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Influenza Prevalence in the US Associated with Climatic Factors, Analyzed at Multiple Spatial 

and Temporal Scales. 
 

By 

Arie Ponce Manangan 

Under the Direction of Susan Walcott and Paul Knapp 

ABSTRACT 

 Linkages between influenza prevalence and climate (e.g. precipitation, temperatures, El 

Nino Southern Oscillation ENSO) have been suspected, but definitive evidence remains elusive.  

This analysis investigated a climatic relationship between influenza mortality (measured by 

multiple caused pneumonia and influenza deaths) and influenza morbidity (measured by isolates 

tested for influenza).  Influenza-climate linkages were analyzed at multiple spatial scales (e.g. 

local analysis, and regional analysis) and multiple temporal scales (e.g. annualized mortality 

counts, and mortality counts based on cumulative percentiles).  Influenza mortality and 

morbidity were found to have significant correlations to seasonal temperatures, precipitation, and 

ENSO.  Influenza-climate associations varied spatially and temporally, and underscore the 

importance of considering geographic scale in investigative analyses of disease.  Evidence for an 

influenza-climate relationship provides a greater understanding of the enviro-climatic factors that 

can contribute to an influenza epidemic, and provides an impetus for further studies that 

incorporate climatic factors in influenza risk modeling. 
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Chapter 1 - INTRODUCTION  

 History of influenza 

 Influenza is a virus that has continually afflicted human populations on a global 

scale for at least the past two millennia (Patterson 1986).  Its role in causing minor to 

severe health problems continues into the modern era, as it, for example, caused an 

estimated 36,000 deaths annually from 1990-1999 (CDC 2006a).  Although deaths and 

the most severe complications (e.g. pneumonia) resulting from the respiratory virus 

usually occur only in the elderly population, all demographic populations can be infected 

by the virus with symptoms of high fever, malaise, dry coughing, diarrhea, and vomiting 

(CDC 2006a; Cox et al. 2000).  Although un-immunized children and the elderly (i.e. 65 

years of age and older) are particularly susceptible to influenza and influenza like 

symptoms, healthy adults have also been known to suffer significant mortality during 

influenza pandemics (global influenza epidemics) (Patterson 1986; Pyle 1979).  Although 

infrequent throughout recorded human history, influenza pandemics can decimate entire 

region with high rates of mortality.  The influenza pandemic of 1918, for example, killed 

at least 20 million people worldwide (Patterson 1986). 

 Similar to many infectious diseases contracted through close interaction with 

domesticated animals (e.g. measles, small pox, tuberculosis), influenza is thought to have 

been introduced into human populations via domesticated wild birds and animals 

(Kawaoka et al. 1988).  Unlike other diseases such as measles however, to which the 

human body can eventually gain immunity after a single infection, influenza is capable of 
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rapid genetic mutation, and attempts to counteract human immunological defenses (i.e. 

previous immunity to influenza does not necessarily lend to immunological resistance to 

the most current influenza strain in circulation).  The ability to mutate in order to 

overcome survival pressures is crucial to the antigenicity, or the ability to incite an 

immune response in the human body, that is exhibited by the influenza virus.   Influenza 

is in a continuous state of change in an effort to infect and re-infect a host (Horimoto et 

al. 2005).  This dynamic virus requires constant surveillance to identify the most recent 

virus strain in circulation, which is essential to the development of an effective vaccine 

for each influenza season (CDC 2006b).  Even with the modern advances in medicine 

and science (e.g. vaccines and medical surveillance), influenza is still a respiratory illness 

of major public health concern (CDC 2006b).   

The introduction of influenza into human populations is thought to have coincided 

with the domestication of animals (e.g. pigs and ducks) around 5000 B.C., the suspected 

natural reservoirs of the disease (Patterson 1986; McNeill 1998; Diamond 1999).  The 

first discernable accounts describing influenza-like symptoms date back to 462 B.C. from 

Hippocrates (Koch 2005), and also a description of the virus in 1173 A.D. (Patterson 

1986).     North America experienced one of its first influenza epidemics in 1558-1559 

which originated from a severe epidemic in England that caused mortality of at least 20% 

of the total population (McNeill 1998). However, the most severe influenza pandemic in 

modern history occurred in 1918-1919 and coincided with the proliferation of steam-ship 

travel following World War I, and caused mortality in excess of 20 million people (Pyle 

1986; Patterson 1986).  Significant changes in the antigenicity of influenza, either 

through ‘point’ mutations or recombination of influenza viruses (i.e. antigenic shift) is 
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thought to have been a key factor in the high mortality of the 1918 pandemic, along with 

the introduction of the virus into immunologically naïve regions of the world that were 

aided by technological advances in global transportation (i.e. steam ship travel) (Cliff et 

al.1986; Patterson 1986; Pyle 1986; McNeill 1998; Diamond 1999; Horimoto et al. 2005; 

Taubenberger et al. 2006; Kilbourne 2006).   

 Although influenza occurs throughout the world, it is most severe in temperate 

regions where it exhibits seasonality with prevalence peaking during the winter (e.g. 

DEC, JAN, FEB) and declining significantly during summer (Cliff et al.1986; Pyle 

1986).  The winter peak of influenza in temperate climates has been conventionally 

explained by human behavioral changes, as during this season people congregate indoors 

more often. Thus, there is a greater likelihood of infection because of increased 

interaction in confined indoors spaces (Cliff et al.1986; Meade et al. 2000; Mims et al. 

2004; Patz et al. 2003).  However, evidence for increased influenza incidence associated 

with increased crowding is inconclusive (Meade et al. 2000).  Nonetheless, because of 

the winter peak and summer trough of influenza prevalence, temperature or other 

environmental factors are suspected to be the driving forces of variability in influenza 

seasons (Cliff et al.1986; Pyle 1986), yet little is understood this potential climatic 

linkage. 

Influenza & Climate 

 Medical climatologists in the early 20th century investigated linkages between 

weather and health.  Mill’s (1939) book on medical climatology provides case studies as 

evidence for an association between temperature and influenza like symptoms or 

complications arising from influenza infection.  For example, pneumonia deaths, which 
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are commonly used as a proxy for influenza prevalence, were associated with abrupt 

declines in ambient temperature (Mills 1939:pg 127).  Licht’s (1969) medical 

climatology text also furthered the notion of a relationship between weather and disease 

by proposing that certain atmospheric conditions (e.g. dry air) are ideal for the 

accumulation of micro-organisms.  Associations between climatic conditions and the 

onset of respiratory diseases, more specifically influenza and pneumonia, are not a novel 

idea, but have not been examined at regional geographic scale using high-resolution 

climatic and influenza data. 

 The linkage between climate (i.e. precipitation, temperature, long-term climatic 

trends) and influenza is suggested in many texts analyzing influenza incidence.  In 

Patterson’s (1986) reconstruction of influenza pandemics and epidemics occurring from 

1700-1900, his historical analysis reveals that “…cool, dry air seems to favor the survival 

of the virus in the environment” (pg 3).  In the most recent text solely devoted to medical 

geography, Meade (2000) briefly discusses the environmental conditions that may play a 

role in the transmission of the disease. “It has been suggested that in lower humidity, or 

perhaps in lower ultraviolet radiation, the virus may survive longer in the air between 

people, and so be able to infect more of them” (Meade et al.. 2000: 284).  Supporting the 

theories provided by Meade (2000) and Patterson (1986), a medical microbiology text by 

Mims (2004) explains that winter influenza peaks in temperate regions occur because, 

“…during cold weather, people spend more time inside buildings with limited air space, 

which favors transmission, and perhaps also because of decreased host resistance.”.  

Furthermore, Patz (2003) suggests that climate factors such as humidity may play a role 
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in the cyclical nature of influenza, along with the behavioral changes that coincide with 

more severe winters (Patz et al. 2003:pg 107).   

Although many researchers propose this association between indoor crowding 

during winter months and influenza prevalence, the evidence of this linkage is weak, at 

best (Meade and Earickson 2000; Hope-Simpson 1992). Dushoff (2006) conducted an 

investigation to analyze associations between temperature and influenza mortality in the 

US, but found only that H3 and B influenza viruses were correlated with excess 

mortality, rather than weather.  However, data were only examined at a single temporal 

scale (e.g. mortality based on an entire influenza season) rather than monthly or weekly 

(Dushoff et al. 2006).  Further, Dushoff et al.(2006) found no association between US 

mortality trends and temperature, both at a national level and at a larger scale analysis of 

New York city and the surroundings areas of Chicago.  Dushoff et. al (2006) used 

aggregated temperature data, taken as a mean temperature for an entire flu season 

(November through April), which could potentially both deflate any fluctuations of 

temperature within each influenza season and mask actual temperature-mortality 

relationships. 

 A climatic analysis of three major cities in California found that temperature and 

El Niño Southern Oscillation ENSO phases exhibited significant associations with viral 

pneumonia hospitalizations, which is often associated with complications from influenza; 

significant associations were geographically distinct (Ebi et al. 2001).  The study site in 

which influenza hospitalizations exhibited an association with ENSO phases was 

Sacramento, CA, which concomitantly was the only city associated with decreased 

winter-spring temperatures caused by El Nino events (Ebi et al. 2001).  Increased 
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hospitalizations were associated with decreased minimum temperature, but were not 

associated with fluctuations in precipitation (Ebi et al. 2001).  ENSO tends to affect 

regional weather differently throughout the US.  A similar climatic analysis in different 

regions of the US, utilizing mortality data or another measure of morbidity (i.e. national 

influenza surveillance data), could prove to be fruitful in determining the spatial variation 

of significant factors affecting influence prevalence.  

 Similar ENSO linkage findings were identified in Europe.  A study examining 

France’s influenza morbidity/mortality as related to climate at a global scale found cold 

ENSO episodes produced significantly higher mortality than warm ENSO conditions 

(Viboud et al. 2004).  Although ENSO phases were incorporated into the analysis, 

humidity and temperatures observations were not examined for associations with 

influenza morbidity/mortality by Viboud (2004).  Changes in temperature, precipitation, 

and humidity were the most likely determinants for influenza prevalence, but were not 

validated as significant factors in the Viboud (2005) study.  Weather conditions should 

first be examined for influenza linkages, rather than the short-term climatic conditions 

(e.g. ENSO) that determine observable weather.  However, the importance of ENSO 

phases has basis in the typical lag between ENSO measurements (e.g. Southern 

Oscillation Index SOI) and observed regional and local weather conditions (e.g. 

temperature, precipitation) (Ahrens 2003), which allows for early disease-prediction 

 The intriguing, but inconclusive linkage between climate and influenza 

prevalence suggests that a thorough analysis is required to determine the spatial 

variability and magnitude of these associations.  If climate conditions are a determinant 

of influenza prevalence, can enviro-climatic factors be used to predict influenza 
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epidemics?  A climatic and geographic analysis of influenza is needed to understand the 

ecology and etiology of the disease. 

 Examining Climate Linkages to Influenza Prevalence 

 This research investigates associations between influenza prevalence and the 

effects of temperature, precipitation, and short-term climatic trends (e.g. ENSO) at 

multiple spatial and temporal scales.   

Objectives:   

I. Identify significant associations between climatic variables (i.e. temp, 

precipitation, ENSO) and influenza prevalence (i.e. morbidity and mortality) at 

varying temporal scales (e.g. annual, percentiles). 

II. Contrast the associations between influenza prevalence and climate at varying 

spatial scales (i.e. regional and local scales). 

III. Identify significant variable that may hasten or delay the onset of an influenza 

season (fall to summer). 

Hypotheses: 

I. Variation in seasonal or monthly temperature and precipitation will significantly 

affect influenza prevalence at a regional and local scale. 

II. Regions where ENSO phases (i.e. El Nino and La Nina) significantly affect 

temperature, humidity, and precipitation, will also exhibit an association between 

influenza prevalence and ENSO. 

III. Seasonal variations in temperature or precipitation will affect the timing of (i.e. 

delays or expedites) an influenza season. 
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Approach: 

Multiple spatial scales were examined: 1) Large scale analysis of the New York 

City, New York (NYC) area utilizing a twenty-two year mortality time-series from 

Dushoff (2006), 

2) Regional and local analysis of influenza related mortality aggregated by regional 

districts as reported by the US CDC.  A second part of the regional analysis utilized 

isolate data (i.e. a measure of influenza morbidity) provided by the World Health 

Organization WHO and National Respiratory and Enteric Virus Surveillance System 

NREVSS Collaborating Laboratories.   

 Climatic factors (e.g. temperature, precipitation, ENSO) were also analyzed for 

influenza prevalence at multiple temporal scales: 1) Annualized counts of mortality and 

morbidity counts aggregated to an influenza season (June- July),  2) Mortality and 

morbidity counts aggregated to the 15th percentile (i.e. early influenza onset), 50th 

percentiles,  and the 75th percentiles (i.e. late influenza penetration), as performed in 

Pyle’s (1979) analysis of the seasonality of influenza, also examined regionally and 

locally.  Seasonal influenza percentile measures (e.g. 15th percentile) were used to assess 

the existence of environmental triggering events for the onset of influenza.   

Analyzing morbidity and mortality data at multiple spatial and temporal scales 

provide a better understanding of the relationship between weather and climate toward 

the prevalence of influenza. 
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Chapter 2 – THE INFLUENZA VIRUS 

2.1 THE NATURE OF THE INFLUENZA VIRUS 

 Influenza is an airborne contagion, and is easily transmittable as compared to 

other infectious diseases.  The influenza virus is thought to be shed through coughing and 

sneezing, and then transmitted through droplet inhalation from the air  (Mims et al. 

2004).  Currently, there are three known types of influenza viruses (A, B, and C), 

although type C influenza is not usually associated with significant epidemics and 

confined to outbreak in young children (Webster et al. 1992; Mims et al. 2004:pg 227).  

Furthermore, influenza B and C viruses are confined only to the human host and although 

epidemics are common as of recent, there has never been a pandemic associated with 

either (Webster et al. 1992; Mims et al. 2004).  Webster (1992) believes that as opposed 

to Type A influenza, Type B and C influenza are, “…approaching an evolutionary 

equilibrium with their human hosts, whereas the A viruses are not (pg 166)”.   

Type A influenza is the greatest public health concern of all influenza types, the 

cause for most of the epidemics and all of the human pandemics throughout modern 

history (Cliff et al. 1986; Pyle 1986; Webster et al. 1992; Cox et al. 2000; Horimoto et 

al. 2005; Mims et al. 2004). Variants of the influenza type A viruses are responsible for 

the influenza pandemic of 1968, 1956, and the most severe influenza pandemic in 1918, 

with global mortality estimated at 20 million (Pyle 1986).  A more liberal mortality 

estimate of 200 million possibly accounts for the overlooked populations in developing 

regions of the world (Pyle 1986; Patterson 1986).   

The antigenicity, the ability to incite an immune system response, of influenza is 

determined by the combination of surface proteins, more specifically the glycoproteins 
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Haemagglutinin (HA) and Neuraminidase (NA) found on the surface of the virus particle 

(Webster et al. 1992; Cox et al. 2000; Horimoto et al.2005).  Because influenza is a 

single-stranded RNA virus that lacks error-checking mechanism, replication occurs more 

quickly yet less accurately as compared to the replication found in the DNA viruses, 

which increases the possibility for numerous mutations in the genetic coding (Webster et 

al. 1992).  Although mutations are not the sole reason for drifts in antigenicity, these 

mutations do allow numerous changes to the configuration of the surface glycoproteins 

(i.e. antigenic drift and antigenic shift) thereby affecting its ability to invade the host (e.g. 

humans, ducks, pigs).   

2.2 ANTIGENIC DRIFT 

Antigenic mutations appear to be a survival mechanism for the influenza virus, an 

effort by the virus to counteract the human’s immune system response to protect itself 

from antigens (Webster et al. 1992).  Unfortunately for the human body, even small 

changes in the HA and NA configuration may render existing human antibodies 

incapable of coping with a new strain of influenza.  These point mutations in the genetic 

coding, which determine HA and NA configuration are referred to as antigenic drift 

(Webster et al. 1992; Mims et al. 2004).  Antigenic drift causes only sporadic outbreaks 

for all types of influenza, since previously infected populations retain the antibodies from 

past infections that partially counteract virus infection (Mims et al. 2004).   

The importance in determining the extent of antigenic drift is realized in the 

development of influenza vaccines.  Because of antigenic drift, the antibodies incited by 

last season’s influenza vaccination may be ineffective against a new influenza strain.  

WHO surveils prevalent influenza types globally to identify which virus strains pose the 
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greatest epidemic threat, and then develops a vaccine that incites the appropriate 

antibodies to prevent against influenza infection (Mims et al. 2004; Hsieh et al. 2005; 

CDC 2006a).  However, since WHO decides the seasonal composition of the vaccine for 

the entire world, the influenza vaccine may be less effective in certain regions of the 

world due to the spatial variability of influenza strains (i.e. antigenic drift) (Hsieh et al. 

2005).   

2.3 ANTIGENIC SHIFT 

Major changes in the antigenicity of influenza usually occur through viral re-

assortment (i.e. antigenic shift), which results in significant increases in morbidity and 

mortality; the pandemics of 1957 and 1968 are a result of antigenic shift.  Antigenic shift 

occurs through the co-infection of influenza strains within a single host (e.g. humans 

infected with both avian and human influenza) which replicates into a recombinant 

influenza strain (Webster et al. 1992; Cox et al. 2000; Mims et al. 2004).  Antigenic 

shifts have only been observed in influenza A type viruses, are far more infrequent than 

antigenic drift, and are associated with influenza pandemics.  A recombinant influenza 

virus could diffuse through a population unimpeded causing significant morbidity and 

mortality in immunologically naïve populations (i.e. human populations would have no 

previous exposure to this novel strain of influenza and therefore would have no 

antibodies to cope with the virus).  Influenza viruses have been known to recombine in 

aquatic bird species (e.g. ducks), while pigs are thought to act as a “mixing vessel” in the 

development of pandemic influenza ( Webster et al. 1992; Horimoto et al. 2005; 

Kilbourne 2006).  The notion of swine as a vessel to recombine influenza strains (i.e. 

antigenic shifting) was the motive to implement a massive human inoculation program 
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for the entire US population after an outbreak at a military facility in 1976.  However, 

much to the chagrin of the US government and influenza researchers, the “swine flu 

epidemic” never emerged (Meade et al. 2000) 

Because influenza antigenicity is determined by HA and NA, influenza A virus 

subtypes are classified according to the configuration of these surface glycoproteins.  The 

more abundant HAs on the influenza particle control the binding of the viral envelope to 

host cells (Webster et al. 1992), while the lesser numbered NA are responsible for the 

release the virus into the cell (Mims et al. 2004).   The classification of a new influenza 

virus subtype occurs as new strains exhibit distinct variations in the HA or NA 

configuration, increasing their antigenicity to humans.  The first influenza A subtype 

refers to the 1918 influenza virus that caused the most severe pandemic in history, 

denoted as H1N1 by Kilbourne.  This notation describes the first HA configuration and 

the first NA configuration classified for influenza A viruses.  Currently there are 16 HA 

and 9 NA known subtypes, all existing in wild bird populations, more specifically in 

aquatic birds ( Webster et al. 1992; Horimoto et al. 2005). Although there are 16 HA 

subtypes possible, only three HA subtypes (H1, H2, H3) have been known to cause 

pandemics ( Webster et al. 1992; Kilbourne 2006).   

The last genetic shift, or significant changes in either the HA or NA, occurred in 

1968 and produced the H3N2 strain (Schulman et al. 1969); the 1977 pandemic was 

thought to have derived from the original 1918 H1N1 pandemic and inadvertently 

reintroduced into the human population (Horimoto et al. 2005).  The influenza strain of 

the 1968 influenza pandemic (Hong Kong, H3N2) differs from the 1957 pandemic (Asian 

influenza, H2N2) in that it possesses a different HA (HA-3) configuration, but retains the 
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same NA (NA-2) from the preceding virus.  Since much of the population had previous 

NA-2 immunity during the 1957 pandemic (Asian influenza, H2N2), the 1968 pandemic 

(Hong Kong influenza, H3N2) was termed a ‘smoldering’ virus due to the milder 

mortality rates, as compared to the 1957 pandemic (Pyle 1986; Webster et al 1992).  

Conversely, the 1957 (Asian influenza, H2N2) exhibited a novel HA and NA 

configuration as compared to the predominant H1N1 virus in circulation prior to 1957, 

and resulted in significant morbidity and morality worldwide (Pyle 1986).   

  H3N2 is still one of the predominant influenza strains in circulation, which 

originated from the 1968 pandemic in Hong Kong.  However, the H3N2 and H2N2 is 

descended from the 1918 H1N1 virus, or the “mother of all pandemics” (i.e. the 

foundation of all current influenza virus strains in circulation), as termed by 

Taubenberger (2006) through his molecular pathology studies (Taubenberger et al. 2006).  

The geographic origins of the 1918 influenza pandemic are still debatable.  Once 

commonly known as the Spanish flu, the pandemic is now thought to have originated 

from central China or even the US ( Pyle 1979; Patterson 1986; Webster et al. 1992; Cox 

et al. 2000).  The more likely candidate however is China, which along with being 

suspected as the starting point for the 1918 pandemic is also implicated as being the 

epicenter for all influenza type A viruses (Webster et al. 1992).  Predating the 1918 

pandemic, “…the majority of pandemics of human influenza since about 1850 have 

originated from China” (pg 171) (Webster et al. 1992).  Furthermore, Patterson’s (1986) 

historical analysis of influenza found all pandemics from the 1700-1900 as emerging 

from China or Eurasia (i.e. mainland China and Russia).   Unlike the temperate climate of 

North America and Western Europe, the tropical and subtropical climate of Southern 
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China experiences influenza prevalence year round with a summer peak (Webster et al. 

1992; Cox et al. 2000).  The occurrence of continual influenza prevalence throughout the 

year, dense human population, and large pig and duck population, point to prime 

environmental conditions for Southern China and Southeast Asia to act as the epicenter 

for influenza (Webster et al. 1992). 

2.4 AVIAN INFLUENZA 

The emergence of Avian Influenza (AI) in 2003 and into 2006, first erupted in 

Southeast Asia, spread into the eastern Mediterranean regions (e.g. Turkey), and then into 

seemingly disconnected regions of the world (e.g. Nigeria) (OIE 2006).  The recent cause 

for concern is the potential development of a new human pandemic derived from the 

H5N1 (2006) AI virus.  The prevalent strain of AI (as of April 2006) is currently not 

efficient in avian-to-human or human-to-human transmission.  The few human cases 

were transmitted only through direct and close contact with infected chickens or 

restricted to intra-familial infections (e.g. daughter to mother) (Ungchusak et al. 2005; 

Horimoto et al. 2005).  According to a recent literature review of influenza viruses by 

Horimoto et al. (2005), direct transmission of AI to humans is rare.  Lacking the ability 

for efficient human-to-human transmission, the H5N1 strains can only cause sporadic 

illness and death in humans, with significant mortality confined to wild birds.  Although 

uncommon throughout history, it is possible through a genetic re-assortment (i.e. 

antigenic shift) or other adaptation, that the 2006 H5N1 Asian strain could acquire the 

capability for efficient human-to-human infection, resulting in the emergence of an 

influenza pandemic.   
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 The past influenza pandemics of the 20th century are all of avian origin (Horimoto 

et al. 2005), including the 1918 influenza pandemic (Taubenberger et al. 2005).  

Research by Taubenberger (2005) acquired tissue samples from early 20th century and 

found the genetic coding of the 1918 influenza pandemic was very similar to avian 

influenza, and made the remarkable conclusion that the 1918 pandemic was not a 

recombinant virus, which was unlike the 1957 and 1968 pandemics.  Although the 

prevalent influenza strain prior to 1918 cannot be confirmed due to the lack of viable 

samples, it is probable that the 1918 virus was a novel virus that was an, “…avian like 

virus that adapted to humans” (pg. 892), according to Taubenberger (2005).  In order for 

the 2006 H5N1 avian influenza virus to become a pandemic, it would also need to adapt 

to humans and possess a high rate of human-to-human transmission. Taubenberger’s 

(2005) research solidifies the concern of AI developing into a pandemic, because it may 

be possible for an influenza virus to develop into a pandemic without the rare occurrence 

of an antigenic shift.  However, since the first known H5N1 transmission to humans in 

1997, the most recent AI has not adapted to humans to allow efficient human-to-human 

transmission (WHO 2006). 

 Avian Influenza (AI) in wild bird populations is not novel, but is ubiquitous in 

aquatic bird species throughout world, including North America  (Webster et al. 1992; 

Horimoto et al. 2005).  Generally, AI is asymptomatic in aquatic birds, providing 

evidence of an ecological stasis and implicating them as the natural reservoir to the virus 

(Webster et al. 1992).    In aquatic birds (e.g. ducks, geese, swans) AI is shed through 

feces and is efficiently retained in water (e.g. ponds, marshes), which allows for 

extensive avian-to-avian transmission through the digestion of contaminated water; this 
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also poses potential for avian-to-human transmission (Webster et al. 1992; Horimoto et 

al. 2005) .  There is a distinction between the influenza strains of ducks as compared to 

other aquatic birds, stressing their unique importance to the ecology of influenza 

(Webster et al. 1992).   When AI comes into contact with domesticated bird species (e.g. 

turkeys and chickens) through mingling with wild birds, there is potential for increased 

pathogenicity, or the ability to cause disease.  A low-pathogenic LPAI strain migrated 

into live bird markets (i.e. domesticated poultry) and was associated with an outbreak 

in1997-1998 and two outbreaks from 2001 to 2002 (Spackman et al. 2003).  Prior to 

these LPAI outbreaks, AI outbreaks in domesticated poultry in North America also 

occurred in 1983-1984 (Bean et al. 1985; Webster et al. 1992).  AI is not new to North 

America, but the current strain (2006) of AI (H5N1) emanating from Southeast Asia 

could create significant morbidity and mortality in wild and domesticated bird species if 

introduced into the American continents. 

 The scientific community and the poultry industry are concerned with LPAI 

outbreaks because of the possible transformation of these viruses into highly-pathogenic 

avian influenza HPAI, which could result in a serious public health risk and catastrophic 

loss for the poultry industry (Suarez et al.2003).  HPAI, as opposed to LPAI, is rare in 

wild bird populations, including aquatic bird species and can cause significant morbidity 

and mortality in bird populations ( Webster et al. 1992; Spackman et al. 2003).  HPAI 

influenza viruses are also transmitted through fecal contaminated water, but are more 

effectively transmitted in dense flocks through nasal inhalation of infected materials 

(Horimoto et al. 2005).  LPAI symptoms can be localized infections or even 

asymptomatic, while HPAI can cause fatal hemorrhaging in wild animal species (Webster 
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et al. 1992; Horimoto and Kawaoka 2005).  The threat of human infection from AI was 

emphasized in an outbreak of AI H5N1 denoted (A/Hong Kong/156/97) in 1997.  

Eighteen people were infected in Southeast Asia, with some patients experiencing severe 

medical complications (e.g. pneumonia, kidney failure) resulting in six deaths; although 

human-to-human transmission was limited and found to be inefficient (Horimoto et al. 

2005).  An AI H5N1 outbreak in 2004 resulted in 53 deaths in Southeast Asia (Horimoto 

et al. 2005), with significant human-to-human transmission, and is directly related to the 

AI influenza in circulation in 2006. Previous outbreaks were mediated through extensive 

extermination of poultry flocks in Hong Kong and surrounding regions (Tiensin et al. 

2005; Horimoto et al. 2005).  Authorities dealing with the most recent H5N1 (2006) 

outbreak are also utilizing the same extermination measures in an effort to control the 

disease (WHO 2006).  The development of the 2006 Asian AI virus into a pandemic still 

requires significant changes in antigenicity, either through antigenic shift or antigenic 

drift.  None of the previous H5N1 outbreaks since 1997 underwent these genetic changes 

(WHO 2006).   

 There is concern that the 2006 AI viruses currently in the Mediterranean will 

migrate into North and South America.  Although transmigration is a serious possibility, 

there is a historic geographic distinction of AI viruses between Eurasia and North and 

South America.(Webster et al. 1992).  Physical geographic barriers appear to play a role 

in the distribution of AI “genetic pools” by confining natural bird migration flyways and 

preventing intermixing (Webster et al. 1992).  Moreover, the isolation of the American 

Continents from the Eurasian continent, resulting in only two major bird migration 

pathways between the Eastern and Western Hemispheres (NGS 2004), may prevent or 
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hinder the diffusion of the 2006 Asian AI (H5N1) into the North and South American 

Continents.  The degree to which these physical geographic barriers and other enviro-

climatic factors play a role in the prevalence of AI is still unknown (Webster et al. 1992; 

Horimoto et al. 2005). 

2.5 – MEDICAL GEOGRAPHY 

 Historical Perspective on Medical Geography 

 An aspect of medical geography attempts to define the geographic distribution of 

disease, to determine the contributing factors (e.g. environmental, sociological) that play 

a role in its distribution, and to study disease spatial ecology in terms of medical 

geography (Johnston et al.1994).  Complementing epidemiological research, medical 

geography is concerned with spatial aspects of disease prevalence and the incorporation 

of the interdependencies of scale in analysis.  Medical geographers can examine the 

spatial relationships between ecology (i.e. environmental factors) and disease (Pyle 

1986), and have interests in disease diffusion modeling by lending a geographic 

perspective to medical and epidemiological research (Cliff et al. 1986).  Recently, 

medical geography has found interests beyond disease ecology, focusing efforts on 

analyzing the spatial disparity in health care coverage, and recognizing the importance of 

qualitative methods of analysis, which Johnston et al. (1994) describes as the geography 

of health and health care (Meade and Earickson 2000). 

 A classic example of medical geographic research is John Snow’s investigation of 

cholera in London in 1854.  Snow developed a map that portrayed the location and 

quantity of cholera cases in London, allowing him to further investigate locations where 

incidence was rampant and where it was nonexistent.  Through interviews with other 
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London doctors, along with graphical evidence from his London cholera map, Snow was 

able to correctly deduce that cholera originated from a single water well and reported this 

to the health authorities, who then removed the pump handle; cholera incidence 

decreased in the area thereafter (Tufte 1998).  One of the first and most popular accounts 

of geographic analysis applied to the study of disease, Snow’s work was integral to the 

development of medical mapping (i.e. medical geography) and epidemiology (Koch 

2005). 

 There has been a recent resurgence in the study of spatial disease ecology and the 

geography of health and health care which are both fundamental aspects of medical 

geography.  Recent advancements in Geographic Information Systems GIS along with 

increased accessibility of databases on the internet has fueled interest in disease diffusion 

modeling, spatial analysis of disease distributions, the integration of disease data with 

environmental datasets (e.g. elevation, land cover, precipitation), and the analysis of 

socioeconomic factors that contribute to disease distributions or disease susceptibility.  

These applications to GIS all have links to medical geographic research in analyzing the 

spatiality of disease.  Similarly, this research examines the spatial disparity in influenza 

prevalence analyzed at multiple spatial and temporal scales in order to determine the 

significant environmental and sociological factors that affect its spatial distribution.  GIS 

data techniques were utilized in this analysis to aggregate data according to spatial and 

temporal scales, and to develop maps of the study sites.  This study built upon previous 

geographic works related to disease diffusion and more specifically influenza (Pyle 1979; 

Patterson 1986; Cliff et al. 1986; Haggett 2000). 
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2.6 – DISEASE DIFFUSION AND INFLUENZA 

 Medical geographers studying disease diffusion adopted techniques that were 

originally used to model waves of innovation, as put forth by Haagerstand (1968).  

Haagerstand’s (1968) Innovation Diffusion as a Spatial Process utilized ‘physical 

barriers’ and ‘individual resistance’ to impede the flow of innovation through space, and 

used a ‘mean information field’ to structure this flow of innovation adoption (Johnston et 

al. 1994:pg 132).  This diffusion theory is based upon person to person contact (i.e. 

contagious innovation) and is appropriately applied to ‘simple’ epidemics such as 

measles, but viruses such an influenza do not always operate according to such models 

(Pyle 1986:pg 17).  Medical geographers interested in disease diffusion also incorporated 

ideas from other geographic disciplines (e.g. economic geography) through the 

realization that Christaller’s (1966) central place theory could be useful in explaining 

hierarchical disease diffusion (e.g. disease diffusing from dense urban centers into the 

rural/suburban periphery), such as in Pyle’s (1969) analysis of cholera epidemics in the 

US. 

Pyle’s (1979) Applied Medical Geography describes the adaptation of 

Haagerstand’s diffusion model based upon percentiles: the infusion stage (25th 

percentile), inflection (50th percentile), saturation (75th percentile), and waning (beyond 

the 75th percentile) (pg. 138).  Pyle (1979) also cites the importance of classifying 

diffusion according to 1) translocation, 2) expansion diffusion (e.g. diffusion occurs until 

full adoption within the population has taken place), 3) contagious diffusion (infectious 

disease diffusion), and 4) hierarchical diffusion, which refers to spreading from a larger 

urban core to subordinate population centers (pg. 137).  Pyle’s Applied Medical 
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Geography (1979) also emphasizes the contribution of Haggett’s Locational Analysis in 

Human Geography (1966) to the field of medical geography through the development of 

location analysis, which attempts to determine the order of spatial patterns and their 

linkages (Johnston et al. 1994:pg 346).  Determining a locational order becomes 

exceedingly important in predicting the pathways of infectious disease through space.  

Cliff et al. (1986) observed that influenza epidemics initially arise in more populated 

areas and gradually disperse to surrounding regions (i.e. hierarchical diffusion) (Cliff et 

al. 1986; p. 263).  Pyle’s (1969:1979) and Cliff et al. (1986) reconstruction of the spatial 

trends of cholera and influenza illustrated the importance of these classic principles of 

disease diffusion. 

In an analysis of the 1918 influenza pandemics, Pyle (1979) used historical 

mortality data from 50 major cities across the US to define the spatio-temporal 

distribution of the disease.  Utilizing weekly cases of influenza mortality during the 1918 

pandemic from Crosby (1977), he confirmed the existence of influenza waves as they 

spread across the US (Pyle 1979).  He also found that when a population was 

immunologically naïve (i.e. had no previous exposure to the virus) influenza transmission 

increased geometrically, while a more linear relationship of transmission existed when 

there was previous exposure to the virus (Pyle 1986:pg 16).  The observations of Pyle 

(1986) support the ideas of virus drift or shift (i.e. increased antigenicity of the influenza 

virus, or the ability to incite an immune response) put forth by Kilbourne (1973), who 

proposed that a population introduced to a genetically recombined virus would have little 

or no immunity, resulting in increased morbidity and mortality. 
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The Diffusion of Influenza (1986), along with providing more insight into the 

1918 pandemic, provides in-depth assessment of influenza diffusion during 1957 and 

1968 pandemics.  Pyle (1986) emphasizes the importance of scale in the analysis of 

influenza, noting that utilizing regional and national P&I mortality data rather than local 

(i.e. city) P&I counts in analysis can potentially mask the presence of an epidemics (Pyle 

1986:pg 11).  Furthermore, using P&I counts from cities can predict epidemic outbreak 

because certain cities experience the onset of influenza earlier than the rest of the country 

(Pyle 1986:pg 14).  Focusing surveillance measures on these historically ‘sentinel’ cites 

can provide an early warning system for potential influenza epidemics. 

Using the same analytical techniques he used for the 1918 influenza pandemic, 

Pyle (1979) reconstructed influenza epidemics from the 1973-1974 to 1977-1978 

influenza seasons, using Pneumonia and Influenza (P&I ) as an indicator for virus 

prevalence.  Building upon his adaptation of Haagerstand’s model, he included the use of 

15th percentile of P&I mortality as a measure to indicate the early onset of virus into the 

population.  Incorporating the use of percentiles allows for the analysis of influenza 

timing (i.e. peaks and onset of the disease) as compared to other influenza seasons.  

Through the comparison of percentiles, he found that the late onset of influenza (75th 

percentile) was associated with the following season’s early onset of influenza (15th 

percentile) in adjacent cities (Pyle 1979:pg 155)       

 Pyle (1986) also provides a thorough review of several influenza models, 

including the Serfling model, which was used for several years by the US CDC in 

predicting influenza epidemics.  Seminal to other influenza studies, the Serfling model 

used influenza related deaths as a measure for influenza prevalence, rather than a ratio of 
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influenza deaths normalized by total deaths.  Serfling’s basis for utilizing total counts was 

based upon issues regarding influenza surveillance reporting (e.g. infrequent reporting 

and changes in reporting criteria), that tended to understate epidemics in dense urban area 

and exaggerate epidemics in less population rural regions (i.e. denominators provided by 

surveillance data were problematic in providing a reasonable measure of influenza 

prevalence) (Pyle 1986:pg 11).  For analyzing trends in influenza, Pyle suggests using a 

proportional scale of influenza mortality, with denominators being mortality counts taken 

over several years.  This approach is similar to the Serfling method and provides a more 

accurate measure to determine the existence of an epidemic (e.g. an epidemic is usually 

defined as a 4.5 percent increase in mortality from the previous week) (Pyle 1986:pg 11).   

Cliff et al. (1984) and Cliff et al. (2000) further developed and refined theories of 

disease diffusion through their island epidemic studies of measles and influenza.  Similar 

to E.O. Wilson and Robert MacArthur’s use of ‘islands as laboratories’ to reveal the 

evolutionary and ecological nature of plant and bird species (i.e. island biogeography), 

Cliff et. al (2000) used ‘islands as laboratories’ to gain a better understanding of disease 

dissemination and ecology in a simplified environment.  The underlying theme in Cliff et 

al. (2000) is that disease isolation, which prevents immunological immunity from viruses, 

has drastic consequences for island populations (e.g. significant morbidity and mortality) 

when isolation is breached as a result advancements in human mobility (e.g. planes, 

trains, and automobiles).   Cliff et al. (2000) recognized the importance of specific 

disease corridors and how they can facilitate infection, either solely through contagious 

spread or through hierarchical diffusion. 
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2.7 – INFLUENZA SEASONALITY 

Influenza exhibits distinct seasonality, with a higher incidence in winter months 

and sharp decreases of morbidity and mortality in the summer months in temperature 

regions of world (Pyle 1986).  The magnitude of morbidity and mortality prevalence 

varies from season-to-season (Pyle 1986).  A trans-equatorial swing in influenza occurs, 

as the Southern Hemisphere experiences increased influenza incidence six months after 

the Northern Hemisphere (Cliff et al.Ord 1986; Hope-Simpson 1992). In tropical regions, 

influenza occurs continually with summer peaks (Pyle 1979).  The year-round prevalence 

of influenza in tropical climates, more specifically in mainland Southern China and 

Southeast Asia, has implicated the region to be the epicenter for all influenza outbreaks 

(Webster et al. 1992).  Webster (1992) theorized that the region’s dense population, the 

lack of distinct seasonality, and strong interactions with domesticated and wild avian 

species creates an exceptional atmosphere for influenza to undergo antigenic mutations or 

even recombinations, and provides great potential for the development of influenza 

epidemics (or pandemics).  The close interaction of dense human populations with wild 

and domestic birds may play a pivotal role in the development of influenza and AI human 

epidemics, since most epidemics and all pandemics are associated with the influenza type 

A virus, which in turn is derived from AI in wild bird species.  Greater interaction likely 

leads to a greater probability of mutation into a more virulent virus. 

The exact cause for this winter peak in still unknown, but is thought to be 

associated with intra-seasonal (i.e. monthly or weekly) temperatures or other climatic 

factors such as precipitation (Meade and Earickson 2000).  Although a connection 

between temperature and influenza prevalence has been referred to in many texts ( Pyle 
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1979; Cliff et al.1986; Hope-Simpson 1992; Parmenter and Yadav 1999; Meade and 

Earickson 2000), substantial empirical evidence for a temperature-influenza association is 

still lacking.  As mentioned earlier, the basis for a suspected weather-influenza linkage 

relies on the notion that during low temperatures or heavy snowfall, people will 

congregate indoors more often.  A dense, crowded space allows a higher probability for 

influenza infection (Meade and Earickson 2000).  An alternative theory postulates that 

certain conditions of the air mass may promote the transmission or increase the survival 

of the virus, which is shed through coughing or sneezing and could result in a higher 

incidence of disease transmission.  A dry and cold air mass is thought to promote 

influenza virus survival and dispersion ( Mills 1939; Licht 1964; Cliff et al.1986; 

Parmenter and Yadav 1999; Meade and Earickson 2000).  

In an attempt to explain apparent simultaneous outbreaks of influenza, Hope-

Simpson (1979;1992) proposed that influenza was not transmitted by person-to-person 

contact as conventional contagious influenza transmission theory dictated.  Instead, 

environmental “triggering events” spurred the onset of influenza in seemingly 

disconnected regions of the world.  Although recent research definitively points to a 

human-to-human exposure route, and in some cases an animal/avian-to-human exposure 

route (Horimoto and Kawaoka 2005), parts of Hope-Simpson (1992) hypothesis can still 

provide insight into the transmission of the virus. The existence of a latent influenza virus 

and the notion of an environmental event triggering influenza symptoms may help 

explain the cyclical nature of the disease.     
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2.8 – DISEASE AND CLIMATE 

 Research analyzing linkages between climate and disease has increased 

significantly in recent years, perhaps because of the proliferation of Geographic 

Information Systems (GIS) and medical surveillance systems, along with publicly 

available datasets on the internet.  There is abundant research about the climatic linkages 

of water-borne and vector-borne disease because of the known ecological connection 

between vector/host abundance and environment.  For example, climate affects the 

distribution of vector-borne diseases (i.e.. transmitted by a mosquito) such as malaria and 

Dengue Fever (Githeko et al. 2000; Hopp 2001; Subak 2003; Kolivaris 2004; McCabe 

and Bunnel 2004).  Moreover, the distributions of the host and vector for Lyme disease 

are dependent upon rainfall because precipitation defines the availability of favorable 

breeding conditions and the magnitude of ecosystem productivity (Hunter 2003).   

Initially analyzed by medical geographers and epidemiologists in their formative 

stages, linkages between climate and non-vector borne infectious diseases (e.g. cholera) 

and their impact to human health are reemerging in the scientific literature (Meade and 

Earickson 2000).  Patz et al. (2000) provides an extensive list of linkages between 

weather and disease, and more specifically the effects of weather on many aspects of 

public health: air pollution, famine, arboviruses (e.g. insect borne viruses), waterborne 

diseases (e.g. cholera, diarrhea), aeroallergens, are all associated with changes in weather 

conditions.  Certain conditions of the air mass (i.e. the condition of humidity, temperature 

and pressure of the air that people breathe and interact) may promote the dissemination of 

allergens (e.g. dry air) to create an outbreak of asthma like symptoms.  Thus, associations 

with climate are reflected in many forms of disease affecting humanity (Glass et al. 1992; 



 27

Parmenter and Yadav 1999; Patz et al. 2000; Hjelle and Glass 2000; Githeko et al. 2000; 

Kolivaris 2003; Patz et al. 2003; Bouma 2003; Hunter 2003; Subak 2003; Patz et al. 

2005; Viboud et al. 2004). 

Disease modeling that incorporates enviro-climatic factors (e.g. precipitation, 

vegetation indices) show promise for estimating the onset or magnitude of an epidemic 

before it occurs.  For example, vegetation and climate indices were used to model 

“trigger events” of Ebola epidemics on the continent of Africa (Pinzon and Wilson 2004), 

and distinct patterns in rainfall and temperature have been linked to coccidioidomycosis 

incidence, a fever with flu-like symptoms caused by a soil-dwelling fungus (Kolivaris 

2003).  Incorporating environmental and climatic factors into disease analysis can 

provide disease endemnicity maps (i.e. portray geographic likelihood of disease), which 

are useful for predicting disease prevalence (Yabsley et al. 2005). 

Because precipitation and temperature are sometimes dependent upon long-term 

climatic cycles in particular regions of the world, global climate indices have also been 

found to affect disease incidence.  Short-term climatic episodes produced by the El Nino 

Southern Oscillation (ENSO) were found to affect malaria in Madagascar because of the 

above-average winter temperatures produced during an El Nino year (Bouma 2003). A 

review of the human health effects of climate change discussed the ecological linkage of 

Cholera outbreaks in Bangladesh spawned by the eruption of disease-causing plankton 

during particular ENSO episodes (Patz et al. 2005).  ENSO episodes were also 

responsible for the sporadic occurrence of hantavirus and plague outbreaks in the Four 

Corners region of the southwestern United States because of the heavy precipitation 

associated with these periods (Parmenter et al. 1999; Hjelle et al. 2000).   
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Hantavirus epidemics in the Four Corners region of the Southwestern US are an 

exceptional example of how climate, and more specifically short-term trends in climate 

(e.g. ENSO), can affect disease incidence.  More importantly, it provides a case-study 

that exemplifies the importance of considering scale and regional climatology in 

determining disease incidence.  The precipitation of the arid Four Corners region of the 

US is significantly dependent upon the warm phases (i.e. El Nino) of ENSO.   More 

specifically a strong El Nino event, which usually occurs only once or twice every 

decade, can bring dramatic precipitation into the Four Corners Region (Redmond and 

Koch 1991).  During these wet conditions in the arid Southwest, plant productivity and 

seed dispersal is at its peak, initiating a cascade of events that can result in a hantavirus 

epidemic.  The trophic cascade theory as postulated by Parmenter (1999) originally 

describes plague outbreaks as a result of increased vegetation productivity (e.g. pinon 

pine nuts) that subsequently caused dramatic increases in mice fecundity because of the 

increased carrying capacity of the environment.  Deer mice are the host to the vector (i.e. 

flea) for plague.  With an abundance of the host vector (i.e. deer mice) plague incidence 

increased dramatically because fleas were also mobile and abundant due to the increased 

population of their host species (i.e. mice) (Parmenter and Yadav 1999).  Similar to 

plague, Hantavirus incidence is directly influenced by the population of the host species, 

the deer mice.  Hantavirus is shed through deer mice feces and is lethal to humans 

through the aerosolization of infected feces, causing severe hemorrhagic fever (Yates et 

al.2002).  Along with Plague, Hantavirus incidence is defined by the influence of ENSO 

on the region’s precipitation, and is also subject to Parmenter’s (1999) trophic cascade 

theory.  Hantavirus outbreaks are confined spatially (e.g. Southwest Four Corners region 
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of the US) and are influenced by climatic episodes measured at a global scale (e.g. 

ENSO) but outbreaks are produced by specific weather patterns (e.g. precipitation) that 

only exist regionally.  The development of a Hantavirus epidemic underscores the 

importance of considering scale both climatologically and ecologically when analyzing 

disease incidence. 

 Studies analyzing linkages between climate and disease, by epidemiologists and 

geographers, portray the intense interconnectivity that exists between disease, ecology, 

and weather.  The methodologies developed from the recent scientific focus of vector-

borne disease need to be applied to other infectious (i.e. non-vector borne) diseases that 

are potentially affected by weather and climate variability.  Infectious disease such as 

tuberculosis, Ebola virus, Marburg virus, and influenza deserve more attention to 

determine if associations between weather and climate exist. 

2.9 – INFLUENZA RELATED TO WEATHER AND CLIMATE 

 Medical climatologists from the early 20th century provided early explanations for 

a link between climate and health and more specifically proposed that certain qualities of 

the air mass affected the onset of respiratory illness (Licht 1964; Mills 1939).  More 

recently, bio-meteorologists have studied the effects of solar radiation (e.g. sunlight, 

ultraviolet light), and weather and climate on human health.  However, other than human 

illness associated with temperature extremes (e.g. anomalies of high temperature 

associated with elderly deaths) there is still little evidence for linkages between health 

and weather (Meade and Earickson 2000).  Weather, as opposed to climate, refers to the 

immediate combination of precipitation, temperature, and humidity experienced, while 
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climate refers to long-term (e.g. yearly, inter-decadal) and short-term (e.g. weeks, 

months) weather conditions (Ahrens 2003).  

 Biometeorologists have observed the effects of acclimatization, or lack there of, 

in the human body.  In order to cope with abrupt changes in the environment, the human 

body can compensate through physiological (e.g. sweating and shivering) or behavioral 

changes (Meade and Earickson 2000).  A recent study examining the onset of ‘common 

cold’ symptoms (which are similar to influenza symptoms but less severe in nature) 

chilled the feet of human test subjects for a twenty minute period, and found a significant 

correlation between the delayed onset (e.g. four to five days) of ‘common cold’ 

symptoms and those persons who were chilled (i.e. feet immersed in cold water for 

twenty minutes), as compared to the control group (Johnson et al. 2005).  Results for the 

Johnson et al. (2005) study also suggest that, ”... there is a sub population in the general 

population who are more susceptible to developing common cold symptoms each year” 

(pg 5).  An explanation for the delayed onset of  the ‘common cold’ as proposed by 

Johnson et al. (2005) was the increased susceptibility of the human immune system 

because of the physiological reaction of vasoconstriction of blood vessels in the  upper 

respiratory region of the body (i.e. opening of the blood vessels in the nose and throat 

may cause increased susceptibility to infection) in response to acute chilling.  Either the 

test cases acquired the ‘common cold’ during the five days following the acute chilling 

because of compromised immunological immunity, or the acute chilling was a triggering 

event that spawned the onset of ‘common cold’ like symptoms.  The Johnson (2005) 

study provides a controlled scenario of acute chilling that can easily occur in the natural 

environment (e.g. acute chilling caused by abrupt rainfall or snowfall in the winter), and 
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may provide evidence suggesting the existence of an environmental triggering event for 

influenza or the common cold, as proposed by Hope-Simpson (1992). 

 There have been a few recent studies analyzing potential climatic triggering 

events for influenza. Analyses have looked at influenza at a national level (e.g. France), 

and at a local scale (e.g. hospitalizations in three California cities).  Viboud et al. (2004) 

examined influenza epidemics for France utilizing the conventionally used P&I mortality 

counts from a twenty-six year time-series.  Influenza at a national level (France) was 

analyzed for an association with ENSO phases as defined by a Multivariate ENSO Index 

(MEI) measured at a global scale (Viboud et al. 2004).  Viboud (2004) averaged MEI 

over a four month period (September to December) against P&I deaths, and found a 

significant association between cold ENSO phases and increased morbidity mortality.  

The regional effects of ENSO are different around the world, and during cold ENSO 

phases (i.e. La Nina) Europe experiences decreased temperatures and higher humidity 

during the winter months (Viboud et al. 2004).  Although P&I mortality was measured at 

a national scale, the size of France is roughly the size of Texas.  Therefore, associations 

between weather and climate and influenza P&I mortality counts at a national scale 

would be less appropriate in the US due to the large climate variability, while in France 

national reporting of influenza would be more appropriate due to the relatively similar 

climate throughout the country.  Nonetheless, ENSO phases as a determinant to influenza 

prevalence has been statistically proven, but consideration of scale is needed.  Although 

ENSO is a global phenomenon, it creates local and regional variations in weather and 

climate.   
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  Analyzing influenza in two different climatic regions in California, Ebi et al. 

(2001) utilized viral pneumonia related hospitalizations as a measure for disease 

prevalence.  Three study sites represented the major metropolitan areas of California: 

Sacramento, San Francisco, and Los Angeles, CA.  Ebi (2001) undertook a large scale 

temporal analysis by examining aggregated hospitalization data (e.g. four days) as 

compared to weather conditions seven days earlier.  ENSO measurements were 

incorporated into the analysis by using theSouthern Oscillation Index (SOI) values, rather 

than MEI values used in Viboud’s (2004) study.  SOI is a global climate measurement for 

ENSO, which is the difference between mean sea-level pressure from Darwin, Australia 

and Tahiti (Ahrens 2003).  Associations between weather (e.g. precipitation and 

temperature) and climate (e.g. ENSO and Sea Surface Temperature) and influenza 

prevalence were found in only one of the three study sites, exhibiting the importance of 

considering regional and local climate for analytical purposes.  Warm ENSO phases were 

associated with increased viral pneumonia hospitalizations in Sacramento, CA.  Not 

surprisingly, the inland Sacramento was also the only city with weather conditions that 

exhibited consistent association with ENSO phases. Sacramento experiences warmer 

autumn seasons (November – January) along with cooler winter and early spring 

temperatures (January – April) during a Warm ENSO period (i.e. El Nino).  Generally in 

Sacramento, as minimum temperatures decreased viral pneumonia hospitalization 

increased, however associations were not as consistent during cold ENSO events (i.e. La 

Nina); precipitation was  found not to be a factor in influenza prevalence (Ebi et al. 

2001).  Furthermore, association between minimum temperature and viral pneumonia 

hospitalizations were significant in San Francisco, but only during normal and El Nino 
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periods; there was no association with ENSO (i.e. influenza-climate association in San 

Francisco were complex and not straight-forward).   The study by Ebi et al. (2001) again 

underscores the important of considering scale in the analysis of influenza and more 

generally in disease incidence, and the efficacy of utilizing disease data at varying 

temporal aggregations (i.e. temporal scales).  The analysis of Ebi et al. (2001) provides 

other proxies (e.g. viral pneumonia hospitalizations) that can be used for estimating 

influenza prevalence in other regional studies.  

 The most recent US study relating influenza incidence to climatic factors was 

performed by Dushoff et al. (2006).   Attempting to utilize measures other than just 

strictly P&I to define influenza prevalence, P&I mortality counts in conjunction with 

“multiple cause” mortality counts were used in their analysis, in hopes to counteract any 

disease misclassification in the surveillance data.  A twenty-two year dataset time-series 

from the US CDC National Centers for Health Statistics was used (Dushoff et al. 2006).  

Dushoff et al. (2006) used excess mortality as defined by a total number of deaths above 

a monthly average, for two regions in the US: 1) NYC region (e.g. sixteen counties 

surrounding NYC) and 2) state-wide mortality from Illinois and Indiana.  As opposed to 

other influenza studies utilizing monthly mortality counts, Dushoff et al. (2006) used an 

annualized approach aggregated to a single influenza season, resulting in one mortality 

count per season.  Temperature data was taken from a single reporting station for each 

study site (Newark International Airport and O’Hare International Airport), with the 

coldest temperature value averaged from November to April.  Dushoff et al. (2006) found 

no significant association between temperature and influenza related mortality. However, 

they provided our study with an exceptional dataset.  The datasets from the Dushoff et al. 
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(2006) was used in our analysis, but further incorporated temperature, precipitation, and 

SOI measurements.  Our analysis aggregated the Dushoff (2006) multiple caused P&I 

dataset according to annualized cumulative counts, in order to identify seasonal 

percentiles, similar to the analytical methods used by Pyle (1979;1986).   
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Chapter 3 – ANALYZING INFLUENZA PREVALENCE IN THE US 

 Many aspects of influenza are still unknown: the apparent disappearance of 

influenza in the summer months, the variability of influenza prevalence among flu 

seasons, the sporadic occurrences of spring influenza infection, apparent outbreaks in 

isolated regions of the world, the timing of the influenza season, and the effects of 

weather and climate to influenza prevalence (Hope-Simpson 1979, 1992; Pyle 1986; Cliff 

et al. 1986; Meade and Earickson 2000; Cox and Subbaro 2000; Horimoto and Kawaoka 

2005).  Our research investigates the existence of significant associations between 

influenza mortality/morbidity and environmental climatic conditions (e.g. temperature, 

precipitation, humidity, El Nino Southern Oscillation (ENSO) analyzed across varying 

temporal scales (e.g. monthly, yearly) and spatial scales (e.g. county, state, regional, 

national).   

Influenza-climate relationships were compared at different spatial scales by the 

examination of local versus regional relationships.  The South Atlantic and the Northeast 

region were chosen as our study sites because of their close proximity to each other and 

their latitudinal differences (i.e. the regions exhibit seasonal differences in weather and 

climate) (Ahrens 2003).  Influenza-climate relationships were also compared at varying 

temporal scales to determine if relationships differed.  Specifically, comparing annualized 

influenza counts to cumulative percentiles representative of the epidemic curve (e.g. 15th 

percentile – early onset of disease, 75th percentile late penetration of the disease) (Pyle 

1979; Pyle 1986).  The idea of varying correlations according to spatial scale is 

predicated by the idea that influenza case data aggregated to regions may include cities 

containing both high and low influenza incidence, confounding the identification of 
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climate-influenza relationships.  Utilizing the annualized cumulative aggregations of the 

15th percentile (i.e. early onset) and the 50th percentile (i.e. the average peaking), the 

timing of influenza (i.e. expedited or lagged peaks in influenza during a season) was 

examined for dependencies to climatic factors (e.g. temperature, precipitation, ENSO) 

(Pyle 1979; Pyle 1986).  This research builds upon the knowledge of the spatial and 

temporal trends of influenza developed by geographers (e.g. Cliff, Haggett, Pyle) by 

providing insight into the climatic factors that may lead to increased influenza 

prevalence.     

 Identifying significant associations between influenza and weather conditions 

may have implications for the etiology of influenza.  A seasonal climatic association may 

imply a period of latency for influenza (i.e. infection could occur in the summer but 

remain latent until certain environmental conditions are met), similar to the theory 

postulated by Hope-Simpson (1992).  Influenza-climate relationships may confirm 

conventional theories of influenza transmission, such as the idea that certain climatic 

conditions (e.g. cold or wet weather) cause behavioral changes in humans, which thereby 

increase influenza incidence through increased human-to-human contact (Cliff et al. 

1986; Webster et al. 1992; Cliff et al. 2000; Meade and Earickson 2000).  Nevertheless, 

there is much speculation about the effects of observable temperature and precipitation on 

influenza prevalence, but with no definitive evidence for US mortality.  Our geographic 

study analyzed influenza prevalence associated with climatic conditions at varying 

temporal and spatial scales in an attempt to clarify any suspected linkages. 
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3.1 STUDY SITE 

 Our study examined influenza prevalence in NYC at a local scale, and also 

analyzed morbidity and mortality data from the Northeast US and the South Atlantic 

region. The northeastern United States is a more densely populated region than the South 

Atlantic region. Theoretically, a higher population density in the Northeast may lend to 

an increased influenza related mortality count as compared to the South Atlantic states 

(Cliff et al.1986).  Increased influenza related mortality counts according to regions, 

however, should not affect our analysis because we are comparing regional versus local 

(i.e. cities contained within the same region) influenza-climate relationships.  According 

to the US Census 2000, more populous states of the Northeast such as New York and 

New Jersey have a higher percentage of persons aged 65 years of age and older as 

compared to the South Atlantic (Census Bureau 2006).  On the other hand, the South 

Atlantic region encompasses the state of Florida, which possesses the highest percentage 

of persons 65 years of age and over, according to the 2000 Census (Census Bureau 2006).  

Although particular demographic trends may affect associations between mortality and 

climate, because of the vulnerability of the 65+ age group to influenza-related morbidity, 

the fairly consistent age distribution throughout these regions should not be a 

confounding factor in Northeast US.  The lower proportion of the elderly in the South 

Atlantic states may be compensated for in a regional analysis of the South Atlantic 

because of the inclusion of Florida, and remains an appropriate study region for our 

analysis.   

 The extreme Northeastern states are classified as humid continental with a moist 

climate and severe winters (Ahrens 2003).  However, the most densely populated regions 
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(e.g. New York City) are on the margin of being defined as a humid subtropical climate 

with hot humid summers and mild winters according to the Köppen classification 

(Ahrens 2003).  The South Atlantic US primarily falls in this latter climate classification, 

with hot summers and mild winters  The inclusion of FL in the South Atlantic regions 

may produce unexpected results when attempting to derive a ‘regional’ measure of 

average temperature and precipitation.  In general, the northeast region is defined by a 

more similar climate, while in the South Atlantic region contains greater climatic 

variability.  Comparing the South Atlantic and the Northeast, observed precipitation 

appear to be similar, however average temperatures are considerably lower in the 

Northeast US (Figure 1).  A more homogenous region with respect to climate may affect 

regional climate associations to influenza prevalence.   

3.2 DATA 

 NYC Mortality Data 

For a large scale analysis of NYC we utilized a dataset provided by Dushoff et al. 

(2006).  Dushoff et al. (2006) obtained the monthly mortality data time-series (1979 – 

2001) from the US CDC National Center for Health Statistics (NCHS) for New York 

City, NY (NYC).  The Dushoff et al. (2006) dataset was only used in this analysis for the 

large scale analysis of NYC influenza prevalence.  The dataset consisted of P&I mortality 

counts resulting from ‘multiple’ causes, in an attempt to compensate for potential errors 

in mortality reporting to the CDC (Dushoff et al. 2006).  P&I multiple cause mortality 

was reported according to age, and was further aggregated in this analysis to produce 

three subpopulations: 1) children aged 0 – 14 years of age, 2) adults aged 15 to 64 years 

of age, and 3) elderly aged 65 years of age and older.  Dushoff et al.(2006) compiled the 
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multiple caused P&I mortality dataset from sixteen counties surrounding NYC (Figure 2).  

Previous studies have used historic P&I mortality to assess the magnitude and diffusion 

of influenza during epidemics and pandemics (Pyle 1986; Cliff et al. 1986; Cliff et al. 

2000; Viboud et al. 2004; Dushoff et al. 2006) and to predict influenza related mortality 

(Choi et al. 1981).  Furthermore, Pyle (1979) used P&I mortality to retrace the diffusion 

of influenza in the US during the 1918 pandemic.  P&I multiple cause mortality counts 

were annualized from the months of July to June.  The 15th, 50th, and 75th percentiles 

were calculated from annualized cumulative P&I multiple cause mortality counts. 
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(Figure 1. Average Temperature and Precipitation of the Northeast and South Atlantic) 
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Regional Mortality Data 

For the regional analysis of influenza, P&I mortality counts, provided by the 

CDC’s Morbidity and Mortality Weekly Report (MMWR), were used for a dataset 

spanning ten influenza seasons (1996-2005).  Weekly mortality counts related to P&I 

deaths are compiled by the Centers for Disease Control and Prevention from a network of 

122 cities across the US and are disseminated to the public through the MMWR  

(MMWR 1996-2006).  Weekly mortality counts were annualized and aggregated 

according to an influenza season spanning the months of July to June. 

Regional Morbidity  Data 

Surveillance data extracted from the WHO/NREVSS influenza surveillance 

system was used as a proxy for influenza morbidity.  The WHO/NREVSS dataset 

contained tallies of positive influenza isolates according to type (e.g. A, B) and subtype 

(e.g. H3N2, H1N1) for an eight year time span (1997- 2005).  According to the CDC flu 

activity webpage (http://www.cdc.gov/flu/weekly/fluactivity.htm), laboratories voluntary 

submit isolate results (e.g. isolates specific to testing HIN1 and H3N2 influenza) to the 

CDC and are reported on a voluntary weekly basis, and are aggregated regionally.  A 

second surveillance dataset provided by the U.S. Influenza Sentinel Physicians 

Surveillance Network directed and provided by the CDC was also available for our 

analysis, but because the database reports influenza like illness (ILI) rather than 

positively tested influenza isolate, we chose not to incorporate this dataset.  Using 

reported ILI cases as proxies for influenza related morbidity becomes potentially 

problematic in that influenza like symptoms are very similar to symptoms of the 

‘common cold’.  The WHO/NVRESS dataset was the best measure of influenza 
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morbidity available with an appropriate time-span that was valid for a temporal analysis.  

THE WHO/NREVSS isolate is a more accurate reflection of actual influenza prevalence 

than other morbidity datasets.  Isolate data was annualized according to influenza type 

and subtype. 

 
(Figure 2.  Sixteen County Region Used to Compile the NYC Mortality Dataset) 

 

Climate Data 

 Regional climate data was provided by NOAA’s National Climatic Data Center 

(NCDC), which produced precipitation measurement and average temperatures. The 

NCDC also provided temperature and precipitation data for NYC, Boston, Ma (Blue Hill, 

MA weather observation), and Baltimore, MD (Washington, DC weather observations).  
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Precipitation and temperature data for Philadelphia, PA was provided by the 

Pennsylvania State Climatologist Office and NCDC.  Philadelphia, PA weather was 

measured according Pennsylvania’s region 3 observations.  Precipitation and weather 

observations for the Tampa Bay, FL were provided by the Florida Climate Center and 

NCDC.  Weather data was aggregated according to seasons (e.g. winter, spring) and in 

some cases precipitation and temperature observations were extracted according to 

certain months.  There was some disparity between the CDC influenza reporting regions 

and the NCDC climate regions (Figure 3), however a regional measure of precipitation 

and temperature from the NCDC is still appropriate for this comparative analysis because 

the regions retain a similar climate.  The global climate measurement for ENSO was 

based on the Southern Oscillation Index SOI, which is a measure in the differences 

between mean sea-level pressure from Darwin, Australia and Tahiti (Ahrens 2003).  

Historical monthly SOI values were obtained from the Australian Government Bureau of 

Meteorology.    
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(Figure 3. Differences in Climate and Influenza Reporting Regions) 
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3.3 METHODS AND MATERIALS 

Objective I & II – Influenza & Climate According to Scale 
 
This section will be separated according to the type of analysis: 1) NYC local 

analysis of P&I multiple cause mortality according to climate at several temporal scales, 

2) Analysis of MMWR P&I mortality according to climate at two spatial scales, in 

regions of Northeast and South Atlantic US, 3) Analysis of influenza related regional 

morbidity, as measured by WHO/NVRESS influenza isolate data. 

 Local Influenza Analysis of NYC -Annualized Method 

For the large scale multi-temporal analysis of NYC, we used a twenty-two year 

time series (1979-1995) of P&I multiple cause mortality counts from Dushoff (2006).  

P&I multiple cause mortality counts were compiled from death certificates that made any 

mention of influenza or pneumonia, the time-series attempts to compensate for any 

reporting changes made in 1999 to the CDC influenza surveillance system (Dushoff et al. 

2006).  Comparing the two P&I datasets, the annualized P&I as underlying cause of 

death dataset exhibits a significant drop in P&I cases reported after 1999 (Figure 4), 

while the counts of the P&I from multiple causes dataset appear to be more consistent 

with the data trend of the previous years (Figure 5).  P&I mortality from multiple causes, 

as provided by Dushoff (2006), was used in our multi-temporal scale analysis of NYC 

because it is a more accurate portrayal of influenza prevalence throughout the entire 

twenty-two year time-series.   P&I multiple caused mortality data were further broken 

down into age group of children (0-14), adult (15-64) and the elderly (greater than 65 

years of age).  The first temporal analysis of annualized (July – June) deaths attempts to 

account for the winter peaking of influenza, and results in a single P&I measure for each 
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influenza season.  The annualized P&I multiple cause mortality counts were then 

analyzed to determine if seasonal precipitation and temperature along with ENSO phases 

were a determinant for increased influenza incidence.  Because the primary concern of 

this study is to determine if influenza mortality varies according to weather, P&I counts 

were used rather than the conventional measures of excess mortality or a normalized 

mortality.  Furthermore, mortality counts rather than mortality percentages were utilized 

in the analysis, since mortality percentages tend to mask epidemics (Pyle 1986). 
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Figure (4).  NYC - Underlying Cause of P&I Deaths 
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Figure (5).  NYC - Multiple Caused P&I Deaths 
 

 Percentile Method 

To further determine the effect of environmental factors on influenza prevalence, 

the data was aggregated according to the 1) early onset of influenza (i.e. 15th percentile), 

2) the statistical mean of influenza (i.e. 50th percentile), and 3) the late penetration of 

influenza (i.e. 75th percentile).  Using this percentiles method allows for the comparison 

of influenza seasons, and was utilized in Pyle’s (1986) influenza study.  The seasonal 

nature of influenza is variable in magnitude every year ( Pyle 1979; Pyle 1986; Cliff et 

al.1986; Cliff et al.2000; Haggett 2000).  Furthermore, the different progressions of the 

epidemic curve (e.g. early onset, late penetration) may also exhibit different patterns for 

each demographic population (e.g. children, adults, elderly).    For NYC, the early onset 

of influenza (15th percentile) for two seasons in particular, 1991-1992 and 1992-1993, 

exhibits a relatively low mortality count (Figure 6).  However, by the time the 75th 

percentile of cases was reached for the 1991-1992 and 1992-1993 seasons, mortality 
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counts attained a level that was comparable to the trends of the late 1980’s and early 

1990’s (Figure 6).  The comparison of cumulative percentiles allows us to examine 

relationships between influenza and climate throughout the progression of an influenza 

season, in hopes to unmask significant associations in the dataset.  The Dushoff et al. 

(2006) influenza dataset and the NCDC climate data were also normally distribution and 

allowed the use of the robust parametric correlation coefficient of Pearson’s product to 

test for associations between climate and influenza (Figure 7) (Rogerson 2001). 
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 Figure (6) NYC - 15th, 50th, 75th Percentiles 
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Figure (7) NYC – P&I Multiple Cause Mortality Histograms 
 

For the large scale analysis of NYC, a local isolate dataset containing the 

predominant influenza strains was not readily available for our twenty-two year time 

space.  Therefore, the effects of climate on a particular influenza strain (e.g. H3N2, 
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H1N1, influenza B) could not be determined for NYC.  The dataset provided by Dushoff 

(2006) may have a drawback as being used as a proxy for influenza prevalence in NYC 

because the Dushoff (2006) dataset contains mortality for pneumonia and influenza, 

perhaps overestimating actual influenza prevalence.  However, P&I based proxies have 

been used in numerous studies to analyze and even predict influenza epidemics ( Pyle 

1979; Pyle 1986; Cliff et al.1986; Haggett 2000; Meade and Earickson 2000; Cliff et al. 

2000; Thompson et al. 2003).  The P&I multiple cause mortality dataset is an effective 

proxy for influenza prevalence and was used exclusively throughout our analysis of 

NYC. 

 Regional Influenza Analysis (Southeast and Northeast US) 

 P&I Mortality (MMWR) 

The regional analysis of influenza was limited by the availability of mortality and 

morbidity data, and although the length of the time-series was not comparable to the large 

scale analysis undertaken for NYC, the P&I mortality counts provided by the MMWR 

was adequate for a regional comparison of influenza prevalence.  Our  study of P&I 

deaths examined the regions of the South Atlantic (Georgia, Florida, Maryland, North 

Carolina, South Carolina, Virginia) as compared to the combined mortality of New 

England (Connecticut, Massachusetts, and Rhode Islands) and the Mid-Atlantic (New 

York, New Jersey, Pennsylvania) (Figure 8).  The New England and Mid-Atlantic 

mortality counts were aggregated to add consistency to our regional climate dataset and 

will be referred to as the Northeast P&I dataset for our analysis.  Although the dataset 

spans an eleven year period from (1996-2005), only nine influenza seasons were 

adequate for our study.  Two P&I annual counts were omitted because mortality counts 



 51

were not complete for the specified influenza season (i.e. July-June).  To examine 

climatic relationships, an annualized approach was undertaken that resulted in a single 

mortality count for each influenza season, which was analyzed against regional 

precipitation, temperature, and ENSO.  Aggregated weekly P&I morbidity according to 

an influenza season (i.e. annualized data) was similar to the approach taken by (Dushoff 

et al. 2006). 

To compare regional influenza-climate association to local influenza-climate 

associations, MMWR P&I mortality counts for two cities within the South Atlantic 

region and two cities within the Northeast region were analyzed according to climate.  

The inclusion criteria for each of the cities were based on data availability (i.e. cities that 

reported significant seasonal influenza mortality throughout the ten-year time period).  

The cities from the Northeast region were Boston, MA and Philadelphia, PA, and 

Baltimore, MD and Tampa, FL from the South Atlantic region.  Tampa, FL was included 

in the analysis to investigate influenza prevalence in a city with a large subpopulation of 

adults 65 years of age and older.  For the local influenza analysis, weather data from 

nearby airports or other weather stations representative of each locale were used.  Similar 

to the large-scale analysis of NYC, mortality counts rather than mortality percentages 

were utilized, since mortality percentages tend to mask epidemics (Pyle 1986). 

 Influenza Morbidity Data (WHO/NVRESS) 

 As a second proxy for influenza prevalence we used influenza-related morbidity, 

defined by tallies of positive isolates tested for influenza, from a surveillance database 

provided by the US CDC and maintained by WHO/NREVSS.  The data was extracted 

from the WHO/NREVSS influenza surveillance system, which compiles regional isolate 
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data on a weekly basis ((NREVSS) 1997-2006).  The dataset is an accurate portrayal of 

the prevalent influenza strains in circulation throughout the US, and provides counts of 

influenza types and subtypes (e.g. H1N1, H3N2, type B).    Isolate data has been used at a 

national level to analyze influenza morbidity in the US and France (Thompson et al. 

2003; Viboud et al. 2004; Dushoff et al. 2006).  For this study, each influenza type (e.g. 

B) and subtype (e.g. H1N1) were analyzed separately for associations to specific seasonal 

climatic variables (e.g. summer temperature, spring precipitation, ENSO).   

 To avoid the use of nonlinear modeling when analyzing influenza (e.g. Pyle’s 

1986 harmonic wave analysis), an annualized approach (i.e. data aggregated annually 

from July to June) was used for the isolate data, similar to the annualized regional and 

local analyses of P&I mortality data.  Because of the large variation in the reporting of 

total counts of positive influenza isolates per season, a normalized count of influenza 

isolate was developed.  Annualized isolate counts for specific influenza types and 

subtypes were normalized by the total number of isolates testing positive for that season.  

This normalization technique allows the comparison of the predominant strains of 

influenza isolates types (e.g. H3N2, H1N1) within an influenza season and across the 

entire data time-series.  Pyle (1986) described a technique for influenza P&I data that 

normalized values by a data “trend” (i.e. normalize data by the summation of isolate 

counts several weeks prior to and after a particular time period).  Although this dataset is 

not of mortality counts, our similar technique of dividing annualized isolate count by the 

trend in reporting provides a more representative measure of influenza prevalence.  A 

different technique was used for the annualized tally of all isolates testing positive for 

influenza, which was normalized by the total number of isolates submitted for testing 
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annually.  Because of the small dataset (n = 8), the non-parametric Spearman’s rho 

correlation coefficient was used for determining significant correlations. 

 To compare regional influenza morbidity, two isolate datasets were used. The 

South Atlantic (i.e. Southeast US) and the Northeast US each had a distinct representative 

isolate dataset (Figure 9 and Figure 10).  Similar to the Northeast Mortality data, the 

Northeast US dataset was created through the combination of the New England and Mid-

Atlantic isolate counts, as extracted from the CDC’s influenza surveillance website, 

which is maintained by the WHO and NREVSS collaborating laboratories (CDC 2006b)).  

Tallies of influenza isolate were grouped according to: influenza B, Influenza-A- H3N2, 

combined influenza A-H1N1/H2N2, influenza A –Unknown subtype, and count of total 

isolates tested positive.   
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Figure (9) – Northeast US Total Isolates Tested Positive for Influenza 
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Figure (10) – South Atlantic US Total Isolates Tested Positive for Influenza 
 
 
Objective III – Timing of Influenza According to Climatic Factors 

 To determine the effects of climate to the timing of influenza seasons in NYC, we 

determined the months in which the 15th percentile (i.e. early onset of influenza) and the 

peaking (i.e. highest recorded monthly influenza P&I mortality count) were reached for 

each influenza season.  Once the timing of early onset and peaking was determined, those 

resulting months were then assigned values according to their sequence in the influenza 

season (July – June) (e.g. July was assigned one, March was assigned nine).  These 

monthly values, which represent the timing of influenza, were then analyzed according to 

climatic factors (e.g. temperature, precipitation, and ENSO).  Because of the small 

sample size and the utilization of ranked data, the non-parametric test of Spearman’s Rho 
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was used rather than the typical parametric test used in the other large-scale analysis of 

NYC. 

 Climatic Analysis 

 In addition to association with influenza, each study site (e.g. city, region) was 

examined for a precipitation and temperature responses to the ENSO.  Monthly SOI 

values were used as a measure for ENSO and were obtained from Australia’s Bureau of 

Meteorology (Meteorology 2009).  Monthly SOI values were examined individually and 

aggregated according to seasons (e.g. winter months were Jan, Feb, Mar).  As significant 

associations with influenza, temperature, or precipitation were determined during 

sequential or near-sequential months, SOI values were aggregated and averaged 

accordingly, in an attempt to define a more representative measure of SOI.  Customized 

averaged SOI values were then reexamined for specific associations to influenza, 

precipitation, and temperature to determine their statistical significance.  Even if 

influenza and ENSO associations were found not to exist within a study site, a climatic 

analysis was undertaken to determine the effect of ENSO on regional and local weather 

(e.g. temperature and precipitation). 

 
3.4 RESULTS 
 
     Objective I  - (Multi-Temporal Analysis of NYC) 

 NYC - Annualized Counts 

 The annualized P&I multiple cause counts were found to have a significant 

relationship with climate but varied according to demographic sub-populations (e.g. 

children, elderly).  Annualized mortality count for the total population, which was a 

compilation of counts from all sub-population groups, was found to have a significant 
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positive correlation with summer precipitation (June, July, and August).  However, 

according to subpopulation only the adults (i.e. 15 – 64 years of age) exhibited a positive 

correlation to summer precipitation (Table 1).  As summer precipitation increased, P&I 

mortality also increased in adults.  Utilizing total population, rather than characterizing 

the P&I mortality according to subpopulations (e.g. children, adults), may not provide as 

accurate portrayal of influenza-climate relationships.  

 Fluctuations in winter temperatures were also associated with P&I multiple cause 

mortality in children (i.e. 0 – 14 years of age) (Table 1).  More specifically, winter 

temperatures from the previous year were found to be highly correlated (i.e. significant at 

the 0.01 level of a 2-tailed test) with a negative relationship to children’s mortality.  

Winter temperatures that occurred during the influenza season were also correlated, but 

with less significance (Table 1).   As winter temperature decreased, either before or 

during the influenza season, influenza mortality increased for children.  Temperature did 

not a produce any significant associations with either the elderly, adults, nor for the total 

population.  Characterizing influenza-climate associations according to subpopulations 

provides a more in-depth analysis of the influenza dataset.  
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Table 1.  Annualized (July – June) P&I Multiple Cause Mortality Correlations for NYC.  

 
**  Correlation is significant at the 0.01 level (2-tailed).   *  Correlation is significant at the 0.05 level (2-
tailed). 
  

NYC - Percentile P&I Counts 

 The results of the percentile based temporal analysis of NYC supports these 

previous findings from the annualized analysis, but also revealed interesting relationships 

between the progression of influenza according to climate.  Each sub-population (e.g. 

children, adults, elderly) was examined according to percentiles (i.e. 15th, 50th, 75th) 

which are representative of the phases of influenza diffusion according to the cumulative 

epidemic curve (Cliff et al.1986; Cliff et al. 2000; Haggett 2000; Pyle 1986).  Analyzing 

the P&I multiple cause mortality counts according to the Total Population, the late 

progression (i.e. 75th percentiles) and the peaking stage (i.e. 50th percentile) exhibited 

significant positive correlations with summer precipitation, which was similar to results 

of annualized mortality counts (Table 2).  The early onset of influenza (i.e. 15th 

percentile) exhibited no association with summer precipitation, but did maintain a 

    
Precipitation 

(Summer JJA) 
Temperature 

(Winter DJF - Lag) 
Temperature  

(Winter DJF - Current) 
P&I  Mortality 
(Age 0 -14) 

Pearson 
Correlation .120 -.614(**) -.480(*)

  Sig. (2-tailed) .595 .002 .024
  N 22 22 22
P&I  Mortality 
(Age 15 - 64) 

Pearson 
Correlation .432(*) -.356 -.337

  Sig. (2-tailed) .045 .104 .125
  N 22 22 22
P&I  Mortality 
(Age GE 65) 

Pearson 
Correlation .414 .351 .281

  Sig. (2-tailed) .056 .109 .205
  N 22 22 22
All Ages Pearson 

Correlation .511(*) .038 .005

  Sig. (2-tailed) .015 .866 .983
  N 22 22 22
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positive correlation with fall precipitation (Table 1).  For the early onset of influenza (i.e. 

15th percentile) in NYC, as fall precipitation (September, October, and November) 

increased, mortality counts for the total population also increased. 

Table 2.  All Ages -  Percentile (15th, 50th, and 75th) P&I Multiple Cause Mortality Correlations for 
NYC. 

 All Ages   

Precipitati
on 

(Summer 
JJA) 

Precipitation 
(Fall SON) 

Precipitation 
(Winter DJF – Current) 

15th Percentile Pearson Correlation .078 .499(*) -.118
  Sig. (2-tailed) .730 .018 .600
  N 22 22 22
50th Percentile Pearson Correlation .499(*) .219 -.488(*)
  Sig. (2-tailed) .018 .327 .021
  N 22 22 22
75th Percentile Pearson Correlation .493(*) .243 -.465(*)
  Sig. (2-tailed) .020 .276 .029
  N 22 22 22
100th Percentile Pearson Correlation .511(*) .292 -.403
  Sig. (2-tailed) .015 .188 .063
  N 22 22 22

*  Correlation is significant at the 0.05 level (2-tailed). 
**  Correlation is significant at the 0.01 level (2-tailed). 
 
 Analyzing each subpopulation (e.g. children, adults, and elderly), each group 

produced different associations to climate.  Increased P&I mortality in children was 

associated the colder temperatures from the previous winter (Table 3).  This correlation 

was significant throughout all stages (i.e. 15th, 50th, and 75th percentiles) of disease 

progression.  Furthermore, children’s mortality exhibited significant associations with the 

inclusive winter’s temperatures (i.e. winter temperatures that occurred during the 

influenza season).  For example in children, increased mortality that occurred late in the 

influenza season (i.e. the 75th percentile in March) was associated with colder winter 

temperature occurring within the influenza season (e.g. DEC, JAN, FEB) (Table 3).  A 

consistent association between temperature and influenza mortality throughout all phases 

of disease penetration was only found in the children (Aged 0-14) subpopulation. 
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Table 3. Children -Percentile (15th, 50th, and 75th) P&I Multiple Cause Mortality Correlations for NYC. 

    
Temperature 

(Winter DJF – Lag) 
Temperature 

(Winter DJF – Current) 
15th Percentile Pearson Correlation -.578(**) -
  Sig. (2-tailed) .005 -
  N 22 -
50th Percentile Pearson Correlation -.575(**) -.419
  Sig. (2-tailed) .005 .052
  N 22 22
75th Percentile Pearson Correlation -.599(**) -.450(*)
  Sig. (2-tailed) .003 .036
  N 22 22
100th Percentile Pearson Correlation -.614(**) -.480(*)
  Sig. (2-tailed) .002 .024
  N 22 22

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
 
 Initially, other temperature-influenza associations were identified in the early 

penetration of influenza (i.e. 15th percentile) for adults.  Statistical results explained that 

as fall (i.e. September, October, November) temperatures decreased, there was an 

associated increase in the first 15% of a season (i.e. 15th percentile).  Further examination 

of the data revealed that the 15th percentile of mortality was reached in September, 

therefore due to timing only temperature from the single month of September rather than 

the entire fall season can be logically associated with influenza prevalence.  September 

temperatures were analyzed singularly, and revealed a significant association with 

influenza throughout all phases of influenza penetration in Adults (Table 4).  September 

temperatures also exhibited a negative correlation to annualized P&I mortality counts for 

the Adult subpopulation (Table 4), which is consistent with the finding from other 

subpopulations.  Both September and fall temperatures affected influenza prevalence 

differently throughout the progression of the virus (i.e. 15th, 50th, and 75th percentile) in 

the Adult population. 
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 Adult mortality was found to be positively associated with summer (i.e. June, 

July, August) precipitation.  This precipitation relationship was found in every phase of 

influenza penetration, except for initial onset (i.e. 15th percentile) of virus.  For example, 

as summer precipitation increased, Adult mortality during the late seasonal penetration of 

the virus (i.e. 75th percentiles) also increased.  These precipitation relationships are 

consistent with the results of the annualized influenza counts aggregated to the adult 

subpopulation.  

Table 4.  Adults (Age 15–64)  -  Percentile (15th, 50th, and 75th) P&I Multiple Cause Mortality 
Correlations. 

 All Ages   
Precipitation 

(Summer JJA) 
Temperature 
(Fall SON) 

Temperature 
(September) 

15th Percentile Pearson Correlation .286 -.435(*) -.400 
  Sig. (2-tailed) .197 .043 .065 
  N 22 22 22 
50th Percentile Pearson Correlation .459(*) -.290 -.506(*) 
  Sig. (2-tailed) .032 .191 .016 
  N 22 22 22 
75th Percentile Pearson Correlation .449(*) -.309 -.513(*) 
  Sig. (2-tailed) .036 .161 .015 
  N 22 22 22 
100th Percentile Pearson Correlation .432(*) -.286 -.510(*) 
  Sig. (2-tailed) .045 .197 .015 
  N 22 22 22 

*  Correlation is significant at the 0.05 level (2-tailed). 
 
  

Within the elderly population (i.e. greater than or equal to 65 years of age) there 

were no significant temperature-influenza relationships found throughout any phases of 

disease penetration (i.e.15th, 50th, and 75th percentile).  Supporting these results, the 

annualized approach also exhibited no significant temperature relationships in the elderly.   

Analysis according to percentiles, however, identified significant association between 

winter precipitation and September precipitation in the elderly.  Initially, fall (September, 

October, November) precipitation was found to be significant, but further analysis 
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revealed that only precipitation from the September could logically affect the 15th 

percentile, which according to our results consistently occurred on or before September 

throughout the entire time-series.  Analyzing precipitation only from September exhibited 

a significant correlation with Elderly P&I mortality early in the influenza season (i.e. up 

until the 15th percentile of mortality was reached for a particular season). 

 
Table 5 
Elderly (Age Greater than or equal to 65)  -  Percentile (15th, 50th, and 75th) P&I Multiple Cause 
Mortality Correlations for NYC. 

    
Precipitation 
(September) 

Precipitation 
(Winter DJF – Current) 

15th Percentile Pearson Correlation .483(*) -.073
  Sig. (2-tailed) .023 .748
  N 22 22
50th Percentile Pearson Correlation .322 -.468(*)
  Sig. (2-tailed) .144 .028
  N 22 22
75th Percentile Pearson Correlation .349 -.464(*)
  Sig. (2-tailed) .111 .029
  N 22 22
100th Percentile Pearson Correlation .382 -.397
  Sig. (2-tailed) .079 .068
  N 22 22

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
 

P&I Mortality in NYC also exhibited significant association with short-term 

trends in climatic (e.g. ENSO), however only in certain subpopulations.  For the early 

onset of influenza (i.e. 15th percentile) in the elderly subpopulation, averaged fall SOI 

values (September, October, November, December) were found to be by highly 

correlated (i.e. significant at the .01 level) with P&I mortality counts (Table 5).  

Moreover, in the total  population within the 15th percentile (i.e. early onset), there was 

also a highly significant correlation to a similar measure of fall SOI (AUG, SEP, OCT) 

(Table 5).  Through our climatic analysis of the NYC we found that fall SOI (AUG, SEP, 
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OCT) was associated with fall precipitation (SEP, OCT, NOV) (Table 6).  This supports 

the results from the annualized approach, that P&I mortality was associated with 

September rainfall.  

Table 6 
NYC - Early Onset (15th Percentile) in the Elderly and Total Population -  P&I Multiple Cause Mortality 

    
SOI 

(AUG, SEP, OCT) 
SOI 

(SEP, OCT, NOV, DEC) 
Age GE 65 
(15th Percentile) 

Pearson Correlation .387 .629(**)

  Sig. (2-tailed) .075 .002
  N 22 22
Total Population 
(15th Percentile) 

Pearson Correlation .568(**) .497(*)

  Sig. (2-tailed) .006 .019
  N 22 22

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
 

Table 7 
NYC - Averaged SOI (AUG, SEP, OCT) Associated with Fall Precipitation 

    

SOI 
(AUG, SEP, 

OCT) 
Precipitation 
Fall 

Pearson Correlation .460(*)

  Sig. (2-tailed) .031
  N 22

*  Correlation is significant at the 0.05 level (2-tailed). 
 

 

 The multi-temporal analyses showed consistency in the ‘direction’ of climatic 

relationships.  For example, influenza-precipitation relationships were always found to 

be positive and usually occurred in summer and fall months.  As precipitation in NYC 

increased, the influenza-related mortality also increased.  Moreover, influenza-

temperature relationships were always negative in nature, and only occurred in the fall 

and winter months.  As temperature in NYC became colder, influenza morality increased 

in both the Children and Adult subpopulations.  P&I mortality was also associated with 
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global climate indices (e.g. ENSO), which produced local weather conditions in NYC that 

affected influenza prevalence.  These results underscore the importance of taking into 

account temporal scale in medical geography and epidemiological studies of disease, 

along with characterizing subpopulations.  Examining influenza at different temporal 

time-scales can potentially unmask enviro-climatic associations. 

  

Objective II - Regional Spatial Analysis 

 Regional analysis of influenza prevalence examined both annualized mortality 

(i.e. P&I deaths counts) and morbidity (i.e. positive testing influenza isolate counts) for 

the Northeast US and the South Atlantic States.  The results of these analyses are divided 

into sections according to region, and the source of the data (e.g. morbidity and 

mortality).  Climatic analysis was conducted for each geographic region and inclusive 

cities to determine the dependencies of influenza on climate in regard to changes in scale. 

 Mortality (P&I) – South Atlantic 

 There were no significant correlations between regional influenza mortality (i.e. 

P&I counts) in the South Atlantic region and any of the climatic factors analyzed.  

Although not associated with P&I mortality, our analysis of ENSO-weather associations 

found a significant correlation between winter (current) precipitation and SOI averaged 

over the preceding spring months of March, April and May (MAM) (i.e. one-year lagged 

spring SOI values) (Table 8).  Spring SOI exhibits potential for predicting the severity of 

winters (e.g. rain and snow) in the South Atlantic regions of the US, and any associated 

diseases.  Furthermore, within the nine year time period, SOI averaged over the months 
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of JAN, FEB, and MAR (JFM SOI) were associated with fall temperatures, although 

narrowly significant. 

Table 8 
South Atlantic ENSO Association to Precipitation and Temperature. 

      
Precipitation 

Winter 
Temperature 

Fall 
Spearman's rho SOI 

MAR, APR, MAY 
Correlation 
Coefficient -.750(*) -.467

    Sig. (2-tailed) .020 .205
    N 9 9
  SOI 

JAN, FEB, MAR 
Correlation 
Coefficient -.483 -.667(*)

    Sig. (2-tailed) .187 .050
    N 9 9

*  Correlation is significant at the 0.05 level (2-tailed). 
 

 Although a South Atlantic US regional association between influenza and climate 

did not exist, which was similar to the result found in Tampa, FL, one of the cities in the 

region exhibited significant correlations.  P&I mortality in Baltimore, MD was associated 

with spring precipitation (March, April, May) occurring within the influenza season 

(Table 9).  Along with a seasonal precipitation association, P&I mortality was also highly 

correlated with SOI values averaged over the summer and fall months of June, July, 

August, September, and October (i.e. Summer and Fall) (SF SOI).  SF SOI was found to 

be highly correlated (i.e. significant at the 0.01 level (2-tailed test) to spring precipitation 

(Table 10, Figure 11 ).  The significant SF SOI values associated with influenza occurred 

during the influenza season rather than preceding the influenza season.  Because of the 

significant lag period, SF SOI rather than spring precipitation may be a more effective 

measure to predict influenza mortality in Baltimore, MD.  
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Table 9 
Baltimore, MD – P&I Mortality Associated to Climate. 
 Spearman's Rho 

  
Precipitation 

(Spring MAM) 
SOI – Summer/Fall 

(JJASO) 
Influenza P&I Correlation Coefficient -.750(*) .817(**)
  Sig. (2-tailed) .020 .007
  N 9 9

*  Correlation is significant at the 0.05 level (2-tailed). 
**  Correlation is significant at the 0.01 level (2-tailed). 
  

Table 10 
Baltimore, MD – Spring Precipitation Associated with SOI Lagged 1 year. 
 Spearman’s Rho 

  
SF SOI 

(Lagged 1 year) 
Spring Precipitation 

(Natural Log) 
Correlation Coefficient -.850(**)

  Sig. (2-tailed) .004
  N 9

**  Correlation is significant at the 0.01 level (2-tailed). 
 
 
 
Figure 11. Baltimore Spring Precipitation versus SOI (JJASO) Lagged by One Year 
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Mortality (P&I) – Northeast 
 

Climate exhibited significant correlations to annualized P&I mortality in the 

Northeast region of the United States (i.e. combined P&I mortality from the Mid-Atlantic 

and New England regions).  Winter temperatures preceding an influenza season (i.e. 

lagged winter temperatures) exhibited a negative association to annualized P&I mortality 

(Table 11).  A decrease in winter temperatures was correlated with increased influenza 

deaths.  For a more detailed analysis of P&I morality in the Northeast, two cities in the 

region were analyzed for local relationships to climate.  P&I mortality in Boston, MA 

exhibited no direct association with seasonal precipitation and temperature fluctuations.  

However, Boston’s annualized P&I death counts did exhibit a significant correlation to 

one-year lagged SOI values averaged over the months of January, February, March and 

April (Table 12).   

Philadelphia, PA, the second city analyzed in the Northeast region, did 

demonstrate a relationship between P&I mortality and winter precipitation preceding the 

influenza season (Table 13; Figure 12).  There was no statistical relationship between 

P&I and SOI, but Philadelphia’s spring precipitation was found to be significantly 

correlated to SOI values averaged over the autumn months of August, September, and 

October within the nine year time period.  Unfortunately for predictive purposes, spring 

precipitation in not a determinant of influenza mortality and Philadelphia, thus precluding 

the use of SOI as factor for estimating influenza prevalence.        
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Table 11 
Northeast Region – P&I Mortality Associated With Winter Temperature  

 Spearman's rho   
Temperature 

Winter 
P&I Mortality Correlation 

Coefficient -.795(*)

  Sig. (2-tailed) .010
  N 9

*  Correlation is significant at the 0.05 level (2-tailed). 
 
 
 
 
Table 12 
Boston, MA – P&I Mortality Associated with One Year Lagged Avergage SOI (Jan, Feb, Mar, Apr) 

      

SOI 
(Jan, Feb, Mar, 

Apr) 
Spearman's rho P&I Mortality Correlation 

Coefficient -.700(*) 

    Sig. (2-tailed) .036 
    N 9 
  P&I Mortality 

(Natural Log) 
Correlation 
Coefficient -.700(*) 

    Sig. (2-tailed) .036 
    N 9 

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
 
 
 
Table 13 
Philadelphia, PA – P&I Mortality Associated with Previous Winter’s Precipitation (Jan, Feb, Mar, Apr) 

      
Winter 

Precipitation 
SOI 

(Aug, Sep, Oct) 
Kendall's tau_b P&I Mortality Correlation 

Coefficient .556(*) .278 

    Sig. (2-tailed) .037 .297 
    N 9 9 
  P&I Mortality 

(Natural Log) 
Correlation 
Coefficient .556(*) .278 

    Sig. (2-tailed) .037 .297 
    N 9 9 
  Spring Precipitation Correlation 

Coefficient -.222 .611(*) 

    Sig. (2-tailed) .404 .022 
    N 9 9 
 Spearman's rho Spring Precipitation Correlation 

Coefficient -.250 .733(*) 

    Sig. (2-tailed) .516 .025 
    N 9 9 

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 



 68

Figure 12 
Philadelphia, PA – Scatter Plot –P&I  Mortality VS Winter Precipitation (DEC, Jan, Feb) 
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Morbidity (Isolate Data) 
 
  Northeast Morbidity 
 
 Influenza morbidity, as represented by isolate data counts, exhibited significant 

relationships to climatic variables.  An annualized tally of all isolates in the Northeast US 

produced an association to summer precipitation (Table 14).  As summer precipitation 

increased in the Northeast, annualized influenza morbidity also increased (i.e. a wet 

summer in the Northeast US was associated with an increased number of influenza 

isolates testing positive).  Interestingly, the annualized total of H1N1 influenza A was 

also associated with summer precipitation but in the opposite direction (i.e. a negative 

correlation), the only climatic association for this virus subtype (Table 14).   

 Influenza type B and the combined influenza A subtypes (H3N2 and H2N2), both 

exhibited associations to spring temperature, and winter and spring precipitation (Table 
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14).  All associations for temperature and precipitation were observed before the 

influenza season (i.e. lagged climatic variables).  However, the directions of the 

correlations were not consistent between the influenza types and subtypes.  Accordingly, 

low spring temperatures and lower precipitation are associated with an increase in Type 

B influenza prevalence.  Furthermore, increased spring precipitation tends to also 

increase influenza Type B prevalence.  The opposite conditions are associated with an 

increase in H3N2 prevalence.   For the isolate counts of unknown influenza A subtype, an 

irregular positive correlation with spring temperature was significant.  A regional 

relationship between positive tested influenza isolates and climatic factors in the 

Northeast US are directionally inconsistent (i.e. exhibited both positive and negative 

correlations) across the examination of all influenza types and subtypes.  However, the 

results of our regional isolate analysis in the Northeast US may exhibit the complex 

nature of specific influenza strains in human populations, and the variation of a specific 

isolate response to certain climatic conditions. 
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Table 14. 
Northeast US – Influenza Isolates associated with Climate 

  
 Spearman's 
rho 

Temperature 
Spring 

Precipitation 
Winter 

Precipitation 
Spring 

Precipitation 
Summer 

All Isolates 
(Normalized) 

Correlation 
Coefficient .405 .619 -.214 .738(*)

  Sig. (2-tailed) .320 .102 .610 .037
  N 8 8 8 8
H1N1 
(Normalized) 

Correlation 
Coefficient -.381 -.500 .310 -.738(*)

  Sig. (2-tailed) .352 .207 .456 .037
  N 8 8 8 8
H3N2 
(Normalized) 
 

Correlation 
Coefficient .881(**) .738(*) -.762(*) -.143

  Sig. (2-tailed) .004 .037 .028 .736
  N 8 8 8 8
Type B 
(Normalized) 
 

Correlation 
Coefficient -.881(**) -.738(*) .762(*) .143

 Sig. (2-tailed) .004 .037 .028 .736
  N 8 8 8 8
Type A – Unknown 
Subtype 
(Normalized) 
 

Correlation 
Coefficient .762(*) .690 -.643 .119

  Sig. (2-tailed) .028 .058 .086 .779
  N 8 8 8 8

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
 
 
  South Atlantic Morbidity 

 Linkages exist between climate and influenza isolates in the South Atlantic 

region, and are not as confounding as the results produced from climatic analysis of 

morbidity in the Northeast US.  Although the number of total isolates were not associated 

with any direct effects of temperature and precipitation, there was a significant 

association to SOI averaged over the months of JAN, FEB, MAR, APR (i.e. JFMA SOI) 

(Table 15).  Interestingly, JFMA SOI was not directly associated with any seasonal 

precipitation or temperature.  However, through the mortality analysis of the Southeast it 

was found that a very similar measure of ENSO, JFM SOI, was narrowly significant to 
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fall temperatures.  Type B influenza, Type A-(H3N2/H2N2), and Type A (unknown) 

influenza exhibited no significant association to climate (Table 15).   

 The most revealing climatic association to influenza was within the H1N1 

influenza A subtype.  Contrary to other associations, summer precipitation was found to 

have a negative association with H1N1, while summer temperature exhibited a positive 

relationship.  As summer temperatures increased in the South Atlantic states, H1N1 

prevalence also increased.  Similarly, increased H1N1 prevalence was associated with 

decreased precipitation.  The patterns of climatic associations differ regionally (i.e. 

Northeast influenza prevalence is significantly different than South Atlantic influenza 

prevalence with respect to climate) (Figure 13).  Furthermore, there is significant 

variation in the prevalence of each type and subtypes throughout the time-series, 

including influenza A-H1N1 (Figure 14).  Climatic factors were found to be statistically 

significant determinant of influenza morbidity analyzed at a regional scale, but results 

could be confounding. 
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Table 15 
South Atlantic US – Influenza Isolates associated with Climate 

   Spearman's rho 
Temperature 

Summer 
Precipitation 

Summer 
SOI 

JFMA 
Total Isolates 
(Normalized) 

Correlation Coefficient -.361 .595 -.762* 

  Sig. (2-tailed) .379 .120 .028 
  N 8 8 8 
Type B 
(Normalized) 
 

Correlation Coefficient 
.361 -.357 -.095 

  Sig. (2-tailed) .379 .385 .823 
  N 8 8 8 
H1N1 
(Normalized) 
 

Correlation Coefficient 
.735(*) -.762(*) .548 

  Sig. (2-tailed) .038 .028 .160 
  N 8 8 8 
H3N2 
(Normalized) 
 
 

Correlation Coefficient 

-.241 .690 .000 

  Sig. (2-tailed) .565 .058 1.000 
  N 8 8 8 
Unknown 
(Normalized) 
 
 

Correlation Coefficient 

-.590 .476 -.143 

  Sig. (2-tailed) .123 .233 .736 
  N 8 8 8 

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
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South Atlantic VS Northeast H1N1 sub-type A Influenza Isolates 
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Figure 13 - Influenza Isolates According to the Northeast and South Atlantic 
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Figure 14 - South Atlantic VS Northeast H1N1 sub-type A Influenza Isolates 
 
 
 
     Objective III – Timing of Influenza Season 
 
 Analyzing the timing of monthly peaks of influenza (i.e. months with the largest 

monthly mortality counts) and the timing of the onset of influenza (i.e. the month when 

the 15th percentile was reached) in NYC, we found one significant climatic association, 

spring precipitation, which only occurred within in the elderly subpopulation and.  There 

was a negative association with spring precipitation (spring precipitation preceding the 

influenza season) and the peaking of influenza in the elderly (Table 15).  As spring 

precipitation increased, the peak of influenza was hastened in the elderly population (i.e. 

the peaking of influenza occurred in December or January rather than in March, when 

spring precipitation preceding the influenza season was increased). 
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Table 16 
NYC – Climate’s Affect on the Timing of Influenza Mortality 

      
Precipitation 

(Spring – MAM) 
Spearman's rho 15th Percentile Correlation Coefficient -.031
    Sig. (2-tailed) .890
    N 22
  Peak 

(Children) 
Correlation Coefficient -.101

    Sig. (2-tailed) .655
    N 22
  Peak 

(Adults) 
Correlation Coefficient -.366

    Sig. (2-tailed) .094
    N 22
  Peak 

(Elderly) 
Correlation Coefficient -.432(*)

    Sig. (2-tailed) .045
    N 22
  Peak 

(Total Population) 
Correlation Coefficient -.395

    Sig. (2-tailed) .069
    N 22

*  Correlation is significant at the 0.05 level (2-tailed). 
 

 
3.5 DISCUSSION 
 
 Large-Scale Annualized Analysis (NYC) 

 The approach of using annualized counts of multiple cause P&I deaths as a proxy 

for influenza prevalence, although the simplest measure used in all of our analyses, may 

be the most useful and straightforward for predicting the magnitude of influenza from 

year-to-year.  There is a known usefulness in modeling weekly or monthly influenza 

counts (Cliff et al. 1986; Pyle 1986; Thompson et al. 2003), but if temperature 

observations a year beforehand can predict an influenza season with above average 

mortality (e.g. epidemic), an annualized approach can provide significant benefits to 

public health.  The usefulness of the annualized approach to influenza starts with 
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partitioning monthly or seasonal data appropriately.  Partitioning monthly influenza 

mortality into a ‘season’ that incorporates any possible aberrations in the peaking of 

influenza is an essential first step.  For example, aggregating monthly influenza counts 

starting in July and continuing until next year’s June, divides the time-series according to 

the usual troughs of influenza mortality and captures any variable peaking of influenza in 

either the winter or the spring. 

 Utilizing annualized mortality and morbidity counts is an appropriate technique to 

determine climatic relationships, but characterizing influenza dataset according to 

population was also integral to this analysis.  The dissimilarity in climatic associations 

according to subpopulation (e.g. children, adults, and the elderly) leads to the conclusion 

that utilizing an all encompassing category of total population is inappropriate, and may 

obfuscate significant relationships.  Lower winter temperature were associated with an 

increases in annualized P&I mortality, but only in those aged zero to 14 years of age (i.e. 

children).  Further supporting the incorporation of subpopulation data into future 

predictive modeling of influenza, only adult P&I mortality was associated with above-

average summer precipitation.  As summer precipitation in NYC increased, adult P&I 

mortality also increased.  Previous research by Dushoff et al. (2006) found no associated 

between annualized excess mortality deaths and temperature.  Dushoff et al. (2006), 

however, appear not to have utilized demographic subpopulation in their analysis, even 

though “various combination of monthly mean temperatures” were used in their analysis 

(Dushoff et al. 2006:pg 184).  Dushoff et al. (2006) only incorporate temperature data 

from November to April, while this analysis found temperature observations from the 

previous winter as highly significant to the following year’s influenza prevalence.  
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Dushoff et al. (2006) calculated excess mortality of influenza for their analysis, while this 

analysis incorporated raw P&I multiple cause mortality counts because of the primary 

concern with determining co-variation of influenza according to fluctuations in climate.  

Examining only a total population, rather than subpopulations of P&I mortality from 

multiple causes can potentially conceal statistical climatic relationships to influenza.           

 These annualized results portray the higher susceptibility of children to influenza 

related mortality with regards to climatic variables.  Infants and young children do not 

usually possess the appropriate antibodies to cope with influenza, unless they are 

appropriately vaccinated (Mims et al. 2004).  The young are developing their immune 

system and are prone to several diseases, including influenza (Mims et al. 2004).  

Johnson and Eccles (2005) described increased susceptibility to the ‘common cold’ 

according to acute chilling of the body, and proposed that because of physiological 

responses of the human body the respiratory tract is more prone to infection.  Supporting 

the notion that cooler weather affects respiratory illness, early in the 20th century medical 

climatologists also found that body chilling is the primary factor for the onset of the 

“common cold”, while this research seems to have been forgotten, it is insightful for the 

results of this analysis that increased cold may make the body more susceptible to 

infection (Mills 1939:pg 127). The research by Johnson and Eccles (2005) and the case 

studies provided by Mills (1939) may support the findings of this analysis, that cooler 

winter temperatures can increase influenza mortality.  Temperature linkages to influenza 

have also been explained by the increased likelihood of indoor interaction (i.e. increased 

exposure to the virus in a confined airspace) when ambient temperatures are 

uncomfortably cold, forcing people indoors (Cliff et al.1986; Cliff et al. 2000; Meade and 
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Earickson 2000).  This finding, that decreased temperatures result in increased influenza 

mortality, also supports the latter mentioned theories of influenza transmission. 

 The relationship between temperature and influenza related mortality found only 

in children may infer that colder temperatures only affect the transmission of ‘new’ 

influenza viruses rather than viruses already in circulation, since most children have not 

yet been exposed to many influenza viruses, except through vaccination.  For this 

research, isolate data detailing the prevalent strain of influenza was only available at a 

regional and national level, and most likely would not reflect the prevalent strain in NYC.  

More research is needed to determine the prevalent strain of influenza affecting children, 

which can only be done through increased surveillance measures (e.g. reporting specific 

influenza strains isolate reports according to children and other sub-populations), and to 

determine if increased mortality in children is caused by the emergence of a particular 

influenza strain (e.g. type B influenza, type A H3N2 influenza) according to climatic 

factors.  Although there is a recent movement to collect this demographic information 

during isolate testing, it is not available over an extended mortality time-series dataset 

(CDC 2006b). 

 The results of the local (i.e. NYC) analysis of influenza are probably the most 

accurate portrayal of climate affecting influenza prevalence, although several regional 

associations were statistically significant.  Even though this study only incorporated one 

set of precipitation and temperature observations for NYC (i.e. a single representative 

sample), as compared to ‘average’ regional (e.g. Northeast US) observations, which can 

be misleading due to the non-uniformity of temperature within a region, the local analysis 

provides a much accurate portrayal of observable climate.  The NYC P&I multiple cause 
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time-series data set were also twice as long as the regional datasets (i.e. 22 years), and 

along with the normal distribution of both the dependent and independent data sets, 

allowed use of the more robust Pearson’s product parametric correlation technique.  The 

NYC region incorporated in this study is one most populous metropolitan statistical areas 

in the US (Gibson 1998), and attains all the proposed population densities that are 

required to sustain an influenza epidemic or exhibit statically predictive patterns (Cliff et 

al. 1986; Cliff et al. 2000; Haggett 2000).  However, because NYC is an exception rather 

than common place in terms of population in the US, the demographic environment may 

create ‘idealized’ conditions for influenza transmission, exhibiting transmission trends 

unlike those found in other regions of the US. 

 Large Scale Percentile Analysis (NYC) 

 The approach of using cumulative percentiles for each influenza seasons allows 

the identification of influenza waves of transmission according to the early onset (e.g. 

15th percentiles), the peaking or average mean (e.g. 50th percentile), and the late 

penetration (e.g. 75th percentile) of influenza into human populations (Pyle 1979; Pyle 

1986).  These percentiles are then analyzed for associations to seasonal climatic factors.  

The most definitive association found through this analysis was the dependency 

children’s influenza mortality to the previous winter’s temperature, which was highly 

significant (i.e. significant at the .01 level for a two-tailed test) throughout all stages of 

influenza penetration, and is supported through the results of the annualized approach to 

influenza analysis.  There was not another relationship between influenza and climate 

that exhibited such a trend with such high significance in all or our analysis.  Not only 

was one-year lagged temperature significant, the correlation was strong throughout all 
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percentiles (i.e. transmission phases) in children.  It is apparent through this analysis that 

the waves (i.e. percentiles) of influenza penetration exhibit different dependencies to 

climatic variables.  For example in the elderly subpopulation, increased mortality during 

the early onset (i.e. 15th percentiles) was found to be associated only with September 

precipitation, while during the late penetration of influenza winter precipitation appeared 

to be the only climatic determinant.  In general, the elderly population was less affected 

by weather and climate interactions, in regards to influenza, as compared to adults and 

children.  The elderly were only affected by precipitation rather than weather and 

climate, the most reasonable relationship was an association between early fall 

precipitation (i.e. SEP, OCT).  Influenza P&I increased as precipitation increased.  

However, a significant anomalous negative association with precipitation was identified, 

which occurred only during the 50th and 75th percentiles.  These results may be a 

reflection of an elderly population that has been exposed to numerous influenza viruses 

throughout life, possessing a distinguished repertoire of antibodies, but with a waning 

immune systems (i.e. a significant proportion of P&I deaths in the most populous 

category of our analysis may be attributed to other illnesses other than influenza).   

In NYC, increased precipitation during the summer or fall months would provoke 

people to congregate indoors for recreation (e.g. movie theatres, shopping malls, 

gymnasiums), which the contained (i.e. indoor) environment could promote increased 

person-to-person influenza transmission.   From experience, people are more deterred 

from outdoor activity by rain, rather than cooler temperatures.  Increased winter 

precipitation was not a factor for influenza probably because NYC winters are already 

generally cold enough to force people indoors (i.e. increased winter precipitation would 
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not change human behavioral patterns as much as increased summer precipitation).  

Meade (2000) states that along with making the human body more susceptible to 

infection, certain climatic conditions would force people indoors thereby increased 

influenza infection.   The results of this analysis specifically implicate summer 

precipitation as cause for increased influenza mortality in NYC.  In NYC, cooler 

temperatures may provide a more efficient air mass for the transfer influenza virus 

particles (Meade and Earickson 2000), since generally cooler temperatures are associated 

with less humidity (Ahrens 2003).  Moreover, medical climatologists proposed that a dry 

air mass could promote the transmission of airborne virus particles (Licht 1964; Mills 

1939).   

The climatic associations identified in this analysis infer a lag period between 

influenza infection and the onset of symptoms.  For example, cooler temperatures from 

the previous winter were correlated to increased influenza mortality a year later.  

Although we provide no definitive microbiological evidence for a latent influenza virus, 

the results of this analysis certainly suggest that climatic conditions can affect the 

transmission of influenza virus several months before the associated mortality.  A 

percentile-based approach along with the incorporation of subpopulation data can provide 

surprising insight into the nature of the influenza virus, by identifying early or late 

influenza trends that are specific to age.   

 Regional Mortality and Morbidity 

 Regional associations of MMWR’s P&I mortality to climate did not exist in the 

South Atlantic (i.e. Southeast US), which may be due to the inclusion of states such as 

Florida in the region.  This may have confounded aggregated influenza counts because of 
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the warmer climate and the differences in influenza seasonality.  In tropical climates, 

influenza does not maintain a winter peak of influenza prevalence, rather a summer 

peaking of P&I mortality ( Pyle 1979; Pyle 1986; Cliff et al.1986; Hope-Simpson 1992; 

Cliff et al. 2000; Meade and Earickson 2000).  Examining Tampa, FL P&I data, which 

also produced no significant climatic correlations, influenza peaking exhibited less winter 

seasonality with sporadic peaking in spring, summer, and fall (Figure 16).  As compared 

to the Northeast region, the South Atlantic region spans several more degrees latitude, 

resulting in more salient climatic differences throughout the region.  A ‘regional’ 

measure of climate temperature and precipitation averages may be less representative of 

the actual climate experienced in any of the region, which may confound any associations 

to influenza prevalence.   

 Baltimore, MD, which was in the northern most frontier of the South Atlantic 

region did, however, exhibit significant association between influenza and climate and 

local weather conditions and to the global climate phenomenon ENSO.  In Baltimore, 

SOI averaged over several summer and fall months was found to be associated with the 

following spring’s precipitation which was in turn associated with influenza P&I 

mortality.  SF SOI was found to be more highly correlated (significant at the 0.01 level of 

a 2-tailed test) with P&I mortality than spring precipitation.  According to this study’s 

statistical results, a summer-fall La Nina ENSO cold phase (i.e. positive SF SOI) for 

Baltimore resulted in decreased precipitation during the following spring.  The decreased 

precipitation then resulted in greater P&I mortality (i.e. negative correlation coefficient).  

However, a negative relationship between influenza prevalence and precipitation was an 

uncommon result from the rest of our analyses.  For Baltimore, which is a coastal city 
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that may be more influenced by sea surface temperatures, decreased precipitation during 

the spring months might have different effects on human behavior patterns as compared 

to the usual summer or winter climatic associations.  Several theories of influenza 

transmission have been proposed that certain conditions of the air mass could be 

predisposed to more efficient viral transmission, such as in dry air (Licht 1964; Mills 

1939; Meade and Earickson 2000).  Less precipitation may be an indicator of drier air, 

which may be associated with less spring humidity in Baltimore, MD, but further analysis 

is needed.   
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Tampa, FL - Monthly P&I Mortality - 1996 1999
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Figure 15 – Tampa, FL P&I Mortality Time Series – 1996 - 2005 
 

 The Northeast region influenza dataset, which was the combination of Mid-

Atlantic and New England P&I counts from the MMWR, exhibited a strong negative 

relationship to winter temperature from the previous year (i.e. one-year lagged winter 

precipitation).  Lowered temperature resulting in increased influenza mortality coincides 

with these results for increased children mortality in NYC, and supports theories that 

increased exposure to the influenza virus in confined spaces results in higher influenza 
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prevalence (Cliff et al.1986; Pyle 1986; Cliff et al. 2000; Haggett 2000; Meade and 

Earickson 2000)   Unfortunately, P&I data from the MMWR cannot be further analyzed 

according to specific subpopulations, which might have corroborated our previous results 

that colder temperatures have an affect on influenza related mortality in children.  As 

compared to the South Atlantic region, the Northeast region is more populated, is at 

higher latitude, and generally experiences more severe winter because of the closer 

vicinity to the artic regions (Ahrens 2003), which may affect influenza prevalence 

because of the increased tendency of significant seasonal and annual weather 

fluctuations.  Taken as a whole, the northeast region contains less inclusive climatic 

variability than the South Atlantic, making a ‘regional’ measure of average temperature 

and observed precipitation more representative of the actual climate experienced 

throughout the area.  Boston, MA was the only other city in the Northeast region to 

exhibit P&I associations to climate, with relationships neither to seasonal precipitation 

nor temperature, but only to winter-spring SOI.  However, JFMA SOI was not correlated 

with any specific weather patterns, but may have other effects on Boston that were not 

analyzed, such as humidity or an abundance of extraordinary temperatures.   

 Regional isolate data, compiled from the WHO NREVSS collaborating 

laboratories (1997-2005), exhibited significant associations to climate.  In both the 

Northeast and South Atlantic regions, H3N2 and influenza B virus and their variants were 

the most predominant throughout the time series spanning from 1997 – 2005, while 

H1N1 transmission was sporadic but significant (13).  Influenza A-H3N2, which is 

derived from the influenza pandemic of 1968, (Taubenberger and Morens 2006; Webster 

et al. 1992), exhibited associations to both temperature and precipitation in our analysis.  
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In the Northeast region, A H3N2 and temperature positive association was found to be 

highly significant (e.g. significant at the .01 level of a two-tailed test) and very strong 

(e.g. Spearmans’s rho - .881).  An unusual positive correlation was produced, but since 

this relationship was during the spring months, this increased incidence may be explained 

by something other than increased familiarity within confined spaces.   

Conditions of the air mass associated with warmer spring temperatures may 

promote virus transmission (i.e. less spring precipitation results in drier air) (Licht 1964; 

Mims et al. 2004), or spring temperatures affect how people congregate in Baltimore.  In 

the South Atlantic, neither H3N2 nor influenza B exhibited any association with climate.  

However, increased H1N1 prevalence was found to be associated with a hotter and drier 

summer, which could be explained by changes to human behavior.  As increased summer 

temperatures in the South Atlantic increased to a point of discomfort, people may tend to 

congregate in public air-conditioned indoor space (e.g. shopping malls, movie theatres), 

which would then increased the probability of viral transmission through the air.  Further 

analyzing this relationship according to subpopulation could reveal more insight into why 

this association occurs for each particular virus strain.  Increased influenza B incidence 

was associated with the opposite climatic conditions.   

Most intriguing in the Northeast region was the inverse relationship exhibited 

between influenza B and H3N2.  As H3N2 became the predominant strain, influenza B 

was displaced to the bottom of the hierarchy.  This may reflect the ability of influenza 

strains to subdue other virus competitors (i.e. the predominant strain of influenza may 

prevent coinfection of influenza viruses) ( Webster et al. 1992; Horimoto and Kawaoka 

2005; Hsieh et al. 2005; Taubenberger et al. 2005; Taubenberger and Morens 2006).  
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However, this highly significant and very strong inverse relationship of influenza B and 

influenza A H3N2 may serve to confound our results of a climatic relationship with the 

isolate data.  The rise of specific influenza strain to predominance may in fact not be 

associated with climate, but rather may stem from a microbiological mechanism of 

influenza.  This analysis was confined to data availability of the isolate dataset, which 

was analyzed only at a regional level.  A more detailed local analysis of isolate data, such 

as performed for NYC for multiple cause P&I mortality data, may provide more 

definitive evidence for a climatological linkage.    

Table 17. 
Northeast – Inverse Relationship Between Influenza A H3N2 and Influenza B 

      
Influenza 

B 
Spearman's rho Influenza A 

H3N2 
Correlation 
Coefficient -1.000(**)

    Sig. (2-tailed) .000
    N 8

**  Correlation is significant at the 0.01 level (2-tailed). 
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Figure 16 – Scatterplot Diagram of Influenza A H3N2 and Influenza B 
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Implications of Influenza Linkages to Climate 

Public Health 

Determining the climatic variables associated with influenza epidemics and other 

diseases are of great significance to public health, especially for disease control and 

prevention.  Discovering the significance of environmental variables reveals the etiology, 

or origins, of a disease, and leads to a more accurate portrayal of disease distribution.  For 

example, determining the risk of vector-borne diseases is dependent upon the distribution 

of the host and vector, which are influenced by ecological factors.  Although not a vector-

borne disease, the prevalence of influenza was found to be associated with climatic 

factors such as precipitation, temperature, and phases of ENSO.  Other climatic variables 

such as low humidity have also been proposed to effect influenza transmission by 

providing a more suitable environment to virus infection ( Cliff et al.1986; Meade and 

Earickson 2000), and should be incorporated in further analysis.   

The identification of climatic variables that play a role in determining the onset or 

magnitude of an influenza epidemic allows for increased preparedness for public health 

officials.  Specifically, by establishing the existence of climatic associations to influenza, 

these factors can now be used in future analysis to develop models that predict influenza 

prevalence months and up to a year before hand.  For example, mortality in children was 

found to be associated with colder temperatures from the previous winter.  Furthermore, 

distinct weather conditions, could justify an increase in vaccine production, reducing the 

likelihood of influenza vaccine shortage in an epidemic year.  Although vaccines are 

tailored to each flu season (Hsieh et al. 2005), thereby reducing the efficacy of vaccine 

stockpiling, the incorporation of environmental variables to predict vaccine demand 
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could still be fruitful since winter conditions (i.e. precipitation and temperature) in many 

parts of US are accurately predicted according to summer-fall ENSO conditions 

(Redmond and Koch 1991)   Adequate vaccine production along with effective vaccine 

distribution could decrease both mortality and morbidity related to influenza.  

  Analytical 

Analysis according to spatial and temporal scale was significant in determining 

climatic relationship to influenza.  Regional versus local associations were decidedly 

different within both areas of study (e.g. South Atlantic and Northeast) when examining 

the CDC’s MMWR Mortality and Morbidity data (i.e. isolate data).  For example, in the 

South Atlantic, when analyzing data regionally there were no significant associations, but 

examining Baltimore, which is included in the South Atlantic region, several 

relationships between mortality and climate were identified.  To accurately assess 

influenza-climate relationships, analyzing influenza locally or within regions that 

constitute similar climates (e.g. Northeast US) is most effective.  Incorporating ENSO 

trends into local analysis, or within appropriately defined regions, is important because El 

Niños and La Niñas affect local weather differently throughout the US (Ahrens 2003).    

Partitioning cumulative annualized mortality counts according to the phases of the 

epidemic curve (e.g. early onset, late penetration) reveals statistical relationships that are 

not apparent when examining just annualized counts.  For example, temperature 

associations may only exist during the early onset of influenza (i.e. 15th percentile).  The 

multi-temporal analysis approach used for influenza can be applied to any disease dataset 

and could be used to clarify seemingly ambiguous associations.  Furthermore, 

relationships between disease and external factors (e.g. climatic, environmental, 



 90

sociological, and physiological) can potentially be unmasked by the use of multi-scale 

temporal analysis.  Identifying the demographic characteristics of the sample population 

is also important.  By characterizing populations according to age (e.g. children, adults, 

the elderly), susceptible populations can be identified.  Analyzing subpopulation 

according to a multi-temporal analysis (e.g. cumulative 15th percentiles, cumulative 75 

percentiles) can further reveal disease associations.  For example, early fall temperatures 

(e.g. September) were only significantly associated with the early onset of influenza (i.e. 

15th percentile) in the elderly population.  The results of this study underscore the 

importance of taking into consideration spatial scale, temporal scale, and characterizing 

the sample population (i.e. demographic analysis) when analyzing influenza, or any 

disease. 

Ecological 

A climatic association with influenza prevalence several months before the onset 

of influenza related symptoms or death (i.e. a lagged associated between influenza and 

climate), may suggest specific patterns to the transmission of influenza.  Hope-Simpson 

(1992) proposed that influenza was a latent virus, which erupted according to specific 

environmental triggering events, such as changes in photo-period (i.e. changes in daylight 

hours) or temperatures.  The results from our analysis support pieces of this theory.  

Delayed climatic associations between influenza prevalence were exhibited throughout 

all facets of the multi-scale and multi-temporal examination, which may suggest a latent 

influenza virus.  However, to prove the existence of a latent virus a more active influenza 

surveillance approach would need to be implemented, which unfortunately would be 

costly in resources and in funding.  Currently, influenza surveillance data is passive, 
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meaning that data are not actively supplied.  Furthermore, surveillance isolate data is 

voluntary and is collected as patients’ exhibit influenza like symptoms and physician’s 

request confirmation of influenza virus infection (i.e. influenza isolate counts) (CDC 

2006b).  Therefore, passive influenza surveillance data does not capture influenza 

prevalence throughout the usual ‘troughs’ (e.g. summer months) of influenza prevalence 

because there are few influenza like symptoms reported during these periods resulting in 

only a few isolates being tested.  However, even if active influenza surveillance was 

implemented, it is not guaranteed that a latent influenza would be identified because 

many viruses have been known to ‘hide’ in the human body, only to emerge when certain 

conditions (e.g. metabolic processes, physiological processes) in the human body are 

attained (Mims et al. 2004). 

A lagged climatic association to influenza morbidity or mortality, such as with 

summer temperature, may suggest that virus infection occurs in the summer months, with 

influenza related complications (e.g. coughing, sneezing) arising later in the influenza 

season when certain weather conditions are met (e.g. acute chilling of the body).  The 

identification of an environmental triggering event, such as proposed by Hope-Simpson 

(1992), could be invaluable for public health officials, since this could provide an early 

warning for a pending influenza epidemic.  According to the results of this analysis, the 

existence of an environmental triggering event for influenza is promising, since spring 

precipitation was found to affect the timing of influenza peaking (i.e. the highest monthly 

incidence of influenza) in the elderly population.  As precipitation increased, the peaking 

of influenza P&I mortality was hastened for the elderly.  
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Influenza A-H3N2 and H1N1 are two of the predominant influenza subtypes that 

are in circulation throughout the US.  The H3N2 influenza A subtypes have their genetic 

origin from the 1968 H3N2 pandemic(Horimoto et al. 2005), but preceding this mid 20th 

century pandemic, all these viruses are descendent from the H1N1 1918 influenza 

pandemic (Taubenberger et al. 2006), which killed at least 20 million people worldwide ( 

Patterson 1986; Kilbourne 2006).  Furthermore, according to recent research, the 1918 

H1N1 virus is derived from an avian influenza that adapted to humans (Taubenberger et 

al. 2005).  Therefore, two of the major influenza strains in circulations derive from an 

avian influenza virus.  Most likely, all influenza A type viruses are of avian origin 

(Horimoto et al. 2005).  The natural reservoir for influenza is suspected to be aquatic 

birds (ducks, geese) because they commonly exhibit no ill effects to low pathogenic AI 

(Webster et al. 1992; Horimoto et al. 2005).  Ducks and other aquatic birds tend to 

congregate into flocks in the late fall and winter (Sibley 2001), creating dense 

populations that are optimal for efficient influenza transmission.  The flocking instincts 

of aquatic bird are probably driven by temperature changes (Sibley 2001).  Because of 

their likely avian origin in ducks and other shorebird, the winter seasonal nature of 

influenza in humans may be a relic of AI in bird species.  A dense population is required 

to sustain a reoccurring influenza epidemic in humans (Cliff et al.1986; Cliff et al. 2000), 

which may have linkages to the dense population of flocking aquatic birds in the winter.  

The flocking instinct may also explain the winter seasonality of peaking in humans.  The 

influenza virus may have originally adapted to disease shedding (i.e. transmitting disease 

through coughing, sneezing, excrement) during the colder months when bird populations 

are dense.   
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Influenza B virus, the third major influenza strain in circulation, is not found in 

avian species, only in humans, yet exhibits winter seasonality (Webster et al. 1992; 

Horimoto and Kawaoka 2005). Influenza B did not exhibit any association to climate in 

the South Atlantic.  Climatic associations to influenza in the Northeast are inconclusive 

because of highly significant negative association between influenza A H3N2 and 

influenza B, which could be confounding any climatic associations.  The lack of 

definitive climatic association toward influenza B, may suggest that the strain possesses 

distinct climatic dependencies from influenza A viruses.  On the other hand, influenza A 

viruses exhibited associations to climate, including H1N1 which was not correlated with 

any other influenza type (e.g. influenza B), providing conservative evidence to climatic 

associations.  Nonetheless, significant climatic associations several months preceding the 

usual peaking of influenza suggests that enviro-climatic conditions play an important 

role in determining the magnitude of influenza prevalence according to influenza A 

viruses.  The identification of a latent virus may provide a better understanding in the 

etiology of the influenza virus. 

 

3.6 CONCLUSIONS 

 Seasonal fluctuations in precipitation and temperature were associated with 

influenza morbidity (i.e. influenza isolate data) and mortality (i.e. P&I mortality).  

Seasonal ENSO phases (i.e. averaged SOI values) were significantly associated with 

influenza prevalence, but were also associated with local and regional climate that in turn 

affected influenza morbidity and mortality.  Characterizing the sample population (e.g. 

adult, children) was useful in determining significant climate association. Similarly, the 
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consideration of scale in the analytical processes revealed previously undefined 

associations at smaller scales (i.e. local analysis revealed climatic relationships that were 

masked at a regional scale).  Utilizing varying temporal scales (e.g. percentiles 

corresponding to the distinct phases of disease diffusion) were useful in determining 

different associations according to the phases of influenza penetration.   Specific 

influenza types and subtypes (e.g. influenza B, H3N2-A, H1N1-A) exhibited distinct 

climatic relationships, and a lag time of several months between climatic associations and 

the usual influenza peaking (e.g. winter), was common throughout the results of this 

analysis.  A climate-influenza lag time can be useful for future disease modeling, by 

providing a significant amount of time for public health preparedness plans (e.g. 

vaccination programs, medical supply, and distribution).   
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