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THE KINETICS OF EPOXIDATION OF Α,Β-UNSATURATED ESTERS BY 

DIMETHYLDIOXIRANE: A MECHANISTIC STUDY 

 

by 

 

JOHN P. SANSONE 

 

 

Under the Direction of Alfons Baumstark 

 

ABSTRACT 

The epoxidation of a series of α,β-unsaturated esters by dimethyldioxirane was studied. Second 

order rate constants were determined under pseudo first order conditions. The epoxide of each 

ester upon full conversion was found to be the only isolable product. Second order rate constants 

for the cis-like ethyl tiglate showed a 4 fold increase over that of trans-like angelic methyl ester. 

The ester substituent was found to have little effect on overall rate constants. A comparison of a 

relatively strained cyclopentene carboxylate to the cyclohexene carboxylate showed a 2 fold 

increase in selectivity for the former. Ethyl methacrylate displayed unexpected reactivity toward 

dioxirane; undergoing reaction faster than more substituted electron rich alkenes. Computer 

modeling studies using the AM-1 and density functional approaches were carried out to gain 

insights into the mechanistic aspects of the reaction. The esters in general favored the S-cis 

conformation or were evenly distributed among S-cis and S-trans except for the ethyl 



methacrylate case. The AM-1 approach did not predict the reactivity of open chain esters. The 

density functional approach predicted the relative reactivity of seven of the nine esters but could 

not predict the reactivity when the R1 group was substituted. One possible explanation is that the 

computer model predicts the methyl groups of the dioxirane to be positioned over the R1 group 

in the lowest energy of all other esters, but steric clash prevents this for angelic methyl ester and 

ethyl 3,3 dimethyl acrylate. 
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Introduction  

    A. History 

 

Dioxiranes are selective and potent oxygen transfer reagents. Historically, The three 

membered cyclic peroxides are used in difficult oxygen transfer reactions such as oxygen 

insertion into tertiary C-H bonds
1
, or in some cases to create an enantiomeric excess during a 

synthetic epoxidation reaction
2
.  

The existence of a dioxirane was proposed as early as 1899 as an intermediate in the 

famous Baeyer-Villager oxidation
3
, although it is now thought that there are in fact no dioxirane 

intermediates involved in this reaction (Reaction 1). 
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In 1972 the first dioxirane synthesis patent was filled for the synthesis of 

trifluorodimethyldioxirane by Talbott and Thompson
4
. The synthesis involved the reaction of the 

dilithium alkoxy precursor with F2 under Argon atmosphere (Reaction 2). 
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The synthesis yielded a pale yellow solution which could then be purified by low temperature gas 

chromatography. The resulting perfluorodioxirane solution was then analyzed by 
19

FNMR, and 

Mass spectrometry. Further physical evidence of dioxiranes came five years later when Martinez 

et. al. detected The parent compound via low temperature gas chromatography using a mass 

spectrum detector
5
 in 1977. One year later Suenram and Lovas characterized the bond lengths 

and dipole moment of unsubtituted dioxirane created during the reaction of ozone with ethylene 

using microwave spectrometry
6
 (Figure 1). 

 

 

 

 

 

 

 

 

 

Figure 1: The geometry of dioxirane as determined by microwave spectroscopy
6
. 

 

 

Enriched 
18

O studies were used by Curci and coworkers to provide evidence of dioxirane 

intermediates in the caroate/ketone system
7
. The researchers showed that not only was the 

caroate system a powerful oxygen transfer system, but that it also displayed stereoselectivity, 
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yielding in many cases only one stereoisomer of the product. Curci proposed a mechanism of 

dimethyldioxirane formation in the caroate system based on the study (Reaction 3). 

 

 

 

 

 

 

 

 

 

 

In 1989 Murray developed a procedure to isolate dimethyldioxirane from the caroate/acetone 

system
8
. Dimethyldioxirane was isolated by vacuum distillation and collected in a vessel at low 

temperature. Further low pressure distillation of the dioxirane yields a pale yellow solution of 

between 0.08 and 0.11 molar dioxirane in acetone. The isolation of dimethyldioxirane allowed 

physical data of the compound to be collected. Most importantly for kinetic research, UV 

spectroscopy experiments of dioxirane in acetone yielded a λMax of 335 nm with a molar 

absorptivity of ε=12.9 cm
-1

 M
-1

. Infrared spectroscopy experiments have shown major 

absorptions for dimethyldioxirane at 1209 cm
-1

,1094 cm
-1

, and 899cm
-1

. A proton NMR 

spectrum of dimethyldioxirane shows only one absorption at 1.65ppm.  
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B. Reactions of Dimethyldioxirane  

 Dimethyldioxirane has been shown to be a very versatile oxygen transfer reagent as both 

a distilled solution (in acetone) and in situ as part of the acetone/caroate system. In general terms 

dimethyldioxirane is known to epoxidize a number of alkenes (Reaction 4) from simple alkenes, 

to sterically hindered alkenes, to electron poor α,β-unsaturated alkenes
9,10,

. 
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Dioxirane has also been used to oxidize sulfide bonds to sulfoxides and on to sulfones (Reaction 

5) when reacted with excess dioxirane
11

. 
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Secondary aliphatic and aromatic amines can undergo an oxygen insertion to form a new N-O 

bond (Reaction 6), while primary amines can form the corresponding nitro compound
14
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Dimethyl dioxirane will also oxidize secondary alcohols to ketones (Reaction 7), as well as 

aldehydes to carboxylic acids
12,13

.    
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The reaction of dimethyldioxirane with a series of ethers has been shown to produce the 

corresponding alcohol and ketone presumably via the corresponding α-hydroxy ethers
15

 which 

spontaneously decomposes (Reaction 8). 
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One relatively unique reaction of dimethyldioxirane is ability to insert an oxygen atom in to a 

tertiary carbon center at room temperature under mild conditions. The final result is to convert an 

otherwise unreactive C-H sigma bond into a new C-OH bond
16 

(Reaction 9). 
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The general reactions above along with numerous others have drastically increased interest in 

dioxirane chemistry. For example, the ability to insert an oxygen atom into a carbon sigma bond 

has peaked interest in dioxiranes as a method to functionalized the so-called nanodiamonds 
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adamante and diamante
17

. Outside of the research community, chemistry industry has recently 

looked into employing dioxirane in bleaching reactions for products like wood pulps
18

.  

 

 

C. Relative Reactivity 

 The relative reactivity of many of the above reactions has been determined. Kinetic 

experiments carried out under equal conditions has been used to compare the relative reactivity 

many of the reactions of dioxirane. The conditions of every reaction are kept constant by using a 

water bath to control temperature, maintaining dried conditions, and minimizing the presence of 

metal ions by cleaning all glassware with a chelating agent. The k2 value of a reaction can then be 

found under these specific conditions and compared to determine the relative reactivity of certain 

compounds with dimethyldioxirane. 

Of the reactions listed above hetero atoms have been found to be the most reactive toward 

dioxirane. The hetero oxidation of phosphorus would take place faster than that of sulfer in the 

same conditions. Amines are the least reactive toward dioxirane in this group of reactions (Table 

1). 

 

Table 1: Typical k2 ranges for a series of selected sulfides, sulfoxides, and nitrogen containing 

aromatics with dimethyldioxirane at room temperature.   

Class  k2 range (M
-1

 s
-1

) 

Aryl methyl sulfide
11 

3.7 x 10
1
 – 3.8 x 10

2
 

Aryl methyl sulfoxide
11 

4.6 x 10
1
 – 8 x 10

2
 

Pyridines
14 

7 x 10
-1

 – 1.4 x 10
-2

 

Quinoline
14 

3.3 x 10
-1

 – 1.1 x 10
-1

 

Isoquinoline
14 

1.47 – 1.01 
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Alkenes are generally less reactive toward dimethyldioxirane than hetero atoms. Kinetic 

experiments have elucidated a dramatic difference in reactivity among alkenes based on both 

steric and electronic effects. For example cis 2-butene was found to undergo reaction about seven 

times faster than trans 2-butene
19

, with other cis/trans pairs following a similar pattern. 

Electronically it was found that electron releasing alkyl groups will increase the observed k value 

by about an order of magnitude per added substitution level (ie. primary < secondary < tertiary). 

Consequently the addition of an electron withdrawing carbonyl group conjugated to the alkene 

moiety will decrease the kinetic value on the order of 2000 times
20

. Table 2 summarizes ranges 

of k2 values found for reactions of diethyldioxirane with alkenes. 

 

Table 2: Typical k2 ranges for a series of selected alkenes with dimethyldioxirane at room 

temperature. 

Class k2 range ( M
-1

 s
-1

) 

Simple cis alkenes
19

 4.6 x 10
-1

 - 4.7 x 10
-2

 

Simple trans alkenes
21

 8.4 x 10
-2

 - 1.2 x 10
-2

 

Alkyl dienes
20

 8.7 x 10
-1

 - 3.83 

α,β-unsaturated ketones
20 

6.2 x 10
-2

 - 2.1 x 10
-4

 

α,β-unsaturated esters
20 

2.4 x 10
-2

 - 1.7 x 10
-4

 

 

 

Secondary alcohols and ethers are generally less reactive toward oxygen insertion by 

dimethyldioxirane than alkenes are toward epoxidation. Among secondary alcohols open chain 

alcohols are slightly more reactive than cyclic secondary alcohols. The oxidation of secondary 
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alcohols occurs at least 10 times faster than the corresponding methyl ether.  Table 3 summarizes 

expected k2 values of secondary alcohols and ethers. 

 

Table 3: Typical k2 ranges for a series of selected secondary alcohols and ethers with 

dimethyldioxirane at room temperature.  

Class k2 range (M
-1

 s
-1

) 

Secondary OH 
12,22

 2.24 x 10
-2 

- 3.8 x 10
-3

 

Cyclic secondary OH 6.4 x 10
-2 

- 5.4 x 10
-3

 

Dialkyl ethers 
15

 6.8 x 10
-4

 – 3 x 10
-4

 

Alkyl benzyl ethers 
23

 1.85 x 10
-2

 – 9.45 x 10
-3

 

 

 

The ranges given above are typical examples of what should be expected for a certain family of 

compounds. It should be noted that most families can display rather large ranges of reactivity due 

to the high sensitivity of dioxirane to electronic and steric effects. There is much overlap between 

each family because of the large ranges. 

  

 

D. Mechanistic studies 

 Most mechanistic studies of dimethyldioxirane chemistry fall in to two categories. The 

first studies experimentally examined the nature of the attack i.e does the dioxirane undergo a 

nucleophilic attack, an electrophilic attack, proceed through a radical mechanism, or have a so 

called biphilic nature. Later computer modeling studies were incorporated to explore the 
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transition state geometry, as well as further explore a possible radical or carbonyl oxide 

intermediate in the reaction. 

 Experiments involving Hammet constants have been used extensively to study the 

nucleophilic/electrophilic nature of dimethyl dioxirane with uniform results. For example Murray 

and Shiang explored the Hammet constant of the highly electron poor alkene moiety of ethyl 

cinnimate
24

 finding a value of σ= -1.53, which is indicative of an electophilic oxygen transfer.  

Hanson et. al. found similar results in a study of the kinetics of aryl methyl sulfides
11

, with 

hammet σ values in the range of -0.54 to -1.13 in a variety of solvents. Several such experiments 

exist, all seemingly supporting an electrophilic mechanism of dimethyldioxirane.  

In 2001 Duebel challenged the idea that the epoxidation of alkenes always proceeds with 

a nucleophilic attack of the alkene on the dioxirane with computational models that suggested a 

biphilic character
25

. The idea of a biphilic dimethyldioxirane which acts as a nucleophile on 

electron poor alkenes and an electrophile when the alkene is electron rich was refuted by Curci 

and co-workers
26

 in 2007. Experimentally Curci sighted a previous study of the very electron 

poor ethyl cinnimate family. The experimentally determined σ value for dimethyldioxirane with 

the family was found to be – 0.91 further supporting the electrophilic hypothesis. Furthermore, 

computer modeling at the density functional level by Duebel failed to support a biphilic character 

in any case.  

 The mechanism of the reaction of the oxygen insertion reaction of dimethyldioxirane with 

unfunctionalized C-H bonds has been one of intense debate over the years. Early kinetic evidence 

of oxyfunctionalization of alkanes yielded a clean second order rate which does not support a 

radical mechanism
27

.  Also the reaction proceeds with stereoselectivity suggesting that the 

reaction is not initiated by a radical since one would expect to see rearranged products. 
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Experiments to probe for a possible diradical intermediate have shown little evidence of a 

radical. A current theory proposed is that a caged diradical may be involved in the transition state 

during widening of the O-O bond. It was thought that a caged radical should show some leakage 

leading to chlorinated products by reaction of the radical with dichloromethane or chloroform 

solvent
28

. Some experimental evidence of a radical pathway was found later by reaction of 

adamantine
29

 with dimethyldioxirane under inert atmosphere, and or addition of CCl3Br. The 

reaction follows a composite rate law in the absence of the O2 radical scavenger that was likely 

the normal second order reaction mixed with a side reaction following a radical mechanism. 

Molecular modeling studies at the B3LYP level carried out by Freccero and coworkers confirmed 

the possibility of radical pair formation in the O-insertion into isobutane
30

.  

The notional of a carbonyl oxide intermediate was studied by Shaffer and Kim in 2000 by 

computational methods
31

.  Their study found a huge energy barrier of 23.2 kcal/mol for the 

rearrangement of dioxirane to carbonyl oxide, suggesting that the rearrangement is not likely 

during the reaction.   

The geometry of the transition state epoxidation of alkenes has been extensively studied 

via kinetic data and  computational approaches. Kinetic experiments led researchers to the idea of 

a concerted SN2-like mechanism. Computer models were used to calculate the geometry and 

energy of the transition state and allowing for the calculation of the energy of activation for the 

epoxidation of simple alkenes. The calculated energy of activation was then used to calculate krel 

values for the alkenes which could then be compared to experimental findings. The currently 

held spiro transition state (Figure 2), as opposed to a planar transition state (figure 3), was first 

proposed by Baumstark to explain the unusual selectivity of dimethyldioxirane in the epoxidation 

of cis-2-butene vs. trans-2-butene
32

.  



12 

 

Figure 2: Visualization of the spiro transition
32

 state where an imaginary line drawn through the 

methyl groups of the dimethyldioxirane would run parallel to the carbon-carbon double bond. 

Hydrogen atoms excluded, bonds to hydrogens shown in white and yellow* 

  

 

 

Figure 3: Visualization of the classic butterfly transition state where an imaginary line drawn 

through the methyl groups of the dimethyldioxirane would run perpendicular to the carbon-

carbon double bond.  

Hydrogen atoms excluded, bonds to hydrogens shown in white and yellow* 
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E. Research Statement 

Mechanistic studies over the years have undoubtedly helped spark the continually 

growing interest in dioxirane chemistry as a powerful method for quick, efficient, and selective 

oxygen transfer processes. The kinetics approach has been used extensively by this group to 

elucidate the mechanism of oxygen transfer in epoxidations. An understanding of the mechanism 

may aid the understanding of the origins of the selectivity of dimethyldioxirane, and lead to 

development of more selective dioxiranes or aid in the use of dimethyldioxirane in synthesis. For 

example kinetics studies revealed that dimethyldioxirane has a 7 fold higher affinity to undergo 

reaction with cis-2-butene over trans-2-butene showing the sensitivity of dioxirane to steric 

influences. A study comparing alkenes of differing levels of substitution showed roughly a ten-

fold increase in selectivity for alkenes having a higher level of substitution (i.e trisubstituted 

alkenes undergo reaction 10 times faster than disubstituted). The increase in selectivity for 

alkenes having more electron releasing substituents demontrated the sensitivity of 

dimethyldioxirane to the electron density of the alkene.  

 In order to build a more complete understanding of dioxirane chemistry a mechanistic 

study of the reaction of dimethyldioxirane with a series of α,β-unsaturated esters will be carried 

out. With a large body of kinetic and computer modeling studies carried out already, much is 

known about the major factors that influence reactivity with dimethyldioxirane. These less 

reactive, electron poor alkenes should give insight into more subtle factors. For example a major 

focus of this work is to examine how rotation about the sigma bond between the alkene and 

carbonyl groups i.e. S-cis/S-trans isomerism will affect the overall rate constants. Ground state 

equilibrium computer models will be used to predict the relative amount of each conformer 

present at room temperature. Computer models will aid in examining what factors affect this 
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equilibrium, and subsequently how will that equilibrium affect the energy of the transition state 

with dimethyldioxirane. The accuracy of the AM-1 and density functional models will also be 

compared. For earlier studies the AM-1 model gave results in good agreement with kinetic 

experiments. More recently however, the AM-1 approach was found to be insufficient to describe 

α,β-unsaturated ketones. This study will further examine the usefulness of AM-1 calculations for 

α,β-unsaturated alkenes. Similarly the density functional model will be used to see if it can 

accurately predict the relative reactivity of α,β-unsaturated esters. 

 Second order rate constants will be determined to investigate factors that affect reactivity, 

by investigating selectivity between unsubstituted, mono, and disubstituted α,β-unsaturated 

esters, the impact of electron donating alkyl groups around the alkene can be examined. Rate 

constants for ethyl crotonate and tert-butyl crotonate will give insight into the effect of 

substitution at the alkoxy moiety. Finally, two cyclic ester differing by the size of the ring will be 

studied to determine how ring size may affect overall reactivity. 

 A product study will be undertaken to study the outcome of the reaction. Will each ester 

yield only the corresponding epoxide? NMR spectra of the products will also be used to search 

for side reactions, or possible rearrangement during the reaction leading to unforeseen products. 
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Results 

A: Product Studies 

                 Product studies of esters 1-9 (Table 4) were carried out. Each ester was allowed to 

undergo reaction with excess dimethyldioxirane. The resulting reaction mixtures were analyzed 

by GC/MS confirming the epoxides as the only isolable products in every case (Reaction 10). 

 

Table 4: Structure of esters 1-9. 

Ester R1 R2 R3 R4 

1 H Me Me Et 

2 H H Me Me 

3 Me H Me Me 

4 Me Me H Et 

5 H Me H Et 

6 H Me H t-Bu 

7 H H H Et 

8 H -CH2- CH2-CH2- CH2- Me 

9 H      -CH2-CH2-CH2- Me 

 

  

 

  

    

(10) 
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The structure of the distilled products 1a-9a was further examined by H
1
 and C

13
NMR studies. 

 

Figure 4: 
1
HNMR spectrum of ethyl tiglate (1) in CDCl3. 

  

                                              

O

O CH3

CH3

O

CH3  

 

 

 

 

 

 

 

 Figure 5:
13

CNMR spectrum of ethyl tiglate (1) in CDCl3.  

 

                                               

O

O CH3

CH3

O

CH3
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Table 5:  Summary of 
1
HNMR spectral data for epoxide product of the reaction of α,β-

unsaturated ester with dimethyldioxirane in CDCl3/CCl4 solvent.  

Epoxide         

1a
33

 1.29 (t,3H) 1.35 (d,3H) 1.50 (s,3H) 3.30 (q,1H) 4.20 (q,2H) 

2a  1.32(d,3H) 1.55 (s,3H) 3.00 (q, 1H) 3.77 (s,3H) 

3a 1.30 (t,3H) 1.56 (s,3H) 2.70 (d,1H) 3.06 (d,1H) 4.19 (q,2H) 

4a 1.31 (t,3H) 1.38 (s,3H) 1.43 (s,3H) 3.29 (s,1H) 4.24 (q, 2H) 

5a
34

 1.24 (t,3H) 1.33 (d,3H) 3.05 (d,1H) 3.12 (m,1H) 4.15 (q, 2H) 

6a 1.49 (s,9H) 2.17 (d,1H) 2.88 (m,1H) 3.28 (m,1H) 

7a 1.13 (t,3H) 2.14 (d,1H) 2.23 (m,2H) 4.24 (q,2H) 

8a 1.38 m,2H) 1.53 (m,2H) 1.92 (m,4H) 2.43 (m,1H) 3.74 (s,3H) 

9a  1.47(m,2H) 1.69 (m,1H)  2.06 (m,1H) 2.13 (m,3H) 3.77 (s,3H) 

 

 

Table 6: Summary of 
13

CNMR spectral data for epoxide product of the reaction of α,β-

unsaturated ester with dimethyldioxirane in CDCl3/CCl4 solvent. 

Epoxide                 

    1a
34

 13.2 13.4 14.1 57.2 57.6 61.3 171.2
a
   

    2a
34 

13.6 19.1 51.9 59.3 59.5 170.0
a
     

    3a
34

 14.0 17.4 52.5 54.0 61.2 171.0
a
     

    4a
34 

14.3 18.2 24.3 59.2 59.9 61.2 168.3
a
   

    5a 14.1 17.1 53.7 54.1 61.2 168.8
a
     

    6a
34 

27.9      30.7 45.8 47.7 82.1     168.0
a
     

    7a 13.8 46.0 47.0 61.3 169.0
a
       

    8a 18.9 19.2 23.8 24.1 52.1 56.4 57.5 171.2
a
 

    9a 19.1 26.7 27.2 52.2 62.8 63.6 169.7
a
   

* absorptions with 
a
 correspond to carbonyl carbons 
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The full spectrum of each epoxide ester 2a-9a can be found in Appendix A.  

The 
1
H or 

13
CNMR spectral data were in agreement with literature values for esters

33,34
 

1a-6a. No published values could be found for epoxides 7a-9a, so evidence for the formation of 

those epoxides was found by migration of vinylic proton signals upfield to a chemical shift 

similar to the hydrogens ascociated with the epoxide moieties in esters 1a-6a. The spectra of all 

epoxide esters was consistent with signals to be expected for those compounds.  

 In the 
1
HNMR studies every ester showed at least one absorption expected for a hydrogen 

attached to a carbon attached to an oxygen in the range of 3 - 4.3 ppm for the epoxide moiety. 

Absorptions corresponding to hydrogens connected to carbons not directly attached to 

electronegative atoms were seen in the ranges of 1.1 – 2 ppm, which is typical of these protons.  

 The 
13

CNMR spectra were also consistent with expected absorptions. Every epoxide ester 

Had a single absorption between the ranges of 168 – 171.2 ppm corresponding to the carbonyl 

carbon. The epoxide esters also all contained three absorptions in the range 45-82 ppm 

corresponding to carbons attached to oxygens, one for each carbon attached to the epoxide 

oxygen, and a third for the carbon attached at the alkoxy linkage. Each spectra also contains 

absorptions pertaining to CH3 groups not attached to electronegative atoms in the range of 13-27 

ppm.    

 

 

B. Kinetic Experiments 

The epoxidation of alkenes is known to follow a second order rate constant. The k2 values 

were calculated under pseudo first order conditions with a 10:1 molar excess of ester at room 

temperature. The concentration of dimethyldioxirane over the course of the reaction was then 
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observed via UV/VIS spectroscopy. Figure 6 shows the loss of absorption of dimethyldioxirane 

over the course of a reaction. 

 

 

Figure 6: Absorbance of 1.0 mL of dimethyldioxirane with respect to time at 330 nm while 

undergoing reaction with 0.1 mL ethyl tiglate in acetone at 23
0
 C.   

 

 

The natural log of absorbance with respect to time is calculated and then plotted. A best fit line 

through the data points gives a slope of the data (Figure 7). The slope of the line is then used to 

calculate k2 constants at room temperature.  
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Figure 7: Natural log of Absorbance of 1.0 mL of dimethyldioxirane with respect to time at    330 

nm while undergoing reaction with 0.1 mL ethyl tiglate in acetone at 23
0
 C. 

 

 

The reaction of dimethyldioxirane with α,β-unsaturated esters was shown to be first order 

with respect to both dioxirane and ester by the comparison of pseudo first order kinetic data of 

both a 1:10 ratio of dimethyldioxirane  to angelic methyl ester, and 10:1 ratio (Appendix B). The 

two ratios had similar k2 values (Table 7), suggesting that the reaction is indeed second order.  
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Table 7: Comparison of k2 values of the reaction of dimethyldioxirane with angelic methyl ester 

at a 10:1 and 1:10 molar ratio. 

Ratio of Dioxirane to Ester Dioxirane (M) Ester (M) k2 (M
-1

 s
-1

)x10
-3

 

1:10 ratio 0.03 0.27 2.04 

10:1 ratio 0.1 0.014 3.00 

 

 

As a second check of accuracy and purity of reagents, the kinetics for each ester was run in both a 

more concentrated and less concentrated dilution (Appendix B), but still at a 10:1 ratio. Both the 

more concentrated and less concentrated dilutions gave essentially the same k2 (Table 8).  

 

Table 8: Comparison of concentrations and k2 value of reaction of dimethyldioxirane with ethyl 

acrylate at two different dilutions. 

Dimethyldioxirane (M) Ethyl acrylate (M) k2 (M
-1

 s
-1

)  

0.03 0.28 1.70 x 10
-3 

0.02 0.19 1.70 x 10
-3 

 

 

Table 9 below, shows the calculated rate constants and relative reaction rates for the 

  

epoxidation of α,β-unsaturated esters 1-9 by dimethyldioxirane in dried acetone at 23 
o
C. 
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Table 9: k2 rate constants for dimethyldioxirane with esters 1-9 at 23
O
 C. 

Ester   k2 (M
-1

 s
-1

)*10
3 krel 

1 

                                   CH3CH3

O

O
Et

 

9.6 56.5 

2 

                                   

CH2

CH3

O

O
Et

 

2.35 13.8 

3 

                                    

2.0 11.7 

4 

                                    

O

O
Et

CH3

CH3

 

1.6 9.4 

5 

                                    

O

O
Et

CH3  

0.35 2 

6 

                                    

0.27 1.6 

7 

                                     
CH2

O

O
Et

 

0.17 1 

8 

         

O

O

CH3

 

6.7 1 

9 

               

O

O
CH3

 

14.9 2.2 
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The k2 value for esters 2,4,5, and 7 were compared to results from previous experimenters with 

good agreement in general except for the literature results for esters 2 and 5 which were 

inadvertently switched (Table 10).  

 

Table 10: Comparison of kinetic data for epoxidation of esters 2,4,5,  and 7 by 

dimethyldioxirane. 

Ester Literature
18

 k2 (M
-1

s
-1

) 

Unpublished senior 

research
35

 k2 (M
-1

s
-1

) Experimental k2 (M
-1

s
-1

) 

 

2 

  

3.9 x 10
-4

 2.2 x 10
-3

 2.35 x 10
-3

 

 

4 

 

 

No Data 1.1 x 10
-3

 1.6 x 10
-3

 

 

5  

 

2.3 x 10
-3

 3.5 x 10
-4

 3.5 x 10
-4

 

 

 

7 

  

No Data 1.9 x 10
-4

 1.7 x 10
-4

 

*R= Me for Literature, R = Et for Senior research, and experimental 

 

 

The unpublished senior research by Aly
35

, is in good agreement with k2 values for this body of 

work.  The esters used for both experiments were exactly the same.   If the literature k2 values   

for esters 3 and five are switched
18

 there is very good agreement for ester 3 (2.2, 2.3, and 2.35  

M
-1

s
-1

). The k2 values for ester 5 have a bigger difference between the literature value and the 

two other studies (3.9 M
-1

 s
-1

 x10
-4

 vs. 3.5 M
-1

 s
-1

 x10
-4

), which is likely due to different 

substituents on the alkoxy group, where the literature value was derived from the methyl ester, 

CH3

O

O

R
*
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and the two subsequent studies used the ethyl ester. The studies are still comparable however as 

the alkoxy substituent has been shown to have little effect on the overall rate constant.  

 

 

C. Computer Modeling Studies 

 I. Ground State Modeling 

 

 Each of the seven open chain esters was modeled using Spartan ’04 in different ground 

state conformations. Each ester was constrained to both an S-cis and S-trans conformation and 

minimized. A third possibility of a twisted hybrid was predicted by the computer by was found to 

be of much higher energy than the constrained models in every case. A ground state equilibrium 

calculation was then performed on every minimized ester using the density functional method 

with a 6-31G* basis set. A Gibbs free energy for each ester in each conformer was then 

calculated. By subtracting the Gibbs free energy of each ground state conformer a ΓG was found 

for the equilibrium between S-cis and S-trans. The difference in free energy between the 

conforms was then used to predict the percentage of each conformer at room temperature. A 

control calculation was carried out using the known values of the equilibrium between 

cyclohexane in the chair and twist boat forms. The results were in good agreement with 

experimental findings (Table 11). 

 

Table 11: Control experiment comparing the Calculated energy difference between the chair and 

twisted boat conformations of cyclohexane at the density functional level. 

 

E Chair (J/mol) E Twist boat (J/mol) ΓE calculated (J/mol) ΓE Experimental
36

 (J/mol) 

 Cyclohexane 

 

-618923.851 

 

-618901.105 22.75 23 
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Tables 12-20 summarize the ground state equilibrium calculations of conformers of esters 1-9. 

 

Table 12: Ground state energies and percentages of S-cis and S-trans conformations of methyl 

acrylate at room temperature using density functional calculations. 

Methyl Acrylate (7) Energy (Kcal/mol) ΓE (Kcal/mol) k Percent 

S-cis -192270.634 -0.768 0.273 78.5 

S-trans -192269.866 

  

21.5 

 

 

Table 13: Ground state energies and percentages of S-cis and S-trans conformations of t-butyl 

crotonate at room temperature using density functional calculations. 

t-Butyl Crotonate (6) Energy (Kcal/mol) ΓE (Kcal/mol) k Percent 

S-cis -290894.293 -0.597 0.365 73.3 

S-trans -290893.696 

  

26.7 

 

 

Table 14: Ground state energies and percentages of S-cis and S-trans conformations of methyl 

crotonate at room temperature using density functional calculations. 

Methyl Crotonate (5) Energy (Kcal/mol) ΓE (Kcal/mol) k Percent 

S-cis -216929.2 -0.966 0.196 83.6 

S-trans -216928.234 

  

16.4 

 

 

Table 15: Ground state energies and percentages of S-cis and S-trans conformations of methyl 

3,3-dimethyl acrylate at room temperature using density functional calculations.  

Methyl 3,3Dimethyl 

Acrylate (4) Energy (Kcal/mol) ΓE (Kcal/mol) k Percent 

S-cis -241585.246 -1.764 0.051 95.1 

S-trans -241583.482 

  

4.9 
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Table 16: Ground state energies and percentages of S-cis and S-trans conformations of methyl 

methacrylate at room temperature using density functional calculations. 

Methyl methacrylate (2) Energy (Kcal/mol) ΓE (Kcal/mol) k Percent 

S-cis -216926.923 0.304 0.597 37.4 

S-trans -216927.227 

  

62.6 

 

 

Table 17: Ground state energies and percentages of S-cis and S-trans conformations of angelic 

methyl ester at room temperature using density functional calculations. 

 Angelic methyl ester (3) Energy (Kcal/mol) ΓE (Kcal/mol) k Percent 

S-cis -241582.837 -12.18 1.15E-09 100 

S-trans -241570.657 

  

0 

 

 

Table 18: Ground state energies and percentages of S-cis and S-trans conformations of tiglic 

methyl ester at room temperature using density functional calculations. 

Tiglic methyl ester (1) Energy (Kcal/mol) ΓE (Kcal/mol) k Percent 

S-cis -241583.914 -0.075 0.881 53.2 

S-trans -241583.839 

  

46.8 

 

 

Table 19: Ground state energies and percentages of S-cis and S-trans conformations of methyl-1-

cylohexene carboxylate at room temperature using density functional calculations. 

Methyl-1-cyclohexene-1-

carboxylate (8) Energy (Kcal/mol) ΓE (Kcal/mol) k Percent 

S-cis -290144.93 0.009 0.984925 49.5 

S-trans -290144.939 

  

50.5 
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Table 20:Ground state energies and percentages of S-cis and S-trans conformations of methyl-1-

cyclopentene carboxylate at room temperature using density functional calculations 

Methyl-1-cyclopentene-1-

carboxylate (9) Energy (Kcal/mol) ΓE (Kcal/mol) k Percent 

S-cis -265488.359 0.15 0.776335 43.7 

S-trans -265488.509 

  

56.3 

 

 

II. Transition State Modeling  

 A transition state calculation was carried out on each ester in both the S-cis and S-trans 

conformation, except in the cases of angelic methyl ester and methyl 3,3-dimethyl acrylate which 

do not have significant concentrations of the S-trans isomer at room temperature. Two transition 

state models were carried out for each ester conformer relating to the two faces of attack of 

dimethyldioxirane described as “in” and “out”, where “in” describes the methyl groups of the 

dioxirane positioned over the carbonyl group, or in the plane of the molecule, and “out” describes 

the 180 degree flip of that. Methyl esters were used in all cases to simplify the calculations, and 

minimize errors that may be derived from rotation of an ethoxy group, and comparison of the 

energy of a methyl group vs. that of an ethyl group. Each transition state energy was used along 

with the ground state calculations and a ground state energy calculation of dimethyldioxirane to 

find the energy of activation of the reaction. Calculations were first undertaken using a semi 

empirical approach using the AM-1 method where the heat of formation of the starting materials, 

transition state, and dimethyldioxirane were used to calculate the energy of activation at 23
O
 C. 

(Tables 21-27).  
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Table 21: Ground state, transition state, and activation energies for the reaction of methyl 

acrylate with dimethyldioxirane using the AM-1 method. 

Methyl acrylate 

(6) 

Ground state 

energy (Kcal/mol) 

Transition state 

energy In 

(Kcal/mol) 

Transition state 

energy Out. 

(Kcal/mol) 

Ea in 

(Kcal/mol) Ea out (Kcal/mol) 

S-cis -69.616 -40.04 -39.479 18.868 19.429 

S-trans -70.037 -39.477 -39.292 19.852 20.037 

 

 

Table 22: Ground state, transition state, and activation energies for the reaction of methyl 

crotonate with dimethyldioxirane using the AM-1 method. 

Methyl crotonate 

(5) 

Ground state 

energy (Kcal/mol) 

Transition state 

energy In 

(Kcal/mol) 

Transition state 

energy Out. 

(Kcal/mol) 

Ea In 

(Kcal/mol) Ea Out (Kcal/mol) 

S-cis -80.574 -49.406 -48.897 20.46 20.969 

S-trans -80.138 -48.82 -48.728 20.61 20.702 

 

 

Table 23: Ground state, transition state, and activation energies for the reaction of methyl 3,3-

dimethyl acrylate with dimethyldioxirane using the AM-1 method. 

Methyl 3,3 

dimethyl acrylate 

(4) 

Ground state 

energy (Kcal/mol) 

Transition state 

energy In 

(Kcal/mol) 

Transition state 

energy Out. 

(Kcal/mol) 

Ea In 

(Kcal/mol) Ea Out (Kcal/mol) 

S-cis -86.445 -56.486 -56.299 19.438 19.438 
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Table 24: Ground state, transition state, and activation energies for the reaction of methyl 

methacrylate with dimethyldioxirane using the AM-1 method. 

Methyl 

methacrylate (2) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In 

(Kcal/mol) 

Transition state 

energy Out. 

(Kcal/mol) 

Ea In 

(Kcal/mol) Ea Out (Kcal/mol) 

S-trans -76.530 -45.959 -45.397 19.863 20.425 

S-cis -76.642 -46.303 -45.309 19.631 20.625 

 

 

Table 25: Ground state, transition state, and activation energies for the reaction of angelic methyl 

ester with dimethyldioxirane using the AM-1 method.  

Angelic methyl 

ester (3) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In 

(Kcal/mol) 

Transition state 

energy Out. 

(Kcal/mol) 

Ea In 

(Kcal/mol) Ea Out (Kcal/mol) 

S-cis -85.48 -52.667 -52.514 22.105 22.258 

 

 

Table 26: Ground state, transition state, and activation energies for the reaction of tiglic methyl 

ester with dimethyldioxirane using the AM-1 method. 

Tiglic methyl 

ester (1) 
Ground state energy 

(Kcal/mol) 

Transition state 

energy In. 

(Kcal/mol) 

Transition state 

energy Out. 

(Kcal/mol) 

Ea in 

(Kcal/mol) Ea out (Kcal/mol) 

S-cis -85.819 -53.757 -52.35 21.354 22.761 

S-trans -85.596 -52.751 -52.795 22.137 22.093 

 

 

Table 27: Ground state, transition state, and activation energies for the reaction of 1-methyl 

cyclohexene carboxylate with dimethyldioxirane using the AM-1 method. 

Methyl- 1 -

cyclohexene-1- 

carboxylate (8) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In. 

(Kcal/mol) 

Transition state 

energy Out. 

(Kcal/mol) 

Ea In 

(Kcal/mol) Ea Out (Kcal/mol) 

S-trans -93.945 -59.775 -61.037 23.726 22.2 

S-cis -93.945 -59.511 -61.236 23.462 22.001 
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Table 28: Ground state, transition state, and activation energies for the reaction of 1-methyl 

cyclopentene carboxylate with dimethyldioxirane using the AM-1 method. 

Methyl -1-

cyclopentene-1- 

carboxylate (9) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In 

(Kcal/mol) 

Transition state 

energy out 

(K/cal/mol) 

Ea In 

(Kcal/mol) Ea out (Kcal/mol) 

S-cis -81.091 -47.19 -48.283 23.193 22.100 

S-trans -81.059 -48.068 -46.923 22.283 23.428 

 

 

The transition state calculations were also carried out using the density functional level with a   

6-31 G* basis set to compare to the semi-empirical calculations (Tables 29-36). 

 

Table 29: Ground state, transition state, and activation energies for the reaction of methyl 

acrylate with dimethyldioxirane using the density functional method. 

Methyl 

acrylate (7) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In. 

(Kcal/mol) 

Transition 

state energy 

Out. 

(Kcal/mol) Ea In (Kcal/mol) Ea Out (Kcal/mol) 

S-cis -192270.634 -360544.3 -360543.281 29.31 30.348 

S-trans -192269.866 -360542.6 -360542.932 30.246 29.929 

 

 

Table 30: Ground state, transition state, and activation energies for the reaction of methyl 

crotonate with dimethyldioxirane using the density functional method. 

Methyl 

crotonate (5) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In. 

(Kcal/mol) 

Transition 

state energy 

Out. 

(Kcal/mol) Ea In (Kcal/mol) Ea Out (Kcal/mol) 

S-cis -216929.2 -385203.117 -385200.316 29.078 31.879 

S-trans -216928.234 -385201.584 -385200.067 29.645 31.162 
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Table 31: Ground state, transition state, and activation energies for the reaction of methyl 3,3-

dimethyl acrylate with dimethyldioxirane using the density functional method. 

Methyl 3,3-

dimethyl 

acrylate (4) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In. 

(Kcal/mol) 

Transition 

state energy 

Out. 

(Kcal/mol) Ea In (Kcal/mol) Ea Out (Kcal/mol) 

S-cis -241585.246 -409857.475 -409858.204 30.766 30.037 

 

 

Table 32: Ground state, transition state, and activation energies for the reaction of methyl 

methacrylate with dimethyldioxirane using the density functional method. 

Methyl 

methacrylate 

(2) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In. 

(Kcal/mol) 

Transition 

state energy 

Out. 

(Kcal/mol) Ea In (Kcal/mol) Ea out (Kcal/mol) 

S-trans -216927.227 -385201.566 -385200.818 28.656 29.404 

S-cis -216926.923 -385202.149 -385199.912 27.769 30.006 

 

 

 Table 33: Ground state, transition state, and activation energies for the reaction of angelic 

methyl ester with dimethyldioxirane using the density functional method. 

Angelic methyl 

ester (3) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In. 

(Kcal/mol) 

Transition state 

energy Out. 

(Kcal/mol) Ea In (Kcal/mol) Ea Out (Kcal/mol) 

S-cis -241582.837 -409855.558 -409856.302 30.274 29.53 

 

 

Table 34: Ground state, transition state, and activation energies for the reaction of tiglic methyl 

ester with dimethyldioxirane using the density functional method. 

Tiglic methyl 

ester (1) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In. 

(Kcal/mol) 

Transition 

state energy 

Out. 

(Kcal/mol) Ea In. (Kcal/mol) Ea Out (Kcal/mol) 

S-Cis -241583.914 -409859.8 -409855.149 27.081 31.760 

S-trans -241583.839 -409858.8 -409855.402 28.04 31.432 
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Table 35: Ground state, transition state, and activation energies for the reaction of 1-methyl 

cyclohexene carboxylate with dimethyldioxirane using the density functional method. 

Methyl-1-

cyclohexene-1- 

carboxylate (8) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In. 

(Kcal/mol) 

Transition 

state energy 

Out. 

(Kcal/mol) Ea In (Kcal/mol) Ea Out (Kcal/mol) 

S-trans -290144.939 -458414.1 -458419.574 33.834 28.36 

S-cis -290144.93 -458420.279 -458420.865 34.114 27.06 

 

 

Table 36: Ground state, transition state, and activation energies for the reaction of 1-methyl 

cyclopentene carboxylate with dimethyldioxirane using the density functional method.  

Methyl -1-

cyclopentene -1-

carboxylate (9) 

Ground state energy 

(Kcal/mol) 

Transition state 

energy In. 

(Kcal/mol) 

Transition 

state energy 

Out. 

(Kcal/mol) Ea In (Kcal/mol) Ea Out (Kcal/mol) 

S-trans -265488.509 -433760.19 -433764.049 31.314 27.455 

S-cis -265488.359 -433758.983 -433764.804 32.371 26.55 

 

 

All calculations done at the density functional level were subject to additional IR spectrum 

calculations. All transition state calculations at the density functional level yielded a single 

imaginary IR absorption between 500 – 2000 cm
-1

, suggesting that the transition states were all in 

a local minimum of energy. Animation of the motion of ascociated with the absorption shows 

stretching of the new C-O-C bond and breaking O-O bond. Table 37 summarizes the differences 

in activation energy found via semi-emperical AM1 modeling and calculations using the density 

functional approach. 
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Table 37: Summary of the energy of activation calculated for the reaction of each ester with 

dimethyldioxirane using both the AM-1 and density functional methods. 

Ester Lowest Ea AM1 (Kcal/mol) Lowest Ea Density Functional (Kcal/mol) 

Methyl acrylate (7) 18.868 29.310 

Methyl crotonate (5) 20.460 29.078 

Methyl 3,3-dimethyl acrylate (4) 19.438 30.037 

Angelic methyl ester (3) 22.105 29.530 

Methyl methacrylate (2) 19.631 27.769 

Tiglic methyl ester (1) 21.354 27.081 

1-Methyl cyclohexene  

Carboxylate (9) 
22.001 27.060 

1-Methyl cyclopentene 

carboxylate (8) 
22.283   26.550 
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III. Relative k2 Determination 

The energy of activation of each ester with dimethyldioxirane was used to calculate 

relative k2 values. The energy of activation of each reaction is proportional to the relative k value 

by the equation e
(ΓEa/RT)

. A simple control test was done to ensure that accurate relative k2 values 

could be found. The well studied cis and trans 2-butene were modeled using the density 

functional method and compared to literature values (Table 38). 

 

Table 38: Calculation of the relative k2 value of the reaction of trans and cis 2-butene with 

dimethyldioxirane using the density functional method  

  

Transition State 

energy 

(Kcal/mol) 

Ground State 

Energy 

(Kcal/mol) 

ΓE 

(Kcal/mol) 

literature value
37

 

ΓE (Kcal/mol) 

trans-2-butene -266885.996 -98610.1152 1.35 1.7 

cis-2-butene -266886.438 -98609.202 

    

 

The calculated relative k2 value found was in good agreement with the literature value
37

 and 

gives a relative k value closer to experimental results than the previous literature, so the same 

method was followed for calculation of relative k2 values of the nine α,β-unsaturated esters. 

The relative rate constants were calculated using both the lowest activation energy found 

for each ester using both the AM-1(Table 39) and density functional (Table 40) methods, and a 

weighted average of conformers is summarized below. 
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Table 39: Comparison of experimentally determined relative k2 values to calculated k2 values 

using the AM-1 method. 

Ester  Experimental k2 rel Calculated k2 rel Calculated k2 rel weighted average 

1 

 

56.5 0.015 0.012 

2 13.8 0.004 0.006 

3 

 

11.7 0.276 0.309 

4 9.4 0.354 0.506 

5 

 

2.0 0.068 0.093 

7 

 

1.00 1.00 1.00 

8 

  

2.2 0.92 0.84 

9 

 

1.00 1.00 1.00 

     * The modeling for t-butyl crotonate was left out due to its differing alkoxy group. The data for 

this model can be found in Appendix C. 
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Table 40: Comparison of experimentally determined relative k2 values to calculated k2 values 

using the density functional method. 

Ester Experimental k2  rel Calculated k2 rel Calculated k2 rel weighted average 

1 

 

56.5 42.84 25.63 

2 

 

13.8 13.36 10.12 

3 

 

11.7 0.29 0.29 

4 

 

9.4 0.69 0.69 

5 

 

2.0 1.47 1.58 

7 

 

1.00 1.00 1.00 

8 

  

2.2 2.37 3.03 

9 

  

1.00 1.00 1.00 

* The modeling for t-butyl crotonate was left out due to its differing alkoxy group. The data for 

this model can be found in Appendix C. 

 

 

 The relative reactivity of esters 3 and 4 were not correctly predicted by the computer 

model using the density functional method. A closer look at the geometry of the transition states 

of these two esters compared to that of esters 7 and 2 shows some fundamental differences in the 
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transition states (Table 41). A rotation angle for each ester with dioxirane was measured by 

defining a plane through the central carbon and the two oxygens of dioxirane, as well as a second 

plane through the two carbons of the alkene of the ester with the incoming oxygen. In a true 

butterfly transition state this angle would be measured to be 90 degrees. A second angle was 

defind as “tilt”, which describes the angle between a plane defined by the three carbons of 

dioxirane, and a second plane defined by the two carbons of the alkene and neighboring carbon. 

A tilt of 0 degrees would show the dioxirane to be flat relative to the ester in the transition state. 

 

 

Table 41: Measured angles of the transition states of esters 2,3,4 and 7. 

Compound Rotation angle (Deg) Tilt angle (Deg) 

Methyl 3,3-dimethyl Acrylate (4) 82.72 9.60 

Angelic Methyl ester (3) 89.91 10.61 

Methyl Acrylate (7) 80.86 27.02 

Methyl Methacrylate (2) 87.16 23.83 
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Methods 

A. Dimethyldioxirane Synthesis 

Dioxirane was prepared by the reaction of 2-propanone (acetone) with potassium 

monoperoxysulfate (oxone) using a modified procedure from the one by Murray
13

. Glassware 

was pretreated with boiling 1% disodium ethylidene tetra-aminoacid (Na2EDTA) (Fischer 

Scientific, ACS certified)  in dionized water, then rinsed with acetone (Sigma-Aldrich, HPLC 

grade) and dried. To a 3 liter, 3 neck round bottom flask, 96 grams of Sodium Bicarbonate 

(NaHCO3) (Fischer Scientific, ACS certified) and 1.5 grams of Na2EDTA were added. A mixture 

of 80 mL acetone and 60 mL DI water was then added to the flask, and stirred via mechanical 

stirrer. A second mixture of H20/Acetone (80 mL/53 mL) was added drop wise via a pressure 

equalizing funnel, at the same time as 200 g Oxone (Sigma-Aldrich) were being added via a 

pressure equalizing powder-addition-funnel, over the course of thirty minutes. The dioxirane was 

collected as an acetone solution in a receiving trap cooled to -78˚ C by a mixture of dry ice and 

acetone, under reduced pressure over the course of one hour. The dioxirane was then distilled 

under reduced pressure at -20˚ C in order to remove water and to concentrate the solution. The 

final solution was stored over anhydrous Na2SO4 at -20˚ C. The final dioxirane/acetone solutions 

were found to be between 0.08 and 0.1 M. 

 

 

B. Kinetic Experiments 

 Second-order kinetics were determined under pseudo-first order conditions of either 10:1, 

or 1:10 molar ratio of ester to dioxirane. trans-Eylcrotonate, ethyl methacrylate, and ethyl acrylate 

were obtained from Aldrich (Sigma-Aldrich) with 99% purity. Ethyl-3,3-dimethyl acrylate, and t-



39 

Butyl acrylate were obtained from Alrich (Sigma-Aldrich) with 98% purity. Methyl-1-

cyclohexen-1-carboxylate and methyl-1-cyclopentene-1-carboxylate were obtained from Sigma-

Aldrich with 97+% purity. Angelic methyl ester, and ethyl tiglate were obtained from TCI 

America in 97% and 99% purity respectively. The purity of the esters was checked by GC/MS 

(Shimadzu GC17-A Gas Chromatograph coupled to a Shimadzu QP-5000 MS Spectrometer).  

The dioxirane solution and the ester were added to a 3 ml quartz cuvette in a 1:10 ratio and 

diluted to a total volume of 3 ml with dried acetone. Disappearance of the dioxirane was 

monitored via UV/Vis spectroscopy at 330 nm, on a Shimadzu UV1601 spectrophotometer.  The 

temperature of the cell was kept at 23 +/- 0.3 
o
C with an attached water jacket and constantly 

circulating water bath (Haake-K water bath).  The temperature of the bath was measured using a 

YSI Model 42SC Tele-Thermometer.  A final baseline was established by addition of 2,3-

dimethyl-2-butene (Sigma-Aldrich) after the reaction had gone to completion to insure no 

residual dioxirane was absorbing.  The pseudo-first order rate values were then calculated using 

Microsoft Excel.   The second order rate constants were calculated the usual way by dividing the 

observed rate by the molar concentration of the reactant in excess.   

 

 

C. Product Studies 

The products of the reaction of dimethyldioxirane and the esters were established by 
1
HNMR and 

13
C NMR spectroscopy. As an example, the reaction of 0.025 ml of pure ester 1 with 7 ml of 

dioxirane/acetone solution was allowed to go to completion in a round bottom flask, at room 

temperature, in a dark vessel.  When the reaction was completed, up to 12 ml of carbon 

tetrachloride (Sigma-Aldrich) were then added to the flask. The acetone and most of the carbon 
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tetrachloride was removed by short-path microdistillation, down to roughly 0.7 ml total volume. 

Tetramethylsilane (0.03%) in CDCl3 (Sigma-Aldrich) was then added to the residual volume in 

the distillation flask.  The 
1
H NMR and 

13
C NMR spectra of the samples were then obtained on a 

300 MHZ Varian INOVA NMR or a 400 MHZ Bruker NMR.   The spectra obtained were, when 

available, compared to the literature values.   

 

 

D. Computer Modeling Studies 

 Computer modeling studies of the transition state of each α,β-unsaturated ester with 

dimethyldioxirane were done using Spartan ’04 (Wavefunctions inc.). Past transition state studies 

using the AM1 approach have showed excellent correlation to experimentally determined 

kinetics values
11

. Semi empirical methods have been used to accurately describe alkene and 

sulfide oxidations among others
12,13

. A study of α,β-unsaturated ketones by Chen found that the 

AM1 approach was insufficient to describe the reaction, likely due to differences in the electron 

density of the ester throughout the reaction
18

. Density functional modeling studies with a 6-31G* 

basis set were shown to be more accurate in describing the α,β-unsaturated ketones and hence 

were applied to α,β-unsaturated esters for this study. Each reagent was minimized separately then 

merged with no further geometry optimization. The equilibrium geometry of each ground state 

ester was calculated in a vacuum in several conformations predicted by Spartan to examine 

whether they are mostly in a S-cis, S-trans or some twisted hybrid at equilibrium. The reagents 

were then positioned manually into a spiro transition state attacking from each side of the alkene 

and the flow of electrons was input into the program (Figure 8). 
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Figure 8: The flow of electrons as input into Spartan to calculate the optimum geometery of the 

transition state of methyl methacrylate with dimethyldioxirane. 

 

 

Pressing the  button then brings up a guess at the transition state were the reagents are held 

in a loose association, and bond breakages and formations are shown. The transition state was 

calculated where the methyl groups of the dioxirane were either over the carbonyl or rotated 180 

degrees away, as well as with each ester geometry found to contribute significantly to the ester at 

room temperature . Some transition states were also calculated with a starting planar geometry 

which was rearranged to the spiro state in all cases by the geometry optimization. Using the AM-

1 approach the heat of formation of the ground state ester, transition state, and dimethyldioxirane 

were calculated for each ester. The following equations can then be applied to find the relative k2 

value. 
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Ea= Hf  transition state – (Hf  ground state + Hf  dioxirane)                                       

k2 rel is proportional to     e
(-Ea/RT)

   

Where R is the universal gas constant (R =1.987192 cal K
-1

 moles
-1

 )      

 

  

Using the density functional approach the infrared spectrum and vibrational modes boxes must 

be checked in order to correct for vibrational, rotational, and translational energy at room 

temperature, as well as to explore the validity of the transition state through a calculated IR 

spectrum. After running the calculation the spreadsheet function can be opened and a ΓG value 

displayed. The relative rate constants can then be found by the following equations. 

 

 

Ea = ΓG transition state – (ΓG ground state ester + ΓG dioxirane) 

K2 rel is proportional to  e
(ΓEa/RT)      

where R is the universal gas constant. (R=1.987192 cal K
-1

 moles
-1

) 

 

 

 The vibrational spectrum of each transition state complex showed a single imaginary value 

corresponding to a local minimum in energy along the reaction coordinate. Animation of the 

imaginary vibrational mode correlates to vibration of the new C-O-C bond.  

 

 

 



43 

Conclusions 

 Nine α,β-unsaturated esters underwent complete epoxidation with no rearrangement or 

unexpected side reactions. 

 k2 values were determined for a series of α,β-unsaturated esters with different electron 

densities and steric constraints around the alkene moiety. 

 The cis like ethyl tiglate underwent reaction four times faster than the trans like angelic 

methyl ester. This was a marked decrease in selectivity from simple alkenes. 

 The germinal substituted methyl methacrylate underwent reaction faster than than 3,3-

dimethyl acrylate, and angelic methyl ester both of which have a higher level of 

substitution. 

 An error was found in previous literature were the published k2 values for methyl 

methacrylate and ethyl trans crotonate were switched.  

 Among the cyclic α,β-unsaturated esters the more energetic cyclopentene ring was found 

to undergo epoxidation more than twice as fast as the cyclohexene ring.  

 Computer modeling was used to determine the ground state configuration of the nine 

esters and predict the percentages of each in the S-cis and S-trans configuration. 

 Every ester except methyl methacrylate preferred the S-cis ground state or were found in 

a relatively equal distribution between S-cis and S-trans.  

 The AM-1 approach to transition state modeling was found to be inadequate to calculate 

relative kinetics values of open chain α,β-unsaturated esters. A conclusion supported by a 

past study of α,β-unsaturated ketones. 

 The density functional approach was adequate to predict the relative reactivity of six of 

the eight esters (t-butyl not used). 
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 The two esters that were not correctly predicted had a commonality in that they were the 

only two with a substituent in the R1 position. 

 The model predicted the S-cis in geometry to be the lowest energy transition state for the 

six esters that were correctly predicted. 

 Angelic methyl ester and ethyl 3,3-dimethyl acrylate show a possible steric interaction in 

the S-cis in geometry between the R1 methyl and methyl groups of dimethyldioxirane. 

 The anomalous ethyl methacrylate reactivity is possibly linked to the differences in the 

ground state conformation found in this study, but raises more questions since it is more 

often in the S-trans conformation, which the computer predicted to be unfavorable to 

dioxirane attack. 

 A direct visual comparison of the S-cis transition state between angelic methyl ester and 

tiglic methyl ester shows the steric interaction mentioned above (figures 9 -10). 

 A closer study of the geometry of the transition states between the esters that were not 

correctly modeled by the computer and those that were, showed relatively large 

differences in the tilt angle. The large differences in geometry invalidate the subtraction 

method used to compare the energies of the transition states and lead to incomparable 

results. 

 

                                                                        

 

 

 

             Figure 9: Tiglic methyl ester “S-cis in”             Figure 10: Angelic methyl ester “S-cis in”    
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Appendix A:
1
HNMR and 

13
CNMR spectra of epoxide products 

1. 
1
H NMR spectrum of ethyl methacrylate epoxide in CDCl3.  
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2. 
1
H NMR spectrum of angelic methyl ester epoxide in CDCl3. 
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3. 
1
 H NMR spectrum of ethyl 3,3-dimethylacrylate epoxide in CDCl3. 
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4. 
1
H NMR of ethyl trans crotonate epoxide in CDCl3. 
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5. 
1
H NMR of tert-butyl crotonate epoxide in CDCl3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. 
1
 H NMR of ethyl acrylate epoxide in CDCl3. 
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7. 
1
H NMR of 1-methyl cyclopentene carboxylate epoxide in CDCl3. 

 

 
 

 

 

 

8. 
1
H NMR of 1-methyl cyclohexene carboxylate epoxide in CDCl3. 
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9. 
13

C NMR of ethyl methacrylate epoxide in CDCl3. 

 

 
 

 

 

 

10. 
13

C NMR of angelic methyl ester epoxide in CDCl3. 
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11. 
13

C NMR of ethyl 3,3-dimethyl acrylate epoxide in CDCl3. 

 

 
 

 

 

 

12. 
13

C NMR of trans ethyl crotonate epoxide in CDCl3. 
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13. 
13

C NMR of tert-butyl crotonate epoxide in CDCl3. 

 

 
 

 

 

 

14. 
13

C NMR of ethyl methacrylate epoxide in CDCl3. 
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15. 
13

C NMR of 1-methyl cyclohexene carboxylate epoxide in CDCl3. 

 

 
 

 

 

 

16. 
13

C NMR of 1-methyl cyclopentene carboxylate epoxide in CDCl3 
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Appendix B:Comparison of kinetic data of angelic methyl ester with dimethyldioxirane at 

different molar ratios and concentrations 

 

1. Natural log of absorbance of dimethyldioxirane with respect to time at 330 nm while 

undergoing reaction with angelic methyl ester in a 10:1 molar ratio. 

 
 

 

2: Natural log of absorbance of dimethyldioxirane with respect to time at 330 nm while 

undergoing reaction with ethyl tiglate in a 1:10 molar ratio. 
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3: Natural log of absorbance of dimethyldioxirane with respect to time at 330 nm while 

undergoing reaction with angelic methyl ester with a higher concentration of reagents. 

 
 

 

4: Natural log of absorbance of dimethyldioxirane with respect to time at 330 nm while 

undergoing reaction with angelic methyl ester with a lower concentration of reagents. 
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Appendix C:Computer data for k2 rel of t-butyl crotonate 

 

1. Computer calculation of k2rel of tert-butyl crotonate 

 

Ea calculation 

 

  

Ground State 

(Kcal/mol) 

TS energy in 

(Kcal/mol) 

TS energy out 

(Kcal/mol) Ea in (Kcal/mol) 

Ea out 

(Kcal/mol) 

S-cis -290894.293 -459168.759 -459166.241 28.529 31.047 

S-trans -290893.696 -459165.542 -459166.02 31.149 30.671 

 

 

 

 

K2rel calculation 

 

Ester Lowest Ea (Kcal/mol) Weighted average Ea (Kcal/mol) k2 rel lowest energy k2rel weighted average 

Methyl acrylate 28.53 29.45 1 1 

t-butyl acrylate 29.31 29.11 3.73 1.78 
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