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SECTION 1 

INTRODUCTION 

 

In recent years and decades, the topic of global climate change has become one of the most 

controversial and heavily discussed. By now, scientists have found sufficient proofs that the 

global climate has experienced abrupt changes in the last decades, since the mid-19th century, 

but with the strongest increase from the 1950s onwards (IPCC, 2013). The most obvious 

characteristic is global warming, which most certainly influences on other variables as well, 

which was proven for some areas in previous studies (Wang et al., 2009; Woo et al., 2008).  

The moments when the existence of global change calls the attention of people most drastically 

is when emergencies occur as a result of it. For a large number of events in the recent past, 

news about human tragedies as results of climatic phenomena have reached the public, such as 

for example hurricane Katrina in New Orleans in 2005, typhoon Haiyan on the Philippines in 

2013, severe floods in Australia and large parts of central Europe in 2011 and 2013, 

respectively, an extreme cold wave in North America at the beginning of 2014 or a large 

number of extensive droughts in India, for example in 2013, and eastern Africa, especially in the 

years of 2008 to 2009 and 2010 to 2011, just to name a few. In all these cases, a connection to 

global change was established in the media and discussed in public and politics. 

In its recently released Fifth Assessment Report (IPCC, 2013), the Intergovernmental Panel on 

Climate Change (IPCC) mentions that it can confidently be stated that temperature has been 

rising steadily since the 1950s and that the change in precipitation over the global land mass is 

characterized as being of medium strength. However, it is only worded as likely that changes in 

extreme events have occurred since the beginning of observation in about 1950. Among these 

extreme events are increases of heat waves on a global scale and heavy rainfall events in North 

America and Europe.  

Another recently published report, the United Nations’ World Water Development Report 2014 

(UNESCO, 2014), predicts an increase in worldwide water consumption of about 55% until 

2050, with which energy and alimentation demand are closely related. Just this one fact states 

the importance to study profoundly the state of water resources and any impacts that influence 

on them. One of these influences is the occurrence of extreme events, which can cause a 

variety of problems in water supply, including shortages, contamination or damages to 

infrastructure, among others. 

The behavior of extreme events in river discharge series has been studied in a number of 

investigations using various of different methods, among which trend analysis is the most 
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frequent one. Both linear and nonlinear trends have been applied, as well as flood frequency 

analysis. Results of these studies in many cases indicate intensifications of the extreme events, 

but also state that the period that reliable hydrometeorological data is too short to prove the 

existence of changes (Bordi et al., 2009). A more detailed study of previous works that 

investigated the topic of trends in hydrometeorological time series will be given in section 3. 

Other studies treated with the topic of occurrence of extreme events, such as floods, which 

seemed to have increased over the last years (Kundzewicz et al., 2013), or relate extreme 

events or trends in hydrometeorological time series to the level of CO2 emissions or 

microclimatological indices (Hirsch and Ryberg, 2012; Moreno, 2011), but do not always 

succeed to prove the impact of these indicators. 

In order to prevent harm to persons and impacts on structures and ecosystems, various 

measures on the administrative level have been taken. One of many examples is the Floods 

Directive of the European Parliament (European Parliament, 2007), which has been applied to 

national laws of the member states of the European Union and triggered a large number of 

research projects related to the topic.  

But not only on the administrative level, also in many other fields of economy or research, the 

topic of extreme events causes an increased interest. Needless to say, the impact of these 

events are crucial for the work of insurance companies (Spekkers et al., 2013), but also in many 

other diverse fields research has been conducted, for example for the design of urban drainage 

systems (Smith et al., 2002), the risk of extinction of species due to extreme events (Colomer et 

al., 2014) or the evaluation of irrigation pricing during drought periods (Nikouei and Ward, 

2013), just to name a few. 

One of the crucial questions that is asked in many of the studies is if the behavior of extreme 

events changes and how humans can adapt to that change. To answer this question, it is not 

enough to state that events are changing, but also how they are working and which influences 

cause the change. A more profound understanding of the statistical characteristics of the time 

series under investigation can be achieved by studying stochastically the random processes that 

define them (Maldonado, 2009). Stochastic models have been applied successfully in 

hydrological applications, which were applied to different fields of hydrological studies other 

than the study of extreme events. Frolov (2006) constructed various dynamic stochastic models 

to describe the long-term variations in the mean annual discharges of the Volga River as do 

Dolgonosov and Korchagin (2007) to describe the runoff dynamics in the Moskva and Volga 

River basins. Domínguez and Rivera (2010) propose a stochastic model using the Fokker-Planck-

Kolmogorov equation for predicting the monthly effluent to the Betania hydropower plant in 

the upper Magdalena basin and Moreno (2011) also uses stochastic model to evaluate the 

hydrological forcing in Colombia. Naidenov proposed a physical explanation of probabilistic 
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characteristics of hydrological processes (Naidenov and Podsechin, 1992; Naidenov and 

Shveikina, 2005, 2002), as well as Koutsoyiannis et al. (2008) in the Nile River basin, while 

Kovalenko developed a new modeling framework heavily based on the concepts of the theory 

of stochastic processes for the simulation and forecasting of complex systems (Kovalenko, 

2012, 1986; Kovalenko et al., 1993). All of these previous works show the ability of stochastic 

models to relate the probabilistic characteristics of hydrological processes with the system 

input signal and physio-geographic and other characteristics of the watersheds, in which they 

are located.  

According to the above mentioned, it is necessary to demonstrate if the frequency of 

hydrometeorologically extreme phenomena has intensified or changed otherwise in the last 

years and model stochastically, in particular on a daily level, the precipitation-runoff relation 

with the purpose of understanding the possible mechanisms of alteration of the structure of 

stochastic processes that lead to an intensification of the hydrometeorological extreme events 

with special attention to the consequences that global change could have on the local 

hydrological processes. This understanding might lead to new practices in watershed 

management, prevention and mitigation of extreme events adequate to the process of the 

global change that is happening to the planet. 

This study can be seen as a first step in the process towards a profound understanding of the 

stochastic characteristics describing the regimes of extreme events in discharge time series. It is 

divided into 4 sections: Section 2 describes the concepts that will be used, as well as the data 

and computational tools used and created for the purpose of this investigation and that 

resulted from the study of literature. Section 3 describes the methodology and results of a 

global study of trends in hydrometeorological time series to corroborate the existence of 

changes in the global climate system and try to answer the question if changes in 

hydrometeorological extremes can be sufficiently be described by them, or if a more profound 

modeling method is needed. Section 4 thoroughly explains the proposed methodology of a 

stochastic model describing the evolution of extreme discharges in time with an inverse 

modeling approach. From the results of the model’s application in 4 test basins presented in 

section 5, the proposed deterministic kernel of the processes is validated and its parameters 

related to the physical properties of the watershed, as well as external influences. Finally, the 

model is applied to evaluate if alterations in the parameters change the probabilistic regime of 

the process and its results will be presented and discussed.  

The schematic outline of the document is presented in Figure 1, where the processes 2 to 5 will 

be explained later in the document in detail. In these sections, further schematic descriptions 

will be provided for the respective topics. 
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Figure 1. Schematic outline of the proposed work 
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SECTION 2 

CONCEPTUAL DOMAIN 

 

2.1 Fundamentals concepts 

This chapter describes the main concepts used in this work and follows the descriptions in 

Koutsoyiannis (2008), Coles (2001), Gardiner (2004) and Sveshnikov (1966). 

 

2.1.1 Probability 

Although many people see probability as a mere branch of mathematics, which provides tools 

for data analysis, it is actually a more general concept that helps describe and shape a different 

view of the world, especially in the study of complex systems. In the course of history, scientific 

views were predominantly deterministic, which left no space for doubts and a law was 

generally seen as almost absolutely true. The notions of errors or uncertainty in scientific works 

were hardly considered. Through time, the concept of indeterminism was created and grew 

more widely accepted, a concept that allowed the existence of distinct outcomes for a problem, 

given the same initial conditions, which were more or less probable to occur. Although it is 

nowadays accepted to include the concept of uncertainty and probability, the nature of those 

concepts in the response of complex systems is still discussed (Koutsoyiannis, 2008; 

Maldonado, 2009).  

Deterministic solutions are valid and good tools for mathematical problems on a microscopic 

scale, where it is likely to only observe a few objects that need to be described or modeled. 

However, for problems on a macroscopic scale, it is not so easy to describe them with a 

deterministic model anymore, because there are many different objects that might not all 

behave in one given way.  

Hydrological processes are complex systems and therefore have to be modeled on a 

macroscopic level. Describing each object present in a hydrological system would not be 

possible due to many reasons, such as for example operational limitations or the fact that it is 

not necessary to describe every aspect of the system in detail (Koutsoyiannis, 2008). 

 

2.1.2 The Axiomatization of Kolmogorov 

Many scientific works have described probability and all of its theory. This research is based on 

the axiomatization presented in 1931 by the soviet mathematician and hydrologist Andrey 

Nikolaevich Kolmogorov. It is based on three fundamental concepts and three main axioms, 
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which can be described as principles of a theory that are not derived or deducted in the same 

system. 

The base of the axiomatization is the probability space, which is made up of the three main 

concepts: 

a) The sample space  is a non-empty set that includes the known outcomes . 

b) A Sigma-Algebra (or -algebra) , which is a set of all possible subsets of , called 

events and described as E. Based on ordinary set theory,  itself and the empty set Ø 

are both subsets contained in , additionally to the other subsets as are the 

complements and all possible unions of subsets. 

c) The probability function P assigns each member of  a number between 0 and 1, which 

is equal to the probability of occurrence of the event. 

Additionally, the three main axioms describe the properties of P: 

i. Every event E has a probability P(E) ≥ 0. 

ii. The probability of , P() = 1. 

iii. For any incompatible events A and B (AB = Ø), P(A + B) = P(A) + P(B) 

A fourth axiom describes the continuity at zero of decreasing sequences of events and follows 

from the first three axioms if  is finite (Koutsoyiannis, 2008). 

 

2.1.3 Random variables 

Random variables are one example of a simple realization of the probability space described by 

Kolmogorov and can be seen as a function  ( ) that assigns a number to each possible 

outcome      . Following the representation in Koutsoyiannis (2008), random variables will be 

presented as an underlined lowercase letter, x(). It is important to have in mind that a random 

variable describes the outcome of an experiment, such as for example the average temperature 

measured in January at a given climate station, which is not a single value, but a function that 

represents the values of all possible outcomes the experiment can take. These values, the 

realizations of random variables, are henceforth denoted as non-underlined lower-case letters, 

which are equal to the letter that denotes the random variable.  

Random variables can be fully described by their probability distribution. The distribution 

function of a variable x is defined as 

 ( )    (   ), 

 

(1) 
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which can be described as the probability of non-exceedance of the random variable x taking a 

value x. Therefore, F(x) is a non-decreasing function, which is also referred to as cumulative 

distribution function. Its counterpart, 1 – F(x), which is used in many hydrological applications, 

is the function describing the probability of exceedance of x, hence is a non-increasing function. 

   ( )    (   ) 

 

(2) 

The derivative of the distribution function, f(x), the probability density function (or PDF), 

describes the concentration of exceedance probability of the random variable x in a given 

interval dx. It can be related to probability distribution function F(x) as 

 ( )  
  ( )

  
 

 
(3) 

From this follows that the integral under the complete function accounts to a probability of 

100%, therefore 

∫  ( )    
 

  

 

 

(4) 

When comparing two or more random variables, the concepts of joint and conditional 

probability are of fundamental importance.  

Joint probability describes the probability that an event  occurs in both random variables. It 

can be expressed as in Gardiner (2004) 

 (   )   {(     )     (     )} 

 

(5) 

This concept is especially important when more than one time is considered, for example when 

the different random variables represent the same measurement at two different times. Joint 

probability density functions are n-dimensional, depending on the number n of random 

variables considered, which can be easily illustrated if two variables are considered, but 

becomes more complex for more variables. 

Conditional probability is the probability of an event occurring in one random variable given 

that another event has occurred in another variable. Kolmogorov defines the conditional 

probability of the event A within the sigma-algebra and a probability of the event B with 

 ( )   , then the conditional probability of A is the quotient of the joint probability and the 

probability of B, or 

 ( | )   
 (   )

 ( )
 

 

(6) 
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Therefore, the probability distribution of one random variable given the distribution of another 

can be described by an equation that represents the conservation law of a probability density 

current. 

 

2.1.4 Random processes 

Taking into account that random variables represent the possible realizations of a statistical 

event and their probability of occurrence, random processes can be seen as a set of more than 

one random variable. A random process is a system X(t), in which a time-dependent random 

variable x(t) exists, where the values of x(t) are measured at different times t1, t2, …, tn and a set 

of joint probability densities is given that describes the system completely (Gardiner, 2004). In 

other words, it is a function, whose values for each time step t is a random variable, and which 

therefore indexes a set of random variables in time. The time argument t can assume any value 

in a given interval. It has to be mentioned that the argument t does not automatically represent 

time, but in the majority of applications, as well as in the present study, it does (Sveshnikov, 

1966). Random processes will be denoted as underlined, upper-case letters. 

To construct a random process from observed data, the method described by Kolmogorov and 

presented in Sveshnikov (1966) was applied: Each random process consists of a number of 

realizations, which are the results of the measurements of a variable of independent 

experiments. These independent experiments can be the measure of a daily mean at a 

hydrological station measuring discharge values for each day during a year. This experiment can 

be repeated for n years to obtain a number of n realizations. Each realization can be drawn as a 

curve, connecting all the measured values. Superimposing these curves shows the bundle that 

reflects the ensemble of observed realizations of the random process.  

Since each of the realizations is repeated for the same period of time – in the above mentioned 

example each day of a complete year – it is possible to consider all values measured on the 

same day of the year in all of the independent experiments to form a random variable taking 

the value of the random process at the instant of time t.  This random variable can be 

completely described by its probability density function. The random variables of a random 

process do not necessarily have to be independent from each other, and were not in any 

occasion in this present study. 

For reasons of a better visualization, the above mentioned example is reduced to each 

realization of the process containing only 12 values, representing the monthly mean values of 

discharge values. Figure 2 shows the bundle of realizations and the probability density functions 

of the 12 random variables. 
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Figure 2. Bundle of realizations and probability density functions of a random process: monthly mean discharges, 
Pte. Balseadero station, Colombia 

 

As mentioned before, to define completely a random process, the joint probability density 

function of the probability densities of all instances of time in the given time interval, 

          , is sufficient, taking the form of 

 (                   ) 
 

(7) 

The random processes analyzed in the present work will principally contain 12 time values, 

representing a monthly statistic of a time series, such as a mean, maximum or minimum value. 

This way, the process’s evolution in time is described by discrete time steps t representing the 

duration of one month. The random process will therefore take the form of  

                

 

(8) 

In some cases, each realization will consist of 365 daily values, where the process then takes 

the form of  

                 

 

(9) 

A description for the date of February 29th was not considered, because in the majority of the 

cases, the number of realizations of these values was too little to obtain an amount of values 

that was statistically sufficiently significant for rational probabilistic analysis. 
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2.2 Extreme Events 

Extreme value analysis is one of the fields in statistics that has gained importance in the past 60 

years in different fields of study, including hydrology. Its main objective is to describe the 

stochastic behavior of a process at unusually large or small levels (Coles, 2001), in particular the 

estimation of the probability of occurrence of these events. 

As described in Coles (2001), in many cases, in which extreme value analysis is applied, existing 

data does not prove sufficient to describe the statistical behavior of the process to be analyzed 

with certainty. Therefore, also statistical indices, such as a value that describes an extreme 

event cannot be obtained exactly. Some methods exist that allow the estimation of mentioned 

indices assuming the number of data values to approach infinity. 

In many cases of statistical analysis, an extreme event is defined as an event within a 

statistically valid dataset that is rarely found and that lies below or above a defined threshold 

calculated from said dataset. However, in the sense of the stochastic approach presented in this 

work, it was not considered feasible to follow the same method. For this purpose, a threshold 

would be needed for each valid set of values, which is represented by the random variable. The 

threshold would have been calculated as a probability of exceedance and biased the data to an 

extent that was not considered to be reasonable. 

Hence, in this study, extreme events were exclusively defined as the maximum and minimum 

values of each month on record obtained from the daily observations in the hydrological time 

series, which is why it was important to count on daily data.  

In the case of monthly maxima, a random process was defined, in which 12 random variables 

were contained, each representing the monthly maximum values of the respecting month for 

each of the realizations of the process.  

 ( )   {           } 

 

(10) 

with  

   {   (     )     (     )        (     )} 

 

(11) 

where x’ denotes the subset of daily values of the month i and n the total number of observed 

years. 

The same procedure was applied for minimum values. 

Two random variables containing the annual mean, maximum and minimum value, 

respectively, were created to represent the data on the annual level and only used in trend 

analysis described in Section 3 of this work. 
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2.3 Statistical Methods 

2.3.1 PDF Fitting and Kolmogorov goodness of fit test 

After proving its randomness, theoretical probability density functions were fitted to the 

empirical distribution of the random variables analyzed in this work to evaluate the best fit in 

each occasion. For these tests, the empirical distribution function was built following the 

Kritskiy – Menkel equation (Moreno, 2011) 

 (  )  
 

   
 

 
(12) 

where i is the position of plotting data from highest to lowest value and n is the number of 

available data in each dataset. To this empirical distribution, 12 different theoretical probability 

density functions were fitted, which were all included in the Scipy Stats Package described in 

section 2.4.1.  

The following 12 distributions were used: 

 Normal 

 Lognormal 

 Gamma 

 Loggamma 

 Gumbel with positive skew 

 Gumbel with negative skew 

 Weibull Min 

 Weibull Max 

 Powerlaw 

 Pareto 

 Exponential 

 Logistic 

 

The best fit was determined using the Kolmogorov goodness-of-fit test (Moreno, 2011), which 
is a non-parametric test to compare the equality of the empirical distribution F*(x) with the 

theoretical probability distribution F(x). The statistic  is determined by the maximum 
difference between the theoretical and the empirical function: 

  (   |  ( )   ( )|) √  
 

(13) 

where n represents the number of elements contained by the empirical distribution. In the next 

step, the critical value q of the Kolmogorov distribution is determined. If  < q, the null 
hypothesis is accepted and the theoretical and empirical distribution are considered to match. 
The distribution of the Kolmogorov criteria can be approximated as follows (Moreno, 2011): 
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    ∑(  )         

 

   

 

 

 

(14) 

The theoretical distribution resulting in the least mean squared error between empirical and 
theoretical distributions was chosen out of all those that passed the Kolmogorov goodness-of-
fit test. 

 

2.3.2 Mann-Kendall trend test 

The Mann-Kendall trend test, also referred to as Kendall τ is a non-parametric test that 

determines the significance of a trend using consecutive pairs of data values in the time series 

to compare for a positive or negative difference, which does not take into account the 

magnitude of this difference. This test is resistant to outliers, can be applied to samples with 

small sizes and is well-suited for variables that are not necessarily normally distributed (Helsel 

and Hirsch, 2002; Kunkel et al., 2010; Morin, 2011). 

The median of the slopes of all consecutive data pair values P is represented by the statistic 

  ∑ ∑     (     )

 

     

   

   

 

 

(15) 

where n is the sample size. For a sample size of n > 8, S has an approximate normal distribution 

(Morin, 2011), with mean zero and a variance that depends on the sample size and the number 

of ties q, 

   ( )  
 

  
[ (   )(    )  ∑   (   )(    )

 

   

] 

 

(16) 

The final test statistic z,  

  
      ( )

√   ( )
 

 

(19) 

determines if the null hypothesis of no existing trend in the observed data is rejected if it is 

larger than the critical value calculated from the normal distribution with a given probability of 

exceedance. 
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2.3.3 Thomas Algorithm 

The Thomas Algorithm is a numerical method used in linear algebra, which permits solving 

tridiagonal systems of equations (Weickert et al., 1998) and was in this applied to the implicit 

solution of the Fokker-Planck-Kolmogorov equation algorithm, as described in Section 4.2.1. 

The tridiagonal equation system has the structure of  

                      
 

(20) 

In this case, i might represent an index in the observation interval of a modeled variable, or 

time. The whole system can be rewritten in matrix form, where the coefficients a, b and c form 

a three-diagonal matrix that is multiplied by the vector x, resulting in the vector d. 

The Thomas algorithm consists of two modification steps, one in forward and another in 

backward direction. In the first step, the coefficients are modified recursively in the forward 

direction, changing the values of c and d, where the * marks the modified coefficient (Hoffman 

and Frankel, 2001). 

  
  {

  
  

                             

  
       

   
             

 

 

(21) 
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(22) 

The second modification step assigns values to the variable x, which is modified starting from 

the last value in the vector and advancing in backward direction. 

     
  

 
(23) 

     
    

                          
 

(24) 

where n represents the number of values contained in the vector x. The resulting vector x is the 

solution of the Thomas algorithm. 

 

2.3.4 Multiple Regression Analysis 

In this study, multiple linear regression analysis was used to estimate the degree to which some 

variables influence others. Therefore, correlation coefficients were calculated for each 

independent variable in order to describe the dependent variable as a linear combination that 

represents a type of weighted sum, using the coefficients as weight. This takes the form of  
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(25) 

In equation 25, y is the dependent variable, xi are the dependent variables, bi the assigned 

weights and a is an additive constant or intercept. With only one independent variable, this can 

be seen as a point cloud in 2-dimensional space, to which a line is fit, but with each additional 

variable, the space increases by one dimension. 

Regression analysis was solved using the Ordinary Least Squares method, which is used to 

estimate the regression coefficients by minimizing the sum of the squared vertical distances 

between the observed data and the predicted one by the linear approximation. The exact 

methodology is described in Feldman and Valdez-Flores (2009). For each multiple regression, a 

regression value is output to describe the overall coherency between the variables. 

For each of the coefficients, it has to be determined if it is statistically valid and may therefore 

be used to serve as an indicator of the dependent variable. Therefore, the variances of the 

errors are calculated for each coefficient, which allows for the construction of Student t 

distributed random variables that may be used for hypothesis testing and building confidence 

intervals (Feldman and Valdez-Flores, 2009). Therefore, for each independent variable, the 

confidence interval of 95% was regarded to accept the result of the regression.  

To establish the correlation between the dependent and the independent variables, only the 

statistically valid ones were identified with a correlation analysis of all variables in a first run. 

The analysis was repeated in a second run with only those independent variables that were 

statistically valid. 

 

2.3.5 Kullback-Leibler divergence criteria 

The Kullback-Leibler divergence (Kullback and Leibler, 1951) is a measure to describe the 

difference of two probability distributions. In other words, it can be described as the measure 

of information that is lost when one of the distributions is used to model the other. Relying on 

Shannon’s theory of information, this difference is the relative entropy of one probability 

distribution with respect to the other, which is expressed in bits. 

In most applications, the observed probability distribution is named p, and the modeled one q. 

The divergence d between the two distributions is then calculated as 

  ∑      (
  

  
)

 

 

 

(26) 
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2.4 Computational Tools 

Computation was necessary in many different areas of this research. This did not only include 

the analysis, but also the acquisition of data and the visualization and presentation of the 

results. 

 

2.4.1 Python programming language 

The principal computational tool used in this research was the Python programming language. 

All information stated in the following paragraphs was obtained from the project pages of the 

respective modules, as well as their documentation. 

Python is a high-level programming language (“Python.org,” 2014), which focuses on easy code 

readability and implementation, and allows creating short and clear programs. Therefore, 

Python is used mainly for scripting purposes and in the scientific environment. Python is 

distributed under the Python Software Foundation License, which is comparable to the GNU 

General Public License used for free software distribution and available for cross-platform use. 

Python has a large standard library, but especially for scientific purposes, there is a wide range 

of additional packages. By June 2014, more than 44.000 packages were available at the official 

repository, the Python Package Index (“PyPI - the Python Package Index,” 2014). For easier 

software installation, a number of different distribution collections are available, which include 

the standard library and selected packages. For this investigation, the Anaconda Python 

distribution was used, which is compiled by Continuum Analytics and focuses especially on 

scientific computing and large-scale data processing. The principal components of Python used 

in this research are described below and can be referred to in later sections that describe the 

functionality of some of the scripts.  

The Python standard library provides the commonly used functions of operation in Python. 

From this library, principally basic mathematical operations, date and time modules, 

Input/Output (I/O) modules to read and write different file types and the list data type were 

used. This data type is a collection of values of any data type, which do not have to be equal 

within the same list. Lists were the most basic data type used in the analyses and principally 

applied to save IDs or station names, as well as the creation and stepwise extension of time 

series. The main I/O libraries used were for reading or writing text and comma-separated value 

(CSV) files, browsing and downloading files on FTP servers and reading ZIP files. As of June 

2014, the most recent Python version was 3.4, in this research however, version 2.7 was used. 

NumPy and SciPy (“NumPy — Numpy.org,” 2014, “SciPy.org,” 2014) are the two most widely 

used packages for scientific computing with Python, where NumPy is the more fundamental 

and SciPy the extensive collection of mathematical and statistical tools. The most frequently 
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used component of NumPy in this research is the array data format, which allows the 

processing of matrices and provides functions associated with their use. Furthermore, a wide 

range of mathematical and statistical function, especially those that permitted the presence of 

Null values in a matrix was used in all of the analyses. SciPy complements the range of functions 

not included in NumPy and provides the essential tool for probabilistic analysis, the stats 

module. This module includes over 80 probability distributions, which all offer efficient 

methods for the identification of parameters with the maximum-likelihood method (“Statistics 

(scipy.stats) — SciPy v0.14.0 Reference Guide,” 2014). Furthermore, SciPy offers a big variety of 

mathematical optimization functions. 

Pandas (“pandas: Python Data Analysis Library,” 2014) is a library that provides additional data 

structures and data analysis tools. Its main component used in this work is the DataFrame 

structure, which can be described as an indexed array object. It indexes its rows and columns, 

which permits easy appending of new columns with the same row indices as an existing 

DataFrame and therefore an automated reorganization of the data. This was especially useful 

for the creation of data files of multiple time series, where the date was used as the row index 

and each time series was saved as a column of the DataFrame. 

Matplotlib (“matplotlib: python plotting,” 2014) is a Python plotting library, which is specialized 

for scientific graphics. Matplotlib allows the creation of charts of all types both in 2 and 3 

dimensions. All results of the analyses of this study were plotted with this module. 

Python script files were created containing all the data analysis and data operation tools that 

were used in this research, which were not already included in one of the Python packages. 

These script files are used as various modules that contain approximately 50 functions and 

were imported as external libraries in all of the other scripts used for data analysis. A list of all 

functions created for this study and included in the modules is provided in Annex B.  

 

2.4.2 ArcSWAT 

SWAT stands short for Soil and Water Assessment Tool and is a software tool developed and 

distributed by United States Department of Agriculture: Agricultural Research Service (USDA-

ARS) and Texas A&M University system. The tool is developed to execute quantitative and 

qualitative analysis of environmental impacts on small watersheds and river basins. SWAT has 

been used in a large number of scientific works and other projects around the globe (“SWAT | 

Soil and Water Assessment Tool,” 2012). 

ArcSWAT is an extension for the ESRI ArcGIS software to implement SWAT’s functionality in 

custom GIS software and was operated in this work with ArcGIS version 9.3. For this work, 
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ArcSWAT was used to delimit the watersheds for the test basins according to the obtained 

elevation information described in section 2.5.2.  

 

2.5 Data collection 

Apart from creating the software tools for hydrological analysis, a large part of the preliminary 

work in this study was dedicated to the retrieval of high-quality data. Both 

hydrometeorological, as well as geospatial data were assembled from a number of different 

data sources on the internet. One of the most important factor of this work was to use 

exclusively data that was offered free of charge, whenever this was possible. 

In a first step, a collection was created that contained all the institutions that provided data. For 

this reason, an extensive search was conducted, which lead to a rough overview of the 

availability of data. In the next step, data samples were downloaded and Python scripts 

generated to automatically read the data in the formats, in which the information is saved and 

made available. Finally, completeness and quality checks were performed and the information 

was saved in a unified format, which facilitated further work with the information. 

In the following sections, the data that was used in the investigation will be described. 

However, it has to be stated that this is merely a small part of the information that was actually 

downloaded and analyzed. A significant part of the data was not fit for further use, due to a 

multitude of reasons, including high percentages of missing values, short periods of observation 

or access restrictions that would have resulted in extensive manual preparation and therefore 

would have caused delays in the process. 

For the sake of better readability of the following sections, all consulted hydrometeorological 

and geographical data sources can be found in Annex A and will not be quoted in the text. 

 

2.5.1 Hydrometeorological data 

Hydrometeorological data had to meet two criteria to be used in this research. First, due to the 

types of analysis, which were foreseen to be executed, only data on a daily level were 

downloaded. Monthly and hourly data were not obtained from data sources, although in most 

analysis, monthly and annual datasets were derived from the daily data in later processing 

steps. Second, the series had to provide at least 80% of completeness to guarantee the valid 

base for the analyses to be performed. 

Hydrometeorological data is collected by a lot of organizations worldwide, many of which 

provide it free of charge in databases that can be accessed via their web appearance. The 
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hydrometeorological variables of interest for this investigation were discharge, precipitation 

and temperature, which are the most common information collected and therefore accessible 

from most of the institutions that provide data.  

In the majority of the cases, databases are provided on a national or worldwide basis, although 

data collections from projects in smaller areas are also available. The fact that data collected on 

a bigger geographical scale implies the existence of quality control was the main reason why 

databases on a worldwide and national level were primarily accessed. Another reason was the 

unified data format, which allowed retrieving bigger amounts of information with a single 

interface used to download and evaluate the data. This way, it was aspired to conform a 

consistent data set with a comparable level of data quality.  

On a worldwide level, two main databases were consulted that provided data for all three 

variables. Firstly, data provided at the National Climatic Data Center (NCDC) of the National 

Oceanic and Atmospheric Center (NOAA) in the United States was accessed. The Climate Data 

Online Search and the Global Historical Climatology Network (GHCN), which were later 

combined into one central data search, provide historical and real-time data from stations 

around the world. Especially data from the GHCN was accessed, which provides information for 

more than 85.000 stations worldwide and more than 50 variables on a daily and monthly 

resolution, which include precipitation, maximum and minimum temperature. The data can be 

downloaded as automatically generated text files for each station that all have the same data 

structure. Access to the database is possible via HTTP as well as FTP, the latter of which enabled 

an automatic download process with a Python script.  

Secondly, the Global Runoff Data Centre (GRDC) is a data collection of over 8.000 discharge 

data stations from over 150 countries on a monthly and daily level, which is operated by the 

German Federal Institute of Hydrology. For this database, an automated download is not 

possible. The data access procedure requires a request by email, in which the specification of 

the data has to be made. The data files are delivered in return per email, which also contains 

separate data files for each station with a unified data format.  

Most of the discharge data, as well as some precipitation information to complement the GHCN 

data, was obtained from national data providers. Data from the following institutions was 

downloaded: 

 Argentina: Sub secretary of Hydrological Resources (Subsecretaría de Recursos Hídricos): 

BDHI database 

 Australia: Bureau of Meteorology 

 Australia: Government of Queensland 

 Austria: Ministry of Life: eHyd database 
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 Brazil: National Agency for Water (Agência Nacional de Águas, ANA): Hidroweb database 

 Canada: Environment Canada (HYDAT database) 

 Mexico: National Commission for Water (Comisión Nacional del Agua, CONAGUA) 

 South Africa: Department of Water Affairs 

 United Kingdom: Centre of Ecology and Hydrology 

 United States: United States Geological Survey (USGS): National Water Information 

System 

For Colombia, discharge, precipitation and temperature data was provided by the Institute of 

Hydrology, Meteorology and Environmental Studies (Instituto de Hidrología, Meteorología y 

Estudios Ambientales, IDEAM) for research purposes to Efraín Domínguez and could also be 

used for this study. 

The time frame of available data varied between the sources of information, the longest series 

dated back into the 1700s, which could be found in the GHCN database for a meteorological 

station in Italy. At the same time, the data sources of US-American institutions usually provide 

data until almost the current date, where quality control takes place in larger periodic cycles, 

such as quarterly or yearly. Data from other national organizations are usually updated in yearly 

intervals, where data can be obtained until the last complete year before the current date or 

two years back. In all data collections, information of the operation period of already closed 

stations is also still included in the database. 

For most data providers, station lists were available, which provided at least the name or code 

of the hydrometeorological station, along with its geographic coordinates. Additional 

information that was provided in the station lists was the period of observation, altitude and 

operator of the station, as well as the percentage of missing values in some cases. This 

information was consulted first and used to create a list of stations, which was analyzed in a 

Geographic Information System and filtered using the given information as decision criteria for 

choosing a sample of stations whose data was to be downloaded. If no station list was 

available, it was created from the metadata provided. 

During the data retrieval, a variety of challenges surfaced, mainly the fact that each data 

provider used a different format for saving data, which was the case for the file format, size and 

the data structure. File formats included text files, many of which used proper file extensions, 

such as for example *.dly, CSV files, or in the case of the Colombian data a proper file format 

that needed scripts to prepare. In some cases, it was possible to access data from different 

stations in one file, but principally the information from each station was provided separately in 

single files. The biggest challenge, however, was the difference in the file structure. In most 

cases, the time series were provided as a two-column list including the date (and hour) in one 
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and the data value in the other with a single line for each observation. In some cases, especially 

for files including multiple stations, an additional column for the station ID was available, as 

well as for data variables in case of multiple variables or columns indicating data quality. If data 

was not listed as one observation per line, it was presented as a monthly table, with 31 data 

values representing the observations of each day of the month in the same line. These tables 

were sometimes tab-separated, in other cases some separation character was used, and in 

some cases an additional data quality flag was added for each observation, as it was the case 

for the GHCN data. Additionally, in some cases, files include lines with metadata at the 

beginning of the file. This metadata, if present, had to be extracted separately or in most cases 

was skipped.  

Facing all the above mentioned challenges, it was quickly clear that it was necessary to create 

an interface for each separate data format, which extracted the data from the raw data files 

into a unified structure that could be used in further analysis. All interfaces were written in 

Python code and collected in a file called dataops.py, which served as a module for data 

extraction for each data source. In the cases where it was possible, it also included the 

automatic data download from a list of given stations. The Python code uses the basic module, 

as well as NumPy and Scipy functions and the different I/O interfaces to download, load and 

save the data files. After reading the data files, the Pandas module was the essential tool to 

unify the data in DataFrames, where the function of data indices served to readily reorganize 

the data with the row indices representing the observation dates and the column names the 

codes of the hydrometeorological stations. This way, a table of all stations could be generated, 

which was saved as a CSV file for each data source separately, due to file size. These CSV files 

could again be loaded easily with the Pandas module and a desired section of the data 

extracted for different analysis, both for specific time periods and also to select a subset of 

stations. 

 

2.5.2 Geospatial data 

Geospatial data of different types was obtained or created for this work and apart from serving 

as a base for decisions it was used to geographically locate the hydrometeorological data used. 

In the following paragraphs, the types of data used and their sources are briefly described. 

Firstly, all hydrometeorological stations were displayed according to the coordinates provided 

in the station information. From the station lists obtained from the data providers or metadata, 

point shapefiles were created for further use. Additionally, a shapefile displaying the world 

country borders was downloaded for free at Geocommons.com. 
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For the delimitation of watershed boundaries with ArcSWAT, the elevation data provided by 

the HydroSHEDS project was used. This data is published by the USGS free of charge and is 

based on high-resolution data from NASA’s Shuttle Radar Topography Mission (SRTM). A variety 

of datasets are provided, from which the digital elevation model (DEM) with a resolution of 3 

degree-seconds was chosen for being the one with the highest resolution, which corresponds 

to approximately 93 meters along the equator.  

Geographical data representing the river networks in the study areas was found at the national 

or regional agencies for hydrological information. Although HydroSHEDS also provides river 

networks derived from the elevation data, it was considered that the datasets from local 

institutions are more accurate. For the display of river data for Europe, especially for the Enns 

catchment in Austria, the river layer from the Ecrins dataset was obtained from the European 

Environmental Agency (EEA). For the US, the river dataset from NOAA was used. The dataset 

used for Colombian rivers originated from the IDEAM for the doctoral thesis of Efraín 

Domínguez and contained the permission to be used for scientific projects. 

Other data, such as the USGS’s hydrological units dataset, were useful for the study of available 

stations to determine the study area in the USA. Different spatial datasets were obtained for 

other countries, which were not used in the analysis for obtaining results presented in this 

work. 

A satellite image for the whole world was used as a Web Map Service from the NASA website. 

 

2.6 Study areas for extreme event analysis 

The study of extreme events was conducted in 4 river basins in different parts of the world. The 

intention was to use basins with comparable sizes in both hemispheres, as well as close to the 

equator. A total of 5 candidates with satisfactory data availability were selected, out of which 4 

were chosen. The main criteria for the choice of the basins were the existence and sufficiently 

complete data, as well as a correlation between runoff and precipitation series. Therefore, the 

data had to include at least a completeness of 80% of all time series on a daily level. Also, a data 

structure of the random processes of monthly maximum and minimum discharges was required 

to indicate a Markovian process by the analysis of its cross correlation, as is described in section 

4.1.5. 

The selected basins were the Enns River (Austria), the Upper Magdalena River (Colombia), the 

Upper Great Miami River (USA) and the Brisbane River (Australia), as displayed in figure 3. The 

Crocodile River Basin in South Africa was among the candidates, but was not used because of 

reasons in its data structure. Therefore it will not be described in detail. 
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Figure 3. Location of the study areas 

 

For each basin, only the discharge data from the station representing its outlet was used for 

further analysis in order to evaluate the changes in the complete watershed. Among all 

precipitation stations in each basin, those with a correlation of over 60% with the discharge 

data for the same date or one of up to 5 lag days was considered.  Precipitation time series 

were constructed calculating the mean of the observed values of all those stations. Due to the 

lower availability of freely available temperature stations in the regions of most test basins, the 

temperature station closest to the basin outlet was used. 

The information given in the descriptions of each river basin in the following paragraphs was 

retrieved from the datasets and their metadata.  

 

2.6.1 Enns River Basin (Austria) 

The Enns is a river in central Austria, which has a basin area of approximately 6100 square 

kilometers. It embarks parts of the northern range of the Alps in its upper reaches and flows 

into the Danube River from the South. The Enns River itself has a total length of 253 kilometers, 

and the basin also includes two other major rivers, the Steyr of 68 km and the Salza of 90 km, 

and the basin includes parts of the 4 federal states of Lower Austria, Upper Austria, Salzburg 

and Styria. The highest elevation in the basin is approximately 2600 meters above sea level and 

the mouth of the river at 240 meters, where the river is about 100 meters wide and has an 

average discharge of over 200m3/s. 
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The lowest discharge station is located in the city of Steyr, after the union of the Enns and Steyr 

rivers and about 30 km from the outfall of the Enns into the Danube at an elevation of 283 

meters. Its drainage area is 5915 square kilometers big and was used for this investigation. 

Within the basin of the Steyr station, 34 precipitation stations are located, which meet the 

criteria established for data completeness and were all obtained from the eHyd data portal. 23 

of the precipitation stations met the correlation criteria and were used for further analysis. The 

records length is 40 years from 1971 to 2010. Figure 4 shows the area of the river basin, as well 

as the location of the hydrometeorological stations. Precipitation stations with a significant 

correlation with the discharge series are marked separately. 

 

Figure 4. Illustration of the Enns River basin 

 

The following table gives an overview of the characteristics of each station used. Data 

completeness refers only to the analyzed period from 1971 to 2010 on a daily level. 

Variable Station ID Data Source Start Date End Date Completeness 

Discharge 205922 eHyd 01.01.1951 31.12.2010 100% 

Precipitation 105643 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106021 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106153 eHyd 01.01.1971 31.12.2010 100% 
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Variable Station ID Data Source Start Date End Date Completeness 

Precipitation 106161 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106203 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106229 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106237 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106245 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106252 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106278 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106286 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106310 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106328 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106336 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106351 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106377 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106401 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106419 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106427 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106435 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106443 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106450 eHyd 01.01.1971 31.12.2010 100% 

Precipitation 106484 eHyd 01.01.1971 31.12.2010 100% 

Temperature AU000005010 GHCN-D 01.01.1876 31.12.2013 100% 

Table 1. Hydrometeorological stations used in the Enns River basin 

 

2.6.2 Upper Magdalena River Basin (Colombia) 

The Magdalena River is the biggest river in Colombia with a length of 1530 km, which flows into 

the Caribbean Sea at Barranquilla. Its source is located in the Andean mountains at an elevation 

of almost 3700 m and has a drainage area of 257.500 square kilometers, including also the sub 

basin of the Cauca River. 

The Betania reservoir is located about 200 km from the source in the Upper Magdalena Basin, 

and the last discharge station before it is the Puente Balseadero station, located approximately 

150 km from the source at 688 m above sea level and has a drainage basin of 5.850 square 

kilometers. The two other major rivers in the basin are the Suaza River with a length of 136 km 

and the Guarapas River. Seven IDEAM precipitation stations are within the basin area, which 

range over 39 years from 1972 to 2010, and out of which 5 were in accordance with the 

completeness and correlation criteria and therefore used.  
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Figure 5. Illustration of the Upper Magdalena River basin 

 

The following table gives an overview of the characteristics of each station used. Data 

completeness refers only to the analyzed period from 1972 to 2010 on a daily level. 

Variable Station ID Data Source Start Date End Date Completeness 

Discharge 21047010 IDEAM 01.01.1972 31.12.2010 99.76% 

Precipitation 21010110 IDEAM 01.01.1972 31.12.2010 99.39% 

Precipitation 21010140 IDEAM 05.11.1975 31.12.2010 89.69% 

Precipitation 21010160 IDEAM 01.12.1975 31.12.2010 87.46% 

Precipitation 21030060 IDEAM 01.01.1972 31.12.2010 98.98% 

Precipitation 21030080 IDEAM 01.01.1972 31.12.2010 98.94% 

Temperature 21015020 IDEAM 01.01.1976 31.12.2010 84.11% 

Table 2. Hydrometeorological stations used in the Upper Magdalena River basin 

 

2.6.3 Upper Great Miami River Basin (USA) 

The Great Miami River is a northern tributary to the Ohio River in the United States of America 

with a total basin area of almost 14.000 square kilometers. Its basin is located in the states of 

Ohio and Indiana. 
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For this study, only the basin of the Upper Great Miami River was used, an area that was also 

established as a cataloging unit of the Hydrologic Units by the USGS. It is delimited by the 

discharge station located at Dayton, OH, which is exactly midway between the source and the 

mouth of the river, approximately 128 km from both. The station is located about 1 km 

downstream of the union with Mad River, one of the two other major rivers in the basin with a 

length of 106 km. The other major river is the Stillwater with a length of 111 km. The total basin 

of the Upper Great Miami River is 6.500 square km big and includes 14 GHCN precipitation 

stations, out of which 8 fulfilled the correlation criteria. The data chosen are the 65 years from 

1948 to 2012. 

 

Figure 6. Illustration of the Upper Great Miami River basin 

 

The following table gives an overview of the characteristics of each station used. Data 

completeness refers only to the analyzed period from 1948 to 2012 on a daily level. 

Variable Station ID Data Source Start Date End Date Completeness 

Discharge 3270500 USGS 01.04.1913 31.12.2013 99.97% 

Precipitation USC00330563 GHCN-D 02.04.1894 31.12.2013 96.55% 

Precipitation USC00332067 GHCN-D 01.06.1893 31.12.2013 98.95% 

Precipitation USC00333375 GHCN-D 01.06.1893 31.12.2013 99.07% 
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Variable Station ID Data Source Start Date End Date Completeness 

Precipitation USC00335786 GHCN-D 01.01.1914 31.12.2013 97.76% 

Precipitation USC00336645 GHCN-D 01.07.1893 31.12.2013 89.44% 

Precipitation USC00337693 GHCN-D 01.05.1948 31.12.2013 98.67% 

Precipitation USC00338642 GHCN-D 01.01.1914 31.12.2013 98.36% 

Precipitation USW00093815 GHCN-D 01.01.1948 31.12.2013 99.99% 

Temperature USC00332067 GHCN-D 01.06.1893 31.12.2013 95.15% 

Table 3. Hydrometeorological stations used in the Upper Great Miami River basin 

 

2.6.4 Brisbane River Basin (Australia) 

The Brisbane River is located in eastern Australia in the territory of Queensland, flowing into 

the Pacific Ocean near the city of Brisbane. The whole basin has an area of 13.541 square 

kilometers and its altitude ranges from 2320 meters to sea level. The river has a total length of 

345 kilometers. 

For this study, the discharge station located at Savages Crossing is used, which is located 

approximately 130 kilometers from the mouth of the river and at an altitude of 42 meters. The 

basin area draining this station is 10.000 square kilometers big with the main sub basins being 

those of Lockyer Creek and Stanley River. It is located 18 kilometers downstream of Lake 

Wivenhoe and the Wivenhoe dam, just below which the Lockyer Creek flows into the Brisbane 

River. In the basin, 38 precipitation stations are located, out of which 13 fulfilled the 

completeness and correlation criteria. The data could be used during the period of the 52 years 

from 1961 to 2012, which also includes the data from the big flood in the Brisbane region at the 

beginning of 2011 mentioned before. In the map displayed in figure 7 on the next page, the 

rivers resulting from the watershed delineation in ArcSWAT are displayed, due to the lack of a 

freely available river dataset for the region. 

Despite its location below a dam, no significant changes in discharge regimes could be found 

analyzing the time before and after its construction in the early 1980s. Therefore the station 

was considered suitable for further analysis. 

Table 4 gives an overview of the characteristics of each station used. Data completeness refers 

only to the analyzed period from 1961 to 2012 on a daily level.  

Variable Station ID Data Source Start Date End Date Completeness 

Discharge 143001C 
Queensland 
Government 28.11.1958 31.12.2013 97.10% 

Precipitation ASN00040020 GHCN-D 01.01.1900 31.12.2013 98.15% 

Precipitation ASN00040056 GHCN-D 01.01.1916 31.12.2013 97.54% 

Precipitation ASN00040075 GHCN-D 01.01.1887 31.12.2013 95.50% 
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Variable Station ID Data Source Start Date End Date Completeness 

Precipitation ASN00040079 GHCN-D 01.01.1894 31.12.2013 92.95% 

Precipitation ASN00040082 GHCN-D 01.01.1897 31.12.2013 99.55% 

Precipitation ASN00040083 GHCN-D 01.01.1894 31.12.2013 94.80% 

Precipitation ASN00040145 GHCN-D 01.01.1909 31.12.2013 96.28% 

Precipitation ASN00040169 GHCN-D 01.01.1915 31.12.2013 91.44% 

Precipitation ASN00040188 GHCN-D 01.01.1937 31.12.2013 89.85% 

Precipitation ASN00040189 GHCN-D 01.01.1936 31.12.2013 98.10% 

Precipitation ASN00040205 GHCN-D 01.01.1909 31.12.2013 92.67% 

Precipitation ASN00040247 GHCN-D 01.01.1928 31.12.2013 99.49% 

Precipitation ASN00040289 GHCN-D 01.01.1946 31.12.2013 90.85% 

Temperature ASN00040004 GHCN-D 01.01.1941 31.12.2013 100.00% 

Table 4. Hydrometeorological stations used in the Brisbane River basin 

 

 

Figure 7. Illustration of the Brisbane River basin 
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SECTION 3 

WORLDWIDE TREND ANALYSIS 

 

In order to statistically analyze the change in the patterns and behavior of extreme events, it is 

essential to determine if patterns of change can be found in the global climate. Only then is the 

execution of such an analysis justified and reasonable. It was important to know if the changes 

in extreme events can sufficiently be described by trends in hydrometeorological time series or 

if an additional, more in-depth analysis is necessary for this purpose. For this reason, a 

worldwide trend analysis of time series for different hydrometeorological variables was 

conducted. Both trends for mean time series and for extreme value series were calculated. This 

analysis was conducted with the data previously gathered and organized, as described in Figure 

8. 

 

Figure 8. Schematic outline of worldwide trend analysis 
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3.1 Background and methodology 

A large number of authors provide accounts of the existence of statistically significant trends in 

hydrometeorological time series, which might cause a change in the hydrometeorological 

regime of the area. However, the majority of these studies conducted the research in a small 

study area and usually did not study all relevant variables in the present work. The goal of this 

trend analysis was to extend the study area to the whole globe where possible and to calculate 

the trends for three variables on different time resolutions. 

Taking into account the previous studies, it can generally be said that statistically significant 

trends could be found for all of the studied variables all around the world, both for the time 

series of the variables and their extreme value series. For mean values, trends in temperature 

were found to be positive in all latitudes (Aguilar et al., 2005; Del Río et al., 2011; Falvey and 

Garreaud, 2009; Nicholson et al., 2013), where minimum temperatures have been found to 

increase more frequently than maximum ones (Hu et al., 2012; Sonali and Nagesh Kumar, 2012; 

Xu et al., 2010). Precipitation trends were observed fewer and were usually positive (Barros et 

al., 2000; Vargas et al., 2002; Xu et al., 2010), in some cases no significant trends were found at 

all (Abghari et al., 2012; Mass et al., 2011). For discharge series, trends depended heavily on the 

studied area, but Dai et al. (2009) showed that over 30% of the major rivers worldwide show 

statistically significant trends. These trends could also be related to human activities in some 

studies (Wang et al., 2009; Woo et al., 2008). In a study for discharge trends in Sweden, a 5% 

increase was found over the 20th century, which was not statistically significant (Lindström and 

Bergström, 2004). In a study for Colombia (Moreno, 2011), it was found that more than 70% of 

temperature stations indicate a significant positive trend with no negative trends, whereas only 

close to a fourth of all precipitation stations show significant precipitation trends, which locally 

vary between positive and negative ones. These trends in all cases are consistent with discharge 

trends in the same region. 

The majority of studies on trends in extreme events are concentrated on precipitation events, 

where generally an increase of heavy rainfall events could be observed. For example, Min et al. 

(2011) found that for two thirds of all precipitation stations in the northern hemisphere, 

extreme events intensified in the study period. Extreme events in discharge and temperature 

were not studied as intensively but usually also show an increase or intensification (Delgado et 

al., 2010; Nyeko-Ogiramoi et al., 2013).  

In this trend study, analysis was conducted for the four hydrometeorological variables 

discharge, precipitation, maximum and minimum temperature on an annual, monthly and daily 

level. Therefore, time series were prepared as random processes of monthly and daily means as 

described in Section 2.1.4, in order to study the trends in each of the random variables, as well 
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as a random variable of annual means. For precipitation series, monthly and annual sums were 

calculated instead of means. 

Trends in extreme value time series were identified using random processes representing the 

monthly and annual minimum and maximum values for each variable. Precipitation minima 

were not considered. For this reason, only the change in the magnitude of the extreme events 

were analyzed and not the trends in their number of occurrence.   

The time period analyzed were the 41 years from 1970 to 2010, which resulted in each of the 

random processes consisting of 41 realizations. The goal of extending the geographical 

coverage of stations as far as possible was achieved well for precipitation and temperature 

series, which originated from the data of the global GHCN database. However, for discharge 

data, due to the lack of available data in many areas of the world, especially Asia and Africa, it 

was far more difficult to accomplish, which resulted in a reduced study area focusing principally 

on the Americas and Australia.  

For the selection of stations to be tested for trends, a procedure was created that chose 

stations following different criteria and assuring the geographically uniform distribution of the 

stations. For this purpose, stations were selected randomly among all available stations for the 

same variable. The station was used if it met the criteria of providing at least 80% of data in the 

required time period, and passed a test of homogeneity in time, avoiding time series with heavy 

changes caused by human activity, which was especially necessary for discharge stations. For 

this same variable, however, it was difficult to ensure a uniform distribution of stations in space 

due to the different station density for each data provider. Therefore it was tried to assure 

uniformity at least among the station collection of each of the providers. 

For temperature and precipitation, principally data from the GHCN database was used, as well 

as 19 precipitation stations for Brazil, 7 from Argentina and 3 from Colombia, totaling 471 

precipitation stations, 462 for maximum temperature and 444 for minimum temperature. 

Discharge data was selected from the information obtained from the national agencies 

mentioned in section 2.5.1. In total, 421 stations were used. The location of the stations can be 

seen in figures 9 to 11. 

Each daily, monthly and annual random variable was tested for trends, resulting in 1 test per 

hydrometeorological station on the annual level, 12 on the monthly and 365 on the daily level. 

For the tests, the Mann-Kendall trend test was used at a 95% confidence interval and the 

percentage of statistically significant positive and negative trends compared to the total 

number of tests was evaluated. The magnitude of each trend was not calculated, since the main 

goal of the study was to show the percentage of stations, for which the Mann-Kendall test 

indicates a statistically significant trend in the observed time period. 
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Figure 9. Location of the discharge stations used in trend analysis 

 

 

Figure 10. Location of the precipitation stations used in trend analysis 
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Figure 11. Location of the temperature stations used in trend analysis 

 

3.2 Results of the global trend analysis 

In accordance with the previous studies, trend analysis results indicate that for all the variables, 

statistically significant alterations can be found in a considerable number. Comparing the 

number of trends between different time resolutions, it can be stated that most of them were 

observed on the annual level, with decreasing numbers until the daily level. This phenomenon 

can be clearly seen for temperature series, and also for precipitation, although much fewer 

trends were observed. The differences between time resolutions for discharge series are hardly 

visible. In general, a lot of trends were found for discharge and temperature series and very few 

for precipitation series. Figure 12 on the next page shows the results of trend detection for 

each of the mean time series, divided into results for the northern and southern hemisphere. 

This figure shows that an opposing pattern can be found for precipitation between the 

northern hemisphere, where mainly positive trends are found, and the southern one, where 

the majority is negative. This can also be seen in Figure 16 later on. 

As stated in previous works, it could also be observed that minimum temperature shows most 

positive trends of all variables, which can also be seen in Figure 13. All of the trends shown in 

this graphic are statistically significant according to the Mann-Kendall trend test. 
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Figure 12. Results showing statistically significant trends for mean values 

 

 

Figure 13. Annual statistically significant trends in minimum temperature 
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For extreme value series, fewer trends were found although generally the same tendencies as 

in the trends in mean time series can be observed. The results reflect indicate that while 

discharge minima tend to get more intense, maxima are becoming less intense. The opposite is 

found for temperature extremes where especially minima tend to become less intense. Very 

few trends were found in precipitation maxima, which principally include more evidence of 

intensifying events in the northern and more weakening ones in the southern hemisphere. 

 

Figure 14. Results showing statistically significant trends for extreme values 

 

Figure 15. Trends in discharge maxima 
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While the majority of the findings in trend analysis is in accordance with previous findings, the 

additional fact not mentioned in other studies is the existence of opposing patterns in the 

precipitation trends in northern and southern hemisphere, since few previous studies 

conducted a global sample of precipitation stations. Mainly negative trends, as well as more 

intensifying minima and weakening maxima in discharge series and at the same time very few 

trends in precipitation could lead to the conclusion that human activities influence on the flow 

regimes of most of the rivers worldwide, although this was not specifically proven by the study. 

 

Figure 16. Trends in annual precipitation 

 

Another finding that has not been reported before is the difference in the number of trends 

detected on different time resolutions. This can be noted especially for temperature series, 

where a strong decrease in the number of observed trends from annual to daily resolution can 

be seen. While a similar pattern is present for precipitation series, the percentage of trends for 

discharge series is constant over all time resolutions. As explained before by various authors 

(Morin, 2011; Yue et al., 2002), the variability of the data can influence on the ability of the 

Mann-Kendall test to produce Type I and Type II errors. The power of the test to correctly 

detect a trend is described to be a decreasing function of the coefficient of variation of the time 

series. For a sample size of approximately 40 years, the power of the test rapidly decreases at a 

coefficient of variation of approximately 0.2 (Yue et al., 2002). 
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In an additional test, it was found that temperature series show a coefficient of variation of 

below that limit on the annual level and above or close to it for the other resolutions. This fact 

could be one of the possible explanations of the decrease in the number of trends detected. 

The coefficient of variation of discharge data is always far above the 0.2 level and therefore 

could explain the constant number of trends detected. The histograms for the number of 

trends in percentage of the total number of tests are shown in Figure 17.  

 

Figure 17. Histograms of coefficients of variation for different variables 

 

From the study and previous findings it can be concluded that statistically significant trends can 

be found for all variables on all time scales during the 41 years taken into account for this 

analysis. As stated in Bordi et al. (2009), “due to the shortness of the time records […], it is 

difficult to objectively estimate trends and their statistical significance, as well as to discern 

between linear trend and long-term periodicity”. The 41 years of this investigation were too 

short to make general conclusions about change in global climate, but the results most 
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definitely give an indication about how the climate may continue behaving in the next 10 to 15 

years, especially the overwhelming amount of stations with rising temperature and the 

predominantly negative trends in discharge and its extremes, while precipitation trends hardly 

exist. 

However, because of the above stated problems and also the fact that a difference in numbers 

of trends indicate a different statistical behavior on different time resolutions, the results of 

this analysis led to the conclusion that it could not be considered to sufficiently describe the 

change in the regimes of extreme events only with linear trends. For this reason, a more 

profound statistical analysis had to be conducted that uses stochastic methods to analyze the 

existing mechanisms that influence this behavior and might cause possible alterations.   
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SECTION 4 

STOCHASTIC MODEL APPROACH 

 

As shown in the results of trend analysis, it is unfeasible to conclude about the changes in 

extreme event regimes from trends in short hydrometeorological time series. Therefore, in this 

section a model is proposed to describe the ensembles that represent the extreme events of 

discharge time series in depth with a solid statistical base, which was later applied to the test 

basins presented in Section 2.6. This model is based on a stochastic differential equation, in 

order to represent the evolution of changes of statistical properties in time and encompass also 

the principles of uncertainty in the form of fluctuations around a deterministic kernel. 

Since a lot of data is available from the observations of hydrometeorological variables, but the 

physical parameters of such systems are largely unknown, an inverse modeling approach is 

proposed in this work. With the measurements of discharge data and those variables that 

influence the river basin, precipitation and temperature, a set of parameters is developed that 

is afterwards linked to the physical parameters of the basin. The outline of works realized 

related to the development of the model are shown in Figure 18. 

 

Figure 18. Schematic outline of the development of the stochastic model 
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4.1 Stochastic Hydrological Modeling 

4.1.1 Complex systems 

When modeling natural systems, it is important to bear in mind the nature of these systems. 

Chaitin (1969) proposed, based on previous works by Kolmogorov (1965) and Solomonoff 

(1964), the concept of algorithmic complexity, which is also known as Kolmogorov-Chaitin 

complexity.  

Algorithmic complexity describes the measure of how much computation resources are 

necessary to describe a system. A system that describes the swing of a pendulum can be easily 

described because of repeated patterns and therefore shows minimum algorithmic complexity. 

On the other side, the result of the throw of a die is completely random and therefore presents 

maximum complexity. The throw of the die can certainly be modeled, but only with a more 

complex algorithm and requires the full transmission of the system states in order to describe 

the evolution of the system making it impossible to describe the system at any level of 

compression (Gell-Mann, 1995).  

Hydrological systems show neither maximum nor minimum algorithmic complexity, but could 

be described as of significant algorithmic complexity. In the majority of cases, these systems 

can be described by a deterministic model, but this kind of model does not represent the 

system in a truly ideal way. In a hydrological system, as in almost all other natural systems as 

well, fluctuations are present that are caused by the chaotic nature of the system, and 

therefore do not allow for purely deterministic descriptions. Therefore, it is impossible to 

model or predict a certain outcome with complete certainty and it is necessary to provide a 

probability associated to all possible outcomes as a measure of accuracy of the model.  

 

4.1.2 The Langevin Equation 

Paul Langevin originally developed the equation eventually named after him to describe the 

motion v of a Brownian particle in a liquid,  

 ̇       ( )  
 

(27) 

including the notions of a constant term  damping the particle and an added irregular and 

unpredictable motion L(t), which has simple averaged properties (Denisov et al., 2009). 

In many previous scientific works, the Langevin equation has been applied to describe the 

stochastic dynamics of systems with a fluctuating environment, which describes very well the 

above mentioned complex systems. The Langevin equation is a random differential equation 

that describes the stochastic evolution of the observed variable in time. 
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Because of the mentioned reasons that it combines a deterministic kernel with a modulated 

noise part, the Langevin equation was chosen to represent the hydrological model used in this 

study. Applying the equation to hydrological time series, the equation can be rewritten as 

follows, which is also called the overdamped Langevin equation (Denisov et al., 2009). 

  ( )

  
  [ ( )  ]   [ ( )  ]  ( ) 

 
(28) 

The constant damping term is replaced by  [ ( )  ], a deterministic function that describes 

the kernel of the hydrological system and  [ ( )  ] is the deterministic function that 

modulates the noise  ( ), which was chosen to be white noise, and represents the fluctuating 

force of the system. In the equations, discharge is not, as commonly used, denoted as a capital 

Q in order not to confuse the notions of random variables and random processes. 

Stochastic differential equations such as the Langevin equation can be solved using different 

techniques, for example the Ito calculus, the Stratonovich integral, or the Fokker-Planck-

Kolmogorov (FPK) equation (Gardiner, 2004). Since the first two methods are analytical 

solutions, it is only possible to solve problems of a limited difficulty with them. However, as 

shown in Dominguez and Rivera (2010), a numerical solution of the Fokker-Planck-Kolmogorov 

equation is possible that also permits to tackle more difficult problems. 

While the Langevin equation is a stochastic differential equation that describes the evolution of 

an observable in time, the FPK equation is a deterministic equation that describes the evolution 

of its probability density function in time. The probability density of the solution is one of the 

most important statistical characteristics of random differential equations. If the noise term of 

the Langevin function is produced by a noise-generating function, then the probability density is 

seen as a closed equation that can be represented by the FPK equation (Denisov et al., 2009). 

Therefore, each Langevin equation that uses a certain type of noise function has its 

corresponding FPK equation. 

The complete derivation of the FPK equation that corresponds to the overdamped Langevin 

equation is described in detail by Denisov et al. (2009). 

 

4.1.3 The Fokker-Planck-Kolmogorov (FPK) Equation 

Also called Forward Kolmogorov Equation, the Fokker-Planck-Kolmogorov equation is based on 

the works developed by Adriaan Fokker and Max Planck in the early 20th century and its 

mathematical base was described analytically in depth later by Kolmogorov (Kolmogorov, 

1931). This deterministic, partial differential equation is the conservation law used to describe 
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the time evolution of the probability density function of a random process in one or multiple 

dimensions, containing a drift vector and a diffusion matrix. 

In its base, the FPK equation is a diffusion process representing the conditional probability 

density of two random variables measured at different times, taking the form (Gardiner, 2004) 

  (   |    )

  
  ∑
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(29) 

where   (   ) is the drift vector,    (   ) the diffusion matrix and t’ represents a previous 

time step. This is the multidimensional form of the equation.  

In its one-dimensional form, the Fokker-Planck-Kolmogorov equation is used to describe the 

evolution of probability density during the translation from one time step to the next and takes 

the form (Dominguez and Rivera, 2010) 
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(30) 

where the diffusion matrix reduces to the diffusion vector  (   ) and  (   ) represents the 

probabilistic density of the hydrological variable at time t.  

The choice of using only the one-dimensional FPK equation and not the multidimensional one 

was taken after an analysis of the processes’ correlation moment. In order not to interrupt the 

flow of reading, the results of this analysis will be presented after the complete description of 

the methodology in section 4.1.5. 

The drift and diffusion vectors   (   ) and   (   ) are defined by deterministic functions that 

control the movements of the PDF, where the drift term alone principally describes the 

sideward movement of the curve and the diffusion term its flattening and sharpening. The 

simplest form of the influence of these vectors on the probability density curves is displayed in 

Figure 19. In general terms, the drift term describes the overall comportment of the process 

that can be used as an approximation of the behavior observed in nature. The diffusion term 

describes the fluctuation around this approximation in an attempt to more precisely represent 

the naturally present deviations in the physical process. 

The parameters of the functions   (   ) and   (   ) are linked to the parameters of the 

system that is described and in this case is a river basin (Kovalenko et al., 1993). These 

parameters can be internal factors, such as the morphometry or the land cover of the basin or 

external factors, such as precipitation or temperature. 
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Figure 19. Drift and diffusion of probability density functions 

 

 (   ) and   (   ) were chosen to be high order polynomial functions of the form of  

 (   )     
       

      
    

 

(31) 

 (   )     
       

      
   

 

(32) 

In this study, the main goal was to understand the dynamics of the process, so to obtain an 

equation that was sufficiently easy to implement while taking into account the linear nature of 

the drift term and the quadratic one of the diffusion term, the parameters were set to  

                          
 

(33) 

This resulted in the simplified form of 

 (   )          
      

 

(34) 

 (   )          
     

 

(35) 

 

4.1.4 Relationship between Langevin and FPK equation 

The relationship between the parameters of the Langevin and FPK equations can be expressed 

as (Sveshnikov, 1966) 

 (   )   [ ( )  ]  
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44 
 

 

Since the equation defining the diffusion term was chosen to be  (   )          
    , 

equation 37 can be rewritten as follows: 

        
       [ ( )  ] 

 

(38) 
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The same way, equation 36 becomes 
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Equation 39 can be employed into equation 40 to obtain 
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which can be simplified as 
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(42) 

Therefore, the Langevin equation in terms of the parameters of the drift and diffusion 

equations takes the following form 

  ( )

  
         

     
 

 
(        )  √        

     ( ) (43) 

 

4.1.5 Determination of Markov process structure 

In order to take a decision whether it is sufficient to use the one-dimensional form of the 

Fokker-Planck-Kolmogorov equation or if it is necessary to use its higher-dimensional form, it 

had to be determined if the processes could be assumed to have a Markovian structure 

(Kovalenko et al., 1993). Therefore, the cross correlation function of the processes representing 

the discharge data for monthly maxima and minima was used to evaluate if a lag-one cross 

correlation could be proven. For this purpose, the cross correlation of the random processes 

was determined and compared with the standard error of the autocorrelation coefficient, as 

proposed in Druzhinin and Sikan (2001). The critical autocorrelation radius of the process is the 

x-value of the cross correlation function, at which it intersects the standard error function of 



45 
 

the autocorrelation coefficient. If this lag value lies between 1 and 2, the structure of the 

process can be assumed to be a lag-one correlation and therefore it is valid to use the one-

dimensional FPK equation, since no other random variable of a higher lag has a statistically 

significant influence. 

The standard error function was constructed as described in Druzhinin and Sikan (2001),  

  
    

√   
    

 ⁄
 

 

(44) 

where n is the total number of observations in each random variable and t is the critical value 

of the Students t distribution with significance level , which was chosen to be 5%. 

Although the results of the analysis indicate that the processes of minima show a higher critical 

autocorrelation radius than those of maxima, both processes could still be assumed to have a 

Markovian structure. 

 

 
Figure 20. Determination of the processes’ cross correlation in the Enns and Upper Magdalena basins 
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Figure 21. Determination of the processes’ cross correlation in the Upper Great Miami and Brisbane basins 

 

The choice between the two candidate basins in the southern hemisphere, the Brisbane and 

Crocodile River basins, was made due to its process structure. Since data from the Crocodile 

River did not indicate a Markovian structure, this basin was not included and the Brisbane basin 

was preferred, despite its location downstream of a dam. 

 

Figure 22. Determination of the processes’ cross correlation for the Crocodile River basin 



47 
 

4.2 Implementation of the Fokker-Planck-Kolmogorov Equation 

4.2.1 Finite-difference system 

For the implementation of the one-dimensional Fokker-Planck-Kolmogorov (FPK) equation, two 

different numerical models were established. An explicit and an implicit scheme were 

developed and implemented in close accordance with the method proposed by Dominguez and 

Rivera (2010). 

As stated in Dominguez and Rivera (2010), an analytical solution to the non-stationary FPK 

equation needs strong restrictions on the types of drift and diffusion coefficients, which makes 

it not as convenient as the numerical solution. Therefore, a numerical solution to the equation 

is proposed that includes a bidirectional approach for the drift term, which enables a drift in 

both directions. Equation 45 shows the finite difference approximation that includes directional 

weights that permit both the backward and forward solutions and a time layer weight that 

controls if the equation is solved explicitly or implicitly. 
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(45) 

where 

j interval descriptor for discharge 

i interval descriptor for time step 

L, R directional weights for the bidirectional drift, if   
              and otherwise 

          

 time layer weight implementing the numerical scheme totally implicitly when equal to 1 

and totally explicitly when equal to 0 

In order to execute the model stably, a stability condition is required. The dimensionless Peclet 

number gives the ratio between the drift and diffusion component along a characteristic length, 

which is in this case the step size of q, q. Since the drift and diffusion are defined by vectors 

and not numbers, the respective maximum value of the vector was used in the calculation of 

the Peclet number. 
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In those cases, in which Pe  3, a Courant-Friedrichs-Lewy stability condition was defined 

(Dominguez and Rivera, 2010) 
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(47) 

In the rest of the cases, the complete diffusion term was neglected, because in this case the 

diffusion would not be noticeable anymore. The step size for time was defined by  
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(48) 

The condition established in equation 48 was merely used formally. Since the diffusion 

component produces much higher values for the resulting vector B than the drift vector A, it 

was not applied in the models, but served for the complete implementation of the model. The 

difference in magnitude of the values can be shown with some random example values 

obtained by the implementation of the model in two of the test basins in Table 5. 

Comparison of values of Drift and Diffusion components 

Upper Great Miami Basin Upper Magdalena Basin 

Q A B Q A B 

77.59 8.12 1075.62 1284.39 -324.79 -68199.12 

77.93 8.00 1085.23 1286.64 -321.82 -68620.99 

78.26 7.87 1094.87 1288.89 -318.84 -69043.47 

78.60 7.74 1104.56 1291.15 -315.84 -69466.55 

78.93 7.62 1114.29 1293.40 -312.83 -69890.25 

79.26 7.49 1124.07 1295.65 -309.80 -70314.54 

79.60 7.36 1133.88 1297.90 -306.76 -70739.45 

79.93 7.23 1143.74 1300.15 -303.71 -71164.96 

80.27 7.09 1153.64 1302.40 -300.63 -71591.07 

80.60 6.96 1163.59 1304.66 -297.55 -72017.79 

80.94 6.82 1173.58 1306.91 -294.44 -72445.12 

81.27 6.69 1183.61 1309.16 -291.33 -72873.06 

81.61 6.55 1193.68 1311.41 -288.19 -73301.60 

81.94 6.41 1203.80 1313.66 -285.05 -73730.75 

82.27 6.27 1213.95 1315.91 -281.88 -74160.50 

Table 5. Comparison of the magnitudes of values resulting from drift (A) and diffusion (B) components 

 

For the implementation of the explicit method, equation 45 was used with  = 0, which cancels 

out its first and third line. The number of time steps t is defined by the above mentioned 
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stability conditions, and therefore the number of iterations repeated in every calculation is 1 / 

t.  

For a large number of cases, this version proved to be a sufficient solution, but in other cases, 

especially those presenting negative diffusion terms, it was necessary to fully solve the 

equation, providing both implicit and explicit components. Therefore, as proposed in 

Dominguez and Rivera (2010) equation 45 is rewritten as 
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with the four variables defined as 
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The tridiagonal matrix that results from the algebraic system in equation 49 was solved 

implementing the Thomas algorithm as described in 2.3.3. 
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Each model run represented a transition from one month to the next, where the initial 

condition was the probability density function of the parting month, from which the translation 

started to predict the probability of the following month. 

The boundary conditions of the model were chosen to be of the type of absorbing barrier. For 

this kind of condition, it is assumed that any value that is at or outside the boundary values of 

the PDF has a probability of 0 (Gardiner, 2004). 

 (   )                        

 

(52) 

where  and  are the boundary values. 

With this kind of boundary condition it is easy that some of the probability contained by each 

PDF is lost at the boundaries during a translation from one time step to the next as shown in 

Figure 23. In order to conserve this probability, the lower and upper boundary values have to 

be chosen far enough apart to include the whole area contained under the curve. For each of 

the random processes, the boundary values were determined according to the extension of its 

PDF. 

 

Figure 23. Scheme of an absorbing boundary 

 

As mentioned before, the number of iterations needed to complete the calculation of one 

translation of probability distribution from one time step to the next using the explicit scheme 

depends completely on the size of t. Therefore, also the execution time of the algorithm 

depends on this variable and can take more or less time. On the contrary, the implicit method 

always consists of the execution of the Thomas algorithm function to solve the linear system 
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and therefore the only difference in computation time is the size of the boundary interval of 

the initial condition. In almost all of the translations, the implicit scheme was therefore faster 

than the explicit one. 

The algorithm was implemented in Python in a way that it can easily be used for different 

applications, but using the same core functionality of the Fokker-Planck-Kolmogorov equation. 

It consists of various different functions that control the use of the explicit and implicit methods 

and the calculation of the drift and diffusion vectors. This way, each module can be changed or 

extended easily, or additional functions can be implemented to complement the existing 

functionality if this is required. This way, the method of defining the diffusion and drift vectors 

of the FPK equation using the noise intensities of the basin’s parameters proposed by 

Kovalenko (1993) and applied by Dominguez and Rivera (2010), which was not used in this 

study, can be implemented by a simple additional function and a change of method to calculate 

the values of these vectors. 

The original code of the explicit method was created looping through all the nodes of the finite 

differences system with for-loops to calculate each value. This approach, however, was rather 

time-consuming, especially for translations that required a smaller value of t to execute 

stably. The computing time could be significantly improved by the use of Numpy slices 

(“Performance Python: Solving The 2D Diffusion Equation With numpy | t-square,” 2012), 

which are parts of matrices temporarily saved in memory for rapid access, and afterwards 

applying vector multiplications. This way, the execution time of the functions could be 

improved by approximately 100 times. 

 

4.2.2 Optimization of model parameters 

An inverse modeling approach was used to implement the FPK equation model where each of 

its parameters was optimized. For this purpose, a function was needed to find the optimal 

model parameters that define the equation for any given transformation of the probability 

density of one time step to that of the next one. It is important to highlight, that the 

optimization process did not optimize the fit of probability density functions to the data, but 

the parameters of the deterministic drift and diffusion equations that describe the 

transformation of probability density. 

For this task, SciPy’s optimize package was consulted, which offers a large number of different 

optimizing functions. A function previously used successfully for optimization purposes is the 

curve_fit function, which had proved to work very well for a variety of different optimization 

problems. Additionally, error-minimizing algorithms were analyzed, as well as the simulated 

annealing technique (“scipy.optimize.anneal — SciPy v0.14.0 Reference Guide,” 2014). 
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The minimize function minimizes a given scalar function and finds the optimal parameters using 

a variety of different solving algorithms, out of which the Nelder-Mead, the Powell, Broyden, 

Fletcher, Goldfarb, and Shanno (BFGS), and the Newton Conjugate Gradient methods were 

tested (“scipy.optimize.minimize — SciPy v0.14.0 Reference Guide,” 2014).  

The optimization was tested on 2 different computers with the goal of evaluating the efficiency 

of the algorithms and the quality of the results. One was a laptop with a Pentium Dual Core CPU 

with 2.1GHz and 4GB RAM, and the other one desktop computer with an Intel Core i5 CPU with 

3.1GHz and 8GB RAM. Both computers executed the optimization on a Windows 7 operating 

system. 

The only function that was able to find parameters that provided a result with less than 50% of 

mean average error was the curve_fit function. All others failed to reach this criterion or took 

more than one hour to execute for the explicit method. Due to the above mentioned 

dependency on the model parameters to define the stability criteria in the explicit method, it 

was necessary to limit the computation time, because otherwise a calibration of the model 

would have been too time consuming. Since the other tested functions did not provide 

satisfying results and were therefore not used in the investigation, they are not described in 

detail. 

The curve fitting algorithm (“scipy.optimize.curve_fit — SciPy v0.13.0 Reference Guide,” 2014) 

was chosen to optimize the parameters used to define functions of  (   ) and  (   ). This 

function uses a nonlinear least squares technique to fit a function to the passed data. To solve 

this technique, a Levenberg-Marquardt algorithm is implemented in the curve_fit function, 

which is an algorithm commonly used for solving this kind of problem. The curve_fit function 

uses as input parameters the function to be optimized, which in this case is the created Fokker-

Planck-Kolmogorov algorithm, the initial data, which is the probability density function of the 

initial month, and the expected result of the optimization, which is the PDF of the final month. 

Furthermore, an initial guess of the model parameters to be optimized is passed to the 

function. Therefore the optimization process was run 12 times for each test area, once for each 

transition from one month to the next. 

The curve_fit algorithm includes an exit condition that terminates the procedure after a 

number of iterations passes without finding the optimal solution. This number is determined by 

the number of parameters    to be optimized and calculated as  

    (    ) 
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SECTION 5 

DATA PREPARATION AND RESULTS 

 

In this section, the proposed model is applied to the data of the 4 presented test basins. In a 

first step, the underlying data structure is presented. Afterwards, the results of the optimization 

of model parameters is presented, where both an unsupervised and a supervised optimization 

strategy will be used. After a relation between the model parameters and the physical 

parameters of the basin are established as described in Section 5.3, the model will be applied to 

estimate the change in the regimes of hydrometeorological extreme events in future scenarios. 

 

5.1 Initial conditions 

In a first step, three monthly random processes were constructed for each test basin’s outlet 

discharge stations from the daily data obtained: 

 Monthly means: The mean of all existing values of each month were averaged if a 

month contained more than 70% of data, otherwise the value for the monthly mean 

was considered to be missing to ensure a representative mean value. 

 Monthly maxima: The month’s maximum day, in other words the highest among all 

observed daily mean values in each month was taken as the monthly maximum. 

 Monthly minima: Likewise, the lowest value among all daily means was used as the 

monthly minimum. 

All three time series were rearranged in the form of a stochastic process and indexed in time 

from January to December. After revising the randomness of each monthly random variable of 

the processes, the best fit theoretical probability density function was determined among the 

12 functions described in 2.3.1. In order to provide the best representation of probability for 

each monthly random variable, the best fit was used as initial condition for the model, also if 

different functions resulted for different months of the same random process. It was 

considered more important to use the best fit than to use the same distribution for all 12 

random variables and therefore use a more inaccurate function for some months. For some 

months, the distribution that resulted as best fit most often for the random process, did not 

pass the Kolmogorov goodness of fit test, which was another reason why a general best fit for 

each random process was not found. However, if this is not the case, it might be an interesting 

topic for future investigations to evaluate the differences that result from using a general best 

fit for all the random variables of the same process. 
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Figure 24. Probability density functions of the random variables in the Enns River basin 

 

Month Means Maxima Minima 

January Gamma Lognormal Gumbel pos. skew 

February Gamma Gamma Gumbel pos. skew 

March Gamma Gamma Gamma 

April Gumbel pos. skew Gamma Gumbel pos. skew 

May Gamma Gamma Gamma 

June Gumbel pos. skew Lognormal Gumbel pos. skew 

July Gamma Gamma Gamma 

August Gamma Lognormal Normal 

September Lognormal Gumbel pos. skew Lognormal 

October Gumbel pos. skew Lognormal Lognormal 

November Gamma Lognormal Gamma 

December Lognormal Lognormal Lognormal 

Table 6. Best probability density function fit for each random variable in the Enns River basin 
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Figure 25. Probability density functions of the random variables in the Upper Magdalena River basin 

 

Month Means Maxima Minima 

January Gumbel pos. skew Gamma Gumbel pos. skew 

February Gamma Lognormal Gumbel pos. skew 

March Gumbel pos. skew Lognormal Gamma 

April Gumbel pos. skew Gamma Gamma 

May Lognormal Gumbel pos. skew Gumbel pos. skew 

June Loggamma Gamma Gamma 

July Gumbel pos. skew Lognormal Gumbel pos. skew 

August Lognormal Gamma Gamma 

September Gumbel pos. skew Gumbel pos. skew Gumbel neg. skew 

October Gamma Gamma Gamma 

November Lognormal Gumbel pos. skew Normal 

December Lognormal Lognormal Gumbel pos. skew 

Table 7. Best probability density function fit for each random variable in the Upper Magdalena River basin 
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Figure 26. Probability density functions of the random variables in the Upper Great Miami River basin 

 

Month Means Maxima Minima 

January Lognormal Lognormal Lognormal 

February Gamma Gamma Gamma 

March Lognormal Lognormal Gumbel pos. skew 

April Lognormal Gamma Lognormal 

May Lognormal Gamma Gumbel pos. skew 

June Lognormal Lognormal Lognormal 

July Lognormal Lognormal Lognormal 

August Lognormal Lognormal Gamma 

September Lognormal Lognormal Lognormal 

October Lognormal Lognormal Gamma 

November Lognormal Lognormal Lognormal 

December Lognormal Lognormal Lognormal 

Table 8. Best probability density function fit for each random variable in the Upper Great Miami River basin 
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Figure 27. Probability density functions of the random variables in the Brisbane River basin 

 

Month Means Maxima Minima 

January Lognormal Lognormal Lognormal 

February Lognormal Lognormal Lognormal 

March Lognormal Lognormal Lognormal 

April Lognormal Lognormal Gamma 

May Lognormal Lognormal Lognormal 

June Lognormal Lognormal Lognormal 

July Lognormal Lognormal Lognormal 

August Lognormal Lognormal Lognormal 

September Lognormal Lognormal Gumbel pos. skew 

October Lognormal Lognormal Gumbel pos. skew 

November Lognormal Lognormal Lognormal 

December Lognormal Lognormal Gamma 

Table 9. Best probability density function fit for each random variable in the Brisbane River basin 
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The upper and lower boundary limits were all set according to the values contained in the 

observed data, in order not to cut off parts of the curve and lose part of the probabilities 

contained under the curves this way. Consequently, for the maxima in the Great Miami basin, 

the lower border of the boundary had to be extended into the range of negative numbers. 

 

5.2 Optimization of model parameters 

The calibration of the model consisted of the optimization of the parameters defining the 

Fokker-Planck-Kolmogorov equation and was conducted with respect to the physical 

interpretation of the outcome as shown in Figure 28. 

For each random process, the Fokker-Planck-Kolmogorov model was applied to describe the 

translations from each monthly probability density function to the one of the next month. For 

this purpose, the inverse problem approach was used, optimizing each of the model 

parameters to obtain the best possible simulation. The optimization was executed for both the 

explicit and the implicit method proposing a supervised and an unsupervised approach. 

 

Figure 28. Schematic outline of model calibration 
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The six parameters defining the drift and diffusion vectors of the FPK equation, k1, k2, k3, g1, g2 

and g3 were optimized. The process of optimization was automated with a Python script that 

loaded the data of the 12 monthly probability density curves, assigned an initial guess to each 

of the six parameters and applied the optimization procedure for both the implicit and then the 

explicit scheme for each PDF translation, and at the end saved a plot of the result of the 

simulated against the observed data for visual inspection and a list of the optimized parameters 

with their respective mean average error. The exit condition used by the curve_fit algorithm 

caused the optimization to terminate automatically after 1400 iterations and a set of empty 

parameters was returned.  

The whole optimization procedure was computationally intensive and, depending on the 

parameters used, took between a few minutes and 4 hours to complete for the 12 translations 

of one random process on the laptop with a Pentium Dual Core CPU with 2.1GHz and 4GB RAM, 

on which the majority of the calculations were run.  

The first results indicated that a multitude of optimized solutions was possible and that the 

procedure was very much dependent on the initial guesses used for the model parameters. 

Changing them in some cases resulted in a completely different set of optimal parameters 

obtained and therefore indicated that a large number of local minima existed for each 

translation, but that it was very difficult to find the global minimum of the optimization 

function that provided the optimal model parameters. However, it also showed that it was not 

necessary to find these optimal model parameters to achieve a perfect fit of the simulated data 

to the observed one. The following table shows the optimized parameters with different initial 

guesses of minima in the Great Miami River basin from November to December with the 

implicit method. All sets of optimized parameters result in an almost perfect fit with a mean 

average error of fewer than 3%. It can be seen, however, that some of the initial guesses 

produce similar results, but others are very distinct, especially for the parameters related to 

diffusion.  

Initial Guess Optimized Parameters 

k1 k2 k3 g1 g2 g3 k1 k2 k3 g1 g2 g3 

0 0 1 0 0 1 0.484 -0.0023 -1.278  0.185 0.033 -2.213 

0 0 0 0 0 0 0.556 -0.0047 -1.202 -0.468 0.122 -0.576 

0.1 0.01 1 0.1 0.01 1 0.578 -0.0055 -1.060 -0.685 0.159 -0.061 

0.1 0.01 0 0.1 0.01 0 0.603 -0.0063 -1.037 -0.944 0.191 0.708 

0.01 0 -1 0.01 0.001 1 0.482 -0.0019 -1.589  0.361 -0.004 -2.715 

0.01 0 1 0.01 0.001 1 0.584 -0.0059 -0.769 -0.873 0.196 0.586 

0.01 0.001 1 0.01 0.001 1 0.578 -0.0054 -1.059 -0.685 0.159 -0.061 

1 0.1 10 1 0.1 10 0.505 -0.0031 -1.165 -0.016 0.067 -1.783 

Table 10. Example of optimized parameters using different initial guesses 
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To evaluate the result, it was established that a simulation that counted with a mean average 

error of 10% or less was considered to be an acceptable result. 

Another result that appeared in some tests was the fact that parameters could be optimized 

more easily when there were fewer nodes to be calculated, or in other words, when the limits 

of the boundary condition were closer together. The idea of trimming the boundary condition 

to cut off long tails was considered, but discarded in order to ensure the same conditions for 

each translation of the same random process. In any case, this topic could be studied in more 

detail in future investigations. Due to these insights, a stepwise procedure was implemented in 

order to automatically achieve a higher rate of successful optimizations. Therefore, in the first 

step, the rapid optimization of the implicit scheme was conducted using a predefined initial 

guess, followed by the explicit method with the same initial guess. If one of the optimizations 

failed to produce a result, it was rerun using the result of the other method as the initial guess, 

if this was available. This way the percentage of successful optimizations could be raised from 

about 40% initially to over 80%. For the remaining translations, the initial guesses were 

changed manually to obtain a satisfactory result for each translation with at least one of the 

methods. With the exception of some translations in the Enns basin, this could be achieved and 

produced a simulation for the random processes representing the monthly means, maxima and 

minima in each basin. The bad fit observed in the Enns River data in the transition from 

September to October (Figure 29) is an example of the fact that the model generally had 

difficulty fitting the result in translations where the probability density experiences a significant 

sharpening of the curve.  

Below, the results of the optimization are shown. For the sake of brevity, only the result of one 

of the variables is shown for each basin. All results were achieved using the optimization of the 

implicit scheme. Perfect fits were also obtained with the explicit scheme for over 60% of all 

translations, but due to the longer computation time, not all of the missing ones were 

optimized manually. 
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Figure 29. Results of optimization in the Enns River basin 
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Figure 30. Results of optimization in the Upper Magdalena River basin 
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Figure 31. Results of optimization in the Upper Great Miami River basin 
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Figure 32. Results of optimization in the Brisbane River basin 
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The results showed that the optimized parameters using the explicit scheme never matched 

those using the implicit scheme. Explanations for this phenomenon are either that two different 

local minima were found by the optimizing functions, or that there was numerical diffusion 

present in the implicit scheme changed the parameters. It was found that the implicit method 

added numerical diffusion to the translation, although it was not determined to which degree. 

Figure 33 shows the application of the optimized parameters of the explicit scheme both to the 

explicit and the implicit function. The green PDF curve of observed data in the final month is 

displayed as a reference.  

 

Figure 33. Numerical diffusion using the explicit scheme 

 

5.3 Relation of model parameters to physical properties 

To apply the model to be able to make simulations for the changes in probability, it was 

necessary to relate the optimized parameters of the drift and diffusion equations of the FPK 

equation to the parameters of the watershed. 

Without knowing the detailed characteristics of the river basin, it is difficult to determine the 

internal parameters and therefore link them to the parameters of the Langevin equation. With 

the external parameters, it is easier to determine, also to establish a relationship between 

these and the discharge values. Two external parameters, for which data was available, were 

considered to influence on the discharge characteristics, first precipitation, and second 

temperature, which again drives evaporation in the basin.  
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In order to get an idea of the influence precipitation has on the extreme discharge series, the 

correlation between the two series was calculated. Therefore, the values of monthly discharge 

maxima and minima were correlated with the precipitation values of the same day and the 

averaged precipitation amount of up to 20 days prior. This analysis was conducted in three 

different ways: first, the discharge value was correlated with only the precipitation value of lag 

0 to 20; second, the mean of precipitation values of the same day as the discharge maximum 

and up to 20 days before was correlated and third, the same procedure was repeated without 

taking into account the same day, averaging only precipitation values preceding the date of the 

discharge extreme value measured. 

For monthly maxima, a high correlation could be established in all of the 4 basins, with 

correlation values of 0.6 and above. In most of the cases, the averaged value over the lag time 

including the current date shows the highest correlation with the discharge data. 

 

Figure 34. Correlation between discharge maxima and precipitation 
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Figure 34 shows that the best correlation between the values of monthly discharge maxima can 

be achieved with the average of the daily precipitation values of a varying lag time. The 

correlations with the methods including or excluding the precipitation value of the same day as 

the discharge extreme are usually very similar, with the exception of the Enns basin. A 

correlation between only the single precipitation value and the discharge maximum applying a 

lag time was highest for a lag of one day, but not significant any more with a lag time of more 

than 3 days. However, in all basins, the best correlation with a single precipitation value was 

still exceeded by that using the average of an interval of previous days. 

Using the averaged precipitation values during the lag time with the highest correlation in each 

basin, monthly reference rainfall value series were created for the series of monthly maxima. 

The specifications with the highest correlation are given in table 11. In all cases the averaged 

value over the interval of days within the lag time period gave the best result. For the Great 

Miami and Brisbane basins, this was achieved excluding the precipitation value measured the 

same day as the discharge maximum, in the other two it was included.  

 

Basin Lag time [days] Method Correlation [r] 

Enns 3 mean including same date 0.727 

Upper Magdalena 15 mean including same date 0.695 

Upper Great Miami 3 mean excluding same date 0.622 

Brisbane 3 mean excluding same date 0.734 

Table 11. Lag times and method with the highest correlation between discharge maxima and precipitation values 
for each basin 

 

Due to the fact that only precipitation stations with a correlation of more than 60% compared 

with discharge series were used, monthly precipitation averages could be used as a 

referencefor monthly mean discharge series. The reason why the commonly applied 

precipitation sums were not used was the difference in reference time, since the lag times were 

shorter than the duration of a month and therefore comparability between the results could 

not be given. 

Discharge minima are not correlated as highly with the precipitation series. Although in some 

cases correlation results as high as 60%, it was not considered to be a substantial enough 

relation with the discharge minima, especially because of the low values observed in the Enns 

and Great Miami basins. Again, it could be seen that correlations with the mean of the interval 

of previous days was generally higher than that of only a single lagged precipitation value. 
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Figure 35. Correlation between discharge minima and precipitation 

 

It was expected that baseflow has a higher influence on the periods in which discharge minima 

occur. Baseflow is principally influenced by evaporation, which again is driven by atmospheric 

temperature, for which reason it was tried to establish a relation between discharge minima 

and temperature. Due to the small variation in temperature series, as was shown in the trend 

analysis in section 3.2, it was regarded sufficient to use monthly mean temperature values for 

the analysis. Results of correlation values between monthly discharge minima and mean 

temperature were chosen to be used as an approximation for minimum data in all basins 

except the Brisbane basin, although they were only a slightly better approximation than the 

correlations with precipitation. In the Brisbane basin, due to the very low correlation between 

discharge minima and temperature data, the analysis of minima was conducted using 

precipitation data, which was considered to be sufficiently correlated using the mean value of 

daily precipitation of 2 days prior to the discharge minimum event. The results of correlation 

between monthly mean temperatures and discharge minima can be seen in table 12. 
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Basin Correlation 

Enns 0.544 

Upper Magdalena 0.526 

Upper Great Miami 0.636 

Brisbane 0.116 

Table 12. Correlation between discharge minima and monthly mean temperature for all basins 

 

As defined in Gardiner (2004) and Sveshnikov (1966), the model parameters A and B of the 

Fokker-Planck-Kolmogorov equation are defined as  

 (   )     
    

 [  |  ]

  
 

 

(54) 

 (   )     
    

 [   | ]

  
 

 

(55) 

It was inferred that a correlated variable might influence on these relationships, even if the 

discharge value is infinitely small. For this reason, it was assumed that the independent term of 

each equation determining the drift and diffusion vectors should be most closely related to the 

external parameters of the basin. 

Furthermore, it was proven in various previous works (Dominguez, 2004; Kozhevnikova et al., 

2012; Maldonado, 2009) that changes in the coefficients of variation and skewness are related 

to changes in the internal parameters of the river basin. Because of this reason, a linear 

regression analysis using Ordinary Least Squares technique was conducted to estimate the 

degree to which each of the optimized model parameters correlates with the coefficients of 

variation and skewness, as well as the rainfall and temperature values, all of which were used 

of the final month of each translation. Also, the variation and skewness coefficients of the initial 

month were used as independent variables. For all the translations, the necessary values were 

combined among all the 4 basins, in order to have a bigger sample, and regression analysis was 

applied for each variable, mean, maxima and minima, separately. 

The results of the regression analysis indicated that none of the parameters could produce a 

valid correlation with the proposed coefficients and precipitation and temperature values. The 

only valid tests were those correlating the same coefficients of the initial and final months. 

These results led to the conclusion that the optimization of the parameters like they were 

conducted did not produce a result that models satisfactorily the physical parameters of the 

process, although in all the translations almost perfect fits could be achieved. Therefore, the 

optimization process was adapted and a supervised approach was applied. 
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5.4 Supervised optimization with fixed model parameters 

Due to the results of the prior optimizations, it was chosen to determine some of the 

parameters and assign fixed values.  

Leading from equations 54 and 55, the following equation were proposed to calculate fixed 

values for the parameters k3 and g3 for a supervised optimization approach. This is a first 

attempt to represent these values with the intention of conserving the linear nature of the drift 

vector and the quadratic one of the diffusion vector. 

                       

 

(56) 
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where X represents precipitation from the time series calculated as presented above. The same 

equations, replacing precipitation with temperature, were applied to the optimization of 

discharge minima. With these two parameters taking pre-assigned values, the optimization was 

conducted only for the remaining 4 parameters. 

The optimization was run three times, each time using different initial guesses. These were 

applied to the optimization of both the explicit and the implicit method. In the previous 

optimizations, it had shown that the initial guess of k1 and g1 with opposing signs could easily 

cause a failed optimization. Therefore both a run with a positive and one with a negative initial 

guess were conducted. However, because of stability issues of the algorithm, the negative 

parameters had to be of a smaller magnitude. 

Run k1 k2 g1 g2 

Run 1 0.1 0.001 0.1 0.001 

Run 2 -0.01 0.001 -0.01 0.001 

Run 3 0 0 0 0 

Table 13. Initial guesses used in the 3 runs of supervised optimization 

 

For all the basins except the Brisbane basin, it was possible to obtain an optimization with a 

mean absolute error below 10 % for at least one of the numerical schemes for most of the 

translations. In more than 60% of the translations, the explicit scheme, which did not include 

numerical diffusion, could be optimized this way, which is approximately equal compared to the 

initial optimization of all model parameters. Therefore, it was decided to use the results of the 

optimal parameters of the explicit scheme for further analysis. 

As it had to be expected, in the Brisbane basin the optimization was not possible for any of the 

translations, which is most probably due to the Wivenhoe dam that regulates the affluence 

from the majority of the river basin. Another factor that contributed to this outcome was that 
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the variations in precipitation series in this basin were higher than in the other basins, which 

therefore made an optimization of the parameters even more difficult, even with different 

initial guesses. The only method that allowed the optimization of the parameters was a 

regulation of the fixed parameters k3 and g3, where the differences in mean precipitation and 

its variations were reduced to almost non-existence by division with a high-magnitude 

regulation coefficient. However, even then was it not always possible to find an appropriate 

solution and the basin remained that with the least number of successful optimizations. 

It could therefore be concluded that the regulatory nature of the dam does not permit a 

reasonable application of the model in the Brisbane basin. Since the changes in discharge do 

not respond to the natural variation of the major part of the watershed, but are principally 

controlled by the artificial conditions imposed by the amount of water passing by the dam, one 

cannot apply natural operators to the model. Therefore it was not considered reasonable to use 

the optimization results obtained with regulated parameters, and the Brisbane basin was not 

used in further analysis. 

Regression analysis was applied to the optimized parameters of the explicit scheme of the 

remaining 3 basins, which indicates a relationship between the parameters k1, g1 and g2 and the 

coefficients of variation and skewness. Again, also the coefficients of the initial probability 

distribution play an important role. For the optimization of the translations of mean discharges, 

it can be seen that all three parameters influence the outcome of the coefficients of variation 

and skewness. For extreme values, the changes in the coefficients could only be related to the 

parameter k1, which suggests that they are less influenced by the fluctuations and more by 

direct changes to the kernel of the system. In all cases, however, the values of the initial 

coefficients of variation and skewness play a crucial role. Furthermore, it can be seen that the 

correlation of the parameter k1 is stronger with the skewness coefficient than with the 

coefficient of variation. 

Table 14 on the next page shows the result of the regression analysis. The overall correlation 

value r of the test as well as the weights of the parameters and the initial coefficients are 

shown, but only if they are statistically valid. It can be seen that the influence of the coefficient 

k1 is strongest for maxima and weakest for minima, and is always correlated negatively to the 

respecting coefficients. However, it must be taken into consideration that this parameter is 

related to precipitation values in the case of means and maxima, and temperature for minima, 

which most probably influences on the results. 

The coefficient k2 does not have a significant correlation with any coefficient, which indicates 

that it does not necessarily have to be used. This makes sense, since it is associated to the 

squared value of discharge to calculate the drift vector, which is of linear nature. 
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Results of Regression Analysis 

Coefficient of Variation 

Variable r k1 k2 g1 g2 initial Cv 

Means 0.996 -0.133  0.007 1.534 0.999 

Maxima 0.990 -0.277    0.9848 

Minima 0.999 -0.041    0.999 

Coefficient of Skewness 

Variable r k1 k2 g1 g2 initial Cs 

Means 0.956 -0.503  0.058 11.1 0.903 

Maxima 0.981 -0.724    0.874 

Minima 0.999 -0.005    1.004 

Table 14. Results of multiple regression analysis between the model parameters and the coefficients of variation 
and skewness 

 

It can be concluded that the parameter k1 is most definitely related to the internal parameters 

of the basins, and due to the results of regression analysis of mean values, it is also probable 

that g1 and g2 are likewise, but not to the same extent. Due to the fact that no data related to 

the internal parameters of the basins was available, the parameters could not be assigned with 

certainty to any specific one of the internal parameters.  

 

5.5 Application of the model to estimate the change of extreme regimes 

In order to simulate the degree of change in the regime of extreme events, the calibrated 

model was used to predict the future behavior of discharge extremes by changing the 

parameters of the FPK equation. Two different simulations were conducted, differentiating 

between changes in the external watershed parameters caused by the alterations triggered for 

example by global climate change, and those in the internal parameters, which can be related 

to results of human activities in the river basins, among others. For each simulation, the 

alterations in probability density was calculated for both maxima and minima, as well as 

monthly means, in order to establish a relationship as to which amount extreme values 

experience changes compared to the mean discharge behavior. At the end, both of the two 

simulations were combined into one simulation. As mentioned before, the changes in discharge 

regimes in the Brisbane basin do not depend on natural influences, therefore it was not 

considered useful to include this basin in the evaluation of the model. The schematic outline of 

the evaluation process is shown in Figure 36. 
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Figure 36. Schematic outline of model evaluation 

 

5.5.1 Simulation with external parameters 

For the simulation of changes in external parameters, observed data could be used. Therefore, 

the linear trend was calculated for all monthly random variables for precipitation and 

temperature. With the obtained trend slope, it was possible to estimate future values, 

representing the possible monthly values for each future year. Future values were estimated 

for monthly mean precipitation and temperature, as well as monthly reference rainfall in the 

case of discharge maxima.  

For the same variables, an estimation of the change in variability was created. For this purpose, 

each monthly random variable was divided into 2 subsets, representing the chronologically first 

and second half of the observed values. For each subset, the variance was calculated, from 

which a percent wise change could be determined, which was applied to the total variance of 

the random variable. The percentages of change of these trends generally lay between 2 and 

20% of the initial value at the end of a 20-year period for precipitation series, and were higher 

for some cases in variance. The average absolute value among all calculated trends was of 

approximately 9%. 

For the simulation run, the predicted precipitation and temperature values for 20 years after 

the last year of observation were used, which was the year 2030 for the Magdalena and Enns 
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basins, and 2032 for the Great Miami and Brisbane basins. The parameters k3 and g3 were 

calculated the same way as in the calibration runs, only applying the newly estimated future 

precipitation and temperature values instead of the observed ones. The amount of change in 

probability density was calculated using the Kullback-Leibler divergence criteria. For all of the 

translations of each random process, the resulting Kullback-Leibler divergence values were 

averaged to obtain overall values for each basin, which allowed a comparison between them. 

The results indicate that the changes have the strongest intensity in the Great Miami basin, and 

the least in the Upper Magdalena basin. While for the Enns and the Great Miami basins, the 

change in minima was strongest, for the Magdalena basin it was that of maxima. The averages 

over the Kullback-Leibler results of all translations of the same variable in each basin are shown 

in table 15. 

Basin Mean Maxima Minima 

Magdalena 0.0004 0.0009 0.0003 

Enns 0.0008 0.0004 0.0057 

Great Miami 0.0018 0.0004 0.0078 

Table 15. Averages of Kullback-Leibler divergences between present and future simulations of all PDF translations 
of each basin, applying changes to external properties 

 

The intensification and weakening of the extreme events could be estimated by the movement 

of the probability density curve to either direction, or by the way the area contained under the 

tails of the distributions changed. In most of the cases, the curve was moved to one direction by 

the changes, but it also occurred that it sharpened or flattened and the tails of the distribution 

rose or lowered to an approximately equal degree.  

In most of the basins, there was an equal amount of months, in which extreme events, both 

maxima and minima, intensified or weakened. Only for the Upper Great Miami basin, more 

months showed a weakening of extreme events than intensification. Also, the occurrence is 

related to the different seasons in some cases, for example in the Enns basin it can be observed 

that minima weaken in spring and fall and intensify in the drier summer months. Equally, 

maxima tend to intensify in the spring months. In the Magdalena basin, it can be seen that the 

maxima tend to intensify in the rainy season between September and November, although the 

changes are very small compared to those in other basins. 

Following, an example of minima is shown that indicates a weakening of these events, following 

from the curve’s movement due to the changes in the external parameters. The probability 

density functions of the initial month and the one simulated with the optimized model 

parameters for the final month are shown. The function that resulted by applying the estimated 

future values of temperature is also added to show the change of the curve in the future 
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scenario. The differences between the present and the future functions are presented at the 

bottom of the graphic to visualize in which direction the curve moves. From the move of the 

curve to the right, it may be concluded that minima in August in the Great Miami basin become 

less intense due to the changes in temperature. It can also be seen that the impact of the 

changes in external parameters hardly influence on the variation of the curve with only a drift 

to one side and almost no diffusion. 

 

Figure 37. Simulation of the model applying changes to external parameters in the Upper Great Miami basin 

 

5.5.2 Simulation with internal parameters 

Due to the non-existence of data concerning the internal parameters of the basins, the 

parameters for the simulations could not be modified with dependence on existing data. 

Therefore, the parameters that are related to the internal properties of the system were 

changed percent wise to an extent that should be similar to the degree of change of the 

external parameters. Regarding the average percentage of change observed in the trends, 10% 

of the values were added and subtracted only from k1, g1 and g2. In this investigation, an 
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increase of one parameter and simultaneously a decrease in other parameters was not applied, 

although this would be an interesting topic for future investigations. The parameter k2 was not 

changed, since no relationship to the internal properties of the basins could be established. 

Also, for k3 and g3, the values were not modified compared to the calibration runs. The results 

of the Kullback-Leibler divergence are shown in table 16. 

 Change -10% Change +10% 

Basin Mean Maxima Minima Mean Maxima Minima 

Magdalena 0.0030 0.0037 0.0037 0.0041 0.0064 0.0038 

Enns 0.0024 0.0004 0.0070 0.0034 0.0019 0.0141 

Great Miami 0.0077 0.0051 0.0188 0.0049 0.0062 0.0120 

Table 16. Averages of Kullback-Leibler divergences between present and future simulations applying changes to 
internal properties 

 

The results of the analysis show clearly that the impact of changes in the internal parameters of 

the system is higher than for the external parameters. Especially for maxima, the change is up 

to more than 10 times higher in some cases, for example in the Great Miami basin. It can also 

be noted that with the change of internal parameters, the degree of change in extreme events 

is almost always similar or higher than that of means. 

A look at the way the curves changed, shows the expected contrary picture between the two 

types of simulations. If for the scenario with parameters decreasing by 10% events intensify, 

they tend to weaken for the simulation using increased model parameters and vice versa. Since 

it is not known, how exactly the parameters are related to the internal parameters of the basin, 

it is not purposeful to discuss the outcomes to whether extreme events become stronger or 

weaker in more detail. However, it is important to mention that, contrary to the simulations 

using changes in the external parameters, in most cases clearer tendencies towards more 

months showing either intensifying or weakening extremes can be observed. The clearest 

examples are minima in the Magdalena basin, where the ratio is 2:1, as well as maxima in the 

Great Miami basin with a ratio of 4:1 and in the Enns basin (3:1). Again, seasonality can be 

observed in the results. 

In the following example of the Enns River, the curve only sharpens and both tails lower, with 

no apparent movement of the curve to either direction to be seen, which might be interpreted 

as an indication that the number of events showing a discharge amount similar to the expected 

value of the distribution become more frequent, and those that are more or less intense, 

become less frequent. 
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Figure 38. Simulation of the model applying a change of -10% to internal parameters in the Enns basin 

 

The fact that alterations between the curves are stronger applying changes to the internal 

parameters is shown in the following example (figure 39) of the Upper Magdalena River, for 

which the differences were hardly noticeable applying changes in the external parameters. Due 

to the increase of 10% applied to the internal parameters, the curve of the future simulation 

indicates a higher expected value for the regime of discharge maxima for the month of October. 

It also allows the conclusion that stronger maxima might become more frequent due to the rise 

of the upper tail of the distribution. This graphic also shows that an increase of internal 

parameter values generally causes the curve to a state that indicates more intense maxima and 

at the same time less intense minima, or expressed in simple words, a move of the curve to the 

right side. The decrease in parameter values in the majority of the cases shows the opposing 

impacts. 
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Figure 39. Simulation of the model applying a change of +10% to internal parameters in the Upper Magdalena 
basin 

 

5.5.3 Simulation with external and internal parameters 

The most probable situation for a simulation of a future scenario is that both external and 

internal parameters of the basin change. For this reason, both before described simulations 

were combined into one to predict a future situation in all 3 watersheds. Both 10% increase and 

decrease of the internal parameters were combined with the predicted precipitation and 

temperature values as they were used in 5.5.1. 

 E: 20yr. trend, I:Change -10% E: 20yr. trend, I:Change +10% 

Basin Mean Maxima Minima Mean Maxima Minima 

Magdalena 0.0033 0.0036 0.0042 0.0038 0.0052 0.0046 

Enns 0.0030 0.0019 0.0074 0.0036 0.0026 0.0193 

Great Miami 0.0038 0.0053 0.0183 0.0090 0.0064 0.0156 

Table 17. Averages of Kullback-Leibler divergences between present and future simulations applying changes to 
external and internal properties 
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In general, the results are similar in magnitude to those of the simulation with only internal 

parameters, in some cases however, such as the maxima in the Enns basin, the values increased 

significantly.  

Again, in all basins it can be seen that the ratio of months with intensifying extremes to those 

with weakening extremes is not equal, as it was for the simulations using only internal 

parameters.  

In some cases, it is shown that with the change of parameters chosen in this simulation, the 

regime of monthly flows changes. In the example of the Upper Magdalena River, an increase of 

monthly mean flows and probably maxima might be expected for the month of August, using 

the future precipitation values and a 10% increase in the parameters describing the internal 

properties of the basin.  

 

Figure 40. Simulation of the model applying changes to external and +10% to internal parameters, in the Upper 
Magdalena basin 
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As it had to be expected, the strongest changes could be achieved by applying changes to all 

model parameters, although they are not so much different from the changes only to the 

parameters representing internal properties of the system, both in magnitude and in patterns 

of occurrence. Furthermore, it is shown that changes to the external properties of the 

watersheds do not influence as strongly on the changes of hydrological regimes. This finding is 

applicable especially for changes in patterns of extreme events. 

This leads to the conclusion that future scenarios, as far as they could be derived from existing 

alterations in time series which are probably caused by climate change, play a role in the 

alterations of the regimes of hydrometeorological extremes, although only a minor one. As the 

results indicate, changes in the regimes of extreme events are caused by a greater extent by 

changes in internal factors of the watershed, in which the activity of humans influences 

significantly. The global climate change would probably have to increase significantly compared 

to the current developments to have a comparable impact on the behavior of discharge 

extreme events. These conclusions are in accordance with those of the IPCC (IPCC, 2013). 

As stated previously and in Bordi et al. (2009), the differentiation between trends and long-

term periodicities of natural phenomena is difficult and cannot be known for data describing a 

short range of time, such as in the present study. Therefore, the method of applying future 

changes derived from past trends is only one of many possible scenarios that can be applied to 

the data and can therefore not be seen as a certain assumption. However, it was preferred to 

the strategy of deriving future hydrometeorological information from global circulation models 

due to its big uncertainties related to downscaling the data to fit the needs in a small area like 

the test basins (Buytaert et al., 2009; Shackley et al., 1998). 
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SECTION 6 

CONCLUSIONS 

 

This work was a first attempt to stochastically model the regimes of extreme events in 

hydrometeorological time series and possible mechanisms of alterations, which concentrated 

principally on discharge data. It provided insight into many of its details, but at the same time 

opened new possibilities for further research on the topic. 

As in many other projects, data collection occupied a large part of the time spent for 

preliminary works. Due to the research during this stage, a comprehensive collection of data 

sources could be established. With this collection, a solid data base for research was created 

that consists of quality controlled information of a wide range of hydrometeorological variables 

that go back in time as far as the 1700s in some cases and are in most cases are updated to 

almost the current date, if data is still collected. The data coverage encompasses the whole 

range of the globe for 2 of the main variables of this research, precipitation and temperature. 

The collection of discharge data proved to be more difficult due to the lack of a freely accessible 

global database. However, a collection of different national data providers could be compiled, 

from which the coverage of data could be assured for large parts of the American continent, as 

well as Australia and some European countries, for which data can be retrieved at least in a 

semi-automated way. With the creation of interfaces for all the different data providers, a tool 

was created that enables the user to rapidly gather the necessary information and save it in a 

consistent data format, that permits easy further processing in different kinds of analysis. 

Another achievement of preliminary work was the creation of a collection of programming 

tools, where approximately 50 functions were compiled for basic hydrological and statistical 

analysis. This collection of tools formed the foundation of functionality that permitted a rapid 

analysis of watershed data.  

The conducted worldwide trend analysis indicated that a change in global climate is occurring 

and that for all of the studied variables, significant trends can be found, both in mean value and 

extreme value series. Some patterns of global change could be described, such as positive 

precipitation trends in the northern and negative ones in the southern hemisphere, as well as 

differences in the number of trends found at different time resolutions. In any case, changes in 

the patterns of hydrometeorological extreme events could not be proven by this trend analysis 

for the long term, mainly due to the short period of data observation available. 

For this reason, a stochastic model was proposed that has its foundation in the Langevin 

equation, which has already been applied successfully in a wide range of hydrological 
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applications. To solve this equation, a numerical solution of the Fokker-Planck-Kolmogorov 

equation was proposed, an equation that controls the evolution of the system’s probability 

density function in time. For this reason, a stable algorithm was developed that permits the 

simulation of many different hydrological problems with the one-dimensional FPK equation, not 

only the study of extreme events. The algorithm is written in a way that it is easily expandable 

or applicable to other methods and is based on the implementation technique proposed by 

Dominguez and Rivera (2010). The way of implementation of the equation was therefore not a 

novelty, but improvements could be made, especially the implementation in Python code, 

which offers many new possibilities due to the large number of modules Python makes 

available, for example the possibility to implement optimization algorithms for the parameters 

of the FPK equation. Also, a considerable improvement in computing time was achieved due to 

the slicing technique in Numpy. This way, the code could be accelerated by approximately 100 

times and created a foundation for the implementation of the multidimensional FPK equation 

in future investigations, which requires a lot more computing power. 

Additionally, a reliable optimization procedure was developed that was able to optimize the 

complete set of parameters of the PDF translations for all variables in all basins. In any case, the 

results of this procedure could not be given a clear physical interpretation. The optimization 

with some fixed parameters did not work as well, but still provided acceptable results for more 

than 80% of the translations. It was also found that the optimization is extremely sensitive to 

the initial guesses that are provided for each PDF translation. It remains to be studied if a 

possibility exists to successfully optimize the application of “best initial guesses”, which can be 

calculated from the model’s parameters and offer the operator a higher possibility to find the 

set of optimized parameters more easily. The fact that for each translation, at least one set of 

optimal parameters can be found that permits a nearly perfect fit was shown in this work. 

Also, it could be seen that wrong initial guesses can cause instability in the algorithm, especially 

if the initial diffusion vector includes predominantly negative values. The modeling of negative 

diffusion, which corresponds with a sharpening in the curve, could be achieved during 

optimization, as shown in the results of unsupervised optimization. Additionally, it was shown 

that in hydrological systems, which are clearly regulated, specifically with the example of the 

Wivenhoe dam in the Brisbane basin, the model cannot be applied successfully. In this case, the 

system does not respond to the natural variations of the system anymore, which is one of the 

principles of the model. 

The proposed methodology of inverse modeling proved to be a powerful tool to effectively 

implement the studied problem. This way, the task of modeling a complicated physical process 

could be achieved without initially knowing its detailed structure. After the results of this 

investigation, it can be said that this modeling technique can most likely be applied to 
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numerous other problems of hydrological modeling, for example in the assessment of 

hydrological risks, the study of hydrometeorological variability or further topics related to 

global climate change. 

Finally, this work proposes a rigorous approach to estimate the degree to which the 

characteristics of a system change due to the alterations of its internal and external 

parameters. This way, evidence that global climate change impacts on the regimes of extreme 

events in discharge series was found, but it was also shown that changes in the internal 

parameters influence the system to a higher degree. Changes to internal parameters were 

further found to have a bigger impact on extreme events than on monthly means, which is in 

accordance with the finding that model parameters describing the fluctuations do not have a 

strong correlation with the changes in extreme events, but rather those describing the kernel of 

the system. These results and the fact that a large number of changes in internal parameters 

are caused by human activity reiterates the fact that we humans have it in our own hands to 

control the future of events like floods or water shortages due to high or low river flows by 

understanding better the internal mechanisms of river basins and taking the right steps to 

control the effects that these changes have on the occurrence of extreme events.  

To understand completely all the mechanisms driving the alterations in the behavior of extreme 

events, further investigations are necessary that focus more profoundly on this topic. Especially 

works where the drift and diffusion parameters are linked to the basin’s land use and coverage 

parameters and to geomorphometric characteristics should be encouraged, since no clear 

allocation of the model parameters to specific internal parameters of the basins could be made.  
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Annex A: List of data sources 

 

Hydrological Data: 

Worldwide Databases: 

 Global Historical Climatology Network (GHCN) 

http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/ 

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/ 

 

 Climate Data Online 

http://www.ncdc.noaa.gov/cdo-web/ 

 

 Global Runoff Data Centre (GRDC) 

http://www.bafg.de/GRDC/EN/Home/homepage_node.html 

 

National Databases 

 Argentina: Sub secretary of Hydrological Resources (Subsecretaría de Recursos Hídricos): 

BDHI database 

http://bdhi.hidricosargentina.gov.ar/sitioweb/frmInicial.aspx 

 

 Australia: Bureau of Meteorology 

http://www.bom.gov.au/water/hrs/#panel=data-explorer 

 

 Australia: Government of Queensland Water Monitoring Portal 

http://watermonitoring.derm.qld.gov.au/host.htm 

 

 Austria: Ministry of Life: eHyd database 

http://ehyd.gv.at/ 

 

 Brazil: National Agency for Water (Agência Nacional de Águas, ANA): Hidroweb database 

http://hidroweb.ana.gov.br/ 

 

 Canada: Environment Canada (HYDAT database) 

ftp://arccf10.tor.ec.gc.ca/wsc/software/HYDAT/ 

 

 

http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/
http://www.ncdc.noaa.gov/cdo-web/
http://www.bafg.de/GRDC/EN/Home/homepage_node.html
http://bdhi.hidricosargentina.gov.ar/sitioweb/frmInicial.aspx
http://www.bom.gov.au/water/hrs/#panel=data-explorer
http://watermonitoring.derm.qld.gov.au/host.htm
http://ehyd.gv.at/
http://hidroweb.ana.gov.br/
ftp://arccf10.tor.ec.gc.ca/wsc/software/HYDAT/
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 Mexico: National Commission for Water (Comisión Nacional del Agua, CONAGUA) 

ftp://ftp.conagua.gob.mx/ 

 

 South Africa: Department of Water Affairs 

http://www.dwaf.gov.za/Hydrology/hymain.aspx 

 

 United Kingdom: Centre of Ecology and Hydrology 

http://www.ceh.ac.uk/data/nrfa/data/search.html 

 

 United States: United States Geological Survey (USGS): National Water Information 

System 

http://waterdata.usgs.gov/nwis/ 

 

Geospatial Data: 

 ArcSWAT 

http://swat.tamu.edu/ 

 

 European Environmental Agency – Ecrins dataset 

http://www.eea.europa.eu/data-and-maps/data/european-catchments-and-rivers-

network 

 

 NASA World Satellite Web Map Service 

http://wms.jpl.nasa.gov/wms.cgi?request=GetTileService 

 

 NOAA United States river dataset 

http://www.nws.noaa.gov/geodata/catalog/hydro/metadata/riversub.htm 

 

 USGS Hydrological Units dataset 

http://water.usgs.gov/GIS/metadata/usgswrd/XML/huc250k.xml 

 

 USGS HydroSHEDS project 

http://hydrosheds.cr.usgs.gov/index.php 

 

 World Country Boundary Shapefile 

http://geocommons.com/overlays/33578.html  

ftp://ftp.conagua.gob.mx/
http://www.dwaf.gov.za/Hydrology/hymain.aspx
http://www.ceh.ac.uk/data/nrfa/data/search.html
http://waterdata.usgs.gov/nwis/
http://swat.tamu.edu/
http://www.eea.europa.eu/data-and-maps/data/european-catchments-and-rivers-network
http://www.eea.europa.eu/data-and-maps/data/european-catchments-and-rivers-network
http://www.google.com/url?q=http%3A%2F%2Fwms.jpl.nasa.gov%2Fwms.cgi%3Frequest%3DGetTileService&sa=D&sntz=1&usg=AFQjCNFxgPpu56Dvo7rdAEiLeE3u-xOn6w
http://www.nws.noaa.gov/geodata/catalog/hydro/metadata/riversub.htm
http://water.usgs.gov/GIS/metadata/usgswrd/XML/huc250k.xml
http://hydrosheds.cr.usgs.gov/index.php
http://geocommons.com/overlays/33578.html
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Annex B: List of created Python functions 

This annex contains the most important functions created for the study. Some of the functions 

contain subfunctions which are not listed below. 

 

Module hydroscripts.py 

Data preparation 

 Prepare data as daily data matrix (stochastic process form) 

 Create monthly and annual data matrices from daily matrix 

 Create monthly time series from daily time series 

 Create monthly data matrix of monthly maxima or minima from daily matrix 

Statistical tests 

 Linear regression test 

 Kolmogorov goodness of fit test 

 Kullback-Leibler divergence criterion 

 Autocorrelation function 

 Test of statistical independence (Streak test) of a random variable 

 Test of homogeneity of a random variable 

 Correlation moment of a random process 

 Cross correlation function of a random process 

 PDF function fit to a random variable 

 Determine best PDF fit to a random variable 

 Mann Kendall trend test 

 Evaluate reference rainfall lag time for monthly discharge extremes 

 Create matrix of reference rainfall for monthly discharge extremes 

 

Module dataops.py: 

 Download data of GHCN stations 

 Prepare dataset of GHCN stations 

 Prepare dataset of USGS stations 

 Prepare dataset of GRDC stations 

 Create list of eHyd stations from station metadata 

 Prepare dataset of stations from eHyd (Austria) 
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 Prepare dataset of stations from BDHI (Argentina) 

 Prepare dataset of stations from ANA (Brazil) 

 Prepare dataset of stations from CONAGUA (Mexico) 

 Prepare dataset of stations from BOM (Australia) 

 Extract data from HYDAT database and prepare dataset of stations (Canada) 

 Calculate percentage of missing data in time series 

 

Module fpk.py: 

 Explicit FPK (adaptation of existing code) 

 Implicit FPK (adaptation of existing code) 

 Run FPK with parameters 

 Optimize FPK parameters 

 FPK optimization for all random processes of all basins 

 Supervised FPK optimization for all random processes of all basins 

 Evaluation of FPK with parameter alterations for all basins 


