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and Exploit Them Through a DSGE Model∗

Luis Eduardo Rojas Dueñas

Abstract
This paper derives a link between the forecasts of professional fore-

casters and a DSGE model. We show that the forecasts of a professional
forecaster can be incorporated to the state space representation of the
model by allowing the measurement error of the forecast and the struc-
tural shocks to be correlated. The parameters capturing this correlation
are reduced form parameters that allow to address two issues i) How the
forecasts of the professional forecaster can be exploited as a source of in-
formation for the estimation of the model and ii) How to characterize the
deviations of the professional forecaster from an ideal complete informa-
tion forecaster in terms of the shocks and the structure of the economy.
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1 Introduction
The agents in the economy are continuously forming and revising expectations,
most of them are thinking about the probability of finding a job in the next
month or how much their salaries will rise or the evolution of the interest rate
of their debt. While some others, cause of the nature of their business, devote
their time and effort to form well informed expectations about macroeconomic
aggregates; such as CPI inflation or GDP growth rate. Agents of the latter kind
sometimes publish their expectations in terms of forecasts of economic variables1
and there exists also surveys that collect these forecasts2 such as the FED’s and
the ECB’s surveys of professional forecasters.

These surveys have been used to characterize, from a merely statistical stand-
point, the forecast accuracy and the forecast error of the professional forecasters
(PF) (see Bowles, Friz, Genre, Kenny, Meyler, and Rautanen (2007) and Stark
(2010)) and also as a source of information to construct atheorical forecasting
models (see Genre, Kenny, Meyler, and Timmermann (2010)). In this paper
we depart from those previous studies and derive a methodology that allows
to expose this data set to “Rational Expectations Econometrics” which Sargent
(1989) refers to as:

“Rational expectations econometrics” aims to interpret economic
time series in terms of objects that are meaningfull to economists,
namely, parameters describing preferences, technologies, information
sets, endowments, and equilibrium concepts or coordination mecha-
nisms.

Using a Dynamic and Stochastic General Equilibrium models (DSGE) we ad-
dress simultaneously two issues i) How the forecasts of the PF can be exploited
as a source of information for the estimation of the model and ii) Characterize
the deviations of the PF from an ideal complete information forecaster in terms
of the shocks and the structure of the economy. For both issues we stand as
an econometrician with a DSGE model for the economy and a set of observable
variables that include the forecasts from the PF.

The first issue is addressed formulating two alternative specifications for the
PF. The first type of PF differs with the econometrician in the information set
and the second might differ in the model of the economy and in the information
set. We show for both specifications how to incorporate the forecasts of the
PF as observable variables in the model and the implied log-likelihood function.
It turns out that to incorporate the PF forecasts a specific structure of the
measurement error must be specified with the main feature that the structural
shocks of the model and the measurement error are correlated.

The second issue focuses on the reduced form parameters that capture the
correlation between the measurement error of the PF forecasts and the structural

1Although not every published forecast could be considered as some revealed expectations
because of the different nature that may have the loss function of the forecaster.

2Some of the respondants of the surveys does not publish their forecast and their id is not
revealed when they answer the survey.

2



shocks of the model. This parameters are shown to characterize which shocks are
the main sources of deviation of the PF relative to an ideal complete information
forecaster.

After describing a general setup with the model and filtering equations, we
present the likelihood function and the reduced form correlation parameters that
emerge in its derivation for each of the PF specifications. We provide concrete
illustration of how this reduced form parameters capture the difference between
the PF and the ideal complete information forecaster.

2 General Setup
Here we set some notation for the economic model, the filtering equations and
the log-likelihood function. From this general setup the econometrician and the
first specification of the PF are modelled.

There is an economic model with rational expectations whose equilibrium
can be represented as a covariance stationary stochastic process. Specifically,
the model equilibrium can be represented as

xt+1 = Txt + εt (1)

where xt is a n × 1 vector of variables, the matrix T is a function of the
deep parameters of the model and εt is a n×1 vector of structural shocks whose
expected value and covariance matrices are characterized by:

E{εtε′s} =

{
Q for t = s

0 for t 6= s

E{εt} = 0 (2)

where E{.} stands as the expectational operator. The economic model is
completely represented by (1) and (2).

Related to those variables of the model there is a set of observable vari-
ables {y0, y1, . . . , yt, . . . , yτ}, where yt is a k × 1 vector. These relationship is
represented by:

yt = Cxt + νt

Where C is a k × n matrix that captures the linear projection of yt over
xt. The k × 1 vector νt is conformed by stochastic variables that model the
movements of yt not explained by Cxt. νt is commonly known in these context
as the measurement errors as each element yt is intended to “measure” some
linear combination of xt, and vt stands as the deviation of yt from that linear
combination. The nature of the measurement errors vt is determined by the
following covariance matrices and expected value:
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E{νtν′s} =

{
R for t = s

0 for t 6= s

E{νt} = 0

Furthermore, in this general setup we assume that the structural shocks and
the measurement errors are orthogonal at any point in time, so we have

E{εtν′s} = 0 for all t, s (3)

Following a time-domain approach we can write the state-space representa-
tion of the model as:

xt+1 = Txt + εt (4)
yt = Cxt + νt

Where the first equation in (4) is the transition equation and the later cor-
responds to the measurement equation. This specification resembles to the
“classical model of measurements initially collected by an agency” presented in
Sargent (1989). Following Sargent (1989) we have that the filtered variables can
be obtained recursively by (see Appendix A):

x̂t = E(xt|yt, yt−1, . . . y0, x̂0) (5)
= T x̂t−1 +Kut

where K is the gain matrix of the Kalman filter and ut is the one-step ahead
forecast error, or more formally

ut = yt − E {yt|yt−1, yt−2, . . .} (6)

and we make the following definitions:

S = E
{

(x̂t − xt) (x̂t − xt)′
}

V = E {utu′t}

then the Gaussian log-likelihood function for the sample {y0, y1, . . . , yt, . . . , yτ},
conditioned on x̂0 is3

L = −τ ln(2π)− 0.5 ln |V | − 0.5

τ−1∑
t=0

u′tV ut

3Appendix A presents the derivation of (5) and the Gaussian log-likelihood function.
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3 A Professional Forecaster With a Different In-
formation Set

The information set of the PF and the econometrician might be different, one
possible explanation for this is private information either of the PF or the econo-
metrician. We are interested, from the standpoint of the econometrician, to learn
about the private information that may have the PF. In terms of the model we
want to know which shocks can identify the PF so the econometrician can use
his forecasts as an information variable for estimation and forecasting. Also, we
want to explain the PF differences with an ideal complete information forecaster
in terms of the shocks of the model that are poorly identified by the PF4.

3.1 The Professional Forecaster
There is a PF who performs optimal forecasts5 using the economic model men-
tioned and a data set (yf0 , y

f
1 , . . . , y

f
t , . . . , y

f
τ ) where yft is a k × 1 vector of data

related to the model variables by

yft = Cfxt + νft

E

{
νft

(
νft

)′}
= R

E
{
νft

}
= 0

Then from (5) the optimal filtering of the PF is:

x̂ft = E(xt|yft , y
f
t−1, . . . y

f
0 , x̂0) (7)

= T x̂ft−1 +Kfuft

Sf = E

{(
x̂ft − xt

)(
x̂ft − xt

)′}
where Kf is the gain matrix of the PF. The one step ahead forecast is then

4Another possible reason that might generate different information sets between the PF and
the econometrician is rational inattention. In the case of the PF he might neglect part of the
information that the econometrician have (or viceversa) not because is private but because it
is costly to obtain or process it and the gains of including this information are not big enough.
In this case we could think of those shocks poorly identified by the PF as possibly shocks less
important to quantify for the PF. “El aleman ese 2009” shows how might optimally decide not
to identificate if the shock that arrive is a idiosincratic shock or an aggregated shock.

5In the sense that minimizes the expected value of the squared forecast error.
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x̂ft+1|t = E(xt+1|yft , y
f
t−1, . . . y

f
0 , x̂0)

= E(Txt + εt|yft , y
f
t−1, . . . y

f
0 , x̂0)

= T E(xt|yft , y
f
t−1, . . . y

f
0 , x̂0) + E(εt|yft , y

f
t−1, . . . y

f
0 , x̂0) (8)

= T x̂ft

where E(εt|yft , y
f
t−1, . . . y

f
0 , x̂0) = 0 follows from (2) and (3).

The PF publishes the one-step ahead forecast of some variables each period.
Define ỹt as the subset of x̂ft+1|t that is observable for the econometrician and
published at time t, then

ỹt = Is x̂ft+1|t (9)

where Is is a selection matrix conformed by the rows of the identity matrix
that correspond to a observable variable i.e the row j of the identity matrix is
one of the rows of Is if the entrie j of x̂ft+1|t is published. Then, from (8)(9) we
have that ỹt can be written in terms of the filtered values of the PF as

ỹt = IsT x̂
f
t (10)

3.2 Incorporating the forecasts from the PF
Suppose initially (for ease of exposition) that the econometrician only observes
{ỹ0, ỹ1, . . . , ỹt, . . . , ỹτ}. From (10) and (7) we can conform a state-space rep-
resentation with ỹt as the observable and x̂ft as the unobservable states. The
transition and measurement equation of this representation are respectively

x̂ft+1 = T x̂ft +Kfuft+1

ỹt = IsT x̂
f
t (11)

The system (11) is in terms of the innovations uft , and the unobservable
states x̂ft that are the filtered values of the PF. On the other hand we know
the law of motion of the variables in the model by (1), so another possible
state-space representation with the data ỹt as the observable and redifining the
unobservables states as xt can be written as follows

xt+1 = Txt + εt

ỹt = IsTxt + vt (12)
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Now a measurement error vt = IsT
(
x̂ft − xt

)
emerges. To understand the

nature of this measurement error note that if the PF has complete information6,
we have that

x̂ft = E {xt|xt} = xt

and then vt = 0. So in this case the measurement error associated with
the forecast of the PF reflects the difference between the forecast of the PF
T(i∈B)x̂

f
t and the forecast of a complete information forecaster T(i∈B)xt, this

can be stated as

vt = E
{
xt+1|yft , y

f
t−1, . . . y

f
0 , x̂0

}
− E {xt+1|xt}

thus vt contains the signal extraction uncertainty of the PF.
Defining et = εt−1 we have the contemporaneous form of the state-space

representation

xt = Txt−1 + et

ỹt = IsTxt + vt

In this case we have that et and vt are correlated, the covariance matrix is:

Θ = E {vte′t}
Θ = IsT

(
KfC − I

)
Q (13)

and the variance matrix of the measurement error is:

R = E {vtv′t} = IsTS
f (IsT )′

vt is not the standard measurement error because it is autocorrelated. For-
mally we have that

E{vtv′t−j} = E

{
IsT

(
x̂ft − xt

)(
x̂ft−j − xt−j

)′
(IsT )′

}
= (IsT )

(
j∏
i=1

(
I −KfIsT

)
T

)
Sf (IsT )′ (14)

The next proposition clarifies the nature of vt. It resume in a compact form
the information presented in (13) and (14) and the relationship of vt with ν

f
t .

6In the sense that knows perfectly the current state of the economy xt but is uncertain
about the shocks that can arrive (εt, εt+1, εt+2, ...).
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Proposition. The stochastic process {vt}t=1,...,∞ can be written as a vector
autoregresive (VAR) process of the form:

vt = Φvt−1 + Γet + Ωνft

where the matrices Φ, Γ and Ω correspond to:

Φ = IsT
((
I −KfIsT

)
T
)

((IsT )′IsT )
−1

(IsT )′

Γ = IsT
(
KfC − I

)
= ΘQ−1

Ω = IsTK
f (15)

Proof. The measurement error vt in equation (12) correspond to:

vt = IsT
(
x̂ft − xt

)
and replacing x̂ft using (11) and xt using (12) we have:

vt = IsT
(
T x̂ft−1 +Kfuft

)
− IsT (Txt−1 + et)

= IsTT
(
x̂ft−1 − xt−1

)
+ IsTK

fuft − IsTet

and replacing the one-step ahead forecast error uft by it´s definition (see (6))

vt = IsTT
(
x̂ft−1 − xt−1

)
+ IsTK

f
(
yft − CfT x̂

f
t−1

)
− IsTet

= IsTT
(
x̂ft−1 − xt−1

)
+ IsTK

f
(
Cfxt + νft − CfT x̂

f
t−1

)
− IsTet

and using (12) to solve out for xtand arranging terms we have:

vt = IsTT
(
x̂ft−1 − xt−1

)
+ IsT (KfCfKf

(
yft − CfT x̂

f
t−1

)
− IsTet

The matrices in (15) fully characterize the nature of the deviations of the PF
from the ideal forecaster, and each of their entries are reduced form parameters
that are functions of the deep parameters of the model and the PF parameters,
specifically the PF gain matrix. The matrix Γ measures the magnitude of the
effect that has each structural shock in vt and, as vt arises because of the lack
of information of the PF, the entries in Γ reflect the uncertainty of the PF
over the corresponding shock weighted by the importance of it on the variable
forecasted. On the other hand, Φ measures how the deviations vt affect vt+1, or
in other terms, it captures the persistence structure of the deviations of the PF
from the ideal forecaster. In (15) we can see that the persistence depends on
the structure of the economy T and the learning process of the PF Kf . If the
economy has low persistence and the PF learns fast, the persistence of vt will
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tend to zero. Finally Ω captures how the measurement error of the data used
by the PF is translated to vt.

For practical purposes as we generally don´t know which data used the PF,
and consequently the size and elements of νft are not known, we can rewrite 15
in terms of the reduced form vector ψt = Ωνft which covariance matrix would
reflect the data uncertainty of each of the forecasts. Therefore we have that vt
can be written as vt = Φvt−1 + Γet + ψt.

An Extended Data Base

Now we will extend our initial formulation to allow for a more general set of
information for the econometrician. Collecting our results so far we have

xt = Txt−1 + et

vt = Φvt−1 + Γet + Ωνft

ỹt = T(i∈B)xt + vt

We define yt as the data released at time t which is composed by:

yt =

(
dt
ỹt

)
(16)

where dt is data related to the variables of the model and ỹt is the vector of
the one-step ahead forecasts of the PF. Now the measurement equation is

yt =

(
N

T(i∈B)

)
xt +

(
µt
vt

)
where N is a matrix that captures the relation between the variables in

the model and the data contained in dt. µt is a vector of the measurement
errors associated with dt. Then, a complete formulation of the state space
representation is

xt = Txt−1 + et

vt = Φvt−1 + Γet + Ωνft

yt =

(
N

T(i∈B)

)
xt +

(
µt
vt

)
E {ete′t} = Q E {et} = 0

E {µtµ′t} = H E {µt} = 0

E

{
νft

(
νft

)′}
= R E

{
νft

}
= 0

E {µte′s} = 0 for all t, s (17)

E
{
νft e
′
s

}
= 0 for all t, s
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3.3 The Log-Likelihood function neglecting Φ

The more recent innovations might be the main drivers of the measurement
errors of the PF forecasts (i.e the discrepancy between the PF and the ideal
complete information forecaster). If this is the case vt will be mainly explained
by Γet and the term Φvt−1 could be neglected, then the state space representa-
tion can be restated as

xt = Txt−1 +
(
0 0 I

) µt
νft
et


yt =

(
N

T(i∈B)

)
xt +

(
I 0 0
0 Ω Γ

) µt
νft
et


E


 µt

νft
et

( µ′t

(
νft

)′
e′t

) =

 H 0 0
0 R 0
0 0 Q

 =

 h h′ 0 0
0 r r′ 0
0 0 q q’


E


 µt

νft
et

 = 0

where h, r and q are obtained from the Cholesky decomposition of H, R
and Q respectively. In this specification is evident the correlation between the
measurement errors and the structural shocks. Furthermore, writting the state
space representation in terms of the orthogonalized shocks (ζt) we have

xt = Txt−1 +
(
0 r q

)
ζt

yt =

(
N

T(i∈B)

)
xt +

(
h 0 0
0 Ωr Γq

)
ζt

E {ζtζ ′t} = I Eζt = 0

or in a compact form as

xt = Txt−1 + Hζt

yt = Zxt + Gζt

E {ζtζ ′t} = I Eζt = 0

This particular state-space form and the respective Kalman filter and smoother
recursions can be found in Koopman and Harvey (2003). From there the filtered
variables can be obtained by:
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x̂t = E(xt|yt, yt−1, . . . y0, x̂0)

= T x̂t +Kat+1

E
{

(x̂t − xt) (x̂t − xt)′
}

= S

where K is the gain matrix of the Kalman filter and at is the one-step ahead
forecast error, or more formally

K =
(
TS(ZT)

′
+ H(G + ZH)

′)
V−1

at = yt − E {yt|yt−1, yt−2, . . .}
E {ata′t} = V =

(
ZTS(ZT)

′
+ (G + ZH)(G + ZH)

′)
then the Gaussian log-likelihood function for the sample {y0, y1, . . . , yt, . . . , yτ},

conditioned on x̂0 is

L = −τ ln(2π)− 0.5 ln |V| − 0.5

T−1∑
t=0

a′tVat

With this log-likelihood function the reduced form parameters contained in
Γ and Ω (and the deep parameters too) can be estimated by maximum likelihood
or with Bayesian techniques considering the possible characteristics of the gain
matrix of the PF to construct the priors. The reduced form approach is very
usefull in this scenario for the parameters in Γ and Ω because typically Kf is
not observable but we might have some prior knowledge about it.

3.4 The Log-Likelihood function, general form
To obtain the Likelihood function of (17) allowing the matrix Φ to be different
from a null matrix we restate the state space representation (17) as follows

(
xt
vt

)
= st =

(
T 0
0 Φ

)
st−1 +

(
I 0
Γ Ω

)(
et
νft

)
yt =

(
N 0

T(i∈B) I

)
st +

(
I
0

)
µt

E

{(
et
νft

)(
e′t

(
νft

)′ )}
=

(
Q 0
0 R

)
E

{(
et
νft

)}
= 0

E {µtµ′t} = H E {µt} = 0

E
{
µt

(
e′s

(
νft

)′ )}
= 0 ∀t, s (18)
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or in a compact form

st = Tst−1 + Lωt

yt = Zst + Bµt

E {ωtω′t} =

(
Q 0
0 R

)
E {ωt} = 0

E {µtµ′t} = H E {µt} = 0

E {µtes} = 0 for all t, s (19)

with this specification the filtered variables can be obtained by:

ŝt = E(st|yt, yt−1, . . . y0, x̂0)

= T ŝt +Kat+1

S = E
{

(ŝt − st) (ŝt − st)′
}

where K is the gain matrix of the Kalman filter and at is the one-step ahead
forecast error, or more formally

at = yt − E {yt|yt−1, yt−2, . . .}
V = E {ata′t}

then the Gaussian log-likelihood function for the sample {y0, y1, . . . , yt, . . . , yτ},
conditioned on ŝ0 is

L = −τ ln(2π)− 0.5 ln |V| − 0.5

T−1∑
t=0

a′tVat

with this log-likelihood function the reduced form parameters contained in
Γ and Φ can be estimated by maximum likelihood or with Bayesian techniques.
Again, the explicit form of Γ, Ω and Φ is an important feature for setting the
priors for the estimation. Incorporating Φ allow us to think about the speed of
learning of the PF.

4 A PF with a different forecasting model
Until this point the PF constructs his optimal forecasts using the same economic
model as the econometrician, perhaps a strong assumption. This section extends
the derivation for the case in which we just assume that the forecast function
can be approximated by a linear function of the data considered by the PF. In
this case we have:

xft+1|t = F yft

12



where F is a matrix that contains the set of weights that the PF assigns
to each piece of data contained on yft . This specification does not necessarily
impose the restriction that the PF only considers the latest released data because
yft might include lags of some variables. This data is itself related to the variables
of the model by7:

yft = Cfxt + νft

Where νt is the vector of measurement errors. Then we have

xft+1|t = F Cfxt + Fνft

4.1 Incorporating the forecasts from the PF
Starting with the case where the only observable variables are the one-step
ahead forecasts of some variables, we have as before

ỹt = xft+1|t

= F Cfxt + Fνft (20)

with E
{
νft

(
νft

)′}
= H̄. (20) can be written in terms of the expectations

of the agents in the model in the form:

ỹt = T(i∈B)xt +mt + vft

mt = (F Cf − T(i∈B))xt

vft = Fνft

H̄ = E

{
vft

(
vft

)′}
= FH̄F ′

mt+vft can be interpreted as a model mismatch error. The model mismatch
error characterizes the difference between the forecast from the PF and the
complete information forecast at time t, it can be written as:

mt + νft = xf(i∈B)t+1|t − E
{
x(i∈B)t+1|xt, xt−1, ...

}
The model mismatch term emerges in two cases i) if the forecaster has a dif-

ferent model of the economy or ii) If the forecaster has no complete information.
The latter case has been covered in the third section, this section extends the
formulation to incorporate also the first case. The shortcoming of this approach
is that our results rely on terms such as F which are not “structural” strictly
speaking. Nevertheless it allows us to show that the reduced form parameters

7Again, here we could extend vector xt to include lags of some relevent model variables in
case some of the data is lagged.
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obtained in the previous section also emerges (and not any other) in this more
general setup.

Analogous to (??) the stochastic process {mt}t=1,...,∞ can be represented in
the form

mt = Φ̄mt−1 + Γ̄et

Φ̄ =
(
F C − T(i∈B)

)
T
[(
F C − T(i∈B)

)′ (
F C − T(i∈B)

)]−1 (
F C − T(i∈B)

)′
Γ̄ =

(
F C − T(i∈B)

)
(21)

(21) shows that the magnitude and sign of the model mismatch term depends
on the type of shocks that the economy is receiving each moment. The PF,
depending on the shocks present in the economy, might have its forecast near
or far from the optimal complete information forecast.

Collecting our results the state-space representation of the model is:

xt = Txt−1 + et

mt = Φ̄mt−1 + Γ̄et

ỹt = T(i∈B)xt +mt + vt

E {ete′t} = Q E {et} = 0

E {vtv′t} = H E {vt} = 0

and with a more general vector of observable variables yt defined in (16) we
have

xt = Txt−1 + et

mt = Φ̄mt−1 + Γ̄et

yt =

(
N

T(i∈B)

)
xt +

(
0
I

)
mt +

(
µt
vt

)
E {ete′t} = Q E {et} = 0

E {vtv′t} = H̄ E {vt} = 0

E {µtµ′t} = H E {µt} = 0 (22)

Obtaining the likelihood function of (22) is analogous to the steps shown
for (17). We have the result again that the Likelihood function depends on the
reduced form parameters contained in Φ̄ and Γ̄. So basically, to incorporate
an outsider forecasts as observables for signal extraction, we need to specify a
measurement error that is the sum of a standard measurement error term vt
and an autocorrelated and correlated with the structural shocks term mt.
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5 Conclusions
In “Rational Expectations Econometrics” the forecasts of professional forecasters
can be used as sources of information for model estimation and to characterize
the professional forecaster underlying signal extraction mechanism. For both
objectives a fairly general specification that links the PF forecasts with a DSGE
model can be derived. The main feature of the specification is the presence of
reduced form parameters that capture the relationship between the deviations
of the PF relative to an ideal complete information forecaster and the structural
shocks of the model.

The reduced form parameters found allow to obtain the Log-Likelihood func-
tion of the DSGE model incorporating the professional forecaster forecasts as
observables and also the reduced form parameters characterize the shocks of the
economy that the professional forecasters miss (don’t learn about them). The
explicit dependence shown of the reduced form parameters of the gain matrix
of the PF and the structure of the economy is relevant information to construct
priors for this parameters.
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