distinguishes humans 

from the great apes.  The human female has extended the life span after reproductive 

ability has ceased to include an additional 25-30 years (Schultz, 1969).  In the great 

apes, individuals generally do not live past the ability to produce offspring.  Although 

there have been rare instances where  a female chimpanzee has lived into  a  post-

childbearing stage of life in captivity, it is only for a relatively short time when compared 

to their reproductive period (Hawkes, 2006b).  Thus, the post-childbearing period of the 

human female adult is seen as unique to our species and is viewed by some as an 

adaptation distinguishing humans from the great apes (Hawkes, 2006b; Robson, et al., 

2006; Schultz, 1969).    

Part II: Human vs Nonhuman Life Histories

In  examining  life  histories  of  modern  humans,  researchers  have  consistently 

used  the  patterns  of  nonhuman  primates  as  comparative  models  in  hopes  of 

determining the evolutionary process of human life histories and why they developed 

the length and complexities seen today (Bogin,  2006;  Hawkes,  2006a; Leigh, 1992; 

Robson,  et  al.,  2006).   In  making  the  associations  between  phylogenetic  cousins, 

researchers  have  concluded  that  overall  size  and  age  at  maturity  has  a  positive 

correlation  with  the  length  of  life  stages experienced by  all  primates  (Gould,  1977; 

Hawkes, 2006b; Robson, et al., 2006).  Investigation has also demonstrated that the 
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increase in ancestral human adult brain size is closely related to the length of certain life 

history events and thus, the total life span (Hawkes, 2006b; McNamara, 2002b; Ponce 

de León, et al., 2008; Rice, 2002; Smith, 1991).  

Differences  noted  between  separate  species  have  been  used  to  postulate 

theories to explain human evolution (Bogin 2003; Ponce de León, et al., 2008; Smith, 

1991).  To understand the variations among primate families, and thus offer insights to 

individual  evolutionary  paths,  one  must  first  understand the  life  stages in  primates: 

gestation, infancy, childhood, juvenility, adolescence, and adult-to-death (Bogin, 1999; 

Smith, 1991).  These divisions of growth are tied to specific developmental events, such 

as dental eruption and fusion of skeletal elements (Bogin, 2006; Gould, 1977; Robson, 

et al., 2006; Thompson, et al., 2003).  In humans, some life stages are thought to be 

hyper-extended  when  compared  to  other  primates.   Those  determined  to  be  most 

amplified and unique to humans are an extended childhood and post reproductivity for 

females and are seen as uniquely human (Bogin, 2006; Hawkes, 2006a; Robson, et al., 

2006).

Part III: Life History Theory, Big Brains and the Genus Homo

There  have  been  many  who  have  tried  to  explain  how  and  why  humans 

developed such large brains compared to our body size.  Both queries seem to revolve 

around one central explanation, the unique trajectory of human life history.  All primates 

have life  histories  specifying the stages of  growth  and development  unique to  their 

species.   Some stages are  shared between all  primate  species;  gestation,  infancy, 
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juvenility, and adulthood (Gould, 1977; Schultz, 1960).  What often marks each life cycle 

stage as unique is  the duration of  the stage within  the totality  of  the life span.   In 

examining the life histories of humans, conclusions can be drawn which highlight their 

evolution into the large-brained Homo sapiens sapiens. 

As human ancestors began their evolutionary progression towards larger bodies, 

more complex interpersonal relationships, and more flexible behavior to negotiate and 

manipulate new environments and situations, the selection for a larger brain occurred 

(Aiello and Wheeler, 1995; Bogin, 1999; Wortham and Kuzara, 2005).  The increase in 

rate of hominid encephalization began gradually (Leigh, 1992; Rice, 2002).  The amount 

of energy needed to support these demands rose as the brain increased in volume and 

complexity (Aiello and Wheeler, 1995; McNamara, 2002a; McNamara, 2002b; Robson, 

et al., 2006; Wortham and Kuzara, 2005). Demands for dietary augmentation could be 

best  met through one of two means:   an increase in gut  size to process more low 

nutrient-rich  food  already  being  consumed  or  new  choices  of  higher  quality  foods 

processed in a smaller gut.  A physiological selection was made for the latter (Aiello and 

Wheeler, 1995; McNamara, 2002a; McNamara, 2002b; Wortham and Kuzara, 2005).   

Other  physical  demands  were  also  placed  upon  the  evolving  hominids  by 

encephalization.  Physical limits on evolving hominids required adjustments of timing to 

achieve an ever increasing brain volume although physiologically, the amount of time 

required to produce a larger brain was limited to the length of time an individual grew, 

i.e., from conception to skeletal maturation.  Perturbations in the growth patterns were 

selected  for  to  increase  the  size  of  the  neonate  at  delivery,  while  the  evolution  of 
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bipedalism placed unfavorable constraints  on the size that  the neonatal  head could 

reach for parturition and avoid reducing the of stability of the pelvis (Berge, 1998; Gould, 

1977; Jordaan, 1976; Rosenberg, 1992; Schultz, 1969; Whitcome, et al., 2007).  

The changes in size of the female pelvis approached the point to where stability 

in locomotion collided with the need for success in producing viable neonates (Berge, 

1998; De Silva, et al., 2008; Gould, 1977; Jordaan, 1976; Rosenberg, 1992; Schultz, 

1969;  Whitcome,  et  al.,  2007).   Hominid  evolution  allowed  for  delivery  of  fetuses 

developmentally premature, but physically larger, and allow for fetal rates of growth and 

development to continue past parturition for reproductive success (Alba, 2002; Hawkes, 

2006a; McNamara, 2002a; Ponce de León, et al.,  2008).   Compared to other great 

apes, gestational length was slightly extended.  This allowed more time for intrauterine 

brain growth, while shifting and adjusting some of the fetal development to occur after 

birth and the timing of other developmental stages of human life history were adjusted 

as well (Robson, et al., 2006; Schultz, 1969).

One life cycle stage that was extended to compensate for the prematurity of the 

newborn  hominid  was  infancy  (Alba,  2002;  Hawkes,  2006a;  Wortham and  Kuzara, 

2005).   This  allowed  for  continued  brain  and  body  growth  beyond  what  pelvic 

restrictions allowed for successful birth.  Not only was this life cycle stage extended, but 

childhood further increased the period of growth and lengthened the time available for 

individuals to acquire a sufficient knowledge base to become a productive member of 

the community and in turn successfully produce  offspring (Hawkes, 2006a).  

15



The  increase  in  successful  production  of  offspring  with  extended  life  cycle 

phases, thus expanded the life span of individuals within the species.  As increases in 

development became consistent throughout the populations, a balance occurred in the 

hominid species, bringing the length of life cycle stages into equilibrium with the total 

life  span (Turner,  2007).   Continuing evolutionary  advancement has thus led to  the 

unique hominid life history derived from these complex changes in the developmental 

timing of brain and body growth (Bogin, 2003, 2006; Schultz, 1969; Vinicius, 2005).

Part IV: Humans and Neoteny

There  are  several  developmental  processes  used  in  evolutionary  theory  to 

describe  morphological  changes  over  time.   These  processes  are  divided  into  two 

categories:  paedomorphosis  and  peramorphosis.   Paedomorphosis  defined  as  the 

“retention  of  ancestral  juvenile  character  or  shapes  by  later  ontogenetic  stages  of 

descendants”, and peramophosis as “extension beyond the ancestral adult characters 

or shapes, i.e. repetition of ancestral adult stages in embryonic or juvenile stages of 

descendants” (Gould, 1977).  Within each of these categories, there are three individual 

processes  to  describe  underlying  aspects  of  changes  of  size,  shape,  and  age  at 

maturation (Gould, 1977).   

Gould (1977) demonstrated the concept of neoteny as the prolonging of juvenile 

size and shape into adulthood with the clock model.  When humans and their extant 

predecessors are compared on the clock model, the result was somewhat different than 

16



what might be expected.  In pure neoteny, descendant adults are juvenilized versions of 

their ancestral adults, maturing at the same time with similar adult body sizes.  Since 

humans are larger than ancestral forms from the Pliocene, the neoteny characterizing 

Homo sapiens shows an increase in the size of the descendant adult compared to the 

ancestral adult.

Schultz (1969),  though,  was first  to remark upon the observation that  human 

patterns of maturation are mere extensions of those seen in prosimians, anthropoids, 

and apes.  More recent ancestors of humans, most notably  Homo erectus, may have 

exhibited ape-like, intermediate, or fundamentally human patterns of maturation.  With 

the evolution of large brain size in archaic  H. sapiens, the extension of fetal rates of 

brain growth must have also occurred as implied by similar gestational lengths inferred 

for Neandertals and exhibited by modern humans.

Gould  (1977)  suggested that  neoteny  could  account  for  a  number  of  unique 

human traits,  including the extended life histories of  humans,  the paedomorphic,  or 

juvenilized,  appearance  of  craniofacial  traits  as  observed  in  adults,  and  extended 

periods of fetal brain tissue beyond parturition.  The clinical literature suggests that rates 

of brain growth during last trimester are mimicked in the first three postnatal months. 

However, whether fetal rates of brain growth during gestation are maintained during the 

first year of life has never been adequately addressed.

Of interest to this research is neoteny in its pure form, as describe by Gould 

(1977).  Neoteny is described as when descendant size and maturity are equal in time 
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to ancestral patterns, but the shape trajectory is retarded and thus descendant adults 

are similar to the ancestral juvenile or infantile form (Gould, 1977).  This process allows 

the descendant to resemble a juvenile or infant of the ancestor in appearance  while 

maintaining growth and maturation at current rates, and has been applied to the modern 

human face and cranium (Gould, 1977; Shea, 1989; Williams, et al., 2002; Williams, et 

al.,  2003).   It  has  been  implied  that  modern  humans  are  neotenic  with  respect  to 

Neanderthals. In the recent past, this has been disputed by several researchers (Shea, 

1989; Williams, et al., 2002, 2003).  According to other scholars (Anton and Leigh, 2003; 

Gould, 1977), the continuing fetal rate of brain growth into the early postnatal period and 

the retention of “relatively juvenile gross skull form with a large, bulbous cranium” could 

by some be considered an argument for neotney, but Shea (1989) states that there is 

no  “correspondence between extension  of  growth  periods  and  retardation  of  shape 

change”.  In agreement with Shea (1989) is Williams, et al. (2002, 2003) with regard to 

modern  humans  not  being  neotenic  to  ancestral  Homo,  although  Shea  (1989)  is 

exploring the descendant relationship by size, while Williams, et al. (2002) is examining 

shape.   Referring  to  both  sets  of  research,  any  similarity  of  landmarks  examined 

between modern humans and past ancestors of the Homo phylogenetic tree is at most 

a “superficial  resemblance” and that modern human craniofacial  shapes is “uniquely 

different” when compared to past species if Neandertals are considered (Shea, 1989; 

Williams, et al., 2002; Williams, et al., 2003). 
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Part V: Brain Growth Rates Pre- to Post-natal: Are They Really Carried Over?

There is much disagreement in the length of time that fetal rates of growth are 

extended into the neonatal and infant period although the fact that the rates do carry 

over is not disputed (Vinicius, 2005).  The length of time that fetal rates continue post-

natally range from a suggested 12 to 18 months as reported by Coqueugniot, et al. 

(2004), McNamara (2002a), Thompson, et al. (2003) and Vinicius (2005), and to 3 years 

as suggested by Gould (1977). Even with the duration of fetal rates in disagreement 

among  scientists,  most  concede  that  deceleration  begins  by  the  age  of  3-5  years 

(Farkas, et al., 1992; Robson, et al., 2006; Sardi, et al., 2005) with full growth being 

attained by  3 years  (Robson,  et  al.,  2006)  to  10 years  (Coqueugniot,  et  al.,  2004; 

McNamara, 2002a).

To explore possibilities as to why fetal rates of brain growth may be carried over 

into  infancy,  one must  understand the physical  constrictions  placed on the fetus by 

changing maternal physiology throughout the evolution of Homo as well as the reverse 

(De Silva, et  al.,  2008;  Jordaan, 1976;  Ponce de León, et  al.,  2008; Schultz,  1969; 

Steer,  2006;  Whitcome,  et  al.,  2007).   Evolution towards bipedalism of  early  Homo 

ancestors gradually shifted pelvis, sacrum, and femur morphology to accommodate the 

new means of locomotion (Bogin, 1999; Jordaan, 1976).  The shape of the  pelvis and 

sacrum shifted from long and narrow anterio-posteriorly as seen in ancestral hominids 

to a short and wide morphology as seen in modern populations.  A decrease in the 

length of the sacrum and pelvis was needed to center gravity as a means to increase 

balance as individuals stood erect.  This change in morphology would hinder the birth 
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process by shortening the birth canal (De Silva, et al., 2008; Jordaan, 1976; Ponce de 

León, et al., 2008; Schultz, 1969; Steer, 2006; Whitcome, et al., 2007).  The decrease in 

the height of the sacral elements added stability for upright locomotion, but necessitates 

the widening of the bones as well.  To some degree the widening of the sacral elements 

would  offset  the  shortening  of  the  birth  canal  (Bogin,  1999;  De Silva,  et  al.,  2008; 

Jordaan, 1976; Ponce de León, et al., 2008; Schultz, 1969; Steer, 2006; Whitcome, et 

al., 2007).  Maternal constraints of pelvic morphology would place certain restrictions on 

the  size  of  the  developing  fetus.   This  reduction  in  the  size  of  the  pelvic  outlet 

constraining the general overall size of the fetus, while the cranial size was restricted 

specifically (Bogin, 1999; De Silva, et al., 2008; Jordaan, 1976; Ponce de León, et al., 

2008; Schultz,  1969;  Steer,  2006;  Whitcome,  et  al.,  2007).   To compensate for  the 

restriction placed on overall and cranial size, fetal body and brain size would have to 

come as close to the limit allowed by maternal constraints (Bogin, 1999; De Silva, et al., 

2008; Gould, 1977; Schultz, 1969; Whitcome, et al., 2007; Wortham and Kuzara, 2005). 

Even with  fetal  size reaching  this  limit  for  successful  parturition,  the  length  of  time 

needed  for  brain  growth  to  reach  an  ever  increasing  adult  size  necessitated  rapid 

growth after birth for long periods of time when compared to ancestral forms (Bogin, 

1999; Gould, 1977; Jordaan, 1976).  Therefore, fetal rates can be determined to extend 

postnatally due to the degree of  size increase needed after  parturition (Alba,  2002; 

Gibson, 2000; Ponce de León, et al., 2008).  

The prolonged period of time needed for brain growth has been suggested to be 

one  reason  for  the  lengthy  human  infancy  period  (Bogin,  1999;  Gould,  1977; 
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McNamara, 2002a; Thompson, et  al.,  2003).   This in turn also helps to explain the 

insertion of  childhood as one of  the extended periods of  growth  in the evolution of 

human life history (Bogin, 2006; Gould, 1977; Thompson, et al., 2003; Wortham and 

Kuzara, 2005).  Along with the insertion of childhood, the addition of the juvenile period 

and lengthening of the remaining life stages prolongs life expectancy.  Older individuals 

would thus add a level of experienced adult members that could care for infants and 

children  and  possibly  allow for  a  higher  percentage of  successful  offspring  survival 

(Bogin, 2006; Gould, 1977; Hawkes, 2006a).  This supplementary care would then allow 

for  more  successful  deliveries  of  less  developed  neonates  while  keeping  the  fetal 

development  under  the  limits  of  maternal  pelvic  constriction  (Bogin,  1999;  Hawkes, 

2006b; Wortham and Kuzara, 2005).                           

The  cranial  region  and  relatively  small  jaws  of  juvenile  apes  and  monkeys 

resemble those of humans at every life cycle stage.  This was remarked upon by Gould 

(1977),  Schultz  (1969),  and  others  and  is  often  referred  to  as  human  neoteny. 

Nonhuman  primates  exhibit  relatively  rapid  rates  of  brain  growth  during  gestation 

compared to other mammals.  Shortly after birth, rates of cranial changes in shape slow 

considerably  such  that  infant  and  adult  nonhuman  primates  exhibit  similar  cranial 

dimensions.  In contrast, human infants exhibit rapid cranial expansion, but relatively 

slow  rates  of  facial  growth  during  the  same postnatal  stage.   Thus,  humans  have 

prolonged the fetal developmental period to include the first 1-2 postnatal years beyond 

those of the great apes to accommodate this additional advancement in capacity of the 

brain (Bogin, 1999, 2006;  Gould, 1977; Hawkes, 2002b; Schultz, 1969).
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Part VI: Human Cranial Growth

All parts of the human body develop from two gametes that combine, multiply 

and differentiate into specific organs and systems.  In the pattern of development, each 

division within the whole grows and develops.  This includes the skeletal system as well, 

and the bones of the cranial vault conform to this developmental scheme (Baer and 

Harris, 1969; Epstein and Epstein, 1978; Gould 1977; Jeffery and Spoor, 2002; Morris-

Kay and Wikkie, 2005; Turner 2007).  The individual elements of the crania originate 

differently than other bones, deriving specifically from within the membranous covering 

of  the  fetal  brain  (Baer  and  Harris,  1969;  Epstein  and  Epstein,  1978;  Gould  1977; 

Jeffery  and  Spoor,  2002;  Morris-Kay  and  Wikkie,  2005;  Scheuer  and  Black,  2000; 

Schultz, 1969).  Of particular interest to this study are the frontal, the parietal, and the 

occipital bones as these skeletal elements encase the developing brain and are most 

closely associated with this organ and its size. 

Frontal:  The frontal bone, located superiorly and anteriorly on the skull, is the 

first of the cranial bones to begin ossification.  The process begins to develop from two 

centers and is visible microscopically by alizarin-stain as early as 6-7 weeks gestation 

and radiographically by the 13th week (Fazekas and Kósa,  1978;  Morris-Kay,  et  al., 

2005; Scheuer and Black, 2000). As development begins, the frontal ossifies in a radial 

pattern from each center, as do other cranial elements, but as ossification continues the 

shape elongates into a recognizable ovoid with the long axis forming anterio-posteriorly 

(Fazekas  and  Kósa,  1978;  Jeffery  and  Spoor,  2002;  Inman  and  Saunders,  1937; 
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Neumann,  et  al.,  1997;  Scheuer  and Black,  2000).   By birth,  the frontal  bones are 

symmetrical and separated by the largest of the fetal fontanelles, the anterior fontanelle, 

and the metopic suture.  Both the fontanelle and the metopic suture close completely by 

the end of the second year, fusing the right and left halves into a single element that is 

fully recognizable when compared to the adult bone (Fazekas and Kósa, 1978; Scheuer 

and Black, 2000).      

Parietal: There  are  two  parietal  bones  located  on  each  side  of  the  brain, 

posteriorly to the frontal bone.  The fetal parietals form from two centers of ossification 

that  can  be  microscopically  identified  with  alizarin-stain  by  7-8  weeks  gestation 

(Fazekas  and  Kósa,  1978;  Morris-Kay,  et  al.,  2005;  Scheuer  and  Black,  2000). 

Ossification of the two centers fuse quickly, forming an hour-glass shape in the early 

stages and rapidly develop into an ellipsoid recognizable by radiographic measures at 

around 20 weeks gestation.  Although ossification and development begins at an early 

stage, the parietals are not identifiable by angles and borders until around the 24th week 

(Fazekas and Kósa ,1978; Morris-Kay, et al., 2005; Neumann, et al., 1997; Scheuer and 

Black, 2000).  

Fetal and infant parietal bones are characterized by relatively large eminences 

located centrally on each element and which form distinctive curves along the sagittal 

suture.  This arch begins as relatively angular in shape, and smooths out as it reaches 

maximum curvature by the age of 9 months of postnatal life.  At this time growth slows 

and the vault gently flattens to the adult shape (Fazekas and Kósa, 1978; Scheuer and 

Black, 2000).          
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Occipital: The occipital bone, located at the posterior and base of the skull, is 

the  last  element  of  the  cranial  vault  to  begin  development  and  ossification.   This 

element ossifies from four centers, more than any other single element of the crania, 

and is the only one to form from cartilage rather than directly out of the membranous 

covering of the brain.  The occipital forms in two halves: the top, or pars interparietalis, 

with an ossification center for the left  and right sides, and the lower,  or pars supra-

occipitalis, also with a center for the left and right sections.  Both the pars interparitealis 

and the pars supra-occipitalis form independently, the latter beginning identifable first at 

approximately 8 weeks gestation and the former beginning later at approximately 10 

weeks gestation (Fazekas and Kósa, 1978; Neumann, et al.,1997; Scheuer and Black, 

2000).  

The  upper  and lower  halves  develop  independently.   The  pars  interparietalis 

develop endocranially, as the portion of the occipital above the highest nuchal line in a 

fan  shape.   The pars  supra-occipitalis  originates  below the  highest  nuchal  line and 

forms  as  an  ellipsoid.   Until  the  fetus  reaches  3.5-5  months  of  gestation,  each 

ossification center is independent of the others.  At this point in the development of the 

fetal cranial components, the four centers begin to join at the midline and fuse outwards 

towards  the  margins,  along  the  sutura  mendosa.   These  individual  centers  of 

ossification  fuse  to  represent  the  body  of  the  occipital  (Fazekas  and  Kósa,  1978; 

Scheuer and Black, 2000). 

There are three centers of ossification related to the occipital not included as part 

of this study as they do not contribute to the overall length or width of the bone: two 
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centers of ossification for the right and left pars lateralis, and one center for the pars 

basilaris.  These three centers along, with the inferior border of the occipital squama 

form the foramen magnum.  Fusion of these centers begins soon after parturition and is 

usually  complete between 2-4 years,  with  obliteration  seen in  approximately  half  of 

individuals by the age of 5 years.   Full  fusion of  this suture does not always occur 

completely, as there are reports of the suture line being visible into adulthood in some 

cases (Fazekas and Kósa,1978; Scheuer and Black, 2000).

Part VII: The Cranial Vault and Its Relationship to the Brain

From the onset of ossification, individual centers for the elements are already in 

the general location in which they are found in the fully developed cranial vault.  By the 

end  of  the  fourth  month  of  gestation,  all  elements  are  recognizable  and  similar  in 

relative size and shape to their fully developed counterparts (Jeffery and Spoor, 2002; 

Scheuer and Black, 2000).  During early growth, each of the cranial elements develop 

an eminence to some degree, located centrally on the element.  The eminences mark 

the most protruding portion of the element (Scheuer and Black, 2000).  By the time of 

parturition,  cranial  elements  have  developed  to  a  sufficient  size  to  offer  maximum 

coverage  for  the  rapidly  growing  and  developing  brain  (Fazekas  and  Kósa,  1978; 

Scheuer and Black, 2000).  

Conception to Birth: Along with the independent and systematic growth of the 

cranial elements, there are other factors effecting the rate of growth of the vault.  One 
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factor in the increasing size and shape of the cranial elements is the degree of stimulus 

occurring as a result of the intrinsic pressure that the growing brain places upon the 

endocranial surface of these bones (Gould, 1977; Morris-Kay and Wikkie, 2005; Sardi, 

et al., 2007).  Gould (1977) and others suggest that the increase in the volume of brain 

tissue places sufficient pressure upon the developing cranial bones to generate growth 

and allow the expanding brain to mechanically increase cranial capacity to adequately 

mold the skull.  Mechanical effects of this type are seen throughout the skeleton and are 

generally regarded by Turner (2007) and others as one of the major processes of bone 

development. 

The process of bony accumulation begins as the brain grows and develops and 

pushes against the endocranial surface.  This pressure stimulates osteoclasts to break 

down the interior of the cranial element so as to provide more room for the growing 

brain.   As  a  direct  reaction  to  the  destruction  of  the  inner  surface  of  the  bone, 

osteoblasts on the ectocranial surface activate and begin laying down new bone on the 

exterior  surface  of  the  element.   This  corresponding  action  of  destruction  and 

construction upon the cranial elements, due to pressure exerted by the brain, causes a 

direct correlation between the size and shape of the brain to the size and shape of the 

cranial  vault  as the skull  is  essentially  formed and molded by the increase of brain 

tissue (Amiel-Tison, et al., 2002; Baer and Harris, 1969; Jeffery and Spoor, 2002; Leigh 

1992; Morris-Kay and Wikkie, 2005; Sardi, et al., 2007; Trenouth, 1991; Turner, 2007). 

Although each of the individual elements of the cranial vault have been shown to grow 

independently of the other, the overall osteogenic development of the elements at the 
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same  time  are  coordinated  with  and  interact  across  ontogenic  factors  of  the  brain 

(Sardi, et al., 2005; Sardi, et al.,2007).  Thus, any variation in size and shape of the 

cranial vault is related to variation in size and shape of the brain held within (Sardi, et 

al., 2007; Trenouth 1991).  With the human brain having such a close developmental 

correlation to the cranial vault, it has been shown that the inverse relationship between 

the  cranial  vault  and  the  brain  is  comparable.   This  parallel  growth  allows  for  the 

possibility  to  measure  the  external  dimensions  of  the  cranium and  extrapolate  the 

interior volume of the brain (Baer and Harris, 1969; Bogin 1999; Epstein and Epstein, 

1978; Jeffery and Spoor, 2002; Leigh, 1992; Morris-Kay and Willie, 2005; Sardi, et al., 

2007; Trenouth, 1991).  Thus, by examining the size of the individual elements of the 

vault, it should be possible to interpret the extent of growth attained by the brain, as 

well. 

Birth to 6 Years: During the birth process, the fetal skull undergoes mechanical 

deformation as it passes through the birth canal.  This deformation causes the individual 

elements of the cranial vault to overlap at the sutures which have yet to ossify (Schultz, 

1969).  It is this ability of the vault to be manipulated at the sites between the cranial 

elements allowing the elements to ride over one another that is  responsible for  the 

relatively easy passage of the fetus.  The deformation of the vault is temporary and 

within an average of 3-4 days after birth, any shape change from cranial shifting during 

parturition has been reversed and all elements are in the normal edge-to-edge position 

(Amiel-Tison,  et  al.,  2002;  Schultz,  1969).   After  the elements  have returned to  the 

correct  position,  measurements  (i.e.  circumference)  taken  on  the  infant's  head 
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throughout the first year will generally be represented on a standard growth chart used 

by medical  personnel  as smooth growth curve illustrating a progressive increase of 

brain tissue (Amiel-Tison, et al., 2002; Farkas and Kósa, 1992; Gibson, et al., 2000; 

Sivan, et al., 1984).

At the time of birth, it is generally accepted that the infant brain has grown to 

approximately 25% of its adult size (Coqueugniot, et al., 2004; Jordaan, 1976; Vinicius, 

2005).   This is not the only accepted figure for the degree of growth the fetal  brain 

reaches before birth.  According to Vinicius (2005) one suggested value is 25% of its 

adult size, although there has been research as stated in Gould (1977) to propose that 

the figure could be as low as 23% to as high as 31% of the adult brain size.  

During the years of rapid growth during infancy and childhood the volume of the 

brain continues until  approximately 10 years of age.  There are suggestions that the 

one-year-old infant brain may reach 50% of its adult size (Coqueugniot, et al., 2004). 

Other researchers disagree.  Gould (1977) suggests that the one year old brain has 

achieved 70% of the adult size and Farkas and Kósa (1992) suggest a figure of 87%. 

As a child ages, an agreement on the volume reached by the expanding brain at older 

ages  is  also  under  disagreement.   Farkas and Kósa (1992)  suggest  that  the  brain 

reaches 93% of the estimated adult volume by the age of 5 years, and Coqueugniot, et 

al. (2004) and McNamara (2002) suggest that by 10 years a child's brain has achieved 

just above that limit to 95%.  
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Though  there  is  no  single  consensus  as  to  the  percentage  of  brain  growth 

expected of an infant or child's brain, some researchers propose that the rapid increase 

begun in utero continues until the end of infancy, at approximately 6 years of age.  At 

this  time  the  rate  of  volume  increase  appears  to  slow  (Farkas  and  Kósa,  1992). 

Coqueugniot  (2004)  suggests  the  most  rapid  growth  carries  over  until  at  least  12 

months, while Gould (1977) suggests that the same degree of development extends 

throughout the second year of life.        

Part VIII: New Questions

Research in medical and anthropological literature has suggested the size of the 

human cranial vault is directly related to the size of the brain, allowing for the growth of 

one to be used as a proxy of growth for the other (Baer and Harris, 1969; Bogin, 1999; 

Epstein  and  Epstein,  1978;  Jeffery  and  Spoor,  2002;  Leigh,  1992;  Morris-Kay  and 

Wikkie, 2005).  As stated previously, it is generally accepted that rates of growth of the 

fetal  brain  are  carried  over  after  parturition  into  infancy  (Alba,  2002;  Bogin,  1999; 

Diewert, 1985; Gould, 1977; Ponce de León, et al., 2008; Thompson et al., 2003a), but 

the length of time that the rate of growth continues has not found agreement.  Various 

researchers report  the duration of fetal  brain growth continuing until  various ages of 

development:  at  least  12 postnatal  months/1 year  of  age (Thompson, et  al.,  2003a; 

Vinicius, 2005), 2 years of age (Gould, 1977), 3-3.5 years (Bogin, 1999), and 5 years 

(Farkas and Kósa, 1992; Sardi, et al., 2005).  Although these researchers disagree as to 
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the duration of fetal growth into the postnatal period, they all conclude that the rate is 

extended at least until the end of the first year of postnatal life.  It is the length of time 

that fetal growth rates extended into the postnatal age that this study will examine.  With 

the previous research for theoretical basis, I suggest that the rate of fetal brain/cranial  

growth is carried over into the postnatal  period,  but  not to the extent suggested by  

earlier studies of 1-5 postnatal years of age (H1) and that there is a significant decrease  

in the rate of infant brain/cranial growth before the age of 6 postnatal months (H2).
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Chapter 3: Materials and Methodology

Part I: Forensic Fetal Osteology Collection 

There  are  many  skeletal  collections  available  for  analysis  when  conducting 

research  on  the  remains  of  adults,  but  the  number  of  collections  is  limited  when 

research  turns  to  individuals  of  immature  skeletal  development,  or  sub-adult  status 

(Fazekas and Kósa, 1978; Huxley, 2005; Neumann, et al., 1997; Scheuer and Black, 

2000).  One consideration for the meager number of collections of sub-adult skeletal 

remains is the lesser number of individuals that adequately preserve during the burial 

process.  There are several explanations for the small number of specimens available 

for study.  One reason for the small  number, is the fragility of immature bone.  This 

fragility is a main cause of poor preservation of remains when an individual is interred 

(Halcrow and Tayles, 2008; Jackes, 1994; Scheuer and Black, 2000).  Another cause for 

the lesser numbers of individuals available for collections is cultural belief systems and 

alternate burial practices, such as exclusion from community ossuaries with regards to 

infants  and children  (Finaly,  2000;  Kamp,  2001;  Murphy,  1996;  Scheuer  and  Black, 

2000).  For these reasons and others, there are only a handful of collections of fetal, 

infant, or child remains for study.  One such collection is the Forensic Fetal Osteology 

Collection.  

The  Forensic  Fetal  Osteology  Collection,  also  known as  the  Mall  and  Lamb 

Collection, is housed at the National Museum of Natural History, Smithsonian Institution, 
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Washington, DC, USA.  This collection consists of a total of 320 fetuses and infants 

(Huxley,  2005).   The  individuals  that  comprise  this  collection  were  donated  to  the 

museum  in  the  late  1800's  and  early  1900's  by  private  and  public  physicians, 

pathologists,  medical scholars, and specialists of the time.  Donations by physicians 

came  from  hospitals  in  and  around  the  Washington,  DC  and  other  surrounding 

metropolitan  areas  such  as  Baltimore,  Maryland,  though  some  came  from  Berlin, 

Germany (Hunt, personal comm., 2009; Huxley, 2005).  Between the years of 1903 and 

1917, Aleš Hrdlička curated the collection at the museum, and added to the collection 

with specimens he had acquired from Columbia Hospital (Hunt, personal comm., 2009). 

Most notable of the contributors were Franklin P. Mall and Daniel S. Lamb, the 

physicians  for  whom the  collection  is  named.   Mall  donated the  greater  number  of 

individuals (n=143) to the collection and was the founder of the  American Journal of 

Anatomy.  Lamb was curator of the Anatomy Department at the Army Medical Museum 

from 1865-1917.  Both men were colleagues of Hrdlička and, through this relationship, 

donations and exchanges of specimens were made to the Smithsonian (Hunt, personal 

comm., 2009).  Although the majority of the specimens in the collection are designated 

with  the names of  Hrdlička,  Mall,  and Lamb,  many of  the  specimens  were actually 

collected by other physicians (Hunt, personal comm., 2009).           

Individuals within this collection are from spontaneous abortions with estimated 

gestational ages of three lunar months to still born infants along with some infants who 

died  of  unknown causes.   Information known for  each individual  is  recorded in  the 

museum  card  catalog  and  consists  mostly  of  biological  sex  of  the  fetus/infant, 
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race/nationality  of  the  individual  and  parents,  and  estimated  gestational  age  (as 

determined  by  methods  current  at  the  time)  (Hunt,  personal  comm.,  2009;  Huxley, 

2005).  Occasionally, the original card of information from the individual's autopsy is 

present  in  the  card  catalog,  and information  regarding the  maternal  parent's  health 

and/or previous children, either successful or unsuccessful, is noted as well.  Specific 

demographics of the collection is not known, but is believed to come from the lower 

socioeconomic areas in and around Washington, D. C (Hunt, personal comm., 2009; 

Huxley, 2005).   

The  individuals  of  this  collection  vary  in  their  condition  of  preservation  and 

completeness  of  elements.   Preservation  ranges  from  mummified  fetuses  to  fully 

skeletonized,  with  completeness  ranging  from  a  few  elements  to  complete  sets  of 

remains.  To some degree, the condition of a specimen is dependent on the process of 

preservation used and the age of  the fetus (Fazekas and Kósa,  1978).   When the 

individual is of less than 16 weeks gestation (four lunar months), cranial elements are 

too small, not much more than the beginnings of ossification centers developing, and 

too fragile to be subjected to manipulation, or even to be removed from the container 

while long bone elements are more substantial and are more safe to handle.  In the 

youngest individuals, the cranial elements are translucent.  

Most individuals within the collection have the majority of postcranial elements at 

least represented if not complete, but then here too all is dependent on the degree of 

development.  For individuals less than 24 weeks gestation, some ossification centers 

of the fingers, hands, toes, and feet have not begun to form sufficiently to be preserved 
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(Fazekas and Kósa, 1978; Scheuer and Black, 2000).  Therefore, younger individual 

specimens are represented by the long bones of the thoracic cage and extremities, 

while  older  individuals  include  vertebral  elements  as  well  as  some  hand  and  foot 

elements.   

Cranial elements develop rapidly and achieve a size easily preservable at a later 

age (Fazekas and Kósa, 1978; Scheuer and Black, 2000).  In this collection, most of the 

measurable cranial elements represent the vault: the frontal, the parietal, the temporal, 

and the occipital.  Facial elements for these individuals are only represented when fully 

articulated skulls are present.  Of the 320 individuals within this collection, only 133 

have  cranial  elements  preserved  to  a  condition  that  allows  for  precise  measuring, 

including 13 individuals with fully articulated crania.

        

Part II: Methods of Data Collection 

Each  individual  within  the  collection  was  examined  for  the  following  cranial 

elements: frontal, parietal, and occipital.  For every individual chosen, there was at least 

one parietal  and one frontal,  preferably from the left  side, and a complete occipital. 

Four measurements were taken from each element following the methodology laid out 

by Fazekas and Kósa (1978): measurements for length chord and width chord were 

taken  with  Mitutoyo, Model  CD-6"C digital  sliding  calipers  (certified  calibrated  on 

03/16/09  by  Technical  Maintenance  Incorporated,  in  Atlanta,  GA)  to  the  nearest 

hundredth millimeter  (mm),  and measurements for  length arch and width arch were 

taken to the nearest millimeter, with a standard paper measuring tape to reduce the 
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possibility of stretching seen in cloth measuring tapes.  Measurements of the frontal 

bone  for  length  were  taken  from  the  center  of  the  orbit  margin  across  the  frontal 

eminence to the superior peak; width was taken transversally over the frontal eminence. 

Length of the parietal bone height was taken from the center of the inferior (squamous) 

margin to the center of the superior (sagittal)  margin, across the parietal  eminence; 

width  was  taken  perpendicular  to  height  over  the  eminence  from the  center  of  the 

superior margin to the center of the inferior margin.  Occipital measurements included 

height (length), which was taken along the midline from the superior tip to the center of 

the  inferior  border,  and  width  taken  in  the  line  of  the  sutura  mendosa.   All  arch 

measurements were taken along the same line as the chord measurement for  both 

length and width on each element.  When fully articulated skulls were available, other 

measurements were also taken using the same calipers and paper measuring tape as 

the  individual  elements.   Additional  measurements  included:  cranial  length  (from 

glabella to opisthocranion), cranial bi-parietal width (euryon to euryon), cranial height 

(basion to  bregma),  and cranial  circumference measured around at  the greatest  bi-

parietal width.   

Once all measurements of the crania were complete, an age for each individual 

needed to be determined.  The use of cranial bones to establish age was deemed to be 

inaccurate as there is no standard currently in use based on these skeletal elements.   A 

standard of determination based on cranial elements is difficult due to the fact that the 

margins of the cranial elements are feathery and not solid nor regular as they grow 

radially from the centers of ossification, whereas long bones extend from the diaphyses. 
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Because of this difference in the direction of ossification, cranial vault elements are at 

greater risk of breaking or deformation over a relatively short periods of time and will 

result  in large errors when used (Fazekas and Kósa, 1978).  Therefore, long bones 

were  used  for  age  assessment  because  of  the  stability  of  the  bone  from  the 

directionality  of  ossification.   Specific  elements  which  have  been  shown  to  be  the 

strongest estimators of fetal age are the femur, tibia, and ulnae, where according to 

Sherwood (et al., 2000), there is a high correlation of the femur, tibia, and ulna with 

gestational age.   

Therefore, long bone measurements for the complete collection were requested 

from Dr. David Hunt, curator of the collection at the Smithsonian, for the purposes of 

accurate  age  assignment.   This  data  set  included  measurements  to  the  nearest 

millimeter for all  available long bone for each individual within the collection: humeri, 

radii, ulnae, femora, tibiae, and fibulae.  All measurements relevant to the individuals in 

this study were noted.   Values for each element  were referenced for age based on 

length according to Scheuer and Black (2000) and Fazekas and Kósa (1978).  Once all 

measurements had been noted and age ranges assigned based on measurements for 

each  long  bone,  the  mean  for  all  long  bones  were  averaged  to  determine  an 

approximate age range for each fetus.  In most instances, a complete set of long bone 

measurements was available for each fetus.  The age was assigned in weeks, both for 

gestational age and for postnatal age, for better accuracy in estimating rates of growth.  

Approximate ages for some individuals in the collection are noted in the card 

catalog by the donors and in the data set provided by Dr. Hunt (personal comm., 2009). 
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In  some  instances  these  ages  were  determined  by  the  physicians  based  on 

measurements at autopsy (Huxley,  2005).  Other fetal ages were not assigned or noted 

as gestational age in months or infant age in months.  For the purpose of this study, the 

age-in-months range is too large to estimate accurate rates of growth, and all ages were 

calculated in weeks.  The assignment of developmental age in weeks is imperative for 

determining rates of biological growth for individuals during gestation and the postnatal 

period.  The rate of growth between 16 weeks gestation until the end of 3 postnatal 

months will be examined to determine at which point the fetal rate decreases.  Notes of 

interest will be made on development until the age of 10 yrs.

All individuals were then grouped for specific age sets as early prenatal fetuses 

(≤26 weeks gestation, non-viable), late prenatal fetuses (27-40 weeks gestation, viable), 

and  early  postnatal  individuals  (40+  weeks  gestation-10  weeks  of  life,  after  birth). 

These age intervals are based on the average age of viability for a fetus as determined 

by current  medicolegal  definition as "between 24 to 28 weeks gestation" (Cory  and 

Collins, 2001).  

Part III: Methods for Data Analysis

I  will  examine  the  changes  for  rates  of  growth  with  the  use  of  analysis  of 

covariance  (ANCOVA)  for  each  of  the  cranial  elements  that  measurements  were 

collected  for  (frontal,  parietal,  and  occipital)  and  plot  them  against  age.   Ages  of 

individuals were coded as '0' to represent neonates at the time of parturition, fetal ages 

as negative numbers, and infant ages as positive numbers.  Those individuals coded as 
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'0' were then added to the postnatal age set for for analysis.  One (1) was then added to 

each age to remove the negative numbers to allow for log transformation.  Each age 

was  subjected  to  log-transformation  in  order  to  maximize  minimal  differences  and 

minimize  large  differences  in  the  weekly  growth  rates.   By  log-transforming  the 

measurements of each element, the data could then be regressed for each element in a 

linear trajectory for comparisons with age.  

The measurements of each element were plotted on the y-axis against age of 

individuals on the x-axis and the slope determined for fetal and postnatal growth rates 

conducted separately.  A confidence interval of 95% will be computed for each slope to 

determine if the changes in the growth rates between fetal and postnatal individuals are 

statistically significantly different.  The slopes and confidence intervals of each element 

will then be compared to determine if the rates of growth are statistically significantly 

different for each.  If a slope value fell outside the 95% confidence intervals for a given 

life cycle stage, only then were the y-intercepts tested for significance using the same 

procedure.  

ANCOVA  was  developed  using  log-transformed  data  with  Least  Squares 

Regression and is thus more appropriate than Reduced Major Axis or other Model II 

methods.  An added benefit to log-transformed data is the ease with which isometry can 

be identified such that if the confidence interval around an estimated slope overlaps 1, 

the null hypothesis of isometry cannot be rejected.  Slope values significantly greater 

than  1  can  be  described  as  positive  and  above  the  line  of  isometry,  while  those 

significantly less than 1 can be described as negative and below the line of isometric 
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growth.  Isometric growth assumes measurements are proportional to age.  Confidence 

intervals were calculated by adding and subtracting the standard error of the estimate 

multiplied by the corresponding t value obtained from the t-distribution, based on the 

degrees of freedom for each life cycle stage. 
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Chapter IV: Results 

All measurements taken for prenatal rates of growth, as inferred from the slope 

values  and  standard  errors,  are  significantly  greater  than  those  deriving  from  their 

postnatal counterparts.  Among fetuses there is a uniformly strong increases in size as a 

function of age, while there is more variation in the rates of growth among postnatal 

infants.

When prenatal remains are compared to their postnatal counterparts, the rates of 

growth  are  again  significantly  greater  during  the  gestational  period  than  after  birth. 

Fetal  rates  of  brain  growth  are  not  really  maintained  during  the  neonatal  period, 

although  they  are  approximated,  particularly  in  some  dimensions.   In  growth  with 

respect  to age,  the frontal  generally grows isometrically for  both pre-  and postnatal 

intervals with two exceptions.  The growth rate of frontal width arc is significantly above 

the expectations of isometry during the prenatal period and the anteroposterior length 

grows with a rate significantly below the line of isometry after birth.   

Curvature  of  the cranial  bones also contributes  to  total  values of  size in  the 

cranial vault.  In order to analyze curvature as a function of age, arc measurements 

were calculated for the Smithsonian sample with measurements for length and width on 

the  frontal,  parietal,  and  occipital  along  the  same  axis  as  the  that  for  chord 

measurements.   These  values  were  then indexed with  the  chord  measurements  to 

better understand the increase attained over time.  In general, postnatal anterior-
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posterior and width dimensions of the frontal and occipital bones and anterior-posterior 

parietal curvature are all significantly more curved than their fetal counterparts.  

Frontal:  Specifically for length, Figure 4.1 shows the linear relationship of the 

chord measurements for the length of the frontal bone of each individual measured.  It 

can be inferred from Figure 4.1 that the slopes of the early prenatal age sets are not 

statistically different from the late prenatal individuals and both exhibit a faster rate of 

growth than that of the postnatal age set.  The slope of each group is shown, along with 

standard errors, confidence intervals,  with the relevant lower and upper bounds shown 

in Table 4.1.  It should be noted that the slopes for both prenatal groups fall outside of 

the slope for the postnatal age set.  This suggests that the length of the frontal bone 

grows at a faster rate before birth than after birth. 

For  width  of  the  frontal,  Table 4.2 demonstrates  that  although this degree of 

growth is within the expectations of isometry, although the differences between group 

slopes are  significantly less than for length.  With this in mind, the degree of growth for 

the ≤26 age set is greater than either group 27-40 week or postnatal groups, while the 

40+ week still exhibits the slower growth of an infant in the trait compared to the fetus.

It  has therefore been shown that during the prenatal  period,  the frontal  bone 

length  and  width  grow  with  isometry,  and  in  the  postnatal  period  growth  is  at  a 

substantially  slower  rate  for  length  and  for  width  increase  may  also  be  statistically 

isometric.  Although already large at birth, this cranial element continues to experience 

substantial growth after parturition.  The dimensions of this element increase at a faster 

rate than other bones of the cranial vault for postnatal infants. 
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Figure 4.1 Age to Frontal Length Chord 

Table 4.1 Frontal Length Chord (FRlc)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) and standard errors for 
length of frontal bone.

Variable # Age Std Err Low B High Std Err  Low Y-Inter High 

FRlc 18 ≤26wks 0.250 0.534 1.024 1.514 0.180 3.649 4.002 4.355

FRlc 55 27-40wks 0.071 0.976 1.115 1.254 0.015 3.969 3.998 4.027

FRlc 47 40+wks 0.345 -0.331 0.345 1.021 0.029 3.962 4.019 4.076
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Figure 4.2 Age to Frontal Width Chord

Table 4.2 Frontal Width Chord (FRwc)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) and standard errors for 
width of frontal bone.

Variable # Age Std Err Low B High Std Err  Low Y-Inter High 

FRwc 18 ≤26wks 0.250 0.710 1.200 1.690 0.179 3.644 3.995 4.346

FRwc 56 27-40wks 0.067 0.829 0.960 1.091 0.014 3.790 3.817 3.844

FRwc 47 40+wks 0.350 -0.007 0.679 1.365 0.029 3.771 3.828 3.885
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The frontal is one of the two bones of the vault most dependent on age of the 

developing individual for degree of curvature of the cranial elements.  The relationship 

between the curvature of this element in length and increasing age is negative in slope 

for early prenatal individuals, falling below zero. This would indicate that curvature of the 

frontal bone in this direction is slightly flattened during the early development of the 

element.  The rate of increase for postnatal individuals overlaps one and in this age set 

the  null  hypothesis  can not  be  rejected  for  size.   The only  group that  experiences 

isometric growth for curvature of the frontal is the 40+weeks gestation age set indicating 

that as the individual grows in the the final thirteen weeks of gestation, curvature of the 

frontal increases as a function of age.  This can be seen in Figure 4.3 with the ANCOVA 

results  noted  in  Table  4.3.   Although,  the  rates  of  growth  for  the  arc  index 

measurements differ from the patterns seen for chord measurements, the total values of 

increase are still statistically significantly different between the fetal and the postnatal 

phases for curvature in the anterio-posterior direction.     

The patterns seen in measurements for the frontal width arc are similar to those 

in the frontal length arc and are stated in Table 4.4 and demonstrated in Table 4.4.  It 

should be noted that the individuals with the greatest increase in shape is again in the 

27-40 week gestation age set.  For age sets of ≤26 weeks and 40+ weeks the rate is 

below what is expected for isometric growth, while individuals in the group of 27-40 

weeks gestation are slightly above that of isometric expectations.  

44



Figure 4.3 Frontal Length Arc to Age

Table 4.3  Frontal Length Arc (FRlp)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) for arc of frontal bone.

Variable # Age Std Err Low B High Std Err  Low Y-Inter High 

FRlp 12 ≤26wks 0.296 -0.731 -0.151 0.429 0.189 3.050 3.420 3.790

FRlp 56 27-40wks 0.086 0.874 1.043 1.212 0.017 4.086 4.119 4.152

FRlp 47 40+wks 0.390 -0.323 0.441 1.205 0.032 4.073 4.136 4.199

45



Figure 4.4  Frontal Width Arc to Age 

Table 4.4 Frontal Width Arc (FRwp)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) for arc of frontal bone.

Variable # Age Std Err Low B High Std Err  Low Y-Inter High 

FRwp 11 ≤26wks 0.572 -1.068 0.053 1.174 0.369 2.671 3.394 4.117

FRwp 56 27-40wks 0.075 0.933 1.080 1.227 0.016 3.946 3.977 4.008

FRwp 47 40+wks 0.369 -0.095 0.628 1.351 0.030 3.930 3.989 4.048z
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Parietal:  Prenatal  rates of growth in the length of the parietal are above the 

expectations of isometry for age.  Those of infants during the three months are strongly 

below the expectations of isometry.  This is seen in Figure 4.5 as the slopes of both fetal 

age sets are strongly above one and the expected line of isometry, while the postnatal 

group is approaching zero suggesting that increase in size for length is minimal.  Table 

4.5 shows the relationships of  the slopes to the corresponding confidence intervals. 

Here  it  can  be  seen  that  the  differences  in  rates  between  groups  are  statistically 

significant when fetal measurements are compared to infant values in Figure 4.5.

            When the width of the parietal is compared with age, the calculated slope during 

the gestation period is similar to that determined for the postnatal infants.  All values 

include one within the confidence interval, noting that there continue to be statistically 

significant differences in rates.  However, the rate of parietal growth for both the fetal 

individuals and neonates are relatively reduced compared to the frontal and occipital 

bones.   These  similarities  in  the  slopes  can  be  seen  in  Figure  4.6  and  the  slope 

determinations are noted in Table 4.6.    

The parietal is already elongated in fetuses because of particularly aggressive 

growth during this period.  While after parturition, growth for this element is at a much 

slower rate.  Therefore, for all parietal measurements, fetal growth can be described as 

significantly  above the  line of  isometry,  while  the postnatal  growth is  isometric  with 

respect to age.
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Figure 4.5 Parietal Length Chord to Age 

Table 4.5 Parietal Length Chord (PRlc)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) and standard errors for 
length of parietal bone.

Variable # Age Std Err Low B High Std Err Low Y-Inter High 

PRlc 14 ≤26wks 0.265 1.996 2.515 3.034 0.193 4.738 5.116 5.494

PRlc 44 27-40wks 0.095 1.101 1.287 1.473 0.019 4.165 4.202 4.239

PRlc 48 40+wks 0.073 0.053 0.196 0.339 0.032 4.177 4.240 4.303
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Figure 4.6 Parietal Width Chord to Age 

Table 4.6 Parietal Width Chord (PRwc)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) and standard errors for 
width of parietal bone.

Variable # Age Std Err Low B High Std Err Low Y-Inter High 

PRwc 14 ≤26wks 0.195 1.264 1.646 2.028 0.142 4.374 4.652 4.930

PRwc 47 27-40wks 0.075 0.908 1.055 1.202 0.015 4.253 4.282 4.311

PRwc 48 40+wks 0.344 0.145 0.819 1.493 0.028 4.243 4.298 4.353
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With respect to the parietal,  curvature here is highly dependent on age.  The 

relative degree to which the bone is curved continues to increase during the postnatal 

period, which is due to the need for an increase in volume for the continually growing 

brain of the infant.  Greater curvature here allows more volume to be added without 

affecting  the  slower  growth  and  development  of  the  facial  bones  and  their  related 

sutures.  

As reflected in the rates of  growth calculated for  parietal  width,  the superior-

inferior elongation of the parietal grows slower during gestation compared to rates of 

increase characterizing  other  cranial  vault  bones.   The reduced rate  of  growth  has 

implications  for  the  curvature  in  the  parietal  when  fetal  and  postnatal  bones  are 

compared.   The slopes,  as  noted  in  Table  4.9  and demonstrated  in  Figure  4.9  for 

parietal length arc, are patterns comparable to those seen in other measurements with 

fetal age sets growing at significantly greater rates than postnatal infants.  This is seen 

in the fetal rates of increase as significantly above the expected line of isometry and the 

rate of the 40+ week age set again falling below one and approaching zero as the 

expected rate of increase.  This slope is significantly below the determined slope for the 

27-40 week age set.  In the age set for 40+ weeks, the null  hypothesis can not be 

rejected.      

As seen in Table 4.10, slopes for the indices of parietal width arc are similar to 

those  seen  in  Table  4.9  for  the  parietal  length  arc.   This  would  suggest  parallel 

trajectories for the arc indices for length and width across age sets.  The fetal parietal is 

already highly curved in early osteogenesis and continues to exhibit  eminences that 
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allow for  an  increase  in  the  size  of  the  cranial  vault  without  further  expanding  the 

perimeter and thus the size of  the articulations with the frontal  and occipital  bones. 

Parietal bossing is pronounced in fetal and neonatal material and can remain extreme 

throughout infancy.    
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Figure 4.7 Parietal Length Arc to Age  

Table 4.7 Parietal Length Arc (PRlp)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) and standard errors for 
arc of parietal bone.

Variable # Age Std Err Low B High Std Err Low Y-Inter High 

PRlp 8 ≤26wks 0.255 1.209 1.709 2.209 0.158 4.463 4.773 5.083

PRlp 49 27-40wks 0.082 1.007 1.168 1.329 0.017 4.423 4.456 4.489

PRlp 49 40+wks 0.383 -0.250 0.501 1.252 0.031 4.413 4.474 4.535

52



Figure 4.8 Parietal Width Arc to Age

Table 4.8 Parietal Width Arc (PRwp)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) and standard errors for 
arc of parietal bone.

Variable # Age Std Err Low B High Std Err Low Y-Inter High 

PRwp 8 ≤26wks 0.768 -0.089 1.416 2.921 0.476 3.693 4.626 5.559

PRwp 50 27-40wks 0.086 1.013 1.182 1.351 0.018 4.427 4.462 4.497

PRwp 49 40+wks 0.342 -0.206 0.464 1.134 0.028 4.433 4.488 4.543
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Occipital:  The occipital follows a generally intermediate pattern with respect to 

the  relatively  rapid  frontal  and  slow  growing  parietal  bones.   Patterns  of  growth 

observed for the parietal are mirrored in the occipital with the prenatal period described 

as weakly above the expectations of isometry and the postnatal interval characterized 

as strongly below the line of isometry growth.  

The width of  the occipital  bone grows at a  significant  rate  of  increase in the 

≤26wks age individuals,  and at  only  slightly  reduced rates  during the later  prenatal 

period.  But when the postnatal interval is examined, rates of growth fall slightly below 

the line of isometry as seen in Figure 4.9 and mathematically determined in Table 4.9. 

The same can be said for the growth of all occipital traits after birth. 

In Figure 4.10, is appears that slopes for the rates of growth for width in the age 

sets for  ≤26 weeks and 27-40 weeks gestation are strikingly similar to the values for 

length arcs rates.  In the postnatal age set, the degree of increase is somewhat lower 

than that for length.  Table 4.10 shows the values for the slopes of the width arc indices 

and when compared to values in Table 4.9 for length arc indices, it can be noted that the 

values for slope in each age set are strikingly similar with values for individuals in the 

age set for ≤26 weeks are both approaching 2.0 and the slopes for individuals in 27-40 

weeks is greater than one.  For the postnatal age set the value of the slope of increase, 

in length and width, both fall significantly below one.  Thus, the increase for size of both 

age sets during the gestational period are significantly above the line of isometry, and 

the  increase of  size in postnatal  individuals  significantly  below expectation.   During 

gestation,  both  length  and  width  chord  measurements  for  the  occipital  increase 
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significantly faster than expectations of isometry would predict.  Rates of increase for 

distances in length and width are examined for postnatal  individuals, it  is should be 

noted that the slope for length approaches the line of isometry.  While slopes for width 

fall below the expected line of isometric growth and approach zero. 
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Figure 4.9 Occipital Length Chord to Age 

Table 4.9 Occipital Length Chord (OClc)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) for length of occipital 
bone.

Variable # Age Std Err Low B High Std Err Low Y-Inter  High

OClc 18 ≤26wks 0.470 1.175 2.096 3.017 0.338 3.869 4.531 5.193

OClc 56 27-40wks 0.116 0.978 1.205 1.432 0.024 3.951 3.998 4.045

OClc 48 40+wks 0.412 -0.074 0.734 1.542 0.034 3.921 3.988 4.055
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Figure 4.10 Occipital Width Chord to Age 

Table 4.10 Occipital Width Chord (OCwc)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) for width of occipital 
bone.

Variable # Age Std Err Low B High Std Err Low Y-Inter  High

OCwc 18 ≤26wks 0.383 1.175 1.926 2.677 0.275 4.052 4.591 5.130

OCwc 57 27-40wks 0.104 0.858 1.062 1.266 0.021 4.033 4.074 4.115

OCwc 48 40+wks 0.406 -0.404 0.392 1.188 0.033 4.013 4.078 4.143
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Figure 4.11 shows the arc measurements for occipital length for  ≤26 weeks as 

having a negative slope and fall below the line of isometry when compared with age, 

while age sets for 27-40 weeks and 40+ weeks have positive relationships to age with 

slopes greater than isometric growth.  The later prenatal age set shows a significant 

increase for size as the slope is greater than one and above the line of isometry.  It 

should also be noted that the slope for postnatal individuals is significantly lower than 

that for the 27-40 weeks gestation group and significantly lower that what is expected 

for  isometric  growth.  This  is  verified in Table 4.11.   Here it  is  also suggested that 

although curvature of the occipital increases with age, the change expected over time 

may not be connected to age or size increase.  

The size increase depicted in Figure 4.12, for the width of the occipital, is close to 

zero in individuals of the ≤26wks age set.  This suggests less curvature in the early fetal 

period than in either the 27-40 weeks or 40+ week age set and that the curvature of the 

occipital begins later in development than either the frontal or the parietal.   As all values 

for width curvature overlap one (1), the null hypothesis can not be rejected for either 

age set.  The curvature of the occipital width decreases in relation to developmental age 

after birth, indicating that this element, is has the least curvature of all cranial elements. 
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Figure 4.11 Occipital Length Arc to Age  

Table 4.11 Occipital Length Arc (OClp)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) and standard errors for 
arc of occipital bone.

Variable # Age Std Err Low B High Std Err Low Y-Inter High

OClp 11 ≤26wks 0.798 -1.768 -0.204 1.360 0.514 2.258 3.265 4.272

OClp 56 27-40wks 0.125 1.132 1.377 1.622 0.026 4.172 4.223 4.274

OClp 48 40+wks 0.397 -0.015 0.763 1.541 0.033 4.123 4.188 4.253
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Figure 4.12 Occipital Width Arc to Age  

Table 4.12 Occipital Width Arc (OCwp)
Slopes and Y-Intercepts with corresponding Confidence Intervals (low and high) and standard errors for 
arc of occipital bone.

Variable # Age Std Err Low B High Std Err Low Y-Inter High

OCwp 11 ≤26wks 0.654 -1.278 0.004 1.286 0.421 2.745 3.570 4.395

OCwp 57 27-40wks 0.118 0.814 1.045 1.276 0.025 4.164 4.213 4.262

OCwp 47 40+wks 0.474 -0.208 0.721 1.650 0.039 4.143 4.219 4.295
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Pearson's  Correlations  With  and  Without  Control  for  Age:  Arc  and  Chord 

measurements  for  length  and  width  were  also  subjected  to  a  Pearson's  bivariate 

correlation.   The  results  can  be  viewed  in  Table  4.13  for  chord  length  and  width 

measurements.  This table suggests that all measurements are highly correlated when 

no control  is  indicated.   Correlated  values  are  tightly  clustered  between  0.929 and 

0.973, with a spread in values of only  0.044.  When the values are then subjected to a 

two-tailed test  controlled for  age against chord measurements, significance for each 

value falls substantially, as seen in Table 4.14.  Correlation between variables are now 

no longer within such narrow correlation values, but spreads from 0.582 to 0.816, a 

jump  to  a  difference  of  0.234.   Correlations  with  lower  values  for  Table  4.14  are 

indicative of a lesser relationship of size to age, and shows high values for relationships 

of measurements of the occipital, and only to a lesser extent for the frontal and parietal. 

Results  of  Pearson's  bivariate  correlations  preformed  on  arc  measurements 

show similar values compared to those for chord measurements but significant only at 

slightly lower level correlation coefficients.   Values for the relationship of arc to size 

without the control for age can be viewed in Table 4.15, range from 0.886 to 0.954, with 

a difference between the highest and lowest values of 0.068, and is slightly wider than 

that for size, but not significantly so and still similar to that seen with the relationship for 

size.  When the control is applied to the values for shape in Table 4.16, values once 

again drop while the range widens.  With age as the control, values now range from 

0.540 to 0.811, roughly the same range of 0.271, as that for size.  
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Table 4.13 Pearson's Correlation of Cranial Elements (Length and Width) Cord Measurements

FRlc FRwc PRlc PRwc OClc OCwc

FRlc Pearson Correlation 1 .973** .959** .966** .950** .941**

Sig. (2-tailed) .000 .000 .000 .000 .000

N 129 129 112 115 127 128

FRwc Pearson Correlation .973** 1 .960** .966** .938** .934**

Sig. (2-tailed) .000 .000 .000 .000 .000

N 129 130 113 115 128 129

PRlc Pearson Correlation .959** .960** 1 .948** .932** .929**

Sig. (2-tailed) .000 .000 .000 .000 .000

N 112 113 115 112 114 114

PRwc Pearson Correlation .966** .966** .948** 1 .938** .939**

Sig. (2-tailed) .000 .000 .000 .000 .000

N 115 115 112 117 115 116

OClc Pearson Correlation .950** .938** .932** .938** 1 .955**

Sig. (2-tailed) .000 .000 .000 .000 .000

N 127 128 114 115 131 131

OCwc Pearson Correlation .941** .934** .929** .939** .955** 1

Sig. (2-tailed) .000 .000 .000 .000 .000

N 128 129 114 116 131 132

**. Correlation is significant at the 0.01 level (2-tailed).
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Table 4.14 Partial Correlation of Cranial Elements (Length and Width) Cord Measurements Controlled for 
Age

Control Variables FRlc FRwc PRlc PRwc OClc OCwc

NewAge FRlc Correlation 1.000 .816 .748 .734 .663 .659

Significance (2-tailed) . .000 .000 .000 .000 .000

df 0 101 101 101 101 101

FRwc Correlation .816 1.000 .779 .749 .582 .610

Significance (2-tailed) .000 . .000 .000 .000 .000

df 101 0 101 101 101 101

PRlc Correlation .748 .779 1.000 .713 .633 .690

Significance (2-tailed) .000 .000 . .000 .000 .000

df 101 101 0 101 101 101

PRwc Correlation .734 .749 .713 1.000 .589 .646

Significance (2-tailed) .000 .000 .000 . .000 .000

df 101 101 101 0 101 101

OClc Correlation .663 .582 .633 .589 1.000 .735

Significance (2-tailed) .000 .000 .000 .000 . .000

df 101 101 101 101 0 101

OCwc Correlation .659 .610 .690 .646 .735 1.000

Significance (2-tailed) .000 .000 .000 .000 .000 .

df 101 101 101 101 101 0
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Table 4.15 Pearson's Correlation of Cranial Elements (Length and Width) Arc Measurements

FRlp FRwp PRlp PRwp OClp OCwp

FRlp Pearson Correlation 1 .954** .919** .924** .924** .900**

Sig. (2-tailed) .000 .000 .000 .000 .000

N 124 123 113 114 121 121

FRwp Pearson Correlation .954** 1 .932** .925** .914** .886**

Sig. (2-tailed) .000 .000 .000 .000 .000

N 123 123 113 114 121 121

PRlp Pearson Correlation .919** .932** 1 .932** .912** .879**

Sig. (2-tailed) .000 .000 .000 .000 .000

N 113 113 115 115 114 113

PRwp Pearson Correlation .924** .925** .932** 1 .918** .894**

Sig. (2-tailed) .000 .000 .000 .000 .000

N 114 114 115 116 114 114

OClp Pearson Correlation .924** .914** .912** .918** 1 .944**

Sig. (2-tailed) .000 .000 .000 .000 .000

N 121 121 114 114 124 123

OCwp Pearson Correlation .900** .886** .879** .894** .944** 1

Sig. (2-tailed) .000 .000 .000 .000 .000

N 121 121 113 114 123 124

**. Correlation is significant at the 0.01 level (2-tailed).
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Table 4.16 Pearson's Correlation of Cranial Elements (Length and Width) Arc Measurements Controlled 
for Age

Control Variables FRlp FRwp PRlp PRwp OClp OCwp

NewAge FRlp Correlation 1.000 .811 .635 .639 .642 .623

Significance (2-tailed) . .000 .000 .000 .000 .000

df 0 102 102 102 102 102

FRwp Correlation .811 1.000 .672 .636 .562 .545

Significance (2-tailed) .000 . .000 .000 .000 .000

df 102 0 102 102 102 102

PRlp Correlation .635 .672 1.000 .644 .576 .540

Significance (2-tailed) .000 .000 . .000 .000 .000

df 102 102 0 102 102 102

PRwp Correlation .639 .636 .644 1.000 .626 .624

Significance (2-tailed) .000 .000 .000 . .000 .000

df 102 102 102 0 102 102

OClp Correlation .642 .562 .576 .626 1.000 .786

Significance (2-tailed) .000 .000 .000 .000 . .000

df 102 102 102 102 0 102

OCwp Correlation .623 .545 .540 .624 .786 1.000

Significance (2-tailed) .000 .000 .000 .000 .000 .

df 102 102 102 102 102 0
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Chapter V: Discussion

It has long been suggested that the human infant brain continues to grow at fetal 

rates throughout the first full year of life, if not beyond (Bogin, 1999; Ponce de León, et 

al.,  2008;  Vinicius,  2005).   This  is  thought  to  be  due  to  the  increased  degrees  of 

encephalization of the human brain under evolutionary forces. Some forces that may 

have  contributed  to  the  selection  for  an  ever  enlarging  brain  may  have  included 

changes  in  environments  and  climates,  need  for  additional  social  skills  due  to 

population  increases  and  closer  proximity  to  others,  lengthening  life  histories,  or 

increasing competition with other hominid species (Bogin, 1999; Ponce de León, et al., 

2008; Rosenberg, 1992; Wortham and Kuzara, 2005).  The hominid brain is the most 

energy expensive organ to maintain and an increase in size demanded a change in diet. 

The need for nutritional alterations may have also encouraged an increase in proximity 

with other members of the same or different species (Aiello and Wheeler, 1995; De 

Silva, et al., 2008; McNamara, 2002a; McNamara, 2002b; Wortham and Kuzara, 2005). 

The shift to upright locomotion of hominids placed physiological restrictions on 

the dimensions of the female pelvis that could be reached without hindering the ability to 

be fully bipedal (Berge, 1998; De Silva, et al., 2008; Jordaan, 1976; Ponce de León, et 

al., 2008; Rosenberg, 1992; Steel, 2006; Whitcome, et al., 2007).  Limitations on the 

size of the pelvic outlet as a result of the change in the overall morphology necessitated 

a  constraint  on  fetal  head  dimensions  for  successful  passage  a  the  fetus.   Some 

researchers have stated that a post-parturition increase in brain volume can be seen as 
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an evolutionary response to the need for a larger adult brain that is restricted for size at 

birth by bipedalism (Alba, 2002; Berge, 1998; De Silva, et al., 2008; Hawkes, 2006a; 

Jordaan, 1976; McNamara, 2002a, Ponce de León, 2008Rosenberg, 1992; Steel, 2006; 

Whitcome, et al., 2007 ).  

Although the infant brain does grow rapidly after  birth,  studies have not been 

conducted to determine at what point the speed of growth begins to slow from the rapid 

pace seen during fetal  development.   It  is  with this  in  mind that  the collection and 

analysis of measurements of fetal and infant crania was undertaken.  The purpose of 

this study was to determine at what point the increase of brain tissue volume and the 

capacity of the surrounding structures begin to alter the pace of acceleration seen in the 

fetus.  The cranial elements of 133 individuals from 16 weeks gestation to three months 

post-natal were examined at the Smithsonian Institute in Washington, DC.  A total of six 

measurements were taken to determine size of fetal and infant crania: length chord and 

arc and width chord and arc of the frontal, parietal and occipital bones.  

The measurements of  fetal  cranial  elements were examined with ANCOVA to 

extrapolate slopes for rates of growth to determine at what age volume increase slows. 

This  research  will  suggest  that  there  is  a  significant  decrease in  the  rate  of  infant 

brain/cranial growth well before the age of 6 postnatal months.  Through analyzing the 

slopes, along with the high and low boundaries based on mathematically determined 

confidence intervals, it was determined that although chord measurements of the fetal 

and infant crania are tightly correlated to the age of an individual, arc measurements do 

not adhere to strict increase based on age.  The analysis of the data also suggest that 
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although the rate of cranial growth of the infant skull is generally at or slightly above that 

of isometry, fetal rates are significantly above the expectations of isometric growth and 

rates of growth.  Thus, it can be stated that rates are not carried over through the first 

full year of life.  

It is only in the earliest developmental stages of the cranial elements that rates of 

growth for four of the measurements fall below the line of isometry.  During the second 

stage of growth for fetal skulls, all values for all measurements are at or above expected 

isometry.  While many have suggested that this rate is carried over through at least the 

first year of life (Coqueugnoit, et al., 2004; Jordaan, 1976; Vinicius, 2005), the speed at 

which increase occurs declines as soon as three post-natal months.  All postnatal rates 

of growth are estimated above zero, indicating some degree of growth, but still falling far 

below the rates for prenatal growth and lines of isometric growth.  

As a result of this study, it can be interpreted that the evolution of the human 

species has developed a timing schedule to attain the full adult size that allows for an 

increase in the degree of encephalization necessary during gestation and in a brief 

interval after birth. This research shows that during gestation the fetal brain grows much 

more rapidly during the third trimester than at any time in the human life cycle.  Though 

it should also be noted that when attempting to measure the degree of volume achieved 

in the adult, that the duration of growth is substantially longer after birth than it is before, 

continuing until approximately 10 years of age (Coqueugnoit,et al., 2004; McNamara, 

2002a).  The length of time the human brain grows during gestational is limited to only 

ten lunar months, but after birth growth is estimated to be as long as ten years before 
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size reaches 95% of adult values (Coqueugnoit, et al., 2004; McNamara, 2002a).  Even 

with  this  extended  time  of  increase,  development  is  still  occurring  as  a  matter  of 

acquiring knowledge for success as a member of the community after the completion of 

growth.      
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Chapter VI: Conclusions

An increase in cranial size occurred about two million years ago in the genus 

Homo and may have been selected for by environmental changes, shifts in the climate, 

or demographic alterations within groups or between groups.  Since the mammalian 

brain grows primarily during gestation, selection for an extended period of fetal rates of 

brain growth may be coupled with selection for large brain in mature adults in the genus 

Homo.  However, rates of brain growth during the gestational period differ significantly 

from those characterizing the first postnatal year.  Although there is a continuation of 

basic anthropoid cranial growth patterns, cranial growth rates during the first postnatal 

year  are significantly  slower.   Nevertheless, the percent  total  of  brain size achieved 

during fetal development, infancy, and early childhood is remarkable.  The human brain 

at birth is 25% of that achieved by maturation, reaches 80% of the expected total by the 

second birthday, 90% by six years of age, and is completed by 10 years.  

Although  fetal  rates  of  brain  growth  are  not  maintained  throughout  the  first 

postnatal  year,  human  neonates  should  be  considered  extrauterine  embryos  with 

respect  to  their  rates of  brain  growth  during the  first  three postnatal  months.   This 

extension of fetal growth into the first three months may need to be viewed as a post-

birth 'trimester'  and lends considerable value to the growth and development of  the 

human infant.  The immense benefit of growth during this period is due to the absolute 
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gain in volume of brain tissue at a time when the body remains small and the brain to 

body size ratio is larger than at any other period of postnatal ontogeny.  However, the 

extension  of  growth  rates  is  not  uniform  throughout  these  early  periods  of  human 

development.  

The  pre-  and  postnatal  growth  of  the  frontal  bone  differs  from other  cranial 

regions  while  the  parietal  shows  relatively  slower  postnatal  growth  than  other 

dimensions of the cranial vault.  Furthermore, the significantly greater curvature of the 

neonatal  cranial  vault,  other  than  the  width  of  the  parietal  in  a  superior-inferior 

dimension, can be explained with respect  to rates of growth.  Although fetal  cranial 

bones grow at a faster rate, the curvature is greater in postnatal infants because of the 

absolutely larger cerebral volume characterizing neonates and the concomitantly slower 

growth of the upper face which must accommodate a comparatively small middle and 

lower  facial  skeleton.   The  first  three  postnatal  months  nearly  mimic  the  last  three 

prenatal months in terms of cerebral growth; the cranial vault accommodates this further 

rapid  expansion  by  increasing  in  curvature  rather  than in  the  absolute  lengths  and 

widths of the frontal, parietal and occipital bones.  These findings would suggest that 

while the rates of growth in the first few months following birth are more rapid than those 

seen later months, degrees of increase are significantly reduced and learning skills and 

acquiring knowledge is of primary importance.  
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This research may have implications in the framework of paleoanthropological 

research for better understanding the timing of fetal  encephalization.   Relationships 

between the evolution of  the increase in brain  volume to  bipedalism, along with  its 

correlation to morphological changes of the pelvis, could be further interpreted in the 

overall advancement that occurred as a result of upright locomotion.  Other areas of 

study may include that of growth and development across species of hominids further 

increasing  our  understanding  of  the  evolution  of  life  histories  in  anthropoids. 

Regarding modern humans, comparisons within and between populations could also be 

useful as a means to determine the effect of nutrition or disease on the developing fetus 

and early  stages in infancy.   Focuses of research such as these would benefit  our 

understanding of the past as well as the future paths of change possible in the genus 

Homo .     
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